

Neural Networks

G. Dreyfus

Neural Networks
Methodology and Applications

With 217 Figures

123

Gérard Dreyfus
ESPCI, Laboratoire d’Électronique
10 rue Vauquelin
75005 Paris, France
E-mail: Gerard.Dreyfus@espci.fr

Library of Congress Control Number: 2005929871

Original French edition published by Eyrolles, Paris (1st edn. 2002, 2nd edn. 2004)

ISBN-10 3-540-22980-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-22980-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright Law
of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant pro-
tective laws and regulations and therefore free for general use.

Typesetting: Data-conversion by . . . using a Springer TEX macro package
Cover design: design & production GmbH, Heidelberg

Printed on acid-free paper SPIN 10904367 57/3141 5 4 3 2 1 0

Preface

The term artificial neural networks used to generate pointless dreams and
fears. Prosaically, neural networks are data-processing techniques that are
essentially understood at present; they should be part of the toolbox of all
scientists who want to make the most of the data that are available to them,
including performing previsions, designing predictive models, recognizing pat-
terns or signals, etc. All curricula oriented toward data processing contain
educational programs related to those techniques. However, their industrial
impact differs from country to country and, on the whole, is not yet as large
as it should be.

The purpose of this book is to help students, scientists and engineers un-
derstand and use those techniques whenever necessary. To that effect, clear
methodologies are described, which should make the development of appli-
cations in industry, finance and banking as easy and rigorous as possible in
view of the present state of the art. No recipes will be provided here. It is
our firm belief that no significant application can be developed without a
basic understanding of the principles and methodology of model design and
training.

The following chapters reflect the present state-of-the-art methodologies.
Therefore, it may be useful to put it briefly into the perspective of the develop-
ment of neural networks during the past years. The history of neural networks
features an interesting paradox, i.e., the handful of researchers who initiated
the modern development of those techniques, at the beginning of the 1980s,
may consider that they were successful. However, the reason for their success
is not what they expected. The initial motivation of the development of neural
networks was neuromimetic. It was speculated that, because the most simple
nervous systems, such as those of invertebrates, have abilities that far outper-
form those of computers for such specific tasks as pattern recognition, trying
to build machines that mimic the brain was a promising and viable approach.

Actually, the same idea had also launched the first wave of interest in
neural networks, in the 1960s, and those early attempts failed for lack of appro-
priate mathematical and computational tools. At present, powerful computers

vi Preface

are available and the mathematics and statistics of machine learning have
made enormous progress. However, a truly neuromimetic approach suffers
from the lack of in-depth understanding of how the brain works; the very
principles of information coding in the nervous system are largely unknown
and open to heated debates. There exist some models of the functioning of
specific systems (e.g. sensory), but there is definitely no theory of the brain.

It is thus hardly conceivable that useful machines can be built by imitat-
ing systems of which the actual functioning is essentially unknown. Therefore,
the success of neural networks and related machine-learning techniques is def-
initely not due to brain imitation. In the present book, we show that artificial
neural networks should be abstracted from the biological context. They should
be viewed as mathematical objects that are to be understood with the tools of
mathematics and statistics. That is how progress has been made in the area
of machine learning and may be expected to continue in future years.

Thus, at present, the biological paradigm is not really helpful for the design
and understanding of machine-learning techniques. It is actually quite the re-
verse, mathematical neural networks contribute more and more frequently to
the understanding of biological neural networks because they allow the design
of simple, mathematically tractable models of some parts of the nervous sys-
tem. Such modeling, contributing to a better understanding of the principles
of operation of the brain, might finally even benefit the design of machines.
That is a fascinating, completely open area of research.

In a joint effort to improve the knowledge and use of neural techniques
in their areas of activity, three French agencies, the Commissariat à l’énergie
atomique (CEA), the Centre national d’études spatiales (CNES) and the Of-
fice national d’études et de recherches aérospatiales (ONERA), organized a
spring school on neural networks and their applications to aerospace tech-
niques and to environments. The present book stems from the courses taught
during that school. Its authors have extensive experience in neural-network
teaching and research and in the development of industrial applications.

Reading Guide

A variety of motivations may lead the reader to make use of the present book;
therefore, it was deemed useful to provide a guide for the reading of the book
because not all applications require the same mathematical tools.

Chapter 1, entitled “Neural networks: an overview”, is intended to provide
a general coverage of the topics described in the book and the presentation of
a variety of applications. It will be of special interest to readers who require
background information on neural networks and wonder whether those tech-
niques are applicable or useful in their own areas of expertise. This chapter will
also help define what the reader’s actual needs are in terms of mathematical
and neural techniques, hence, to lead him to reading the relevant chapters.

Preface vii

STATIC
MODELING

 DYNAMIC
MODELING

MODELING
AND CONTROL

SUPERVISED
CLASSIFICATION

UNSUPERVISED
TRAINING

COMBINATORIAL
OPTIMIZATION

CHAPTER
5

CHAPTER
6

CHAPTER
7

CHAPTER
8

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

Readers who are interested in static modeling will read Chap. 2, “Model-
ing with neural networks: principles and model design methodology”, up to,
and including, the section entitled “Model selection”. Then they will turn to
Chap. 3, “Modeling methodology: dimension reduction and resampling meth-
ods”.

Readers who are involved in applications that require dynamic modeling
will read the whole of Chaps. 2, 3 and 4, “Neural identification of controlled
dynamical systems and recurrent networks”. If they want to design a model
for use in control applications, they will read Chap. 5, “Closed-loop control
learning”.

Readers who are interested in supervised training for automatic classifica-
tion (or discrimination) are advised to read the section “Feedforward neural
networks and discrimination (classification)” of Chap. 1, then Chap. 2 up to,
and including, the “Model selection” section, and then turn to Chap. 6 and
possibly Chap. 3.

For those who are interested in unsupervised training, Chaps. 1, 3 and 7
(“Self-organizing maps and unsupervised classification”) are relevant.

Finally, readers who are interested in combinatorial optimization will read
Chaps. 1 and 8, “Neural networks without training for optimization”.

Paris, September 2004 Gérard Dreyfus

Contents

List of Contributors .xvii

1 Neural Networks: An Overview
G. Dreyfus . 1
1.1 Neural Networks: Definitions and Properties . 2

1.1.1 Neural Networks . 3
1.1.2 The Training of Neural Networks . 12
1.1.3 The Fundamental Property of Neural Networks with

Supervised Training: Parsimonious Approximation 13
1.1.4 Feedforward Neural Networks with Supervised Training

for Static Modeling and Discrimination (Classification) 15
1.1.5 Feedforward Neural Networks with Unsupervised Training

for Data Analysis and Visualization . 21
1.1.6 Recurrent Neural Networks for Black-Box Modeling,

Gray-Box Modeling, and Control . 22
1.1.7 Recurrent Neural Networks Without Training for

Combinatorial Optimization . 23
1.2 When and How to Use Neural Networks with Supervised Training . 24

1.2.1 When to Use Neural Networks? . 24
1.2.2 How to Design Neural Networks? . 25

1.3 Feedforward Neural Networks and Discrimination (Classification) . . 32
1.3.1 What Is a Classification Problem? . 33
1.3.2 When Is a Statistical Classifier such as a Neural Network

Appropriate? . 33
1.3.3 Probabilistic Classification and Bayes Formula 36
1.3.4 Bayes Decision Rule . 41
1.3.5 Classification and Regression . 43

1.4 Some Applications of Neural Networks to Various Areas of
Engineering . 50
1.4.1 Introduction . 50

x Contents

1.4.2 An Application in Pattern Recognition: The Automatic
Reading of Zip Codes . 51

1.4.3 An Application in Nondestructive Testing: Defect
Detection by Eddy Currents . 55

1.4.4 An Application in Forecasting: The Estimation of the
Probability of Election to the French Parliament 56

1.4.5 An Application in Data Mining: Information Filtering 57
1.4.6 An Application in Bioengineering: Quantitative

Structure-Relation Activity Prediction for Organic Molecules 62
1.4.7 An Application in Formulation: The Prediction of the

Liquidus Temperatures of Industrial Glasses 64
1.4.8 An Application to the Modeling of an Industrial Process:

The Modeling of Spot Welding . 65
1.4.9 An Application in Robotics: The Modeling of the

Hydraulic Actuator of a Robot Arm . 68
1.4.10 An Application of Semiphysical Modeling to a

Manufacturing Process . 70
1.4.11 Two Applications in Environment Control: Ozone

Pollution and Urban Hydrology . 71
1.4.12 An Application in Mobile Robotics . 75

1.5 Conclusion . 76
1.6 Additional Material . 77

1.6.1 Some Usual Neurons . 77
1.6.2 The Ho and Kashyap Algorithm . 79

References . 80

2 Modeling with Neural Networks: Principles and Model
Design Methodology
G. Dreyfus . 85
2.1 What Is a Model? . 85

2.1.1 From Black-Box Models to Knowledge-Based Models 85
2.1.2 Static vs. Dynamic Models . 86
2.1.3 How to Deal With Uncertainty? The Statistical Context of

Modeling and Machine Learning . 86
2.2 Elementary Concepts and Vocabulary of Statistics 87

2.2.1 What is a Random Variable? . 87
2.2.2 Expectation Value of a Random Variable 89
2.2.3 Unbiased Estimator of a Parameter of a Distribution 89
2.2.4 Variance of a Random Variable . 90
2.2.5 Confidence Interval . 92
2.2.6 Hypothesis Testing . 92

2.3 Static Black-Box Modeling . 92
2.3.1 Regression . 93
2.3.2 Introduction to the Design Methodology 94

2.4 Input Selection for a Static Black-Box Model 95

Contents xi

2.4.1 Reduction of the Dimension of Representation Space 95
2.4.2 Choice of Relevant Variables . 96
2.4.3 Conclusion on Variable Selection . 103

2.5 Estimation of the Parameters (Training) of a Static Model 103
2.5.1 Training Models that are Linear with Respect to Their

Parameters: The Least Squares Method for Linear Regression106
2.5.2 Nonadaptive (Batch) Training of Static Models that Are

Not Linear with Respect to Their Parameters 110
2.5.3 Adaptive (On-Line) Training of Models that Are Nonlinear

with Respect to Their Parameters . 121
2.5.4 Training with Regularization . 121
2.5.5 Conclusion on the Training of Static Models 130

2.6 Model Selection . 131
2.6.1 Preliminary Step: Discarding Overfitted Model by

Computing the Rank of the Jacobian Matrix 133
2.6.2 A Global Approach to Model Selection: Cross-Validation

and Leave-One-Out. 134
2.6.3 Local Least Squares: Effect of Withdrawing an Example

from the Training Set, and Virtual Leave-One-Out 137
2.6.4 Model Selection Methodology by Combination of the Local

and Global Approaches . 142
2.7 Dynamic Black-Box Modeling . 149

2.7.1 State-Space Representation and Input-Output
Representation . 150

2.7.2 Assumptions on Noise and Their Consequences on the
Structure, the Training and the Operation of the Model 151

2.7.3 Nonadaptive Training of Dynamic Models in Canonical Form162
2.7.4 What to Do in Practice? A Real Example of Dynamic

Black-Box Modeling . 168
2.7.5 Casting Dynamic Models into a Canonical Form 171

2.8 Dynamic Semiphysical (Gray Box) Modeling . 175
2.8.1 Principles of Semiphysical Modeling . 175

2.9 Conclusion: What Tools? . 186
2.10 Additional Material . 187

2.10.1 Confidence Intervals: Design and Example 187
2.10.2 Hypothesis Testing: An Example . 189
2.10.3 Pearson, Student and Fisher Distributions 189
2.10.4 Input Selection: Fisher’s Test; Computation of the

Cumulative Distribution Function of the Rank of the
Probe Feature . 190

2.10.5 Optimization Methods: Levenberg-Marquardt and BFGS . . . 193
2.10.6 Line Search Methods for the Training Rate 195
2.10.7 Kullback-Leibler Divergence Between two Gaussians 196
2.10.8 Computation of the Leverages . 197

References . 199

xii Contents

3 Modeling Methodology: Dimension Reduction and
Resampling Methods
J.-M. Martinez . 203
3.1 Introduction . 203
3.2 Preprocessing . 204

3.2.1 Preprocessing of Inputs . 204
3.2.2 Preprocessing Outputs for Supervised Classification 205
3.2.3 Preprocessing Outputs for Regression . 206

3.3 Input Dimension Reduction . 207
3.4 Principal Component Analysis . 207

3.4.1 Principle of PCA . 207
3.5 Curvilinear Component Analysis . 211

3.5.1 Formal Presentation of Curvilinear Component Analysis . . . 213
3.5.2 Curvilinear Component Analysis Algorithm 215
3.5.3 Implementation of Curvilinear Component Analysis 216
3.5.4 Quality of the Projection . 217
3.5.5 Difficulties of Curvilinear Component Analysis 218
3.5.6 Applied to Spectrometry . 219

3.6 The Bootstrap and Neural Networks . 220
3.6.1 Principle of the Bootstrap . 222
3.6.2 Bootstrap Estimation of the Standard Deviation 223
3.6.3 The Generalization Error Estimated by the Bootstrap 224
3.6.4 The NeMo Method . 225
3.6.5 Testing the NeMo Method . 227
3.6.6 Conclusions . 229

References . 230

4 Neural Identification of Controlled Dynamical Systems and
Recurrent Networks
M. Samuelides . 231
4.1 Formal Definition and Examples of Discrete-Time Controlled

Dynamical Systems . 232
4.1.1 Formal Definition of a Controlled Dynamical System by

State Equation. 232
4.1.2 An Example of Discrete Dynamical System 233
4.1.3 Example: The Linear Oscillator . 234
4.1.4 Example: The Inverted Pendulum . 235
4.1.5 Example of Nonlinear Oscillator: The Van Der Pol Oscillator236
4.1.6 Markov Chain as a Model for Discrete-Time Dynamical

Systems with Noise . 236
4.1.7 Linear Gaussian Model as an Example of a Continuous-

State Dynamical System with Noise . 239
4.1.8 Auto-Regressive Models . 240
4.1.9 Limits of Modeling Uncertainties Using State Noise 242

4.2 Regression Modeling of Controlled Dynamical Systems 242

Contents xiii

4.2.1 Linear Regression for Controlled Dynamical Systems 242
4.2.2 Nonlinear Identification Using Feedforward Neural Networks 246

4.3 On-Line Adaptive Identification and Recursive Prediction Error
Method . 250
4.3.1 Recursive Estimation of Empirical Mean 250
4.3.2 Recursive Estimation of Linear Regression 252
4.3.3 Recursive Identification of an AR Model 253
4.3.4 General Recursive Prediction Error Method (RPEM) 255
4.3.5 Application to the Linear Identification of a Controlled

Dynamical System . 256
4.4 Innovation Filtering in a State Model . 258

4.4.1 Introduction of a Measurement Equation 258
4.4.2 Kalman Filtering . 261
4.4.3 Extension of the Kalman Filter . 265

4.5 Recurrent Neural Networks . 270
4.5.1 Neural Simulator of an Open-Loop Controlled Dynamical

System . 270
4.5.2 Neural Simulator of a Closed Loop Controlled Dynamical

System . 270
4.5.3 Classical Recurrent Network Examples 272
4.5.4 Canonical Form for Recurrent Networks 275

4.6 Learning for Recurrent Networks . 276
4.6.1 Teacher-Forced Learning . 277
4.6.2 Unfolding of the Canonical Form and Backpropagation

Through Time (BPTT) . 277
4.6.3 Real-Time Learning Algorithms for Recurrent Network

(RTRL) . 281
4.6.4 Application of Recurrent Networks to Measured Controlled

Dynamical System Identification . 282
4.7 Appendix (Algorithms and Theoretical Developments) 283

4.7.1 Computation of the Kalman Gain and Covariance
Propagation . 283

4.7.2 The Delay Distribution Is Crucial for Recurrent Network
Dynamics . 285

References . 287

5 Closed-Loop Control Learning
M. Samuelides . 289
5.1 Generic Issues in Closed-Loop Control of Nonlinear Systems 290

5.1.1 Basic Model of Closed-Loop Control . 290
5.1.2 Controllability . 291
5.1.3 Stability of Controlled Dynamical Systems 292

5.2 Design of a Neural Control with an Inverse Model 294
5.2.1 Straightforward Inversion . 294
5.2.2 Model Reference Adaptive Control . 297

xiv Contents

5.2.3 Internal Model Based Control . 299
5.2.4 Using Recurrent Neural Networks . 301

5.3 Dynamic Programming and Optimal Control 303
5.3.1 Example of a Deterministic Problem in a Discrete State

Space . 303
5.3.2 Example of a Markov Decision Problem 305
5.3.3 Definition of a Decision Markov Problem 307
5.3.4 Finite Horizon Dynamic Programming 310
5.3.5 Infinite-Horizon Dynamic Programming with Discounted

Cost . 312
5.3.6 Partially Observed Markov Decision Problems 314

5.4 Reinforcement Learning and Neuro-Dynamic Programming 314
5.4.1 Policy Evaluation Using Monte Carlo Method and

Reinforcement Learning . 314
5.4.2 TD Algorithm of Policy Evaluation . 316
5.4.3 Reinforcement Learning: Q-Learning Method 319
5.4.4 Reinforcement Learning and Neuronal Approximation 322

References . 325

6 Discrimination
M. B. Gordon . 329
6.1 Training for Pattern Discrimination . 330

6.1.1 Training and Generalization Errors . 331
6.1.2 Discriminant Surfaces . 332

6.2 Linear Separation: The Perceptron . 334
6.3 The Geometry of Classification . 336

6.3.1 Separating Hyperplane . 336
6.3.2 Aligned Field . 337
6.3.3 Stability of an Example . 338

6.4 Training Algorithms for the Perceptron . 339
6.4.1 Perceptron Algorithm. 339
6.4.2 Convergence Theorem for the Perceptron Algorithm 341
6.4.3 Training by Minimization of a Cost Function 342
6.4.4 Cost Functions for the Perceptron . 344
6.4.5 Example of Application: The Classification of Sonar Signals 351
6.4.6 Adaptive (On-Line) Training Algorithms 353
6.4.7 An Interpretation of Training in Terms of Forces 353

6.5 Beyond Linear Separation . 355
6.5.1 Spherical Perceptron . 355
6.5.2 Constructive Heuristics . 356
6.5.3 Support Vector Machines (SVM) . 359

6.6 Problems with More than two Classes . 362
6.7 Theoretical Questions . 364

6.7.1 The Probabilistic Framework . 364

Contents xv

6.7.2 A Probabilistic Interpretation of the Perceptron Cost
Functions . 366

6.7.3 The Optimal Bayesian Classifier . 368
6.7.4 Vapnik’s Statistical Learning Theory . 369
6.7.5 Prediction of the Typical Behavior . 372

6.8 Additional Theoretical Material . 374
6.8.1 Bounds to the Number of Iterations of the Perceptron

Algorithm . 374
6.8.2 Number of Linearly Separable Dichotomies 375

References . 376

7 Self-Organizing Maps and Unsupervised Classification
F. Badran, M. Yacoub, and S. Thiria . 379
7.1 Notations and Definitions . 381
7.2 The k-Means Algorithm . 383

7.2.1 Outline of the k-Means Algorithm . 383
7.2.2 Stochastic Version of k-Means . 386
7.2.3 Probabilistic Interpretation of k-Means 388

7.3 Self-Organizing Topological Maps . 392
7.3.1 Self-Organizing Maps . 392
7.3.2 The Batch Optimization Algorithm for Topological Maps . . 397
7.3.3 Kohonen’s Algorithm . 404
7.3.4 Discussion . 406
7.3.5 Neural Architecture and Topological Maps 406
7.3.6 Architecture and Adaptive Topological Maps 408
7.3.7 Interpretation of Topological Self-Organization 409
7.3.8 Probabilistic Topological Map . 412

7.4 Classification and Topological Maps . 415
7.4.1 Labeling the Map Using Expert Data . 416
7.4.2 Searching a Partition that Is Appropriate to the Classes . . . 417
7.4.3 Labeling and Classification . 420

7.5 Applications . 421
7.5.1 A Satellite Remote Sensing Application 422
7.5.2 Classification and PRSOM . 430
7.5.3 Topological Map and Documentary Research 439

References . 441

8 Neural Networks without Training for Optimization
L. Hérault . 443
8.1 Modelling an Optimisation Problem . 443

8.1.1 Examples . 444
8.1.2 The Travelling Salesman Problem (TSP) 445

8.2 Complexity of an Optimization Problem. 446
8.2.1 Example . 447

8.3 Classical Approaches to Combinatorial Problems 447

xvi Contents

8.4 Introduction to Metaheuristics . 448
8.5 Techniques Derived from Statistical Physics . 449

8.5.1 Canonical Analysis . 450
8.5.2 Microcanonical Analysis . 456
8.5.3 Example: Travelling Salesman Problem 457

8.6 Neural Approaches . 463
8.6.1 Formal Neural Networks for Optimization 463
8.6.2 Architectures of Neural Networks for Optimisation 465
8.6.3 Energy Functions for Combinatorial Optimisation 466
8.6.4 Recurrent Hopfield Neural Networks . 467
8.6.5 Improvements of Hopfield Neural Networks 475

8.7 Tabu Search . 484
8.8 Genetic Algorithms . 484
8.9 Towards Hybrid Approaches . 485
8.10 Conclusion . 485

8.10.1 The Choice of a Technique . 485
References . 486

About the Authors . 491

Index . 493

List of Contributors

Fouad Badran
Laboratoire Leibniz, IMAG
46 avenue Félix Viallet, 38000 Grenoble, France

Gérard Dreyfus
ESPCI, Laboratoire d’Électronique
10 rue Vauquelin, 75005 Paris, France

Mirta B. Gordon
Laboratoire Leibniz, IMAG
46 avenue Félix Viallet, 38031 Grenoble, France

Laurent Hérault
CEA-LETI, DSIS/SIT, CEA Grenoble
17 rue des Martyrs, 38054 Grenoble Cedex 9, France

Jean-Marc Martinez
DM2S/SFME Centre d’Études de Saclay
91191 Gif sur Yvette, France

Manuel Samuelides1,2

1École Nationale Supérieure de l’Aéronautique et de l’Espace
Département Mathématiques Appliquées
10 avenue Édouard Belin, BP 4032, 31055 Toulouse Cedex, France
2DRFMC/SPSMS/Groupe Théorie, CEA Grenoble
17 rue des Martyrs, 38054 Grenoble Cedex 9, France

xviii List of Contributors

Sylvie Thiria
Laboratoire d’Océanographie Dynamique et de Climatologie (LODYC)
Case 100, Université Paris 6
4 place Jussieu, 75252 Paris Cedex 5, France

Méziane Yacoub
CEDRIC, Conservatoire National des Arts et Métiers
292 rue Saint Martin, 75003 Paris, France

1

Neural Networks: An Overview

G. Dreyfus

How useful is that new technology? This is a natural question to ask whenever
an emerging technique, such as neural networks, is transferred from research
laboratories to industry. In addition, the biological flavor of the term “neural
network” may lead to some confusion. For those reasons, this chapter is de-
voted to a presentation of the mathematical foundations and algorithms that
underlie the use of neural networks, together with the description of typical
applications; although the latter are quite varied, they are all based on a small
number of simple principles.

Putting neural networks to work is quite simple, and good software devel-
opment tools are available. However, in order to avoid disappointing results, it
is important to have an in-depth understanding of what neural networks really
do and of what they are really good at. The purpose of the present chapter is
to explain under what circumstances neural networks are preferable to other
data processing techniques and for what purposes they may be useful.

Basic definitions will be first presented: (formal) neuron, neural networks,
neural network training (both supervised and unsupervised), feedforward and
feedback (or recurrent) networks.

The basic property of neural networks with supervised training, parsimo-
nious approximation, will subsequently be explained. Due to that property,
neural networks are excellent nonlinear modeling tools. In that context, the
concept of supervised training will emerge naturally as a nonlinear version
of classical statistical modeling methods. Attention will be drawn to the nec-
essary and sufficient conditions for an application of neural networks with
supervised training to be successful.

Automatic classification (or discrimination) is an area of application of
neural networks that has specific features. A general presentation of automatic
classification, from a probabilistic point of view, will be made. It will be shown
that not all classification problems can be solved efficiently by neural networks,
and we will characterize the class of problems where neural classification is
most appropriate. A general methodology for the design of neural classifiers
will be explained.

2 G. Dreyfus

Fig. 1.1. A neuron is a nonlinear bounded function y = f(x1, x2, . . . xn; w1, w2, . . . ,
wp) where the {xi} are the variables and the {wj} are the parameters (or weights)
of the neuron

Finally, various applications will be described that illustrate the variety
of areas where neural networks can provide efficient and elegant solutions to
engineering problems, such that pattern recognition, nondestructive testing,
information filtering, bioengineering, material formulation, modeling of in-
dustrial processes, environmental control, robotics, etc. Further applications
(spectra interpretation, classification of satellite images, classification of sonar
signals, process control) will be either mentioned or described in detail in sub-
sequent chapters.

1.1 Neural Networks: Definitions and Properties

A neuron is a nonlinear, parameterized, bounded function.
For convenience, a linear parameterized function is often termed a linear

neuron.
The variables of the neuron are often called inputs of the neuron and

its value is its output. A neuron can be conveniently represented graphically
as shown on Fig. 1.1. This representation stems from the biological inspira-
tion that prompted the initial interest in formal neurons, between 1940 and
1970 [McCulloch 1943; Minsky 1969].

Function f can be parameterized in any appropriate fashion. Two types
of parameterization are of current use.

• The parameters are assigned to the inputs of the neurons; the output of
the neuron is a nonlinear combination of the inputs {xi}, weighted by the
parameters {wi}, which are often termed weights, or, to be reminiscent of
the biological inspiration of neural networks, synaptic weights. Following
the current terminology, that linear combination will be termed potential
in the present book, and, more specifically, linear potential in Chap. 5. The

1 Neural Networks: An Overview 3

most frequently used potential v is a weighted sum of the inputs, with an
additional constant term called “bias”,

v = w0 +
n−1∑
i=1

wixi.

Function f is termed activation function. For reasons that will be explained
below, it is advisable that function f be a sigmoid function (i.e., an s-
shaped function), such as the tanh function or the inverse tangent function.
In most applications that will be described in the present chapter, the out-
put y of a neuron with inputs {xi} is given by y = tanh[w0 +

∑n−1
i=1 wixi].

• The parameters are assigned to the neuron nonlinearity, i.e., they belong to
the very definition of the activation function such is the case when function
f is a radial basis function (RBF) or a wavelet; the former stem from ap-
proximation theory [Powell 1987], the latter from signal processing [Mallat
1989].
For instance, the output of a Gaussian RBF is given by

y = exp

[
−

n∑
i=1

(xi − wi)2
/

2w2
n+1

]
,

where the parameters wi, i = 1 to n, are the position of the center of the
Gaussian and wn+1 is its standard deviation.

Additional examples of neurons are given in the theoretical and algorithmic
supplements, at the end of the chapter.

For practical purposes, the main difference between the above two cate-
gories of neurons is that RBFs and wavelets are local nonlinearities, which
vanish asymptotically in all directions of input space, whereas neurons that
have a potential and a sigmoid nonlinearity have an infinite-range influence
along the direction defined by v = 0.

1.1.1 Neural Networks

It has just been shown that a neuron is a nonlinear, parameterized function of
its input variables. Naturally enough, a network of neurons is the composition
of the nonlinear functions of two or more neurons.

Neural networks come in two classes: feedforward networks and recurrent
(or feedback) networks.

1.1.1.1 Feedforward Neural Networks

General Form

A feedforward neural network is a nonlinear function of its inputs, which is
the composition of the functions of its neurons.

4 G. Dreyfus

Fig. 1.2. A neural network with n inputs, a layer of Nc hidden neurons, and No

output neurons

Therefore, a feedforward neural network is represented graphically as a
set of neurons connected together, in which the information flows only in the
forward direction, from inputs to outputs. In a graph representation, where
the vertices are the neurons and the edges are the connections, the graph of a
feedforward network is acyclic: no path in the graph, following the connections,
can lead back to the starting point. The graph representation of the topology
of the network is a useful tool, especially for analyzing recurrent networks, as
will be shown in Chap. 2.

The neurons that perform the final computation, i.e., whose outputs are
the outputs of the network, are called output neurons; the other neurons,
which perform intermediate computations, are termed hidden neurons (see
Fig. 1.2).

One should be wary of the term connection, which should be taken
metaphorically. In the vast majority of applications, neurons are not phys-
ical objects, e.g., implemented electronically in silicon, and connections do
not have any actual existence: the computations performed by each neuron
are implemented as software programs, written in any convenient language
and running on any computer. The term connection stems from the biological
origin of neural networks; it is convenient, but it may be definitely misleading.
So is the term connectionism.

Multilayer Networks

A great variety of network topologies can be imagined, under the sole con-
straint that the graph of connections be acyclic. However, for reasons that
will be developed in a subsequent section, the vast majority of neural network
applications implement multilayer networks, an example of which is shown on
Fig. 1.2.

1 Neural Networks: An Overview 5

General Form

That network computes No functions of the input variables of the network;
each output is a nonlinear function (computed by the corresponding output
neuron) of the nonlinear functions computed by the hidden neurons.

A feedforward network with n inputs, Nc hidden neurons and No output
neurons computes No nonlinear functions of its n input variables as composi-
tions of the Nc functions computed by the hidden neurons.

It should be noted that feedforward networks are static; if the inputs are
constant, then so are the outputs. The time necessary for the computation
of the function of each neuron is usually negligibly small. Thus, feedforward
neural networks are often termed static networks in contrast with recurrent
or dynamic networks, which will be described in a specific section below.

Feedforward multilayer networks with sigmoid nonlinearities are often
termed multilayer perceptrons, or MLPs.

In the literature, an input layer and input neurons are frequently men-
tioned as part of the structure of a multilayer perceptron. That is confusing
because the inputs (shown as squares on Fig. 1.2, as opposed to neurons,
which are shown as circles) are definitely not neurons: they do not perform
any processing on the inputs, which they just pass as variables of the hidden
neurons.

Feedforward Neural Networks with a Single Hidden Layer of Sigmoids and a
Single Linear Output Neuron

The final part of this presentation of feedforward neural networks will be de-
voted to a class of feedforward neural networks that is particularly important
in practice: networks with a single layer of hidden neurons with a sigmoid
activation function, and a linear output neuron (Fig. 1.3).

The output of that network is given by

g(x, w) =
Nc∑
i=1

⎡
⎣wNc+1,i tanh

⎛
⎝ n∑

j=1

wijxj + wi0

⎞
⎠
⎤
⎦+ wNc+1,0

=
Nc∑
i=1

⎡
⎣wNc+1,i tanh

⎛
⎝ n∑

j=0

wijxj

⎞
⎠
⎤
⎦+ wNc+1,0,

where x is the input (n+1)-vector, and w is the vector of (n+1)Nc +(Nc +1)
parameters. Hidden neurons are numbered from 1 to Nc, and the output
neuron is numbered Nc + 1. Conventionally, the parameter wij is assigned
to the connection that conveys information from neuron j (or from network
input j) to neuron i.

The output g(x,w) of the network is a linear function of the parameters
of the last connection layer (connections that convey information from the Nc

hidden neurons to the output neuron Nc + 1), and it is a nonlinear function

6 G. Dreyfus

Fig. 1.3. A neural network with n + 1 inputs, a layer of Nc hidden neurons with
sigmoid activation function, and a linear output neuron. Its output g(x, w) is a
nonlinear function of the input vector x, whose components are 1, x1, x2, . . . , xn,
and of the vector of parameters w, whose components are the (n + 1)Nc + Nc + 1
parameters of the network

of the parameters of the first layer of connections (connections that convey
information from the n+ 1 inputs of the network to the Nc hidden neurons).
That property has important consequences, which will be described in detail
in a subsequent section.

The output of a multilayer perceptron is a nonlinear function of its inputs
and of its parameters.

1.1.1.2 What Is a Neural Network with Zero Hidden Neurons?

A feedforward neural network with zero hidden neuron and a linear output
neuron is an affine function of its inputs. Hence, any linear system can be re-
garded as a neural network. That statement, however, does not bring anything
new or useful to the well-developed theory of linear systems.

1.1.1.3 Direct Terms

If the function to be computed by the feedforward neural network is thought
to have a significant linear component, it may be useful to add linear terms
(sometimes called direct terms) to the above structure; they appear as addi-
tional connections on the graph representation of the network, which convey
information directly from the inputs to the output neuron (Fig. 1.4). For
instance, the output of a feedforward neural network with a single layer of
activation functions and a linear output function becomes

g(x,w) =
Nc∑
i=1

⎡
⎣wNc+1,i tanh

⎛
⎝ n∑

j=0

wijxj

⎞
⎠
⎤
⎦+

n∑
j=0

wNc+1,jxj .

1 Neural Networks: An Overview 7

Fig. 1.4. A feedforward neural network with direct terms. Its output g(x, w) de-
pends on the input vector x, whose components are 1, x1, x2, . . . , xn, and on the
vector of parameters w, whose components are the parameters of the network

RBF (Radial Basis Functions) and Wavelet Networks

The parameters of such networks are assigned to the nonlinear activation
function, instead of being assigned to the connections; as in MLP’s, the output
is a linear combination of the outputs of the hidden RBF’s. Therefore, the
output of the network (for Gaussian RBF’s) is given by

g(x,w) =
Nc∑
i=1

[
wNc+1,i exp

(
−
∑n

j=1(xj − wij)2

2w2
i

)]
,

where x is the n-vector of inputs, and w is the vector of ((n+2)Nc) parameters
[Broomhead 1988; Moody 1989]; hidden neurons are numbered from 1 to Nc,
and the output neuron is numbered Nc + 1.

The parameters of an RBF network fall into two classes: the parameters
of the last layer, which convey information from the Nc RBF (outputs to
the output linear neuron), and the parameters of the RBF’s (centers and
standard deviations for Gaussian RBF’s). The connections of the first layer
(from inputs to RBF’s) are all equal to 1. In such networks, the output is a
linear function of the parameters of the last layer and it is a nonlinear function
of the parameters of the Gaussians. This has an important consequence that
will be examined below.

Wavelet networks have exactly the same structure, except for the fact that
the nonlinearities of the neurons are wavelets instead of being Gaussians. The

8 G. Dreyfus

parameters that are relevant to the nonlinearity are the translations and the
dilations of the wavelets [Benveniste 1994; Oussar 2000].

1.1.1.4 Recurrent (Feedback) Neural Networks

General Form

The present section is devoted to a presentation of the most general neural
network architecture: recurrent neural networks, whose connection graph ex-
hibits cycles. In that graph, there exists at least one path that, following the
connections, leads back to the starting vertex (neuron); such a path is called
a cycle. Since the output of a neuron cannot be a function of itself, such an
architecture requires that time be explicitly taken into account: the output of
a neuron cannot be a function of itself at the same instant of time, but it can
be a function of its past value(s).

At present, the vast majority of neural network applications are imple-
mented as digital systems (either standard computers, or special-purpose
digital circuits for signal processing): therefore, discrete-time systems are
the natural framework for investigating recurrent networks, which are de-
scribed mathematically by recurrent equations (hence the name of those net-
works). Discrete-time (or recurrent) equations are discrete-time equivalents of
continuous-time differential equations.

Therefore, each connection of a recurrent neural network is assigned a
delay (possibly equal to zero), in addition to being assigned a parameter
as in feedforward neural networks. Each delay is an integer multiple of an
elementary time that is considered as a time unit. From causality, a quantity,
at a given time, cannot be a function of itself at the same time: therefore, the
sum of the delays of the edges of a cycle in the graph of connections must be
nonzero.

A discrete-time recurrent neural network obeys a set of nonlinear discrete-
time recurrent equations, through the composition of the functions of its neu-
rons, and through the time delays associated to its connections.

Property. For causality to hold, each cycle of the connection graph must have
at least one connection with a nonzero delay.

Figure 1.5 shows an example of a recurrent neural network. The digits
in the boxes are the delays attached to the connections, expressed as integer
multiples of a time unit (or sampling period) T . The network features a cycle,
from neuron 3 back to neuron 3 through neuron 4; since the connection from
4 to 3 has a delay of one time unit, the network is causal.

Further Details

At time kT , the inputs of neuron 3 are u1(kT), u2[(k−1)T], y4[(k−1)T] (where
k is a positive integer and y4(kT) is the output of neuron 4 at time kT), and

1 Neural Networks: An Overview 9

Fig. 1.5. A two-input recurrent neural network. Digits in square boxes are the
delay assigned to each connection, an integer multiple of the time unit (or sampling
period) T . The network features a cycle from 3 to 3 through 4

it computes its output y3(kT); the inputs of neuron 4 are u2(kT) and y3(kT),
and it computes its output y4(kT); the inputs of neuron 5 are y3(kT), u1(kT)
et y4[(k−1)T], and it computes its output, which is the output of the network
g(kT).

The Canonical Form of Recurrent Neural Networks

Because recurrent neural networks are governed by recurrent discrete-time
equations, it is natural to investigate the relations between such nonlinear
models and the conventional dynamic linear models, as used in linear modeling
and control.

The general mathematical description of a linear system is the state
equations,

x(k) = A x(k − 1) +B u(k − 1)
g(k) = C x(k − 1) +D u(k − 1),

where x(k) is the state vector at time kT,u(k) is the input vector at time
kT, g(k) is the output vector at time kT and A,B,C,D are matrices. The state
variables are the minimal set of variables such that their values at time (k+1)T
can be computed if (i) their initial values are known, and if (ii) the values of
the inputs are known at all time from 0 to kT . The number of state variables
is the order of the system.

Similarly the canonical form of a nonlinear system is defined as

x(k) = Φ[x(k − 1),u(k − 1)]
g(k) = Ψ [x(k − 1),u(k − 1)],

10 G. Dreyfus

Fig. 1.6. The canonical form of a recurrent neural network. The symbol q−1 stands
for a unit time delay

where Φ and Ψ are nonlinear vector functions, e.g., neural networks, and
where x is the state vector. As in the linear case, the state variables are the
elements of the minimal set of variables such that the model can be described
completely at time k+1 given the initial values of the state variables, and the
inputs from time 0 to time k. It will be shown in Chap. 2 that any recurrent
neural network can be cast into a canonical form, as shown on Fig. 1.6, where
q−1 stands for a unit time delay. This symbol, which is usual in control theory,
will be used in throughout this book, especially in Chaps. 2 and 4.

Property. Any recurrent neural network, however complex, can be cast into a
canonical form, made of a feedforward neural network, some outputs of which
(termed state outputs) are fed back to the inputs through unit delays [Nerrand
1993].

For instance, the neural network of Fig. 1.5 can be cast into the canonical
form that is shown on Fig. 1.7. That network has a single state variable (hence
it is a first-order network): the output of neuron 3. In that example, neuron
3 is a hidden neuron, but it will be shown below that a state neuron can also
be an output neuron.

Further Details

At time kT , the inputs of neuron 4 are u2[(k − 1)T] and x[(k − 1)T] =
y3[(k − 1)T]); therefore, its output is y4[(k − 1)T]; just as in the origi-
nal (non-canonical) form, the inputs of neuron 3 are u1(kT), u2[(k − 1)T],
y4[(k − 1)T]; therefore, its output is y3(kT); the inputs of neuron 5 are

1 Neural Networks: An Overview 11

Fig. 1.7. The canonical form (right-hand side) of the network shown on Fig. 1.5
(left-hand side). That network has a single state variable x(kT) (output of neuron 3):
it is a first-order network. The gray part of the canonical form is a feedforward neural
network

y3(kT), u1(kT), y4[(k−1)T]; therefore, its output is g(kT), which is the output
of the network. Hence, both networks are functionally equivalent.

Recurrent neural networks (and their canonical form) will be investigated
in detail in Chaps. 2, 4 and 8.

1.1.1.5 Summary

In the present section, we stated the basic definitions that are relevant to the
neural networks investigated in the present book. We made specific distinc-
tions between:

• Feedforward (or static) neural networks, which implement nonlinear func-
tions of their inputs,

• Recurrent (or dynamic) neural networks, which are governed by nonlinear
discrete-time recurrent equations.

In addition, we showed that any recurrent neural network can be cast into a
canonical form, which is made of a feedforward neural network whose outputs
are fed back to its inputs with a unit time delay.

Thus, the basic element of any neural network is a feedforward neural
network. Therefore, we will first study in detail feedforward neural networks.
Before investigating their properties and applications, we will consider the
concept of training.

12 G. Dreyfus

1.1.2 The Training of Neural Networks

Training is the algorithmic procedure whereby the parameters of the neurons
of the network are estimated, in order for the neural network to fulfill, as
accurately as possible, the task it has been assigned.

Within that framework, two categories of training are considered: super-
vised training and unsupervised training.

1.1.2.1 Supervised Training

As indicated in the previous section, a feedforward neural network computes
a nonlinear function of its inputs. Therefore, such a network can be assigned
the task of computing a specific nonlinear function. Two situations may arise:

• The nonlinear function is known analytically: hence the network performs
the task of function approximation,

• The nonlinear function is not known analytically, but a finite number of
numerical values of the function are known; in most applications, these
values are not known exactly because they are obtained through measure-
ments performed on a physical, chemical, financial, economic, biological,
etc. process: in such a case, the task that is assigned to the network is
that of approximating the regression function of the available data, hence
of being a static model of the process.

In the vast majority of their applications, feedforward neural networks with
supervised training are used in the second class of situations.

Training can be thought of as “supervised” since the function that the net-
work should implement is known in some or all points: a “teacher” provides
“examples” of values of the inputs and of the corresponding values of the out-
put, i.e., of the task that the network should perform. The core of Chap. 2 of
the book is devoted to translating the above metaphor into mathematics and
algorithms. Chapters 3, 4, 5 and 6 are devoted to the design and applications
of neural networks with supervised training for static and dynamic modeling,
and for automatic classification (or discrimination).

1.1.2.2 Unsupervised Training

A feedforward neural network can also be assigned a task of data analysis
or visualization: a set of data, described by a vector with a large number of
components, is available. It may be desired to cluster these data, according
to similarity criteria that are not known a priori. Clustering methods are well
known in statistics; feedforward neural networks can be assigned a task that is
close to clustering: from the high-dimensional data representation, find a rep-
resentation of much smaller dimension (usually 2-dimensional) that preserves
the similarities or neighborhoods. Thus, no teacher is present in that task,

1 Neural Networks: An Overview 13

since the training of the network should “discover” the similarities between
elements of the database, and translate them into vicinities in the new data
representation or “map.” The most popular feedforward neural networks with
unsupervised training are the “self-organizing maps” or “Kohonen maps”.
Chapter 7 is devoted to self-organizing maps and their applications.

1.1.3 The Fundamental Property of Neural Networks with
Supervised Training: Parsimonious Approximation

1.1.3.1 Nonlinear in Their Parameters, Neural Networks Are
Universal Approximators

Property. Any bounded, sufficiently regular function can be approximated
uniformly with arbitrary accuracy in a finite region of variable space, by a
neural network with a single layer of hidden neurons having the same activa-
tion function, and a linear output neuron [Hornik 1989, 1990, 1991].

That property is just a proof of existence and does not provide any method
for finding the number of neurons or the values of the parameters; furthermore,
it is not specific to neural networks. The following property is indeed specific
to neural networks, and it provides a rationale for the applications of neural
networks.

1.1.3.2 Some Neural Networks Are Parsimonious

In order to implement real applications, the number of functions that are
required to perform an approximation is an important criterion when a choice
must be made between different models. It will be shown in the next section
that the model designer ought always to choose the model with the smallest
number of parameters, i.e., the most parsimonious model.

Fundamental Property

It can be shown [Barron 1993] that, if the model is nonlinear with respect to
its parameters, it is more parsimonious than if the model is linear with respect
to its parameters.

More specifically, it can be shown that the number of parameters neces-
sary to perform an approximation with a given accuracy varies exponentially
with the number of variables for models that are linear with respect to their
parameters, whereas it increases linearly with the number of variables if the
model is not linear with respect to its parameters.

Therefore, that property is valuable for models that have a “large” number
of inputs: for a process with one or two variables only, all nonlinear models are
roughly equivalent from the viewpoint of parsimony: a model that is nonlinear
with respect to its parameters is equivalent, in that respect, to a model that
is linear with respect to its parameters.

14 G. Dreyfus

In the section devoted to the definitions, we showed that the output of a
feedforward neural network with a layer of sigmoid activation functions (mul-
tilayer Perceptron) is nonlinear with respect to the parameters of the network,
whereas the output of a network of radial basis functions with fixed centers
and widths, or of wavelets with fixed translations and dilations, is linear with
respect to the parameters. Similarly, a polynomial is linear with respect to the
coefficients of the monomials. Thus, neurons with sigmoid activation functions
provide more parsimonious approximations than polynomials or radial basis
functions with fixed centers and widths, or wavelets with fixed translations
and dilations. Conversely, if the centers and widths of Gaussian radial basis
functions, or the centers and dilations of wavelets, are considered as adjustable
parameters, there is no mathematically proved advantage to any one of those
models over the others. However, some practical considerations may lead to
favor one of the models over the others: prior knowledge on the type of nonlin-
earity that is required, local vs. nonlocal function, ease and speed of training
(see Chap. 2, section “Parameter initialization”), ease of hardware integration
into silicon, etc.

The origin of parsimony can be understood qualitatively as follows. Con-
sider a model that is linear with respect to its parameters, such as a polynomial
model, e.g.,

g(x) = 4 + 2x+ 4x2 − 0.5x3.

The output g(x) of the model is a linear combination of functions y = 1, y =
x, y = x2, y = x3, with parameters (weights) w0 = 4, w1 = 2, w2 = 4, w3 =
−0.5. The shapes of those functions are fixed.

Consider a neural model as shown on Fig. 1.8, for which the equation is

g(x) = 0.5 − 2 tanh(10x+ 5) + 3 tanh(x+ 0.25) − 2 tanh(3x− 0.25).

This model is also a linear combination of functions (y = 1, y = tanh(10x +
5), y = tanh(x+0.25), y = tanh(3x−0.25)), but the shapes of these functions
depend on the values of the parameters of the connections between the inputs
and the hidden neurons. Thus, instead of combining functions whose shapes
are fixed, one combines functions whose shapes are adjustable through the pa-
rameters of some connections. That provides extra degrees of freedom, which
can be taken advantage of for using a smaller number of functions, hence a
smaller number of parameters. That is the very essence of parsimony.

1.1.3.3 An Elementary Example

Consider the function
y = 16, 71 x2 − 0, 075.

We sample 20 equally spaced points that are used for training a multilayer
Perceptron with two hidden neurons whose nonlinearity is tan−1, as shown on
Fig. 1.9(a). Training is performed with the Levenberg-Marquardt algorithm

1 Neural Networks: An Overview 15

Fig. 1.8. A feedforward neural network with one variable (hence two inputs) and
three hidden neurons. The numbers are the values of the parameters

(see Chap. 2), resulting in the parameters shown on Fig. 1.9(a). Figure 1.9(b)
shows the points of the training set and the output of the network, which
fits the training points with excellent accuracy. Figure 1.9(c) shows the out-
puts of the hidden neurons, whose linear combination with the bias provides
the output of the network. Figure 1.9(d) shows the points of a test set, i.e., a
set of points that were not used for training: outside of the domain of variation
of the variable x within which training was performed ([−0.12,+0.12]), the
approximation performed by the network becomes extremely inaccurate, as
expected. The striking symmetry in the values of the parameters shows that
training has successfully captured the symmetry of the problem (simulation
performed with the NeuroOneTM software suite by NETRAL S.A.).

It should be clear that using a neural network to approximate a single-
variable parabola is overkill, since the parabola has two parameters whereas
the neural network has seven parameters! This example has a didactic charac-
ter insofar as simple one-dimensional graphical representations can be drawn.

1.1.4 Feedforward Neural Networks with Supervised Training for
Static Modeling and Discrimination (Classification)

The mathematical properties described in the previous section are the basis
of the applications of feedforward neural networks with supervised training.
However, for all practical purposes, neural networks are scarcely ever used for
uniformly approximating a known function.

In most cases, the engineer is faced with the following problem: a set of
measured variables {xk, k = 1 to N}, and a set of measurements {yp(xk),

16 G. Dreyfus

Fig. 1.9. Interpolation of a parabola by a neural network with two hidden neurons;
(a) network; (b) training set (+) and network output (line) after training; (c) out-
puts of the two hidden neurons (sigmoid functions) after training; (d) test set (+)
and network output (line) after training: as expected, the approximation is very
inaccurate outside the domain of variation of the inputs during training

k = 1 to N} of a quantity of interest zp related to a physical, chemical,
financial, . . . , process, are available. He assumes that there exists a relation
between the vector of variables {x} and the quantity zp, and he looks for a
mathematical form of that relation, which is valid in the region of variable
space where the measurements were performed, given that (1) the number
of available measurements is finite, and (2) the measurements are corrupted
by noise. Moreover, the variables that actually affect zp are not necessarily
measured. In other words, the engineer tries to build a model of the process
of interest, from the available measurements only: such a model is called a
black-box model. In neural network parlance, the observations from which the
model is designed are called examples. We will consider below the “black-box”
modeling of the hydraulic actuator of a robot arm: the set of variables {x}
has a single element (the angle of the oil valve), and the quantity of interest
{zp} is the oil pressure in the actuator. We will also describe an example of
prediction of chemical properties of molecules: a relation between a molecular

1 Neural Networks: An Overview 17

property (e.g., the boiling point) and “descriptors” of the molecules (e.g., the
molecular mass, the number of atoms, the dipole moment, etc.); such a model
allows predictions of the boiling points of molecules that were not synthesized
before. Several similar cases will be described in this book.

Black-box models, as defined above, are in sharp contrast with knowledge-
based models, which are made of mathematical equations derived from first
principles of physics, chemistry, economics, etc. A knowledge-based model
may have a limited number of adjustable parameters, which, in general, have
a physical meaning. We will show below that neural networks can be building
blocks of gray box or semi-physical models, which take into account both
expert knowledge—as in a knowledge-based model—and data—as in a black-
box model.

Since neural networks are not really used for function approximation, to
what extent is the above-mentioned parsimonious approximation property
relevant to neural network applications? In the present chapter, a cursory
answer to that question will be provided. A very detailed answer will be
provided in Chap. 2, in which a general design methodology will be presented,
and in Chap. 3, which provides very useful techniques for the reduction of
input dimension, and for the design, and the performance evaluation, of neural
networks.

1.1.4.1 Static Modeling

For simplicity, we first consider a model with a single variable x. Assume that
an infinite number of measurements of the quantity of interest can be per-
formed for a given value x0 of the variable x. Their mean value is the quan-
tity of interest zp, which is called the “expectation” of yp for the value x0 of
the variable. The expectation value of yp is a function of x, termed “regres-
sion function”. Since we know from the previous section that any function
can be approximated with arbitrary accuracy by a neural network, it may
be expected that the black-box modeling problem, as stated above, can be
solved by estimating the parameters of a neural network that approximates
the (unknown) regression function.

The approximation will not be uniform, as defined and illustrated in the
previous section. For reasons that will be explained in Chap. 2, the model
will perform an approximation in the least squares sense: a parameterized
function (e.g., a neural network) will be sought, for which the least squares
cost function

J(w) =
1
2

N∑
k=1

[
yp(xk) − g(xk,w)

]2
is minimal. In the above relation, {xk, k = 1 to N} is a set of measured values
of the input variables, and {Lyp(xk), k = 1 to N} as set of corresponding
measured values of the quantity to be modeled. Therefore, for a network that
has a given architecture (i.e., a given number of inputs and of hidden neurons),

18 G. Dreyfus

Fig. 1.10. A quantity to be modeled

training is a procedure whereby the least squares cost function is minimized,
so as to find an appropriate weight vector w0.

That procedure suggests two questions, which are central in any neural
network application, i.e.,

• for a given architecture, how can one find the neural network for which
the least squares cost function is minimal?

• if such a neural network has been found, how can its prediction ability be
assessed?

Chapter 2 of the present book will provide the reader with a methodology,
based on first principles, which will answer the above questions.

These questions are not specific to neural networks: they are standard
questions in the field of modeling, that have been asked for many years by all
scientists (engineers, economists, biologists, and statisticians) who endeavor to
extract relevant information from data [Seber 1989; Antoniadis 1992; Draper
1998]. Actually, the path from function approximation to parameter estima-
tion of a regression function is the traditional path of any statistician in search
of a model: therefore, we will take advantage of theoretical advances of sta-
tistics, especially in regression.

We will now summarize the steps that were just described.

• When a mathematical model of dependencies between variables is sought,
one tries to find the regression function of the variable of interest, i.e., the
function that would be obtained by averaging, at each point of variable
space, the results of an infinite number of measurements; the regression
function is forever unknown. Figure 1.10 shows a quantity yp(x) that one
tries to model: the best approximation of the (unknown) regression func-
tion is sought.

• A finite number of measurements are performed, as shown on Fig. 1.11.
• A neural network provides an approximation of the regression function if

its parameters are estimated in such a way that the sum of the squared

1 Neural Networks: An Overview 19

Fig. 1.11. A real-life situation: a finite number of measurements are available. Note
that the measurements are equally spaced in the present example, but that is by no
means necessary

differences between the values predicted by the network and the measured
values is minimum, as shown on Fig. 1.12.

A neural network can thus predict, from examples, the values of a quantity
that depends on several variables, for values of the variables that are not
present in the database used for estimating the parameters of the model. In
the case shown on Fig. 1.12, the neural network can predict values of the quan-
tity of interest for points that lie between the measured points. That ability is
termed “statistical inference” in the statistics literature, and is called “gener-
alization” in the neural network literature. It should be absolutely clear that
the generalization ability is necessarily limited: it cannot extend beyond the
boundaries of the region of input space where training examples are present, as
shown on Fig. 1.9. The estimation of the generalization ability is an important
question that will be examined in detail in the present book.

Fig. 1.12. An approximation of the regression function, performed by a neural
network, from the experimental points of Fig. 1.11

20 G. Dreyfus

1.1.4.2 To What Extent Is Parsimony a Valuable Property?

In the context of nonlinear regression and generalization, parsimony is indeed
an important asset of neural networks and, more generally, of any model that
is nonlinear with respect to its parameters. We mentioned earlier that most
applications of neural networks with supervised learning are modeling appli-
cations, whereby the parameters of the model are adjusted, from examples, so
as to fit the nonlinear relationship between the factors (inputs of the model)
and the quantity of interest (the output of the model). It is intuitive that
the number of examples requested to estimate the parameters in a significant
and robust way is larger than the number of parameters: the equation of a
straight line cannot be fitted from a single point, nor can the equation of a
plane be fitted from two points. Therefore, models such as neural networks,
which are parsimonious in terms of number of parameters, are also, to some
extent, parsimonious in terms of number of examples; that is valuable since
measurements can be costly (e.g., measurements performed on an industrial
process) or time consuming (e.g., models of economy trained from indicators
published monthly), or both.

Therefore, the actual advantage of neural networks over conventional non-
linear modeling techniques is their ability of providing models of equivalent
accuracy from a smaller number of examples or, equivalently, of providing
more accurate models from the same number of examples. In general, neural
networks make the best use of the available data for models with more than
2 inputs.

Figure 1.42 illustrates the parsimony of neural networks in an industrial
application: the prediction of a thermodynamic parameter of a glass.

1.1.4.3 Classification (Discrimination)

Classification (or discrimination) is the task whereby items are assigned to
a class (or category) among several predefined classes. An algorithm that
automatically performs a classification is called a classifier.

In the vocabulary of statistics, classification is the task whereby data that
exhibit some similarity are grouped into classes that are not predefined; we
have mentioned above that neural networks with unsupervised learning can
perform such a task. Therefore, the terminology tends to be confusing. In the
present book, we will try to make the distinction clear whenever the context
may allow confusion. In the present section, we consider only the case of
predefined classes.

Classifiers have a very large number of applications for pattern recognition
(handwritten digits or characters, image recognition, speech recognition, time
sequence recognition, etc.), and in many other areas as well (economy, finance,
sociology, language processing, etc.). In general, a pattern may be any item
that is described by a set of numerical descriptors: an image can be described
by the set of the intensities of its pixels, a time sequence by the sequence of

1 Neural Networks: An Overview 21

its values during a given time interval, a text by the frequency of occurrence
of the significant words that it contains, etc. Typically, the questions whose
answer a classifier is expected to contribute to are: is this unknown character a
a, a b, a c, etc.? is this observed signal normal or anomalous? is this company
a safe investment? is this text relevant to a given topic of interest? will there
be a pollution alert to-morrow?

The classifier is not necessarily expected to give a full answer to such a
question: it may make a contribution to the answer. Actually, it is often the
case that the classifier is expected to be a decision aid only, the decision being
made by the expert himself. In the first applications of neural networks to
classification, the latter were expected to give a definite answer to the clas-
sification problem. Since significant advances have been made in the under-
standing of neural network operation, we know that they are able to provide
a much richer information than just a binary decision as to the class of the
pattern of interest: neural networks can provide an estimation of the proba-
bility of a pattern to belong to a class (also termed posterior probability of the
class). This is extremely valuable in complex pattern recognition applications
that implement several classifiers, each of which providing an estimate of the
posterior probability of the class. The final decision is made by a “supervi-
sor” system that assigns the class to the pattern in view of the probability
estimates provided by the individual classifiers (committee machines).

Similarly, information filtering is an important problem in the area of
data mining: find, in a large text data base, the texts that are relevant to
a prescribed topic, and rank these texts by order of decreasing relevance, so
that the user of the system can make a choice efficiently among the suggested
documents. Again, the classifier does not provide a binary answer, but it
estimates the posterior probability of the class “relevant.” Feedforward neural
networks are more and more frequently used for data mining applications.

Chapter 6 of the present book is fully devoted to feedforward neural
networks and support vector machines for discrimination.

1.1.5 Feedforward Neural Networks with Unsupervised Training
for Data Analysis and Visualization

Due to the development of powerful data processing and storage systems, very
large amounts of information are available, whether in the form of numbers
(intensive data processing of experimental results) or in the form of symbols
(text corpuses). Therefore, the ability of retrieving information that is known
to be present in the data, but that is difficult to extract, becomes crucial.
Computer graphics facilitates greatly user-friendly presentation of the data,
but the human operator is unable to visualize high-dimensionality data in an
efficient way. Therefore, it is often desired to project high-dimensionality data
onto a low-dimensionality space (typically dimension 2) in which proximity re-
lations are preserved. Neural networks with unsupervised learning, especially

22 G. Dreyfus

self-organizing maps (“Kohonen maps”), are powerful data visualization tech-
niques.

Chapter 7 of the present book is devoted to unsupervised learning, with
emphasis on spectacular applications in satellite observation systems.

1.1.6 Recurrent Neural Networks for Black-Box Modeling,
Gray-Box Modeling, and Control

In an earlier section, devoted to recurrent neural networks, we showed that any
neural network can be cast into a canonical form, which is made of a feed-
forward neural network with external recurrent connections. Therefore, the
properties of recurrent neural networks with supervised learning are strongly
related to those of feedforward neural networks. The latter are used for static
modeling from examples; similarly, recurrent neural networks are used for dy-
namic modeling from examples, i.e., for finding, from measured sequences of
inputs and outputs, recurrent (discrete-time) equations that govern a process.
A sizeable part of Chap. 2, and Chap. 4, are devoted to dynamic process mod-
eling.

The design of a dynamic model may have several motivations.

• Use the model as a simulator in order to predict the evolution of a process
that is described by a model whose equations are inaccurate.

• Use the model as a simulator of a process whose knowledge-based model is
known and reliable, but cannot be solved accurately in real time because
it contains many coupled differential or partial differential equations that
cannot be solved numerically in real time with the desired accuracy: in such
circumstances, one can generate a training set from the software code that
solves the equations, and design a recurrent neural network that provides
accurate solutions within a much shorter computation time; furthermore, it
may be advantageous to take advantage of the differential equations of the
knowledge-based model, as guidelines to the design of the architecture of
the neural model: this is known as “gray-box” or “semi-physical” modeling,
described in Sect. 1.1.6.1.

• Use the model as a one-step-ahead predictor, integrated into a control
system.

1.1.6.1 Semiphysical Modeling

In the manufacturing industry, a knowledge-based model of a process of inter-
est is often available, but is not fully satisfactory, and it cannot be improved
through further analysis; this may be due to a variety of reasons:

• the model may be too inaccurate for the purpose that it should serve:
for instance, if it is desired to perform fault detection by analyzing the
difference between the state of the process that is predicted by the model

1 Neural Networks: An Overview 23

of normal operation, and the actual state of the process, the model of
normal operation must be accurate and run in real time.

• The model may be accurate, but too complex for real-time operation (e.g.,
for an application in monitoring and control).

If measurements are available, in addition to the equations of the—unsatisfac-
tory—knowledge-based model, it would be unadvisable to forsake altogether
the accumulated knowledge on the process and to design a purely black-box
model. Semi-physical modeling allows the model designer to have the best of
both worlds: the designer can make use of the physical knowledge in order to
choose the structure of the recurrent network, and make use of the data in
order to estimate the parameters of the model. An industrial application of
semi-physical modeling is described below, and the design methodology of a
semi-physical model is explained in Chap. 2.

1.1.6.2 Process Control

The purpose of a control system is to convey a prescribed dynamics to the
response of a process to a control signal or to a disturbance. In the case of
a regulator system the process must stay in a prescribed state in spite of
disturbances: the cruise control system of a car must keep the speed constant
(equal to the setpoint speed) irrespective of the slope of the road, wind gusts,
load variations, etc. A tracking system is designed to follow the variations of
the setpoint, irrespective of disturbances: in a fermenting plant, the heating
system must be controlled in order for the temperature to follow a prescribed
temperature profile, irrespective of the temperature of ingredients that may
be added during operation, of heat-producing chemical reactions that may
take place, etc. In order to achieve such goals, a model of the process must be
available; if necessary, the model must be nonlinear, hence be implemented as
a recurrent neural network. Chapter 5 is devoted to nonlinear neural control.

1.1.7 Recurrent Neural Networks Without Training for
Combinatorial Optimization

In the previous two sections, we emphasized the applications of recurrent
neural networks that take advantage of their forced dynamics: the model de-
signer is interested in the response of the system to control signals. By con-
trast, there is a special class of applications of recurrent neural networks that
takes advantage of their spontaneous dynamics, i.e., of their dynamics with
zero input.

Recurrent neural networks whose activation function is a step function
(McCulloch-Pitts neurons), have a dynamics that features fixed points: if such
a network is forced into an initial state, and is subsequently left to evolve under
its spontaneous dynamics, it reaches a stable state after a finite transient
sequence of states. This stable state depends on the initial state. The final

24 G. Dreyfus

state, i.e., the vector whose components are the (binary) states of the neurons
of the network, can be considered as the binary code of a piece of information.
Moreover, it can be shown that there exists a function, called the Liapunov
function (or energy function), which always decreases during the spontaneous
evolution of the state of the network; hence the stable states are the minima
of the Liapunov function.

Now consider the inverse problem: in a combinatorial optimization prob-
lem, it is desired to find the minimum (or at least a good minimum) of a
function (cost function) of binary variables. If there exists a recurrent neural
network whose Liapunov function is identical to the cost function of the op-
timization problem, then the fixed points of the spontaneous dynamics of
the recurrent neural network are solutions of the combinatorial optimization
problem. If such a network can be constructed, then it will find a solution of
the problem by evolving, under its spontaneous dynamics, from an arbitrary
initial state.

Therefore, the resolution of a combinatorial optimization problem with a
recurrent neural network requires

• finding a recurrent neural network whose energy function is identical to
the cost function of the optimization problem,

• finding the parameters of that network,
• controlling the dynamics of the network so as to make sure that it will

evolve to reach a good minimum of the cost function, for instance, by
taking advantage of stochastic methods such as simulated annealing.

This powerful technique, together with some of its applications, will be de-
scribed in Chap. 8 of the present book.

1.2 When and How to Use Neural Networks with
Supervised Training

In the previous sections, we presented the theoretical arguments that support
the use of neural networks in modeling applications. In the present section,
we attack the practical questions raised by the design and training of a neural
model. First, we will explain when neural networks can advantageously be
used—and when they should not be used. In the subsequent section, we will
emphasize how to use neural networks. An in-depth treatment of these im-
portant questions will be given in the next chapters.

1.2.1 When to Use Neural Networks?

We have shown earlier that the fundamental property of neural networks
with supervised training is the parsimonious approximation property, i.e.,
their ability of approximating any sufficiently regular function with arbitrary
accuracy.

1 Neural Networks: An Overview 25

Therefore, neural networks may be advantageous in any application that
requires finding, in a machine learning framework, a nonlinear relation be-
tween numerical data.

Under what conditions is such an approach recommended?

• The first condition is necessary but not sufficient: since neural network
design is essentially a problem in statistics, a set of examples, that sample
the space of inputs appropriately, and that are in appropriate number,
must be available.

• After gathering the data, one should make sure that a nonlinear model is
necessary, since the design of a linear model is much simpler and faster
than the design of a neural model. Therefore, if no prior knowledge on the
quantity to be modeled is available, one should first try out a linear model;
if it turns out that a linear model is too inaccurate, despite the fact that
all relevant factors are present in the inputs, then the model designer may
rightly resort to nonlinear models such as neural networks.

• If the appropriate examples are available, and if a nonlinear model is neces-
sary, then one should decide whether the use of neural networks, instead
of polynomials for instance, is advisable. Parsimony is the relevant choice
criterion here: as mentioned above, the number of parameters of the first
connection layer (between inputs and hidden neurons) increases linearly
with the number of variables, whereas it increases exponentially for poly-
nomial approximation (there exist, however, statistical tests that may, to
some extent, limit the combinatorial explosion of parameters in polynomial
modeling). Therefore, neural networks are advantageous when the number
of variables is large, i.e., empirically, larger than or equal to 3.

To summarize, if appropriate data sets are available, neural networks can
be used with advantage in all applications that require the estimation of the
parameters of a regression function with three variables or more. If the number
of variables is smaller, nonlinear models that are linear with respect to their
parameters, such as polynomials, radial basis functions with fixed centers and
standard deviation, wavelets with fixed translations and dilations, may be as
accurate, and require a simpler implementation.

If the available data are not numerical (e.g., symbolic), they cannot be
processed directly by a neural network. Some appropriate preprocessing is
required in order to make data numerical (techniques evolved from the theory
of fuzzy sets may be appropriate).

1.2.2 How to Design Neural Networks?

Neural networks are nonlinear parameterized functions, which can approx-
imate any nonlinear function. Therefore, approaching a regression function
from examples requires finding a neural network for which the sum, over all
examples used for training, of the squared modeling errors (the least squares

26 G. Dreyfus

cost function) is minimum. As a consequence, the design of a neural network
requires

• finding the relevant inputs, i.e., the factors that have a significant influence
on the quantity to be modeled (i.e., an influence that is larger than the
measurement noise),

• collecting the data that is necessary for training and testing the neural
network,

• finding the appropriate complexity of the model, i.e., the appropriate num-
ber of hidden neurons,

• estimating the parameters for which the cost function is minimum, i.e.,
training the network,

• assessing the generalization ability of the neural network after training.

In view of the results, it may be necessary to iterate the whole procedure, or
part of it.

These points will be considered in detail in the next sections.

1.2.2.1 Relevant Inputs

The selection of relevant inputs may have various requirements, depending on
the application that is considered.

If the process to be modeled is an industrial problem that has been care-
fully engineered, the relevant factors and the causal relations between them
are usually known. Consider, as an example, the industrial process of spot
welding, which will be described in detail in a subsequent section: the metal
sheets to be welded are melted together locally by passing a very large current
(a few kiloamperes) during a few milliseconds, through two electrodes that are
pressed onto the metal surfaces (Fig. 1.13). The quality of the joint is assessed
from the diameter of the melted zone; it depends on the current intensity, on
the duration of the current flow, on the stress applied to the electrodes while
current flows and during cooling, on the surface state of the electrodes, on
the nature of the metal sheets, and on a few additional factors. Thus, the
desirable model inputs are essentially known from physics: however, it may
be important to make a choice between these factors, so that only those fac-
tors that have a significant influence on the spot weld diameter, i.e., whose
influence is larger than the uncertainty on the measurement of the diameter,
are taken into account.

By contrast, if the process of interest is a complex natural process (e.g., in
biology or ecology), or if it is an economic, financial or social process, the choice
of the relevant inputs may be more difficult. An example of a complex natural
process (the solubility of molecules in solvents), where the determination of
the relevant factors is not trivial, will be described in a subsequent section.
Similarly, great care must be exercised in the choice of relevant inputs for
credit rating, an example that will also be described below.

1 Neural Networks: An Overview 27

Fig. 1.13. A schematic representation of the spot welding process

The questions of input selection, and of model selection as well, are by
no means specific to neural networks: they are of great importance for all
modeling techniques, whether linear or nonlinear. It will be shown, in Chap. 2,
that model selection techniques that were developed for linear models can be
extended to nonlinear models such as neural networks.

1.2.2.2 Data Collection

Before training, observations must be collected in order to build the training
set, as well as the validation and test sets, which will be defined below. Those
observations must be numerous enough, and they must be typical of the situa-
tions that will be encountered by the network when in use. When the number
of factors (model inputs) exceeds two or three, sampling the input domain in
a regular and systematic way is generally not feasible because combinatorial
explosion arises. Therefore, it is usually important to design the experiments
as efficiently as possible: experimental design is an important part of model
design. This is generally more difficult for nonlinear models than for linear
ones. Some elements will be given in the “Experimental design” section of
Chap. 2.

1.2.2.3 The Number of Hidden Neurons

The discrepancy between the neural approximation and the function to be ap-
proximated is inversely proportional to the number of hidden neurons [Barron
1993]; unfortunately, this result, as well as other theoretical results such as the
Vapnik-Cervonenkis dimension (or VC-dimension) [Vapnik 1995] (described in
Chap. 6) will only provide loose bounds or estimates of the number of hidden
neurons. At present, no result allows the model designer to find the appro-
priate number of hidden neurons given the available data and the desired
performance. Therefore, it is necessary to make use of a specific methodol-
ogy. In the following, we will first define the problem of designing a nonlinear
black-box static model, with emphasis on feedforward neural network design.

28 G. Dreyfus

Overfitting and the Bias-Variance Dilemma

Since the accuracy of the uniform approximation of a given function by a
neural network increases as the number of hidden neurons increases, a näıve
design methodology would consist in building the network with as many neu-
rons as possible. However, as mentioned above, in real engineering problems,
the network is not required to approximate a known function uniformly, but to
approximate an unknown function (the regression function) from a finite num-
ber of experimental points (the training set); therefore, the network should
not only fit the experimental points as closely as possible (in the least squares
sense), but it should also generalize efficiently, i.e., give a satisfactory re-
sponse to situations that are not present in the training set. The difficulty
here is that there is no operational definition of the meaning of satisfactory,
since the regression function is unknown: the problem of generalization is an
ill-posed problem. Therefore, the design problem is the following:

• if the neural network has too many parameters (it is said to be over-
parameterized), it will be too “flexible,” so that its output will fit very
accurately all points of the training set (including the noise present in
these points), but it will provide meaningless responses in situations that
are not present in the training set. That is known as overfitting .

• by contrast, a neural network with too few parameters will not be complex
enough to match the complexity of the (unknown) regression function, so
that it will not be able to learn the training data.

This dilemma, known as the bias-variance dilemma, is the basic problem that
the model designer is faced with.

Figure 1.14 shows the results obtained after training two different net-
works, with different numbers of hidden neurons (hence of parameters) with
sigmoid activation functions, from the same training set: clearly, the most
parsimonious model (i.e., the model with the smallest number of parameters)
generalizes best. In practice, the number of parameters should be small with
respect to the number of elements of the training set. The parsimony of neural
networks with sigmoid activation functions is a valuable asset in the design of
models that do not exhibit overfitting.

Figure 1.14 shows clearly which candidate neural network is most ap-
propriate. When the model has several inputs, the result cannot be exhib-
ited graphically in such a straightforward fashion: a quantitative performance
index must be defined. The most popular way of estimating such an index is
the following: in addition to the training set, one should build a validation
set, made of observations that are distinct from those of the training set, from
which a performance index is computed. The most frequently used criterion
is the mean square error on the validation set (VMSE), defined as:

VMSE =

√√√√ 1
NV

NV∑
k=1

[yk − g(xk,w)]2

1 Neural Networks: An Overview 29

Fig. 1.14. The most parsimonious neural network has the best generalization
abilities

where NV is the number of observations present in the validation set, and
where, for simplicity, yk denote the measurements of the quantity to be mod-
eled: yk = yp(xk). This relation is valid in the usual case of a model with a
single output; if the model has several outputs, the VMSE is the sum of the
mean square errors on each output.

This quantity should be compared with the mean square error on the
training set (TMSE),

TMSE =

√√√√ 1
NT

NT∑
k=1

[yk − g(xk,w)]2,

where NT is the number of observations present in the training set.
Consider the example shown on Fig. 1.14, and assume that the observa-

tions of the validation set are the midpoints between the observations of the
training set. Clearly, the TMSE of the second network is certainly smaller than
the TMSE of the first network, whereas the VMSE of the second network is
certainly larger than that of the first network. Therefore, if model selection
were performed on the basis of the training mean square error, overparame-
terized networks would systematically be favored, thereby leading to models
that exhibit overfitting.

30 G. Dreyfus

Note that if modeling were perfect, i.e., if the output of the model g(x,w)
were identical to the regression function, and if the number of observations of
the training set and of the validation set were very large, then both the TMSE
and VMSE would be equal to the standard deviation of the measurement noise
(provided NT and NV � 1). Therefore, the goal of modeling from examples
can be expressed as follows: find the most parsimonious model (e.g., the most
parsimonious feedforward neural network) whose TMSE and VMSE are on
the same order of magnitude, and are as small as possible, i.e., on the order
of magnitude of the standard deviation of the noise.

What to Do in Practice?

The purpose of this book is to provide practical methodologies, founded on
sound theoretical bases, for model design through training, whether super-
vised or unsupervised. A complete methodology for supervised training will
be described in Chap. 2 (together with complements in Chap. 3), a method-
ology for unsupervised training will be described in Chap. 7.

1.2.2.4 The Training of Feedforward Neural Networks: An
Optimization Problem

Once the complexity of the model, i.e., the number of hidden neurons of a
feedforward neural network, is chosen, training can be performed: one has
to estimate the parameters of the neural network that, given the number of
parameters that are available to him, has a minimum mean square error on
the training set. Therefore, training is a numerical optimization problem.

For simplicity, we consider a model with a single output g(x,w). The
training set contains N examples. The least squares cost function was defined
above as

J(w) =
1
2

N∑
k=1

[
yp(xk) − g(xk,w)

]2
,

where xk is the vector of the values of the variables for example k, yp(xk)
is the corresponding measured value of the quantity to be modeled, w is
the vector of the parameters (or weights) of the model, and g(xk,w) is the
output value of the model with parameters w for the vector of variables xk.
Therefore, the cost function is a function of all adjustable parameters w of the
model. Training consists in finding the parameter vector w for which J(w) is
minimum.

• For a model that is linear with respect to its parameters (e.g., radial ba-
sis functions with fixed centers and widths, polynomials, etc.), the cost
function J is quadratic with respect to the parameters: the ordinary least
squares methods can be used. They are simple and efficient. However, the
resulting models are not parsimonious.

1 Neural Networks: An Overview 31

• For a model that is not linear with respect to its parameters (e.g., a feed-
forward neural network, or a RBF network with adjustable centers and
widths), the optimization problem is multivariable nonlinear, which makes
ordinary least squares inapplicable. The techniques that solve such prob-
lems are described in detail in Chap. 2; those are iterative techniques
that make sequences of estimations of the parameters until a minimum is
reached, or a satisfaction criterion is met.

In the latter case, the optimization techniques are gradient methods; they
are based on the computation, at each iteration, of the gradient of the cost
function with respect to the parameters of the model. The gradient thus com-
puted is subsequently used for updating the values of the parameters found
at the previous iteration. Backpropagation is a popular, computationally eco-
nomical way of computing the gradient of the cost function (described in
Chap. 2). Therefore, backpropagation is not a training algorithm: it is simply
a technique for computing the gradient of the cost function, which is very fre-
quently an ingredient of neural network training. It has been often stated that
the invention of backpropagation made feedforward neural network training
possible; that is definitely not correct: methods for computing the gradient of
cost functions were used in signal processing long before the introduction of
neural networks. Such methods can be used for feedforward neural network
training [Marcos 1992].

Training algorithms have been tremendously improved during the past few
years. At the beginning of the 1990’s, publications would frequently mention
tens or hundreds of thousands of iterations, requiring days of computing on
powerful computers. At present, typical trainings require tens or hundreds of
iterations. Figure 1.15 displays the training of a model with a single variable.
Crosses are the elements of the training set. Parameters are initialized to
“small” values (see Chap. 2 for the description of the initialization procedure),
so that the output of the network is essentially zero. The result obtained after
13 iterations is “visually” satisfactory; quantitatively, the TMSE and VMSE
(the points of the validation set are not shown) are of the same order of
magnitude, which is of the order of the standard deviation of the noise, so
that the model is appropriate.

1.2.2.5 Conclusion

In this section, we have explained how and why neural networks with su-
pervised training should be used. To summarize, neural networks are useful
whenever a nonlinear relation between numerical data is sought. Therefore,
neural networks are statistical tools for nonlinear regression. An overview of
the tasks implied in nonlinear model design was presented, together with con-
ditions for successful applications. In Chap. 2, the reader will find all necessary
details for neural network training, for input selection and for model selection,
both for static models (feedforward neural networks) and for dynamic model
(recurrent neural networks).

32 G. Dreyfus

Fig. 1.15. Training of a feedforward neural network with one input variable and
three hidden neurons. The line is the output of the model, the crosses are the
elements of the training set. (a) initial state; (b) after one iteration; (c) after 6
iterations; (d) after 13 iterations (results obtained with the NeuroOne software
package by NETRAL S.A.)

1.3 Feedforward Neural Networks and Discrimination
(Classification)

In the early stages of the development of neural networks (in the years 1960’s),
the main incentive was the development of pattern recognition applications, as
evidenced by the term perceptron that was used for the ancestor of present-day
neural networks. Indeed, the first nontrivial industrial applications of neural
networks, at the beginning of the 1980’s, were related to pattern or signal
recognition. Therefore, the present section is devoted to a general presentation
of classification (or, equivalently, discrimination); it will be shown that many
classification problems can be viewed as nonlinear regression problems, which

1 Neural Networks: An Overview 33

Fig. 1.16. Each sample is represented as a point in the area-reflectivity plane.
Capacitors are shown as x’s and integrated circuits as +’s

explains why feedforward neural networks are efficient classifiers. The purpose
of the present section is to provide a general presentation of classification in its
relation to nonlinear regression. Chapter 6 provides a much more detailed view
of neural network classification and of techniques that evolved from neural
networks.

1.3.1 What Is a Classification Problem?

A classifier is an algorithm that automatically assigns a class (or category) to
a given pattern.

Before considering the specific case of “neural” classifiers, it is important
to understand the basic characteristics of classification problems. Consider
the following illustrative example: in an automatic sorting application, capac-
itors must be discriminated from integrated circuits, from a black-and-white
picture provided by a video camera, so that a robotic arm can grab either a
capacitor or an integrated circuit as requested. Roughly, capacitors appear in
the picture as bright, small rectangular objects, whereas integrated circuits
are large, dark objects. Therefore, the area A and the reflectivity R can be
considered as relevant features for discriminating the objects, i.e., for assigning
a given object either to the class “integrated circuit” or to the class “capaci-
tor”. Assume that samples of capacitors and of integrated circuits have been
collected, and that their areas and reflectivities have been measured: then
each sample can be represented by a point in a two-dimensional space, whose
coordinates are its area and its reflectivity, as shown on Fig. 1.16.

1.3.2 When Is a Statistical Classifier such as a Neural Network
Appropriate?

The above example shows that the ingredients of a classification problem are

• a set of N patterns;

34 G. Dreyfus

• n variables (or features) that describe the patterns and are relevant to
the classification task at hand, the set of descriptors of a given pattern
building the representation of the pattern;

• a set of C classes to which the patterns should be assigned (one of the
classes may be a rejection class in which all patterns that cannot be as-
signed to the other classes will be classified).

Therefore, solving a classification problem requires finding an application of
the set of patterns to be classified into the set of classes.

It is important to realize that statistical classifiers such as neural networks
are not appropriate for solving all classification problems: many alternative
classification methods are available. The following (more or less academic)
examples (from [Stoppiglia 1997]) illustrate the area of application of neural
networks in classification. For each example, the following questions will be
asked:

• Does prior knowledge suggest relevant features?
• Are those features measurable (or can they be computed from measure-

ments)?
• What is the role of the rejection class?

Any vending machine can recognize the coins automatically, and reject fake
or foreign coins. The answers to the above questions are

• Relevant features can easily be found: the coin diameter, its weight, its
thickness, the alloy composition, etc.; there is a small number of such fea-
tures, and new coins are actually designed in order to facilitate automatic
discrimination.

• The features are measurable quantities.
• In feature space, the classes are small hyper-parallelepipeds defined by the

manufacturing tolerances; the rejection class is the rest of feature space.

In such circumstances, a simple decision tree that operates with simple logical
rules, derived from the analysis of the problem, can readily solve the classifi-
cation problem. In such a case, statistical tools such as neural networks are
not appropriate.

Vehicle comfort assessment can be viewed as a classification problem. In
order to anticipate the reactions of customers to a new vehicle, car manu-
facturers resort to panels of customers, who are asked to express an opinion.
Comfort is an ill-defined concept, which depends on many factors such as
noise, seat design, etc. Assessing the comfort, for instance, by classifying it
into three classes (very good, fair, poor), is a process that is difficult to for-
malize because it is based on feelings rather than on measurements.

• The relevant features are not necessarily known and clearly expressed by
the customers; even if features could be defined, the assessments might be
difficult to relate to the features; two customers, under the same conditions,
could give very different assessments.

1 Neural Networks: An Overview 35

• The features are not measurable.
• There is no rejection class: all customers have an opinion on the comfort

of a vehicle.

The fact that the features are not measurable precludes the use of a statistical
method. In such a situation, a fuzzy classification method would be more
appropriate.

Handwritten digit recognition, for instance zip code recognition, has been
investigated in detail, and many applications are in routine operation. Con-
sider the answers to the three questions that were asked in the previous two
examples.

• In sharp contrast with the example of the vending machines, the huge
diversity of handwriting styles makes the choice of features nontrivial, but
feasible; in contrast to the vehicle comfort assessment problem, different
persons who read the same digit will assign it to the same class (except if
the digit is almost illegible).

• Features are numbers that can be extracted from the picture: in a typical
low-level representation, the features would be the intensities of the pixels;
in a high-level description, the features would be the location of horizontal,
vertical or diagonal segments, the presence and location of loops, etc.

• The size of the rejection class can be defined, and in some cases, it is a
performance criterion: for a given error rate, the rejection rate should be as
low as possible. In mail processing, a rejected envelope requires a manual
operation, which is less costly than sending a letter to the wrong address.
Hence, the performance requirement is expressed as follows: for a given
error rate (typically 1%) the rejection rate should be as low as possible.
Clearly, it would be easy to design a classifier that never gives a wrong
answer, by simply rejecting all patterns: by contrast, given the economic
constraints of the problem of zip code reading, a “good” classifier makes a
decision as often as possible, while making no more than 1% mistakes. If
economic constraints were different, i.e., if a mistake was less costly than
a human operation, a classifier should have the smallest possible error
rate for a given maximum rejection rate (this is the case for large-scale
automated medical diagnoses, where resorting to a medical doctor is more
costly than delivering a wrong diagnostic).

In the latter example, statistical classification methods such as neural net-
works are perfectly appropriate, provided a suitable database is available. As
in most nonacademic problems, the central question is that of data represen-
tation: a thoughtful representation design, together with data pre-processing
techniques such as described in Chap. 3, is often as important as the classifi-
cation algorithm itself.

36 G. Dreyfus

1.3.3 Probabilistic Classification and Bayes Formula

Assume that, after analyzing a classification problem, a statistical classifica-
tion approach has been deemed preferable to, for instance, a decision tree.
Probabilistic classification methods are based on the idea that both features
and classes may be modeled as random variables (readers unfamiliar with ran-
dom variables will find more information at the beginning of Chap. 2). In that
context, if a pattern is picked randomly from the patterns to be classified, the
class to which it belongs is the realization of a discrete random variable. Sim-
ilarly, the values of the features of a randomly chosen pattern can be viewed
as realizations of random variable, which are usually continuous. For instance,
in the example of discrimination between capacitors and integrated circuits
(Fig. 1.16), the random variable “class” may be equal to 0 for a capacitor and
to 1 for an integrated circuit, while the reflectivity R at the area A may be
viewed as continuous random variables.

In that context, the classification problem can be simply stated as follows:
given a pattern whose class is unknown, whose reflectivity is equal to r and
whose area is equal to a (within measurement uncertainties), what is the
probability that the random variable “class” be equal to 0 (i.e., that the
pattern be a capacitor)? This probability is the posterior probability of class
“capacitor” given the measured reflectivity and area, denoted by

Pr(class = 0 | {r, a}).
Consider a set of capacitors and integrated circuits that have been labeled with
the labels (0 or 1) of their classes, and whose feature values are also known.
That information can be used for deriving two very important quantities,

• the prior probability of each class: a pattern picked randomly from the set
of patterns has a probability Pr(Ci) of belonging to class Ci. It we assume
that each pattern belongs to one of the classes, then one has

∑
i Pr(Ci) = 1.

That information is relevant to classification: assume that the prior prob-
ability of the class “capacitor” is known to be 0.9 (hence the probability
of the class “integrated circuit” is 0.1); then a dumb classifier that would
always choose the class “capacitor,” irrespective of the pattern features,
would exhibit an error rate on the order of 10%.

• the conditional probability density of each feature: if an integrated circuit
is picked randomly, what is the probability for its area A to lie in an
interval [a − δa, a + δa]? Clearly, that probability is proportional to δa.
The probability density of feature A conditioned to class Ci, or likelihood
of C i given feature a is denoted as pA(a | Ci): the probability that feature
A be in the interval [a−δa, a+δa] given that it belongs to class Ci is equal
to pA(a | Ci)δa. Since the pattern whose feature A is measured belongs to
class Ci, one has

∫
pA(a | Ci)da = 1.

Figure 1.17 shows an estimate of the probability density pA(a | Class =
integrated circuit) as a function of a. Similarly, one could draw the conditional

1 Neural Networks: An Overview 37

Fig. 1.17. (a) Representation of a sample of the class “integrated circuit” in the
reflectivity-area plane. (b) Estimate of the conditional probability density of the
area of the pattern if the latter is an integrated circuit

probability density of the reflectivity R, for the class integrated circuit, as a
function of r.

Thus, given a sample of the population of patterns to be classified, esti-
mates of the prior probabilities of the classes {Pr(Ci)}, and of the conditional
probability densities pX(x | Ci) of their features, are available. Then, by
Bayes formula, the solution of the classification problem, i.e., the posterior
probability of a class given an unknown pattern, is given by

Pr(Ci | x) =
pX(x | Ci) Pr(Ci)∑

j

pX(x | Cj) Pr(Cj)
.

Clearly, that estimate is relevant only if the features of the unknown pattern
have the same conditional density probabilities as the patterns that were used
to estimate the likelihoods.

38 G. Dreyfus

Note that

• if the prior probabilities are equal, the posterior probabilities are indepen-
dent from the prior probabilities, so that the classification relies solely on
the likelihoods of the classes;

• if the likelihoods are equal, i.e., if the features have no discriminative power
whatsoever, the classification depends on the prior probabilities only.

Elegant though the Bayesian formulation may be, there is a major difficulty
in its practical application: the estimation of the quantities in the right-hand
side of Bayes formula. Obtaining a good estimate of the prior probabilities of
the classes Pr(Ci) is generally an easy task, through simple frequency count-
ing of each class in the sample. In contrast, the estimation of the likelihoods
pX(x | Ci) is subject to a difficulty known as the curse of dimensionality : the
number of patterns necessary for a reliable estimation of the likelihoods grows
exponentially with the dimension of the feature vector. When low-level repre-
sentations of the patterns are used, the number of features may be very large:
if a picture is described by the intensity of its pixels, the dimension of the fea-
ture vector is equal to the number of pixels. We will show that neural networks
are an interesting alternative to Bayesian classification because they provide
a direct estimate of the posterior probabilities without having to estimate the
prior class probabilities and the likelihoods.

Consider an application of Bayes formula: Assume that the probability
distribution of the heights of women in a given population is Gaussian with
mean 1.65 m and standard deviation 0.16 m,

pH(h |W) =
1

0.16
√

2π
exp

(
−1

2

(
h− 1.65

0.16

)2
)
,

and that the probability distribution of the heights of men in that population
is a Gaussian with mean 1.75 m and standard deviation 0.15 m:

pH(h |M) =
1

0.15
√

2π
exp

(
−1

2

(
h− 1.75

0.15

)2
)
.

The above probability densities are shown on Fig. 1.18. The Gaussians exhibit
strong overlapping, which shows that the feature height is not very discrim-
inant. In a real application, such curves would be a strong incentive for the
designer to find one or more alternative features.

In addition, assume that there are as many men and women in the popu-
lation. Given a person whose height is 1.60 m, what is the probability that it
is a woman? The answer is provided by Bayes formula

Pr(W | 1.60) =
0, 5pH(1.60 |W)

0.5pH(1.60 |W) + 0.5pH(1.60 |M)
≈ 60%.

Clearly, Pr(M | 1.60) = 40%.

1 Neural Networks: An Overview 39

2.121.91.81.71.61.5

Height (m)

Men

Women

0

0.5

1

1.5

2

2.5

Fig. 1.18. Probability densities of heights of men and women for the population
under investigation

In view of the above results, it is natural to assign the person to class W ,
which has the larger probability. This is an application of Bayes decision rule,
which will be explained below. The boundary between the classes thus defined
is shown on Fig. 1.19.

Because the prior probabilities are assumed to be equal, the discrimination
relies solely on the likelihoods.

Now assume that the person is not a member of the general population, but
is picked among the audience of a football match. Then the likelihoods of the
classes, given the height, are the same as above, but the prior probabilities are
different, since men are generally more numerous than women in the audience
of football matches; assume that the proportions are: 30% of women and 70%
of men. The posterior probabilities, as computed from Bayes formula, become
Pr(W | 1.60) = 39% and Pr(M | 1.60) = 61%. The results are very different
from the previous ones: the observed person is assigned to the class man if
Bayes rule is used as above; that important change results from the fact that
the likelihoods are not very different because the feature height is not very
discriminant, so that the classification relies heavily on the prior probabilities.
That result is illustrated by Fig. 1.20.

That simple example shows how to use Bayes formula for estimating pos-
terior probabilities, which are subsequently used for assigning each pattern to
a class through Bayes decision rule.

It is important to realize that, in practice, and in contrast with the above
examples, prior probabilities and probability densities are not known ana-
lytically, but are estimated from a finite set of observations O. Therefore,

40 G. Dreyfus

Men

Women

Class boundary given by Bayes
decision rule

2.121.91.81.71.61.5

Height (m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1.19. Posterior probabilities of the classes man and woman, as a function of
height, and boundary between the classes, when the person under investigation is
drawn from the general population

Women

Men

Class boundary given by
Bayes decision rule

2.121.91.81.71.61.5

Height (m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1.20. Posterior probabilities of the classes man and woman, as a function of
height, and boundary between the classes, when the person under investigation is
drawn from the audience of a football match

1 Neural Networks: An Overview 41

Fig. 1.21. A geometrical interpretation of Bayes decision rule; the gray area is
the probability of misclassification when Bayes rule is used; the striped area is the
increase of misclassification probability resulting from a different boundary choice

the likelihood should be denoted as pX(x | Ci, O), and the posterior proba-
bilities should be denoted as Pr(Ci | x,O), since their estimates depend on
the observation set O. For simplicity, we will not use these notations, but it
should be remembered that the estimates of probabilities and of probability
distributions are always conditioned to the observations from which they are
estimated.

1.3.4 Bayes Decision Rule

When assigning a pattern to a class, the risk of making a classification error
is minimum if the pattern is assigned to the class whose posterior probability
is highest.

Consider a classification problem with two classes C1 and C2, and one
feature. Clearly, the probability of misclassification is larger if the pattern
lies close to the class boundary. However, during the normal operation of
the classifier, it will handle patterns that are described by a large range of
values of the feature, so that what one would really like to do is to find the
boundary that minimizes the global error probability, i.e., the boundary that
minimizes the quantity Pr(M) =

∫ +∞
−∞ Pr(M | x)pX(x)dx, where M denotes

the event “misclassification”. Since the probability density pX(x) is positive,
the integral is minimal if Pr(M | x) is minimal for all x. Pr(M | x) is the
posterior probability of C1 if the decision is made of assigning the pattern to
C2, and the posterior probability of C2 if the decision is made of assigning the
pattern to C1. Therefore, Pr(M | x) is minimized if the decision is to assign
the pattern to the class with higher probability.

A geometrical interpretation of that argument is shown on Fig. 1.21: if
Bayes rule is used, the misclassification probability is represented by the gray
area. Any other boundary choice would increase that area.

The result can be easily extended to the multi-class case and the multi-
feature case.

42 G. Dreyfus

-15 -10 -5 0 +5 +10

Class A Class B

Fig. 1.22. Probability densities for classes A and B

That decision rule is satisfactory if the misclassification costs are the same
for the two classes; however, one frequently encounters applications where it
may more detrimental, or more costly, to make a false-positive misclassifica-
tion (the pattern is considered to belong to class A whereas it actually belongs
to class B) than a false-negative misclassification (the pattern is considered
to belong to class B whereas it actually belongs to class A). In data mining
applications for instance, a company that provides information filters may
find it more suitable to market filters that reject documents whereas they
are relevant to the chosen topic, than to market a filter that does not filter
irrelevant documents (the user spots immediately documents that are irrele-
vant, whereas he may never find out that the filter missed a relevant text).
In practice, such considerations are an important part of classifier design,
whether in pattern recognition, data mining, credit scoring, etc.). Therefore,
it is generally very desirable, in practical applications, to estimate posterior
probabilities and subsequently make decisions: classifiers that determine class
boundaries directly may lead to serious misconceptions.

The combination of Bayes formula and of Bayes decision rule is called
the Bayes classifier, which has the best achievable performance if the prior
probabilities and the likelihoods are known exactly. Since the latter condition
is not frequently fulfilled in practice, Bayes classifier is essentially of theoretical
interest. For instance, it may serve as a reference for assessing the quality of
a classifier, by applying it to an academic problem where prior probabilities
and likelihoods are known exactly.

As an illustrative example, consider a problem with two classes and one
feature; the patterns of class A are generated from a mixture of two Gaussians;
the patterns of class B are generated from a uniform distribution in a bounded
interval (Fig. 1.22). Therefore, the posterior probabilities can be computed
exactly (Fig. 1.23), and so are the boundaries between classes (Fig. 1.24). In

Fig. 1.23. Posterior probability of class A, from Bayes formula

1 Neural Networks: An Overview 43

Fig. 1.24. Classification achieved by Bayes classifier

Fig. 1.25. Examples used for estimating the misclassification rate. Top: class A;
bottom: class B

order to estimate the misclassification rate of the resulting Bayes classifier,
a large number of realizations of examples of each class are generated, and
the proportion of misclassified examples is computed. 600 examples of each
class were generated (Fig. 1.25), and, by simple counting, the misclassification
rate was estimated to be equal to 30.1%. Therefore, it can be claimed that no
classifier, however carefully designed, can achieve a classification performance
higher than 69.9%. The best classifiers are the classifiers that come closest to
that theoretical limit.

1.3.5 Classification and Regression

The previous section was devoted to the probabilistic foundations of classifi-
cation. We are going to show why neural networks, which are regression tools,
are relevant to classification tasks.

1.3.5.1 Two-Class Problems

We first consider a problem with two classes C1 and C2, and an associated
random variable Γ , which is a function of the vector of descriptors x; that
random variable is equal to 1 when the pattern belongs to class C1, and 0
otherwise. We prove the following result: the regression function of the random
variable Γ is the posterior probability of class C1.

The regression function y(x) of variable Γ is the expectation value of Γ
given x : y(x) = E(Γ | x). In addition, one has:

E(Γ | x) = Pr(Γ = 1 | x) × 1 + Pr(Γ = 0) × 0 = Pr(Γ = 1 | x)

which proves the result.
Neural networks are powerful tools for estimating regression functions from

examples. Therefore, neural networks are powerful tools for estimating poste-
rior probabilities, as illustrated on Fig. 1.26 this is the rationale or performing

44 G. Dreyfus

Fig. 1.26. Estimate of the posterior probability of class Ci, and boundary between
classes from Bayes decision rule

classification by neural networks. A lucid and detailed description of that ap-
proach is given in C. Bishop’s excellent book [Bishop 1995].

1.3.5.2 C-Class Problems

When the number of classes involved in a classification problem is larger than
two, two strategies can be implemented, i.e.,

• find a global solution to the problem by simultaneously estimating the
posterior probabilities of all classes;

• split the problem into two-class subproblems, design a set of pairwise clas-
sifiers that solve the subproblems, and combine the results of the pairwise
classifier into a single posterior probability per class.

We will consider those strategies in the following subsections.

Global Strategy

That is the most popular approach, although it is not always the most efficient,
especially for difficult classification tasks. For a C-class problem, a feedforward
neural network with C outputs is designed (Fig. 1.27), so that the result is
encoded in a 1-out-of-C code: the event “the pattern belongs to class Ci” is
signaled by the fact that the output vector g has a single nonzero component,
which is component number i. Similarly to the two-class case, it can be proved
that the expectation value of the components of vector g are the posterior
probabilities of the classes.

In neural network parlance, a one-out-of-C encoding is known as a grand-
mother code. That refers to a much-debated theory of data representation in
nervous systems, whereby some neurons are specialized for the recognition of
usual shapes, such as our grandmother’s face.

1 Neural Networks: An Overview 45

Fig. 1.27. A multilayer Perceptron with C outputs for classification. The activation
functions of the output neurons are sigmoids

There are several important differences between a multilayer perceptron
for classification and a multilayer perceptron for regression.

• The activation functions of the output neurons of neural networks for mod-
eling is usually linear; by contrast, the output neurons of neural networks
for classification have nonlinear activation functions such as sigmoids: since
the outputs of the neural network are probabilities, they must lie between
0 and 1 (readily amenable to [−1,+1]); in Chap. 6, a theoretical justifica-
tion for the use of the tanh function as an activation function of output
neurons will be given,

• For classification, minimizing the cross-entropy cost function is more nat-
ural than minimizing the least squares cost function [Hopfield 1987; Baum
1988; Hampshire 1990]; the training algorithms that will be described in
Chap. 2 can readily be applied to this cost function,

J = −
∑

k

C∑
i=1

γk
i Log

[
gi(xk)
γk

i

]
+ (1 − γk

i)Log
[
1 − gi(xk)

1 − γk
i

]
.

where γk
i is the desired value (0 or 1) for output i when the classifier’s

input is example k, described by feature vector xk, and gi(xk) is the value
of output i of the classifier. That function is minimum when all examples
are correctly classified.

After training, it is safe to check that the sum of the outputs is equal to 1
for all examples. The Softmax technique [Bridle 1990] guarantees that the
above condition is fulfilled automatically. Of course, that is not a problem for
pairwise classifiers, which have a single output.

The question of overfitting, which we have encountered in nonlinear re-
gression, is also valid for discrimination. If the classifier is overparameterized,
it separates very accurately the patterns of the training set and has a poor
generalization ability. Model selection techniques, such as those described in
Chap. 2, must be used in order to select the best model. Essentially, one must

46 G. Dreyfus

(a)

(b)

(c)
-15 -10 -5 0 5 10

-15 -10 -5 0 5 10

-15 -10 -5 0 5 10

1

0.5

0

1

0.5

0

1

0.5

0

Classification : Bayes Estimated with 5 hidden neurons

Classification : Bayes Estimated with 6 hidden neurons

Classification : Bayes Estimated with 4 hidden neurons

Fig. 1.28. Estimation of posterior probabilities of class A with three classifiers:
(a) 4 hidden neurons (too low complexity), (b) 5 hidden neurons (performance very
close to the best achievable correct classification rate, (c) 6 hidden neurons (strong
overfitting)

find a classifier whose classification error rates are of the same order of mag-
nitude, and as small as possible, on the training set and on an independent
validation set. Figure 1.28 shows an example of overfitting in the estimation of
the posterior probability of class A in the example shown on Fig. 1.23; clearly,
the network with 4 hidden neurons is not complex enough for representing the
posterior probability, whereas a neural network with 6 hidden neurons fits the
fluctuations of the densities of points of the training set. The neural network
with 5 hidden neurons has a misclassification rate of 30.3% (estimated on a
test set of several million points), while the minimum achievable error rate,
from Bayes classifier, is 30.1%. Therefore, neural networks are among the best
classifiers.

1 Neural Networks: An Overview 47

Pairwise Classification

For difficult problems, it is often much safer to split a C-class classification
problem into C(C − 1)/2 pairwise classification problems, for the following
reasons:

• When performing pairwise classification, the designer can take advantage
of many theoretical results and algorithms, pertaining to linear class sepa-
ration; they are fully developed in Chap. 6; we give a cursory introduction
to that material in the next section, entitled linear separability.

• The resulting networks are much more compact, with fast training and
simple analysis; since each network has a single output, its probabilistic
interpretation is trivial.

• The features that are relevant for separating class A from class B are not
necessarily identical to the features that are relevant for separating class A
from class C; therefore, each classifier has only the inputs that are relevant
to its own task, whereas a multilayer Perceptron for global separation must
have all input features that are relevant for the discrimination of all classes;
the feature selection techniques that are described in Chap. 2 can be used
in a very straightforward fashion.

Once the C(C−1)/2 posterior probabilities are estimated, possibly with sim-
ple linear separators (neural networks with no hidden neuron), the posterior
probability of class Ci for a feature vector x is computed as

Pr(Ci | x) =
1

C∑
j=1, j �=i

1
Prij

− (C − 2)

,

where C is the number of classes and Prij is the posterior probability of class
i or class j, as estimated by the neural network that separates class Ci from
class Cj .

Linear Separability

Two sets of patterns, described in an n-dimensional feature space, belonging to
two different classes, are said to be “linearly separable” if they lie on different
sides of a hyperplane in feature space.

If two sets of examples are linearly separable, a neural network made of a
single neuron (also termed perceptron can separate them. Consider a neuron
with a sigmoid activation function with n inputs; its output is given by y =
th [
∑n

i=1 wixi]. The simple relation P = (y + 1)/2 provides an interpretation
of the output of the classifier as a posterior probability. From Bayes decision
rule, the equation of the boundary between the classes is given by P = 0.5,
or equivalently y = 0. Therefore, the separating surface is a hyperplane in

48 G. Dreyfus

Fig. 1.29. Linear separation by a Perceptron (neural network with a single output,
without hidden neurons: 10% misclassification rate

Fig. 1.30. Separation by a network with a small number of hidden neurons. Three
examples per class are misclassified

Fig. 1.31. Separation by an overparameterized neural network. All examples are
correctly classified, but the generalization capacity is low

n-dimensional space,

v =
n∑

i=1

wixi = 0.

Hence, v > 0 for all examples of one of the classes, and v < 0 for all examples
of the other class. Figure 1.29 shows a separation surface that can be defined
by a Perceptron, for the example of capacitors and integrated circuits.

Hidden neurons allow multilayer Perceptrons to define more complex sep-
aration surfaces, as shown on Fig. 1.30.

As usual, one can obtain zero misclassifications if enough hidden neurons
are added, but that is detrimental to generalization because of overfitting.
Fig. 1.31 illustrates a case of blatant overfitting.

When a multi-class problem is split into pairwise separation problems, lin-
ear separation between two classes is often complex enough; very frequently,

1 Neural Networks: An Overview 49

in multi-class problems that are claimed to be difficult, the examples turn out
to be pairwise linearly separable. In such cases, powerful, elegant algorithms
give excellent solutions, as explained in Chap. 6: therefore, the first step in
the design of a classifier consists, in checking whether the classes are pairwise
linearly separable. Ho and Kashyap’s algorithm [Ho 1965], which was discov-
ered long before neural networks came into existence, provides an answer to
that problem in finite time:

• If the examples are linearly separable, the algorithm finds a separating
hyperplane in finite time.

• If the examples are not linearly separable, the algorithm signals it infinite
time (see algorithmic complements at the end of this chapter).

The postal code database provided by the National Institute of Standards
and Technology has served as a basis for many classifier designs. It turns
out that, even with low-level representations such as a pixel representation,
the classes of examples are pairwise linearly separable [Knerr 1992]! Simi-
larly, a famous sonar signal data base has been investigated in great detail by
many authors, and many complicated classifiers were designed to solve that
two-class problem; actually, in less than ten minutes on a PC, the Ho and
Kashyap algorithm, implemented as an uncompiled Matlab program, proves
that the examples of the two classes are linearly separable. Therefore, a sim-
ple Perceptron can solve the problem, without resorting to any hidden layer.
That application is investigated in more detail in Chap. 6.

1.3.5.3 Classifier Design Methodology

From the previous section, the following strategy for the design of a neural
classifier can be derived (as discussed above, one should first ascertain that
statistical classification is relevant to the problem at hand):

• Find an appropriate representation of the patterns to be classified, espe-
cially for pattern recognition (the techniques described in Chap. 3 can be
especially useful in that respect); this is a crucial step, since a representa-
tion that has a high discriminative power is likely to make the classification
problem trivial; this is illustrated in applications described below.
If the number of examples available for training the classifier is not larger
than the dimension of the feature vector, there is no point in pursuing the
design any further, according to Cover’s theorem [Cover 1965], which is
explained in Chap. 6: before proceeding to the next steps, either a more
“compact” representation must be found, or additional examples must be
collected, or a very stringent regularization method such as weight decay
(described in Chap. 2), must be implemented.

• For each pair of classes, select the relevant features with the feature selec-
tion methods described in Chap. 2; obviously, the discrimination of class
A from class B may not require the same features as the discrimination of
class A from class C.

50 G. Dreyfus

• For each pair of classes, test the pairwise linear separability of the examples
with the Ho and Kashyap algorithm.

• For all pairwise linearly separable classes, make use of linear separation
methods (described in Chap. 6) and derive an estimate of the posterior
probabilities.

• For nonlinearly separable classes, design small multilayer Perceptrons, or
spherical perceptrons as described in Chap. 6, with probability estima-
tions; use leave-one-out or cross-validation techniques for model selection
(see Chap. 2).

• Estimate the global posterior probabilities of each class from the pairwise
probabilities estimated at the previous steps, using the relation indicated
in Sect. 1.3.5.2, subsection “pairwise classification” above.

• Determine the decision thresholds in order to define rejection classes.

That strategy is a variant of the STEPNET procedure [Knerr 1990, 1991],
which allowed the design of several industrial applications.

In the planning of a classification project, the time required by the first and
the last steps of the above strategy should definitely not be underestimated;
for nontrivial applications, those are frequently the lengthiest and most painful
steps.

The applicability of that strategy is limited by the fact that the number
of pairwise classifiers grows as the square of the number of classes. However,
each classifier is usually very simple, so that the procedure can be applied
with up to a few tens of classes. For larger number of classes, hierarchical
strategies must be resorted to.

1.4 Some Applications of Neural Networks to Various
Areas of Engineering

1.4.1 Introduction

The present book is intended to assist the engineer or researcher in answering
the following question: can neural networks solve my problem, and can they do
it more efficiently (in terms of accuracy, computation time, etc.) than other
techniques?

Contributions to a rational answer were provided at the beginning of the
present chapter, where we explained the mathematical foundations and prin-
ciples underlying the operation of neural networks. Although some elements
may look somewhat technical, they are mandatory for getting an in-depth un-
derstanding of what one can and cannot do with neural networks. Since the
software implementation of neural networks is straightforward with present-
time tools, one might be tempted to apply neural networks without prior
thinking, which may lead to disappointing results.

In addition to mathematical arguments, it may be helpful, in order to il-
lustrate the use and limitations of neural networks, to describe some typical

1 Neural Networks: An Overview 51

industrial applications. This is by no means intended to be an exhaustive pre-
sentation of neural network applications, which would require several books.
The point here is to show some typical examples, and to stress the reason why
neural networks made important, possibly decisive, contributions.

1.4.2 An Application in Pattern Recognition: The Automatic
Reading of Zip Codes

Character recognition is definitely the application area where neural networks
made their first significant contributions to engineering, proving to be reliable
alternatives to classical pattern recognition methods. In the present section,
some examples and results will be described, relying on the elements of theory
and methodology provided in the previous section.

The automatic reading of postal codes is probably one of the most widely
investigated problems in picture recognition. The automatic reading of printed
envelopes and parcels is a relatively simple problem; by contrast, the huge
variety of handwritings made the recognition of handwritten addresses a truly
challenging problem. For each item handled by the postal service, a machine
must either recognize the code, or resort to human inspection when it fails to
identify the code. As indicated above, correcting a sorting mistake made by
a machine is more costly than resorting to human inspection for reading and
typing in the correct code; therefore, the most frequently used performance
criterion for such machines is the following: given a maximum misclassification
rate (say 1%), what fraction of the mail must be read by a human operator? At
present, typical performances are 5% rejection rate for 1% misclassification.

The development of automatic zip code reading was primarily spurred by
the industrial importance of the problem, but also by the fact that, as early
as 1990, large-scale data bases were made available to the general public by
the United States Postal Service (USPS), and later by the National Institute
of Science and Technology (NIST). That policy allowed many laboratories,
both in industry and in universities, to improve the state of the art, and
to validate, in a statistically significant way, the methods and procedures
that they developed; it had a general positive impact on the development of
powerful classification methods.

Figure 1.32 displays some examples from the USPS database, which fea-
tures 9,000 digits (which is not a very large number, considering the variety
of handwriting styles). The difficulty of the problem is immediately apparent.
Consider the postal code in the upper right corner of the picture; one reads
68544 effortlessly, but one notes

• that the digit 6 is split into two parts,
• that digits 8 and 5 are linked together,
• that digit 5 is split into two parts, the right part being linked to digit 4!

Thus, if one decides to base the recognition of the code on the recognition of its
individual digits, the problem of segmentation must be solved first: how does

52 G. Dreyfus

Fig. 1.32. Some excerpts from the NIST handwritten digit database

one decompose a zip code into five separate digits? Having solved that difficult
problem, one must cope with the variety of styles, sizes, and orientations, of
the isolated digits. To that end, an appropriate representation must be found;
the design of an appropriate representation is completely problem-dependent,
and requires new efforts for each new application. Clearly, one cannot use
the same kind of representations for pictures such as handwritten or printed
digits, satellite pictures, or X-ray medical images.

Despite the diversity of image processing techniques, some basic operations
are found in essentially all applications, as well as in the human visual system:
edge detection, contrast enhancement, etc. In the field of handwritten charac-
ter recognition, normalization is mandatory, in order to apply the recognition
algorithm to characters of similar sizes. We have already mentioned that the
design of a real application requires a tradeoff between the complexity of the
preprocessing that is necessary to yield the chosen representation, and the
complexity of classification: a carefully designed preprocessing, which leads to
very discriminant features, may allow the use of a very simple classifier, but
the preprocessing must not be too demanding in terms of computation time.
By contrast, a simple preprocessing, such as normalization alone, may be very
fast but will not alleviate the task of the classifier. Thus, one must engineer
the best tradeoff that allows meeting the requirements of the application. Two
very different approaches to the same application will be described below.

The first approach was developed at the former AT&T Bell Labs. It con-
sists of a neural network, known as LeNet [Le Cun 1991], which makes use
of a pixel representation (after normalization). The first layers of the network
perform local preprocessings that aim at automatically extracting features
that are relevant to classification, while the final layers perform classification.
The network is shown on Fig. 1.33.

The network is input with a 16 × 16 pixel intensity matrix. A first layer
of hidden neurons is made of 12 sets of 64 neurons each, where each set of

1 Neural Networks: An Overview 53

Fig. 1.33. LeNet, a neural network that performs feature extraction and classifica-
tion

64 hidden neurons receives information from a “receptive field” of 5 × 5 pix-
els. Those sets of 64 neurons are called feature maps, for the inputs to a given
map have the same weights (this is known as the “shared weights” technique,
described in Chap. 2): thus, the same operator acts locally on a 25-pixel area
of the picture, so that the outputs of a group of 64 neurons are the results
of the application of the same operator to the receptive fields. The local op-
erator technique is classical in picture processing, but the present approach
is original in that these operators are not engineered, but are “discovered”
through training by examples. The same technique is iterated by a second
layer of operators that act on the results of the first layer. Thus, 12 maps of
16 hidden neurons are produced by 192 neurons that provide the represen-
tation of the digit. Classification is performed by a final layer of 30 hidden
neurons, followed by 10 output neurons using a 1-out-of-N code: the number
of outputs is equal to the number of classes, output neuron number i must be
active if the input digit belongs to class i, and inactive otherwise.

Thus, the network performs, automatically and simultaneously, feature
extraction and classification, whereas those operations are usually performed
in a sequential fashion. The flexibility of the method has a price: given the
size of the network, training is demanding, and, because of the large number
of parameters, the network will be prone to overfitting.

In order to solve the same problem, a very different approach was im-
plemented [Knerr 1992], which consists in performing a more elaborate pre-
processing of the picture, in order to extract discriminant characteristics that
lead to a relatively simple classifier. Preprocessing consists of edge extraction,
followed by normalization, which produce 4 feature maps of 64 elements, hence

54 G. Dreyfus

Fig. 1.34. The 18 misclassifications made by pairwise linear separation of the
classes. For each digit, the superscript is the label of the digit in the base, and
the subscript is the response of the classifier

a 256-component feature vector. Following the classifier design methodology
described in the previous section, pairwise classification was performed by 45
different classifiers. Since the training sets were pairwise linearly separable,
each classifier consisted of a single neuron; the classifiers were trained sepa-
rately.

Figure 1.34 shows the 18 misclassifications made by the classifier on the
9,000 digits of the USPS database. Note that the bottom right digit is (cor-
rectly) recognized as a 1, whereas it was mistakenly labeled as an 8 in the
database!

We have emphasized the impact of the choice of the representation on the
efficiency of classification. This point can be nicely illustrated with this appli-
cation. For the two representations that were mentioned above (representation
by the intensities of 256 pixels, and representation by 4 feature maps of 64
elements each after edge detection), the euclidean distances between the cen-
ters of gravity of the classes were computed, and reported on Fig. 1.35. The
inter-class distances are systematically larger, with the feature-based repre-
sentation, than with the pixel-based representation. Thus, the feature-based
representation increases the inter-class distances in input space, thereby mak-
ing classification easier.

Table 1.1 illustrates the performance improvement resulting from the use
of a more appropriate representation: after adjusting the decision thresholds
so as to get, for both representations, a 1% misclassification rate, the rejection
rate is much higher for the pixel representation than for the feature-map based
representation. Note that since, in both cases, the dimension of input space is
256, the improvement does not result from the fact that the representation is
more compact, but from the fact that it is more appropriate to the task. As
usual, better engineering provides better results.

1 Neural Networks: An Overview 55

Pairs of classes
951 13 17 21 25 29 33 37 41

Pixels Features

0

0.2

0.4

0.6

0.8

1.0

1.2

Fig. 1.35. Distances between classes for two representations: the feature-map based
representation makes the classes more widely separated in input space, thereby
making the classification task easier

1.4.3 An Application in Nondestructive Testing: Defect Detection
by Eddy Currents

The example that was presented in the previous section used classification for
picture recognition. Of course, patterns that can be recognized automatically
vary widely in nature. The application that we describe in the present section
pertains to nondestructive testing, where the patterns to be classified are
signals. The objective is the automatic detection of defects in the rails of
the Paris subway. It was developed by the National Research Institute on the
Safety of Transportation Systems for RATP, the company that operates the
Paris underground system [Oukhellou 1997].

Defect detection in metal parts by eddy currents is a standard nondestruc-
tive testing technique. An electromagnetic coil creates an alternating magnetic
field, which generates eddy currents in the metal part to be tested. Those cur-
rents are detected by a second coil, and the presence of defects in the metal
alters the amplitude and the phase of the resulting signal. Thus, that signal

Table 1.1.

Correct
classification Rejection Misclassification

rate (%) rate (%) rate (%)

Pixel representation 70.9 28.1 1
Feature-map-based

representation 90.3 8.7 1

56 G. Dreyfus

Fig. 1.36. The eddy current generation and detection system

contains a “signature” of the defects. Since there are different categories of
defects, which may be more or less detrimental to the operation of the sys-
tem, classifying the defects is generally desirable. In the present case, it is
also important to be able to discriminate between real defects and normal
phenomena that are also detected by the eddy current technique, such as the
presence of a weld joint or of a switch (the position of the latter is known,
which makes discrimination easier).

In the present application, the system that generates and detects eddy
currents is mounted below the carriage, a few tens of millimeters above the
rail, as shown on Fig. 1.36.

As usual, the choice of the descriptors of the signal is crucial for the ef-
ficiency of discrimination. In the present case, a relatively small number of
features, derived from Fourier components of the signal, are usually sufficient,
provided they are chosen appropriately. Feature selection was performed by
the “probe feature method,” which is described in Chap. 2 [Oukhellou 1998].

1.4.4 An Application in Forecasting: The Estimation of the
Probability of Election to the French Parliament

After the elections to the French parliament, all candidates must make an of-
ficial statement of the amount of the expenses incurred during the campaign,
and of the breakdown of those expenses. Making use of the data pertaining to
the 1993 elections, it was possible to assess the probability of being elected as
a function of the expenses and of their breakdown. This is a two-class classi-
fication problem, and neural networks provide an estimate of the probability

1 Neural Networks: An Overview 57

Fig. 1.37. Neural estimate of the election probability as a function of the total
campaign expenses (data for the 1993 elections)

of being elected. Figure 1.37 shows the probability of election as a function of
the total expense.

That application, although in the area of classification, is somewhat dif-
ferent from the previous two applications: in the latter, the classifier was
intended to assign an existing pattern to a class, while, with high probability,
the actual class of the unknown pattern would never be known with absolute
certainty. In the present application, the situation is different, since the class
of each pattern (candidate running for election) will be known unambiguously
immediately after the election. This application falls in the class of forecasting
by simulation: in order to optimize the probability of success, the candidate
can estimate his success probability as a function of the strategy of expenses
that he uses, and derive from those results the strategy that is most suitable
to his situation.

In the next chapters, some sections will be devoted to forecasting by sim-
ulation: it will be shown that it is an area of excellence of neural networks.

1.4.5 An Application in Data Mining: Information Filtering

The rapid increase of the volume of available information, especially by elec-
tronic means, makes it mandatory to design and implement efficient informa-
tion filtering tools, which allow the user to access relevant information only.
Since such tools will address the needs of professionals, they must be reliable
and user-friendly. The user can access relevant information either by being
provided with full texts by the machine (text search), or by being provided
text excerpts or answers to questions (information extraction).

Text categorization, also known as filtering, consists in finding, in a text
corpus (e.g., of press releases, or of Web pages), the texts that are relevant
to a predefined topic. The user can thus be provided with information that is
important for his professional duties. In a machine-learning based system, the
user does not express his topic of interest through a query, but by providing a

58 G. Dreyfus

set of relevant documents that define a topic or category. For a given topic, text
categorization therefore consists in solving a two-class discrimination problem,
which can be solved by neural networks, support vector machines (Chap. 6)
or hidden Markov models (Chap. 4).

Text categorization is a very difficult problem, which goes much beyond
text search by keywords, because a text may be relevant to a topic even though
it contains none of the keywords that define the topic, or, conversely, a text
may be irrelevant although it contains some or even all keywords.

The present application (from [Stricker 2000]) was developed by the French
bank Caisse des dépôts et consignations, which provides an Intranet service
for filtering press releases of Agence France Presse (AFP) in real time. The
objective of the application is twofold:

• to develop an application that allows the user to create automatically an
information filter on any topic of interest to him, under the condition that
he provides examples of texts that are relevant to his topic of interest;

• to develop a machine-learning based tool that monitors the obsolescence
of classical, rule-based information filters.

In the latter development, a neural-based filter is designed on the same topic
as the rule-based filter. Since the neural network does not generate a binary
response, but estimates a relevance probability, the largest discrepancies be-
tween the two filters can be analyzed and possibly be traced to vocabulary
obsolescence: documents that are rated as relevant by the rule-based method,
but whose relevance probability, estimated by the neural network, is very low,
and documents that are rated as irrelevant by the rule-based filter and having
an estimated relevance probability close to one as estimated by the neural
filter [Wolinski 2000].

The former development consists in designing and implementing an auto-
matic filter production system, whose major feature is the fact that it does not
require any assistance from an expert, as opposed to rule-based filters. There-
fore, a two-class discrimination system must be designed, from a database of
texts that are labeled as relevant or irrelevant, that requires

• finding a representation of texts by real numbers, which should be as
compact as possible,

• designing and implementing a classifier that uses that representation.

Thus, the problem of text representation, hence of input selection, is crucial
for that application.

1.4.5.1 Input Selection

The most popular approach to text representation is the bag-of-words repre-
sentation, whereby a text is represented by a vector, each component of which
is a number that is a function of the presence or absence of the word in the

1 Neural Networks: An Overview 59

text, or of its frequency in the text. Clearly, the main difficulty is the dimen-
sion of that vector, which is, in principle, equal to the number of words in the
vocabulary. Nevertheless, all words are not equally discriminant: most fre-
quent words (of, the, and) are not useful for discrimination, nor are very rare
words. Therefore, the first step of the design of a filter is the determination
of the vocabulary that is specific to the topic.

Word Encoding

The words are encoded in the following way: we denote by FT (m, t) the fre-
quency of occurrence of word m in text t, and by FT (t) the average frequency
of the terms in text t. Then the word m is described by [Singhal 1996]

x(m) =
1 + log(FT (m, t))
1 + log(FT (t))

.

Zipf’s Law

Zipf’s law [Zipf 1949] is helpful for finding discriminant words: given a corpus
of T texts, we denote by FC(m) the frequency of occurrence of word m in
corpus T . A list of words, ranked in order of decreasing values of FC(m), is
built; we denote the rank of word m in that list by r(m). Zipf’s law states
that FC(m)r(m) = K, where K is a corpus-dependent quantity. Hence, there
is a very small number of very frequent words, and a large number of very
rare words that occur once or twice in the corpus; between those extremes,
there is a set of words in which discriminant words ought to be sought.

Extraction of the Specific Vocabulary

In order to extract the vocabulary that is specific to the topic, the ratio
R(m, t) = FT (m, t)/FC(m) is computed for each wordm of each relevant text
t. The words of the text are ranked in order of decreasing values of R(m, t),
the second half of the list is deleted, and a boolean vector v(t) is defined, such
that vi(t) = 1 if word i is present in the list, 0 otherwise. Finally, the vector
v =

∑
t v(t), is computed, where the summation is performed on all relevant

documents: the specific vocabulary of the topic is the set of words that have a
nonzero component in vector v. Figure 1.38 shows that Zipf’s law is obeyed on
the corpus of Reuters releases, and that the words of the vocabulary specific
to the topic Falkland petroleum exploration are indeed located in the middle
of the distribution.

Final Selection

Within the specific vocabulary thus defined, which may be still large (one
to several hundred words), a final selection is performed by the probe feature

60 G. Dreyfus

Fig. 1.38. An experimental verification of Zipf’s law on the Reuters corpus, and
location of the words of the vocabulary specific to the topic “Falkland petroleum
exploration”

method, described in Chap. 2. After completion of that step, it turns out that,
on the average over 500 different topics, the size of the specific vocabulary of
a given topic is 25 words, which is a reasonable dimension for the input vector
of a neural network. That representation, however, is not fully satisfactory
yet. Since isolated words are ambiguous in such an application, the context
must be taken into account.

1.4.5.2 Context Determination

In order to take into account the context in the representation of the texts,
context words are sought in a window of 5 words on both sides of each word
of the specific vocabulary.

• The words that are in the vicinity of the words of the specific vocabulary,
in relevant texts, are defined as positive context words.

• The words that are in the vicinity of the words of the specific vocabulary,
in irrelevant texts, are defined as negative context words.

In order to select the context words, the procedure that is used is identical
to the selection procedure for the specific vocabulary. On the average over
500 topics, a topic is defined by 25 specific words, each of which having 3
context words.

1.4.5.3 Filter Design and Training

Filters Without Context

If the context is not taken into account, the inputs of the filter are the words
of the specific vocabulary, encoded as indicated above. In accordance with the
classifier design methodology described above, the structure of the classifier
depends on the complexity of the discrimination problem. On the corpuses
tested in the course of the development of the present application, the ex-
amples are linearly separable, so that networks made of a single neuron with
sigmoid activation function solve the problem.

1 Neural Networks: An Overview 61

Fig. 1.39. A filter without context is a linear classifier whose inputs are the features
that encode each word of the specific vocabulary (rectangles in thick lines); in a
filter with context, the inputs are the features that encode the words of the specific
vocabulary (boxes in thick lines), and, in addition, the features that encode the
context words (boxes in thin lines)

Filters with Context

The context must have an influence of the feature that encodes each word
of the specific vocabulary. Therefore, the filter represents each word of the
specific vocabulary by a neuron with sigmoid activation function, whose inputs
are

• the feature that encodes the word of interest,
• the features that encode the context words of that word.

The outputs of those neurons are separated linearly by a neuron with sigmoid
activation function. Figure 1.39 shows a filter with context and a filter without
context.

The introduction of context words as inputs increases the number of pa-
rameters of the classifier. Typically, for a topic with 25 words of specific vo-
cabulary, and 3 context words per word of the specific vocabulary, the filter
has 151 parameters. Since some topics are described by a small number of
relevant texts, the use of a regularization method is mandatory. The weight
decay method (described in Chap. 2) proved useful in the present application;
its effect and implementation are explained in Chap. 2, in the section devoted
to regularization techniques.

62 G. Dreyfus

1.4.5.4 Validation of the Method

The annual competition organized by the TREC (Text REtrieval Conference)
conference is a reference in the area of automatic language processing. The
methodology that has been described was used in the “routing” task of the
TREC-9 competition. The routing competition consists in ranking a large
number of texts, in order of decreasing relevance for a large number of topics.
For the TREC-9 routing competition, two text corpuses were used, relevant to
63 and 500 topics respectively, totaling 294,000 documents. Clearly, the task
cannot be accomplished manually or semiautomatically: a fully automated
procedure must be implemented. The above approach won the competition,
for both corpuses. Figure 1.40 shows the scores of the participants [Stricker
2001].

1.4.6 An Application in Bioengineering: Quantitative
Structure-Relation Activity Prediction for Organic
Molecules

The investigation of quantitative structure-activity relations (QSAR) of mole-
cules is a rapidly growing field thanks to progress in molecular simulation. The
objective of QSAR is the prediction of chemical properties of molecules from
structural data that can be computed ab initio, without actually synthesizing
the molecule; thus, costly organic syntheses, leading to molecules that turn out
not to have the desired property, can be avoided [Hansch 1995]. That approach
is especially useful in the field of bio-engineering, for the prediction of phar-
macological properties of molecules and for computer-aided drug discovery. It
is also extremely valuable for solving conceptually similar problems, such as
the prediction of properties of complex materials from their formulation, the
prediction of thermodynamic properties of mixtures, etc.

Why are neural networks useful in that context? If there exists a deter-
ministic relation between some features of the molecule and the property that
must be predicted, then QSAR is amenable to a regression problem, i.e., to
the determination of that unknown relation, from examples. If that relation
is nonlinear, then neural networks can be advantageous, as argued above.

A prerequisite for such an approach is the availability of databases for
training and testing the model. Because of the industrial importance of the
problem, many databases of existing molecules for such properties as the boil-
ing point, water solubility, or water-octanol partition coefficients (known as
“LogP”) are available. The latter property is important in pharmacology, be-
cause it gives a quantitative assessment of the ability of the molecule to cross
biological barriers in order to be active; similarly, in the field of environment,
the value of LogP of pesticides contributes to assessing their impact on envi-
ronment.

Once the availability of appropriate databases is guaranteed, the relevant
features that should be the inputs of the model must be determined. In the

1 Neural Networks: An Overview 63

Fig. 1.40. Results of the TREC-90 routing task; black : results obtained by the
above method; grey : results obtained by other methods

present case, the chemist’s knowledge is of utmost importance. Classically,
three categories of features are considered, i.e.,

• chemical features such as the molecular weight, the number of carbon
atoms, etc.;

• geometrical features such as the volume of the molecule, its area, etc;
• electrical features such as the electric charges borne by each atom, dipole

moments, etc.

For each property to be predicted, a set of candidate descriptors must be built,
and selection techniques such as described in Chap. 2 must be applied. Because

64 G. Dreyfus

Fig. 1.41. Molecules that have chemical idiosyncrasies, whose properties may be
poorly predicted by neural networks

of their parsimony, neural networks of very small size (5 to 7 hidden neurons)
provide better results, on the same databases, than multilinear regression
techniques that are used traditionally in the field [Duprat 1998].

Interestingly, the values of logP of some molecules were systematically
either poorly learnt (when those molecules were in the training set) or poorly
predicted (when present in the test set). In such a situation, one should first
be suspicious of a measurement or typing-in error. If such is not the case, then
one should conclude that the molecules have idiosyncrasies that are not shared
by the other examples; in the present vase, it turns out that the molecules
of interest are either strongly charged (tetracycline and caffeine, shown on
Fig. 1.41), or, by contrast, interact very weakly with the solvent (perylene, 1-4
pentadiene, see Fig. 1.41). Thus, neural networks are able to detect anomalies;
anomaly detection is actually one of the main areas of applications of neural
networks.

1.4.7 An Application in Formulation: The Prediction of the
Liquidus Temperatures of Industrial Glasses

In the same spirit as the previous application, albeit in a completely different
field, thermodynamic parameters of materials can be predicted as a function
of their formulation. Of specific interest is the prediction of the liquidus tem-
peratures of oxide glasses. That temperature is the maximal temperature at
which crystals are in thermodynamic equilibrium with the liquid; the predic-
tion of the liquidus temperature is important for the glass industry, because
the value of the viscosity at the liquidus temperature has a strong impact

1 Neural Networks: An Overview 65

of the process of glass forming. Since the phase diagrams of glasses exhibit
strong variations in the temperature domain of interest, many attempts at
such predictions have been made (see for instance [Kim 1991]), and databases
are available. Neural networks have been successfully used for the prediction
of liquidus temperatures [Dreyfus 2003], especially (as expected) for glasses
with more than three components.

Figure 1.42 illustrates, on the present industrial example, the parsimony of
neural networks. It shows scatter plots, which are very convenient for assessing
graphically the accuracy of the model: on the horizontal scale, the measured
value of the quantity of interest is displayed, whereas the predicted values are
displayed on the vertical scale. If prediction were perfect, all points should
be aligned on the first bisector; actually, due to measurement inaccuracy and
prediction errors, the points are more or less scattered; a good model should
generate equivalent scatterings for the points of the training set and those of
the validation or test set, and the vertical scattering should be on the order
of the standard deviation of the noise. Clearly, such a tool is no substitute to
the computation of the TMSE and VMSE as defined above, or of the leave-
one-out score defined in Chap. 2, but it provides a quick means of comparing
different models, for instance.

The model inputs are the contents of the glass in various oxides; the
output is the estimated liquidus temperature. Figure 1.42(a) shows the re-
sults obtained on a silica glass (made of potassium oxide K2O and aluminum
oxide Al2O3, in addition to silicon oxide SiO2, which is the main compo-
nent), obtained with a network having 6 hidden neurons (25 parameters), and
Fig. 1.42(b) shows the result obtained with a polynomial of degree 3, with
a similar number of parameters (19). Clearly, with roughly the same num-
ber of parameters, the neural network performs much better. For comparison,
Fig. 1.42(c) shows the scatter plot for a linear model.

1.4.8 An Application to the Modeling of an Industrial Process:
The Modeling of Spot Welding

Spot welding is the most widely used welding process in the car industry: mil-
lions of such welds are made every day. The process is shown schematically
on Fig. 1.13: two steel sheets are welded together by passing a very large cur-
rent (tens of kiloamperes) between two electrodes pressed against the metal
surfaces, typically for a hundred milliseconds. The heat thus produced melts
a roughly cylindrical region of the metal sheets. After cooling, the diameter
of the melted zone—typically 5 mm—characterizes the effectiveness of the
process; a weld spot whose diameter is smaller than 4 mm is considered me-
chanically unreliable; therefore, the spot diameter is a crucial element in the
safety of a vehicle. At present, no fast, nondestructive method exists for mea-
suring the spot diameter, so that there is no way of assessing the quality of
the weld immediately after welding. Therefore, a typical industrial strategy
consists

66 G. Dreyfus

700

800

900

1000

1100

1200

1300

1400

1500

1600
6 hidden
neurons

Polynomial, degree 3

0 hidden neuron
(linear model)

(a)

(b)

(c)

700

800

900

1000

1100

1200

1300

1400

1500

1600

700

800

900

1000

1100

1200

1300

1400

1500

1600

800 900 1000 1100 1200 1300 1400 1500 1600 1700

800 900 1000 1100 1200 1300 1400 1500 1600 1700

800 900 1000 1100 1200 1300 1400 1500 1600 1700

Fig. 1.42. Scatter plots for the prediction of the liquidus temperature of an oxide
glass, as a function of its composition, for three different models

• in using an intensity that is much larger than actually necessary, which
results in excessive heating, which in turn leads to the ejection of steel
droplets from the welded zone (hence the sparks that can be observed
during each welding by robots on car assembly chains);

1 Neural Networks: An Overview 67

• in making a much larger number of welds than necessary, just to be sure
that a sufficient number of valid spots are produced.

Both the excessive current and the excessive number of spots result in a fast
degradation of the electrodes, which must be changed or redressed frequently.

For all the above reasons, the modeling of the process, leading to a reliable
on-line prediction of the weld diameter, is an important industrial challenge.
Modeling the dynamics of the welding process from first principles is a very
difficult task, for several reasons, including

• the computation time necessary for the integration of the partial differen-
tial equations of the knowledge-based model is many orders of magnitude
larger than the duration of the process, which precludes real-time predic-
tion of the spot diameter;

• many physical parameters appearing in the equations are not known reli-
ably.

Those arguments lead to considering black-box modeling as an alternative.
Since the process is nonlinear and has several input variables, neural networks
are natural candidates for predicting the spot diameter from measurements
performed during the process, immediately after weld formation, for on-line
quality control [Monari 1999].

The main concerns for the modeling task are the choice of the model
inputs, and the limited amount of examples available in the database, because
gathering data is costly.

In [Monari 1999], the quantities that were candidates for input selection
were mechanical and electrical signals that can be measured during the weld-
ing process. Input selection was performed by the techniques described in
Chap. 2. The experts involved in the knowledge-based modeling of the process
validated that set.

Because no simple nondestructive weld diameter measurement exists, the
database is built by performing a number of welds in well-defined condition,
and subsequently tearing them off; the melted zone, remaining on one of the
two metal sheets, is measured. That is a lengthy and costly process, so that the
initial training set was made of 250 examples only. Using experimental design
through the confidence interval estimates described in Chap. 2, a training set
extension strategy was defined in order to increase the database size. Half
of the resulting data was used for training, and the other half for testing
(the model selection method was virtual leave-one-out which, as explained in
Chap. 2, does not require any validation set).

Figure 1.43 shows typical scatter plots, where each prediction is shown
together with its confidence interval. The estimated generalization error, esti-
mated from the virtual leave-one-out score defined in Chap. 2, was 0.27 mm,
whereas the TMSE was 0.23 mm. Since those quantities are on the order of
the measurement uncertainty, the results are satisfactory.

68 G. Dreyfus

Fig. 1.43. Scatter plots for the prediction of the diameters of welding spots

1.4.9 An Application in Robotics: The Modeling of the Hydraulic
Actuator of a Robot Arm

The previous applications involved feedforward neural networks only. We now
turn to dynamic modeling, with recurrent neural networks.

We consider a hydraulic actuator that controls the position of a robot
arm; therefore, the position of the arm depends on the hydraulic pressure
in the actuator, which in turn depends of the angular position of a valve. A
dynamic model of the relation between the hydraulic pressure and the opening
of the valve was sought, in the framework of an informal competition between
research groups involved in nonlinear modeling. A control sequence {u(k)},
i.e., a sequence of angles of the valve, and the corresponding sequence of
the quantity to be modeled {yp(k)}, i.e., the hydraulic pressure, are shown
on Fig. 1.44. That sequence contains 1,024 samples, the first half of which,
according to the rule of the game, was to be used as a training set and the
second one as the validation set. Since no prior information was available from
the physics of the process, a black-box model must be designed.

A cursory look at the data shows that a linear model of the process would
certainly not be appropriate; the oscillations observed as responses to control
variations that are almost steps suggests that the model is at least of second
order. The training and validation sequences are approximately of the same
type and same amplitude, but the amplitude of the control signal is larger in
the validation set (around times 600 and 850) than in the training set. Thus,
the conditions are not very satisfactory.

The example is analyzed in detail in Chap. 2. The best results [Oussar
1998] were obtained with a second-order state-space model, one state variable
of which is the model output, of the form

y(k + 1) = x1(k + 1) = ψ1(x1(k), x2(k), u(k))
x2(k + 1) = ψ2(x1(k), x2(k), u(k)),

with two hidden neurons. It is shown on Fig. 1.45.

1 Neural Networks: An Overview 69

Fig. 1.44. Training and test sequences for a robot arm

Fig. 1.45. State-space neural model of the hydraulic actuator. The output is one
of the state variables

The mean square error obtained with that model is 0.07 on the training
set and 0.12 on the validation set, which is very satisfactory given the avail-
able sequences. The modeling errors may be due to disturbances that are not
measured, hence not present as inputs of the model. The results are shown on
Fig. 1.46.

70 G. Dreyfus

Fig. 1.46. State-space modeling of the hydraulic actuator

1.4.10 An Application of Semiphysical Modeling to a
Manufacturing Process

As mentioned above, semi-physical modeling is a modeling methodology that
allows the designer to make use both of prior knowledge resulting from a
physical or chemical analysis of the process, and of available measurements.
It is explained in detail in Chap. 2. In the present section, we describe its
application to an industrial problem: the drying of the adhesive Scotch tape
manufactured by 3M.

An adhesive tape is made of a plastic film—the substrate—coated with a
liquid, which is passed in an oven, in a gas atmosphere in which the partial
pressure of the solvent is much lower than the equilibrium pressure of the
solvent at the oven temperature; therefore, the solvent evaporates, so that the
solvent concentration at the surface becomes lower than the solvent concen-
tration in the bulk. As a consequence, the solvent diffuses to the surface so
as to compensate that concentration gradient, and evaporates at the surface.
The process stops when the film is dried, so that the adhesive polymer alone
stays on the substrate.

In a traditional process, organic solvents are used. However, for safety and
environmental reasons, organic solvents are replaced by water. A very accurate
model of drying in the presence of an organic solvent is available [Price 1997];
it is made of thirteen nonlinear, coupled algebraic and differential equations.
When the organic solvent is replaced by water, some equations of the model
are no longer valid, so that the whole model becomes inaccurate.

Polymers in aqueous solutions are not as well understood as polymers in
organic solvents, so that no satisfactory physical model of the drying of water-
based adhesives is available. However, sequences of measurements of sample
weight as a function of time and oven temperature are available: the design
of a semi-physical model is therefore possible and appropriate.

The equations of the model express the following phenomena:

• mass conservation in the bulk of the solvent: that equation is naturally
still valid in the case of water-based adhesives;

• the diffusion of solvent towards the free surface (Flick’s law); the validity
of that equation is not arguable, but it involves a quantity (the diffusion

1 Neural Networks: An Overview 71

coefficient) whose variation as a function of concentration and temperature
is given by the free-volume theory, whose validity can be disputed;

• mass conservation at the surface: any solvent molecule that reaches the
surface, and evaporates, gives a contribution to the solvent partial pressure
in the gas; that law remains valid;

• the boundary condition at the coating-substrate interface: since the sub-
strate is impermeable to organic solvents and to water alike, that condition
does not change;

• the value of the partial pressure of the solvent in the gas is the “driving
force” of the whole process; it is given by an equation whose validity is not
disputed.

Therefore, it turns out that the variation of the diffusion coefficient must be ex-
pressed by a black-box neural network, within the whole physical model. That
has been done with the methodology that is described in detail in Chap. 2.
Note that the equations of the model are not ordinary differential equations,
but partial differential equations; that does not preclude the application of
the method.

The reader interested in the details of the model and in the results
will find them in [Oussar 2001]. Another industrial application of semi-
physical modeling—the automatic detection of faults in an industrial dis-
tillation column—can be found in [Ploix 1997]. It is worth mentioning that
applications or semi-physical modeling are in routine use in a major French
manufacturing company for the design of new materials and products.

1.4.11 Two Applications in Environment Control: Ozone Pollution
and Urban Hydrology

The two applications that are described in the present section are related to
the prevision of nonlinear phenomena in environmental science.

1.4.11.1 Prevision of Ozone Pollution Peaks

Ozone concentration measurements are more and more widespread, and elab-
orate knowledge-based models of atmospheric pollution become available, so
that the prediction of ozone peaks becomes feasible. The present section re-
ports an investigation that was carried out at ESPCI within a work group to
which measurements related to industrial area of Lyon (France) were made
available. The objective was to assess the efficiency of machine learning tech-
niques for designing black-box models for the prediction of ozone pollution
peaks in that area.

The available data set was made of hourly measurements of a reliable
ozone sensor between 1995 and 1998. Data pertaining to years 1995 to 1997
were used for training, and data of 1998 for validation. The task was to pre-
dict, 24 hours ahead of time, whether pollution would excess the legal alert
threshold (180 µg/m3 at the time of the investigation).

72 G. Dreyfus

Two different approaches could be considered:

• classification: assign the next day to one of the classes “polluted” (thresh-
old will be exceeded) or “non polluted,” as a function of the data available
at 2 pm GMT,

• prevision: predict the ozone concentration, 24 hours ahead.

Since the definition of the class “polluted” depends on the legal definition of
the alert threshold, which may vary for administrative, political or economical
reasons, it was deemed preferable by the ESPCI group to follow the second
approach. A black-box model was designed, which performs the prediction of
ozone concentration during the next 24 hours, from information available at
2 pm GMT.

The naive idea consisted in using a dynamic nonlinear model such as a
recurrent neural network. However, it turned out that such an approach would
not be appropriate, because the process is not time-invariant: the physico-
chemical phenomena that determine ozone concentration depend on the time
of the day. Therefore, a set of 24 cascaded neural networks was designed, each
network specializing in the prediction of ozone concentration at a given hour
of the day (Fig. 1.47): network #N predicts the concentration at 2 pm +N
GMT; for each network, the candidate inputs are:

• the predictions of the previous N − 1 networks;
• the set of available data:

1. the measurements of sensors of NO and NO2 at 2 pm GMT,
2. the temperature at 2 pm on day D,
3. the maximal temperature measured on day D, and the maximal tem-

perature predicted for day D + 1 by the national weather forecast
service,

4. geopotentials on day D,
5. the time series of ozone concentrations performed before 2 pm on

day D.

For each network, input selection among the above candidate variables was
performed with techniques described in Chap. 2. Thus, the inputs of a given
network, specialized in a given time of the day, are the appropriate inputs for
that time of the day only.

Clearly, that approach can be adapted to other data sets, and can integrate
expert knowledge, in a semi-physical model, when it will be available.

The mean prediction error on the validation year (1998) is 23 µg/m3. Fig-
ure 1.48 illustrates the difficulty of the problem: despite a very accurate pre-
diction during 20 hours, that day appears as a “false negative” since the mea-
surement exceeds (by a very small amount) the alert threshold. Presumably,
when such tools will be in routine operation (which was not yet the case when
the present book was written), more subtle alert procedures than the simple
threshold strategy will be implemented.

1 Neural Networks: An Overview 73

Fig. 1.47. The structure of a neural network for the prediction of ozone concentra-
tion, 24 hours ahead

1.4.11.2 Modeling the Rainfall-Water Height Relation in an Urban
Catchment

The Direction de l’Eau et de l’Assainssement has developed a sophisticated
system for measuring water heights in the sewers of an area of the suburbs
of Paris, and has performed systematic measurements of rainfalls and of the
corresponding water heights. The objective is to optimize the sewer network
and to anticipate serious problems that are likely to arise in the case of severe
rains. Hence the reliability of the water height sensors in the sewers is crucial
for the reliability of the whole system: therefore, the automatic detection of
faults in the water height sensors is mandatory [Roussel 2001].

Neural networks can be accurate models of nonlinear phenomena, which
makes them useful tools for fault detection: if an accurate, real-time model
of normal operation of a process is available, the observation of a statistically

74 G. Dreyfus

Fig. 1.48. Measured and predicted ozone concentrations on a day of 1998 (false
negative)

significant discrepancy between the predictions of the model and the results
of measurements results from a fault, such as, in the present example, a sensor
failure.

Two kinds of faults can be present,

• stuck-at faults: the sensor outputs a constant value,
• drift: the sensor adds a slow drift to the real height value.

Both types of faults can be detected with recurrent neural networks, especially
with NARMAX models (described in detail in Chaps. 2 and 4). Figure 1.49
displays the various behaviors of the modeling error, depending on whether
the sensor is in normal operation or in drift failure mode.

Fig. 1.49. Sensor fault detection in a sewer system

1 Neural Networks: An Overview 75

1.4.12 An Application in Mobile Robotics

Process control is the science that determines the control actions to which
a process must be submitted in order to guarantee that it will operate in a
prescribed fashion, in spite of unmeasured and unpredictable disturbances.

As an example of the role that neural networks can play in mobile robotics,
we describe the automatic control of a 4WD Mercedes vehicle, which was
equipped by the French company SAGEM with sensors and actuators that are
necessary for making the vehicle autonomous. Controlling the vehicle consists
in sending the appropriate signals to the actuators of the steering wheel, the
throttle, and the brakes, in order to keep the vehicle on a prescribed trajectory
with a prescribed velocity profile, in spite of disturbances such as wind gusts,
sliding, slopes, etc.

Neural networks are good candidates as ingredients in nonlinear process
control systems. They can implement any (sufficiently regular) nonlinear func-
tion. As a result, they can be useful in two different ways,

• as models of the process, since the design of a control system generally
requires the availability of a model; neural networks are particularly useful
in internal model control, as described in Chap. 5;

• as controllers, i.e., for computing the control signals (e.g., the angle by
which the driving wheel must turn, and the velocity at which it should
turn) from the setpoint (e.g., the desired heading of the vehicle).

The vehicle that was controlled was a 4 wheel-drive vehicle equipped with
actuators (electric motor for actuating the driving wheel, hydraulic actuator
for brakes, electric motor for actuating the throttle) and two categories of
sensors,

• sensors that measure the state of the vehicle (proprioceptive sensors):
odometers on the wheels, angular sensors for the driving wheel and for
the throttle, pressure sensor in the brake system;

• sensors that measure the position of the vehicle with respect to the universe
(exteroceptive sensors): an inertial platform.

The navigation and piloting system is made of the following elements:

• a planning module, which determines the desired trajectory of the vehicle,
and its velocity profile, given the start and arrival points and the existing
roads;

• a guiding module, which computes the heading and speed setpoint se-
quences;

• a piloting module, which computes the desired positions of the actuators;
• a control module of the actuators.

In that structure, neural networks are present at the level of the piloting
module, where they compute the desired position sequences of the actuators
as a function of the heading and speed setpoint sequences [Rivals 1994, 1995].

76 G. Dreyfus

The application requested the design and implementation of two control
systems that must fulfill two tasks,

• the control of the driving wheel, in order to keep the vehicle on the desired
trajectory: a neural controller was designed, that performs a maximum
lateral error of 40 cm, for curvatures up to 0.1 m−1, and lateral slopes
up to 30% in rough terrain; some elements of that controller used semi-
physical modeling;

• the control of the throttle and the brake, in order to comply with the
desired velocity profile.

All neural networks implemented within that application, whether models
or controllers, are very parsimonious (less than ten hidden neurons). Their
implementation on board did not require any special-purpose hardware: they
were implemented as software on a standard microprocessor board that was
also used for other purposes.

1.5 Conclusion

In the present chapter, we endeavored to explain why, and for what purposes,
neural networks can be advantageously used. Some typical applications were
presented (others are described in various chapters), so that model designers
can get an intuition of what they can expect from that technique.

Before proceeding to more mathematical topics, it may be useful to em-
phasize the main points that should always be kept in mind when designing
neural networks, i.e.,

• Neural networks are machine learning tools, that allow to fit very general
nonlinear functions to sets of experimental data; just as for any statistical
method, the availability of appropriate data is mandatory.

• Neural networks with supervised learning are parsimonious approxima-
tors, that can serve as static models (feedforward neural networks) or as
dynamic models (recurrent neural networks).

• Neural networks with supervised learning can be high-quality classifiers,
whose performances can reach those of the theoretical Bayes classifier;
however, in the framework of classification for pattern recognition, the
representation of the patterns to be recognized is often crucial for the
performance of the whole system; in that context, neural networks with
unsupervised learning may provide very valuable information for designing
an efficient data representation.

• it is generally desirable, and often possible, to take advantage of all existing
mathematical knowledge on the process to be modeled or patterns to be
classified: neural networks are not necessarily black boxes.

The next chapters provide the mathematical background and the algorithmic
information that are necessary for an efficient design of neural network models.

1 Neural Networks: An Overview 77

The foreword and the reading guide will help the reader to navigate through
the chapters as a function of his own topics of interest.

1.6 Additional Material

1.6.1 Some Usual Neurons

Two categories of neurons can be distinguished, depending on the role of their
parameters.

1.6.1.1 Neurons with Parameterized Inputs

The most popular neurons are neurons with parameterized inputs, in which
one parameter is assigned to each input. The output of a neuron having n
inputs {xi}, i = 0 to n − 1, is therefore given by an equation of the form
y = f{xi, wi}, i = 0 to n− 1, where {wi}, i = 0 to n− 1 are the parameters
of the model.

In most cases, function f is the composition of two operations,

• the computation of the potential v of the neuron, which is the sum of the
inputs of the neuron, weighted by the corresponding parameters,

v =
n−1∑
i=0

wixi;

• the computation of a nonlinear function of the potential, termed activation
function; that function is generally s-shaped, hence the generic name of
sigmoid; preferably the activation function is symmetric with respect to
the origin, such as the tanh function or the inverse tangent function, except
if some prior knowledge on the problem prompts the implementation of
different, more appropriate functions.

The set of inputs of the neuron generally includes a specific input, termed bias,
the value of which is constant, equal to 1. It is usually assigned the index 0,
so that the potential is of the form

v = w0 +
n−1∑
j=1

wjxj .

Thus, the expression of the output of the neuron is: y = f [w0 +
∑n−1

j=1 wjxj].
Figure 1.50 shows the output of a neuron with three inputs (x0 = 1, x1,

x2) with parameters w0 = 0, w1 = 1, w2 = −1.

78 G. Dreyfus

Fig. 1.50. Output of a neuron with 3 inputs {x0 = 1, x1, x2} with weights {w0 =
0, w1 = +1, w2 = −1}, whose activation function is a tanh function: y = tanh(x1 −
x2)

Two variants of that type of neuron are

• high-order neural networks, whose potential is not an affine function of the
inputs, but a polynomial function; they are the ancestors of the support
vector machines (or SVM) used essentially for classification, described in
Chap. 6;

• MacCulloch-Pitts neurons, or perceptrons, which are the ancestors of
present-day neurons; Chap. 6 describes in detail their use for discrimi-
nation.

1.6.1.2 Neurons with Parameterized Nonlinearities

The parameters of those neurons are assigned to their nonlinearity: they are
present in function f . Thus, the latter may be a “radial basis function” (RBF)
or a wavelet.

Example

Gaussian radial basis function,

y = exp

[
n∑

i=1

(xi − wi)2
/

2w2
n+1

]
.

The parameters {wi, i = 1 to n} are the coordinates of the center of the
Gaussian in input space; parameter wn+1 is its standard deviation. Fig-
ure 1.51 shows an isotropic Gaussian RBF, centered at the origin, with stan-
dard deviation 1/

√
2.

1 Neural Networks: An Overview 79

Fig. 1.51. Gaussian isotropic RBFy = exp[−(x2
1 + x2

2)] : w0 = w1 = 0, w3 = 1/
√

2

The term radial basis function arises from approximation theory; they can
be chosen so as to form a mathematical basis of functions. In regression, RBF’s
are generally not chosen so as to satisfy that requirement; however, following
the current use, we will keep the term radial basis function.

1.6.2 The Ho and Kashyap Algorithm

The Ho and Kashyap algorithm finds, in a finite number of iterations, whether
two given sets of observations are linearly separable in feature space. If they
are, the algorithm provides a solution (among an infinity of possible solu-
tions), which is not optimized (as opposed to algorithms that are explained
in Chap. 6). Therefore, that algorithm is mainly used for finding out whether
sets are linearly separable. If such is the case, it is advisable to use one of the
optimized algorithms described in Chap. 6.

Consider two sets of examples, having nA and nB elements respectively,
belonging to two classes A and B; if the examples are described by n features,
each of them is described by an n-vector. We denote by xA

k the vector that
represents the k-th example of class A (k = 1 to nA), and by w the vector of
parameters of a linear separator; if such a separator exists, i.e., if the examples
are linearly separable, then one has

xA
k w > 0 for all k,

xB
k w < 0 for all k.

We define matrix M whose rows are the vectors that represent the examples
of A and the opposites of the vectors representing the examples of B, i.e.,

M = [xa
1 ,x

a
2 , . . . ,x

a
na
,xb

1,x
b
2, . . . ,x

b
nb]

T,

80 G. Dreyfus

where superscript T denotes the transpose of a matrix. Then a linear separator
exists if and only if there exists a vector w such that

Mw > 0,

or, equivalently, if there exists a vector y > 0 and a vector w such that
Mw = y.

Then one has w = M∗y, where M∗ is the pseudo-inverse of matrix M :
M∗ = MT(MMT)−1, which can be computed by the Choleski method [Press
1992].

The Ho and Kashyap algorithm is as follows:

Initialization (iteration 0):
w(0) = M∗y(0) where y(0) is an arbitrary positive vector
Iteration i
α(i) = M∗w(i) − y(i)
y(i+ 1) = y(i) + ρ(α(i) + |α(i)|) where ρ is a positive scalar smaller than
1 w(i+ 1) = w(i) + ρM∗(α(i) + |α(i)|)
If one of the components of y(i) < 0 then the examples are not linearly
separable.
If all components of Mw(i) > 0 then the examples are linearly separable
and w(i) is a solution.

The algorithm converges after a finite number of iterations.

References

1. Antoniadis A., Berruyer J., Carmona R. [1992], Régression non linéaire et ap-
plications, Economica

2. Barron A. [1993], Universal approximation bounds for superposition of a sig-
moidal function, IEEE Transactions on Information Theory, 39, pp 930–945

3. Baum E.B., Wilczek F. [1988], Supervised learning of probability distributions
by neural networks, Neural Information Processing Systems, pp 52–61

4. Benveniste A., Juditsky A., Delyon B., Zhang Q., Glorennec P.-Y. [1994],
Wavelets in identification, 10th IFAC Symposium on Identification, Copenhague

5. Bishop C. [1995], Neural networks for pattern recognition, Oxford University
Press

6. Bridle J.S. [1990], Probabilistic interpretation of feedforward classification net-
work outputs, with relationship to statistical pattern recognition, Neurocomput-
ing: algorithms, architectures and applications, pp 227–236 Springer

7. Broomhead D.S., Lowe D. [1988], Multivariable functional interpolation and
adaptive networks, Complex Systems, 2, pp 321–355

1 Neural Networks: An Overview 81

8. Cover T.M. [1965], Geometrical and statistical properties of systems of lin-
ear inequalities with applications in pattern recognition, IEEE Transactions on
Electronic Computers, 14, pp 326–334

9. Draper N.R., Smith H. [1998], Applied regression analysis, John Wiley & Sons
10. Duprat A., Huynh T., Dreyfus G. [1998], Towards a principled methodology for

neural network design and performance evaluation in QSAR; application to the
prediction of LogP, Journal of Chemical Information and Computer Sciences,
38, pp 586–594

11. Dreyfus C., Dreyfus G. [2003], A machine-learning approach to the estima-
tion of the liquidus temperature of glass-forming oxide blends, Journal of Non-
Crystalline Solids, 318, pp 63–78

12. Hampshire J.B., Pearlmutter B. [1990], Equivalence proofs for multilayer per-
ceptron classifiers and the Bayesian discriminant function, Proceedings of the
1990 connectionist models summer school, pp 159–172, Morgan Kaufmann

13. Hansch C., Leo A. [1995], Exploring QSAR, Fundamentals and applications in
chemistry and biology ; American Chemical Society

14. Ho E., Kashyap R.L. [1965], An algorithm for linear inequalities and its appli-
cations, IEEE Transactions on Electronic Computers, 14, pp 683–688

15. Hopfield J.J. [1987], Learning algorithms and probability distributions in feed-
forward and feedback neural networks, Proceedings of the National Academy of
Sciences, 84, pp 8429–433

16. Hornik K., Stinchcombe M., White H. [1989], Multilayer feedforward networks
are universal approximators, Neural Networks, 2, pp 359–366

17. Hornik K., Stinchcombe M., White H. [1990], Universal approximation of an
unknown mapping and its derivatives using multilayer feedforward networks,
Neural Networks, 3, pp 551–560

18. Hornik K. [1991], Approximation capabilities of multilayer feedforward net-
works, Neural Networks, 4, pp 251–257

19. Kim S.S., Sanders T.H. Jr. [1991], Thermodynamic modeling of phase diagrams
in binary alkali silicate systems, Journal of the American Ceramics Society, 74,
pp 1833–1840

20. Knerr S., Personnaz L., Dreyfus G. [1990], Single-layer learning revisited: a
stepwise procedure for building and training a neural network, Neurocomputing:
algorithms, architectures and applications, pp 41–50, Springer

21. Knerr S. [1991], Un méthode nouvelle de création automatique de réseaux de
neurones pour la classification de données: application à la reconnaissance de
chiffres manuscrits, Thèse de Doctorat de l’Université Pierre et Marie Curie,
Paris

22. Knerr S., Personnaz L., Dreyfus G. [1992], Handwritten digit recognition by
neural networks with Single-layer Training, IEEE Transactions on Neural Net-
works, 3, pp 962–968

23. LeCun Y., Boser B., Denker J.S., Henderson D., Howard R.E., Hubbard W.,
Jackel L.D. [1989], Backpropagation applied to handwritten zip code recogni-
tion, Neural Computation, 1, pp 541–551

24. Mallat S. [1989], A theory for multiresolution signal decomposition: the wavelet
transform, IEEE Transactions on Pattern Analysis and Machine Intelligence,
11, pp 674–693

25. McCulloch W.S., Pitts W. [1943], A logical calculus of the ideas immanent in
nervous activity, Bulletin of Mathematical Biophysics, 5, pp 115–133

82 G. Dreyfus

26. Marcos S., Macchi O., Vignat C., Dreyfus G., Personnaz L., Roussel-Ragot P.
[1992], A unified framework for gradient algorithms used for filter adaptation
and neural network training, International Journal of Circuit Theory and Ap-
plications, 20, pp 159–200

27. Minsky M., Papert S. [1969] Perceptrons. MIT Press
28. Monari G. [1999], Sélection de modèles non linéaires par leave-one-out; étude

théorique et application des réseaux de neurones au procédé de soudage
par points, Thèse de Doctorat de l’Université Pierre et Marie Curie, Paris.
Disponible sur le site http://www.neurones.espci.fr.

29. Moody J., Darken C.J. [1989], Fast learning in networks of locally-tuned process-
ing units, Neural Computation, 1, pp 281–294

30. Nerrand O., Roussel-Ragot P., Personnaz L., Dreyfus G., Marcos S. [1993],
Neural networks and nonlinear adaptive filtering: unifying concepts and new
Algorithms, Neural Computation, 5, pp 165–197

31. Oukhellou L., Aknin P. [1997], Modified Fourier Descriptors: A new parame-
trization of eddy current signatures applied to the rail defect classification, III
International workshop on advances in signal processing for non destructive eval-
uation of materials

32. Oukhellou L., Aknin P., Stoppiglia H., Dreyfus G. [1998], A new decision cri-
terion for feature selection: application to the classification of non destructive
testing signatures, European Signal Processing Conference (EUSIPCO’98)

33. Oussar Y. [1998], Réseaux d’ondelettes et réseaux de neurones pour la modé-
lisation statique et dynamique de processus, Thèse de Doctorat de l’Université
Pierre et Marie Curie, Paris. Disponible sur le site http://www.neurones.espci.fr

34. Oussar Y., Dreyfus G. [2000], Initialization by selection for wavelet network
training, Neurocomputing, 34, pp 131–143

35. Oussar Y., Dreyfus G. [2001], How to be a gray box: dynamic semi-physical
modeling, Neural Networks, vol. 14, pp 1161–1172

36. Ploix J.L., Dreyfus G. [1997], Early fault detection in a distillation column: an
industrial application of knowledge-based neural modelling, Neural Networks:
Best Practice in Europe, pp 21–31, World Scientific

37. Powell M.J.D. [1987], Radial basis functions for multivariable interpolation: a
review, Algorithms for approximation, pp 143–167

38. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. [1992], Numerical
recipes in C: the art of scientific computing, Cambridge University Press

39. Price D., Knerr S., Personnaz L., Dreyfus G. [1994], Pairwise neural network
classifiers with probabilistic outputs, Neural Information Processing Systems, 7,
pp 1109–1116, Morgan Kaufmann

40. Price P.E., Wang S., Romdhane I.H. [1997], Extracting effective diffusion para-
meters from drying experiments. AIChE Journal, 43, pp 1925–1934

41. Rivals I., Canas D., Personnaz L., Dreyfus G. [1994], Modeling and control of
mobile robots and intelligent vehicles by neural networks, Proceedings of the
IEEE Conference on Intelligent Vehicles, pp 137–142

42. Rivals I. [1995], Modélisation et commande de processus par réseaux de neu-
rones: application au pilotage d’un véhicule autonome, Thèse de Doctorat de
l’Université Pierre et Marie Curie, Paris. Disponible sur le site http://www.
neurones.espci.fr.

43. Roussel P., Moncet F., Barrieu B., Viola A. [2001], Modélisation d’un proces-
sus dynamique à l’aide de réseaux de neurones bouclés. Application à la

1 Neural Networks: An Overview 83

modélisation de la relation pluie-hauteur d’eau dans un réseau d’assainissement
et à la détection de défaillances de capteurs, Innovative technologies in urban
drainage, 1, 919–926, G.R.A.I.E

44. Seber G.A.F., Wild C.J. [1989], Non-linear regression, Wiley Series in Proba-
bility and Mathematical Statistics, John Wiley & Sons

45. Singhal A. [1996], Pivoted length normalization. Proceedings of the 19th An-
nual International Conference on Research and Development in Information
Retrieval (SIGIR’96), pp 21–29

46. Stoppiglia H. [1997], Méthodes statistiques de sélection de modèles neuronaux;
applications financières et bancaires, Thèse de Doctorat de l’Université Pierre
et Marie Curie, Paris. Disponible sur le site http://www.neurones.espci.fr.

47. Stricker M. [2000], Réseaux de neurones pour le traitement automatique du lan-
gage: conception et réalisation de filtres d’informations, Thèse de Doctorat de
l’Université Pierre et Marie Curie, Paris. Disponible sur le site http://www.
neurones.espci.fr.

48. Stricker M., Vichot F., Dreyfus G., Wolinski F. [2001], Training context-sensitive
neural networks with few relevant examples for the TREC-9 routing, Proceedings
of the TREC-9 Conference.

49. Vapnik V. [1995], The nature of statistical learning theory, Springer
50. Wolinski F., Vichot F., Stricker M. [2000], Using learning-based filters to detect

rule-based filtering Obsolescence, Conférence sur la Recherche d’Information
Assistée par Ordinateur, RIAO’2000, Paris

51. Zipf G. K. [1949], Human Behavior and the Principle of Least Effort. Addison-
Wesley.

2

Modeling with Neural Networks:
Principles and Model Design Methodology

G. Dreyfus

In the previous chapter, we showed that neural networks are nonlinear mod-
els, either static or dynamic, either “black-box” or “gray-box”. The present
chapter provides an in-depth treatment of the principles of modeling, together
with a full model design methodology. For a new technology, the availability
of a methodology is a proof of maturity, and it is a crucial asset for success in
the development of applications.

2.1 What Is a Model?

A model is a representation of a part of the visible or observable world. In
the present book, we consider only mathematical models, made of algebraic
or differential equations that relate causes (called variables, factors, or model
inputs) to effects (called quantities to be modeled, or quantities of interest,
or model outputs); all these quantities are numbers. Symbolic or linguistic
models, such as expert or fuzzy systems, will not be considered.

2.1.1 From Black-Box Models to Knowledge-Based Models

The black-box model is the most primitive form of a mathematical model: it
is based only on observations; it may have some predictive value, but it does
not provide any explanation. Thus, the Ptolemaic model of the universe was a
black-box model: it did not provide any explanation of the motion of planets,
but it did predict it, within the accuracy of experimental instruments that
were available at that time.

By contrast, a knowledge-based model, or white-box model, results from
an analysis of the physical, chemical, biological, etc., phenomena that gen-
erate the quantity to be modeled. Those phenomena are described by equa-
tions that depend on the theoretical knowledge that is available when the
model is designed. Therefore, such a model has the abilities of predicting

86 G. Dreyfus

and of explaining. Scientific research strives to build knowledge-based mod-
els, whenever possible: the design of a knowledge-based model requires that
a theory be available, whereas the design of a black-box model requires that
measurements be available. Thus, Newton’s theory of gravitation generated a
knowledge-based model of the motion of celestial bodies.

Semiphysical or gray-box models stand between knowledge-based and
black-box models: they embody both equations resulting from the applica-
tion of a theory, and empirical results from a black-box model.

At present, most neural network applications are black-box models; there-
fore, the first part of the present chapter is devoted to black-box modeling.
However, it will be shown that it can be very advantageous to use neural
networks as semiphysical models.

2.1.2 Static vs. Dynamic Models

A static model is made of algebraic equations only (e.g., a feedforward neural
network); by contrast, a dynamic model obeys differential (or partial differen-
tial) equations where time is the variable, and possibly algebraic equations as
well. We will first consider the design of static models. The design principles
for dynamic models (e.g., recurrent neural networks) will be explained next;
Chaps. 4 and 5 deal in more detail with dynamic modeling and control.

2.1.3 How to Deal With Uncertainty? The Statistical Context of
Modeling and Machine Learning

Before studying the design and implementation of a static black-box model, it
may be useful, for the benefit of the reader who is not familiar with those tech-
niques, to state the assumptions that underlie black-box modeling. Assume
that the quantity of interest yp is measurable, scalar1, and that one knows,
or suspects, that it depends, in some unknown, deterministic way, on one or
several measurable quantities called factors that can be gathered into a vector
x (which is a scalar if a single factor is involved in the modeling). In general,
the measurable factors do not provide a complete description of the evolu-
tion of the quantity of interest: the latter is also subject to disturbances that
are not measured (often not measurable). Two kinds of disturbances must be
considered,

• deterministic disturbances: putting a cold dish into a temperature-regulated
oven disturbs the temperature of the latter;

• noise: the noise inherent to the measurement of the quantity of interest
yp, for instance the noise of the sensor that measures the temperature of
the oven, disturbs the measurement.

1 The extension to the modeling of a vector does not involve any special difficulty.

2 Principles and Model Design Methodology 87

Thus, if the same quantity is measured several times in conditions that are as-
sumed to be identical, the results of the measurements are not identical. Black-
box modeling aims at finding, from available measurements, a mathematical
expression that provides an estimate of what the result of the measurement
would be in the absence of disturbances, or, in other words, at finding a de-
terministic relation, if any, between the factors x and the quantity of interest
yp. Statistics provide the conceptual framework that is suitable for that task.
Therefore, the chapter starts with the introduction of elementary vocabulary
and concepts of statistics; some examples are developed in the additional ma-
terial at the end of the chapter. The reader who has some familiarity with
statistics may skip the next section.

2.2 Elementary Concepts and Vocabulary of Statistics

There are many classical textbooks in statistics (see or instance [Mood et al.
1974; Wonnacott et al. 1990]) to which the reader can refer for many more
details and for the proofs of some results.

2.2.1 What is a Random Variable?

A random variable is a very convenient mathematical concept for dealing with
quantities (such as results of measurements) whose values are uncertain: their
values is considered as a realization of a random variable. The latter is fully
defined by its probability density or distribution.

Denoting by pY (y) the probability distribution function (pdf) of a random
variable Y , the probability that the value of a realization of Y lie between y
and y + dy is equal to pY (y)dy.

Thus, modeling a measurable quantity yp by a random variable Y is equiv-
alent to assuming that the result of a measurement is the result of a random
choice of a value y with a (generally unknown) probability distribution pY (y).
Modeling a quantity of interest by a random variable is definitely not equiv-
alent to stating or assuming that the quantity of interest is not governed by
a deterministic process: it is just a convenient mathematical trick for dealing
with the fact that some factors that have an influence on the result of the
measurement are not known, or are known but neither measured nor con-
trolled (maybe because they are neither measurable nor controllable, such as
wind gusts in the modeling of airplane flight).

Property. The probability distribution function is the derivative of the cumu-
lative distribution function:. pY (y) = (dFY (y))/(dy)with FY (y)=Probability
(Y ≤ y)

Because any realization y of the random variable Y lies between −∞ and
+∞, one has:

∫ +∞
−∞ pY (y)dy = 1.

88 G. Dreyfus

-5 0 5

p Y
(y

)

y

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

Fig. 2.1. Normal distribution

2.2.1.1 Examples of Probability Distributions

Uniform Distribution

A random variable Y has a uniform distribution if its density probability is
pY (y) = 1/(b− a) on a given interval [a, b], and is zero elsewhere.

Gaussian Distribution

The Gaussian distribution pY (y) = 1/(
√

2πσ2) exp(−((y − µ)2)/(2σ2)) is very
useful. µ is the mean of the Gaussian and σ (> 0) is its standard deviation.
Figure 2.1 shows a normal distribution, with µ = 0 and σ = 1.

Other Distributions

The Pearson (or χ2) distribution, the Student distribution and the Fisher
distribution are defined in the additional material at the end of the chapter.

2.2.1.2 Joint Distributions

Denoting by pX,Y (x, y) the joint density of two random variables, the proba-
bility that a realization of X lie between x and x+ dx and that a realization
of Y lie between y and y + dy is pX,Y (x, y)dx dy.

Independent Random Variables

If two random variables X and Y are independent, one has:

pX,Y (x, y) = pX(x)pY (y).

2 Principles and Model Design Methodology 89

2.2.2 Expectation Value of a Random Variable

The expectation value of a random variable Y is

EY =
∫ +∞

−∞
ypY (y)dy.

Therefore, the expectation value of a random variable is the first moment
of its probability distribution .

2.2.2.1 Properties

• The expectation value of the sum of random variables is the sum of the
expectation values of the random variables.

• If a variable Y is uniformly distributed in interval [a, b], its expectation
value is (a+ b)/2.

• If a variable Y has a Gaussian distribution with mean µ, its expectation
value is µ.

2.2.2.2 Example: Modeling the Result of a Measurement by a
Random Variable

Assume that several measurements of the temperature of a fluid are per-
formed, under conditions that are assumed to be identical, and that different
results are obtained because of the intrinsic noise of the sensor and associ-
ated electronics, or because the conditions of the measurement are poorly
controlled. Such a situation can be conveniently modeled by considering that
the result T of the measurement is the sum of the true temperature T0 (ran-
dom variable with distribution δ(T0)) and of a random variable B with zero
expectation value, T = T0 + B. Then the expectation value of T is given by
ET = T0 since the expectation value of B is equal to zero.

Clearly, the objective of performing a measurement of a quantity of inter-
est, is to know its “true” value, i.e., within the above statistical framework,
the expectation value of the quantity of interest. Therefore, the question that
arises naturally is: how can one estimate that expectation value from the
available measurements? To this end, the concept of estimator is useful.

2.2.3 Unbiased Estimator of a Parameter of a Distribution

An estimator is a random variable, which is a function of one or several mea-
surable random variables.

An estimator H of a parameter of the distribution of an observable ran-
dom variable G is said to be unbiased if its expectation value is equal to the
parameter of interest. Then a realization of H is an unbiased estimate of the
parameter of interest.

90 G. Dreyfus

2.2.3.1 The Mean Is an Unbiased Estimator of the Expectation
Value

Assume thatN measurements of a quantity of interestG have been performed,
under conditions that are assumed to be identical. The quantity of interest
is modeled as a random variable whose expectation value γ is unknown. The
result gi of measurement i can be considered as a realization of the random
variable Gi. If the experiment has been soundly designed, it can reasonably
be assumed that the result of a given measurement is not affected by, and
does not affect, other measurements: then the random variables Gi are mu-
tually independent, and, since the measurements were performed in identical
conditions, they have identical distributions, hence the same expectation γ.

Consider the random variable M = (G1 + G2 + · · · + GN)/N . Since the
expectation of a sum of random variables is the sum of the expectations,
one has EM = γ: the expectation value of the random variable M (“mean”)
is equal to the expectation value of G, therefore the mean is an unbiased
estimator of the expectation value. The quantity m = (g1 + g2 + · · ·+ gN)/N ,
which is a realization of the estimator of the expectation value of the random
variable G, is an unbiased estimate of the latter.

Consider again the example of the estimation of the temperature of a fluid;
we have shown

• that the expectation value of the variable T that models the temperature
is equal to the “true” temperature T0,

• that the mean is an unbiased estimator of the expectation value.

Therefore, if N temperature measurements are available, the mean of these
measurements is an unbiased estimate of T0.

However, the fact that the estimate is unbiased does not tell us anything
about the accuracy of that result. If it is desirable, for instance, to know the
temperature with 10% accuracy, does the estimate comply with that require-
ment? Clearly, the answer depends on the quality of the measurements, i.e.,
on the scattering of the measurements around the true value T0. The concept
of variance is useful in that context.

2.2.4 Variance of a Random Variable

The variance of a random variable Y with distribution pY (y) is

varY = σ2 =
∫ +∞

−∞
[y − EY]2p(y)dy.

Hence, the variance is the centered second moment of the distribution.

2 Principles and Model Design Methodology 91

2.2.4.1 Properties

• varY = EY 2 − E2
Y .

• varaY = a2varY .
• If a random variable is uniformly distributed on an interval [a, b], its vari-

ance is (b− a)2/12.
• If a random variable has a Gaussian distribution of standard deviation σ,

its variance is σ2.

2.2.4.2 Unbiased Estimator of the Variance of a Random Variable

In order to define the mean estimator M (unbiased estimator of the expec-
tation value), we considered that N measurements of a quantity G were per-
formed, and that the measurements were modeled as realizations of N inde-
pendent identically distributed (i.i.d.) random variables Gi.

Unbiased Estimator of the Variance

The random variable

S2 =
1

N − 1

N∑
i=1

(Gi −M)2

is an unbiased estimator of the variance of G.
Therefore, if N measurement results gi are available, the estimation of the

variance requires

• first an estimation mof the mean, by relation m = 1/(N)
∑N

i=1 gi,
• then an estimation of the variance by relation

s2 =
1

N − 1

N∑
i=1

(gi −m)2 .

Thus, the estimation of the variance provides a quantitative assessment of
the scattering of the measurements around the mean. Since the mean itself is
a random variable, it has a variance: the latter can be estimated by perform-
ing several sequences of measurements, under identical conditions, computing
the mean of each sequence, then estimating the expectation value and the
variance of the mean: this would provide an assessment of the scattering of
the estimates of the temperature. However, this is indeed a heavy procedure,
since it requires several sequences of measurements, in identical conditions.

92 G. Dreyfus

2.2.5 Confidence Interval

The estimation of a confidence interval provides an elegant solution to the
problem that has just been mentioned.

A confidence interval, with confidence threshold 1− α, for a random vari-
able Y , is an interval that, with probability 1 − α, contains the value of the
expectation of Y .

Thus, instead of simply estimating the true value of the temperature by
averaging the results of measurements performed presumably under identical
conditions, one can estimate an interval within which the true value of the
temperature is to be found, with probability 1 − α. This is a much more
useful and significant information: the smaller the confidence interval, the
more confident one can be in the estimate of the quantity of interest.

The procedure for computing a confidence interval, and an example, are
described in the additional material at the end of the chapter.

2.2.6 Hypothesis Testing

Hypothesis testing is a conventional statistical technique that aims at estimat-
ing whether a given hypothesis about a model is significantly in agreement,
or in disagreement, with experimental data. In the field of modeling, the hy-
potheses that are tested are related to the model that is being designed.

A hypothesis, called “null hypothesis” H0, and its complement H1, are
stated. A risk α of rejecting the null hypothesis H0 although it is valid, is
chosen. Then the design of a hypothesis test consists in

• finding a random variable, whose distribution is known if the null hypoth-
esis is true, and a realization of which can be computed from the available
experimental data;

• computing that realization.

If the probability of the latter lying in a given interval is too low given the
distribution of the random variable, the null hypothesis has a low probability
of being true, hence it is rejected. An example of hypothesis testing is provided
in the additional material at the end of the chapter.

2.3 Static Black-Box Modeling

In the previous section, the basic elements of point estimation were explained:
a measurable quantity was considered, and modeled as a random variable, its
expectation value and variance were estimated, and a confidence interval was
computed, from the available measurements performed under identical condi-
tions. The process being the temperature of a fluid in an oven, it was assumed
that all measurements were performed with a given heater intensity, a given
external temperature, etc. Disturbances might be the intrinsic noise of the

2 Principles and Model Design Methodology 93

temperature measurement apparatus, variations of the external temperature,
exo- or endo thermal reactions that may take place in the fluid. We did not
try to model the relations between the measured temperature and the factors
that may have an influence on the latter, since those factors were assumed to
be constant.

The problem of modeling that is addressed in the present chapter is more
complex. We want to find the mathematical relations between the quantity
of interest and the factors that may have an influence on it. If such relations
are available, then one can perform predictions about the evolution of the
quantity of interest as a function of its factors: for instance, if a relation is
found between the temperature of the oven and the intensity of the electrical
current in the heating resistors, then one can predict the temperature that will
be reached if a given intensity is flown into the resistors. One of the difficulties
of modeling arises from the fact that all factors are not necessarily measured,
and possibly are not measurable: therefore, the statistical framework is still
appropriate, just as in the previous section.

2.3.1 Regression

Consider a measurable quantity yp, which depends on a set of factors that are
the components of a vector x. As in the previous section, it is convenient to
view the results of the measurements of yp as realizations of a random variable
Y , and to view the measured factors as realizations of a random vector2 X.
Therefore, an estimate of the expectation value of the random variable Y for
a given realization x of the random vector X is sought; it is denoted by
EY (x). That quantity is a function of x, called regression function (or simply
regression) of the random variable Y .

Since, as shown in the previous section, the expectation value is a quantity
that can only be estimated, but cannot be known exactly, the regression func-
tion is also unknown and can only be estimated; some of its characteristics,
such as the variance of Y for a given realization of X, or a confidence interval
on Y for a given realization of X, can be estimated. Thus, the model that
is sought is an estimation of the regression function; since neural networks
with supervised training are nonlinear parsimonious approximators as shown
in Chap. 1, they are good candidates as models of the quantity of interest if
the regression function is nonlinear.

In order to estimate the regression function from measurements of the
vector of factors (or input vector of the model, or variables of the model),
one must first make an assumption as to the regression function: the simplest
one is the linear (or affine) assumption: it is assumed that, in the domain of
variation of the variables, a model that is linear or affine with respect to the
latter can account satisfactorily for the behavior of the quantity of interest. If
2 A random vector is a vector, the components of which are random variables; each

component has its own probability distribution.

94 G. Dreyfus

that assumption does not lead to a satisfactory model, then one must resort to
a model that is nonlinear with respect to its variables, such as a polynomial,
a neural network, etc.

Whatever the assumption on the mathematical form of the model, the
problem of modeling, in the present context, is, by essence, the problem of
estimating the parameters of the most satisfactory model, given the available
data. How one can decide whether a model is satisfactory or not, is a major
methodological problem that is considered in the present chapter.

2.3.2 Introduction to the Design Methodology

In all the following, a model whose vector of variables is x and whose vector
of parameters is w will be denoted by g(x, w). If there exists a parameter
vector wp such that the model is identical to the regression function g(x, wp) ≡
EY (x), then the family of functions g(x, w) contains the regression function,
and the model g(x, w) is said to be “true”. If such is not the case, then a
model will be sought, that is as close as possible to the regression function
EY (x). Training is the algorithmic procedure whereby the parameters of such
a model are sought, for a given family of functions (for instance, for the family
of neural networks with three inputs and two hidden neurons).

Therefore, the design of a nonlinear black-box model requires the achieve-
ment of several tasks, including

• variable selection, i.e., the selection of the components of vector x in g(x,
w); that task is carried out in two steps:
1. the reduction of the dimension of the input vector;
2. the selection of relevant variables, i.e., of the variables whose influ-

ence on the quantity to be modeled is larger than the influence of the
disturbances;

• the estimation of the parameters w of the model g(x, w), i.e. the training
of a model; this is also carried out in two steps:
1. the choice of a family of functions within which the model is sought

(for instance, the family of neural networks with three hidden neurons,
the family of polynomials of degree 4, etc.);

2. the training of one or several models within the chosen family;
• the selection of the best model and the estimation of its performances;

if that best model is not satisfactory, another family of model is chosen
(for instance, the number of hidden neurons is increased or decreased, the
degree of the polynomial is increased or decreased, etc.), and the process
is iterated to the second step of the previous task.

The latter step makes machine learning modeling different from conventional
statistical modeling: in statistical modeling, the “best” model is the model
whose parameters are estimated with the best accuracy. In machine learning,
the best model is the model that generalizes best, the exact values of the
parameters being of little or no interest.

2 Principles and Model Design Methodology 95

The above three tasks are described in the next three sections, building up
a complete design methodology that is essentially applicable to any nonlinear
model, be it neural or otherwise.

2.4 Input Selection for a Static Black-Box Model

When a model is designed from measurements, the number of variables must
be as small as possible, for each additional input generates additional para-
meters. In a neural model, each input gives rise to a number of parameters
that is equal to the number of hidden neurons. Therefore, it is necessary

• to find an input representation that is as compact as possible,
• to select all relevant factors as inputs to the model, but only the relevant

ones: the presence of input variables that are not relevant (i.e., whose
contribution to the output is smaller than the contribution of disturbances)
creates useless parameters and generates input variations that are not
significant, hence will generate modeling errors.

Input selection has two different sides,

• reduction of the dimension of the representation space for the variables of
the model,

• rejection of inputs that are not relevant.

2.4.1 Reduction of the Dimension of Representation Space

This first step of the input selection process considers only the inputs, irre-
spective of the quantity to be modeled; it aims at finding a data representation
that is as compact as possible. Consider the example shown on Fig. 2.2: two
data sets, corresponding to an input vector x of dimension 3, are displayed in
that space; for the right-hand side data set, the points are essentially aligned,
which means that the intrinsic data dimension is actually 1, instead of 3.
Through an appropriate change of variables, after which all points are borne
by a single axis, a one-dimensional representation of the data can be found.
That change of variables can be obtained through principal component analy-
sis (abbreviated as PCA, see for instance [Jollife 1986]). Similarly, for the
second data set, each point can be described by its curvilinear abscissa on a
curve: here again, the dimension of the representation can be reduced through
an appropriate processing of the data, such as curvilinear component analysis
or self-organizing maps [Kohonen 2001]. Those techniques are described in
detail in Chaps. 3 and 7.

96 G. Dreyfus

Fig. 2.2. Data dimensionality reduction

2.4.2 Choice of Relevant Variables

In the present chapter, the second task of input selection, i.e., the rejection of
inputs whose influence on the output can be neglected, is described in more
detail.

When modeling a physical or chemical process, the variables that have
an influence on the quantity to be modeled are generally analyzed in detail,
from first principles, by the experts; therefore, a systematic variable selection
procedure is not necessary. By contrast, when modeling an economic, social, or
financial process, or when modeling a very complex physical system, experts
may give opinions about the relevant variables, but those are often more or
less subjective, and need rigorous testing. Then the selection process starts
with a large number of candidate variables, among which the factors that are
really relevant should be selected. The results of the selection may disagree
with current beliefs.

A large number of selection techniques were suggested (see for instance
[McQuarrie et al. 1998], and, for a recent review, [Guyon et al. 2005]).
The principles of the most popular technique are first described; then a tech-
nique that is intuitive and based on first principles is explained: the probe
feature method.

2.4.2.1 Input Selection Strategies

The most natural strategy, for the choice of a set of inputs, consists in starting
with an oversize set of candidate inputs (the model is said to be “complete”),

2 Principles and Model Design Methodology 97

in comparing the performance of the complete model with the performances
of models whose inputs are subsets of the inputs of the complete model, and in
choosing the best model with respect to an appropriate selection criterion. If
q candidate variables are available, 2q different combinations of inputs can be
generated, hence at least 2q models, whose performances should be compared:
such an approach, whose complexity increases exponentially with the number
of variables, is optimal but generally too demanding.

Two simpler, suboptimal strategies are used in practice:

• an elimination strategy (stepwise backward regression), whereby the less
significant input is eliminated from the complete model: all submodels
with q − 1 inputs are compared, and the best of them (according to an
appropriate criterion) is compared to the complete model. If the submodel
is better than the complete model, that submodel is kept and the procedure
is iterated; otherwise, the complete model is kept;

• a constructive strategy (stepwise forward regression), which starts with
the simplest model, whose output is just the mean of the measured output
values in the data set, hence is independent of the inputs: it is thus a model
with zero variables; it is compared to the q models with 1 input; the best
model is chosen, and the procedure is iterated until the addition of a new
input no longer improves the quality of the model.

For both strategies, the maximum number of models is 1 + [q(q + 1)/2]: it
grows as the square of the number of candidate variables, which is generally
acceptable for practical purposes.

2.4.2.2 Comparison Criteria

The strategies described in the previous section rely on comparisons between
models that have different numbers of inputs. Several comparison techniques
may be used. We discuss two of them: hypothesis testing, and Akaike’s infor-
mation criterion.

Hypothesis Testing. Fisher’s Test

The principle of hypothesis testing was discussed in a previous section. When
comparing a submodel to the complete model in an elimination strategy, a
model with q parameters is compared to a model with q′ < q parameters,
which can be described as testing the null hypothesis “q′ − q parameters are
equal to zero” to the alternative hypothesis. This can be done with Fisher’s
test, which is described in the additional material at the end of the chapter.

If the comparison to be performed is not between a complete model and
a submodel, i.e., if the set of parameters of a model is not included in the set
of parameters of the other, other tests may be used, such as the likelihood
ratio test [Goodwin et al. 1977] and the LDRT test (logarithm determinant
ratio test) [Leontaritis et al. 1987]. Those tests are asymptotically equivalent
to Fisher’s test [Söderström 1977].

98 G. Dreyfus

Akaike’s Information Criterion

In the above tests, the performance of the models is estimated through the
mean square error on a set of examples. It may be desirable, for models that
have similar performances, to take into account the complexity of the model,
since the simplest models are generally preferable, as discussed in Chap. 1.
Akaike’s criterion [Akaike 1973, 1974; Norton 1986] is an example of such
an approach. It consists in choosing the model for which the AIC (Akaike
Information Criterion) is smallest,

AIC = N log(MSE) + 2(q + 1),

where N is the number of examples, q is the number of variables of the model
(linear with respect to the parameters), and where MSE is the mean square
error on a data set. Thus, for a given performance as expressed by the mean
square error, the most parsimonious models are favored.

A large number of variants of that criterion are discussed in [McQuarrie
et al. 1998].

2.4.2.3 Variable Selection by the Probe Feature Method

The selection method that is described in the present section is intuitive,
efficient, and based on simple principles [Stoppiglia et al. 2003]. It proceeds
in two steps,

• ranking of the variables in order of decreasing relevance to the output,
• elimination of irrelevant variables.

We describe those two steps below.

Input Ranking through Gram-Schmidt Orthogonalization (Orthogonal
Forward Regression)

In order to select the inputs of a neural model, it is convenient to perform
input selection with a model that is linear with respect to its parameters (a
polynomial model for instance), and to use the inputs thus selected as inputs
of a neural network, because input selection is easier for a model that is linear
with respect to its parameters.

Assume that p candidate variables (called primary variables) xi(i = 1
to p), are available, after discussions with the experts of the process to be
modeled. If a nonlinear model is deemed necessary, one may consider, for
instance, a polynomial model of degree 2; such a model is linear with respect
to its parameters, its inputs being

• all combinations of 2 variables among the p candidate variables,
• the p candidate variables,
• a constant term.

2 Principles and Model Design Methodology 99

Those inputs are the secondary variables ζi (i = 1 to q = (p(p+ 1)/2) +
p+1); the set of secondary variables includes the primary variables. Then the
model can be written as

g(ζ,w) = ζTw =
q∑

i=1

wiζi,

where ζT is the transpose of vector ζ whose q components are the ζi (in the
present chapter, the superscript T stands for the transposition of a vector of
a matrix).

Assume that N measurements of each input are available, together with
the corresponding measurements of the quantity to be modeled. We define
the N -dimensional space (called observation space) in which each candidate
variable is represented by a vector whose components are the N measured
values of that input, and where, similarly, the process output is represented
by the vector whose components are the measured values of the latter. We
denote by ξi the vector whose components are the N values of the ith variable
of the polynomial model, and by yp the vector whose components are the N
measured values of the quantity of interest. If the model is linear with respect
to the parameters, the angle between the vector representing the ith variable
and the vector representing the output decreases as the correlation between
the ith variable and the output increases.

• If that angle is zero, i.e., if the output is proportional to variable i, the
latter explains completely the output.

• If that angle is π/2, i.e., if the output is fully uncorrelated to variable i,
the latter has no influence on the output.

Observation space is different from input space; the dimension of input space
is equal to the number of variables of the model, whereas the dimension of
observation space is equal to the number of measurements performed on the
process prior to modeling.

In order to rank the inputs in order of decreasing relevance, it is not
necessary to compute the angle θi between the vector that represents input i
and the vector that represents the output yp: it is more convenient to compute
the quantity cos2 θi = (((ξi)Typ)2)/((ξi)Tξi)((yp)Typ).

In order to rank the inputs in order of decreasing relevance, the following
orthogonalization procedure can be used [Chen 1989]:

• Choose the input that is most correlated to the output (with largest cos2θ).
• Project the output vector and all other candidate inputs onto the null

space of the selected input.
• Iterate in that subspace.

The procedure terminates when all candidate inputs are ranked, or when a
maximal number of inputs are ranked (for models with many inputs, the full

100 G. Dreyfus

Fig. 2.3. Input orthogonalization by the Gram-Schmidt technique

ranking may be long or become numerically unstable for inputs that have very
small correlations to the output).

The procedure is illustrated on Fig. 2.3, in a very simple case where three
observations have been performed, for a model with two inputs (primary or
secondary) ξ1 and ξ2: the three components of vector ξ1 are the three mea-
sured values of variable ζ1 during the three observations.

Assume that vector ξ2 is the most correlated to vector yp. Therefore,
ξ2 is selected, and ξ1 and yp are orthogonalized with respect to ξ2, which
yields vectors ξ11 and yp1. If additional candidate inputs were present, the
procedure would be iterated in that new subspace until completion of the
procedure. The orthogonalization can be advantageously performed with the
modified Gram-Schmidt algorithm, as described for instance in [Björck 1967].

Input Selection in the Ranked List

Once the inputs (also called variables, or features) are ranked, selection must
take place. This is important, since keeping irrelevant variables is likely to be
detrimental to the performance of the model, and deleting relevant variables
may be just as bad.

The principle of the procedure is simple: a random variable, called “probe
feature” is appended to the list of candidate variables; that variable is ranked
just as the others, and the candidate variables that are less relevant than the
probe feature are discarded.

If the model were perfect, i.e., if an infinite number of measurements were
available, that input would have no influence on the model, i.e., training would
assign parameters equal to zero to that input. Since the amount of data is
finite, such is not the case.

Of course, the rank of the random feature itself is a random variable. The
decision thus taken must be considered in a statistical framework: there exists

2 Principles and Model Design Methodology 101

a nonzero risk of keeping an irrelevant variable, or of discarding a relevant
variable. Therefore, the following procedure is used:

• Orthogonalize the output and the inputs with respect to the m− 1 inputs
selected during the previous m− 1 iterations.

• In the subspace of dimension q−m, select the input that is most correlated
to the projected output.

• Compute the probability that the rank of the probe feature be lower than
or equal to the rank of the feature under examination, i.e., the probability
that the probe feature be more relevant than the input under consider-
ation. The computation of that quantity is explained in the additional
material at the end of the chapter.

• If that probability is lower than the risk, chosen by the designer, that a
variable be kept although it is less relevant than the probe feature, keep the
feature under consideration and iterate the procedure; otherwise, discard
the feature and terminate the procedure.

Example 1

In order to illustrate that input selection method, we consider a simulated pro-
cess, described in [Lagarde 1983] and also investigated in [Stoppiglia 1998]3,
[Stoppiglia et al. 2003]. Ten variables are candidate inputs, five of which only
are relevant.

Figure. 2.4 shows the cumulative distribution function of the rank of the
probe feature. It shows that if the five most relevant inputs are selected, the
probability that the rank of the probe feature be smaller than or equal to 5
(i.e., that one of the 5 selected inputs be less relevant than the probe feature)
is smaller than 10%. If 6 inputs are selected, the probability is larger than
10%. Therefore, if the designer is willing to accept a risk of 10%, then the first
5 inputs should be selected: that is exactly the number of relevant inputs. If
the designer is willing to accept a higher risk of keeping an irrelevant input,
20% for instance, then the graph shows that the first 6 features should be kept.
Thus, as in any statistical method, a tradeoff must be performed between the
risk of designing an oversize model and the risk of designing too small a model.

Example 2

In a classification problem, synthetic data in which 2 variables only, out of
240 candidate variables, were relevant [Stoppiglia et al. 2003], and the other
238 variables were just random. The probe feature method was tested on 100
different such databases: it discovered at least 1 true variable in all cases, and
discovered both true features in 74% of the cases. A hypothesis test showed
that, when only one true variable is found, the classification performances of
the model were not significantly different from the performances of models
3 That thesis is available from URL http://www.neurones.espci.fr.

102 G. Dreyfus

Fig. 2.4. Cumulative distribution function of the probe feature

having both true variables: the second variable happens to be, by chance, just
as relevant as one of the true variables.

Example 3

In a classification problem, a data base was generated, containing 200 ex-
amples with 1,326 candidate variables, including 52 independent variables,
among which 2 relevant variables were present. With a 1% risk, the probe
feature method selected both relevant variables, and no other.

Once the inputs are selected, they can be used as inputs to a neural net-
work.

That method is directly related to Fisher’s test, which is discussed in the
additional material at the end of the chapter.

2.4.2.4 Relation Between Fisher’s Test and the Probe Feature
Method

The interested reader will find in [Stoppiglia 1998; Stoppiglia et al. 2003] the
proof of the following result: if the model under consideration at iteration k of
the Gram-Schmidt orthogonalization procedure is complete, i.e., if it contains
all relevant variables, and if it is true, i.e., if the regression function belongs
to the family of functions within which the model is sought, then the selection
procedure performed at iteration k is equivalent to a Fisher’s test between the
models examined at iterations k and k − 1.

Therefore, the probe feature method has two advantages on Fisher’s test:
first, it gives a clear and intuitive interpretation to the selection criterion;
second, it is applicable whether the complete model is available or not, and
whether the model is true or not.

2 Principles and Model Design Methodology 103

2.4.2.5 What to do in Practice?

Summary of the procedure for discarding irrelevant variables:

1. Choose the set of candidate inputs (primary and secondary variables).
2. Select the input that is most correlated to the output; in observation

space, project all other inputs, and the output, onto the null subspace of
the selected input.

3. In the null space of the m− 1 variables selected at previous iterations
(a) Select the projected input vector that is most correlated to the pro-

jected output vector.
(b) Compute the probability Hm for the probe feature to be more relevant

than one of them input selected previously, and compare it to the risk
α chosen by the designer.

(c) If Hm is smaller than the risk, project the projected output, and
all remaining candidate inputs, onto the null space of the selected
projected input and iterate to step 3.

(d) If Hm is larger than the risk, proceed to step 4.
4. Use the selected variables as inputs of a neural network and train as

indicated in the next sections.

2.4.3 Conclusion on Variable Selection

The first step in any model design procedure consists in reducing the dimen-
sion of the input space, by asking two questions.

• Is the intrinsic dimension of the input vector as small as possible, or is it
possible to find a more compact input representation, while preserving the
amount of relevant information?

• Are all candidate inputs relevant to the modeling of the quantity of
interest?

The answer to the first question is provided by principle component analy-
sis, or possibly by more complex operations such as curvilinear component
analysis or self-organizing maps.

The answer to the second question is provided by statistical methods such
as the probe feature method.

After performing input selection, the parameters of the model are esti-
mated as discussed in the next section.

2.5 Estimation of the Parameters (Training) of a Static
Model

We now turn to the problem of estimating the parameter of a model g(x, w):
find the numerical values of the components of the parameter vector w that

104 G. Dreyfus

make the model satisfactory, with respect to a criterion that will be discussed
below.

The basic principles of parameter estimation are the following:

• A set of N measurements {yk
p} (k = 1 to N) of the quantity to be mea-

sured is available, which corresponds to N values of the inputs {xk} =
{[xk

1 , . . . , x
k
q]} (k = 1 to N). That set of observations is called training set.

• Because the training set is of finite size, the exact regression function
cannot be derived; therefore, an approximation of the regression func-
tion is sought, within a family of functions that are deemed complex
enough to account for the complexity of the data. The most reason-
able approach consists in first trying to find an approximation of the
regression function in the family of linear or affine functions (i.e., per-
form linear regression). In that case, the model is sought under the form
g(x, w) = xTw =

∑q
i=1 wixi; if the result of that model is not satisfac-

tory, an approximation of the regression function must be sought in a more
complex family of functions, either linear with respect to the parameters
(polynomials, Gaussians with fixed centers and covariances, wavelets with
fixed centers and dilations), or nonlinear with respect to the parameters
(neural networks, Gaussians with adjustable centers and covariance matri-
ces, etc.). If necessary, the complexity of the family of models is increased
step by step, by increasing the degree of the polynomial, the number of
Gaussians, the number of hidden neurons, etc.

• For a given family of functions, the values of the parameters w must
be computed; this is done by minimizing a cost function that pictures
the “distance” between the predictions of the model and the measured
values. For each observation k of the training set, the residual is de-
fined as rk = yk

p − g(xk, w), where yk
p is the kth measured value of

the process output, and where xk is the kth measured value of the in-
put vector. The least squares cost function, as defined in Chap. 1, is
the sum of the squared residuals of all observations of the training set:
J(w) =

∑N
k=1(y

k
p −g(xk,w))2 = rTr, where r is the vector of residuals, of

dimension N , whose components are the residuals rk. If the modeling were
perfect, the residual vector would be equal to zero, which is the absolute
minimum of the cost function. However, since measurements have noise, it
is not desirable to find a model that is so complex that the minimum of the
cost function would be equal to zero: such a model would reproduce the
noise, in addition to reproducing the deterministic behavior of the process,
whereas the purpose of modeling is to find a model that captures the de-
terministic part of the process and filters out the noise. Since there is no
point in finding a model whose predictions would be more accurate than
the measurements from which it is designed, the model designer will not
try to find a model with zero cost function, nor even the absolute minimum
of the cost function in a given family of models: a model will be sought,

2 Principles and Model Design Methodology 105

whose prediction error is on the order of the accuracy of the measurements.
That crucial problem is discussed below, in the section devoted to model
selection.

Empirical vs. Theoretical Cost Functions

The cost function J(w) is sometimes called empirical cost function, as opposed
to the theoretical cost function

∫
(yp(x) − g(x,w))2p(x)dx; the latter is the

quantity that one would actually like to minimize, but it can obviously not
be computed.

Global Minima and Local Minima

If the model is linear with respect to its parameters, the least squares cost
function is quadratic with respect to them. If the model is not linear with
respect to the parameters (e.g., a neural network), then the least squares
cost function has several minima, one of which must be selected. This makes
the model selection problem somewhat more complicated than in the case of
models that are linear with respect to the parameters: that is the price to be
paid for taking advantage of parsimony, which is an asset of models that are
not linear with respect to their parameters.

The methods that can be used for minimizing the cost function fall into
two categories:

• nonadaptive training, also called batch training or off-line training, whereby
the cost function that is minimized takes into account all elements of the
training set (as is the case for the least squares cost function defined above);
such methods require that all elements of the training set be available when
training starts;

• adaptive training, also called on-line training, whereby the parameters of
the model are updated sequentially as a function of a partial cost related
to each example k4: Jk(w) = (yk

p − g(xk,w))2. Such techniques are useful
when new examples become available while training is already taking place.

Adaptive training can be performed even if all examples are available before
training starts, whereas a nonadaptive technique cannot be used if all exam-
ples are not available. In practice, the following strategy is frequently used:
the model is first trained nonadaptively, then it is updated by adaptive train-
ing during its operation, for instance to adapt the model to slow drifts of the
parameters of the process (due to wear, ageing, etc.).

In the following, the training of models that are linear with respect to their
parameters–the popular least squares method–will first be outlined. Then the
training (nonadaptive and adaptive) of models that are nonlinear with respect

4 The least squares cost function will also be called total cost, as opposed to the
partial cost.

106 G. Dreyfus

to their parameters, such as neural networks, will be discussed. Finally, regu-
larization techniques, which aim at avoiding overfitting when training with a
small number of examples, will be discussed.

2.5.1 Training Models that are Linear with Respect to Their
Parameters: The Least Squares Method for Linear
Regression

We assume that the measurements of the quantity to be modeled can be
viewed as realizations of a random variable Yp that is an affine function of
variables which have been selected in an earlier step: Yp = ζTwp + B, where
ζ is the vector of the variables of the model, of known dimension q,where wp

is the vector (non random but unknown) of the parameters of the model, and
where B is a random vector whose expectation value is zero. Therefore, the
regression function is linear with respect to the variables of the model

E(Yp) = ζTwp.

We want to design a model g(ζ,w) = ζTw, given a set of Nmeasurements of
the quantity of interest {yk

p , k = 1 to N} that are a set of realizations of the
random variable Yp, and given a set of corresponding measurements of the
inputs {ζk, k = 1 to N}.

2.5.1.1 Nonadaptive (Batch) Training of Models that are Linear
with Respect to Their Parameters

Because there is a wealth of textbooks on the subject (see for instance [Seber
1977; Antoniadis et al. 1992; Draper et al. 1998], no proof will be given in the
present section.

Minimizing the Least Squares Cost Function. The Normal Equations

The minimum of the following cost function is sought

J(w) =
N∑

k=1

(
yk

P − g(ζk,w)
)2
,

with g(ζ,w) = ζTw. In such a model, the number of parameters q is equal to
the number of inputs n.

The matrix of observations is the matrix Ξ whose column i (i = 1 to q)
is the vector ξi whose components are the Nmeasurements of the ith input:
therefore, it has N rows and q columns,

Ξ =

⎡
⎢⎢⎢⎢⎣
ζ11 . . . ζ1n
.
.
.
ζN
1 . . . ζN

n

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

(ζ1)T

. . .

. . .

. . .
(ζN)T

⎤
⎥⎥⎥⎥⎦ =

[
(ζ1) . . . (ζn)

]
,

2 Principles and Model Design Methodology 107

Therefore, the model can be written as g = Ξw, and the least squares
cost function becomes

J(w) =
N∑

k=1

(
yk

P − g(ζk,w)
)2

=‖ yp − Ξw ‖2= (yp − Ξw)T(yp − Ξw).

In order to find the vector of parameters for which that function is minimum,
one just has to write that the gradient of the cost function with respect to
the parameters is equal to zero, and to solve the system of equations thus
obtained. Since the cost function is quadratic with respect to the parameters,
the gradient is linear with respect to the parameters. Therefore, the system
of equations (called normal equations) is linear; its solution wLS is the least
squares estimate of the parameters of the model,

ΞTΞwLS = ΞTyp.

If the number of examples N is much larger than the number of inputs q,
matrix Ξ is generally of rank q (i.e., q rows of Ξ are linearly independent).
If Ξ has rank q, then it can be proved that [ΞT Ξ] also has rank q, hence is
invertible. In that case, the unique least squares solution is readily obtained
as

wLS = (ΞTΞ)−1ΞTyp.

By contrast if the number of experiments is too low (N < q), matrix Ξ may be
of rank smaller than q, so that the problem has an infinite umber of solutions.

For an input vector ζ, the prediction of the model is given by g(ζ,wLS) =
ζTwLS. The vector of the predictions of the model related to the training
examples is g(ζ,wLS) = ΞwLS, and the vector of residuals (modeling errors
on the training examples) is thus

r = yp − ΞwLS.

Example

The following is a very simple didactic example: a linear model must be
deigned, with a single variable x (hence two inputs: the variable x and a
constant input, equal to 1), from three observations. The three measured val-
ues of variable x are denoted by {x1, x2, x3}, and the measured values of the
quantity to be modeled by {y1

p, y
2
p, y

3
p}. Thus, with the above notations, the

input vector is ζ =
(
1
x

)
. The output vector is

yp =

⎛
⎜⎝
y1

p

y2
p

y3
p

⎞
⎟⎠ .

The vector of parameters is w =
(
w1
w2

)
.

108 G. Dreyfus

The model is of the form g(x,w) = ζTw = w1 + w2x. The observation
matrix is

Ξ =

⎛
⎝ 1 x1

1 x2

1 x3

⎞
⎠ .

The least squares solution is given by relation

(
wmc1

wmc2

)
=

⎡
⎣(1 1 1

x1 x2 x3

)⎛⎝1 x1

1 x2

1 x3

⎞
⎠
⎤
⎦−1(

1 1 1
x1 x2 x3

)⎛⎜⎝ y
1
p

y2
p

y3
p.

⎞
⎟⎠ .

Clearly, the number of available observations is much too small for a reliable
estimation of the two parameters of the model; this is just a didactic example,
for which geometrical illustrations are feasible.

Geometrical Interpretation

The least squares method has a simple geometrical interpretation, which is
sometimes useful for a better understanding of the results.

We have seen that the vector of the predictions of the model on the training
set can be written as

g(ζ,wmc) = Ξwmc = Ξ(ΞTΞ)−1ΞTyp.

In observation space (whose dimension is equal to the number of observa-
tions available for training), matrix Ξ(ΞTΞ)−1ΞT is the orthogonal projec-
tion matrix onto the subspace spanned by the columns of matrix Ξ (called
solution subspace): thus, the prediction of the model, for a training example,
is the orthogonal projection of the process output onto the solution subspace,
as shown on Fig. 2.5. Note that, among all vectors of solution subspace, the
orthogonal projection of the process output vector is the closest vector to the
process output vector itself: hence, the model obtained by the least squares
solution provides the prediction vector that is closest to the actual output
vector, given the available data.

As an illustration, consider the previous example of a model with one
variable and three observations. The observation space is of dimension 3, and
the subspace spanned by the columns of the observation matrix is of dimension
q = 2. Figure 2.6 shows the three-dimensional observation space, and the two-
dimensional solution subspace spanned by the vectors

ζ1 =

⎛
⎝ 1

1
1

⎞
⎠ and ζ2 =

⎛
⎝x1

x2

x3

⎞
⎠ .

2 Principles and Model Design Methodology 109

Fig. 2.5. Geometrical interpretation of the least squares method

z1

z2

z3

yp

g

ξ2

ξ1

Fig. 2.6. Geometrical interpretation of the least squares method: a 3-dimensional
example

2.5.1.2 Adaptive (On-Line) Training of Models that are Linear
with Respect to Their Parameters: The Least Mean
Squares Algorithm

In adaptive training, the parameters of the model are updated as a function
of each example taken separately; this is especially useful for adaptive filter-
ing or adaptive control, where the model must be adapted to the evolution
of the process to be modeled. The recursive least squares algorithms find
adaptively the least squares solution, for a model that is linear with respect
to its parameters [Ljung 1987; Haykin 1994].

Among recursive least squares algorithms, the least mean squares (LMS)
algorithm (widely used in linear adaptive filtering), also called Widrow-Hoff
algorithm [Widrow 1960]) is also used for training neural networks adaptively.
It updates the parameters as a function of the gradient of the partial cost

110 G. Dreyfus

function related to example k,

Jk(w) =
(
yk

p − g(ζk,w)
)2
,

where wk denotes the value of the vector of parameters after iteration k, i.e.,
after the parameter update related to example k. The algorithm is

wk+1 = wk + µk(yk
p − (xk+1)Twk)xk+1,

where µk is a sequence of positive numbers (for instance µk = constant or
µk = 1/(α + βk)). Note that ypk − (xk+1)Twk is the modeling error made
on the new example xk+1 when the model has the parameters computed at
iteration k. Hence, for each example, the weight update is proportional to the
modeling error on that example.

It can be shown that, under conditions that will not be described here, the
LMS algorithm converges to the minimum of the total least squares cost func-
tion. The adaptive training of linear models is described in detail in Chap. 4.

2.5.2 Nonadaptive (Batch) Training of Static Models that Are Not
Linear with Respect to Their Parameters

The present section is devoted to the batch training of models that are not
linear with respect to their parameters, such as feedforward neural networks.
Since the model g(x, w) is not linear with respect to its parameters, the
cost function J(w) =

∑N
k=1(y

k
p − g(xk,w))2 is not quadratic with respect

to the parameters. Hence the gradient of the cost function is not linear, so
that the least squares solution cannot be found as the solution of a linear
system. Therefore, the ordinary least squares techniques are useless, and one
has to resort to more elaborate minimization techniques, which update the
parameters iteratively as a function of the gradient of the cost function with
respect to the parameters.

Just as for linear models, training can be performed either adaptively
or nonadaptively. Therefore, each training iteration (or epoch) requires two
ingredients

• the computation of the gradient of the cost function,
• the updating of the parameters as a function of that gradient, in order to

get closer to a minimum of the cost function.

Those two points are discussed in the following. As a preliminary, however,
we consider the normalization of the inputs.

2.5.2.1 Input Normalization

Prior to training, the input variables must be normalized and centered: if the
inputs have very different orders of magnitude, the smallest ones will not be

2 Principles and Model Design Methodology 111

taken into account during training. Therefore, for each input vector ζi, the
mean µi and the standard deviation σi of its components must be computed,
and the new variables ζ′

i = (ζi − µi)/σi (or any similar change) must be
computed: hence the new variables are centered, and their standard deviation
is on the order of 1.

It is also advisable especially for training dynamic models (recurrent neural
networks), to center and normalize the outputs in a similar fashion.

2.5.2.2 Computation of the Gradient of the Cost Function

When the model is a feedforward neural network, the gradient of the cost
function can be computed economically with an algorithm called backpropa-
gation algorithm [Rumelhart et al. 1986; Werbos 1974] that has gained such
popularity that it is sometimes considered as a training algorithm. Actually,
backpropagation is not a training algorithm, but an ingredient in a train-
ing procedure. Furthermore, it will be shown that training can be performed
without using backpropagation.

Phrases such as backpropagation neural network (or backprop net) are too
often used as an equivalent to feedforward neural network. They are mean-
ingless for two reasons. First, computing the gradient of the cost function
without using backpropagation is perfectly feasible, and sometimes manda-
tory (see section “forward computation of the gradient of the cost function”);
second, backpropagation is also useful for training recurrent networks. Thus,
there is no relation whatsoever between the architecture of the network (feed-
forward or recurrent) and the computation of the gradient of the cost function
by backpropagation.

Computation of the Gradient of the Cost Function by Backpropagation

We consider a feedforward neural network with hidden neurons and a single
output neuron (the extension to neural networks with several output neurons
is straightforward).Neuron i computes its output yi, which is a nonlinear func-
tion of its potential vi; vi is the weighted sum of the inputs xj , in which the
value of input xj is weighted by the parameter wij ,

yi = f

⎛
⎝ ni∑

j=1

wijxij

⎞
⎠ = f(νi).

The ni inputs of neuron i may be either the outputs of other neurons, or
inputs of the network. Therefore, in all the following, xj will denote either the
output yj of neuron j or the input j of the network.

The cost function whose gradient must be computed is of the form

J(w) =
N∑

k=1

(
yk

p − g(xk,w)
)2

=
N∑

k=1

Jk(w).

112 G. Dreyfus

In order to compute its gradient, one can compute the gradient of the
partial cost function Jk(w) related to observation k, and subsequently sum
over all examples.

Backpropagation consists essentially in a repeated application of the rule of
chained derivatives. First, one notices that the partial cost function depends of
wij only through the value of the output of neuron i, which itself is a function
of the potential of neuron i only; therefore, one has(

∂Jk

∂wij

)
k

=
(
∂Jk

∂vi

)
k

(
∂vi

∂wij

)
k

= δk
i x

k
j .

where

• (∂Jk)/(∂vi)k is the value of the gradient of the partial cost function with
respect to the potential of neuron i when the inputs of the network are
the variables of example k.

• (∂vi)/(∂wij)k is the value of the partial derivative of the potential of neu-
ron i with respect to parameter wij when the inputs of the network are
the variables of example k.

• xk
j is the value of input j of neuron i when the inputs of the network are

the variables of example k.

The computation of the last two quantities is straightforward. The only
problem is the computation of δk

i on the right-hand side of the equation. These
quantities can be advantageously computed recursively from the outputs to
the inputs, as follows.

• For output neuron i,

δk
i =

(
∂Jk

∂vi

)
k

=
(
∂

∂vi

[
(yk

p − g(x,w))2
])

k

= −2g(xk,w)
(
∂g(x,w)
∂vi

)
k

.

The output g(x,w) of the model is the output yi of the output neuron;
therefore the above relation can be written as δk

i = −2g(xk,w)f ′(vk
i)

where f ′(vk
i) is the derivative of the activation function of the output

neuron when the network inputs are those of example k. Usually, for a
feedforward neural network designed for modeling, the activation function
of the output neuron is linear, so that the above relation reduces to δk

i =
−2g(xk,w).

• For hidden neuron i, the cost function depends on the potential of neuron
i only through the potentials of the neurons m that receive the value of
the output of neuron i, i.e., of all neurons that are adjacent to neuron i in
the graph of the connections of the network, and are located between that
neuron and the output:

δk
i ≡

(
∂Jk

∂vi

)
k

=
∑
m

(
∂Jk

∂vm

)
k

(
∂vm

∂vi

)
k

=
∑
m

δk
m

(
∂vm

∂vi

)
k

.

2 Principles and Model Design Methodology 113

Furthermore, vk
m =

∑
i wmix

k
i =

∑
i wmif(vk

i), therefore (∂vm)/(∂vi)k =
wmif

′(vk
i).

Finally, one gets

δk
i =

∑
m

δk
mwmif

′(vk
i) = f ′(vk

i)
∑
m

δk
mwmi.

Thus, the quantities δk
i can be computed recursively from the outputs to the

inputs of the network, hence the term backpropagation.
Once the gradients of the partial costs are computed, the gradient of the

total cost function is obtained by a simple summation.

Summary of Backpropagation

For each example k, the backpropagation algorithm for computing the gradi-
ent of the cost function requires two steps,

• A propagation phase, where the inputs corresponding to example k are
input to the network, and the potentials and outputs of all neurons are
computed,

• A backpropagation phase, where all quantities δk
i are computed.

When those quantities are available, the gradients of the partial cost functions
are computed as (∂Jk)/(∂wij)k = δk

i x
k
j , and the gradient of the total cost

function as (∂J)/(∂wij)k =
∑

k(∂Jk)/(∂wij)k.
The backpropagation algorithm can be interpreted graphically by defining

the adjoint network of the network whose parameters must be estimated. This
approach is sometimes useful; it is discussed in Chap. 4 for the modeling of
dynamic systems.

Backpropagation was discussed here in the framework of the minimization
of the least squares cost function. It can be adapted to the minimization of
alternative cost functions, such as the cross entropy cost function, used for
classification.

Forward Computation of the Gradient of the Cost Function

One of the most persistent myths in the field of neural networks is the fol-
lowing: the invention of backpropagation made the development of neural
networks possible. Actually, it is definitely possible, albeit more computation-
ally demanding, to compute the gradient of the cost function in the forward
direction. That algorithm was extensively used for the estimation of the pa-
rameters of cascaded filters, long before backpropagation.

The forward algorithm proceeds as follows:

• For a neuron m, which receives the quantity xk
j directly from input j of

the network or from neuron j,

114 G. Dreyfus

(∂ym/∂wmj)k = (∂ym/∂vm)k(∂vm/∂wmj)k = f ′(vk
j)xk

j ,

where xk
j is the value of input j of the network for example k,

• For a neuron m, which receives quantity xk
j from input j of the network,

or from neuron j, through other neurons of the network, located between
input or neuron j and neuron m,(

∂ym

∂wij

)
k

=
(
∂ym

∂vm

)
k

(
∂vm

∂wij

)
k

= f ′(vk
m)
∑

l

(
∂vm

∂yl

)
k

(
∂yl

∂wij

)
k

= f ′(vk
m)
∑

I

wml

(
∂yl

∂wij

)
k

,

where subscript l denotes all neurons that are adjacent to neuron m in the
graph of connections, between neuron j (or input j) and neuron m.

By using those relations recursively, the derivatives of the output of each
neuron with respect to the parameters can be computed, from the inputs to
the outputs of the network.

Once those derivatives are computed, the gradient of the partial cost func-
tion can be derived as(
∂Jk

∂wij

)
k

=
(

∂

∂wij

[
(yk

p − g(x,w))2
])

k

= 2(yk
p − g(xk,w))

(
∂g(x,w)
∂wij

)
k

.

Furthermore, g(x,w) is the output of a neuron of the network; therefore,
the last derivative can be computed recursively by the same procedure. The
gradient of the partial cost being computed for each example, the gradient of
the total cost function is obtained by summation over all examples.

Comparison Between Forward Computation of the Gradient of the Cost
Function and Backpropagation

The above discussion shows that backpropagation requires the evaluation of
one gradient per neuron, whereas the forward computation requires the com-
putation of one gradient per connection. Since the number of connections is
roughly the square of the number of neurons, the number of gradient evalua-
tions is larger for forward computation of the gradient than for backpropaga-
tion.

Therefore, backpropagation will be used for the evaluation of the gradient
of the cost function in the training of feedforward neural networks. For recur-
rent neural networks, however, forward computation is sometimes mandatory,
as shown in the section devoted to the training of recurrent neural networks.

Evaluation of the Gradient of the Cost Function under Constraint: The
Shared Weight Technique

When training recurrent neural networks–as discussed in the section devoted
to black-box dynamic modeling and in Chap. 4- and when training some

2 Principles and Model Design Methodology 115

feedforward neural networks for classification, a constraint must frequently be
obeyed: some parameters of the model must have equal values at the end of
training (this is known as the “shared weight” technique [Waibel et al. 1989]).
Since the weights are updated, at each epoch of training, as a function of the
gradient of the cost function, there is no reason why different weights, even if
initialized at equal values at the beginning of training, should stay equal even
after a single epoch. Therefore, a special procedure must be implemented.

We assume that, in a given network, v parameters must stay equal: w1 =
w2 = · · · = wv = w.

The corresponding component of the gradient of the cost function can be
written as

∂J

∂w
=
∂J

∂w1

∂w1

∂w
+
∂J

∂w2

∂w2

∂w
+ · · · + ∂J

∂wν

∂wν

∂w
.

Because

∂w1

∂w
=
∂w2

∂w
= · · · =

∂wν

∂w
= 1, one has

∂J

∂w
=

ν∑
i=1

∂J

∂wi
.

Thus, when a network contains shared weights, backpropagation must be per-
formed, at each epoch, in the conventional way, in order to compute the partial
derivatives of the cost function with respect to those weights; then the sum
of those partial derivatives must be computed, and that value must be as-
signed to the partial derivatives, before updating the parameters by one of
the methods discussed in the next section.

2.5.2.3 Updating the Parameters as a Function of the Gradient of
the Cost Function

In the previous section, the evaluation of the gradient of the cost function, at
a given epoch of training, was discussed. The gradient is subsequently used
in an iterative minimization algorithm. The present section examines some
popular iterative schemes for the minimization of the cost function.

Simple Gradient Descent

The simple gradient descent consists in updating the weights by the following
relation, at epoch i of training:

w(i) = w(i− 1) − µi ∇J(w(i− 1)) with µi > 0.

Thus, the descent direction, in parameter space, is opposite to the direction
of the gradient. µi is called gradient step or learning rate.

This very simple, attractive method has several shortcomings:

• If the learning rate is too small, the cost function decreases very slowly;
if the rate is too large, the cost may increase or oscillate; that situation is

116 G. Dreyfus

Fig. 2.7. Minimization of the cost function by simple gradient descent

illustrated on Fig. 2.7, which shows the iso-cost lines of the cost function
(depending on two parameters w1 and w2), and the variation of vector w
during the minimization.

• In the vicinity of a minimum of the cost function, the gradient becomes
very small, so that the variation of the parameters becomes extremely
slow; the situation is similar if the cost function has plateaus, so that,
when training becomes very slow, there is no way to tell whether that is
due to a plateau that may be very far from a minimum, or whether that
is due to the presence of a real minimum.

• If the curvature of the surface is very nonisotropic, the direction of the
gradient may be very different from the direction of the location of the
minimum; such is the case if the cost surface has long narrow valleys as
shown on Fig. 2.7.

In order to overcome the first drawback, a large number of heuristics were
suggested, with varied success rates. Line search techniques (as discussed in
the additional material at the end of the chapter) have solid foundations and
are therefore recommended.

In order to overcome the other two difficulties, second-order gradient meth-
ods must be used. Instead of updating the parameters proportionally to the
gradient of the cost function, one can make use of the information contained
in the second derivatives of the cost function. Some of those methods also
make use of a parameter µ whose optimal value can be found through line
search techniques.

The most popular second-order techniques are described below.

Second-Order Gradient Methods

All second-order methods are derived from Newton’s method, whose principle
is discussed in the present section.

The Taylor expansion of a function J(w) of a single variable w in the
vicinity of a minimum w∗ is given by

2 Principles and Model Design Methodology 117

J(w) = J(w∗) +
1
2
(w − w∗)2

(
d2J

dw2

)
w=w∗

+ O(w3)

for the gradient of the cost function is zero at the minimum. Differentiating
the above relation with respect to w gives an approximation of the gradient
of the cost function in the neighborhood of a minimum,

dJ
dw

= (w − w∗)
(

d2J

dw2

)
w=w∗

.

Therefore, if variable w is in the neighborhood of w∗, the minimum could
be reached in a single iteration if the second derivative of the cost function at
the minimum were known: w would simply be updated by an amount

∆w = − (dJ/dw)
(d2J/dw2)w=w∗

.

The same argument holds for a function of several variables, except for
the fact that the second derivative becomes the Hessian matrix H(w) of the
cost function, whose general term is (∂2J)/(∂wi∂wj): in order to reach the
minimum of the cost function in a single iteration, the weight vector should
be updated (provided the Hessian matrix is invertible) by the amount

∆w = − [H(w∗)]−1 ∇ · J(w).

Thus, by contrast to simple gradient descent, the direction of motion, in para-
meter space, is not the direction of the gradient, but a linear transformation
of the gradient.

Clearly, that relation is not applicable in practice, since vector w∗ is not
known. However, it suggests several iterative techniques that use an approxi-
mation of the Hessian matrix (or of its inverse). We discuss two of them in the
additional material at the end of the present chapter: the Broyden-Fletcher-
Goldfarb-Shanno algorithm (BFGS algorithm [Broyden 1970]) and the Leven-
berg-Marquardt algorithm ([Levenberg et al. 1944; Marquardt et al. 1963]).
Obviously, those minimization methods are by no means specific to neural
networks. Detailed descriptions are to be found in [Press et al. 1992], where
the conjugate gradient method is also discussed.

What to Do in Practice?

First of all, one should by all means refrain from using simple gradient de-
scent and its variants: their convergence times to a minimum (in number of
iterations and in net computation time) are larger than those of second order
methods by several orders of magnitude. Simple gradient should be used only
in extreme cases for very large networks (several thousands of parameters) that
may be useful in image processing with low-level picture representation, or for
very large data bases (with millions of examples). In such cases, minimization

118 G. Dreyfus

is stopped before a minimum is reached, in order to prevent overfitting. That
is a regularization method called early stopping), which will be discussed in
the section devoted to training with regularization.

A heuristics called “momentum term” is often mentioned in the literature
([Plaut et al. 1986]); it consists in adding to the gradient term −µi∇J , in
simple gradient descent, a term that is proportional to the parameter update
at the previous epoch λ[w(i− 1)−w(i− 2)]; that kind of low-pass filter may
prevent oscillations and improve convergence speed if an appropriate value of
λ is found.

The choice between BFGS and Levenberg-Marquardt is based on compu-
tation time and memory size. The BFGS method requires starting training
with simple gradient descent in order to reach the vicinity of a minimum,
then switching to BFGS to speed up the convergence; there is no principled
method for finding the most appropriate number of iterations of simple de-
scent before switching to BFGS: some trial-and error procedure is necessary.
The Levenberg-Marquardt does not have that drawback, but it becomes de-
manding in memory size for large networks (about a hundred parameters), be-
cause of the necessary matrix inversions. Therefore, the Levenberg-Marquardt
method will be preferred for “small” networks, and BFGS otherwise. If time
is available, both should be tried.

Parameter Initialization

Since the above training methods are iterative, the parameters must be as-
signed initial values prior to training. The following arguments are guidelines
for initialization:

• The parameters related to the bias inputs (constant inputs equal to 1)
must be initialized to zero, in order to ascertain that the sigmoids of the
hidden neurons are initialized around zero; then, if the inputs have been
appropriately normalized and centered as recommended earlier, the values
of the outputs of the hidden neurons will be normalized and centered too.

• Moreover, it should be ascertained that the values of the outputs of the
hidden neurons are not too close to +1 or –1 (the sigmoids are said to be
saturated). That is important because the gradient of the cost function,
which is the driving force of minimization during training, depends on the
derivatives of the activation functions of the hidden neurons with respect
to the potential. If the outputs of the hidden neurons are initially near +1
or −1, the derivatives are very small, so that training starts very slowly,
if at all.

If n is the number of inputs of the network, each hidden neuron receives
n− 1 variables xi. The nonzero parameters should be small enough that the
potential of the hidden neurons have a variance on the order of 1, in order to
prevent the sigmoids from going into saturation. Assume that the inputs xi

can be viewed as realizations of random, identically distributed, centered and

2 Principles and Model Design Methodology 119

normalized variables Xi. The initial values of the parameters should be drawn
from a centered distribution, whose covariance is unknown. The parameter
related to the bias is equal to zero; the potential ν =

∑n
i=1 wixi of each

neuron is thus the sum of n-1 random variables that are the products of
independent random variables, with zero mean, having the same distribution.
It can be shown, from the elements of statistics provided at the beginning of
the chapter, that one has

var(V) = (n− 1)var(Wi)var(Xi),

with var(Xi) = 1 since the variables have been normalized prior to training.
Thus, if the desired variance of the potential is 1, the initial values of the

parameters must be drawn from a centered distribution of variance 1/(n−1).
For instance, it may be convenient to choose a uniform distribution between
−wmax and +wmax: var(Wi) = w 2

max/3, hence wmax =
√

3/(n− 1).
The above discussion is valid for multilayer Perceptrons. For RBF or

wavelet networks, the initialization problem is more critical, because those
are localized functions; if they are initially located far from the domain of
interest, or if their extension (standard deviation or dilation) is not appro-
priate, training will generally fail. The result of the teacher-student problem,
described in the next section, depends critically on initialization for local-
ized functions. The following strategy, described in detail [Oussar et al. 2002],
should be implemented: a large library of RBFs or wavelets is created, and
a selection method, analogous to the input selection methods described in a
previous section, is applied. Training is subsequently applied to the wavelets
or RBF’s that were thus selected.

How to Test a Training Algorithm: The Teacher-Student Problem

The experience gained during years of teaching and research shows that it is
very easy to design a faulty training algorithm, or to write a faulty training
program, that nevertheless converges, sometimes very slowly, and produces a
model that is not completely ridiculous. Algorithmic or software errors may
pass unnoticed if care is not exercised. Therefore, it is important to test the
validity of an algorithm or of a program that one has written or downloaded
for free from the Web.

The following procedure, known as the teacher-student problem is con-
venient and simple to implement. A network is created (the teacher), whose
parameters are random. That network is used for generating a training set, by
using random inputs, and computing the corresponding outputs. That data
set is used for training a second network (the student), which has the same
number of inputs and of hidden neurons as the teacher network. If the train-
ing algorithm and the computer program are correct, the parameters of the
teacher network should be retrieved by the student within roundoff errors: the
mean square error is on the order of 10−30, and each parameter of the stu-
dent should be equal to a parameter of the teacher network, within roundoff

120 G. Dreyfus

errors. Otherwise, the training algorithm, or the program (or both) should be
checked for errors.

The structure of the student network is identical to that of the teacher
network within permutations of the hidden neurons. This is a consequence of
the unicity theorem [Sontag 1993].

Two Test Problems

Problem 1: A network with 8 inputs, 6 hidden neurons and one output is
generated by drawing weights uniformly in the interval [−20, +20]; a training
set and a test set of 1,500 examples each are generated with random inputs
from a uniform distribution in [−1,+1]; a network having the same structure is
trained as follows: initialization of the parameters from a uniform distribution
in [−0.6,+0.6], computation of the gradient by backpropagation, minimiza-
tion of the cost function by the Levenberg-Marquardt algorithm. The teacher
network is retrieved exactly (TMSE and VMSE on the order of 10−31) in
96% of trainings (for 48 trainings out of 50 trainings performed with different
initializations).

Problem 2: A network with 10 inputs, 5 hidden neurons and an output is
generated with weights drawn uniformly in [−1,+1]; a training set and a test
set are generated with random inputs from a normal distribution; training is
performed as in the previous example; the teacher network is retrieved in 96%
of the trainings if the training set has 400 examples; it is retrieved in 100% of
the trainings if the training set has 2,000 examples.

For the same problems, training always fails to retrieve the teacher network
if simple gradient descent or stochastic gradient (see next section) are used,
with or without momentum term.

Note that the teacher-student problem becomes difficult for some archi-
tectures because of a large number of local minima.

2.5.2.4 Summary

We summarize the procedure that must be used for training a feedforward
neural network with a given number of inputs and hidden neurons:

• Initialize the parameters with the method described above.
• Compute the gradient of the cost function by backpropagation.
• Update the parameters iteratively with an appropriate minimization algo-

rithm (simple gradient descent, BFGS, Levenberg-Marquardt, conjugate
gradient, etc.).

• If a prescribed maximum number of epochs is reached, or if the variation
of the module of the vector of parameters is smaller than a given thresh-
old (the weights no longer change significantly), or if the module of the
gradient is smaller than a given threshold (a minimum has been reached),
terminate the procedure; otherwise, start a new epoch by iterating to the
gradient evaluation.

2 Principles and Model Design Methodology 121

2.5.3 Adaptive (On-Line) Training of Models that Are Nonlinear
with Respect to Their Parameters

In the previous sections, we discussed methods that optimize the least squares
cost function by using all the training data available at the beginning of
training: the gradient of the total cost can be computed as the sum of the
gradients of the partial costs.

In adaptive (on-line) training, parameters are updated by using the gradi-
ent of the partial cost for each example, so that training can start even before
all training data is available. Such a procedure is often useful to update a
model after an initial nonadaptive training. Those methods are discussed in
detail in Chap. 4.

A variant of adaptive training algorithms consists in updating the para-
meters after reception of a block of data (“block training”): then the partial
cost is not related to a single example but to a block of examples.

The most popular adaptive training technique is called stochastic gradient,
whereby the parameter updates are proportional to the gradient of the partial
cost,

wk+1 = wk − µk∇Jk(wk),

where wk is the value of the vector of parameters after iteration k, i.e., after
updating the parameters from example k. Note that the LMS algorithm, dis-
cussed in the framework of the training of linear models, is a particular case
of stochastic gradient.

Some empirical results suggest that the stochastic gradient method avoids
local minima more efficiently than simple gradient descent in batch learning.

An alternative technique, stemming from adaptive filtering, can be used
for neural network training: the extended Kalman filter [Puskorius et al. 1994].
It is more efficient than stochastic gradient in terms of convergence speed, but
the number of operations per iteration is higher. That approach is described
in detail in Chap. 4.

2.5.4 Training with Regularization

As stated in Chap. 1, the objective of black-box modeling is the design of a
model that is complex enough to learn the training data, but does not exhibit
overfitting, i.e., does not adjust to noise. Two categories of strategies can be
used.

• Passive techniques: several models, of different complexities, are trained
as indicated in the previous section, and a selection between those models
is performed after training, in order to discard models that exhibit over-
fitting; that is done by cross-validation or statistical tests as explained in
the next section.

122 G. Dreyfus

• Active techniques: training is performed in order to avoid designing mod-
els that exhibit overfitting, by limiting the magnitude of the parameters;
regularization methods [Tikhonov et al. 1977; Poggio et al. 1985] are im-
plemented, as discussed in the present section.

The latter techniques are of special importance when large networks need
be designed; such is often the case in classification for visual pattern recogni-
tion, when a low-level representation is used (see the introduction to classifica-
tion in Chap. 1). In such situations, overfitting cannot be avoided by limiting
the number of parameters, since the number of inputs is a lower bound to
the number of parameters: the only way of avoiding overfitting consists in
limiting the amplitude of the parameters; it is even shown in [Bartlett et al.
1997] that, if a large network is designed, and if the training algorithms finds
a small mean square error with parameters of small amplitudes, than the gen-
eralization performances depend on the norm of the vector of parameters, and
is independent of the number of parameters.

There are essentially two families of regularization methods:

• Early stopping consists in stopping training before a minimum of the cost
function is reached.

• Penalty methods consist in adding a penalization term in the cost function
in order to favor regular models. The cost function has the form: J ′ =
J + αΩ, where J is, for instance, the least squares cost function, and
Ω is a function of the weights. The most popular penalty function is:
Ω =

∑
i ‖ wi ‖2. The method involving that penalty function is called

weight decay.

Both techniques will be discussed below.

2.5.4.1 Early Stopping

Principle

As usual, training consists in minimizing iteratively a cost function, the least
squares cost function for instance, whose value is computed on a training set.
Regularization takes place through the stopping criterion: training is termi-
nated before a minimum of the cost function is reached, so that the model
does not fit the training data as well as it could, given the number of pa-
rameters that are available to him; thus overfitting is limited. The difficulty
that arises is: when to stop training? The most popular method consists in
monitoring the variation of the standard prediction error on a validation set,
and in terminating training when the prediction error starts increasing.

Example

We discuss an academic example from [Stricker 2000]. It is a two-class classi-
fication problem; as explained in Chap. 1, the output of the classifier should

2 Principles and Model Design Methodology 123

Fig. 2.8. The examples of class A (circles) are realizations of a random variable
whose distribution is the product of two functions of x and y respectively; the
distribution along x is the sum of two Gaussians with centers −2 and 0 respectively,
and standard deviation 0.5, and the distribution along y is a Gaussian centered at
0, with standard deviation 0.5. The examples of class B (crosses) are drawn from a
distribution that is the product of two Gaussian functions of x and y respectively; the
distribution along x is centered at –1, with standard deviation 1, and the distribution
along y is centered at 1, with standard deviation 0.5

be equal to 1 for all elements of one class (class A), and to 0 for all elements of
the other class (class B). After training, the output is an estimate of the prob-
ability of the unknown pattern belonging to class A. In the present problem,
feature space is of dimension 2, and the examples are drawn from overlapping
distributions, as shown on Fig. 2.8.

A classifier must provide a graded response in the zone of overlapping
between the classes, since the boundary between classes cannot be known
with certainty given the limited amount of data. In the present academic
example, the prior distributions are known, so that the posterior probability
of the classes can be computed from Bayes formula (see Fig. 2.9),

Fig. 2.9. Posterior probability computed by Bayes formula

124 G. Dreyfus

Fig. 2.10. Posterior probability computed by a neural network with 2 hidden neu-
rons

PR(A | x) =
pX(x | A)Pr(A)

pX(x | A) + pX(x | B)
,

where x is the vector [x y]T, pX(x | A) is the distribution of the random vector
X for the patterns of class A, and Pr(A) is the prior probability of class A.
The estimation provided by the neural network from the examples shown on
Fig. 2.8 should be as similar as possible to the surface shown on Fig. 2.9.

Training is performed with a set of 500 examples. A network with 2 hidden
neurons provides the probability estimate shown on Fig. 2.10; the estimate
provided by a neural network with 10 hidden neurons is shown on Fig. 2.11.

One observes that the result obtained with the network having 2 hidden
neurons is very close to the theoretical probability surface computed from
Bayes formula, whereas the surface provided with hidden neurons is almost
binary: in the zone where classes overlap, a very small variation of one of the
features generates a very sharp variation of the probability estimates. The 10-
hidden neuron network is over-specialized on the examples that are located
near the overlapping zone: it exhibits overfitting.

Fig. 2.11. Posterior probability computed by a neural network with 10 hidden
neurons

2 Principles and Model Design Methodology 125

Fig. 2.12. Classification error on the validation set during training

The variation of the mean square error on a validation set of 300 examples,
as a function of the number of epochs, is shown on Fig. 2.12, for various num-
bers of hidden neurons. Clearly, deciding when training should be terminated
is difficult, because the error arises essentially from the examples that are
close to the boundary zone, which corresponds to a relatively small number
of points.

Therefore, that method is not very convenient, especially for classification.
Therefore, regularization methods that involve penalizing large parameters are
often preferred; it was proved [Sjöberg 1995] that early stopping is actually
equivalent to the introduction of a penalty term in the cost function.

2.5.4.2 Regularization by Weight Decay

Large values of the parameters, for instance of the parameters of the inputs
of hidden neurons, generate sharp variations of the sigmoids of the hidden
neurons: that is illustrated on Fig. 2.13, which shows function y = tanh(wx),
for three different values of w. The output of the network, which is a linear
combination of the outputs of the hidden neurons, is therefore apt to exhibit
sharp variations as well. Regular outputs therefore require that the sigmoids be
in the vicinity of their linear zones, hence that the parameters not be too large.
We consider again the classification example of the previous section: Fig. 2.14
shows the variation of the module of the vector of parameters, during training,
for different architectures (2, 5, 7 and 10 hidden neurons). One observes that
the norm of the vector of parameters increases sharply during training, except
for the architecture with two hidden neurons: therefore, the sharp variations
of the output surface after training the network with ten hidden neurons, as
shown on Fig. 2.11, is not surprising.

Regularization by weight decay prevents the parameters from increasing
excessively, by minimizing, during training, a cost function J ′ that is the sum
of the least squares cost function J (or of any other cost function, such as
cross entropy described in Chaps 1 and 6) and of a regularization term, pro-
portional to the squared norm of the vector of parameters: J∗=J+ α

2

∑q
i=1 w

2
i ,

126 G. Dreyfus

-3 -2 -1 0 1 2 3

w = 10w = 1w = 0.1

y
=

 ta
nh

(w
 x

)

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 2.13. Function y = tanh(wx) for 3 values of w

Fig. 2.14. Norm of the vector of parameters during training

where q is the number of parameters of the classifier, and α is a hyperpara-
meter whose value must be found by performing a tradeoff: if α is too large,
the minimization decreases the values of the parameters irrespective of the
modeling error; by contrast, if α is too small, the regularization term has no
impact on training, hence overfitting may occur.

The operation of the method is very simple: the gradient of J is com-
puted by backpropagation, and the contribution of the regularization term is
subsequently added,

∇J∗ = ∇J + αw.

Nevertheless, it should be noticed that the parameters of the network have
different effects:

2 Principles and Model Design Methodology 127

• The parameters of the connections between the variables of the model
and the inputs of the hidden neurons control the slope of the sigmoids of
hidden neurons.

• The parameters of the connections between the constant input (bias) and
the inputs of the hidden neurons generate a horizontal shift of the sigmoids
of hidden neurons.

• The parameters of the connections between hidden neurons and the inputs
of the output neurons control the influence of each hidden neuron on the
outputs.

• The parameters of the connections between the bias and the output neu-
rons generate a vertical shift of the output of the network.

Therefore, it is natural to use different hyperparameters for those different
types of parameters [McKay 1992]. Then the cost function becomes

J∗ = J +
α0

2

∑
ω∈W0

w2
i +

α1

2

∑
ω∈W1

w2
i +

α2

2

∑
ω∈W2

w2
i ,

where W0 is the set of parameters between the bias and the hidden neurons,
whereW1 is the set of parameters between the inputs and the hidden neurons,
and W2 is the set of parameters of the inputs of the output neuron (including
the bias of the output neuron). Therefore, the values of the three parameters
α1, α2, α3 must be found. A principled statistical method was proposed in
[McKay 1992], but it relies on numerous assumptions and requires demanding
computations. In practice, the values of the hyperparameters are not very
critical; a heuristic approach, consisting in performing different trainings with
different hyperparameters, is frequently sufficient.

We illustrate this discussion on an example of a real application, from
[Stricker 2000].

Example

The application is a filtering task, as outlined in Chap. 1. In a corpus of texts
(press releases of the Agence France Presse), the texts that are relevant to
a given topic should be selected automatically. It is essentially a two-class
problem: a press release is either relevant or irrelevant. A training set of 1,400
relevant press releases and 8,000 irrelevant ones is available. The performance
measure is a quantity F that is a function of the precision of the classifier
(the ratio of the number of documents that are really relevant to the number
of documents that are considered as relevant by the classifier) and its recall
(the ratio of the number of documents that are considered as relevant by the
classifier to the number of relevant documents present in the database). The
better the performance, the larger the value of F .

A linear classifier is used, i.e., a neural network with zero hidden neuron
and an output neuron with sigmoid activation function. Since there are no
hidden units, the number of parameters cannot be decreased without chang-
ing the data representation. Since it is not desired to change the latter (which

128 G. Dreyfus

Fig. 2.15. Training without regularization: variation of the performance of a linear
classifier as a function of the numbers of relevant and irrelevant documents in the
training set

is discussed in detail in Chap. 1), regularization methods are mandatory to
avoid overfitting. Figure 2.15 shows the variation of F on a test base, without
regularization, as a function of the numbers of relevant and irrelevant docu-
ments present in the database. Clearly, the performance decreases, and the
norm of the vector of parameters increases, when the number of examples of
the training set decreases.

With the same training and test sets, training was performed with early
stopping. The results (Fig. 2.17) show that the performance is improved for
small numbers of examples in the training set, but it is decreased when numer-
ous examples are available (F < 0.9), which is evidence that early stopping
does not make the best of the available data. The norm of the vector of para-
meters (not shown) remains very small.

Weight decay was also implemented on the same example, with two hy-
perparameters: one for the bias (αb = 0.001) and one for the connections
between the inputs and the output neuron (α1 = 1). The results are shown on
Fig. 2.18; the performance is improved when the number of examples is small,
and, by contrast with early stopping, it remains satisfactory for large numbers
of examples. As in the previous case, the norm of the vector of parameters
stays small.

Models whose outputs are not smooth enough can also be avoided, by
penalizing large values of the derivatives of the output with respect to the
inputs [Bishop 1993].

2 Principles and Model Design Methodology 129

Fig. 2.16. Training without regularization: variation of the norm of the vector of
parameters as a function of the numbers of relevant and irrelevant documents in the
training set

Fig. 2.17. Training with regularization by early stopping: variation of the perfor-
mance of a linear classifier as a function of the numbers of relevant and irrelevant
documents in the training set

130 G. Dreyfus

Fig. 2.18. Training with regularization by weight decay: variation of the perfor-
mance as a function of the number of relevant and irrelevant documents in the
training set

2.5.5 Conclusion on the Training of Static Models

We have made the following distinctions:

• The training of models that are linear with respect to their parameters vs.
the training of models that are not linear with respect to their parameters.

• Adaptive (on-line) training vs. nonadaptive (batch) training.
• Training without regularization vs. training with regularization.

We have shown

• that the training of models that are linear with respect to their parame-
ters (such as polynomials) can be performed easily with the traditional
least-squares methods, whereas the training of models that are nonlinear
with respect to their parameters (such as neural networks) requires more
complex methods that, however, are efficient and clearly understood: that
is the price that must be paid for taking advantage of parsimony;

• that training is generally performed nonadaptatively, with efficient second-
order minimization algorithms; if necessary, the model can be updated by
adaptive methods in order to take into account slow drifts of the charac-
teristics of the process;

• that overfitting can be avoided by limiting the amplitude of the parame-
ters of the model with a regularization method during training; that is
especially necessary when the number of training examples is small.

The next section discusses the problem of overfitting in a more general frame-
work: model selection.

2 Principles and Model Design Methodology 131

2.6 Model Selection

After variable selection and training, model selection is the third important
element of a model design methodology. We assume that several candidate
models have been trained, one of which must be chosen. The model should
be complex enough to find the deterministic relations between the quantity
to be modeled and the factors that have a significant influence on it, yet not
be overly complex in order to be free from overfitting. In other words, the
selected model should embody the best tradeoff between learning capacity
and generalization capacity: if the model learns too well, it fits the noise,
hence generalizes poorly. That tradeoff has been formalized under the term
bias-variance dilemma [Geman et al. 1992].

From a theoretical point of view, the model that is sought is the model for
which the theoretical cost function

∫
(yp(x) − g(x,w))2PX(x)dx is minimal.

That quantity may be split into two terms:

• the bias5, which expresses the average, over all possible training sets (with
all possible realizations of the random variables that model the noise)
of the squared difference between the predictions of the model and the
regression function;

• the variance, which expresses the sensitivity of the model to the training
set (with its own realization of the noise).

Because the above theoretical cost function cannot be computed, the empirical
least squares cost function is minimized during training, as discussed in the
previous section.

Thus, a very complex model, with a large number of adjustable parameters,
may have a very low bias, i.e., may have the ability of fitting the data whatever
the noise present in the latter, but it is apt to have a very large variance,
i.e., to depend strongly on the specific realization of the noise present in
the training set. Conversely, a very simple model, with a small number of
adjustable parameters, may be insensitive to the noise present in the training
data, but turn out to be unable to approximate the regression function.

Figure 2.19 illustrates the behavior of two models g1(x) and g2(x), with
the same complexity (linear models), which have too large a bias and too
small a variance: the predictions of the two models, obtained with different
training sets, are almost identical, but they are very different from the regres-
sion function. Conversely, Fig. 2.20 illustrates the behaviors of two models
that have a low bias (they are close to the regression) but they have a large
variance since their predictions depend on the training set.

The next two illustrations, and several elements of the present section, are
excerpts from [Monari 1999].

5 This should not be mistaken with the constant input of a model, unfortunately
also called bias.

132 G. Dreyfus

Fig. 2.19. Two models that have a large bias and a small variance

Fig. 2.20. Two models that have a small bias and a large variance

Unfortunately, bias and variance, just as the theoretical cost function,
cannot be computed. Thus, the solution to the difficult problem of model
selection is a tradeoff between two quantities that cannot be computed. The
difficulty of the problem increases as the size of the training set decreases
[Gallinari 1999].

The models, trained from the same training set, among which a choice is
to be made, differ by two main characteristics:

• their complexity: the complexity of a model can be defined as the number
of its elements (the number of monomials in a polynomial model, the
number of hidden neurons in a neural network), hence the number of its
adjustable parameters;

• the vector of parameters for a given complexity: for models that are non-
linear with respect to the parameters, the cost function has several local
minima; therefore, for a given complexity and a given training set, differ-
ent trainings (with different initial values of the parameters) may provide
different models corresponding to different minima of the cost function.
Conversely, for models that are linear with respect to their parameters,
the least squares cost function has a single minimum: for a given com-
plexity and a given training set, there is a single vector of parameters for
which the cost function is minimum.

Hence, for a model that is not linear with respect to its parameters, the model
selection problem is actually twofold:

2 Principles and Model Design Methodology 133

• Among models that have the same complexity, find the model that achieves
the best bias-variance tradeoff.

• Among the best models that have different complexities, find the model
that achieves the best bias-variance tradeoff.

All techniques that will be discussed below aim at (i) discarding models that
are obviously prone to overfitting, and (ii) at estimating the generalization
error (or theoretical cost function) in order to find the model that has the
smallest generalization error. As a preliminary step, we show how to discard
models that are prone to overfitting; subsequent sections will discuss two
model selection techniques,

• a global method, which consists in estimating the generalization error:
cross-validation;

• a local method whereby the influence of each example on the model is es-
timated: the local overfitting control via leverages (LOCL) method, which
is based on the estimation of leverages and confidence intervals for the
predictions of the model.

Finally, the above approaches will be combined into a complete model selection
methodology for the selection of nonlinear models.

2.6.1 Preliminary Step: Discarding Overfitted Model by
Computing the Rank of the Jacobian Matrix

2.6.1.1 Introduction

In the section devoted to the estimation of the parameters of a model that
is linear with respect to its parameters, we have defined the matrix of obser-
vations Ξ; each column of that matrix has N elements, which are the values
of a given variable for each example. Therefore, for a model with n variables,
the matrix of observations is (N , n). For a model that is not linear with re-
spect to its parameters, having a vector of q parameters wLS, the equivalent
of the observation matrix is the Jacobian matrix Z(N, q); each column zi of
that matrix has N elements, which are the values of the partial derivatives
of the output with respect to a given parameter: zi = (∂g(x, w)/∂wi)w=wIS

.
It can easily be checked that, for a model that is linear with respect to its
parameters, the Jacobian matrix Z is identical to the observation matrix Ξ.

Thus, each column of the Jacobian matrix expresses the effect of the vari-
ation of a parameter on the output of the model. If the Jacobian matrix does
not have full rank (i.e., if its rank is not equal to q), it can be concluded that
the effect, on the model output, of two parameters (or more) are not indepen-
dent. Therefore, there exist under-determined parameters in the model: the
latter has too many parameters, hence its variance is certainly too large. Such
a model should be discarded. Moreover, rank deficiency has an adverse effect
on training [Saarinen et al. 1993] [Zhou et al. 1998].

134 G. Dreyfus

2.6.1.2 Computation of the Jacobian Matrix

In the section devoted to the training of a model that is not linear with respect
to its parameters, it was shown that the gradient of the cost function can easily
be computed by backpropagation,(

∂J

∂wi

)
=
(
∂(yp − g(x,w))2

∂wi

)
= −2(yp − g(x,w))

∂g(x,w)
∂wi

.

If the modeling error yp − g(x,w) is equal to 1/2, then the gradient of the
cost function is equal to the gradient of the output. Thus, the Jacobian matrix
can easily be computed by backpropagating a modeling error equal to 1/2. The
extra computation time incurred by the computation of the Jacobian matrix
is marginal, since it is performed once per training, whereas backpropagation
is performed at each training epoch.

2.6.1.3 Computation of the Rank of the Jacobian Matrix

The rank of the matrix can be computed by a variety of methods [Press et al.
1992]. They will not be described here. In the section devoted to the effect of
withdrawing an example from the training set, we describe a technique that
is convenient in the framework of model selection.

2.6.2 A Global Approach to Model Selection: Cross-Validation
and Leave-One-Out

2.6.2.1 Introduction

As discussed in a previous section, model selection should be based on the
comparison of the generalization errors of the candidate models, but the gener-
alization error, just as the regression function, cannot be computed: therefore,
it must be estimated.

The most natural idea consists in performing model selection on the basis
of the mean square error on the training set (TMSE),

ET =

√√√√ 1
NT

NT∑
k=1

(rk)2,

where rk is the modeling error on example k: rk = yk
p − g(xk,w), and where

the summation is performed over all NT examples of the training set. That is a
bad idea: as discussed previously, the modeling error on the training set can be
made as small as desired by just adding hidden neurons, which is detrimental
to generalization. Thus, the value of ET is not a suitable selection criterion.

2 Principles and Model Design Methodology 135

2.6.2.2 Cross-Validation

Cross-validation is a technique for estimating the generalization error of a
model, from data that are not used for parameter estimation (training) [Stone
1974]. First, the set of available data is split into D disjoint subsets. Then,
the following steps are performed, for a family of functions having the same
complexity (e.g., neural networks with a given number of hidden neurons):

• iteration i, to be performed D times: build a training set with D-1 subsets
of the available data; perform several trainings, with different initial values
of the parameters; for each model, compute the mean square error (VMSE)
on the validation set made of the NV remaining examples,

EV =

√√√√ 1
NV

NV∑
k=1

(rk)2;

store in memory the smallest VMSE thus computed EV i;
• compute the cross-validation score from the D quantities EV i at each of

the D iterations √√√√ 1
D

D∑
i=1

(EV i)2.

That score is an estimate of the generalization error for the family of functions
thus investigated.

For instance, ifD = 5 is chosen (that is a typical value; the process is called
5-fold cross-validation), 5 different partitions of the database are constructed;
for each partition, 80% of the data are on the training set and 20% in the
validation set. As discussed above, the cross-validation score is the square
root of the average of the VMSE’s computed on each partition. That average
must be performed because 20% of the database may not be a statistically
significant sample of the distribution of all possible examples. In a heuristic
fashion, the procedure may be simplified by performing a single partition of
the database, choosing a validation set that is as close as possible to the
distribution of the available examples. To that effect, one can estimate the
Kullback-Leibler divergence ([Kullback et al. 1951; Kullback 1959] between
two probability distributions p1 et p2,

D(p1, p2) =
∫ +∞

−∞
p1(x)ln

(
p1(x)
p2(x)

)
.

Because the expression is not symmetrical, a more satisfactory distance is
defined as

∆ =
1
2

[D(p1, p2) +D(p2, p1)] .

Several random partitions of the database are performed, and the partition for
which the distance between the validation set and the training set is smallest

136 G. Dreyfus

is retained. That single partition can satisfactorily be used for estimating the
generalization error. Since drawing randomly a large number of partitions
and computing the Kullback-Leibler divergence is much faster than training a
model, the computation time is divided roughly by a factor of 5 as compared to
complete 5-fold cross-validation. Making the assumption that the distributions
are two Gaussians p1(µ1, σ1) and p2(µ2, σ2), the Kullbak-Leibler distance can
be written as

∆(p1, p2) =
(σ2

1 − σ2
1) + (µ1 − µ2)2

4σ2
1σ

2
1

(σ2
1 + σ2

1).

The proof of that relation is given in the additional material at the end of
the chapter.

That heuristic procedure is very useful for fast prototyping of an initial
model, which can be further refined by conventional cross-validation or by the
virtual leave-one-out technique that is explained below.

2.6.2.3 Model Selection by Cross-Validation

Model design starts from simplest models (linear model), and gradually in-
creases the complexity (for neural models, by increasing the number of hidden
neurons).

One might also increase the number of hidden layers; for modeling prob-
lems, that can be considered in a second step of the design: if a satisfactory
model has been found with one hidden layer, one can, time permitting, try
to improve the performance by increasing the number of hidden layers, while
decreasing the number of neurons per layer. That procedure sometimes leads
to some improvement, usually a marginal one. Conversely, if no satisfactory
model has been found with one hidden layer, increasing the number of layers
will not do any good.

For each family of models, a cross-validation score is computed as explained
above. When overfitting occurs, the cross-validation score increases when the
complexity of the model increases. Therefore, the procedure is terminated
when the score starts increasing. The model that has the smallest VMSE is
selected.

2.6.2.4 Leave-One-Out

The estimation of the generalization error by leave-one-out is a special case
of cross-validation, for which D = N : At iteration k, example k is withdrawn
from the training set, trainings are performed (with different initial values
of the parameters) with the N − 1 examples of the training set; for each
model, the prediction error on the withdrawn example k is computed, and the
smallest prediction error on the withdrawn example, denoted r(−k)

k is stored.
The leave-one-out score

2 Principles and Model Design Methodology 137

Et =

√√√√ 1
N

N∑
k=1

(
r
(−k)
k

)2

is computed. As in the case of cross-validation, models of increasing complexi-
ties are designed, until the leave-one-out score starts increasing with increasing
complexity.

The main drawback of the leave-one-out technique is that it is computa-
tionally very demanding, but it can be shown that the leave-one-out score is
an unbiased estimator of the generalization error [Vapnik 1995].

In the next section, we discuss a slightly different technique, whose com-
putation time is roughly the computation time of leave-one-out divided by a
factor N(the number of examples). It is based on the fact that the withdrawal
of an example from the training set should not lead to a very different model,
so that a model that is locally linear in parameter space, in the neighborhood
of the minimum of the cost function, can be designed; therefore, powerful
results from the theory of linear regression can be taken advantage of.

2.6.3 Local Least Squares: Effect of Withdrawing an Example
from the Training Set, and Virtual Leave-One-Out

In the present section, we show that the effect of withdrawing an example from
the training set on a nonlinear model can be predicted. Specifically, we prove
that the modeling error made by the model on the withdrawn example can
be accurately predicted without actually withdrawing the example (virtual
leave-one-out), and that a confidence interval on the predictions of the model
can be estimated. Finally, we show that the influence of an observation on
the model can be summarized with a single parameter: the leverage of the
observation.

2.6.3.1 Local Approximation of the Least Squares Method

Consider a model g(x,w∗). A first-order Taylor expansion of the model, in
parameter space, in the neighborhood of w∗, can be written as

g(x,w) ∼= g(x,w∗) + Z(w − w∗),

where g is the vector of the N predictions of the model, and where Z is
the Jacobian matrix of the model, as defined above. That model is linear
with respect to its parameters, and matrix Z is equivalent to the matrix of
observations.

In order to derive a local approximation, to first order in w − w∗, of the
gradient of the least-squares cost function, a second-order approximation of
the cost function, hence a second-order approximation of the model output,

138 G. Dreyfus

must be used ([Monari et al. 2000] the same result is derived in [Seber et
al. 1989], albeit with an incorrect proof). The following approximation of the
least-squares solution wLS is found:

wLS
∼= w∗ + (ZTZ)−1ZT[yp − g(x,w∗)].

That result is approximate for a nonlinear model, but is exact for a lin-
ear model: in the case of a linear model, Z is the matrix of observations
Ξ, and g(x,w∗) = Ξw∗. Then one gets wLS

∼= w∗ + (ΞTΞ)−1ΞTyp −
(ΞTΞ)−1ΞTΞw∗) = (ΞTΞ)−1ΞTyp, which is the exact result, as shown in
the section devoted to the training of linear models.

2.6.3.2 The Effect of Withdrawing an Example on the Model

The results of the previous section are useful for estimating the effect, on the
predictions of the model, of withdrawing an example from the training set.
As defined in the section on leave-one-out, we use the superscript (−k) for all
quantities related to a model that was designed after withdrawing example k
from the training set; the quantities that have no superscript are related to
models whose training was performed with all available data.

The Effect of Withdrawing an Example on the Prediction: Virtual
Leave-One-Out

Assuming that the withdrawal of example k has a small effect on the least-
squares solution, the relation that was derived in the previous section can be
used to compute the vector of the parameters of the model that is trained
with the training set deprived of example k, as a function of the vector of the
parameters of the model trained with the whole data set,

w
(−k)
LS

∼= wLS − (ZTZ)
−1

zk rk
1 − hkk

,

where zk is the vector whose components are the kth column of the Jacobian
matrix Z, rk is the predication error (or residual) on example k when the latter
belongs to the training set

rk = ypk − f(xk,wLS),

and where hkk = zkT (ZTZ)−1zk is the leverage of example k [Lawrance
1995]. Geometrically, hkk is the kth component of the projection, onto solution
subspace, of the unit vector borne by axis k. Since these quantities are the
diagonal elements of an orthogonal projection matrix, they obey the following
relations:

N∑
k=1

hkk = q, 0 < hkk < 1.

2 Principles and Model Design Methodology 139

An efficient procedure for computing the leverages hkk is discussed in the
additional material at the end of the chapter.

In the section devoted to the rank of the Jacobian matrix, we have shown
that it is useful to know whether that matrix has full rank. It can be checked
as follows: the leverages are computed according to the procedure that is
described in the additional material. That procedure can be performed ac-
curately even if Z does not have full rank, and the above two relations are
checked. If they are not obeyed, then matrix Z does not have full rank. There-
fore, the model must be discarded.

A particularly useful result for the estimation of the generalization error
is the following: the prediction error r(−k)

k on example k, when the latter is
withdrawn from the training set, can be estimated in a straightforward fashion
from the prediction error rk on example k when the latter is in the training
set

r
(−k)
k

∼= rk
1 − hkk

.

Here again, the result is exact in the case of a linear model (see for instance
[Antoniadis et al. 1992]), and it is approximate for a nonlinear model.

A similar approach is discussed in [Hansen 1996] for models trained with
regularization.

As an illustration, we describe an academic example: a set of 50 train-
ing examples is generated by adding a Gaussian noise, with zero mean and
variance 10−2, to the function sinx/x. Figure 2.21 shows the training set and
the output of a model with two hidden neurons. A conventional leave-one-
out procedure, as described in a previous section, was carried out, providing
the values of the quantities r(−k)

k (vertical axis of Fig. 2.22), and the previ-
ous relation was used, providing the values on the horizontal axis. All points
are nicely aligned on the bisector, thereby showing that the approximation is
quite accurate. Therefore, the virtual leave-one-out score Ep,

EP =

√√√√ 1
N

N∑
k=1

(
rk

1 − hkk

)2

,

Fig. 2.21. Training set, output and confidence interval on the output, for a model
with two hidden neurons

140 G. Dreyfus

Fig. 2.22. Accuracy of residual estimation in virtual leave-one-out

can be used in a very computationally economic fashion in lieu of the leave-
one-out score Et defined above,

Et =

√√√√ 1
N

N∑
k=1

(r(−k)
k)2,

insofar as Ep is a good estimate of the generalization error. It is an essential
ingredient in the model selection procedure that will be described in the next
section: it provides an estimate of the generalization error, with a computation
time that is N times as small as conventional leave-one-out, since training is
performed once instead of being performed Ntimes with N − 1 examples.

Effect of Withdrawal of an Example on the Confidence Interval on the
Prediction

In [Seber et al. 1989], an approximate confidence interval is derived for a
nonlinear model, with confidence 1 − α,

E(Yp | x) ∈ g(x,wLS) ± tN−q
α s

√
zT(ZTZ)−1z,

where tN−q
α is the value of a Student variable withN−q degrees of freedom and

a confidence level 1−α, and s is an estimate of the variance of the prediction
error of the model. Figure 2.22 shows the confidence interval computed from
that relation, at all points of the interval of interest.

One can define many different confidence intervals for nonlinear models
[Tibshirani 1996]. They can be either computed analytically, or estimated
with resampling methods, which are described in Chap. 3. The confidence
intervals that are used here are convenient because their expression involves
the quantities that allow the computation of the virtual leave-one-out score.

For observation k of the training set, that confidence interval can be writ-
ten as

E(Yp | xk) ∈ g(xk,wLS) ± tN−q
α s

√
zkT(ZTZ)−1zk

= g(xk,wLS) ± tN−q
α s

√
hkk.

2 Principles and Model Design Methodology 141

Thus, the confidence intervals on the prediction of the model involve the same
quantities hkk (leverages) as the prediction of the effect of the withdrawal of
an example from the training set. That is not surprising since both groups of
relations arise from a Taylor expansion of the output of the model.

The confidence interval on the prediction of an example that is with-
drawn from the training set can also be estimated: given an input vector
xk, the approximate confidence interval on the prediction of that example is
given by

E(−k)(Yp | xk) ∈ g(xk,wLS) ± tN−q−1
α s(−k)

√
hkk

1 − hkk

[Seber et al. 1989]. In general, s(−k) can be approximated by s.

Interpretation of the Leverages

The leverages are the diagonal elements of an orthogonal projection matrix:
they sum to the dimension of that matrix. In the present case, the orthogonal
projection is onto the solution subspace, hence its dimension is equal to the
number of parameters of the model: therefore, the sum of the leverages is
equal to the number of the degrees of freedom of the model. That property
can also be expressed as follows: the leverage of example k is the fraction of
the degrees of freedom used for fitting example k [Monari et al. 2000, 2002].

Some specific cases are of interest:

• If all leverages are equal, they are equal to q/N : a fraction q/N of the
parameters of the model is devoted to each example, and all examples
have the same influence on the model: such a model should not exhibit
overfitting since it is not “focused” on any example. That property can be
used with advantage for model selection, as shown below.

• If a leverage is equal to zero, the model does not devote any degree of
freedom to example k. That has a simple geometric interpretation: hkk is
the k−th component of the projection, onto solution subspace, of the unit
vector borne by axis k in observation space; if that axis is orthogonal to
the solution subspace, example k does not contribute to the model output,
which lies in solution subspace (see Fig. 2.5); therefore, it has no influence
on the parameters of the model. Whether that example is in the training
set or has been withdrawn from it, the prediction of that example has the
same error, as evidenced by relation: r(−k)

k = rk/(1−hkk). The confidence
interval on that prediction is zero; the prediction of the model is certainly
equal to the expectation value of the quantity of interest.

The fact that the confidence interval is equal to zero does not mean that the
prediction of the corresponding point is exact. It is not contradictory with
the fact that the prediction error rk is not zero: the prediction error is the
difference between the measured value and the predicted value: it contains both
the modeling error (difference between the predicted value and the unknown

142 G. Dreyfus

expectation value) and the noise (difference between the measured value and
its unknown expectation value). If the model is perfect, the prediction error
is due to the noise only. Therefore, one can obtain a leverage equal to zero if
and only if the family of functions within which the model is sought contains
the regression function.

If a leverage is very close to 1, the unit vector borne by axis k is very close
to solution subspace; hence that example is almost perfectly learnt, and it
has a large influence on the parameters of the model. The prediction error on
that example is almost zero when the example is in the training set and it is
very large when the example is withdrawn from the training set. Therefore, the
model is overfitted to that example. The confidence interval on that example
is very small when the example is in the training set, and very large when it
is not in the training set.

The above interpretation of the leverages is central to the model selection
methodology that is discussed in the next section.

2.6.4 Model Selection Methodology by Combination of the Local
and Global Approaches

Assume that inputs have been selected as described in the sections devoted
to input selection. We try to design the best model given the available data.

We discuss here a constructive procedure, whereby the complexity of the
model is increased gradually until overfitting occurs. For didactic purposes,
we split the procedure into two steps:

For a family of functions of given complexity, nonlinear with respect to
its parameters (for instance, neural networks with a given number of hidden
neurons), several trainings are performed with all available data, with dif-
ferent parameters initializations. Thus, several models are obtained; models
whose Jacobian matrices do not have full rank are discarded. The next section,
explains how to make a choice between the models that were not discarded
because of the rank of their Jacobian matrices.

For a model that is linear with respect to its parameters, that step is
very simple since the cost function has a single minimum: a single training is
performed with all available data.

The previous step having been performed with families of models of in-
creasing complexity, the best model is selected as explained in the section
entitled “Selection of the best architecture”.

2.6.4.1 Model Selection Within a Family of Models of Given
Complexity: Global Criteria

For a given model complexity, several trainings are performed, and, at the end
of each training, the rank of the Jacobian matrix of the model thus designed
is computed. If that matrix does not have full rank, the model is discarded.

2 Principles and Model Design Methodology 143

The fact that the global minimum of the cost function, for a family of
models of given complexity, gives rise to a model whose Jacobian matrix
does not have full rank does not mean that all models that have the same
complexity must be discarded: a local minimum may give rise to a perfectly
valid model whereas the global minimum gives rise to an overfitted model.
That strategy is somewhat similar to early stopping: selecting a model that
is not a global minimum of the cost function may be a form of regularization.

In order to perform a selection among the surviving models, the virtual
leave-one-out technique is used. The leave-one-out score was defined above as

EP =

√√√√ 1
N

N∑
k=1

(
rk

1 − hkk

)2

,

which is an unbiased estimate of the generalization error.
That score must be compared to the mean square error on the training set

(TMSE),

ET =

√√√√ 1
NT

NT∑
k=1

(rk)2.

It should be remembered that, in virtual leave-one-out, training is performed
with all available data; hence the same quantity N is involved in Ep and ET in
the present case.

Generalization Error and TMSE

Since the leverages are positive and smaller than 1, Ep is larger than the
TMSE; very overfitted models have numerous leverages on the order of 1,
hence have a generalization error that is much larger than the TMSE.

The Case of Large Training Sets

If all leverages are equal to q/N , one has: Ep = N/(N − q)ET ·Ep and ET are
equal in the limit of very large training sets for a model without overfitting,
which makes sense since the difference between TMSE and the generalization
error stems from the fact that the number of elements in training set is finite:
if an infinite amount of data were available, the regression would be known
exactly.

As an illustration, consider a neural network with four hidden neu-
rons, whose training was performed, with different initializations, with the
Levenberg-Marquardt algorithm, with the training set shown on Fig. 2.21.
Five hundred different trainings were performed. Figure 2.23 shows the re-
sults, with the following conventions:

144 G. Dreyfus

Fig. 2.23. Virtual leave-one-out scores for 500 different models

• For models whose Jacobian matrix does not have full rank, each model is
shown as a point in a plane: the horizontal axis is the TMSE, and the verti-
cal axis is the virtual leave-one-out score (estimation of the generalization
error of the model); note that the vertical scale is logarithmic.

• For models whose Jacobian matrix does not have full rank, the correspond-
ing points are shown below the graph, on a horizontal scale that shows the
TMSE’s of those models.

Note that

• The Jacobian matrix of the model with smallest TMSE does not have full
rank: that model must be discarded.

• In the present example, 70% of the minima found do not have a Jacobian
matrix with full rank.

• The estimate of the generalization error varies by several orders of mag-
nitude, which requires a logarithmic scale for Ep. Models with very high
virtual leave-one-out scores are very “specialized” on one or several points,
with leverages very close to 1.

Figure 2.24 shows the outputs of the model that has the smallest value
of ET and of the model that has the smallest value of Ep (shown as a gray
circle and a gray triangle respectively on Fig. 2.23). Note that the model
with minimal ET gives a prediction that is less smooth than the model with
minimal Ep. Therefore, the latter is more satisfactory; however, it is the most
satisfactory model among models that have four hidden neurons. In order to
finalize the selection, that model must be compared to the best models found
for different complexities

Figure 2.25 shows the virtual leave-one-out scores and the TMSE’s of
the best networks, found by the above procedure, for complexities increasing
from 0 hidden neuron (linear model) to 5 hidden neurons. As additional in-
formation, the graph also displays the standard deviation of noise (which, in
general, would be unknown in a real application). As expected, the TMSE

2 Principles and Model Design Methodology 145

Fig. 2.24. Outputs of two models with 4 hidden neurons: the model that has the
minimal TMSE, and the model that has the minimal virtual leave-one-out score

Fig. 2.25. Variation of the TMSE and of the virtual leave-one-out score as a function
of the number of hidden neurons

decreases when the number of hidden neurons increases, whereas the virtual
leave-one-out score seems to go through a minimum and subsequently to in-
crease. However, the choice between 2, 3 and 4 hidden neurons is not perfectly
clear, since the leave-one-out scores are not very different. The next section is
devoted to the problem of the choice of the most appropriate architecture.

For more than three hidden neurons, the TMSE becomes smaller than the
standard deviation of the noise; one can rightly conclude that models with
more than three hidden neurons tend to be overfitted. However, that is not a
practical selection criterion, since, in real applications, the standard deviation
of the noise is generally unknown.

2.6.4.2 Selection of the Best Architecture: Local Criteria (LOCL
Method)

In the previous section, a global criterion—the virtual leave-one-out score—
was used for finding the model that is least prone to overfitting, among models
having the same complexity. We have also shown that that criterion may not
be sufficient for making a choice between models of different complexities. In
such a case, it is advantageous to use the local overfitting control via leverages
method (LOCL), based on the values of the leverages [Monari 1999; Monari
et al. 2002].

146 G. Dreyfus

Fig. 2.26. Model output and confidence intervals; model with 2 hidden neurons,
and model with four hidden neurons

When we defined the leverages, we showed that a model that is equally
influenced by all examples is unlikely to exhibit overfitting. In addition, we
showed that, in such a case, all leverages are equal to q/N . Therefore, for
models of different complexities having virtual leave-one-out scores of the same
order of magnitude, the model whose leverage distribution is most peaked
around q/N will be favored, except in cases where it is known from prior
knowledge that it is important that the model fit very accurately some specific
observations.

Figure 2.26 shows, for the example that was discussed previously, the pre-
dictions of the best models selected with 2 and 4 hidden neurons. The same
graphs display the 95% confidence intervals for the predictions of those models.
For the two hidden neuron model, the confidence interval is roughly constant
over the whole training domain, whereas, for the four-hidden neuron model,
the confidence interval is large in [8, 12]; the output of that model oscillates,
and it is not clear whether that oscillation is significant, or is just a con-
sequence of fitting the model to the local realization of noise. The leverage
distribution, shown on Fig. 2.27, reveals that the latter are more scattered for
the model with 4 hidden neurons (gray), than for the model with two hidden
neurons (black).

It is convenient to associate the quantity µ, defined as,

µ =
1
N

N∑
k=1

√
N

q
hkk,

to the leverage distribution. That quantity has the following properties:

• It is always smaller than 1.
• It is equal to 1 if and only if all leverages are equal to q/N .

2 Principles and Model Design Methodology 147

Fig. 2.27. Histogram of leverages for the best model with 2-hidden neurons and for
the best model with 4 hidden neurons

Thus, µ is a normalized quantity that may characterize of the leverage distri-
bution: the closer µ to 1, the more peaked the leverage distribution around
q/N . Thus, among models of different complexities having virtual leave-one-
out scores on the same order of magnitude, the model whose µ is closest to 1
will be favored.

We illustrate the usefulness of µ on the previous example. A test set of
NG = 100 examples was generated. The generalization error of the candidate
models can be estimated by computing the mean square difference between
the expectation value of the quantity to be modeled (which, in the present
academic example, is known to be sinx/x) and the prediction of the model,

EG =

√√√√ 1
NG

NG∑
k=1

(EY (xk) − g(xk,y))2.

Figure 2.28 shows the quantities Ep, ET , EG and µ, as a function of model
complexity. µ goes through a maximum that is very close to 1 for two hidden
neurons; that is the architecture for which the generalization error EG is
minimum. Thus, µ is a suitable criterion for a choice between models whose
virtual leave-one-out scores do not allow a safe discrimination.

Fig. 2.28. TMSE, virtual leave-one-out score, generalization error and µ, as a func-
tion of the number of hidden neurons

148 G. Dreyfus

2.6.4.3 What to Do in Practice?

We summarize here the model selection procedure that has been discussed.
For a given complexity (for neural networks, models with a given number

of hidden neurons),

• Perform trainings, with all available data, with different parameter initial-
izations.

• Compute the rank of the Jacobian matrix of the models thus generated,
and discard the models whose Jacobian matrix does not have full rank.

• For each surviving model, compute its virtual leave-one-out score and its
parameter µ.

For models of increasing complexity: when the leave-one-out scores become
too large or the parameters µ too small, terminate the procedure and select
the model. It is convenient to represent each candidate model in the Ep − µ
plane, as shown, for the previous example, on Fig. 2.29. The model should be
selected within the outlined area; the choice within that area depends on the
designer’s strategy:

• If the training set cannot be expanded, the model with the largest µ should
be selected among the models that have the smallest Ep.

• If the training set can be expanded through further measurements, then
one should select a slightly overfitted model, and perform further experi-
ments in the areas where examples have large leverages (or large confidence
intervals); in that case, select the model with the smallest virtual leave-
one-out score Ep, even though it may not have the largest µ.

2.6.4.4 Experimental Planning

After designing a model along the guidelines described in the previous sec-
tions, it may be necessary to expand the database from which the model was

Fig. 2.29. Assessment of the quality of a model in the Ep − µ. plane

2 Principles and Model Design Methodology 149

designed. Then one should perform experimental planning, taking advantage
of the results obtained during the design of the model, with emphasis on
confidence intervals: the presence of large confidence intervals in an area of
input space may be due to an inappropriate number of examples in that area.
Therefore, measurements should be performed in the areas of input space
where confidence intervals are too large.

2.6.4.5 Conclusion

The design of a good model requires a systematic, principled methodology. We
have shown that such a methodology exists, which can be applied for designing
essentially any nonlinear model, including, but not limited to, neural networks.
Its principles are the following:

• Neural networks are parsimonious approximators, that can be advanta-
geously used for models having more than two variables; for models with
less than two variables, models that are linear with respect to their para-
meters, such as polynomials, give excellent results and are trained more
easily.

• Whether the model is linear or nonlinear with respect to its parameters,
the first step consists in an analysis of the input data, in order to find a
data representation that is as compact as possible, and in a subsequent
input selection in order to select only the candidate variables that are
really relevant.

• A model architecture is subsequently chosen (number of monomials for a
polynomial model, number of hidden neurons for a neural model, etc.),
and the parameters of the model are estimated (training). Those tasks
are performed from the simplest architecture (linear model), gradually
increasing the complexity of the models.

• For each architecture the best model is selected, and the “best” models
of the different structures are mutually compared, until the final choice is
performed.

2.7 Dynamic Black-Box Modeling

The previous section discussed the design of static models, i.e., models that
implement a static input-output mapping. Those models are very useful for
modeling a process in a steady state, or for finding relations between time-
independent data.

In the present section, we discuss dynamic models, whose inputs and out-
puts are related through differential equations, or, for discrete-time systems,
by recurrent equations or difference equations. In the present chapter, we con-
sider only discrete-time systems because the vast majority of real applications
of neural networks involve computers or digital integrated circuits, which are

150 G. Dreyfus

sampled systems: the quantities of interest are measured at discrete times,
which are integer multiples of a sampling period T .

For simplicity, the quantity T will be omitted in equations below: the value
of a variable x at time kT , k positive integer, will be denoted as x(k).

Chapter 4 offers a general view of nonlinear dynamic systems. In this chap-
ter, the presentation will be restricted to a cursory introduction to continuous-
state stochastic modeling, which derives directly from the previous discussions
on static modeling. The elements of dynamic modeling that are presented here
are sufficient for understanding the methodology of semiphysical modeling,
which is very important for industrial applications.

2.7.1 State-Space Representation and Input-Output
Representation

Dynamic modeling has several specific features, which are not relevant to
static modeling.

The first specific feature is the existence of several representations for the
dynamic model of a given process (see for instance [Kuo 1995] for an introduc-
tion to dynamic systems, and [Kuo 1992] for an introduction to discrete-time
systems). In the following, the modeling of a single-output process is dis-
cussed; its extension to multiple-output systems is relatively straightforward.
A model is said to be a state-space representation if its equations are in the
form:{

x(k) = f(x(k − 1),u(k − 1), b1(k − 1)) state equation
y(k) = g(x(k), b2(k)) observation equation or output equation,

where vector x(k) is the state vector (whose components are the state vari-
ables), vector u(k) is the control input vector, b1(k) and b2(k) are the vectors
of disturbances, and scalar y(k) is the model output. f is a nonlinear vector
function, and g is a nonlinear scalar function. The dimension of the state vec-
tor (i.e., the number of state variables) is called the “order” of the model. The
state variables may be either measured or not measured.

For a single-input process with control input u(k), the components of vec-
tor u(k) may be u(k) and past values of the input control signal: u(k) =
[u(k), u(k − 1), . . . , u(k −m)]T.

The disturbances have an influence either on the output, or on the state
variables, or on both. As opposed to control inputs, they are not measured.
Therefore, they cannot be inputs of the model, although they do have an
influence on the quantity to be measured. For instance, for an oven, the current
intensity that flows in the heating resistor is a control input; the measurement
noise of the thermocouple is a disturbance that can be modeled, if necessary,
as a sequence of realizations of random variables.

The output may be one of the state variables (an example will be described
in the section “What to do in practice?”.

2 Principles and Model Design Methodology 151

Thus, the designer of a state-space model seeks approximations of func-
tions f and g, through training from sequences of inputs, of outputs and
possibly of state variables if the latter are measured.

A model is in input-output representation if its equations are in the form

y(k) = h(y(k − 1), . . . , y(k − n),u(k − 1), . . . ,u(k −m), b(k − 1), . . . ,
b(k − p)),

where h is a nonlinear function, n is the order of the model, m and p are
two positive integer constants, u(k) is the vector of input control signals, b(k)
is the vector of disturbances. Input-output representations are special forms
of state-space representations, where the components of the state vector are
[y(k − 1), y(k − 2), . . . y(k − n)].

In linear modeling, state-space representations and input-output represen-
tations are equivalent: one chooses the representation that is most convenient
in view of the purpose that the model is intended to serve. By contrast, in
nonlinear modeling, state-space representations are more general and more
parsimonious than input-output models [Levin et al. 1993], as will be illus-
trated below on a real application; however, the design of a state-space model
may be slightly more difficult than that of an input-output model, since two
functions f and g must be approximated, while input-output models require
the approximation of a single function h.

Once a choice has been made between state-space and input-output rep-
resentation, an assumption must be made as to the influence of noise on the
process. That is a basic fact that is often overlooked in the neural network
literature, whereas it is common knowledge in linear dynamic modeling, as is
shown in Chap. 4. In the present chapter, we show that the assumption on
the noise has a deep influence on the training algorithm that must be used, on
the structure of the model that must be implemented, and on its subsequent
mode of operation. In the next section, the main assumptions on noise are
discussed, and the resulting constraints on the training of the model, on its
structure and on its operation are explained.

2.7.2 Assumptions on Noise and Their Consequences on the
Structure, the Training and the Operation of the Model

In the present section, various assumptions on the influence of noise on the
process are considered. We first discuss the assumptions and their conse-
quences on the structure, training and operation of input-output models, then
the consequences of the assumptions on state-space models.

2.7.2.1 Input-Output Representations

State Noise Assumption (Input-Output Representation)

We assume that the model can be appropriately described, in the desired
validity domain, by a representation of the form

yp(k) = ψ(yp(k − 1), . . . , yp(k − n),u(k − 1), . . . ,u(k −m)) + b(k),

152 G. Dreyfus

Fig. 2.30. Input-output representation, state noise assumption

where yp(k) is the measured process output. We assume that additive noise oc-
curs at the process output (see Fig. 2.30), and that, at time k, noise influences
the present output, and also the n past outputs. In nonlinear modeling, that
assumption is known as NARX (Nonlinear Auto-regressive with eXogenous
inputs) (see also Chap. 4) or equation error (see for instance [Ljung 1987;
Goodwin et al. 1984]), or series-parallel [Narendra et al. 1989] in adaptive
modeling.

Instead of the term assumption, the term postulated model is sometimes
used in the statistics literature.

We assume that noise acts on the output, not only directly at time k,
but also through the outputs at the n previous time steps; since the model
that is sought should be such that the modeling error at time k is equal to
noise at the same time step, it should take into account the process outputs
at the n previous time steps. Consider the feedforward neural network shown
on Fig. 2.31; it obeys the equation

g(k) = ϕNN (yp(k − 1), . . . , yp(k − n),u(k − 1), . . . ,u(k −m),w),

where w is a vector of parameters, and where function ϕNN is performed by
the feedforward neural network. Assume that the neural network ϕNN has
been trained, i.e., that a vector of parameters w has been found such that
the network computes exactly function ϕ. Then relation yp(k) − g(k) = b(k)
holds for all k. Thus, the model is such that the modeling error is equal to
the noise of the process: it is the ideal model, since it captures all that is
deterministic in the representation and does not model noise. Note that the
inputs of the model are the control inputs and the measured process outputs:
the ideal model (also called “predictor”) is not trained as a recurrent neural
network.

2 Principles and Model Design Methodology 153

Fig. 2.31. The ideal model for an input-output representation with state noise
assumption

Training of the Model: Directed (Teacher-Forced) Training

Since the ideal model is a feedforward neural network, it is trained with the
techniques that were discussed in the section devoted to the training of static
models. Training is called directed or teacher-forcing.

Operation of the Model

Since the inputs of the predictor are (in addition to control inputs) the mea-
sured outputs of the process, the output of the model can be computed only
one step ahead of time; the predictor is said to be a “one-step ahead predic-
tor”. If the model is intended for use as a simulator, i.e., for predicting the
process output on a time horizon that exceeds one sampling period, the inputs
are necessarily the previous outputs of the predictor: the latter is no longer
operated in optimal conditions.

Output Noise Assumption (Input-Output Representation)

Now we make a different assumption, namely, that the process can be appro-
priately described, in the desired validity domain, by a representation of the
form

xp(k) = ϕ(xp(k − 1), . . . , xp(k − n), u(k − 1), . . . , u(k −m))
yp(k) = xp(k) + b(k).

Therefore, the present assumption considers that the noise is additive on the
output (Fig. 2.32). Thus, it appears outside the loop, hence it has an influence
on the output at the same time step only. That assumption is known , in linear
adaptive modeling, as “output error” or “parallel” [Narendra et al. 1989]. Since
the output at time k is a function of the noise at the same time step only, the
model that is sought should not involve the past process outputs. Therefore,
we consider a recurrent neural network, shown on Fig. 2.33, which obeys the
equation

g(k) = ϕNN (g(k − 1), . . . , g(k − n), u(k − 1), . . . , u(k −m),w),

154 G. Dreyfus

Fig. 2.32. Input-output representation, output noise assumption

Fig. 2.33. The ideal model for an input-output representation with output noise
assumption

where w is a vector of parameters, and where function ϕNN is computed by
a feedforward neural network. Assume that the network has been trained so
that ϕNN is exactly equal to ϕ. Moreover, assume that the prediction error
is equal to the noise at the first n time steps: yp(k)− g(k) = b(k) for k = 0 to
n−1. Then one has yp(k)−g(k) = b(k) for all k. Thus, the prediction error of
the model is equal to the noise: the model is therefore ideal, since it accounts
for all that is deterministic in the representation, and does not model noise.

If the initial condition is not obeyed, but nevertheless ϕRN = ϕ, and if
the model is stable irrespective of the initial conditions, the modeling error
vanishes as k increases.

Note that, in that case, the ideal model is recurrent.

2 Principles and Model Design Methodology 155

Training of the Model: Semidirected Training

The training of a recurrent model can be cast into the framework of the
training of a feedforward neural network, as will be shown below in the section
devoted the training of recurrent neural networks (“semidirected training”).

Operation of the Model

As opposed to the previous case, the model can be operated as a simulator in
optimal conditions. Of course, it can also serve as a one-step-ahead predictor.

2.7.2.2 Illustration

Before carrying on with the main assumptions, we illustrate the importance
of the proper choice of the training procedure depending on the influence of
the noise on the process. This illustrative example is excerpted from [Nerrand
1992] and [Nerrand et al. 1994].

Modeling a Process with Output Noise

We consider a computer-simulated process that obeys the following equations:

xp(k) =
[
1 − T

a+ b xp(k − 1)

]
xp(k − 1) +

[
T
c+ d xp(k − 1)
a+ b xp(k − 1)

]
u(k − 1),

yp(k) = xp(k) + b(k),

with a = −0.139, b = 1.2, c = 5.633, d = −0.326, and sampling period T = 0.1
sec. b(k) is a white noise with maximum amplitude 0.5. Thus it is a process
with output noise. Figure 2.34 shows the response of the simulated process to
a pseudo-random sequence of steps.

When modeling a real process, the influence of noise is generally not
known. Therefore, several possible assumptions are made; trainings are per-
formed according to each assumption, and the results are compared. We use
that approach in the present academic example.

Fig. 2.34. Response of the simulated process to a pseudo-random step sequence

156 G. Dreyfus

Fig. 2.35. Modeling error for a process with output noise, after training according
to the output noise assumption

Output Noise Assumption

We first consider the (correct) assumption that noise can be modeled as out-
put noise. Therefore, the ideal predictor is recurrent. Figure 2.35 shows the
modeling error after training a recurrent neural network with 5 hidden neu-
rons. The modeling error is white noise with amplitude 0.5: by making the
right assumption and using the appropriate structure and training (recurrent
neural network and semidirected training), the modeling error is equal to the
noise, which is the best achievable result.

State Noise Assumption

Now, we consider the (wrong) assumption that the noise is state noise. Accord-
ing to that assumption, a feedforward neural network with 5 hidden neurons is
trained. Figure 2.36 shows the resulting modeling error: its amplitude is larger
than 0.5. As expected, the result is not as satisfactory as the result obtained
with the output noise assumption, since we made the wrong assumption. It
should be clearly understood that this is not a “technical” problem (too few
or too many hidden neurons, inefficient optimization algorithm, inappropriate
training set, etc.), but a basic problem: even with the best training algorithm,

Fig. 2.36. Modeling error for a process with output noise, after training according
to the state noise assumption

2 Principles and Model Design Methodology 157

a perfectly appropriate architecture, and an arbitrarily large training set, one
cannot obtain a modeling error equal to the noise if an inappropriate noise
assumption is made.

Modeling a Process with State Noise

We consider a computer-simulated process, which obeys the following equa-
tion:

yp(k) =
[
1 − T

a+ b yp(k − 1)

]
yp(k − 1)

+
[
T
c+ d yp(k − 1)
a+ b yp(k − 1)

]
u(k − 1) + b(k).

It is thus a process with state noise, whose deterministic part is the same
as above: it will be modeled by a feedforward neural network with 5 hidden
neurons, as above. Again we make the two noise assumptions (output noise
and state noise).

Output Noise Assumption

We first make the (wrong) assumption that the noise is output noise. The ideal
model would be a recurrent one. Figure 2.37 shows the modeling error after
training a recurrent neural network with 5 hidden neurons. The modeling
error is clearly not white noise: the modeling error contains deterministic
information that the training of the model was unable to capture. Here again,
the failure is not due to a technical problem (too few or too many neurons,
inefficient training algorithm, inappropriate training data): it is due to the
fact that the model has a wrong structure, following the wrong assumption
that was made at the beginning.

Fig. 2.37. Modeling error for a process with state noise after training according to
the output noise assumption

158 G. Dreyfus

Fig. 2.38. Modeling error for a process with state noise after training according to
the state noise assumption

State Noise Assumption

Finally, we make the (right) assumption that the noise is state noise. The ideal
model is a feedforward neural network. Figure 2.38 shows that the modeling
error is white noise with amplitude 0.5: the ideal predictor was thus obtained.

2.7.2.3 Output Noise and State Noise Assumption (Input-Output
Representation)

Now we make the assumption that the noise has an influence both on the
output and on the state; the process can be appropriately described by a
model of the form

xp(k) = ϕ(xp(k − 1), . . . , xp(k − n), u(k − 1), . . . , u(k −m), b(k − 1), . . . ,
b(k − p))

yp(k) = xp(k) + b(k),

as shown on Fig. 2.39. That assumption is sometimes called NARMAX (non-
linear autoregressive with moving average and exogenous inputs).

In the present case, the model must take into account both the past values
of the process output and the past values of the model output.

2.7.2.4 Summary on the Structure, Training, and Operation of
Dynamic Input-Output Models

Table 2.1 summarizes the noise assumptions and their consequences on the
raining of input-output models.

2.7.2.5 State-Space Representations

We consider here the same assumptions as in the previous section, but we
discuss their consequences on state-space models.

2 Principles and Model Design Methodology 159

Fig. 2.39. NARMAX assumption

Fig. 2.40. NARMAX model

Table 2.1. Noise assumptions and their consequences on the training of input-
output models

Usual name in Equivalent in Recommended
Assumption nonlinear linear modeling Training operation

State noise ARX Directed One-step-ahead
predictor

Output noise Output error Semidirected Simulator

State noise and NARMAX ARMAX Semidirected One-step-ahead
output noise predictor

160 G. Dreyfus

u(k)

yp(k)

xp1(k)

ϕ

q -1

ψ

b(k)

Σ

xp2(k)

xp2(k-1)

xp1(k-1)

Fig. 2.41. State-space representation, output noise assumption

Output Noise Assumption (State-Space Representation)

In the previous sections, we discussed several noise assumptions, and derived
ideal models in each case, under the form of input-output representations. We
now discuss the same assumptions, but we seek models that are in state-space
representations, which are more general and parsimonious than input-output
representations.

We first make the output noise assumption, whereby the process can be
appropriately described by equations of the form

x(k) = ϕ(x(k − 1),u(k − 1))
y(k) = ψ(x(k)) + b(k),

as shown on Fig. 2.41 for a second-order model.
Because noise is present in the observation equation only, it has no in-

fluence on the dynamics of the model. From arguments similar to those we
developed for input-output representations, the ideal model is recurrent, as
shown on Fig. 2.42:

x(k) = ϕNN (x(k − 1)),u(k − 1))
y(k) = ψNN (x(k)),

where ϕNN is exactly function ϕ et ψNN is exactly function ψ.

State Noise Assumption

We now assume that the process can be appropriately described by equations

x(k) = ϕ (x (k − 1) ,u (k − 1) , b (k − 1)) ,
y(k) = ψ (x(k)) .

2 Principles and Model Design Methodology 161

Fig. 2.42. Ideal model for a state-space representation with the “output noise”
assumption

Then, from an argument that is similar to those developed for input-output
models, the inputs of the ideal model should be, in addition to the control
inputs u, the state variables of the process. Two situations must be considered:

• Those variables are measured: then they can be considered as outputs, so
that the problem is amenable to the design of an input-output model: the
ideal model is a feedforward one, which can essentially be operated as a
one-step-ahead predictor.

• Those variables are not measured: then the ideal model cannot be con-
structed; in such a case, one should either use an input-output representa-
tion (although not completely general), or design a feedback model (al-
though non optimal).

Output Noise and State Noise (State-Space Representation)

Finally, we assume that the process can be appropriately described by the
equations

x(k) = ϕ (x (k − 1) ,u (k − 1) , b1 (k − 1)) ,
y(k) = ψ (x(k)) .

Here again, two cases must be considered:

• If the state variables are measured, they can be regarded as outputs, so that
the problem is amenable to the design of an input-output representation,
as described previously.

162 G. Dreyfus

• If the state variables are not measured, the ideal model should involve both
the state and the measured process output; therefore, it is in the form

x(k) = ϕ (x (k − 1) ,u (k − 1) , yp (k − 1))
y(k) = ψ (x(k)) .

2.7.2.6 Summary on the Structure, Training, and Operation of
Dynamic State-Space Models

Table 2.2 summarizes the noise assumptions and their consequences on the
training of state-space dynamic models.

Table 2.2. Consequences of noise assumptions on the training of dynamic state-
space models

Recommended
Assumption Training operation

State noise Directed One-step-ahead
(measured state) predictor

State noise Semidirected Simulator
(state not measured) (non optimal)

Output noise Semidirected Simulator

State noise and output Semidirected One-step-ahead
noise predictor

2.7.3 Nonadaptive Training of Dynamic Models in Canonical Form

The previous sections have shown how to choose the structure of the dynamic
model, as a function of the noise that is likely to be present in the process, so
that one can hope to approach the ideal model, i.e., the model that accounts
for the deterministic part of the process. We assume that appropriate sequence
of inputs and outputs are available: we consider nonadaptive (batch) training.

In all the following, we assume that the model whose training must be
performed is in canonical form, i.e., it is under the form

z (k + 1) = Φ (z(k),u(k))
y (k + 1) = Ψ (z(k),u(k)) ,

where z(k) is the minimal set of ν variables, which allows the computation of
the model at time k+1 knowing the state and the inputs of the model at time
k, and where the vector functions Φ and Ψ are feedforward neural networks.

2 Principles and Model Design Methodology 163

ν is the order of the model. Therefore, that form is the minimal state-space
representation; if the state vector is in the form

z(k) = [y(k), y(k − 1), . . . , y(k − ν + 1)]T,

the canonical form is an input-output model: the output is the only quantity
involved in the state vector.

Two cases must be considered:

• A black-box model is sought: then a model should be designed under the
canonical form, since there is no reason to choose another form;

• A semiphysical model is sought, taking into account prior knowledge: the
latter may lead to a model that is not in canonical form; then, prior to
training, the predictor should be put in canonical form, which is always
possible. The section entitled “Casting dynamic models into a canonical
form” is devoted to that problem.

In the following sections, the model is always assumed to be in its canonical
form.

We first discuss the training of feedforward models, then the training of
recurrent models.

2.7.3.1 Nonadaptive (Batch) Training of Feedforward
Input-Output Models: Directed (Teacher-Forced) Training

Under the state noise assumption, the ideal model is a feedforward (static)
model whose inputs are the control inputs and the measured process outputs
at the previous n time steps. The training is called directed by the process,
or teacher-forced, since the measured process outputs are input to the model
during, as shown on Fig. 2.43. Thus, the model is permanently “driven” by the
process outputs. The training of that model is exactly similar to the training
of a static model. The training set is a sequence of N input-output pairs
{zk,yk}, where N is the length of the training sequence,

zk = [u(k), u(k − 1), . . . , u(k −m+ 1), yp(k), yp(k − 1), . . . , yp(k − n+ 1)]T,
yk = yp(k + 1).

The Dumb Predictor Pitfall

In directed training, the measured outputs of the process are input to the
model, at each time step. Therefore, deceptively good results can readily be
obtained, if the quality of the model is assessed by carelessly superimposing
graphically the measured output and the predicted output. Actually, a “dumb
predictor” made of a simple unit time delay, i.e., a predictor that states that
the process output at time k+1 will be equal to the process output measured
at time k, may provide excellent results, if the process output does not vary
much during a sampling period, i.e., if the sampling frequency is high enough.
Therefore, after training by teacher forcing, the results should always be com-
pared to those of the dumb predictor. Disappointments are not infrequent.

164 G. Dreyfus

Fig. 2.43. Copy k of the feedforward neural network of the canonical form, for
semidirected training

2.7.3.2 Nonadaptive (Batch) Training of Recurrent Input-Output
Models: Semidirected Training

Under the output noise assumption, or the output noise and state noise as-
sumption, the ideal model is a recurrent model, the inputs of which are

• the control inputs and the outputs of the model at the n previous time
steps (under the assumption of output noise alone),

• the control inputs, the outputs of the model and the modeling errors on a
suitable horizon p (under the NARMAX assumption).

Output Noise Assumption

Because the model is recurrent, its training, from a sequence of length N ,
requires unfolding the network into a large feedforward neural network, made
of N identical copies of the feedforward part of the canonical form. The input
of copy k (shown on Fig. 2.43) is

• the control input vector u(k) = [u(k), . . . , u(k −m+ 1)]T,
• the vector of outputs at time k and at the previous n time steps [y(k), . . . ,
y(k − n+ 1)]T.

The output vector of copy k is the vector of the outputs at time k+ 1 and at
the previous n time steps [r(k+1), . . . , r(k−n+2)]T. Therefore, the network
actually computes r(k + 1) only, the other components of the output vector
being derived from the input vector by a unit delay. The output vector of copy
k is part of the input vector of the next copy, corresponding to time k + 1.

2 Principles and Model Design Methodology 165

The designer must choose the input vector at time zero. If the process
output is known during the first n time steps, those values are natural can-
didates for being the initial values. The process output is taken into account
during the first n time steps only: that is why the present algorithm is called
semidirected , as opposed to directed algorithms, whereby the process output
is input to the model at each time step.

NARMAX Assumption

Because the predictor is recurrent, its training requires, as in the previous
case, unfolding the recurrent network into a feedforward neural network,
made of N identical copies of the feedforward part of the canonical form.
All copies have the same vector of parameters. The input of copy k (shown on
Fig. 2.44) is

• the control input vector [u(k), . . . , u(k −m+ 1)]T,
• the vector [yp(k), . . . , yp(k − n+ 1)]T,
• the vector of errors at time k and at the previous p time steps [r(k), . . . ,
r(k − p+ 1)]T.

The output vector of copy k is the vector of errors at time k + 1 and at the
previous p time steps [e(k + 1), . . . , e(k − p + 2)]T. Therefore, the network
computes only e(k+1), the other components of the error vector at time k+1
being derived from the errors at time k by a unit time delay. The vector of
errors at time k+1 is part of the input vector of the next copy, corresponding
to time k + 1.

Fig. 2.44. Copy k of the feedforward neural network of the canonical form, for
training a NARMAX model

166 G. Dreyfus

Fig. 2.45. Copy k of he feedforward neural network of the canonical form, for
semidirected training of a state-space model

2.7.3.3 Nonadaptive (Batch) Training of Recurrent State-Space
Models: Semidirected Training

Just as in the case of input-output models, training requires unfolding the
model into a feedforward neural network made of N identical copies of the
feedforward neural network of that canonical form, whose inputs are, for
copy k,

• the control input u(k),
• the state vector at time k[x1(k), . . . , xn(k)]T,

and whose outputs are

• the output y(k+1),
• the state vector at time k+1 [x1(k + 1), . . . , xn(k + 1)]T.

The latter vector is part of the state inputs of the next copy, corresponding to
time k+1 (Fig. 2.45) The initialization of the first copy is less straightforward
than for an input-output model, since the initial state is not known. It can be
taken equal to zero, for instance.

Because the state is imposed for the first copy only, the algorithm is called
semidirected.

2.7.3.4 Nonadaptive (Batch) Training of Feedforward State-Space
Models: Directed Training

Under the state noise assumption, and if state variables are measured, the
ideal model is a feedforward model that predicts the state and the output,
either with a single network, or with two different networks.

2 Principles and Model Design Methodology 167

Fig. 2.46. Copy k for the training of a state-space model with two different networks
for state and output prediction

Both the state predictor and the output predictor are feedforward. State
prediction can be performed either by n different networks, which have iden-
tical inputs, but which predict different state variables, or by a single network
that predicts all state variables,

• The state at time k + 1 is computed from the measured state at time k
and from the control inputs at time k.

• The output at time k + 1 is computed from the state computed at time
k + 1.

Figure 2.46 shows the model if two different neural networks are used for
computing the state variables and for computing the output.

Because the training of those networks is directed, it is performed as the
training of a feedforward neural network.

The note related to the dumb predictor, in the section devoted to the
directed training of input-output models, is also relevant to the training of
state-space models.

Implementation of Directed and Semidirected Algorithms

All equations for the implementation of directed or semidirected algorithms
can be found in Chap. 3, pages 64 to 69 (input-output models) and 72 to 81
(state-space models), of [Oussar 1998]. A very complete technical discussion
can be found in that document.

2.7.3.5 Adaptive (On-Line) Training of Recurrent
Neural Networks

Dynamic models, just as static ones, can be trained adaptively. Adaptive
algorithms for dynamic models are described in Chap. 4, in the framework
of stochastic approximation. The same principles as those described above
for nonadaptive training apply (influence of noise on the choice of training

168 G. Dreyfus

algorithm). Directed and semidirected algorithms also apply, with the addition
of a third type of training: undirected training.

2.7.4 What to Do in Practice? A Real Example of Dynamic
Black-Box Modeling

In the first sections of this chapter, we emphasized the questions related to
the design of a black-box static model, such as

• preprocessing and selection of relevant variables,
• choice of the complexity of the model (e.g., number of hidden neurons).

The design a dynamic models involves the following additional choices:

• choice of the representation (input-output or state),
• choice of the noise assumption (state noise, output noise, state and output

noise),
• choice of the order of the model.

If no prior knowledge on the process is available, all combinations of assump-
tions and representations should be tested, and models of increasing order
should be designed, until a satisfactory model is found. However, the follow-
ing arguments should alleviate the designer’s task:

• State-space models are more general and more parsimonious, but more
difficult to train, than input-output models; therefore, it is recommended
to first design input-output models, then, if the latter turn out to be
unsatisfactory, try state-space models.

• Prior knowledge, however cursory, may give useful hints as to the influence
of noise on the process.

• Similarly, a cursory analysis of the process response to typical inputs may
provide valuable insights into the order of the model.

In order to illustrate the design methodology discussed above, the example of
the black-box modeling of the hydraulic actuator of a robot arm is presented.
Experimental data was gathered by the Linköping University (Sweden), and
black-box modeling was performed by several groups (see for instance [Sjöberg
1995; Norgaard 2000]).

The control input is the opening of the liquid admission valve in the ac-
tuator, the output is the resulting hydraulic pressure. Sequences of input and
output data are available for training (512 points) and testing (512 points).
Figure 2.47(a) shows the available input data, and Fig. 2.47(b) shows the
corresponding responses.

Because no validation set was provided, the performances reported here
are the best performances obtained on the test set.

First, it appears clearly that he model must be nonlinear in order to ac-
count for the observations: input variations by a factor of 2 (for instance

2 Principles and Model Design Methodology 169

Fig. 2.47. Training and test sequences for the modeling of the hydraulic actuator
of a robot arm

around times 10 and 380) do not elicit responses whose amplitudes have the
same ratio.

No knowledge is available on the physics of the process, nor on any source
of disturbances. Therefore, assumptions on state noise and on output noise
must be tested.

Moreover, responses to stepwise inputs (for instance around time 220)
suggest that the order of the model should be larger than 1.

Finally, since the application does not require adaptive training, we con-
sider here batch training only.

2.7.4.1 Input-Output Model

Since input-output modeling is easier than state-space modeling, input-output
models are designed first. Since no prior knowledge about noise and distur-
bances is available, the state noise assumption (directed training of a feedfor-
ward model, NARX model), the output noise assumption (semidirected train-
ing of a recurrent model), and the output noise and state noise assumption
(training with both the model predictions and the process outputs present as
model inputs), are tested.

The assumptions involving state noise lead to very poor results when the
resulting models are operated as simulators, i.e., if they are asked to perform
predictions more than one-step ahead; they are not shown here. Semidirected
training of a recurrent model yields more satisfactory results. The best model
is a second-order model with three hidden neurons with sigmoid activation
function. Its equation is

170 G. Dreyfus

g(k) = ϕNNN (g(k − 1), g(k − 2), u(k − 1),w),

where w is the vector of parameters, of dimension 19.
Its TMSE is 0.092 and the mean square error on the test set is 0.15. For

each structure, 50 trainings were performed with different parameter initial-
izations. Additional hidden neurons generate overfitting, and a higher order
does not improve the performance. The parameters are estimated with a semi-
directed algorithm using the Levenberg-Marquardt optimization algorithm.

2.7.4.2 State-Space Model

In view of the result obtained with an input-output model, models of order 2
seem satisfactory. Two possibilities arise,

• model with two state variables (not measured, in the present application),
• model in which one of the state variables is the output (hence that state

variable is measured).

As in the previous case, models trained under the state noise assumption give
poor results when operated as simulators.

Table 2.3 shows the best results obtained on the test set after semidi-
rected training, for a network with three hidden neurons, optimized by the
Levenberg-Marquardt algorithm.

Table 2.3. Results obtained after semidirected training of a network with three
hidden neurons, with the Levenberg-Marquadt optimization algorithm

Mean square error Mean square error
on the training set on the test set

Network with no measured state
variable 0.091 0.18

Network whose output is one of
the state variables 0.071 0.12

Therefore, the best model is a network whose output is one of the state
variables. Its equation is

x1(k) = ϕ1
NN (x1(k − 1), x2(k − 1), u(k − 1))

x2(k) = ϕ2
NN (x1(k − 1), x2(k − 1), u(k − 1))

y(k) = x2(k).

The network has 26 parameters, but is has better performances, on the
test set, than an input-output network with 19 parameters. That is an exper-
imental illustration of the parsimony of state-space models, which allow the
use of a larger number of parameters without overfitting.

2 Principles and Model Design Methodology 171

To the best of our knowledge, these are the best published results on the
problem. The detail of the results, together with an application of wavelet
networks to the same problem, can be found in [Oussar 1998].

2.7.5 Casting Dynamic Models into a Canonical Form

In the previous sections, we assumed that no prior knowledge of the process
was available to the model designer, so that the form of the algebraic or differ-
ential equations that would be derived from a physical analysis was unknown.
That is a typical black-box modeling situation.

In the next section, we show that any prior knowledge, available under the
form of algebraic or differential equations, can be embodied into the structure
of a neural network. The model thus designed is a “gray-box” or “semiphysical
model”. The design of such a model may lead to a complex recurrent network
structure, which is neither an input-output representation, nor a state-space
representation; since the training algorithms that are described in the previous
section were applicable to state-space models or input-output models, how
can one train networks that are neither? Should one design a special training
algorithm for each specific architecture?

Similarly, Chap. 4 presents a set or network “models” (where the term
model does not have its scientific meaning, but its commercial meaning—as
in car or TV model), which are generally named from their author (Hopfield
model, Jordan model, Elman model, etc.), whose structures are different from
the architectures discussed above. Again, one may ask whether each specific
architecture requires a specific training algorithm.

The answer to that question takes advantage of the following property.

Property. Any recurrent neural network, however complex, can be cast into
a minimal state-space form, called canonical form, to which the training algo-
rithms discussed in the previous section can be applied. The latter are therefore
fully generic, since they can train any recurrent network, provided it has been
cast into a canonical form.

Therefore, the present section shows how the canonical form of an arbi-
trary recurrent neural network, stemming from instance from a semiphysical
modeling, can be derived. That task is performed in two steps,

• derivation of the order of the network,
• derivation of a state vector and of the corresponding canonical form.

A reminder: when designing a purely black-box model, without any prior
knowledge, the model is sought directly in a canonical form.

2.7.5.1 Definition

The canonical form of a recurrent neural network is the minimal state-space
representation

172 G. Dreyfus

z(k + 1) = φ(z(k)),u(k))
y(k + 1) = ψ(z(k),u(k)),

where z(k) is the minimal set, made of ν variables, that allows the derivation
of the state of the model at time k + 1, given the state of the model and
its inputs at time k, and where functions φ and ψ can be implemented as
feedforward neural networks.

The order of the canonical form is ν. It is convenient, but not mandatory, to
design the predictor as a single neural network, whose inputs are the control
inputs and the state variables at time k, and whose outputs are the state
variables at time k + 1 (Fig. 2.48).

Fig. 2.48. Canonical form of a recurrent network

A general technique, which allows a fully automatic derivation of the
canonical form of any recurrent network, is described in [Dreyfus et al. 1998].
An illustrative example is given below.

2.7.5.2 An Example of Derivation of a Canonical Form

The analysis of a process has led to the following model:

ẍ1 = φ1(x1, x2, x3, u)
x2 = φ2(x1, x3)
ẍ3 = φ3(x1, ẋ2)
y = x3.

Its discrete-time equivalent, derived with the explicit Euler discretization
method, is given by

2 Principles and Model Design Methodology 173

x1(k + 1) = ψ1[x1(k), x1(k − 1), x2(k − 1), x3(k − 1), u(k − 1)],
x2(k + 1) = ψ2[x1(k + 1), x3(k + 1)],
x3(k + 1) = ψ3[x3(k), x3(k − 1), x1(k − 1), x2(k), x2(k − 1)]
y(k + 1) = x3(k + 1).

The explicit Euler discretization method consists in approximating the
time derivative of a function f(t) at time kT (where T is the sampling period,
or integration step, and k is a positive integer) by

{f [(k + 1)T] − f(kT)}/T
The question of the discretization of continuous-time differential equations

is discussed in more detail in the section devoted to semiphysical modeling.
Clearly, the above equations are not in canonical form. For a clear analysis

of the model, and for training it if the functions are parameterized, it is very
desirable to know the minimum number of variables that are necessary for
a complete description of the model, and to put it in canonical form. Note
that a given recurrent neural network does not have a unique canonical form:
generally, several different canonical forms can be derived; obviously, they all
have the same number of state variables.

The network graph is useful for deriving the canonical form. Its nodes are
the neurons, and its edges are the connections between neurons; each edge is
assigned a length, which is the delay (possibly equal to zero), expressed as an
integer multiple of the sampling time, and a direction, which is the direction
of information flow in the edge. The length of a path in the graph is the sum
of the lengths of the edges that belong to the path.

A cycle in a graph is a path that starts and ends at the same node, with-
out going through the same node more than once, and complying with the
directions of the edges. The length of a cycle is the sum of the lengths of its
edges.

For a discrete-time neural network to be causal, its graph must have no
cycle of length equal to zero. If a cycle had a length equal to zero, the value of
the output of a neuron would be dependent on the value of the same output
at the same time step.

Figure 2.49 shows a representation of the equations of the model as the
graph of a recurrent neural network; nodes 1, 2 and 3 represent neurons whose
activation functions are Ψ1, Ψ2 and Ψ3,respectively. The figures in squares are
the delays associated to each connection (number of sampling periods).

Vector z(k) = [x1(k), x2(k− 1), x3(k), x3(k− 1)]T can be chosen as a state
vector. The corresponding canonical form is shown on Fig. 2.49. It has a
feedforward neural network with three hidden neurons (neuron 1, and neuron
2 which is duplicated in the canonical form with shared weights, and output
neuron (neuron 3) which is also a state neuron. Since the order of the model
is 4, there are 4 state outputs, which are connected back to the state inputs
through unit delays, denoted by the conventional delay operator symbol q−1.

174 G. Dreyfus

Fig. 2.49. Example of network graph

k-1

1 3

2 2
q -1

y(k+1)

z2(k+1)
= x1(k)

z1(k+1)
= x1(k+1)

z3(k+1)
= x3(k+1)

z4(k+1)
= x3(k)

x2(k-1) x2(k)

kkk-1k-1

z2(k)
= x1(k-1)

u(k-1) z1(k)
= x1(k)

z3(k)
= x3(k)

z4(k)
= x3(k-1)

q -1

Fig. 2.50. The canonical form of the network of Fig. 2.49

The network shown on Fig. 2.50 is fully equivalent to the network shown
on Fig. 2.49: it is simply re-written in a very convenient way, which makes the
structure of the network more legible, and, even more importantly, that allows
the training of the network with the conventional, generic training algorithms.

Algorithmic details for deriving the canonical form automatically can be
found in [Dreyfus et al. 1998].

2 Principles and Model Design Methodology 175

2.8 Dynamic Semiphysical (Gray Box) Modeling

In the previous sections of this chapter, the design methodology for black-
box modeling was emphasized; it is the traditional view of neural networks,
whereby models are designed from measurements only. Such an approach is
very useful when no satisfactory knowledge-based model exists. However, it
is frequently the case that a knowledge-based model does exist, but is not
satisfactory, either because the computation time necessary for integrating
the model with the requested accuracy is too long and precludes a real-time
implementation of the model, or because the model is no accurate enough
due to the present limitations of the knowledge of the phenomena that occur
in the process. It is therefore desirable to take advantage of that knowledge,
albeit not fully satisfactory, for the design of a more accurate, or faster, model
making use of training from data: a semiphysical model is designed. Thus, one
can design a model that combines the legibility of knowledge-based models
with the flexibility and speed of black-box models.

In the following, we discuss a general design methodology for semiphysical
models that takes advantage of the properties of neural networks. We empha-
size the importance of the discretization of the continuous-time knowledge-
based model, which has a strong impact on the stability of the resulting
discrete-time model.

In the present section, we discuss the principles of the design of semiphys-
ical models. An industrial application of that method is presented in Chap. 1.

2.8.1 Principles of Semiphysical Modeling

2.8.1.1 From Black-Box Modeling to Knowledge-Based Modeling

A knowledge-based model is a mathematical description of the phenomena
that occur in a process, based on the equations of physics and chemistry
(or biology, sociology, etc.); typically, the equations involved in the model
may be transport equations, equations of thermodynamics, mass conservation
equations, etc. They contain parameters that have a physical meaning (e.g.,
activation energies, diffusion coefficients, etc.), and they may also contain
a small number of parameters that are determined through regression from
measurements.

Conversely, a black-box model is a parameterized description of the
process, all parameters of which are estimated from measurements performed
on the process; it does not take into account any prior knowledge on the
process (or a very limited one).

A semiphysical (or gray-box) model may be regarded as a tradeoff between
a knowledge-based model and a black-box model. It may embody all the
engineer’s knowledge on the process (or a part thereof), and, in addition,
it relies on parameterized functions, whose parameters are determined from
measurements. This combination makes it possible to take into account all the

176 G. Dreyfus

phenomena that are not modeled with the required accuracy through prior
knowledge. Since a larger amount of prior knowledge is used in the design of a
semiphysical model than in the design of a black-box model, a smaller amount
of experimental data is required to estimate its parameters reliably.

2.8.1.2 Design and Training of a Dynamic Semiphysical Model

Design Principle

The design of a semi-physical model requires the availability of a knowledge-
based model, which is usually in the form of a set of coupled, possibly
nonlinear, differential, partial differential, and algebraic, equations. We as-
sume that model to be in standard state-space form,

dx

dt
= f [x(t),u(t)]

y(t) = g[x(t)],

where x is the vector of state variables, y is the vector of outputs, u is the
vector of control inputs, and where f and g are known vector functions. That
model may be unsatisfactory for various reasons: functions f and g (or some
of their components) may be too inaccurate for the purpose that the model
should serve, or they may involve parameters that are not estimated accu-
rately, etc. In a black-box model, neural networks are used to approximate
functions f and g; they are trained from experimental data. In a semiphysi-
cal neural model, those functions that are not known accurately enough are
implemented as neural models, whereas those functions, which are known re-
liably, are either kept under their analytic form, or implemented as a neural
network with fixed parameters and nonlinearities.

In general, the design of a semiphysical neural model is performed in three
steps:

• Step 1: construction of a discrete-time semiphysical model that is de-
rived, by an appropriate discretization scheme (discussed below) from the
knowledge-based model.

• Step 2: training of the semiphysical model, or of specific parts thereof, from
results obtained by numerical integration of the knowledge-based model;
that step is generally necessary in order to obtain appropriate initial values
of the parameters, to be used in step 3.

• Step 3: training of the semiphysical neural model from experimental data.

That design strategy is exemplified in the next section.

An Illustrative Example

A knowledge-based model is described by the following equations:

2 Principles and Model Design Methodology 177

Fig. 2.51. process response to two input sequences: (a) training sequence, (b) test
sequence

dx1(t)
dt

= (x1(t) + 2x2(t))2 + u(t)

dx2(t)
dt

= 8.32x1(t)

y(t) = x2(t).

The state variables x1 and x2 are measurable. Figure 2.51 shows the process
response to two sequences of input steps; throughout this section, the left-
hand input and output sequences will be used as the training set, and the
right-hand ones as the test set. The results obtained by numerical integration
of the knowledge-based model are in poor agreement with experimental mea-
surements of the output, as shown on Fig. 2.52. The mean square modeling
error on the test set is equal to 0.17, which is much larger than the noise
standard deviation of 0.01.

Experts of the process are reasonably confident that the first state equation
is valid, but there are serious doubts about the second equation because

• The parameter 8.32 may be inaccurate.
• The linear dependence is controversial.
• It is even conjectured that the right-hand side of the second equation might

depend on x2.

Therefore, in order to build a more accurate model, it may be advantageous
to use a semiphysical model. Actually, three different models, of increasing
complexity, may be designed in order to meet the above three criticisms. We
describe below the design of those models and the results thus obtained.

As mentioned above, the first step of the procedure consists in creating a
discrete-time model from the knowledge-based model. Since data is gathered
with a sampling period T , the latter is a natural candidate for being the
discretization step of the equations. The simplest discretization method is
Euler’s explicit method, whereby the derivative df(t)/dt is approximated as

178 G. Dreyfus

Fig. 2.52. Modeling error of the knowledge-based model

[f [(k + 1)T] − f(kT)]/T (where k is a positive integer). Thus the following
discrete-time model is obtained:

x1[(k + 1)T] = x1(kT) + T [−(x1(kT) + 2x2(kT))2 + u(kT)]
x2[(k + 1)T] = x2(kT) + T (8.32x1(kT)).

Hence the simplest semiphysical model:

x1[(k + 1)T] = x1(kT) + T [−(x1(kT) + 2x2(kT))2 + u(kT)]
x2[(k + 1)T] = x2(kT) + T (wx1(kT)).

where w is a parameter that is estimated through appropriate training from
experimental data. The equations are under the conventional form of a state-
space model: it is therefore not necessary to cast the model into a canonical
form; were that not the case, the model would have been cast into a canonical
form as explained above. The model is shown on Fig. 2.53.

For simplicity, in all the following figures, the constant input (bias) will
not be shown; furthermore, discrete time kT will be simply denoted by k. q−1

is the usual symbol for a unit time delay. On Fig. 2.53, neuron 1 performs a
weighted sum s of x1 and x2, with the weights indicated on the figure, followed
by the nonlinearity −s2, and adds u(k). Neuron 2 multiplies its input by the
weight w. Neurons 3 and 4 just perform weighted sums. If w is taken equal
to 8.32, then this network gives exactly the same results as the numerical
integration of the discrete-time knowledge-based model by Euler’s explicit
discretization, with integration step T . If w is an adjustable weight, then its
value can be computed by training the network from experimental data with
any good training algorithm (evaluation of the gradient of the quadratic cost
function by backpropagation through time, and gradient descent with the

2 Principles and Model Design Methodology 179

Fig. 2.53. Canonical form of the knowledge-based model discretized by the explicit
Euler method

Levenberg-Marquardt or BFGS algorithm), using for instance a semidirected
algorithm under the output noise assumption. For that training, it would be
reasonable to initialize weight w to 8.32. Note that, in that very simple case,
step 2 of the algorithm is bypassed.

Figure 2.54 shows the modeling error with that improved model. The mean
square modeling error on the test sequence is 0.08 (instead of 0.17 for the
knowledge-based model); since the noise variance is 0.01, further improvement
may be expected from a more elaborate model.

Therefore, one considers the second level of criticism towards the knowledge-
based model, i.e., the fact that the right-hand side of the state equation might
be a nonlinear function of x1. Therefore, neuron 2 is replaced by a feedforward
neural network whose input is x1, as shown on Fig. 2.53 with three hidden
neurons (hence 6 parameters shown on the figure, and 4 parameters related
to the bias, not shown).

The feedforward neural network made of the non-numbered neurons shown
on Fig. 2.55 can be trained from data generated by the knowledge-based
model (step 2 of the design procedure): although those values are known to be
inaccurate, the weights resulting from that training are reasonable estimates,
which are subsequently used for initializing the training of the neural network
from experimental data (step 3 of the design procedure). Figure 2.56 shows
the modeling error of that model, with two hidden neurons in the black-box
part of the model (additional neurons generate overfitting). The mean square
modeling error on the test sequence is 0.02, which is a sizeable improvement
over the previous model.

180 G. Dreyfus

Fig. 2.54. Modeling error on the test set

Fig. 2.55. Canonical form of a semiphysical model

2 Principles and Model Design Methodology 181

Fig. 2.56. Modeling error on the test set

Since the results are still unsatisfactory (the root mean square error on
the test set is twice the standard deviation of noise), the conjecture that the
right-hand side of the second state equation does not depend on x1 only, but
also depends on x2, must be taken into account. Then a third knowledge-based
neural model may be designed, where the right-hand side of the second state
equation is implemented as a neural network whose inputs are x1 and x2.
That is shown on Fig. 2.57 (with a feedforward network having three hidden
neurons).

Steps 2 et 3 of the design are performed as for the previous model. The
variance of the modeling error being on the order of the noise variance (see
Fig. 2.58), the model can be considered satisfactory.

2.8.1.3 Discretization of a Knowledge-Based Model

The first step of the design of a semiphysical model is the discretization of
the knowledge-based model, which is generally a continuous-time model, in
order to find a discrete-time model whose structure is used for the design of
the recurrent network. The choice of the discretization technique has impor-
tant consequences regarding the stability of the model to be designed. The
discretization of continuous-time differential equations is a basic chapter in
any textbook of numerical analysis; we recall a few basic elements that are
important for the design of a semiphysical model.

182 G. Dreyfus

Fig. 2.57. Canonical form of a semiphysical model

Fig. 2.58. Modeling error on the test set

2 Principles and Model Design Methodology 183

Explicit (Forward) vs. Implicit (Backward) Discretization Schemes:
Definitions

Consider a first-order differential equation,

dx(t)
dt

= f [x(t)].

An explicit scheme discretizes it to

x[(k + 1)T] = ϕ[x(kT), T],

• where T is the discretization (or integration) step, which is usually the
sampling period of experimental data,

• where k is a positive integer,
• and where function ϕ depends on the discretization technique (examples

are shown below).

An implicit scheme discretizes the same differential equation to

x[(k + 1)T] = ψ[x[(k + 1)T], x(kT), T].

The main difference is the fact that the quantity x[(k + 1)T] appears in the
left-hand side only if an explicit scheme is used, whereas it appears on both
sides if an implicit scheme is used. Therefore, if a one-step-ahead predictor for
x is to be designed, the computation of x[(k+ 1)T] from x[kT] is trivial if an
explicit scheme is used, whereas it requires solving a nonlinear equation if an
implicit scheme is used.

More generally, consider a set of state-space equations written in vector
form,

dx
dt

= f [x(t),u(t)].

If an explicit discretization scheme is used, the discretized equations can be
written under the general form,

K[x(kT)]x[(k + 1)T] + Ψ [x(kT),u(kT), T] = 0,

where K is a matrix and Ψ is a vector function, whereas, if an implicit dis-
cretization scheme is used, the discretized equation can be written under the
general form,

K[x[(k + 1)T]]x[(k + 1)T] + Ψ [x[(k + 1)T],x(kT),u[(k + 1)T], T] = 0.

Again, the computation of x[(k + 1)T] from x[kT] is trivial if an explicit
scheme is used (provided matrix K is invertible):

x[(k + 1)T] = −K−1[x(kT)]Ψ [x(kT),u(kT), T],

whereas it requires solving a system of nonlinear equations if an implicit
scheme is used.

184 G. Dreyfus

Examples

Consider again the first-order differential equation dx/dt = f [x(t),u(t)].
Euler’s explicit scheme consists in considering that function f is constant,

equal to f [x(kT)], between kT and (k + 1)T , so that the integration of the
differential equation between kT and (k + 1)T gives

x[(k + 1)T] = x(kT) + Tf [x(kT)].

By contrast, Euler’s implicit scheme consists in considering that function f
is constant, equal to f [x((k + 1)T] between kT and (k + 1)T , so that the
integration of the differential equation between kT and (k + 1)T gives

x[(k + 1)T] = x(kT) + Tf [x[(k + 1)T]].

Similarly, Tustin’s scheme consists in considering that function f varies lin-
early between kT and (k + 1)T , so that the integration of the differential
equation between kT and (k + 1)T gives

x[(k + 1)T] = x(kT) +
T

2
[f [x[(k + 1)T]] + f [x(kT)]] .

Because the values of quantities at time (k + 1)T are present on both sides
of the equation, the computation of x[(k + 1)T] requires solving a nonlinear
equation.

Application

We consider again the knowledge-based model described by the equations

dx1(t)
dt

= −(x1(t) + 2x2(t))2 + u(t)

dx2(t)
dt

= 8.32x1(t)

y(t) = x2(t).

Euler’s explicit method discretizes it to

x1[(k + 1)T] = x1(kT) + T [−(x1(kT) + 2x2(kT))2 + u(kT)]
x2[(k + 1)T] = x2(kT) + T (8.32x1(kT)).

Its discretization by Euler’s implicit scheme discretizes it to

[1 + Tx1[(k + 1)T] + 4Tx2[(k + 1)T]]x1[(k + 1)T] + 4Tx2
2[(k + 1)T]

= x1(kT) + Tu[(k + 1)T]x2[(k + 1)T] − T (8.32x1[(k + 1)T])
= x2(kT).

These equations are of the form

2 Principles and Model Design Methodology 185

K[x[(k + 1)T]]x[(k + 1)T] + Ψ [x[(k + 1)T],x(kT),u[(k + 1)T], T] = 0,

with

K[x[(k + 1)]T] =

(
[1 + Tx1[(k + 1)T] + 4Tx2[(k + 1)T]] 4Tx2[(k + 1)T]

−Tw 1

)

and

Ψ [x[(k + 1)T],x(kT),u[(k + 1)T], T] =
(
x1(kT) + Tu[(k + 1)T]
x2(kT)

)
.

Explicit vs. Implicit Discretization Scheme: Impact on Stability

The above examples show that an explicit discretization scheme makes the
design of a semiphysical model simpler than an implicit scheme. The main
incentive for using implicit scheme is the stability issue: implicit schemes may
have better stability properties than implicit schemes. In order to illustrate
that, we discuss the simple first-order linear differential equation

du(t)
dt

= −αu(t), α > 0.

Euler’s explicit method discretizes it to

u[(k + 1)T] − u(kT)
T

= −αu(kT),

or equivalently
u[(k + 1)T] = (1 − αT)u(kT).

Thus, u[(k+1)T] is computed from u(0) recursively, and the recursion con-
verges if and only if the magnitude of (1−αT) is smaller than 1, or T < 2/α.
The computation time necessary for integrating that equation numerically is
proportional to 1/α: if α is very large, numerical integration may become
impossible since the integration step T must be very small.

Now we consider the discretization of the same equation by Euler’s implicit
method; one has

u[(k + 1)T] − u(kT)
T

= −αu(kT),

or equivalently,

u[(k + 1)T] =
1

(1 + αT)
u(kT).

Because the denominator on the right-hand side is larger than 1, the compu-
tation of u[(k + 1)T] converges irrespective of α.

However, the price to be paid is the fact that (in contrast to the previous
very simple example), the computation of the quantities of interest at time
(k + 1)T requires the resolution of a nonlinear equation. This has important
consequences on the architecture of the corresponding neural model.

186 G. Dreyfus

Fig. 2.59. Canonical form of the network resulting from the discretization by an
explicit scheme

Explicit vs. Implicit Discretization Schemes: Impact on Neural Network
Implementation and Training

The explicit discretization of a knowledge-based model provides equations
that are readily put in neural network form, as shown in the above illustrative
example: one has

x[(k + 1)T] = −K−1[x(kT)]Ψ [x(kT),u(kT), T],

which is the canonical form of a recurrent neural network, as shown on
Fig. 2.59, where the neural network is an approximation of function −K−1Ψ .
The didactic example discussed above is an example of the design of a semi-
physical model from a knowledge-based model discretized by an explicit
scheme.

When an implicit discretization method must be used for stability reasons,
the neural implementation of the resulting equations is less straightforward,
but still feasible. A detailed description of that technique can be found in
[Oussar et al. 2001].

2.9 Conclusion: What Tools?

This chapter gave a presentation of the basic concepts of modeling with neural
networks. Elements of statistics were first provided, then a complete design
methodology of nonlinear models, including but not limited to neural net-
works, was described. Static and dynamic models were discussed (the latter
being considered in a deeper fashion in Chap. 4). Finally, the design method-
ology of semiphysical models was described.

2 Principles and Model Design Methodology 187

For practical applications, the designer must understand the basic concepts
in order to obtain reliable results, but he must also use appropriate tools (or
build his own, which may be a lengthy process).

At present, available development tools fall into two categories:

• neural network toolboxes within general-purpose engineering software;
typically, Matlab releases a toolbox that allows easy training of feedforward
neural networks; the programming effort is very small for classical func-
tions, but it may become important for the implementation of elements
of methodology that are not specifically “neural” (leverage computation,
input selection), or for recurrent neural networks;

• specific development tools that include a complete development method-
ology, requiring no programming effort; typical is the NeuroOne6 package;
such tools do not allow for the flexibility of personal programming, but
they provide reliable results in a short time.

Some academic software packages are available freely on the Web. They are
excellent for didactic purposes, but they may not stand up to the quality
requirements of industrial applications.

Therefore, the model designer, whether in academy or industry, must
choose his tools considering the time constraints, the development policy
within the company, the size of the applications, etc. The best solution con-
sists in having both types of tools available. Anyway, however powerful and
user-friendly the programming tools, a good understanding of the basic con-
cepts and methods, and the application of a principled methodology, are the
keys to the development of successful applications.

2.10 Additional Material

This section is devoted to additional definitions, proofs, algorithms, which can
be skipped on first reading.

2.10.1 Confidence Intervals: Design and Example

2.10.1.1 Design

In order to estimate a confidence interval for a random variable Y , one seeks
a random variable Z, function of Y , whose distribution pZ(z) is known and
independent of Y . Since the distribution pZ(z) is known and tabulated, the
equation Pr(z1 < z < z2) =

∫ z2

z1
pZ(z)dz = 1−α can be solved easily: one just

has to compute the value of z1 such that Pr(z < z1) = α/2, and the value of
z2 such that Pr(z > z2) = α/2. When z1 and z2 are found, function Z(Y) is
inverted in order to find the values of a et b such that Pr(a < y < b) = 1−α.
6 By NETRAL S.A.; several illustrations and applications described in Chaps. 1

and 2 were developed with that software.

188 G. Dreyfus

2.10.1.2 Example

As an example, let us derive a confidence interval for the mean of N mea-
surements: the latter quantity is an unbiased estimator of the expecta-
tion value. Assume that the N measurements are realizations of a random
Gaussian variable G of mean µ and standard deviation σ. Using the distrib-
utions discussed in the next section, it can easily be shown that the random
variable (M − µ)/(σ/√N) has a normal distribution, and that the variable∑N

n=1((G1 −M)2)/(σ2) has a Pearson distribution with N − 1 degrees of
freedom.

From the definition of the Pearson variable, one might conclude that the
above variable has N (not N − 1) degrees of freedom. One should note that
the random variable M depends on the random variables Gi since one has
M =

∑N
n=1Gi/N : hence the variable has only N − 1 degrees of freedom.

Those variables are independent. From a theorem stated below, the ran-
dom variable

Z =
M − µ√∑N

i=1(Gi −M)2

√
N(N − 1)

has a Student distribution with N − 1 degrees of freedom. One can easily
compute the value of z1 and z2 such that a realization of the random variable
Z lie between those two values with probability 1- α, where α is a known
quantity (e.g., α = 0.05 if a 95% confidence interval is sought). The quantity

z =
m− µ√∑N

i=1(gi −m)2

√
N(N − 1),

where m is the mean of the N measurements gi, and where µ is the only
unknown, is a realization of the random variable Z. Therefore, the only re-
maining task is the resolution of the two inequalities z1 < z and z < z2; they
are linear in µ, hence the resolution is trivial. The two solutions µ1 = a and
µ2 = b are the boundaries of the confidence interval

a = m−
√∑N

i=1(gi −m)2

N(N − 1)
z2 and b = m−

√∑N
i=1(gi −m)2

N(N − 1)
z1.

Because the Student distribution is symmetrical, z1 and z2 may be chosen
symmetrically, e.g., z1 = −z0 < 0 and z2 = z0 > 0. The confidence interval is
symmetrical around m:

a = m−
√∑N

i=1(gi −m)2

N(N − 1)
z0 and b = m+

√∑N
i=1(gi −m)2

N(N − 1)
z0,

where m, {gi} and N depend on the experiments, and z0 depends on the
chosen value of α only.

2 Principles and Model Design Methodology 189

As expected, the width of the confidence interval depends both on the
number of experiments N and on the noise through the scattering of the data
around the mean value, as expressed by the summation under the square root.
The larger the number of experiments, the smaller the confidence interval,
hence the more reliable the estimation of the expectation value µ by the
mean m. Conversely, the larger the variability of the results, the larger the
confidence interval, hence the less reliable the estimation of µ by m.

2.10.2 Hypothesis Testing: An Example

N measurements {gi} have been performed, which can be modeled as inde-
pendent realizations of a random Gaussian variable of mean µ and standard
deviation σ. One would like to know, with a risk α of getting a wrong answer,
whether the mean of the distribution has a given value µ0. Thus, the null
hypothesis H0 is: µ = µ0, and the alternative hypothesis H1 is µ �= µ0. If the
null hypothesis is true, then variable

Z =
M − µ0√∑N

i=1(Gi −M)2

√
N(N − 1)

is a Student variable with N − 1 degrees of freedom.
A realization of that random variable can be computed,

Z =
m− µ0√∑N

i=1 (Gi −m)2

√
N(N − 1),

where m is the mean of the measurements. The values of z1 and z2 such that
Pr(z < z1) = α/2 and Pr(z > z2) = α/2 can easily be computed. Then the
null hypothesis can be rejected if z is outside the interval [z1, z2].

In that particular case, the hypothesis test consists in checking whether
the assumed value of the mean µ0 is within the confidence interval computed
in the previous section, and rejecting the null hypothesis if it is outside the
confidence interval.

2.10.3 Pearson, Student and Fisher Distributions

2.10.3.1 χ2(Pearson) Distribution

If a random variable S is the sum of the squares of N random independent
Gaussian variables, then it has a χ2 (or Pearson) distribution with N degrees
of freedom. It can be shown that E(S) = N and that var(S) = 2 N .

2.10.3.2 Student Distribution

If Y1 is a normal variable, and if Y2 is a random variable, which is independent
from Y1 and which has a χ2 (Pearson) distribution with N degrees of freedom,
the random variable Z = (Y1)/(

√
Y2/N) has a Student distribution with N

degrees of freedom.

190 G. Dreyfus

2.10.3.3 Fisher Distribution

If Y1 is a Pearson variable with N1 degrees of freedom, and if Y2 is a
Pearson variable with N2 degrees of freedom, the random variable Z =
(Y1/N1)/(Y2/N2) has a Fisher distribution with N1 and N2 degrees of free-
dom.

2.10.4 Input Selection: Fisher’s Test; Computation of the
Cumulative Distribution Function of the Rank of the Probe
Feature

2.10.4.1 Fisher’s Test

We first describe the use of Fisher’s test for model selection.
We assume that the measurements of the quantity of interest can be mod-

eled as the realizations of a random variable such that Yp = ζTwp +Ω, where
ζ is the vector of the variables of the model (of unknown dimension), where
wp is the vector (nonrandom but unknown) of the parameters of the model,
and where Ω is an unknown random Gaussian vector, with zero mean. Thus,
one has

E(Yp) = ζTwp.

We want to find a model g, from a set of N measurements {yk
p , k = 1 to

N}; yp is the N -dimension vector whose components are the yk
p . The model

depends on the training set: therefore, it is also a realization of a random
variable G.

Assume that a set of Q variables, which contains certainly the measurable
variables that are relevant to the modeling of the quantity of interest, has
been found. A model that contains all relevant variables is called a complete
model. Then a model is sought, of the form

GQ = ζT
QW Q,

where ζQ is the input vector of the model (of dimensionQ+1 since, in addition
to the relevant variables, a component equal to 1 is present in the input
vector), and where W is a random vector, which depends on the realization
of the vector Yp that is used for the design of the model. That model is said to
be true: there exists certainly a realization wp of the random vector W such
that gQ = E(Yp).

In the present chapter, the vector of the parameters of the model was
always found by minimizing the least squares cost function (except when using
weight decay) J(w) =

∑N
k=1 (yk

p − gQ(ζk,w))2 = ‖yp − gQ(ζ,w)‖2, where w

is a realization of the vector of parameters W , ζk is the vector of the Q + 1
inputs for example k, and where gQ(ζ, w) is the vector of the realizations of
GQ for the N measurements.

2 Principles and Model Design Methodology 191

We denote by wQ
LS the vector of parameters for which the least squares cost

function J is minimum. The resulting model is thus of the form gQ = ζTwQ
LS,

and one can define vector gQ = ΞwQ
LS, where

• gQ is a vector whose N components are the predictions of the model for
the N measurements.

• Ξ is the observation matrix: column i (i = 1 to Q+1) is the vector Ξi, of
which the components are the N measurements of the ith input: matrix
Ξ has N rows and Q+ 1 columns,

Ξ =

⎡
⎢⎢⎢⎢⎣

ζ1
1 . . . ζ1

n

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
ζN

1 · · · ζN
n

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

(
ζ1
)T

· · ·
· · ·
· · ·(

ζN
)T

⎤
⎥⎥⎥⎥⎦ =

[
ζ1 · · · ζn

]
.

The input selection problem is the following: are all Q candidate variables
relevant? If a variable is irrelevant, the corresponding parameter in the com-
plete model should be equal to zero. A submodel is a model that is obtained
by setting to zero one or several parameters of the complete model. Thus,
in order, to solve the problem, the complete model must be compared to all
its submodels. We consider a submodel whose last q components (numbered
from Q − q + 2 to Q + 1) are equal to zero: gQ−q = ΞwQ−q

mc , where wQ−q
mc

is the vector of parameters that is obtained by minimizing the least squares
cost function J = ‖yp − gQ−q(ζ,w)‖2 under the constraints that the last q
components of the vector of the parameters be equal to zero. We want to test
the null hypothesis H0: the last q parameters of the random vector W are
equal to zero. If that hypothesis is true, then the random variable

Z =
N −Q− 1

q

‖Y p − GQ−q‖2 − ‖Y p − GQ‖2

‖Y p − GQ‖2

=
N −Q− 1

q

‖GQ − GQ−q‖2

‖Y p − GQ‖2

is a Fisher variable with q and N −Q-1 degrees of freedom.

Proof. The quantity ‖Y p − GQ‖2 is the sum of the squares of the components
of vector Y p −GQ, which is orthogonal to the subspace spanned by the Q+1
columns of the observation matrix Ξ. Thus, it is the sum of N − (Q + 1)
squared independent Gaussian variables: it has a Pearson distribution with
N−Q-1 degrees of freedom. Similarly, vector GQ−GQ−q is in a q-dimensional
space, hence the square of its norm is the sum of q squared independent
Gaussian variables: therefore, ‖GQ − GQ−q‖2 is a Pearson variable with q
degrees of freedom. The ratio Z of those Pearson variables is a Fisher variable,
as mentioned above.

192 G. Dreyfus

Assume that a very large number of measurements is available; if the null
hypothesis is valid, the numerator of Z is very small since the minimization
of the cost function gives values equal to zero to the “useless” parameters of
the complete model, hence gQ and gQ−q are very close; if the null hypothesis
is not valid, the two models cannot be very similar, even if the amount of
data is large, since the submodel does not have the appropriate complexity
for accounting for the data. That explains why the realization of Z must be
small if the null hypothesis is valid.

Thus, Fisher’s test consists in choosing a risk α, and computing, from the
Fisher distribution, the value zα such that Pr(z < zα) = α. Then the quantity

z =
N −Q− 1

q

∥∥yp − gQ−q

(
wQ−q

mc

)∥∥2 − ∥∥yp − gQ

(
wQ

mc

)∥∥2∥∥∥yp − gQ

(
wQ

mc

)∥∥∥2

(realization of Z with the available data) is computed, and the null hypothesis
is accepted if and only if z < zα.

2.10.4.2 Computation of the Cumulative Distribution Function of
the Rank of the Probe Feature

In the present section, we discuss the computation of the probability for the
probe feature to have a higher rank (rank 1 being the highest rank), at a given
step of the selection procedure, than one of the features selected during the
previous steps. The complete computation can be found in [Stoppiglia 1998].

We denote byHk−1 the probability for the probe vector to be ranked higher
than one of the k−1 features selected at previous steps. The probability for the
probe feature to have a lower rank than the first k−1 features is therefore 1−
Hk−1. The probability for the probe feature to be ranked higher than the k−1
first features but lower than the kth feature is thus PN−k(cos2(θk))[1−Hk−1],
where PN−k(cos2(θk)) is the probability for the angle of the projection of the
feature k under consideration, onto the null subspace of the previously selected
features, and the projection of the process output on the same subspace, to
be smaller than θk. Therefore, the probability Hk for the probe feature to
be more significant than one of the k selected features is given by: Hk =
Hk−1+PN−k(cos2 θk)(1 −Hk−1). Thus,Hk can be computed recursively, with
H0 = 0. That requires the computation of PN−k(cos2 θk), which is given by
the following relations:

Pn(cos2 θ) = 1 − frn(cos2 θ) (n positive integer), with

• for n even: frn(x) = 2/π[sin−1 √x+
√
x(1 − x)P (n/2)−2(x)], where, for

n ≥ 6, P (n/2)−2(x) = 1 +
∑(n/2)−2

k=1 [2k(k!)/((2k + 1)!!)(1 − x)k]; for n =
4 : P 0 = 1; for n = 2 : P−1 = 0;

2 Principles and Model Design Methodology 193

• for n odd: frn(x) =
√
xP (n−3)/2(x), with, for n ≥ 6: P (n− 3)/2(x) =

1 +
∑(n−3)/2

k=1 [1/(2k)((2k − 1)!!)/(k!)(1− x)k]; for n = 3: P 0(x) = 1; for n
= 1: P−1(x) = 0.

2.10.5 Optimization Methods: Levenberg-Marquardt and BFGS

That presentation is from [Oussar 1998]. The algorithms are also described in
[Press et al. 1992].

2.10.5.1 The BFGS Algorithm

The BFGS algorithm consists in updating the parameters, at iteration i, by:
w(i) = w(i − 1) − µiMi∇J(w(i − 1)) where µi is positive, and where Mi is
an approximation, computed iteratively, of the inverse of the Hessian matrix;
the latter is computed, at each iteration, by

Mi = Mi−1 +
[
1 +

γT
i−1Mi−1γi−1

δTi−1γi−1

]
δTi−1δi−1

δTi−1γi−1
− δγ

i−1
T
i−1Mi−1 +Mi−1γ

δ
i−1

T
i−1

δTi−1γi−1
,

where γi−1 = ∇J (w(i)) − ∇J (w (i− 1)) and δi−1 = w(i) − w (i− 1). The
initial value M0 is the identity matrix. If, at some iteration, the matrix is not
found to be definite positive, it is re-initialized to the identity matrix.

That approximation is valid only in the neighborhood of a minimum of the
cost function. Therefore, it is recommended to use simple gradient descent (or
stochastic gradient descent) at the beginning of training, in order to get close
to a minimum, then switch to BFGS when the minimum is close enough.

2.10.5.2 The Levenberg-Marquardt Algorithm

The Levenberg-Marquardt algorithm consists in updating the parameters, at
iteration i, by

w(i) = w(i− 1) − [H(w(i− 1)) + µiI]−1∇(w(i− 1)),

where µi is positive. For small values of the step µi, the Levenberg-Marquardt
algorithm is close to the Newton method, whereas, for large values of µi, the
Levenberg-Marquardt algorithm is equivalent to simple gradient descent with
step 1/µi.

The application of the algorithm requires the inversion of matrix [H(w(i−
1))+µiI]. The exact expression of the Hessian matrix of the total cost function
J(w) is

H (w(i)) =
N∑

k=1

(
∂ek

∂w(i)

)(
∂ek

∂w(i)

)T

+
N∑

k=1

∂2ek

∂w(i) (∂w(i))T
ek,

with ek = yk
p − yk.

194 G. Dreyfus

The above relations are valid for a single-output model. The extension to
multiple outputs is straightforward.

Because the second term of the above relation is proportional to the error
ek, it can be neglected in a first approximation, which yields

H̃ (w(i)) =
N∑

k=1

(
∂ek

∂w(i)

)(
∂ek

∂w(i)

)T

=
N∑

k=1

(
∂yk

∂w(i)

)(
∂yk

∂w(i)

)T

.

In the case of a model that is linear with respect to its parameters, y is a
linear function of w, so that the second term of the expression of is equal to
zero.

Several techniques can be useful for inverting matrix [H̃ + µiI].

• Indirect inversion.

The inverse of a matrix can be computed recursively by the following
inversion lemma. If A, B, C and D denote four matrices, one has:

(A+BCD)−1 = A−1 −A−1B
(
C−1 +DA−1B

)−1
DA−1.

Moreover, with the notation ζk = (∂yk)/(∂w(i)), matrix H̃can be con-
structed recursively by defining “partial” matrices H̃k, of dimension (k, k),
by H̃k = H̃k−1 + zK(zk)T with k = 1, . . . , N . One has H̃ = H̃N as desired.

If the inversion lemma is applied to the previous relation with A = H̃, B
= ζk, C = I, and D =

(
ζk
)T, one gets:

(
H̃k
)−1

=
(
H̃k−1

)−1

−
(
H̃k−1

)−1

ζk
(
ζk
)T (

H̃k−1
)−1

1 + (ζk)T
(
H̃k−1

)−1

ζk

At the first step (k := 1), one takes H̃0 = µiI, which gives, at step N :(
H̃N
)−1

=
[
(H̃) + µiI

]−1

.

• Direct inversion.

Many inversion methods exist. Since the algorithm is iterative, and since
the line search procedure (described below) often requires several matrix in-
versions, an efficient inversion method is mandatory. Since the approximation
of the Hessian matrix µi I is symmetric definite positive, it is advantageous
to use Cholesky’s method [Press et al. 1992].

As for simple gradient descent and for BFGS, µi must be adjusted at each
iteration. A line search method can be used as discussed in the next section.

Note that the expression of the Hessian of the cost function is specific to the
least squares cost function; in contrast to the BFGS method, the Levenberg-
Marquardt algorithm cannot be used for minimizing arbitrary cost functions,
in particular the cross-entropy cost function, often used for classification.

2 Principles and Model Design Methodology 195

2.10.6 Line Search Methods for the Training Rate

At iteration i of an optimization method, an update direction must be com-
puted; in BFGS for instance, the direction di = −Mi∇J (w (i− 1)) is com-
puted by evaluating the gradient of the cost function by backpropagation,
and by computing matrix Mi as indicated in the previous section; in simple
gradient, the update direction is di = −∇J (w (i− 1)). The magnitude of
the parameter update along that direction depends on the value of µi: one
seeks the value of µi for which the cost function will be minimum after updat-
ing the parameter vector along that direction, for which J(w) is minimum if
w = w(i− 1) + µid

i. Insofar as µi is the only unknown, the problem is a line
search problem. That search must be performed at each iteration of the train-
ing procedure: therefore, it must be fast; since the value of µi is not critical
for second-order methods, a simple technique may be used. Nash’s method
produces satisfactory results; it seeks a step such that the updated value of
the cost function is smaller than a given bound.

The technique seeks a step that complies with the descent condition,

J
(
w (i− 1) + µid

i
) ≤ J (w (i− 1)) +m1µi

(
di
)T ∇J (w (i− 1)) ,

wherem1 is a factor, much smaller than 1 (typicallym1 = 10−3). The research
proceeds iteratively as follows: µi is given an arbitrary positive value. The up-
per boundary condition is checked. If it is obeyed, the parameter update is
accepted. Otherwise, the step is multiplied by a quantity smaller than 1 (typ-
ically 0.2), and the condition is tested again. The procedure is iterated until
satisfaction. If the step value becomes too small, e.g., on the order of 10−16,
without the condition being obeyed, or if the number of such search iterations
exceeds a limit, the search is abandoned and the procedure is terminated.

An even simpler strategy, often used in conjunction with the Levenberg-
Marquardt technique [Bishop 1995], is the following: we denote by r > 1
(generally equal to 10) a scale factor. At the beginning of the algorithm, µ 0

is initialized to a large value ([Bishop 1995] suggests 0.1). At iteration iof the
algorithm:

1. Compute J(w(i)) with µi computed at the previous step.
2. If J(w(i)) < J(w(i− 1)), then accept the update and multiply µi by r.
3. Otherwise, retrieve w(i− 1) and multiply µi by r. Iterate until a value of
µi producing a decrease of J is found.

The above procedure requires a small number of matrix inversions at each
iteration of the algorithm. However, the choice of the initial step has an in-
fluence on the rate of convergence of the algorithm. That drawback can be
circumvented by a method that requires a larger number of matrix inversions:

1. Initialize µ0 top an arbitrary value.
2. Compute J(w(i)) with µi found at the previous step.

196 G. Dreyfus

3. If J(w(i)) < J(w(i− 1)), then retrieve w(i− 1), divide µi by r and go to
step 2.

4. Otherwise multiply µi by r. Iterate until a suitable value of µi is found.

2.10.7 Kullback-Leibler Divergence Between two Gaussians

The expression of the Kullback-Leiibbler divergence between two Gaussians
with mean and standard deviation (µ1, σ1) and (µ2, σ2) respectively is derived.

The following relations are useful:

1
σ
√

2π

∫ +∞

−∞
exp
(

(x− µ)2
2α2

)
dx = 1

1
σ
√

2π

∫ +∞

−∞
x exp

(
(x− µ)2

2α2

)
dx = µ

1
σ
√

2π

∫ +∞

−∞
(x− µ)exp

(
(x− µ)2

2α2

)
dx = σ2.

The Kullback-Leibler divergence is defined as

D(p1, p2) =
∫ +∞

−∞
p1(x) ln

(
p1(x)
p2(x)

)
dx.

Because that definition is not symmetrical with respect to the two distri-
butions, the following quantity is preferred:

∆ = [D(p1, p2) +D(p2, p1)]/2

D(p1, p2) =
1

σ1

√
2π

∫ +∞

−∞
exp
(

(x− µ1)2

2σ2
1

)

×
[
ln
σ2

σ1
− (x− µ1)2

2σ2
1

+
(x− µ2)2

2σ2
2

]
dx

=
1

σ1

√
2π

[∫ +∞

−∞
exp
(

(x− µ1)2

2σ2
1

)
ln
σ2

σ1
dx

−
∫ +∞

−∞
exp
(

(x− µ1)2

2σ2
1

)
(x− µ1)2

2σ2
1

dx

+
∫ +∞

−∞
exp
(

(x− µ1)2

2σ2
1

)
(x− µ2)2

2σ2
2

dx
]

The first two terms are equal to ln(σ2/σ1) − (1/2).
For the third term, one writes

(x− µ2)2 = (x− µ1 + µ1 − µ2)2

= (x− µ1)2 + (µ1 − µ2)2 + 2(x− µ1)(µ1 − µ2).

2 Principles and Model Design Methodology 197

Hence,

1
σ1

√
2π

∫ +∞

−∞
exp
(

(x− µ1)2

2σ2
1

)
(x− µ1)2

2σ2
2

dx =
σ2

1

2σ2
2

1
σ1

√
2π

∫ +∞

−∞
exp
(

(x− µ1)2

2σ2
1

)
(µ1 − µ2)2

2σ2
2

dx =
(µ1 − µ2)2

2σ2
2

1
σ1

√
2π

∫ +∞

−∞
exp
(

(x− µ1)2

2σ2
1

)
(x− µ1)(µ1 − µ2)

2σ2
2

dx = 0.

Finally, one gets

D(p1, p2) = ln
(
σ2

σ1

)
− 1

2
+
σ2

1

2σ2
2

+
(µ1 − µ2)

2

2σ2
2

.

Then ∆ can be computed as

∆ = −1
2

+
σ2

1

4σ2
2

+
σ2

2

4σ2
1

+
(µ1 − µ2)

2

4σ2
2

+
(µ1 − µ2)

2

4σ2
1

=
−2σ2

1σ
2
2 + σ4

1 + σ4
2 + (µ1 − µ2)

2 (σ2
1 + σ2

2)
4σ2

1σ
2
2

=

(
σ2

1 − σ2
2

)
+ (µ1 − µ2)

2 (
σ2

1 + σ2
2

)
4σ2

1σ
2
2

.

2.10.8 Computation of the Leverages

Many discussions of the computation of leverages can be found in the litera-
ture. The present one is from [Monari 1999].
Z is an (N , q) matrix, with N ≥ q :Z = [z1, · · · , zN]T. The leverages

to be computed are the diagonal terms of the orthogonal projection matrix
H = Z(ZTZ)−1Z,

hkk = zkT(ZTZ)−1zk.

As diagonal elements of an orthogonal projection matrix, the terms

{hkk}k=1,...,N

are defined only if Z has full rank, i.e., if ZTZ is invertible. If it is, the following
relations are valid:

∀ k ∈ [1, . . . , N], 0 ≤ hkk ≤ 1, trace(H) =
N∑

k=1

hkk = rank(Z).

A first leverage computation technique consists in computing matrix ZTZ,
inverting it with a classical method (Cholesky, LU decomposition, etc.), then
in left and right multiplying by zk and zkT . That method is satisfactory only

198 G. Dreyfus

if ZTZ is well conditioned. Otherwise, that computation will give values of
the leverages that are larger than 1, or negative.

A better solution consists in decomposing matrix Z as

Z = U W V T,

where:

• U is an (N , q) matrix such that UTU = I.
• W is a diagonal (q, q) matrix, whose diagonal terms called singular values

of Z, are positive or zero, and ranked in order of decreasing values.
• V is a (q, q) matrix, such that V TV = V V T = I.

That decomposition, known as singular value decomposition or SVD decompo-
sition, is accurate and robust, even if Z is ill-conditioned, or has rank smaller
than q (see [Press et al. 1992], and Chap. 3).

Thus, one has

ZTZ = VWUTUWV T = VW 2V T,

then
(ZTZ)−1 = VW−2V T.

That decomposition allows the direct computation of matrix (ZTZ)−1, the
elements of which can be written as

(
ZTZ

)−1

lj
=

q∑
k=1

VlkVjk

W 2
kk

.

After some algebra, one gets

hkk = zkT
(
ZTZ

)−1
zk =

q∑
l=1

q∑
j=1

ZklZkj

(
ZTZ

)−1

lj
,

and, finally

hkk =
q∑

i=1

⎛
⎝ 1
Wii

q∑
j=1

ZkjVji

⎞
⎠2

.

Thus, the leverages can be computed without resorting to the computation
of (ZTZ)−1, which is important in the case of ill-conditioned matrices. Since
the singular values are ranked in order of decreasing values, it is advantageous
to compute the leverages by varying i from q to 1, not from 1 to q.

2 Principles and Model Design Methodology 199

References

1. Akaike H. [1973], Information theory and an extension of the maximum likeli-
hood princiaple, 2nd International Symposium on Information Theory, pp 267–
281, Akademia Kiado

2. Akaike H. [1974], A new look at the statistical model identification, IEEE Trans-
actions on Automatic Control, 19, pp 716–723

3. Antoniadis A., Berruyer J., Carmona R. [1992], Régression non linéaire et ap-
plications, Economica

4. Bartlett P.L. [1997], For valid generalization, the size of the weights is more
important than the size of the network, Neural Information Processing Systems,
9, Morgan Kaufmann

5. Bishop C. [1993], Curvature-driven smoothing: a learning algorithm for feedfor-
ward networks, IEEE Transactions on Neural Networks, 4, pp 882–884

6. Bishop C. [1995], Neural Networks for Pattern Recognition, Oxford University
Press.

7. Björck A. [1967], Solving linear least squares problems by Gram-Schmidt or-
thogonalization. BIT, 7, pp 1–27

8. Broyden C.G. [1970], The convergence of a class of double-rank minimization
algorithms 2: the new algorithm, Journal of the Institute of Mathematics and
its Applications, 6, pp 222–231

9. Chen S., Billings S.A., Luo W., Orthogonal least squares methods and their
application to nonlinear system identification, International Journal of Control,
50, pp 1873–1896

10. Draper N.R., Smith H. [1998], Applied Regression Analysis, Wiley
11. Dreyfus G., Idan Y. [1998], The canonical form of discrete-time nonlinear mod-

els, Neural Computation, 10, pp 133–164
12. Gallinari P., Cibas T. [1999], Practical complexity control in multilayer percep-

trons, Signal Processing, 74, pp 29–46
13. Geman S., Benenstock E., Doursat R. [1992], Neural networks and the

bias/variance dilemma, Neural Computation 4, pp 1–58
14. Goodwin G.C., Payne R.L. [1977], Dynamic System Identification: Experiment

Design and Data Analysis, Mathematics in Science and Engineering, Academic
Press

15. Goodwin G.C., Sin K.S. [1984], Adaptive Filtering Prediction and Control,
Prentice-Hall, New Jersey

16. Guyon I., Gunn S., Nikravesh M., Zadeh L., eds. [2005], Feature extraction,
foundations and applications, Springer

17. Hansen L.K., Larsen J. [1996], Linear unlearning for cross-validation, Advances
in Computational Mathematics, 5, pp 269–280

18. Haykin S. [1994], Neural Networks: a comprehensive approach, MacMillan
19. Jollife I.T. [1986], Principal Component Analysis, Springer
20. Kohonen T. [2001] Self-Organizing Maps, Springer
21. Kullback S., Leibler R. A. [1951], On information and sufficiency, Annals of

mathematical Statistics, 22, pp 79–86
22. Kullback S. [1959], Information Theory and Statistics, Dover Publications
23. Kuo B. C. [1992], Digital Control Systems, Saunders College Publishing
24. Kuo B. C. [1995], Automatic Control Systems, Prentice Hall
25. Lagarde de J. [1983], Initiation à l’analyse des données, Dunod, Paris

200 G. Dreyfus

26. Lawrance A.J. [1995], Deletion, influence and masking in regression, Journal of
the Royal Statistical Society, B 57, pp 181–189

27. Leontaritis I.J., Billings S.A. [1987], Model selection and validation methods for
nonlinear systems, International Journal of Control, 45, pp 311–341

28. Levenberg K. [1944], A method for the solution of certain nonlinear problems
in least squares, Quarterly Journal of Applied Mathematics, 2, pp 164–168

29. Levin A., Narendra K.S. [1993], Control of nonlinear dynamical systems using
neural networks: controllability and stabilization, IEEE Transaction on Neural
Networks, 4, pp 1011–1020

30. Ljung L. [1987], System Identification; Theory for the User, Prentice Hall
31. McKay D.J.C. [1992], A practical Bayesian framework for backpropagation net-

works, Neural Computation, 4, pp 448–472
32. McQuarrie A.D.R, Tsai C., Regression and Time Series Model Selection, World

Scientific
33. Marquardt D.W. [1963], An algorithm for least-squares estimation of nonlinear

parameters, Journal of the Society of Industrial and Applied Mathematics, 11,
pp 431–441

34. Monari G. [1999], Sélection de modèles non-lineaires par leave-one-out; étude
théorique et application des réseaux de neurones au procédé de soudage par
points, Thèse de Doctorat de l’Université Pierre et Marie Curie, Paris. Available
from http://www.neurones.espci.fr

35. Monari G., Dreyfus G. [2000], Withdrawing an example from the training set:
an analytic estimation of its effect on a nonlinear parameterised model, Neuro-
computing, 35, pp 195–201

36. Monari G., Dreyfus G. [2002], Local Overfitting Control via Leverages, Neural
Computation

37. Mood A.M., Graybill F.A., Boes D.C. [1974], Introduction to the Theory of
Statistics, McGraw-Hill

38. Narendra K.S, Annaswamy A.M. [1989], Stable Adaptive Systems, Prentice-Hall
39. Nerrand O. [1992], Réseaux de neurones pour le filtrage adaptatif, l’identification

et la commande de processus, thèse de doctorat de l’Université Pierre et Marie-
Curie

40. Nerrand O., Urbani D., Roussel-Ragot P., Personnaz L., Dreyfus G. [1994],
Training recurrent neural networks: why and how? An Illustration in Process
Modeling, IEEE Transactions on Neural Networks 5, pp 178–184

41. Norgaard J.P., Ravn O., Poulsen N.K., Hansen L.K. [2000], Neural Networks
for Modelling and Control of Dynamic Systems, Springer

42. Norton J.P. [1986], An introduction to Identification, Academic Press
43. Oussar Y. [1998], Réseaux d’ondelettes et réseaux de neurones pour la modé-

lisation statique et dynamique de processus, Thèse de Doctorat de l’Université
Pierre et Marie Curie, Paris. Available from http://www.neurones.espci.fr

44. Oussar y., Dreyfus G. [2002], Initialization by selection for wavelet network train-
ing, Neurocomputing, 34, pp 131–143

45. Oussar Y., Dreyfus G. [2001], How to be a gray box: dynamic semiphysical
modeling, Neural Networks, vol. 14

46. Plaut D., Nowlan S., Hinton G.E. [1986], Experiments on learning by back prop-
agation, Technical Report, Carnegie-Mellon University

47. Poggio T., Torre V., Koch C. [1985], Computational vision and regularization
theory, Nature, 317, pp 314–319

2 Principles and Model Design Methodology 201

48. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. [1992], Numerical
Recipes in C: The Art of Scientific Computing, Cambridge University Press.

49. Puskorius G.V., Feldkamp L.A. [1994], Neurocontrol of nonlinear dynamical
systems with Kalman Filter trained recurrent networks, IEEE Trans. on Neural
Networks, 5, pp 279–297

50. Rumelhart D.E., Hinton G.E., Williams R.J. [1986], Learning internal represen-
tations by error backpropagation, Parallel Distributed Processing: Explorations
in the Microstructure of Cognition, pp 318–362, MIT Press

51. Saarinen S., Bramley R., Cybenko G. [1993], Ill-conditioning in neural network
training problems, SIAM J. Sci. Stat. Comp., 14, pp 693–714

52. Seber G.A.F., Wilde C.J. [1989], Nonlinear Regression, Wiley
53. Seber G.A.F. [1977], Linear Regression Analysis, Wiley
54. Sjö berg J., Zhang Q., Ljung L., Benveniste A., Delyon B., [1995], Nonlinear

black–box modeling in system identification: a unified overview, Automatica, 31,
pp 1691–1724

55. Soderstrom T. [1977], On model structure testing in system identification, In-
ternational Journal of Control, 26, pp 1–18

56. Sontag E.D. [1993], Neural networks for control, Essays on control: perspectives
in the theory and its applications, pp 339–380, Birkhäuser

57. Stone M. [1974], Cross-validatory choice and assessment of statistical predic-
tions, Journal of the Royal Statistical Society, B 36, pp 111–147

58. Stoppiglia H. [1998], Méthodes statistiques de sélection de modèles neuronaux;
applications financières et bancaires, thèse de doctorat de l’Université Pierre et
Marie-Curie. Available from http://www.neurones.espci.fr

59. Stoppiglia H., Dreyfus G., Dubois R., Oussar Y. [2003], Ranking a Random Fea-
ture for Variable and Feature Selection, Journal of Machine Learning Research,
pp 1399–1414

60. Stricker M. [2000], Réseaux de neurones pour le traitement automatique du lan-
gage: conception et réalisation de filtres d’informations, thèse de l’Université
Pierre et Marie-Curie. Available from http://www.neurones.espci.fr

61. Tibshirani R.J. [1996], A comparison of some error estimates for neural models,
Neural Computation, 8, pp 152–163

62. Tikhonov A.N., Arsenin V.Y. [1977], Solutions of Ill-Posed Problems, Winston
63. Vapnik V.N. [1995], The Nature of Statistical Learning Theory, Springer
64. Waibel , Hanazawa T., Hinton G., Shikano K., and Lang K. [1989], Phoneme

recognition using time-delay neural networks, IEEE Transactions on Acoustics,
Speech, and Signal Processing, 37, pp 328–339

65. Werbos P.J. [1974], Beyond regression: new tools for prediction and analysis in
the behavioural sciences, Ph. D. thesis, Harvard University

66. Widrow B., Hoff M.E. [1960], Adaptive switching circuits, IRE Wescon Con-
vention Records, 4, pp 96–104

67. Wonnacott T.H., Wonnacott R.J. [1990], Statistique économie-gestion-sciences-
médecine, Economica, 4e édition, 1990

68. Zhou G., Si J. [1998], A systematic and effective supervised learning mechanism
based on Jacobian rank deficiency, Neural Computation, 10, pp 1031–1045

3

Modeling Methodology: Dimension Reduction
and Resampling Methods

J.-M. Martinez

3.1 Introduction

This chapter provides additional elements of methodology for neural network
design. It provides answers to methodological questions raised by neural net-
work modeling. As explained in the previous chapter, there is more to the
design of a neural model than choosing the number of hidden neurons and
implementing a training algorithm:

• Before using a neural network or any other statistical model, it may be
necessary to construct new input variables to decrease their number whilst
losing as little information as possible concerning their distribution.

• After estimating the parameters of the model (training if the model is a
neural network), the user should assess the risk of using the model thus
designed; that risk is linked to the generalization error, which cannot be
computed, hence must be estimated. In the previous chapter, we discussed
a method for estimating the generalization error by computation of the
virtual leave-one-out score. In this chapter, we describe another recent
statistical technique, based on resampling, which is used to estimate the
statistical characteristics of the generalization error.

Therefore, the aspects of the methodology described in this chapter are re-
lated to

• the preprocessing to be performed on the data,
• the techniques for reducing the number of inputs, based on principal com-

ponent analysis and curvilinear component analysis,
• the estimation of the generalization error using statistical resampling tech-

niques, with emphasis on the bootstrap.

The reduction in size is not only intended to decrease the number of vari-
ables describing each example: it also attempts to design more compact data
representations, thus making their analysis easier. In the context of linear

204 J.-M. Martinez

modeling, the conventional method of input dimension reduction is termed
principal component analysis (PCA): the latter consists in projections, and
is limited to linear varieties. To process nonlinear representations, we will de-
scribe an alternative method, termed curvilinear component analysis (CCA),
which may be considered as a “nonlinear” extension of PCA. It is similar to
the “Kohonen maps” (Chap. 7), but it is more flexible than them, since the
structure of the projection space is not imposed.

Resampling methods aim at performing estimations estimates when the
probability distributions of the variables to be analyzed are not known. In the
problems raised by regression, particularly regression by neural networks, they
allow estimations of the generalization error, and they lead to efficient and
robust assessments of the variability of the network with respect to the data;
that is the key element of the bias-variance dilemma (described in Chap. 2),
which arises in the generation of any statistical model. Those advanced tech-
niques are computer-intensive, but the increased speed of computers makes
them more and more popular. A new method will be described, combining the
bootstrap and early stopping (described in the previous chapter) to automate
and monitor the training of neural networks.

3.2 Preprocessing

3.2.1 Preprocessing of Inputs

In the previous chapter, we mentioned that the values of model variables are
generally expressed in different units and have different orders of magnitude.
It is therefore necessary to pre-process those values so that they have the same
influence on the design of the model. Therefore, variables must be centered
and reduced or at least normalized. The preprocessing described in the sec-
tion “Input normalization” of Chap. 2 transforms the input components into
variables with zero average and unit standard deviation.

Standardize or Reduce

For distributions with uniform and centered inputs, the ratio between stan-
dardization and reduction is only

√
3 for the standard deviation. The standard

deviation of a uniform distribution over an interval l is l/2
√

3 and standard-
ization over the same interval divides the variable by l/2.

Boolean Variables

The values 0 and 1 of Boolean variables should be transformed into −1 and
+1 respectively; variables resulting from fuzzy encoding should be subject to
similar processing.

Figure 3.1 shows the effect of preprocessing. It corresponds to a shift of
the centre of gravity of the scatter diagram followed by standardization of the
dispersion of values on each axis without altering the distribution of points.

3 Dimension Reduction and Resampling Methods 205

Fig. 3.1. Data centering and reduction

That simple preprocessing, applied to all components, is often used to
detect anomalies in the database. A standard deviation that is too low may
mean that the corresponding variable has too small variability to actually
have an influence on model. Variables with zero standard deviation should
of course be ignored, since they do not provide any information in the design of
the model. For a more extensive diagnosis of such “anomalies”, the advice of
the process expert must be sought.

3.2.2 Preprocessing Outputs for Supervised Classification

Preprocessing of outputs is link to output encoding. For supervised classifi-
cation (described in detail in Chap. 6), the encoding of outputs is associated
with posterior probabilities, so that the problem of preprocessing is irrele-
vant: the encoding of posterior probability leads to representing each class by
an output neuron with a logistic activation function. The associated cost is
cross-entropy rather than the least-squares cost. For two-class discrimination,
where y and y∗ are the network output and the desired class code respectively,
cross-entropy is defined by

J = y∗ ln y + (1 − y∗) ln (1 − y) .

206 J.-M. Martinez

Note that the minimum of that function is obtained for y = y∗, as for the
least squares cost function. The extension to problems with several classes is
straightforward. For example, for n classes, the logistics are replaced by the
softmax function,

yi =
ezi

n∑
j=1

ezj

with zi =
∑

k

wikxk + wi0.

For each example, cross-entropy is expressed by

E =
n∑

i=1

y∗i ln yi + (1 − y∗i) ln(1 − yi).

Training

The interested reader will note that, maybe surprisingly, that approach does
not makes computations more complicated: on the contrary, it makes them
simple: actually, that consists in not taking into account the nonlinearity
provided by the logistics in the computation of the gradient,

∂E

∂wik
= (yi − y∗i)xk.

That is equivalent to Widrow-Hoff’s training rule described in Chap. 2.

3.2.3 Preprocessing Outputs for Regression

In regression problems, the outputs represent conditional averages. The res-
idues around the average value are assumed to follow a normal centered law.
In order to optimize the design of the model, outputs are therefore centered
and reduced; the averages and variances of the outputs are estimated on the
basis of examples.

The average quadratic error EQMr, computed in the reduced output space,
corresponds to the average quadratic error EQM computed from raw data,
divided by the estimated variance.

EQMr =
1
N

N∑
k=1

(ỹk − ỹ∗k)2 ⇒ EQM = EQMr × σ2
y.

Reduced Error and Coefficient of Nondetermination

The relation between the average quadratic error computed from the centered
reduced variables is the “residual variance divided by total variance” used in
linear regression to express the percentage of the variance not taken into
account by the model. In that case, the one’s complement of the average

3 Dimension Reduction and Resampling Methods 207

quadratic error, known as the coefficient of nondetermination, defines the
contribution of the model: the least expensive and least powerful model is the
model that predicts the output as the average value of the measured output,
irrespective of the input. For that model, the average quadratic error EQMr

is 1.

3.3 Input Dimension Reduction

The design of the model g(x,w) may require a reduction in dimension of the
input vector x. That is particularly important when the number variables is
too large to be handled conveniently; or when it is assumed that they are not
mutually independent. In the latter case, their reduction simplifies the design
of the model. The latter is therefore more robust with respect to the variability
of the data, and is less sensitive to overfitting due to over-parameterization
(see Chap. 2).

In order to explore the structure of multidimensional data, the analysis is
based on the observation of the distribution of variables in the input space.
When the number of factors is too high for visual analysis or digital process-
ing, it must be decreased. In linear statistics, PCA (Principal Component
Analysis) is used for reducing the number of factors. The method is based
on a linear combination of factors by projection. It provides a more synthetic
representation of the data.

In this section, we will review the principles of PCA; we will then discuss
CCA (Curvilinear Component Analysis), which may be viewed as a nonlinear
extension of PCA, well suited to representations of more complex data struc-
tures. A parallel will be drawn with self-organizing Kohonen maps, which are
also used for nonlinear data analysis.

3.4 Principal Component Analysis

Principal component analysis is one of the oldest statistical analysis tech-
niques. It was developed to study samples of individuals described by several
factors. The method is therefore suited to the analysis of multidimensional
data: in general, the separate study of each factor is not sufficient, since it
does not allow for the detection of possible dependencies between factors.

3.4.1 Principle of PCA

To reduce the number of factors (components), PCA constructs sub-spaces of
input space (also termed representation space), whose dimensions are there-
fore smaller than the number of factors, in which the distribution of obser-
vations (points) is as similar as possible to their distribution in representa-
tion space. The similarity criterion is the total inertia of the scatter diagram.

208 J.-M. Martinez

Therefore, PCA is a linear projection method that maximizes the inertia of
the scatter diagram.

Before describing the theoretical developments, let us review, as a simple
illustration, the example of the distribution of a scatter diagram in R

2 shown
in Fig. 3.1. The first main axis found by PCA is the axis with respect to which
the inertia of the scatter diagram is maximal. The second axis, orthogonal to
the previous one, is the axis with respect to which the inertia of the scatter
diagram, in the null space of the first axis. The other axes are defined similarly.

PCA and Gram-Schmidt Orthogonalization

This procedure may be reminiscent of the Gram-Schmidt orthogonalization
described in the previous chapter for the selection of inputs. That analogy,
however, is deceptive. PCA is a procedure that is carried out in representation
space, in which each observation is represented by a point, whose co-ordinates
are the values of the factors that correspond to that observation. By contrast,
Gram-Schmidt orthogonalization for the selection of inputs is carried out in
the observation space, where each factor is represented by a vector, the compo-
nents of which are observations of this factor in the database. The dimension
of representation space is the number of factors of the model, whilst the di-
mension of observation space is the number of observations in the database.

Figure 3.2 shows the 2 main axes defined by the 1st and 2nd bisector
respectively (the orthogonality of the axes is distorted by the scale of the
graph). The main components will be represented by projections of points on
the main axes. Linear transformation by PCA therefore consists in changing
the variables, defined by the main axes, on the centered data.

We will show that the “mechanical” concept of total inertia of the scatter
diagram is equivalent to the “statistical” concept of variance. The inertia
of points is computed with respect to the centre of gravity of the scatter
diagram. We denote by g the centre of gravity and by In the inertia of the
scatter diagram defined in R

n, we have

gj =
1
N

N∑
i=1

xij ⇒ In =
n∑

j=1

N∑
i=1

(xij − gj)2.

Inertia In is therefore equal to the trace of the variance-covariance matrix of
the data X defined by

V = (X − Ig)T (X − Ig) ,
where I denotes the identity matrix.

Since inertia is shift-invariant, the data may be centered by X ′ = X − Ig,
so that one has the following simple relation between the inertia and the
variance-covariance matrix on the new centered data X ′:

In = Trace
(
X ′TX ′) .

3 Dimension Reduction and Resampling Methods 209

Fig. 3.2. Change of variables by PCA

Inertia on Centered and Reduced Data

For centered and reduced data, one has Tr
(
XTX

)
= n.

Consider a sub-space of dimension q < n, and denote by Vn×q the matrix
associated with the projector on R

q; the scatter diagram projected on R
q is

represented by matrix XV , the inertia of which is

Iq = Tr
(
V TXTXV

)
.

PCA defines the linear projection that maximizes Iq, the value of the inertia
of the points computed in R

q. That problem is solved by finding the first axis
with respect to which the inertia is maximum, then a second axis, orthogonal
to the previous one, to carry on with the maximization of the inertia, and
so on up to the pth axis. The axes obtained are borne by the eigenvectors of
matrixXTX, ranked in order of decreasing eigenvalues λi. The eigenvalues λj ,
j = 1, . . . , n are positive or zero, since matrix XTX is positive symmetrical.
The transformation to be performed on of the centered data to obtain the
main components is

x ∈ R
n → V T

n×qx ∈ R
q<n.

210 J.-M. Martinez

The selection of the main components (q out of p) results from an analysis of
the eigenvalues. Before describing it, it is worthwhile reviewing a technique,
similar to PCA, which is extensively used in linear algebra: singular value
decomposition (SVD) [Cichoki 1993]. That technique, which is very useful for
solving linear systems, was mentioned in the previous chapter as a tool for
calculating leverages for nonlinear models.

Theorem. For all A ∈ R
n×p matrices, there exist two orthogonal matrices

U ∈ R
n×p and V ∈ R

p×p such that

UTAV = S =

⎛
⎜⎜⎜⎝
σ1 0 · · · 0
0 σ2 · · · 0
...

. 0
0 · · · 0 σm

⎞
⎟⎟⎟⎠ ,

with σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0, where m = min(p, n).

The elements of the diagonal matrix S are the singular values σj , ranked
in decreasing order. The singular values σj are the square roots of the eigen-
values λj of the positive symmetrical matrix ATA or matrix AAT if m < n.
The columns of the matrix V associated with the change of variables are the
eigenvectors of matrix ATA.

PCA and SVD

Therefore, PCA and SVD are equivalent when operated on centered data.
Unlike diagonalization techniques for square matrices, singular value de-

composition applies to all types of matrices. The index for the 1st singular
value equal to 0 is the rank of the matrix; its condition number is the ratio of
the largest to the smallest singular value σ1/σp.

From the orthogonality of matrices U and V, one has

UTAV = S ⇒ A = USV T.

In a modeling application, if A is the matrix of centered observations (defined
in the previous chapter), matrix US = AV describes the same observations in
an “orthogonal” representation: the new inputs obtained after transformation
are not subject to linear correlation. The same technique is used for “cleaning”
signals [Davaud 1991]. In order to reduce the new inputs, matrix U is retained
as a new base of examples: the linear transformation thus becomes S−1V Tx
instead of V Tx.

Singular value decomposition of the matrix of centered data X is used to
express the inertia with respect to the singular values σj or the eigenvalues
λj of matrix XTX,

Ip = Tr
(
XTX

)⇒ Ip =
p∑

j=1

λj ⇒ Ip =
p∑

j=1

σ2
j .

3 Dimension Reduction and Resampling Methods 211

Inertia and Matrix Norm

That result is familiar in linear algebra since the inertia of the scatter diagram
corresponds to the Frobenius matrix norm, which is expressed as a function
of singular values,

‖X‖F =
√∑

i,j

x2
ij =

√∑
j

σ2
j .

The projection matrix Pp×q associated with the first q axes is therefore
represented by the first q vectors of matrix Vp×p. The contribution to the
inertia of each main axis is given by the ratio of σ2

j to the sum σ2
1+σ2

2+· · ·+σ2
p.

The contribution of the first q axes is:

Iq =
q∑

j=1

σ2
j ⇒ Iq = Ip

q≤p∑
j=1

σ2
j

p∑
j=1

σ2
j

.

The quality of the dimension reduction depends on the value of q. There is
no general rule for determining the best value. A few rules used to determine
the number q of components [Saporta 1990] may be mentioned:

• The part of the explained inertia to contribute at least a fixed percentage
of the inertia,

• Kaiser’s rule,which retains eigenvalues larger than the average of eigenval-
ues (for reduced centered data, that consists in retaining the eigenvalues
that are larger greater than 1, since the sum of the eigenvalues is equal
to n),

• The “scree test” which, from the curve of Iq as a function of q = 1, 2, . . . , n,
selects the value of q that corresponds to the 1st break in the gradient, as
shown in the example given in Fig. 3.3 with a break in the gradient from
the 4th eigenvalue.

Before applying PCA systematically, it must be remembered that the so-
called principal component is defined from the criterion concerning the inertia
of the scatter diagram. For certain problems, the principal component is by
far not the most informative aspect. For example, in a set of human faces of
several different races, the recognition of race is based more fully on the sec-
ondary components; the first component is more representative of the average
characteristics of the faces.

3.5 Curvilinear Component Analysis

For more complex distributions, dimensionality reduction may require nonlin-
ear processing. Curvilinear component analysis was proposed by [Demartines

212 J.-M. Martinez

Fig. 3.3. Percentage of explained variance

1995] for analyzing and reducing the dimensions of nonlinear distributions. It
may be viewed as a nonlinear extension of principal component analysis. CCA
uses a more local criterion than PCA, which allows it to keep the local topol-
ogy of the distribution of input points. An analysis of this method, together
with examples of applications may be found in [Hérault 1993; Vigneron 1997].

Figure 3.4 shows CCA applied to dimension reduction of nonlinear data
structures: on the left, the left-hand part shows a set of points defined in
R

3, and the right-hand part shows a representation in R
2. The dimension

reduction may therefore be seen as a “nonlinear” projection that retains the
proximity of points and therefore the local topology of the distribution.

In closed structures, such as a sphere or a cylinder, dimensionality re-
duction will inevitably result in some local distortion, as shown in Fig. 3.5,
which shows an example of the projection of a sphere on the plane. The main
principle of CCA is the gradual control of local distortion, during training.

Since the main goal of CCA is a dimensionality reduction that preserves the
local topology, it is ideally suited for the representation of nonlinear varieties.
A variety in R

p may be defined roughly as a set of points, the local dimensions
of which are smaller than p. The envelope of a sphere defined in R

3 is an
example: the dimension of the variety is 2. More strictly, a variety of dimension
q in R

q is a sub-set of R
n obtained by applying a function defined by R

q in R
q.

3 Dimension Reduction and Resampling Methods 213

Fig. 3.4. CCA Projection of a hemisphere

Fig. 3.5. CCA projection of a sphere

The rank of the differential of the application determines the local dimensions
of the variety.

In relation to PCA, that method is therefore used to represent data struc-
tures that are distributed in a nonlinear manner. It is similar to methods
based on Kohonen’s self-organizing maps, but its principle is different. There
are no constraints on the points in the projection space. In theory, no neigh-
borhood is defined between the points in the projection space. That gives
great flexibility to the method.

3.5.1 Formal Presentation of Curvilinear Component Analysis

The co-ordinates of the p points are defined

• by xi ∈ R
n, i = {1, . . . , p} in the original space;

• by yi ∈ R
n′<n, i = {1, . . . , p} in the reduced space.

214 J.-M. Martinez

If Xij and Yij are the distances between points i and j, computed in the
original space and in the reduced space respectively, one has:

• original space: Xij =
√∑n

k=1(xik − xjk)2,

• reduced space: Yij =
√∑n′

k=1(yik − yjk)2.

The transformation of components generates a distortion of the variety. By
retaining the same metrics (euclidean distance), a measurement of distortion
may be given by comparing distances Xij with distances Yij :

p∑
i=1

p∑
j=i+1

(Xij − Yij)
2
.

A parallel may be drawn with PCA, which defines linear projection by min-
imizing the objective function:

∑
i,j X

2
ij −∑i,j Y

2
ij . That function expresses

the difference between the average of distances X2
ij computed in the original

space and the average of distances Y 2
ij computed in the reduced space. By

contrast, the cost function used for CCA tends to preserve differences in dis-
tances Xij − Yij , and is therefore used to represent nonlinear varieties with
minimum distortion.

In order to be able to unfold the varieties, a weighting term F (Yij , ρ),
which a decreasing positive function of distance Yij , may be introduced in the
cost function (Fig. 3.6).

The term F (Yij) favors short distances in projection space. Parameter ρ
plays the same role as the radius parameter defined in Kohonen maps: in

Fig. 3.6. Distance weighting function

3 Dimension Reduction and Resampling Methods 215

output space, distances greater than ρ will no longer be taken into account.
The decrease in parameter ρ during training allows the opening, and possibly
the breaking, of certain nonlinear varieties. The projection of a sphere R3 in
R2 (Fig. 3.4) shows an example of a variety for which the projection requires a
breaking. The function is therefore used to open certain varieties by retaining
the local topology as far as possible.

Therefore, the objective function minimized by CCA takes the following
form:

E =
p∑

i=1

p∑
j=i+1

(Xij − Yij)
2
F (Yij , ρ) .

3.5.2 Curvilinear Component Analysis Algorithm

The algorithm consists in minimizing the above cost function with respect to
the coordinates of each point in the database in reduced space. As for learning,
we may use any of the optimization algorithms given in Chap. 2. Training can
be performed by any minimization algorithm, as described in Chap. 2. For
illustration, we describe the minimization of the cost function by stochastic
gradient.

Thus, we compute the partial derivatives of the cost function with respect
to each parameter; we denote by yik the k−ith coordinate of point i,

∂E

∂yik
=
∑
j �=i

∂E

∂Yij

∂Yij

∂yik

= −
∑
j �=i

Xij − Yij

Yij
[2F (Yij) − (Xij − Yij)F ′(Yij)](yik − yjk).

Parameters are updated as follows, where µ is the gradient step:

∆yi = µ
∑
j �=i

Xij − Yij

Yij
[2F (Yij) − (Xij − Yij)F ′(Yij)] (yi − yj).

A condition should be provided to guarantee the convergence of the minimiza-
tion. The term βij = 2F (Yij) − (Xij − Yij)F ′(Yij) must be positive. If Yij is
too large with respect to Xij , point j should be brought closer to point i. The
functions F (Yij) should be selected in order to guarantee βij > 0. That condi-
tion is difficult to satisfy: for instance, for F (Yij) = exp (−Yij/ρ), the stability
requires ρ > (Yij −Xij)/2. That condition cannot always be fulfilled because
ρ decreases during training. The following simplification of the training rule
guarantees, almost everywhere, that βij = 2 > 0:

∆yi =

⎧⎪⎨
⎪⎩
µ
∑
j �=i

Xij − Yij

Yij
(yi − yj) if Yij > ρ;

0 otherwise.

216 J.-M. Martinez

Fig. 3.7. Example of a dead end

The contribution of the n− 1 points j on point i produces an average effect.
In certain situations, this may lead to dead ends. Figure 3.7 shows an example
of such a situation.

In input space (a) point i = 1 at the center of gravity of the other three
points. In output space (b), the initial conditions located it outside the three
points. With the exact rule, point 3 in output space will be blocked by points
2 and 3. Therefore, point 1 cannot reach the optimum position.

To overcome such problems, a simple empirical rule can be used. Instead
of adapting point i to the other points, the new rule consists in adapting all
other points to point i,

∆yj =

⎧⎪⎨
⎪⎩
µ
∑
j �=i

Xij − Yij

Yij
(yj − yi) if Yij > ρ;

0 otherwise.

To a certain extent, this stochastic version of the gradient is used to over-
come problems of local minima, whilst guaranteeing the average minimization
of the cost function.

3.5.3 Implementation of Curvilinear Component Analysis

The implementation of the method requires the selection of

• preprocessing of data xij ,
• the initial values of components yij,

• a law for the decrease of parameter ρ.

3 Dimension Reduction and Resampling Methods 217

Given the metrics used to compute distances, and for the same reasons
as for PCA, the adapted preprocessing operations consists in a reduction of
each component in order to standardize their importance in the computation
of the distances. Although that is not mandatory, data may also be centered
in order to obtain graphic representations around the origin.

As for Kohonen maps, the components yij of units in the output space, are
initialized to random values. To standardize their distribution, each compo-
nent may be uniformly distributed in [−1, 1]. Given the computations of the
euclidean distances Xij and Yij evaluated respectively in spaces of different
dimensions, p and q, the comparison of distances is biased. To overcome that
problem, especially for high dimension reduction rates, the recommended rule
consists in assessing average distances while taking into account the dimen-
sions of the spaces:

Xij =

√∑p
k=1 (xik − xjk)2

p
, Yij =

√∑p
k=1 (yik − yjk)2

q
.

The selection of parameter ρ has a large impact on the quality of the projec-
tion. During the first iterations, all points yi in output space should contribute
to the cost function. The rule consists in initializing parameter ρ to the max-
imum of distances Yij ,

ρ (0) = max
ij
Yij .

The final value of ρ should correspond to the smallest value required on Yij ,
i.e., to the smallest of values Xij ,

ρ (tmax) = min
ij
Xij .

Parameter decreases according to a law that depends on the number of iter-
ations t from the initial value ρ(0) to the final value ρ(tmax),

ρ (t) = ρ (0)
(
ρ (tmax)
ρ (0)

)t/tmax

.

3.5.4 Quality of the Projection

One of the important aspects of curvilinear analysis is the criterion used to
assess the quality of the result. That criterion is based on the comparison of the
values Xij and Yij that correspond to the distances between points, computed
in the original space and in the reduced space respectively. The distances are
represented in a plane dx−dy by a point of coordinates dx = Yij and dy = Xij .
The points close to the line dx = dy correspond to neighboring distances. The
distortion due to the dimensionality reduction is therefore proportional to the
average distance from the points to the straight line dx = dy. Figure 3.8 shows
the average distribution of the distances for the example of the hemisphere
and for that of the sphere.

218 J.-M. Martinez

Fig. 3.8. Distribution of distances in the plane (dy − dx) for the hemisphere and
sphere

For the nonlinear varieties illustrated by those examples, the projection
must exclude certain points. That is true for the map of the earth obtained
using Mercator’s projection. The “western” projection separates the coastlines
of the Bering straits.

In the plane dy − dx, the scatter diagram takes the form of a bell: points
close to each other in the original space (dx small) will be further apart (dy
large) in projection space. The bell shape appears clearly for the projection of
the sphere, where an opening separates the points on the large diameter (Fig.
3.5). Checking the projection consists in checking that the bell shape retains
the local topology as far as possible: if two points are close in the reduced
space, they must be close in the original space.

3.5.5 Difficulties of Curvilinear Component Analysis

Before describing an application, we outline the shortcomings of CCA. The
first problem is that of computation time. The distances between points should
be computed. If the number of points is too great, CCA cannot be applied
directly to the data. A preliminary sampling step is necessary to reduce the
number of examples.

The second problem is related to the use of CCA in on-line mode. Unlike
PCA, reduced components cannot be computed directly. They are obtained
by iterations of gradient descent. Let us describe the CCA procedure. Let
x0 be a new input; we want to find the corresponding component y0. The
algorithm consists in initializing y0 by the center of gravity of 3 or 4 points yk

that correspond to the points xk closest to x0. The projection y0 is calculated
using the same algorithm:

3 Dimension Reduction and Resampling Methods 219

Fig. 3.9. Example of a spectrum

∆y0 =

⎧⎪⎨
⎪⎩
µ
∑
j �=i

Xi0 − Yi0

Yi0
(y0 − yj) if Yi0 > ρ;

0 otherwise.

That initialization method appears to be very efficient; convergence is
obtained in a few iterations (less than ten) [Pilato 1998].

3.5.6 Applied to Spectrometry

The application described below was performed in the Saclay Study Centre
[Pilato 1998]. It deals with the measurement of the concentration of radioac-
tive materials. The inspection of nuclear processing units (power plants, re-
processing factories) requires the measurement of concentrations of certain
radioactive materials. Concentration measurements are performed on solu-
tions from the water circuits of the plants. One of the techniques used is the
X-ray fluorescence, which enables fast, non-destructive analyses to be carried
out directly on sampling containers or pipes. X-ray fluorescence consists in
exciting the material of interest, and in analyzing the spectra of the photons
generated by deactivation.

Figure 3.9 shows an example of a spectrum obtained by X-ray fluores-
cence on a vessel containing Uranium 235 and Thorium. The peaks denote
the presence and concentration of those two elements. In our application, each
spectrum is quantized on 4096 energy values. Each value on the vertical axis
indicates to the number of photons counted for a given energy level.

220 J.-M. Martinez

Conventional spectrum analysis methods are based on physical models,
which assess correlations between the proportion of an element and the in-
tegral around the peaks that correspond to certain lines of the element to
be analyzed. In that case, the physics is relatively complex: overlapping of
peaks, spurious effects or measurement noise. The method is based on a local
analysis of the phenomena. Concentrations are estimated using computations
on data from the spectrum in the vicinity of the lines.

The CCA approach is different. It is based on a global analysis of the curve.
The spectrum is viewed as part of a space with 4096 components. In that
R

4096 space, the actual dimension of the distribution surfaces of the spectrum
points is equal to two: the spectra depend on 2 parameters only, namely, the
uranium and thorium concentrations. A reduction in size of R

4096 to R
2 was

found to be suitable for the problem: the information “lost” by projection is
not a discriminating factor for the measurement of concentrations.

The database contains 60 spectra. Each spectrum has 4096 components.
The dimension of the matrix of the data sample is thus 60× 4096. Reduction
by CCA therefore consists in transforming that sample into a matrix of 60×2.

Figure 3.10 shows all the examples in the space reduced to 2 dimensions.
We have deliberately meshed the representation by showing the spatial topol-
ogy of the quantification performed by the investigators on the values of con-
centrations of uranium and thorium.

The projection obtained by CCA has the same topology as the experimen-
tal quantification. The concentrations of uranium and thorium were quantified
on the Cartesian product [(u1, u2, . . . , u6) × (t1, t2, . . . , t10)]. Actually, closer
inspection shows that a test is missing: the base only contained 59 spectra.
Figure 3.10 shows the data missing in the CCA projection.

The example shows the advantages of CCA: despite the nonlinear combi-
nations of several effects on the spectra, dimensionality reduction allowed us
to display the inherent size of the data, that of the variation in relation to the
concentration of thorium and uranium. Using reduced spectra, the estimation
of concentrations in uranium and in thorium becomes: regression with a small
neural network, or even simple linear interpolation is more than sufficient.

Applied to more complex problems, when inherent size is not that obvi-
ous, one may proceed iteratively by increasing, if necessary, the number of
components of the projection space, whilst monitoring the preservation of the
local topology on the bisector for short distances.

3.6 The Bootstrap and Neural Networks

The final section describes a new approach that allows automatic design and
training of neural networks. It is based on the statistical bootstrap method and
on the early stopping technique (the latter technique is described in Chap. 2).
The approach advocated here consists in starting the design of the model

3 Dimension Reduction and Resampling Methods 221

Fig. 3.10. Experimental quantification—Representation by CCA

with a complex network, which is regularized by early stopping of the train-
ing process. The bootstrap is used to assess efficiently the variability of the
network and its error in relation to the data. Combined with early stopping,
it is used to monitor the training process by automatically optimizing the
number of training epochs, whilst providing the statistical characteristics of
the generalization error.

222 J.-M. Martinez

The bootstrap, proposed by [Efron 1993] is a technique that has been
extensively investigated in the context of statistical inference, especially for
hypothesis testing and confidence interval estimation. It does not require any
assumptions about the probability laws. When applied to regression, the boot-
strap is used to estimate the statistical characteristics of the difference between
the training error and the generalization error. The approach is ideally suited
to problems for which the number of observations is small. That is particularly
true for scientific computing, and for the simulation of complex systems. An-
alytical functions are created by regression or interpolation from a database,
which are used as replacements of software modules that are more computa-
tionally demanding.

In the previous chapter, we emphasized the importance of model valida-
tion (estimation of the modeling error, of confidence intervals, etc.) in the
general context of nonlinear modeling. In the type of applications mentioned
above (replacement of a complex computation code by regression on data gen-
erated by that code), the problem is exactly the same, except for the fact that
computer-generated-data does not have noise other than numerical roundoff
errors. This section describes an alternative to the approaches discussed in
the previous chapter.

3.6.1 Principle of the Bootstrap

We will illustrate the principle of the bootstrap by the example of the estima-
tion of the confidence interval for the expectation µ of a random variable. The
purpose of the example, taken from [Wonnacott 1990], is simply to demon-
strate clearly the principle of the bootstrap. In this example, the confidence
interval of the expectation of a random variable is derived accurately from the
average and variance computed on the sample (as described in Chap. 2). That
result stems from the central limit theorem, which states that the distribution
of the average of a sample converges quickly towards a normal law.

Let us take a sample of the random variable of n = 10 observations:
x = {16, 12, 14, 6, 43, 7, 0, 54, 25, 13}. The average of the sample is

X =
10∑

i=1

xi

10
= 19.0,

and its standard deviation is

s =

√√√√ 10∑
i=1

(xi − 19)2

9
= 17.09.

The 95% confidence interval of the expectation µ is

µ = X ± t.025 s√
n

= 19.0 ± 2.26
17.09√

10
≈ 19 ± 12 ⇒ 7 < µ < 31.

3 Dimension Reduction and Resampling Methods 223

The confidence interval may be also calculated by the bootstrap, with the
following algorithm.

Using the initial sample, we simulate new samples, known as “boot-
strapped” bases, the size of which is n, by random selection with replacement.
For instance, consider the initial sample defined above x = {16, 12, 14, 6, 43, 7,
0, 54, 25, 13}. By random selection with replacement, we obtain for exam-
ple the following bootstrapped base x∗ = {54, 0, 16, 7, 43, 54, 0, 25, 25, 6}, in
which some values of the initial sample are missing, whilst others appear sev-
eral times. Several samples are thus simulated. For each sample, an average is
computed. The confidence interval at 95% is defined for that set of averages.
The simulation produces the following:

9 < µ < 26.

It should be noted that the interval obtained using the bootstrap is virtually
identical to the 95% confidence interval computed above from the central limit
theorem.

Bootstrap—General

The bootstrap does not require any assumption on the underlying statistical
distribution.

The bootstrap may therefore be applied to all estimators other than the
average, such as the median, the coefficient of correlation between two ran-
dom variables, or the largest eigenvalue of a variance-covariance matrix, for
example. For those estimators, no analytical expression is available for the
standard error or the confidence interval. The only applicable methods are
the so-called resampling methods, which consist in the simulation of samples
such as the bootstrap or the jackknife [Efron 1993].

3.6.2 Bootstrap Estimation of the Standard Deviation

Consider a random variable X that obeys the probability distribution F .
We want to estimate a parameter θ of F . θ is estimated from an n-sample
x = {x1, x2, . . . , xn}. We denote by F̂ the empirical distribution, and by
θ̂ = s (x) the estimation of θ from sample x. The algorithm is as follows:

1. Select B bootstrapped n-samples, x∗1,x∗2, . . . ,x∗B, each of them being
obtained from the initial sample x by n random selections with replace-
ment

2. For each bootstrapped n-sample, compute a replica of the estimate of θ
as

θ̂(b) = s(x∗b), b = 1, 2, B.

224 J.-M. Martinez

3. Estimate the standard deviation from the standard error computed for all
replicas,

θ̂∗(·) =

B∑
b=1

θ̂∗(b)

B

σ̂2
B =

B∑
b=1

(
θ̂∗(b) − θ̂∗(·)

)2

B − 1
.

One of the theorems proved by Efron deals with the composition of the
bootstrap estimator. The estimate σ̂B converges to the standard deviation
σF̂ (θ̂∗) of the parameter θ estimated from the sample distribution,

lim
B→∞

σ̂B = σF̂ .

That algorithm applies to any estimator. For instance, consider the com-
putation of the largest eigenvalue for PCA. It is the largest eigenvalue of the
variance-covariance matrix Xn×p = XTX of the observations. The bootstrap
consists in simulating the replicas Xn×p obtained by n random selections of
the lines of matrix Xn×p. The statistics (average and standard deviation) may
then be generated easily. That shows the power of the method and its ease of
use. However, that method was not widely used in the past, because of the
amount of computation required: 50 to 200 bootstrapped bases are enough to
estimate an average, but several thousand bootstrapped bases are required to
determine the confidence intervals.

3.6.3 The Generalization Error Estimated by the Bootstrap

In the previous chapter, we emphasized the importance of estimating the
generalization error, and we described the estimation by �leave-one-out�.
The bootstrap technique can also be used advantageously to estimate that
error. The principle is the same: it consists in simulating B “bootstrapped”
bases. Each base may contain the same example several times, because of
random selection with replacement.

Binomial Distribution of Bootstrapped Bases

For each random selection, all examples have the same probability p = 1/n,
where n is the number of examples. The number of occurrences of an example
in a bootstrapped base therefore obeys a binomial distribution B(n, p = 1/n).
The probability of an example appearing k times is given by P (k) = Ck

np
k(1−

p)n−k [Saporta 1990].
The probability of an element not appearing in the bootstrapped base

is therefore P (0) = (1 − 1/n)n. For sufficiently large values of n, one has
P (0)n→∞ = e−1 ≈ 0.368. On the average, 37% of the examples will not be
used for training.

3 Dimension Reduction and Resampling Methods 225

Statistics of the Generalization Error

The difference between the training error computed on the bootstrapped base
and the testing error evaluated on the initial base is considered to be a random
variable that represents the difference between the training error and the
generalization error.

Statistics are produced for all those differences (1 per bootstrapped base)
in order to estimate the probability law of the difference between the training
and the generalization error.

We denote by B the initial database and by B∗
b , b = 1, . . . , N the set of

bootstrapped bases. Denote by ε∗b the training error on bootstrapped base
k, and by εb the error of the same network computed on the initial base
B. The difference δb = εb − ε∗b between the errors may be considered as a
random variable that arises from overtraining. That difference may also be
viewed as the bias that appears when estimating the generalization error by
the training error. The expectation value δ and the variance σ2

δ of the bias
may be estimated on the set of values of δb,

δb = εb − ε∗bk
, δ =

1
B

B∑
b=1

δb, σ2
δ =

1
B − 1

B∑
b=1

(
δb − δ

)2
.

3.6.4 The NeMo Method

The algorithm proposed above was programmed in the NeMo software. The
bootstrap is associated with early stopping for automatic monitoring of the
training of the network.

The NeMo Tool

NeMo is a tool developed by the Systems and Structure Modeling Department
of the Study Centre at Saclay using the Stuttgart neural network simulator
(SNNS) available on http://www.ra.informatik.uni-tuebingen.of/SNNS, which
is designed to simplify neural network learning and testing tasks.

The user chooses the number of training cycles Nc and the number of
bootstrapped bases B. NeMo performs B training cycles and saves the average
quadratic training and test errors for each cycle. NeMo analyses the training
and test error profiles in order to select the most appropriate value for the
number of cycles.

Modeling of Errors

The average quadratic error EQMr is calculated from the centered and re-
duced output variables (estimated and measured). Therefore, the analysis of
the error deals with the part of the variance that is not explained by the model
or coefficient of nondetermination that was described in the section on output
preprocessing.

226 J.-M. Martinez

We denote by j the rank of the bootstrapped base and by i the iteration
on the number of cycles; the average quadratic learning and testing errors are
represented by the following two tables:⎡

⎢⎢⎢⎢⎣
ε∗11 ε∗21 · · · ε∗B

1

ε∗12 ε∗22 · · · ε∗B
2

...
...

. . .
...

ε∗1Nc
ε∗2Nc

· · · ε∗B
Nc

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
learning error

⎡
⎢⎢⎢⎢⎣
ε11 ε21 · · · εB1

ε12 ε22 · · · εB2
...

...
. . .

...
ε1Nc

ε2Nc
· · · εBNc

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
testing error

.

After that phase, NeMo determines the number of cycles by application of
heuristics based on game theory. A first pessimistic player considers the worst
possible situation on the test error, for each number of cycles value,

εMax
i = Maxb

(
εbi
)
.

The second player then determines the number of cycles that corresponding
to the worst situation obtained; that is, the number of cycles that corresponds
to the maximum testing error,

Noptimal
c = Argi

{
Min εMax

i

}
.

That strategy for the selection of Noptimal
c may be relaxed by adopting

only a fraction of the set of B training cycles. To make it more robust, just
exclude the outliers, that is, training situations that differ greatly from the
average. By default, NeMo determines the optimum number of cycles on the
90th percentile of the test error.

Percentile

The αth percentile corresponds to the interval made up of the values for which
the distribution function is smaller than α: a fraction (1−α) of the maximum
values is excluded.

The optimum number of cycles may also be estimated by the tri-median
method, which is more stable but more risky since 25% of cases are rejected:
the last quartile that corresponds to the largest test errors.

Quartile

If F is the distribution function, the 1st and 3rd quartile Q1 and Q3 and the
median Q2 are defined respectively by F (Q1) = 0.25, F (Q2) = 0.5, F (Q3) =
0.75.

3 Dimension Reduction and Resampling Methods 227

Tri-Median

The tri-median corresponds to 0.25 Q1 (1st quartile) + 0.5 Q2 (2nd quartile
or median) + 0.25 Q3 (3rd quartile).

After determining the optimum number of cycles by one of the strategies,
NeMo starts a new training cycle based on all examples, with the optimized
number of cycles Noptimal

c defined during the previous phase. For that last
training cycle, the same training parameters (initial value and variation law
of the gradient step) are used. If εa denotes the average error computed on
the initial base, and δ the average value of the bias, the generalization error
is estimated by

εg = εa + δ.

More generally, the distribution function of the generalization error is esti-
mated by the empirical distribution function of the shifted bias of the value
εa. Note the contribution of the bootstrap associated with early stopping in
relation to cross-validation,

• to some extent, the automation of the design of the network by adapting
the number of early stopping cycles,

• a wider estimate of the variability of the model with respect to the data
set,

• estimates the confidence intervals (margins, uncertainty),
• the use of all examples to construct the network.

Finally, it should be noted that NeMo may monitor the suitability of the
model to the data: if the optimized number of cycles is too close to user-chosen
maximum number of cycles, there is no minimum test error. In that case, the
user must increase the complexity of the network (number of hidden neurons)
or increase the number of training cycles.

3.6.5 Testing the NeMo Method

In the following, we describe the results of an experiment designed to validate
the method. The test consists in comparing the average error estimated by
NeMo to the actual error. The actual error is approximated according to the
Monte Carlo method, i.e., by making a very large number of computations of
the average quadratic error, then by computing its average. We used NeMo
for the approximation of two nonlinear analytical functions,

• φ8(x) R
8 → R,

• φ12(x) R
12 → R.

We chose those functions in order to evaluate the method on the approx-
imation of sufficiently complex functions (large dimensions of input space).

228 J.-M. Martinez

Fig. 3.11. Function φ8

Using those two functions, several bases of examples were generated by vary-
ing the number of examples from 100 to 1500 by steps of 100. The inputs were
uniformly distributed in [−1, 1].

The model networks adopted are feedforward networks with one hidden
layer and a linear output neuron. For the bases generated by the first function
φ8, five model networks were proposed to NeMo with 4, 6, 8, 10 and 12 hidden
neurons respectively. For the bases generated by the second function φ12 (a
larger input space), six networks were tested, with 10, 14, 18, 22, 26 and 30
hidden neurons respectively.

Large Dimensions

It should be noted that the very low density of points in R
12; 1500 points in

R
12 mean that the average number of points per axis is smaller than two.

The actual error is obtained from 106 random selections using the same
input generation law (uniform distribution) and by computing the reduced av-
erage quadratic error EQMr between the measured output and the estimated
output.

The figures below show (on a log-log scale) the true error EQMr (horizon-
tal axis) vs. the error estimated by NeMo (vertical axis). The points displayed
correspond to the different networks created from all bases of examples. Each
network was generated 15 times from databases with 100, 200, . . . , 1500 ex-
amples respectively.

3 Dimension Reduction and Resampling Methods 229

Fig. 3.12. Generator φ12EMBED

The analysis of all results given in Figs. 3.11 and 3.12 illustrate the salient
features of the NeMo method,

• the generalization error is estimated accurately, even in complex cases
(large number of inputs + few examples);

• the bootstrap is used to automate the adjustment of the network to the
data by monitoring the termination of training.

Figures 3.11 and 3.12 show estimates of the generalization error very close
to the real values. The low error values correspond to training cycles performed
from databases with enough examples. For these cases, the estimated error on
the Y-axis is virtually equal to the actual error on the X-axis.

A slight overestimate should be noted for 4 cases out of 75 between val-
ues 0.01 and 0.02 for φ8EMBED (Fig. 3.11) and less precision for the more
complex φ12EMBED (Fig. 3.12). In the latter case, regression concerns a rela-
tion from R

12 to R with a maximum of 1500 points to represent the relation.
There is an overestimate of the error for the low values and a underestimate
for values greater than 0.2. Nevertheless, and in spite of the large dimensions
of the input spaces, the relation of R

12 in R is correctly modeled using a few
hundred examples.

3.6.6 Conclusions

The above illustrative example shows that

230 J.-M. Martinez

• networks generated automatically are sufficiently well adjusted, even in the
most difficult cases, where the number of examples is small. The statistics
provided by the bootstrap allow for the automatic control of the early
stopping of training, and provide sound statistics for the generalization
error;

• the second point is associated with the problem of the size of the input
space. Even in the example of the relation application of R

12 in R, a few
hundred points are enough to represent the relation. In many problems,
nonlinear relations may be approximated easily from a low density of ex-
amples. It should be noted that from a certain level of complexity, networks
created and adjusted using the same sample appear to be equivalent. Dif-
ferent networks may be adapted to represent the same relation.

Within the context of statistical learning theory, the adjustment of models
may be monitored, hence optimized, by bootstrapping. That approach should
be compared with more formal methods based on the theory of [Vapnik 1995],
the goal being the adaptation of the computing capacity (VC dimension) of
the model to the data. In that context, statistical resampling methods provide
real solutions, which can easily be implemented, and can run in reasonable
time on present-day computers.

References

1. A. Cichoki, R. Unbehauen, Neural Networks for Optimization and Signal
Processing, Wiley, 1993

2. P. Demartines, Analyse de données par réseaux de neurones auto-organisées,
thesis at the Institut National Polytechnique de Grenoble

3. Patrick Davaud, Traitement du Signal Concepts et Applications, Hermès, 1991
4. Bradley Efron, Robert J. Tibshirani, An introduction to the Bootstrap, Chap-

man & Hall, 1993
5. Jeanny Hérault, Christian Jutten, Réseaux de neurones et traitement du signal,

Hermes, 1993
6. Vincent Pilato, Application des réseaux de neurones aux méthodes de mesure

basées sur l’interaction rayonnement matière, thesis Université Paris-Sud, 4/11/
1998

7. Gilbert Saporta, Probabilités Analyse des données et Statistique, Editions Tech-
nip, 1990

8. Vladimr N. Vapnik, The Nature of Statistical Learning Theory, Springer, 1995
9. Vincent Vigneron, Méthodes d’apprentissage statistiques et problèmes

inverses—Applications à la spectrographie, thesis for the Université d’Evry Val
d’Essonne, 5/5/1997

10. Thomas H. Wonnacott, Ronald J. Wonnacott, Statistique Economie-Gestion-
Sciences-Médecine, Economica, 4th issue, 1990

4

Neural Identification of Controlled Dynamical
Systems and Recurrent Networks

M. Samuelides

Modeling of controlled dynamical systems or “process identification” is a
major application of neural networks. This topic was cursorily addressed in
Chap. 2. It is more systematically developed hereafter. Moreover, it is com-
pared to similar statistical methods that are commonly used, especially for
linear systems identification.

We start with the presentation of several examples of controlled dynam-
ical systems. We show that the addition of a “state noise” in order to take
into account the uncertainty of the model leads to viewing the evolution of
the state as a Markov process. Neuronal identification of nonlinear processes
is essentially a generalization of well known linear regression. We first recall
the elements of linear regression in the section “Regression, a tool for con-
trolled dynamic al system identification.” Based on examples, we show how
to compute the regression coefficients of an auto-regressive model. Then neural
identification is presented as a natural nonlinear regression methodology. Fol-
lowing section is devoted to on-line or adaptive identification of dynamical
systems. Our starting point is recursive identification of linear systems, which
is a mere generalization of the basic statistical Law of Large Numbers. Fur-
thermore, we develop the recursive prediction error method (RPEM), which
is a nonlinear extension thereof. Adaptive identification algorithms, including
neural identification algorithms, will be addressed.

In most applications, the state of the system cannot be completely known
because some state variables cannot be measured and because one cannot
avoid measurement errors. Therefore, filtering techniques are commonly used
to reconstruct the state of a dynamical process from the measurement results.
The popular technique of Kalman filtering is addressed in the section “Inno-
vation filter in a state model.” It is subsequently used for designing a neural
learning algorithm that may be used to identify dynamical processes. At the
end of the chapter, the sections “Recurrent neural networks” and “Learn-
ing for recurrent neural networks” are devoted to recurrent neural networks.
The most popular models of recurrent neural networks (Elman networks and

232 M. Samuelides

Hopfield networks) are described. Finally, we show how to use that type of
networks for the identification of controlled dynamical system.

4.1 Formal Definition and Examples of Discrete-Time
Controlled Dynamical Systems

4.1.1 Formal Definition of a Controlled Dynamical System by
State Equation

Since all the applications of neural networks to control are implemented on
computers, the present chapter, and the next, will be essentially devoted to
discrete-time dynamical systems. The sampling techniques of analog signals
that are delivered by physical devices will not be addressed.

The mathematical model of a dynamical system is defined by a set E,
called the state space of the system, and an evolution equation, which de-
scribes completely the evolution of the state of the system in state space
from the initial state conditions. In most problems, the evolution is said to be
autonomous: the evolution law is not time-dependent. We will stick to that
hypothesis in order to alleviate the notations. In control problems, the state
of the system at time t + ∆t does not depend on the state of the system at
time t only: it also depends on an external signal at time t, which is called
input or control of the system. In such a case, the system is termed controlled,
in contrast to autonomous. The set of controls will be referred to as F . Using
classical notations, we will write

• x(t) ∈ E for the state of the system at time t,
• u(t) ∈ F for the value of the control at time t.

Thus, in order to define the whole state trajectory of a controlled system
from time 0 to time τ , one needs the initial state x(0) of the system and
the control trajectory [u(t)]t∈[0,τ]. The control system is designed in order
to build a control trajectory that is as close as possible to a reference state
trajectory, or that minimizes the cost of the trajectory with respect to a given
cost function.

Notice that if a closed loop control law is implemented, i.e., if the control
system computes the control as a function of the current state (or the past
state trajectory of the system, or the past results of measurements performed
on the system), then the whole system (controlled dynamical system+control
system) is an autonomous dynamical system. The design of closed-loop control
law and their neural implementation will be the main topic of the next chapter.

As mentioned above, we focus here on discrete-time dynamical systems.
A discrete-time dynamical system can be derived from a continuous-time dy-
namical system by sampling the state trajectory of the system. As previously
in Chap. 2, the sampling period is denoted by T and we write time k for time

4 Neural Identification of Controlled Dynamical Systems 233

t = kT . The controlled dynamical system time evolution is described by the
following evolution equation

x(k + 1) = f [x(k),u(k)],

where f is the mapping from E × F into E that allows us to infer the state
at time (k+1)T from the state at time kT . It is possible to make this general
set-up more specific for particular systems.

The more classical model is the linear model. In that case, the state space
and the control space are vector spaces, A is a linear mapping from E to E,B
is a linear mapping from F to E and the evolution equation has the following
form:

x(k + 1) = Ax(k) + Bu(k).

Because mathematical models are just an approximation of the real evo-
lution of physical devices, the modeling error is generally represented by a
random additional term. This term is often called the state noise.

For instance, in the stationary linear model, the model error is modeled by
an additive noise that is generally White and Gaussian. Then the evolution
equation takes the form

x(k + 1) = Ax(k) + Bu(k) + v(k + 1),

where the v(k) are gaussian centered (null expectation) independent random
vectors with covariance matrix Γ .

In that case, the state trajectory is partially random, and the process is
called a stochastic process. In the following, we provide some examples of
controlled dynamical systems, as illustrations for more formal considerations.

4.1.2 An Example of Discrete Dynamical System

First consider an example of a dynamical system with discrete state space. A
labyrinth with 18 possible positions is shown on Fig. 4.1.

The state space is an 18-element set {12, 13, 14, 15, 21, 22, 24, 32, 33, 34,
35, 41, 42, 44, 52, 53, 54, 55}. The set of controls may be chosen as the set of
four directions (N, W, S, E). The evolution is given by the natural mapping
that associates to an initial position and a course order either the resulting
position if the order is feasible, or the initial state if it is not:

f(12,N) = 12, f(13,N) = 13, . . . , f(21,N) = 21, f(22,N) = 12, . . . ,
f(12,W) = 12, f(13,W) = 12, . . . , f(21,W) = 21, f(22,W) = 21, . . . ,
f(12,S) = 22, f(13,S) = 13, . . . , f(21,S) = 21, f(22,S) = 32, . . . ,
f(12,E) = 13, f(13,E) = 14, . . . , f(21,E) = 22, f(22,E) = 22,

Other modeling rules may be chosen, corresponding to other state repre-
sentations of the same problem. For instance, one may prefer characterizing

234 M. Samuelides

Fig. 4.1. A labyrinth

the state of a robot by the couple of the actual position and of the direction.
In our example, the state space would have then 18 × 4 = 72 elements and it
will be completed by a control set of three elements (A for move ahead, L for
move towards left, R for move towards right).

Software products that are used to exploit large database or to perform
data mining on the Web are facing a lot of problems that are formalized as
navigation problems in a graph. The state space is the set of the nodes of the
graph.

4.1.3 Example: The Linear Oscillator

Let us consider now the harmonic oscillator that is governed by the second-
order linear differential equation,

d2x

dt2
= −x.

First, notice that the differential equation does not provide a genuine state
representation since it is a second-order equation. The associated continuous
state representation is

d
dt

(
x1

x2

)
=

(
x2

−x1

)
,

where the state incorporates the mobile current position x1 and its speed x2.
In order to derive a discrete time evolution, we have to solve the differential
equation on the sampling period T . In that trivial example, the solution is

4 Neural Identification of Controlled Dynamical Systems 235

obvious, and the function that maps the state at time t to the state at time
t + T can be written explicitly. Generally, it will not be the case, neither
for other models in the following nor for most applications. Therefore, one
has to obtain a numerical approximation with a differential equation solver
(Runge-Kutta algorithm for instance [Demailly 1991]).

To control the mobile, we consider a scalar additive control on the speed,
denoted by u.

For instance, in our example, the second time derivative is easily obtained,

d2

dt2

(
x1

x2

)
=

(
−x1

−x2

)
.

From that expression, one can derive a second-order Taylor approximation of
the state evolution(
x1

x2

)
(t+ T) =

(
x1

x2

)
(t) + T

d
dt

(
x1

x2

)
(t) +

T 2

2
d2

dt2

(
x1

x2

)
(t) +

(
0
u (t)

)
.

Thus, the following dynamical discrete-time controlled system is obtained
as(

x1 (k + 1)
x2 (k + 1)

)
= f

(
x1 (k)
x2 (k)

)
=

(
x1 (k) + Tx2 (k) − T 2

2 x1 (k)

x2 (k) − Tx1 (k) − T 2

2 x2 (k) + u (k)

)
,

such that the trajectories of that system are a close approximation of the
sampled trajectories of the continuous-time dynamical system.

4.1.4 Example: The Inverted Pendulum

We consider now the nonlinear dynamical system called inverted pendulum
because its unstable equilibrium is considered as the Reference State. The
device diagram is represented on Fig. 4.2.

The differential equation of the controlled system is

d2θ

dt2
= g sin (θ) − kdθ

dt
+ u.

Its continuous-time state representation is

d
dt

(
x1

x2

)
=

(
x2

g sinx1 − kx2

)
+

(
0
u

)
.

Notice that the state space is not really a vector state, since the angle θ is
only defined up to a multiple of 2π. Actually the physical problem makes sense
only if the angle is constrained within a given viability domain. The differential
equation solver is not detailed. Simulations that are used to illustrate the
present chapter are performed using MatlabTM software.

236 M. Samuelides

Fig. 4.2. Diagram of the inverted pendulum

4.1.5 Example of Nonlinear Oscillator: The Van Der Pol Oscillator

Stable oscillations in uncontrolled operating mode are another example of ad-
verse oscillations in physical devices. They arise very frequently from nonlin-
earities. A typical example is provided by the following Van der Pol differential
equation:

d2x

dt2
− 2zω0

dx
dt

+ ω2
0x+ 3kx2 dx

dt
= u.

The parameter z is the damping rate of the system and ω0 is the eigenfre-
quency of the oscillator. The state representation is 2-dimensional, i.e.,

d
dt

(
x1

x2

)
=

(
x2

2zω0x2 − ω2
0x1 − 3kx2

1x2

)
+

(
0
u

)
.

Note that the system is linear with respect to the control. The dynamics
of the uncontrolled system (u = 0) in the 2-dimensional sate space features
a limit cycle as an attractor. That means that, whatever the initial state,
the state trajectory winds around a specific periodic trajectory when times is
going on. This phenomenon is illustrated on Fig. 4.3:

4.1.6 Markov Chain as a Model for Discrete-Time Dynamical
Systems with Noise

Let us now return to discrete-time dynamical systems. Consider first the fol-
lowing very simple dynamical system: the random walk on a triangle. The
state space has three elements a, b and c. The dynamics is defined by the
following evolution function f :

f(a) = b, f(b) = c, f(c) = a.

4 Neural Identification of Controlled Dynamical Systems 237

Fig. 4.3. Trajectory of a Van der Pol oscillator. In figure (a) a limit cycle is observed.
In figure (b), the trajectory is perturbed by an additive random input in the equation

Let us introduce now uncertainty in the model. We assume that, at any
time, there is a probability of 0.1 of heading into the wrong direction,

P [f(a) = b] = 0.9, P [f(a) = c] = 0.1,

and so on.
The picture of that random dynamics is outlined on Fig. 4.4.
The state trajectory is no longer deterministic. That random dynamical

system, or stochastic process, is called a Markov chain. In the long time limit,
the behavior of a Markov chain is quite different from that of a deterministic
dynamical system. In that simple example, the state does not depend on the
initial state and it is straightforward to show that it is distributed according
to the uniform law in the limit of large time. That probability law is called
the stationary distribution of the Markov chain.

The dynamics of a Markov chain can be conveniently described by a matrix
representation. The state set is ordered, and a matrix is built, whose rows
are the transition probabilities: the elements of row i are the values of the

Fig. 4.4. Diagrams of random dynamical evolutions on the triangle. (a) Peri-
odic dynamics with random disturbance (b) Point attractor dynamics with random
disturbance

238 M. Samuelides

probability of going from state i to the other states. The matrix is called the
transition matrix, denoted by Π. The general term of that matrix is defined
as

Πij = P [x (k + 1) = j |x (k) = i]

using the conditional probability formalism. For instance, the transition ma-
trix of the random walk on the triangle is

Π =

⎛
⎜⎝ 0 0.9 0.1

0.1 0 0.9
0.9 0.1 0

⎞
⎟⎠ .

One can check that the stationary distribution is invariant under the ap-
plication of the transition matrix. Actually, 1 is an eigenvalue of any transition
matrix. It can be shown that the magnitude of any eigenvalue is smaller than
or equal to 1. For instance, in our example, the eigenvalues of the transition
matrix Π are (approximately) 1, −0, 5 + 0.6928i and −0, 5 − 0, 6928i. The
uniform distribution can readily be checked to be invariant.

(
1/3 1/3 1/3

)⎛⎜⎝ 0 0.9 0.1
0.1 0 0.9
0.9 0.1 0

⎞
⎟⎠ =

(
1/3 1/3 1/3

)
.

The invariant distribution plays the same role as the equilibrium state of
deterministic dynamics. In statistical physics it is termed precisely equilibrium
state (see, for instance, Gibbs state in statistical physics).

Here is another example of dynamics on the triangle that exhibits symme-
try breaking. The evolution function f is defined by

f(a) = a, f(b) = a, f(c) = a.

Then, the transition matrix is

Π =

⎛
⎜⎝ 1 0 0

0.9 0 0.1
0.9 0.1 0

⎞
⎟⎠ .

Its spectrum is {1, 0.1} and its stationary distribution is (1, 0, 0). In
that case, the equilibrium state is deterministic although the dynamics is
stochastic.

Of course, a state noise can be introduced into the controlled dynamical
system as well. In that case, the transition probability from state x(k) to state
x(k + 1) depends on the control u(k) which is applied at time k.

For instance, in the case of the labyrinth that was presented at the begin-
ning of this section, f(13,N) = 13. If we introduce a uniformly distributed
error probability of 0.1 for the control system, then f(13,N) is a random
variable that takes the values 13, 12 and 14 with probabilities 0.9, 0.05, 0.05
respectively.

4 Neural Identification of Controlled Dynamical Systems 239

4.1.7 Linear Gaussian Model as an Example of a Continuous-State
Dynamical System with Noise

Engineers are commonly dealing with state noise in continuous state dynami-
cal systems. In that case, probability calculus is more complex and cannot be
solved analytically except for the case of linear models with additive gaussian
noise. We will describe that model because it is frequently used for Kalman
filtering.

Let us consider the linear controlled dynamical system with state equation

x(k + 1) = Ax(k) + Bu(k) + Cv(k + 1),

where (v(k)) is a centered reduced white gaussian noise, i.e., a sequence of
random independent identically distributed random vectors which follow a
gaussian distribution with 0 mean and identity covariance matrix.

If x(k) is a gaussian vector with expectation equal to m(k) and covariance
matrix equal to P (k), then, from the stability of gaussian law under linear
transform, x(k + 1) is a gaussian vector with mean equal to

m(k + 1) = Am(k) + Bu(k)

and with covariance matrix equal to

P (k + 1) = AP (k)AT + CCT,

where AT and CT are transposed matrices A and C.
We recall that if P is the covariance matrix of a random vector x, that

takes its values in a finite-dimensional vector space E, and if A is a linear
mapping defined on E, then the covariance matrix of the random vector Ax
is APAT. (We merge here the notations for linear mapping A and its ma-
trix representation in the reference basis). That result will be crucial for the
computation of the Kalman filter.

The above equation is termed the propagation equation of covariance.
Then we can determine the asymptotic behavior of gaussian stochastic process
(x(k)) for long times. If matrix A is stable (i.e., if the magnitude of all its
eigenvalues is smaller than 1), the gaussian process converges when times goes
to infinity towards a gaussian law with 0 mean and with covariance matrix
P∞ which is the solution of the following equation:

P∞ = AP∞AT + CCT.

Conversely, if A is not stable (i.e., if there exists an eigenvalue whose
modulus is larger than or equal to 1) then there does not exist a stationary
regime and the process diverges for long time. The linear model is said to be
unstable.

240 M. Samuelides

Sunspot data base

1700
0

20

40

60

80

100

120

140

160

180

200

1750 1800 1850 1900 1950 2000

Fig. 4.5. Wolf sunspot file from 1700 to 1997

4.1.8 Auto-Regressive Models

The Wolf sunspot file is an example of database that is commonly used as a
benchmark for identification and prediction algorithms. It is maintained since
1700; its variations are shown on Fig. 4.5.

The diagram exhibits some regularity with obvious cycles with approxi-
mate period of 11 years. Therefore, it is natural to look for a law that predicts
the evolution of the phenomenon [Tong 1995]. There is a wealth of papers on
that topic; we consider, for instance, the following model, built up in 1984 by
Subba and Gabr (the original data were first centered):

x(k + 1) = 1.22x(k) − 0.47x(k − 1) − 0.14x(k − 2) + 0.17x(k − 3)
−0.15x(k − 4) + 0.05x(k − 5) − 0.05x(k − 6) . . .
+0.07x(k − 7) + 0.011x(k − 8) + v(k + 1),

where (v(k)) is a gaussian white noise with variance equal to 199. Such a
model is called an auto-regressive (AR) model.

Thus, an AR(p) model is defined by the following regression equation

x(k + 1) = a1x(k) + · · · + apx(k − p+ 1) + v(k + 1),

where (v(k)) is a gaussian white noise. Note that the relevant signal may be
interpreted as the response of a linear filter [infinite impulse response (IIR)]
to white noise [Duvaut 1994].

4 Neural Identification of Controlled Dynamical Systems 241

Remark. An infinite impulse response filter (IIR filter or “recursive filter”)
is characterized by the fact that its response at time k + 1 depends on its
input at time k and on its response at previous times. On the other hand, a
finite impulse response filter (FIR filter or “transverse filter”) is characterized
by the fact that its response at time k + 1 does not depend on its response
at previous instants but solely on the input signal at the same instant and at
previous instants.

In addition, the model of the response of FIR filters to white noise input,
such as

x(k + 1) = b0 v(k + 1) + b1 v(k) + · · · + bq v(k − q + 1),

are usually called moving average process MA(q). The natural generalization
of these two models is the auto-regressive moving average model of order (p, q),
or ARMA (p, q), model.

Although ARMA models enjoy universal approximation property, it is
more efficient to build nonlinear evolution equations to model phenomena
or signals that admit parsimonious nonlinear representations [Tong 1995]. So
NARMA models are introduced with the following regression equation

x(k + 1) = f [x(k), . . . , x(k − p+ 1), v(k + 1), v(k) . . . , v(k − q + 1)].

We point out that these models are particular examples of dynamical sys-
tems that have been addressed in previous paragraphs. Their state represen-
tations are obvious but quite voluminous. For instance in the previous order
(p, q) NARMA model, the state of the system at time k is the vector x(k),
which has p+ q components, namely,

[x1(k) = x(k), . . . ,XP (k) = x(k − p+ 1),xp+1(k)
= v(k) . . . ,xp+q(k) = v(k − q + 1)],

and the state equation is

x2(k + 1) = x1(k)
. .

xp(k + 1) = xp−1(k)
xp+1(k + 1) = v(k + 1)
xp+2(k + 1) = xp+1(k)
. .

xp+q(k + 1) = xp+q−1(k)
x1(k + 1) = f [x1(k), . . . ,xp(k), v(k + 1),xp+1(k) . . . ,),xp+q(k)].

In the same way we considered controlled dynamical systems built from
autonomous dynamical systems by introducing an input, time series the-
ory considers autoregressive models with exogenous inputs which are called

242 M. Samuelides

ARMAX models or NARMAX models (with X for exogenous). In these mod-
els, the evolution equation takes into account exogenous variables at current
instant or in the past. These exogenous variables are known and are the exact
equivalent of the control signal. So we get the ARMAX (p, q, r) model,

x(k + 1) = a1x(k) + . . .+ apx(k − p+ 1) + b0v(k + 1) + b1v(k) + . . .
+ bqv(k − q + 1) + c1u(k) + · · · + cru(k − r + 1),

and the NARMAX (p, q, r) model,

x(k + 1) = f [x(k), . . . , x(k − p+ 1), v(k + 1), v(k), . . . ,
v(k − q + 1), u(k), . . . , u(k − r + 1)].

4.1.9 Limits of Modeling Uncertainties Using State Noise

We introduced in the previous sections the state noise (v(k)), which models
uncertainty on the state variables using random variable and the probabilis-
tic framework. Of course this type of model is relevant if the uncertainty is
subject to statistical regularity that enables to identify some knowledge about
this uncertainty and to improve prediction and the quality of control. Yet, it is
not always the case and the occurrence of uncertainties or unknown that are ill
represented by random variables is an intrinsic limitation of any statistical al-
gorithm. A good example of this situation is the example of a non-cooperative
target tracking: if we model the unknown control of the target by a stochastic
process, the intention of the pilot is badly represented by such a statistical
modeling.

In that case, when there is no other specific knowledge, probabilistic frame-
work is just a less evil. Then it is important to use all the available information
rather than to represent all the ill-identified variables in a large-dimensional
stochastic process. The number of unknown parameters to be identified has
to be reduced. These considerations support the use of parsimonious models
and among them neural networks as it was explained in Chap. 2.

4.2 Regression Modeling of Controlled Dynamical
Systems

4.2.1 Linear Regression for Controlled Dynamical Systems

4.2.1.1 Outline of the Algorithm

In Chap. 2, linear regression was described as the task of finding the (n, 1)
column vector w = (w1; . . . ;wn) that minimizes the sum of the squared errors
(SSE)

4 Neural Identification of Controlled Dynamical Systems 243

J =
N∑

k=1

(yk − xkw)2

from N(1, n) input vectors (x1, . . . ,xk, . . . ,xN) and N output scalars (y1, . . .,
yk, . . . , yN), or, equivalently that minimizes the half mean squared error
(MSE),

φN (w) =
1

2N

N∑
k=1

(yk − xkw)2.

We restrict ourselves to the classical case of a scalar output. The extension
to the case of a vector output is trivial. It is well known (see Chap. 2) that a
quadratic cost function has a single minimum, which can be derived through
the following matrix formula:

ŵ =
(
XTX

)−1

XTY ,

where the (N,n) observation matrix X = (x1; . . . ;xk; . . .xN) and the (N , 1)
column vector y = (y1; . . . ; yk; . . . ; yN) are constructed from the input and the
output data. This result is available if the quadratic minimization problem is
well-posed, i.e., the matrix (XTX) is invertible.

That algorithm may be used for autoregressive model identification. That
type of model (ARX model) was introduced in the previous section.

x(k + 1) = a1x(k)+ · · · + apx(k − p+ 1) + b0v(k + 1) + c1u(k) + · · ·
+ cru(k − r + 1).

Note that there is a correlation of the input and the output. Here the
regression coefficient vector is w = [a1, . . . , ap, b0, c1, . . . , cr]T.

When an input trajectory [u(1), . . . , u(k), . . . , u(N)] and an output tra-
jectory [x(1, . . . , x(k), . . . , x(N)] are available, the (1, p + r) input vectors of
the regression are constructed as follows: xk = [x(k); . . . ;x(k − p + 1);
u(k); . . . ;u(k − r + 1)] for k varying from max(p, r) + 1 to (N − 1) and the
associated output is yk = x(k + 1).

High quality results are obtained provided that the linear model of the
estimator is relevant. This assertion is supported by the following example.

4.2.1.2 Example of Application

Let us consider the (2, 2) order ARX model,

x(k + 1) = a1x(k) + a2x(k − 1) + b0v(k + 1) + c1u(k) + · · · + c2u(k − 1),

with the following real values for the parameters:

a1 = 1.2728, a2 = −0.81, b0 = 0.5, c1 = 0.5, c2 = −0.5,

and where the operator-designed input trajectory (uk) is a white noise.

244 M. Samuelides

As requested by the method, we build the input vectors of the regression
x(k) = [x(k);x(k − 1);u(k);u(k − 1)] for k varying from 2 to N − 1.

The computation of regression coefficients yields the following numerical
results:

â1 = 1.29, â2 = −0.83, ĉ1 = 0.49, ĉ2 = −0.51.

Assume now that we ignore the input data; then the regression input
vectors are two-dimensional x(k) = [x(k);x(k − 1)]. We have a simple AR
model, and the computation gives the following, inaccurate estimations:

â1 = 1.17, â2 = −0.71.

The model was not relevant: since the input trajectory was white noise,
an AR model was used to process data that were actually generated by an
ARMA model with vector noise (uk, vk).

Now, assume that a measurement noise is introduced into the simulator,
so that our observation of the state is inaccurate while the process dynamics
is unaffected (that point will be developed further in the section devoted to
filtering). Then the data-generating process is the following:{

x(k + 1) = a1x(k) + a2x(k − 1) + c1u(k) + c2u(k − 1)
y(k) = x(k) + b0w(k) .

In that case we have poor results if we use the ARX regression, even when
the input trajectory is taken into account. We get

â1 = 0.61, â2 = −0.36, ĉ1 = 0.49, ĉ2 = −0.11.

That numerical simulated example shows how it is important to get a
relevant model for the noises to achieve linear regression. This problem was
already addressed in Chap. 2 in the framework of dynamical neural modeling.
We shall give a more detailed account further in this chapter: the occurrence
of measurement noise creates a new problem, namely the filtering problem.

4.2.1.3 Statistical Background

Statistical analysis of time series is well known and will not be detailed here-
after. One can consult [Chatfield 1994] for a classical and practical handbook
and [Gouriéroux 1995; Azencott 1984] for more mathematical details. We shall
just outline here the explanation of the least-squares methodology in the sim-
plest case of a stable autoregressive model with a gaussian centered noise.
The variables are written with capital letters because they are considered as
random variables.

4 Neural Identification of Controlled Dynamical Systems 245

Consider the gaussian stationary stochastic process associated to the
AR(p) model,

X(k + 1) = a1X(k) + · · · + apX(k − p+ 1) + b0V (k + 1).

Assume that the model is stable (i.e., the roots of the polynomial P (z) =
1 − a1z − · · · − apz

p are outside the unit ball) and that the white noise (Vk)
is gaussian and centered. Then set rj = Cov(Xk, Xk−j), and take the co-
variance of the two members of the previous equation binding the variables
(Xk−i)i=0...p−1. Then the classical Yule-Walker relations are obtained⎧⎪⎨

⎪⎩
r1 = a1r0 + · · · + aprp

. .

rp = a1rp−1 + · · · + apr0

The same relations are obeyed approximately by the empirical estimators
r̂i = 1/(N − p)∑k=N

k=i+1 x(k)x(k − i) of the covariance coefficients rj and by
the mean-squared estimators âi of the regression coefficients aj (for higher
accuracy, one should consider the truncation errors that vanish as the ratio
p/N).

The estimators r̂i, however, are consistent, without bias and asymptot-
ically gaussian with a variance of order 1/N . Then, it may be proved that
the estimators âi are consistent, asymptotically without bias, asymptotically
gaussian with a variance of order 1/N too. That result allows us to build
statistical tests in order to validate the model.

Remark. An estimator is said to be consistent if the mean squared estimation
error goes to 0 when the sample size goes to infinity.

We have just provided here a cursory introductory outline of linear re-
gression. Actually, statisticians and control engineers have improved those
methods to a great extent. Spectral representation is a key tool of linear mod-
eling, and the transfer function of linear filters associated to ARMA models
are generally the object of identification process. Those basic techniques are
addressed in the literature (see the references) and are not within the scope of
this book. Neural networks are a methodology that is relevant in the nonlinear
framework.

4.2.1.4 Application to a Linear System: The Harmonic Oscillator

Let us use the previous algorithm to identify the harmonic oscillator that
was described in the previous section. Suppose we know only the input tra-
jectory and the angle trajectory (oscillator position). If a hundred step data
file is available, ARX(2, 2) model-based identification gives the correct coef-
ficients with high accuracy. Note that the order of the model is 2. If we use
an ARX(2, 1) model to perform the identification, the results are significantly
corrupted. That can easily be explained: since the control is implemented on
speed increment, its order is 2.

246 M. Samuelides

Fig. 4.6. Prediction of sunspot using AR(9) model based linear regression (a) One
step prediction (b) 50 step horizon prediction

4.2.1.5 Application to Sunspot Data Modeling

If we use an AR(9) model based on linear regression to the sunspot series,
omitting any data preprocessing, from a 150-step data file, we obtain a predic-
tive model. Its performances on a 50-step test set are shown on Fig. 4.6. The
difference between the real observation and the predicted value computed from
the 9 closest past observations is represented on picture (a). That prediction is
quite accurate. In picture (b), we represented the difference between the real
observation and a predicted value, which uses solely the initial 9 first values of
the data file. Of course, oscillations are damped. The damping phenomenon is
normal because the autoregressive model is stable and the predictions do not
use new measurements, but initial values only. Nevertheless, the regression
process captured the basic frequency of the phenomenon.

4.2.2 Nonlinear Identification Using Feedforward Neural Networks

4.2.2.1 Limitations of Linear Regression

When the linearity assumption on the state equation is not obeyed, linear-
regression-based modeling of controlled dynamical systems is very inaccurate
and uses very heavy models with too many parameters. That is illustrated on
Fig. 4.7.

In that example, which was described in previous section, there is no pos-
sible linear model, which exhibits both a stable equilibrium and an unstable
equilibrium. Yet, the linear regression captured the right frequency of the
oscillator.

4.2.2.2 Network with Delay (NARX Model)

The simplest example of neural identification of a controlled dynamical system
is based on regression algorithms. The model is an autoregressive model with

4 Neural Identification of Controlled Dynamical Systems 247

Fig. 4.7. Identification of Van der Pol oscillator using linear regression (1000 step
regression) (a) Initialization on the attractor (limit cycle) (b) Initialization far from
the attractor

exogenous input (NARX model). The stochastic NARX(p, r) model equation
is

X(k + 1) = f [X(k), . . . , X(k − p+ 1), V (k + 1), u(k), . . . , u(k − r + 1)].

Regression order is p for the state and r for the control. The diagram of
the network, which is used for that purpose, is displayed on Fig. 4.8.

Fig. 4.8. Learning diagram of a NARX based neural model to identify a controlled
dynamical system (see also Chap. 2, Fig. 2.31)

248 M. Samuelides

A feedforward neural network implements the function ϕRN . An input
of the network is made of the signal values from time k to time k − p + 1
(output of the process f interest) and of the control values from time k to
time k− r+ 1 (input of the process of interest). In that case, p is the order of
model with respect to the state and r is the order of the model with respect
to the control. The estimation is based on the minimization of the modeling
error, i.e., the difference between the output of the process x(k + 1) and
the prediction g(k + 1) that has been produced by the model. It follows the
strategy of parameter estimation that was presented in Chap. 2 (see dynamical
modeling with state noise assumption and input-output representation).

The training is a set of input vectors of the type xk = [x(k); . . . ;x(k −
p + 1);u(k); . . . ;u(k − r + 1)] and of associated output scalars of the type
gk = x(k + 1). Two strategies can be used for building the training set:

• If a simulator of the process is available, it will be used to build the train-
ing set. In that case, one has the freedom of choosing a representative
sampling of the network output. To that effect, one can select either a reg-
ular sampling of the input space, or select the input samples according to
a probability law, which favors the usual operating region of input space.
Sometimes, on the contrary, the limit operating points and the boundary
of the safety domain are favored to ensure security and accuracy of the
representation on the entire operation domain. That situation, where a
simulator is available, is common when one is looking for a semi-physical
representation or “grey-box model” (see Chap. 2).

• By contrast, if training is performed from actual experimental data, a sam-
pling of input space cannot be chosen at will: the training set is obtained
from the sampling of the input-output experimental trajectory. In that
case, it is important to use the experimental device with correct initial-
ization and for a sufficiently long time in order to visit with a sufficient
frequency the input space of the network (which is basically the prod-
uct of the state space by the control space up to the order of the NARX
model). To identify a controlled dynamical system, one generally excites
the system with open-loop randomly generated control. The selection of
an appropriate control trajectory is tricky. In the case of linear systems,
harmonic excitations are sufficient to identify the system via the transfer
function. For nonlinear systems, one has to mix the use of a random gen-
erator and physical knowledge about the system. Sliding frequency control
signals may be used or filtered noisy control signals. Chapter 2 provides
some elements that are useful for experiment design.

Figure 4.9 shows an identification example of the Van der Pol oscillator.
Neural model has been built from a basis of 153 = 3375 examples. The ex-
amples were provided by the sampling of the input-output trajectory of the
oscillator, subject to a random control signal. That training set was used be-
fore, for linear regression, as shown on Fig. 4.7. The results are far better
here.

4 Neural Identification of Controlled Dynamical Systems 249

Fig. 4.9. Comparison of controlled Van Der Pol oscillator with its neural model:
(a) No control has been used for learning (b) A random control signal has been
provided to the system during learning

Those results have been obtained with a classical neural architecture with
three inputs, ten hidden neurons and two output neurons. If training is
performed from a training set that has the same size, but that was built
from a regular sampling of the state space and of the feasible control set, the
results are poor (if there is no data preprocessing). That result shows the cru-
cial importance of the selection of the training set. Actually, as emphasized in
Chap. 2, it is important to build the training set according to the probability
distribution of visit on the input space in experimental conditions. That will
be further elaborated when on-line training will be explained. Note the im-
portance of the implemented open-loop control signal to visit the full input
space, especially when the system is pushed on a single attractor (like the
limit cycle of Van der Pol oscillator. In the next chapter, we will come back
to that “exploration policy” in the neuro-dynamical programming framework.

The choice of the order of the model is important because it has a direct
impact on the number of parameters to be estimated. It is more critical than
in the linear case. Actually, the problem of selecting the model order is not
fully solved in nonlinear regression theory. In practice, one combines an empir-
ical approach (estimation of the generalization error) and theoretical criteria
that were designed for linear models [Gouriéroux 1995]. Moreover, the model
may be validated ex-post using hypothesis testing [Urbani 1993]. Nonadaptive
identification from a representative training set is not especially troublesome
when neural networks with supervised training are used, provided a cautious
methodology, and efficient training algorithms are used.

Similar considerations apply in the framework of adaptive identification,
where one has to use a flow of experimental data in an adaptive way, i.e., as

250 M. Samuelides

the process is operating. Nevertheless, the adaptive character of the problem
requires a new framework, which will be presented in the next section.

4.3 On-Line Adaptive Identification and Recursive
Prediction Error Method

4.3.1 Recursive Estimation of Empirical Mean

Let us consider first the elementary problem of computing the mean of a data
series. This problem can be formulated as a linear regression problem of order
zero, xk = a+ vk where (vk) is a numerical white noise and where parameter
a is scalar. We look for a good estimation of a. It amounts to compute the
mean of a sequence of independent identically distributed random variables.

The minimization of the cost function JN (a) = 1/2N
∑N

k=1(xk − a)2 with
respect to a is a well-known problem. Its solution is the empirical mean âN =∑N

k=1 xk/N .
That estimate has all the desirable properties of current linear regression

estimators such as consistency, bias free, minimal variance among bias free
estimates. Its consistency (i.e., its convergence towards a when the sample
size goes to infinity) is called the law of large numbers. It intuitively expresses
that the arithmetic mean of a sequence of independent random measurements
provides an accurate estimate of the expectation value of the random variable
that models the phenomenon of interest.

A simple rewriting of the previous definition gives

(N + 1)âN+1 =
N∑

k=1

xk + xN+1 = NâN + xN+1.

The following recursive definition follows immediately:

âN+1 = âN +
1

N + 1
(xk+1 − aN) .

This recursive formulation of the definition of the empirical mean allows
an adaptive estimation. A single observation is sufficient to initialize the al-
gorithm. To update the estimate, it is not necessary that all the observations
be available. The previous estimate and the current observation are sufficient
to perform the update. The coefficient γκ+1 = 1/(N +1) is called the learning
rate.

Another advantage of the recursive estimation is that it allows tracking
slow variations of the parameter, which is currently estimated if the model is
not stationary. The estimation is adaptive. In that case, one has to replace
the slowly decreasing learning rate by a small constant learning rate. Then,
estimation amounts to filtering (in that case, a first order filter). In order to

4 Neural Identification of Controlled Dynamical Systems 251

Fig. 4.10. Behavior of the empirical mean estimate. (a) Original signal (b) estimate
of the parameter using a constant-gain filter (c) Estimate of the parameter using
decreasing gains

compare a first order filter and a recursive estimation of the mean, the behav-
ior of such an estimator has been shown on Fig. 4.10. The task is to track the
quasi-periodic variation of the deterministic component of a random signal
with a signal-to-noise ratio of 1/5. The original signal is shown on picture
(a). On picture (b), the results for various values of the gain are compared.
On picture (c), the performances of slowly decreasing gain estimates are com-
pared. It is shown that the ability of the estimate to track the slow variations
of the parameter in that case are poor.

One can notice that the empirical mean estimation is based on the
minimization of a quadratic cost function using gradient descent. Actually,
in the case of the stationary model, the data are a sample of the prob-
ability distribution of a random variable X. The quadratic cost function

252 M. Samuelides

J(a) = 1/2E[(X − a)2] is minimized. As the probability distribution is un-
known, it is not possible to compute its mathematical expectation. The gra-
dient of J (i.e., its first derivative) is ∇J(a) = E(X − a). A gradient descent
algorithm is

ak+1 = ak − γk+1∇J(ak),

where γk+1 is a positive scalar.
Replacing the gradient ∇J(ak) by the expression (Xk+1 − ak) yields the

empirical mean recursive estimate,

ak+1 = ak − γk+1 (Xk+1 − ak) .

Note that the expectation of the random variable (Xk+1−ak) is E(X)−ak,
which is exactly the value ∇J(ak) of the gradient of the cost function J taken
at the current value ak of the parameter estimate. Therefore, this algorithm
is termed stochastic gradient. In the gradient descent, the gradient of the cost
function has been replaced by a random variable, whose expectation is equal
to this gradient. The stochastic gradient is known at any time, whereas the
“total” gradient depends on the law of X, which is unknown. The stochastic
gradient algorithm has already been mentioned in Chap. 2. We will study it
more in detail in the following.

That algorithm performs the optimization task without prior estimation
of the unknown probability distribution. Actually, the optimization and the
estimation tasks are performed simultaneously. By contrast, in the classical
estimation process, the estimation phase is performed first. In that phase, the
criterion is estimated by the associated empirical criterion, here the estimate
of J(a) = 1/2E[(X − a)2] would be JN (a) = 1/2N

∑N
k=1(xk − a)2; then,

the optimization phase is performed using that estimate. Actually, on that
example, the two approaches lead to the same result because the model is
linear with respect to the parameter of interest, namely a. Nevertheless, the
implementations of the two algorithms are different: the implementation of
the stochastic gradient is recursive.

4.3.2 Recursive Estimation of Linear Regression

The stochastic gradient approach that we have just used to estimate the em-
pirical mean is frequently used for linear and nonlinear regression. In the con-
text of linear regression, the algorithm is named recursive least mean squares
(LMS) or Widrow-Hoff algorithm. This algorithm is well known in signal the-
ory, where it is used to compute a linear regression in an adaptive way (see
also Chap. 2).

Consider the problem of the minimization of J(w) = 1/2E[(Y −Xa−b)2]
with respect to w, where X is a second-order random vector (1, n) (i.e., its
expectation and covariance matrices are well defined). The vector parameter

4 Neural Identification of Controlled Dynamical Systems 253

w is the concatenation of the vector (n, 1) of the vector parameter a and of
the scalar parameter b; Y is a second-order real random variable.

We have

∇J(a, b) = −E[(Y − Xa − b)X, (Y − Xa − b)].
The data samples (X1, Y1), . . . , (Xk, Yk), . . . are available on-line to solve

the estimation problem. They are independent. Then the stochastic gradient
approach may be used. The recursive stochastic gradient estimate is defined
by the following formula:{

ak+1 = ak + γk+1 (Yk+1 − Xk+1ak − bk) Xk+1

bk+1 = bk + γk+1 (Yk+1 − Xk+1ak − bk) .

We have the following convergence statement:

• If the gain of the algorithm obeys the following conditions
∑∞

k=1 γk = ∞,∑∞
k=1 γk

2 <∞, then the algorithm converges almost certainly to the linear
regression coefficients of Y with respect to X.

The conditions on the gain that have just been stated are general. Here-
inafter, they will be referred to as the stochastic approximation conditions for
the gain. In particular, the sequence γk = 1/k obeys those conditions.

4.3.3 Recursive Identification of an AR Model

Consider the identification problem of the AR(p) model

X(k + 1) = a1X(k) + · · · + apX(k − p+ 1) + V (k + 1).

We assume that the data are collected under a stationary regime, and we
are looking for a recursive estimate that minimizes the least square criterion

J(w) =
1
2
E[(X(k + 1) − a1X(k) − · · · − apX(k − p+ 1))2].

The gradient of the cost function is: ∇J(w) = −E{[X(k+ 1)− a1X(k)−
· · · − apX(k− p+ 1)] · [X(k; . . . ;X(k− p + 1)]} Thus, the stochastic gradient
recursive estimate is defined by the algorithm

ŵ(k + 1) = ŵ(k) + γk+1ϑ(k + 1)[X(k); . . . ;X(k − p+ 1)],

with ϑ(k + 1) = X(k + 1) − a1X(k) − · · · − apX(k − p+ 1).
This rule was encountered previously and has been long known as the delta

rule or Widrow rule. If the gain sequence obeys the stochastic approximation
conditions, the algorithm converges, so that the estimate is consistent.

In the case of AR models, the input-output data are no longer independent.
Therefore, the classical assumptions of the elementary law of large numbers
are not fulfilled. The following Markov linear model produces the data:

254 M. Samuelides

X(k + 1) = A[w]X(k) + V (k + 1),

where A[w] depends linearly on w, (V k) is a white vector noise and where

X(k) = [X(k); . . . ;X(k − p+ 1)] and A(w) =

⎛
⎜⎜⎜⎜⎜⎜⎝

a1 a2 . . ak

1 0 . . 0
0 1 . . 0
. . . . 0
0 0 . 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠ .

The stochastic approximation theory is valid in that general Markov frame
and provides the consistency statement about the almost sure convergence of
the recursive estimate.

There exist as well recursive versions of second-order optimization algo-
rithms (Newton rule). The estimates are consistent too. Their convergence
may be proved in the general stochastic approximation framework [Ljung
1983]. They are of special interest for linear models, because they provide
a powerful way to speed up convergence. Recall (see Chap. 2) the Newton
formula,

ŵ = w∗ − HJ [w∗]−1∇J [w∗],

where HJ [w∗] is the Hessian matrix of the cost function. The elements of
the Hessian matrix of a function of several variables are the second partial
derivatives, and its symmetry is guaranteed by the inversion Schwarz rule.
The formulation of Newton formula leads to the recursive relation

ŵ(k + 1) = ŵ(k) − HΦ[ŵ(k)]−1∇Φ[ŵ(k)].

In the case of a strictly convex function (e.g., for a quadratic criterion),
this matrix is definite positive thus invertible. In the previous example of the
AR(p) model, it is equal to the covariance matrix of the stationary random
vector Xk.

The recursive second-order algorithm combines the second-order optimiza-
tion of J and the recursive estimation of covariance matrix R,

ŵ(k + 1) = ŵ(k) + γk+1ϑ(k + 1)R̂(k)−1X(k)

R̂(k + 1) = R̂(k) + γk+1X(k + 1)X(k + 1)T.

That method is called recursive prediction error method (RPEM). It is fully
described in [Ljung 1983], with emphasis on the applications to identification.
The RPEM method may be extended to nonlinear models. It may be used for
neural network adaptive learning when the learning data are provided on-line
by an experimental process or by a simulation.

4 Neural Identification of Controlled Dynamical Systems 255

4.3.4 General Recursive Prediction Error Method (RPEM)

The general recursive prediction error method is an application to the esti-
mation of stochastic approximation. We have just provided some examples
for linear identification. The general theory has been developed since the
fifties (Robbins and Monroe have done some pioneering work). A detailed
presentation is provided in [Kushner 1978]. It has been used for adaptive
neural network learning. Its advantage is to be recursive, so that the stor-
age of a large amount of data is not necessary. Its main drawback is its
slow convergence. To apply with full security the general method one has
to check a number of non-trivial assumptions. Precise convergence statements
are given in [Ljung 1983; Benveniste et al. 1987; Duflo 1996]. We will give a
detailed treatment of the particular case of the NARX(p, r) model identifica-
tion X(k + 1) = f [X(k), . . . , X(k − p + 1), V (k + 1), u(k), . . . , u(k − r + 1)]
This model is relevant for neural networks. It is a Markov model when its
state representation is given as

X(k + 1) = f [X(k), V (k + 1),u(k)].

We assume that the model is stable and converges towards a unique stationary
regime.

Function f , as well as the state noise {V (k)}, are unknown. Conversely,
we assume that the state X(k) is accurately determined at time k. We are
looking for an adaptive nonlinear parametric identification scheme of the type
X(k + 1) = g[X(k),u(k),w], by minimization of the quadratic prediction
error. The prediction error is defined for the input-ouput data (x, u, y) and
for a given value w of the vector parameter by: ϑ(y, x, u, w) = y−g(x, u, w).

We must compute the value of the parameter w that minimizes the mean
quadratic prediction error,

J(w) =
1
2
E[‖f(x, V,u) − g(x, u, w)‖2],

where the mathematical expectation is taken over the probability law of the
state noise, and is then averaged over the stationary regime of the input vector
variable (state-control).

In order to apply the stochastic gradient method, one has to compute the
gradient of the function 1/2 [‖ϑ(x, y, u, w)‖2] with respect to w. That gradi-
ent is equal to −∂g/∂w (y, x, u, w)ϑ (x, y, u, w). It will be denoted below as
G(y, x, u, w). Similarly, we will denote G(k+1) = G[X(k+1), X(k), u(k),
w(k)].

256 M. Samuelides

Consider the following algorithms:

Stochastic gradient algorithm

w(k + 1) = w(k) − γk+1G(k + 1)

= w(k) + γk+1
∂g

∂w
(X(k + 1),X(k),u(k),w(k))ϑ(k + 1)

Gauss-Newton stochastic algorithm

R(k + 1) = R(k) + γk+1
∂g

∂w
(X(k + 1),X(k),u(k),w(k))

×
[
∂g

∂w
(X(k + 1),X(k),u(k),w(k))

]T

w(k + 1) = w(k) − γk+1R(k + 1)−1G(k + 1).

Under usual stochastic approximation assumptions on the gain sequence,
and if the current estimate is bounded during the processing, those algorithms
are converging towards a local minimum of the quadratic criterion.

The boundedness assumption is impossible to guarantee a priori as far as
practical applications are concerned (analogical noises are generally gaussian).
So according to [Ljung 1983], one has to add a nonlinear projection onto a
safety domain. That projection respects convergence if the true value is inside
the safety domain.

It is possible to approximate Hessian matrix inversion, which is necessary
in Gauss-Newton formula by other classical second-order algorithms (quasi-
Newton algorithms as Levenberg-Marquardt, conjugate gradients, etc.). This
was detailed in Chap. 2. A good empirical review of application of prediction
error method to neural network learning is given in [Norgaard 2000].

If the gain is small and constant, the tracking abilities of the algorithm
are similar to sliding regime technique performance [Benveniste et al. 1987].

4.3.5 Application to the Linear Identification of a Controlled
Dynamical System

Figure 4.11 shows schematically the application of RPEM to on-line identifi-
cation.

At that stage, let us overlook the measurement noise. The dynamic system
is described in Fig. 4.11 by

• the evolution block, the inputs of which are the current state and the
control, and whose output is the next state,

4 Neural Identification of Controlled Dynamical Systems 257

Fig. 4.11. Identification of the internal neural model of a controlled dynamic system
(teacher forcing learning)

• the closed loop, which is ensured by the delay operator, and which main-
tains dynamics.

The current state and the control are sent as input to the neural net in its
current configuration.

The state is supposed to be fully measured. In the case of an auto-regressive
model, the current signal and the current control are processed to reconstruct
the current state using delay lines that are shown in Fig. 4.8. The net computes
its own prediction of the next state, which is compared to the state of the
system. The computed prediction error is sent back to the network and is
used to compute the gradient of the criterion, using the back-propagation
algorithm. That supervised control algorithm (teacher forcing algorithm in
control theory) has been described in detail in Chap. 2, in the framework of
nonlinear dynamic system learning.

4.3.5.1 Addressing Measurement Inaccuracy

If measurement noise must be considered, regression identification using feed-
forward neural networks and teacher forcing learning provides poor results.
Some examples of that situation have been provided in this chapter for linear
models, and a numerical demonstration was given in Chap. 2 in the section
dedicated to dynamic systems.

When the state of the system cannot be completely known, the current
state must be estimated. It is not a usual statistical problem, since, at a given
instant, a single data is available. One has to take advantage of past knowledge
provided by previous data. That is the purpose of filtering algorithms, which
are the topics of next section.

258 M. Samuelides

4.4 Innovation Filtering in a State Model

The state estimation problem of a controlled dynamical system from a se-
quence of measurements is called the filtering problem when the models of
evolution and measure are available. When those models are partially or
totally unknown, the state estimation problem is different, and much more
complex. In that case, one has to address the identification problem, which is
tractable using neural training techniques.

We devote this section to the filtering problem and to the optimal filtering
(or Kalman filtering) with the following scopes:

• Fundamental concepts such as measurement equation, state noise, mea-
surement noise, innovation, will be introduced in their original framework;

• Extended Kalman filtering is actually currently used to solve parametric
identification problems;

• Kalman filtering provides an efficient training technique for neural net-
works.

4.4.1 Introduction of a Measurement Equation

4.4.1.1 Observing Dynamic Linear Systems

We recall here the form of the state equation, which was previously stated
in the section “Regression modeling of controlled dynamical systems” in a
deterministic version,

x(k + 1) = f [x(k),u(k)].

For simplicity, the system is assumed to be time-invariant. In the linear
case, the previous equation has the form:

x(k + 1) = Ax(k) + Bu(k).

Assume that the system is not completely observed. Then a measurement
equation (or output equation) is introduced by the following expression:

y(k) = h[x(k)]

or, in the framework of linear time-invariant models:

y(k) = Hx(k).

In order to identify the state trajectory from the measurement sequence,
we just have to guess the initial state x(0) since the evolution is deterministic.
The following equations is obtained

y(k) =
k−1∑
j=0

HAk−1−jBu(j) + HAkx(0)

4 Neural Identification of Controlled Dynamical Systems 259

where the control sequence is known; we derive a linear system of equations,
where the unknown vector is x(0) when k varies from 0 to n (n is the dimension
of the state vector):

HAkx(0) = y(k) −
k−1∑
j=0

HAk−1−jBu(j).

The solution of that linear system is unique if and only if the rank of
the matrix [H; . . . ;HAn] is n. In that case, the system (H,A) is said to be
completely observable.

That concept may be extended to nonlinear dynamical systems [Sontag
1990; Slotine et al. 1991] using differential geometry tools such as Lie brackets,
which are not in the scope of this book.

4.4.1.2 Filtering State Noise and Reconstructing the State
Trajectory

When the evolution is not deterministic, uncertainty at time k is modeled by
a random vector v(k). Therefore, the state equation takes the following form:

x(k + 1) = f [x(k),u(k),v(k + 1)].

In the linear additive model, it has the particular form

x(k + 1) = Ax(k) + Bu(k) + v(k + 1).

In the section “Regression modeling of controlled dynamical systems”, we
mentioned that, in that case, the model of the state evolution is a particu-
lar stochastic process, namely a Markov chain. Assume that the state is not
completely observed. Then we define the measurement process through the
following measurement equation:

y(k) = h[x(k)],

which takes on the particular form for linear system

y(k) = Hx(k).

In the following, we assume, in a first approach, that the model is linear.
Further, when the nonlinear extension will be considered, we will specify it
explicitly.

To reconstruct the state trajectory, it would be necessary to solve recur-
sively the following linear equation where v(k + 1) is the unknown variable:

Hv(k + 1) = y(k + 1) − HAx(k) − HBu(k).

260 M. Samuelides

Actually, it is not possible to find exact and well-defined solutions for this
system. The right-hand side of that equation,

ϕ(k + 1) = y(k + 1) − HAx(k) − HBu(k),

is called the innovation at time k. It is the error of the prediction of the
new observation y(k + 1) from the previous estimate of the state. That error
provides us with new information that can be used for estimating a posteriori
the state x(k + 1) in a Bayesian framework.

If the system is completely observable, it can be shown that it is possible to
select a matrix gain sequence (Kk) such that the following recursive estimate
converges:

x̂(k + 1) = Ax̂(k) + Bu(k) + Kk+1ϕ(k + 1).
The (Kk), are called innovation gains. This model is called the Luenberger

state observer. The innovation gain sequence is constrained by a stability con-
dition in order to avoid the divergence of the filter. For instance, if we want
to take a constant innovation gain K n order to get a steady filter, the spec-
trum of the matrix A − KHA must be embedded in the unit disc (all the
eigenvalue modules must be smaller than 1).

4.4.1.3 Variational Approach of Optimal Filtering

The computation of the innovation gain sequence is performed by minimizing
a cost function. One can take the sum over k of the ‖vk‖2. However, in most
applications, one has to take into account the measurement errors as well.
Then, the cost function will be the sum over k of the following instantaneous
cost:

j(vk+1) = λ‖vk+1‖2 + µ‖yk+1 − HAx(k) − HBu(k) − Hv(k + 1)‖2.

That least squares criterion is a balance between the model uncertainty,
which is weighted by the parameter λ, and the measurement uncertainty,
which is weighted by the parameter µ. The tuning of those two hyperparame-
ters requires some prior knowledge of the system.

Then the innovation gain is computed by solving the quadratic optimiza-
tion problem. The solution is straightforward by canceling the gradient of the
cost function

0 = 2(λI + µHTH)vk+1 − 2µHT[y(k) − HAx(k − 1) − HBu(k − 1)].

Therefore, the innovation gain is equal to

Kk+1 = (λI + µHTH)−1µHT = µHT(λI + µHTH)−1.

Note that the values of hyperparameters λ and µ may be time-dependent,
or may be in matrix form. A fine tuning of the hyperparameters is only possible
when sufficient prior knowledge of the system is available. Moreover, one has
to check that the solution obeys the stability constraint. The probabilistic
interpretation of optimal filtering gives insight into those issues, which will be
further considered in the next section.

4 Neural Identification of Controlled Dynamical Systems 261

Fig. 4.12. Diagram of an innovation filter. The innovation filter is a predictor-
corrector algorithm. The correction is brought by the innovation, which is computed
from the measurement. The filter is recursive, and the estimate is fed back to the
filter, which sets a stability problem

4.4.2 Kalman Filtering

4.4.2.1 Definition of the Kalman Filter for a Linear Stationary
System

The algorithms that are currently used to estimate the state from the measure-
ments are called filters. Actually, those algorithms cancel the noises in order
to supply the true value for the current state. The filters that were described
in the previous section are based on predictor-corrector schemes: they use cur-
rent information to revise previous estimate. That is shown diagrammatically
in Fig. 4.12. Those filters are called innovation filters.

The principle of Kalman filtering [Anderson 1979; Haykin 1996] consists
in using probabilistic models of both model and measurement uncertainties
for computing the innovation gain. The reconstruction of the state from the
measurements is just a Bayesian estimation problem: the posterior probability
law of the state is computed from the available measurements, and the decision
is made using a least squares estimate or a maximum likelihood estimate
(MAP estimate). However, such a computation may be very difficult in the
general case. In the framework of linear model with additive gaussian noise, the
solution is a recursive filter, which is just the optimal filter that was designed
in the previous section. That simple solution results from the following basic
property of the gaussian law, which is well known in probability theory:

262 M. Samuelides

Basic Property. The conditional law of a gaussian vector given a linear
statistic is gaussian. Therefore, the MAP estimate is equal to the mean-square
estimate (actually the conditional expectation), and is linear.

In that framework, let us write the state equation (Markov stochastic
process)

X(k + 1) = AX(k) + Bu(k) + V (k + 1)

and the measurement equation

Y (k) = HX(k) + W (k).

Note that the state and observation variables are written with capital
letters because it is the current notation for random variables. The sequence
of random vectors [V (k)] is a vector discrete time white gaussian noise, i.e.,
a sequence of centered independent, identically distributed, gaussian random
vectors. Their common covariance matrix is Q. That sequence stands for
the state noise, i.e., the model uncertainty. The sequence of random vectors
[W (k)] is also a discrete-time gaussian white noise. Its covariance matrix is R.
It is a model for the measurement noise. The state noise and the measurement
noise are independent.

The filtering problem consists in reconstructing, at time k+1, the current
state given the past or present measurements. The available information is
gathered in the vector y(k + 1) = [y(1), . . . ,y(k + 1)]. The criterion is the
quadratic difference between the estimate X̂(k + 1) and the true value of the
state X(k + 1).

It is a classical estimation problem in the linear gaussian model. It has been
stated that the optimal solution X̂(k+1) is the linear regression of the random
state X(k+1) onto the random vector Y(k+1) = [Y (1); . . . ;Y (k+1)], which
stands for the available information.

In order to compute the linear regression, let us split the vector Y (k + 1)
into the sum of two uncorrelated random vectors, the vector Y (k) and the
residual of Y (k + 1) onto Y(k). Then, the linear regression onto the vector
Y (k + 1) will be the sum of the two linear regressions onto its uncorrelated
components (from the orthogonal projection theorem). Therefore, we can first
compute the regression of the current measurement Y (k + 1) onto Y(k). We
start from

Y (k + 1) = HX(k + 1) + W (k + 1)
= HAX(k) + HBu(k) + HV (k + 1) + W (k + 1).

Because V (k + 1) and W (k + 1) are independent from the past (from
the white noise assumption), the regression is equal to HAX̂(k) + HBu(k)
where X̂(k) is the optimal estimate of X(k) given Y(k).

4 Neural Identification of Controlled Dynamical Systems 263

The residual of the regression of Y (k + 1) onto Y(k) is

Y (k + 1) − HAX̂(k) − HBu(k)

= HA[X(k) − X̂(k)] + HV (k + 1) + W (k + 1).

It is exactly the innovation term, which was defined in the previous section
in the variational formulation of the filtering problem. From now on, the
innovation will be written

ϑ(k + 1) = Y (k + 1) − HAX̂(k) − HBu(k).

Note that the innovation at time k + 1 in independent from Y (k).
The optimal estimate of the state at time k + 1 can be split into the sum

of two terms:

• A prediction term, which depends on the previous available information,
equal to AX̂(k) + Bu(k);

• A correction term, which depends linearly on the innovation ϑ(k + 1) at
time k + 1 and is equal to

Kk+1ϑ(k + 1) = Kk+1[Y (k + 1) − HAX(k) − HBu(k)],

where Kk+1 is called the Kalman gain of the filter at time k + 1.

Thus, the filter is recursive and defined by the following formula

X̂(k + 1) = AX̂(k) + Bu(k) + Kk+1ϑ(k + 1).

That computation shows that the Bayesian estimate is an innovation fil-
ter. The Kalman gain is the matrix coefficient of the linear regression of the
state X(k + 1) at time k + 1 onto the innovation ϑ(k + 1). That coefficient
is computed from the covariance matrix according to the following formula
(linear regression has been recalled in Chap. 2):

Kk+1 = Cov[X(k + 1),ϑ(k + 1)]Var[ϑ(k + 1)]−1.

To compute the Kalman gain, the covariance matrix of the errors must
be computed. The details are given in the appendix of this chapter. We just
state here the results.

If Pk stands for the covariance matrix of the estimation error X(k)−X̂(k)
and P ◦

k+1 for the covariance matrix of the prediction error X(k+1)−AX̂(k)−
Bu(k), then the Kalman gain is given by the following formula:

Kk+1 = P ◦
k+1H

T[HP ◦
k+1H

T + R]−1,

where the dynamics of matrices Pk and P ◦
k+1 are determined by the following

updating equations, the so-called covariance propagation equations:

P ◦
k+1 = AP kAT + Q

P k+1 = (I − Kk+1H)(AP kAT + Q)(I − Kk+1H)T + Kk+1RKT
k+1.

264 M. Samuelides

Note that the evolution of the covariance matrix does not depend on the
measurements. That remark is of practical importance for real-time applica-
tions of the Kalman filter (on-board navigation devices, for instance) because
the computation of the Kalman gain sequence may be performed once and for
all, from the model equations and the initial covariance error.

4.4.2.2 Properties of the Kalman Filter

The consequences of the previous paragraph are very important. Some of
them may be extended to more general models. Let us summarize the main
properties of the Kalman filter:

• When we compare the results of the computation of the innovation gain in
the variational framework and in the probabilistic framework, the Kalman
filter appears to be an optimal innovation filter in the sense of the varia-
tional framework. Penalties are time-dependent, in matrix form, and may
be pre-computed. They are interpreted as the covariance of the predic-
tion error (penalizing the model uncertainty) and the covariance of the
measurement error (penalizing the measurement uncertainty).

• It was shown that the Kalman filter is unconditionally stable and is a
consistent estimate of the state: the dynamics of the error converges to-
wards an optimal steady regime even when the dynamical system itself is
unstable (for details and proofs see [Anderson 1979; Haykin 1996]).

• The innovation sequence is the result of successive linear regressions.
Therefore, it is uncorrelated and independent in the gaussian model.
Whitening of innovation is an optimality characteristics, which may be
computationally observed and tested.

4.4.2.3 Kalman Filtering for a Time-Varying Linear System

Kalman filtering may be applied in a straightforward way for linear nonsta-
tionary models. Let the state equation be

X(k + 1) = A(k)X(k) + B(k)u(k) + V (k + 1)

and the measurement equation

Y (k) = H(k)X(k) + W (k),

where the state noise sequence V (k) and the measurement noise sequence
W (k) have time-varying covariance matrices Q(k) and R(k). The filter equa-
tion is

X̂(k + 1) = A(k)X̂(k) + B(k)u(k) + Kk+1ϑ(k + 1),

with

ϑ(k + 1) = Y (k + 1) − H(k + 1)A(k)X̂(k) − H(k + 1)B(k)u(k).

4 Neural Identification of Controlled Dynamical Systems 265

An iteration of the covariance and Kalman gain updates is

P ◦
k+1 = A(k)P kA(k)T + Q(k + 1)

Kk+1 = P ◦
k+1H(k + 1)T[H(k + 1)P ◦

k+1H(k + 1)T + R(k + 1)]−1

P k+1 = [I − Kk+1H(k + 1)][A(k)P kA(k)T + Q(k + 1)]
× [I − Kk+1H(k + 1)]T + Kk+1R(k + 1)KT

k+1.

The innovation sequence is uncorrelated as before. Conversely, there is no
steady regime, and the stability of the filter is no longer guaranteed.

We just give here the principle of the algorithm. In practical cases, one can
face problems if the dimension of the state space is too large. Such problems
occur if the computation is too expensive, if the covariance matrix inversion
fails, or if the positivity constraint of the covariance matrix is violated. Some
special care allows overcoming these difficulties. For more details see [Ander-
son 1979; Haykin 1996].

4.4.3 Extension of the Kalman Filter

4.4.3.1 Case of Nonlinear Systems

Filtering nonlinear dynamic systems is a difficult issue. It is a field of active
research. Neural networks are one of the tools that allow performing that
task. For an introduction to nonlinear filtering which is both rigorous and
application-oriented, one may consult the old textbook [Jazwinsky 1970]. It is
nice and clear but it does not deal with numerical filtering. The paper [Levin
1997] gives a much shorter introduction. Moreover, it is written to introduce
neural filtering. We will not address the general subject of nonlinear filter-
ing here. Specifically, we will not address the observability problems, which
deserve a special development.

The scope of this section is just to the presentation of a convenient formal
framework for extended Kalman filtering, which is a common technique. That
technique will be used below for the training of neural networks. Consider
a time-invariant, nonlinear, controlled dynamical system with additive state
noise and measurement noise. Its state equation is

X(k + 1) = f [X(k),u(k)] + V (k + 1)

and its measurement equation is

Y (k) = h[X(k)] + W (k),

where the covariance matrices of gaussian white noise are denoted by Q(x)
and R(x), for the state noise and the measurement noise respectively. That
means that the noise laws are defined as conditional gaussian probability
distributions given the current state. That is a Markov model.

266 M. Samuelides

To apply the Kalman filter algorithm, the nonlinear evolution model is
replaced by its linearization around the current estimate X̂(k), and the non-
linear measurement model is replaced by its linearization around the predicted
state f [X̂(k),u(k)] in order to compute the covariance propagation.

Thus, A(k) stands for the gradient of f with respect to x at the point
[X̂(k),u(k)], and H(k+ 1) stands for the gradient of h at the point f [X̂(k),
u(k)].

The filter equation is determined by the predictor-corrector scheme,

X̂(k + 1) = f [X̂(k),u(k)] + Kk+1ϑ(k + 1),

with
ϑ(k + 1) = Y (k) − h{f [X̂(k),u(k)]}.

The iteration of covariance update is (using convenient linearizations, see
[Anderson 1979])

P ◦
k+1 = A(k)P kA(k)T + Q(k + 1)

Kk+1 = P ◦
k+1H(k + 1)T[H(k + 1)P ◦

k+1H(k + 1)T + R(k + 1)]−1

P k+1 = [I − Kk+1H(k + 1)][A(k)P kA(k)T + Q(k + 1)]
× [I − Kk+1H(k + 1)]T + Kk+1R(k + 1)KT

k+1.

The computation of the gain is subject here to an approximation. There-
fore, no optimality property can be provided any longer. If the approximation
is valid, that algorithm can provide a sub-optimal solution (the quality of
the solution is near optimal). The stability of the linearized Kalman filter is
much more difficult to prove than for time-varying linear Kalman filter. More-
over, the gain computation must be performed on-line. That is very hard for
real-time applications and on-board computers. For that type of applications,
tracking a reference trajectory, and computing a filter for a linearization of the
model along that trajectory, are usually preferred. In that case, the algorithm
of the previous section is used. Nevertheless, the extended Kalman filter is
currently used, especially for identification problems. In the following section,
we address that issue, using a state extension.

4.4.3.2 Using Extended Kalman Filter for Parametric
Identification

Consider the following model for an observed controlled dynamical system

X(k + 1) = A(θ)X(k) + B(k)u(k) + V (k + 1)
Y (k) = H(θ)X(k) + W (k),

where the model depends on an unknown parameter θ. One has to estimate
the unknown parameter. Depending on the application, θ may be constant

4 Neural Identification of Controlled Dynamical Systems 267

or may change slowly. Several methods have been proposed to estimate on-
line both the current state X(k) and the parameter θ. In the method of
extended Kalman filter, the parameter θ is incorporated into the state. Then
the extended model equations become

X(k + 1) = A[θ(k)]X(k) + B(k)u(k) + V 1(k + 1)
θ(k + 1) = θ(k) + V 2(k + 1)

Y (k) = H[θ(k)]X(k) + W (k).

The state noise [V 2(k)], which allows the parameter to vary, is artificial for
a steady model: nevertheless, it improves the operation of the filter because it
helps to stabilize the algorithm [Haykin 1999]. Independence and stationarity
of [V 1(k)], and of [V 2(k)] are assumed here for the sake of simplicity. Those
assumptions must sometimes be dropped. From the previous paragraph, ap-
plication of linearization techniques for extended Kalman filter provides the
following equations:

X̂(k + 1) = A[θ̂(k)]X̂(k) + B(k)u(k) + K1,k+1ϑ(k + 1)

θ̂(k + 1) = θ̂(k) + K2,k+1ϑ(k + 1),

with the same notation for innovation as in the linear case,

ϑ(k + 1) = Y (k + 1) − H[θ̂ (k)]{A[θ̂ (k)]X̂ (k) + B(k)u(k)}.

Note that the parameter and state estimates are simultaneously updated
using the same innovation and different Kalman gains. Iterations of computa-
tion for covariance updates and Kalman gain computations are derived from
the previous section.

Though its computer implementation is quite simple when the state di-
mension is not too large, using the extended Kalman filter to estimate both
parameter and state presents major drawbacks: stability issue, and depen-
dence on initialization. Therefore, whenever possible, trickier methods are
preferred because they are more reliable. Such methods generally combine
Kalman filtering techniques for state estimation and Bayesian techniques or
maximum likelihood estimation techniques for parameter estimation.

4.4.3.3 Adaptive Training of Neural Networks Using Kalman
Filtering

Figure 4.13 provides the diagram of a neural network training algorithm using
the extended Kalman filter.

The system under estimation is the neural network itself. It is supposed to
be a model of the process that generated the training set. Actually, its state
is the configuration of the network (i.e., the set of all the parameters of the

268 M. Samuelides

Fig. 4.13. Neural network training using the extended Kalman filter

network). The input-output pair sequence of the neural network is the mea-
surement process that provides information on the evolution of the configura-
tion. Thus, that adaptive algorithm is well suited to tracking slow variations
of the environment, which is a typical task for an adaptive algorithm.

In that context, training amounts to estimating the state. Operating the
network amounts to measuring the current state. Therefore, the innovation
is the classical error for supervised learning i.e., the difference between the
desired network output and the computed network output when an input is
presented to the network.

The linear state equation X(k+1) = AX(k)+Bu(k)+V (k+1) becomes
the following expression:

W(k + 1) = W(k) + V (k + 1),

where W(k) is the configuration vector of the network (weights+biases) at
time k.

The nonlinear measurement equation Y (k) = h[X(k)] + W (k) becomes

y(k) = g[x(k),w(k)] + W (k).

Therefore, the innovation error of the model is: ϑ(k + 1) = y(k + 1) −
g[x(k + 1),w(k)]. It is indeed the expression of the learning error that was

4 Neural Identification of Controlled Dynamical Systems 269

stated in Chap. 2. The measurement equation must be linearized to update the
covariance and to recursively compute the Kalman gain as described in the
previous section. Actually, the state evolution is just a random walk and the
covariance of noise is constant, so that the equations of the filter take a simpler
form.

If H(k + 1) stands for the gradient of the network output g with respect
to the weight vector w at the point [x(k + 1),w(k)], we get

P ◦
k+1 = P k + Q

Kk+1 = P ◦
k+1H(k + 1)T[H(k + 1)P ◦

k+1H(k + 1)T + R]−1

P k+1 = [I − Kk+1H(k + 1)]P ◦
k+1[I − Kk+1H(k + 1)]T + Kk+1RKT

k+1,

where Q and R are the classical notations for covariance matrices of the state
noise and of the measurement noise in Kalman filtering theory. The equation
of the filter is

ẅ(k + 1) = ẅ(k)Kk+1ϑ(k + 1),

with
ϑ(k + 1) = y(k + 1) − g[x(k + 1), ẅ(k)].

It should be emphasized that the neural network under identification is
a virtual object: the only existing configuration is the current configuration
ẅ(k) under estimation. The ideal configuration that we try to identify or to
track has no actual existence; it is an approximate representation of the real
process.

The equation of the filter is a form of nonadaptive optimization algorithms
that was reviewed in Chap. 2. In that algorithm, the descent direction is not
the gradient of quadratic error that is equal to H(k + 1)Tϑ(k + 1). The gra-
dient may be computed using the backpropagation algorithm. Actually, the
Kalman filter training algorithm is a second-order method, but it is an adap-
tive method, by contrasts to the methods that were presented in Chap. 2. The
estimation of error surface curvature is performed by updating the covariance
matrices. The implementation problems are similar to other second-order al-
gorithms (inversion of a large matrix, positivity constraint) and are overcome
by similar algorithmic techniques.

In order to reduce the complexity of the covariance matrix update, a de-
coupled extended Kalman filter technique (DEKF) was proposed in the liter-
ature. The parameters are grouped into clusters. The clusters are supposed to
be uncorrelated. For instance a cluster may be the set of weights afferent to a
single neuron and the associated bias. Then the covariance matrix acquires a
block structure, so that it is easier to update and to invert ([Puskorius et al.
1994; Haykin 1999]).

The Kalman filter training method is not commonly used because it is
relatively complex to implement. Nevertheless, it is potentially very interest-
ing, because it is a second-order adaptive method. The choice of covariance
matrices may seem arbitrary. That can be used advantageously to express

270 M. Samuelides

empirical knowledge on perturbations and system noise. Thus, the tracking
abilities of the algorithm may be tuned. We will apply that method to neural
control in the next chapter.

4.5 Recurrent Neural Networks

4.5.1 Neural Simulator of an Open-Loop Controlled Dynamical
System

In the section that was dedicated to neural identification of a controlled dy-
namical system, a feedforward neural network was designed as a one-step-
ahead prediction model. We presented on Fig. 4.11 the diagram of the learn-
ing process of an input-output model according to the NARX hypothesis.
We showed in Chap. 2, in the section entitled “black box modeling” and in
the section “state noise hypothesis, input-output representation”, that that
approach is relevant when a state noise is present: the output of the model
at time k may be reconstructed from the past values of the process output
and the past values of the control signal. After completion of training, the
network output may be plugged into the state input, with a delay operator in
the feedback loop. That generates a recurrent neural network. Actually, the
network graph exhibits a closed circuit. One may use that recurrent network,
which models the function ψRN , to predict the process output within a finite
horizon.

Figure 4.14 shows an input-output recurrent neural network: the network
state input consists in past values of the output. If the network parameters
have been estimated using open-loop training as in Fig. 4.11, and if the net-
work is used to predict the process output beyond one time step, then it was
shown in Chap. 2 that such an approach is not optimal: the prediction is
corrupted by the iteration of the state noise. Conversely, it was shown theo-
retically, and illustrated through examples, that if the noise is a measurement
noise (output noise), if training was performed by a semidirected algorithm,
and if, during learning, the model outputs were used as input states, then the
accuracy of the prediction is optimal.

In that context, we assumed that the control signal u(k) did not depend on
the state (actually the output of the network). It was therefore an open-loop
controlled dynamical system. We shall now model a closed-loop controlled
dynamical system using a combination of neural networks.

4.5.2 Neural Simulator of a Closed Loop Controlled Dynamical
System

Just as a feedforward neural network whose inputs were the (state+control)
signals, and whose output was a state output, was used to model a controlled

4 Neural Identification of Controlled Dynamical Systems 271

Fig. 4.14. Recurrent input-output neural network for an open loop controlled dy-
namical system modeling

dynamical system, a controller may be modeled as an application of the state
space onto the control space, which associates the appropriate control to the
current state. The diagram of Fig. 4.15 represents the connection of these two
neural networks.

In that diagram, the state input feeds both the process model and the
controller, which computes the control signal. That control signal is the second

Fig. 4.15. Recurrent neural network modeling a closed loop controlled dynamical
system. The model is the combination of network ϕRN and network ψRN

272 M. Samuelides

input of the model. Thus, a model for the closed loop controlled system has
been constructed.

If we plug the output state into the state input as we have just done
in the previous paragraph, then, we get a neural simulator of the closed loop
controlled dynamical system. That architecture may be used, as shown above,
to predict the behavior of the system within a finite horizon.

Control systems are considered in detail in the next chapter.

4.5.3 Classical Recurrent Network Examples

In the two previous examples, recurrent networks that were displayed were
of the input-output type, the output being fed back to the input with a unit
time delay. In Chap. 2, we mentioned that state-space models are more general
and more parsimonious than input-output models. They are used in “black
box modeling” and also in “gray box modeling” where algebraic and differen-
tial equations that express domain knowledge are taken into account in the
structure of the network.

It should be remembered that, in recurrent networks, the delays must be
fully specified in order to avoid ambiguity in the networks dynamics. In the
appendix of the chapter we emphasize the importance of the delay distribution
with an example. The following should also be remembered (Chap. 2):

Rule. For a recurrent neural network to be causal, any cycle of the network
graph must have a nonzero delay.

Other examples of recurrent neural networks, having structures of differ-
ent complexities, were presented in Chap. 2. We present here two classical
types of recurrent neural networks. They are interesting from a historical and
didactical point of view since they are often quoted as examples. They are not
commonly used in practical applications.

4.5.3.1 The Elman Network

The Elman network is a layered neural network. It was suggested in the late
eighties to model contextual phenomena for applications in linguistic analy-
sis. [Elman 1990]. A lot of research involving recurrent neural networks in
linguistics has been performed in that period with a cognitive perspective.
Notice that in contrast with the modeling of a physical system, a context is
generally unknown, and it is not possible to determine it using a differential
equation or a variational principle. Hidden Markov Models turned out to be
an efficient, albeit complex, tool in speech analysis. The Elman model is re-
lated to those ideas: its purpose is to represent the context (i.e., the state of
the system) in a hidden layer. Actually, it is not possible to represent it as the
network output since it is impossible to compare it with any desired output.
A diagram of the Elman recurrent network is displayed on Fig. 4.16.

4 Neural Identification of Controlled Dynamical Systems 273

Fig. 4.16. Application of Elman network for dynamical system modeling

The Elman network is a network with one hidden layer. The outputs of
the neurons of that layer are fed back to the network input with a unit time
delay. Therefore, the order of the model is equal to the number of hidden
units. Elman calls the hidden units the contextual units. The network output
at a given time is a nonlinear function of the external input at that time and
of the output of hidden units at the previous time step.

Note that the basic components of an observed dynamical system are
clearly disclosed in the Elman model: the network input layer stands for
the control of the system, the contextual hidden layer stands for the state
of the system, the output layer stands for the measurement. The connection
of the input layer to the hidden layer stands for the influence of the control
on the state evolution.

4.5.3.2 The Hopfield Network

Hopfield networks played an important historical part for several years from
1982. They were motivated by the progress of the statistical physics of dis-
ordered media and its applications to complex systems. In 1982, Hopfield
proposed [Hopfield 1982] a neural network model that was a decisive step
away from the popular perceptron. (The perceptron is studied in detail in
Chap. 6 of this book). He emphasized the dynamical characteristics of biolog-
ical networks that stem from the recurrent connectivity: a recurrent neural
network, being a dynamical system, exhibits attractors that are steady states
of the dynamics.

274 M. Samuelides

Fig. 4.17. Hopfield network is a fully connected recurrent network with symmetrical
connections. For simplicity, the connection delays are not shown

A Hopfield network is made of binary neurons, of which the activation
function is a step function. The output y of a neuron is given by

y = H

⎛
⎝∑

j

wijxj

⎞
⎠ where H(x) = 1 if

∑
j

wijxj ≥ 0 and H(x) = 0 else,

and where xj are the values of the inputs of neuron i; the latter are the outputs
of all other neurons. Thus, each neuron encodes binary information and the
state of the network is the vector of the neuron outputs. It is a binary vector
that encodes information.

A Hopfield network has no external inputs. Its behavior is autonomous and
depends only on its own dynamics. To guarantee the global stability of such a
network, (i.e., to guarantee that the network state converges to a steady state,
irrespective of the initial state) and to be able to compute those equilibria,
Hopfield introduced a symmetry in the connections rule: the connection weight
from neuron i to neuron j is equal to the connection weight of neuron j to
neuron i. Moreover, each connection has a unit delay (those assumptions are
not plausible from a biological standpoint). Figure 4.17 represents a Hopfield
network with six binary neurons. The symbols for the connection delays have
been omitted. The dynamics of the Hopfield net can be viewed as follows: the
steady states of the dynamics encode codes of memory contents, and the dy-
namical process, which starts from an initial sate and proceeds autonomously
towards an equilibrium state, can be interpreted as the recall process of an
associative memory or a content addressable memory (CAM): the initial state
is the binary code of a corrupted information (as delivered by a sensor), and
the final state is the binary code of the correct information

The network training process consists in computing the network para-
meters in such a way that the items to be stored be coded by equilibrium

4 Neural Identification of Controlled Dynamical Systems 275

states of the network dynamics. To obtain that behavior, Hopfield proposed
that the connection matrix should be equal to the correlation matrix of the
stored items. More precisely, assume that the network has N neurons and
that p items should be encoded and stored. Those items are encoded by bi-
nary vectors ξi = (ξj

i). The weight matrix is denoted by w = (wjl) with
wjl = (1/p)

∑p
i=1 ξ

j
i ξ

j
i if j �= l and wjj = 0. Note that the connection matrix

is symmetric. That learning rule is a simplistic version of Hebb’s rule, which
was first proposed by Hebb to model some biological learning processes. Later
on, other learning rules have been proposed to ensure that any set of vectors
(with a cardinal smaller than N/2) or any state sequence can be stored as a
fixed point or as a cycle of the network dynamics.

To conclude, 20 years after J. J. Hopfield’s seminal paper, the following
conclusions may be drawn:

• From the point of view of biological modeling, the advantage of Hopfield
model is to emphasize the role of dynamics in the cognitive functions of
biological neural networks, and to show the connection between learning
and correlation, which is set by Hebb’s rule. Some older models, which
were less popular, already emphasized those points. Later on, more bio-
logically plausible models integrated new properties: information temporal
coding using action potential or spikes, sparseness and asymmetry of the
connections. These new properties outdated the Hopfield model, however
rich and innovative.

• As content addressable memories (CAM), the performance of Hopfield
models is rather poor. Improvements have been developed in the eight-
ies (mean-field Hopfield networks with continuous activation functions,
stochastic Hopfield networks and Boltzmann machines). There was a lot
of published literature. Nevertheless, applied research on those topics was
progressively abandoned, especially in the fields of pattern recognition and
error correction.

• A close connection was soon established between the Hopfield model and
the simulated annealing algorithm. Simulated annealing was discovered
at about the same period by Kirkpatrick, Gelatt and Vecchi [Kirkpatrick
1983] from statistical physic inspiration. A new research direction origi-
nated from that connection: the application of neural networks to opti-
mization. That approach is the scope of Chap. 8 of this book.

4.5.4 Canonical Form for Recurrent Networks

The examples of recurrent neural networks that were provided in previ-
ous paragraphs show that those networks are inherently dynamical systems.
Therefore, if those networks are considered as dynamical systems, they are
by input signals and provide output signals. Consequently, it is convenient
to express them in a state-space representation. That state representation

276 M. Samuelides

provides a unified way of handling those models, whatever their special archi-
tecture may be (delay distribution, etc.). That state representation was called
canonical form and was fully described in Chap. 2.

Any recurrent neural network, however complex, has a minimal state rep-
resentation, called “canonical form.” The algorithms that are described in the
previous section may be applied to the canonical form in a straightforward
way.

In Chap. 2, the paragraph that is entitled “Canonical form of dynamical
models” and complementary sections address that issue. Several examples are
presented there to illustrate the approach.

4.6 Learning for Recurrent Networks

E. Sontag has proven in [Sontag 1996] that recurrent neural networks are uni-
versal approximators of controlled, observable, deterministic dynamical sys-
tems. Note that, just as Hornik’s universal approximation theorem for func-
tion approximation, the present theorem is not constructive, and provides no
indication either on the architecture or on the learning algorithm.

The main problem with recurrent neural network learning using a descent
method (first order gradient method or second-order method) comes from
the time range of the consequences of changing a weight value. The influence
of a weight value on the cost function is not limited to the current time: it
propagates through the computing horizon, which is theoretically unbounded.
In a rigorous mathematical treatment, the computation of the gradient of
the cost function requires propagating the computation for each example on
the full computational horizon, compute the weight correction and iterate as
necessary. The training process for recurrent networks would be then a very
expensive procedure for very long training sequences. It would be difficult to
implement on real-time applications. Therefore, when recurrent architectures
for neural networks were suggested for dynamical system identification and
control, approximate solutions were used. The basic paper [Williams 1989]
presents an interesting approach.

When the state of the system is completely known because it is measured at
each time step, there is no particular problem. A teacher-forcing algorithm can
readily be implemented, although (see Chap. 2) that technique is appropriate
only in applications where the relevant uncertainty is modeled by a state
noise. That approach was shown to be poor when a measurement noise must
be taken into account, a very frequent situation in industrial applications.

In the general case, where the knowledge of the state of the process is
corrupted by a measurement noise, or is not fully measured, one must make
a choice between two approximations:

• Either compute the true gradient with respect to the current weights but
change the cost function by truncating the computation period to a sliding
window: that is called back-propagation through time (BPTT)

4 Neural Identification of Controlled Dynamical Systems 277

Fig. 4.18. Teacher-forced learning of a recurrent network

• Or approximate the gradient of previous states with respect to the cur-
rent weights by the values of those gradients with respect to the previous
weights: that is called real-time recurrent learning (RTRL).

More details are provided in the next section.

4.6.1 Teacher-Forced Learning

In the teacher-forced learning method, all the inputs of the canonical form of
the network are known during the training process. The name of the algorithm
is inspired from the teacher’s behavior: the teacher corrects the student’s
behavior at each step instead of first observing the behavior for a while and
correcting it afterwards. The engineer just takes into account the fact that
experimental data are available to set the model at any time-step. Then the
network learning process amounts to a nonlinear regression of the network
on its input (NARX) as shown in Chap. 2. That learning process is depicted
graphically in Fig. 4.18.

An input-state trajectory (set of N input-state pairs) is used as the data-
base for the training process. The intermediate states (time k) are used both
as outputs to assess the evolution of the current network computing evolution
from time k − 1 to time k and as inputs to feed the network and compute
evolution from time k to time k + 1. Of course to apply this simple method,
one has to know the full input of the process at each time-step. It cannot be
implemented in the general case.

4.6.2 Unfolding of the Canonical Form and Backpropagation
Through Time (BPTT)

In this method, the recurrent characteristics of the network are considered by
building a feedforward network whose outputs are identical to the sequence
of outputs of the recurrent network. As mentioned in Chap. 2, that network
is obtained by copying the feedforward part of the canonical form N times if

278 M. Samuelides

Fig. 4.19. Time unwrapping of the canonical form of a recurrent network along the
whole learning sequence

the training sequence is of length N . The state trajectory of the process is not
measured , hence cannot be used as state inputs during training. The state of
the network is set initially to the state of the process if the latter is available
(semidirected learning). If it is not the case, the input state of the network
is initialized to a likely value (a priori initialization). The unfolding of the
network canonical form is shown schematically on Fig. 4.19. That generates a
feedforward network. Any training algorithm of feedforward networks can be
used, subject to the constraint that all the weights of the copies are identical.
Therefore, the shared-weight technique must be used (see Chap. 2).

If the training sequences are too long, or if an adaptive training is required
(on-line training), the training sequences must be truncated to a finite dura-
tion, so that, for each training step, only a limited portion of past information
will be used. Let p be the duration of that period. Thus, at time n, only in-
formation pertaining to time n− p+ 1 to time n is taken into account. That
leads to a new notation: from now on, k will stand for the number of the copy
at step n; k varies from 1 to p. The training scheme is similar to Fig. 4.19
with the following modifications:

• The length of the sequence is not n time steps, but p time steps;
• The state inputs at the first of those p time-steps can be set in to two

different ways:
1. If the state of the process is fully measured, then the measured values

of the process may be assigned to these state inputs (at the first time-
step): then the algorithm is called semidirected ;

2. If the state of the process is not fully measured, those inputs must be
fed with the previously computed values for that specific copy (those
quantities were computed at learning step n− 1). Then, the algorithm
is said “undirected” because the true state of the process is never taken
into account during the training process. In that case, that assignment

4 Neural Identification of Controlled Dynamical Systems 279

integrates all the available information coming from the past up to time
n−p+1, through p successive revisions. It can be trusted. Nevertheless,
it introduces both error and instability. It was shown in [Lion 2000] that
it is possible to control this approximation by introducing a projection
to provide reasonable boundaries to the results. Then, using stochastic
approximation theory, it is shown that the algorithm converges towards
a local minimum. (The minimum is local since the framework is not
linear and not necessarily convex).

Thus, it is important to discriminate, in the computation, two different times
indices, the learning step index n and the time-step index of the unfolded
network, which is denoted by k, k = 1 to p. A copy of the network is defined
by the two functions g and h that respectively determine the state and the
output of the network at step k as a function of the network state, its input
and its previous parameter values. We are now able to describe in detail the
operations that are necessary to compute the gradient using backpropagation
through time during the training step n + 1. All the current values of the
network parameters are stored in the parameter vector W.

For the nth learning step, the following components of the input vector be
used:

uk−1
n+1 = un−p+k, k = 1 to p,

and the following output data:

ψk
n+1 = ψn−p+k+1, k = 1 to p.

If the state of the network cannot be measured (undirected learning), the
previous learning step state estimate is used as the initial state of the unfolded
network

x0
n+1 = x̂n−p+1 = x1

n.

At the training step n + 1, the following computations are performed on
the unfolded network that was obtained at the previous step:

• computation of the state and of the output for k = 1 to p,

xk
n+1 = g(uk−1

n+1,x
k−1
n+1,w)

yk
n+1 = h(uk−1

n+1,x
k−1
n+1,w);

• comparison with the desired outputs for k = 1 to p,

εk
n+1 = ψk

n+1 − yk
n+1;

• computation of the adjoint unfolded network (the adjoint unfolded network
is built by inverting the signal propagation direction, by replacing nodes
by adders, adders by nodes, and activation functions by their derivatives)

280 M. Samuelides

Fig. 4.20. Adjoint of a layered feedforward network (a) Original network, f stands
for the transition operator through the nonlinear activation function (b) adjoint
network, notation f stands for the linear product by the derivative of function f
taken at the current point of the original network

• backpropagation of the error through the adjoint unfolded network for
k = 1 to p,

ξk−1
n+1 = g∗(εk

n+1, ξ
k
n+1,w).

Figure 4.20 illustrates the construction of the adjoint network in a simple
case.

We showed on picture (a) a layered network with three inputs, a first
layer with a hidden neuron and an output neuron and a second layer with a
single output neuron. Thus, the network performs a nonlinear application of
R3 into R2. On picture (b), the adjoint network performs a linear mapping
of R2 into R3. The inputs of the adjoint network are the error signals that
are associated to the original network outputs. The mathematical definition
is simple: the adjoint of the nonlinear application y = g(x) is the linear
application ξ = [Dg(x)]Tε, where [Dg(x)]T is the transposed matrix of the
Jacobian matrix of g at x, i.e., the matrix of the partial derivatives. It is
just a graphical representation of the backpropagation algorithm, which is
frequently used to compute the gradient of the cost function with respect to
the parameters.

Once the error signals of the adjoint network are computed, the compu-
tation of the quadratic error gradient is achieved through implementing the
classical backpropagation rule. However, one has to consider that the network
is an unfolded network. Actually, the network has been duplicated p times
where p is the width of the time window. Therefore, the numerical value of
one connection weight is shared by several connections that have different
locations in the unfolded network.

4 Neural Identification of Controlled Dynamical Systems 281

Gradient Computation

The component of the gradient of the quadratic error with respect to a con-
nection weight of the recurrent network is the sum of computed values of
the components of the gradient with respect to all the connections of the
unwrapped network that share the same value of the connection weight.

That result was shown in Chap. 2 in the paragraph dedicated to the
“shared weights” technique.

The reader wishing to implement on a computer one of the foregoing algo-
rithms will find all the needed formulas in a synthetic framework in the Yacine
Oussar’s Ph.D. entitled “Wavelet networks and neural networks for static and
dynamic process modeling” (Chap. 3, pages 64 to 69 for input-output models
and pages 72 to 81 for state models). This thesis is available in pdf format at
the following URL http://www.neurones.espci.fr. A full technical discussion
of the algorithms is developed there.

4.6.3 Real-Time Learning Algorithms for Recurrent Network
(RTRL)

The real time recurrent learning method (RTRL) relies on another approxima-
tion, different from time truncation. Let us write again the recurrent network
evolution equation from time n to time n+ 1 under its canonical form,

x(n+ 1) = g[u(n),x(n),w(n)]
y(n+ 1) = h[u(n),x(n),w(n)].

We want to compute, with the weights w(n), the gradient of the applica-
tion Ψn+1

1 that takes w as input and delivers y = Ψn+1
1 (w). The computation

will be performed from an initial state x(0) by using the following sequence
of equations. For k = 0, . . . , n,

x(k + 1) = g[u(k),x(k),w] and y = h[u(n),x(n),w].

Differentiating those expressions, we obtain

∇wΨ
n+1
1 [w(n)] = ∇wh[u(n),x(n),w(n)]

+∇xh[u(n),x(n),w(n)] · ∇wΦ
n
1 [w(n)],

where Φn
1 is defined as the application that takes w as input and delivers x =

Φn
1 (w) using the following recursive computation sequence: for k = 0, . . . , n−1,

x(k + 1) = g[u(k),x(k),w] and x = x(n).

The problem is the computation of ∇wΦ
n
1 [w(n)] though the value w(n)

was not available at the past time steps. Since we are operating in real time,

282 M. Samuelides

we cannot go back to the past as in the BPTT algorithm. For instance at step
n− 1, we perform the computation

x(n) = g[u(n− 1),x(n− 1),w(n− 1)]

instead of the computation

x(n) = g[u(n− 1),x(n− 1),w(n)]

using a different state trajectory that was computed in real-time with the
time-varying weight trajectory w(k), instead of computing again a new state
trajectory with the single constant configuration w(n).

The idea is to update an approximation of ∇wΦ
n
1 [w(n)] that is noted

∇̂wΦ
n
1 by the following recursive equation:

∇̂wΦ
n
1 = ∇g[u(n− 1),x(n− 1),w(n− 1)] · ∇̂wΦ

n−1
1 .

That approximation is proven mathematically using stochastic approxi-
mation theory in the framework of controlled Markov chains subject to as-
sumptions that will not be detailed here (see [Benveniste et al. 1987]).

For computational issues, it should be emphasized that RTRL does not use
the adjoint network. Indeed, in contrast to backpropagation, the full gradient
has to be computed explicitly. The computation must be performed from
inputs to outputs, instead of being performed backwards.

4.6.4 Application of Recurrent Networks to Measured Controlled
Dynamical System Identification

The applications of recurrent neural networks to identification, using undi-
rected or hybrid algorithms are not very common. Generally, academic exam-
ples are presented in the literature. The stability of the algorithms is more
difficult to guarantee than for linear models [Ljung 1996].

In practice, for the identification of nonlinear models, directed learning
algorithms should be tested first. In [Haykin 1999], it is shown that the iden-
tification using a NARX model of the time series sin(n+sin(n2)) outperforms
the identification using a semidirected algorithm with the same number of pa-
rameters. However, numerous examples of applications advocate for the oppo-
site conclusions. Generally, noise is essentially output noise and one has to use
semidirected or undirected learning algorithms (for examples, see Chap. 2).
It should be emphasized that, in a lot of published examples, the success of
directed algorithms rely essentially on the regularity of the functions to be ap-
proximated and that the dumb predictor (as defined in Chap. 2) outperforms
any directed learning algorithms.

For feed-forward networks, to the key problems that have to be faced are

• the selection of inputs,

4 Neural Identification of Controlled Dynamical Systems 283

• the selection of architecture (generally, the size of the hidden layer).

For recurrent networks, three additional questions must be addressed:

• the selection of the representation (input-output or state representation),
• the choice of the model order,
• the length of the sliding time window for backpropagation through time.

It may be quite useful to perform a linear identification (where structural
tests are better understood) to select the order of the model. The selection of
the truncation horizon for BPTT is also a tricky issue: theoretically the order
of observability of the model is sufficient as a truncation horizon, practically
computing time limits the size of the sliding time window.

Another problem for recurrent network learning is to capture long-range
time dependency going backwards to the past. That issue is investigated
in [Bengio 1994]. Nevertheless, long-range time dependencies are seldom con-
sidered in practical applications because the true physical processes are not
steady along very long epochs: there exist slow drifts to cope with; adaptive
methods (that have been developed here) are then used to update the model.

When one is facing big difficulties, it is advised to use directed and evolu-
tive learning strategy, progressively increasing the time-depth of the learning
process and using robust optimization methods. An efficient methodology for
practical applications is the use of “gray box” modeling (presented in Chap. 2)
to take advantage of all the available knowledge on the process to be modeled,
the mathematical form of the model equations, the order of the model and so
on. Thus, the designer has to address a smaller number of issues.

Of course data preprocessing, using first linear regression methods then
using the residues to feed nonlinear learning algorithms, often improves the
accuracy of nonlinear identification methods, since approximation problems
are correctly decoupled and scaled.

Recurrent neural networks may be used to design controllers. That ques-
tion will be addressed in the following chapter.

4.7 Appendix (Algorithms and Theoretical
Developments)

4.7.1 Computation of the Kalman Gain and Covariance
Propagation

Let us consider the Markov stochastic state model,

X(k + 1) = AX(k) + Bu(k) + V (k + 1),

with the following measurement equation:

Y (k) = HX(k) + W (k).

284 M. Samuelides

We define X̂(k) as the least squares optimal estimate, i.e., the linear re-
gression of the random state vector X(k) onto the random vector of past
measurements up to time k : Y (k) = [Y (1); . . . ;Y (k)]. Let ϑ(k + 1) be the
innovation at time k + 1. It is defined by

ϑ(k + 1) = Y (k + 1) − HAX̂(k) − HBu(k).

The innovation filter recursive equation is

X̂(k + 1) = AX̂(k) + Bu(k) + Kk+1ϑ(k + 1)

where the innovation gain is inferred from the computation formula of linear
regression:

Kk+1 = Cov[X(k + 1),ϑ(k + 1)]Var[ϑ(k + 1)]−1.

Pk stands for the covariance matrix of the estimation error X(k)− X̂(k) and
P ◦

k+1 stands for the covariance matrix of the prediction error

X(k + 1) − AX̂(k) − Bu(k).

Let us compute covariance of the prediction error. One obtains

X(k + 1) − AX̂(k) − Bu(k) = A[X(k) − X̂(k)] + V (k + 1).

Because V (k+1) is uncorrelated to X(k)−X̂(k), the prediction error covari-
ance propagation equation is easily computed using a quadratic expansion,

P ◦
k+1 = AP kAT + Q.

From the definition of innovation error,

ϑ(k + 1) = Y (k + 1) − HAX̂(k) − HBu(k)

= H{A[X(k) − X̂(k)] + V (k + 1)} + W (k + 1).

The value of its covariance matrix is deduced in a similar way, expressed as a
function of the prediction error at time k

Var[ϑ(k + 1)] = HP ◦
k+1H

T + R.

Let us compute the covariance between the state X(k+1) and the innovation
ϑ(k + 1),

Cov[X(k + 1),Y (k + 1) − HAX̂(k) − HBu(k)]

= Cov{AX(k) + V (k + 1),HA[X(k) − X̂(k)]
+ HV (k + 1) + W (k + 1)}

= Cov{AX(k),HA[X(k) − X̂(k)]}

4 Neural Identification of Controlled Dynamical Systems 285

+ Cov[V (k + 1),HV (k + 1) + W (k + 1)]

= ACov[X(k),X(k) − X̂(k)]ATHT + Var[V (k + 1)]HT.

Yet, from the correlation of X̂(k) with X(k) − X̂(k), one gets

Cov[X(k),X(k) − X̂(k)] = Var[X(k) − X̂(k)] = P k.

Therefore,

Cov[Y (k + 1) − HAX̂(k) − HBu(k),X(k + 1)]
= (AP kAT + Q)HT = P ◦

k+1H
T.

Finally, we obtain,

Kk+1 = P ◦
k+1H

T[HP ◦
k+1H

T + R]−1.

In order to iterate the algorithm, which is recursive, let us compute finally
the covariance matrix of the estimation error at time k + 1. From its value,

X(k + 1) − X̂(k + 1) = A[X(k) − X̂(k)] + V (k + 1) − Kk+1[Y (k + 1)

−HAX̂(k) − HBu(k)]

X(k + 1) − X̂(k + 1) = (I − Kk+1H){A[X(k) − X̂(k)] + V (k + 1)}
−Kk+1W (k + 1),

the expression of the covariance matrix can be derived,

P k+1 = (I − Kk+1H)(AP kAT + Q)(I − Kk+1H)T + Kk+1RKT
k+1.

4.7.2 The Delay Distribution Is Crucial for Recurrent Network
Dynamics

In this chapter, we provided examples of recurrent neural networks. Most of
them were of the input-output type, i.e., they were built from a feedforward
neural network whose outputs are fed back to the input with a unit time delay.
Other recurrent network models have been shown in this chapter (Hopfield
and Elman models) and in Chap. 2 (“gray box” modeling taking into account
algebraic and differential equations from prior knowledge for the network ar-
chitecture).

Let us emphasize that for a recurrent neural networks, delay distribution
has to be specified. If it is neglected, the network behavior is not properly de-
fined. To illustrate this, Fig. 4.21 shows a comparison of the delay specification
for a network without any closed circuit in the connection graph (feed-forward
network) and a recurrent network with circuits in the connection graph.

Pictures (a) and (b) show the graph of an elementary feedforward net-
work with four connections. In pictures (c) and (d), feedback was added. The

286 M. Samuelides

Fig. 4.21. The delays are crucial to update a neural network

connection weights are the same for cases (a) and (b) and for cases (c) and
(d). Those two pairs of networks are not simple replication because a delay
operator was added in the networks (b) and (d). We shall now investigate the
consequences of that feedback, assuming that the network inputs are constant.

In case (a), at time 1, the state of unit 3 depends on the initial states of
units 2 and 4, as the state of unit 4 is determined by the state of unit 1. At
time 2, the state of unit 3 is determined by the state of units 2 and 4, hence by
the states of units 1 and 2. In case (b), the state of unit 3 is only determined
at time 2. At that time, its state value is similar to the state value of unit 3
in case (a).

Remark. In fact, open-loop feedforward neural networks that are fed by
static inputs stabilize onto a final state, which depends only on the initial
input state, whatever the distribution delay. Therefore, it does not depend on
the update order; the units are assumed to be updated synchronously.

Moreover, the update order and the delay distribution are not taken into
account in a layered network with feedforward information propagation and
connections only from each layer to the following layers. In Fig. 4.14, even if
the network is operated in an open-loop fashion with a connection of the state
at time k towards the controller and the internal model, there is an ambiguity
for the update order. In that case, the relevant rule to update units is to
update synchronously the units of a same layer and sequentially along the
information propagation direction. Thus, the units of the first hidden layer of
the internal model have to wait, to be updated, for the controller to deliver
the control signal that is an input of the internal model. That rule is even
more important if the inputs are time-dependent.

In that case, one has to discriminate between the simulation time repre-
sentation (one time step for operating the whole simulation block including
the controller and the internal model) and the update steps of the different
layers of the whole simulation block that are nested in one time step of the
algorithm.

4 Neural Identification of Controlled Dynamical Systems 287

Consider now cases (c) and (d) of Fig. 4.21. Pictures are representing
recurrent network architectures. In the two cases, the architectures are similar
with respect to static characteristics and differ only by one delay, which has
been added in case (d). At time 2, the state of unit 3 is different: in case (c), it
depends on initial states of units 2 and 4, whereas, in case (d), it depends on
initial states of units 2 and 1. This difference is propagated at the following
time step to unit 4 then to unit 1 and so on. Finally, the network states are
completely different.

For recurrent networks, the state of units do not stabilize across time even
when the network is fed by static inputs. The state dynamics depend strongly
on the delay distribution. The update order plays a key role in the dynamics.

References

A list of references is given at the end of Chap. 5 for Chaps. 4 and 5.

5

Closed-Loop Control Learning

M. Samuelides

In the previous chapter, we showed how to use training in order to model
controlled dynamical systems, with emphasis on neural modeling. This chapter
extends that presentation to the problem of designing a closed-loop control
law by training. Nonlinear control has been a growing field during the past
twenty years. However, there is no methodology based on first principles, in
contrast to linear control. A number of practical methods have been proposed,
starting from various points of view. Some results are essentially theoretical,
addressing the problems of controllability, existence of stabilizing control law,
and validity of linearization techniques. Such results are beyond the scope of
this book.

However, we will recall some elements of control theory in the following
section, emphasizing the connections between linear and nonlinear control
laws. Actually, “neural” techniques extend “classical” techniques of nonlinear
control to systems, which has been previously modeled using neuronal identi-
fication and training. Those techniques are described in the section “Design of
Neural Control by Inverse Model”, where several techniques are successively
studied: straightforward inversion, simple but too often inefficient, reference
model control, which is more frequently used, and recurrent models whose
implementation may be more difficult.

Further sections are devoted to optimal decision problems in the classical
framework of dynamic programming (section “Dynamic Programming and
Optimal Control”) and to its counterpart in learning theory (section “Re-
inforcement Learning and Neuro-Dynamic Programming”). Those techniques
were in existence long before neural networks became popular; they addressed
the problems of control in discrete spaces. Neural networks provided good ap-
proximations of those methods. Meanwhile, reinforcement learning can be
applied now to continuous state spaces avoiding “combinatorial explosion”
which was a drastic limit to the field of application of classical reinforcement
learning. That set of more modern techniques was termed recently “Neuro-
Dynamic Programming”.

290 M. Samuelides

5.1 Generic Issues in Closed-Loop Control of Nonlinear
Systems

5.1.1 Basic Model of Closed-Loop Control

The principle of closed-loop control or feedback control is to cancel the effects
of disturbances on the reference dynamics of the system by closing the control
loop, i.e. by establishing a functional dependence of the command signal on
the state of the system. That is achieved by implementing a control law into
a controller. A controller is a device whose input is the state of the system to
be controlled (or more generally the output of that system if its state is not
completely observed). Then the controller determines the value of the control
signal that will be used to control the original system at the next instant. Let
us consider a dynamical system defined in Chap. 4,

x(k + 1) = f [x(k),u(k)],

where x(k) is the state vector of the model at instant k, and u(k) is the
vector of control signals at instant k. The controller determines the value of
that control signal vector from the state vector according to a function ψ,

u(k) = ψ[x(k)].

That function is called the control law.
The simpler purpose that can be assigned to a control system is to keep

the system in a desired state in spite of any disturbance (then the control is
said to reject disturbances): a servo-system is thus designed. Another possible
purpose is to keep the state trajectory of the controlled system as closed as
possible from a desired state trajectory: a tracking system is thus designed.
In those cases, which are very common in applications, the desired state is
called setpoint in servo control, and reference trajectory in tracking; naturally
enough, the control law is based on the difference between the setpoint or
reference trajectory and the actual state.

Such a closed-loop system is shown in Fig. 5.1.
When the state is not completely known, the control can only be a function

of the observations. Therefore, for such a system, the relevant equations are
the state equation, the measurement equation and the control law,

x(k + 1) = f [x(k),u(k)]
y(k) = g[x(k)]
u(k) = ψ[y(k)].

Clearly, a controlled dynamical system with its control law is actually equiv-
alent to an autonomous dynamical system. Therefore, its stability must be
investigated. If some stochastic process is added in the equations to model

5 Closed-Loop Control Learning 291

Fig. 5.1. Principle of a closed-loop control

state noise or observation noise, then the stability of the controlled system is
again a crucial issue.

In the previous paragraphs, we just mentioned control laws that depend
on the current state or on the current observation only. Such a control law
is called a static control law. Actually, all the past information can be used
for implementing the current control. Such a control law is called a dynamic
control law. In practice, however, the complexity of the computation of the
control law is must obey stringent time constraints. The computation must
be performed during the sampling period of the controller to implement the
control in real time.

5.1.2 Controllability

The purpose of a control law cannot always be achieved. Controllability is
the property of the system whereby it can reach any target if it is provided
with an appropriate control law. Note that the simplest dynamic controlled
systems, such as linear systems, are not necessarily controllable when the state
dimensionality is larger than 1.

Consider for instance the following linear system:

x(k + 1) = x(k) +
(

1
0

)
u(k).

Its order is 2 and the control is scalar. It is not possible to change the sec-
ond component of the state with the scalar control. On the other hand, it is
very easy to show that the following linear system enjoys the controllability
property,

x(k + 1) =
(

1 1
0 1

)
x(k) +

(
1
0

)
u(k).

Controllability can readily be expressed for a linear system: in order to reach
any state, it is necessary and sufficient to be able to reach the state zero from
any initial state [Kwakernaak et al. 1972].

292 M. Samuelides

When the state is not completely observed, one has first to reconstruct
the state using a filter before implementing the control. It can be shown that
observability and controllability of completely observed system is a sufficient
condition of controllability [Kwakernaak et al. 1972]. Controllability assump-
tions are more difficult to state in a nonlinear framework. Some algebraic
concepts are necessary which are beyond the scope of this book.

In real-life systems, one cannot implement arbitrary control laws, because
the magnitude of acceptable control is bounded by the physical limitations
of the actuators. The control must obey such constraints. The set of controls
that obey the constraints is called the set of feasible controls. Prior to actually
applying a control law designed in a linear framework, one must check whether
it is feasible. If the control law saturates the actuators, the system is no longer
linear.

5.1.3 Stability of Controlled Dynamical Systems

The most important property of a control law is that it guarantees the stabil-
ity of the controlled dynamical system. We explained in the previous chapter
that a controlled dynamical system with a closed-loop control law behaves
just like a usual dynamical system without any control. Let us recall some de-
finitions about stability of discrete-time nonlinear dynamical systems. In this
section, discrete-time dynamical systems are considered, with the following
state equation:

x(k + 1) = f [x(k)].

A state x∗ such that f(x∗) = x∗ is called an equilibrium state. x∗ is also
said to be a fixed point of f .

An equilibrium x∗ is said stable if

∀ ε, ∃ η, ‖x (0) − x∗‖ ≤ η ⇒ ∀ k, ‖x (k) − x∗‖ ≤ ε.

An equilibrium x∗ is said asymptotically stable, with an attraction basin Ω, if
for any initial condition in Ω, the state trajectory originating from that initial
condition reaches the fixed point x∗.

The stability properties of dynamical linear systems x(k + 1) = A · x(k)
can be easily derived from the spectral properties of matrix A. The point
0 is a fixed point of the linear system. If the eigenvalues of A are strictly
included in the open unit disc, the equilibrium is stable and asymptotically
stable. If there exists an eigenvalue, whose module is strictly larger than 1,
then 0 equilibrium is neither stable nor asymptotically stable. Critical cases
of eigenvalues of module equal to 1 deserve a specific analysis.

That simple characterization of linear dynamical systems is the basis of
the methodology to build control laws for linear controlled dynamical systems
by locating the poles of transfer functions [Kwakernaak et al. 1972]. That
methodology is traditional in control theory, and is very popular in real world

5 Closed-Loop Control Learning 293

applications. It was first invented in the framework of single variable sys-
tems with the intensive use of Laplace transform and it was easily extended
to multivariable systems. Nevertheless, those basic methodologies have no
straightforward extensions for nonlinear controlled dynamical systems. We
just mention them here for the sake of completeness.

In the asymptotically stable case, the stability of equilibrium of nonlinear
dynamical systems can be derived from the stability of the linearized system
around that equilibrium. If x∗ is a fixed point of the dynamical system x(k+
1) = f [x(k)], the �linearized dynamical system around x∗� is the following
dynamical system x(k + 1) = ∇fx∗ [x(k) − x∗] + x∗. That system is linear
with respect to the fixed point x∗;∇fx∗ is the Jacobian matrix of the partial
derivatives of f in x∗. Then the following result holds:

Linearization Theorem. Provided that the linearized system around x∗ is
asymptotically stable, x∗ is a stable and asymptotically stable fixed point of
the nonlinear dynamical system.

With the linearization, the transfer function of the linearized system be-
comes a convenient tool for the analysis and synthesis of control laws for
nonlinear systems [Slotine et al. 1991]. Specifically, a linearization theorem of
controlled dynamical system states that if the linearized system is control-
lable, that system is locally stabilized when the closed loop control law of the
linearized system is applied to the original nonlinear system [Sontag 1990].

The Liapunov function method [Slotine et al. 1991], which is a straight-
forward generalization of stability concept of dissipative physical systems, is
a general method of investigation of the stability of equilibrium of nonlinear
dynamical systems.

In spite of the important linearization theorem we have just mentioned,
numerous difficulties must be overcome when studying the stability of nonlin-
ear systems:

• The dynamics of a nonlinear system may exhibit several fixed points with
different stabilities: the linearization theorem is a local theorem which
gives no information on the size of attraction basins of asymptotically
stable fixed points;

• Dynamical attractors may exist, which confer a global stability to the
nonlinear system even if there is no stable fixed point: the simpler example
of such attractors is the stable limit cycle. Such an attractor exists in the
Van der Pol oscillator, which was described in the previous chapter.

When noise is considered, the study of stability of systems is completely
changed. In the previous chapter, in the section devoted to the modeling of dy-
namical systems, that the stochastic equivalent of a dynamical deterministic
system is a Markov process, and that the stochastic equivalent of equilibrium
is the invariant measure of this process (see definition in Chap. 4). When a
linear dynamical system is disturbed by gaussian white noise, that probability
describes the asymptotic fluctuations of the state around the zero fixed point

294 M. Samuelides

of the dynamical system in the absence of disturbances. In the general case
of a nonlinear dynamical system with several attractors, the situation is still
more intricate. Actually, fluctuations occur “almost surely”, which enable the
system to pass from an attraction basin of the deterministic dynamical sys-
tem to another. The theory of “Large deviations” allows provides a tool for
estimating the transition probability of those events [Benveniste et al. 1987;
Duflo 1996].

However, in this chapter (and in most applications), we are interested in
stabilizing a fixed point or in tracking a reference trajectory; therefore the
investigation of the coexistence of several dynamical attractors is not really
relevant.

5.2 Design of a Neural Control with an Inverse Model

5.2.1 Straightforward Inversion

The simplest method, to design a neural control law from a neural model
of a controlled dynamical system that was identified as an open-loop neural
network, is the straightforward inversion of that model. The control system
is just the inverse of the model of the process. If that model is nonlinear, its
inverse is nonlinear too, hence can be implemented as a neural network. The
training and operation of such neural control are demonstrated in Fig. 5.2.

In that figure, a neural network that computes the control signal is added
to the neural model of the process. That neural controller is a feedforward
network whose inputs are the state and, optionally, the desired state (at the
next time) if the task is the tracking of a state trajectory. Otherwise, the only
input of the controller is the current state of the system (at time k). The
output of the neural controller is the control signal at time k. That control is
fed to the control input of the model of the process during the training phase,
and to the process input during the operation phase.

The set (controller + model) is a feedforward neural network whose input
is the state at the next time step. Training is performed by minimizing the
difference between the reference state or setpoint and the network output. The
only parameters subject to change are the controller’s parameters (weights and
bias). The model parameters stay unchanged during the training process.

The cost function is usually the squared distance between the desired
output and the measured output. If constraints are imposed to the control
signal, they can be embedded into the controller. For instance, if the admissible
control is bounded, those bounds can be embedded into the activation sigmoid
function of the output neuron of the controller. Alternatively, a penalization
that grows drastically when the constraint is violated may be added to the
error cost function.

That straightforward methodology gives good results for simple problems,
where the objective is a static function of the current state. If the objective

5 Closed-Loop Control Learning 295

Fig. 5.2. (a) Principle of training and (b) operating a closed loop-neural control
which was designed by inverting the model

is a function of the final state in a finite horizon problem, or if it is related to
the whole state trajectory, the above straightforward method cannot be used.
Time unfolding of the global network (controller + model) can be considered
and time delayed back-propagation can be used for training. That methodol-
ogy will be discussed below. Even if the objective is a static function of the
current state, straightforward static training of a neural controller does not
always provide satisfactory results.

In addition, that method is not robust with respect to the modeling er-
rors the control is computed from the model, so that it can be inaccurate if
the model itself is not an accurate approximation of the process. The inter-
nal model control method that will be considered below can overcome that
problem.

5.2.1.1 Illustrative Example: The Inverted Pendulum

The following numerical results show the limits of straightforward inversion
of the process model to build the control law on an elementary example. The
problem is stabilization of the inverted pendulum. That controlled dynamical
system was introduced in the previous chapter, in section “Example: the in-
verted pendulum”. The neural model has been easily identified with a good
accuracy from the state equation. The range of angle variation, which has

296 M. Samuelides

been chosen for training, is the real interval [−π/5, π/5]. It corresponds to a
moderate nonlinearity. The sampling frequency is 50 Hz.

Controller training was performed through the straightforward inversion of
the process model. The optimization algorithm, which was chosen to perform
training, is the BFGS algorithm (see Chap. 2). The state is supposed to be
completely observed. The task is to stabilize the unstable equilibrium. The
cost function takes into account the difference between the current angle and
the reference angle and the difference between the angular velocity and zero.
Those two quadratic deviations must be appropriately weighted in the cost
function; that choice has an impact on the efficiency of the controller.

The controller that was computed as described as above is tested for its
capacity to stabilize the system from an initial position equal to half the max-
imal deviation of the angle range, which was used for training. The operation
of that controller is satisfactory: it stabilizes the system quickly. Then, in order
to test the robustness of the control law, the control is disturbed by a mul-
tiplicative noise of the form (1 + κε), where ε is a numerical white noise and
κ is the noise factor of the control. Generally, one investigates the robustness
of the control law with respect to the external disturbances (state noise and
measurement noise). However, it is important, in practice, to guarantee that
the control law is robust with respect to itself because the control law may
be implemented with errors (numerical roundoff errors, electro-mechanical er-
rors for the servomotors, etc.). The efficiency of the controller depends on the
choice of the cost function, as shown in the following figures.

In the first experiment, the weight of the velocity deviation in the cost
function is larger to the angle deviation weight. Figure 5.3 shows a typical
trajectory of such a controlled system. The system is stabilized only if the
noise factor is smaller than 0.5. When the noise factor is larger, generally
the trajectory leaves its viability domain during the experiment (20 seconds).
The velocity is stabilized around the reference as shown on Fig. 5.3. The
stabilization of the position is slower and equilibrium is not reached within
the allotted time.

In the second experiment, the weight of the velocity deviation is smaller
than the weight of the angle deviation. The controller is more robust with
respect to the control noise (κ = 3) as shown in Fig. 5.4.

If the weight of the angle deviation is chosen smaller than the weight of the
velocity deviation in the cost function, the system is ill-stabilized as soon as
a control noise exists in the controller. Thus, straightforward model inversion
method assumes that empirical knowledge of the system is available in order
to choose a relevant cost function. The robustness of the optimal controller
relies heavily on that choice.

To summarize, straightforward model inversion method is a simple solu-
tion. However, a deep knowledge of the system to be controlled may be needed
to implement it efficiently. It is necessary to check its robustness versus various
disturbances and modeling errors. Quite often, improvements of that method

5 Closed-Loop Control Learning 297

Fig. 5.3. Trajectory of the stabilized system with a noise factor of 0.5. (Straightfor-
ward model inversion control learning with larger weighting of the speed deviation
in the cost function)

are necessary in order to obtain satisfactory results. We are going to review
some of those improvements.

5.2.2 Model Reference Adaptive Control

In the method called MRAC, for model reference adaptive control, prior
knowledge of the system is used to build the control law [Rivals et al. 2000]. In
that method, the cost function does not push the system directly to the desired
target, but it is designed to force the closed-loop controlled system to track
a reference trajectory. The choice of that reference trajectory is made from
prior knowledge of the controlled system, especially on the actuator abilities.

Actually, there is always an implicit reference model; in the straightforward
inverted control of the previous section, the reference model is just a single
time lag.

Figure 5.5 shows the general organization of the training process of a neural
controller with a reference model.

The Reference Model method turns out to be valuable in numerous appli-
cations to real world problems. It is generally used to improve the performance
of classically controlled dynamical systems. Whenever possible, the reference
trajectory is chosen as the trajectory of a linear system with a critical damping

298 M. Samuelides

Fig. 5.4. Trajectory of the stabilized system with a noise factor of 3. (Straightfor-
ward model inversion control learning with larger weighting of the angle deviation
in the cost function)

with the desired time constant. On the previous example of inverted pendu-
lum, that method gives much better results in the neighborhood of equilibrium
with the same model. A typical trajectory of the closed-loop controlled system
is shown on Fig. 5.6 with a control noise factor equal to 3.

Another neural controller design method is proposed in [Levin 1993]. That
method is somewhat similar to the previous method; it consists in choos-

Fig. 5.5. Learning process of a reference model controller

5 Closed-Loop Control Learning 299

Fig. 5.6. Trajectory of the controlled system with a control noise factor equal to 3
(Reference Model method)

ing, as the reference, the linearization of the controlled dynamical system in
the neighborhood of the stabilization target. Neural training is then used to
compute nonlinear variable change of state and control to reduce the nonlinear
system to its linearization. Such design is displayed on Fig. 5.7.

We point out that the state change deals only with current state but that
the control change deals with control and state.

5.2.3 Internal Model Based Control

As emphasized earlier, designing nonlinear methods as extensions of methods
that are efficient in linear modeling and control is often fruitful. �Neural�
control with internal model is a good instance of such an approach. Figure 5.8
is the diagram of a control with internal model (and explicit reference model).
In addition to the controller, a model of the process (called �internal model�)
is involved in the internal model control law. The modeling error is used to
change the reference, so the controlled system is robust with respect to the

300 M. Samuelides

Fig. 5.7. Linearization of a controlled system by variable change

modeling errors, which is not the case for the inverse-model based control laws.
Training is performed as indicated in the diagram of Fig. 5.5. Nevertheless,
note that the controller input is not the state of the process, but the state
of the internal model. Therefore, during training, it is advantageous to use
relevant values of the state variable of that model.

Fig. 5.8. Internal Model control law

5 Closed-Loop Control Learning 301

Fig. 5.9. Learning a closed-loop control law by the dynamics model inversion using
recurrent back-propagation

That control methodology spurred the development of numerous practical
applications. A detailed description of an application of that technique in order
to perform the automatic piloting of a land vehicle is displayed in [Rivals 1995].

In the linear domain, predictive control is also very powerful and is com-
monly used in process technology (oil industry, etc.). It has a natural neural
extension that gave very good results in process control [Grondin 1994].

5.2.4 Using Recurrent Neural Networks

We just saw the limits of building a control law by a straightforward inversion
of the system model. Model Reference method allows taking advantage of
available heuristic or analytical knowledge about system dynamics. When no
such knowledge is available, the dynamics of the system must be taken into
account during training. That leads to using recurrent neural networks and
dynamical backpropagation as described in Chaps. 2 and 4. The diagram that
is represented in Fig. 5.9 shows how to design such a recurrent neural.

In that case, the global network is made of the neural controller and of
the system model. The input of the global network is the current state, and
its output is the state at the next time. The global network is turned into a
recurrent network by adding the state feedback to close the loop.

5.2.4.1 Using a Recurrent Neural Network to Control a Partially
Observed Dynamical System

We will end this section on neural control design by describing a major work
by industry researchers that was mentioned in previously in the context of
Kalman filters and recurrent networks [Puskorius et al. 1994]. The authors
study several examples of stabilization of nonlinear controlled dynamical sys-
tems, where the state is not completely known (partial and noisy observa-
tion). That paper presents several examples selected from real industry prob-
lems (biochemical reactor with limit cycles, rotation speed of a car engine).

302 M. Samuelides

Fig. 5.10. The pole-cart system

Moreover, a difficult variant of the inverted pendulum stabilization problem
is studied, where the inverted pendulum is set on a cart and is controlled
by moving the cart. That problem is known as the pole-cart problem. It is a
classical benchmark of nonlinear dynamic system stabilization. A diagram is
shown on Fig. 5.10.

The control is a force, which is applied to the cart. That actuator changes
the state of the cart. Then the inertial force changes also the state of the
pendulum, which is nonlinearly coupled to the state of the cart. There are 4
state variables: the cart position x, the pendulum angle θ and the associated
velocities. The observable variables are usually the two position variables. The
objective consists in stabilizing the pole. Meanwhile, the cart has to be kept
within a given range around its central position.

The state is not completely known. Therefore, the authors use an Elman
recurrent network to identify the system (Elman recurrent networks are de-
scribed in Chap. 4 in the section devoted to recurrent networks). The diagram
of that kind of network is shown on Fig. 5.11.

The global network is made of the controller and the system model. Two
closed loops are embedded in that network: an external feedback, feeding
back the measurements to the controller, and an internal recurrence of hidden
layer that models the unknown state dynamics. The neural controller itself is
a recurrent network. Its input is the reference and the two observed variables.
Its hidden layer has with six neurons and its output is a self-recurrent neuron.
The training of the recurrent networks is performed by an adaptive Decoupled
Extended Kalman Filter (DEKF) that was presented in the previous chapter,
in the section devoted to Kalman filtering.

The problem is made more difficult, adding control noise shown previously
in the stabilization of inverted pendulum. The above technique allows the
stabilization of the system in various experimental conditions.

5 Closed-Loop Control Learning 303

5.3 Dynamic Programming and Optimal Control

5.3.1 Example of a Deterministic Problem in a Discrete State
Space

Let us return to the simple example of controlled dynamical system that is
shown on Fig. 4.1 of previous chapter. That example was described at the
beginning of the section �Formal definition and examples of discrete time
controlled dynamical systems�. In order to define a control problem, we have
to define the criterion as a cost function to minimize. In the considered ex-
ample, it is possible to choose a location in the labyrinth as a target to reach
as soon as possible. In that case, we will associate to each triple (current
state, current action, next state) a unit cost, except for the triple whose next
state is state 35 (the target): that triple will enjoy a high negative cost −A
(�reward�).

The problem of optimal control consists in designing a closed-loop control
law. In the context of operational research for discrete time and discrete state
space, the terms policy, or strategy are preferred. It is a function from state
space E to the control set (or action set) A, which associates an action to
each current state. A couple, which consists in one state and one action that
can be carried out from that state, is called a feasible (state-action) couple.

Actually, for finite horizon problems, it is natural to consider nonstationary
policies: if we are traveling in a dangerous country at the beginning of the day,
we surely choose to advance as quickly as possible. Conversely, at the end of
the day, we rather choose to move towards a safe place to spend the night. In
a given location, the two directions are generally not the same. Therefore, in
finite horizon problems, nonstationary policies must be considered, which are
functions of the current time and of the current state and which take their
values in the set of feasible actions.

Fig. 5.11. Building up a closed-loop control law using recurrent back-propagation
through an Elman network

304 M. Samuelides

11 12 13 14 15

21 22 23 24 25

41 42 43 44 45

51 52 53 54 55

31 32 33 34 35

Fig. 5.12. Diagram of labyrinth from Fig. 4.1 with trajectories that are associated
to constant policy GO EASTWARDS

In our simple example, the set of feasible actions is always N, S, E, W
(north, south, east, west) and does not depend on the current state. A dy-
namical system is associated to a given policy. If this policy is stationary,
the dynamical system is autonomous. Thus, in our example, consider the sta-
tionary constant policy �GO EASTWARDS�, which associates E action to
any current state. State trajectories of the associated dynamical system are

ω1 = ((12, E), (13, E), (14, E), (15, E), (15, E) . . .) trajectory coming from
initial state 12,

ω2 = ((21, E), (22, E), (22, E), . . .) trajectory coming from initial state 21,
ω3 = ((24, E), (24, E), . . .) trajectory coming from initial state 24,
ω4 = ((32, E), (33, E), (34, E), (35, E),(35) . . .) trajectory coming from initial

state 32, etc.

Those trajectories are shown on Fig. 5.12.
A total cost J is associated to each state-action trajectory. In principle,

it is the sum of the elementary costs of each step of the trajectory. One has
to make a distinction between finite horizon problems and infinite horizon
problems. In finite horizon problems, where the number of steps is fixed in
advance, for instance to N , it is sufficient to compute the total cost as the
simple sum of the elementary costs of each step. One can possibly add a
terminal cost function of the final state. For instance, when one considers
“GO EASTWARDS” policy and horizon N = 10, the cost function is JN ,
which takes the following values on the previous trajectories

JN (ω1) = 10, JN (ω2) = 10, JN (ω3) = 10, JN (ω4) = 3 − 7A . . .

in the case without terminal cost.

5 Closed-Loop Control Learning 305

When modeling that example, it is more natural to take a unit cost for
each (state-action) couple and to choose a terminal cost equal to −A for the
target 35 and to A for any other terminal state. Thus, one gets the following
values for the previous trajectories:

JN (ω1) = 10 +A, JN (ω2) = 10 +A,

JN (ω3) = 10 +A, JN (ω4) = 10 −A
Unfortunately, the horizon is not precisely known in most applications. There-
fore, infinite horizon problems are often considered. In those problems, it is
not always possible to define the total cost as the sum of elementary costs
for each step. Actually, the sequence of elementary costs may diverge for an
infinite number of steps. There are several possible ways of defining the total
cost of an infinite length trajectory.

One can define, when it exists, the limit of the average cost on the N
first steps of the trajectory when N goes to infinity. In our simple problem,
that solution does not make sense: it amounts to assign the cost −A to each
trajectory ending on the desired target, and the cost 1 to any other trajectory.
The trajectories that reach the desired target quickly are not favored.

When the problem is to reach a specified target within a finite number of
steps, it is possible to take the effective sum of the elementary costs as the
total cost just as in finite horizon problems. It is the case in our example.

In the general case, we suggest taking the discounted cost as a global
criterion to minimize. That cost function is inspired from economics, where
future costs are discounted by a discount rate α here 0 < α < 1.

Thus, in our problem, for an infinite horizon model, we have

Jα (ω1) = Jα (ω2) = Jα (ω3) = 1 + α+ α2 + · · · =
1

1 − α
Jα (ω4) = 1 + α+ α2 −Aα3 −Aα4 − · · · = 1 + α+ α2 − Aα3

1 − α.

Thus, shorter trajectories are favored.
The problem consists in finding an optimal policy π∗ such that the total

cost of the state-action trajectory associated to that policy is minimal for any
initial state.

5.3.2 Example of a Markov Decision Problem

A Markov decision problem (MDP) is the generalization to a stochastic frame-
work of the previous problem. Randomness is introduced in the state evolution
model and in costs. The total cost is then a random variable J . We have to
minimize a functional, which is just the mathematical expectation1 of that
random variable J = E(J).
1 Let us recall that the mathematical expectation of a random variable is the av-

erage of this random variable for its probability distribution. As dynamics is
considered here, the probability law is defined on the set of trajectories.

306 M. Samuelides

Fig. 5.13. Tree of the 2-step trajectories obtained from initial state 24 in the
labyrinth of Fig. 4.1 with constant policy GO EASTWARDS

For instance, in our example, we can consider that there is some control
noise: the evolution does not associate to each (state-action) couple a single
state, but it associates a random variable that takes its value in the state
space. For instance, we select the nominal state at next time with probability
0.8 and the two neighbor states with probability 0.1. For each transition, the
random variables are independent.

Therefore, when the constant policy GO EASTWARDS is applied, a
Markov chain is generated. Figure 5.13 shows the trajectories of horizon 2
of that Markov chain from the initial state 24 on a ternary tree.

That tree consists in 32 = 9 trajectory sections. The result of the first
transition that is associated to the (state-action) couple (24, E) is a random
variable that takes the 3 values 14, 24, 34 in the state space with the respective
probabilities 0.1, 0.8 and 0.1. At the next step, according to the current state,
a transition is performed from one of the (state-action) couples (14, E), (24,
E) or (34, E). For instance the result of the transition, which is associated
to (14, E) is a random variable. It is independent from the previous one and
takes values 24, 15, 14 with probabilities 0.1, 0.8 and 0.1 respectively.

The probability of an N -horizon trajectory (i.e. with N transitions) is
computed by multiplying the elementary probabilities of the transitions for
each step. For instance, the probability of the 2-trajectory ((24, E), (14, E),
(24)) is equal to 0.1×0.1 = 0.01. The probability of the interesting 2-trajectory
((24, E), (34, E) (35)) is equal to 0.1 × 0.8 = 0.08. The valuation of a policy
involves the computations of the probability of every trajectory.

Therefore, even more clearly than in the deterministic problem, it is im-
possible to enumerate all the trajectories in order to compute the policy cost,
because combinatorial explosion makes it quickly intractable. Appropriate
methods are needed to value a policy. Those methods will be developed in a
further section, which will be dedicated to reinforcement learning and neuro-
dynamic programming. We are looking for an algorithm that enables to value

5 Closed-Loop Control Learning 307

each (state-action) couple but not each feasible (state-action) trajectory; oth-
erwise, the size of the data will grow exponentially with time.

One may also choose to randomize the elementary costs for each transition.
This generalization is very easy to address when the criterion is the expected
cost because the random cost of a transition is immediately replaced by its
expectation.

5.3.3 Definition of a Decision Markov Problem

5.3.3.1 Controlled Markov Chain

The previous example is formalized with the following definition, which is
limited to the case of finite state space and action set for the sake of simplicity.
A Markov decision problem (MDP) consists in the following ingredients: a
control Markov chain, an elementary cost function, a horizon length and,
possibly, either a terminal cost (if the problem is a finite horizon problem), or
a discount rate (if the problem is an infinite horizon problem).

We met previously the concept of controlled Markov process, which is
the stochastic analog of a controlled dynamical system. Let us give a precise
definition.

A controlled Markov chain consists in the following ingredients: a state
space E, an action set A, a subset A ⊂ E × A of the feasible (state-action)
set and an application p from A into the set of probabilities upon E. That
application takes as input any feasible (state-action) couple (x, u) and returns
the probability denoted Pu(x, y) of going to the state y when action u is
performed from state x.

Remark. Pu is a probability law and not a probability density; it is a tran-
sition probability kernel.

Thus, from the initial (state-action) couple, the probability of the (state-
action) N -trajectory

ω = ((x0, a0), (x1, a1), . . . , (xN−1, aN−1), (xN))

is equal to

P (ω) = Pa0 (x0, x1)Pa1 (x1, x2) . . . PaN−1 (xN−1, xN) .

A (feasible) policy of the controlled Markov chain is an application π from
E×N into A such that, for any state x and for any time k, the (state-action)
couple (x, π(x, k)) is feasible.

If policy π does not depend on time it is called a stationary policy. In
order to simplify notations, a stationary policy will be also denoted by π as a
function of the state. Any stationary policy π defines a Markov chain, whose
transition probability Pπ is defined by:

308 M. Samuelides

Pπ(x, y) = Pπ(x)(x, y).

The elementary cost is an application c from A × E into R; the terminal
cost is an application C from E into R.

5.3.3.2 Finite Horizon Markov Decision Problem

A strictly positive integer N called horizon is given. It is the number of au-
thorized transitions. The problem is to find a minimal cost trajectory from
time 0 to time N .

To any policy π and any horizon N , we associate the cost function J0,N
π

from E into R. That cost function takes the state x as input and returns the
expected cost of the random N -trajectory from initial state x according to
the law of the π-controlled Markov chain. J0,N

π is computed by the following
relation:

J0,N
π (x) =

∑
(xk+1,...xN)∈EN−k

Pπ(x,0)(x, x1)Pπ(x1,1)(x1, x2) · · ·Pπ(xN−1,N−1)

×(xN−1, xN)c(x, π(x, 0), x1)

+
N−1∑
k=1

c(xk, π(xk, k), xk+1) + C(xN).

More generally, the cost Jk,N
π is defined from time k according to

Jk,N
π (x) =

∑
(xk+1,...xN)∈EN−k

Pπ(x,k)(x, xk+1)Pπ(xk+1,k+1)(xk+1, xk+2) · · ·

×Pπ(xN−1,N−1)(xN−1, xN)c(x, π(x, k), xk+1)

+
N−1∑

k′=k+1

c(xk′ , π(xk′ , k′), xk′+1) + C(xN).

Finite Horizon Markov Decision Problem

The N -horizon Markov decision problem consists in finding the optimal policy
π∗ that minimizes the cost function J0,N

π .

5.3.3.3 Shortest Stochastic Path Problem

The problem that consists in reaching a target state x∗ as fast as possible
is called the shortest stochastic path problem [Bertsekas et al. 1996]. In that
kind of problem, there is a single terminal state, denoted by x∗, such that,
for any feasible action, the only possible transition from that state is the
identical transition x∗ → x∗. In addition, it is assumed that there exists at
least one stationary policy, which enables to reach, with non-zero probability,

5 Closed-Loop Control Learning 309

the terminal state from any state. Such stationary policies are called proper
stationary policies. Therefore, the terminal state is the equilibrium state (ac-
tually deterministic) of the controlled Markov chain that is associated to any
proper stationary policy.

For infinite horizon problems, because elementary costs are stationary and
without any terminal cost, there is no point in looking for an optimal non-
stationary policy. For a given state, the optimal action does not depend on
current time.

We set that elementary cost of the identical transition from terminal state
to zero, and the elementary cost of any other transition to strictly positive
values; therefore, the latter is lower bounded by a strictly positive constant
since state space is finite.

The expected total cost of a stationary policy π is defined by

Jπ(x) = lim
N→∞

∑
(x1,...xN)∈EN

Pπ(x, x1)Pπ(x1, x2) . . . Pπ(xN−1, xN)

×
[
c(x, π(x), x1) +

N−1∑
k=1

c(xk, π(xk), xk+1)

]
.

This may be written more formally using probability theory notation

Jπ(x) = EPπ,x

[
c(x, π(x), X1) +

∞∑
k=1

c (Xk, π(Xk), Xk+1)

]
,

where Pπ,x is the probability distribution of the Markov chain that is associ-
ated to the stationary policy π and the initial state x.

One infers that if a stationary policy is not proper, there exists at least
one initial state such that the expected total cost from that state is infinite.

The shortest stochastic path problem consists in finding optimal policy π∗

that minimizes the cost function Jπ.

5.3.3.4 Infinite Horizon Problem with Discounted Cost

A real number α strictly between 0 and 1 is given. It is called the discount
rate.

To any stationary policy π and any discount rate α we associate a cost
function Jα

π from E into R. It takes the state x as input and returns the
expected cost from initial state x for the Markov chain with transition prob-
ability kernel Pπ.

Jα
π (x) = lim

N→∞

∑
(x1,...xN)∈EN

Pπ(x, x1)Pπ(x1, x2) . . . Pπ(xN−1, xN)

×
[
c(x, π(x), x1) +

N−1∑
k=1

αkc(xk, π(xk), xk+1)

]
.

310 M. Samuelides

We may rewrite it as in the case of the shortest stochastic path:

Jα
π (x) = EPπ,x

[
c (x, π (x) , X1) +

∞∑
k=1

αkc (Xk, π (Xk) , Xk+1)

]
.

The Infinite horizon Markov decision problem with discount rate α consists
in finding an optimal stationary policy, which minimizes the cost function Jα

π .
In the next sections, when no ambiguity can arise, we will just denote by

N the finite horizon or by α the discount rate without further explanation. We
will omit the superscript in the cost function in order to alleviate notations.

A discount rate infinite horizon problem may be transformed into a short-
est stochastic path problem as follows: every elementary cost is shifted by an
appropriate constant to be made positive. Then an artificial terminal state is
added, and transitions are changed: any probability transition of the initial
problem is multiplied by α and the other possibility is to be sent into the
terminal state (cemetery state). All stationary policies of the initial problem
are proper stationary policies of the shortest stochastic path problem thus
defined. The costs of the two problems (infinite horizon with discount rate
and shortest stochastic path) are equal. This transformation is rather formal.
Thus, methods that are used to solve shortest stochastic path problems can
be used to solve more general infinite horizon problems with discount rate.

Similarly, given a shortest stochastic path problem, it can be transformed,
in practice, into an infinite horizon problem with average cost and discount
rate by random restart of the state as soon as the terminal state is reached.

5.3.4 Finite Horizon Dynamic Programming

5.3.4.1 Bellman’s Optimality Principle

The previous definition of J0,N
π can be transformed into the following:

J0,N
π (x) =

∑
x1∈E

Pπ(x,0)(x, x1)

×
⎡
⎣c(x, π(x, 0), x1) +

∑
(x2,...xN)

Pπ(x1,1)(x1, x2) . . . Pπ(xN−1,N−1)

× (xN−1, xN)
N−1∑
k=1

c(xk, π(xk, k), xk+1) + C(xN)

]
,

which amounts to

J0,1
π (x) =

∑
x1∈E

Pπ(x,0)(x, x1)[c(x, π(x, 1), x1) + J1,N
π (x1)]

5 Closed-Loop Control Learning 311

= EPπ(x1,1)(x, 0)[c(x, π(x, 1), x1) + J1,N
π (X1)].

It is a very simple consequence of the summation of elementary costs step by
step along a trajectory. This form shows that the optimal policy π∗, which
minimizes J0,N

π , also minimizes Jk,N
π . Thus, the following basic statement is

proven:

J0,N
π∗ (x) = min

u/(x,u)∈A
Epu(x1)

[
c ((x, u) , X1) + J1,N

π∗ (X1)
]
.

That equation, which is verified by optimal policy, is called Bellman’s opti-
mality principle.

5.3.4.2 Dynamic Programming Algorithm under Finite Horizon
Assumption

Bellman’s optimality principle enables to deduce an algorithm which solves
the finite horizon Markov decision problem: it is the celebrated �Dynamic
Programming algorithm�. Its principle is to determine the optimal policy
for the last instant and then to go back in time by sequentially optimizing
JN−1,N

π , . . . , Jk,k+1
π , . . . , J0,1

π .
For k varying sequentially from N − 1 to 1, one solves problem

π∗(x, k) = Arg min
u/(x,u)∈A

⎡
⎣∑

y∈E

Pu(x, y)c(x, u, y) + Jk+1,N
π (y)

⎤
⎦ .

Then the optimal cost is updated

Jk,N
π∗ (x) =

∑
y∈E

Pπ∗(x,k)(x, y)[c(x, π∗(x, k), y) + Jk+1,N
π∗ (y)].

It is convenient to introduce a new quantity: the value function Qk,N , which
is defined on the set of feasible (state-action) couples

Qk,N (x, u) =
∑
y∈E

Pu (x, y)
[
c (x, u, y) + Jk+1,N

π∗ (y)
]
.

Then the dynamic programming algorithm takes the following form:

Qk,N (x, u) =
∑
y∈E

Pu(x, y)
[
c(x, u, y) + Jk+1,N

π∗ (y)
]

π∗(x, k) = Arg min
u/(x,u)∈A

[
Qk,N (x, u)

]
Jk,N

π∗ (x) = Qk,N (x, π∗(x, k)) .

312 M. Samuelides

5.3.5 Infinite-Horizon Dynamic Programming with Discounted
Cost

5.3.5.1 Bellman’s Optimality Principle

Similarly, the definition of Jα
π may be modified to get the following relation:

Jπ
α (x) = Epπ,x

[c(x, π(x), X1) + αJα
π (X1)].

We express now the fact that the optimal policy π∗ is better then the nonsta-
tionary policy which consists in first implementing action a from initial state
x, and next keep the application of stationary optimal policy. Thus, we obtain
the following relation:

Jα
π∗(x) = min

u/(x,u)∈A
EPu(x,.)[c((x, u), X1) + αJα

π∗(X1)],

which expresses Bellman’s optimality principle in the infinite horizon with
discount rate framework. We introduce a value function Q, which is deduced
from the cost function J , just as in the previously considered case of finite
horizon problem. The value function is defined on the set of feasible (state-
action) couples,

Qα
J (x, u) =

∑
y∈E

Pu(x, y)[c(x, u, y) + αJ(y)].

Retaining that definition of the value function, Bellman’s optimality principle
may be written in the simpler way: Jα

∗ (x) = minu/(x,u)∈AQ
α
J × (x, u). That

Bellman variational equation is a fixed-point equation that characterizes the
optimal cost function Jπ∗ . It does not provide an immediate algorithm to
compute the optimal policy within a finite number of computation steps, as it
was the case for finite horizon problems and dynamic programming. On the
other hand, the following characterization theorem is easy to prove [Bertsekas
et al. 1996].

Theorem. The Bellman variational equation has a single solution. This
unique solution is the optimal cost function Jπ∗ .

This theorem is proven using the mathematical technique of �contraction�.
That technique not only provides an existence and uniqueness mathematical
proof: it can be applied to prove the convergence towards solution of practical
algorithms. Those algorithms are iterative algorithms that will be described
in following sections. In order to alleviate notations, from now on, we omit
writing α as an index.

5 Closed-Loop Control Learning 313

5.3.5.2 Policy Iteration Method

This algorithm focuses on displaying a sequence of stationary policies, which
undergo step-by-step improvements. Hereafter, we describe an iteration n+ 1
from the policy πn that was obtained at iteration n:
Jn is computed as the expected cost of policy πn,
Qn is computed as the associated value function:

πn+1(x) = Arg min
u/(x,u)∈A

Qn(x, u).

That algorithm provides an explicit sequence of feasible policies that improve
monotonically step by step. Their cost may be controlled, so that the algo-
rithm can be stopped as soon as an acceptable cost is reached. In “actor-
critics” methods, a policy is first applied (computation of the cost function
Jn) and then criticized (here by minimization of the value function) to obtain
a new policy. Of course, here, the policy application is rather heavy since it
needs the exhaustive computation of the values of the cost function. Moreover
it is a virtual application, which is just simulated.

That computation is performed by solving the following linear system:

∀ x ∈ E, Jn(x) =
∑
y∈E

Pπn(x)(x, y)[c(x, π(x), y) + αJn(y)].

That algorithm can be shown to converge “linearly” towards the optimal
policy π∗. In other words, the deviation between the current cost and the
optimal cost vanishes and is bounded by a geometric sequence, whose ratio is
strictly smaller than 1. For some classical problems, the algorithm may end
up within a finite number of iterations.

5.3.5.3 Value-Function Iteration Method

This algorithm focuses on generating a sequence of cost functions that are not
necessarily associated to feasible policies, but which converges to the optimal
cost function. We will also write down the iteration n + 1 of this algorithm
from the cost function Jn, which is the algorithm output at iteration n:
Qn is computed as the value function from cost function Jn

Jn+1(x) = min
u/(x,u)∈A

Qn(x, u).

It can be also shown, by a contraction method, that this algorithm converges
linearly (i.e. at exponential speed) towards the value function that is asso-
ciated to the optimal policy. The optimal policy is recovered from this limit
value function by the classical variational Bellman equation:

π∗(x) = Arg min
u/(x,u)∈A

Q∗(x, u).

314 M. Samuelides

5.3.6 Partially Observed Markov Decision Problems

In actual applications, the state is not completely observed in general. For
instance, an autonomous robot’s perception is limited to its environment.
Actually there is a close connection between dynamic programming in discrete
state space and optimal control in continuous state space. Therefore, in a way
that is similar to the reconstruction of an estimation of the state by filtering
in continuous problems, we have to face partially observed Markov decision
problems (POMDP). In those problems, the state is not completely observed,
because it is impossible to measure some state variables and because the
observation is corrupted by measurement noise.

Basic principles of dynamic programming can be applied, but the frame-
work is far more complex because the policies are not defined on the state
space but on the belief state space, which is continuous. Actually a belief
state is a probability distribution over the state space.

From an observation trajectory, the belief state is defined as the conditional
probability on the state space with respect to the observations that were
obtained in the past. That probability is updated by Bayes rule. Therefore, it
is possible to obtain an optimal policy among the functions that are defined
on the belief state space.

Unfortunately, for the belief state to be updated, the model must be
known. Therefore, we cannot exploit the method we have just outlined to
build up learning strategies. For this reason, Partially Observed Markov De-
cision Problems will not be developed in the following sections, which are
dedicated to training. We will just mention empirical approaches, which have
been implemented in practical problems. This question is an open research
topic.

5.4 Reinforcement Learning and Neuro-Dynamic
Programming

5.4.1 Policy Evaluation Using Monte Carlo Method and
Reinforcement Learning

Dynamic programming methods that have just been developed in previous
section face practical implementation difficulties in real-world problems. In
particular, the policy cost may be difficult to compute by solving a linear
system:

• The goal is to evaluate exactly the expected policy cost. If the cardinality
of state space is very large, the solution of the linear system for each
iteration may have a prohibitive computational cost.

• To write down the linear system, one has to know exactly all the transition
probabilities from one state to the other according to the different feasible

5 Closed-Loop Control Learning 315

actions. Very often now, in complex practical applications, the knowledge
of the process is gathered in a computer simulator. The simulator program
models real events, so that the knowledge of the transition probabilities is
not straightforward. Sometimes, one has to estimate them by performing
a first complex set of simulations.

These considerations lead searchers to use simulation straightforwardly to
define the optimal policy without identifying the model by estimating the
transition probabilities.

The simplest use of a Monte Carlo method to value a policy consists in
simulating a large number of trajectories from each initial state and then in
computing the average cost over the trajectory set. In the same way, one can
estimate the value function by averaging the trajectory cost over a gener-
ated trajectory set for every initial feasible (state-action) couple, applying the
current policy after the first transition.

The advantage of the Monte Carlo method over exact methods is that
it may be implemented even when the mathematical model is not known,
provided it is possible to perform intensive experiments or simulations. The
optimal policy is no longer determined from the model, but from experi-
ments and environment response. The environment response is called the
�reinforcement signal�. When this signal is positive, the current modifica-
tions of policy that are under testing phase are validated, when it is negative
they are discarded. This type of learning process is called reinforcement learn-
ing. This terminology is relative to the same conceptual line as Actor-critics
methodology that was examined previously. Reinforcement learning always
attracted researchers, especially in Artificial Intelligence, because it is gen-
erally considered that adaptation mechanisms of living systems are ruled by
such principles (in particular Pavlov’s work on reflex and other psychologists’
work of last century may be addressed). Reinforcement learning was first de-
veloped independently from neural learning [Barto et al. 1983]. In this section,
we will describe usual methods that widely outperform simple Monte Carlo
simulations, which were just explained above as an introduction.

Actually, the complexity of the straightforward Monte Carlo method that
has just been mentioned here is generally too large for usual applications.
When the model is known, its complexity may be larger than the complexity
of direct linear system inversion and, even when the model is not known, it may
be impossible to get a result within reasonable time. Moreover, this method
throws away useful information. Indeed, transition costs of a given trajectory
gives us information not only on the value of the cost function on the initial
state of the trajectory but also on the values of the cost function on all the
intermediate states of the trajectory. In the following section, we describe a
method that takes advantage of the information provided by experiments or
simulations in a more efficient way.

We will describe it in the framework of Markov decision problems with
infinite horizon and discounted cost. As previously, the discounted cost is

316 M. Samuelides

denoted by α. In that framework, the algorithm that is described below is
the most commonly used. The method can be used as well in finite horizon
problems or in shortest stochastic path problems.

5.4.2 TD Algorithm of Policy Evaluation

5.4.2.1 TD(1) Algorithm and Temporal Difference Definition

The “temporal difference” method (TD method in abbreviated form) is based
on the following additivity equation of cost

Jπ(x) = EPπ,x
[c(x, π(x), X1) + αJπ(X1)],

which was stated in the previous section, and which is rewritten in a simpler
form without superscripts.

When we implement a transition (x → y) according to the admissible
state-action couple, the corresponding cost c(x, π(x), y) must be used for up-
dating the estimation of Jπ(x). That update is performed by the recursive
computation of the average using a filtering technique with gain (or learning
rate) γ. Thus, we take into account the new information about the average
total cost c(x, π(x), y)+αĴπ(y) and the previous information Ĵπ(x) according
to the following relation:

Ĵ+
π (x) = Ĵπ(x) + γ[c(x, π(x), y) + αĴπ(y) − Ĵπ(x)].

The properties of decreasing gain and constant gain filtering techniques were
reviewed in Chap. 4. If the gain decreases linearly with the number of updates,
the filter will (slowly) converge to the desired value (consistent estimation). If a
small, constant gain is used in the stationary regime, the filter undergoes small
fluctuations around the desired value. However, the filter is able (subject to
an appropriate tuning of the gain) to track slow variations of the environment.
For practical use, one generally implements first a decreasing gain to get close
to the stationary regime, and then a small constant gain filter to track the
stationary regime. Note that the gain tuning may be specific here to each
state.

Yet, updates of values of Jπ for different states are coupled. Actually, the
update of Jπ after a transition (x→ y) will use the previous update of Jπ(y).
That method is called a “temporal difference method” (TD method) and is
extended to a trajectory of length N .

Given a policy π, a current estimation Ĵπ of Jπ and a state trajectory
denoted (x0, . . . , xN), whose initial state is x0, having N transitions, which is
obtained by the application of the policy, the temporal difference of order k
is the quantity dk, which is defined by the following:

dk = c(xk, π(xk), xk+1) + αĴπ(xk+1) − Ĵπ(xk).

5 Closed-Loop Control Learning 317

Then the estimation of Jπ is updated for each state xk of the trajectory by
the formula

Ĵ+
π (xk) = Ĵπ(xk) + γ[dk + αdk+1 + · · · + αN−k−1dN−1],

for all k ∈ {0, . . . , N − 1}. Note that the incremental implementation of that
update amounts to the batch rule if the updates are performed backwards in
time, as for the backpropagation of the error signal.

5.4.2.2 TD(λ) Algorithm and Eligibility Trace Method

In the previous section, we presented an algorithm that, in order to update
the cost function at state x, takes into account either an immediate transition
from x, or following transitions on a given horizon N . All those algorithms
converge. However, their convergence speed relies on the way the informa-
tion provided by the trajectory is taken into account. Indeed, it may seem
inaccurate to update Ĵπ(x) by assigning the same weight to the contributions
coming from the consecutive transition and from remote future transitions
that are more unlikely to be observed. It has been proposed in a basic on re-
inforcement learning [Barto et al. 1983], to weight the information brought by
future transitions with a discount rate λ ∈ [0, 1]. That suggests the following
updating algorithm, which is called TD(λ):

Ĵ+
π (xk) = Ĵπ(xk) + γ[dk + αλdk+1 + . . .+ (αλ)N−k−1dN−1],

for all k ∈ {1, . . . , N−1}. Historically, the discount rate λ was first intended to
deal with finite horizon problems or shortest stochastic path problems where
the cost was not discounted by the discount rate α. The introduction of the
discount rate λ in that context was a new idea, in infinite horizon problems
with discounted costs; it is simply equivalent to a change of the discount rate.

The convergence of the algorithms TD(λ) is just guaranteed by the usual
hypotheses of the stochastic approximation [Sutton 1988]. In particular, all
the states should be visited infinitely often, i.e., in practice, sufficiently fre-
quently. It is especially important for the states that are relevant for the
optimal policy. But those states cannot be determined at the initialization
of the algorithm. In following sections, we will emphasize the “exploration
policy” in reinforcement learning algorithms. If a simulator is used to provide
information, one has to make sure that the hypothesis is approximately true
by randomly initializing the trajectory from time to time, preventing it form
being confined to a specific region of state space. When a real experiment
is performed, one has to make sure that the feasible states are sufficiently
explored given the experimental constraints, and to settle a tradeoff between
the need of complete exploration and the cost of the experiment. Otherwise,
the algorithm may converge towards local minima of the cost function that
are not optimal.

318 M. Samuelides

Various algorithms have been suggested for applying the methodology of
temporal difference to various problems ion such areas as games, optimal
planning, and combinatorial optimization. Convergence of those algorithms
has been proved, and the following general framework of eligibility traces was
first described in [Bertsekas et al. 1996].

In that framework, k is an integer that labels the steps of the algorithm.
At step k, an initial state xk

0 is chosen. That choice depends on the past
history of the algorithm implementation, and guarantees that each state is
visited frequently enough. Then, the current policy is applied for N instants
and a trajectory of length Nωk = (xk

0 , x
k
1 , . . . , x

k
m, . . . , x

k
N) generated. The

associated costs are observed and the temporal differences dk
m are computed.

Then a finite sequence of positive state functions zk
m is chosen. That se-

quence is called an eligibility trace; it has the following properties (index m
labels time along the trajectory; δ is the Kronecker delta function):

• zk
0 (x) = δxk

0
(x), and, in addition, zk

m (x) = 1 when m is the first visiting
time of state x in trajectory ωk.

• zk
m+1(x) ≤ zk

m(x) + δxk
m+1

(x).

In addition, let us consider a decreasing sequence {γk} of state functions
that take their values in [0, 1]. That sequence is the sequence of gains or learn-
ing rates, and it obeys the classical assumptions of stochastic approximation
theory

•
∑

k

γk(x) = ∞.

•
∑

k

γk(x)2 <∞.

Then, the generalized TD algorithm updates the estimation of the cost ac-
cording to

Ĵk+1 (x) = Ĵk (x) + γk (x)
N−1∑
m=0

zk
m (x) dk

m.

It converges almost surely towards Jπ. Therefore, the estimation is consistent.
For instance, TD(λ) algorithm, which has been previously described, is a

particular eligibility trace algorithm where the trace decreases according to
the constant multiplicative rate αλ.

5.4.2.3 Back to Actor-Critics Methodology and Optimistic
Iteration of Policy

On many real-life problems, the assessment of a given policy may be a question
per se. The previous algorithms are designed for that purpose. However, we
introduced the valuation of a policy as a step in the computation loop aimed

5 Closed-Loop Control Learning 319

at finding the optimal policy. The valuation algorithms are iterative so that
running them as a part of an optimization loop may too time-consuming.
Therefore, it is natural to improve the current policy before completing the
valuation process. That improvement makes use of partial results that are
provided by one or a small number of iterations of the valuation algorithm.

In the subsection “Value-function Iteration method” of the previous sec-
tion, we outlined a control design algorithm whereby the policy was updated
according to an intermediate approximation of the cost function. That method
is called “Actor-Critics” method or “Optimistic Iteration of the Policy”, be-
cause the current policy is computed on the basis of the current estimation of
the cost function that is optimistically supposed to be the optimal cost.

More precisely, as described above, the following steps are implemented at
iteration n, given the cost function Jn.

Qn is computed as the associated value function of Jn,

Qn(x, u) =
∑
y∈E

pu(x, y)[c(x, u, y) + αJn(y)].

The policy πn is defined as the solution of the minimization problem,

πn(x) = Arg min
u/(x,u)∈A

Qn(x,u).

One or several iterations of a temporal difference valuation algorithm are
performed, using simulation results or experimental measurements, with
policy πn as the current exploration policy. Thus, a new approximation
Jn+1 is obtained.

5.4.3 Reinforcement Learning: Q-Learning Method

5.4.3.1 Description of the Q-Learning Algorithm

The algorithmic variants, which have just been stated above, use the value
function Q as a key ingredient in the determination of the optimal policy.
Watkins and Dayan suggested an adaptive version of the value function it-
eration method in [Watkins et al. 1992]. It was called “Q-learning” by the
authors, since it focused on the learning of the value function Q. It quickly
became one of the most popular reinforcement learning algorithms, especially
for infinite horizon problems.

The previous value function iteration algorithm consisted in the following:

• Qn was computed as the value function for the cost function Jn

• Jn+1(x) = minu/(x,u)∈AQn(x, u).

320 M. Samuelides

In its adaptive version, a key change is performed:

• The update of Qn is performed from new experimental or simulation re-
sults according to an exploration policy of the feasible state-action couples.

Thus a new algorithm is available. Its definition relies on a random exploration
policy π, which associates to each state x a probability on the set of actions u
such that the state-action couple (x, u) is feasible. Thus, the exploration policy
generates a Markov transition on the set of feasible (state-action) couples.
Actually, the theoretically mild assumption that each feasible couple is visited
infinitely often suffices to guarantee the convergence of the algorithm. We
will discuss below the practical consequences of the choice of the exploration
policy. Each transition according to the exploration policy is followed by the
implementation of the following Q-learning update rule:

Qk+1(x, u) = Qk(x, u)if(x, u) �= (xk, πk+1(xk))
Qk+1(xk, πk+1(xk)) = (1 − γk+1)Qk(xk, πk+1(xk))

+ γk+1[c(xk, πk+1(xk), xk+1)] + αJk(xk+1)
Jk+1(xk+1) = min

u/(xk+1,u)∈A
Qk+1(xk+1, u)

Q-Learning Convergence Theorem. The Q-learning algorithm converges
to the value function Q that is associated to the optimal policy π once all the
feasible state-action couples are visited infinitely often and the sequence of the
learning rates decreases according to the basic assumption of approximation
theory (for instance linear decrease with respect to the number of visits).

When convergence is stopped, providing a satisfactory estimation of the
value function Q∗, it is obvious to determine the associated policy as the
solution of the minimization problem

π∗(x) = Arg min
u/(x,u)∈A

Q∗(x, u)

exactly as in the value function iteration algorithm. There is no necessary
connection between the exploration policy and the optimal policy. Of course,
a blind exploration policy is rather costly. In practice, one tries to track an
optimal policy, by applying a sub-optimal policy. We will elaborate on that
point in the following section.

5.4.3.2 The Choice of an Exploration Policy

The problem of choosing an exploration policy is commonly addressed in se-
quential statistics [Thrun 1992]. If a lot of time is dedicated to the exploration,
using for instance a blind policy (random selection of a feasible action), the
resulting estimation is accurate but exploration is costly

• in computational time if a simulator is used,

5 Closed-Loop Control Learning 321

• in experimental costs if experiments are performed (destructive testing is
not a good solution).

However, if an optimistic exploration policy is performed, which relies on the
current estimation of the cost function, the estimation of the value function
may be strongly biased. Thus, neither extreme strategies, blind exploration
policy or greedy (fully optimistic) policy, are relevant.

Several mixed exploration schemes have been successfully tested. All of
them are intertwining phases of greedy policy most of the time and phases
of exploration policy which allow to explore new state-action couples and to
check the convergence hypothesis of stochastic approximation (see above):

• The iterative exploration-optimization scheme alternates iteration sequen-
ces of greedy optimistic policy and iteration sequences of blind exploration
policy.

• According to the randomized scheme, a random selection of the policy
is performed independently for each step (blind with probability ε and
greedy with probability 1 − ε).

• The annealed scheme is inspired from simulated annealing in combinatorial
optimization (which is described in detail in Chap. 8). According to that
scheme, a random policy is performed subject to the Gibbs distribution,

P (πk(xk) = u) =
exp
(
−Qk(xk, u)

Tk

)
∑

u/(xk,u)∈A

exp
(
−Qk(xk, u)

Tk

) ,

where the temperature sequence {Tk} obeys a cooling schedule. The cool-
ing schedule must be tuned according to the problem of interest. Several
cooling schedules are described in Chap. 8.

5.4.3.3 Application of Q-Learning to Partially Observed Problems

It is easy to implement Q-learning algorithm for partially observed Markov
decision problems if the selection is performed among feasible policies that
depend solely on observations and that do not depend on an unknown state.
It is currently implemented, especially in autonomous robotics. In that field,
perception is limited; it is provided by sensors and does not allow determining
exactly the current state. Q-learning may provide satisfactory sub-optimal
policies but the success is not guaranteed. In that case, Q-learning is just
a heuristic. Its success relies on the relevance of the sensors to determine
the key features of the environment with respect to feasible optimal policy
whenever it exists (as a deterministic policy). It has been shown [Singh et al.
1995] that the limit of Q-learning algorithms (which stabilizes under common
mild hypothesis) depends on the exploration policy, and is generally not the

322 M. Samuelides

optimal feasible policy. That is not the case in Markov decision problems. It is
important to emphasize that the feasible optimal policy in partially observed
Markov decision problems is generally neither deterministic nor Markov.

Another way to cope with these problems, when the immediate perception
is not sufficient for determining a good policy, consists in taking advantage of
past observations to estimate the current state. When the model is unknown,
that reconstruction step may be time-consuming, and its completion may
be checked using statistical tests [Dutech 1999]. No general solution to those
problems is available, so that specific applications require the design of specific
solutions.

5.4.4 Reinforcement Learning and Neuronal Approximation

5.4.4.1 Approximate Reinforcement Learning

It is often difficult to use reinforcement learning to deal with large size prob-
lems, since those algorithms are relatively complex. The algorithms that have
been outlined here are based on the iterative updating of a value table. Sto-
chastic approximation allows implementing the algorithm on an adaptive ba-
sis. Thus, simultaneous updating of all the values is not necessary, so that
the cost information that is provided by a time step can be used efficiently
for updating all the relevant values of the cost function. Nevertheless, when
the cardinality of state space or of the feasible state-action couple set is too
large, the visit of a generic couple is scarce: thus, the updates of a value do
not occur often enough, and the convergence of the algorithm slows down.
Reliable results cannot be obtained within reasonable computational times.

An alternative solution consists in using the methodology of supervised
learning to maintain a current approximation of the cost function or of the
value function. A linear approximation or a neural network approximation
may be used. The input is the state (when value iteration of the optimistic
policy is performed) or the value function (if Q-learning is performed) and
the output is the desired approximation of the updated function.

Many algorithms along those lines have been published. One will select
one of them, taking into account the condition of the learning process (using
a simulator or an experimental device) and the relevant exploration policy.

Here is a description of one iteration of a commonly used approximate
Q-learning algorithm.

5 Closed-Loop Control Learning 323

A current value function Qn is available, which determines the exploration
policy πn.

A subset En of states is randomly selected.

For each state xk in En, a feasible action πn(xk) is selected according to
the current exploration policy πn. A transition occurs to the state yk.

The elementary cost c(xk, πn(xk), yk) is taken into account.

Then, the construction of a current element of the training set is pos-
sible, which associates to the input (xk, πn(xk)) the output Qn

k =
c(xk, πn(xk), yk) + minu/(yk,u)∈AQn(yk, u).

A supervised learning epoch is implemented to update the approximate
value function Qn, providing a new approximation Qn+1.

The previous iteration is repeated either from the current state set En+1 =
yk or from a new random selection of En+1.

The diagram of that algorithm is shown on Fig. 5.14.
Note first there is no available general convergence proof for that algo-

rithm, which is quite similar to Q-learning. For practical purposes, the algo-
rithm is computationally economical, and the approximation is accurate if one
uses a relevant topology on the set of feasible state-action couples in order to
obtain an efficient numerical encoding of the approximation input. The value
function must be regular with respect to that encoding in order to decrease
the time complexity of the supervised learning process.

To summarize, a good knowledge of the application context must be avail-
able, in order to compensate for the lack of generality of the algorithm. Those

Fig. 5.14. Approximate assessment of a policy using neural network

324 M. Samuelides

algorithms have been used efficiently to solve large-size problems such as the
backgammon game, the lift planning problem or the dynamic assignment of
radio frequencies.

5.4.4.2 Reinforcement Learning with Sampling of a Continuous
State-Space

The implementation of approximate reinforcement learning when the value
functions are regular suggests that it could be useful for building an approx-
imate optimal control law of a nonlinear continuous system; that topic was
addressed at the beginning of this chapter as a direct application of supervised
learning and model inversion. Actually, Bellman equation is just a discrete
version of the Hamilton-Bellman-Jacobi equation (HBJ equation), which is
known to be the variational equation of optimal control with continuous state
space and time.

We just saw that the implementation of reinforcement learning in large-
size discrete problems is computationally demanding. Therefore, when using
that methodology for continuous control problems, one faces the following
dilemma:

• A coarse sampling of state space or of the feasible state-action set leads to
an inaccurate approximation of the value function, to losing the Markov
property of the problem, and possibly to designing a control law that is
far from the optimal.

• A fine sampling leads to the combinatorial explosion of the computation
complexity.

In order to overcome that difficulty, specific sampling schemes are proposed
in the literature. One can use variable sampling steps. In autonomous robot-
ics for instance, space sampling will be fine in key locations (crossings, am-
biguous perceptions), where immediate reactions are necessary (new obstacle
avoidance), but space sampling will be rough in most regions where optimal
navigation is just routine. If the problem allows a multiscale sampling, it may
be efficient to determine an optimal policy.

5.4.4.3 Q-Learning in a Continuous Space

Let us consider the following controlled dynamical system with continuous
state space and continuous time.

dx
dt

= f(x, u).

(A deterministic system is considered to make notation shorter and simpler.)
The elementary cost c(x, u) is associated to the feasible state-action couple

(x, u). That function allows defining the total cost as an integral functional
that depends on the state-action trajectory,

5 Closed-Loop Control Learning 325

J =
∫ ∞

0

e−αtc[x(t), u(t)]dt.

A stationary policy π defines an autonomous dynamical system dx/dt =
f(x, π(x)).

To value policy π, one must compute the state function

Jπ(x) =
∫ ∞

0

e−αtc[x(t), π(x(t))]dt;

the integral is computed on the trajectory of the autonomous dynamical sys-
tem originating from the initial state x.

Therefore, a stationary optimal policy π∗ follows the variational equation:

π∗(x) = Arg min
u/(x,u)∈A

[
c(x, u) + ∇x(Jπ∗)

dx
dt

]
= Arg min

u/(x,u)∈A

[c(x, u) + ∇x(Jπ∗)f(x, t)].

That equation is exactly the HBJ equation of the control problem. When
a neural network approximates the total cost of a policy π, the latter may
compute the gradient of the cost function ∇x(Jπ∗), which can be plugged into
the previous formula. Thus, it is possible to infer a training algorithm of the
continuous value function Q that is defined by

Q(x, u) = c(x, u) + ∇x(Jπ∗)f(x, t)

and to use it within a generalized continuous Q-learning algorithm.
Recent publications investigate systematically the implementation of re-

inforcement learning to learn an optimal control law when the model is not
known. See for instance [Bertsekas et al. 1996] for a general introduction. More
recently, [Doya 2000] presents a nice derivation of several reinforcement learn-
ing algorithms in the continuous framework and test them using the inverted
pendulum problem as a benchmark.

References

1. Anderson B.D.O., Moore J.B. [1979], Optimal Filtering, Prentice Hall
2. Azencott R., Dacunha-Castelle D. [1984], Séries d’observations irrégulières.

Modélisation et prévision, Masson
3. Barto A.G., Sutton R.S., Anderson C.W. [1983], Neuron-like elements than can

solve difficult learning control problemes, IEEE Trans. On Systems, Man and
Cybernetics, 13, pp 835–846

4. Benveniste A., Métivier M., Priouret P. [1987], Algorithmes adaptatifs et approx-
imations stochastiques. Théorie et application à l’identification, au traitement
du signal et à la reconnaissance des formes, Masson

326 M. Samuelides

5. Bengio Y., Simard P., Frasconi F. [1994], Learning long term dependencies with
gradient descent is difficult, IEEE Trans. on Neural Networks, 5, pp 157–166

6. Bertsekas D.P., Tsitsiklis J.N. [1996], Neuro-dynamic programming, Athena Sci-
entific, Belmont, MA

7. Chatfield C. [1994], The Analysis of Time series, an Introduction, Chapman &
Hall

8. Demailly J.-P. [1991], Analyse numérique et équations différentielles, Presses
universitaires de Grenoble

9. Doya K. [2000], Reinforcement learning in continuous time and space, Neural
computation, pp 219–244

10. Duflo M. [1996], Algorithmes stochastiques, Springer
11. Dutech A. [1999], Apprentissage d’environnements: approches cognitive et com-

portementale, thèse de doctorat de l’École nationale supérieure de l’aéronautique
et de l’espace

12. Duvaut P. [1994], Traitement du signal: concepts et applications, Hermès
13. Elman J.L. [1990], Finding structure in time, Cognitive Science, 14, pp 1179–211
14. Grondin B. [1994], Les réseaux de neurones pour la modélisation et la conduite

des réacteurs chimiques: simulations et expérimentations, thèse de doctorat de
l’Université de Bordeaux I

15. Haykin S. [1996], Adaptive Filter Theory, Prentice Hall
16. Haykin S. [1999], Neural Networks: a comprehensive foundation, Prentice Hall
17. Hopfield J.J. [1982], Neural networks and physical systems with emergent collec-

tive computational abilities, Proceedings of the National Academy of Sciences,
États-Unis, 79, pp 2554–2558

18. Isermann R., Lachmann K.H., Matko D. [1992], Adaptive Control Systems, Pren-
tice Hall

19. Jazwinsky A.H. [1970], Stochastic Processes and Filtering Theory, Academic
Press

20. Kirkpatrick S., Gelatt C.D., Vecchi M.P. [1983], Optimization by simulated
annealing, Science, 220, pp 671–680

21. Kushner K.H.J., Clark D.S. [1978] Stochastic Approximation Method for
constrained and unconstrained Systems, Applied Mathematical Sciences, 26,
Springer-Verlag

22. Kwakernaak H., Sivan R. [1972], Linear Optimal Control Systems, Wiley
23. Gouriéroux C., Monfort A. [1995], Séries temporelles et modèles dynamiques,

Economica
24. Landau I.D., Dugard L. [1986], Commande adaptative, aspects pratiques et

théoriques, Masson
25. Landau I.D. [1993], Identification et commande des systèmes, Hermès
26. Levin A.U., Narendra K.S. [1993], Control of nonlinear dynamical systems using

neural networks, IEEE Transactions on neural networks, 4.2, pp 192–207
27. Levin A.U., Narendra K.S. [1997], Identification of nonlinear dynamical systems

using neural networks in Neural Systems for Control, O. Omivar, D.L. Elliott,
éd., Academic Press, pp 129–160

28. Lion M. [2000], Filtrage adaptatif par réseaux neuronaux, application à la tra-
jectographie, thèse de doctorat de l’École nationale supérieure de l’aéronautique
et de l’espace

29. Ljung L., Söderstrom T. [1983], Theory and Practice of Recursive Identification,
MIT Press

5 Closed-Loop Control Learning 327

30. Ljung L., Sjoberg J., Hjalmarsson H. [1996], On neural network model structures
in system identification, in Identification, Adaptation, Learning. The science of
learning models from data, S. Bittanti, G. Pici, éd., NATO ASI Series, Springer

31. Nerrand O., Roussel-Ragot P., Personnaz L., Dreyfus G. [1993], Neural networks
and nonlinear adaptive filtering: unifying concepts and new algorithms, Neural
Computation, 5, pp 165–199

32. Nerrand O., Roussel-Ragot P., Urbani D., Personnaz L., Dreyfus G. [1994],
Training recurrent neural networks: why and how ? An illustration in dynamical
processes modeling, IEEE Transactions on neural networks, 5.2, pp 178–184

33. Norgaard M., Ravn O., Poulsen N.K., Hansen L.K. [2000], Neural Networks for
Modelling and Control of Dynamical Systems, Springer

34. Puskorius G.V., Feldkamp L.A. [1994], Neurocontrol of nonlinear dynamical
systems with Kalman filter-trained recurrent networks, IEEE Transactions on
Neural Networks, vol. 5, pp 279–297

35. Rivals I. [1995], Modélisation et commande de processus par réseaux de neu-
rones; application au pilotage d’un véhicule autonome, thèse de doctorat de
l’Université Pierre et Marie-Curie, Paris VI

36. Rivals I., Personnaz L. [2000], Nonlinear Internal Model Control Using Neural
Networks, IEEE Transactions on Neural Networks, vol. 11, pp 80–90

37. Singh S.P., Jaakkola T., Jordan M. [1995], Learning without state estimation
in a partially observable Markov decision problems, Proceedings of the 11th
Machine Learning conference

38. Slotine J.J.E., Li W. [1991], Applied Nonlinear Control, Prentice Hall
39. Slotine J.J.E., Sanner R.M. [1993], Neural Networks for Adaptive Control and

Recursive Identification: A Theoretical Framework, in Essays on Control, H.L.
Trentelman, J.C. Willems, éd., Birkhauser, pp 381–435

40. Sontag E.D. [1990], Mathematic Control Theory. Deterministic finite dimen-
sional systems, Springer Verlag

41. Sontag E.D. [1996], Recurrent Neural Networks: Some Systems-Theoretic As-
pects, Dept. of Mathematics, Rutgers University, NB, États-Unis

42. Sutton R.S. [1988], Learning to predict by the method of temporal differences,
Machine Learning, 3, pp 9–44

43. Thrun S.B. [1992], The role of exploration in learning control, in Handbook of
intelligent control, D.A. White, D.A. Sofge, éd., pp 527–559, Van Nostrand

44. Tong H. [1995], Nonlinear Time Series, a dynamical system approach, Clarendon
Press

45. Urbani D., Roussel-Ragot P., Personnaz L., Dreyfus G. [1993], The selection
of nonlinear dynamical systems by statistical tests, Neural Networks for Signal
Processing, 4, pp 229–237

46. Watkins C.J.C.H., Dayan P. [1992] Q-learning, Machine Learning, 8, pp 279–292
47. Williams, R.J., Zipser, D. [1989], “A learning algorithm for continully runnig

fully recurrent neural networks”, Neural Computation, pp. 270–280

6

Discrimination

M. B. Gordon

The task of assigning patterns to classes based on their characteristics is
called discrimination. For example, medical diagnosis, handwritten character
recognition, non-destructive tests of defects, are particular cases of pattern
discrimination.

In Chap. 1, a general introduction to the problem of discrimination was
provided. A general methodology for the design of statistical classifiers was
described, and was illustrated by detailed presentations of actual applications.
That methodology is based on considerations developed in the present chapter.
We have already pointed out that the problem of automatic classification
may be considered from different viewpoints, depending on the application.
We may consider the classifier training problem as a regression problem, and
view the continuous output as an estimate of the probability that the patterns
belong to a given class. Conversely, in other applications, we may just need the
frontiers between classes, called discriminant surfaces; those may be obtained
using neural networks of binary neurons, as was suggested already in the
sixties, and further developed from the eighties up to the present.

This chapter is mainly devoted to the second approach: we provide detailed
explanations of the modern techniques allowing linear separations between
classes using binary neurons, and, if necessary, how to go beyond and deter-
mine more complex separations. A probabilistic interpretation of the results
is also presented.

We also introduce many theoretical justifications, stemming mainly from
work due to physicists, as well as from recent developments in learning theory.
However, it should be borne in mind that in any application, the time devoted
to the following tasks should not be underestimated:

• The choice of the data representation requires a careful analysis, because
the quality of the results depends critically on that issue. An appropriate
representation is both compact (the dimension of the input vectors should
be as small as possible) and discriminant (it allows efficient separation of
patterns belonging to different classes).

330 M. B. Gordon

• It may be essential to define a class of rejected patterns (that the classifier
is unable to discriminate).

As in the previous chapters, we will consider problems where the data are
represented by vectors. Their components are characteristics that are relevant
to the discrimination task. For example, in the case of medical diagnosis, these
are the patient age, blood pressure, etc.; in the case of pattern recognition,
the pixels of the image . . . The classes may be encoded as integer numbers,
representing the kind of disease, or the image type. We will mainly consider
problems where the data can only belong to one of two classes. As will be
discussed in the corresponding section, problems with more than two classes
may be reduced to a set of two-class problems.

The chapter is divided into five sections. After general considerations, we
describe several training algorithms for linear separation. Then, we present
various cases where the discriminant surfaces are more complex. In the fourth
section, we consider the discrimination in problems with more than two
classes. At the end of the chapter we describe theoretical concepts, such as
the Vapnik-Chervonenkis dimension and the capacity of a classifier, which are
important in applications.

6.1 Training for Pattern Discrimination

Can we learn to classify new patterns using the information contained in a set
of examples previously classified by an expert? This is a variant of the general
problem already considered in previous chapters, where we tried to predict the
behavior of a process on fresh data, not used to adjust the model’s parameters.
As explained in Chap. 1, regression and discrimination are ill-posed problems.

Remark. Some authors use the term “discrimination” to refer to the clas-
sification task when the classes are known a priori. That is the case of the
so-called supervised learning, in contrast to non-supervised learning, whose
goal is to organize data not previously classified. In this chapter, we con-
sider supervised learning of classification tasks, that we will loosely call either
classification or discrimination.

As in other training problems, the parameters of the classifier are estimated
from a training set of M examples LM, where each example is an input vector
and its class,

LM = {(x1, y1), (x2, y2), . . . , (xM , yM)},
where the input

xk = [xk
1 , x

k
2 , . . . , x

k
M]T

is a vector of N discrete, binary or real-valued components, describing the
example k (k = 1, 2, . . . ,M) and yk ∈ {−1,+1} is its class.

6 Discrimination 331

Remark. It is possible to encode the two classes using z ∈ {0, 1}. Codes
{−1,+1} and {0, 1} are formally equivalent. They are related by the transfor-
mation y = 2z − 1. The ±1 encoding adopted in this Chapter is elegant and
presents advantages in programming. However, in electronic implementations,
it may be useful to use the {0, 1} code.

The output σ(x;w) of the classifier, neural network or any other classifier
depends on its input x and on its parameters, hereafter denoted by w even
if the classifier is not a neural network. The output corresponding to input
xk ∈ LM will be denoted by σk(x;w) or simply σk(σk ∈ {−1,+1}). The
classifier is able to classify correctly the example xk if σk = yk, i.e., if the
following condition of correct classification is obeyed:

σkyk > 0.

Otherwise, σk �= yk, so that σkyk < 0.

6.1.1 Training and Generalization Errors

The quality of training may be assessed through the training (or learning)
error εt(w), which is the fraction of misclassified examples of LM . From the
condition of correct classification, we have,

εt(w) =
1
M

M∑
k=1

Θ(−ykσk(x;w)),

where Θ(u) is the Heaviside function, which takes on the value 1 if its argu-
ment is positive or zero, and 0 otherwise,

Θ(u) =

{
1 if u ≥ 0
0 if u < 0.

In fact, the goal of learning a classification task using the examples in LM

is mainly to determine the classifier parameters that will correctly classify
new inputs, that is, generalize. Obviously, the patterns to be classified are
unknown, but we will assume that they present the same regularities which are
as those used for training. Mathematically, we consider that the input vectors
x are realizations of a real-valued random vector X. Similarly, the output
y (that is the code given to the class of x) is the realization of a discrete
random variable Y . We thus assume that there is an unknown probability
density pXY (x, y) ≡ pX(x) PY (y | x) from which are drawn

• the inputs and outputs of the training set,
• the new inputs, whose class, given by PY (y | x), is unknown.

332 M. B. Gordon

The quantity that we would like to minimize is the generalization error
εg(w), defined by

εg(w) =
∑

y=±1

∫
Θ(−yσ(x;w))px, y(x, y)dx

where σ is the class assigned by the classifier to the input x. The generaliza-
tion error is thus the probability that the classifier with parameters w makes
a classification error on an input x drawn with probability pX(x), whose class
y has probability PY (y | x). Clearly, the generalization error cannot be com-
puted in actual applications because pX(x) and PY (y|x) are unknown. In
practice, εg is estimated by statistical methods such as cross-validation, as
discussed in Chap. 2. Later in the present chapter, we will come back to that
probabilistic formulation, because it is one of the foundations of the statistical
learning theory. It allows the determination of bounds to training and gen-
eralization errors, or the estimation of their typical values. Clearly, training
from examples raises the following fundamental questions:

1. What are the properties of the classifier designed through learning, and
more specifically, what is its generalization error?

2. What is the minimal number of examples needed to catch the regularities
in the data?

3. What are the properties of different training algorithms?
4. Given a training set, are the classifier parameters w unique? If multiple

solutions are possible, is there an optimal one?

6.1.2 Discriminant Surfaces

Assume that the inputs are vectors x ∈ RN (the assumption of real-valued
components is not essential: the results presented in this chapter are also
valid for discrete-valued components, unless explicitly stated). We can repre-
sent them as colored points in an N dimensional space, each color indicating
the class of the corresponding point. The surface that separates the points
of different class is termed discriminant surface. As shown on Fig. 6.1, that
surface is not necessarily unique, and can possibly be a combination of parts
of surfaces. Training aims at determining the equation of an appropriate dis-
criminant surface.

As indicated in Chap. 1, classification may be considered as a particular
case of regression, where we search for a continuous surface g(x) whose values
are close to the desired output, i.e., a function that is equal to +1 for the
examples xk of class yk = 1, and to −1 for those of class yk = −1, as shown
on Fig. 6.2. The techniques presented in Chap. 2 can be used to find this
function. The discriminant surface is the set of points x where the sign of
g(x) changes.

Two situations may arise in an application:

6 Discrimination 333

Fig. 6.1. Examples belonging to two classes in dimension N = 2. The lines represent
the discriminant surfaces. (a) linearly separable training set, showing two separations
without training errors but giving different answers for the class of a new input
(empty circle). (b) A general case

• if one just needs to classify the patterns x, the discriminant surface only is
needed. Since the classifier performs a binary function of its inputs, in this
chapter we will show how the discriminant surface may be represented us-
ing binary neurons only. That cannot be done if we transform the problem
into a regression problem;

• if the probability that the input pattern belongs to a given class is neces-
sary, in order to make a posterior decision (such is the case for instance
when the classification is performed after comparison of the outputs of
different classifiers) we may use either continuous output units (e.g., sig-
moidal neurons), but also binary neurons. In this chapter we show that
the latter can also be assigned a probabilistic interpretation.

Fig. 6.2. Examples in dimension 2. Black points stand for patterns of class +1; white
denote those of class −1. The shadowed surface is the regression; the discriminant
surface (a line in that case) is shown as a dotted line

334 M. B. Gordon

Fig. 6.3. Schematic diagram of a perceptron

One element of choice between those approaches is the actual implementa-
tion of the application. Estimating probabilities on a digital computer is not
a problem. If the classifier will be implemented on a special-purpose device,
binary units can considerably improve the computation times and the com-
plexity of the circuits. A comparison between neural networks using binary
and real-valued neurons on an application of radar signals recognition may be
found in the Ph.D. thesis of Christelle Godin [Godin 2000].

6.2 Linear Separation: The Perceptron

The simplest network allowing the classification of data into two classes is a
single binary neuron. Introduced by Rosenblatt [Rosenblatt 1958], who called
it perceptron, it is shown schematically on Fig. 6.3. The output of Rosenblatt’s
perceptron depends on the weighted sum of the input vector components xi,
with weights wi ∈ R. This weighted sum, hereinafter called potential (as
in the previous chapters), is called field in the articles written by physicists
that studied the properties of neural networks. A Perceptron shares many
properties with the spins, which are elementary magnets. In particular, the
weighted sum plays the same role as the magnetic field in the context of the
physicists’ models of magnetism.

Since the potential is a linear function of the inputs, the perceptron is
also called linear classifier. However, as already mentioned in Chap. 1, we
will consider generalized non-linear potentials, like polynomials (higher-order
neurons).

If the perceptron potential is larger than the neuron threshold s0, the out-
put is σ = +1, otherwise σ = −1. Thus, the perceptron is a neuron whose
activation function is a threshold function. In Fig. 6.3 we followed the conven-
tion used in the previous chapters, and we included a constant input x0 = 1
with a weight w0. Its role is to shift the threshold of the activation function.
Now the input has an additional component x0 = 1, so that we consider a

6 Discrimination 335

Fig. 6.4. Two Boolean functions; left : function OR, realizable with a perceptron;
right : the complement of the XOR (the non-XOR), not realizable by a perceptron

perceptron without threshold in an extended input space of dimension N + 1.
In that space, we define the linear potential as follows:

vL =
N∑

i=0

wixi = w · x,

where the subscript stands for linear (to distinguish it from the generalized
potentials introduced in the following sections). The perceptron’s output is
given by

σL = sign(vL).

The perceptron separates the inputs x into two subsets, depending on the out-
put value σ. From the definitions of the (linear) potential and the output of
the perceptron, the weight vector w is normal to a hyperplane in RN+1 (a hy-
perplane is the generalization to dimension N of a plane in three-dimensional
space). That hyperplane contains the origin and separates the examples with
σ = 1 from those with σ = −1. The former obey w ·x > 0, the latter w ·x < 0.
Thus, the perceptron performs linear separations in input space.

If we restrict the inputs to take only binary values, a perceptron performs
a Boolean function of its inputs, that is, an application from {0, 1}N+1 onto
{0, 1} (or from {−1,+1}N+1 onto {−1,+1}). Clearly, it is unable to perform
some functions, like the exclusive-or (XOR) or its complement, as shown on
Fig. 6.4b.

Given the inputs xk of the training set, which are M points in a space
of N dimensions, there are 2M possible Boolean functions of those points.
That number increases exponentially with M . Although it is not known how
many Boolean functions are linearly separable, it has been shown that their
number increases with M like a power law (≈Mn, with n > 1), much slower
than exponentially. For large M , the linearly separable functions are a very
small fraction of all the possible Boolean functions. Thus, the perceptron can
perform a very small number of Boolean functions of its inputs.

336 M. B. Gordon

6.3 The Geometry of Classification

In the present section, we analyze some geometrical aspects of the classifica-
tion. We have seen that there are 2M different ways of assigning classes to the
M vectors xk ∈ LM , k = 1 to M . Each assignment corresponds to

• one particular Boolean function of the inputs (application from {−1,+1}N+1

onto {−1,+1}) if the latter are binary (a Boolean function is determined
by the values it takes on each of the points in the domain where it is
defined),

• one particular binary valued function (application of RN onto {−1,+1})
when the inputs are real-valued (which is the case in most of the applica-
tions).

The selection of a weight vector is actually a choice of one particular Boolean
function that, in the case of error-free training, takes exactly the values yk on
the M patterns in LM . Thus, training amounts to selecting a single function,
determined by the network weights. Even restricting the weights to those that
discriminate correctly the examples, the corresponding functions generalize
differently on the points x that do not belong to the training set LM .

6.3.1 Separating Hyperplane

As shown by the definition of the (linear) potential, the latter it is the scalar
product of the weight vector w and the input vector x. That product vanishes
when the points x lie exactly on the separating hyperplane.

The points xH that obey the equation

w · xH = 0

belong to the separating hyperplane; it is normal to w in the extended input
space, of dimension N + 1. In that space, the hyperplane contains the origin.

Remark. If the examples of the training set are linearly separable, there is a
continuum, i.e., an infinite number, of hyperplanes that classify correctly the
training patterns.

Consider an arbitrary input x. If w · x > 0, the perceptron assigns it to
the class +1; if w · x < 0, the class is −1. In both cases, the vector x is at a
distance |d| of the separating hyperplane; d is given by

d =
w · x
‖w‖ ,

where ‖w‖ =
√∑N

j=0 w
2
j is the norm of the weight vector.

6 Discrimination 337

Fig. 6.5. Examples (grey circles) in two dimensions, represented in the extended
three-dimensional space. The separating hyperplane and the corresponding separat-
ing straight line in the original input space are shown

Remark. It may be useful to come back to the original N -dimensional input
space. The points x̃H ∈ RN that satisfy

N∑
j=1

wj x̃
H
j = −w0

lie on the hyperplane that is normal to the vector w̃ = [w1, w2, . . . , wN]T ,
whose distance to the origin is the absolute value of

dH
0 =

w0√∑N
j=0 w

2
j

.

The relation between w̃ and w is illustrated on Fig. 6.5. The separating hy-
perplane in the N -dimensional space is the intersection of the hyperplane in
extended space with the sub-space x0 = 1. Clearly, the distances of the exam-
ples to the hyperplanes are different, depending on which space is considered.

To summarize, each weight vector w determines one hyperplane that sep-
arates the input space in two regions. Inputs x with positive projection onto
w have outputs equal to +1, whereas the others have outputs equal to −1. A
perceptron performs linear separations (or discriminations), since the equa-
tion of the separating (discriminant) surface is a linear function of the inputs.
The implementations of more complex separations need either neural networks
with hidden units or perceptrons with higher order potentials, like spherical
perceptrons or Support Vector Machines. These are described in the Sect. 6.5
“beyond linear separation” .

6.3.2 Aligned Field

Consider an input xk belonging to LM , of class yk. The aligned field zk with
respect to the perceptron of weights w, is defined by

338 M. B. Gordon

zk = ykw · xk.

From the condition of correct classification and the definition of the perceptron
output, it can be shown that the perceptron output is correct if

zk > 0.

If the norm of the weight vector is modified, without changing its orientation,
by multiplying all components wi (including w0) by the same constant, the
perceptron output is the same. Only the hyperplane orientation, defined by the
unitary vector w/‖w‖, is relevant for the classification task. The properties
of the linear separation do not depend on the norm of w, but only on its
orientation.

6.3.3 Stability of an Example

In order to investigate the training properties of the neurons, we introduce
the concept of stability γ of an example

γk =
ykw · xk

‖w‖
=

zk

‖w‖ .

Comparing with the distance to the separating hyperplane, and given that∣∣yk
∣∣ = 1, the magnitude of the stability

∣∣γk
∣∣ is nothing but the distance of

the example k to the separating hyperplane. That is illustrated on Fig. 6.6 for
the case of real-valued inputs. In terms of stability, the condition for correct
classification can be written as

γk > 0.

Remark. The stabilities of the examples are a measure of our confidence in
the classification. We will see in the last part of this chapter that the proba-
bilistic interpretation of the classification is a function of those stabilities.

Some examples have interesting properties. The distance κ to the sepa-
rating hyperplane of the example of LM that is closest to the hyperplane is
called the margin. The region in input space on both sides of the hyperplane,
of width 2κ, centered on the latter, does not contain any example.

Among all possible separating hyperplanes, the hyperplane with maximal
margin, also called optimal stability perceptron, has interesting properties. In
particular, it is robust with respect to small perturbations in the inputs or
the weights. The support vector machines, introduced later in this chapter,
are based on the concept of maximal margin.

6 Discrimination 339

Fig. 6.6. Input space, with two examples x1 and x2, of class +; the hyperplane
corresponding to a perceptron of weights w (with ‖w‖ = 1) is shown, together with
the stabilities γ1 and γ2 of the examples

6.4 Training Algorithms for the Perceptron

There are many learning algorithms that allow to determine the perceptron
weights based on the training set LM = {(xk, yk)}, k = 1 to M . Historically,
the oldest one is the “perceptron algorithm”. Although it is seldom used in
practice, it has interesting properties. We will see that the alternative training
algorithms may be considered as generalizations of it.

Remark. If the examples of the training set are linearly separable, a percep-
tron should be able to learn the classification.

6.4.1 Perceptron Algorithm

The following algorithm was proposed by Rosenblatt to train the perceptron:

Perceptron Algorithm

• Initialization
1. t = 0 (counter of updates)
2. either w(0) = 0 (tabula rasa initialization) or each component of w(0)

is initialized at random.
• Test

1. if zk ≡ ykw(t) · xk > 0 for all examples k = 1, 2, . . . ,M (they are
correctly learned) then stop.

2. else go to learning
• Learning

1. select an example k of the training set LM , either at random or follow-
ing a pre-established order.

340 M. B. Gordon

Fig. 6.7. Vector w after 5 iterations of the perceptron algorithm: the examples used
for learning (black circles: class −1, white circles: class +1) are numbered following
the order in which they have been used. The weight vector w∗ is one solution. The
weight vector w(t = 5) correctly separates all the examples

2. if zk ≡ ykw(t) · xk > 0 (the example k is correctly classified) then go
to learning

3. else
(a) update the weights’ components (i = 1, . . . , N + 1): wi(t+ 1) =

wi(t) + ykxk
i

(b) increment the counter of updates: t = t+ 1,
(c) go to test

The perceptron algorithm iterates the weights modifications as long as
there are classification errors of the training patterns, that is, examples with
negative aligned fields zk. Figure 6.7 presents an example of the application
of the Perceptron Algorithm in two dimensions. Clearly, if the training set
is not linearly separable, the algorithm will never stop (in contrast with the
algorithm of Ho and Kashyap presented in Chap. 1).

Remark. The perceptron algorithm cannot determine whether a training set
is linearly separable or not, because it is not easy to distinguish in a reason-
able training time whether the algorithm entered an infinite loop because the
examples are not linearly separable, or whether the examples are separable
but convergence is slow. The algorithm of Ho and Kashyap [Ho 1965] provides
an answer to that question: if the examples are linearly separable, it obtains a
solution (which should not be expected to be optimal); if they are not linearly
separable, it signals that after a finite number of iterations.

If the examples are linearly separable, the perceptron algorithm converges, as
proved in the following theorem.

6 Discrimination 341

6.4.2 Convergence Theorem for the Perceptron Algorithm

Theorem. If the examples of the training set are linearly separable, the per-
ceptron algorithm finds a solution in a finite number of iterations.

In order to prove the theorem, we assume that the weights are initialized
to zero, i.e., using the option of tabula rasa. Strictly, that assumption is not
necessary. It just makes the proof easier than starting with arbitrary weight
values.

Since the examples of the training set LM are assumed to be linearly sepa-
rable, there exists a weight vector w∗, hereinafter called reference perceptron,
that classifies correctly the examples. Without any loss of generality, we as-
sume that w∗ is unitary. Otherwise, it would suffice to divide its components
by its norm. The stabilities of the examples in LM with respect to the refer-
ence hyperplane are all positive. Since w∗ is unitary, they are identical to the
corresponding aligned fields,

γk
∗ = ykxk · w∗ = zk

∗ .

To prove the theorem, we derive upper and lower bounds to the norm of
the weight vector generated by the algorithm. Those bounds (see the Sect.
6.8 “Additional material” at the end of the chapter) are increasing functions
of the number of iterations t, but they increase at different rates. The lower
bound increases linearly with the number of iterations t, whereas the upper
bound increases more slowly, as

√
t (see Fig. 6.8). The bounds cross each

other, which is absurd, after a number of iterations T given by

T =
(‖xmax‖
γmin∗

)2

,

where ‖xmax‖ is the norm of the example of LM with the largest norm, and
γmin
∗ is the stability of the example of LM that has the smallest stability

with respect to the reference perceptron hyperplane. Thus, the perceptron
algorithm must converge, since the number of iterations cannot be larger
than T . Notice that the learning time may be very long, especially if there
are examples very close to the reference hyperplane (γmin

∗ small relative to
‖xmax‖). However, the algorithm may converge in times much smaller than
that given by the above relation for two reasons:

• first, because the reference hyperplane w∗ is arbitrary, and the value of
γmin
∗ may be particularly small;

• on the other hand, the learning time is a random variable that depends on
the particular sequence of examples selected for the successive updates.

Remark 1. The expression of the number of iterations T has a simple intuitive
interpretation. The correction to the weights performed at each iteration is
bounded, because its norm cannot be larger than the norm of the example

342 M. B. Gordon

Fig. 6.8. Behavior of the upper and lower bounds as a function of the number of
iterations, for a case with γmin

∗ = 0.5 and ||xmax|| = 2

used at that iteration, ‖xk‖. On the other hand, the successive learning steps
increase the norm of the weights. Therefore, the relative correction produced
by an example, whenever its presentation generates a weight update, decreases
during training. As a consequence the hyperplane undergoes successive re-
orientations of decreasing amplitude. If some examples are very close to the
hyperplane (small γmin

∗), the corrections must become small enough to reach
the necessary precision. This explains why the convergence time is inversely
proportional to γmin

∗ .

Remark 2. Instead of considering the inputs xk of classes yk, it is equivalent
to consider input vectors x

′k ≡ ykxk, all of the same class y
′k = +1. If w

classifies correctly the set of xk, it will do so with the x
′k, since the sign of the

aligned fields are unaltered by that transformation: y
′kw · x′k ≡ ykw · xk >

0. The computation time of training algorithms may be shortened if that
transformation is applied to the training set.

6.4.3 Training by Minimization of a Cost Function

Most training algorithms compute w through the minimization of a differen-
tiable cost function, which is the sum of partial costs per example. We have
seen that, for correct classification, the examples should have positive aligned
fields. It is therefore reasonable to consider partial costs that are functions of
zk: V (zk). The cost function to be minimized is

C(w) =
1
M

M∑
k=1

V
(
zk
)
.

It depends on w through the aligned fields of the examples. We will see later
that the assumption of an additive cost over the examples is consistent with
the hypothesis that the examples are independent random variables.

6 Discrimination 343

Remark. Of course, the factor 1/M in front of the sum does not play any
role in the minimization of the cost function. It allows the definitions of the
average cost per example, a quantity that allows easy comparisons between
results obtained with training sets of different sizes.

The partial cost V (zk) must satisfy some conditions in order that the min-
imum of the cost function corresponds to appropriate weights. Weights w that
produce negative aligned fields must have a higher cost than weights produc-
ing positive aligned fields. Thus, V (z) must be a non-increasing function of
the aligned field z. However, that condition on V is not sufficient, at least in
the case of a linearly separable training set: if w∗ separates correctly LM , then
any weight vector of the form aw∗ with a > 1 is also a solution, with a lower
cost. Hence, a minimization algorithm would never converge, since the cost
can decrease without bounds by increasing the norm of w without modifying
the hyperplane orientation. To avoid this, we impose the constraint that ‖w‖
be constant. Normalizations ‖w‖ = 1 and ‖w‖ = N +1 in the extended space
(or ‖w‖ = N in input space) are the most popular ones.

The simplest method of minimizing C(w) is to use the algorithm of gra-
dient descent, as described in Chap. 2, which modifies iteratively the weights
following

w(t+ 1) = w(t) + ∆w(t),

with

∆w(t) = −µ∂C(w)
∂w

(t)

= −µ 1
M

M∑
k=1

∂V
(
zk
)

∂zk
(t)ykxk

=
M∑

k=1

ck(t)ykxk,

where µ is the learning rate, and we introduced the relation ∂zk/∂w = ykxk.
It is convenient to normalize the weights after each iteration.The last relation
shows that the weights can be written under the general form:

w =
M∑

k=1

ckykxk.

The parameters ck, which are the sum of the ck(t) over all the iterations,
depend on the algorithm. If ck = 1 in the expresion of w, the mathemati-
cal expression of Hebb’s rule is retrieved. That learning rule states that the
information used for modifying the synaptic efficacies in the nervous system
is the correlation between the activity of the pre-synaptic neuron (neuron
excitation) and of the post-synaptic neuron (neuron firing rate). It is worth

344 M. B. Gordon

pointing out that Hebb’s rule has very poor performances in Machine Learn-
ing. However, even if its interest for applications is mainly historical, we will
show that it is possible to accelerate the convergence of some algorithms by
initializing the weights with Hebb’s rule.

Remark. If the weights were not normalized after each iteration to satisfy the
constraint ‖w‖ = constant, it would be possible to control the convergence,
and stop the algorithm as soon as the corrections become parallel to the
weights, that is, when w(t+1) ·w(t) = ‖w(t+1)‖‖w(t)‖ (within the accuracy
limits imposed by the considered application).

In the rest of this section we review some partial costs proposed in the
literature.

6.4.4 Cost Functions for the Perceptron

The cost function that seems most appropriate intuitively is the number of
training errors. The corresponding partial cost is shown on Fig. 6.9, and can
be written as

V (z) = Θ(−z),
where Θ(u) is the Heaviside function defined at the beginning of this chapter.
It takes the value 1 if the example is incorrectly classified, and 0 otherwise.
At its minimum, the total cost is the smallest fraction of examples incorrectly
classified. This cost function is not differentiable, and cannot be minimized
using a gradient descent. Its minimization is performed by combinatorial op-
timization techniques, or using simulated annealing, described in Chap. 8.

Fig. 6.9. Partial cost corresponding to the number of training errors

6 Discrimination 345

Fig. 6.10. Partial cost corresponding to Hebb’s rule

We now turn to differential costs. The following partial cost, represented
on Fig. 6.10,

V (z) = −z
is the simplest monotonic decreasing function.

After introducing its derivative in ∆w(t), we find

∆w = µ
1
M

M∑
k=1

ykxk,

which is nothing but Hebb’s rule. As was already discussed, since the par-
tial cost is a monotonic decreasing function, it is necessary to introduce the
normalization constraint on the weights to guarantee that the algorithm will
stop. Then a single iteration suffices to find the cost minimum. We will take
advantage of that result to initialize the Minimerror algorithm.

The perceptron algorithm may be derived from the following partial cost:

V (z) = −zΘ(−z)

shown on Fig. 6.11. The weight updates at each iteration are

∆w = µ
1
M

M∑
k=1

Θ(−zk)ykxk.

This is equivalent to a nonadaptive (“batch”) version of the perceptron al-
gorithm. Here the weights are updated using all the incorrectly classified ex-
amples at each iteration (thanks to the Θ function in ∆w, which eliminates

346 M. B. Gordon

Fig. 6.11. Partial cost corresponding to a nonadaptive (“batch”) version of the
perceptron algorithm

all correctly classified patterns from the sum), instead of considering only one
pattern at each update, as the perceptron algorithm does.

The Adaline algorithm, also called delta rule, Widrow-Hoff algorithm, or
relaxation algorithm, derives from the following partial cost:

V (z) =
1
2
z2Θ(−z)

shown on Fig. 6.12. The weights updates at successive iterations are given by

∆w = µ
1
M

M∑
k=1

zkΘ(−zk)ykxk.

Remark. If a solution without training errors exists, i.e., if the training set is
linearly separable, and if the training set is equilibrated, that is, contains pos-
itive and negative examples in similar proportions, then most of the presented
algorithms may find the separating hyperplane after more or less iterations.
However, it is worth to remind that the learning rate µ must be small enough.

The above algorithms penalize the weights that produce training errors, since
the partial costs corresponding to negative aligned fields have positive values.
Correctly classified patterns have vanishing cost (except for Hebb’s rule), in-
dependently of their position in input space. However, intuitively we are more
confident about the classification of patterns far from the separating hyper-
plane, generally surrounded by patterns of the same class, than about that of
patterns very close to it. Thus, hyperplanes too close to the patterns should

6 Discrimination 347

Fig. 6.12. Partial cost corresponding to the Delta rule

be avoided, even if they classify them correctly. This is the aim of algorithms
that look for the hyperplane of a given margin κ, that is, the weights w(κ)
such that, for all examples k,

γk ≡ zk

‖w‖ ≥ κ.

The hyperplanes closer to the examples than the margin κ can be penalized
through a simple modification of the costs V (z), replacing everywhere the
aligned field zk by zk − ||w||κ. In that case, if the training set is linearly
separable, the solutions of vanishing cost satisfy the above relation for all
the examples. The largest value of κ for which a solution with zero cost
exists defines the maximal stability perceptron. We should point out that in
practice, the procedure that consists in maximizing κ may be complex and
time consuming.

Other cost functions have adjustable parameters more or less equivalent
to κ, generically called hyperparameters. Those allow finding solutions that
have better generalization properties than the above costs.

In general, when the training examples are not linearly separable, the
discriminant surface may be represented with hidden neurons. In that case the
hyperplane defined by each neuron should separate correctly the examples,
at least in a limited neighborhood of the hyperplane. However, when the
examples are not separable, the cost functions presented above have many
local minima. Generally, the solution found by minimizing those costs does
not exhibit the property of local separation. The following partial cost (used
by the algorithm Minimerror described later) allows finding such a solution,

348 M. B. Gordon

Fig. 6.13. Left : partial cost of Minimerror; right : prefactor of the weights correc-
tions, for two values of the hyperparameter β

through the use of a hyperparameter β. This cost is not a function of the
aligned field z, but of the stability γ:

Vβ(γ) =
1
2
[1 − tanh(βγ)].

The contribution of each example to learning is proportional to

−∂Vβ(γ)
∂w

∝ b

2 cosh2 (βγ)
[yx − γw].

The partial cost, as well as the prefactor cosh−2(βγ), are shown on Fig. 6.13
as a function of γ, for two different values of β. The hyperparameter β has a
simple intuitive meaning: the larger β, the narrower the region on both sides
of the hyperplane where the examples contribute significantly to learning. The
examples that contribute effectively to the learning process are those within
a virtual window of width proportional to 1/β centered on the hyperplane.
Due to the factor cosh−2(βγ), the contribution of the examples outside this
window is vanishingly small.

Remark 1. With reference to the algorithms with partial costs depending on
the aligned field, the derivative of Vβ(γ) with respect to the weights exhibits
an extra term that is proportional to γw. That quantity, subtracted from
the term between square brackets in the gradient of the cost function, is the
component of yx parallel to w. It only contributes to changing the norm of the
weight vector, without modifying its orientation. If the weights are normalized
at each iteration, that term can be neglected.

6 Discrimination 349

Remark 2. Even the examples that are correctly classified, i.e., with γ > 0,
contribute to the cost function. the closer they lie to the hyperplane, the larger
their contribution.

Remark 3. If β is small enough that βγk � 1 for all k, then all the examples
contribute with almost the same prefactor, like in Hebb’s rule discussed before.
Moreover, in the limit β → 0, the stabilities of all the examples are in the
region where the cost function is linear (in the neighborhood of γ = 0), and
the prefactor in the gradient of the cost function is the same for all examples.

Remark 4. For intermediate values of β, the examples with large stabilities
with respect to the virtual window width 1/β (β|γ| � 1) do not contribute
significantly to training, since their prefactor in the gradient of cost func-
tion is exponentially small (in the limit β|γ| � 1, one has 1/(cosh2(βγ)) <
4 exp(−2β|γ|)). For example, if β|γ| > 5, the prefactor is of order 10−4. Loosely
speaking, the algorithm uses for learning only the examples lying inside a vir-
tual window of width β|γ| on both sides of the hyperplane.

The above remarks are at the basis of the Minimerror algorithm. The
hyperparameter β, which increases throughout the iterations to optimize the
solution, allows one to obtain a linear separation with large margin if it exists,
or finds surfaces that are locally discriminant (with large margins) otherwise.
The weights are initialized using Hebb’s rule, which corresponds to β = 0.
The iterations start with β sufficiently small for all the patterns to be inside
the virtual window. If ‖x‖max is the norm of the example of largest norm,
one can use βini = 10−2/‖x‖max. Then, at each training step (iteration) the
weights are updated and β is increased by a small amount δβ. This procedure
is known in the literature as deterministic annealing, a concept close to that
of simulated annealing, used in optimization problems (see the Chap. 8 on
optimization).

A heuristic improvement consists in considering two different values of
β, β+ for the examples with positive stability and β− for those with negative
stability. In order to keep a small number of parameters, the ratio β+/β−
does not change during training. Thus, the Minimerror algorithm has three
parameters: the learning rate µ, the annealing step δβ and the asymmetry
β± ≡ β+/β−. It proceeds as follows:

Minimerror Algorithm

• Parameter Settings
1. learning rate µ (suggested value: 10−2),
2. ratio β± (suggested value: 6)
3. annealing step δβ+ (suggested value: 10−2)

• Initialization
1. iteration counter: t = 0
2. weights: w(0) (suggested initialization: apply Hebb’s rule and then

normalize the weights to ‖w‖ = N + 1)

350 M. B. Gordon

3. hyperparameter β+ (suggested value: 10−2/‖x‖max)
• Training

1. update and normalize the weights according to

w(t+ 1) =
w(t) + ∆w

‖w(t) + ∆w‖
∆w = − µ

M
(δw+ + δw−)

where µ > 0 is the learning rate, and

δw± =
∑

k/γk∈γ±

β±
cosh2 β±γk

ykxk

where γ± denotes the subset of examples with positive (γ+) and neg-
ative (γ−) stabilities, respectively.

2. update the iteration counter and the hyperparameters: t← t+1, β+ ←
β+ + δβ+, β− = β+/β±.

3. if β+ and β− are sufficiently large that βγk � 1 for all k, no example
can significantly contribute to modify the weights (within the accuracy
limits of the problem),
then stop.
else, go to training.

It is possible, and often useful, to modify the learning rate and adapt it at
each iteration, as discussed in Chap. 2.

Remark. The Minimerror algorithm combines a gradient descent with the
adaptation of the hyperparameter. It converges towards a local minimum.
It has been shown [Gordon 1995] that if the training patterns are linearly
separable, the minimization of the cost function for increasing values of β
allows finding the hyperplane with maximal margin. If the examples are not
linearly separable, the algorithm converges to weights that minimize locally
(in the neighborhood of the hyperplane) the number of training errors. These
properties are very useful for constructive training algorithms, as explained
later in this chapter.

The hyperparameter β may be interpreted as the inverse of a noise, or a
temperature, T = 1/β [Gordon 1995]. We will come back to that interpretation
below. Further details, and examples of applications of Minimerror can be
found in [Raffin et al. 1995], [Torres Moreno et al. 1998], [Torres Moreno
1997] and [Godin 2000].

Remark. The least squares partial cost is of particular interest when applied
to a network without hidden units, i.e., to a single neuron with sigmoidal
activation function. Since yk = ±1, one has

6 Discrimination 351

V (zk) =
1
2
(
yk − tanh(w · xk)

)2
=

1
2
(
1 − yk tanh(w · xk)

)2
=

1
2
(
1 − tanh(zk)

)2
.

The corresponding modification of the weights with the algorithm of gradient
descent has the form given previously with

ck(t) =
µ

M

1 − tanh(zk)
cosh2(zk)

=
µ

M

1 − tanh(‖w‖γk)
cosh2(‖w‖γk)

.

The latter relation is similar to the relation of Minimerror. Here, ‖w‖ plays
the same role as β. The essential difference between both algorithms is that
β is a controllable parameter of Minimerror, while ‖w‖ cannot be controlled
when minimizing the Least Squares cost.

6.4.5 Example of Application: The Classification of Sonar Signals

The data of this application is available at the address http://www.ics.uci.
edu/mlearn/MLRepository.html [Blake 1998]. The problem is the discrimi-
nation of sonar signals generated by cylindrical mines from those generated
by rocks with the same shape. The benchmark has a training set of 208 pre-
processed signals, defined by N = 60 real values xi ∈ [0, 1](i = 1, . . . , N),
and their corresponding classes. The first 104 signals are traditionally used as
training examples, the last 104 ones are used for estimating the generaliza-
tion error. Despite the fact that this benchmark has been used to test many
learning algorithms with many different network architectures, we discovered
using Minimerror that not only were the training set and the test set linearly
separable, but that the complete set of 208 signals is also linearly separable
[Torres Moreno et al. 1998]. That result was subsequently confirmed by the
algorithm of Ho and Kashyap (see Chap. 2). The left part of Fig. 6.14 shows
the distances of the patterns to the separating hyperplane found with Min-
imerror, with a sign corresponding to the class assigned by the perceptron
trained with the first 104 patterns. The solution has a margin κ = 0, 1226:
none of the training examples lie at a distance to the hyperplane smaller than
κ. On the contrary, among the 104 test patterns, that hyperplane makes 23
classification errors. The right part of Fig. 6.14 shows the distances (with a
sign corresponding to the class assigned by the trained perceptron) after learn-
ing with all the database of 208 signals. In that case, the margin is smaller
(κ = 0, 0028). The histogram of the pattern stabilities with respect to that
hyperplane is shown on Fig. 6.15. We will see later that, if we assume that

352 M. B. Gordon

0 40 80 120 160 2000 40 80 120 160 200
-3

-2

-1

0

1

2

training set

yk=+1

yk=-1

pattern number k

(b)

training set

σkdk

ε
g
=0.22

pattern number k

(a)

Fig. 6.14. Distance of the patterns to the separating hyperplane, with different
colors for the different classes. The sign of dµ represents the class assigned by the
perceptron after learning. Left : learning with the M = 104 first patterns. The last
G = 104 examples belong to the test set. Right : distances to the hyperplane deter-
mined with all the patterns in the database, showing that they are linearly separable

Fig. 6.15. Histogram of the stabilities of the examples with respect to the hyper-
plane that separates the complete set of patterns

the training examples stem from noisy measurements of the corresponding
physical signals, those distances allow assigning a degree of plausibility (or a
probability density) to the perceptron output.

Remark 1. The fact that the 208 patterns of the sonar database turned out
to be linearly separable is not surprising. A theorem due to Cover [Cover
1965], and later generalized by E. Gardner (see [Gardner 1989]) to the case
of correlated data [Engel et al. 2001], states that the probability that a set
of points in general position (that is, such that no subset of more than N
points lie on one hyperplane) is linearly separable only depends on the ratio
M/N , where M is the number of points and N the space dimension. In par-
ticular, for N = 60 and M = 208, and if the patterns are correlated, as is the

6 Discrimination 353

case of the sonar signals, that probability is not negligible. Those theorems,
whose importance has already been mentioned in the first chapter, are further
discussed at the end of this chapter.

Remark 2. One may wonder why the fact that the sonar database is linearly
separable was not discovered earlier, since we have already shown in Chap. 1
that the algorithm of Ho and Kashyap [Ho 1965] provides the answer in a few
minutes. That is a consequence of the multidisciplinary character of the field
of neural networks: important results are frequently rediscovered. The authors
of this book hope that it will contribute to overcoming such problems.

6.4.6 Adaptive (On-Line) Training Algorithms

Adaptive algorithms update the weights after the presentation of each exam-
ple, just as the perceptron algorithm does. As already pointed out in previous
chapters, adaptive training is useful when the training set is too large to be
stored in the computer memory—as requested by the optimization algorithms
described above—or in problems where the examples are available one at a
time, as is the case when a robot explores its environment.

As mentioned in Chap. 2 and 4, adaptive training can be performed by up-
dating the weights proportionally to the derivative of the partial costs defined
in the previous section. Such implementations are called methods of stochas-
tic gradient descent since the true gradient is replaced by a stochastic term
whose average is equal to the gradient. Stochasticity is due to the more or less
arbitrary order of presentation of the examples. Different orderings may end
up with different, statistically equivalent results.

Among the on-line learning algorithms for the perceptron, we mention
Minover [Krauth et al. 1987] and Adatron [Anlauf et al. 1989], which achieve
better performances than the perceptron algorithm. In fact, Adatron is an
adaptive version of the relaxation algorithm described above.

6.4.7 An Interpretation of Training in Terms of Forces

In this section, we provide an interpretation of training in terms of forces
produced by the examples on the hyperplane, which provides insight into
the non-convergence of some algorithms when the training set is not linearly
separable.

Given the orientation of the hyperplane at iteration t, the contribution of
an example k to the weight update may be interpreted as a force

F k(t) = − µ

M

∂V (zk)
∂w

(t)

= − µ

M

∂V (zk)
∂zk

(t)ykxk

= ck(t)ykxk

354 M. B. Gordon

Fig. 6.16. Forces on the hyperplane. At iteration t, the example k incorrectly
classified attracts the hyperplane. Its contribution to the weight update is indicated
by the vector ck(t)ykxk, which is added to w(t) to give w(t + 1)

that acts on the hyperplane. Note that that force derives from a potential,
which is nothing but the partial cost V (this is why the latter is usually called
potential in the literature written by physicists working in this field; we will
not use this term here in order to avoid confusions with the neuron potential).
Since the hyperplane contains the origin of the extended input space, this force
will make it turn around the origin. If V (z) is a non-increasing function of
its argument, then ck ≥ 0. As we can see on Fig. 6.16, if the stability of
xk is negative, then the force attracts the hyperplane towards xk, like if the
example tried to pass to the other side of the hyperplane. Conversely, if the
stability of xk is positive, the example repels the hyperplane.

Remark. The rotation angle is proportional to the learning rate µ. If it is
too large, the effect of the force may be excessive and produce oscillations
upon successive iterations.

The hyperplane orientation is stabilized, and the algorithm converges,
when a balance between the forces produced by examples on both sides of
the hyperplane is reached. If the partial cost V is zero for positive stabilities,
only the wrongly classified patterns produce forces, which are attractive, on
the hyperplane. If V �= 0 for positive stabilities, as in the Minimerror algo-
rithm, the correctly classified patterns also produce (repulsive) forces on the
hyperplane.

If the examples of the training set are not linearly separable, training with
partial costs that diverge at negative stabilities may exhibit convergence prob-
lems. In non-separable problems, the misclassified patterns attract the hyper-
plane with forces that are stronger the farther the examples. The hyperplane
orientation may thus oscillate during successive iterations and never stabilize.

6 Discrimination 355

To avoid this problem, the learning rate µ may be decreased throughout the
learning procedure. The same remark applies to on-line (adaptive) training: in
that case, the solution not only depends on the rate at which µ was modified,
but also on the order of presentation of the patterns.

6.5 Beyond Linear Separation

We have seen that a perceptron can only implement linear separation of the
inputs. To overcome that limitation, multilayered networks were introduced
in Chap. 1. However, other possibilities exist. One of them is to use non-
linear potentials. An example is presented in the next section. It allows the
implementation of spherical separation surfaces using a generalized percep-
tron with the same number of parameters as a linear perceptron. Clearly,
restricting to hyperspheres is still an important limitation that can be over-
come by using two very different approaches. Either the network complexity is
increased through the addition of hidden neurons using incremental methods,
or we increase the perceptron complexity is increased, as in “support vector
machines”. The latter can find discriminant surfaces of arbitrary shapes at
the price of learning a larger number of parameters.

6.5.1 Spherical Perceptron

A hyperspherical discriminant surface may be implemented through a simple
generalization of the linear perceptron. Let us define a spherical potential or
activity,

vS =
N∑

i=1

(xi − w̃i)2 − w2
0.

The sum over i is the square of the distance between the input x and the
weight vector in input space w̃ = [w1,w2, . . . ,wN]T, which is the center of a
hypersphere of radius w0. The perceptron output is

σS = sign(vS).

Thus, σS = +1 if the point x is outside the hypersphere, and σS = −1 if it
is inside (see Fig. 6.17). Notice that the spherical perceptron has the same
number of parameters as the linear perceptron. Only the definition of the
potential is different. All the training algorithms for the linear perceptron
can thus be easily transposed to the spherical perceptron, by introducing the
following expression:

zk
S = ykvS

for the aligned field of example k. It is important to emphasize that, in this
case, the weights must not be normalized, since that would impose that the
hypersphere center be at a fixed distance of the origin, given by the normal-
ization constant.

356 M. B. Gordon

Fig. 6.17. Two discriminant hyperspherical surfaces in dimension N = 2. The
center of the sphere, indicated by a cross, may be outside the region occupied by
the examples

6.5.2 Constructive Heuristics

As mentioned above, if the discriminant surface is neither linear nor spherical,
the classification problem may be turned into a regression problem, and the
techniques of training and model selection of Chap. 2 may be applied. In that
case, the neurons must have differentiable activation functions. The number of
hidden units has to be postulated a priori, and is generally adjusted by com-
paring results obtained with different network sizes, at the cost of time and
resources. An alternative solution, presented in this chapter, is to determine
the discriminant surfaces by combining linear and spherical separations using
binary hidden neurons. Those are included in the network sequentially, follow-
ing constructive heuristics that use different criteria to associate binary inter-
nal representations to the input patterns in the training set. The hidden units
states corresponding to an input pattern constitute its internal representation.
Its dimension is the number of hidden units. If those internal representations
are linearly separable, an output perceptron connected to the hidden units
can learn the discrimination. The probability that the pattern belongs to the
class assigned by the classifier may be estimated using the results described in
the section “Probabilistic formulation of learning” of the present chapter. In
any case, whether the neurons used are binary or continuous, it is important
to use the techniques for model selection through cross validation, or statisti-
cal tests, explained in Chap. 2, to avoid overfitting: a classifier that classifies
correctly all training patterns may be unable to generalize satisfactorily.

6 Discrimination 357

Fig. 6.18. (a) Discriminant surfaces generated with the algorithm NetLS. (b) In-
ternal representations corresponding to the regions of figure (a). The surface shown
corresponds to the linear separation of the internal representations, implemented by
the output neuron

Remark. The internal representations of the training set are said to be faith-
ful if the examples of different class are given different representations. Note
that different examples may have the same representation, provided they be-
long to the same class. This is even desirable, since it allows information
compression.

The different constructive or incremental algorithms in the literature generate
the internal representations through the sequential addition of hidden units.
Especially adapted to learn discrimination tasks with neural networks, they
differ by the heuristics (what has to be learnt to the successive hidden units),
the final network architecture (trees, layered, etc.) and the algorithm used
to train the individual neurons. In particular, the number of hidden neurons,
which determines the dimension of the internal representations, depends cru-
cially on the efficiency of the training algorithm.

In the following we briefly describe the constructive algorithm NetLS. It
generates separations such as those shown on Fig. 6.18(a). In this example, the
first hidden neuron (numbered 1 on the figure) implements a linear separation
in input space. The second and third ones perform a spherical and a linear
separation respectively. The regions thus defined in input space are mapped
to faithful internal representations, shown on Fig. 6.18(b). Since they are
binary vectors (in dimension 3 in this case), they lie at the vertex of the
hypercube in the space of hidden neuron outputs. A separating hyperplane is
shown on the same figure. The internal representations are linearly separable:
an output perceptron connected to the hidden units can correctly implement
the discrimination. It is important to emphasize that the only way to obtain
a neural network with binary hidden units is to build it by adding binary
perceptrons sequentially.

358 M. B. Gordon

6.5.2.1 Constructive Algorithm NetLS

The NetLS algorithm adds sequentially the hidden units until the number
of training errors is smaller than a user-defined value. They are trained using
the Minimerror algorithm. First, a linear and a spherical unit are trained with
the original training set LM , retaining the unit that learns with the smallest
number of errors. If all the examples are correctly learned, the problem is
separable and the algorithm stops. Otherwise the trained neuron becomes the
first hidden unit, h = 1. Then, h is incremented, and the algorithm proceeds
as follows:

Algorithm NetLS

1. define a new training set LM,h of couples {xk, yk
h} where the new targets

are yk
h = +1 if the example was correctly classified, yk

h = −1 otherwise.
2. train two perceptrons (one linear, one spherical) with the set LM,h. Keep

the perceptron that makes the smallest number of errors as hidden neuron
h.

3. connect an output neuron to the set of h hidden units, and train it to assign
the original outputs yk to the internal representations of the corresponding
input patterns xk. If the classification of all the patterns is correct, the
algorithm stops. Otherwise, the output neuron is deleted, and the counter
of hidden units is incremented.

4. go to 1.

Figure 6.19 shows the algorithm schematically. At iteration t = 1, two
perceptrons are trained with the original training set LM . If an error-free
solution is found, the algorithm stops. Otherwise, the training set is modified.
At t = 2, two new perceptrons are trained, and again, the perceptron that
generates the smallest number of errors is retained. An output neuron is then
connected to the hidden ones, and is trained to discriminate the classes of the
examples, based on their internal representations. If an error-free solution is
reached, the algorithm stops. Otherwise, the output neuron is eliminated and
new targets are defined for each pattern, depending on whether the output
neuron classified it correctly or incorrectly. The process is iterated until all
examples are classified correctly.

There are several variations of NetLS, which improve the computation
time of the algorithm. The interested reader can read the Ph.D. thesis of
Juan Manuel Torres Moreno and Christelle Godin referenced above, where
applications of the algorithm to different problems are described in details,
(see also [Torres Moreno et al. 1998]).

Remark 1. One advantage of the constructive algorithms is their computa-
tion time. At each stage, only one neuron is trained. The weights of previously
trained hidden neurons are unchanged.

6 Discrimination 359

Fig. 6.19. Schematic representation of the NetLS training algorithm

Remark 2. The network has a single hidden layer because it has been shown
[Cybenko 1989] that, under mild conditions, a single hidden layer is sufficient
to represent any function of the inputs.

Remark 3. The main drawback of constructive algorithms is that the result
depends critically on the separation obtained with the first hidden unit. In
some cases, keeping the neuron that makes the smallest number of errors may
not be the best strategy. Since the neurons added sequentially learn to improve
the classification quality by making the internal representations faithful, a
poor choice of the first hidden unit may have important consequences on
the classifier performance. To avoid this problem, it may be wise to begin
with different initial separations, and use the techniques of model selection
described in Chap. 2.

6.5.3 Support Vector Machines (SVM)

Support vector machines (SVMs) are generalized perceptrons with high-order
potentials. They allow finding, at least in principle, discriminant surfaces of
any shape. Recently, their applications have been extensively developed. In
this section we introduce the SVM’s, and describe the principles of the learning
algorithm.

One of the assets of SVMs is the fact that their cost function is convex
(i.e., it has a single minimum), in contrast with the algorithms described
thus far. Both the least squares cost function usually used in regression or
the cross-entropy used for classification problems in Chap. 1, may have local
minima. The constructive algorithms find different solutions depending on

360 M. B. Gordon

the considered heuristics. However, it is important to emphasize that having
a unique solution is mathematically satisfactory, but does not guarantee that
the classifier has good generalization properties!

The basic idea underlying the SVM’s is quite old [Cover 1965]: instead of
using a multilayered neural network, Cover proposed to perform an application
of input space x ∈ RN to a space Φ(x) ∈ RN ′

of higher dimension N ′ � N ,
called feature space, where the discriminant surface is linear. For example, the
quadratic application

ϕ : x → Φ =
(
x1, x2, . . . , xN , x

2
1, x1x2, . . . , x1xN , x

2
2, x2x3, . . . xN−1xN , x

2
N

)
is an example where vector Φ has N ′ = N +N(N + 1)/2 components: the N
components of x plus the N(N + 1)/2 products of couples of components of
x. Training sets that are separable by a second order surface in input space
x ∈ RN become linearly separable in the space of quadratic features RN ′

,
and a simple perceptron in feature space can solve the problem. When the
problem is linearly separable, we have already seen that there is an infinite
number of separating hyperplanes. The SVM solution is the solution with
maximal stability in feature space. If the following condition on the aligned
fields in feature space is obeyed,

ykΦ(xk) · w > 1,

the margin, which is the distance of the hyperplane to the closest example is
1/‖w‖. Therefore, maximizing the margin is equivalent to minimizing a cost
that is the norm of the weight vector,

E =
1
2
w · w

under the above constraints of aligned fields larger than 1 in feature space. If
the latter can be satisfied, the solution is a hard margin SVM. Minimizing E
with those constraints is a quadratic optimization problem in dimension N ′,
in a convex domain. Its solution is unique, and several algorithms have been
optimized to solve it (some of them are available at the URL http://kernel-
machines.org). The important point is that the solution can be expressed as
follows:

w =
M∑

K=1

ckykΦ(xk),

with ck ≥ 0. It can be shown that there are two subsets of examples: those
with ck = 0 and those with ck > 0. The former do not contribute to the
weights. If they were excluded from the training set, the solution would be
the same. Those with ck > 0, which actually determine the solution, are called
support vectors. They verify ykw · Φ(xk) ≡ 1, meaning that they are exactly
at the margin. In other words, they lie at a distance 1/‖w‖ of the separating
hyperplane.

6 Discrimination 361

Remark 1. If the training set is not linearly separable in the feature space
determined by function Φ(x), the algorithm does not converge, and does not
give even an approximation to the solution.

Remark 2. The same algorithm of constrained quadratic minimization may
be used to find the maximal margin perceptron in input space, if the training
set is known to be linearly separable. Otherwise, one has to map the patterns
to a feature space of dimension high enough to guarantee linear separation.

If the hard margin constraints cannot be satisfied, two possibilities arise:
either another application ϕ is chosen, or the constraint that all examples
should be correctly classified and lie outside the margin are relaxed. In the
latter case, new variables ζk, called slack variables, are introduced. Then the
function to be minimized is

Γ (C) =
1
2
w · w + C

M∑
k=1

(ζk)n,

where C is a positive hyperparameter (C > 0) to be chosen, and n a positive
exponent (n > 0), under the constraints

ykΦ(xk) · w > 1 − ζk

ζk ≥ 0.

The minimization of Γ (C) under the above two constraints defines the soft
margin SVM. Clearly, the slack variables allow the violation of the hard margin
constraints. If 0 < ζk < 1, the distance of the examples to the hyperplane
is smaller than 1/‖w‖, but they are correctly classified. Conversely, those
with ζk > 1 are incorrectly classified. In order to minimize the number of
misclassifications, they must be penalized: that is the rationale for including
the second term in the cost function Γ (C). The larger the exponent n, the
more penalized the misclassifications. However, in order to keep a quadratic
minimization problem, the possible values of n are restricted to n = 1 or
n = 2. In such conditions, the solution of the soft margin problem is still
unique, and can be found using algorithms of quadratic minimization under
constraints. The solution has the same form as the above expression of w, with
the examples with ζk �= 0 included in the sum. In principle, the coefficient C
in Γ (C) is arbitrary. Its value controls the relative importance given to the
training errors with respect to the margin maximization. Theoretical studies
have shown that the value of C has a large influence in the generalization
properties of the soft margin SVM’s. The choice of its value is a practical
problem, and several heuristics have been proposed for the applications of the
algorithm.

In practice there is no need to define explicitly the application ϕ : x →
Φ(x). In fact, from the expression of w, classifying a new input x only requires
the scalar products Φ(x)·Φ(xk) of the input features with those of the support

362 M. B. Gordon

vectors. If the application ϕ has some general (not too restrictive) properties,
those scalar products may be evaluated directly in input space through

Φ(x) · Φ(y) = K(x,y),

where K(x,y) is a convolution operator or kernel. Therefore, after training,
only the support vectors in input space and the coefficients ck must be stored
in memory. They allow computing the classifier response to any input vector.
Thus, if the kernel K is known, it is unnecessary to keep in memory the weight
vector w, that may have a huge number of components (exactly N ′ + 1 �
N , since w is a vector in feature space). Moreover, it is not even necessary
to define explicitly the application ϕ: the kernel is sufficient. This is why
SVM’s are also called kernel machines. One of the most popular kernels is the
Gaussian operator

K(x,y) ∝ exp

(
− (x − y)2

σ2

)
,

generally called RBF (for radial basis function). That kernel corresponds to an
infinite dimension feature space! Such operators were mentioned previously,
in Chap. 1.

As explained at the end of this chapter, the generalization error is a de-
creasing function of the ratio of the dimension of the space where the per-
ceptron performs the separation to the number of training patterns M . In
the case of SVM’s, the former is the feature space. Since the number M of
training patterns remains fixed, one can wonder whether SVM’s are able to
generalize at all [Buhot et al. 2000]. It has been proved that the generalization
error of the SVM’s is bounded by the fraction of training patterns that are
support vectors. Note that only values smaller than 0.5 are of interest, since
a generalization error of 0.5 means that the classifier has probability 0.5 of
misclassification: in other words, it has the same performance as a random
classifier. The interest of this bound is that it can be determined in applica-
tions (it amounts to simply counting the number of support vectors, and to
divide it byM). That problem, as well as other properties of SVM’s, is subject
to active theoretical research (see for example [Risau-Gusman et al. 2000a,b,
2001; Dietrich et al. 1999; Risau-Gusman et al. 2002]). The interested reader
may read the recent Ph.D. thesis of [Risau-Gusman 2001].

6.6 Problems with More than two Classes

A straightforward way of discriminating patterns among more than two classes
is to separate each class from all the others. A problem with K classes
y1, y2, . . . , yK is thus reduced to K problems of binary discrimination, with
each classifier dedicated to recognize one and only one class. However, it may
happen that more than one classifier recognizes the same input pattern. In

6 Discrimination 363

that case, usually the class is decided through a vote, based on the value of
the potential of the output neuron. The underlying rationale, called winner
takes all (WTA), is that the larger the potential on the output neuron, the
more confident we are on its classification.

We will show below that the probabilistic interpretation of the classifica-
tion is based on the distance of the examples to the discriminant surfaces, that
is, the absolute value of the potential divided by the norm of the weight vec-
tor. Therefore, our confidence in a classification should be based on distances
and not on bare potentials, unless the weights are normalized. But a deeper
problem posed by the WTA procedure is the following: the output unit only
reflects the properties of the internal representations. Our confidence should
depend on the distances of the input vector to the discriminant surfaces in
input space, which are proportional to the potentials of the hidden neurons.
It may happen that the input pattern lies so close to one discriminant surface
in input space that its class is uncertain. However, its internal representation
may have a large stability (see Fig. 6.18), and win in the WTA procedure
against the other classifiers.

Another way of dealing with the problem of multiple classes is to construct
trees of neural networks. To this end, we choose a sequence of classes in an
arbitrary order, for example {K, 2, . . . , 1}, and we learn the discrimination
between the first class and the K − 1 others. In our example, we may define
targets y = 1 for the examples of the first class (in our example, yK), and y =
−1 for the others. Then, we restrict the training set to patterns of the classes
not yet discriminated ({2, . . . , 1} in our example), and we learn the separation
of class 2 from the others. The procedure is repeated until the two remaining
classes are separated. One interest of this heuristics is that the successive
training sets have decreasing sizes. The resulting network has a tree structure.
In order to classify a new input, it has to be first classified by the first network.
If the output is σ = +1, the class is K. Otherwise (σ = −1) the pattern is
presented as input to the second network. The procedure stops as soon as
one network recognizes (output σ = +1) the pattern. Since the sequence of
classes selected at the beginning is arbitrary, in principle one should compare
the outputs of different trees, each tree corresponding to a different sequence
of classes. However, if the number of classes is large (typically for K > 4)
this method is inapplicable. Another solution was proposed in the section
“methodology” of Chap. 1: if the classes not mutually linearly separable one
may resort to pairwise separation. For a problem with K classes, this requires
the construction ofK(K+1)/2 classifiers which in many practical applications
turn out to be linear. Since there is no arbitrary sequence chosen a priori, there
is no need to compare the outputs of K! classifiers. One advantage of this
solution is that one can use different descriptors for the different separations,
which may simplify the problem. We have shown in Chap. 1 how to estimate
the probability that a given pattern belongs to each of the possible classes,
based on the results obtained in the pairwise separations.

364 M. B. Gordon

6.7 Theoretical Questions

6.7.1 The Probabilistic Framework

Learning from examples makes sense only if there is some regularity in the
data. Within the statistical formulation of training, it is generally assumed
that the patterns are {input-output} pairs drawn independently at random
from an unknown probability distribution p(x, y). In particular, the probabil-
ity of the learning set LM is

p(LM) =
M∏

k=1

p(xk, yk) =
M∏

k=1

p(xk)P (yk | xk).

The second term above corresponds to the following process: first the input
xk is drawn at random with probability density p(xk); given xk, the class yk

is selected with a conditional probability P (yk | xk). The case of deterministic
classes considered in this chapter is just a particular case of this formulation.

Remark. The “teacher-student” paradigm, suggested in Chap. 2 for regres-
sion testing, is frequently used in classification theory. It is usually assumed
that the components of the input patterns are either Gaussian variables:

p(xk
i) =

1√
2π

exp

(
−
(
xk

i

)2
2

)
,

or uniformly distributed variables within some interval [−a, a] : p(xk
i) = 1/2a.

Then, the classes of the input vectors xk are defined by a “teacher” network
of weights w∗. For example, if the teacher is a deterministic perceptron, one
has P (yk | xk) = Θ(ykw∗ ·xk). The aim of learning is to find weights w that
convey good generalization properties to the “student”. Besides the examples
of LM , the “student” is expected to classify correctly any pattern drawn at
random with the same probability p(x) as the training set.

Because the training set LM is probabilistic, the student weights w depend
on the particular realization of LM . Therefore, w is a random variable. In this
paragraph we apply the method of Bayesian inference to the determination
of the probability distribution p(w | LM). This method is based on Bayes
theorem, introduced in Chap. 1, which can formally be written as follows:

p(w | LM)PB(LM) = P (LM | w)p0(w),

where PB(LM) is defined below; p0(w) is the a priori probability of the clas-
sifier parameters (the weights in the case of neural networks) before learning,
and P (LM | w), called evidence, is the probability of the training set LM when
the student has weights w. The a posteriori probability density function for
the student weights is

6 Discrimination 365

p(w | LM) =
P (LM | w)p0(w)

PB(LM)
,

where
PB(LM) =

∫
dw P (LM | w)p0(w)

guarantees the correct normalization of p(w | LM). It is the marginal proba-
bility of the examples within the type of students corresponding to prior p0.
Depending on the hypothesis implicit in the choices of the prior p0(w) and
the evidence P (LM | w), different Bayesian inferences will be obtained.

Remark. The expression of the a posteriori probability density function for
the student weights is Bayes formula applied to the classifier parameters, con-
sidered as random variables that depend on the realizations of the training
set. Note that, in Chap. 1, Bayes formula was applied to the pattern classes,
considered as random variables depending on the realizations of the vector
of descriptors x. Those are two different applications of Bayes formula, both
within the field of patterns classification.

Usual priors for perceptrons are the Gaussian prior,

p0(w) =
1

(2π)N/2
exp
(
−‖w‖2

2

)
,

and the uniform prior on the surface of a hypersphere of radius equal to the
norm of the weight vector. For example,

p0(w) = δ(‖w‖2 − 1)

imposes a unitary norm. In the case of a student perceptron that performs
linear discriminations, the above relation is an appropriate choice, since we
have already seen that only the orientation of w must be learnt. Note that the
above priors do not introduce any information. In the case of the Gaussian
priors, it amounts to assume that any weight vector has a non-vanishing prob-
ability, with a preference for weights of small norm. With the uniform prior,
all orientations have the same probability. Any additional information about
the problem should be included in the prior, through an educated choice of
p0(w). The other term of the a posteriori probability density function for
the student weights that must be provided is the evidence. It contains the
information about the examples of the learning problem. If the examples are
independent, one can write

P (LM | w) =
M∏

k=1

P (yk | xk,w)p(xk),

where p(xk) is the probability density of the input vectors. P (yk | xk,w),
the evidence for example k, is the probability that a network with weights w
assigns the correct class yk to the input xk belonging to LM .

366 M. B. Gordon

Remark 1. All choices made before training, such as the network architec-
ture (multilayered or not), the activation function (binary or real-valued), the
feature space for the SVM’s, correspond to different priors, and are included
implicitly in p0(w).

Remark 2. Note that if the evidence is multiplicative, which is a consequence
of the assumed independence of the patterns, then the expectation of any
additive function of the examples is the sum of the expectations. This remark,
developed in the next paragraph, justifies the use of cost functions that are
sums of partial costs per example.

6.7.2 A Probabilistic Interpretation of the Perceptron Cost
Functions

Within the probabilistic framework, considering a linear student perceptron
corresponds to the implicit assumption that the discrimination problem is
linearly separable. If we also assume that the task is deterministic, then the
evidence of an example k is

P (yk | xk,w) = Θ(zk),

where zk = ykxk ·w is the aligned field. The expectation that a student with
weights w misclassifies example k is

εkt = 0 ·Θ(zk) + 1 ·Θ(−zk).

Therefore, the expected number of training errors is

E =
M∑

k=1

Θ(−zk),

which is equal (up to an irrelevant constant factor 1/M) to the cost function
C(w) = (1/M)

∑M
k=1 V (zk), with V (z) given by V (z) = Θ(−z).

Remark. The previous relation shows that the weights that minimize C(w)
with partial cost Θ(−z) are those that minimize the expected classification
errors if the classification is deterministic.

If we assume that the inputs are perturbed by an additive noise we have
xk = x̄k + ηk, where the components of the vector ηx ∈ RN are random
variables of zero mean, satisfying ηk

i � xk
i . The stability of an example k is

thus γk = γ̄k + δk, with γ̄k ≡ ykxk · w/‖w‖. Then, δk = ηk · w/‖w‖ is a
random variable with zero mean and probability density function p(δk). The
probability of misclassification of an example k belonging to the training set
is

P (γ̄k + δk < 0) = P (δk < −γ̄k) =
∫ −γ̄k

−∞
p(δk) dδk.

6 Discrimination 367

Fig. 6.20. Comparison between a Gaussian and the noise distribution proposed in
this section

Depending on the specific expression of the noise term p(δ), the probability of
misclassification has various expressions. Assume that p(δ) has the following
bell-shaped distribution,

p(δ) =
β

2 cosh2(βδ)
,

which is close to a Gaussian, as may be seen on Fig. 6.20. In the latter relation,
the parameter β − 1 plays the same role as the variance of the Gaussian: the
larger β, the narrower the distribution. Replacing p(δ) into P

(
γ̄k + δk < 0

)
,

and neglecting first order terms in δ, we obtain the expected training error on
example k,

εkt =
1
2
[
1 − tanh(βγk)

]
.

This expression is nothing but the cost function of the Minimerror algo-
rithm.

Remark 1. Within the probabilistic formulation, the cost of Minimerror is
the expected training error under additive noise on the inputs.

Remark 2. If the noise is Gaussian p(δ) = 1/σ
√

2π exp(−δ2/2σ2) the training
error is proportional to the Error function. The latter is more difficult to treat
numerically than the hyperbolic tangent. This justifies the above mentionned
bell shaped noise assumed for p(δ) in the training algorithms.

368 M. B. Gordon

6.7.3 The Optimal Bayesian Classifier

Within the Bayesian framework, the probability that the class of a new input
pattern is σ, conditional to the fact that learning was performed with the
training set LM , is

P (σ | x, LM) =
∫
P (σ | x,w) p(w | LM) dw,

where p(w | LM) is the posterior probability of the weights p(w|LM), which
in turn depends on the evidence p(LM |w) and the prior p0(w).

Remark. If the classifier is deterministic, and if wlearn are the weights that
minimize the cost function, as is the case for the classifiers considered in this
chapter, then p(w | LM) = δ(w −wlearn), and P (σ|x,wlearn) is either 0 or 1.
Note that the evidence depends on the training algorithm through the weights
wlearn. For a student perceptron P (σ|x,wlearn) = Θ(σx.wlearn). Therefore,
if x.wlearn > 0, we have P (σ = +1 | x,wlearn) = 1 and P (σ = −1 | x,
wlearn) = 0, and symmetrically for x.wlearn < 0. The output of a Bayesian
perceptron is therefore nothing but the output of the simple perceptron with
weights wlearn.

Some classifiers are not deterministic. In that case, the probability law P (σ |
x,w) is different from the Heaviside function Θ assumed in this chapter. For
example, if the inputs of the perceptron are subject to additive noise η, the
probability that the response to pattern x is σ can be written as:

P (σ | x, LM) = P (σx · wlearn + δ > 0)
= P (δ > −σx · wlearn)

=
∫ ∞

−σx·wlearn

p(δ) dδ,

where δ stands for ση · wlearn.
Another case of non-deterministic output arises when the posterior proba-

bility of the weights p(w | LM), is not a delta function. For example, consider
training a perceptron with the error counting cost function, from a set of lin-
early separable examples. That cost is highly degenerate: there is a continuum
of weights that learn without errors (more generally, that continuum exists
whenever the task to be learnt can be performed by the student classifier).
Samples of those weights may be obtained using the perceptron algorithm,
since the result depends on the weights initialization and the order of the
updates. The weights that classify correctly the training patterns is a dense
subset wlearn of weights that occupy a finite volume Ω in weight space. Thus,
the posterior probability p(w | LM) is constant in that volume and vanishes
outside. To guarantee correct normalization, p(w | LM) = Ω−1. After replac-
ing in P (σ | x, LM), we have

P (σ | x, LM) =
∫

w∈wlearn

Θ(σx · w)Ω−1 dw,

6 Discrimination 369

where the integral is over the volume Ω. The class assigned by the optimal
Bayesian classifier to an input is such that the posterior probability of the
class, P (σ | x, LM) is maximal. In the particular case of the perceptron, all
the weights in volume Ω are equiprobable, and the Bayesian prescription is
equivalent to a vote: it assigns to each new input x the class σ that maximizes
P (σ | x, LM). If P (+1 | x, LM) > P (−1 | x, LM), the optimal Bayesian
decision is that the class of x is σ = +1, otherwise it is σ = −1. That result
was mentioned in Chap. 1 under the term “Bayes decision rule”. Notice that
it takes this simple form only because p(w|LM) is a constant.

Remark. In the particular case of a simple perceptron that learns a linearly
separable task, the optimal Bayesian decision is to classify the new input like
the majority of the possible error-free solutions wlearn(LM). In other words,
the Bayesian decision in this case is the winner-takes-all solution.

6.7.4 Vapnik’s Statistical Learning Theory

In this paragraph we present some results of Vapnik’s statistical learning the-
ory, without proofs (see [Vapnik 1995]). The main question addressed by this
theory is: are there conditions that guarantee that the minimization of the
number of training errors provides the classifier with a minimal generalization
error, when the distribution p(x, y) is unknown? In other words, under such
conditions, the weights that minimize the training error εt should also min-
imize the generalization error εg, irrespective of the probability distribution
of the patterns and of the particular realization of the training set. Clearly,
a necessary condition that must hold is that the minimum of the training
error or empirical risk (which is the quantity actually minimized through the
learning process) tends to the generalization error, called functional risk (the
quantity we would like to minimize) when the number of training examples
increases. More specifically, the following limit must be obeyed:

lim
M→∞

εt(wlearn;LM) → inf
w
εg(w),

where wlearn are the classifier weights that minimize the number of training
errors. If the above relation is satisfied, then the training error is a good esti-
mator of the generalization error: minimizing the former is a good strategy to
minimize the latter. Notice that when the student architecture is well adapted
to the task, the right-hand term vanishes. This is indeed the case for a percep-
tron learning a linearly separable task. We have mentioned previously that,
in such a case, there are infinitely many weights that cancel εt. In fact, there
is a finite volume Ω of solutions in weight space. In that case, the condition
is satisfied by any algorithm able to find a linear separation. However, in gen-
eral the student architecture is not perfectly adapted to the learning problem.
Then infw εg(w) �= 0, and it is difficult to guarantee that an algorithm will
find the weights that satisfy the limit, especially if the cost function presents
local minima.

370 M. B. Gordon

Since the training set is a random variable, the general conditions that
guarantee that the limit condition is verified for any LM are not trivial. Vapnik
showed that the condition is satisfied if and only if the probability of the largest
difference between both terms in vanishes uniformly:

lim
M→∞

P

[
sup

w,LM

[εg(w) − εt(w;LM)] > δ
]

= 0.

The meaning of the above equation is the following: suppose that we have
all the possible training sets LM of M examples, drawn at random with the
unknown probability p(LM) =

∏M
k=1 p(x

k, yk) =
∏M

k=1 p(x
k)P (yk | xk). The

argument in brackets in the above convergence condition means that we deter-
mine, for each LM , weights such that the difference between εt (the fraction of
misclassified patterns) and εg (the generalization error) is maximal. Loosely
speaking, the probability P represents the fraction of training sets for which
this difference is larger than δ. This means that P is the probability of the
worst case, since it is the fraction of training sets that exhibit a training error
very different from the generalization error. Now, in order to guarantee the
good quality of learning, we have to be sure that εt and εg are close to each
other in all cases. That is why the worst case is considered. If the condition of
uniform convergence is verified, then εt is a good estimator of εg for all train-
ing algorithms and training sets LM . That condition guarantees that weights
that minimize εt, but that endow the network with a very poor generalization
performance do not exist (in probability). Since the convergence condition is
an asymptotic law, the “guarantee” will be valid only for sufficiently large M .
More precisely, Vapnik proved the following inequality: for any δ,

lim
M→∞

P

[
sup

w,LM

[εg(w) − εt(w;LM)] > δ
]
≤ 4 exp

[−(Mδ2 −G(M))
]
,

where G(M), called growth function, is an upper bound of the logarithm
of D(M,N), the number of dichotomies (separations into two subsets) that
the student network can perform in dimension N given a training set of M
points. We will see below how that number has been computed in the case
of the perceptron. G(2M) is an increasing function of its argument, which is
independent of the particular training set to be learnt; it depends only on the
architecture of the student network: the number of hidden units, of weights,
etc. Note that the second term in the above relation is a useful bound (≤ 1)
only for G(M)/M < δ2. Thus, the above condtion is meaningful only if G
increases slower than linearly with M .

To summarize, the condition of uniform convergence that guarantees good
generalization after training from a set of examples, has been transformed into
the problem of determining the student network growth function G(2M) as a
function of the sizeM of the training set. In particular, the bound proves that
the generalization error can be bounded only if G increases with M slower
that a linear function. If the growth function of the network is known, the

6 Discrimination 371

bound gives the expected degree of confidence on the classification of new
inputs, since from εt and M , which are both available in practice, one can
bound εg.

6.7.4.1 The Vapnik-Chervonenkis Dimension

The question of bounding the generalization error of a network learning M
examples in N dimensions has been reduced to that of how its growth function
G varies with the size M of the training set. More precisely, exp G[M] is an
upper bound to the logarithm of the number D(M,N ;LM) of dichotomies
realizable by the student network. In other words,

G(M) = ln sup
LM

D(M,N ;LM).

Thus, we have to count the number of dichotomies of M points that the
network can perform. One dichotomy of a set LM of M points is a separation
of LM into two subsets. For example, there are 2M possible dichotomies of M
points in input space. Those correspond to all the ways of assigning classes ±1
to the examples. If the network is able to implement all of them, then G(M) =
M log 2 ∝M , and the bound limM→∞ P [supw,LM

[εg(w) − εt(w;LM)] > δ] ≤
4 exp[−(Mδ2 −G(2M))] is useless. Clearly, if M is small enough, then a per-
ceptron is able to perform all the dichotomies. For example, two patterns in
dimension N = 2 can always be separated by a perceptron. Even three exam-
ples are separable into all the possible dichotomies, provided the points are
not aligned. In a space of larger dimension N , that non-alignment condition
is called condition of general position (which is equivalent to asking that no
subset of more than N points lies on a hyperplane). Coming back to two di-
mensions, it is easy to verify that beyond three points, only a fraction of all
the possible dichotomies is linearly separable. If all 2M dichotomies are realiz-
able, the network is said to learn by heart ; in that case G(M) ∝M (where ∝
means proportional) and the bound is useless. That result can be understood
intuitively: if the network can learn by heart, either it has too many parame-
ters (in which case G(M) is too large) or M is too small. In both cases, the
information conveyed by the training set is not sufficient to compute weights
with good generalization properties.

In general, whatever the network architecture, there is a maximal number
of examples MV C , called Vapnik-Chervonenkis (or VC) dimension that the
student can learn by heart. Beyond that number, the network can only perform
a subset of all the possible dichotomies. That is, only for M > MV C , G(M)
grows more slowly than M and limM→∞ P [supw,LM

[εg(w) − εt(w;LM)] >
δ] ≤ 4 exp[−(Mδ2 −G(2M))] becomes a true bound. The behavior of G is
the following:

G(M) ∝
⎧⎨
⎩
M if M < MV C

MV C ln
M

MV C
if M > MV C .

372 M. B. Gordon

The training set is a sufficient constraint for the student network only
if M > MV C . Otherwise, either the network is too complex to capture the
regularities of the task to be learnt, or, equivalently, the number of examples
is not large enough. Therefore, it is important to know the networks’ VC
dimensionMV C . In the case of the perceptron withN inputs and one threshold
(or bias), with M examples to learn, the N + 1 components of the weight
vector w must verify the M inequalities zk(w) > 0 (k = 1, . . . ,M). Now, the
maximal number of compatible independent inequalities (that is, that have
a non trivial solution) is N + 1. If we had more than N + 1 inequalities,
the system might become incompatible. We cannot guarantee that a solution
exists for arbitrary training sets if M > N + 1. In fact, the solution exists
only if the training set is linearly separable. Thus, the VC dimension of the
perceptron is

MV C = N + 1.

SinceM �MV C is necessary to have good generalization, a lot of theoreti-
cal effort has been devoted to determining the Vapnik-Chervonenkis dimension
of neural networks. However, for networks more complex than the perceptron,
only some approximations of MV C for particular architectures are available.
For example, it has been established [Baum 1989] that the VC dimension of
networks with one hidden layer ofH neurons, having Nw = (N+1)H+(H+1)
weights (including the bias), satisfies

2N
⌈
H

2

⌉
≤MV C ≤ 2NW log2(eH),

where � � stands for the integer part, and e is the base of the neperian log-
arithm. The left hand side of the above relation states that, if we have M
examples, we should use a number of hidden neurons H � M/N . This re-
sult is somewhat disappointing, as it simply tells us that the network number
of parameters (which is of order NH) should be smaller than the number of
patterns.

6.7.5 Prediction of the Typical Behavior

A different theoretical approach allows characterizing the learning problems
by their typical properties, i.e., properties that are verified with probability
1. That means that the probability that a system does not obey the pre-
dicted behavior vanishes. This is similar in spirit to the law of large numbers,
which states that the average of N independent identically distributed ran-
dom variables tends to the expectation of the random variable when N → ∞,
with probability 1. Along the same lines, Vapnik’s theory states the condi-
tions under which the typical gap between εt and εg is arbitrarily small in the
asymptotic limit M → ∞. Typical properties are thus asymptotic properties.

6 Discrimination 373

One limit that helps understanding the properties of learning is to take
N → ∞, M → ∞, keeping α ≡ M/N constant. This limit is interesting
because the relative training set size α, which is the ratio of the number of
examples to the dimension of input space, is a meaningful quantity in actual
(finite size) applications. Keeping the ratio of the number of training patterns
to the network’s number of parameters (instead of N) constant also provides
interesting limits. Those limits are generally (although not necessarily) studied
with methods of statistical mechanics [Engel 2001]. In that framework, they
are known as the thermodynamic limit. Interestingly, the typical properties
evaluated in this limit are still valid for M and N large but finite.

6.7.5.1 The Typical Capacity of the Perceptron

The capacity of a network is the largest number of patterns the network can
learn to discriminate, with probability 1, irrespective of the discrimination
task, i.e., whatever the labels yk of the examples. We mentioned above that
the VC-dimension of the perceptron is N + 1: in other words, if M < N + 1,
M examples in general position can always be separated by a perceptron.
However, the probability that more than MV C points are separable does not
vanish abruptly at M = N +1. The typical capacity of a perceptron was first
determined by Cover in 1965 through an inductive geometrical reasoning. He
counted the number of dichotomies ofM points that a perceptron can perform
in a space of N dimensions. Note that a perceptron performs the dichotomies
by means of oriented hyperplanes; in the following, the two orientations of
the hyperplane are considered as two different dichotomies. In general, we
have seen that a same dichotomy of LM (the same assignment of classes to
the M points) can be performed by many different (an infinite number of)
hyperplanes, but it is counted only once. In the particular case of a perceptron
without threshold (nor bias) the following result is obtained: for M < N , the
number of linearly separable dichotomies of M in dimension N is D(M,N) =
2M . For M > N , the result is

D(M,N) = 2
N−1∑
m=0

(
M − 1
m

)
.

The above result is a geometrical property of points in an N -dimensional
space, irrespective of the training algorithm.

Since the total number of possible dichotomies ofM points is 2M , the prob-
ability PLS(LM) that a set of M points in N dimensions is linearly separable
is

PLS(LM) =
D(M,N)

2M
,

which may be written as the sum of the N − 1 first terms in the expansion
of the binomial (1/2 + 1/2)M−1. That sum is equal to 1/2 for N − 1 = M/2.
Probability PLS(LM) is shown on Fig. 6.21 for different values of M and N .

374 M. B. Gordon

0 1 2 3 4

0.0

0.5

1.0
 N=10
 N=20
 N=40
 N=100
 N = ∞

P(α)

α

Fig. 6.21. Probability of linear separation of M points in N dimensions

For N large, the probability of linear separation is almost 1 if M ≤ 2N ,
and drops abruptly to zero beyond M/N ∼ 2. Hence, although we cannot
guarantee that any training set with M ≤ 2N is linearly separable, this is
highly probable; the larger N and M , the larger the probability of linear
separation when α < 2. In the thermodynamic limit N → ∞, M → ∞,
with α ≡ M/N = constant, the typical capacity of the perceptron is αc = 2.
Strictly speaking, αc indicates the transition between the regime where linear
separability has probability 1 and the regime where that probability vanishes,
in the thermodynamic limit. It is important to emphasize that the behavior
of PLS(LM) is already very close to the asymptotic thermodynamic limit for
values of N of the order of 100. That is why typical learning properties provide
very useful hints for systems with large, but finite, dimension N .

6.8 Additional Theoretical Material

6.8.1 Bounds to the Number of Iterations of the Perceptron
Algorithm

In this section, we provide the computation of the bounds used to prove the
convergence of the perceptron algorithm. In order to obtain a lower bound
to the norm of the weight vector, we take into account the fact that w∗ is
unitary:

‖w(t+ 1)‖ = ‖w(t+ 1)‖‖w∗‖ ≥ w(t+ 1) · w∗.

We denote by k(t) the label of the examples learnt at iteration t. After iteration
t, the weight vector w(t+ 1) can be written as

6 Discrimination 375

w(t+ 1) = w(t) + yk(t)xk(t)

= w(t− 1) + yk(t)xk(t) + yk(t−1)xk(t−1)

= . . .

=
t∑

i=1

yk(i)xk(i),

where we assumed that the weights were initialized with the tabula rasa op-
tion: w(0) = 0. Taking the scalar product of w(t+ 1) with the unitary vector
w∗, and using the above bound for ‖w(t+ 1)‖, we deduce the following lower
bound,

‖w(t+ 1)‖ ≥
t∑

i=1

γk(i)(w∗)

≥ t γmin(w∗),

where γmin(w∗) is the stability of the pattern with smallest stability. Since
w∗ is a separating hyperplane, γmin(w∗) > 0.

An upper bound to ‖w(t+ 1)‖2, can be obtained as follows:

‖w(t+ 1)‖2 = (w(t) + yk(t)xk(t)) · (w(t) + yk(t)xk(t))
= ‖w(t)‖2 + 2yk(t)xk(t) · w(t) + ‖yk(t)xk(t)‖2.

The cross-product is negative. As before, we have explicitly

‖w(t+ 1)‖2 ≤ ‖w(t)‖2 + ‖xk(t)‖2

≤ . . .

≤
t∑

i=1

‖yk(i)xk(i)‖2

≤ t‖xmax‖2,

where we used the fact that |yk| = 1. ‖xmax‖ pertains to the example in LM

of maximal norm. Figure 6.7 illustrates the growth of the norm of w upon
learning. From the above lower and upper bounds, we obtain

tγmin(w∗) ≤ ‖w(t+ 1)‖ ≤ √
t‖xmax‖.

Those bounds are shown on Fig. 6.8.

6.8.2 Number of Linearly Separable Dichotomies

In this section we summarize the proof of [Cover 1965]. Consider a set Lm of
m points in a space of dimension n. If no subset of n+ 1 points among the m
points is linearly dependent, the m points are said to lie in general position.

376 M. B. Gordon

Notice that if the components xi of the input patterns are real-valued, the
probability that n+ 1 points be on a same hyperplane is zero. In the case of
binary input components, that probability does not vanish. In the following
we restrict to points in general position.

As mentioned above, if m ≤ n, all dichotomies of m points in general
position are linearly separable. The following computation is interesting for
m > n. We denote by D(m,n) the number of dichotomies of Lm generated by
the hyperplanes in dimension n. For points in general position, that number
depends on m and n only. We have

D(m, 1) = 2; D(1, n) = 2 for all m,n

since there are two ways of separating (by assigning classes ±1) m points
in 1 dimension, and there are also two ways of assigning a class to a single
point in dimension n, with a hyperplane containing the origin. Consider now a
training set that includes the patterns of Lm and a new point xm+1, Lm+1 =
Lm ∪ xm+1. It may happen that two hyperplanes that generated the same
dichotomy in Lm assign two different classes to xm+1. In that case, there exists
a hyperplane H0, containing xm+1, such that it generates the same dichotomy
on the patterns of Lm. H0 is ambiguous with respect to xm+1. Then, H0

generates a dichotomy of Lm in the space of dimension n − 1 orthogonal to
H0. There is a one-to-one correspondence between theD(m,n−1) dichotomies
in the space of dimension n − 1 and the ambiguous dichotomies of the new
point in the n-dimensional space. Since there exist D(m,n) dichotomies of
Lm, and each one induces two dichotomies of Lm+1, we obtain the following
recurrence [Cover 1965]:

D(m+ 1, n) = D(m,n) +D(m,n− 1)

from which the expression of D(M,N) is obtained.

References

1. Anlauf J.K., Biehl, M. [1989], The AdaTron: An adaptive perceptron algorithm,
Europhys. Lett. 10, pp 687–692

2. Baum E.B., Haussler D. [1989], What size net gives valid generalization?, Neural
Computation1, pp 151–160

3. Blake, C.L., Merz C.J. [1998], UCI Repository of machine learning databases,
available from http://www.ics.uci.edu/mlearn/MLRepository.html

4. Buhot A., Gordon M.B. [1997], Cost function and pattern distribution of the
Bayesian perceptron, Phys. Lett. A 228, pp 73–78

5. Buhot A., Torres Moreno J.M., Gordon M.B. [1997], Finite size scaling of the
Bayesian perceptron, Phys. Rev. E 55, pp 7434–7440

6. Buhot A., Torres Moreno J.M., Gordon M.B. [1997], Numerical simulations of
an optimal algorithm for supervised learning, European Symposium on Artificial
Neural Networks, Proceedings, M. Verleysen éd., pp 151–156

6 Discrimination 377

7. Buhot A., Gordon M.B. [2000], Storage capacity of a constructive learning al-
gorithm, J. Phys. A 33, pp 1713–1727

8. Cover T.M. [1965], IEEE Trans. Elect. Comp., 14, pp 326–334
9. Cover T.M., Thomas J. A. [1991], Elements of Information Theory, John Wiley

10. Cybenko G. [1989], Approximation by superpositions of a sigmoidal function,
Mathematics of Control, Signals and Sytems 2, pp 303–314

11. Dietrich R., Opper M., Sompolinsky H. [1999], Statistical Mechanics of Support
Vectors Networks, Phys. Rev. Lett. 82, pp 2975–2978

12. Engel A. and Van den Broeck C. [2001], Statistical Mechanics of Learning,
Cambridge University Press

13. Gardner E. [1989], J. of Physics A: Mathematical and General 22, N12, In the
honour of E. Gardner

14. Godin Ch. [2000], Contributions à l’embarquabilité et à la robustesse des réseaux
de neurones en environnement radiatif, thèse de l’École nationale supérieure de
l’aéronautique et de l’espace, available from http://www-drfmc.cea.fr

15. Gordon M.B., Grempel D. [1995], Learning with a temperature dependant al-
gorithm. Europhys. Lett. 29, pp 257–262

16. Ho E., Kashyap R.L. [1965], An algorithm for linear inequalities and its appli-
cations, IEEE Transactions on Electronic Computers, 14, pp 683–688

17. Hopfield J.J. [1982], Proc. Natl. Acad. Sci. USA, 79, p. 2554
18. Krauth W., Mézard M. [1987], Learning algorithms with optimal stability in

neural networks, J. Phys. A 20, L745–L752
19. Risau-Gusmán S., Gordon M.B. [2000a], Understanding stepwise generaliza-

tion of Support Vector Machines: a toy model, Advances in Neural Information
Processing Systems 12, S.A. Solla, T.K. Leen, K.-R. Müller (éd.), MIT Press,
pp 321–327

20. Risau-Gusmán S., Gordon M.B. [2000b], Generalization properties of finite size
polynomial Support Vector Machines, Phys Rev E 62, pp 7092–7099

21. Risau-Gusmán S., Gordon M.B. [2001], Statistical Mechanics of Soft Margin
Classifiers, Phys. Rev. E 64, 031907

22. Risau-Gusmán S. [2001], Étude de propriétés d’apprentissage des machines
à exemples supports (SVM) par des méthodes de physique statistique, thèse
de l’Université de Grenoble I—Joseph-Fourier, available from http://www.uni-
bielefeld.de/ZIF/complexity/publications.html, ref. 2001/072

23. Risau-Gusmán S., Gordon M.B. [2002], Hierarchical learning in polynomial sup-
port vector machines, Machine Learning 46, pp 53–70

24. Rosenblatt F. [1958], The perceptron: A probabilistic model for information
storage and organization in the brain, Phys. Rev. 65, p. 386

25. Torres Moreno J.M. [1997], Apprentissage et généralisation par des réseaux de
neurones: étude de nouveaux algorithmes constructifs, thèse de l’Institut na-
tional polytechnique de Grenoble, available from http://www-drfmc.cea.fr

26. Torres Moreno J.M., Gordon M. B. [1998], Characterization of the Sonar Signals
Benchmark, Neural Processing Letters 7, pp 1–4

27. Torres Moreno J.M. and Gordon M.B. [1998], Efficient adaptive learning for
classification tasks with binary units, Neural Computation 10, pp. 1017–1040

28. Vapnik V. [1995], The Nature of Statistical Learning Theory, Springer

7

Self-Organizing Maps and Unsupervised
Classification

F. Badran, M. Yacoub, and S. Thiria

This chapter is dedicated to the second group of neural networks: Topologi-
cal self-organizing maps. Those models are subject to unsupervised learning,
in contrast with multilayer perceptrons, which were described in previous
chapters. Primarily, the purpose of those models is purely descriptive: some
structure is sought in given data. There is neither precise action to perform,
nor desired response to obtain. Alternatively, information compression can be
considered as the purpose of unsupervised learning: a compact description of
the data, with minimal distortion, is sought.

The unsupervised learning methods that are used by topological self-
organizing maps stemmed from techniques that were first designed for compet-
itive learning. Among pioneering works in the field, one may quote
[Didday 1976] and [von der Malsburg 1973]. The models were made of parallel
filters that analyzed the same observation. For that observation, the filters’
responses were different, and the filter that generated the highest response
was said to win the competition. That winner is then favored by competitive
learning, and the training algorithm enhanced the response of that filter to
that observation. The same operation is performed for all observations of the
training set until stabilization of the parameters of the filters. At that stage,
each filter has been made sensitive to features that are specific to a subset of
the data set: it operates as a feature detector.

Topological maps or self-organizing maps were first introduced by T. Ko-
honen in 1981. The first models were designed for processing high-dimensional
data. Very large data sets with high dimensional data vectors were involved
in the applications under consideration. In order to process such data, the
topological map visualization methodology is designed to partition available
data into clusters of data that exhibit some similarity. The training process is
driven by the data set. The specificity of topological maps is to provide the
clusters with a neighborhood structure, which is actually a graph structure on
a discrete set. Low-dimension lattices (1D, 2D or 3D grid) are most frequently
considered.

380 F. Badran et al.

The most important feature of self-organizing maps is the possibility of
comparing clusters, which summarize the data. Each observation is allocated
to a cluster. Each cluster is projected onto a node of the map. The compari-
son of projections stemming from different observations allows estimating the
proximity between their respective clusters: similar observations are projected
onto the same node. Otherwise, the dissimilarity increases with the distance
that separates the two projections; that distance is computed on the map.
Thus, the cluster space is identified to the map, so that projection enables
visualizing simultaneously the cluster space and the observation space.

Unsupervised classifiers and self-organizing maps are closely related; most
such methods of clustering aim at aggregating similar data. In that context,
similar means close with regard to the application field and the underlying
metric. The topological ordering is the specific contribution of neural networks
with unsupervised learning to clustering, a key theme in data analysis [Duda
et al. 1973; Jain et al. 1988].

In current decision systems, any clustering may contribute to supervised
classification as well. Most applications that use self-organizing maps are clas-
sifiers. Moreover, some of them are perform regression. Several explanations
help to understand that fact:

• Straightforward modifications of the basic algorithm allow its use as a
supervised training algorithm [Cerkassky et al. 1991].

• Results of unsupervised training algorithms may easily be integrated into
data processing systems that touch the same areas of interest as multilayer
Perceptrons. Therefore, self-organizing maps are used to pre-process data:
information provided by self-organizing maps may be processed by other
algorithms for regression or classification.

Actually, clustering or unsupervised classification turns out to be complemen-
tary to discrimination or supervised classification (as described in Chap. 6
of this book). It can be considered in a sense, that any application project
uses supervised information to some extent. Any system needs to be vali-
dated before use: therefore, available expert knowledge must be used, since
an expert has processed some available data so that the associated desired
response is known and may be used to tune the automatic system. In partic-
ular, this knowledge may be used to improve unsupervised models. If expert
knowledge is widely available, then it is possible to take advantage of it from
the beginning of the analysis, using supervised forms of self-organizing maps.
Conversely, if it is scarce, it can be only used to interpret results of the un-
supervised analysis: expert knowledge will be used after achieving clustering
tasks. Thus, the approach is sequential: first, a partition of the data set is
sought; the recognition itself is subsequently performed.

Self-organizing maps and their theoretical foundations are presented in this
chapter. Those algorithms are described under a unified formalism, in order to
connect them with data analysis methods from which they actually stemmed:
self-organizing map algorithms may be viewed as extensions of well-known

7 Self-Organizing Maps and Unsupervised Classification 381

algorithms of pattern recognition and clustering. The formalism that we use
here is slightly different from the original Kohonen formalism. We will discuss
all the necessary links between the various versions of the basic algorithm.
Then a section will show in detail how expert knowledge can be used after
performing unsupervised training.

This chapter is also application-oriented to a large extent. Two detailed
studies of real-world applications are presented. Numerous self-organizing map
based concrete projects were carried out in various application fields. Some re-
cent books describe some of those applications [Oja et al. 1999; Kohonen 2001].
A review paper provides a fairly complete bibliography of all papers published
between 1981 and 1997 ([Kaski et al. 1998] www.soe.ucsc.edu/NCS). The
Helsinki University Web site (http://www.cis.hut.fi/ research/som-research/)
addresses a large variety of topics: computer vision, image analysis, image
compression, medical imagery, handwriting recognition, speech recognition,
signal analysis, music analysis, process control, robotics, Web searching and
so on.

The first application that is described in the present chapter deals with re-
mote sensing. By analyzing the details of the modeling that was performed, we
will help understand how self-organizing maps are used to perform data analy-
sis. Kohonen’s research group performed the second application: the Websom
system, which is aimed at document searching on the Web. This application
is interesting because the relevant data exhibit very large dimensionality. It
is a striking example demonstrating the expected computational power of
self-organizing maps.

7.1 Notations and Definitions

This section defines the notations that will be used throughout the present
chapter. The set D denotes the observation space. We assume that the obser-
vations are real-valued and multidimensional; therefore, D is a subset of the
n-dimensional vector space R

n. Each vector belonging to D is associated to
a particular encoding of an individual observation, which is taken from the
given population. N observation vectors are assumed to be available: they are
associated to N individuals. They form the subset A = {zi; i = 1, . . . , N}. Ac-
tually, A is included in D. Naturally, it is assumed that A is a representative
sample of the considered population. According to that assumption, A is the
training set that allows parametric estimation.

All the methods that will be described aim, in a first step, at reducing the
information that is present in D. They do so

• by building a finite subset W = {wc; c = 1, . . . , p} of D; those n-
dimensional vectors will be called reference vectors or simply reference
throughout this chapter;

382 F. Badran et al.

Fig. 7.1. General diagram of the modeling process: one observation z is associated
to an index c that is selected among p indices using a function χ; that index allows
defining the associated reference wc

• by defining an allocation function χ from D into the index set {1, . . . , p};
that function performs a partition P = {P1, . . . , Pc, . . . , Pp} of D into p
subsets, Pc = {z ∈ D/χ(z) = c}.
Figure 7.1 describes graphically the modeling process: one observation z

is associated to an index c that is selected among p indices using a function
χ; that index allows defining the associated reference wc. Thus, the reference
vector wc is the representative example of the set Pc. It summarizes all the
information contained in Pc. In the following, reference wc or its associated
index c will be used, depending on the context, for representing the observation
subset Pc. We will estimate the model parameters from the observations of
the training set A. Therefore, we denote by nc the number of elements of Pc.

The knowledge of the reference vector set W and of the allocation func-
tion χ generates what is called a vector quantization. All known methods to
determine W and χ can be derived from a variational principle and amount
to a cost function minimization. Each method has a specific cost function.
The latter incorporates the specific properties of the associated quantization.
The vector quantization permits the allocation of a reference wχ(z) to any
observation z ∈ D. That reference index is χ(z). Furthermore, the knowledge
of the allocation function χ completely determines the partition of the set D
into p subsets.

Although the cost functions are different for different methods, all methods
that will be described share common features. In the following, the formalism
of dynamic clustering will be used. That approach is iterative. Each iteration
consists in two steps: a minimization step computes the reference vectors, and
an allocation step changes the allocation function χ. Under some assumptions,
the cost function decreases at each step and eventually converges towards a
local minimum. That minimum depends strongly on the choice of the reference
vector set that was selected to initialize the algorithm.

7 Self-Organizing Maps and Unsupervised Classification 383

The k-means algorithm is a traditional unsupervised classification algo-
rithm. It is the ancestor of self-organizing maps. In the next section, we de-
scribe both the most classical form of that algorithm, and its variants that
give insight into the connections with self-organized maps.

For all methods, we first describe the standard version of each algorithm.
Then we describe its most popular variants (stochastic or probabilistic ver-
sions).

7.2 The k-Means Algorithm

7.2.1 Outline of the k-Means Algorithm

The most known vector quantization method is the k-means algorithm. That
method finds the set of reference vectors W and the allocation function χ by
minimizing the cost function:

I (W,χ) =
∑

zi∈A

∥∥zi − wχ(zi)

∥∥2 =
∑

c

∑
zi∈Pc

⋂
A

‖zi − wc‖2
.

The quantity
Ic =

∑
zi∈Pc

⋂
A

‖zi − wc‖2

is the local inertia, with respect to the reference vector wc, of the observations
of the learning set A that are allocated to that reference vector. Therefore,
those observations belong to the subset Pc. That inertia is the squared quanti-
zation error performed when the observations of the subset Pc are replaced by
the reference vector wc that represents them. The total cost I(W,χ), which
is to be minimized, is the sum of the local inertias Ic. In order to minimize
I(W,χ), one must define the allocation function χ. The quantity to minimize
becomes

I (W,χ) =
∑

c

Ic =
∑

c

∑
zi∈A

χ(zi)=c

‖zi − wc‖2
.

The algorithm is implemented sequentially. An iteration is split into two
phases. The first sep consists in minimizing I(W,χ): assuming that the ref-
erence vectors are kept fixed, it computes the activation function χ. In the
second step, the value of the allocation function takes on the value that was
just computed: the cost function is then minimized with respect to the para-
meters W of the reference set. In that two-phase iterative process, the value
of the cost function I(W,χ) decreases at each step.

384 F. Badran et al.

Thus, an iteration can be summarized as follows:

• Allocation phase: I(W,χ) is minimized with respect to the χ; during that
phase, the reference vectors retain their previous values (or the initial
values for the fist iteration). The minimization is performed when each
observation zi is allocated to the reference wc by the allocation function
χ:

χ(z) = arg min
r

‖z − wr‖2
. (1)

In that relation, r varies from 1 to p (the number of reference vectors). By
allocating the closest reference vector (in the sense of Euclidean distance)
wc to each observation zi, the cost function I(W,χ) is minimized. The
new allocation function χ defines a new partition P of the set D (the
closest reference vector has to be understood according to the Euclidean
distance). In the following, nc is the cardinal of the set A ∩ Pc.

• Minimization phase: I(W,χ) is minimized with respect to the reference
set W ; the allocation function χ that was computed at the previous step
is kept constant. The cost function I(W,χ) is then a convex quadratic
function with respect to W . Its global minimum is reached for

∂I

∂W
=
[
∂I

∂w1
,
∂I

∂w2
, . . . ,

∂I

∂wp

]T

= 0.

The computation of the gradient that is associated to each reference vector
wc provides a new set of vector equations

2
∑
zi∈A

χ(zi)=c

(zi − wc) = 0,

which define the new reference vectors

wc =
1
nc

∑
zi∈Pc

⋂
A

zi. (2)

That algorithm can be proved to converge. If the allocation function that
was computed in the first phase is applied, the class of an observation z
changes only if its contribution to the global inertia that is computed with re-
spect to the reference setW decreases. Therefore, that global inertia is smaller
than the current value of I(W,χ). The second phase consists in updating the
reference set W . Each reference vector wc defines the center of inertia of the
observation set Pc ∩ A. That requires that I(W,χ) decrease, since it is the
inertia with respect to the center of inertia of partition P . When the two
phases are alternatively iterated, the cost function I(W,χ) decreases. I(W,χ)
is expressed as a function of the trace of partition P on the data set A. That
trace is a partition of A. Since the number of partitions of set A is finite, the
iterative process converges to a local minimum of the cost function I(W,χ)
with respect to the reference set and to the allocation function.

7 Self-Organizing Maps and Unsupervised Classification 385

The implementation of the k-means algorithm can be summarized as
follows:

k-Means Algorithm

1. Initialization phase: t = 0, choose the initial p reference vectors (randomly,
in general), choose the maximal number of iterations Niter.

2. Iteration: at iteration t, the reference setW t−1 is known from the previous
step:
Allocation phase: update the allocation function χt that is associated to
the reference set W t−1: a reference vector is allocated to each observa-
tion z, as given in (1).
Minimization phase: compute the new reference vectors W t, as given in
(2).

3. Iterate until the specified maximum number of iterations is reached, or
until I stabilizes.

Note that the k-means algorithm may be considered as belonging to the
family of dynamic clustering algorithms [Didday 1976]. It is a general method
that provides a local minimum of a cost function. That method is based on
using two entities: the set of partitions of the original data set into p subsets,
and the space W of the representation (which may be different from the data
set). Then, a subset Pk of the partition will be represented by an element
wk, which will be its associated element of W . The discrepancy between an
element x of the data set and its associated element wk will be assessed by a
positive dissimilarity function d such that the smaller d(x,wk), the better x
agrees with wk. Thus, it is necessary to define a partition P = {Pk/k = 1 . . . p}
into p data subsets and jointly a set W = {wk/k = 1 . . . p} of p representative
elements such that they minimize a cost function. The latter will be defined
from the training set by

H (P,W) =
p∑

k=1

∑
xi∈Pk

⋂
A

d (x,wk).

The dynamic clustering algorithm minimizes that function iteratively way.
First, p representative elements are selected to initialize the process. Then,
the general iteration consists of two phases: first an allocation phase that
minimizes the cost function with respect to the partition, given the represen-
tative elements. Then, during the subsequent phase, the criterion is minimized
with respect to the p representative elements, retaining the previous allocation
function. In the particular case of k-means algorithm, the reference vectors are
the representative elements and the dissimilarity function d is the Euclidean
distance.

386 F. Badran et al.

7.2.2 Stochastic Version of k-Means

The previous algorithm has all the shortcomings of deterministic optimization
algorithms. Generally, those algorithms depend strongly on initial conditions,
and converge to a local minimum. The optimization mechanism does not allow
exploring all the local minima of the cost function. As shown in Chap. 2, op-
timization can be improved simply by running several optimization processes
from various initial conditions, and selecting the best local minimum. In the
case of unsupervised learning, the best reference vector set and the best par-
tition will be selected, i.e., those which generate the smallest value of the cost
I(W,χ).

At each iteration, during the minimization phase, the reference set that
minimizes the cost function I(W,χ) for a given allocation function χ is de-
termined. Yet, it is not necessary to complete the move towards the global
minimum of the cost function to guarantee that it decreases. At time t, given
the allocation function χt, finding a reference vector set W t such that

I
(
W t, χt

) ≤ I (W t−1, χt
)

is sufficient.
One may implement a simple gradient descent algorithm, which guarantees

the decrease of I(W,χ) at each step. The computation of the gradient requires
the computation of the partial derivatives of I(W,χt) with respect to all the
components of each reference vector wc,

∂I

∂wc
=

∑
xi∈A

χt(zi)=c

2 (wc − zi).

The computation of the reference vectors that was performed by relation
wc = 1/nc

∑
zi∈Pc

⋂
A zi at each step is replaced by

wt
c = wt−1

c − µt
∂I

∂wc
= wt−1

c − 2µt

∑
xi∈A

χt(zi)=c

(
wt−1

c − zi

)
.

That is the simple gradient descent optimization method that was de-
scribed in Chap. 2. The allocation function χt that appears in the expression
of the gradient is defined in the allocation phase of iteration t, the quantity µt

is the training rate at iteration t, and the reference vector wt−1
c was computed

during previous iteration. That algorithm is not adaptive, since it minimizes
the global cost function I(W,χ). To implement any change, the whole data
set A has to be used.

The adaptive or stochastic version of the k-means algorithm is obtained
by the following modification of the basic optimization procedure. The min-
imization is now performed stochastically: the terms of the sum in relation
I(W,χ) are considered separately. At each iteration, a single observation zi of

7 Self-Organizing Maps and Unsupervised Classification 387

the data set is presented. It leads to the update of the closest reference vector
wχ(zi). It amounts to decrease only the single term ‖zi − wt

χ(zi)
‖2 of I(W,χ)

by gradient descent.
Then the partial gradient 2(wt

χ(zi)
− zi) is used to update the reference

vector wχ(zi) as follows:

wt
χt(zi)

= wt−1
χt(zi)

− 2µt

(
wt−1

χt(zi)
− zi

)
.

A good minimum is obtained by presenting each observation of the data
set A repeatedly (Niter must be large enough). When updating the reference
vectors, the gradient step µ decreases. When training starts, the value of µ is
relatively large, and the decrease of the cost function is not strictly guaranteed.
As training proceeds, µt becomes small enough, each reference vector update is
small, and several updates must be performed to produce a significant change
in the cost function. In that case, there is no major difference between the
total gradient and the addition of several steps of the partial gradient. Then
the stochastic gradient algorithm behaves as the classical version of the k-
means algorithm does. The stochastic algorithm shows that k-means may be
considered as a competitive algorithm, where each observation of the data set
attracts the closest reference vector. Repeatedly presenting each observation
while the gradient step µ decreases allows finding a satisfactory partition P
such that each reference vector is the center of inertia of each subset of the
partition.

The following summary of stochastic k-means may be useful for algo-
rithm implementation:

Stochastic k-Means

1. Initialization: t = 0,
Choose the initial p reference vectors (randomly, in general),
choose the maximal number of iterations Niter and the law of decrease of
the gradient step µt.

2. Iteration t: keeping the reference set W t−1 constant, as computed at the
previous iteration, choose randomly or sequentially an observation zi, and
compute the gradient step (or learning rate) µt.
Allocation phase: givenW t−1,zi is assigned assign to the closest reference
element of W t−1, which defines a new allocation function χt.
Minimization phase: the new reference vector wt

χ(zi)
is computed (2).

3. Iterate until the specified maximum number of iterations is reached, or
until I stabilizes.

388 F. Badran et al.

The learning rate must decrease as the number of iterations t increases.
It may be piecewise constant, equal to 1/

√
t, or have any other ap propriate

form.
The three experiments that are shown on Fig. 7.2 allow understanding the

evolution of the k-means algorithm, classical and stochastic. They demon-
strate the sensitivity of the solution to the number of reference vectors and
to their initialization. For those experiments, the observations were gener-
ated randomly from spherical Gaussian laws with standard deviation σ = 0.1.
Those laws are called the Gaussian modes. The first experiment is seeks a
two-class partition; it shows the evolution of the set of reference vectors that
capture observations from the four modes. During training, the two reference
vectors are attracted by the two blocks made of the observations of the left-
hand and right-hand sides. They stabilize at the centers of the two observation
blocks. The second experiment makes use of the same observation data set,
but seeks a four-class partition, with two different initializations of the refer-
ence vectors: at the center in the first experiment, and at the bottom right
in the second experiment. In the first case, the position, which is symmetric
with respect to the problem, allows finding the four classes produced by the
four Gaussian modes. With the second initialization, three reference vectors
are assigned to the data generated by the two right-hand Gaussian modes,
and the last one is assigned to the data generated by the other two modes.

7.2.3 Probabilistic Interpretation of k-Means

The k-means is minimizes the cost function I(W,χ), which is the sum of the
local inertias Ic. We defined that cost function by following geometric and
kinetic intuition. It is possible to follow another approach. Actually, the cost
function has a natural probabilistic interpretation. In order to get insight into
that, a probabilistic model of data generation must be defined: we assume
that the observations of the training set are an i.i.d. sample of a mixture of p
Gaussian modes,

p (z) =
p∑

c=1

αcfc (z) , with
p∑

c=1

αc = 1.

Each Gaussian mode has density fc with expectation wc and covariance
matrix equal to Σc. Therefore, this density is given by

fc (z) =
1

(2π)n/2 det (Σc)
1/2

exp
[
−1

2
(z − wc)

T
Σ−1

c (z − wc)
]
.

It is well known that a Gaussian mixture model is a general formalism,
which can be used for modeling complex probability distributions [Duda et al.
1973]. The mixture assumption states that each observation is a realization
of one of the hidden random variables with normal density fc. The mode is

7 Self-Organizing Maps and Unsupervised Classification 389

Fig. 7.2. Examples of operation of the k-means algorithm: sensitivity to initial
conditions and to the number of reference vectors. Observations and reference vectors
are shown on the same picture. (a) Representation of the learning set A: the data
are generated from four Gaussian modes. (b) Evolution of the two reference vectors
that were initialized at bottom right of the picture: each reference vector is assigned
the observations that are generated from two Gaussian modes. Pictures (c) and (d)
show the evolution of four reference vectors that were generated in two different
ways. (c) The reference vectors are initialized at the center of the picture; each of
them is assigned observations coming from one a Gaussian mode (d) The reference
vectors are initialized at the bottom right of the picture: three reference vectors
share the observations generated by two Gaussian modes; the last reference vector
collects the observations generated by the other two modes

selected among p Gaussian modes with the prior distribution αc. Equivalently,
to generate the data, one must first choose randomly the mode according
to the discrete probability αc, and then to generate the observation from
the probability law of the selected mode. Thus, that model generates a data
set, which is partitioned by construction into p subsets. The subset that is
labeled by index c contains about Nαc observations. Those observations are
split around the reference vector wc. The subset has an ellipsoidal shape

390 F. Badran et al.

that is defined by the eigenvectors and eigenvalues of the covariance matrix
Σc. Note that the mixture model is general, since it can approximate any
probability distribution with arbitrary accuracy when the number of modes p
and the Gaussian mode parameters are selected appropriately. The geometric
characteristics of the data set repartition may be described in an analytic way
using the mixture model.

In that framework, the probabilistic k-means interpretation requires addi-
tional assumptions:

• The prior density on the mode set is uniform, i.e. all the αc’s are equal to
1/p.

• The p normal densities fc has the same covariance matrix equal to σ2I,
where I is the identity matrix and σ is the common standard deviation.
Therefore, those densities are given by

fc (z) =
1

(2π)n/2
σn

exp

[
−‖z − wc‖2

2σ2

]
.

• The set A is an i.i.d. sample of a random variable that has the probability
density p(z).

Those assumptions restrict the validity domain of the interpretation. The
observations must be assumed to be partitioned into p clusters. Those clusters
are assumed to be isotropic, to have the same number of elements and to have
the same probability distribution.

Thus, the probabilistic version of k-means amounts to estimating the
reference vectors and the common standard deviation by maximizing the
likelihood of the data set A. That estimation is performed by maximizing
p(z1,z2, . . . ,zN) where z1,z2, . . . ,zN are the observations. Under the inde-
pendence assumption one has

p (z1,,z2, . . . ,zN) =
N∏

i=1

p (zi).

As in the previous section, the allocation function χ is supposed to assign
to each observation zi its generating mode. The random generating modes
are the mixture components. Therefore the allocation function χ defines a
partition of the training set A into p subsets. If the classifying likelihood is
defined by

p (z1,z2, . . . zN |χ) =
N∏

i=1

αχ(zi)fχ(zi) (zi) =
(

1
p

)N N∏
i=1

fχ(zi) (zi),

then maximizing the classifying likelihood amounts to minimizing

V (W,σ) = − ln p (z1,z2, . . . ,zN)

7 Self-Organizing Maps and Unsupervised Classification 391

=
1

2σ2

N∑
i=1

∥∥zi − wχ(zi)

∥∥2 +Nn lnσ + cte

=
1

2σ2
I (W,χ) +Nn lnσ + cte.

The minimization of V (W,σ, χ) may be performed in two steps:

• In the first step, the cost function I(W,χ) that appears in the expression of
V (W, σ) is minimized. One recognizes the global inertia term discussed in
the previous section. The k-means algorithm is implemented (also in two
steps as described above). That step leads to a local minimum of I(W,χ),
denoted as Imin.

• In the second step the quantity

1
2σ2

Imin +Nn lnσ

is minimized with respect to σ. That expression is minimum when its
derivative is equal to zero. Therefore, one has

σ =

√
Imin

Nn
.

Thus, the k-means algorithm can be interpreted in a probabilistic framework.
The minimization of the cost function I(W,χ) amounts to the parametric es-
timation of a probabilistic mixture model under very restrictive assumptions.
The assumption of the isotropic identical distribution of the components of
the mixture, with the single covariance matrix σ2I, should be emphasized.
From a geometric point of view, that algorithm assumes that the data are
split into p equally weighted spherical clusters with the same radius. Such
is not always the case, so that the assumption is a severe limitation to the
application range of the original k-means algorithm.

The following simulation gives insight into the behavior of k-means when
the true data distribution does not comply with the assumptions of the prob-
abilistic model. The observations that are shown on Fig. 7.3 are significantly
non-isotropic and do not comply with the assumption of equal standard devia-
tions. Therefore, the implementation of k-means in that case favors a solution,
which is associated to a partition into two subsets that are as spherical as pos-
sible. Thus, the reconstructed partition is far from the original one (Fig. 7.3b).

In order to circumvent the problem, it may be efficient to display a larger
number of reference vectors: Fig. 7.4 shows the reference vectors and the asso-
ciated partition if five reference vectors are used. In that case, four reference
vectors are allocated to the left mode while the last reference vector represents
the other mode. Then, the problem of clustering the modes to reconstruct the
two original classes must be solved. Alternative data analysis methods, such
as hierarchical classification, can be taken advantage of. That methodology
will be demonstrated in the section “Classification and topological maps,”
where the introduction of expert knowledge is addressed.

392 F. Badran et al.

Fig. 7.3. Example of application of the k-means algorithm: a Gaussian mixture
model of two modes with different anisotropic covariance matrixes generates the
data. Crosses denote the positions of the reference vectors. (a) Training set A.
(b) The reference vectors and the associated partition after stabilization of the algo-
rithm; an oblique line separates the two sets. The algorithm has not reconstructed
the true partition

In order to reconstruct the original distributions, the assumption of
isotropic covariance must be relaxed. That is possible if the covariance ma-
trices Σc of the Gaussians are not supposed to be identical (yet semi-positive
definite). Then, the n(n − 1)/2 elements of the matrices must be estimated,
in addition to the reference vectors wc. The model is more complex since
it has a larger number of parameters. A maximum likelihood methodology
may perform the estimation, using the EM (Expectation-Maximization) algo-
rithm [Dempster et al. 1977].

7.3 Self-Organizing Topological Maps

7.3.1 Self-Organizing Maps

In the early 1980’s, Kohonen described a self-organization algorithm that de-
fines a projection of the data space D onto a discrete, low-dimensionality
space. That space has a non-oriented graph structure that is a generally a 1-,
2- or 3-dimensional mesh; that graph will be hereinafter termed the map. Ac-
tually, the set C is made of interconnected neurons: the connections between

7 Self-Organizing Maps and Unsupervised Classification 393

Fig. 7.4. Application of k-means with 5 reference vectors on the same data distri-
bution as in Fig. 7.3; observations are distributed according two Gaussian modes
with different anisotropic covariance matrices. Crosses denote the positions of the
reference vectors. Four reference vectors are allocated to the first Gaussian mode.
The last reference vector is allocated to the second Gaussian mode

neurons are the edges of the graph. For simplicity, we denote the whole graph
and the set of its nodes with the same letter C. The graph structure allows
the definition of an integer distance δ on C as follows: the length of a path on
the graph is the number of edges of that path. For all the couple of neurons
(c, r) of the map, δ(c, r) is the length of the shortest path on C between c and
r. For any neuron c, that integer distance leads to defining the neighborhood
of c of order d,

Vc (d) = {r ∈ C, δ (c, r) ≤ d} .
As mentioned above, the maps that are currently used are regular lattices.

Therefore, the distance and the neighborhoods are quite easy to visualize,
and they define the discrete topology on the map in a straightforward way.
Examples of distance and neighborhoods are shown on Fig. 7.5 for a 2D grid.

For self-organizing maps, an association is sought between neurons of C
and reference vectors in data space D, similarly to k-means. Training enables
the set of reference vectors to sample the underlying probability distribution
on the data set as faithfully as possible. In the case of topological maps,

394 F. Badran et al.

Fig. 7.5. The discrete topology of a 2D-topological map. The map features 10× 10
neurons; each dot of the picture denotes a neuron c. The distance δ between two
neurons is defined on the grid. (a) shows Vc(1), Vc(2), Vc(3), which are neighborhoods
of order 1, 2 and 3 of neuron c; (b) shows some distances between neurons: δ(c, c1) =
4, δ(c, c2) = 1, δ(c, c3) = 2, δ(c, c4) = 3

an additional constraint is imposed to retain the topology of the map: two
neighboring neurons r and c are associated to reference vectors wc and wr

that are close for the Euclidean distance in data space D.
That cursory description shows clearly that the self-organizing map algo-

rithm is an extension of k-means. We will further show that it minimizes an
appropriate cost function, which takes into account the inertia of the parti-
tion of the data set, and which guarantees that the topology of C is retained.
In order to design such a cost function, the inertia function of the k-means
algorithm will be generalized, by adding specific terms that take into account
the topology of the map, through the distance δ and the associated neighbor-
hoods.

The concept of neighborhood is taken into account through kernel func-
tions K which are positive and such that lim|χ|→∞K (x) = 0. Those kernels
define influence regions around each neuron c. The distances δ(c, r) between
neurons c and r of the map allow the definition of the relative influence of the
neurons on elements of the data set. The quantity K(δ(c, r)) quantifies that
influence.

7 Self-Organizing Maps and Unsupervised Classification 395

k(δ(i, j))

k(δ(i, j))

i

Location of cell i δ (i, j) δ (i, j)

T

Interaction with the
cells of the map

Interaction with the
cells of the map

Temperature
T(2)

T(1)
T(0)

i

Location of cell i

Fig. 7.6. Threshold neighborhood kernel (left picture) and Gaussian neighborhood
kernel (right picture). In the case of the threshold kernel, neurons either belong to the
neighborhood and share the same influence, or do not belong to the neighborhood,
hence have no influence at all. In the case of Gaussian kernels, the influence between
two neurons depends on their mutual distance

To take advantage of the size of the neighborhood, the family of kernels
KT that is parameterized by T (where T stands for temperature) will be used:

KT (δ) = K (δ/T)

Figure 7.6 shows kernel functions that are commonly used in applications:

• K(δ) =
{

1 if δ < 1
0 otherwise hence KT (δ) =

{
1 if δ < T
0 otherwise

• K(δ) = exp(−|δ|) hence KT (δ) = exp
(
− |δ|

T

)
• K(δ) = exp(−δ2) hence KT (δ) = exp

(
− δ2

T 2

)
.

Figure 7.7 shows graphs of various kernels, for different values of parameter
T . If we choose a level α such that the influence of a neuron that is below α
is considered negligible (KT (δ) < α), the radius of the effective neighborhood
of a neuron can be computed for each value of T . For neuron c, that influence
zone is exactly the ball V T

c = {r ∈ C/KT (δ(c, r)) > α}. Figure 7.7 shows
that the size of the neighborhood decreases with T : the smaller T , the fewer
the neurons that belong to the neighborhood V T

c . The self-organizing map
training algorithms minimize a cost function. When the minimum is reached,
one gets a partition that is made of sets that are compact enough, and, in
addition, it is possible to define an order that stems from the topology of the
map. That cost function will be hereinafter noted as JT

som. It plays the role
of the cost function I of the k-means algorithm that was described in the
previous section. We will now consider the most popular function JT

som, which
is

JT
som (χ,W) =

∑
zi∈A

∑
c∈C

KT (δ (c, χ (zi))) ‖zi − wc‖2
.

396 F. Badran et al.

Fig. 7.7. Families of kernel functions that are used to control the neighborhood
on the map; x-axis: distance on the map (length of the shortest path between two
neurons). The curves show the kernels for different values of T ; from top to bot-
tom, T takes on values from 10 to 1 (a) KT (δ(c1, c2)) = exp(−0.5 δ(c1, c2)/T) (b)
KT (δ(c1, c2)) = exp(−0.5 δ2(c1, c2)/T 2)

In that relation, χ is an allocation function, andW is the set of the p reference
vectors of the map. χ(zi) stands for the neuron of the map C that is associated
to the observation zi, and δ(c, χ(zi)) is the distance on the map C between
a neuron c and the neuron that is allocated to observation zi. As for the
k-means algorithm, it is possible to view the links between the map and the
data space. Actually, the basic principles of those two algorithms are very
similar, as shown on Fig. 7.8. The difference stems from the fact that the set
of labels, shown on Fig. 7.1, is replaced by the label graph of the map. The
cost function JT

som is a mere extension of the k-means cost function I(W,χ) =∑
zi∈A ‖zi − wχ(zi)‖2, where the Euclidean distance between an observation

zi and its associated reference vector is replaced by a generalized distance,
denoted dT , which takes into account all the neurons of the map

dT
(
zi,wχ(zi)

)
=
∑
c∈C

KT (δ (c, χ (zi))) ‖zi − wc‖2
.

Note that the distance between z and wχ(z), as expressed by the distance
function dT , is a weighted sum of the Euclidean distances between z and all
the reference vectors of the neighborhood of the neuron χ(z). Function JT

som

is equal to the function I(W,χ) if parameter T is small enough. In that case,
the distance dT is identical to the Euclidean distance.

The minimization of the cost function JT
som (χ,W) is performed in different

ways, depending on whether an adaptive or a batch optimization is desired.
In addition, a probabilistic formalism leads to a third version, which explicitly
estimates probability densities. Those three versions of the topological map
training algorithm are presented in the next sections.

7 Self-Organizing Maps and Unsupervised Classification 397

Fig. 7.8. Basic principle of self-organizing map modeling of data space. A label c,
which is selected among P neurons of map C, is associated to any observation z
of the data set D, using the allocation function χ(χ(zi = c)); that label allows the
definition of the reference vector wc

7.3.2 The Batch Optimization Algorithm for Topological Maps

In the present section, we describe the minimization of the cost function
JT

som (χ,W). The only difference between the k-means and the self-organizing
map algorithm is the difference between the two cost functions. When T is
kept constant, the minimization of JT

som may be written in the dynamic clus-
tering formalism (see the section that is devoted to k-means). Here, just as
in the previous section, that formalism provides a proof of convergence of the
algorithm to a local minimum of the cost function.

When T is kept fixed, the minimization of JT
som is performed iteratively.

Each iteration has two phases. The first phase is an allocation phase and the
second phase is a minimization phase where the cost function that is associated
to the current partition is minimized:

• Allocation phase. JT
som (χ,W) is minimized with respect to the allocation

function χ. The set W of reference vectors is kept fixed during that phase.
The expression of JT

som(χ,W) and of dT
(
zi,wχ(zi)

)
show that the best

allocation function is defined for each observation z by

χT (z) = arg max
r∈C

∑
c∈C

KT (δ (c, r)) ‖z − wc‖2 = arg max
r∈C

dT (z,wr).

That phase allows defining an allocation function χ and the associated
partition of data space D. Then the closest reference vector with respect
to the weighted distance dT is allocated to each observation.

• Minimization phase. JT
som (χ,W) is minimized with respect to the reference

vector set W . That minimization is performed while freezing the alloca-
tion function χ that was previously computed. Since JT

som is convex with
respect to the parameters from W , the minimization can be performed by

398 F. Badran et al.

computing the value for which the gradient of the cost function is zero.
That defines the new reference vector set

wT
c =

∑
r∈C K (δ (c, r)) Zr∑
r∈C K (δ (c, r))nr

,

where Zr =
∑

zi∈A, χ(zi)=r zi is the sum of all observations of the training
set A that are allocated to neuron r. Note that each new reference vector
is the center of mass of the mean vector of the subsets Pr ∩A, each center
of mass being weighted by K(δ(c, r))nr.

To summarize, we get the following algorithm:

Batch Algorithm of Topological Maps: T Fixed

1. Initialization: t = 0. Select the p reference vectors (randomly, in general),
the structure of the map and its size, the maximum number of iterations
Niter.

2. Iteration t. The reference vector set W t−1 is known from the previous
step,
Allocation phase: update the allocation function χt that is associated to
W t−1. Then each observation zi is allocated to a reference vector accord-
ing to

χT (z) = arg max
r∈C

∑
c∈C

KT (δ(c, r))‖z − wc‖2 = arg max
r∈C

dT (z,wr);

Minimization phase: apply relation

wT
c =

∑
r∈C

K(δ(c, r))Zr/
∑
r∈C

K(δ(c, r))nr

to compute the new set W t of reference vectors.
3. Iterate until the maximum iteration is reached, or until JT

som stabilizes in
a local minimum according to a stopping criterion.

As for k-means, a close look at the behavior of self-organizing maps for sim-
ple examples gives insight into the implementation problems that may arise.
The following numerical experiment illustrates the role of the temperature
parameter T in the minimization. The data are the same as on Fig. 7.2 in the
section on k-means. As mentioned before, the data are a sample of a uniform
mixture of four Gaussian modes with partial pairwise overlap. On Fig. 7.9, the
results (topological graph and quantization) are displayed in data space. Ko-
honen’s representations are used. The observations and the reference vectors
are shown on the same diagram. The map-induced topology of neighboring
neurons is shown as well. Reference vectors that are relative to neighboring
neurons on the graph are connected by edges on the picture. At initialization,
reference vectors were selected randomly around the center of the observation

7 Self-Organizing Maps and Unsupervised Classification 399

Fig. 7.9. Observation set and initial order generated on the map by random selection
of the reference vectors

cloud according to a peaked Gaussian law (its standard deviation is equal to
0.01). Initially, no ordering between the positions of the reference vectors can
be observed.

Figure 7.10 shows the maps that are obtained for four distinct values of
T : T = 10, T = 5, T = 3 and T = 1.

For large values of T , the reference vectors are gathered around the center
of mass of the observation cloud. For small values of T , the neighborhood
interaction is weaker and the map is unfolded from the same initialization.

The above procedure, for a fixed value of the temperature parameter T ,
finds a local minimum of the cost function JT

som with respect to χ and W .
Actually, Kohonen originally suggested to repeat that minimization a num-
ber of times, with a monotonous decrease of T . In that approach, the process
performs successive steps of Fig. 7.10. The reference vectors are randomly ini-
tialized and order appears when T value is still large: the map then unfolds
until it covers the whole space of the observation distribution. The perfor-
mance of the model on completion of training, and the associated partition,
depend on the parameters of the minimization algorithm. The most important
parameters are:

• the temperature variation interval [Tmin, Tmax] of the temperature para-
meter T , i.e. the initial value of T (Tmax) and its terminal value (Tmin);

• the number of times Niter the iterative step is repeated;
• the cooling schedule, i.e. how T decreases in time when it spans the tem-

perature interval [Tmin, Tmax].

400 F. Badran et al.

Fig. 7.10. Performing batch algorithm with T fixed (from top to bottom and from
left to right : T = 10, T = 5, T = 3 and T = 1)

Figure 7.11 shows that the cooling schedule may be crucial. On that figure,
several final results are displayed for the same training data set, the same
temperature variation interval and different cooling schedules. If temperature
decreases too fast (quenching), the self-organization is not efficient and the
induced neighborhood relation among reference vectors from the data space
is not a faithful representation of the graph-induced topology. Using neuronal
analogy, one may say that the receptive fields of neurons that are close in
cortical maps are not close in the perceptual space. Note that topological self-
organization is highly sensitive to the whole parameter set of the algorithm. No

7 Self-Organizing Maps and Unsupervised Classification 401

Fig. 7.11. Representation of the order that is induced by the topological map. The
maps are obtained for different cooling schedules of T , the same random initialization
at the center of the observation cloud and the same variation interval for T

general rule guarantees an appropriate self-organization of the reference vector
set. Therefore, it is advisable to test that the algorithm has performed well and
that the final set of reference vectors exhibits appropriate self-organization. A
relevant real-life example is described in detail below.

For implementation purpose, the batch algorithm of topological maps for
a usual cooling schedule can be summarized as follows:

Batch Optimization of Topological Maps (T Decreasing)

1. Initialization: perform the dynamic clustering SOM (Self-organizing map)
algorithm for T = Tmax, set t = 0

2. Iteration t. The reference vector set W t−1 is known from previous step.
Compute the new temperature value according to the cooling schedule:

T = Tmax

(
Tmin

Tmax

) t
Niter−1

For that temperature T , perform sequentially the two following phases:
• Allocation: update the allocation function that is associated to W t−1.

A reference vector is allocated to each observation belonging to the
training data from relation:

χT (z) = arg max
r∈C

∑
c∈C

KT (δ (c, r)) ‖z − wc‖2 = arg max
r∈C

dT (z,wr).

• Minimization: apply relation

402 F. Badran et al.

wT
c =

∑
r∈C

K(δ(c, r))Zr/
∑
r∈C

K(δ(c, r))nr

in order to compute the new reference vector set W t.
3. Repeat the iterative step until T = Tmin.

The expression of wT
c shows that the SOM algorithm takes advantage of

the neighborhood function KT (δ), which is parameterized by T in order to
introduce topological self-organization. At high temperatures, a single obser-
vation zi generates a significant change of many reference vectors. Conversely,
at low temperatures, KT (δ(c, r)) can be neglected if c �= r: an observation in-
fluences only the updating of its closest reference vectors. While the algorithm
proceeds, the various values of T lead to the gradual localization of the refer-
ence vectors. More specifically, relation

wT
c =

∑
r∈C

K(δ(c, r))Zr/
∑
r∈C

K(δ(c, r))nr

shows that, for a given temperature, the update of a reference vector wc

depends on the observations of the training set that belong to the subset Pc

of the partition, and also of the observations of Pr if r is located in a significant
neighborhood of c, r ∈ V T

G = {r|KT (δ(c, r)) ≤ α}.
The smaller T , the smaller the number of neurons belonging to a neigh-

borhood V T
c , and the smaller number of observations that have an influence

on the updating of a reference vector. For T small enough, V T
c is restricted

to the single neuron c, and JT
som strictly amounts to relation the k-means cost

function; in that case, SOM is strictly identical to k-means.
Since Kohonen’s original SOM training algorithm includes a cooling sched-

ule within bounds that are defined by the temperature variation interval
[Tmin, Tmax], the convergence to a solution occur in two steps. The first step
takes place for large values of T : repeated iterations of the dynamic cluster-
ing SOM algorithm (with T fixed) tends to guarantee a topological similarity
between the reference vector set and the map. The second step takes place
at low temperature T : the algorithm tends to get more similar to k-means
until complete similarity when T is very small and when K(δ(c, r)) ≡ 0 for
any couple (c, r) of distinct neurons. Thus, the first step may be considered
as the initialization step of the k-means, using initial reference vectors that
retain the topological structure of the map.

The following experiments show how the maps unfold and finally cover
the manifold of the training observations. Figure 7.12 describes the progress
of training for two different topologies (1D chain and 2D grid) for the four-
gaussian-mixture example. The 1-D chain features 50 neurons. The 2-D grid
is a 10× 10 square mesh. When the reference vectors are initialized randomly
around the center of the training data set, the following behavior is observed:

7 Self-Organizing Maps and Unsupervised Classification 403

Fig. 7.12. Evolution of the batch training algorithm for the four Gaussian mixture
example (pictures a and b) for two different topologies: 1-D with 50 neurons et
2-D with 10 × 10 neurons. Top pictures display the 1-D map after 20, 200, 2,000
iterations. The same experiment was performed for the 2-D map model; the bottom
pictures show the evolution after 50, 500, 5,000 iterations. In the two cases, when
convergence is reached, the map covers the whole support of the observation density

• During the first phase, when T is large, the map collapses onto the center
of mass, and topological self-organization appears. Then, as T decreases,
the map is organized in order to minimize the total inertia of the partition
that is associated to the reference vector set. At the end of the algorithm,
some reference vectors are positioned at the heart of the observation cloud.
Others are trapped in void or low-density regions.

• A close look at the resulting partition provides an interpretation of the hid-
den structure of observations. Figure 7.13 displays the map. The neurons
that have not captured any observation are shown as black dots. Thus, it
is possible to separate the data set into two distinct clusters: the algorithm
detects natural boundaries.

404 F. Badran et al.

Fig. 7.13. Visualization of natural boundaries of the partition of the data set into
two subsets. The neurons without any observation allocation are shown as black
dots

7.3.3 Kohonen’s Algorithm

The original SOM algorithm, as suggested by T. Kohonen, stems from the
dynamic clustering version that was described above. We will now describe
its specific features. As for k-means, a stochastic version of SOM is available.
It suffices to observe that, during the minimization phase, it is not necessary
to terminate the minimization process and compute the global minimum of
JT

som(χ,W) for a given allocation function χ: one just has to make it decrease.
Therefore, relation wT

c =
∑

r∈C K(δ(c, r))Zr/
∑

r∈C K(δ(c, r))nr may be re-
placed by a simple gradient descent step. Thus, at iteration t and for neuron
c, one has

wt
c = wt−1

c − µt ∂J
T
som

∂wt−1
c

,

where µt is the gradient step at iteration t,

∂JT
som

∂wc
= 2

∑
zi∈A

KT (δ (c, χ (zi))) (zi − wc).

7 Self-Organizing Maps and Unsupervised Classification 405

That batch algorithm requires that the whole data training set A be avail-
able. The contribution of the single observation zi to parameter wc to the
update is 2KT (δ(c, χ(zi)))(zi − wt−1

c). Alternatively, one may use the sto-
chastic gradient algorithm that computes the reference set once again, at each
presentation of an observation zi. That adaptive version is closer to training
processes in natural systems. It was the initial version that was suggested by
Kohonen. It differs from the batch version that was presented above in two
respects: first, the data flow is used instead of the stored data; second the
allocation function χ is not the same; Kohonen’s algorithm uses the same as
in k-means: χ(zi) = arg minc ‖zi − wc‖2.

Therefore, at each presentation of an observation, the new reference vectors
are computed for all the neurons of the map C, depending on the selected
neuron,

wt
c = wt−1

c − µtKT (δ (c, χt (zi)))
(
wt−1

c − zi

)
.

Thus, Kohonen’s algorithm may be summarized as follows:

Kohonen’s Algorithm

1. Initialization
• select the structure and size of the map;
• choose the initial position of the p reference vectors (usually, this choice

is random);
• choose Tmax, Tmin and the maximum number of iterations Niter;
• initialize t = 0.

2. Iteration t: with the reference vector set W t−1, as computed at the pre-
vious iteration:
• take the current observation zi (or select randomly an observation

from the training set);
• compute the new value of T according to the cooling schedule:

T = Tmax

(
Tmin

Tmax

) t
Niter−1

• For that value of T , the following two phases must be performed:
– Allocation phase: W t−1 being known, neuron χt(zi) is assigned

to the current observation zi by the allocation function χ(z) =
arg minr ‖z − wr‖2;

– Minimization phase: the new set of reference set W t is computed;
the reference vectors are updated according to

wt
c = wt−1

c − µtKT (δ(c, χt(zi)))(wt−1
c − zi),

depending on their distance to the neuron that was selected during
the allocation phase.

3. Iterate with decreasing temperature T , until the maximum number of
iterations Niter is reached.

406 F. Badran et al.

7.3.4 Discussion

An in-depth analysis of Kohonen’s algorithm unravels its salient features.

• In the update rule for reference vectors, the gradient step µt decreases
as the number of iterations increases. When the algorithm starts, µt is
large, and JT

som is not guaranteed to decrease. Later, when the gradient
step becomes small enough, the reference vector updates are small for each
iteration. In that situation, Kohonen’s SOM algorithm behaves in a way
similar to the dynamic clustering SOM version.

• If we assume that KT (δ) becomes negligible when distance δ exceeds a
given threshold dT , then KT (δ(c, r)) is significant only for neurons that
belong to a given neighborhood of neuron c, whose size is tuned by dT .
That neighborhood will be denoted as Vc(dT). Thus, when an observa-
tion zi is taken into account, the reference vector χ(zi) will be updated,
together with the reference vectors of all neurons of the neighborhood
Vχ(zi)(d

T).
• From the point of view of the neuronal representation, the operation of

Kohonen’s maps can be understood by taking into account the lateral
connections between neurons of the map: each neuron c is connected to
neighboring neurons r, and any modification of the reference vector wc

generates updates for all reference vectors that are associated to neurons
belonging to Vc(dT) with intensity KT (δ(c, r)), which decreases with in-
creasing distance δ(c, r).

• If KT (δ) is chosen as a threshold function (see Fig. 7.6), it is constant
on the interval [−dT , dT] and equal to zero elsewhere, the difference be-
tween Kohonen’s SOM and k-means is clear. The weight update is the
same for the two algorithms; however, in Kohonen SOM, not only is the
closest reference vector r updated: the reference vectors associated to neu-
rons of the neighborhood Vc(dT) are updated as well. Thus, topological
self-organization arises: neurons that are close on the map represent ob-
servations that are close in data space.

• When temperature T is small, updates according to relation wt
c = wt−1

c −
µtKT (δ(c, χt(zi)))(wt−1

c − zi) are performed for a subset of all neurons,
and, when dT < 1, Kohonen’s SOM algorithm is identical to stochastic k-
means. Actually, in that case, the only neuron to be updated is the winner
of the competition selected by the allocation function χ.

The fact that self-organizing maps are considered as belonging to the family
of neural methods stems from the fact that the neural interpretation allows
a crisp understanding of the training process. In the following section, we
elaborate on that point.

7.3.5 Neural Architecture and Topological Maps

The training algorithms that were described in the previous section allow the
determination of the reference vector setW = {wc; c ∈ C} of a self-organizing

7 Self-Organizing Maps and Unsupervised Classification 407

Fig. 7.14. 2-D topological map. The network has two layers: an input layer contains
the observations, and a representation layer, for which a topology must be defined
(distance δ between neurons and neighborhood function). Each neuron c stands for
a reference vector wc; it is fully connected to the input layer. The connection weight
vector of each neuron c is the reference vector wc associated to neuron c

map. A 2-layer neural network provides a joint representation of the map and
of the reference vectors (see Fig. 7.14):

• Observations are present in the input layer of the network. The state of
each unit is a component of one observation. Therefore, the number of
neurons of that layer is equal to the dimension of input space.

• The second layer is the neuronal map. The structure of the map may
be decided a priori. In more flexible versions, the structure can evolve
during training. The neurons simply compute a distance. Each neuron c is
connected to all input units. The reference vector that is associated to the
current neuron c of the second layer is actually the vector of connection
weights afferent to neuron c. Each neuron has n afferent connections since
it is connected to all units of the input layer. When an observation z
is presented to the input layer, the output of neuron c of the map is
‖z − wc‖2.

During training, the network connection weights change using various up-
dating rules. Thus, the neurons of the map compute their distances to the
current observation in parallel. The main feature of the self-organization
process is to focus the adaptation process on the most active area of the
map. Kohonen’s original algorithm, which is the simplest one, considers that
the active zone is the neighborhood of the neuron c that is closest to the
observation under consideration, i.e. whose output ‖z − wc‖2 is smallest. That
neighborhood generates topological constraints that lead to self-organization.

As indicated in the previous section, it models in a simple way, the lateral
coupling between an active neuron and its neighbors on the connection graph

408 F. Badran et al.

of the cortical map. Thus, at the end of training, neuronal connection weights
have converged in order to guarantee that a neuron has discriminative abilities,
i.e. that it is active only for a subset of the observations of the training set. A
neuron c, which is represented by the reference vector wc, may be considered
as an average observation that is a compressed representation of the data set
Pc of the observations that it has been assigned. Thus, the whole neuronal
map performs a vector quantization of the whole data set D, which is obtained
by the analysis of the training set A. The quality of the quantization (faithful
or not) strongly depends on whether the training set is representative or not.

7.3.6 Architecture and Adaptive Topological Maps

Self-Organizing Maps produce simple representations of data that are embed-
ded in spaces of very large dimension. That representation is performed in
a low-dimension discrete set C with a graph structure. The problem of the
choice of architecture consists in selecting a suitable graph structure for the
map, i.e. a structure that is appropriate for the specific problem of interest.
Therefore, one must define a measure of the adequacy of a map to the prob-
lem of interest. The data set D and the map C are related in two ways: the
embedding of C into D that maps each neuron c of C onto a reference vector
wc of C, and the allocation function χ of D into C, which associates to each
observation vector in D a neuron c of the map. Those two mappings have to
be topologically consistent in the following sense:

• Two neurons that are neighbors in the map C must be represented by two
reference vectors that are close in D.

• Reciprocally, data that are approximately similar must be allocated by χ
to the same neuron or to neighboring neurons.

If the dimension of the map does not fit with the underlying dimension of the
data cloud (dimension of the manifold that is generated by the observations),
two observations that are close in data space D may be allocated to distant
neurons in the map. Yet, the topological consistency is an interesting property
because it allows reducing the dimension of the data while retaining similari-
ties. In previous sections, it was assumed that the graph structure of the map
was given a priori. That choice was not data-driven, which has shortcomings:
it does not guarantee the adequacy between the structure of the map and the
internal structure of the data distribution.

Usually, in applications, the dimension of the data space may be very large
if the number of features describing the data is large, but the observations are
not distributed uniformly in the data set. They are located in specific regions
with various concentrations. Reference vectors must be located in high-density
regions, and one must avoid wasting reference vectors by locating them in void
regions. The choice of the graph structure of the map is very important be-
cause, when it is appropriate, it guarantees the topological consistency of the
map and a good representation of the underlying data probability distribution.

7 Self-Organizing Maps and Unsupervised Classification 409

In order to solve that problem, one may consider an oversize map (with
respect to the underlying dimension of the problem) and apply Kohonen SOM
algorithm to it. After training, neurons that capture no observation of the
training set are discarded. Kohonen’s algorithm is performed on the resulting
new structure. That pruning process is iterated as long as necessary.

Another technique consists in defining the map (size and dimension) during
training while updating the reference vectors. Thus, the map is built incre-
mentally, allowing the addition of some neurons and the deletion of others.
Several methods have been proposed in the literature. They can be classified
into two categories:

• In the first category, the dimension k of the map is decided a priori, and
the map is built adaptively by addition and deletion of neurons. In order to
perform those operations in a systematic way, simple graphical structures
such as segments for k = 1, triangles for k = 2, tetrahedrons for k = 3 and
so on, are processed. [Oja et al. 1999].

• A second category allows the data to drive the selection of the dimen-
sion of the map, which may vary from one region to another. The neural
gas algorithm [Oja et al. 1999; Fritzke 1995] is building the graph by in-
troducing the connection links in the data space itself. In that method,
whenever an observation is presented, the two closest reference vectors are
selected; if they are connected, the connection is activated, otherwise the
corresponding connection link is created. The connection links that are
inactive during a fixed number of iterations are deleted.

7.3.7 Interpretation of Topological Self-Organization

The structure of the cost function JT
som gives insight into the topological self-

organization during training. The subsets Pr ∩ A generate a partition of the
training set A, so that JT

som can be written as follows:

JT
som =

∑
r

∑
zi∈Pr

⋂
A

∑
c

KT (δ (c, r)) ‖zi − wc‖2

=
∑

c

∑
r

∑
zi∈Pr

KT (δ (c, r)) ‖zi − wc‖2
.

Decomposing that relation shows that the cost function JT
som generates a vec-

tor quantization and guarantees topological consistency

JT
som =

⎡
⎣∑

c

∑
r �=c

∑
zi∈Pr

KT (δ (c, r)) ‖zi − wc‖2

⎤
⎦

+KT (δ (c, c))
∑

c

∑
zi∈Pr

‖zi − wc‖2

410 F. Badran et al.

=
1
2

∑
c

∑
r �=c

KT (δ (c, r))

[∑
zi∈Pr

‖zi − wc‖2 +
∑

zi∈Pc

‖zi − wr‖2

]

+KT (δ (c, c))

[∑
c

∑
zi∈Pc

‖zi − wc‖2

]
.

This decomposition gives two terms, the sum of which must be minimized:

• The second term is I of k-means, weighted by KT (δ(c, c)) = K(0). Its
influence is controlled by the temperature parameter T : the smaller the
temperature, the more influential that term during minimization. It tends
to build a partition into compact subsets, and the reference vectors tend
to be the centers of mass of the partition subsets.

• The first term enforces the topological consistency constraint: if two neu-
rons r and c are close on the map, KT (δ(c, r)) is large, because δ(c, r) is
small. Minimizing that term decreases the distance between the subsets Pc

and Pr that are allocated to c and r. Thus, proximity on the map enforces
proximity in the data set.

The above form of JT
som also gives insight into the presentation of the algo-

rithm as consisting in two different steps that depend on the temperature T
(see above the section on batch optimization algorithm of topological maps).
The first step occurs when T is large: the first term is dominant, and the task
of the algorithm is mainly to guarantee the topological consistency of the
map. The second step occurs at lower temperature. In that case, the second
term becomes dominant and the algorithm essentially minimizes the inertia
of the partition. The temperature allows performing the appropriate tradeoff
between the two terms of JT

som. Since the topological self-organization occurs
during the first part of training, then the minimization is useful to obtain
subsets that are as compact as possible. It is the k-means phase of the algo-
rithm that consists in approximating locally the data distribution. Thus, the
algorithm may be cursorily described as a version of the k-means algorithm
subject to the constraint of topological consistency of the reference vectors
with the map.

The following experiment gives insight into the difference between SOM
and k-means. We consider again the example that was displayed on Fig. 7.2[d]
to illustrate k-means. In that case, a topological map with a 1D chain structure
is used with four neurons, and the parameters of the map are estimated from
the training set, generated from a mixture of four Gaussians.

The four reference vectors were initialized at the bottom right of the fig-
ure just as for the previous k-means experiment. The two solutions that are
obtained by k-means and SOM are shown on Fig. 7.15. The map topology
constraint allows locating the four neurons at the centers of the four Gaussian
modes. Thus, the SOM algorithm was able to determine the solution of the
k-means problem under the topological consistency constraint (Fig. 7.15 [b]);

7 Self-Organizing Maps and Unsupervised Classification 411

Fig. 7.15. Comparison k-means (a) and SOM (b) for the same initialization. The
reference vectors are initialized in the right bottom of the picture

that solution is different from the solution that was found by the straight-
forward implementation of k-means (Fig. 7.15 [a]). To summarize, the map
provided a better representation of the training set.

Fig. 7.16. Modeling of the SOM according to a probability density mixture. The
map is shown in the neural formalism: 3 layer architecture: an input layer and two
layers that are maps with similar size and similar topology. A neuron of C1 represents
a gaussian with expectation vector wc and scalar covariance matrix σcI; a neuron of
C2 represents a Gaussian mixture, whose density is given by p(z) =

∑
c2

p(c2)pc2(z)
where pc2(z) =

∑
c1

p(c1 | c2)p(z | c1)

412 F. Badran et al.

7.3.8 Probabilistic Topological Map

Similarly to k-means algorithm, a probabilistic version of SOM, called PR-
SOM, can be defined [Anouar et al. 1997; Gaul et al. 2000]. The difference
between SOM and PRSOM is essentially that, for PRSOM, a Gaussian density
fc is associated to each neuron c of the map. Each Gaussian density function
fc is completely defined by the mean vector (the equivalent of reference vec-
tor of SOM) wc = (w1

c , w
2
c , . . . , w

n
c), and by its covariance matrix that is a

square symmetric positive-definite matrix Σc, restricted to isotropic densities:
Σc = σ2

cI, where I is the (n, n) unit matrix. Then the density functions can
be written as

fc(z) =
1

(2π)n/2
σn

c

exp

(
−‖z − wc‖2

2σ2
c

)
.

Thus, in the PRSOM, each neuron c of the map is allocated to the mean
vector wc and to the positive scalar σc. As for SOM, the data space D is
partitioned into subsets of the family {Pc/c ∈ C}. The subset Pc is described
by the density function fc : wc represents its associated reference vector,
and σc estimates the standard deviation of the observation of Pc ∩ A around
wc. The two parameter sets W = {wc; c ∈ C} and σ = {σc; c ∈ C} define
completely the PRSOM. Their values must be estimated during training from
the training set A.

If we assume that the data underlying distribution is a Gaussian mixture,
the PRSOM allows an estimating of the parameters of the mixture. A neural
interpretation of PRSOM can be given: the architecture that is associated to
the PRSOM has three layers architecture (Fig. 7.16):

• Data is presented to the input layer.
• The map C is duplicated into two similar maps C1 and C2 that have the

same topology as the map C in the SOM model. The generic neuron of
maps C1 (resp. C2) will be denoted c1 (resp. c2).

That approach was first described by Luttrel [Luttrel 1994]; it assumes that
a random propagation occurs forward and backward through the 3 layers of
the network. In the backward direction, from the map to the data space,
that propagation is described by the conditional probabilities p(c1|c2) and
p(z|c1, c2). Moreover, the Markov assumption is postulated, namely that
p(z|c1, c2) = p(z|c1). Then the probability of each observation z can be com-
puted explicitly as

p(z) =
∑
c2

p(c2)pc2 , (z)

with
pc2(z) =

∑
c1

p(c1 | c2)p(z | c1).

7 Self-Organizing Maps and Unsupervised Classification 413

The probability density is fully determined by the network architecture, which
provides an expression of the conditional probability p(c1|c2) using the neigh-
borhood relation on the map and the conditional density of the observation
p (z |c1) = fc1 (z,Wc1 , σc1). If we assume that the neighborhood relationships
permit the definition

p (c1|c2) =
1
Tc2

KT (δ (c1, c2)) , with Tc2 =
∑

r

KT (δ (c2, r));

then the posterior probability densities of the observations may be expressed
as a function of the Gaussian distributions of the neurons:

pc2(z) =
1
Tc2

∑
r∈C1

KT (δ (c2, r)) fr (z,wr, σr).

Thus, pc2(z) can be interpreted as a local mixture of Gaussian densities that
are associated to each neuron of the map. The set of average vectors W =
{wc; c ∈ C} and the set of scalar standard deviations σ = {σc; c ∈ C} are the
parameters to be estimated by training. The probabilistic formalism makes
it possible now to maximize the likelihood of the observation set just as for
the probabilistic version of k-means. If the observations of the training set A
are assumed to be the independent, and that each observation zi is generated
by the Gaussian mode pχ(zi) that is associated to neuron χ(zi), and if it is
further assumed that neurons c2 of C2 have similar prior probabilities, the
classifying likelihood can be written as

p (z1,z2, . . . ,zN |W,σ, χ) =
N∏

i=1

pχ(zi) (zi),

which must be maximized with respect to the parameters of the model W , σ
and the allocation function χ. According to the usual strategy, it is performed
by a minimization process

E (W,σ, χ) = −
N∑

i=1

ln
∑
r∈C

KT (δ (χ (zi) , r)) fr (zi,wr, σr)

by using the dynamic clustering formalism. The phases of allocation and min-
imization are sequentially and alternatively iterated until convergence:

• Allocation phase. Assume that the parameters {W,σ} have the values com-
puted at the previous iteration or at initialization. Then E must be mini-
mized with respect to the allocation function χ. A new allocation function
must be found that assigns each observation z to a neuron. That step
generates a new partition of the training data space D. It can easily be
seen that the optimal allocation function associates to a given observation
zi the most probable neuron c according to the density pc2 :

χ(z) = arg max
c2

pc2 (z)

414 F. Badran et al.

• Minimization phase. During that phase, the allocation function is kept
constant, and E(W,σ, χ) is minimized with respect to W and σ.

The parameters W and σ are updated as in the batch version of the SOM al-
gorithm by canceling the partial derivatives of the cost function E(W t, σt, χt).
To solve the equation, an iterative procedure is used as in [Duda et al. 1973],
assuming that for ith iteration the initial values of the parameters are close
to the optimal values. The update relations are the following:

wt
r =

N∑
i=1

ziK
(
δ
(
r, χt−1 (zi)

)) fr

(
zi,w

t−1
r , σt−1

r

)
Pχt−1(zi) (zi)

N∑
i=1

K
(
δ
(
r, χt−1 (zi)

)) fr

(
zi,w

t−1
r , σt−1

r

)
Pχt−1(zi) (zi)

(
σt

r

)2 =

N∑
i=1

∥∥wt−1
r − zi

∥∥2
K
(
δ
(
r, χt−1 (zi)

)) fr

(
zi,w

t−1
r , σt−1

r

)
Pχt−1(zi) (zi)

n
N∑

i=1

K
(
δ
(
r, χt−1 (zi)

)) fr

(
zi,w

t−1
r , σt−1

r

)
Pχt−1(zi) (zi)

.

In both above relations, the parameters at iteration t are expressed as func-
tions of the parameters at iteration t− 1.

Since the model is complex, an appropriate initialization is desirable. Since
PRSOM can be considered as extensions of SOM, one can first perform a SOM
estimation of the reference vector set W in order to initialize the mean vector
set of PRSOM.

Thus, the PRSOM training algorithm can be summarized as follows:

PRSOM Algorithm with Constant Temperature T

1. Initialization: t = 0. The initial values W 0 of the references are computed
using a SOM training algorithm, the σ0

r is computed by the mean of the
local inertia Ir (Sect. 7.2.1). The initial allocation function χ0 is derived
from the update relation

wt
r =

N∑
i=1

ziK
(
δ
(
r, χt−1 (zi)

)) fr

(
zi,w

t−1
r , σt−1

r

)
Pχt−1(zi) (zi)

N∑
i=1

K
(
δ
(
r, χt−1 (zi)

)) fr

(
zi,w

t−1
r , σt−1

r

)
Pχt−1(zi) (zi)

,

(
σt

r

)2 =

N∑
i=1

∥∥wt−1
r − zi

∥∥2
K
(
δ
(
r, χt−1 (zi)

)) fr

(
zi,w

t−1
r , σt−1

r

)
Pχt−1(zi) (zi)

n

N∑
i=1

K
(
δ
(
r, χt−1 (zi)

)) fr

(
zi,w

t−1
r , σt−1

r

)
Pχt−1(zi) (zi)

.

7 Self-Organizing Maps and Unsupervised Classification 415

The maximal number of iterations Niter is chosen.
2. Iteration t : W t−1 and σt−1 were computed at the previous iteration.

• Minimization phase: computation of the new parameters W t and σt;
• Allocation phase: update of the allocation function χt that is associated

to W t and σt from relation χ(z) = arg maxc2pc2(z).
2. Iterate until t > Niter or until stabilization of the cost function E(W,σ, χ).

As for SOM training, PRSOM uses a neighborhood whose size is controlled by
the temperature parameter T . During training, the size of the neighborhood
decreases according to the cooling schedule. At the end of training, the map
provides an organized structure of the average vector set, and the partition
associated to the map is defined by the final allocation function χNiter . As for
other versions of SOM, the data space D is divided into M subsets: each neu-
ron c of the map represents a data subset Pc = {z/χNiter

(z) = c}. That map and
that partition were determined from probability distributions, whereas SOM
just uses Euclidean distances. The probability density estimation gives access
to additional information that may be useful for application purposes. Actu-
ally, that information is crucial as far as classification problems are concerned.
No stochastic version of PRSOM is available: a large sample of the data is
necessary to estimate the initial variance before updating the parameters.

PRSOM provides a lot of additional information about the training data
(tracking outliers, computing probabilities, etc.). However, that model can be
used only if the training observation set is large enough to allow an accurate
estimation of the standard deviations of the Gaussian modes of the mixture
in the initialization phase. Remote sensing, where a tremendous amount of
data is available, is ideally suited to applications of SOM. The detection of
ocean color is described in the next section.

7.4 Classification and Topological Maps

Among the various applications of SOM, many of them are classification
tasks. As stated above, classification is not a straightforward application of
self-organization: unsupervised learning provides an allocation function that
assigns any observation to a cluster of a partition of the training set, irrespec-
tive of the semantics of the data. In such problems, it is assumed that a lot of
noise-corrupted observations are available with not knowledge of their class.
The partition that is obtained depends on the probability density underlying
the training set. Regions that contain a high density of data will be covered
by a fine partition; low-density regions will be covered by a coarse partition.
The large amount of data available in high-density regions provides accurate
information on those regions. On the other hand, the geometry of the parti-
tion depends on the nature of the encoding of the observations. Thus, for a
given problem and a given data set, several different encodings may generate
several partitions of the data space. With the SOM algorithm, the selection

416 F. Badran et al.

of the code provides information about the problem of interest. The basic
principle of the algorithm is to favor the emergence of clusters (the partition
subsets) that are appropriate for the application under consideration. If the
application involves a classification task into S classes, each partition subset
must be included in one class as completely as possible. Then, one can assign
one of the S classes to a whole cluster. Since each subset is assigned to one
neuron of the map, the classification problem amounts to labeling each neuron
of the map. The label set is the set of the S classes of the problem. Labeling
can be performed in two different ways. Since each reference vector represents
a subset of the partition P , and since the reference vector may be interpreted
as an average experiment, it is possible to use expert knowledge to recognize
the class of the reference vector on the basis of its characteristics:

1. by asking an expert of the domain to classify some data extracted from
the training set,

2. by first aggregating the neurons on a statistical basis and then use the
expert knowledge to label the clusters.

7.4.1 Labeling the Map Using Expert Data

Assume that a S-class classification task must be performed, and that the
labels of those classes must belong to a label set L = {li, i = 1, . . . , S}. At
the end of SOM training, when all parameters of the map are estimated, each
observation z is assigned to a neuron c = χ(z), so that the label lc of that
neuron can be assigned to the observation. Therefore, the problem is: how to
label the neurons of the map with the labels of L?

Labeling the neurons of the map is the first step in the design of a classifier
from a SOM. If the amount of data classified by the expert is very large,
labeling may be performed by majority voting (see hereafter Fig. 7.17):

• Assign the expert-classified data to the various neurons of the map using
the allocation function provided by the SOM training.

• For every neuron c, select the label li that is the most commonly used
label for the expert classified-data assigned to neuron c.

• All the data belonging to the subset that is represented by neuron c are
now labeled by label li.

At the end of the labeling phase, the set of neurons c that have the same label
l can be used to approximate the probability distribution of the data of class
l. The larger the amount of expert-classified data, the better the classifier.
Of course, neurons that represent data lying on the boundaries of the classes
may get the wrong label. Another source of error is the lack of expert-classified
data in some subset represented by a given neuron: the corresponding region
of the data space is thus poorly identified.

7 Self-Organizing Maps and Unsupervised Classification 417

Fig. 7.17. Map labeling using expert-classified data. Classified data are assigned to
the relevant neurons of the map. Then each neuron is labeled using majority voting
among classified data that are allocated to that neuron

7.4.2 Searching a Partition that Is Appropriate to the Classes

If the amount of expert-labeled data is too small, the above labeling method
is inappropriate. Majority voting result has a large variance and may gener-
ate classification error with significant probability. The presence of a single
wrongly labeled observation may lead to assigning a wrong label to the associ-
ated neuron. Thus, a whole region of the data space may be wrongly classified.
Furthermore, due to the small amount of labeled data, a significant number
of subsets of the partition may include no labeled data, so that the algorithm
is not able to provide them with any label.

In that case, it is possible to take into account an additional phase, in which
the various observation subsets are clustered as appropriately as possible. A
coarser partition is sought, and labeling will be performed after that addi-
tional clustering phase. When one fuses several partition subsets, more expert-
classified data are available to label a larger subset. Of course, as before, the
whole process is valid only if the original clustering is consistent with the
classification, so that majority voting can select the right label.

If the map and the partition that are provided by SOM are assumed to
be relevant, then the two following additional assumptions are taken into
consideration:

• The data quantization is correct, so that each reference vector is a good
representative of its allocated data.

• Topology is relevant: two subsets that are represented by neighboring neu-
rons on the map contain observations that are close in data space.

418 F. Badran et al.

Fig. 7.18. Looking for a partition that is appropriate to the desired classes. The
method consists in clustering the neurons of the map by bottom-up hierarchical
classification, and testing the obtained partition with respect to the expert-classified
data

Underlying the second assumption is the hypothesis that there exists a struc-
ture on the dataset that fits the classification problem, and that it is possible
to exhibit that structure with the topological self-organization of the map.
Thus, two subsets that are represented by neighboring neurons have a strong
probability of representing observations that belong to the same class.

Of course, those assumptions are very strong. It is implicitly supposed
that a right data encoding is already known to perform the classification.
Therefore, that point must be solved in a preliminary analysis, providing
an appropriate data representation, stemming from an appropriate variable
selection and the design of a relevant coding. The effect of the coding process
on the classification result will be shown in the section devoted to applications.

Bottom-up hierarchical classification [Jain et al. 1988] may perform the
second stage of the process by appropriately clustering the neurons (see
Figs. 7.18 and 7.19).

This method computes a partition hierarchy. The various partitions of the
hierarchy are found iteratively. The initial partition is the finest one. It is made
of all the singletons of the map. From that initial partition, two subsets of the
current partition are clustered at each iteration. To select the two subsets that
are going to be clustered, a measure of the similarity between two subsets is
defined. Among all the possible subset pair, the pair that is made of the most
similar subsets, with respect to the chosen similarity criterion, is selected.

Summary of the hierarchical classification algorithm:

Hierarchical Classification Algorithm

3. Initialization. Consider the finest partition that is made by all the sin-
gletons; each neuron is allocated to a distinct subset. Choose the desired
number of subsets K.

7 Self-Organizing Maps and Unsupervised Classification 419

Fig. 7.19. Clustering the neurons of the map using bottom-up hierarchical classifi-
cation: the leaves of the tree represent the neurons (here there are six neurons); for
each cluster, the vertical axis provides the clustering index for the selected similarity

4. For a given partition, find the closest subsets in the sense of the selected
similarity criterion, and cluster them together in order to get a single
subset.

5. If the number of clusters of the current partition is larger than K, go to
step (2), otherwise terminate the algorithm.

Several similarity measures are proposed in the literature [Jain et al. 1988].
The most popular one is due to Ward. It consists in aggregating clusters in
such a way that the sum of the cluster inertia is as small as possible. That is
a way of favoring clusters that are as compact as possible in the (Euclidean)
data space. If that criterion is selected to cluster the neurons of the map, the
working space is the data space and the associate reference vectors are the
neurons. Conversely, since the neurons are distributed on the map with its
awn discrete graph topology, one may choose to favor aggregation in a way
that takes into consideration that discrete structure. Those clusters will be
made of neurons that tend to form connected sets on the map [Murtagh 1985;
Yacoub et al. 2001]. The choice one of those two strategies, or the use of a
hybrid strategy that combines both of them, may have a crucial influence on
the results.

Hierarchical classification allows generating an arbitrary number of sub-
sets, since clustering may be stopped at any iteration. For a given similarity
measure, the number of partition elements depends on the number S of classes
that are sought. That number also depends on the agreement between the
unsupervised statistical partitioning and the partition into S classes that is
determined by the application. That number may be higher than S if a class

420 F. Badran et al.

is not homogeneous from a statistical point of view. Then it is inferred that
the expert has assigned to the same class instances of the observation space
that are quite different. The analysis of the most consistent partition, ob-
tained by hierarchical classification, allows analyzing the homogeneity of the
classification performed by the expert. Therefore, a refinement of the expert
classification into S′ classes, with S′ > S, may be designed.

7.4.3 Labeling and Classification

After labeling of the map, the probabilistic version of self-organizing maps
(PRSOM) can perform a probabilistic classification. As mentioned above, a
normal law is associated to each neuron. An observation z is assigned to a
neuron according to the probability p(c|z), which is defined by Bayes relation
as shown below. A probabilistic assignment is thus obtained. Since the map
is labeled according to one of the above procedures, the posterior probability
that the considered observation z belongs to class l can be estimated. The
PRSOM stem from a probabilistic modeling where it is assumed that the
observations are generated according to the mixture distribution:

p(z) =
∑

c

p (c) pc (z)

where pc(z) is also a normal law local mixture

pc(z) =
1
Tc

∑
c

KT (δ (c, r)) fr (z,w, σr)

where Tc =
∑

cK
T (δ(c, r)) and f is a normal law with mean wr and scalar

covariance matrix σ2
rI. The quantities pc(z) are computed from the neurons

of the map and the quantities p(c) are computed from the partition that
has been proposed by PRSOM. If N stands for the observation number of
the training set A and nc is the number of observations that are assigned to
neuron c by the allocation rule χ(z) = arg maxc p(z | c), the prior probability
p(c) of neuron c can be estimated as nc/N . Then Bayes rule allows computing
the posterior probability of neuron c given observation z:

p (c |z) =
p (c) pc(z)
p(z)

=
ncpc (z)∑

r∈C

nrpr(z)
.

After training, the topological map that is proposed by PRSOM determines
the parameters of the normal laws that characterize the various neurons. For
any observation z, it is then possible, applying the above relation , to compute
the posterior probability of an obervation being assigned to a given neuron.
Since a class is represented by a subset of neurons, the posterior probability
that the observation z belongs to the class li is derived from the neurons that
are labeled by li. If the subset of those neurons is denoted Ci, one gets

7 Self-Organizing Maps and Unsupervised Classification 421

p (li | z) =
∑
c∈Ci

p (c | z) =

∑
c∈Ci

ncp(z)

∑
r∈C

nrpr (z)

where
pc (z) =

1
Tc

∑
c

KT (δ (c, r)) fr (z,w, σr).

Note that this probability relies on the labeling of the map. That step is
crucial for the computation of the posterior probabilities. Their consistency
depends on the quality of the map. Thus, the classifier performances depend
jointly on the amount of expert data, on the accuracy of the approximation
of the observation density, and on the topological order that is built by the
self-organization process.

The knowledge of posterior probabilities leads to a classification rule that
is based on probabilistic estimation. Using those relations, the vector of class
membership probabilities can be computed for each observation z . Finally,
the assignment of the observation to a class is performed by the application of
Bayes rule: choose the class for which the membership probability is highest.

7.5 Applications

Self-organizing maps gave rise to a large number of applications. Specific de-
velopments were required for some of them, but they are in actual operation.
At the moment, the most important research center for those topics is lo-
cated at University of Technology of Helsinki (UTH). The major part of the
research that is developed in its computer science laboratory (Laboratory of
Computer and Information Science) is performed by the Neural Network Re-
search Center, created by T. Kohonen in 1994, and now headed by E. Oja.
The description of a large number of applications is now available on the Web
site of NNR (http://www.cis.hut.fi/research/). The main research axis and the
current applications are generally focused on self-organizing maps. Companies
now exploit many applications. They arose from original, multidisciplinary re-
search, and several research groups specialized such fields as bioinformatics,
speech and writing analysis and recognition, and image analysis.

Actually, the implementation of self-organizing maps into larger systems
widely uses the specific features of the application domain. The coding of the
information, the organization of data bases, the analysis and visualization of
the data, require specific, multidisciplinary research whose results are crucial
for the performance of the self-organizing maps.

In the following, two applications will be described in detail. They were
selected as representative of the domains to which self-organizing maps are
relevant. The target of this presentation is twofold:

422 F. Badran et al.

• The first section describes a satellite remote sensing application. It is a
field of growing importance, and a lot of statistical problems must be
solved by physicists and research engineers who are in charge of designing
models. Considering that a very large amount of data is now available,
this field is particularly suited to neuronal modeling. That application will
fully illustrate the methodology that was described in previous sections.
It uses the probabilistic model of self-organizing maps (PRSOM).

• The second section gives a brief account of one of the most popular applica-
tions that was developed at UTH: the WEBSOM system. That is devoted
to information research on the Web. The earlier version was implemented
in 1995. The salient feature of that application is the high dimensionality
of the data. Dimensioning the topological map with a very large set of neu-
rons and tuning the algorithm (regarding computing time and convergence
accuracy) were the basic issues that were successfully faced at UTH. The
development of WEBSOM spurred research oriented towards shortening
the training phase for the design, and towards shortening the document
research time during the exploitation phase.

7.5.1 A Satellite Remote Sensing Application

A lot of data is generated by the observation of earth with on-board sensors,
and handed to geophysicists. All the neural methods that are presented in this
book are helpful to process those data because they solve multidimensional
statistical problems. Among those methods, unsupervised training is espe-
cially useful, because it allows extracting information even when expert infor-
mation is scarce. Gathering expert information often requires costly analyses
(ground mission, sophisticated biological and chemical analyses). That ex-
plains why expert-appraised data is scarce as compared to the amount of
available satellite data.

Self-organizing bring valuable contributions to satellite data analysis, be-
cause estimating the observation probability density, and designing represen-
tative data partitioning, can be performed in a relatively straightforward way.
Such information provides new insights into the physical phenomena of inter-
est:

1. PRSOM estimate the variance and local uncertainty of the observations.
2. The partitions that are obtained are useful to the expert of the various

application fields (physicists, chemists . . .) because they may serve as an
accurate summary of the observation set. Investigating such a summary
may be crucial for understanding the phenomena of interest.

3. In all the fields that are concerned by experiments, heavy and expen-
sive experimental campaigns are carried out regularly. With respect to
the amount of satellite data, the expert-assessed observations are scarce,
but they contain extremely valuable information. A few expert-labeled
observations allow the identification of subsets of the partition from the

7 Self-Organizing Maps and Unsupervised Classification 423

topological map. The classification methodology that is presented below
in the section �Classification and PRSOM� allow that identification.

4. In order to demonstrate the various capabilities of self-organizing maps,
the presentation of the next application is organized as follows:
• Description of the application field, of the problems of interest, and of

the available data;
• Description of experiments that allow the understanding of the influ-

ence of data encoding on the partition and on the topological order
that is obtained;

• Description of experiments that allow the assessment of the impact of
expert knowledge

7.5.1.1 The Color of the Ocean

The biological activity of the ocean is crucial for the natural economy of
the earth, for it is strongly connected to the fishing resource, and is part
of the biochemical cycles with strong climate consequences. During the past
few years, several multi-spectral sensors dedicated to measure the color of
the ocean were launched on different satellites ((MOS, POLDER-1, OCTS,
SEAWIFS, MODIS) or will be in the future (MERIS, POLDER-2, GLI). They
are expected to estimate the chlorophyll contents of the upper layer of the
ocean, and to assess its space and time variability.

Two steps are needed to recover the pigment fields from the ocean color
satellite data. The first step deals with atmospheric correction (indeed, the at-
mosphere contributes more than 80% of the measured signal); the second step
is dedicated to ocean interaction (see Fig. 7.20). The atmospheric correction
algorithm currently computes sea-level reflectance by canceling atmospheric
effects (aerosols and air molecules). The second step aims at inverting that
reflectance to provide the chlorophyll pigment concentration. This is a tricky
issue, because one has to take into account both uncertainties that arise from
atmospheric corrections, and uncertainties that are intrinsically related to the
variation of biological population. Thus, the knowledge of the atmospheric
aerosol composition and of the water constituent concentration is crucial. The
following experiments aim at assessing various classes of aerosols and waters
from the top of atmosphere spectra, which are provided by the sensors.

7.5.1.2 The Data

The data that are used hereafter were provided by US radiometer SeaWifs,
which was located on the SeaStar satellite. That sensor has eight spectral
bands in the visible and the near infrared spectrum (see Table 7.1).

For each measurement location at the ocean surface, the observation vector
is 8-dimensional. Its components are the eight radiances that are measured
on the top of atmosphere. The following results are a representative example

424 F. Badran et al.

Fig. 7.20. Outline of the physical phenomena that are relevant to explain the
observations. The observations consist in the set of reflectance spectra that are
measured by the SeaWifs radar. That radar uses eight wavelengths for analyzing
the surface

of ocean color data processing. They come from a SeaWifs image. This image
was over West Africa and the Canarie islands on January 5th, 1999. Two
pictures of that zone, which were obtained on the same day with different
resolutions, are available: a LAC (Local Area Coverage) image, with 2141 ×
793 = 1, 697, 813 pixels (Fig. 7.21) and lower resolution, GAC (Global Area
Coverage) image with 536×199 = 106, 664 pixels. The topological map design
was performed from a sampled LAC image. Sampling was performed by line
decimation of the original LAC image. Thus the training set had 238× 793 =
188, 734 pixels. The quality of the resulting vector quantization, was assessed
from the full LAC picture. Since 90% of the pixels had no contribution to

Table 7.1. Spectral bands of SeaWifs

Bands Wavelengths
K (nanometers) λk

1 412
2 443
3 490
4 510
5 555
6 670
7 765
8 865

7 Self-Organizing Maps and Unsupervised Classification 425

Fig. 7.21. ThiS SeaWifs image has been taken over West Africa and the Canarie
islands on January 5th, 1999. LAC picture 2141 × 793

the training phase, and considering the large amount of available data, the
performances thus estimated may be considered as fully significant.

The expertise was provided through the GAC image. That image had
additional information, from two sources:

• Information that was provided by SeaWifs was available, such as land
masking, presence of clouds.

• A pixel classification of the GAC image, using different optical models pro-
vided from atmosphere experts, was also available. Figure 7.22 shows the
expert-processed GAC picture. On that image, five classes were identified
by the expert: aerosols that arise from the desert, so-called case 2 waters,
which are waters with high organic matter contents, sea aerosols, clouds
and land. Actually the pixels that are assigned the land label are residual
pixels for which no label was provided by the expert

• Note that both types of information may contain errors, just as any expert-
based classification of highly complex phenomena. For instance, the expert
sought five classes. Therefore, different aerosols may have been clustered
in the same class if he had no appropriate physical model to discriminate
between them.

426 F. Badran et al.

Fig. 7.22. Expert-processed GAC image. The picture represented five zones whose
boundaries had been defined by the expert: the aerosols coming from the desert
(black), the case-2 waters (light grey), the marine aerosols (dark grey), the clouds
(medium grey) and the earth (white)

7.5.1.3 The Role of Encoding

Numerical experiments were performed using different encodings of SeaWifs
spectra.

The first encoding uses directly the reflectance at the top of the at-
mosphere. In order to normalize the influence of the wavelengths, the re-
flectance spectrum values were normalized to the [−1,+1] interval. The re-
flectance for wavelength λk, is denoted ρ(λk), the normalization has been
computed from the learning set for each wavelength, (k = 1, . . . , 8). Thus,
each observation was encoded by an 8-dimensional vector, each component of
that vector being the normalized reflectance for a given wavelength. Since the
reflectance values ρ(λk) are numbers between 0 and 1, they were normalized
between −1 and 1, using to 2ρ(λk) − 1.

The sampled LAC image that was used for training (actually one picture
line out of ten), after coding as described above, will be denoted by Appcod1.
A second coding was performed, in order to highlight the shape of the spectra
of interest. To that effect, the slopes of spectra were taken into account. They
were computed for each wavelength. Thus, the kth component of the new
coding vector was computed from the reflectance as

7 Self-Organizing Maps and Unsupervised Classification 427

∆ρ (λk) =
ρ (λk+1) − ρ (λk)
λk+1 − λk

.

Seven slopes were thus computed for k from 1 to 7. In order to keep infor-
mation about the spectrum intensity, a component of the observation vector
was the norm ‖ρ‖ of the spectrum. Thus, each observation was encoded in an
8-dimensional vector

[∆ρ(λ1), . . . ,∆ρ(λ7), ‖ρ‖]T.
The sampled LAC image that was used for training was encoded according
to that second scheme; the result will be denoted Appcod2. Normalization
between –1 and 1 was performed as previously. Since the slopes and the norm
do not have the same order of magnitude, the normalization was implemented
separately for each component as

2
x− min

max−min
− 1,

where x is a derivative (namely (∆ρ(λk)k = 1, . . . , 7),min (resp. max) are the
minimum (resp. the maximum) over the set of all the derivatives in Appcod2.

For all test data, the same encodings were used. The following numerical
experiments are an illustration of the methodology, which has been described
in the section “Classification and PRSOM.” They use quantizations, which
are followed by classifications. The quantizations are obtained from the prob-
abilistic maps, and clustering is performed by hierarchical classification. All
self-organizing maps have the same architecture:

• The input layer has 8 units
• The map is 2-dimensional, with 10 × 10 neurons. The neighborhoods are

defined from the exponential kernel family K(δ) = exp(−δ2).

7.5.1.4 Quantization Using PRSOM

In the first part of the study, PRSOM was used for determining the patterns
that are representative summaries of the set of all observed spectra. In that
case, a fine quantization of the training set is sought. Actually, the result is
a summary of the training set; if it is statistically representative, it is also
a summary of all observations. Otherwise, the generalization may be poor
since a subset of the set of observations was overlooked. The two encoding
schemes that were described above (normalized radiance vales for the first
one, slopes + norm for the second one), resulted in different maps. Those
maps will illustrate the importance of the encoding process for quantization
and topological order. Each map quantizes the observation set intro 100 sub-
sets. Figure 7.23 shows the map that was obtained with Appcod1; on that
figure, the number that is located above the neuron indicates how many pixels
from the training set are allocated to that neuron. Figure 7.24 shows the

428 F. Badran et al.

Fig. 7.23. PRSOM (10× 10) map obtained using Appcod1 as the training set. The
map representation displays the 2D topological ordering. Each square contains a
number that identifies the neuron, and the figure above each square is the number
of pixels of the training set that are assigned to that neuron

same map, and, for each neuron, the associated variance. It is clear that
scattered values of the reflectance are represented at the upper right corner
of the map, whereas the lower left corner contains representative of similar
spectra. Physical considerations provide an interpretation of the various zones
of the map:

• The spectra are more stable if the sky is clear and if the signal permits an
analysis of the ocean

• High variability zones may stem from atmospheric influence that is due to
aerosols or to cloud reflection

The hundred patterns associated to the neurons are characterized by spectra
that are of the same kind as the observations (vectors of R

8). Figure 7.25 is
presenting for the first coding, the set of patterns and their topological con-
nections through the map. It is the same map than in Figs. 7.23 and 7.24 but
each neuron is now attached to its encoded pattern. Each encoded pattern
is an average spectrum over the allocated reflectance observations. The pat-
terns are organized according an order, which is visualized through the map.
The patterns that are associated to weak variance local densities have similar
shapes: the observation space is sampled there in a very fine way. Patterns
that belong to the high variance regions are sampling the observation space

7 Self-Organizing Maps and Unsupervised Classification 429

Fig. 7.24. Estimated variance for PRSOM. The map is the (10×10) map of the pre-
vious figure. The area of the disk above the neuron is proportional to the estimated
variance of the associated Gaussian distribution

430 F. Badran et al.

in a coarser way. The visualization technique enables to select some patterns
and then to specifically study the set of observations that are allocated to one
of these patterns or to locate them on the SeaWifs image.

A first investigation is useful to check the quality of the process (Fig. 7.25):
it is possible to identify wrong spectra with respect to the measurement
process. Actually, on this map, patterns that are associated to neurons
17,28,35 and 39 have a vanishing wavelength reflectance. If one gathers the
concerned information, it appears that they all present the same fault. It is
then possible to infer that in these cases a channel was defective and that
some neurons have specialized in detecting this fault. Figure 7.26 displays the
spectral patterns that are associated to neurons 17 and 35. and their variance.

One may perform a similar analysis for any of the 100 neurons of the
map. Figure 7.27 shows the spectrum that is associated to neuron 51, which
is located in a high-density zone. Then the set of allocated radiance spectra
is displayed as well as the associated geographical zone on SeaWifs image.
When it is compared with SeaWifs image of Fig. 7.21 one may notice that
neuron 51 controls a light colored zone located on the sea and for which there
is apparently neither desert aerosols nor clouds. When the ordering of spectra
that is proposed on Fig. 7.25 is inspected, one notices that the proposed
coding is governed by the spectral intensities. Thus the ordering favors the
emergence of underlying physical properties. The same experiments have been
performed using another encoding process that takes into account both the
intensity and the shape of the spectra (Appcod2). Figure 7.28 shows the new
ordered patterns that were obtained. (On that figure, the patterns have been
decoded in order to show their original spectrum profile). The organization
of the neurons is now performed with respect to their intensities and their
shapes.

7.5.2 Classification and PRSOM

The first experiment group allowed us to assess the quality of the vector
quantizations, which were obtained using PRSOM. We shall use now these
quantizations to achieve classification tasks.

A first possibility was displayed in previous section. Recall it amounts to
study separately the physical property of each neuron pattern of the map.
This study has to be performed by an expert, who is able to recognize the
aerosol class and thus to label the patterns from their spectral properties. If all
the neurons are identified, then the partition that is obtained through the self-
organizing map enables to use it straight to classify the whole image SeaWifs.
Moreover, if the learning set is representative of the physical problem, it may
be used to label other SeaWifs images that share the same physical properties.

If this identification process is not possible, i.e. if the expert is not able to
label accurately every neuron of the map, it is possible to cluster the neurons
according to an unsupervised way. One can proceed as it was demonstrated in
the previous section “Classification and topological map,” by aggregating the

7 Self-Organizing Maps and Unsupervised Classification 431

Fig. 7.25. Vector quantization from the previous PRSOM (10 × 10) map from the
training set Appcod1. The number that identifies the neuron is above the square, the
associated spectral pattern is drawn inside each frame

432 F. Badran et al.

Fig. 7.26. Figures (a) and (c) represent the spectral patterns that are associated
to neurons 17 and 35. Vertical bars represent the variance for each wavelength.
Figures (b) and (d) represent the radiance subset that are respectively represented
by neurons 17 and 35. (PRSOM 10 × 10 map obtained from Appcod1)

7 Self-Organizing Maps and Unsupervised Classification 433

Fig. 7.27. Representation of neuron 51 spectral characteristics: (a) representation
of the spectral observation vectors of the learning set Appcod1 that are allocated to
neuron 51 (b) representation of the spectral observation vectors of the geographical
zone, which is allocated to neuron 51, (c) representation of the geographical zone
in the total image, (d) representation in black of this geographical zone. (PRSOM
10 × 10 map obtained from Appcod1)

434 F. Badran et al.

Fig. 7.28. Representation of vector quantization, which is associated to PRSOM
map that is obtained from Appcod2. The identification number of the neuron is above
the frame. The associate pattern spectrum is depicted inside the frame

7 Self-Organizing Maps and Unsupervised Classification 435

neurons into classes and trying to label the classes that were obtained through
hierarchical classification. In order to illustrate as best as possible the quality
of results when PRSOM and BUHC (Bottom-Up Hierarchical Classification)
are sequentially processed, two experiments of different complexity are pre-
sented:

• The first experiment is relative to the determination of a mask that is able
to detect the thick clouds and to discriminate them from other spectra. It is
known that clouds are strongly reflecting the signal: the top of atmosphere
signal that are registered by the satellite sensors are presenting stronger
and more variable intensities than when sea or aerosols are concerned. The
discrimination between thick clouds and other constituents amounts to
build a binary classifier. Since clearly distinct properties in the observation
set physically characterize this problem, the two classes that are searched
have to be fully separated.

• In the second experiment one tries to recover the five classes, which have
been identified by the expert; these classes have been determined by com-
paring the data with aerosol physical models. Actually, the number of
classes is higher and the expert has possibly introduced a lot of mistakes,
so this problem is far more complex.

The two vector quantizations that have been obtained using PRSOM will
be used to recognize the expert-identified classes. Class determination will be
performed through bottom-up hierarchical classification using the Ward index
that has been previously defined in the paragraph �Looking for a partition
that suits the classes of interest�.

In the first experiment, bottom-up hierarchical classification is performed
on the PRSOM 10× 10 map obtained from Appcod1. Since the searched clas-
sification is a binary classification to select thick clouds, clustering has been
pursued up to the obtention of two classes. Figures 7.29 and 7.30 show the clas-
sifications that were obtained on the topological map and on the image. The
visualization of the map enables to observe the neurons of each class. Clearly,
the associated zones are well connected on the map. This classification has
been compared with the expert-based classification by computing the confu-
sion matrix. Here, SeaWifs provided the expert-based classification since the
cloud mask is available. The confusion matrix is represented on Table 7.2; it

Table 7.2. Confusion matrix that compares the SeaWifs labeled classification and
the classification that was obtained from PRSOM + BUHC. PRSOM was obtained
from Appcod1 and BUHC uses Ward index

PRSOM + BUHC

Clouds Apparent sea

SeaWifs-labeled clouds 0.91 0.09

436 F. Badran et al.

Fig. 7.29. Presentation on the map of the two classes that are proposed by PRSOM
+ BUHC: PRSOM was determined from Appcod1, and BUHC uses the Ward index.
The number at the right of the neuron frame represents the class that is obtained
through hierarchical classification. The set of dark grey neurons constitutes class 1
and the set of light grey neurons constitutes class 2

allows to compare the two classifications. The division between two geograph-
ical zones that is displayed on Fig. 7.30 shows a good adequacy to the division
that comes straight from the satellite data. It shows that the two classes have
been correctly demarcated by using PRSOM algorithm and then bottom-up
hierarchical classification onto the raw physical measurements without any
additional expert information. The nice consistency of hierarchical classifica-
tion results at the top level of the classification tree allows expecting that
clustering is consistent at any level of the hierarchy.

The second experiment is searching a zone that is already provided by
expert knowledge. Actually this class is case 2 water. This experiment confirms
the quality of vector quantization. In Fig. 7.22, this zone, which is endowed
with particular optical properties is colored in light grey. Investigation of
the various geographical zone that are associated to the 100 neurons of the
map enables to select three neurons. The subset of their associated spectra
allows to find a geographical zone that can be superimposed to the expert-
based region. Figure 7.31 shows the three patterns (w33, w82, w93) and the
associated geographical zones.

If the full hierarchy that arises from BUHC is investigated, one notices that
the three neurons of interest (namely 33, 82 and 93 constitute a subset that is

7 Self-Organizing Maps and Unsupervised Classification 437

Fig. 7.30. Presentation of the two classes that are proposed by PRSOM + BUHC:
the left image is representing the original SeaWifs image the center image represents
the land mask that is provided by SeaWifs (in white on the image) and the right
image presents the binary classification that is provided by PRSOM + BUHC (the
light zone is similar to the class 2 of Fig. 7.29 and represent thick clouds, the dark
zone includes various aerosols); PRSOM was achieved using Appcod1 as learning set
and BUHC uses the Ward index

clustered at the level 35 of the hierarchy. Thus, it is possible to propose from
this result a classifier that enables to automatically identify the case 2 water
labeled pixels. The neurons 33, 82 and 93 will be labeled case 2, all the other
neurons will be labeled by a negative label that points out they do not belong
to case 2. Then, it appears that in that case, using the hierarchical clustering
without additional expert knowledge may allow retrieving information which
comes from the physics of measure.

The last experiment is using straight expert knowledge. Knowledge is used
to label neurons according to the methodology that was presented previously
in the section about classification and topology. The test set is the expert-
labeled GAC image. Each neuron is then mastering pixels of GAC image that
are allocated to that neuron. These pixels constitute a subset of labeled ele-
ments. The label of the associate neuron is determined by a majority voting.
The two classifications are compared on Table 7.3 where the confusion ma-
trix is represented. It is clear that the neurons correctly provide the expert
knowledge.

438 F. Badran et al.

Fig. 7.31. Representation of the patterns, of the observation subsets and of the
geographical zones that are allocated to neurons 33, 82 and 93 (PRSOM map 10×10
using Appcod2 as learning set). Figures (a), (b), (c) represent the neuron spectra,
Figures (d) and (e) represent the associated learning set spectra for neurons 33 and
82. The zones that are associated to neurons 33 and 93 have been colored in black
in figure (f) and (g)

Table 7.3. Confusion matrix allowing the comparison between the expert-based
classification (GAC image) and the PRSOM-based classification. On this map, the
hundred neurons have been labeled using majority vote from expert data

PRSOM + majority vote

Class 1 Class 2 Class 3 Class 4

Marine aerosols 0.8 0.04 0 0.16
Expert Clouds 0.03 0.91 0.01 0.05

Case 2 0.03 0.22 0.71 0.03
Desert aerosols 0.1 0.04 0 0.86

7 Self-Organizing Maps and Unsupervised Classification 439

The bunch of results that were obtained in that application demonstrates
that topological maps are correctly operating when they are used to process
numerical data.

The following application is due to T.Kohonen. It shows that the algorithm
is performing well when it is used for textual processing.

7.5.3 Topological Map and Documentary Research

This last paragraph presents another real-world application in a field that
is completely different: documentary research. The general objective of the
Websom system that was created by Kohonen and his collaborators is to cre-
ate a content-based labeling of a set of texts. The current working version
allows organizing 7,000,000 texts in a single documentary data basis. Thus
documents with close-by semantics are endowed with neighbor label. A visual
inspection of the basis representation provides a global hint about the content
of the documents that are stored in a particular zone of the basis. Looking
for the keywords that are associated to the zone and considering the topics of
the different documents allow document searching in an original way. Consid-
ering his short description of Websom system’s main characteristics, one feels
how self-organizing maps are used: semantically close observations (texts) are
allocated to neighbor neurons on the map. In order for the application to be
operational, several additional properties have to be checked:

• As for the remote-sensing satellite data application, the quality of the
system depends closely on the semantics of the texts of interest.

• Documentary research is useful only if the number of stored texts is large
enough and if the visualization is fine enough. Thus the dimension of the
map has to be very high.

• The system is supposed to be operated on-line, thus it has to work fast.
• The basis algorithms has to be changed to allow

1. introducing a linguistic knowledge that enables textual manipulation,
2. training high-dimensional maps to be able to process as many docu-

ments as possible,
3. using a friendly interface which really helps the user to perform docu-

ment research,
4. reducing the duration of an average research session.

7.5.3.1 Information Coding

When a text is preprocessed significant information is extracted that depends
on the specificities of the general field of the research. Of course, the encoding
has to be made according the specifications of the topological maps: Kohonen’s
algorithm is processing numerical multidimensional data. Thus any text has
to be represented by an n-dimensional numerical vector. The current version
of Websom system is processing a corpus that contains 6,840,568 English

440 F. Badran et al.

summaries. The average length of such abstract is 132 words. To process
also number and symbols, it has been decided to cancel the words that are
too scarce (less that 50 occurrences) and also to cancel 1355 words that are
semantically poor. Eventually a set of 43,222 words has been considered for
the whole corpus.

Several versions of the system exist. The earlier was coding straight the
text histogram by a vector, the length of which was the word number of the
corpus. According to that coding, each component of the text representative
vector represents the weighted occurrence frequency of the associated word
in the text. The weights were fixed according to the influence of the word
on the document global meaning. This dimension was too large to allow fur-
ther processing. Several data compression methods were proposed to cope
with this high dimension problem: projection reduction (principal component
analysis) or random projection. Eventually a random projection method was
implemented. A 500-dimensional vector represents each text. Such a vector is
a text summary coming from a statistical analysis of the text vocabulary. The
coding complexity is O(NL)+(n), where N is the document number, L is the
average number of distinct words in a document and n is the initial histogram
dimension. To appreciate the reduction, it is interesting to point out that the
simpler projection compression method has a complexity equivalent to Nld.
Thus, the reduction is quite important and enables to extend Websom over
the whole corpus.

7.5.3.2 Specific Features of Learning Process

A visual representation of the corpus organization is possible through the two-
dimensional map. That is a great help for documentary research. At the end
of the learning phase, the allocation phase that associates a neuron to a doc-
ument enables to locate a given document with respect to the global corpus:
texts with similar meanings are supposed to be located in close zones on the
map. In Websom’s last version, the corpus is divided into 21 sections (agricul-
ture, transportation, chemistry, electricity, etc.). To extract this information,
each neuron is endowed with one of the section labels and a set of key words.
These keywords are extracted from the subset of texts that are allocated to
this neuron. More precisely, the type is determined through a majority voting
over the text subset and the keywords are selected by building the intersection
of the key-words set of every text of the text subset.

When Websom is used, texts with close meaning are projected in closed
regions of the two-dimensional map. So, projecting the text onto the map
enables to locate its meaning with respect to the whole set of texts of the
learning basis, actually the whole corpus. Using the map labeling enables to
interpret a new text through an automatic process. The neighbor neurons
provide subsidiary information that allows a finer understanding.

Considering the very large number of documents that lie in the basis,
a large amount of neurons are required in order to perform a fine enough

7 Self-Organizing Maps and Unsupervised Classification 441

document analysis. The more important change that was introduced enables
to train fast high-dimensional maps. The topological map that is used for
Websom is composed by 1,002,240 neurons. It is impossible to train this map
because the connection number is too large: 1,002,240 × 500. The new idea
relies on the simple fact that a good initialization considerably increases the
convergence speed. This good initialization is found through a hierarchical
procedure that enables to guide the training from one step to the next one. In
the Websom implementation, the parameters are tuned using a first rectan-
gular map of 435 neurons. This first map is extracted form the learning basis.
Then a second map that uses a finer sampling is initialized using the results of
the first one: the initial values of a parameter of the second map are obtained
through an interpolation of the values of the three closest neighbors extracted
from the 435 neurons of the first map. In that way, the number of neurons
increases from step to step up to 1,002,240 neurons. For each step, there is a
new learning phase of the whole corpus. The initial learning phase (for the 435
neurons of the first map) requires 300,000 iterations; every further learning
phase only requires five iterations of the “dynamical clouds” versions of the
algorithms. In such a way, it is possible to train very large maps. Moreover,
the hierarchical order that was found in the previous steps is used to find the
closest neighbors during the successive learning steps.

7.5.3.3 Discussing Websom Performances

The various improvements, which were implemented in Websom are quite ef-
ficient with respect to the time complexity of the computation. The method-
ology that was previously detailed allows reducing the number of opera-
tions from O(dN2) for the original Kohonen algorithm to O(dN2) O(dM2)+
O(dN) +O(M2) for Websom. In that expression, N is the number of neurons
in the actual map, M is the number of neurons in the initial map and d is
the dimension of the input layer (d = 500 for Websom). The comparisons
that were achieved with the original Kohonen methodology show that the last
version of the implementation has the same performances than the original al-
gorithm with respect to the quantization error and the classification error. The
final version of the map was obtained through a six-week learning phase that
was performed on a six-processor computer (SGI O2000). The performances
over the seven millions text basis go up to 64% of correct classification. As
it is generally the case for data mining applications, the interface was very
carefully designed : the map is presented as a sequence of HTML pages. It
is easy to explore it by using the mouse. A simple click enables to reach the
documents and then to visualize and to read them.

References

1. Anouar F., Badran F., Thiria S. [1997], Self Organized Map, A Probabilistic
Approach, Proceedings of the Workshop on Self-Organized Maps, Helsinki Uni-
versity of Technology, Espoo, Finlande, 4–6 juin 1997

442 F. Badran et al.

2. Bock H.H. [1996], Probabilistic Models in Data Analysis, Computational Sta-
tistics and Data Analysis, 23, pp 5–28

3. Bock H.H. [1998], Clustering and neural networks, in Rizzi et al. (éd.), Advances
in data science and classification, Springer verlag, pp 265–278

4. Cerkassky Y., Larmnajafih [1991], Constrained topological mapping for non
parametric regression analysis, Neural Network, vol. 4, pp 27–40

5. Dempster A.P., Laird N. M., Rubin D. [1977], Maximum Likelihood from in-
complete data via the E.M. algorithm (with discussion), Journal of the Royal
Statistical Society, series B 39, pp 1–38

6. Didday E., Simon J.C. [1976], Clustering Analysis, in Digital Pattern Recogni-
tion, K.S. Fu, Springer verlag

7. Duda R.O., Hart P.E. [1973], Pattern Classification and Scene Analysis, John
Wiley

8. Fritzke B. [1995], A growing Neural Gaz Network learns topology, D.S. Touretzky
and T.K. Leen (editors), Advanced in Neural Information Processing Systems
7, MIT Press, Cambridge MA

9. Gaul W., Opitz O., Schader M. (éd.) [2000], Data Analysis Scientific Modeling
and Practical Application, Springer

10. Jain A.K., Dubes R.C. [1988], Algorithms for Clustering Data, Prentice Hall
11. Kaski S., Honkela T., Lagus K., Kohonen T. [1998], WEBSOM-self-organizing

maps of document collections, Neurocomputing, vol. 21, pp 101–117
12. Kaski S., Kangas J., Kohonen T. [1998], Bibliography of self organizing map

(SOM) papers 1981–1997, Neural Computing Survey, vol. 1, pp 102–350. On
peut trouver cet article à l’adresse: http://www.icsi.berkeley.edu/∼JAGOTA/
ncs/

13. Kohonen T. [1984], Self organization and associative memory, Springer Series
in Information Sciences, 8, Springer Verlag, Berlin (2nd éd. 1988)

14. Kohonen T., Kaski S., Lagus K., Salojrvi J., Honkela J., Paatero V., Saarela A.
[2000], Self organization of a massive document collection, IEEE transaction on
neural networks, vol. 11, no 3

15. Kohonen T. [2001], Self Organizing Maps, Springer, 3e édition
16. Luttrel S.P. [1994], A bayesian analysis of self-organizing maps, Neural Comput,

6
17. Murtagh F. [1985], A survey of algorithms for contiguity-constrained clustering

and related problems, The Computer Journal, vol. 28, pp 82–88
18. Oja E., Kaski S. [1999], Kohonen Maps, Elsevier
19. Vichi M., Bock H.H. [1998], Advances in Data Science and Classification,

Springer, Heidelberg, pp 397–402
20. Von der Malsburg C. [1973], Kybernetik 14, 85
21. Yacoub M., Badran F., Thiria S. [2001], Topological Hierarchical Clustering :

Application to Ocean Color Classification, ICANN’2001, Springer 2001, Pro-
ceedings, pp 492–499

8

Neural Networks without Training for
Optimization

L. Hérault

Previous chapters have shown neural networks as powerful tools for mod-
elling, control, discrimination and automatic classification. In those fields,
non-linearity and training properties are used: a parameterised static or dy-
namic function is used, and the parameters are estimated through training.
This chapter will focus on another way of taking advantage of neural networks:
non-linearity and dynamics properties are also used, but the parameters of
those networks are naturally derived from the application, without training.
That approach is particularly well suited to solving optimisation problems.

What decision should to be taken? How to minimize the production costs
through an optimised tasks scheduling and an optimal management of flows
and resources? How to increase productivity? How to make the best use of
available resources to fulfil a request at a minimum cost? An optimisation
problem is the core issue behind all these questions. In fact, the optimisation
task deals with the choice between several alternatives. This choice is gov-
erned by the desire to make the best decision, which is often expressed as the
selection of a solution satisfying the problem requirements with a minimum
realization cost.

8.1 Modelling an Optimisation Problem

When facing an optimisation problem, the first step consists in reformulating
it in a mathematical way. That modelling is a crucial step and is sometimes
critical, since quantifying the quality of a solution is not that simple, and
the mathematical formulation (sometimes named coding) of a problem has an
influence on the choice of the methodology to solve it. That phase requires
a close cooperation between the optimisation experts and the application ex-
perts, who are looking for a solution. The result of that step is a mathematical
model, generally defined by

444 L. Hérault

• some variables;
• an objective, which is a function of the variables, and is generally expressed

as the minimization of a cost, or a set of costs, of the solution;
• some constraints to be satisfied by the solution. Some are essential; then

they are named strict constraints. Other ones express some preferences;
then they are named relaxable constraints.

The problem is then to find, in a limited time, a set of variable values
that reach the objective while satisfying the constraints. Depending on the
applications, the number of optimisation variables ranges from a few to hun-
dreds of thousands, and the expected response time from a few microseconds
to several hours. Moreover, it is sometimes desirable to find a set of solutions
among which the user will make a choice.

The variables of an optimisation problem can be

• continuous variables,
• discrete variables, e.g. binary variables (the problem is said to be combi-

natorial),
• mixed variables, i.e., some variables are continuous while others are dis-

crete (those problems are said to be mixed).

A problem, besides, may not contain constraints, or cost function to be op-
timised. In that last case, the question is then related to the existence of a
solution satisfying all the constraints; such a problem is named constraint
satisfaction problem. When all constraints cannot be satisfied, i.e., when the
problem has no solution, it is sometimes interesting to find a satisfactory
trade-off that violates a few relaxable constraints.

The cost functions to be optimised can be expressed with various for-
mulations, more or less complex, e.g. as linear or quadratic functions of the
variables.

Sometimes, the data necessary to solve the optimisation problem are not
immediately available, but may become available gradually: the methods must
then update dynamically the solutions.

Finally, some problems are distributed: some locally connected decision
centres make partial decisions according to the available local data, and that
set of local decisions must be a good solution of the global problem.

8.1.1 Examples

There is a very large variety of combinatorial optimisation problems. They
are commonly encountered in many industrial applications. Among them, the
author has been directly involved in the following typical areas:

• Military: resource allocation problems (weapon allocation on moving tar-
gets [Hérault 1995a,b,c]), target tracking [Hérault 1997a].

8 Neural Networks without Training for Optimization 445

• Computer aided design (CAD): design of complex materials, e.g. optical
filters or composite materials [Boudet et al. 1996]; shape and structure
optimization.

• Telecommunications: deflection routing of packets in ultra high speed net-
works [Hérault 1997b], code optimization in broadband wireless systems
(CDMA), and optimization of the radiation pattern of antenna arrays.

• Nuclear: stock management of perishable material [Privault et al. 1998a,b].
• Spatial: scheduling; mission planning, resource allocation, etc.
• Human resources: management optimization, allocation of persons to po-

sitions, optimization of timetables.
• Signal and image processing: particle tracking [Dérou et al. 1996], pattern

recognition [Hérault et al. 1993].
• Industry: job shop scheduling, packaging and routing problems.

Many other applications are described in [Takefuji 1992; Cichocki et al. 1993;
Dagli 1994; Takefuji et al. 1996].

Those problems can often be encoded as mathematical problems of graph
theory, such as graph colouring, graph partitioning, graph matching, as well
as extraction of sub-graphs with specific properties like cliques, paths, cycles,
etc. [Gondran et al. 1995]. As a consequence, it is important to study, jointly
with the applications, how to solve those families of generic problems. The
travelling salesman problem is one of those archetypal hard combinatorial
problems; we describe it in the following section.

8.1.2 The Travelling Salesman Problem (TSP)

Throughout this chapter, the graph theory problem named travelling sales-
man problem, which is a reference among the combinatorial problems, will be
frequently used as a problem example.

Reminder of the TSP

This is a tour optimisation problem: a travelling salesman has to visit some
towns with known geographic coordinates. To reduce its costs, he looks for a
tour that is as short as possible in terms of distance, and which goes through
each town exactly once.

Many algorithms have been proposed in the literature to solve this prob-
lem [Reinelt 1994; Gondran et al. 1995].

An example of problem with 101 towns is illustrated by Figs. 8.1 and 8.2.
Many applications can be modelled as this type of combinatorial problem:
such is the case, for instance, for the problem of finding the shortest path of
an industrial tool that has to machine some parts of an object (e.g., drill holes
in a printed circuit board).

446 L. Hérault

Fig. 8.1. Example of TSP with 101 cities

8.2 Complexity of an Optimization Problem

Optimisation problems can be classified as a function of their intrinsic com-
plexity.

In industrial applications, an optimisation problem can often be modelled
with a cost function and a set of constraints that are linear functions of the
optimisation variables (real numbers). In that case, the problem is a linear
programming problem and an exact solution can be found in a reasonable
time: the optimal solution can be found in a number of iterations that varies

Fig. 8.2. Optimal solution of the TSP given on Fig. 8.1

8 Neural Networks without Training for Optimization 447

polynomially with the number of variables. A number of methods were found
to solve efficiently this type of problems [Schrijver 1986], the most famous
one being the simplex (which has already been mentioned in the theoretical
and algorithmic addenda of Chap. 2, to put the dynamic models under a
canonical form). Nevertheless, when the number of variables becomes very
high, the simplex is very slow; other methods, such as the interior points
methods, avoid that drawback [Gonzaga 1992].

Practically, it is sometimes necessary to linearise some problems which
are non-linear. Nevertheless, the resulting modelling error can be large: it is
then necessary to use other methods, which can attack directly non-linear
problems. As described in the previous chapters, neural networks have that
specific property.

Many constrained optimisation problems encountered in industrial appli-
cations are combinatorial problems. Underlying graph theory problems are
often NP-complete [Garey et al. 1979]: in other words, the number of possible
solutions undergoes combinatorial explosion, i.e., it grows exponentially with
the number of variables. It is then possible to use heuristics, which are ad-hoc
techniques. Although unable to find exact solutions, they are able to find good
solutions in a reasonable computational time, but with no guarantee on their
optimality.

8.2.1 Example

The above-described TSP is combinatorial and belongs to the family of NP-
complete problems [Reinelt 1994]. The number of potential solutions, i.e., of
possible tours, for a TSP with N cities, is N !. Thus, for the example given
Fig. 8.1, the number of potential solutions is greater than 10159. Obviously,
an exhaustive enumeration of all those possible solutions cannot possibly be
performed. Even an approach consisting in picking at random many potential
solutions and keeping the best one would not provide good results. In fact,
those solutions would represent a tiny part of the set of possible solutions.
Therefore, using more elaborate techniques for providing good solutions in a
reasonable search time is mandatory.

8.3 Classical Approaches to Combinatorial Problems

To solve the linear programs with integer variables, which are combinatorial
problems frequently encountered in applications, some heuristics have been
proposed, such as cutting planes methods, which add constraints to reduce
the convex envelop of the solutions [Schrijver 1986].

Branch-and-bound methods are exact methods, which try to enumerate, in
an educated way, the feasible solutions, in such a way that good solutions are
found rapidly [Prins 1994]. They split the solution space into subsets that are
smaller and smaller, most of them being eliminated after bounds calculation

448 L. Hérault

before being constructed explicitly: that is the reason why they are called im-
plicit enumeration methods. When applied to combinatorial problems, those
approaches require a computational time that increases exponentially with
the number of variables, but their complexity is, however, smaller than an ex-
haustive enumeration. Nevertheless, those approaches are generally inefficient
to solve large-size problems with hundreds of variables, because they are too
computationally demanding.

Dynamic programming is an enumerative approach based on the idea that
solutions to sub-problems of the problem can help to guide the search of
the optimal solution of the global problem. Here again, that approach has
limitations for large size problems.

Local search methods, used as early as the seventies, are generally used
when the previous approaches cannot be used or require a too long resolu-
tion time. From an initial feasible solution, they try to improve it through
an exploration of a small neighbourhood. If a better solution is found, it be-
comes the current solution and the search is iterated from that solution. The
algorithms stops when no solution in the neighbourhood improves the current
solution. Metaheuristics such as simulated annealing or tabu search, which
will be described below, are refinements of those techniques, which avoid the
local minima of the cost function. To that end, from a feasible solution, a
small neighbourhood is explored as previously, but a move in the solution
space is authorized according to an ad hoc criterion. This criterion may au-
thorize moves towards solutions that may be worse that the current one, so
as to escape from local minima.

Constraint programming methods couple a reduction of the search space
with efficient branch and bound methods. Their efficiency has been ascer-
tained to solve some large-size problems, where constraint satisfaction is more
important than cost minimisation.

8.4 Introduction to Metaheuristics

At the beginning of the 1980’s, methods known under the generic name of
metaheuristics were proposed in order to attack problems of high complexity
[Reeves 1995; Osman et al. 1996; Aarts et al. 1997; Teghem et al. 2001].
Those approaches are iterative: they converge towards attractors that encode
good solutions of the problem. Therefore, the underlying theory is related to
the theory of dynamic systems, discrete or continuous, multi-dimensional and
generally non-linear. Such systems have also been analysed in Chap. 2 and
4. Those approaches are derived from the mathematical modelling of some
natural process:

• The modelling of physics process, by some methods of statistical physics,
has given rise to new methods such as simulated annealing.

8 Neural Networks without Training for Optimization 449

• The modelling of processes with memory gave rise to the so-called tabu
search. The specificity of that approach stems from the fact that it stores
in memory the recent past of the search, and possibly parts of the faraway
past.

• The modelling of the nervous system gave rise to neural algorithms. Being
massively parallel and allowing hardware implementations (analog, digital,
optical), they are particularly attractive to solve problems requiring very
short resolution time.

• The modelling of genetics initiated the development of genetic or evolution-
ary algorithms, in which potential solutions are considered as individuals
evolving inside a population.

• The modelling of the learning process gave rise to reinforcement learning
methods (see also Chap. 5). The corresponding algorithms can be distrib-
uted over a network of calculators, each of them learning how to react
optimally (in a stationary environment), from the knowledge of an evalu-
ation of its decisions by its neighbors. Those approaches are particularly
suitable for solving dynamic problems in non-stationary environments.

Finally, it is important to emphasize that there exist hybrid methods that
couple some metaheuristics, or metaheuristics and conventional approaches.

Before considering neural networks to solve optimisation problems, we
present the most closely related metaheuristics: simulated annealing.

8.5 Techniques Derived from Statistical Physics

It is possible to devise an analogy between combinatorial optimisation prob-
lems and the modelling of complex systems by statistical physics methods. A
complex physical system has a multitude of possible states; among them, an
equilibrium state is a state for which a quantity that depends on the system
state (e.g., its free energy) is minimum. The search for an equilibrium state
of a system simulated on a computer amounts to searching the minimum
of a function that depends on the system state, which might be defined by
a huge number of variables (such as the positions of the particles of the sys-
tem). Therefore, the simulation of macroscopic properties of a physical system
amounts to the search for a minimum of thermodynamical quantities such as
the free energy. By establishing an analogy between thermodynamical quan-
tities and the cost functions of an optimisation problem, it becomes possible
to find a minimum of the cost function, hence a solution to the optimisation
problem, by taking advantage of simulation techniques derived from statistical
physics.

Remark. To this end, the optimisation problem is assimilated to a system of
interacting particles, whose states code for the values of the variables. The op-
timal solution is then considered as a fundamental state (state with minimum

450 L. Hérault

energy) of this physical system. In order to get close to those fundamental
states, some results of statistical physics are used.

Two hypotheses on the physical system gave rise to two families of opti-
misation methods: the canonical analysis and the microcanonical analysis.

8.5.1 Canonical Analysis

Canonical analysis assumes that the physical system under investigation is
not isolated: it can exchange heat with its environment. As a consequence, we
will include in the methods a temperature parameter, denoted by T .

At a given temperature, the thermodynamical equilibrium of such a system
is a state such that the free energy of the system is minimum. This free energy
is defined as the difference between the internal energy and the temperature-
entropy product. Moreover, it is well known that the entropy is zero at zero
temperature. Those results can be used to solve an optimisation problem by
associating the cost function of the problem with the internal energy of the
system.

During the search of an optimum, it is important to explore a large terri-
tory in the solution space: to this end, thermal noise is used.

Finally, statistical physics teaches us that, at thermodynamical equilib-
rium, the system states are distributed according to a Boltzmann law: the
probability that the system be in a state of energy E0 is given by

P (E0) =
exp
(
−E0

kT

)
Z(T)

.

In this equation, k is the Boltzmann constant and Z(T) is a normaliza-
tion function ensuring that the sum of the probabilities of all the accessible
energies is 1. From this property, it is clear that the most probable states at
thermodynamical equilibrium are those of minimal energy. This property is
of great interest to solve optimisation problems.

Remark. The number of possible states is finite since we are considering a
combinatorial problem: therefore the energy states are discrete. As a conse-
quence, the notion of probability can be used; for a problem with continuous
variables, where the energies have continuous values, the notion of probability
density function, introduced in Chap. 2, should be used.

8.5.1.1 Simulated Annealing

Moreover, metallurgy teaches us that a good way to reach low energy states
of a solid consists in heating the material, and then letting it cool slowly.
That process, called annealing, forces the system evolution towards low energy
states; a slow cooling process (as opposed to a fast cooling, called quenching)

8 Neural Networks without Training for Optimization 451

avoids the system being trapped in metastable states corresponding to high-
energy local minima.

The principle of simulated annealing, defined independently by Kirkpatrick
in 1983 [Kirkpatrick et al. 1983], Siarry in 1984 [Siarry et al. 1984] and Cerny
in 1985 [Cerny 1985], consists in implementing those concepts as a numerical
algorithm. The idea is the following: at decreasing temperature steps, the al-
gorithm uses an iterative procedure, proposed by Metropolis in 1953, to reach
a thermodynamical quasi-equilibrium state. That procedure allows escaping
from local minima with a probability that increases with temperature. When
the algorithm reaches the very low temperatures, the most probable states
are excellent solutions to the optimisation problem.

The Metropolis Algorithm

In 1953, Metropolis devised an iterative algorithm that allows finding the ther-
modynamical equilibrium state of a simulated system at a given temperature
T [Metropolis et al. 1953]. It consists in iterating the two following steps:

• Evaluation of the energy variation associated with a random elementary
transition from the current state i, of energy Ei, to a new state j, of energy
Ej : ∆Eij = Ej − Ei.

• Acceptance of the transition to that new state with probability Aij defined
as:

Aij(T) =

⎧⎪⎨
⎪⎩

1 if ∆Eij = 0,

exp
(
−∆Eij

T

)
otherwise.

Simulated Annealing

The simulated annealing algorithm consists in decreasing the temperature in
a systematic way, from a high initial temperature, within the Metropolis algo-
rithm. In practice, several cooling schedules can be used. One is a geometric
decrease, in which the temperature at step k is given by

T (k) = αT (k − 1) ,

where α is a constant strictly smaller than 1, but close to 1.
Two types of simulated annealing were defined, depending on the cooling

schedule:

• in homogeneous simulated annealing, the temperature parameter is de-
creased only when the thermodynamical equilibrium is reached at the cur-
rent temperature; that algorithm assumes that the Metropolis procedure
has been iterated an infinite number of times, and therefore has only a
theoretical interest;

• in practice, the temperature parameter is decreased after a finite number
of evaluations of transitions at a given temperature: then the algorithm is
called in-homogeneous.

452 L. Hérault

Coding of the Optimization Problems

The practical performances of the simulated annealing are closely related to
the coding of the problem, and in particular to the choice of

• the variables;
• the elementary transitions, which define the topology of the solution space:

in that space, the distance between two states is the number of elementary
transitions necessary to go from one state to the other;

• the functions coding the cost and the constraints. Relaxable constraints
can be combined with the cost function; strict constraints can, for in-
stance, be automatically satisfied by an ad-hoc choice of the elementary
transitions.

Some Theoretical Results

The theoretical behaviour of the simulated annealing has been investigated
in great detail, through a Markov chain modelling (see Chap. 5). A good
overview of those results is given in [Aarts et al. 1989]. We summarize here
the most important results.

The Metropolis algorithm at a given temperature converges asymptoti-
cally towards the thermodynamical equilibrium at that temperature, which is
characterized by a stationary distribution of the states.

The homogeneous simulated annealing, which assumes that a stationary
distribution was reached by the Metropolis algorithm at each temperature
step, converges towards the optimal solutions of the problem, irrespective of
the cooling schedule.

As far as inhomogeneous simulated annealing (the only one used in prac-
tice) is concerned, Hajek found a necessary and sufficient condition on the
cooling schedule between two (or more) elementary transitions [Hajek 1988]:
the temperature at the k-th transition, or at the k-th temperature step, must
satisfy

T (k) ≥ C

log(1 + k)
,

where C is a constant equal to the maximum depth of the local minima.

Pros and Cons

That technique is very successful for two main reasons. First, the values of the
parameters of the method can be easily determined and a black-box operation
is often possible for real applications. Secondly, theoretical results show that
simulated annealing can reach solutions as close as expected of the optimal
solutions at a higher speed than an exhaustive exploration of the solution
space. Nevertheless, it is at the cost of the user’s patience. In practice it is
generally possible, depending on the amount of time available to solve the
problem, to automatically adjust the internal parameters of the method in

8 Neural Networks without Training for Optimization 453

order to make the best use of the allotted time, and find a solution that is a
good trade-off between the quality of the solution and the time required to
find it. Finally, this algorithm can be generalized to continuous optimisation
problems.

The main drawback of simulated annealing is in his reputation of slowness.
Depending on the requirements of the user on the solution quality, it may need
many computations associated with the transition evaluations. This can be
redhibitory in applications that require very short response times.

Besides, the parallelisation of the algorithm is difficult, particularly if one
wishes to keep the properties of theoretical convergence towards the optimal
solutions. Finally, the Metropolis algorithm, within the simulated annealing,
may appear costly: indeed, it requires a good numerical accuracy. Moreover,
the acceptance criterion of an elementary transition requests a random pick
of a real number and the computation of an exponential.

Many faster variants were devised [Dowsland 1995]. Some exploit a priori
knowledge on the solution space, when it is available. Others use various de-
creasing laws of the temperature. Finally, the parallelization of the algorithm
was investigated in depth. Nevertheless, the benefit in terms of convergence
speed is at the cost of a loss of the theoretical properties of asymptotic con-
vergence towards the optimal solutions.

Nevertheless, it is important to emphasize the existence of fast methods
which are simple to implement, and which keep these theoretical properties.
A good one consists in a crafty parallelisation of the simulated annealing by
using several computers in parallel [Roussel-Ragot et al. 1990]. The other
one consists in using the rescaled simulated annealing or the microcanonical
simulated annealing, which is described in the next section.

8.5.1.2 Rescaled Simulated Annealing

This algorithm speeds up the convergence of the simulated annealing in many
practical problems, while keeping the theoretical properties of asymptotic con-
vergence towards the optimal solutions [Hérault 2000].

It is derived from the fact that the Metropolis criterion is impatient, lead-
ing to some waste of time. In fact, The Metropolis criterion makes the current
state dive into low energy states as soon as possible. However, on high temper-
ature steps, all the local minima visited are of poor quality. As a consequence,
the acceptance criterion requires a lot of transitions to escape from high-energy
local minima, and thus waste elementary transitions and time.

To overcome that drawback, at each temperature step, the elementary
transitions are allowed only in an energy slice centred on a target energy
Etarget, which is a decreasing function of the temperature. In order to enforce
that behaviour, it is sufficient to modify the energies of the states inside the
Metropolis algorithm. The computation of the energy variation associated
with an elementary transition from state i to state j becomes

454 L. Hérault

∆Eij =
(√

Ej −
√
Etarget

)2

−
(√

Ei −
√
Etarget

)2

.

This modification is a generalization of the Metropolis algorithm: the latter
is retrieved by imposing Etarget = 0.

It can be shown that the following decreasing law of the target energy
guarantees satisfactory asymptotic convergence to the optimal solutions,

Etarget = αT 2,

where α is a positive real number.
That generalization of simulated annealing can be viewed as modifying

the energy landscape during the convergence of the algorithm. The rescaled
simulated annealing starts from a flattened energy landscape, which is then
progressively unfolded in an ad-hoc manner, at each temperature step. It is im-
portant to note that that unfolding does not affect the location of the extrema
of the original function. To illustrate this behaviour, consider the example of
a mono-dimensional function to be minimized, given on Fig. 8.3. Figure 8.4
shows the evolution of that function as a function of the target energy. When
the latter is zero, the recomputed function is the original one. When the tar-
get energy is high, the minima of the recomputed function correspond to the
maxima of the original function. Therefore, if the target energy is high at the
beginning of the search, the most probable states derived from the Metropolis
criterion will be the crests of the original function. Once the target energy is
smaller than the absolute minimum of the original function, the recalculated
function and the original one have their minima at the same locations, with
the same relative depths. Moreover, when the target energy decreases, the
minima of the recomputed function converge to those of the original function.
As in simulated annealing, homogeneous and inhomogeneous algorithms can
be defined. In terms of coding, no modification compared to the simulated
annealing is necessary.

The properties of asymptotic convergence to optimal solutions have been
proved; they compare favourably with those of simulated annealing.

The Metropolis algorithm minimizes the free energy of the system with
the corrected energies. In other respects, it can be shown that the asymptotic
convergence to thermodynamical equilibrium (stationary distribution of the
states) is estimated faster than with the Metropolis algorithm. Therefore, at
each temperature step, the distance to stationarity after a finite number of
elementary transitions is smaller than with the original metropolis algorithm.

As with simulated annealing, it can be shown that the homogeneous algo-
rithm converges asymptotically to the optimal solutions.

As far as the inhomogeneous algorithm is concerned, a sufficient condition
on the cooling schedule between two elementary transitions is the following:

T (k) ≥ C1

log (1 + k) + C2
,

8 Neural Networks without Training for Optimization 455

Fig. 8.3. Example of 1D function to be minimized

where C1 and C2 are real positive numbers.
This cooling schedule is faster than the law given by Mitra et al. in 1986

for the simulated annealing [Mitra et al. 1986].

Pros and Cons

In practice, the qualities of the simulated annealing are preserved with the
rescaling of the energies. Moreover, when the allotted time is limited, that

Fig. 8.4. Deformation of the function of Fig. 8.3 as a function of Etarget

456 L. Hérault

algorithm provides better solutions that simulated annealing because the ele-
mentary transitions to be performed are selected more efficiently.

8.5.2 Microcanonical Analysis

Microcanonical analysis in statistical physics assumes that the physical system
under investigation is isolated: it cannot exchange heat with its environment.
As a consequence, the total energy of the system is constant. That total en-
ergy is the sum of the kinetic energy and of the potential energy. To solve a
combinatorial optimisation problem, the cost function is associated with the
potential energy of the physical system.

At thermodynamical equilibrium, the entropy of a physical system is max-
imum. The latter represents the missing quantity of information to determine
exactly the state of the system. As a consequence, at thermodynamical equi-
librium, the states are uniformly distributed on constant energy hypersphere,
and thus are equiprobable.

Thermal noise is used in canonical analysis for exploring a wide area in
solution space; similarly, some kinetic noise is used in microcanonical analysis.

When the number of particles in interaction is very large, statistical physics
shows that the canonical analysis and the microcanonical analysis are equiv-
alent. Nevertheless, applied to combinatorial optimisation, microcanonical
analysis has some advantages in terms of implementation simplicity and con-
vergence speed.

8.5.2.1 Microcanonical Annealing

The principle of microcanonical annealing is similar to that of simulated an-
nealing. The main difference is the fact that microcanonical annealing per-
forms steps of decreasing total energy by decreasing the kinetic energy between
two steps, while simulated annealing performs steps of decreasing tempera-
ture. Therefore, the algorithm converges by decreasing the energy of energy
reduction of a set of solutions around the optimal ones.

In terms of coding of the optimisation problem, the coding can be strictly
the same as with simulated annealing.

Instead of using a Metropolis algorithm, microcanonical annealing uses
the Creutz algorithm, which allows maximizing the entropy for a given total
constant energy [Creutz 1983]. As the Metropolis algorithm, that method
evaluates a sequence of elementary transitions.

Creutz Algorithm. For a total energy Et, an iterative algorithm allows as-
ymptotic convergence to thermodynamical equilibrium. It consists in iterating
a large number of times the two following steps:

• Evaluation of the energy variation associated with a random elementary
transition from the current state i, with potential energy Ei, to a new
state j, of energy: ∆Eij = Ej − Ei.

8 Neural Networks without Training for Optimization 457

• Acceptance of the transition to that new state if ∆Eij ≤ Et − Ei.

Here, Et − Ei is the kinetic energy of the system when it is in state i. Note
that transitions to states with higher potential energy are allowed, under the
condition that enough kinetic energy is available to compensate the increase
of the potential energy, and therefore keep a constant total energy.

Microcanonical Annealing

The microcanonical annealing algorithm consists in reductions of the total
energy, from an initial high total energy, within the Creutz algorithm. Several
decreasing laws for the total energy can be used in practice, similarly to the
cooling schedules in simulated annealing.

Pros and Cons

The Creutz algorithm is much simpler than the Metropolis algorithm, and
requires fewer computations. Moreover, it does not require a good numerical
accuracy. If the problem is coded in integer numbers, it is not necessary to
make calculations with floating point numbers. Moreover, it is neither nec-
essary to compute an exponential, nor to pick at random a real number to
compare it with the result of the exponential function. Therefore, the compu-
tations used are extremely simple.

For large-size problems, microcanonical annealing provides solutions whose
quality is comparable to that of the simulated annealing, while being partic-
ularly cheap in terms of required calculations. Moreover, a parallelization of
this approach is possible.

Note that microcanonical annealing generates families of solutions with
comparable qualities, because all the solutions with the same level of total
energy are equiprobables. When the total energy is small, all accessible states
have a smaller energy (since the kinetic energy is a positive quantity) and are
good solutions.

However, at present, there is no proof of convergence, in contrast to sim-
ulated annealing. One of the reason is the existence of energetic barriers that
cannot be jumped with this algorithm, contrary to the simulated annealing:
in the Creutz criterion, the transition probability from a state i to a state j
can be zero when Et becomes small. More efforts are still needed to prove the
convergence properties.

8.5.3 Example: Travelling Salesman Problem

Let us consider the following coding for the travelling salesman problem. It is
one of the simplest coding schemes [Reinelt 1994].

Initially, the algorithm starts from a random feasible tour. A tour is rep-
resented by a vector of integer numbers, where the i-th component indicates
the position of city i in the tour.

458 L. Hérault

The transition from one state to another one is defined as the exchange of
the respective positions of two cities, chosen randomly in the tour. That type
of transition has two advantages. Firstly, it is simple to implement, thus quite
cheap. Moreover, it allows visiting the space of feasible tours. A transition
between two states is made of two steps:

• random selection of two cities,
• exchange of their positions in the tour.

8.5.3.1 Examples of Annealing Algorithms

In the following, we give some practical examples of annealing algorithms: sim-
ulated annealing, rescaled simulated annealing and microcanonical annealing.
More specifically, we present quasi-homogeneous algorithms, i.e., algorithms
that perform, at each step, a large number of elementary transitions bringing
close to thermodynamical equilibrium.

Remarks. For comparison purposes, note that

• Minor modifications are requested to upgrade a standard simulated anneal-
ing algorithm to a rescaled simulated annealing; only a few lines of code
must be added. In practice, the performances of those two approaches can
be compared at a small software development cost. In a fixed resolution
time, rescaled simulated annealing will perform a smaller number of ele-
mentary transitions than simulated annealing; their evaluation is slightly
more complex, but they are more efficient: the smaller the allotted resolu-
tion time, the larger the gain in efficiency.

• Microcanonical annealing is simpler to implement than simulated anneal-
ing, and can produce as good results. But if the user has a limited time to
solve the problem, it might appear less efficient, because it builds during
the search some impassable energetic barriers, which might trap it into
areas of solution space where no good solution exists.

8.5.3.2 Simulated Annealing

Initialization of the Algorithm

Define the minimal percentage p of accepted transitions on the first step.

Determine the initial temperature T = T0 such that p% of the tested
transitions are accepted.

Generate randomly an acceptable solution and compute its energy E.

Select the maximal number of tested transitions on each step: Nbmaxtest.

Select the parameter for the temperature decrease between two steps: dec.

8 Neural Networks without Training for Optimization 459

Simulated Annealing Algorithm

Set Nbaccepted = 1.

While Nbaccepted is non-zero

Nbtested = Nbaccepted = 0

While Nbtested < Nbmaxtest /* Metropolis algorithm */

Increment Nbtested.
Pick at random a valid transition.
Calculate the energy variation ∆E.
If ∆E < 0 then /* Accepted transition */

Perform the transition.
Update the energy E: E := E + ∆E.
Increment Nbaccepted.
Compare the new state with the best state found from the
beginning of the search, and store it in memory if it is
better.

Otherwise

Pick at random a real number rand in [0, 1].
If rand < exp(−∆E/T) then /* Accepted transition */

Perform the transition.
Update the energy E: E := E + ∆E.
Increment Nbaccepted.

Decrease the temperature: T := dec T /* Annealing */

Return the best state encountered during the search.

8.5.3.3 Rescaled Simulated Annealing

Initialisation of the Algorithm

Define the minimal percentage p of accepted transitions on the first step.

Determine the initial temperature T = T0 such that p% of the tested
transitions are accepted.

Initialize α, for instance with a value close to
√
Ê/T0, where Ê is the mean

energy of the solutions.

Generate randomly a valid solution and calculate its energy E.

Select the maximal number of tested transitions on each step: Nbmaxtest.

Select the parameter for the temperature decrease between two steps: dec.

460 L. Hérault

Rescaled Simulated Annealing Algorithm

Set Nbaccepted = 1.

While Nbaccepted is non-zero

Nbtested = Nbaccepted = 0

While Nbtested < Nbmaxtest /* Generalized Metropolis algorithm */

Increment Nbtested.
Pick at random a valid transition.
Calculate the energy variation ∆E.
Modify the energy variation by subtracting −2αT (

√
E + ∆E−√

E) from it
If ∆E < 0 then /* Accepted transition */

Perform the transition.
Update the energy E: E := E + ∆E.
Increment Nbaccepted.
Compare the new state with the best state found from the
beginning of the search, and store it in memory if it is bet-
ter.

Otherwise

Pick at random a real number rand in [0, 1].
If rand < exp(−∆E/T) then /* Accepted transition */

Perform the transition.
Update the energy E: E := E + ∆E.
Increment Nbaccepted.

Decrease the temperature: T := dec T /* Annealing */

Return the best state encountered during the search.

8.5.3.4 Microcanonical Annealing

Initialisation of the Algorithm

Define the minimal percentage p of accepted transitions on the first step.

Choose the initial total energy Et such that p% of the tested transitions
are accepted.

Generate randomly a valid solution and calculate its energy E.

Select the maximal number of tested transitions on each step: Nbmaxtest.

Select the parameter for the temperature decrease between two steps: dec.

8 Neural Networks without Training for Optimization 461

Microcanonical Annealing Algorithm

Set Nbaccepted = 1.

While Nbaccepted is non-zero

Nbtested = Nbaccepted = 0
While Nbtested < Nbmaxtest/* Creutz algorithm */

Increment Nbtested.
Pick at random a valid transition.
Calculate the energy variation ∆E.
If ∆E = Et − E is positive, then /* Accepted transition */

Perform the transition.
Update the energy E: E := E + ∆E.
Increment Nbaccepted.
If ∆E < 0, compare the new state with the best state
found from the beginning of the search, and memorize it if
it is better.

Decrease the total energy: Et := dec Et /* Annealing */

Return the best state encountered during the search.

To come close to optimal solutions of the problem illustrated on Fig. 8.1,
the following values of the parameters can be used:

• p = 90%
• dec = 0, 99
• Nbmaxtest = 500000.

With those parameter values, Figs. 8.5 and 8.6 show, for the standard simu-
lated annealing and the rescaled simulated annealing, the decrease of the mean
energy of the states visited during the convergence, as well as the length of
the best tour, found as the search converges. The mean energy of the solutions
is computed as

〈E〉 =

∑
i

Ei exp

(
−
(√
Ei − αT

)2
T

)
∑

i

exp

(
−
(√
Ei − αT

)2
T

) .

Those curves were obtained by computing averages over 100 runs with
different initializations of the random number generator. With identical pa-
rameters in the two algorithms, one observes that the energy rescaling speeds

462 L. Hérault

Fig. 8.5. Simulated annealing for the travelling salesman problem of Fig. 8.1: evo-
lution of the mean energy of the visited solutions, and of the best solution found
during the convergence

Fig. 8.6. Rescaled simulated annealing for the travelling salesman problem of
Fig. 8.1: evolution of the mean energy of the visited solutions, and of the best
solution found during the convergence. They follow the target energy as long as
they are greater than the minimal reachable energy

8 Neural Networks without Training for Optimization 463

Fig. 8.7. Comparison of the performances of the standard and rescaled simulated
annealing as a function of the total number of transitions tested by the algorithm.
Each value on the curves is computed over 100 runs of the algorithms

up the convergence. Figure 8.7 compares the average quality of the solutions
obtained with simulated annealing and with microcanonical annealing, as a
function of the total number of tested transitions. As expected, the smaller
the allotted resolution time, the larger the gain in terms of performance.

8.6 Neural Approaches

At the beginning of the 1980s, recurrent neural networks (defined in Chaps. 2
and 4) were shown to be able to solve optimisation problems. For that purpose,
they have two major advantages: first, neural algorithms often solve very ef-
ficiently some optimisation problems; in addition, neural algorithms can give
rise to high-speed numerical, analog, and even optical electronic implementa-
tions, taking advantage of parallelism.

As compared to other metaheuristics, recurrent neural networks are par-
ticularly well suited to problems that require extremely short response times,
and possibly a hardware implementation.

8.6.1 Formal Neural Networks for Optimization

In recurrent neural networks used in optimization, neurons are either binary
(their activation function is a hard limiter between −1 and +1), or with a

464 L. Hérault

Fig. 8.8. Sigmöıd function for different values of γ (γ = 50, 10, 5, 3, 2, 1, 0.5, 0.2)

sigmoidal activation function: in the latter case, the output yi of neuron i is
given by: yi = tanh(γvi), where γ is the slope at the origin of the sigmöıd,
and where vi is the potential of neuron i, defined, as in the previous chapters,
for a network of N neurons mutually connected, as

vi =
N∑

j=1

wijyj + Ii ,

where Ii is the constant input (bias) of neuron i.

Remark. In contrast to what was done in the previous chapters, for the
neural networks dedicated to optimisation, we will distinguish explicitly the
bias from the other inputs of the neurons.

The only difference with neurons used in Chaps. 2 to 4 is therefore in
the fact that the slope γ might be different from 1. Note that the sigmoid
approximates the hard limiter when γ increases (Fig. 8.8); that is the reason
why the inverse of the slope can be considered as a temperature, by analogy
with the algorithms described in the previous sections.

It is sometimes preferable to use neurons with continuous outputs between
0 and 1. They can be obtained directly from the previous formula by the
change of variable (vi + 1)/2.

When the outputs must be binary after convergence of the network, in-
stead of using the previous sigmoid function, for which 0 (or −1) and 1 are

8 Neural Networks without Training for Optimization 465

Fig. 8.9. Activation function for ρ = 1

asymptotic values, one can also use the following activation function, which
is continuous on [0,1]:

yi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if vi = 0

1
2

[
1 + sin

(
π

(
vi

ρ
− 1

2

))]
if 0 < vi < ρ

1 if vi = ρ.

Figure 8.9 shows the shape of this activation function when ρ = 1. In
that activation function, ρ is a strictly positive real number that controls
the maximal slope of the function; the latter is continuous, differentiable and
monotonic increasing. When ρ tends to 0, the activation function tends to a
step.

8.6.2 Architectures of Neural Networks for Optimisation

Recurrent neural networks are the neural techniques that are the most fre-
quently used for solving optimization problems. As explained in Chap. 2, the
graph of the connections of those networks has at least a cycle. For opti-
mization, those networks have no control input: they evolve with their own
dynamics, from an initial state (often random), to an attractor that encodes
a solution of the optimization problem. We will show later that simulated

466 L. Hérault

annealing and its variants can be modelled with that type of neural network,
which is then called a Boltzmann machine.

A good introduction to neural networks applied to optimization is given
in [Cichocki et al. 1993]. Papers of Takefuji give numerous examples of combi-
natorial problems solved with recurrent neural networks [Takefuji 1992; Take-
fuji et al. 1996].

8.6.3 Energy Functions for Combinatorial Optimisation

The most usual approach to solving a combinatorial optimisation problem
with a neural network consists in, first, defining an ad hoc energy function,
and, then, to transform the minimisation problem into the resolution of a sys-
tem of differential equations or difference equations. Generally, such a function
is written as the sum of a cost term and of a term expressing the constraints:

E = cost + constraints.

In the above equation, the two terms compete with each other; therefore,
E has many local minima. The goal is to minimize the cost function while
simultaneously maximizing the number of satisfied constraints. Mathemati-
cally, the minimization of the cost function often amounts to minimizing a
function E(x) over a finite set of point X, generally chosen as a hypercube in
a space of dimension N , {−1, 1}N or {0, 1}N . Vector x contains the variables
of the optimization problem: x = [x1, x2, . . . , xN]T . The function E(x) is
defined as

E(x) = Ec(x) +
∑

k

akEk(x),

where Ec(x) is the cost function, the Ek(x) are penalty terms associated with
violations of constraint, and the ak are weights to guarantee a satisfactory
balance between the minimization of the cost and the satisfaction of the con-
straints.

For many optimization problems, the function E can be expressed as a
quadratic form of the type

E(x) = −1
2

N∑
i=1

N∑
j=1

Tijxixj −
N∑

i=1

Iixi.

In the above relation, the quantities Tij and Ii are fully determined by the
energy function to minimize. For a given energy function E(x), the Tij express
a local curvature,

Tij = − ∂2E

∂xi∂xj
,

and the quantity Ii is given by the first derivative of the energy,

Ii = − ∂E

∂xi

∣∣∣∣
x=0

.

8 Neural Networks without Training for Optimization 467

We will show below that a recurrent neural network, such as the Hopfield
network can minimize the energy function.

8.6.4 Recurrent Hopfield Neural Networks

A Hopfield neural network [Hopfield 1982, 1984], as defined in Chap. 4, has
one layer of fully connected neurons; a delay of one time unit is associated
to each connection; the state vector being the vector of neuron outputs, the
order of the network is equal to the number of neurons.

Principle of Hopfield Neural Networks for Optimization

When applied to optimization, the network is used as follows: from an initial
state, the network evolves freely towards an attractor, which is generally a
time-independent state (a fixed point of the dynamics). Then the network is
said to have converged: the outputs of neurons no longer evolve any longer.

More details on the convergence properties can be found in the papers of
Goles [Goles 1995].

The dynamics of the network is generally asynchronous: between two in-
stants of time, a single neuron, randomly selected, is updated; in other words,
its potential is computed, and its output is appropriately updated.

When those networks are used to solve optimization problems, the weights
of the connections are found analytically from the formulation of the optimiza-
tion problem; generally, they are directly derived from the energy function
associated to the problem, as will be exemplified below. Moreover, in the at-
tractor where the network has converged, the outputs of the neurons code for
a solution of the optimization problem.

8.6.4.1 Binary Hopfield Neural Networks

The neural network initially proposed by Hopfield was a discrete-time recur-
rent neural network, with a symmetrical connection matrix (matrix of wij

coefficients) with a null diagonal [Hopfield 1982]. It has been presented in
Chap. 4.

Since each connection has a delay of one time unit, the potential of neuron
i at time k is the weighted sum of the activities of the other neurons at time
k − 1: vi(k) =

∑
j �=i wijyj(k − 1) + Ii, where yi(k) is the output of neuron i

at time k,wij is the weight of the connection between neuron j and neuron i,
and Ii is the bias (constant input) of neuron i.

The attractors on which the network converges are the minima of a func-
tion, called network energy, defined by

E(y) = −1
2

N∑
i=1

N∑
j=1

wijyiyj −
N∑

i=1

Iiyi ,

468 L. Hérault

where y is the vector of neuron outputs, i.e., the state vector of the system:
y = [y1, y2, . . . , yN]T.

That function is an N -variable function that generally has a large number
of local minima.

A natural link between such a function and the energy function of a com-
binatorial problem can be found. That is the reason why recurrent neural
networks are interesting for solving optimization problems.

8.6.4.2 Analog Hopfield Neural Networks

Hopfield described a continuous (called analog) version of the above binary
recurrent neural network [Hopfield 1984]. In that case, the associated energy
function is defined as

E(y) = −1
2

N∑
i=1

N∑
j=1

wijyiyj −
N∑

i=1

Iiyi +
α

γ

N∑
i=1

∫ yi

0

Ψ−1(y) dy ,

where α is a positive real number, and Ψ is the activation function of the
neurons.

Generally, the last term in that energy function is negligible with respect
to the previous ones, when the slope γ is large, or when α is small.

Hopfield and Tank first applied that type of neural network to combina-
torial optimization [Hopfield et al. 1985].

A potentially interesting feature of that type of network is the fact that
they can give rise to the hardware implementation of analog ASICs, by in-
terconnecting a set of resistors, some non-linear amplifiers with symmetric
outputs, external current sources and some capacitors [Newcomb et al. 1995].

The equations that govern the evolution of a continuous neuron i is the
following: ⎧⎪⎨

⎪⎩
dvi

dt
= µi

[
−αivi − ∂E (y)

∂yi

]
yi = tanh

(µi

T

)
,

where µi = 1/τi is a positive real number which parameterizes the convergence
speed, αi is a positive real number, T is the temperature (inverse of the slope at
the origin of the neuron’s activation function) and E(y) is the energy function
of the problem, which is not necessarily quadratic.

The derivative of the energy function E versus time can be written, from
the above equations, as

dE
dt

=
N∑

i=1

∂E

∂yi

dyi

dt
= −

N∑
i=1

τi
dyi

dvi

(
dvi

dt

)2

−
N∑

i=1

αivi
dyi

dt
.

8 Neural Networks without Training for Optimization 469

Clearly, the first term in that equation is always negative or zero because
τI > 0 and dyi/dvi > 0. As for the second term, it can be positive, negative
or zero; as a consequence, the derivative of the energy function with respect
to time can be positive [Takefuji 1992]. In order to avoid such a situation, a
slightly different motion equation is often used. It is given by

dyi

dt
= −µi

∂E(y)
∂yi

, i = 1, . . . , N.

As for the neuron outputs, the following equations are obtained:

dyi

dt
= −µi

T
(1 − y2

i)
∂E(y)
∂yi

, i = 1, . . . , N.

Thus, the dynamic properties of an analog Hopfield neural network are
governed by a system of non-linear differential equations.

With the above modification, it can be easily proved that any change of
state (i.e., of output) of a neuron decreases, or keeps constant, the network
energy,

dE
dt

=
N∑

i=1

∂E

∂yi

dyi

dt
=

N∑
i=1

[
−τi dvi

dt

]
dyi

dt
= −

N∑
i=1

τi
dyi

dvi

(
dvi

dt

)2

dE
dt

≤ 0.

In other words, the system of equations constrains the energy function E
to monotonically decrease to a local minimum. More precisely, the system has
the following property: from an initial point x inside the hypercube {−1, 1}N ,
the dynamic system converges to a local minimum of the energy function
E(y), located either on a vertex or on the surface of the hypercube. When
the attractor is on the surface, any vertex of that surface can be chosen as a
solution since the energy is constant on that surface. Therefore, any solution
where the network converges is locally optimal.

In practice, with a dedicated hardware implementation of such a network,
the convergence times are of the order of a few nanoseconds or microseconds.
That allows generally several resolutions of the problem, starting from differ-
ent initial points. That strategy can sometimes be efficient, but generally the
attractors are not satisfactory.

To solve efficiently combinatorial optimization problems, it is often prefer-
able to use continuous neurons with a variable slope. Thus, by evolving inside
the hypercube of solutions, and not only on its vertices as a binary neural
network does, the high-energy local minima are better avoided during con-
vergence. Moreover, it has been shown that a continuous neural network is
much faster and reliable than a binary neural network with an asynchronous
update of the neurons [Ayer et al. 1990; Lee et al. 1991a]. Minimizing E(y)
with a continuous y reduces significantly the probability of being trapped in

470 L. Hérault

a local minimum, because the valleys of the solution space are wider than in
the binary case. Unfortunately, analog neurons evolving inside the hypercube
rarely converge towards a vertex of the latter. In order to force the analog
neurons to finally have binary values that code for a solution of the problem,
several possibilities exist. One of them consists in increasing the slope at the
origin of the activation function of the analog neurons during convergence. As
a further refinement, one may add to the energy function a penalty term of
the form

Ey =
N∑

j=1

(
1 − y2

j

)
.

That term is zero if the neuron outputs are discrete, with values in {−1, 1}.

8.6.4.3 Application of Hopfield Neural Networks to Optimization

To summarize: from the above-described convergence properties, it ensues
that Hopfield neural networks can be applied to optimization problems with
the following methodology, featuring four steps:

1. Find an appropriate encoding of the problem. The question is, first, to
find a representation of the problem such that a solution, i.e., an instanti-
ation of the problem variables, is represented by the neuron outputs after
convergence.

2. Express the cost function and the constraints under the form of the energy
of a Hopfield network. Try to express the cost function as a quadratic
function. As for the constraints to be satisfied, they are of two types: those
defined by the optimization problem, and those resulting from the problem
encoding selected in the previous step. Sometimes, it is not possible to find
a quadratic energy. It is then necessary to try to express the problem as
the minimization of a function F , which can be differentiated with respect
to neuron outputs.

3. Find the equations of the neurons.
4. Randomly start the network. Generally, when no a priori knowledge on

the location of an optimal solution is available, the neuron states are
randomly initialized. Then, the equations of the neurons will drive the
network towards a local minimum of the energy.

That type of methodology has been applied to solve a wide variety of
combinatorial problems, which are generally amenable to problems of graph
theory.

8 Neural Networks without Training for Optimization 471

Table 8.1. Valid solution for a TSP with 5 cities

1 2 3 4 5

City A 0 0 1 0 0
City B 1 0 0 0 0
City C 0 1 0 0 0
City D 0 0 0 1 0
City E 0 0 0 0 1

8.6.4.4 Example of Hopfield Neural Network to Solve the TSP

To illustrate the previous methodology with a concrete example, we will detail
the resolution of a traveling salesman problem, proposed by Hopfield and Tank
in 1985 [Hopfield et al. 1985]. This resolution is not the most efficient one, as
we will se later, but it has an educational interest.

Step 1: Encoding the Problem

The first step consists in mathematically reformulating the problem, in order
to solve it with a neural network.

A problem solution, i.e., a tour of the different cities, can be encoded as a
permutation matrix, i.e., a square matrix with binary elements, which contains
exactly one 1 in each row and in each column. In other words, given N cities,
a tour is represented by a (N,N) having N2 elements. In that matrix, a row
represents a city, and a column the position of a city in the tour. Therefore,
a feasible tour is represented by a permutation matrix that has exactly N 1s
and N2 −N 0s. Table 8.1 shows an example of a matrix encoding a feasible
solution to a problem with 5 cities.

The corresponding solution is a tour in which the cities A, B, C, D and E
are visited in the following order: B-C-A-D-E-B.

A neuron is associated to each matrix coefficient. Therefore, that encoding
makes use of N2 neurons and N4 connections between the neurons. We will
denote by yi,j the output of the neuron (i, j) corresponding to the i-th row
and to the j-th column, and vi,j its potential. Moreover, the distances between
any pair of cities are known a priori: dij represents the distance between city
i and city j.

Step 2: Defining the Network Energy

8.6.4.5 Cost Function

The cost function to be minimized is the length of the journey performed
during the round. It can be expressed as a function of the outputs of the N
neurons that are equal to 1 in the permutation matrix. Mathematically, it is
given by

472 L. Hérault

Fc =
1
2

N∑
i=1

N∑
j=1

N∑
k=1
k �=i

di,kyi,j(yk,j−1 + yk,j+1),

where, by definition, yk,0 = yk,N and yk,N+1 = yk,1.
It can be written in a simpler way as follows:

Fc =
1
2

N∑
i=1

N∑
j=1

N∑
k=1
k �=i

di,kyi,j⊕1.

In that equation, di,k is the distance between cities i and k. The operator
⊕ is defined as follows:

For j < N, j ⊕ 1 = j + 1, and N ⊕ 1 = 1.

The term in the multiple sums is non-zero when city i is position j, and
that term is equal to the distance of the journey between that city and the
next one on the tour. The output of the neuron (i, j) is therefore multiplied
by the outputs of the neurons of column j ⊕ 1. Therefore, each neuron is
connected to 2N neurons in the network. As a consequence, the encoding of
that cost function does not require N4 connections, but N3.

8.6.4.6 Constraints

To guarantee that, after convergence, the matrix of neuron outputs is a per-
mutation matrix that guarantees the validity of the solution, some additional
constraints are defined. A penalty function is associated to their violation.

For a tour to be valid, each city must be visited exactly once. That requires
that, in each row, no two neurons have their outputs equal to 1. Therefore, the
following function is defined, such that it is non-zero if at least two neurons
have an output equal to 1 in a row:

F1 =
1
2

N∑
i=1

N∑
j=1

N∑
l=1
l �=j

yi,jyi,l.

Similarly, at each step on the tour, the traveling salesman cannot be in
more than one city. As a consequence, in each column, there no two neurons
have their outputs equal to 1 after convergence of the network. Therefore, the
following function is defined, such that it is non-zero if at least two neurons
have an output equal to 1 in a column:

F2 =
1
2

N∑
i=1

N∑
j=1

N∑
k=1
k �=i

yi,jyk,j .

8 Neural Networks without Training for Optimization 473

The above two constraints are not sufficient to guarantee the validity of
a solution. In fact, without any new constraint, the minimization process
would naturally drive the network in a state where all the neuron outputs
are 0. It does not make sense. The validity of a solution requires that exactly
N neurons have an output equal to 1 after convergence. Therefore, a third
constraint function is defined,

F3 =
1
2

⎡
⎣ N∑

i=1

N∑
j=1

yi,j −N
⎤
⎦2

.

8.6.4.7 Energy of the Neural Network

The total energy of the Hopfield network is the weighted sum of the above
functions,

E = Fc + a1F1 + a2F2 + a3F3.

Constants a1, a2 and a3 must be adjusted according to the relative weights
of the various constraints.

Step 3: Finding the Equations of the Neurons

The energy function of the problem can be expressed as a quadratic function,
which is the energy of a Hopfield neural network,

E(y) = −1
2

N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

wij,klyi,jyk,l −
N∑

i=1

N∑
j=1

Ii,jyi,j .

In that equation, the weights wij,kl are determined from the analytical
form of the cost and of the constraints. Considering the first constraint F1,
its contribution to the synaptic coefficients is given by

−δi,k(1 − δj,l) where δx,y = 1 if and only if x = y.

Similarly, the contribution of the constraint F2 to the synaptic coefficients is

−δj,l(1 − δi,k).

The contribution of the constraint F3 is −1.
Finally, the contribution of the cost function is given by

−di,k(δl,j+1 + δl,j−1).

Therefore, the final expression of the weights is

wij,kl = −2di,kδ1,j⊕l − a1δi,k(1 − δj,l) − a2δj,l(1 − δi,k) − a3.

The external input on the neuron (i, j) is: Ii,j = a3N .

474 L. Hérault

The equation of neuron (i, j) is easily derived, for instance in the case of
binary neurons. At time t+ 1, one gets

∆vi,j(t+ 1) =
N∑

k=1
k �=i

N∑
l=1
l �=j

wij,klyk,l(t) + Ii,j .

In the case of analog neurons, the motion equations are given by

dvi,j

dt
= µi,j

⎛
⎜⎝−αi,jvi,j +

N∑
k=1
k �=i

N∑
l=1
l �=j

wij,klyk,l + Ii,j

⎞
⎟⎠ ,

where µi,j and αi,j are real positive numbers.

Step 4: Starting the Dynamics

From a valid random solution, the initial values of the neuron inputs and
outputs can be defined. Then, a random asynchronous dynamics, based on
the motion equations of the neurons, makes the network converge to a local
minimum of the energy, in which the inputs and the outputs of the neurons
do not evolve any longer. After convergence, reading out the values of the
neuron outputs provides the encoding of a possible solution to the problem.
The validity of the solution must nevertheless be checked. If the solution is not
valid (i.e., if one or more constraints are violated), the network can be started
again from another random initial state, and/or the weighting constants can
be adjusted, for instance by increasing the constant associated to the violated
constraint.

8.6.4.8 Limitations of Hopfield Neural Networks

Solving optimization problems with Hopfield neural networks raises some
problems.

The main difficulty stems from the fact that the dynamics drives often the
network into a local minimum of the energy, which is not necessarily close to
the optimum, or which does not correspond to a valid solution. That is due
to the fact that the constraints are combined with the cost function in the
network energy.

Moreover, the Hopfield neural network makes no difference between the
strict constraints and the preference constraints, except by different weights
in the energy function.

Finally, the values of the parameters that weight the different terms of the
network energy have an influence on the number of iterations to convergence.

Those difficulties have given rise to numerous investigations aiming at
overcoming those limitations.

8 Neural Networks without Training for Optimization 475

8.6.5 Improvements of Hopfield Neural Networks

Numerous studies are in progress to overcome the limitations of the recurrent
neural networks without training for optimization. All of them will not be
mentioned in this chapter, but a few tracks recently explored will be detailed
in the following.

8.6.5.1 Improvements of the Encoding of the Energies to Minimize

To avoid being trapped in high-energy local minima corresponding to unac-
ceptable solutions, it is often fruitful to develop alternative encoding schemes
for the problem. Given a problem, different energy functions can be defined,
each of them being characterized by a more or less complex solution space
to explore. Along those lines, in the case of the TSP, Brandt suggested that,
in order to avoid being trapped in a high-energy local minimum during the
convergence, the following energy should be minimized [Brandt et al. 1988]:

E = Fc +
γ

2

⎡
⎢⎣ N∑

i=1

⎡
⎣1 −

N∑
j=1

yi,j

⎤
⎦2

+
N∑

j=1

[
1 −

N∑
i=1

yi,j

]2
⎤
⎥⎦ .

With the same goal, Szu, in 1988 [Szu 1988], proposed another energy
function,

E = Fc + a1F1 + a2F2 + a3

⎡
⎢⎣ N∑

i=1

⎡
⎣1 −

N∑
j=1

yi,j

⎤
⎦2

+
N∑

j=1

[
1 −

N∑
i=1

yi,j

]2
⎤
⎥⎦ .

8.6.5.2 Analog Hopfield Networks with Annealing

As explained briefly in previous sections, a first solution consists in varying
the temperature τi (the inverse of the slope at the origin of the activation
function of neuron i) in the analog Hopfield networks. As with simulated an-
nealing, it is initialized to a high value, and it decreases during convergence.
At high temperatures, the system behaves like a quasi-linear system, because
the activation functions are quasi-linear over a wide range of potential val-
ues. Therefore, neuron outputs vary between −1 and +1. By decreasing the
temperature, neuron outputs tend to the values −1 or +1, which code for
a solution. During convergence, a critical temperature Tc can be observed;
below that temperature, the system starts to freeze, i.e., the neuron outputs
significantly evolve towards +1 or −1 [Hérault et al. 1989]. That temperature
can be estimated theoretically for some optimization problems [Peterson et
al. 1989]. When it is the case, it is not necessary decrease the temperature
regularly: it is sufficient to let the system converge towards an equilibrium at
the critical temperature, and then to quench the system by brining it to a
temperature close to 0. At the end of this second step, all neurons are almost
binary.

476 L. Hérault

8.6.5.3 Probabilistic Networks

To avoid getting trapped in a high-energy local minimum, another approach
consists in defining probabilistic equations, by adding a noise term in the
motion equations of analog neurons. That noise term is such that its influence
decreases during the convergence of the network [Asai 1995]. The modified
equation of an analog neuron thus becomes

dyi

dt
= −µi

[
(1 − yi)2

∂E(y)
∂yi

+ c(t)Ni

]
, i = 1 . . . , N,

where the Ni are non-correlated sources of white noise with zero mean, and
c(t) provides the decreasing law of the noise. Typically, c(t) has the following
form:

c(t) = c0 exp
(
− t
τ

)
.

In practice, it is necessary to add an uncorrelated noise source to each neu-
ron, and to decrease gradually its power during the convergence. The benefit,
as with simulated annealing, is to provide the network with the capacity of
escaping from high-energy local minima, and thus to converge to much better
solutions. That is the reason why that technique is sometimes called hardware
simulated annealing.

8.6.5.4 Boltzmann Machine

The Boltzmann machine was first described in 1984 and 1985 [Hinton et al.
1984; Ackley et al. 1985]. It can be considered as a combination of the prin-
ciples of simulated annealing with those of binary Hopfield neural networks.
Its architecture is similar to that of a binary Hopfield neural network.

The energy of a Boltzmann network can be expressed under the same form
as the energy of a binary Hopfield neural network,

E(y) = −1
2

N∑
i=1

N∑
j=1

wijyiyj .

The first step of the updating of a neuron i consists in computing the
energy variation generated by its change of state. The energy variation asso-
ciated with the change from 0 to 1 of a neuron output is given by

∆Ei = Eyi=1 − Eyi=0 = −
N∑

j=1
j �=i

wijvj .

Then, the state of the neuron changes with the probability given by the
Metropolis criterion used in simulated annealing. During the convergence of

8 Neural Networks without Training for Optimization 477

the network, as with simulated annealing, the temperature parameter de-
creases progressively.

Considering for instance the TSP, the same encoding as the one used by
Hopfield networks, and based on permutation matrices, can be performed.
The binary outputs of the neurons code a solution of the problem. Energies
associated with the cost function and the constraints are exactly the same as
those defined for a binary Hopfield network. The neuron outputs are randomly
initialized with the values 0 or 1. Therefore the initial state does not necessarily
code for a valid solution of the problem.

To present, we have proceeded as with Hopfield networks. But the updating
of the neurons is different. To make the network evolve, a neuron i is picked at
random. Independently of the value of its output, the probability pi of setting
the output of that neuron to 1 is determined. To this end, the difference ∆Ei

between the network energy value when pi is equal to 0 and when pi is equal
to 1 is computed. These energy values depend on the current state of the other
neurons of the network. The probability to set the output of neuron i to 1 is
computed from ∆Ei and from the temperature according to the formula used
in simulated annealing,

pi =

⎧⎨
⎩

1 if ∆Ei ≤ 0,

exp
(
−∆Ei

T

)
otherwise.

If the probability is equal to 1, the output of neuron i is set to 1. Otherwise, a
random number between 0 and 1 is generated. If it is lower than the computed
probability, then the output of neuron i is set to 1; otherwise, it is set to
0. That updating procedure is iterated until the system is brought close to
thermodynamical equilibrium at temperature T .

The above-described procedure is applied on decreasing temperature steps,
as in simulated annealing.

The network has converged when the number of state changes minimal.
The above procedure shows the close relation between simulated anneal-

ing, Hopfield recurrent neural networks and Boltzmann machines. That is the
reason why the algorithms derived from statistical physics are often consid-
ered as neural techniques. The convergence properties of Boltzmann machines
are considered in detail in [Aarts et al. 1989].

8.6.5.5 Mean Field Annealing

Another approach, whose objectives are similar to those of the previous tech-
nique, is the mean field theory, or mean field annealing. The principle is to
manipulate statistical means of the visited states in the Metropolis procedure
used in simulated annealing. Unfortunately, it is necessary to make the so-
called mean field approximation handle those means mathematically. That
approximation consists in replacing very complex functions by their Taylor

478 L. Hérault

development truncated around a saddle point (see below): that is the main
difference between simulated annealing and mean field annealing.

The performances of mean field annealing are sometimes improved by per-
forming some normalization on groups of neurons [Hérault et al. 1989; Peter-
son et al. 1989]. Some constraints of the type one output out of N equal to 1
are then naturally taken into account, without resorting to additional penalty
terms in the energy function. Similarly to microcanonical annealing [Hérault
et al. 1993], it is possible to build a microcanonical mean field annealing al-
gorithm [Lee et al. 1991b].

The equations of the mean field approximation, giving the neuron outputs
between −1 and +1, are defined as follows:

yi = tanh
(
− 1
T

∂E(y)
∂yi

)
, i = 1, . . . , N.

In mean field theory, the temperature is fixed, and it is chosen around the
critical temperature Tc, which is generally very difficult to estimate. That
is the reason why it is preferable to use the mean field annealing with a
decreasing temperature according to a given schedule during convergence [van
den Bout et al. 1989, 1990; Peterson et al. 1988, 1989; Peterson 1990; Hérault
et al. 1989, 1991]. Contrary to simulated annealing, mean field annealing is
a deterministic and intrinsically parallel method, described by the following
system of differential equations:

dyi

dt
= −µi

(
yi − tanh

(
− 1
T

∂E(y)
∂yi

))
, i = 1, . . . , N.

8.6.5.6 Pulsed Neural Networks

Pulsed neural networks [Hérault 1995c] do not suffer the limitations of the
Hopfield networks in terms of constraint violation. They are defined with
models of binary neurons that are more general than those used in the Hopfield
neural networks. In a Hopfield network, the non-linearity of a neuron is only
in its activation function: its potential is a linear function of inputs, and its
output is a non-linear function of its potential. In a pulsed neural network,
the potential of a neuron is a function, possibly non-linear of its inputs, and
the motion equation has a more general form,

yi = Φ[vi(k − 1), y1(k − 1), . . . , yN (k − 1)].

The dynamics associated with that type of networks alternates several con-
straint satisfaction phases, during which the network converges towards valid
solutions, and pulsation phases, during which the network tries to escape
from local minima to go to better minima. In practice, the network proposes
regularly some valid solutions (if they exist) of satisfactory quality. The se-
lected solution will then be chosen among the set of proposed solutions. That

8 Neural Networks without Training for Optimization 479

type of network has been used successfully to solve problems where the so-
lutions are required in very short response times, such as resource allocation
problems (for instance, problems of allocation of weapons on targets [Hérault
1995a,b,c], and problems of extraction of maximum cliques encountered in
fluid mechanics [Dérou et al. 1996]).

8.6.5.7 High-Order Neural Networks

In order to better satisfy the constraints during convergence, some neural
networks with continuous outputs have been defined; their particularity is
that they use penalty terms of order greater than 2 [Sun 1993]. That gives
rise to equations of neurons that are based on Newton methods, which have
a convergence speed of order 2, such as, for instance,

dvi

dt
= −

∂E

∂yi

∂2E

∂y2
i

.

That type of network has been successfully applied to combinatorial prob-
lems, by using a particular dynamics, which consists in selecting the neuron
to be updated by the following procedure:

• Compute in parallel all the ∆vi associated with the penalty energy of the
constraints, and select those which have the smallest ∆vi.

• Compute the gradient of the cost function for the neurons selected in the
previous step, and keep the neuron degrading the least the cost value.

Example of the TSP

We consider again the TSP, with the same encoding as for a Hopfield network
(permutation matrix encoded by the neuron outputs); in order to make use of
the above equations, the penalty terms associated with the constraint violation
must be of high order. They are derived from the following conditions, which
are required for a solution to be valid:

• For each city i:
∏N

j=1(1 − yi,j) = 0 and ∀ j, l yi,jyi,l = 0.
• For each position j on the tour:

∏N
i=1 (1 − yi,j) = 0 and ∀ i, k yi,jyk,j = 0.

An energy associated with the constraint violations is then derived,

Ec =
N∑

i=1

N∏
j=1

(1 − yi,j)2 +
N∑

j=1

N∏
i=1

(1 − yi,j)
2 +

N∑
i=1

N∑
j=1

N∑
l=1
l �=j

y2
i,jy

2
i,l

+
N∑

j=1

N∑
i=1

N∑
k=1
k �=i

y2
i,jy

2
k,j .

480 L. Hérault

8.6.5.8 Lagragian Neural Networks

Kuhn and Tucker showed that the solutions of a continuous optimization
problem with constraints are the saddle points of an associated function, called
Lagrangian [Kuhn et al. 1951]. Therefore, those problems can be solved by
gradient methods applied to their Lagrangian.

Lagrangian neural networks are recurrent neural networks with continuous
outputs, which have the specific property of converging to the saddle points
of a Lyapunov function, instead of converging to local minima. They can be
used to solve combinatorial optimization problems [Maa et al. 1992; Mjolsness
et al. 1990, 1991; Zhang 1992; Rangarajan et al. 1996].

Example of the TSP

An augmented lagrangian can be defined for the TSP encoded as for the
Hopfield network,

L(y, λ, µ) = Cost+
N∑

i=1

λ0
i

⎡
⎣ N∑

j=1

yi,j − 1

⎤
⎦+

N∑
j=1

λ1
j

[
N∑

i=1

yi,j − 1

]

+
1
2

N∑
j=1

µ0
i

⎡
⎣ N∑

j=1

yi,j − 1

⎤
⎦2

+
1
2

N∑
j=1

µ1
i

[
N∑

i=1

yi,j − 1

]2

.

In that equation, parameters {λ0
i }, {λ1

i } are the Lagrange multipliers,
while parameters {µ0

i }, {µ1
i } are the penalty weights.

Continuous equations for the neuron outputs and the Lagrange multipliers
are defined as follows:

dyi,j

dt
= −µ

⎡
⎢⎣ N∑

k=1
k �=i

di,kyk,j + λ0
i + λ1

j + µ0
i

⎡
⎣ N∑

j=1

yi,j − 1

⎤
⎦+ µ1

j

[
N∑

i=1

yi,j − 1

]⎤⎥⎦
dλ0

i

dt
= −ρ

⎡
⎣ N∑

j=1

yi,j − 1

⎤
⎦

dλ1
j

dt
= −ρ

[
N∑

i=1

yi,j − 1

]
.

In the above equations, µ and ρ regulate the convergence speed of the
network.

That approach is far less sensitive than Hopfield networks to the penalty
parameters associated with the constraint violations. However, convergence
times can appear to be much longer.

8 Neural Networks without Training for Optimization 481

8.6.5.9 Potts Neural Networks

To solve many combinatorial optimization problems, it is often interesting to
encode the neurons in a vector form, by generalizing the neuron structure
with K activation potentials, and K coupled outputs, whose sum is constant.
By analogy with the Potts spin glasses in statistical physics, those neurons
are called Potts neurons.

That form allows a natural encoding of constraints of the type 1-out-of-
K or n-out-of-K. In other words, among the K outputs of a vector neuron,
exactly n must be at +1 in a solution, all the others being −1. That type
of constraint could be expressed under the form of an energy to minimize.
But that strict constraint might not be satisfied at the convergence on a local
minimum.

Making use of Potts neurons consists in replacing sigmoid activation func-
tions by multidimensional activation functions. For a constraint of type 1-out-
of-K, that amounts to defining binary neurons (i, a), with potential via and
output yia defined by

yia =
exp(via)

K∑
b=1

exp(vib)

, i = 1, . . . , N, a = 1, . . . ,K.

Clearly, for each Potts neuron i, we have
∑K

a=1 yia = 1.
In other words, at the end of the convergence process, the constraint is

automatically satisfied.
The mean field equations previously mentioned can also be defined with

analog Potts neurons [Peterson et al. 1989; Peterson 1990; Hérault et al. 1989,
1991].

The use of those neurons has the following benefits:

• The energy function contains a smaller number of competing terms.
• It is not necessary to tune a parameter which weight an energy function

associated with the violation of this type of constraint.
• Results are generally much better than those provided by scalar neurons.

That type of neural network has been applied to many problems, such
as graph partitioning problems [Hérault et al. 1989], knapsack problems
[Ohlsson et al. 1993], or scheduling problems [Lagerholm et al. 1997].

8.6.5.10 Rangarajan Neural Networks

When the solutions of a problem are expressed under the form of a permuta-
tion matrix, the neural network proposed by Rangarajan can be used. It has
the advantage of not requiring the addition of penalty terms to the energy
function in order to satisfy this constraint [Rangarajan et al. 1995, 1999]. It
combines the Hopfield network with a projection algorithm on the space of

482 L. Hérault

doubly stochastic matrices, derived from the two following theorems [Sinkhorn
1964].

A doubly stochastic matrix is a matrix with real positive coefficients, such
that the sum of the coefficients of each row and of each column is equal to 1.

Theorem 1. To a strictly positive N×N matrix corresponds exactly a doubly
stochastic matrix TA which can be expressed under the form TA = D1A D2,
where D1 and D2 are positive diagonal matrices. Matrices D1 and D2 are
unique, within a scalar factor.

Theorem 2. The alternative normalization of rows and columns of a strictly
positive N×N matrix converges to a strictly positive doubly stochastic matrix.

Remark 1. That normalization consists, when considering an element of the
matrix, in dividing it successively by the sum of the row coefficients, and then
by the sum of the column coefficients.

Therefore, theorem 2 is a projection algorithm on the space of doubly
stochastic matrices. Combined with an analog annealed recurrent neural net-
work, it provides a powerful algorithm that guarantees the convergence of the
network to a valid solution (coded by a permutation matrix) of good quality.

Example of the TSP

Let us consider the TSP with the same coding as the one used by a Hopfield
network (permutation matrix coded by the neuron outputs).

The energy function is defined as follows:

E =
N∑

i=1

N∑
j=1

N∑
k=1
k �=i

di,kyi,jyk,j⊕1 − γ

2

N∑
i=1

N∑
j=1

y2
i,j ,

where γ is a strictly positive real number.
The second term in this equation is called auto-amplification term; it is

useful to avoid converging to a null matrix.
The motion equation of an analog neuron (i, j) is defined by

dvi,j

dt
= − dE

dyi,j
= −

N∑
k=1
k �=i

di,kyk,j⊕1 + γyi,j .

To enforce the strict positivity of the neuron outputs, the authors use an
exponential activation function instead of a sigmoid function,

yi,j = exp(βvi,j),

where β is a positive real number.
The dynamics of that analog neural network can be either synchronous,

or random asynchronous. After an update of the neurons, the outputs are
projected on a close doubly stochastic matrix by an alternative normalization
of rows and columns:

8 Neural Networks without Training for Optimization 483

• normalization of column j: yi,j := (yi,j)/(
∑N

i=1 yi,j),
• normalization of row i: yi,j := (yi,j)/(

∑N
j=1 yi,j).

During convergence, an annealing is performed by increasing the parame-
ter β in order to force the neuron outputs to converge to binary values.

That type of approach is very efficient when the neuron outputs must be
under the form of a permutation matrix.

Very good results were obtained on other combinatorial problems [Ran-
garajan et al. 1999].

8.6.5.11 Mixed-Penalty Neural Networks

Recurrent neural networks with mixed penalties can be used to solve 0/1 linear
programming problems, which are combinatorial problems. Those networks
can be viewed as annealed analog Hopfield neural networks, in which the en-
ergy function includes additional terms to help the convergence. Those terms
are directly inspired from energy functions used in interior point methods for
linear programming problems [Gonzaga 1992].

Consider the constraint satisfaction problem consisting in the search for
Q binary variables that simultaneously satisfy M linear inequalities. That
problem is NP-complete. It can be defined as follows:

gk(y) ≤ 0, k = 1, . . . ,M, y ∈ {0, 1}Q.

One associates those variables to analog neuron outputs yi.
The energy of the neural network is given by [Privault et al. 1998a]

E =
Q∑

i=1

yi (1 − yi) +
M∑

k=1

[
γ

2
δk (gk (y))2 − 1

α
(1 − δk) ln |gk (y)|

]
,

where γ and α are positive real numbers, and where δk is equal to 1 when
constraint k is violated, and to 0 otherwise.

In that energy, the first term penalizes the fact that neuron outputs are
not binary.

The second term corresponds to the constraints. For the kth term in the
sum

• The first part penalizes the violation of the k-th constraint: it is an exterior
penalty term.

• The second part is an interior penalty term, which prevents the system
form being attracted to bad local minima. It is not associated to a con-
straint violation. On the contrary, it is applied to the k-th constraint only
when that constraint is satisfied; nevertheless, its goal is to keep the cur-
rent state of the network far from the constraint boundaries of equations
gk(y) = 0, and therefore to stay close to the analytic centre of the problem,
defined by

484 L. Hérault

arg min
y

[
− ln

[
M∏

k=1

− gk(y)

]]
.

During convergence, an annealing is performed by increasing the coefficient
α, so that states close to the constraint boundaries are visited.

That network was assessed on numerous practical examples of an industrial
problem containing up to 30,000 binary variables and 1,500 inequalities. In
each example, a solution has been found in less than 500 complete updates of
the network.

8.7 Tabu Search

Tabu search algorithms are iterative algorithms, whose main feature is that it
stores in memory the near past during the search (and possibly scraps of the
faraway past) in order to avoid retracing one’s steps. Moreover, some mech-
anisms allow intensifying the search in a part of space where some solutions
appear interesting. On the contrary, some other mechanisms allow to diversify
the search, in other words to leave for new parts of the solution space when
the part currently explored does not seam to contain interesting solutions.

Glover described that metaheuristics in 1986, but similar ideas were pro-
posed at that time by Hansen. At present, an increasing number of publica-
tions are devoted to Tabu search. That metaheuristics was applied to many
applications, and provided excellent results [Glover et al. 1997]. Among those
applications, one finds many combinatorial problems such as scheduling, vehi-
cle routing, resource allocation, graph coloring, graph partitioning problems.

Similarly to simulated annealing and its variants, that metaheuristics may
require a long resolution time. A notable difference with the methods derived
from statistical physics is that far less theoretical results exist. As a conse-
quence, the tuning of the parameters is often more empirical and difficult.
Nevertheless, when faced to a practical optimization problem to be solved in
a limited time, it is difficult to anticipate whether simulated annealing or tabu
search would provide the best solution.

8.8 Genetic Algorithms

Genetic algorithms were first described by Holland in 1975. Initially, they were
not designed for optimizing functions, but for modeling adaptive behaviors.
In fact, genetic algorithms model an evolution process of species, drawing
inspiration from the evolution theory of Darwin.

In a genetic algorithm applied to optimization, a potential solution is con-
sidered as an individual in a population [Goldberg 1989]. The value of the
cost function associated with a solution measures the fitness of the associ-
ated individual to its environment. A genetic algorithm simulates the evolu-
tion during several generations of an initial population whose individuals are

8 Neural Networks without Training for Optimization 485

poorly fitted, by means of genetic operators of mutation and crossover. After
some generations, the population is made of well-fitted individuals, in other
words of supposedly good solutions to the problem. The main difference with
simulated annealing and tabu search is that genetic algorithms manipulate
populations of solutions, instead of manipulating a single solution, which is
improved statistically in an iterative way. Genetic algorithms can be consid-
ered as generalized local search algorithms.

At present, genetic algorithms have important limitations, mainly due to
a very difficult tuning (coding of the solutions, types of genetic operators, size
of the initial population, required number of generations, percentage of muta-
tions, of crossovers, etc.). Moreover those algorithms are slow and can require
large memory storage for the individuals of several generations. In terms of
theoretical results, at the present time, there are far less solid theoretical re-
sults than with other metaheuristics such as methods derived from statistical
physics.

8.9 Towards Hybrid Approaches

At present, in order to solve hard combinatorial problems encountered in
real applications, an tendency emerges, aimed at building complex methods
incorporating knowledge and techniques coming from various horizons (linear
programming, branch and bound, simulated annealing, tabu search, neural
networks, etc.).

For instance, to solve a 0/1 linear programming problem with tens of
thousands variables and constraints, associated with a real stock management
problem, a metaheuristics was developed around a core based on simulated
annealing, with the following specific features [Privault et al. 1998b]:

• The initial solution is derived from a binarization of the solution of the
continuous problem, obtained with the simplex algorithm.

• During the search, some intensification and diversification mechanisms de-
rived from tabu search are used.

• Since it is difficult to find valid solutions, as soon as a new linear constraint
is satisfied, that constraint is no more violated afterwards.

Another way to combine efficiently different concepts encountered in the meta-
heuristics is presented for the TSP in [Charon et al. 1996].

8.10 Conclusion

8.10.1 The Choice of a Technique

The points developed in the previous sections allow making some choices as
a function of the particularities of the problem to solve:

486 L. Hérault

• Analyze the complexity of the problem:
1. theoretical complexity, in order to determine whether a classical ap-

proach is sufficient: intrinsic complexity, number of variables, number
of constraints, type of costs to minimize;

2. practical complexity: computation time required for evaluating a can-
didate solution, constraints on the global resolution time, requirements
on the quality of the solution.

• Define how the method is to be used (automatic, semi-automatic with
tunable parameters, etc.) and assess the degree of skill of the users.

• Assess precisely the requirements on the quality of the solution; for in-
stance, if the data of the problem to solve are corrupted by noise, it is not
necessary to go as close as possible of the optimum.

• Assess the available development time.

If the requirement on the quality of the solution is demanding, and if auto-
matic operation is required, annealing algorithms are powerful. Tabu search
requires a generally longer development time, but can provide in some cases
better results than simulated annealing. Genetic algorithms require a very
long development time and a new tuning of the internal parameters as a func-
tion of the problem data. Recurrent neural networks are more adapted to
mean size problems, where the resolution time is more important than the
requirements in terms of quality of the solution.

To reduce the resolution time while producing good solutions, a hybrid
approach is often the best choice, but at the cost of a development time that
may be important.

To summarize, when facing a combinatorial problem, the comparison of the
performances of the different metaheuristics is difficult and must be performed
accurately and rigorously. A presentation the frequently encountered pitfalls,
and a sound evaluation methodology, are provided in [Barr et al. 1995; Hooker
1995; Rardin et al. 2001].

References

1. Aarts E., Korst J. [1989], Simulated Annealing and Boltzmann Machines – a Sto-
chastic Approach to Combinatorial Optimization and Neural Computing, John
Wiley & Sons Ed., 1989

2. Aarts E., Lenstra J.K. [1997], Local Search in Combinatorial Optimization, John
Wiley & Sons Ed., 1997

3. Ackley D.H., Hinton G.E., Sejnowski T.J. [1985], A learning algorithm for Boltz-
mann machines, Cognitive Science, 9, pp 147–169, 1985

4. Asai H., Onodera K., Kamio T., Ninomiya H. [1995], A study of Hopfield neural
networks with external noise, 1995 IEEE International Conference on Neural
Networks Proceedings, New York, États-Unis, vol. 4, pp 1584–1589

5. Ayer S.V.B. et al. [1990], A theoretical investigation into the performance of
the Hopfield model, IEEE Transactions on Neural Networks, vol. 1, pp 204–
215, June 1990

8 Neural Networks without Training for Optimization 487

6. Barr R.S., Golden B.L., Kelly J.P., Resende M.G.C., Stewart W.R. [1995], De-
signing and reporting on computational experiments with heuristic methods,
Journal of Heuristics, vol. 1, no 1, pp 9–32, 1995

7. Boudet T., Chaton P., Hérault L., Gonon G., Jouanet L., Keller P. [1996], Thin
film designs by simulated annealing, Applied Optics, vol. 35, no 31, pp 6219–
6226, Nov. 1996

8. Brandt R.D., Wang Y., Laub A.J., Mitra S.K. [1988], Alternative networks for
solving the TSP and the list-matching problem, Proceedings of the International
Joint Conference on Neural Networks, San Diego, II, pp 333–340, 1988

9. Cerny V. [1985], A thermodynamical approach to the travelling salesman prob-
lem: an efficient simulated algorithm, Journal of Optimization Theory and Ap-
plications, n 45, pp 41–51, 1985

10. Charon I., Hudry O. [1996], Mixing different components of metaheuristics,
Chap. 35 de [Osman 1996]

11. Cichocki A., Unbehauen R. [1993], Neural Networks for Optimization and Signal
Processing, John Wiley & Sons Ed., 1993

12. Creutz M. [1983], Microcanonical Monte Carlo simulations, Physic Review Let-
ters, vol. 50, no 19, pp 411–1414, 1983

13. Dagli C. [1994], Artificial Neural Networks for Intelligent Manufacturing, Chap-
man & Hall, 1994

14. Dérou D., Hérault L. [1996], A new paradigm for particle tracking velocime-
try, based on graph-theory and pulsed neural networks, Developments in Laser
Techniques and Applications to Fluid Mechanics, pp 438–462, Springer-Verlag
Ed., 1996

15. Dowsland K.A. [1995], Simulated annealing, Chap. 2 of [Reeves 1995]
16. Garey M.R., Johnson D.S. [1979], Computers and intractability. A guide to the

theory of NP-completeness, W.H. Freeman and company Ed., 1979
17. Glover F., Laguna M. [1997], Tabu search, Kluwer Academic Publishers, 1997
18. Goldberg D.E. [1989], Genetic Algorithms in Search, Optimization and Machine

Learning, Addison Wesley, 1989
19. Goles E. [1995], Energy functions for neural networks, The Handbook of Brain

Theory and Neural Networks, The MIT Press, pp 363–367, 1995
20. Gondran M., Minoux M. [1995], Graphes et algorithmes, Éditions Eyrolles, 1995
21. Gonzaga C.C. [1992], Path-following methods for linear programming, SIAM

Review 34(2), pp 167–224, 1992
22. Hajek B. [1988], Cooling schedules for optimal annealing, Mathematics of oper-

ations research, vol. 13, no 2, pp 311–329, 1988
23. Hérault L., Niez J.J. [1989], Neural networks & graph K-partitioning, Complex

Systems, vol. 3, no 6, pp 531–576, 1989
24. Hérault L., Niez J.J. [1991], Neural networks & combinatorial optimization: a

study of NP-complete graph problems, Neural Networks: Advances and Appli-
cations, pp 165–213, Elsevier Science Publishers B.V. (North-Holland), 1991

25. Hérault L., Horaud R. [1993], Figure-ground discrimination: a combinatorial
optimization approach, I.E.E.E. Transactions on Pattern Analysis and Machine
Intelligence, vol. 15, no 9, pp 899–914, 1993

26. Hérault L. [1995a], Pulsed recursive neural networks & resource allocation – Part
1: static allocation, Proceedings of the 1995 SPIE’s International Symposium on
Aerospace/Defense Sensing and Dual-Use Photonics, Orlando, Florida, USA, pp
229–240, April 1995

488 L. Hérault

27. Hérault L. [1995b], Pulsed recursive neural networks & resource allocation – Part
2: static allocation, Proceedings of the 1995 SPIE’s International Symposium on
Aerospace/Defense Sensing and Dual-Use Photonics, Orlando, Florida, USA, pp
241–252, April 1995

28. Hérault L. [1995c], Réseaux de neurones récursifs pulsés pour l’allocation
de ressources, Revue Automatique—Productique—Informatique industrielle
(APII), vol. 29, numbers 4–5, pp 471–506, 1995

29. Hérault L. [1997a], A new multitarget tracking algorithm based on cine-
matic grouping, Proceedings of the 11th SPIE’s International Symposium on
Aerospace/Defense Sensing, Simulation and Controls, vol. 3086, pp 296–307,
Orlando, Florida, États-Unis, avril 1997

30. Hérault L., Dérou D., Gordon M. [1997b], New Q-routing approaches to adap-
tive traffic control, Proceedings of the International Workshop on Applications
of Neural Networks to Telecommunications 3, pp 274–281, Lawrence Erlbaum
Associates Ed., 1997

31. Hérault L. [2000], Rescaled Simulated Annealing – Accelerating convergence of
Simulated Annealing by rescaling the states energies, Journal of Heuristics, pp
215–252, vol. 6, Kluwer Academic Publishers, 2000

32. Hinton G.E., Sejnowski T.J., Ackley D.H. [1984], Boltzmann machines: con-
straint satisfaction network that learn, Carnegie Mellon University technical
report, CMU-CS-84–119, États-Unis, 1984

33. Hooker J.N. [1995], Testing heuristics: we have it all wrong, Journal of Heuris-
tics, vol. 1, no 1, pp 33–42, 1995

34. Hopfield J. [1982], Neural Networks and Physical Systems with emergent col-
lective computational abilities, Proceedings of National Academy of Sciences of
USA, vol. 79, pp 2554–2558, 1982

35. Hopfield J. [1984], Neurons with graded response have collective computational
properties like those of two-state neurons, Proceedings of National Academy of
Sciences of USA, vol. 81, pp 3088–3092, 1984

36. Hopfield J., Tank D. [1985], Neural computation of decisions in optimization
problems, Biological Cybernetics, vol. 52, pp 141–152, 1985

37. Kirkpatrick S., Gelatt C.D., Vecchi M.P. [1983], Optimization by simulated
annealing, Science, vol. 220, pp 671–680, 1983

38. Kuhn H.W., Tucker A.W. [1951], Non-linear programming, Proceedings of the
Second Berkeley Symposium on Mathematical Statistics and Probability, pp 481–
492, University of California Press, 1951

39. Lagerholm M., Peterson C., Söderberg B. [1997], Airline crew scheduling with
Potts neurons, Neural Computation, vol. 9, no 7, pp 1589–1599, 1997

40. Lee B.W., Shen B.J. [1991a], Hardware annealing in electronic neural networks,
IEEE Transactions on Circuits and Systems, vol. 38, pp 134–137, 1991

41. Lee H.J., Louri A. [1991b], Microcanonical mean field annealing: a new algo-
rithm for increasing the convergence speed of mean field annealing, Proceedings
of the International Joint Conference on Neural Networks, Singapore, pp 943–
946, 1991

42. Maa C.Y., Shanblatt M.A. [1992], A two-phase optimization neural netwok,
IEEE Transactions on Neural Networks, vol. 3, no 6, pp 1003–1009, 1992

43. Metropolis N., Rosenbluth A., Rosenbluth M., Teller A., Teller E. [1953], Equa-
tion of state calculations by fast computing machines, Journal of Chemical
Physics, vol. 21, pp 1087–1092, 1953

8 Neural Networks without Training for Optimization 489

44. Mitra D., Romeo F., Sangiovanni-Vincentelli A. [1986], Convergence and finite-
time behavior of simulated annealing, Adv. Appl. Prob., vol. 18, pp 747–771,
1986

45. Mjolsness E., Garrett C. [1990], Algebraic transformations of objective func-
tions, Neural Networks, no 3, pp 651–669, 1990

46. Mjolsness E., Miranker W.L. [1991], A Lagrangian approach to fixed points, Ad-
vances in Neural Information Processing Systems 3, pp 77–83, Morgan Kaufman
Pub., 1991

47. Newcomb R.W., Lohn J.D. [1995], Analog VLSI for neural networks, The Hand-
book of Brain Theory and Neural Networks, The MIT Press, pp 86–90, 1995

48. Ohlsson M., Peterson C., Söderberg B. [1993], Neural networks for optimization
problems with inequality constraints – the knapsack problem, Neural Compu-
tation, vol. 5, no 2, pp 331–339, 1993

49. Osman I, Kelly J.P. [1996], Meta-heuristics: theory and applications, Kluwer
Academic Publishers, 1996

50. Peterson C., Anderson J.R. [1988], Neural networks and NP-complete optimiza-
tion problems: a performance study on the graph bisection problem, Complex
Systems, vol. 2, pp 59–89, 1988

51. Peterson C., Söderberg B. [1989], A new method for mapping optimization
problems onto neural networks, International Journal on Neural Systems, vol.
1, pp 3–22, 1989

52. Peterson C. [1990], Parallel distributed approaches to combinatorial optimiza-
tion: benchmark studies on travelling salesman problem, Neural Computation,
vol. 2, pp 261–269, 1990

53. Prins C. [1994], Algorithmes de graphes, Éditions Eyrolles, 1994
54. Privault C., Hérault L. [1998a], Constraints satisfaction through recursive neural

networks with mixed penalties: a case study, Neural Processing Letters, Kluwer
Academic Publishers, vol. 8, no 1, pp 15–26, 1998

55. Privault C., Hérault L. [1998b], Solving a real world assignment problem with
a metaheuristic, Journal of Heuristics, vol. 4, pp 383–398, Kluwer Academic
Publishers, 1998

56. Rangarajan A., Gold S. [1995], Softmax to softassign: neural network algorithms
for combinatorial optimization, Journal of Artificial Neural Networks, vol. 2, no
4, pp 381–399, 1995

57. Rangarajan A., Mjolsness E.D. [1996], A Lagrangian relaxation network for
graph matching, IEEE Transactions on Neural Networks, vol. 7, no 6, pp 1365–
81, 1996

58. Rangarajan A., Yuille A., Mjolsness E.D. [1999], Convergence properties of the
softassign quadratic assignment algorithm, Neural Computation, vol. 11, no 6,
pp 1455–1474, 1999

59. Rardin R.L., Uzsoy R. [2001], Experimental evaluation of heuristic optimisation
algorithms: a tutorial, Journal of Heuristics, vol. 7, no 3, pp 261–304, 2001

60. Reeves C.R. [1995], Modern Heuristic Techniques for Combinatorial Problems,
McGraw-Hill, 1995

61. Reinelt G. [1994], The travelling salesman. Computational solutions for TSP
applications, note de lecture in Computer Science 840, Springer Verlag, 1994

62. Roussel-Ragot P., Dreyfus G. [1990], A Problem-Independent Parallel Imple-
mentation of Simulated Annealing: Models and Experiments, IEEE Transac-
tions on Computer-Aided Design, vol. 9, p. 827, 1990

490 L. Hérault

63. Schrijver A. [1986], Theory of Linear and Integer Programming, John Wiley &
Sons, 1986

64. Siarry P., Dreyfus G. [1984], Application of Physical Methods to the Computer-
Aided Design of Electronic Circuits, J. Phys. Lett. 45, L 39, 1984

65. Sinkhorn R. [1964], A relationship between arbitrary positive matrices and dou-
bly stochastic matrices, The annals of mathematical statistics, vol. 35, no 1, pp
141–152, 1964

66. Szu H. [1988], Fast TSP algorithm based on binary neuron output and analog
neuron input using the zero-diagonal interconnect matrix and necessary and suf-
ficient constraints on the permutation matrix, Proceedings of the International
Joint Conference on Neural Networks, San Diego, II, pp 259–266, 1988

67. Sun K.T., Fu H.C. [1993], A hybrid neural network model for solving optimisa-
tion problems, IEEE Transactions on Computers, vol. 42, no 2, 1993

68. Takefuji Y. [1992], Neural Network Parallel Computing, Kluwer Academic Pub-
lishers, 1992

69. Takefuji Y., Wang J. [1996], Neural Computing for Optimization and Combina-
torics, World Scientific, 1996

70. Teghem J., Pirlot M. [2001], Métaheuristiques et outils nouveaux en recherche
opérationnelle. Tome I: Méthodes. Tome II: Implémentations et Applications,
Hermès Editions, 2002

71. van den Bout D.E., Miller T.K. [1989], Improving the performance of the
Hopfield-Tank neural network through normalization and annealing, Biological
Cybernetics, vol. 62, pp 129–139, 1989

72. van den Bout D.E., Miller T.K. [1990], Graph partitioning using annealing
neural networks, IEEE Transactions on Neural Networks, vol. 1, pp 192–203,
1990

73. Zhang S., Constantinides A.G. [1992], Lagrange programming neural networks,
IEEE Transactions on Circuits and Systems II: Analog and Digital Processing,
vol. 39, no 7, pp 441–452, 1992

About the Authors

Fouad Badran is a professor at CNAM (Conservatoire National des Arts et
Métiers), where he teaches neural networks.

Gérard Dreyfus is a professor at the École supérieure de physique et de
chimie industrielles de la ville de Paris (ESPCI), head of the Electronic Engi-
neering Laboratory. He teaches machine-learning techniques at ESPCI and in
various universities. The research activities of the laboratory are fully devoted
to machine learning, with applications to data processing and to the modeling
of biological neural systems.

Mirta B. Gordon, is a physicist, chief researcher at CNRS (Centre National
de la Recherche Scientifique); she carries out research on neural networks and
training algorithms. Formerly with the Theoretical Group of the Département
de recherche fondamentale du CEA (Grenoble), she moved to the Leibnitz
laboratory at Institut de mathématiques appliquées de Grenoble (IMAG).

Laurent Hérault is a project leader at the CEA–LETI, where he manages
research on neural networks and combinatorial optimization applied to indus-
trial problems. He has been a senior expert at CEA since 1998; his present
research activities focus on data processing for wireless telecommunications.

Jean-Marc Martinez is a research scientist at Centre d’Études de Saclay,
where he carries out research on simulation and supervision methods. He
teaches statistical machine-learning methods at INSTN (Institut national
supérieur des techniques nucléaires).

Manuel Samuelides is a professor at the École nationale supérieure de
l’aéronautique et de l’espace (Supaéro) and head of the department of Ap-
plied Mathematics of that institute. He teaches probability theory, optimiza-
tion and statistical techniques in machine learning, and pattern recognition.
He carries out research on neural-network applications at the Département

492 About the Authors

de traitement de l’information et modélisation of ONERA (Office national
d’études et de recherches aérospatiales).

Sylvie Thiria is a professor at the University of Versailles Saint-Quentin-en-
Yvelines and is a researcher at LODYC (Laboratoire d’Océanographie DY-
namique et de Climatologie). Her research is centered on neural modeling and
its applications to such areas as geophysics.

Méziane Yacoub is an assistant professor at CNAM.

Index

EQMr 206

Bellman’s Optimality Principle 310
distribution

Student 88
Euler’s method

explicit 172
Fisher’s test 102
Kalman filter 264
semidirected training 155

activation function 3, 77
Akaike information criterion 98
algorithm

Kohonen 404
ARMAX 159
ARX 159

backpropagation 31, 111, 120
through time 277

Bayes decision rule 41
Bayes formula 37, 123
Bellman

optimality principle 310
BFGS 117, 120, 193
bias 3, 77, 118, 131
bias-variance dilemma 28, 131, 133
black-box model 16, 67, 71, 85
bootstrap 222

estimation of the generalisation
generalization error 224

estimation of the standard deviation
223

canonical form 9, 10, 22, 162, 163, 171,
173, 178

CCA 212

chained derivatives (rule of) 112

character recognition 51

Cholesky 197

classification 20, 32, 33, 122

automatic 379

bottom-up hierarchical 418

topological maps 415

classifier 20, 33, 123

clustering 12

combinatorial optimization 24

commande

par modèle de référence 297

committee machine 21

confidence interval 67, 92, 137, 140,
141, 146, 149, 187

mean 188

conjugate gradient 117

connection graph 4, 8

connectionism 4

control 75

control input 164, 168, 176

control system 22

controller 75

copy 164, 165

cost function 24

empirical 105

least squares 104, 107

theoretical 105

Cover’s theorem 49

cross-entropy 45, 113, 194, 205

494 Index

cross-validation 121, 133, 135, 136
score 135, 136

cumulative distribution function 87
Curvilinear Component Analysis 211

applied to spectrum analysis 219
implementation 216
algorithm 215

cycle 8

data mining 21, 57
degrees of freedom 141
delay 173
descriptor 20
dimension reduction 207
direct term 6
discretization 181
discrimination 20, 32
distribution

χ2 189
Fisher 88, 190–192
Gaussian 88
joint 88
normal 88
Pearson 88, 189, 191
Student 188, 189
uniform 88

disturbance 86, 94
deterministic 86
noise 86

early stopping 118, 122, 128, 143
energy function 24
environment 62
equation

difference 149
recurrent 149

equation error 152
equilibrium

asymptotically stable 292
equilibriume

stable 292
estimator

definition 89
of the expectation value 90
of the variance 91
unbiased 90, 137, 143

Euler’s method
explicit 177, 184, 185
implicit 184, 185

example 16
expectation 17
expectation value

définition 89
Gaussian distribution 89
sum of random variables 89
uniform distribution 89

experimental design 27, 67
experimental planning 149

factor 86
feature

probe 100
Fisher’s test 97, 102
formulation 64
forward computation of the gradient

113
Frobenius’ matrix norm 211
fuzzy sets 25

generalization 28, 131
generalization error 135–137, 140, 143,

144
gradient

stochastic 121
gradient optimization method 31
gradient step 115
Gram-Schmidt

modified 100
Gram-Schmidt orthogonalization 98
grandmother code 44
gray-box model 22, 86

Hessian matrix 117
hidden neuron 4
Ho and Kashyap (algorithm) 49
Hopfield (réseau de) 273
hyperparameter 126, 127
hyperplane 47
hypothesis

alternative 189
null 189, 191

hypothesis test 97
hypothesis testing 92

ill-posed problem 28
independent random variables 88
information filtering 57
initialization 118

Index 495

input
control 150
disturbance 150

input normalization 110
input selection 94, 96, 101
integration

explicit schemes 183
implicit schemes 183

iteration
optimistic of policy 318

Jacobian matrix 133
computation 134
rank 139, 144, 148, 197

Kaiser’s rule 211
Kalman (filter)

properties 264
Kalman filter 121
knowledge-based model 85
Kohonen map 13, 22
Kullback-Leibler, divergence 135

language processing 57
learning

teacher-forced 277
learning rate 115
least-squares 17, 30, 106–108, 130
least-squares cost function 45
leave-one-out 136, 138, 139

score 136
LeNet 52
Levenberg-Marquardt 14, 117, 120,

143, 170, 193, 195
leverage 137–139, 141, 145, 146, 197

distribution 147
line search 194, 195

Nash 195
line search technique 116
LMS algorithm 109, 121
LOCL 145
LU decomposition 197

MacCulloch-Pitts (neurons) 78
map

Kohonen 13
self-organizing 13
topological

probabilistic 412

matrix of observations 106, 108, 133,
138, 191

method
k-means 383

minimum
global 143
local 132, 143

MLP 5
modèle

complet 190
model 85

black-box 171, 175
discrete-time 177
dynamic 149
gray-box 171, 175
input-output 163, 164, 169
knowledge-based 175, 176, 181
semiphysical 150, 171, 175
state-space 166, 170
stochastic 150

model selection 27
modeling 1
multilayer network 4
multilayer perceptron 5, 14

NARMAX 74, 158, 159, 164, 165
NARX 152, 169
network

feedforward 3
recurrent 3

network graph 173
Newton’s method 116
noise 151

output 153, 157, 160, 161, 164, 168,
169

state 152, 157, 158, 163, 166, 168,
169

state (state-space representation)
160, 161

normal equation 106, 107
null hypothesis 92

observation equation 160
observation space 99
optimization 30
order 150, 168, 171
orthogonal projection 197
orthogonalization 99
output error 153, 159

496 Index

output neuron 4
output noise 155, 156
overfitting 28, 29, 45, 121, 122, 124,

130, 136, 143, 170

parallel 153
parameter initialization 118, 120
parsimony 13, 25, 130, 151
PCA 95, 207
percentile 226
Perceptron 47, 78
pharmacology 62
point estimation 92
polynomial 14, 132
polynomial model 104
polynomials 130, 149
postal code 51
posterior probability 21, 36
potential 2, 77, 111
predictor 22, 152

dumb 163, 167
one-step-ahead 153, 155, 159, 162

preprocessing 25, 52
preprocessing of inputs 204
preprocessing of outputs

for classification 205
for regression 206

principal component analysis 95, 207
prior probability 36
probabilistic classification 36
probabilistic interpretation of k-means

388
probability density 36, 87
probability distribution 87
probe feature 192
problem

Markov decision
partially observed 314
shortest stochastic path 308

processing 53

QSAR 62
quartile 226

réseau
de Hopfield 273

radial basis function 3, 7, 14, 78
random variable 87
rank 133

computation 134
RBF 3, 78, 119
recurrent equation 8, 22
recurrent network 1, 8
recurrent neural network 22
reduction of the dimension of represen-

tation space 95
regression 93

linear 104, 106
regression function 17, 28, 93
regularization 122, 130
rejection 34
representation 52

input-output 151, 153, 158, 163, 168,
171

state 168, 171
state-space 150, 160, 161, 163, 166,

171
residual 104

vector 107
risk 92
robotics 75

sampling
period 183

sampling period 150
scatter plot 65
scree-test 211
segmentation 51
self-organizing map 13, 22, 95, 103
semi-physical model 22, 70, 86
series-parallel 152
shared weights 53, 114, 173
sigmoid 3, 77, 125, 127
simple gradient 115
simulated annealing 24
simulator 22, 153, 155, 159, 162, 169
singular value decomposition 210
solution subspace 108
stability 185
standard deviation 88
state noise 156, 233
state variable 9, 150, 167, 173, 176, 177
state vector 150, 163, 166, 171
static model 86
statistical inference 19
stochastic

k-means 386
Student distribution 140

Index 497

submodel 191
support vector machines 78
SVD 210
SVD decomposition 198
SVM 78
system

observable 259

Taylor expansion 116
teacher-student problem 119
test

Fisher 190, 192
TMSE 29, 134, 143, 144, 170
training 1, 12, 94

adaptative 167
adaptive 105, 109, 121, 130
batch 105, 110, 162, 163
directed 153, 159, 162, 163, 165–167,

169
eligibility trace method 317
epoch 110
iteration 110
nonadaptive 105, 110, 130, 162–164,

166
off-line 105
on-line 105, 109, 121, 167
reinforcement

neuronal approximation 322
semidirected 159, 162, 164–166, 169
supervised 12

teacher forcing 153
teacher-forced 163
undirected 168
unsupervised 12

training set 27, 28, 104
tri-median 227
Tustin

scheme 184

unsupervised learning 21

validation set 28, 122
Van der Pol oscillator 236
variable

primary 98
secondary 99

variance 131
definition 90
of a Gaussian variable 91
of a uniformly distributed variable

91
VC dimension 27
virtual leave-one-out 137, 143

score 139, 143, 144, 146, 148
VMSE 28, 135, 136

wavelet 3, 7, 14, 78, 104, 119
weight 2

synaptic 2
weight decay 49, 61, 122, 125, 128
Widrow-Hoff algorithm 109

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

