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Preface

The term artificial neural networks used to generate pointless dreams and
fears. Prosaically, neural networks are data-processing techniques that are
essentially understood at present; they should be part of the toolbox of all
scientists who want to make the most of the data that are available to them,
including performing previsions, designing predictive models, recognizing pat-
terns or signals, etc. All curricula oriented toward data processing contain
educational programs related to those techniques. However, their industrial
impact differs from country to country and, on the whole, is not yet as large
as it should be.

The purpose of this book is to help students, scientists and engineers un-
derstand and use those techniques whenever necessary. To that effect, clear
methodologies are described, which should make the development of appli-
cations in industry, finance and banking as easy and rigorous as possible in
view of the present state of the art. No recipes will be provided here. It is
our firm belief that no significant application can be developed without a
basic understanding of the principles and methodology of model design and
training.

The following chapters reflect the present state-of-the-art methodologies.
Therefore, it may be useful to put it briefly into the perspective of the develop-
ment of neural networks during the past years. The history of neural networks
features an interesting paradox, i.e., the handful of researchers who initiated
the modern development of those techniques, at the beginning of the 1980s,
may consider that they were successful. However, the reason for their success
is not what they expected. The initial motivation of the development of neural
networks was neuromimetic. It was speculated that, because the most simple
nervous systems, such as those of invertebrates, have abilities that far outper-
form those of computers for such specific tasks as pattern recognition, trying
to build machines that mimic the brain was a promising and viable approach.

Actually, the same idea had also launched the first wave of interest in
neural networks, in the 1960s, and those early attempts failed for lack of appro-
priate mathematical and computational tools. At present, powerful computers
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are available and the mathematics and statistics of machine learning have
made enormous progress. However, a truly neuromimetic approach suffers
from the lack of in-depth understanding of how the brain works; the very
principles of information coding in the nervous system are largely unknown
and open to heated debates. There exist some models of the functioning of
specific systems (e.g. sensory), but there is definitely no theory of the brain.

It is thus hardly conceivable that useful machines can be built by imitat-
ing systems of which the actual functioning is essentially unknown. Therefore,
the success of neural networks and related machine-learning techniques is def-
initely not due to brain imitation. In the present book, we show that artificial
neural networks should be abstracted from the biological context. They should
be viewed as mathematical objects that are to be understood with the tools of
mathematics and statistics. That is how progress has been made in the area
of machine learning and may be expected to continue in future years.

Thus, at present, the biological paradigm is not really helpful for the design
and understanding of machine-learning techniques. It is actually quite the re-
verse, mathematical neural networks contribute more and more frequently to
the understanding of biological neural networks because they allow the design
of simple, mathematically tractable models of some parts of the nervous sys-
tem. Such modeling, contributing to a better understanding of the principles
of operation of the brain, might finally even benefit the design of machines.
That is a fascinating, completely open area of research.

In a joint effort to improve the knowledge and use of neural techniques
in their areas of activity, three French agencies, the Commissariat a ’énergie
atomique (CEA), the Centre national d’études spatiales (CNES) and the Of-
fice national d’études et de recherches aérospatiales (ONERA), organized a
spring school on neural networks and their applications to aerospace tech-
niques and to environments. The present book stems from the courses taught
during that school. Its authors have extensive experience in neural-network
teaching and research and in the development of industrial applications.

Reading Guide

A variety of motivations may lead the reader to make use of the present book;
therefore, it was deemed useful to provide a guide for the reading of the book
because not all applications require the same mathematical tools.

Chapter 1, entitled “Neural networks: an overview”, is intended to provide
a general coverage of the topics described in the book and the presentation of
a variety of applications. It will be of special interest to readers who require
background information on neural networks and wonder whether those tech-
niques are applicable or useful in their own areas of expertise. This chapter will
also help define what the reader’s actual needs are in terms of mathematical
and neural techniques, hence, to lead him to reading the relevant chapters.
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STATIC DYNAMIC MODELING SUPERVISED UNSUPERVISED  COMBINATORIAL
MODELING MODELING AND CONTROL  CLASSIFICATION TRAINING OPTIMIZATION

| | | |

CHAPTER 1
| | | |
CHAPTER 2
| | | |
CHAPTER 3

CHAPTER 4

1
H
1
1

Readers who are interested in static modeling will read Chap. 2, “Model-
ing with neural networks: principles and model design methodology”, up to,
and including, the section entitled “Model selection”. Then they will turn to
Chap. 3, “Modeling methodology: dimension reduction and resampling meth-
ds”.

Readers who are involved in applications that require dynamic modeling
will read the whole of Chaps. 2, 3 and 4, “Neural identification of controlled
dynamical systems and recurrent networks”. If they want to design a model
for use in control applications, they will read Chap. 5, “Closed-loop control
learning”.

Readers who are interested in supervised training for automatic classifica-
tion (or discrimination) are advised to read the section “Feedforward neural
networks and discrimination (classification)” of Chap. 1, then Chap. 2 up to,
and including, the “Model selection” section, and then turn to Chap. 6 and
possibly Chap. 3.

For those who are interested in unsupervised training, Chaps. 1, 3 and 7
(“Self-organizing maps and unsupervised classification”) are relevant.

Finally, readers who are interested in combinatorial optimization will read
Chaps. 1 and 8, “Neural networks without training for optimization”.

Q

Paris, September 2004 Gérard Dreyfus



Contents

List of Contributors . ... xvii

1 Neural Networks: An Overview

G. Dreyfus . ..o 1
1.1 Neural Networks: Definitions and Properties .................... 2
1.1.1 Neural Networks . ......... .. .. 3
1.1.2 The Training of Neural Networks........................ 12
1.1.3 The Fundamental Property of Neural Networks with
Supervised Training: Parsimonious Approximation ........ 13
1.1.4 Feedforward Neural Networks with Supervised Training
for Static Modeling and Discrimination (Classification). . . .. 15
1.1.5 Feedforward Neural Networks with Unsupervised Training
for Data Analysis and Visualization ..................... 21
1.1.6 Recurrent Neural Networks for Black-Box Modeling,
Gray-Box Modeling, and Control ........................ 22
1.1.7 Recurrent Neural Networks Without Training for
Combinatorial Optimization ............................ 23
1.2 When and How to Use Neural Networks with Supervised Training . 24
1.2.1 When to Use Neural Networks? .......... .. ... .. ... ... 24
1.2.2 How to Design Neural Networks?........................ 25
1.3 Feedforward Neural Networks and Discrimination (Classification).. 32
1.3.1 What Is a Classification Problem?....................... 33
1.3.2 When Is a Statistical Classifier such as a Neural Network
Appropriate? ... ... 33
1.3.3 Probabilistic Classification and Bayes Formula ............ 36
1.3.4 Bayes Decision Rule ...... .. .. ... .. . . . . 41
1.3.5 Classification and Regression .............. ... ... ...... 43
1.4 Some Applications of Neural Networks to Various Areas of
Engineering. . ... ... 50

1.4.1 Introduction ............ ... 50



X Contents

1.4.2 An Application in Pattern Recognition: The Automatic
Reading of Zip Codes .. ... it
1.4.3 An Application in Nondestructive Testing: Defect
Detection by Eddy Currents ............ .. ...
1.4.4 An Application in Forecasting: The Estimation of the
Probability of Election to the French Parliament ..........
1.4.5 An Application in Data Mining: Information Filtering ... ..
1.4.6 An Application in Bioengineering: Quantitative

Structure-Relation Activity Prediction for Organic Molecules 62

1.4.7 An Application in Formulation: The Prediction of the
Liquidus Temperatures of Industrial Glasses ..............
1.4.8 An Application to the Modeling of an Industrial Process:
The Modeling of Spot Welding . ........... .. ... ... ...
1.4.9 An Application in Robotics: The Modeling of the
Hydraulic Actuator of a Robot Arm .....................
1.4.10 An Application of Semiphysical Modeling to a
Manufacturing Process. ...... ... ... o i
1.4.11 Two Applications in Environment Control: Ozone
Pollution and Urban Hydrology .........................
1.4.12 An Application in Mobile Robotics ......................
1.5 ConclusSion .. .......iiuiin i
1.6 Additional Material......... .. ... .. .
1.6.1 Some Usual Neurons. ..............ooiiiiiiiiia. ..
1.6.2 The Ho and Kashyap Algorithm ........................
References .. ... ... i

2 Modeling with Neural Networks: Principles and Model
Design Methodology
G. Dreyfus . .. oo
2.1 What Isa Model? . ... ... e
2.1.1 From Black-Box Models to Knowledge-Based Models . ... ..
2.1.2  Static vs. Dynamic Models ........... ... .. .. ... ... ...
2.1.3 How to Deal With Uncertainty? The Statistical Context of
Modeling and Machine Learning ........................
2.2 Elementary Concepts and Vocabulary of Statistics...............
2.2.1 What is a Random Variable? ...........................
2.2.2  Expectation Value of a Random Variable.................
2.2.3 Unbiased Estimator of a Parameter of a Distribution ......
2.2.4  Variance of a Random Variable .........................
2.2.5 Confidence Interval .. ....... ... .. .. ...
2.2.6 Hypothesis Testing ......... .. .. .. . . i
2.3 Static Black-Box Modeling ........... ... .. i
2.3.1 Regression ........ ...
2.3.2 Introduction to the Design Methodology .................
2.4 Input Selection for a Static Black-Box Model ...................



2.5

2.6

2.7

2.8

2.9
2.10

Contents xi

2.4.1 Reduction of the Dimension of Representation Space ...... 95
2.4.2 Choice of Relevant Variables............................ 96
2.4.3 Conclusion on Variable Selection ........................ 103
Estimation of the Parameters (Training) of a Static Model. ... .... 103

2.5.1 Training Models that are Linear with Respect to Their
Parameters: The Least Squares Method for Linear Regression106
2.5.2 Nonadaptive (Batch) Training of Static Models that Are

Not Linear with Respect to Their Parameters............. 110
2.5.3 Adaptive (On-Line) Training of Models that Are Nonlinear

with Respect to Their Parameters .. ............... ... ... 121
2.5.4 Training with Regularization .................. .. ... ... 121
2.5.5 Conclusion on the Training of Static Models .............. 130
Model Selection .. ... 131
2.6.1 Preliminary Step: Discarding Overfitted Model by

Computing the Rank of the Jacobian Matrix ............. 133
2.6.2 A Global Approach to Model Selection: Cross-Validation

and Leave-One-Out......... ... .. ... .. .. ... ... ... 134
2.6.3 Local Least Squares: Effect of Withdrawing an Example

from the Training Set, and Virtual Leave-One-Out ........ 137
2.6.4 Model Selection Methodology by Combination of the Local

and Global Approaches ......... ... ... ... . .. 142
Dynamic Black-Box Modeling . . ........ ... . ... ... 149
2.7.1 State-Space Representation and Input-Output

Representation........ ... ... . . 150

2.7.2  Assumptions on Noise and Their Consequences on the

Structure, the Training and the Operation of the Model . . .. 151
2.7.3 Nonadaptive Training of Dynamic Models in Canonical Form162
2.7.4 What to Do in Practice? A Real Example of Dynamic

Black-Box Modeling . ... 168
2.7.5 Casting Dynamic Models into a Canonical Form .......... 171
Dynamic Semiphysical (Gray Box) Modeling . ................... 175
2.8.1 Principles of Semiphysical Modeling ..................... 175
Conclusion: What Tools? . ....... .. ... . 186
Additional Material. ... ... ... ... 187
2.10.1 Confidence Intervals: Design and Example................ 187
2.10.2 Hypothesis Testing: An Example ........................ 189
2.10.3 Pearson, Student and Fisher Distributions................ 189

2.10.4 Input Selection: Fisher’s Test; Computation of the
Cumulative Distribution Function of the Rank of the

Probe Feature ....... .. .. .. . .. .. 190
2.10.5 Optimization Methods: Levenberg-Marquardt and BFGS ... 193
2.10.6 Line Search Methods for the Training Rate ............... 195
2.10.7 Kullback-Leibler Divergence Between two Gaussians .. ..... 196
2.10.8 Computation of the Leverages ........... .. .. ... ... .. 197

References . ... 199



xii Contents

3 Modeling Methodology: Dimension Reduction and
Resampling Methods

J-M. Martinez .. ..o 203
3.1 Imtroduction ........ ... i 203
3.2 Preprocessing . ........c.ouiini i 204
3.2.1 Preprocessing of Inputs ............. ... .. ... ... ... 204
3.2.2 Preprocessing Outputs for Supervised Classification ....... 205
3.2.3 Preprocessing Outputs for Regression .................... 206
3.3 Input Dimension Reduction ............. .. ... .. .. .. .. .... 207
3.4 Principal Component Analysis ......... ..., 207
3.4.1 Principle of PCA . ... . 207
3.5 Curvilinear Component Analysis .......... ... i, 211
3.5.1 Formal Presentation of Curvilinear Component Analysis ...213
3.5.2  Curvilinear Component Analysis Algorithm .............. 215
3.5.3 Implementation of Curvilinear Component Analysis ....... 216
3.5.4 Quality of the Projection........... ... ... .. .. ... .... 217
3.5.5 Difficulties of Curvilinear Component Analysis............ 218
3.5.6 Applied to Spectrometry ...... ... .. ... ... 219
3.6 The Bootstrap and Neural Networks ........................... 220
3.6.1 Principle of the Bootstrap . .......... ... .. . ... .... 222
3.6.2 Bootstrap Estimation of the Standard Deviation .......... 223
3.6.3 The Generalization Error Estimated by the Bootstrap .. ... 224
3.6.4 The NeMo Method ........... .. ... . ... 225
3.6.5 Testing the NeMo Method.............................. 227
3.6.6 Conclusions ........... .. 229
References .. ... 230

4 Neural Identification of Controlled Dynamical Systems and
Recurrent Networks

M. Samuelides. . ... ..o 231
4.1 Formal Definition and Examples of Discrete-Time Controlled
Dynamical Systems . .......... . 232
4.1.1 Formal Definition of a Controlled Dynamical System by
State Equation........ ... ... i 232
4.1.2  An Example of Discrete Dynamical System ............... 233
4.1.3 Example: The Linear Oscillator ......................... 234
4.1.4 Example: The Inverted Pendulum ....................... 235

4.1.5 Example of Nonlinear Oscillator: The Van Der Pol Oscillator236
4.1.6 Markov Chain as a Model for Discrete-Time Dynamical

Systems with Noise.......... ... o i, 236
4.1.7 Linear Gaussian Model as an Example of a Continuous-

State Dynamical System with Noise ..................... 239
4.1.8 Auto-Regressive Models......... ... ... o i 240
4.1.9 Limits of Modeling Uncertainties Using State Noise........ 242

4.2 Regression Modeling of Controlled Dynamical Systems ........... 242



Contents xiii

4.2.1 Linear Regression for Controlled Dynamical Systems ... ... 242
4.2.2  Nonlinear Identification Using Feedforward Neural Networks 246

4.3 On-Line Adaptive Identification and Recursive Prediction Error
Method .. ... 250
4.3.1 Recursive Estimation of Empirical Mean ................. 250
4.3.2 Recursive Estimation of Linear Regression................ 252
4.3.3 Recursive Identification of an AR Model ................. 253
4.3.4  General Recursive Prediction Error Method (RPEM) ... ... 255
4.3.5 Application to the Linear Identification of a Controlled

Dynamical System ....... .. .. . 256

4.4 Innovation Filtering in a State Model .......................... 258
4.4.1 Introduction of a Measurement Equation ................. 258
4.4.2 Kalman Filtering .. ......... ... i 261
4.4.3 Extension of the Kalman Filter ......................... 265

4.5 Recurrent Neural Networks . ...... .. ... ... . ... 270
4.5.1 Neural Simulator of an Open-Loop Controlled Dynamical

SYSteIm ..o 270
4.5.2 Neural Simulator of a Closed Loop Controlled Dynamical

System . ... 270
4.5.3 Classical Recurrent Network Examples................... 272
4.5.4 Canonical Form for Recurrent Networks.................. 275

4.6 Learning for Recurrent Networks . ..... ... ... ... ... .. ... ... 276
4.6.1 Teacher-Forced Learning .......... ... ... .. .. oo, 277
4.6.2 Unfolding of the Canonical Form and Backpropagation

Through Time (BPTT) ...... .. .. 277
4.6.3 Real-Time Learning Algorithms for Recurrent Network

(RTRL) .ttt 281
4.6.4 Application of Recurrent Networks to Measured Controlled

Dynamical System Identification .............. ... ... ... 282

4.7 Appendix (Algorithms and Theoretical Developments) ........... 283

4.7.1 Computation of the Kalman Gain and Covariance
Propagation ........ .. . 283

4.7.2 The Delay Distribution Is Crucial for Recurrent Network
Dynamics . ... ..o 285

References .. ... ... i 287

5 Closed-Loop Control Learning

M. Samuelides. . ... 289

5.1 Generic Issues in Closed-Loop Control of Nonlinear Systems . ... .. 290
5.1.1 Basic Model of Closed-Loop Control ..................... 290
5.1.2 Controllability ........ .. .. i 291
5.1.3 Stability of Controlled Dynamical Systems ............... 292

5.2 Design of a Neural Control with an Inverse Model ............... 294
5.2.1 Straightforward Inversion .............. ... ... ... ...... 294

5.2.2 Model Reference Adaptive Control ...................... 297



Xiv Contents
5.2.3 Internal Model Based Control........................... 299
5.2.4 Using Recurrent Neural Networks ....................... 301
5.3 Dynamic Programming and Optimal Control ................ ... 303
5.3.1 Example of a Deterministic Problem in a Discrete State
SPACE -+ e et e 303
5.3.2 Example of a Markov Decision Problem .................. 305
5.3.3 Definition of a Decision Markov Problem ................. 307
5.3.4 Finite Horizon Dynamic Programming ................... 310
5.3.5 Infinite-Horizon Dynamic Programming with Discounted
GOS8t et 312
5.3.6 Partially Observed Markov Decision Problems ............ 314
5.4 Reinforcement Learning and Neuro-Dynamic Programming . ...... 314
5.4.1 Policy Evaluation Using Monte Carlo Method and
Reinforcement Learning . ........ ... .. ... .. .. ... ... 314
5.4.2 TD Algorithm of Policy Evaluation...................... 316
5.4.3 Reinforcement Learning: Q-Learning Method ............. 319
5.4.4 Reinforcement Learning and Neuronal Approximation ... .. 322
References ... ... ... 325
6 Discrimination
M. B. GOTdomn . .....o.i 329
6.1 Training for Pattern Discrimination.............. ... .. .. .. .... 330
6.1.1 Training and Generalization Errors ...................... 331
6.1.2 Discriminant Surfaces........... ... ... ... 332
6.2 Linear Separation: The Perceptron ............................ 334
6.3 The Geometry of Classification............ ... ... .. ... ... ... 336
6.3.1 Separating Hyperplane............ .. ... .. . ... ... 336
6.3.2 Aligned Field ........ .. . 337
6.3.3 Stability of an Example .. ....... ... ... ... ... 338
6.4 Training Algorithms for the Perceptron ............. .. ... ... 339
6.4.1 Perceptron Algorithm........... ... . ... . ... . ... .. 339
6.4.2 Convergence Theorem for the Perceptron Algorithm . ...... 341
6.4.3 Training by Minimization of a Cost Function ............. 342
6.4.4 Cost Functions for the Perceptron ................ ... ... 344
6.4.5 Example of Application: The Classification of Sonar Signals 351
6.4.6 Adaptive (On-Line) Training Algorithms ................. 353
6.4.7 An Interpretation of Training in Terms of Forces .......... 353
6.5 Beyond Linear Separation ............. .. .. . .. .. . .. 355
6.5.1 Spherical Perceptron ........... ... ... ... .. 355
6.5.2 Constructive Heuristics ................ ... 356
6.5.3 Support Vector Machines (SVM) ..., 359
6.6 Problems with More than two Classes.......................... 362
6.7 Theoretical Questions........ .. .. .. . 364

6.7.1 The Probabilistic Framework ............. ... ... ...... 364



Contents

6.7.2 A Probabilistic Interpretation of the Perceptron Cost
Functions ....... ... .
6.7.3 The Optimal Bayesian Classifier ........................
6.7.4 Vapnik’s Statistical Learning Theory ....................
6.7.5 Prediction of the Typical Behavior ................... ...
6.8 Additional Theoretical Material ............ ... .. ... ... ......
6.8.1 Bounds to the Number of Iterations of the Perceptron
Algorithm .. ... o
6.8.2 Number of Linearly Separable Dichotomies ...............

References . ... ..

7 Self-Organizing Maps and Unsupervised Classification
F. Badran, M. Yacoub, and S. Thiria........... ... ..
7.1 Notations and Definitions ............ ... .. .. ... .. .. ... ...
7.2 The k-Means Algorithm ........ ... ... ... o i i
7.2.1 Outline of the k-Means Algorithm .......................
7.2.2  Stochastic Version of k-Means ..........................
7.2.3 Probabilistic Interpretation of k-Means ..................
7.3  Self-Organizing Topological Maps ......... ... .. ... .. ...,
7.3.1 Self-Organizing Maps . ...,
7.3.2 The Batch Optimization Algorithm for Topological Maps ..
7.3.3 Kohonen’s Algorithm ........... ... ... .. ... ... ......
7.3.4 DiISCUSSION. ..ottt e
7.3.5  Neural Architecture and Topological Maps ...............
7.3.6  Architecture and Adaptive Topological Maps .............
7.3.7 Interpretation of Topological Self-Organization............
7.3.8 Probabilistic Topological Map ............. .. ... ... ...
7.4 Classification and Topological Maps ............. ... ... ... ...
7.4.1 Labeling the Map Using Expert Data ....................
7.4.2 Searching a Partition that Is Appropriate to the Classes ...
7.4.3 Labeling and Classification .............................
7.5 Applications ... ... ...
7.5.1 A Satellite Remote Sensing Application ..................
7.5.2 Classification and PRSOM ....... ... ... .. .. ... .....
7.5.3 Topological Map and Documentary Research .............
References . ... ...

8 Neural Networks without Training for Optimization

L. Hérault .. ...

8.1 Modelling an Optimisation Problem ...........................
8.1.1 Examples ... ...
8.1.2 The Travelling Salesman Problem (TSP) .................

8.2 Complexity of an Optimization Problem........................
8.2.1 Example .. ...

8.3 Classical Approaches to Combinatorial Problems ................

XV



xVvi Contents
8.4 Introduction to Metaheuristics ............ ... .. ... .. ... ...... 448
8.5 Techniques Derived from Statistical Physics.............. ... ... 449
8.5.1 Canonical Analysis ......... ... ... i 450
8.5.2  Microcanonical Analysis ........... ... .. . .. 456
8.5.3 Example: Travelling Salesman Problem .................. 457
8.6 Neural Approaches .............o i, 463
8.6.1 Formal Neural Networks for Optimization ................ 463
8.6.2 Architectures of Neural Networks for Optimisation ........ 465
8.6.3 Energy Functions for Combinatorial Optimisation ......... 466
8.6.4 Recurrent Hopfield Neural Networks ..................... 467
8.6.5 Improvements of Hopfield Neural Networks ............... 475
8.7 Tabu Search ...... ... . 484
8.8 Genetic Algorithms ........ .. .. i i 484
8.9 Towards Hybrid Approaches ........... .. ... ... ... ... ... ... 485
8.10 Conclusion .. ...... ..ot 485
8.10.1 The Choice of a Technique ............ ... ... ... ...... 485
References . .......o i e 486
About the AUthoTs. . ..o oo 491



List of Contributors

Fouad Badran
Laboratoire Leibniz, IMAG
46 avenue Félix Viallet, 38000 Grenoble, France

Gérard Dreyfus )
ESPCI, Laboratoire d’Electronique
10 rue Vauquelin, 75005 Paris, France

Mirta B. Gordon
Laboratoire Leibniz, IMAG
46 avenue Félix Viallet, 38031 Grenoble, France

Laurent Hérault
CEA-LETI, DSIS/SIT, CEA Grenoble
17 rue des Martyrs, 38054 Grenoble Cedex 9, France

Jean-Marc Martinez )
DM2S/SFME Centre d’Etudes de Saclay
91191 Gif sur Yvette, France

Manuel Samuelides!-?

1Ecole Nationale Supérieure de I’Aéronautique et de ’Espace
Département Mathématiques Appliquées

10 avenue Edouard Belin, BP 4032, 31055 Toulouse Cedex, France

2DRFMC/SPSMS/Groupe Théorie, CEA Grenoble
17 rue des Martyrs, 38054 Grenoble Cedex 9, France



xviii List of Contributors

Sylvie Thiria

Laboratoire d’Océanographie Dynamique et de Climatologie (LODYC)
Case 100, Université Paris 6

4 place Jussieu, 75252 Paris Cedex 5, France

Meéziane Yacoub
CEDRIC, Conservatoire National des Arts et Métiers
292 rue Saint Martin, 75003 Paris, France



1

Neural Networks: An Overview

G. Dreyfus

How useful is that new technology? This is a natural question to ask whenever
an emerging technique, such as neural networks, is transferred from research
laboratories to industry. In addition, the biological flavor of the term “neural
network” may lead to some confusion. For those reasons, this chapter is de-
voted to a presentation of the mathematical foundations and algorithms that
underlie the use of neural networks, together with the description of typical
applications; although the latter are quite varied, they are all based on a small
number of simple principles.

Putting neural networks to work is quite simple, and good software devel-
opment tools are available. However, in order to avoid disappointing results, it
is important to have an in-depth understanding of what neural networks really
do and of what they are really good at. The purpose of the present chapter is
to explain under what circumstances neural networks are preferable to other
data processing techniques and for what purposes they may be useful.

Basic definitions will be first presented: (formal) neuron, neural networks,
neural network training (both supervised and unsupervised), feedforward and
feedback (or recurrent) networks.

The basic property of neural networks with supervised training, parsimo-
nious approximation, will subsequently be explained. Due to that property,
neural networks are excellent nonlinear modeling tools. In that context, the
concept of supervised training will emerge naturally as a nonlinear version
of classical statistical modeling methods. Attention will be drawn to the nec-
essary and sufficient conditions for an application of neural networks with
supervised training to be successful.

Automatic classification (or discrimination) is an area of application of
neural networks that has specific features. A general presentation of automatic
classification, from a probabilistic point of view, will be made. It will be shown
that not all classification problems can be solved efficiently by neural networks,
and we will characterize the class of problems where neural classification is
most appropriate. A general methodology for the design of neural classifiers
will be explained.
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Xy X Xy

Fig. 1.1. A neuron is a nonlinear bounded function y = f (1, z2, ... Tn; w1, w2, ...,
wp) where the {z;} are the variables and the {w;} are the parameters (or weights)
of the neuron

Finally, various applications will be described that illustrate the variety
of areas where neural networks can provide efficient and elegant solutions to
engineering problems, such that pattern recognition, nondestructive testing,
information filtering, bioengineering, material formulation, modeling of in-
dustrial processes, environmental control, robotics, etc. Further applications
(spectra interpretation, classification of satellite images, classification of sonar
signals, process control) will be either mentioned or described in detail in sub-
sequent chapters.

1.1 Neural Networks: Definitions and Properties

A neuron is a nonlinear, parameterized, bounded function.

For convenience, a linear parameterized function is often termed a linear
neuron.

The variables of the neuron are often called inputs of the neuron and
its value is its output. A neuron can be conveniently represented graphically
as shown on Fig. 1.1. This representation stems from the biological inspira-
tion that prompted the initial interest in formal neurons, between 1940 and
1970 [McCulloch 1943; Minsky 1969].

Function f can be parameterized in any appropriate fashion. Two types
of parameterization are of current use.

e The parameters are assigned to the inputs of the neurons; the output of
the neuron is a nonlinear combination of the inputs {z;}, weighted by the
parameters {w;}, which are often termed weights, or, to be reminiscent of
the biological inspiration of neural networks, synaptic weights. Following
the current terminology, that linear combination will be termed potential
in the present book, and, more specifically, linear potential in Chap. 5. The
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most frequently used potential v is a weighted sum of the inputs, with an
additional constant term called “bias”,

n—1
v = wq + E W; L.
i=1

Function f is termed activation function. For reasons that will be explained
below, it is advisable that function f be a sigmoid function (i.e., an s-
shaped function), such as the tanh function or the inverse tangent function.
In most applications that will be described in the present chapter, the out-
put y of a neuron with inputs {z;} is given by y = tanh[wg + Z?;ll w;x;).
e The parameters are assigned to the neuron nonlinearity, i.e., they belong to
the very definition of the activation function such is the case when function
f is a radial basis function (RBF) or a wavelet; the former stem from ap-
proximation theory [Powell 1987], the latter from signal processing [Mallat
1989].
For instance, the output of a Gaussian RBF is given by

Yy = exp [—Z(xl - wi)2/2w721+11 ,

i=1

where the parameters w;, i = 1 to n, are the position of the center of the
Gaussian and w,, 11 is its standard deviation.

Additional examples of neurons are given in the theoretical and algorithmic
supplements, at the end of the chapter.

For practical purposes, the main difference between the above two cate-
gories of neurons is that RBFs and wavelets are local nonlinearities, which
vanish asymptotically in all directions of input space, whereas neurons that
have a potential and a sigmoid nonlinearity have an infinite-range influence
along the direction defined by v = 0.

1.1.1 Neural Networks

It has just been shown that a neuron is a nonlinear, parameterized function of
its input variables. Naturally enough, a network of neurons is the composition
of the nonlinear functions of two or more neurons.

Neural networks come in two classes: feedforward networks and recurrent
(or feedback) networks.

1.1.1.1 Feedforward Neural Networks
General Form

A feedforward neural network is a nonlinear function of its inputs, which is
the composition of the functions of its neurons.
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N, output neuron(s)

N_ hidden neurons

Fig. 1.2. A neural network with n inputs, a layer of N, hidden neurons, and N,
output neurons

Therefore, a feedforward neural network is represented graphically as a
set of neurons connected together, in which the information flows only in the
forward direction, from inputs to outputs. In a graph representation, where
the vertices are the neurons and the edges are the connections, the graph of a
feedforward network is acyclic: no path in the graph, following the connections,
can lead back to the starting point. The graph representation of the topology
of the network is a useful tool, especially for analyzing recurrent networks, as
will be shown in Chap. 2.

The neurons that perform the final computation, i.e., whose outputs are
the outputs of the network, are called output neurons; the other neurons,
which perform intermediate computations, are termed hidden neurons (see
Fig. 1.2).

One should be wary of the term connection, which should be taken
metaphorically. In the vast majority of applications, neurons are not phys-
ical objects, e.g., implemented electronically in silicon, and connections do
not have any actual existence: the computations performed by each neuron
are implemented as software programs, written in any convenient language
and running on any computer. The term connection stems from the biological
origin of neural networks; it is convenient, but it may be definitely misleading.
So is the term connectionism.

Multilayer Networks

A great variety of network topologies can be imagined, under the sole con-
straint that the graph of connections be acyclic. However, for reasons that
will be developed in a subsequent section, the vast majority of neural network
applications implement multilayer networks, an example of which is shown on
Fig. 1.2.
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General Form

That network computes N, functions of the input variables of the network;
each output is a nonlinear function (computed by the corresponding output
neuron) of the nonlinear functions computed by the hidden neurons.

A feedforward network with n inputs, N, hidden neurons and N, output
neurons computes N, nonlinear functions of its n input variables as composi-
tions of the N, functions computed by the hidden neurons.

It should be noted that feedforward networks are static; if the inputs are
constant, then so are the outputs. The time necessary for the computation
of the function of each neuron is usually negligibly small. Thus, feedforward
neural networks are often termed static networks in contrast with recurrent
or dynamic networks, which will be described in a specific section below.

Feedforward multilayer networks with sigmoid nonlinearities are often
termed multilayer perceptrons, or MLPs.

In the literature, an input layer and input neurons are frequently men-
tioned as part of the structure of a multilayer perceptron. That is confusing
because the inputs (shown as squares on Fig. 1.2, as opposed to neurons,
which are shown as circles) are definitely not neurons: they do not perform
any processing on the inputs, which they just pass as variables of the hidden
neurons.

Feedforward Neural Networks with a Single Hidden Layer of Sigmoids and a
Single Linear Output Neuron

The final part of this presentation of feedforward neural networks will be de-
voted to a class of feedforward neural networks that is particularly important
in practice: networks with a single layer of hidden neurons with a sigmoid
activation function, and a linear output neuron (Fig. 1.3).

The output of that network is given by

N, [ n
g(x,w) = WN,+1,; tanh Z wi;x; + wio | | + WN.+1,0
i=1 | j=1
N, [ n
= WN,+1,; tanh Zwijxj + WN,+1,05
i=1 | =0

where @ is the input (n+ 1)-vector, and w is the vector of (n+1)N.+ (N.+1)
parameters. Hidden neurons are numbered from 1 to N., and the output
neuron is numbered N, + 1. Conventionally, the parameter w;; is assigned
to the connection that conveys information from neuron j (or from network
input j) to neuron i.

The output g(x,w) of the network is a linear function of the parameters
of the last connection layer (connections that convey information from the N,
hidden neurons to the output neuron N, + 1), and it is a nonlinear function
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A linear output neuron

T

.-\-'c hidden neurons

with sigmoid activation functions

n variable inputs
+ one “bias”

Fig. 1.3. A neural network with n + 1 inputs, a layer of N. hidden neurons with
sigmoid activation function, and a linear output neuron. Its output g(z,w) is a
nonlinear function of the input vector &, whose components are 1,x1,zs,...,Tn,
and of the vector of parameters w, whose components are the (n + 1)N. + N. + 1
parameters of the network

of the parameters of the first layer of connections (connections that convey
information from the n + 1 inputs of the network to the N, hidden neurons).
That property has important consequences, which will be described in detail
in a subsequent section.

The output of a multilayer perceptron is a nonlinear function of its inputs
and of its parameters.

1.1.1.2 What Is a Neural Network with Zero Hidden Neurons?

A feedforward neural network with zero hidden neuron and a linear output
neuron is an affine function of its inputs. Hence, any linear system can be re-
garded as a neural network. That statement, however, does not bring anything
new or useful to the well-developed theory of linear systems.

1.1.1.3 Direct Terms

If the function to be computed by the feedforward neural network is thought
to have a significant linear component, it may be useful to add linear terms
(sometimes called direct terms) to the above structure; they appear as addi-
tional connections on the graph representation of the network, which convey
information directly from the inputs to the output neuron (Fig. 1.4). For
instance, the output of a feedforward neural network with a single layer of
activation functions and a linear output function becomes

=

c

n n
g(cc,w) = WN, +1,i tanh E Wi T + E WN,+1,;T;-
1 =0 j=0

.
Il
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glx, w)

Fig. 1.4. A feedforward neural network with direct terms. Its output g(x,w) de-
pends on the input vector &, whose components are 1,x1,22,...,%,, and on the
vector of parameters w, whose components are the parameters of the network

RBF (Radial Basis Functions) and Wavelet Networks

The parameters of such networks are assigned to the nonlinear activation
function, instead of being assigned to the connections; as in MLP’s, the output
is a linear combination of the outputs of the hidden RBF’s. Therefore, the
output of the network (for Gaussian RBF’s) is given by

o j=1 (5 — wij)?
sow) =3 2= ) )
i=1

2wi2
where x is the n-vector of inputs, and w is the vector of ((n+2)N,) parameters
[Broomhead 1988; Moody 1989]; hidden neurons are numbered from 1 to N,
and the output neuron is numbered N, + 1.

The parameters of an RBF network fall into two classes: the parameters
of the last layer, which convey information from the N, RBF (outputs to
the output linear neuron), and the parameters of the RBF’s (centers and
standard deviations for Gaussian RBF’s). The connections of the first layer
(from inputs to RBF’s) are all equal to 1. In such networks, the output is a
linear function of the parameters of the last layer and it is a nonlinear function
of the parameters of the Gaussians. This has an important consequence that
will be examined below.

Wavelet networks have exactly the same structure, except for the fact that
the nonlinearities of the neurons are wavelets instead of being Gaussians. The

)

WN,_+1,i €XP (‘
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parameters that are relevant to the nonlinearity are the translations and the
dilations of the wavelets [Benveniste 1994; Oussar 2000].

1.1.1.4 Recurrent (Feedback) Neural Networks
General Form

The present section is devoted to a presentation of the most general neural
network architecture: recurrent neural networks, whose connection graph ex-
hibits cycles. In that graph, there exists at least one path that, following the
connections, leads back to the starting vertex (neuron); such a path is called
a cycle. Since the output of a neuron cannot be a function of itself, such an
architecture requires that time be explicitly taken into account: the output of
a neuron cannot be a function of itself at the same instant of time, but it can
be a function of its past value(s).

At present, the vast majority of neural network applications are imple-
mented as digital systems (either standard computers, or special-purpose
digital circuits for signal processing): therefore, discrete-time systems are
the natural framework for investigating recurrent networks, which are de-
scribed mathematically by recurrent equations (hence the name of those net-
works). Discrete-time (or recurrent) equations are discrete-time equivalents of
continuous-time differential equations.

Therefore, each connection of a recurrent neural network is assigned a
delay (possibly equal to zero), in addition to being assigned a parameter
as in feedforward neural networks. Each delay is an integer multiple of an
elementary time that is considered as a time unit. From causality, a quantity,
at a given time, cannot be a function of itself at the same time: therefore, the
sum of the delays of the edges of a cycle in the graph of connections must be
nonzero.

A discrete-time recurrent neural network obeys a set of nonlinear discrete-
time recurrent equations, through the composition of the functions of its neu-
rons, and through the time delays associated to its connections.

Property. For causality to hold, each cycle of the connection graph must have
at least one connection with a nonzero delay.

Figure 1.5 shows an example of a recurrent neural network. The digits
in the boxes are the delays attached to the connections, expressed as integer
multiples of a time unit (or sampling period) T'. The network features a cycle,
from neuron 3 back to neuron 3 through neuron 4; since the connection from
4 to 3 has a delay of one time unit, the network is causal.

Further Details

At time KT, the inputs of neuron 3 are ug (kT'), ue[(k—1)T), ya[(k—1)T] (where
k is a positive integer and y4(kT) is the output of neuron 4 at time kT'), and
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Fig. 1.5. A two-input recurrent neural network. Digits in square bozes are the
delay assigned to each connection, an integer multiple of the time unit (or sampling
period) T'. The network features a cycle from 3 to 3 through 4

it computes its output ys(kT'); the inputs of neuron 4 are uqg(kT) and ys(kT),
and it computes its output y4(kT'); the inputs of neuron 5 are ys(kT'), ui (kT')
et y4[(k—1)T], and it computes its output, which is the output of the network
g(kT).

The Canonical Form of Recurrent Neural Networks

Because recurrent neural networks are governed by recurrent discrete-time
equations, it is natural to investigate the relations between such nonlinear
models and the conventional dynamic linear models, as used in linear modeling
and control.
The general mathematical description of a linear system is the state

equations,

zk)=Ax(k—1)+Bu(k—1)

glk)=Cx(k—1)+ D u(k-1),
where x(k) is the state vector at time kT, u(k) is the input vector at time
kT, g(k) is the output vector at time kT and A, B, C, D are matrices. The state
variables are the minimal set of variables such that their values at time (k+1)T"
can be computed if (i) their initial values are known, and if (ii) the values of
the inputs are known at all time from 0 to k7. The number of state variables

is the order of the system.
Similarly the canonical form of a nonlinear system is defined as

z(k) =Plx(k—1),u(k —1)]
g(k) =lz(k — 1), u(k - 1)],
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Outputs State variables
at time k at time k

? g(k) T x(k) —

Feedforward neural network

Erzl [—1 Unit

delays

o

u(k- 1) x(k-1)
e —| I —
External inputs State variables
at time k-1 at time k-1

Fig. 1.6. The canonical form of a recurrent neural network. The symbol ¢! stands
for a unit time delay

where @ and W are nonlinear vector functions, e.g., neural networks, and
where x is the state vector. As in the linear case, the state variables are the
elements of the minimal set of variables such that the model can be described
completely at time k+ 1 given the initial values of the state variables, and the
inputs from time 0 to time k. It will be shown in Chap. 2 that any recurrent
neural network can be cast into a canonical form, as shown on Fig. 1.6, where
g~ ! stands for a unit time delay. This symbol, which is usual in control theory,
will be used in throughout this book, especially in Chaps. 2 and 4.

Property. Any recurrent neural network, however complex, can be cast into a
canonical form, made of a feedforward neural network, some outputs of which
(termed state outputs) are fed back to the inputs through unit delays [Nerrand
1993].

For instance, the neural network of Fig. 1.5 can be cast into the canonical
form that is shown on Fig. 1.7. That network has a single state variable (hence
it is a first-order network): the output of neuron 3. In that example, neuron
3 is a hidden neuron, but it will be shown below that a state neuron can also
be an output neuron.

Further Details

At time KT, the inputs of neuron 4 are us[(k — 1)T] and z[(k — 1)T] =
ys[(k — 1)T)); therefore, its output is y4[(k — 1)T]; just as in the origi-
nal (non-canonical) form, the inputs of neuron 3 are wuy(kT),uz[(k — 1)T7,
ya[(k — 1)T7]; therefore, its output is ys(kT); the inputs of neuron 5 are
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L.l

uy(KT) ul(k1)T]

X[(k-1)T]

Fig. 1.7. The canonical form (right-hand side) of the network shown on Fig. 1.5
(left-hand side). That network has a single state variable 2(kT") (output of neuron 3):
it is a first-order network. The gray part of the canonical form is a feedforward neural
network

y3(kT), u1 (kT), ya[(k—1)T); therefore, its output is g(kT'), which is the output
of the network. Hence, both networks are functionally equivalent.

Recurrent neural networks (and their canonical form) will be investigated
in detail in Chaps. 2, 4 and 8.

1.1.1.5 Summary

In the present section, we stated the basic definitions that are relevant to the
neural networks investigated in the present book. We made specific distinc-
tions between:

e Feedforward (or static) neural networks, which implement nonlinear func-
tions of their inputs,

e Recurrent (or dynamic) neural networks, which are governed by nonlinear
discrete-time recurrent equations.

In addition, we showed that any recurrent neural network can be cast into a
canonical form, which is made of a feedforward neural network whose outputs
are fed back to its inputs with a unit time delay.

Thus, the basic element of any neural network is a feedforward neural
network. Therefore, we will first study in detail feedforward neural networks.
Before investigating their properties and applications, we will consider the
concept of training.
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1.1.2 The Training of Neural Networks

Training is the algorithmic procedure whereby the parameters of the neurons
of the network are estimated, in order for the neural network to fulfill, as
accurately as possible, the task it has been assigned.

Within that framework, two categories of training are considered: super-
vised training and unsupervised training.

1.1.2.1 Supervised Training

As indicated in the previous section, a feedforward neural network computes
a nonlinear function of its inputs. Therefore, such a network can be assigned
the task of computing a specific nonlinear function. Two situations may arise:

e The nonlinear function is known analytically: hence the network performs
the task of function approximation,

e The nonlinear function is not known analytically, but a finite number of
numerical values of the function are known; in most applications, these
values are not known exactly because they are obtained through measure-
ments performed on a physical, chemical, financial, economic, biological,
etc. process: in such a case, the task that is assigned to the network is
that of approximating the regression function of the available data, hence
of being a static model of the process.

In the vast majority of their applications, feedforward neural networks with
supervised training are used in the second class of situations.

Training can be thought of as “supervised” since the function that the net-
work should implement is known in some or all points: a “teacher” provides
“examples” of values of the inputs and of the corresponding values of the out-
put, i.e., of the task that the network should perform. The core of Chap. 2 of
the book is devoted to translating the above metaphor into mathematics and
algorithms. Chapters 3, 4, 5 and 6 are devoted to the design and applications
of neural networks with supervised training for static and dynamic modeling,
and for automatic classification (or discrimination).

1.1.2.2 Unsupervised Training

A feedforward neural network can also be assigned a task of data analysis
or visualization: a set of data, described by a vector with a large number of
components, is available. It may be desired to cluster these data, according
to similarity criteria that are not known a priori. Clustering methods are well
known in statistics; feedforward neural networks can be assigned a task that is
close to clustering: from the high-dimensional data representation, find a rep-
resentation of much smaller dimension (usually 2-dimensional) that preserves
the similarities or neighborhoods. Thus, no teacher is present in that task,
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since the training of the network should “discover” the similarities between
elements of the database, and translate them into vicinities in the new data
representation or “map.” The most popular feedforward neural networks with
unsupervised training are the “self-organizing maps” or “Kohonen maps”.
Chapter 7 is devoted to self-organizing maps and their applications.

1.1.3 The Fundamental Property of Neural Networks with
Supervised Training: Parsimonious Approximation

1.1.3.1 Nonlinear in Their Parameters, Neural Networks Are
Universal Approximators

Property. Any bounded, sufficiently reqular function can be approximated
uniformly with arbitrary accuracy in a finite region of variable space, by a
neural network with a single layer of hidden neurons having the same activa-
tion function, and a linear output neuron [Hornik 1989, 1990, 1991].

That property is just a proof of existence and does not provide any method
for finding the number of neurons or the values of the parameters; furthermore,
it is not specific to neural networks. The following property is indeed specific
to neural networks, and it provides a rationale for the applications of neural
networks.

1.1.3.2 Some Neural Networks Are Parsimonious

In order to implement real applications, the number of functions that are
required to perform an approximation is an important criterion when a choice
must be made between different models. It will be shown in the next section
that the model designer ought always to choose the model with the smallest
number of parameters, i.e., the most parsimonious model.

Fundamental Property

It can be shown [Barron 1993] that, if the model is nonlinear with respect to
its parameters, it is more parsimonious than if the model is linear with respect
to its parameters.

More specifically, it can be shown that the number of parameters neces-
sary to perform an approximation with a given accuracy varies exponentially
with the number of variables for models that are linear with respect to their
parameters, whereas it increases linearly with the number of variables if the
model is not linear with respect to its parameters.

Therefore, that property is valuable for models that have a “large” number
of inputs: for a process with one or two variables only, all nonlinear models are
roughly equivalent from the viewpoint of parsimony: a model that is nonlinear
with respect to its parameters is equivalent, in that respect, to a model that
is linear with respect to its parameters.
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In the section devoted to the definitions, we showed that the output of a
feedforward neural network with a layer of sigmoid activation functions (mul-
tilayer Perceptron) is nonlinear with respect to the parameters of the network,
whereas the output of a network of radial basis functions with fixed centers
and widths, or of wavelets with fixed translations and dilations, is linear with
respect to the parameters. Similarly, a polynomial is linear with respect to the
coefficients of the monomials. Thus, neurons with sigmoid activation functions
provide more parsimonious approximations than polynomials or radial basis
functions with fixed centers and widths, or wavelets with fixed translations
and dilations. Conversely, if the centers and widths of Gaussian radial basis
functions, or the centers and dilations of wavelets, are considered as adjustable
parameters, there is no mathematically proved advantage to any one of those
models over the others. However, some practical considerations may lead to
favor one of the models over the others: prior knowledge on the type of nonlin-
earity that is required, local vs. nonlocal function, ease and speed of training
(see Chap. 2, section “Parameter initialization”), ease of hardware integration
into silicon, etc.

The origin of parsimony can be understood qualitatively as follows. Con-
sider a model that is linear with respect to its parameters, such as a polynomial
model, e.g.,

g(x) = 4+ 22 + 42% — 0.52°.

The output g(x) of the model is a linear combination of functions y = 1,y =
x,y = 22,y = 3, with parameters (weights) wy = 4, w; = 2,ws = 4, w3 =
—0.5. The shapes of those functions are fixed.

Consider a neural model as shown on Fig. 1.8, for which the equation is

g(z) = 0.5 — 2tanh(10z + 5) + 3tanh(x 4 0.25) — 2 tanh(3z — 0.25).

This model is also a linear combination of functions (y = 1,y = tanh(10x +
5),y = tanh(z +0.25), y = tanh(3z — 0.25)), but the shapes of these functions
depend on the values of the parameters of the connections between the inputs
and the hidden neurons. Thus, instead of combining functions whose shapes
are fixed, one combines functions whose shapes are adjustable through the pa-
rameters of some connections. That provides extra degrees of freedom, which
can be taken advantage of for using a smaller number of functions, hence a
smaller number of parameters. That is the very essence of parsimony.

1.1.3.3 An Elementary Example

Consider the function
y = 16,71 2% — 0,075.

We sample 20 equally spaced points that are used for training a multilayer
Perceptron with two hidden neurons whose nonlinearity is tan™!, as shown on
Fig. 1.9(a). Training is performed with the Levenberg-Marquardt algorithm
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Fig. 1.8. A feedforward neural network with one variable (hence two inputs) and
three hidden neurons. The numbers are the values of the parameters

(see Chap. 2), resulting in the parameters shown on Fig. 1.9(a). Figure 1.9(b)
shows the points of the training set and the output of the network, which
fits the training points with excellent accuracy. Figure 1.9(c) shows the out-
puts of the hidden neurons, whose linear combination with the bias provides
the output of the network. Figure 1.9(d) shows the points of a test set, i.e., a
set of points that were not used for training: outside of the domain of variation
of the variable x within which training was performed ([—0.12,40.12]), the
approximation performed by the network becomes extremely inaccurate, as
expected. The striking symmetry in the values of the parameters shows that
training has successfully captured the symmetry of the problem (simulation
performed with the NeuroOne™ software suite by NETRAL S.A.).

It should be clear that using a neural network to approximate a single-
variable parabola is overkill, since the parabola has two parameters whereas
the neural network has seven parameters! This example has a didactic charac-
ter insofar as simple one-dimensional graphical representations can be drawn.

1.1.4 Feedforward Neural Networks with Supervised Training for
Static Modeling and Discrimination (Classification)

The mathematical properties described in the previous section are the basis
of the applications of feedforward neural networks with supervised training.
However, for all practical purposes, neural networks are scarcely ever used for
uniformly approximating a known function.

In most cases, the engineer is faced with the following problem: a set of
measured variables {z*, k = 1 to N}, and a set of measurements {y,(x*),
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Fig. 1.9. Interpolation of a parabola by a neural network with two hidden neurons;
(a) network; (b) training set (+) and network output (line) after training; (c) out-
puts of the two hidden neurons (sigmoid functions) after training; (d) test set (+)
and network output (line) after training: as expected, the approximation is very
inaccurate outside the domain of variation of the inputs during training

k =1 to N} of a quantity of interest z, related to a physical, chemical,
financial, ..., process, are available. He assumes that there exists a relation
between the vector of variables {#} and the quantity z,, and he looks for a
mathematical form of that relation, which is valid in the region of variable
space where the measurements were performed, given that (1) the number
of available measurements is finite, and (2) the measurements are corrupted
by noise. Moreover, the variables that actually affect z, are not necessarily
measured. In other words, the engineer tries to build a model of the process
of interest, from the available measurements only: such a model is called a
black-box model. In neural network parlance, the observations from which the
model is designed are called examples. We will consider below the “black-box”
modeling of the hydraulic actuator of a robot arm: the set of variables {x}
has a single element (the angle of the oil valve), and the quantity of interest
{zp} is the oil pressure in the actuator. We will also describe an example of
prediction of chemical properties of molecules: a relation between a molecular
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property (e.g., the boiling point) and “descriptors” of the molecules (e.g., the
molecular mass, the number of atoms, the dipole moment, etc.); such a model
allows predictions of the boiling points of molecules that were not synthesized
before. Several similar cases will be described in this book.

Black-box models, as defined above, are in sharp contrast with knowledge-
based models, which are made of mathematical equations derived from first
principles of physics, chemistry, economics, etc. A knowledge-based model
may have a limited number of adjustable parameters, which, in general, have
a physical meaning. We will show below that neural networks can be building
blocks of gray box or semi-physical models, which take into account both
expert knowledge—as in a knowledge-based model-——and data—as in a black-
box model.

Since neural networks are not really used for function approximation, to
what extent is the above-mentioned parsimonious approximation property
relevant to neural network applications? In the present chapter, a cursory
answer to that question will be provided. A very detailed answer will be
provided in Chap. 2, in which a general design methodology will be presented,
and in Chap. 3, which provides very useful techniques for the reduction of
input dimension, and for the design, and the performance evaluation, of neural
networks.

1.1.4.1 Static Modeling

For simplicity, we first consider a model with a single variable x. Assume that
an infinite number of measurements of the quantity of interest can be per-
formed for a given value zg of the variable x. Their mean value is the quan-
tity of interest z,, which is called the “expectation” of y, for the value zy of
the variable. The expectation value of y, is a function of x, termed “regres-
sion function”. Since we know from the previous section that any function
can be approximated with arbitrary accuracy by a neural network, it may
be expected that the black-box modeling problem, as stated above, can be
solved by estimating the parameters of a neural network that approximates
the (unknown) regression function.

The approximation will not be uniform, as defined and illustrated in the
previous section. For reasons that will be explained in Chap. 2, the model
will perform an approximation in the least squares sense: a parameterized
function (e.g., a neural network) will be sought, for which the least squares
cost function

is minimal. In the above relation, {*, k = 1 to N} is a set of measured values
of the input variables, and {Ly,(z"*),k = 1 to N} as set of corresponding
measured values of the quantity to be modeled. Therefore, for a network that
has a given architecture (i.e., a given number of inputs and of hidden neurons),
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Fig. 1.10. A quantity to be modeled

training is a procedure whereby the least squares cost function is minimized,
so as to find an appropriate weight vector wyg.

That procedure suggests two questions, which are central in any neural
network application, i.e.,

e for a given architecture, how can one find the neural network for which
the least squares cost function is minimal?

e if such a neural network has been found, how can its prediction ability be
assessed?

Chapter 2 of the present book will provide the reader with a methodology,
based on first principles, which will answer the above questions.

These questions are not specific to neural networks: they are standard
questions in the field of modeling, that have been asked for many years by all
scientists (engineers, economists, biologists, and statisticians) who endeavor to
extract relevant information from data [Seber 1989; Antoniadis 1992; Draper
1998]. Actually, the path from function approximation to parameter estima-
tion of a regression function is the traditional path of any statistician in search
of a model: therefore, we will take advantage of theoretical advances of sta-
tistics, especially in regression.

We will now summarize the steps that were just described.

e When a mathematical model of dependencies between variables is sought,
one tries to find the regression function of the variable of interest, i.e., the
function that would be obtained by averaging, at each point of variable
space, the results of an infinite number of measurements; the regression
function is forever unknown. Figure 1.10 shows a quantity y,(z) that one
tries to model: the best approximation of the (unknown) regression func-
tion is sought.

A finite number of measurements are performed, as shown on Fig. 1.11.
A neural network provides an approximation of the regression function if
its parameters are estimated in such a way that the sum of the squared
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Fig. 1.11. A real-life situation: a finite number of measurements are available. Note
that the measurements are equally spaced in the present example, but that is by no
means necessary

differences between the values predicted by the network and the measured
values is minimum, as shown on Fig. 1.12.

A neural network can thus predict, from examples, the values of a quantity
that depends on several variables, for values of the variables that are not
present in the database used for estimating the parameters of the model. In
the case shown on Fig. 1.12, the neural network can predict values of the quan-
tity of interest for points that lie between the measured points. That ability is
termed “statistical inference” in the statistics literature, and is called “gener-
alization” in the neural network literature. It should be absolutely clear that
the generalization ability is necessarily limited: it cannot extend beyond the
boundaries of the region of input space where training examples are present, as
shown on Fig. 1.9. The estimation of the generalization ability is an important
question that will be examined in detail in the present book.
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Fig. 1.12. An approximation of the regression function, performed by a neural
network, from the experimental points of Fig. 1.11
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1.1.4.2 To What Extent Is Parsimony a Valuable Property?

In the context of nonlinear regression and generalization, parsimony is indeed
an important asset of neural networks and, more generally, of any model that
is nonlinear with respect to its parameters. We mentioned earlier that most
applications of neural networks with supervised learning are modeling appli-
cations, whereby the parameters of the model are adjusted, from examples, so
as to fit the nonlinear relationship between the factors (inputs of the model)
and the quantity of interest (the output of the model). It is intuitive that
the number of examples requested to estimate the parameters in a significant
and robust way is larger than the number of parameters: the equation of a
straight line cannot be fitted from a single point, nor can the equation of a
plane be fitted from two points. Therefore, models such as neural networks,
which are parsimonious in terms of number of parameters, are also, to some
extent, parsimonious in terms of number of examples; that is valuable since
measurements can be costly (e.g., measurements performed on an industrial
process) or time consuming (e.g., models of economy trained from indicators
published monthly), or both.

Therefore, the actual advantage of neural networks over conventional non-
linear modeling techniques is their ability of providing models of equivalent
accuracy from a smaller number of examples or, equivalently, of providing
more accurate models from the same number of examples. In general, neural
networks make the best use of the available data for models with more than
2 inputs.

Figure 1.42 illustrates the parsimony of neural networks in an industrial
application: the prediction of a thermodynamic parameter of a glass.

1.1.4.3 Classification (Discrimination)

Classification (or discrimination) is the task whereby items are assigned to
a class (or category) among several predefined classes. An algorithm that
automatically performs a classification is called a classifier.

In the vocabulary of statistics, classification is the task whereby data that
exhibit some similarity are grouped into classes that are not predefined; we
have mentioned above that neural networks with unsupervised learning can
perform such a task. Therefore, the terminology tends to be confusing. In the
present book, we will try to make the distinction clear whenever the context
may allow confusion. In the present section, we consider only the case of
predefined classes.

Classifiers have a very large number of applications for pattern recognition
(handwritten digits or characters, image recognition, speech recognition, time
sequence recognition, etc.), and in many other areas as well (economy, finance,
sociology, language processing, etc.). In general, a pattern may be any item
that is described by a set of numerical descriptors: an image can be described
by the set of the intensities of its pixels, a time sequence by the sequence of
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its values during a given time interval, a text by the frequency of occurrence
of the significant words that it contains, etc. Typically, the questions whose
answer a classifier is expected to contribute to are: is this unknown character a
a,a b, a c, etc.? is this observed signal normal or anomalous? is this company
a safe investment? is this text relevant to a given topic of interest? will there
be a pollution alert to-morrow?

The classifier is not necessarily expected to give a full answer to such a
question: it may make a contribution to the answer. Actually, it is often the
case that the classifier is expected to be a decision aid only, the decision being
made by the expert himself. In the first applications of neural networks to
classification, the latter were expected to give a definite answer to the clas-
sification problem. Since significant advances have been made in the under-
standing of neural network operation, we know that they are able to provide
a much richer information than just a binary decision as to the class of the
pattern of interest: neural networks can provide an estimation of the proba-
bility of a pattern to belong to a class (also termed posterior probability of the
class). This is extremely valuable in complex pattern recognition applications
that implement several classifiers, each of which providing an estimate of the
posterior probability of the class. The final decision is made by a “supervi-
sor” system that assigns the class to the pattern in view of the probability
estimates provided by the individual classifiers (committee machines).

Similarly, information filtering is an important problem in the area of
data mining: find, in a large text data base, the texts that are relevant to
a prescribed topic, and rank these texts by order of decreasing relevance, so
that the user of the system can make a choice efficiently among the suggested
documents. Again, the classifier does not provide a binary answer, but it
estimates the posterior probability of the class “relevant.” Feedforward neural
networks are more and more frequently used for data mining applications.

Chapter 6 of the present book is fully devoted to feedforward neural
networks and support vector machines for discrimination.

1.1.5 Feedforward Neural Networks with Unsupervised Training
for Data Analysis and Visualization

Due to the development of powerful data processing and storage systems, very
large amounts of information are available, whether in the form of numbers
(intensive data processing of experimental results) or in the form of symbols
(text corpuses). Therefore, the ability of retrieving information that is known
to be present in the data, but that is difficult to extract, becomes crucial.
Computer graphics facilitates greatly user-friendly presentation of the data,
but the human operator is unable to visualize high-dimensionality data in an
efficient way. Therefore, it is often desired to project high-dimensionality data
onto a low-dimensionality space (typically dimension 2) in which proximity re-
lations are preserved. Neural networks with unsupervised learning, especially
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self-organizing maps (“Kohonen maps”), are powerful data visualization tech-
niques.

Chapter 7 of the present book is devoted to unsupervised learning, with
emphasis on spectacular applications in satellite observation systems.

1.1.6 Recurrent Neural Networks for Black-Box Modeling,
Gray-Box Modeling, and Control

In an earlier section, devoted to recurrent neural networks, we showed that any
neural network can be cast into a canonical form, which is made of a feed-
forward neural network with external recurrent connections. Therefore, the
properties of recurrent neural networks with supervised learning are strongly
related to those of feedforward neural networks. The latter are used for static
modeling from examples; similarly, recurrent neural networks are used for dy-
namic modeling from examples, i.e., for finding, from measured sequences of
inputs and outputs, recurrent (discrete-time) equations that govern a process.
A sizeable part of Chap. 2, and Chap. 4, are devoted to dynamic process mod-
eling.
The design of a dynamic model may have several motivations.

e Use the model as a simulator in order to predict the evolution of a process
that is described by a model whose equations are inaccurate.

e Use the model as a simulator of a process whose knowledge-based model is
known and reliable, but cannot be solved accurately in real time because
it contains many coupled differential or partial differential equations that
cannot be solved numerically in real time with the desired accuracy: in such
circumstances, one can generate a training set from the software code that
solves the equations, and design a recurrent neural network that provides
accurate solutions within a much shorter computation time; furthermore, it
may be advantageous to take advantage of the differential equations of the
knowledge-based model, as guidelines to the design of the architecture of
the neural model: this is known as “gray-box” or “semi-physical” modeling,
described in Sect. 1.1.6.1.

e Use the model as a one-step-ahead predictor, integrated into a control
system.

1.1.6.1 Semiphysical Modeling

In the manufacturing industry, a knowledge-based model of a process of inter-
est is often available, but is not fully satisfactory, and it cannot be improved
through further analysis; this may be due to a variety of reasons:

e the model may be too inaccurate for the purpose that it should serve:
for instance, if it is desired to perform fault detection by analyzing the
difference between the state of the process that is predicted by the model
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of normal operation, and the actual state of the process, the model of
normal operation must be accurate and run in real time.

e The model may be accurate, but too complex for real-time operation (e.g.,
for an application in monitoring and control).

If measurements are available, in addition to the equations of the—unsatisfac-
tory—knowledge-based model, it would be unadvisable to forsake altogether
the accumulated knowledge on the process and to design a purely black-box
model. Semi-physical modeling allows the model designer to have the best of
both worlds: the designer can make use of the physical knowledge in order to
choose the structure of the recurrent network, and make use of the data in
order to estimate the parameters of the model. An industrial application of
semi-physical modeling is described below, and the design methodology of a
semi-physical model is explained in Chap. 2.

1.1.6.2 Process Control

The purpose of a control system is to convey a prescribed dynamics to the
response of a process to a control signal or to a disturbance. In the case of
a regulator system the process must stay in a prescribed state in spite of
disturbances: the cruise control system of a car must keep the speed constant
(equal to the setpoint speed) irrespective of the slope of the road, wind gusts,
load variations, etc. A tracking system is designed to follow the variations of
the setpoint, irrespective of disturbances: in a fermenting plant, the heating
system must be controlled in order for the temperature to follow a prescribed
temperature profile, irrespective of the temperature of ingredients that may
be added during operation, of heat-producing chemical reactions that may
take place, etc. In order to achieve such goals, a model of the process must be
available; if necessary, the model must be nonlinear, hence be implemented as
a recurrent neural network. Chapter 5 is devoted to nonlinear neural control.

1.1.7 Recurrent Neural Networks Without Training for
Combinatorial Optimization

In the previous two sections, we emphasized the applications of recurrent
neural networks that take advantage of their forced dynamics: the model de-
signer is interested in the response of the system to control signals. By con-
trast, there is a special class of applications of recurrent neural networks that
takes advantage of their spontaneous dynamics, i.e., of their dynamics with
zero input.

Recurrent neural networks whose activation function is a step function
(McCulloch-Pitts neurons), have a dynamics that features fixed points: if such
a network is forced into an initial state, and is subsequently left to evolve under
its spontaneous dynamics, it reaches a stable state after a finite transient
sequence of states. This stable state depends on the initial state. The final
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state, i.e., the vector whose components are the (binary) states of the neurons
of the network, can be considered as the binary code of a piece of information.
Moreover, it can be shown that there exists a function, called the Liapunov
function (or energy function), which always decreases during the spontaneous
evolution of the state of the network; hence the stable states are the minima
of the Liapunov function.

Now consider the inverse problem: in a combinatorial optimization prob-
lem, it is desired to find the minimum (or at least a good minimum) of a
function (cost function) of binary variables. If there exists a recurrent neural
network whose Liapunov function is identical to the cost function of the op-
timization problem, then the fixed points of the spontaneous dynamics of
the recurrent neural network are solutions of the combinatorial optimization
problem. If such a network can be constructed, then it will find a solution of
the problem by evolving, under its spontaneous dynamics, from an arbitrary
initial state.

Therefore, the resolution of a combinatorial optimization problem with a
recurrent neural network requires

e finding a recurrent neural network whose energy function is identical to
the cost function of the optimization problem,
finding the parameters of that network,
controlling the dynamics of the network so as to make sure that it will
evolve to reach a good minimum of the cost function, for instance, by
taking advantage of stochastic methods such as simulated annealing.

This powerful technique, together with some of its applications, will be de-
scribed in Chap. 8 of the present book.

1.2 When and How to Use Neural Networks with
Supervised Training

In the previous sections, we presented the theoretical arguments that support
the use of neural networks in modeling applications. In the present section,
we attack the practical questions raised by the design and training of a neural
model. First, we will explain when neural networks can advantageously be
used—and when they should not be used. In the subsequent section, we will
emphasize how to use neural networks. An in-depth treatment of these im-
portant questions will be given in the next chapters.

1.2.1 When to Use Neural Networks?

We have shown earlier that the fundamental property of neural networks
with supervised training is the parsimonious approximation property, i.e.,
their ability of approximating any sufficiently regular function with arbitrary
accuracy.
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Therefore, neural networks may be advantageous in any application that
requires finding, in a machine learning framework, a nonlinear relation be-
tween numerical data.

Under what conditions is such an approach recommended?

e The first condition is necessary but not sufficient: since neural network
design is essentially a problem in statistics, a set of examples, that sample
the space of inputs appropriately, and that are in appropriate number,
must be available.

e After gathering the data, one should make sure that a nonlinear model is
necessary, since the design of a linear model is much simpler and faster
than the design of a neural model. Therefore, if no prior knowledge on the
quantity to be modeled is available, one should first try out a linear model;
if it turns out that a linear model is too inaccurate, despite the fact that
all relevant factors are present in the inputs, then the model designer may
rightly resort to nonlinear models such as neural networks.

e If the appropriate examples are available, and if a nonlinear model is neces-
sary, then one should decide whether the use of neural networks, instead
of polynomials for instance, is advisable. Parsimony is the relevant choice
criterion here: as mentioned above, the number of parameters of the first
connection layer (between inputs and hidden neurons) increases linearly
with the number of variables, whereas it increases exponentially for poly-
nomial approximation (there exist, however, statistical tests that may, to
some extent, limit the combinatorial explosion of parameters in polynomial
modeling). Therefore, neural networks are advantageous when the number
of variables is large, i.e., empirically, larger than or equal to 3.

To summarize, if appropriate data sets are available, neural networks can
be used with advantage in all applications that require the estimation of the
parameters of a regression function with three variables or more. If the number
of variables is smaller, nonlinear models that are linear with respect to their
parameters, such as polynomials, radial basis functions with fixed centers and
standard deviation, wavelets with fixed translations and dilations, may be as
accurate, and require a simpler implementation.

If the available data are not numerical (e.g., symbolic), they cannot be
processed directly by a neural network. Some appropriate preprocessing is
required in order to make data numerical (techniques evolved from the theory
of fuzzy sets may be appropriate).

1.2.2 How to Design Neural Networks?

Neural networks are nonlinear parameterized functions, which can approx-
imate any nonlinear function. Therefore, approaching a regression function
from examples requires finding a neural network for which the sum, over all
examples used for training, of the squared modeling errors (the least squares
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cost function) is minimum. As a consequence, the design of a neural network
requires

e finding the relevant inputs, i.e., the factors that have a significant influence
on the quantity to be modeled (i.e., an influence that is larger than the
measurement noise),

e collecting the data that is necessary for training and testing the neural
network,

e finding the appropriate complexity of the model, i.e., the appropriate num-
ber of hidden neurons,

e cstimating the parameters for which the cost function is minimum, i.e.,
training the network,

e assessing the generalization ability of the neural network after training.

In view of the results, it may be necessary to iterate the whole procedure, or
part of it.
These points will be considered in detail in the next sections.

1.2.2.1 Relevant Inputs

The selection of relevant inputs may have various requirements, depending on
the application that is considered.

If the process to be modeled is an industrial problem that has been care-
fully engineered, the relevant factors and the causal relations between them
are usually known. Consider, as an example, the industrial process of spot
welding, which will be described in detail in a subsequent section: the metal
sheets to be welded are melted together locally by passing a very large current
(a few kiloamperes) during a few milliseconds, through two electrodes that are
pressed onto the metal surfaces (Fig. 1.13). The quality of the joint is assessed
from the diameter of the melted zone; it depends on the current intensity, on
the duration of the current flow, on the stress applied to the electrodes while
current flows and during cooling, on the surface state of the electrodes, on
the nature of the metal sheets, and on a few additional factors. Thus, the
desirable model inputs are essentially known from physics: however, it may
be important to make a choice between these factors, so that only those fac-
tors that have a significant influence on the spot weld diameter, i.e., whose
influence is larger than the uncertainty on the measurement of the diameter,
are taken into account.

By contrast, if the process of interest is a complex natural process (e.g., in
biology or ecology), or if it is an economic, financial or social process, the choice
of the relevant inputs may be more difficult. An example of a complex natural
process (the solubility of molecules in solvents), where the determination of
the relevant factors is not trivial, will be described in a subsequent section.
Similarly, great care must be exercised in the choice of relevant inputs for
credit rating, an example that will also be described below.
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Fig. 1.13. A schematic representation of the spot welding process

The questions of input selection, and of model selection as well, are by
no means specific to neural networks: they are of great importance for all
modeling techniques, whether linear or nonlinear. It will be shown, in Chap. 2,
that model selection techniques that were developed for linear models can be
extended to nonlinear models such as neural networks.

1.2.2.2 Data Collection

Before training, observations must be collected in order to build the training
set, as well as the validation and test sets, which will be defined below. Those
observations must be numerous enough, and they must be typical of the situa-
tions that will be encountered by the network when in use. When the number
of factors (model inputs) exceeds two or three, sampling the input domain in
a regular and systematic way is generally not feasible because combinatorial
explosion arises. Therefore, it is usually important to design the experiments
as efficiently as possible: experimental design is an important part of model
design. This is generally more difficult for nonlinear models than for linear
ones. Some elements will be given in the “Experimental design” section of
Chap. 2.

1.2.2.3 The Number of Hidden Neurons

The discrepancy between the neural approximation and the function to be ap-
proximated is inversely proportional to the number of hidden neurons [Barron
1993]; unfortunately, this result, as well as other theoretical results such as the
Vapnik-Cervonenkis dimension (or VC-dimension) [Vapnik 1995] (described in
Chap. 6) will only provide loose bounds or estimates of the number of hidden
neurons. At present, no result allows the model designer to find the appro-
priate number of hidden neurons given the available data and the desired
performance. Therefore, it is necessary to make use of a specific methodol-
ogy. In the following, we will first define the problem of designing a nonlinear
black-box static model, with emphasis on feedforward neural network design.
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Overfitting and the Bias-Variance Dilemma

Since the accuracy of the uniform approximation of a given function by a
neural network increases as the number of hidden neurons increases, a naive
design methodology would consist in building the network with as many neu-
rons as possible. However, as mentioned above, in real engineering problems,
the network is not required to approximate a known function uniformly, but to
approximate an unknown function (the regression function) from a finite num-
ber of experimental points (the training set); therefore, the network should
not only fit the experimental points as closely as possible (in the least squares
sense), but it should also generalize efficiently, i.e., give a satisfactory re-
sponse to situations that are not present in the training set. The difficulty
here is that there is no operational definition of the meaning of satisfactory,
since the regression function is unknown: the problem of generalization is an
ill-posed problem. Therefore, the design problem is the following:

e if the neural network has too many parameters (it is said to be over-
parameterized), it will be too “flexible,” so that its output will fit very
accurately all points of the training set (including the noise present in
these points), but it will provide meaningless responses in situations that
are not present in the training set. That is known as overfitting.

e by contrast, a neural network with too few parameters will not be complex
enough to match the complexity of the (unknown) regression function, so
that it will not be able to learn the training data.

This dilemma, known as the bias-variance dilemma, is the basic problem that
the model designer is faced with.

Figure 1.14 shows the results obtained after training two different net-
works, with different numbers of hidden neurons (hence of parameters) with
sigmoid activation functions, from the same training set: clearly, the most
parsimonious model (i.e., the model with the smallest number of parameters)
generalizes best. In practice, the number of parameters should be small with
respect to the number of elements of the training set. The parsimony of neural
networks with sigmoid activation functions is a valuable asset in the design of
models that do not exhibit overfitting.

Figure 1.14 shows clearly which candidate neural network is most ap-
propriate. When the model has several inputs, the result cannot be exhib-
ited graphically in such a straightforward fashion: a quantitative performance
index must be defined. The most popular way of estimating such an index is
the following: in addition to the training set, one should build a wvalidation
set, made of observations that are distinct from those of the training set, from
which a performance index is computed. The most frequently used criterion
is the mean square error on the validation set (VMSE), defined as:

1 v

I k_ k 2
VMSE = || 5 3 0" —g(atw)
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Fig. 1.14. The most parsimonious neural network has the best generalization
abilities

where Ny is the number of observations present in the validation set, and
where, for simplicity, y* denote the measurements of the quantity to be mod-
eled: y* = y,(«*). This relation is valid in the usual case of a model with a
single output; if the model has several outputs, the VMSE is the sum of the
mean square errors on each output.

This quantity should be compared with the mean square error on the
training set (TMSE),

1 X

TMSE = , | — k— g(zk,w)]?,
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where N is the number of observations present in the training set.

Consider the example shown on Fig. 1.14, and assume that the observa-
tions of the validation set are the midpoints between the observations of the
training set. Clearly, the TMSE of the second network is certainly smaller than
the TMSE of the first network, whereas the VMSE of the second network is
certainly larger than that of the first network. Therefore, if model selection
were performed on the basis of the training mean square error, overparame-
terized networks would systematically be favored, thereby leading to models
that exhibit overfitting.
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Note that if modeling were perfect, i.e., if the output of the model g(x, w)
were identical to the regression function, and if the number of observations of
the training set and of the validation set were very large, then both the TMSE
and VMSE would be equal to the standard deviation of the measurement noise
(provided NT and NV > 1). Therefore, the goal of modeling from examples
can be expressed as follows: find the most parsimonious model (e.g., the most
parsimonious feedforward neural network) whose TMSE and VMSE are on
the same order of magnitude, and are as small as possible, i.e., on the order
of magnitude of the standard deviation of the noise.

What to Do in Practice?

The purpose of this book is to provide practical methodologies, founded on
sound theoretical bases, for model design through training, whether super-
vised or unsupervised. A complete methodology for supervised training will
be described in Chap. 2 (together with complements in Chap. 3), a method-
ology for unsupervised training will be described in Chap. 7.

1.2.2.4 The Training of Feedforward Neural Networks: An
Optimization Problem

Once the complexity of the model, i.e., the number of hidden neurons of a
feedforward neural network, is chosen, training can be performed: one has
to estimate the parameters of the neural network that, given the number of
parameters that are available to him, has a minimum mean square error on
the training set. Therefore, training is a numerical optimization problem.
For simplicity, we consider a model with a single output g(x,w). The
training set contains IV examples. The least squares cost function was defined
above as
al 2
[yp(mk) - g(mk7 ’LU)] )
k=1

J(w) =

N | =

where ¥ is the vector of the values of the variables for example k,y,(z")
is the corresponding measured value of the quantity to be modeled, w is
the vector of the parameters (or weights) of the model, and g(x*, w) is the
output value of the model with parameters w for the vector of variables x*.
Therefore, the cost function is a function of all adjustable parameters w of the
model. Training consists in finding the parameter vector w for which J(w) is

minimum.

e For a model that is linear with respect to its parameters (e.g., radial ba-
sis functions with fixed centers and widths, polynomials, etc.), the cost
function J is quadratic with respect to the parameters: the ordinary least
squares methods can be used. They are simple and efficient. However, the
resulting models are not parsimonious.
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e For a model that is not linear with respect to its parameters (e.g., a feed-
forward neural network, or a RBF network with adjustable centers and
widths), the optimization problem is multivariable nonlinear, which makes
ordinary least squares inapplicable. The techniques that solve such prob-
lems are described in detail in Chap. 2; those are iterative techniques
that make sequences of estimations of the parameters until a minimum is
reached, or a satisfaction criterion is met.

In the latter case, the optimization techniques are gradient methods; they
are based on the computation, at each iteration, of the gradient of the cost
function with respect to the parameters of the model. The gradient thus com-
puted is subsequently used for updating the values of the parameters found
at the previous iteration. Backpropagation is a popular, computationally eco-
nomical way of computing the gradient of the cost function (described in
Chap. 2). Therefore, backpropagation is not a training algorithm: it is simply
a technique for computing the gradient of the cost function, which is very fre-
quently an ingredient of neural network training. It has been often stated that
the invention of backpropagation made feedforward neural network training
possible; that is definitely not correct: methods for computing the gradient of
cost functions were used in signal processing long before the introduction of
neural networks. Such methods can be used for feedforward neural network
training [Marcos 1992].

Training algorithms have been tremendously improved during the past few
years. At the beginning of the 1990’s, publications would frequently mention
tens or hundreds of thousands of iterations, requiring days of computing on
powerful computers. At present, typical trainings require tens or hundreds of
iterations. Figure 1.15 displays the training of a model with a single variable.
Crosses are the elements of the training set. Parameters are initialized to
“small” values (see Chap. 2 for the description of the initialization procedure),
so that the output of the network is essentially zero. The result obtained after
13 iterations is “visually” satisfactory; quantitatively, the TMSE and VMSE
(the points of the validation set are not shown) are of the same order of
magnitude, which is of the order of the standard deviation of the noise, so
that the model is appropriate.

1.2.2.5 Conclusion

In this section, we have explained how and why neural networks with su-
pervised training should be used. To summarize, neural networks are useful
whenever a nonlinear relation between numerical data is sought. Therefore,
neural networks are statistical tools for nonlinear regression. An overview of
the tasks implied in nonlinear model design was presented, together with con-
ditions for successful applications. In Chap. 2, the reader will find all necessary
details for neural network training, for input selection and for model selection,
both for static models (feedforward neural networks) and for dynamic model
(recurrent neural networks).
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Fig. 1.15. Training of a feedforward neural network with one input variable and
three hidden neurons. The line is the output of the model, the crosses are the
elements of the training set. (a) initial state; (b) after one iteration; (c) after 6
iterations; (d) after 13 iterations (results obtained with the NeuroOne software
package by NETRAL S.A.)

1.3 Feedforward Neural Networks and Discrimination
(Classification)

In the early stages of the development of neural networks (in the years 1960’s),
the main incentive was the development of pattern recognition applications, as
evidenced by the term perceptron that was used for the ancestor of present-day
neural networks. Indeed, the first nontrivial industrial applications of neural
networks, at the beginning of the 1980’s, were related to pattern or signal
recognition. Therefore, the present section is devoted to a general presentation
of classification (or, equivalently, discrimination); it will be shown that many
classification problems can be viewed as nonlinear regression problems, which
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Fig. 1.16. Each sample is represented as a point in the area-reflectivity plane.
Capacitors are shown as x’s and integrated circuits as +’s

explains why feedforward neural networks are efficient classifiers. The purpose
of the present section is to provide a general presentation of classification in its
relation to nonlinear regression. Chapter 6 provides a much more detailed view
of neural network classification and of techniques that evolved from neural
networks.

1.3.1 What Is a Classification Problem?

A classifier is an algorithm that automatically assigns a class (or category) to
a given pattern.

Before considering the specific case of “neural” classifiers, it is important
to understand the basic characteristics of classification problems. Consider
the following illustrative example: in an automatic sorting application, capac-
itors must be discriminated from integrated circuits, from a black-and-white
picture provided by a video camera, so that a robotic arm can grab either a
capacitor or an integrated circuit as requested. Roughly, capacitors appear in
the picture as bright, small rectangular objects, whereas integrated circuits
are large, dark objects. Therefore, the area A and the reflectivity R can be
considered as relevant features for discriminating the objects, i.e., for assigning
a given object either to the class “integrated circuit” or to the class “capaci-
tor”. Assume that samples of capacitors and of integrated circuits have been
collected, and that their areas and reflectivities have been measured: then
each sample can be represented by a point in a two-dimensional space, whose
coordinates are its area and its reflectivity, as shown on Fig. 1.16.

1.3.2 When Is a Statistical Classifier such as a Neural Network
Appropriate?

The above example shows that the ingredients of a classification problem are

e a set of N patterns;
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e n variables (or features) that describe the patterns and are relevant to
the classification task at hand, the set of descriptors of a given pattern
building the representation of the pattern;

e a set of C classes to which the patterns should be assigned (one of the
classes may be a rejection class in which all patterns that cannot be as-
signed to the other classes will be classified).

Therefore, solving a classification problem requires finding an application of
the set of patterns to be classified into the set of classes.

It is important to realize that statistical classifiers such as neural networks
are not appropriate for solving all classification problems: many alternative
classification methods are available. The following (more or less academic)
examples (from [Stoppiglia 1997]) illustrate the area of application of neural
networks in classification. For each example, the following questions will be
asked:

e Does prior knowledge suggest relevant features?

e Are those features measurable (or can they be computed from measure-
ments)?

e What is the role of the rejection class?

Any vending machine can recognize the coins automatically, and reject fake
or foreign coins. The answers to the above questions are

e Relevant features can easily be found: the coin diameter, its weight, its
thickness, the alloy composition, etc.; there is a small number of such fea-
tures, and new coins are actually designed in order to facilitate automatic
discrimination.

The features are measurable quantities.
In feature space, the classes are small hyper-parallelepipeds defined by the
manufacturing tolerances; the rejection class is the rest of feature space.

In such circumstances, a simple decision tree that operates with simple logical
rules, derived from the analysis of the problem, can readily solve the classifi-
cation problem. In such a case, statistical tools such as neural networks are
not appropriate.

Vehicle comfort assessment can be viewed as a classification problem. In
order to anticipate the reactions of customers to a new vehicle, car manu-
facturers resort to panels of customers, who are asked to express an opinion.
Comfort is an ill-defined concept, which depends on many factors such as
noise, seat design, etc. Assessing the comfort, for instance, by classifying it
into three classes (very good, fair, poor), is a process that is difficult to for-
malize because it is based on feelings rather than on measurements.

e The relevant features are not necessarily known and clearly expressed by
the customers; even if features could be defined, the assessments might be
difficult to relate to the features; two customers, under the same conditions,
could give very different assessments.
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e The features are not measurable.
e There is no rejection class: all customers have an opinion on the comfort
of a vehicle.

The fact that the features are not measurable precludes the use of a statistical
method. In such a situation, a fuzzy classification method would be more
appropriate.

Handwritten digit recognition, for instance zip code recognition, has been
investigated in detail, and many applications are in routine operation. Con-
sider the answers to the three questions that were asked in the previous two
examples.

e In sharp contrast with the example of the vending machines, the huge
diversity of handwriting styles makes the choice of features nontrivial, but
feasible; in contrast to the vehicle comfort assessment problem, different
persons who read the same digit will assign it to the same class (except if
the digit is almost illegible).

e Features are numbers that can be extracted from the picture: in a typical
low-level representation, the features would be the intensities of the pixels;
in a high-level description, the features would be the location of horizontal,
vertical or diagonal segments, the presence and location of loops, etc.

e The size of the rejection class can be defined, and in some cases, it is a
performance criterion: for a given error rate, the rejection rate should be as
low as possible. In mail processing, a rejected envelope requires a manual
operation, which is less costly than sending a letter to the wrong address.
Hence, the performance requirement is expressed as follows: for a given
error rate (typically 1%) the rejection rate should be as low as possible.
Clearly, it would be easy to design a classifier that never gives a wrong
answer, by simply rejecting all patterns: by contrast, given the economic
constraints of the problem of zip code reading, a “good” classifier makes a
decision as often as possible, while making no more than 1% mistakes. If
economic constraints were different, i.e., if a mistake was less costly than
a human operation, a classifier should have the smallest possible error
rate for a given maximum rejection rate (this is the case for large-scale
automated medical diagnoses, where resorting to a medical doctor is more
costly than delivering a wrong diagnostic).

In the latter example, statistical classification methods such as neural net-
works are perfectly appropriate, provided a suitable database is available. As
in most nonacademic problems, the central question is that of data represen-
tation: a thoughtful representation design, together with data pre-processing
techniques such as described in Chap. 3, is often as important as the classifi-
cation algorithm itself.
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1.3.3 Probabilistic Classification and Bayes Formula

Assume that, after analyzing a classification problem, a statistical classifica-
tion approach has been deemed preferable to, for instance, a decision tree.
Probabilistic classification methods are based on the idea that both features
and classes may be modeled as random variables (readers unfamiliar with ran-
dom variables will find more information at the beginning of Chap. 2). In that
context, if a pattern is picked randomly from the patterns to be classified, the
class to which it belongs is the realization of a discrete random variable. Sim-
ilarly, the values of the features of a randomly chosen pattern can be viewed
as realizations of random variable, which are usually continuous. For instance,
in the example of discrimination between capacitors and integrated circuits
(Fig. 1.16), the random variable “class” may be equal to 0 for a capacitor and
to 1 for an integrated circuit, while the reflectivity R at the area A may be
viewed as continuous random variables.

In that context, the classification problem can be simply stated as follows:
given a pattern whose class is unknown, whose reflectivity is equal to r and
whose area is equal to a (within measurement uncertainties), what is the
probability that the random variable “class” be equal to 0 (i.e., that the
pattern be a capacitor)? This probability is the posterior probability of class
“capacitor” given the measured reflectivity and area, denoted by

Pr(class =0 | {r,a}).

Consider a set of capacitors and integrated circuits that have been labeled with
the labels (0 or 1) of their classes, and whose feature values are also known.
That information can be used for deriving two very important quantities,

e the prior probability of each class: a pattern picked randomly from the set
of patterns has a probability Pr(C;) of belonging to class C;. It we assume
that each pattern belongs to one of the classes, then one has ), Pr(C;) = 1.
That information is relevant to classification: assume that the prior prob-
ability of the class “capacitor” is known to be 0.9 (hence the probability
of the class “integrated circuit” is 0.1); then a dumb classifier that would
always choose the class “capacitor,” irrespective of the pattern features,
would exhibit an error rate on the order of 10%.

e the conditional probability density of each feature: if an integrated circuit
is picked randomly, what is the probability for its area A to lie in an
interval [a — 8a,a + da]? Clearly, that probability is proportional to da.
The probability density of feature A conditioned to class C;, or likelihood
of C; given feature a is denoted as pa(a | C;): the probability that feature
A be in the interval [a — 8a, a+8a] given that it belongs to class C; is equal
to pa(a | C;)da. Since the pattern whose feature A is measured belongs to
class C;, one has [pa(a | C;)da = 1.

Figure 1.17 shows an estimate of the probability density pa(a | Class =
integrated circuit) as a function of a. Similarly, one could draw the conditional
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Fig. 1.17. (a) Representation of a sample of the class “integrated circuit” in the
reflectivity-area plane. (b) Estimate of the conditional probability density of the
area of the pattern if the latter is an integrated circuit

probability density of the reflectivity R, for the class integrated circuit, as a
function of 7.

Thus, given a sample of the population of patterns to be classified, esti-
mates of the prior probabilities of the classes {Pr(C;)}, and of the conditional
probability densities px(x | C;) of their features, are available. Then, by
Bayes formula, the solution of the classification problem, i.e., the posterior
probability of a class given an unknown pattern, is given by

px (x| C;) Pr(Cy) '
ZPX(CC | C;) Pr(Cy)

J

Pr(C; | z) =

Clearly, that estimate is relevant only if the features of the unknown pattern
have the same conditional density probabilities as the patterns that were used
to estimate the likelihoods.
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Note that

e if the prior probabilities are equal, the posterior probabilities are indepen-
dent from the prior probabilities, so that the classification relies solely on
the likelihoods of the classes;

e if the likelihoods are equal, i.e., if the features have no discriminative power
whatsoever, the classification depends on the prior probabilities only.

Elegant though the Bayesian formulation may be, there is a major difficulty
in its practical application: the estimation of the quantities in the right-hand
side of Bayes formula. Obtaining a good estimate of the prior probabilities of
the classes Pr(C;) is generally an easy task, through simple frequency count-
ing of each class in the sample. In contrast, the estimation of the likelihoods
px (z | C;) is subject to a difficulty known as the curse of dimensionality: the
number of patterns necessary for a reliable estimation of the likelihoods grows
exponentially with the dimension of the feature vector. When low-level repre-
sentations of the patterns are used, the number of features may be very large:
if a picture is described by the intensity of its pixels, the dimension of the fea-
ture vector is equal to the number of pixels. We will show that neural networks
are an interesting alternative to Bayesian classification because they provide
a direct estimate of the posterior probabilities without having to estimate the
prior class probabilities and the likelihoods.

Consider an application of Bayes formula: Assume that the probability
distribution of the heights of women in a given population is Gaussian with
mean 1.65m and standard deviation 0.16 m,

1 1/h—1.65)\2
P | W) = ——exp (—2 (53 )

and that the probability distribution of the heights of men in that population
is a Gaussian with mean 1.75 m and standard deviation 0.15 m:

1 1 (h—-175\"
hM)y=—— —exp|— (2200 ).
pulh | M) 0.15\/27reXp< 2( 0.15 ))

The above probability densities are shown on Fig. 1.18. The Gaussians exhibit
strong overlapping, which shows that the feature height is not very discrim-
inant. In a real application, such curves would be a strong incentive for the
designer to find one or more alternative features.

In addition, assume that there are as many men and women in the popu-
lation. Given a person whose height is 1.60 m, what is the probability that it
is a woman? The answer is provided by Bayes formula

0,5pm (1.60 | W)

P 1. = = .
W TL60) = 5= 060 1) 1 05p (160 [ 3) =~ 0%

Clearly, Pr(M | 1.60) = 40%.
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Fig. 1.18. Probability densities of heights of men and women for the population
under investigation

In view of the above results, it is natural to assign the person to class W,
which has the larger probability. This is an application of Bayes decision rule,
which will be explained below. The boundary between the classes thus defined
is shown on Fig. 1.19.

Because the prior probabilities are assumed to be equal, the discrimination
relies solely on the likelihoods.

Now assume that the person is not a member of the general population, but
is picked among the audience of a football match. Then the likelihoods of the
classes, given the height, are the same as above, but the prior probabilities are
different, since men are generally more numerous than women in the audience
of football matches; assume that the proportions are: 30% of women and 70%
of men. The posterior probabilities, as computed from Bayes formula, become
Pr(W | 1.60) = 39% and Pr(M | 1.60) = 61%. The results are very different
from the previous ones: the observed person is assigned to the class man if
Bayes rule is used as above; that important change results from the fact that
the likelihoods are not very different because the feature height is not very
discriminant, so that the classification relies heavily on the prior probabilities.
That result is illustrated by Fig. 1.20.

That simple example shows how to use Bayes formula for estimating pos-
terior probabilities, which are subsequently used for assigning each pattern to
a class through Bayes decision rule.

It is important to realize that, in practice, and in contrast with the above
examples, prior probabilities and probability densities are not known ana-
lytically, but are estimated from a finite set of observations O. Therefore,
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Fig. 1.19. Posterior probabilities of the classes man and woman, as a function of
height, and boundary between the classes, when the person under investigation is
drawn from the general population
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Fig. 1.20. Posterior probabilities of the classes man and woman, as a function of
height, and boundary between the classes, when the person under investigation is
drawn from the audience of a football match
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Fig. 1.21. A geometrical interpretation of Bayes decision rule; the gray area is
the probability of misclassification when Bayes rule is used; the striped area is the
increase of misclassification probability resulting from a different boundary choice

the likelihood should be denoted as px(z | C;, O), and the posterior proba-
bilities should be denoted as Pr(C; | z,0), since their estimates depend on
the observation set O. For simplicity, we will not use these notations, but it
should be remembered that the estimates of probabilities and of probability
distributions are always conditioned to the observations from which they are
estimated.

1.3.4 Bayes Decision Rule

When assigning a pattern to a class, the risk of making a classification error
is minimum if the pattern is assigned to the class whose posterior probability
is highest.

Consider a classification problem with two classes C; and C5, and one
feature. Clearly, the probability of misclassification is larger if the pattern
lies close to the class boundary. However, during the normal operation of
the classifier, it will handle patterns that are described by a large range of
values of the feature, so that what one would really like to do is to find the
boundary that minimizes the global error probability, i.e., the boundary that
minimizes the quantity Pr(M) = fj:: Pr(M | z)px (x)dz, where M denotes
the event “misclassification”. Since the probability density px (z) is positive,
the integral is minimal if Pr(M | z) is minimal for all z. Pr(M | z) is the
posterior probability of C if the decision is made of assigning the pattern to
Cs, and the posterior probability of Cy if the decision is made of assigning the
pattern to C;. Therefore, Pr(M | x) is minimized if the decision is to assign
the pattern to the class with higher probability.

A geometrical interpretation of that argument is shown on Fig. 1.21: if
Bayes rule is used, the misclassification probability is represented by the gray
area. Any other boundary choice would increase that area.

The result can be easily extended to the multi-class case and the multi-
feature case.
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Fig. 1.22. Probability densities for classes A and B

That decision rule is satisfactory if the misclassification costs are the same
for the two classes; however, one frequently encounters applications where it
may more detrimental, or more costly, to make a false-positive misclassifica-
tion (the pattern is considered to belong to class A whereas it actually belongs
to class B) than a false-negative misclassification (the pattern is considered
to belong to class B whereas it actually belongs to class A). In data mining
applications for instance, a company that provides information filters may
find it more suitable to market filters that reject documents whereas they
are relevant to the chosen topic, than to market a filter that does not filter
irrelevant documents (the user spots immediately documents that are irrele-
vant, whereas he may never find out that the filter missed a relevant text).
In practice, such considerations are an important part of classifier design,
whether in pattern recognition, data mining, credit scoring, etc.). Therefore,
it is generally very desirable, in practical applications, to estimate posterior
probabilities and subsequently make decisions: classifiers that determine class
boundaries directly may lead to serious misconceptions.

The combination of Bayes formula and of Bayes decision rule is called
the Bayes classifier, which has the best achievable performance if the prior
probabilities and the likelihoods are known exactly. Since the latter condition
is not frequently fulfilled in practice, Bayes classifier is essentially of theoretical
interest. For instance, it may serve as a reference for assessing the quality of
a classifier, by applying it to an academic problem where prior probabilities
and likelihoods are known exactly.

As an illustrative example, consider a problem with two classes and one
feature; the patterns of class A are generated from a mixture of two Gaussians;
the patterns of class B are generated from a uniform distribution in a bounded
interval (Fig. 1.22). Therefore, the posterior probabilities can be computed
exactly (Fig. 1.23), and so are the boundaries between classes (Fig. 1.24). In

A
1
0.5 _/f\
0 T T T T T >
-15 -10 -5 0 +5

Fig. 1.23. Posterior probability of class A, from Bayes formula
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Fig. 1.25. Examples used for estimating the misclassification rate. Top: class A;
bottom: class B

order to estimate the misclassification rate of the resulting Bayes classifier,
a large number of realizations of examples of each class are generated, and
the proportion of misclassified examples is computed. 600 examples of each
class were generated (Fig. 1.25), and, by simple counting, the misclassification
rate was estimated to be equal to 30.1%. Therefore, it can be claimed that no
classifier, however carefully designed, can achieve a classification performance
higher than 69.9%. The best classifiers are the classifiers that come closest to
that theoretical limit.

1.3.5 Classification and Regression

The previous section was devoted to the probabilistic foundations of classifi-
cation. We are going to show why neural networks, which are regression tools,
are relevant to classification tasks.

1.3.5.1 Two-Class Problems

We first consider a problem with two classes C; and Cs, and an associated
random variable I', which is a function of the vector of descriptors x; that
random variable is equal to 1 when the pattern belongs to class C7, and 0
otherwise. We prove the following result: the regression function of the random
variable I is the posterior probability of class C1.

The regression function y(a) of variable I is the expectation value of I’
given x : y(x) = E(I' | ). In addition, one has:

E(l'z)=Pr(l'=1]|2)x1+Pr(I'=0)x0=Pr(I'=1| )

which proves the result.

Neural networks are powerful tools for estimating regression functions from
examples. Therefore, neural networks are powerful tools for estimating poste-
rior probabilities, as illustrated on Fig. 1.26 this is the rationale or performing
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Fig. 1.26. Estimate of the posterior probability of class C;, and boundary between
classes from Bayes decision rule

classification by neural networks. A lucid and detailed description of that ap-
proach is given in C. Bishop’s excellent book [Bishop 1995].

1.3.5.2 C-Class Problems

When the number of classes involved in a classification problem is larger than
two, two strategies can be implemented, i.e.,

e find a global solution to the problem by simultaneously estimating the
posterior probabilities of all classes;

e split the problem into two-class subproblems, design a set of pairwise clas-
sifiers that solve the subproblems, and combine the results of the pairwise
classifier into a single posterior probability per class.

We will consider those strategies in the following subsections.
Global Strategy

That is the most popular approach, although it is not always the most efficient,
especially for difficult classification tasks. For a C-class problem, a feedforward
neural network with C' outputs is designed (Fig. 1.27), so that the result is
encoded in a 1-out-of-C' code: the event “the pattern belongs to class C;” is
signaled by the fact that the output vector g has a single nonzero component,
which is component number . Similarly to the two-class case, it can be proved
that the expectation value of the components of vector g are the posterior
probabilities of the classes.

In neural network parlance, a one-out-of-C encoding is known as a grand-
mother code. That refers to a much-debated theory of data representation in
nervous systems, whereby some neurons are specialized for the recognition of
usual shapes, such as our grandmother’s face.
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Fig. 1.27. A multilayer Perceptron with C' outputs for classification. The activation
functions of the output neurons are sigmoids

There are several important differences between a multilayer perceptron
for classification and a multilayer perceptron for regression.

e The activation functions of the output neurons of neural networks for mod-
eling is usually linear; by contrast, the output neurons of neural networks
for classification have nonlinear activation functions such as sigmoids: since
the outputs of the neural network are probabilities, they must lie between
0 and 1 (readily amenable to [—1,41]); in Chap. 6, a theoretical justifica-
tion for the use of the tanh function as an activation function of output
neurons will be given,

e For classification, minimizing the cross-entropy cost function is more nat-
ural than minimizing the least squares cost function [Hopfield 1987; Baum
1988; Hampshire 1990]; the training algorithms that will be described in
Chap. 2 can readily be applied to this cost function,

J = —Zi%’“Log [gi(fk)] + (1 —7;)Log [W] :
— = L

v 1—~f

where ¥ is the desired value (0 or 1) for output i when the classifier’s
input is example k, described by feature vector ¥, and g;(x*) is the value
of output ¢ of the classifier. That function is minimum when all examples
are correctly classified.

After training, it is safe to check that the sum of the outputs is equal to 1
for all examples. The Softmax technique [Bridle 1990] guarantees that the
above condition is fulfilled automatically. Of course, that is not a problem for
pairwise classifiers, which have a single output.

The question of overfitting, which we have encountered in nonlinear re-
gression, is also valid for discrimination. If the classifier is overparameterized,
it separates very accurately the patterns of the training set and has a poor
generalization ability. Model selection techniques, such as those described in
Chap. 2, must be used in order to select the best model. Essentially, one must
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Fig. 1.28. Estimation of posterior probabilities of class A with three classifiers:
(a) 4 hidden neurons (too low complexity), (b) 5 hidden neurons (performance very
close to the best achievable correct classification rate, (c) 6 hidden neurons (strong
overfitting)

find a classifier whose classification error rates are of the same order of mag-
nitude, and as small as possible, on the training set and on an independent
validation set. Figure 1.28 shows an example of overfitting in the estimation of
the posterior probability of class A in the example shown on Fig. 1.23; clearly,
the network with 4 hidden neurons is not complex enough for representing the
posterior probability, whereas a neural network with 6 hidden neurons fits the
fluctuations of the densities of points of the training set. The neural network
with 5 hidden neurons has a misclassification rate of 30.3% (estimated on a
test set of several million points), while the minimum achievable error rate,
from Bayes classifier, is 30.1%. Therefore, neural networks are among the best
classifiers.
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Pairwise Classification

For difficult problems, it is often much safer to split a C-class classification
problem into C(C — 1)/2 pairwise classification problems, for the following
reasons:

e When performing pairwise classification, the designer can take advantage
of many theoretical results and algorithms, pertaining to linear class sepa-
ration; they are fully developed in Chap. 6; we give a cursory introduction
to that material in the next section, entitled linear separability.

e The resulting networks are much more compact, with fast training and
simple analysis; since each network has a single output, its probabilistic
interpretation is trivial.

e The features that are relevant for separating class A from class B are not
necessarily identical to the features that are relevant for separating class A
from class C'; therefore, each classifier has only the inputs that are relevant
to its own task, whereas a multilayer Perceptron for global separation must
have all input features that are relevant for the discrimination of all classes;
the feature selection techniques that are described in Chap. 2 can be used
in a very straightforward fashion.

Once the C(C —1)/2 posterior probabilities are estimated, possibly with sim-
ple linear separators (neural networks with no hidden neuron), the posterior
probability of class C; for a feature vector  is computed as

1
C b
L -9

Pr(C; | z) =

Pr;;
j=1,4#i "

where C' is the number of classes and Pr;; is the posterior probability of class
1 or class j, as estimated by the neural network that separates class C; from
class Cj.

Linear Separability

Two sets of patterns, described in an n-dimensional feature space, belonging to
two different classes, are said to be “linearly separable” if they lie on different
sides of a hyperplane in feature space.

If two sets of examples are linearly separable, a neural network made of a
single neuron (also termed perceptron can separate them. Consider a neuron
with a sigmoid activation function with n inputs; its output is given by y =
th Y7, w;z;]. The simple relation P = (y + 1)/2 provides an interpretation
of the output of the classifier as a posterior probability. From Bayes decision
rule, the equation of the boundary between the classes is given by P = 0.5,
or equivalently y = 0. Therefore, the separating surface is a hyperplane in
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Fig. 1.31. Separation by an overparameterized neural network. All examples are
correctly classified, but the generalization capacity is low

n-dimensional space,
n
v = E w;x; = 0.
i=1

Hence, v > 0 for all examples of one of the classes, and v < 0 for all examples
of the other class. Figure 1.29 shows a separation surface that can be defined
by a Perceptron, for the example of capacitors and integrated circuits.

Hidden neurons allow multilayer Perceptrons to define more complex sep-
aration surfaces, as shown on Fig. 1.30.

As usual, one can obtain zero misclassifications if enough hidden neurons
are added, but that is detrimental to generalization because of overfitting.
Fig. 1.31 illustrates a case of blatant overfitting.

When a multi-class problem is split into pairwise separation problems, lin-
ear separation between two classes is often complex enough; very frequently,
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in multi-class problems that are claimed to be difficult, the examples turn out
to be pairwise linearly separable. In such cases, powerful, elegant algorithms
give excellent solutions, as explained in Chap. 6: therefore, the first step in
the design of a classifier consists, in checking whether the classes are pairwise
linearly separable. Ho and Kashyap’s algorithm [Ho 1965], which was discov-
ered long before neural networks came into existence, provides an answer to
that problem in finite time:

e If the examples are linearly separable, the algorithm finds a separating
hyperplane in finite time.

e If the examples are not linearly separable, the algorithm signals it infinite
time (see algorithmic complements at the end of this chapter).

The postal code database provided by the National Institute of Standards
and Technology has served as a basis for many classifier designs. It turns
out that, even with low-level representations such as a pixel representation,
the classes of examples are pairwise linearly separable [Knerr 1992]! Simi-
larly, a famous sonar signal data base has been investigated in great detail by
many authors, and many complicated classifiers were designed to solve that
two-class problem; actually, in less than ten minutes on a PC, the Ho and
Kashyap algorithm, implemented as an uncompiled Matlab program, proves
that the examples of the two classes are linearly separable. Therefore, a sim-
ple Perceptron can solve the problem, without resorting to any hidden layer.
That application is investigated in more detail in Chap. 6.

1.3.5.3 Classifier Design Methodology

From the previous section, the following strategy for the design of a neural
classifier can be derived (as discussed above, one should first ascertain that
statistical classification is relevant to the problem at hand):

e Find an appropriate representation of the patterns to be classified, espe-

cially for pattern recognition (the techniques described in Chap. 3 can be
especially useful in that respect); this is a crucial step, since a representa-
tion that has a high discriminative power is likely to make the classification
problem trivial; this is illustrated in applications described below.
If the number of examples available for training the classifier is not larger
than the dimension of the feature vector, there is no point in pursuing the
design any further, according to Cover’s theorem [Cover 1965], which is
explained in Chap. 6: before proceeding to the next steps, either a more
“compact” representation must be found, or additional examples must be
collected, or a very stringent regularization method such as weight decay
(described in Chap. 2), must be implemented.

e For each pair of classes, select the relevant features with the feature selec-
tion methods described in Chap. 2; obviously, the discrimination of class
A from class B may not require the same features as the discrimination of
class A from class C.
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e For each pair of classes, test the pairwise linear separability of the examples
with the Ho and Kashyap algorithm.

e For all pairwise linearly separable classes, make use of linear separation
methods (described in Chap. 6) and derive an estimate of the posterior
probabilities.

e For nonlinearly separable classes, design small multilayer Perceptrons, or
spherical perceptrons as described in Chap. 6, with probability estima-
tions; use leave-one-out or cross-validation techniques for model selection
(see Chap. 2).

e Estimate the global posterior probabilities of each class from the pairwise
probabilities estimated at the previous steps, using the relation indicated
in Sect. 1.3.5.2, subsection “pairwise classification” above.

e Determine the decision thresholds in order to define rejection classes.

That strategy is a variant of the STEPNET procedure [Knerr 1990, 1991],
which allowed the design of several industrial applications.

In the planning of a classification project, the time required by the first and
the last steps of the above strategy should definitely not be underestimated;
for nontrivial applications, those are frequently the lengthiest and most painful
steps.

The applicability of that strategy is limited by the fact that the number
of pairwise classifiers grows as the square of the number of classes. However,
each classifier is usually very simple, so that the procedure can be applied
with up to a few tens of classes. For larger number of classes, hierarchical
strategies must be resorted to.

1.4 Some Applications of Neural Networks to Various
Areas of Engineering

1.4.1 Introduction

The present book is intended to assist the engineer or researcher in answering
the following question: can neural networks solve my problem, and can they do
it more efficiently (in terms of accuracy, computation time, etc.) than other
techniques?

Contributions to a rational answer were provided at the beginning of the
present chapter, where we explained the mathematical foundations and prin-
ciples underlying the operation of neural networks. Although some elements
may look somewhat technical, they are mandatory for getting an in-depth un-
derstanding of what one can and cannot do with neural networks. Since the
software implementation of neural networks is straightforward with present-
time tools, one might be tempted to apply neural networks without prior
thinking, which may lead to disappointing results.

In addition to mathematical arguments, it may be helpful, in order to il-
lustrate the use and limitations of neural networks, to describe some typical
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industrial applications. This is by no means intended to be an exhaustive pre-
sentation of neural network applications, which would require several books.
The point here is to show some typical examples, and to stress the reason why
neural networks made important, possibly decisive, contributions.

1.4.2 An Application in Pattern Recognition: The Automatic
Reading of Zip Codes

Character recognition is definitely the application area where neural networks
made their first significant contributions to engineering, proving to be reliable
alternatives to classical pattern recognition methods. In the present section,
some examples and results will be described, relying on the elements of theory
and methodology provided in the previous section.

The automatic reading of postal codes is probably one of the most widely
investigated problems in picture recognition. The automatic reading of printed
envelopes and parcels is a relatively simple problem; by contrast, the huge
variety of handwritings made the recognition of handwritten addresses a truly
challenging problem. For each item handled by the postal service, a machine
must either recognize the code, or resort to human inspection when it fails to
identify the code. As indicated above, correcting a sorting mistake made by
a machine is more costly than resorting to human inspection for reading and
typing in the correct code; therefore, the most frequently used performance
criterion for such machines is the following: given a maximum misclassification
rate (say 1%), what fraction of the mail must be read by a human operator? At
present, typical performances are 5% rejection rate for 1% misclassification.

The development of automatic zip code reading was primarily spurred by
the industrial importance of the problem, but also by the fact that, as early
as 1990, large-scale data bases were made available to the general public by
the United States Postal Service (USPS), and later by the National Institute
of Science and Technology (NIST). That policy allowed many laboratories,
both in industry and in universities, to improve the state of the art, and
to validate, in a statistically significant way, the methods and procedures
that they developed; it had a general positive impact on the development of
powerful classification methods.

Figure 1.32 displays some examples from the USPS database, which fea-
tures 9,000 digits (which is not a very large number, considering the variety
of handwriting styles). The difficulty of the problem is immediately apparent.
Consider the postal code in the upper right corner of the picture; one reads
68544 effortlessly, but one notes

e that the digit 6 is split into two parts,
e that digits 8 and 5 are linked together,
e that digit 5 is split into two parts, the right part being linked to digit 4!

Thus, if one decides to base the recognition of the code on the recognition of its
individual digits, the problem of segmentation must be solved first: how does
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Fig. 1.32. Some excerpts from the NIST handwritten digit database

one decompose a zip code into five separate digits? Having solved that difficult
problem, one must cope with the variety of styles, sizes, and orientations, of
the isolated digits. To that end, an appropriate representation must be found;
the design of an appropriate representation is completely problem-dependent,
and requires new efforts for each new application. Clearly, one cannot use
the same kind of representations for pictures such as handwritten or printed
digits, satellite pictures, or X-ray medical images.

Despite the diversity of image processing techniques, some basic operations
are found in essentially all applications, as well as in the human visual system:
edge detection, contrast enhancement, etc. In the field of handwritten charac-
ter recognition, normalization is mandatory, in order to apply the recognition
algorithm to characters of similar sizes. We have already mentioned that the
design of a real application requires a tradeoff between the complexity of the
preprocessing that is necessary to yield the chosen representation, and the
complexity of classification: a carefully designed preprocessing, which leads to
very discriminant features, may allow the use of a very simple classifier, but
the preprocessing must not be too demanding in terms of computation time.
By contrast, a simple preprocessing, such as normalization alone, may be very
fast but will not alleviate the task of the classifier. Thus, one must engineer
the best tradeoff that allows meeting the requirements of the application. Two
very different approaches to the same application will be described below.

The first approach was developed at the former AT&T Bell Labs. It con-
sists of a neural network, known as LeNet [Le Cun 1991], which makes use
of a pixel representation (after normalization). The first layers of the network
perform local preprocessings that aim at automatically extracting features
that are relevant to classification, while the final layers perform classification.
The network is shown on Fig. 1.33.

The network is input with a 16 x 16 pixel intensity matrix. A first layer
of hidden neurons is made of 12 sets of 64 neurons each, where each set of
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Fig. 1.33. LeNet, a neural network that performs feature extraction and classifica-
tion

64 hidden neurons receives information from a “receptive field” of 5 x 5 pix-
els. Those sets of 64 neurons are called feature maps, for the inputs to a given
map have the same weights (this is known as the “shared weights” technique,
described in Chap. 2): thus, the same operator acts locally on a 25-pixel area
of the picture, so that the outputs of a group of 64 neurons are the results
of the application of the same operator to the receptive fields. The local op-
erator technique is classical in picture processing, but the present approach
is original in that these operators are not engineered, but are “discovered”
through training by examples. The same technique is iterated by a second
layer of operators that act on the results of the first layer. Thus, 12 maps of
16 hidden neurons are produced by 192 neurons that provide the represen-
tation of the digit. Classification is performed by a final layer of 30 hidden
neurons, followed by 10 output neurons using a 1-out-of-INV code: the number
of outputs is equal to the number of classes, output neuron number ¢ must be
active if the input digit belongs to class i, and inactive otherwise.

Thus, the network performs, automatically and simultaneously, feature
extraction and classification, whereas those operations are usually performed
in a sequential fashion. The flexibility of the method has a price: given the
size of the network, training is demanding, and, because of the large number
of parameters, the network will be prone to overfitting.

In order to solve the same problem, a very different approach was im-
plemented [Knerr 1992], which consists in performing a more elaborate pre-
processing of the picture, in order to extract discriminant characteristics that
lead to a relatively simple classifier. Preprocessing consists of edge extraction,
followed by normalization, which produce 4 feature maps of 64 elements, hence
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Fig. 1.34. The 18 misclassifications made by pairwise linear separation of the

classes. For each digit, the superscript is the label of the digit in the base, and
the subscript is the response of the classifier

a 256-component feature vector. Following the classifier design methodology
described in the previous section, pairwise classification was performed by 45
different classifiers. Since the training sets were pairwise linearly separable,
each classifier consisted of a single neuron; the classifiers were trained sepa-
rately.

Figure 1.34 shows the 18 misclassifications made by the classifier on the
9,000 digits of the USPS database. Note that the bottom right digit is (cor-
rectly) recognized as a 1, whereas it was mistakenly labeled as an 8 in the
database!

We have emphasized the impact of the choice of the representation on the
efficiency of classification. This point can be nicely illustrated with this appli-
cation. For the two representations that were mentioned above (representation
by the intensities of 256 pixels, and representation by 4 feature maps of 64
elements each after edge detection), the euclidean distances between the cen-
ters of gravity of the classes were computed, and reported on Fig. 1.35. The
inter-class distances are systematically larger, with the feature-based repre-
sentation, than with the pixel-based representation. Thus, the feature-based
representation increases the inter-class distances in input space, thereby mak-
ing classification easier.

Table 1.1 illustrates the performance improvement resulting from the use
of a more appropriate representation: after adjusting the decision thresholds
s0 as to get, for both representations, a 1% misclassification rate, the rejection
rate is much higher for the pixel representation than for the feature-map based
representation. Note that since, in both cases, the dimension of input space is
256, the improvement does not result from the fact that the representation is
more compact, but from the fact that it is more appropriate to the task. As
usual, better engineering provides better results.
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Fig. 1.35. Distances between classes for two representations: the feature-map based
representation makes the classes more widely separated in input space, thereby
making the classification task easier

1.4.3 An Application in Nondestructive Testing: Defect Detection
by Eddy Currents

The example that was presented in the previous section used classification for
picture recognition. Of course, patterns that can be recognized automatically
vary widely in nature. The application that we describe in the present section
pertains to nondestructive testing, where the patterns to be classified are
signals. The objective is the automatic detection of defects in the rails of
the Paris subway. It was developed by the National Research Institute on the
Safety of Transportation Systems for RATP, the company that operates the
Paris underground system [Oukhellou 1997].

Defect detection in metal parts by eddy currents is a standard nondestruc-
tive testing technique. An electromagnetic coil creates an alternating magnetic
field, which generates eddy currents in the metal part to be tested. Those cur-
rents are detected by a second coil, and the presence of defects in the metal
alters the amplitude and the phase of the resulting signal. Thus, that signal

Table 1.1.
Correct
classification Rejection Misclassification
rate (%) rate (%) rate (%)
Pixel representation 70.9 28.1 1

Feature-map-based
representation 90.3 8.7 1
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Fig. 1.36. The eddy current generation and detection system

contains a “signature” of the defects. Since there are different categories of
defects, which may be more or less detrimental to the operation of the sys-
tem, classifying the defects is generally desirable. In the present case, it is
also important to be able to discriminate between real defects and normal
phenomena that are also detected by the eddy current technique, such as the
presence of a weld joint or of a switch (the position of the latter is known,
which makes discrimination easier).

In the present application, the system that generates and detects eddy
currents is mounted below the carriage, a few tens of millimeters above the
rail, as shown on Fig. 1.36.

As usual, the choice of the descriptors of the signal is crucial for the ef-
ficiency of discrimination. In the present case, a relatively small number of
features, derived from Fourier components of the signal, are usually sufficient,
provided they are chosen appropriately. Feature selection was performed by
the “probe feature method,” which is described in Chap. 2 [Oukhellou 1998].

1.4.4 An Application in Forecasting: The Estimation of the
Probability of Election to the French Parliament

After the elections to the French parliament, all candidates must make an of-
ficial statement of the amount of the expenses incurred during the campaign,
and of the breakdown of those expenses. Making use of the data pertaining to
the 1993 elections, it was possible to assess the probability of being elected as
a function of the expenses and of their breakdown. This is a two-class classi-
fication problem, and neural networks provide an estimate of the probability
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Fig. 1.37. Neural estimate of the election probability as a function of the total
campaign expenses (data for the 1993 elections)

of being elected. Figure 1.37 shows the probability of election as a function of
the total expense.

That application, although in the area of classification, is somewhat dif-
ferent from the previous two applications: in the latter, the classifier was
intended to assign an existing pattern to a class, while, with high probability,
the actual class of the unknown pattern would never be known with absolute
certainty. In the present application, the situation is different, since the class
of each pattern (candidate running for election) will be known unambiguously
immediately after the election. This application falls in the class of forecasting
by simulation: in order to optimize the probability of success, the candidate
can estimate his success probability as a function of the strategy of expenses
that he uses, and derive from those results the strategy that is most suitable
to his situation.

In the next chapters, some sections will be devoted to forecasting by sim-
ulation: it will be shown that it is an area of excellence of neural networks.

1.4.5 An Application in Data Mining: Information Filtering

The rapid increase of the volume of available information, especially by elec-
tronic means, makes it mandatory to design and implement efficient informa-
tion filtering tools, which allow the user to access relevant information only.
Since such tools will address the needs of professionals, they must be reliable
and user-friendly. The user can access relevant information either by being
provided with full texts by the machine (text search), or by being provided
text excerpts or answers to questions (information extraction).

Text categorization, also known as filtering, consists in finding, in a text
corpus (e.g., of press releases, or of Web pages), the texts that are relevant
to a predefined topic. The user can thus be provided with information that is
important for his professional duties. In a machine-learning based system, the
user does not express his topic of interest through a query, but by providing a
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set, of relevant documents that define a topic or category. For a given topic, text
categorization therefore consists in solving a two-class discrimination problem,
which can be solved by neural networks, support vector machines (Chap. 6)
or hidden Markov models (Chap. 4).

Text categorization is a very difficult problem, which goes much beyond
text search by keywords, because a text may be relevant to a topic even though
it contains none of the keywords that define the topic, or, conversely, a text
may be irrelevant although it contains some or even all keywords.

The present application (from [Stricker 2000]) was developed by the French
bank Caisse des dép6ts et consignations, which provides an Intranet service
for filtering press releases of Agence France Presse (AFP) in real time. The
objective of the application is twofold:

e to develop an application that allows the user to create automatically an
information filter on any topic of interest to him, under the condition that
he provides examples of texts that are relevant to his topic of interest;

e to develop a machine-learning based tool that monitors the obsolescence
of classical, rule-based information filters.

In the latter development, a neural-based filter is designed on the same topic
as the rule-based filter. Since the neural network does not generate a binary
response, but estimates a relevance probability, the largest discrepancies be-
tween the two filters can be analyzed and possibly be traced to vocabulary
obsolescence: documents that are rated as relevant by the rule-based method,
but whose relevance probability, estimated by the neural network, is very low,
and documents that are rated as irrelevant by the rule-based filter and having
an estimated relevance probability close to one as estimated by the neural
filter [Wolinski 2000].

The former development consists in designing and implementing an auto-
matic filter production system, whose major feature is the fact that it does not
require any assistance from an expert, as opposed to rule-based filters. There-
fore, a two-class discrimination system must be designed, from a database of
texts that are labeled as relevant or irrelevant, that requires

e finding a representation of texts by real numbers, which should be as
compact as possible,
e designing and implementing a classifier that uses that representation.

Thus, the problem of text representation, hence of input selection, is crucial

for that application.

1.4.5.1 Input Selection

The most popular approach to text representation is the bag-of-words repre-
sentation, whereby a text is represented by a vector, each component of which
is a number that is a function of the presence or absence of the word in the
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text, or of its frequency in the text. Clearly, the main difficulty is the dimen-
sion of that vector, which is, in principle, equal to the number of words in the
vocabulary. Nevertheless, all words are not equally discriminant: most fre-
quent words (of, the, and) are not useful for discrimination, nor are very rare
words. Therefore, the first step of the design of a filter is the determination
of the vocabulary that is specific to the topic.

Word Encoding

The words are encoded in the following way: we denote by FT(m,t) the fre-
quency of occurrence of word m in text ¢, and by FT'(t) the average frequency
of the terms in text ¢. Then the word m is described by [Singhal 1996]

(m) = 1+ log(FT(m,t))
M) = g (FT (1))

Zipf’s Law

Zipf’s law [Zipf 1949] is helpful for finding discriminant words: given a corpus
of T texts, we denote by F'C(m) the frequency of occurrence of word m in
corpus T. A list of words, ranked in order of decreasing values of FC(m), is
built; we denote the rank of word m in that list by r(m). Zipf’s law states
that FFC'(m)r(m) = K, where K is a corpus-dependent quantity. Hence, there
is a very small number of very frequent words, and a large number of very
rare words that occur once or twice in the corpus; between those extremes,
there is a set of words in which discriminant words ought to be sought.

Extraction of the Specific Vocabulary

In order to extract the vocabulary that is specific to the topic, the ratio
R(m,t) = FT(m,t)/FC(m) is computed for each word m of each relevant text
t. The words of the text are ranked in order of decreasing values of R(m,t),
the second half of the list is deleted, and a boolean vector v(t) is defined, such
that v;(¢t) = 1 if word ¢ is present in the list, 0 otherwise. Finally, the vector
v =), v(t), is computed, where the summation is performed on all relevant
documents: the specific vocabulary of the topic is the set of words that have a
nonzero component in vector v. Figure 1.38 shows that Zipf’s law is obeyed on
the corpus of Reuters releases, and that the words of the vocabulary specific
to the topic Falkland petroleum exploration are indeed located in the middle
of the distribution.

Final Selection

Within the specific vocabulary thus defined, which may be still large (one
to several hundred words), a final selection is performed by the probe feature
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Fig. 1.38. An experimental verification of Zipf’s law on the Reuters corpus, and
location of the words of the vocabulary specific to the topic “Falkland petroleum
exploration”

method, described in Chap. 2. After completion of that step, it turns out that,
on the average over 500 different topics, the size of the specific vocabulary of
a given topic is 25 words, which is a reasonable dimension for the input vector
of a neural network. That representation, however, is not fully satisfactory
yet. Since isolated words are ambiguous in such an application, the context
must be taken into account.

1.4.5.2 Context Determination

In order to take into account the context in the representation of the texts,
context words are sought in a window of 5 words on both sides of each word
of the specific vocabulary.

e The words that are in the vicinity of the words of the specific vocabulary,
in relevant texts, are defined as positive context words.

e The words that are in the vicinity of the words of the specific vocabulary,
in irrelevant texts, are defined as negative context words.

In order to select the context words, the procedure that is used is identical
to the selection procedure for the specific vocabulary. On the average over
500 topics, a topic is defined by 25 specific words, each of which having 3
context words.

1.4.5.3 Filter Design and Training
Filters Without Context

If the context is not taken into account, the inputs of the filter are the words
of the specific vocabulary, encoded as indicated above. In accordance with the
classifier design methodology described above, the structure of the classifier
depends on the complexity of the discrimination problem. On the corpuses
tested in the course of the development of the present application, the ex-
amples are linearly separable, so that networks made of a single neuron with
sigmoid activation function solve the problem.
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Filter without context

Filter with context

Fig. 1.39. A filter without context is a linear classifier whose inputs are the features
that encode each word of the specific vocabulary (rectangles in thick lines); in a
filter with context, the inputs are the features that encode the words of the specific
vocabulary (bozes in thick lines), and, in addition, the features that encode the
context words (bozes in thin lines)

Filters with Context

The context must have an influence of the feature that encodes each word
of the specific vocabulary. Therefore, the filter represents each word of the
specific vocabulary by a neuron with sigmoid activation function, whose inputs
are

e the feature that encodes the word of interest,
e the features that encode the context words of that word.

The outputs of those neurons are separated linearly by a neuron with sigmoid
activation function. Figure 1.39 shows a filter with context and a filter without
context.

The introduction of context words as inputs increases the number of pa-
rameters of the classifier. Typically, for a topic with 25 words of specific vo-
cabulary, and 3 context words per word of the specific vocabulary, the filter
has 151 parameters. Since some topics are described by a small number of
relevant texts, the use of a regularization method is mandatory. The weight
decay method (described in Chap. 2) proved useful in the present application;
its effect and implementation are explained in Chap. 2, in the section devoted
to regularization techniques.
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1.4.5.4 Validation of the Method

The annual competition organized by the TREC (Text REtrieval Conference)
conference is a reference in the area of automatic language processing. The
methodology that has been described was used in the “routing” task of the
TREC-9 competition. The routing competition consists in ranking a large
number of texts, in order of decreasing relevance for a large number of topics.
For the TREC-9 routing competition, two text corpuses were used, relevant to
63 and 500 topics respectively, totaling 294,000 documents. Clearly, the task
cannot be accomplished manually or semiautomatically: a fully automated
procedure must be implemented. The above approach won the competition,
for both corpuses. Figure 1.40 shows the scores of the participants [Stricker
2001].

1.4.6 An Application in Bioengineering: Quantitative
Structure-Relation Activity Prediction for Organic
Molecules

The investigation of quantitative structure-activity relations (QSAR) of mole-
cules is a rapidly growing field thanks to progress in molecular simulation. The
objective of QSAR is the prediction of chemical properties of molecules from
structural data that can be computed ab initio, without actually synthesizing
the molecule; thus, costly organic syntheses, leading to molecules that turn out
not to have the desired property, can be avoided [Hansch 1995]. That approach
is especially useful in the field of bio-engineering, for the prediction of phar-
macological properties of molecules and for computer-aided drug discovery. It
is also extremely valuable for solving conceptually similar problems, such as
the prediction of properties of complex materials from their formulation, the
prediction of thermodynamic properties of mixtures, etc.

Why are neural networks useful in that context? If there exists a deter-
ministic relation between some features of the molecule and the property that
must be predicted, then QSAR is amenable to a regression problem, i.e., to
the determination of that unknown relation, from examples. If that relation
is nonlinear, then neural networks can be advantageous, as argued above.

A prerequisite for such an approach is the availability of databases for
training and testing the model. Because of the industrial importance of the
problem, many databases of existing molecules for such properties as the boil-
ing point, water solubility, or water-octanol partition coefficients (known as
“LogP”) are available. The latter property is important in pharmacology, be-
cause it gives a quantitative assessment of the ability of the molecule to cross
biological barriers in order to be active; similarly, in the field of environment,
the value of LogP of pesticides contributes to assessing their impact on envi-
ronment.

Once the availability of appropriate databases is guaranteed, the relevant
features that should be the inputs of the model must be determined. In the
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Fig. 1.40. Results of the TREC-90 routing task; black: results obtained by the
above method; grey: results obtained by other methods

present case, the chemist’s knowledge is of utmost importance. Classically,
three categories of features are considered, i.e.,

e chemical features such as the molecular weight, the number of carbon
atoms, etc.;
geometrical features such as the volume of the molecule, its area, etc;
electrical features such as the electric charges borne by each atom, dipole
moments, etc.

For each property to be predicted, a set of candidate descriptors must be built,
and selection techniques such as described in Chap. 2 must be applied. Because
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Fig. 1.41. Molecules that have chemical idiosyncrasies, whose properties may be
poorly predicted by neural networks

of their parsimony, neural networks of very small size (5 to 7 hidden neurons)
provide better results, on the same databases, than multilinear regression
techniques that are used traditionally in the field [Duprat 1998].

Interestingly, the values of logP of some molecules were systematically
either poorly learnt (when those molecules were in the training set) or poorly
predicted (when present in the test set). In such a situation, one should first
be suspicious of a measurement or typing-in error. If such is not the case, then
one should conclude that the molecules have idiosyncrasies that are not shared
by the other examples; in the present vase, it turns out that the molecules
of interest are either strongly charged (tetracycline and caffeine, shown on
Fig. 1.41), or, by contrast, interact very weakly with the solvent (perylene, 1-4
pentadiene, see Fig. 1.41). Thus, neural networks are able to detect anomalies;
anomaly detection is actually one of the main areas of applications of neural
networks.

1.4.7 An Application in Formulation: The Prediction of the
Liquidus Temperatures of Industrial Glasses

In the same spirit as the previous application, albeit in a completely different
field, thermodynamic parameters of materials can be predicted as a function
of their formulation. Of specific interest is the prediction of the liquidus tem-
peratures of oxide glasses. That temperature is the maximal temperature at
which crystals are in thermodynamic equilibrium with the liquid; the predic-
tion of the liquidus temperature is important for the glass industry, because
the value of the viscosity at the liquidus temperature has a strong impact
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of the process of glass forming. Since the phase diagrams of glasses exhibit
strong variations in the temperature domain of interest, many attempts at
such predictions have been made (see for instance [Kim 1991]), and databases
are available. Neural networks have been successfully used for the prediction
of liquidus temperatures [Dreyfus 2003], especially (as expected) for glasses
with more than three components.

Figure 1.42 illustrates, on the present industrial example, the parsimony of
neural networks. It shows scatter plots, which are very convenient for assessing
graphically the accuracy of the model: on the horizontal scale, the measured
value of the quantity of interest is displayed, whereas the predicted values are
displayed on the vertical scale. If prediction were perfect, all points should
be aligned on the first bisector; actually, due to measurement inaccuracy and
prediction errors, the points are more or less scattered; a good model should
generate equivalent scatterings for the points of the training set and those of
the validation or test set, and the vertical scattering should be on the order
of the standard deviation of the noise. Clearly, such a tool is no substitute to
the computation of the TMSE and VMSE as defined above, or of the leave-
one-out score defined in Chap. 2, but it provides a quick means of comparing
different models, for instance.

The model inputs are the contents of the glass in various oxides; the
output is the estimated liquidus temperature. Figure 1.42(a) shows the re-
sults obtained on a silica glass (made of potassium oxide K2O and aluminum
oxide Al5Og3, in addition to silicon oxide SiOs, which is the main compo-
nent), obtained with a network having 6 hidden neurons (25 parameters), and
Fig. 1.42(b) shows the result obtained with a polynomial of degree 3, with
a similar number of parameters (19). Clearly, with roughly the same num-
ber of parameters, the neural network performs much better. For comparison,
Fig. 1.42(c) shows the scatter plot for a linear model.

1.4.8 An Application to the Modeling of an Industrial Process:
The Modeling of Spot Welding

Spot welding is the most widely used welding process in the car industry: mil-
lions of such welds are made every day. The process is shown schematically
on Fig. 1.13: two steel sheets are welded together by passing a very large cur-
rent (tens of kiloamperes) between two electrodes pressed against the metal
surfaces, typically for a hundred milliseconds. The heat thus produced melts
a roughly cylindrical region of the metal sheets. After cooling, the diameter
of the melted zone—typically 5 mm—characterizes the effectiveness of the
process; a weld spot whose diameter is smaller than 4 mm is considered me-
chanically unreliable; therefore, the spot diameter is a crucial element in the
safety of a vehicle. At present, no fast, nondestructive method exists for mea-
suring the spot diameter, so that there is no way of assessing the quality of
the weld immediately after welding. Therefore, a typical industrial strategy
consists
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Fig. 1.42. Scatter plots for the prediction of the liquidus temperature of an oxide

g

lass, as a function of its composition, for three different models

in using an intensity that is much larger than actually necessary, which
results in excessive heating, which in turn leads to the ejection of steel
droplets from the welded zone (hence the sparks that can be observed
during each welding by robots on car assembly chains);
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e in making a much larger number of welds than necessary, just to be sure
that a sufficient number of valid spots are produced.

Both the excessive current and the excessive number of spots result in a fast
degradation of the electrodes, which must be changed or redressed frequently.

For all the above reasons, the modeling of the process, leading to a reliable
on-line prediction of the weld diameter, is an important industrial challenge.
Modeling the dynamics of the welding process from first principles is a very
difficult task, for several reasons, including

e the computation time necessary for the integration of the partial differen-
tial equations of the knowledge-based model is many orders of magnitude
larger than the duration of the process, which precludes real-time predic-
tion of the spot diameter;

e many physical parameters appearing in the equations are not known reli-
ably.

Those arguments lead to considering black-box modeling as an alternative.
Since the process is nonlinear and has several input variables, neural networks
are natural candidates for predicting the spot diameter from measurements
performed during the process, immediately after weld formation, for on-line
quality control [Monari 1999].

The main concerns for the modeling task are the choice of the model
inputs, and the limited amount of examples available in the database, because
gathering data is costly.

In [Monari 1999], the quantities that were candidates for input selection
were mechanical and electrical signals that can be measured during the weld-
ing process. Input selection was performed by the techniques described in
Chap. 2. The experts involved in the knowledge-based modeling of the process
validated that set.

Because no simple nondestructive weld diameter measurement exists, the
database is built by performing a number of welds in well-defined condition,
and subsequently tearing them off; the melted zone, remaining on one of the
two metal sheets, is measured. That is a lengthy and costly process, so that the
initial training set was made of 250 examples only. Using experimental design
through the confidence interval estimates described in Chap. 2, a training set
extension strategy was defined in order to increase the database size. Half
of the resulting data was used for training, and the other half for testing
(the model selection method was virtual leave-one-out which, as explained in
Chap. 2, does not require any validation set).

Figure 1.43 shows typical scatter plots, where each prediction is shown
together with its confidence interval. The estimated generalization error, esti-
mated from the virtual leave-one-out score defined in Chap. 2, was 0.27 mm,
whereas the TMSE was 0.23 mm. Since those quantities are on the order of
the measurement uncertainty, the results are satisfactory.
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Fig. 1.43. Scatter plots for the prediction of the diameters of welding spots

1.4.9 An Application in Robotics: The Modeling of the Hydraulic
Actuator of a Robot Arm

The previous applications involved feedforward neural networks only. We now
turn to dynamic modeling, with recurrent neural networks.

We consider a hydraulic actuator that controls the position of a robot
arm; therefore, the position of the arm depends on the hydraulic pressure
in the actuator, which in turn depends of the angular position of a valve. A
dynamic model of the relation between the hydraulic pressure and the opening
of the valve was sought, in the framework of an informal competition between
research groups involved in nonlinear modeling. A control sequence {u(k)},
i.e., a sequence of angles of the valve, and the corresponding sequence of
the quantity to be modeled {y,(k)}, i.e., the hydraulic pressure, are shown
on Fig. 1.44. That sequence contains 1,024 samples, the first half of which,
according to the rule of the game, was to be used as a training set and the
second one as the validation set. Since no prior information was available from
the physics of the process, a black-box model must be designed.

A cursory look at the data shows that a linear model of the process would
certainly not be appropriate; the oscillations observed as responses to control
variations that are almost steps suggests that the model is at least of second
order. The training and validation sequences are approximately of the same
type and same amplitude, but the amplitude of the control signal is larger in
the validation set (around times 600 and 850) than in the training set. Thus,
the conditions are not very satisfactory.

The example is analyzed in detail in Chap. 2. The best results [Oussar
1998] were obtained with a second-order state-space model, one state variable
of which is the model output, of the form

y(k+1) = x1(k + 1) = Pp1(x1(k), 22(k), u(k))
wa(k + 1) = Pa(w1(k), 22(k), u(k)),

with two hidden neurons. It is shown on Fig. 1.45.
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Y(k+1) = x,(k+1)

Y(R=x(K)

Fig. 1.45. State-space neural model of the hydraulic actuator. The output is one
of the state variables

The mean square error obtained with that model is 0.07 on the training
set and 0.12 on the validation set, which is very satisfactory given the avail-
able sequences. The modeling errors may be due to disturbances that are not
measured, hence not present as inputs of the model. The results are shown on
Fig. 1.46.
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1.4.10 An Application of Semiphysical Modeling to a
Manufacturing Process

As mentioned above, semi-physical modeling is a modeling methodology that
allows the designer to make use both of prior knowledge resulting from a
physical or chemical analysis of the process, and of available measurements.
It is explained in detail in Chap. 2. In the present section, we describe its
application to an industrial problem: the drying of the adhesive Scotch tape
manufactured by 3M.

An adhesive tape is made of a plastic film—the substrate—coated with a
liquid, which is passed in an oven, in a gas atmosphere in which the partial
pressure of the solvent is much lower than the equilibrium pressure of the
solvent at the oven temperature; therefore, the solvent evaporates, so that the
solvent concentration at the surface becomes lower than the solvent concen-
tration in the bulk. As a consequence, the solvent diffuses to the surface so
as to compensate that concentration gradient, and evaporates at the surface.
The process stops when the film is dried, so that the adhesive polymer alone
stays on the substrate.

In a traditional process, organic solvents are used. However, for safety and
environmental reasons, organic solvents are replaced by water. A very accurate
model of drying in the presence of an organic solvent is available [Price 1997];
it is made of thirteen nonlinear, coupled algebraic and differential equations.
When the organic solvent is replaced by water, some equations of the model
are no longer valid, so that the whole model becomes inaccurate.

Polymers in aqueous solutions are not as well understood as polymers in
organic solvents, so that no satisfactory physical model of the drying of water-
based adhesives is available. However, sequences of measurements of sample
weight as a function of time and oven temperature are available: the design
of a semi-physical model is therefore possible and appropriate.

The equations of the model express the following phenomena:

e mass conservation in the bulk of the solvent: that equation is naturally
still valid in the case of water-based adhesives;

e the diffusion of solvent towards the free surface (Flick’s law); the validity
of that equation is not arguable, but it involves a quantity (the diffusion
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coefficient) whose variation as a function of concentration and temperature
is given by the free-volume theory, whose validity can be disputed;

e mass conservation at the surface: any solvent molecule that reaches the
surface, and evaporates, gives a contribution to the solvent partial pressure
in the gas; that law remains valid;

e the boundary condition at the coating-substrate interface: since the sub-
strate is impermeable to organic solvents and to water alike, that condition
does not change;

e the value of the partial pressure of the solvent in the gas is the “driving
force” of the whole process; it is given by an equation whose validity is not
disputed.

Therefore, it turns out that the variation of the diffusion coefficient must be ex-
pressed by a black-box neural network, within the whole physical model. That
has been done with the methodology that is described in detail in Chap. 2.
Note that the equations of the model are not ordinary differential equations,
but partial differential equations; that does not preclude the application of
the method.

The reader interested in the details of the model and in the results
will find them in [Oussar 2001]. Another industrial application of semi-
physical modeling—the automatic detection of faults in an industrial dis-
tillation column—can be found in [Ploix 1997]. It is worth mentioning that
applications or semi-physical modeling are in routine use in a major French
manufacturing company for the design of new materials and products.

1.4.11 Two Applications in Environment Control: Ozone Pollution
and Urban Hydrology

The two applications that are described in the present section are related to
the prevision of nonlinear phenomena in environmental science.

1.4.11.1 Prevision of Ozone Pollution Peaks

Ozone concentration measurements are more and more widespread, and elab-
orate knowledge-based models of atmospheric pollution become available, so
that the prediction of ozone peaks becomes feasible. The present section re-
ports an investigation that was carried out at ESPCI within a work group to
which measurements related to industrial area of Lyon (France) were made
available. The objective was to assess the efficiency of machine learning tech-
niques for designing black-box models for the prediction of ozone pollution
peaks in that area.

The available data set was made of hourly measurements of a reliable
ozone sensor between 1995 and 1998. Data pertaining to years 1995 to 1997
were used for training, and data of 1998 for validation. The task was to pre-
dict, 24 hours ahead of time, whether pollution would excess the legal alert
threshold (180 ug/m? at the time of the investigation).
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Two different approaches could be considered:

e classification: assign the next day to one of the classes “polluted” (thresh-
old will be exceeded) or “non polluted,” as a function of the data available
at 2pm GMT,

e prevision: predict the ozone concentration, 24 hours ahead.

Since the definition of the class “polluted” depends on the legal definition of
the alert threshold, which may vary for administrative, political or economical
reasons, it was deemed preferable by the ESPCI group to follow the second
approach. A black-box model was designed, which performs the prediction of
ozone concentration during the next 24 hours, from information available at
2pm GMT.

The naive idea consisted in using a dynamic nonlinear model such as a
recurrent neural network. However, it turned out that such an approach would
not be appropriate, because the process is not time-invariant: the physico-
chemical phenomena that determine ozone concentration depend on the time
of the day. Therefore, a set of 24 cascaded neural networks was designed, each
network specializing in the prediction of ozone concentration at a given hour
of the day (Fig. 1.47): network #N predicts the concentration at 2pm +N
GMT; for each network, the candidate inputs are:

e the predictions of the previous N — 1 networks;
e the set of available data:

1. the measurements of sensors of NO and NOs at 2pm GMT,

2. the temperature at 2 pm on day D,

3. the maximal temperature measured on day D, and the maximal tem-
perature predicted for day D + 1 by the national weather forecast
service,

4. geopotentials on day D,

5. the time series of ozone concentrations performed before 2pm on
day D.

For each network, input selection among the above candidate variables was
performed with techniques described in Chap. 2. Thus, the inputs of a given
network, specialized in a given time of the day, are the appropriate inputs for
that time of the day only.

Clearly, that approach can be adapted to other data sets, and can integrate
expert knowledge, in a semi-physical model, when it will be available.

The mean prediction error on the validation year (1998) is 23 ug/m3. Fig-
ure 1.48 illustrates the difficulty of the problem: despite a very accurate pre-
diction during 20 hours, that day appears as a “false negative” since the mea-
surement exceeds (by a very small amount) the alert threshold. Presumably,
when such tools will be in routine operation (which was not yet the case when
the present book was written), more subtle alert procedures than the simple
threshold strategy will be implemented.
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Fig. 1.47. The structure of a neural network for the prediction of ozone concentra-
tion, 24 hours ahead

1.4.11.2 Modeling the Rainfall-Water Height Relation in an Urban
Catchment

The Direction de I’Eau et de 1’Assainssement has developed a sophisticated
system for measuring water heights in the sewers of an area of the suburbs
of Paris, and has performed systematic measurements of rainfalls and of the
corresponding water heights. The objective is to optimize the sewer network
and to anticipate serious problems that are likely to arise in the case of severe
rains. Hence the reliability of the water height sensors in the sewers is crucial
for the reliability of the whole system: therefore, the automatic detection of
faults in the water height sensors is mandatory [Roussel 2001].

Neural networks can be accurate models of nonlinear phenomena, which
makes them useful tools for fault detection: if an accurate, real-time model
of normal operation of a process is available, the observation of a statistically
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significant discrepancy between the predictions of the model and the results
of measurements results from a fault, such as, in the present example, a sensor
failure.

Two kinds of faults can be present,

e stuck-at faults: the sensor outputs a constant value,
e drift: the sensor adds a slow drift to the real height value.

Both types of faults can be detected with recurrent neural networks, especially
with NARMAX models (described in detail in Chaps. 2 and 4). Figure 1.49
displays the various behaviors of the modeling error, depending on whether
the sensor is in normal operation or in drift failure mode.
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Fig. 1.49. Sensor fault detection in a sewer system
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1.4.12 An Application in Mobile Robotics

Process control is the science that determines the control actions to which
a process must be submitted in order to guarantee that it will operate in a
prescribed fashion, in spite of unmeasured and unpredictable disturbances.

As an example of the role that neural networks can play in mobile robotics,
we describe the automatic control of a 4WD Mercedes vehicle, which was
equipped by the French company SAGEM with sensors and actuators that are
necessary for making the vehicle autonomous. Controlling the vehicle consists
in sending the appropriate signals to the actuators of the steering wheel, the
throttle, and the brakes, in order to keep the vehicle on a prescribed trajectory
with a prescribed velocity profile, in spite of disturbances such as wind gusts,
sliding, slopes, etc.

Neural networks are good candidates as ingredients in nonlinear process
control systems. They can implement any (sufficiently regular) nonlinear func-
tion. As a result, they can be useful in two different ways,

e as models of the process, since the design of a control system generally
requires the availability of a model; neural networks are particularly useful
in internal model control, as described in Chap. 5;

e as controllers, i.e., for computing the control signals (e.g., the angle by
which the driving wheel must turn, and the velocity at which it should
turn) from the setpoint (e.g., the desired heading of the vehicle).

The vehicle that was controlled was a 4 wheel-drive vehicle equipped with
actuators (electric motor for actuating the driving wheel, hydraulic actuator
for brakes, electric motor for actuating the throttle) and two categories of
sensors,

e sensors that measure the state of the vehicle (proprioceptive sensors):
odometers on the wheels, angular sensors for the driving wheel and for
the throttle, pressure sensor in the brake system:;

e sensors that measure the position of the vehicle with respect to the universe
(exteroceptive sensors): an inertial platform.

The navigation and piloting system is made of the following elements:

e a planning module, which determines the desired trajectory of the vehicle,
and its velocity profile, given the start and arrival points and the existing
roads;

e a guiding module, which computes the heading and speed setpoint se-
quences;

e a piloting module, which computes the desired positions of the actuators;

e a control module of the actuators.

In that structure, neural networks are present at the level of the piloting
module, where they compute the desired position sequences of the actuators
as a function of the heading and speed setpoint sequences [Rivals 1994, 1995].
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The application requested the design and implementation of two control
systems that must fulfill two tasks,

e the control of the driving wheel, in order to keep the vehicle on the desired
trajectory: a neural controller was designed, that performs a maximum
lateral error of 40cm, for curvatures up to 0.1 m~!, and lateral slopes
up to 30% in rough terrain; some elements of that controller used semi-
physical modeling;

e the control of the throttle and the brake, in order to comply with the
desired velocity profile.

All neural networks implemented within that application, whether models
or controllers, are very parsimonious (less than ten hidden neurons). Their
implementation on board did not require any special-purpose hardware: they
were implemented as software on a standard microprocessor board that was
also used for other purposes.

1.5 Conclusion

In the present chapter, we endeavored to explain why, and for what purposes,
neural networks can be advantageously used. Some typical applications were
presented (others are described in various chapters), so that model designers
can get an intuition of what they can expect from that technique.

Before proceeding to more mathematical topics, it may be useful to em-
phasize the main points that should always be kept in mind when designing
neural networks, i.e.,

e Neural networks are machine learning tools, that allow to fit very general
nonlinear functions to sets of experimental data; just as for any statistical
method, the availability of appropriate data is mandatory.

e Neural networks with supervised learning are parsimonious approxima-
tors, that can serve as static models (feedforward neural networks) or as
dynamic models (recurrent neural networks).

e Neural networks with supervised learning can be high-quality classifiers,
whose performances can reach those of the theoretical Bayes classifier;
however, in the framework of classification for pattern recognition, the
representation of the patterns to be recognized is often crucial for the
performance of the whole system; in that context, neural networks with
unsupervised learning may provide very valuable information for designing
an efficient data representation.

e it is generally desirable, and often possible, to take advantage of all existing
mathematical knowledge on the process to be modeled or patterns to be
classified: neural networks are not necessarily black boxes.

The next chapters provide the mathematical background and the algorithmic
information that are necessary for an efficient design of neural network models.
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The foreword and the reading guide will help the reader to navigate through
the chapters as a function of his own topics of interest.

1.6 Additional Material

1.6.1 Some Usual Neurons

Two categories of neurons can be distinguished, depending on the role of their
parameters.

1.6.1.1 Neurons with Parameterized Inputs

The most popular neurons are neurons with parameterized inputs, in which
one parameter is assigned to each input. The output of a neuron having n
inputs {x;}, i = 0 to n — 1, is therefore given by an equation of the form
y = f{zi,w;}, i =0ton—1, where {w;}, i = 0 to n — 1 are the parameters
of the model.

In most cases, function f is the composition of two operations,

e the computation of the potential v of the neuron, which is the sum of the
inputs of the neuron, weighted by the corresponding parameters,

n—1
v="> w;
=0

e the computation of a nonlinear function of the potential, termed activation
function; that function is generally s-shaped, hence the generic name of
sigmoid; preferably the activation function is symmetric with respect to
the origin, such as the tanh function or the inverse tangent function, except
if some prior knowledge on the problem prompts the implementation of
different, more appropriate functions.

The set of inputs of the neuron generally includes a specific input, termed bias,
the value of which is constant, equal to 1. It is usually assigned the index 0,
so that the potential is of the form

n—1

v = wq + E W;T .
Jj=1

Thus, the expression of the output of the neuron is: y = flwg + Z?;ll w;x;].
Figure 1.50 shows the output of a neuron with three inputs (z¢ = 1, 1,
x9) with parameters wg = 0, w; = 1, we = —1.
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Fig. 1.50. Output of a neuron with 3 inputs {zo = 1, 21,22} with weights {wo =
0, w1 = +1, w2 = —1}, whose activation function is a tanh function: y = tanh(z; —
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Two variants of that type of neuron are

e high-order neural networks, whose potential is not an affine function of the
inputs, but a polynomial function; they are the ancestors of the support
vector machines (or SVM) used essentially for classification, described in
Chap. 6;

e MacCulloch-Pitts neurons, or perceptrons, which are the ancestors of
present-day neurons; Chap. 6 describes in detail their use for discrimi-
nation.

1.6.1.2 Neurons with Parameterized Nonlinearities

The parameters of those neurons are assigned to their nonlinearity: they are
present in function f. Thus, the latter may be a “radial basis function” (RBF)
or a wavelet.

Example

Gaussian radial basis function,

Yy = exp lZ(mZ — wi)2/2w,21+11 .

i=1

The parameters {w;,i = 1 to n} are the coordinates of the center of the
Gaussian in input space; parameter w,; is its standard deviation. Fig-
ure 1.51 shows an isotropic Gaussian RBF, centered at the origin, with stan-
dard deviation 1/+/2.
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Fig. 1.51. Gaussian isotropic RBF, = exp[— (21 + 23)] : wo = w1 = 0, w3 = 1//2

The term radial basis function arises from approximation theory; they can
be chosen so as to form a mathematical basis of functions. In regression, RBF’s
are generally not chosen so as to satisfy that requirement; however, following
the current use, we will keep the term radial basis function.

1.6.2 The Ho and Kashyap Algorithm

The Ho and Kashyap algorithm finds, in a finite number of iterations, whether
two given sets of observations are linearly separable in feature space. If they
are, the algorithm provides a solution (among an infinity of possible solu-
tions), which is not optimized (as opposed to algorithms that are explained
in Chap. 6). Therefore, that algorithm is mainly used for finding out whether
sets are linearly separable. If such is the case, it is advisable to use one of the
optimized algorithms described in Chap. 6.

Consider two sets of examples, having ns and np elements respectively,
belonging to two classes A and B; if the examples are described by n features,
each of them is described by an n-vector. We denote by :1:;? the vector that
represents the k-th example of class A (k =1 to na), and by w the vector of
parameters of a linear separator; if such a separator exists, i.e., if the examples
are linearly separable, then one has

xiw >0 for all k,
xBw <0 for all k.

We define matrix M whose rows are the vectors that represent the examples
of A and the opposites of the vectors representing the examples of B, i.e.,

_ a a a b b b 1T
M = [x{,25,..., 2z , @], x,..., 2],
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where superscript T denotes the transpose of a matrix. Then a linear separator
exists if and only if there exists a vector w such that

Mw > 0,

or, equivalently, if there exists a vector y > 0 and a vector w such that
Mw =y.

Then one has w = M*y, where M* is the pseudo-inverse of matrix M :
M* = MT(MMT)~! which can be computed by the Choleski method [Press
1992].

The Ho and Kashyap algorithm is as follows:

Initialization (iteration 0):

w(0) = M*y(0) where y(0) is an arbitrary positive vector

Iteration ¢

a(i) = M*w(i) — y(i)

y(i+1) =y(@) + p(a(i) + |a(i)]) where p is a positive scalar smaller than
lw(i+1) =w(@) + pM*(a(i) + |a(i)])

If one of the components of y(i) < 0 then the examples are not linearly
separable.

If all components of Mw(i) > 0 then the examples are linearly separable

and w(i) is a solution.

The algorithm converges after a finite number of iterations.
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2

Modeling with Neural Networks:
Principles and Model Design Methodology

G. Dreyfus

In the previous chapter, we showed that neural networks are nonlinear mod-
els, either static or dynamic, either “black-box” or “gray-box”. The present
chapter provides an in-depth treatment of the principles of modeling, together
with a full model design methodology. For a new technology, the availability
of a methodology is a proof of maturity, and it is a crucial asset for success in
the development of applications.

2.1 What Is a Model?

A model is a representation of a part of the visible or observable world. In
the present book, we consider only mathematical models, made of algebraic
or differential equations that relate causes (called variables, factors, or model
inputs) to effects (called quantities to be modeled, or quantities of interest,
or model outputs); all these quantities are numbers. Symbolic or linguistic
models, such as expert or fuzzy systems, will not be considered.

2.1.1 From Black-Box Models to Knowledge-Based Models

The black-box model is the most primitive form of a mathematical model: it
is based only on observations; it may have some predictive value, but it does
not provide any explanation. Thus, the Ptolemaic model of the universe was a
black-box model: it did not provide any explanation of the motion of planets,
but it did predict it, within the accuracy of experimental instruments that
were available at that time.

By contrast, a knowledge-based model, or white-box model, results from
an analysis of the physical, chemical, biological, etc., phenomena that gen-
erate the quantity to be modeled. Those phenomena are described by equa-
tions that depend on the theoretical knowledge that is available when the
model is designed. Therefore, such a model has the abilities of predicting
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and of explaining. Scientific research strives to build knowledge-based mod-
els, whenever possible: the design of a knowledge-based model requires that
a theory be available, whereas the design of a black-box model requires that
measurements be available. Thus, Newton’s theory of gravitation generated a
knowledge-based model of the motion of celestial bodies.

Semiphysical or gray-box models stand between knowledge-based and
black-box models: they embody both equations resulting from the applica-
tion of a theory, and empirical results from a black-box model.

At present, most neural network applications are black-box models; there-
fore, the first part of the present chapter is devoted to black-box modeling.
However, it will be shown that it can be very advantageous to use neural
networks as semiphysical models.

2.1.2 Static vs. Dynamic Models

A static model is made of algebraic equations only (e.g., a feedforward neural
network); by contrast, a dynamic model obeys differential (or partial differen-
tial) equations where time is the variable, and possibly algebraic equations as
well. We will first consider the design of static models. The design principles
for dynamic models (e.g., recurrent neural networks) will be explained next;
Chaps. 4 and 5 deal in more detail with dynamic modeling and control.

2.1.3 How to Deal With Uncertainty? The Statistical Context of
Modeling and Machine Learning

Before studying the design and implementation of a static black-box model, it
may be useful, for the benefit of the reader who is not familiar with those tech-
niques, to state the assumptions that underlie black-box modeling. Assume
that the quantity of interest y, is measurable, scalar!, and that one knows,
or suspects, that it depends, in some unknown, deterministic way, on one or
several measurable quantities called factors that can be gathered into a vector
@ (which is a scalar if a single factor is involved in the modeling). In general,
the measurable factors do not provide a complete description of the evolu-
tion of the quantity of interest: the latter is also subject to disturbances that
are not measured (often not measurable). Two kinds of disturbances must be
considered,

e deterministic disturbances: putting a cold dish into a temperature-regulated
oven disturbs the temperature of the latter;

e noise: the noise inherent to the measurement of the quantity of interest
Yp, for instance the noise of the sensor that measures the temperature of
the oven, disturbs the measurement.

! The extension to the modeling of a vector does not involve any special difficulty.
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Thus, if the same quantity is measured several times in conditions that are as-
sumed to be identical, the results of the measurements are not identical. Black-
box modeling aims at finding, from available measurements, a mathematical
expression that provides an estimate of what the result of the measurement
would be in the absence of disturbances, or, in other words, at finding a de-
terministic relation, if any, between the factors z and the quantity of interest
Yp- Statistics provide the conceptual framework that is suitable for that task.
Therefore, the chapter starts with the introduction of elementary vocabulary
and concepts of statistics; some examples are developed in the additional ma-
terial at the end of the chapter. The reader who has some familiarity with
statistics may skip the next section.

2.2 Elementary Concepts and Vocabulary of Statistics

There are many classical textbooks in statistics (see or instance [Mood et al.
1974; Wonnacott et al. 1990]) to which the reader can refer for many more
details and for the proofs of some results.

2.2.1 What is a Random Variable?

A random variable is a very convenient mathematical concept for dealing with
quantities (such as results of measurements) whose values are uncertain: their
values is considered as a realization of a random variable. The latter is fully
defined by its probability density or distribution.

Denoting by py (y) the probability distribution function (pdf) of a random
variable Y, the probability that the value of a realization of Y lie between y
and y + dy is equal to py (y)dy.

Thus, modeling a measurable quantity y, by a random variable Y'is equiv-
alent to assuming that the result of a measurement is the result of a random
choice of a value y with a (generally unknown) probability distribution py (y).
Modeling a quantity of interest by a random variable is definitely not equiv-
alent to stating or assuming that the quantity of interest is not governed by
a deterministic process: it is just a convenient mathematical trick for dealing
with the fact that some factors that have an influence on the result of the
measurement are not known, or are known but neither measured nor con-
trolled (maybe because they are neither measurable nor controllable, such as
wind gusts in the modeling of airplane flight).

Property. The probability distribution function is the derivative of the cumu-
lative distribution function:. py (y) = (dFy (y))/(dy)with Fy (y) = Probability
Y <y)

Because any realization y of the random variable Y lies between —oo and
+oo
+00, one has: [*_~ py(y)dy = 1.
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Fig. 2.1. Normal distribution

2.2.1.1 Examples of Probability Distributions
Uniform Distribution

A random variable Y has a uniform distribution if its density probability is
py(y) = 1/(b—a) on a given interval [a,b], and is zero elsewhere.

Gaussian Distribution

The Gaussian distribution py (y) = 1/(V2702) exp(—((y — 1)?)/(20?)) is very
useful. p is the mean of the Gaussian and ¢ (> 0) is its standard deviation.
Figure 2.1 shows a normal distribution, with 4 =0 and ¢ = 1.

Other Distributions

The Pearson (or x?) distribution, the Student distribution and the Fisher
distribution are defined in the additional material at the end of the chapter.

2.2.1.2 Joint Distributions

Denoting by px v (z,y) the joint density of two random variables, the proba-
bility that a realization of X lie between x and = + dz and that a realization
of Y lie between y and y + dy is px y (z,y)dz dy.

Independent Random Variables

If two random variables X and Y are independent, one has:

px,Y(% y) = px(x)pY(y)-
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2.2.2 Expectation Value of a Random Variable

The ezpectation value of a random variable Y is

+oo
Ey = / ypy (y)dy.

— 00

Therefore, the expectation value of a random variable is the first moment
of its probability distribution .

2.2.2.1 Properties

e The expectation value of the sum of random variables is the sum of the
expectation values of the random variables.

e If a variable Y is uniformly distributed in interval [a, b], its expectation
value is (a + b)/2.

e If a variable Y has a Gaussian distribution with mean pu, its expectation
value is p.

2.2.2.2 Example: Modeling the Result of a Measurement by a
Random Variable

Assume that several measurements of the temperature of a fluid are per-
formed, under conditions that are assumed to be identical, and that different
results are obtained because of the intrinsic noise of the sensor and associ-
ated electronics, or because the conditions of the measurement are poorly
controlled. Such a situation can be conveniently modeled by considering that
the result T of the measurement is the sum of the true temperature Ty (ran-
dom variable with distribution §(7)) and of a random variable B with zero
expectation value, T' = Ty + B. Then the expectation value of T is given by
E =T, since the expectation value of B is equal to zero.

Clearly, the objective of performing a measurement of a quantity of inter-
est, is to know its “true” value, i.e., within the above statistical framework,
the expectation value of the quantity of interest. Therefore, the question that
arises naturally is: how can one estimate that expectation value from the
available measurements? To this end, the concept of estimator is useful.

2.2.3 Unbiased Estimator of a Parameter of a Distribution

An estimator is a random variable, which is a function of one or several mea-
surable random variables.

An estimator H of a parameter of the distribution of an observable ran-
dom variable G is said to be unbiased if its expectation value is equal to the
parameter of interest. Then a realization of H is an unbiased estimate of the
parameter of interest.
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2.2.3.1 The Mean Is an Unbiased Estimator of the Expectation
Value

Assume that N measurements of a quantity of interest G have been performed,
under conditions that are assumed to be identical. The quantity of interest
is modeled as a random variable whose expectation value « is unknown. The
result g; of measurement 7 can be considered as a realization of the random
variable G;. If the experiment has been soundly designed, it can reasonably
be assumed that the result of a given measurement is not affected by, and
does not affect, other measurements: then the random variables G; are mu-
tually independent, and, since the measurements were performed in identical
conditions, they have identical distributions, hence the same expectation ~.

Consider the random variable M = (G1 + G2 + --- + Gy)/N. Since the
expectation of a sum of random variables is the sum of the expectations,
one has Ejr = v: the expectation value of the random variable M (“mean”)
is equal to the expectation value of G, therefore the mean is an unbiased
estimator of the expectation value. The quantity m = (g1 +g2+- -+ gn)/N,
which is a realization of the estimator of the expectation value of the random
variable GG, is an unbiased estimate of the latter.

Consider again the example of the estimation of the temperature of a fluid;
we have shown

e that the expectation value of the variable T' that models the temperature
is equal to the “true” temperature Tp,
e that the mean is an unbiased estimator of the expectation value.

Therefore, if N temperature measurements are available, the mean of these
measurements is an unbiased estimate of Tj.

However, the fact that the estimate is unbiased does not tell us anything
about the accuracy of that result. If it is desirable, for instance, to know the
temperature with 10% accuracy, does the estimate comply with that require-
ment? Clearly, the answer depends on the quality of the measurements, i.e.,
on the scattering of the measurements around the true value Ty. The concept
of wariance is useful in that context.

2.2.4 Variance of a Random Variable

The variance of a random variable Y with distribution py (y) is

+oo
vary =o” = / [y — Ev)*p(y)dy.

— 00

Hence, the variance is the centered second moment of the distribution.
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2.2.4.1 Properties

vary = By: — E%.
vargy = a2vary.
If a random variable is uniformly distributed on an interval [a, b], its vari-
ance is (b —a)?/12.
e If a random variable has a Gaussian distribution of standard deviation o,

its variance is o2.

2.2.4.2 Unbiased Estimator of the Variance of a Random Variable

In order to define the mean estimator M (unbiased estimator of the expec-
tation value), we considered that N measurements of a quantity G were per-
formed, and that the measurements were modeled as realizations of N inde-
pendent identically distributed (i.i.d.) random variables G;.

Unbiased Estimator of the Variance

The random variable
1 N
2 - - M 2
§* =5 Z;(Gz )

is an unbiased estimator of the variance of G.
Therefore, if N measurement results g; are available, the estimation of the
variance requires

e first an estimation mof the mean, by relation m = 1/(N) ZZ\; Gis
e then an estimation of the variance by relation

2 1 < 2
=1

Thus, the estimation of the variance provides a quantitative assessment of
the scattering of the measurements around the mean. Since the mean itself is
a random variable, it has a variance: the latter can be estimated by perform-
ing several sequences of measurements, under identical conditions, computing
the mean of each sequence, then estimating the expectation value and the
variance of the mean: this would provide an assessment of the scattering of
the estimates of the temperature. However, this is indeed a heavy procedure,
since it requires several sequences of measurements, in identical conditions.
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2.2.5 Confidence Interval

The estimation of a confidence interval provides an elegant solution to the
problem that has just been mentioned.

A confidence interval, with confidence threshold 1 — «, for a random vari-
able Y, is an interval that, with probability 1 — «, contains the value of the
expectation of Y.

Thus, instead of simply estimating the true value of the temperature by
averaging the results of measurements performed presumably under identical
conditions, one can estimate an interval within which the true value of the
temperature is to be found, with probability 1 — a. This is a much more
useful and significant information: the smaller the confidence interval, the
more confident one can be in the estimate of the quantity of interest.

The procedure for computing a confidence interval, and an example, are
described in the additional material at the end of the chapter.

2.2.6 Hypothesis Testing

Hypothesis testing is a conventional statistical technique that aims at estimat-
ing whether a given hypothesis about a model is significantly in agreement,
or in disagreement, with experimental data. In the field of modeling, the hy-
potheses that are tested are related to the model that is being designed.

A hypothesis, called “null hypothesis” Hg, and its complement Hy, are
stated. A risk « of rejecting the null hypothesis Hy although it is valid, is
chosen. Then the design of a hypothesis test consists in

e finding a random variable, whose distribution is known if the null hypoth-
esis is true, and a realization of which can be computed from the available
experimental data;

e computing that realization.

If the probability of the latter lying in a given interval is too low given the
distribution of the random variable, the null hypothesis has a low probability
of being true, hence it is rejected. An example of hypothesis testing is provided
in the additional material at the end of the chapter.

2.3 Static Black-Box Modeling

In the previous section, the basic elements of point estimation were explained:
a measurable quantity was considered, and modeled as a random variable, its
expectation value and variance were estimated, and a confidence interval was
computed, from the available measurements performed under identical condi-
tions. The process being the temperature of a fluid in an oven, it was assumed
that all measurements were performed with a given heater intensity, a given
external temperature, etc. Disturbances might be the intrinsic noise of the
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temperature measurement apparatus, variations of the external temperature,
exo- or endo thermal reactions that may take place in the fluid. We did not
try to model the relations between the measured temperature and the factors
that may have an influence on the latter, since those factors were assumed to
be constant.

The problem of modeling that is addressed in the present chapter is more
complex. We want to find the mathematical relations between the quantity
of interest and the factors that may have an influence on it. If such relations
are available, then one can perform predictions about the evolution of the
quantity of interest as a function of its factors: for instance, if a relation is
found between the temperature of the oven and the intensity of the electrical
current in the heating resistors, then one can predict the temperature that will
be reached if a given intensity is flown into the resistors. One of the difficulties
of modeling arises from the fact that all factors are not necessarily measured,
and possibly are not measurable: therefore, the statistical framework is still
appropriate, just as in the previous section.

2.3.1 Regression

Consider a measurable quantity y,, which depends on a set of factors that are
the components of a vector . As in the previous section, it is convenient to
view the results of the measurements of y,, as realizations of a random variable
Y, and to view the measured factors as realizations of a random vector? X.
Therefore, an estimate of the expectation value of the random variable Y for
a given realization x of the random vector X is sought; it is denoted by
Ey (x). That quantity is a function of «, called regression function (or simply
regression) of the random variable Y.

Since, as shown in the previous section, the expectation value is a quantity
that can only be estimated, but cannot be known exactly, the regression func-
tion is also unknown and can only be estimated; some of its characteristics,
such as the variance of Y for a given realization of X, or a confidence interval
on Yfor a given realization of X, can be estimated. Thus, the model that
is sought is an estimation of the regression function; since neural networks
with supervised training are nonlinear parsimonious approximators as shown
in Chap. 1, they are good candidates as models of the quantity of interest if
the regression function is nonlinear.

In order to estimate the regression function from measurements of the
vector of factors (or input vector of the model, or variables of the model),
one must first make an assumption as to the regression function: the simplest
one is the linear (or affine) assumption: it is assumed that, in the domain of
variation of the variables, a model that is linear or affine with respect to the
latter can account satisfactorily for the behavior of the quantity of interest. If

2 A random vector is a vector, the components of which are random variables; each
component has its own probability distribution.
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that assumption does not lead to a satisfactory model, then one must resort to
a model that is nonlinear with respect to its variables, such as a polynomial,
a neural network, etc.

Whatever the assumption on the mathematical form of the model, the
problem of modeling, in the present context, is, by essence, the problem of
estimating the parameters of the most satisfactory model, given the available
data. How one can decide whether a model is satisfactory or not, is a major
methodological problem that is considered in the present chapter.

2.3.2 Introduction to the Design Methodology

In all the following, a model whose vector of variables is & and whose vector
of parameters is w will be denoted by g(x, w). If there exists a parameter
vector wy, such that the model is identical to the regression function g(x, w,) =
Ey (x), then the family of functions g(x, w) contains the regression function,
and the model g(x,w) is said to be “true”. If such is not the case, then a
model will be sought, that is as close as possible to the regression function
Ey (x). Training is the algorithmic procedure whereby the parameters of such
a model are sought, for a given family of functions (for instance, for the family
of neural networks with three inputs and two hidden neurons).

Therefore, the design of a nonlinear black-box model requires the achieve-
ment of several tasks, including

e variable selection, i.e., the selection of the components of vector @ in g(«,
w); that task is carried out in two steps:

1. the reduction of the dimension of the input vector;

2. the selection of relevant variables, i.e., of the variables whose influ-
ence on the quantity to be modeled is larger than the influence of the
disturbances;

e the estimation of the parameters w of the model g(x, w), i.e. the training
of a model; this is also carried out in two steps:

1. the choice of a family of functions within which the model is sought
(for instance, the family of neural networks with three hidden neurons,
the family of polynomials of degree 4, etc.);

2. the training of one or several models within the chosen family;

e the selection of the best model and the estimation of its performances;
if that best model is not satisfactory, another family of model is chosen
(for instance, the number of hidden neurons is increased or decreased, the
degree of the polynomial is increased or decreased, etc.), and the process
is iterated to the second step of the previous task.

The latter step makes machine learning modeling different from conventional
statistical modeling: in statistical modeling, the “best” model is the model
whose parameters are estimated with the best accuracy. In machine learning,
the best model is the model that generalizes best, the exact values of the
parameters being of little or no interest.
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The above three tasks are described in the next three sections, building up
a complete design methodology that is essentially applicable to any nonlinear
model, be it neural or otherwise.

2.4 Input Selection for a Static Black-Box Model

When a model is designed from measurements, the number of variables must
be as small as possible, for each additional input generates additional para-
meters. In a neural model, each input gives rise to a number of parameters
that is equal to the number of hidden neurons. Therefore, it is necessary

to find an input representation that is as compact as possible,

to select all relevant factors as inputs to the model, but only the relevant
ones: the presence of input variables that are not relevant (i.e., whose
contribution to the output is smaller than the contribution of disturbances)
creates useless parameters and generates input variations that are not
significant, hence will generate modeling errors.

Input selection has two different sides,

e reduction of the dimension of the representation space for the variables of
the model,
e rejection of inputs that are not relevant.

2.4.1 Reduction of the Dimension of Representation Space

This first step of the input selection process considers only the inputs, irre-
spective of the quantity to be modeled; it aims at finding a data representation
that is as compact as possible. Consider the example shown on Fig. 2.2: two
data sets, corresponding to an input vector & of dimension 3, are displayed in
that space; for the right-hand side data set, the points are essentially aligned,
which means that the intrinsic data dimension is actually 1, instead of 3.
Through an appropriate change of variables, after which all points are borne
by a single axis, a one-dimensional representation of the data can be found.
That change of variables can be obtained through principal component analy-
sis (abbreviated as PCA, see for instance [Jollife 1986]). Similarly, for the
second data set, each point can be described by its curvilinear abscissa on a
curve: here again, the dimension of the representation can be reduced through
an appropriate processing of the data, such as curvilinear component analysis
or self-organizing maps [Kohonen 2001]. Those techniques are described in
detail in Chaps. 3 and 7.
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Fig. 2.2. Data dimensionality reduction

2.4.2 Choice of Relevant Variables

In the present chapter, the second task of input selection, i.e., the rejection of
inputs whose influence on the output can be neglected, is described in more
detail.

When modeling a physical or chemical process, the variables that have
an influence on the quantity to be modeled are generally analyzed in detail,
from first principles, by the experts; therefore, a systematic variable selection
procedure is not necessary. By contrast, when modeling an economic, social, or
financial process, or when modeling a very complex physical system, experts
may give opinions about the relevant variables, but those are often more or
less subjective, and need rigorous testing. Then the selection process starts
with a large number of candidate variables, among which the factors that are
really relevant should be selected. The results of the selection may disagree
with current beliefs.

A large number of selection techniques were suggested (see for instance
[McQuarrie et al. 1998], and, for a recent review, [Guyon et al. 2005]).
The principles of the most popular technique are first described; then a tech-
nique that is intuitive and based on first principles is explained: the probe
feature method.

2.4.2.1 Input Selection Strategies

The most natural strategy, for the choice of a set of inputs, consists in starting
with an oversize set of candidate inputs (the model is said to be “complete”),
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in comparing the performance of the complete model with the performances
of models whose inputs are subsets of the inputs of the complete model, and in
choosing the best model with respect to an appropriate selection criterion. If
q candidate variables are available, 2¢ different combinations of inputs can be
generated, hence at least 29 models, whose performances should be compared:
such an approach, whose complexity increases exponentially with the number
of variables, is optimal but generally too demanding.
Two simpler, suboptimal strategies are used in practice:

e an elimination strategy (stepwise backward regression), whereby the less
significant input is eliminated from the complete model: all submodels
with ¢ — 1 inputs are compared, and the best of them (according to an
appropriate criterion) is compared to the complete model. If the submodel
is better than the complete model, that submodel is kept and the procedure
is iterated; otherwise, the complete model is kept;

e a constructive strategy (stepwise forward regression), which starts with
the simplest model, whose output is just the mean of the measured output
values in the data set, hence is independent of the inputs: it is thus a model
with zero variables; it is compared to the ¢ models with 1 input; the best
model is chosen, and the procedure is iterated until the addition of a new
input no longer improves the quality of the model.

For both strategies, the maximum number of models is 1 + [¢(q¢ + 1)/2]: it
grows as the square of the number of candidate variables, which is generally
acceptable for practical purposes.

2.4.2.2 Comparison Criteria

The strategies described in the previous section rely on comparisons between
models that have different numbers of inputs. Several comparison techniques
may be used. We discuss two of them: hypothesis testing, and Akaike’s infor-
mation criterion.

Hypothesis Testing. Fisher’s Test

The principle of hypothesis testing was discussed in a previous section. When
comparing a submodel to the complete model in an elimination strategy, a
model with ¢ parameters is compared to a model with ¢/ < ¢ parameters,
which can be described as testing the null hypothesis “¢’ — ¢ parameters are
equal to zero” to the alternative hypothesis. This can be done with Fisher’s
test, which is described in the additional material at the end of the chapter.

If the comparison to be performed is not between a complete model and
a submodel, i.e., if the set of parameters of a model is not included in the set
of parameters of the other, other tests may be used, such as the likelihood
ratio test [Goodwin et al. 1977] and the LDRT test (logarithm determinant
ratio test) [Leontaritis et al. 1987]. Those tests are asymptotically equivalent
to Fisher’s test [Soderstrom 1977].
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Akaike’s Information Criterion

In the above tests, the performance of the models is estimated through the
mean square error on a set of examples. It may be desirable, for models that
have similar performances, to take into account the complexity of the model,
since the simplest models are generally preferable, as discussed in Chap. 1.
Akaike’s criterion [Akaike 1973, 1974; Norton 1986] is an example of such
an approach. It consists in choosing the model for which the AIC (Akaike
Information Criterion) is smallest,

AIC = Nlog(MSE) +2(¢+ 1),

where NN is the number of examples, ¢ is the number of variables of the model
(linear with respect to the parameters), and where MSE is the mean square
error on a data set. Thus, for a given performance as expressed by the mean
square error, the most parsimonious models are favored.

A large number of variants of that criterion are discussed in [McQuarrie
et al. 1998].

2.4.2.3 Variable Selection by the Probe Feature Method

The selection method that is described in the present section is intuitive,
efficient, and based on simple principles [Stoppiglia et al. 2003]. It proceeds
in two steps,

e ranking of the variables in order of decreasing relevance to the output,
e elimination of irrelevant variables.

We describe those two steps below.

Input Ranking through Gram-Schmidt Orthogonalization (Orthogonal
Forward Regression)

In order to select the inputs of a neural model, it is convenient to perform
input selection with a model that is linear with respect to its parameters (a
polynomial model for instance), and to use the inputs thus selected as inputs
of a neural network, because input selection is easier for a model that is linear
with respect to its parameters.

Assume that p candidate variables (called primary variables) z;(i = 1
to p), are available, after discussions with the experts of the process to be
modeled. If a nonlinear model is deemed necessary, one may consider, for
instance, a polynomial model of degree 2; such a model is linear with respect
to its parameters, its inputs being

e all combinations of 2 variables among the p candidate variables,
e the p candidate variables,
e a constant term.
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Those inputs are the secondary variables ¢; (i =1 to g = (p(p+1)/2) +
p+1); the set of secondary variables includes the primary variables. Then the
model can be written as

q
g(¢w) = Mw = wiG;,
=1

where ¢T is the transpose of vector ¢ whose ¢ components are the ¢; (in the
present chapter, the superscript T stands for the transposition of a vector of
a matrix).

Assume that N measurements of each input are available, together with
the corresponding measurements of the quantity to be modeled. We define
the N-dimensional space (called observation space ) in which each candidate
variable is represented by a vector whose components are the N measured
values of that input, and where, similarly, the process output is represented
by the vector whose components are the measured values of the latter. We
denote by & the vector whose components are the N values of the ith variable
of the polynomial model, and by y,, the vector whose components are the N
measured values of the quantity of interest. If the model is linear with respect
to the parameters, the angle between the vector representing the ith variable
and the vector representing the output decreases as the correlation between
the ith variable and the output increases.

e If that angle is zero, i.e., if the output is proportional to variable i, the
latter explains completely the output.

e If that angle is 7/2, i.e., if the output is fully uncorrelated to variable 4,
the latter has no influence on the output.

Observation space is different from input space; the dimension of input space
is equal to the number of variables of the model, whereas the dimension of
observation space is equal to the number of measurements performed on the
process prior to modeling.

In order to rank the inputs in order of decreasing relevance, it is not
necessary to compute the angle 6; between the vector that represents input ¢
and the vector that represents the output y,,: it is more convenient to compute
the quantity cos®6; = (((§')"y,)?)/((€) 7€) (yp) yp)-

In order to rank the inputs in order of decreasing relevance, the following
orthogonalization procedure can be used [Chen 1989

Choose the input that is most correlated to the output (with largest cos?6).
Project the output vector and all other candidate inputs onto the null
space of the selected input.

e Iterate in that subspace.

The procedure terminates when all candidate inputs are ranked, or when a
maximal number of inputs are ranked (for models with many inputs, the full
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Fig. 2.3. Input orthogonalization by the Gram-Schmidt technique

ranking may be long or become numerically unstable for inputs that have very
small correlations to the output).

The procedure is illustrated on Fig. 2.3, in a very simple case where three
observations have been performed, for a model with two inputs (primary or
secondary) &' and &2: the three components of vector &€ are the three mea-
sured values of variable (; during the three observations.

Assume that vector &2 is the most correlated to vector y,. Therefore,
€2 is selected, and ¢! and y, are orthogonalized with respect to &2, which
yields vectors €' and y,;. If additional candidate inputs were present, the
procedure would be iterated in that new subspace until completion of the
procedure. The orthogonalization can be advantageously performed with the
modified Gram-Schmidt algorithm, as described for instance in [Bjorck 1967].

Input Selection in the Ranked List

Once the inputs (also called variables, or features) are ranked, selection must
take place. This is important, since keeping irrelevant variables is likely to be
detrimental to the performance of the model, and deleting relevant variables
may be just as bad.

The principle of the procedure is simple: a random variable, called “probe
feature” is appended to the list of candidate variables; that variable is ranked
just as the others, and the candidate variables that are less relevant than the
probe feature are discarded.

If the model were perfect, i.e., if an infinite number of measurements were
available, that input would have no influence on the model, i.e., training would
assign parameters equal to zero to that input. Since the amount of data is
finite, such is not the case.

Of course, the rank of the random feature itself is a random variable. The
decision thus taken must be considered in a statistical framework: there exists
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a nonzero risk of keeping an irrelevant variable, or of discarding a relevant
variable. Therefore, the following procedure is used:

e Orthogonalize the output and the inputs with respect to the m — 1 inputs
selected during the previous m — 1 iterations.

e In the subspace of dimension g—m, select the input that is most correlated
to the projected output.

e Compute the probability that the rank of the probe feature be lower than
or equal to the rank of the feature under examination, i.e., the probability
that the probe feature be more relevant than the input under consider-
ation. The computation of that quantity is explained in the additional
material at the end of the chapter.

e If that probability is lower than the risk, chosen by the designer, that a
variable be kept although it is less relevant than the probe feature, keep the
feature under consideration and iterate the procedure; otherwise, discard
the feature and terminate the procedure.

Ezxample 1

In order to illustrate that input selection method, we consider a simulated pro-
cess, described in [Lagarde 1983] and also investigated in [Stoppiglia 1998]3,
[Stoppiglia et al. 2003]. Ten variables are candidate inputs, five of which only
are relevant.

Figure. 2.4 shows the cumulative distribution function of the rank of the
probe feature. It shows that if the five most relevant inputs are selected, the
probability that the rank of the probe feature be smaller than or equal to 5
(i.e., that one of the 5 selected inputs be less relevant than the probe feature)
is smaller than 10%. If 6 inputs are selected, the probability is larger than
10%. Therefore, if the designer is willing to accept a risk of 10%, then the first
5 inputs should be selected: that is exactly the number of relevant inputs. If
the designer is willing to accept a higher risk of keeping an irrelevant input,
20% for instance, then the graph shows that the first 6 features should be kept.
Thus, as in any statistical method, a tradeoff must be performed between the
risk of designing an oversize model and the risk of designing too small a model.

Ezample 2

In a classification problem, synthetic data in which 2 variables only, out of
240 candidate variables, were relevant [Stoppiglia et al. 2003], and the other
238 variables were just random. The probe feature method was tested on 100
different such databases: it discovered at least 1 true variable in all cases, and
discovered both true features in 74% of the cases. A hypothesis test showed
that, when only one true variable is found, the classification performances of
the model were not significantly different from the performances of models

3 That thesis is available from URL http://www.neurones.espci.fr.
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Fig. 2.4. Cumulative distribution function of the probe feature

having both true variables: the second variable happens to be, by chance, just
as relevant as one of the true variables.

Ezxample 3

In a classification problem, a data base was generated, containing 200 ex-
amples with 1,326 candidate variables, including 52 independent variables,
among which 2 relevant variables were present. With a 1% risk, the probe
feature method selected both relevant variables, and no other.

Once the inputs are selected, they can be used as inputs to a neural net-
work.

That method is directly related to Fisher’s test, which is discussed in the
additional material at the end of the chapter.

2.4.2.4 Relation Between Fisher’s Test and the Probe Feature
Method

The interested reader will find in [Stoppiglia 1998; Stoppiglia et al. 2003] the
proof of the following result: if the model under consideration at iteration k of
the Gram-Schmidt orthogonalization procedure is complete, i.e., if it contains
all relevant variables, and if it is true, i.e., if the regression function belongs
to the family of functions within which the model is sought, then the selection
procedure performed at iteration k is equivalent to a Fisher’s test between the
models examined at iterations k and k — 1.

Therefore, the probe feature method has two advantages on Fisher’s test:
first, it gives a clear and intuitive interpretation to the selection criterion;
second, it is applicable whether the complete model is available or not, and
whether the model is true or not.
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2.4.2.5 What to do in Practice?

Summary of the procedure for discarding irrelevant variables:

1. Choose the set of candidate inputs (primary and secondary variables).

2. Select the input that is most correlated to the output; in observation
space, project all other inputs, and the output, onto the null subspace of
the selected input.

3. In the null space of the m — 1 variables selected at previous iterations
(a) Select the projected input vector that is most correlated to the pro-

jected output vector.

(b) Compute the probability H,, for the probe feature to be more relevant
than one of the m input selected previously, and compare it to the risk
« chosen by the designer.

(¢c) If Hy, is smaller than the risk, project the projected output, and
all remaining candidate inputs, onto the null space of the selected
projected input and iterate to step 3.

(d) If H,, is larger than the risk, proceed to step 4.

4. Use the selected variables as inputs of a neural network and train as
indicated in the next sections.

2.4.3 Conclusion on Variable Selection

The first step in any model design procedure consists in reducing the dimen-
sion of the input space, by asking two questions.

e Is the intrinsic dimension of the input vector as small as possible, or is it
possible to find a more compact input representation, while preserving the
amount of relevant information?

e Are all candidate inputs relevant to the modeling of the quantity of
interest?

The answer to the first question is provided by principle component analy-
sis, or possibly by more complex operations such as curvilinear component
analysis or self-organizing maps.

The answer to the second question is provided by statistical methods such
as the probe feature method.

After performing input selection, the parameters of the model are esti-
mated as discussed in the next section.

2.5 Estimation of the Parameters (Training) of a Static
Model

We now turn to the problem of estimating the parameter of a model g(x, w):
find the numerical values of the components of the parameter vector w that
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make the model satisfactory, with respect to a criterion that will be discussed
below.
The basic principles of parameter estimation are the following:

e A set of N measurements {yg} (k=1 to N) of the quantity to be mea-
sured is available, which corresponds to N values of the inputs {x*} =
{lz},..., 2]} (k =1to N). That set of observations is called training set.

e Because the training set is of finite size, the exact regression function
cannot be derived; therefore, an approximation of the regression func-
tion is sought, within a family of functions that are deemed complex
enough to account for the complexity of the data. The most reason-
able approach consists in first trying to find an approximation of the
regression function in the family of linear or affine functions (i.e., per-
form linear regression). In that case, the model is sought under the form
g(x, w) = Tw = Y7, w;z;; if the result of that model is not satisfac-
tory, an approximation of the regression function must be sought in a more
complex family of functions, either linear with respect to the parameters
(polynomials, Gaussians with fixed centers and covariances, wavelets with
fixed centers and dilations), or nonlinear with respect to the parameters
(neural networks, Gaussians with adjustable centers and covariance matri-
ces, etc.). If necessary, the complexity of the family of models is increased
step by step, by increasing the degree of the polynomial, the number of
Gaussians, the number of hidden neurons, etc.

e For a given family of functions, the values of the parameters w must
be computed; this is done by minimizing a cost function that pictures
the “distance” between the predictions of the model and the measured
values. For each observation k of the training set, the residual is de-
fined as rp, = y’; — g(z*, w), where y]’,f is the kth measured value of
the process output, and where x* is the kth measured value of the in-
put vector. The least squares cost function, as defined in Chap. 1, is
the sum of the squared residuals of all observations of the training set:
J(w) = Zgil(y’; —g(xF,w))? = rTr, where 7 is the vector of residuals, of
dimension N, whose components are the residuals r. If the modeling were
perfect, the residual vector would be equal to zero, which is the absolute
minimum of the cost function. However, since measurements have noise, it
is not desirable to find a model that is so complex that the minimum of the
cost function would be equal to zero: such a model would reproduce the
noise, in addition to reproducing the deterministic behavior of the process,
whereas the purpose of modeling is to find a model that captures the de-
terministic part of the process and filters out the noise. Since there is no
point in finding a model whose predictions would be more accurate than
the measurements from which it is designed, the model designer will not
try to find a model with zero cost function, nor even the absolute minimum
of the cost function in a given family of models: a model will be sought,
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whose prediction error is on the order of the accuracy of the measurements.
That crucial problem is discussed below, in the section devoted to model
selection.

Empirical vs. Theoretical Cost Functions

The cost function J(w) is sometimes called empirical cost function, as opposed
to the theoretical cost function [ (y,(xz) — g(x, w))’p(x)dx; the latter is the
quantity that one would actually like to minimize, but it can obviously not
be computed.

Global Minima and Local Minima

If the model is linear with respect to its parameters, the least squares cost
function is quadratic with respect to them. If the model is not linear with
respect to the parameters (e.g., a neural network), then the least squares
cost function has several minima, one of which must be selected. This makes
the model selection problem somewhat more complicated than in the case of
models that are linear with respect to the parameters: that is the price to be
paid for taking advantage of parsimony, which is an asset of models that are
not linear with respect to their parameters.

The methods that can be used for minimizing the cost function fall into
two categories:

e nonadaptive training, also called batch training or off-line training, whereby
the cost function that is minimized takes into account all elements of the
training set (as is the case for the least squares cost function defined above);
such methods require that all elements of the training set be available when
training starts;

e adaptive training, also called on-line training, whereby the parameters of
the model are updated sequentially as a function of a partial cost related
to each example k*: J*(w) = (y& — g(z*,w))?. Such techniques are useful
when new examples become available while training is already taking place.

Adaptive training can be performed even if all examples are available before
training starts, whereas a nonadaptive technique cannot be used if all exam-
ples are not available. In practice, the following strategy is frequently used:
the model is first trained nonadaptively, then it is updated by adaptive train-
ing during its operation, for instance to adapt the model to slow drifts of the
parameters of the process (due to wear, ageing, etc.).

In the following, the training of models that are linear with respect to their
parameters—the popular least squares method—will first be outlined. Then the
training (nonadaptive and adaptive) of models that are nonlinear with respect

4 The least squares cost function will also be called total cost, as opposed to the
partial cost.
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to their parameters, such as neural networks, will be discussed. Finally, regu-
larization techniques, which aim at avoiding overfitting when training with a
small number of examples, will be discussed.

2.5.1 Training Models that are Linear with Respect to Their
Parameters: The Least Squares Method for Linear
Regression

We assume that the measurements of the quantity to be modeled can be
viewed as realizations of a random variable Y}, that is an affine function of
variables which have been selected in an earlier step: Y, = CT'wp + B, where
¢ is the vector of the variables of the model, of known dimension g,where w,
is the vector (non random but unknown) of the parameters of the model, and
where B is a random vector whose expectation value is zero. Therefore, the
regression function is linear with respect to the variables of the model

E(Y,) = CTwp~

We want to design a model g(¢,w) = ¢Tw, given a set of Nmeasurements of
the quantity of interest {y, k = 1 to N} that are a set of realizations of the
random variable Y),, and given a set of corresponding measurements of the
inputs {¢*,k =1to N}.

2.5.1.1 Nonadaptive (Batch) Training of Models that are Linear
with Respect to Their Parameters

Because there is a wealth of textbooks on the subject (see for instance [Seber
1977; Antoniadis et al. 1992; Draper et al. 1998], no proof will be given in the
present section.

Minimizing the Least Squares Cost Function. The Normal Equations

The minimum of the following cost function is sought

k=

—_

with ¢g(¢,w) = ¢Mw. In such a model, the number of parameters ¢ is equal to
the number of inputs n.

The matrix of observations is the matrix & whose column ¢ (i = 1 to q)
is the vector &€ whose components are the Nmeasurements of the ith input:
therefore, it has N rows and ¢ columns,

G - G (O

] N
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Therefore, the model can be written as g = Zw, and the least squares
cost function becomes

(1]

N
Tw) =3 (vh — 9(¢" w)* =[| yp — Bw |IP= (y, — Ew)"(y, - Ew).

k=1

In order to find the vector of parameters for which that function is minimum,
one just has to write that the gradient of the cost function with respect to
the parameters is equal to zero, and to solve the system of equations thus
obtained. Since the cost function is quadratic with respect to the parameters,
the gradient is linear with respect to the parameters. Therefore, the system
of equations (called normal equations) is linear; its solution wrg is the least
squares estimate of the parameters of the model,

T T

Yp-

p—
=
—

]

EwLS =

If the number of examples N is much larger than the number of inputs ¢,
matrix = is generally of rank ¢ (i.e., ¢ rows of = are linearly independent).
If = has rank g, then it can be proved that [ET =] also has rank ¢, hence is
invertible. In that case, the unique least squares solution is readily obtained
as

wis = (E15) T ETy,.
By contrast if the number of experiments is too low (N < ¢), matrix = may be
of rank smaller than ¢, so that the problem has an infinite umber of solutions.

For an input vector ¢, the prediction of the model is given by ¢(¢,ws) =
¢Twrg. The vector of the predictions of the model related to the training
examples is g(¢, wrs) = Ewrg, and the vector of residuals (modeling errors
on the training examples) is thus

r=1Yp — SWLs.
Ezample

The following is a very simple didactic example: a linear model must be
deigned, with a single variable = (hence two inputs: the variable z and a
constant input, equal to 1), from three observations. The three measured val-
ues of variable x are denoted by {z1,zq, 23}, and the measured values of the
quantity to be modeled by {y;,yfj,yg}. Thus, with the above notations, the

input vector is ¢ = (i) The output vector is
Yp
v = | v
Yy

The vector of parameters is w = (5;)
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The model is of the form g(z,w) = {Tw = w; + wex. The observation
matrix is

1 T
= = 1 Xro
1 xIs

The least squares solution is given by relation
1 y}l)

wmer) | (1 1 1 } 1 111 b
Winea ) T, T2 X3 1 2 T1 T2 T3 Y
xrs3 yg

Clearly, the number of available observations is much too small for a reliable
estimation of the two parameters of the model; this is just a didactic example,
for which geometrical illustrations are feasible.

8

Geometrical Interpretation

The least squares method has a simple geometrical interpretation, which is
sometimes useful for a better understanding of the results.

We have seen that the vector of the predictions of the model on the training
set can be written as

)

(ETE)_l =T

9(C, Wime) = Ewpe = = Yp-

In observation space (whose dimension is equal to the number of observa-
tions available for training), matrix Z(ZETZ)"1E" is the orthogonal projec-
tion matrix onto the subspace spanned by the columns of matrix & (called
solution subspace): thus, the prediction of the model, for a training example,
is the orthogonal projection of the process output onto the solution subspace,
as shown on Fig. 2.5. Note that, among all vectors of solution subspace, the
orthogonal projection of the process output vector is the closest vector to the
process output vector itself: hence, the model obtained by the least squares
solution provides the prediction vector that is closest to the actual output
vector, given the available data.

As an illustration, consider the previous example of a model with one
variable and three observations. The observation space is of dimension 3, and
the subspace spanned by the columns of the observation matrix is of dimension
q = 2. Figure 2.6 shows the three-dimensional observation space, and the two-
dimensional solution subspace spanned by the vectors

1 I
=11 and (%= |z
1 I3



2 Principles and Model Design Methodology 109

Observation space

Yp .
' Modeling error
\)\Q& + (vector of residuals)
(@)
v i
Model g

Solution subspace

Fig. 2.5. Geometrical interpretation of the least squares method

A,

Z

aZ

Fig. 2.6. Geometrical interpretation of the least squares method: a 3-dimensional
example

2.5.1.2 Adaptive (On-Line) Training of Models that are Linear
with Respect to Their Parameters: The Least Mean
Squares Algorithm

In adaptive training, the parameters of the model are updated as a function
of each example taken separately; this is especially useful for adaptive filter-
ing or adaptive control, where the model must be adapted to the evolution
of the process to be modeled. The recursive least squares algorithms find
adaptively the least squares solution, for a model that is linear with respect
to its parameters [Ljung 1987; Haykin 1994].

Among recursive least squares algorithms, the least mean squares (LMS)
algorithm (widely used in linear adaptive filtering), also called Widrow-Hoff
algorithm [Widrow 1960]) is also used for training neural networks adaptively.
It updates the parameters as a function of the gradient of the partial cost
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function related to example k,

where w” denotes the value of the vector of parameters after iteration k, i.e.,
after the parameter update related to example k. The algorithm is
,warl _ wk + ﬂk(yg _ (karl)T,wlc)karl7
where p* is a sequence of positive numbers (for instance ¥ = constant or
u* = 1/(a + Bk)). Note that yP* — (x*+1)Tw* is the modeling error made
on the new example 2**! when the model has the parameters computed at
iteration k. Hence, for each example, the weight update is proportional to the
modeling error on that example.
It can be shown that, under conditions that will not be described here, the
LMS algorithm converges to the minimum of the total least squares cost func-
tion. The adaptive training of linear models is described in detail in Chap. 4.

2.5.2 Nonadaptive (Batch) Training of Static Models that Are Not
Linear with Respect to Their Parameters

The present section is devoted to the batch training of models that are not
linear with respect to their parameters, such as feedforward neural networks.
Since the model g(x, w) is not linear with respect to its parameters, the
cost function J(w) = Z]kvzl(y’; — g(x*, w))? is not quadratic with respect
to the parameters. Hence the gradient of the cost function is not linear, so
that the least squares solution cannot be found as the solution of a linear
system. Therefore, the ordinary least squares techniques are useless, and one
has to resort to more elaborate minimization techniques, which update the
parameters iteratively as a function of the gradient of the cost function with
respect to the parameters.

Just as for linear models, training can be performed either adaptively
or nonadaptively. Therefore, each training iteration (or epoch) requires two
ingredients

e the computation of the gradient of the cost function,
e the updating of the parameters as a function of that gradient, in order to
get closer to a minimum of the cost function.

Those two points are discussed in the following. As a preliminary, however,
we consider the normalization of the inputs.

2.5.2.1 Input Normalization

Prior to training, the input variables must be normalized and centered: if the
inputs have very different orders of magnitude, the smallest ones will not be
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taken into account during training. Therefore, for each input vector {;, the
mean p; and the standard deviation o; of its components must be computed,
and the new variables ¢; = ({; — p;)/0; (or any similar change) must be
computed: hence the new variables are centered, and their standard deviation
is on the order of 1.

It is also advisable especially for training dynamic models (recurrent neural
networks), to center and normalize the outputs in a similar fashion.

2.5.2.2 Computation of the Gradient of the Cost Function

When the model is a feedforward neural network, the gradient of the cost
function can be computed economically with an algorithm called backpropa-
gation algorithm [Rumelhart et al. 1986; Werbos 1974] that has gained such
popularity that it is sometimes considered as a training algorithm. Actually,
backpropagation is not a training algorithm, but an ingredient in a train-
ing procedure. Furthermore, it will be shown that training can be performed
without using backpropagation.

Phrases such as backpropagation neural network (or backprop net) are too
often used as an equivalent to feedforward neural network. They are mean-
ingless for two reasons. First, computing the gradient of the cost function
without using backpropagation is perfectly feasible, and sometimes manda-
tory (see section “forward computation of the gradient of the cost function”);
second, backpropagation is also useful for training recurrent networks. Thus,
there is no relation whatsoever between the architecture of the network (feed-
forward or recurrent) and the computation of the gradient of the cost function
by backpropagation.

Computation of the Gradient of the Cost Function by Backpropagation

We consider a feedforward neural network with hidden neurons and a single
output neuron (the extension to neural networks with several output neurons
is straightforward).Neuron ¢ computes its output y;, which is a nonlinear func-
tion of its potential v;; v; is the weighted sum of the inputs z;, in which the
value of input z; is weighted by the parameter w;;,

yvi=f Zwijfl?ij = f(w).
=1

The n; inputs of neuron ¢ may be either the outputs of other neurons, or
inputs of the network. Therefore, in all the following, z; will denote either the
output y; of neuron j or the input j of the network.

The cost function whose gradient must be computed is of the form

N , XN
Jw) =) (yp —g(@",w))" =) J*w).
k=1
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In order to compute its gradient, one can compute the gradient of the
partial cost function J*(w) related to observation k, and subsequently sum
over all examples.

Backpropagation consists essentially in a repeated application of the rule of
chained derivatives. First, one notices that the partial cost function depends of
w;; only through the value of the output of neuron ¢, which itself is a function
of the potential of neuron i only; therefore, one has

Bwij 3 8’0i k 8wij k L

e (0J%)/(0vi)y is the value of the gradient of the partial cost function with
respect to the potential of neuron ¢ when the inputs of the network are
the variables of example k.

o (0v;)/(Ow;j)k is the value of the partial derivative of the potential of neu-
ron ¢ with respect to parameter w;; when the inputs of the network are
the variables of example k.

k

e zj is the value of input j of neuron ¢ when the inputs of the network are

the variables of example k.

where

The computation of the last two quantities is straightforward. The only
problem is the computation of 6 on the right-hand side of the equation. These
quantities can be advantageously computed recursively from the outputs to
the inputs, as follows.

e For output neuron i,

= (2, = (5 1 s, = -2t (222))

The output g(x,w) of the model is the output y; of the output neuron;
therefore the above relation can be written as 6F = —2g(z*, w)f’(vF)
where f/(vF) is the derivative of the activation function of the output
neuron when the network inputs are those of example k. Usually, for a
feedforward neural network designed for modeling, the activation function
of the output neuron is linear, so that the above relation reduces to J% =
—2g(x¥, w).

e For hidden neuron 4, the cost function depends on the potential of neuron
1 only through the potentials of the neurons m that receive the value of
the output of neuron 1, i.e., of all neurons that are adjacent to neuron ¢ in
the graph of the connections of the network, and are located between that
neuron and the output:

aJ* aJ* v v
k _ m _ k m
g (8vi)k_;(avm>k<avi)k_;ém(avi)k.
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Furthermore, vf, = 3wzl = 3, wyi f(vF), therefore (9vy,)/(0vi)x =
Wi f1(VF).

Finally, one gets

OF = apwmi f (o) = f'(0F) D O wmi-

m

Thus, the quantities 0¥ can be computed recursively from the outputs to the
inputs of the network, hence the term backpropagation.

Once the gradients of the partial costs are computed, the gradient of the
total cost function is obtained by a simple summation.

Summary of Backpropagation

For each example k, the backpropagation algorithm for computing the gradi-
ent of the cost function requires two steps,

e A propagation phase, where the inputs corresponding to example k are
input to the network, and the potentials and outputs of all neurons are
computed,

e A backpropagation phase, where all quantities 511“ are computed.

When those quantities are available, the gradients of the partial cost functions
are computed as (8J%)/(dwi;)r = 0Fz¥, and the gradient of the total cost
function as (0.J)/(w;j) = .. (0J*)/(Owi;)k-

The backpropagation algorithm can be interpreted graphically by defining
the adjoint network of the network whose parameters must be estimated. This
approach is sometimes useful; it is discussed in Chap. 4 for the modeling of
dynamic systems.

Backpropagation was discussed here in the framework of the minimization
of the least squares cost function. It can be adapted to the minimization of
alternative cost functions, such as the cross entropy cost function, used for
classification.

Forward Computation of the Gradient of the Cost Function

One of the most persistent myths in the field of neural networks is the fol-
lowing: the invention of backpropagation made the development of neural
networks possible. Actually, it is definitely possible, albeit more computation-
ally demanding, to compute the gradient of the cost function in the forward
direction. That algorithm was extensively used for the estimation of the pa-
rameters of cascaded filters, long before backpropagation.

The forward algorithm proceeds as follows:

e For a neuron m, which receives the quantity xf directly from input j of
the network or from neuron j,
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(aym/awmj)k = (aym/avm)k(avm/awmj)k = f/(vf)xﬁv

where a:f is the value of input j of the network for example k,

e For a neuron m, which receives quantity x? from input j of the network,
or from neuron j, through other neurons of the network, located between
input or neuron j and neuron m,

)~ (a2), (i), = ren 2 (5), (o)
<3U’ij k_ Qv /4, \ Ow; k—f(vm); Oy ), \Owij /.
Iy
:f/(vrlfw Wm <> )
)z,: "\ow; ),

where subscript [ denotes all neurons that are adjacent to neuron m in the
graph of connections, between neuron j (or input j) and neuron m.

By using those relations recursively, the derivatives of the output of each
neuron with respect to the parameters can be computed, from the inputs to
the outputs of the network.

Once those derivatives are computed, the gradient of the partial cost func-
tion can be derived as

<6Jk)k—< 0 [(yﬁg(w,w))ﬂ)k—ﬂyﬁg(m’“,w)) (W)k

611)1‘]‘ (?wij Gwij

Furthermore, g(x,w) is the output of a neuron of the network; therefore,
the last derivative can be computed recursively by the same procedure. The
gradient of the partial cost being computed for each example, the gradient of
the total cost function is obtained by summation over all examples.

Comparison Between Forward Computation of the Gradient of the Cost
Function and Backpropagation

The above discussion shows that backpropagation requires the evaluation of
one gradient per neuron, whereas the forward computation requires the com-
putation of one gradient per connection. Since the number of connections is
roughly the square of the number of neurons, the number of gradient evalua-
tions is larger for forward computation of the gradient than for backpropaga-
tion.

Therefore, backpropagation will be used for the evaluation of the gradient
of the cost function in the training of feedforward neural networks. For recur-
rent neural networks, however, forward computation is sometimes mandatory,
as shown in the section devoted to the training of recurrent neural networks.

Evaluation of the Gradient of the Cost Function under Constraint: The
Shared Weight Technique

When training recurrent neural networks—as discussed in the section devoted
to black-box dynamic modeling and in Chap. 4- and when training some
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feedforward neural networks for classification, a constraint must frequently be
obeyed: some parameters of the model must have equal values at the end of
training (this is known as the “shared weight” technique [Waibel et al. 1989)]).
Since the weights are updated, at each epoch of training, as a function of the
gradient of the cost function, there is no reason why different weights, even if
initialized at equal values at the beginning of training, should stay equal even
after a single epoch. Therefore, a special procedure must be implemented.

We assume that, in a given network, v parameters must stay equal: w; =
Wy =+ = Wy = W.

The corresponding component of the gradient of the cost function can be
written as

y—ﬂ%+ﬂ%+...+ﬂawy
ow  Ow; dw  Owy Ow Ow, Ow
Because
Owy  Owy _ Ow, 87J_V8J
T = ow == e~ homehasgo=3 S

i=1

Thus, when a network contains shared weights, backpropagation must be per-
formed, at each epoch, in the conventional way, in order to compute the partial
derivatives of the cost function with respect to those weights; then the sum
of those partial derivatives must be computed, and that value must be as-
signed to the partial derivatives, before updating the parameters by one of
the methods discussed in the next section.

2.5.2.3 Updating the Parameters as a Function of the Gradient of
the Cost Function

In the previous section, the evaluation of the gradient of the cost function, at
a given epoch of training, was discussed. The gradient is subsequently used
in an iterative minimization algorithm. The present section examines some
popular iterative schemes for the minimization of the cost function.

Simple Gradient Descent

The simple gradient descent consists in updating the weights by the following
relation, at epoch i of training:

w(i) =w( —1) — pu; VJ(w(i —1)) with p; > 0.

Thus, the descent direction, in parameter space, is opposite to the direction
of the gradient. p; is called gradient step or learning rate.
This very simple, attractive method has several shortcomings:

e If the learning rate is too small, the cost function decreases very slowly;
if the rate is too large, the cost may increase or oscillate; that situation is
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W,

Fig. 2.7. Minimization of the cost function by simple gradient descent

illustrated on Fig. 2.7, which shows the iso-cost lines of the cost function
(depending on two parameters wy and wsy), and the variation of vector w
during the minimization.

e In the vicinity of a minimum of the cost function, the gradient becomes
very small, so that the variation of the parameters becomes extremely
slow; the situation is similar if the cost function has plateaus, so that,
when training becomes very slow, there is no way to tell whether that is
due to a plateau that may be very far from a minimum, or whether that
is due to the presence of a real minimum.

e If the curvature of the surface is very nonisotropic, the direction of the
gradient may be very different from the direction of the location of the
minimum; such is the case if the cost surface has long narrow valleys as
shown on Fig. 2.7.

In order to overcome the first drawback, a large number of heuristics were
suggested, with varied success rates. Line search techniques (as discussed in
the additional material at the end of the chapter) have solid foundations and
are therefore recommended.

In order to overcome the other two difficulties, second-order gradient meth-
ods must be used. Instead of updating the parameters proportionally to the
gradient of the cost function, one can make use of the information contained
in the second derivatives of the cost function. Some of those methods also
make use of a parameter p whose optimal value can be found through line
search techniques.

The most popular second-order techniques are described below.

Second-Order Gradient Methods

All second-order methods are derived from Newton’s method, whose principle
is discussed in the present section.

The Taylor expansion of a function J(w) of a single variable w in the
vicinity of a minimum w* is given by



2 Principles and Model Design Methodology 117

2
) =g+ -0 ($5)  +ow?)

for the gradient of the cost function is zero at the minimum. Differentiating
the above relation with respect to w gives an approximation of the gradient
of the cost function in the neighborhood of a minimum,

A (7
dw T\ qu? o

Therefore, if variable w is in the neighborhood of w*, the minimum could
be reached in a single iteration if the second derivative of the cost function at
the minimum were known: w would simply be updated by an amount

(dJ/dw)

AW = = fdw?)

w=w*

The same argument holds for a function of several variables, except for
the fact that the second derivative becomes the Hessian matrix H(w) of the
cost function, whose general term is (9%.J)/(0w;0w;): in order to reach the
minimum of the cost function in a single iteration, the weight vector should
be updated (provided the Hessian matrix is invertible) by the amount

Aw = — [H(w*)] ' V- J(w).

Thus, by contrast to simple gradient descent, the direction of motion, in para-
meter space, is not the direction of the gradient, but a linear transformation
of the gradient.

Clearly, that relation is not applicable in practice, since vector w™* is not
known. However, it suggests several iterative techniques that use an approxi-
mation of the Hessian matrix (or of its inverse). We discuss two of them in the
additional material at the end of the present chapter: the Broyden-Fletcher-
Goldfarb-Shanno algorithm (BFGS algorithm [Broyden 1970]) and the Leven-
berg-Marquardt algorithm ([Levenberg et al. 1944; Marquardt et al. 1963]).
Obviously, those minimization methods are by no means specific to neural
networks. Detailed descriptions are to be found in [Press et al. 1992], where
the conjugate gradient method is also discussed.

What to Do in Practice?

First of all, one should by all means refrain from using simple gradient de-
scent and its variants: their convergence times to a minimum (in number of
iterations and in net computation time) are larger than those of second order
methods by several orders of magnitude. Simple gradient should be used only
in extreme cases for very large networks (several thousands of parameters) that
may be useful in image processing with low-level picture representation, or for
very large data bases (with millions of examples). In such cases, minimization
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is stopped before a minimum is reached, in order to prevent overfitting. That
is a regularization method called early stopping), which will be discussed in
the section devoted to training with regularization.

A heuristics called “momentum term” is often mentioned in the literature
([Plaut et al. 1986]); it consists in adding to the gradient term —u;VJ, in
simple gradient descent, a term that is proportional to the parameter update
at the previous epoch A[w(i — 1) — w(i — 2)]; that kind of low-pass filter may
prevent oscillations and improve convergence speed if an appropriate value of
A is found.

The choice between BFGS and Levenberg-Marquardt is based on compu-
tation time and memory size. The BFGS method requires starting training
with simple gradient descent in order to reach the vicinity of a minimum,
then switching to BFGS to speed up the convergence; there is no principled
method for finding the most appropriate number of iterations of simple de-
scent before switching to BFGS: some trial-and error procedure is necessary.
The Levenberg-Marquardt does not have that drawback, but it becomes de-
manding in memory size for large networks (about a hundred parameters), be-
cause of the necessary matrix inversions. Therefore, the Levenberg-Marquardt
method will be preferred for “small” networks, and BFGS otherwise. If time
is available, both should be tried.

Parameter Initialization

Since the above training methods are iterative, the parameters must be as-
signed initial values prior to training. The following arguments are guidelines
for initialization:

e The parameters related to the bias inputs (constant inputs equal to 1)
must be initialized to zero, in order to ascertain that the sigmoids of the
hidden neurons are initialized around zero; then, if the inputs have been
appropriately normalized and centered as recommended earlier, the values
of the outputs of the hidden neurons will be normalized and centered too.

e Moreover, it should be ascertained that the values of the outputs of the
hidden neurons are not too close to +1 or —1 (the sigmoids are said to be
saturated). That is important because the gradient of the cost function,
which is the driving force of minimization during training, depends on the
derivatives of the activation functions of the hidden neurons with respect
to the potential. If the outputs of the hidden neurons are initially near +1
or —1, the derivatives are very small, so that training starts very slowly,
if at all.

If n is the number of inputs of the network, each hidden neuron receives
n — 1 variables x;. The nonzero parameters should be small enough that the
potential of the hidden neurons have a variance on the order of 1, in order to
prevent the sigmoids from going into saturation. Assume that the inputs z;
can be viewed as realizations of random, identically distributed, centered and
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normalized variables X;. The initial values of the parameters should be drawn
from a centered distribution, whose covariance is unknown. The parameter
related to the bias is equal to zero; the potential v = Z?Zl w;x; of each
neuron is thus the sum of n-1 random variables that are the products of
independent random variables, with zero mean, having the same distribution.
It can be shown, from the elements of statistics provided at the beginning of
the chapter, that one has

var(V) = (n — 1)var(W;)var(X;),

with var(X;) = 1 since the variables have been normalized prior to training.

Thus, if the desired variance of the potential is 1, the initial values of the
parameters must be drawn from a centered distribution of variance 1/(n —1).
For instance, it may be convenient to choose a uniform distribution between
~Wimax aNd +Wiax: var(W;) = w,,,2/3, hence wmay = 1/3/(n — 1).

The above discussion is valid for multilayer Perceptrons. For RBF or
wavelet networks, the initialization problem is more critical, because those
are localized functions; if they are initially located far from the domain of
interest, or if their extension (standard deviation or dilation) is not appro-
priate, training will generally fail. The result of the teacher-student problem,
described in the next section, depends critically on initialization for local-
ized functions. The following strategy, described in detail [Oussar et al. 2002],
should be implemented: a large library of RBFs or wavelets is created, and
a selection method, analogous to the input selection methods described in a
previous section, is applied. Training is subsequently applied to the wavelets
or RBF’s that were thus selected.

How to Test a Training Algorithm: The Teacher-Student Problem

The experience gained during years of teaching and research shows that it is
very easy to design a faulty training algorithm, or to write a faulty training
program, that nevertheless converges, sometimes very slowly, and produces a
model that is not completely ridiculous. Algorithmic or software errors may
pass unnoticed if care is not exercised. Therefore, it is important to test the
validity of an algorithm or of a program that one has written or downloaded
for free from the Web.

The following procedure, known as the teacher-student problem is con-
venient and simple to implement. A network is created (the teacher), whose
parameters are random. That network is used for generating a training set, by
using random inputs, and computing the corresponding outputs. That data
set is used for training a second network (the student), which has the same
number of inputs and of hidden neurons as the teacher network. If the train-
ing algorithm and the computer program are correct, the parameters of the
teacher network should be retrieved by the student within roundoff errors: the
mean square error is on the order of 1073°, and each parameter of the stu-
dent should be equal to a parameter of the teacher network, within roundoff
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errors. Otherwise, the training algorithm, or the program (or both) should be
checked for errors.

The structure of the student network is identical to that of the teacher
network within permutations of the hidden neurons. This is a consequence of
the unicity theorem [Sontag 1993].

Two Test Problems

Problem 1: A network with 8 inputs, 6 hidden neurons and one output is
generated by drawing weights uniformly in the interval [—20, 4+-20]; a training
set and a test set of 1,500 examples each are generated with random inputs
from a uniform distribution in [—1, 4+1]; a network having the same structure is
trained as follows: initialization of the parameters from a uniform distribution
in [—0.6,+0.6], computation of the gradient by backpropagation, minimiza-
tion of the cost function by the Levenberg-Marquardt algorithm. The teacher
network is retrieved exactly (TMSE and VMSE on the order of 1073!) in
96% of trainings (for 48 trainings out of 50 trainings performed with different
initializations).

Problem 2: A network with 10 inputs, 5 hidden neurons and an output is
generated with weights drawn uniformly in [—1, +1]; a training set and a test
set are generated with random inputs from a normal distribution; training is
performed as in the previous example; the teacher network is retrieved in 96%
of the trainings if the training set has 400 examples; it is retrieved in 100% of
the trainings if the training set has 2,000 examples.

For the same problems, training always fails to retrieve the teacher network
if simple gradient descent or stochastic gradient (see next section) are used,
with or without momentum term.

Note that the teacher-student problem becomes difficult for some archi-
tectures because of a large number of local minima.

2.5.2.4 Summary

We summarize the procedure that must be used for training a feedforward
neural network with a given number of inputs and hidden neurons:

Initialize the parameters with the method described above.

Compute the gradient of the cost function by backpropagation.

Update the parameters iteratively with an appropriate minimization algo-
rithm (simple gradient descent, BFGS, Levenberg-Marquardt, conjugate
gradient, etc.).

e If a prescribed maximum number of epochs is reached, or if the variation
of the module of the vector of parameters is smaller than a given thresh-
old (the weights no longer change significantly), or if the module of the
gradient is smaller than a given threshold (a minimum has been reached),
terminate the procedure; otherwise, start a new epoch by iterating to the
gradient evaluation.
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2.5.3 Adaptive (On-Line) Training of Models that Are Nonlinear
with Respect to Their Parameters

In the previous sections, we discussed methods that optimize the least squares
cost function by using all the training data available at the beginning of
training: the gradient of the total cost can be computed as the sum of the
gradients of the partial costs.

In adaptive (on-line) training, parameters are updated by using the gradi-
ent of the partial cost for each example, so that training can start even before
all training data is available. Such a procedure is often useful to update a
model after an initial nonadaptive training. Those methods are discussed in
detail in Chap. 4.

A variant of adaptive training algorithms consists in updating the para-
meters after reception of a block of data (“block training”): then the partial
cost is not related to a single example but to a block of examples.

The most popular adaptive training technique is called stochastic gradient,
whereby the parameter updates are proportional to the gradient of the partial
cost,

whtl = wh — P FVIE (wh),

where wF is the value of the vector of parameters after iteration k, i.e., after
updating the parameters from example k. Note that the LMS algorithm, dis-
cussed in the framework of the training of linear models, is a particular case
of stochastic gradient.

Some empirical results suggest that the stochastic gradient method avoids
local minima more efficiently than simple gradient descent in batch learning.

An alternative technique, stemming from adaptive filtering, can be used
for neural network training: the extended Kalman filter [Puskorius et al. 1994].
It is more efficient than stochastic gradient in terms of convergence speed, but
the number of operations per iteration is higher. That approach is described
in detail in Chap. 4.

2.5.4 Training with Regularization

As stated in Chap. 1, the objective of black-box modeling is the design of a
model that is complex enough to learn the training data, but does not exhibit
overfitting, i.e., does not adjust to noise. Two categories of strategies can be
used.

e Passive techniques: several models, of different complexities, are trained
as indicated in the previous section, and a selection between those models
is performed after training, in order to discard models that exhibit over-
fitting; that is done by cross-validation or statistical tests as explained in
the next section.
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e Active techniques: training is performed in order to avoid designing mod-
els that exhibit overfitting, by limiting the magnitude of the parameters;
regularization methods [Tikhonov et al. 1977; Poggio et al. 1985] are im-
plemented, as discussed in the present section.

The latter techniques are of special importance when large networks need
be designed; such is often the case in classification for visual pattern recogni-
tion, when a low-level representation is used (see the introduction to classifica-
tion in Chap. 1). In such situations, overfitting cannot be avoided by limiting
the number of parameters, since the number of inputs is a lower bound to
the number of parameters: the only way of avoiding overfitting consists in
limiting the amplitude of the parameters; it is even shown in [Bartlett et al.
1997] that, if a large network is designed, and if the training algorithms finds
a small mean square error with parameters of small amplitudes, than the gen-
eralization performances depend on the norm of the vector of parameters, and
is independent of the number of parameters.

There are essentially two families of regularization methods:

e Early stopping consists in stopping training before a minimum of the cost
function is reached.

e Penalty methods consist in adding a penalization term in the cost function
in order to favor regular models. The cost function has the form: J' =
J 4+ af2, where J is, for instance, the least squares cost function, and
£2 is a function of the weights. The most popular penalty function is:
2 =3, || wi ||>. The method involving that penalty function is called
weight decay.

Both techniques will be discussed below.

2.5.4.1 Early Stopping
Principle

As usual, training consists in minimizing iteratively a cost function, the least
squares cost function for instance, whose value is computed on a training set.
Regularization takes place through the stopping criterion: training is termi-
nated before a minimum of the cost function is reached, so that the model
does not fit the training data as well as it could, given the number of pa-
rameters that are available to him; thus overfitting is limited. The difficulty
that arises is: when to stop training? The most popular method consists in
monitoring the variation of the standard prediction error on a validation set,
and in terminating training when the prediction error starts increasing.

Ezample

We discuss an academic example from [Stricker 2000]. It is a two-class classi-
fication problem; as explained in Chap. 1, the output of the classifier should
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Fig. 2.8. The examples of class A (circles) are realizations of a random variable
whose distribution is the product of two functions of x and y respectively; the
distribution along z is the sum of two Gaussians with centers —2 and 0 respectively,
and standard deviation 0.5, and the distribution along y is a Gaussian centered at
0, with standard deviation 0.5. The examples of class B (crosses) are drawn from a
distribution that is the product of two Gaussian functions of x and y respectively; the
distribution along z is centered at —1, with standard deviation 1, and the distribution
along y is centered at 1, with standard deviation 0.5

be equal to 1 for all elements of one class (class A), and to 0 for all elements of
the other class (class B). After training, the output is an estimate of the prob-
ability of the unknown pattern belonging to class A. In the present problem,
feature space is of dimension 2, and the examples are drawn from overlapping
distributions, as shown on Fig. 2.8.

A classifier must provide a graded response in the zone of overlapping
between the classes, since the boundary between classes cannot be known
with certainty given the limited amount of data. In the present academic
example, the prior distributions are known, so that the posterior probability
of the classes can be computed from Bayes formula (see Fig. 2.9),

Fig. 2.9. Posterior probability computed by Bayes formula
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Network output
A= 4 == % =\

Fig. 2.10. Posterior probability computed by a neural network with 2 hidden neu-
rons

px (x| A)Pr(A)
px(x | A)+px(z|B)

Pr(A|z) =

where x is the vector [ y]T, px(z | A) is the distribution of the random vector
X for the patterns of class A, and Pr(A) is the prior probability of class A.
The estimation provided by the neural network from the examples shown on
Fig. 2.8 should be as similar as possible to the surface shown on Fig. 2.9.

Training is performed with a set of 500 examples. A network with 2 hidden
neurons provides the probability estimate shown on Fig. 2.10; the estimate
provided by a neural network with 10 hidden neurons is shown on Fig. 2.11.

One observes that the result obtained with the network having 2 hidden
neurons is very close to the theoretical probability surface computed from
Bayes formula, whereas the surface provided with hidden neurons is almost
binary: in the zone where classes overlap, a very small variation of one of the
features generates a very sharp variation of the probability estimates. The 10-
hidden neuron network is over-specialized on the examples that are located
near the overlapping zone: it exhibits overfitting.

Network output

X -4 .4
Fig. 2.11. Posterior probability computed by a neural network with 10 hidden
neurons
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Fig. 2.12. Classification error on the validation set during training

The variation of the mean square error on a validation set of 300 examples,
as a function of the number of epochs, is shown on Fig. 2.12, for various num-
bers of hidden neurons. Clearly, deciding when training should be terminated
is difficult, because the error arises essentially from the examples that are
close to the boundary zone, which corresponds to a relatively small number
of points.

Therefore, that method is not very convenient, especially for classification.
Therefore, regularization methods that involve penalizing large parameters are
often preferred; it was proved [Sjoberg 1995] that early stopping is actually
equivalent to the introduction of a penalty term in the cost function.

2.5.4.2 Regularization by Weight Decay

Large values of the parameters, for instance of the parameters of the inputs
of hidden neurons, generate sharp variations of the sigmoids of the hidden
neurons: that is illustrated on Fig. 2.13, which shows function y = tanh(wx),
for three different values of w. The output of the network, which is a linear
combination of the outputs of the hidden neurons, is therefore apt to exhibit
sharp variations as well. Regular outputs therefore require that the sigmoids be
in the vicinity of their linear zones, hence that the parameters not be too large.
We consider again the classification example of the previous section: Fig. 2.14
shows the variation of the module of the vector of parameters, during training,
for different architectures (2, 5, 7 and 10 hidden neurons). One observes that
the norm of the vector of parameters increases sharply during training, except
for the architecture with two hidden neurons: therefore, the sharp variations
of the output surface after training the network with ten hidden neurons, as
shown on Fig. 2.11, is not surprising.

Regularization by weight decay prevents the parameters from increasing
excessively, by minimizing, during training, a cost function J’ that is the sum
of the least squares cost function J (or of any other cost function, such as
cross entropy described in Chaps 1 and 6) and of a regularization term, pro-
portional to the squared norm of the vector of parameters: J*=J+5 Eg:1 w2,
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Fig. 2.13. Function y = tanh(wz) for 3 values of w
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Fig. 2.14. Norm of the vector of parameters during training

where ¢ is the number of parameters of the classifier, and « is a hyperpara-
meter whose value must be found by performing a tradeoff: if « is too large,
the minimization decreases the values of the parameters irrespective of the
modeling error; by contrast, if « is too small, the regularization term has no
impact on training, hence overfitting may occur.

The operation of the method is very simple: the gradient of J is com-
puted by backpropagation, and the contribution of the regularization term is
subsequently added,

VJ*=VJ+ aw.

Nevertheless, it should be noticed that the parameters of the network have
different effects:
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e The parameters of the connections between the variables of the model
and the inputs of the hidden neurons control the slope of the sigmoids of
hidden neurons.

e The parameters of the connections between the constant input (bias) and
the inputs of the hidden neurons generate a horizontal shift of the sigmoids
of hidden neurons.

e The parameters of the connections between hidden neurons and the inputs
of the output neurons control the influence of each hidden neuron on the
outputs.

e The parameters of the connections between the bias and the output neu-
rons generate a vertical shift of the output of the network.

Therefore, it is natural to use different hyperparameters for those different
types of parameters [McKay 1992]. Then the cost function becomes

J*:J+% > w§+% > wf—i—% > w?,

weWy weWy weWs,

where W) is the set of parameters between the bias and the hidden neurons,
where W7 is the set of parameters between the inputs and the hidden neurons,
and Ws is the set of parameters of the inputs of the output neuron (including
the bias of the output neuron). Therefore, the values of the three parameters
aq, ao, ag must be found. A principled statistical method was proposed in
[McKay 1992], but it relies on numerous assumptions and requires demanding
computations. In practice, the values of the hyperparameters are not very
critical; a heuristic approach, consisting in performing different trainings with
different hyperparameters, is frequently sufficient.

We illustrate this discussion on an example of a real application, from
[Stricker 2000].

Ezample

The application is a filtering task, as outlined in Chap. 1. In a corpus of texts
(press releases of the Agence France Presse), the texts that are relevant to
a given topic should be selected automatically. It is essentially a two-class
problem: a press release is either relevant or irrelevant. A training set of 1,400
relevant press releases and 8,000 irrelevant ones is available. The performance
measure is a quantity F' that is a function of the precision of the classifier
(the ratio of the number of documents that are really relevant to the number
of documents that are considered as relevant by the classifier) and its recall
(the ratio of the number of documents that are considered as relevant by the
classifier to the number of relevant documents present in the database). The
better the performance, the larger the value of F.

A linear classifier is used, i.e., a neural network with zero hidden neuron
and an output neuron with sigmoid activation function. Since there are no
hidden units, the number of parameters cannot be decreased without chang-
ing the data representation. Since it is not desired to change the latter (which
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Fig. 2.15. Training without regularization: variation of the performance of a linear
classifier as a function of the numbers of relevant and irrelevant documents in the
training set

is discussed in detail in Chap. 1), regularization methods are mandatory to
avoid overfitting. Figure 2.15 shows the variation of F' on a test base, without
regularization, as a function of the numbers of relevant and irrelevant docu-
ments present in the database. Clearly, the performance decreases, and the
norm of the vector of parameters increases, when the number of examples of
the training set decreases.

With the same training and test sets, training was performed with early
stopping. The results (Fig. 2.17) show that the performance is improved for
small numbers of examples in the training set, but it is decreased when numer-
ous examples are available (F' < 0.9), which is evidence that early stopping
does not make the best of the available data. The norm of the vector of para-
meters (not shown) remains very small.

Weight decay was also implemented on the same example, with two hy-
perparameters: one for the bias (o = 0.001) and one for the connections
between the inputs and the output neuron (a3 = 1). The results are shown on
Fig. 2.18; the performance is improved when the number of examples is small,
and, by contrast with early stopping, it remains satisfactory for large numbers
of examples. As in the previous case, the norm of the vector of parameters
stays small.

Models whose outputs are not smooth enough can also be avoided, by
penalizing large values of the derivatives of the output with respect to the
inputs [Bishop 1993].
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Fig. 2.16. Training without regularization: variation of the norm of the vector of
parameters as a function of the numbers of relevant and irrelevant documents in the

training set
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Fig. 2.17. Training with regularization by early stopping: variation of the perfor-
mance of a linear classifier as a function of the numbers of relevant and irrelevant

documents in the training set
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Fig. 2.18. Training with regularization by weight decay: variation of the perfor-
mance as a function of the number of relevant and irrelevant documents in the
training set

2.5.5 Conclusion on the Training of Static Models
We have made the following distinctions:

e The training of models that are linear with respect to their parameters vs.
the training of models that are not linear with respect to their parameters.
Adaptive (on-line) training vs. nonadaptive (batch) training.

Training without regularization vs. training with regularization.

We have shown

e that the training of models that are linear with respect to their parame-
ters (such as polynomials) can be performed easily with the traditional
least-squares methods, whereas the training of models that are nonlinear
with respect to their parameters (such as neural networks) requires more
complex methods that, however, are efficient and clearly understood: that
is the price that must be paid for taking advantage of parsimony;

e that training is generally performed nonadaptatively, with efficient second-
order minimization algorithms; if necessary, the model can be updated by
adaptive methods in order to take into account slow drifts of the charac-
teristics of the process;

e that overfitting can be avoided by limiting the amplitude of the parame-
ters of the model with a regularization method during training; that is
especially necessary when the number of training examples is small.

The next section discusses the problem of overfitting in a more general frame-
work: model selection.
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2.6 Model Selection

After variable selection and training, model selection is the third important
element of a model design methodology. We assume that several candidate
models have been trained, one of which must be chosen. The model should
be complex enough to find the deterministic relations between the quantity
to be modeled and the factors that have a significant influence on it, yet not
be overly complex in order to be free from overfitting. In other words, the
selected model should embody the best tradeoff between learning capacity
and generalization capacity: if the model learns too well, it fits the noise,
hence generalizes poorly. That tradeoff has been formalized under the term
bias-variance dilemma [Geman et al. 1992].

From a theoretical point of view, the model that is sought is the model for
which the theoretical cost function [(y,(x) — g(z, w))*Px (x)dx is minimal.
That quantity may be split into two terms:

e the bias®, which expresses the average, over all possible training sets (with
all possible realizations of the random variables that model the noise)
of the squared difference between the predictions of the model and the
regression function;

e the variance, which expresses the sensitivity of the model to the training
set (with its own realization of the noise).

Because the above theoretical cost function cannot be computed, the empirical
least squares cost function is minimized during training, as discussed in the
previous section.

Thus, a very complex model, with a large number of adjustable parameters,
may have a very low bias, i.e., may have the ability of fitting the data whatever
the noise present in the latter, but it is apt to have a very large variance,
i.e., to depend strongly on the specific realization of the noise present in
the training set. Conversely, a very simple model, with a small number of
adjustable parameters, may be insensitive to the noise present in the training
data, but turn out to be unable to approximate the regression function.

Figure 2.19 illustrates the behavior of two models ¢1(z) and gz(x), with
the same complexity (linear models), which have too large a bias and too
small a variance: the predictions of the two models, obtained with different
training sets, are almost identical, but they are very different from the regres-
sion function. Conversely, Fig. 2.20 illustrates the behaviors of two models
that have a low bias (they are close to the regression) but they have a large
variance since their predictions depend on the training set.

The next two illustrations, and several elements of the present section, are
excerpts from [Monari 1999].

5 This should not be mistaken with the constant input of a model, unfortunately
also called bias.
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Fig. 2.20. Two models that have a small bias and a large variance

Unfortunately, bias and variance, just as the theoretical cost function,

cannot be computed. Thus, the solution to the difficult problem of model
selection is a tradeoff between two quantities that cannot be computed. The
difficulty of the problem increases as the size of the training set decreases
[Gallinari 1999].

The models, trained from the same training set, among which a choice is

to be made, differ by two main characteristics:

their complexity: the complexity of a model can be defined as the number
of its elements (the number of monomials in a polynomial model, the
number of hidden neurons in a neural network), hence the number of its
adjustable parameters;

the vector of parameters for a given complexity: for models that are non-
linear with respect to the parameters, the cost function has several local
minima; therefore, for a given complexity and a given training set, differ-
ent trainings (with different initial values of the parameters) may provide
different models corresponding to different minima of the cost function.
Conversely, for models that are linear with respect to their parameters,
the least squares cost function has a single minimum: for a given com-
plexity and a given training set, there is a single vector of parameters for
which the cost function is minimum.

Hence, for a model that is not linear with respect to its parameters, the model
selection problem is actually twofold:
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e Among models that have the same complexity, find the model that achieves
the best bias-variance tradeoff.

e Among the best models that have different complexities, find the model
that achieves the best bias-variance tradeoff.

All techniques that will be discussed below aim at (i) discarding models that
are obviously prone to overfitting, and (ii) at estimating the generalization
error (or theoretical cost function) in order to find the model that has the
smallest generalization error. As a preliminary step, we show how to discard
models that are prone to overfitting; subsequent sections will discuss two
model selection techniques,

e a global method, which consists in estimating the generalization error:
cross-validation;

e a local method whereby the influence of each example on the model is es-
timated: the local overfitting control via leverages (LOCL) method, which
is based on the estimation of leverages and confidence intervals for the
predictions of the model.

Finally, the above approaches will be combined into a complete model selection
methodology for the selection of nonlinear models.

2.6.1 Preliminary Step: Discarding Overfitted Model by
Computing the Rank of the Jacobian Matrix

2.6.1.1 Introduction

In the section devoted to the estimation of the parameters of a model that
is linear with respect to its parameters, we have defined the matrix of obser-
vations Z; each column of that matrix has N elements, which are the values
of a given variable for each example. Therefore, for a model with n variables,
the matrix of observations is (N, n). For a model that is not linear with re-
spect to its parameters, having a vector of ¢ parameters wyg, the equivalent
of the observation matrix is the Jacobian matrix Z(N,q); each column z; of
that matrix has N elements, which are the values of the partial derivatives
of the output with respect to a given parameter: z; = (9g(x, w)/0w;) .-
It can easily be checked that, for a model that is linear with respect to its
parameters, the Jacobian matrix Z is identical to the observation matrix =.

Thus, each column of the Jacobian matrix expresses the effect of the vari-
ation of a parameter on the output of the model. If the Jacobian matrix does
not have full rank (i.e., if its rank is not equal to ¢), it can be concluded that
the effect, on the model output, of two parameters (or more) are not indepen-
dent. Therefore, there exist under-determined parameters in the model: the
latter has too many parameters, hence its variance is certainly too large. Such
a model should be discarded. Moreover, rank deficiency has an adverse effect
on training [Saarinen et al. 1993] [Zhou et al. 1998].
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2.6.1.2 Computation of the Jacobian Matrix

In the section devoted to the training of a model that is not linear with respect
to its parameters, it was shown that the gradient of the cost function can easily
be computed by backpropagation,

(32) - (500 -ty 2

If the modeling error y, — g(x, w) is equal to 1/2, then the gradient of the
cost function is equal to the gradient of the output. Thus, the Jacobian matrix
can easily be computed by backpropagating a modeling error equal to 1/2. The
extra computation time incurred by the computation of the Jacobian matrix
is marginal, since it is performed once per training, whereas backpropagation
is performed at each training epoch.

2.6.1.3 Computation of the Rank of the Jacobian Matrix

The rank of the matrix can be computed by a variety of methods [Press et al.
1992]. They will not be described here. In the section devoted to the effect of
withdrawing an example from the training set, we describe a technique that
is convenient in the framework of model selection.

2.6.2 A Global Approach to Model Selection: Cross-Validation
and Leave-One-Out

2.6.2.1 Introduction

As discussed in a previous section, model selection should be based on the
comparison of the generalization errors of the candidate models, but the gener-
alization error, just as the regression function, cannot be computed: therefore,
it must be estimated.

The most natural idea consists in performing model selection on the basis
of the mean square error on the training set (TMSE),

where 1, is the modeling error on example k: 7, = yllf — g(z*, w), and where
the summation is performed over all N examples of the training set. That is a
bad idea: as discussed previously, the modeling error on the training set can be
made as small as desired by just adding hidden neurons, which is detrimental
to generalization. Thus, the value of E7 is not a suitable selection criterion.
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2.6.2.2 Cross-Validation

Cross-validation is a technique for estimating the generalization error of a
model, from data that are not used for parameter estimation (training) [Stone
1974]. First, the set of available data is split into D disjoint subsets. Then,
the following steps are performed, for a family of functions having the same
complexity (e.g., neural networks with a given number of hidden neurons):

e iteration i, to be performed D times: build a training set with D-1 subsets
of the available data; perform several trainings, with different initial values
of the parameters; for each model, compute the mean square error (VMSE)
on the validation set made of the Ny remaining examples,

store in memory the smallest VMSE thus computed Ey;;
e compute the cross-validation score from the D quantities Ey; at each of
the D iterations

That score is an estimate of the generalization error for the family of functions
thus investigated.

For instance, if D = 5 is chosen (that is a typical value; the process is called
5-fold cross-validation), 5 different partitions of the database are constructed;
for each partition, 80% of the data are on the training set and 20% in the
validation set. As discussed above, the cross-validation score is the square
root of the average of the VMSE’s computed on each partition. That average
must be performed because 20% of the database may not be a statistically
significant sample of the distribution of all possible examples. In a heuristic
fashion, the procedure may be simplified by performing a single partition of
the database, choosing a validation set that is as close as possible to the
distribution of the available examples. To that effect, one can estimate the
Kullback-Leibler divergence ([Kullback et al. 1951; Kullback 1959] between
two probability distributions p; et po,

D(p1,p2) = /+OO p1(z)ln (pl(x)) )

—0o0 pg(l’)

Because the expression is not symmetrical, a more satisfactory distance is
defined as

A= % [D(p1,p2) + D(p2,p1)] -

Several random partitions of the database are performed, and the partition for
which the distance between the validation set and the training set is smallest
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is retained. That single partition can satisfactorily be used for estimating the
generalization error. Since drawing randomly a large number of partitions
and computing the Kullback-Leibler divergence is much faster than training a
model, the computation time is divided roughly by a factor of 5 as compared to
complete 5-fold cross-validation. Making the assumption that the distributions
are two Gaussians py (11, 01) and pa (2, 02), the Kullbak-Leibler distance can
be written as

(0 = af) + (m1 — p2)?
40303

A(p1,p2) = (0F + 7).

The proof of that relation is given in the additional material at the end of
the chapter.

That heuristic procedure is very useful for fast prototyping of an initial
model, which can be further refined by conventional cross-validation or by the
virtual leave-one-out technique that is explained below.

2.6.2.3 Model Selection by Cross-Validation

Model design starts from simplest models (linear model), and gradually in-
creases the complexity (for neural models, by increasing the number of hidden
neurons).

One might also increase the number of hidden layers; for modeling prob-
lems, that can be considered in a second step of the design: if a satisfactory
model has been found with one hidden layer, one can, time permitting, try
to improve the performance by increasing the number of hidden layers, while
decreasing the number of neurons per layer. That procedure sometimes leads
to some improvement, usually a marginal one. Conversely, if no satisfactory
model has been found with one hidden layer, increasing the number of layers
will not do any good.

For each family of models, a cross-validation score is computed as explained
above. When overfitting occurs, the cross-validation score increases when the
complexity of the model increases. Therefore, the procedure is terminated
when the score starts increasing. The model that has the smallest VMSE is
selected.

2.6.2.4 Leave-One-Out

The estimation of the generalization error by leave-one-out is a special case
of cross-validation, for which D = N: At iteration k, example k is withdrawn
from the training set, trainings are performed (with different initial values
of the parameters) with the N — 1 examples of the training set; for each
model, the prediction error on the withdrawn example k is computed, and the

(=F)

smallest prediction error on the withdrawn example, denoted r is stored.

The leave-one-out score
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is computed. As in the case of cross-validation, models of increasing complexi-
ties are designed, until the leave-one-out score starts increasing with increasing
complexity.

The main drawback of the leave-one-out technique is that it is computa-
tionally very demanding, but it can be shown that the leave-one-out score is
an unbiased estimator of the generalization error [Vapnik 1995].

In the next section, we discuss a slightly different technique, whose com-
putation time is roughly the computation time of leave-one-out divided by a
factor N (the number of examples). It is based on the fact that the withdrawal
of an example from the training set should not lead to a very different model,
so that a model that is locally linear in parameter space, in the neighborhood
of the minimum of the cost function, can be designed; therefore, powerful
results from the theory of linear regression can be taken advantage of.

2.6.3 Local Least Squares: Effect of Withdrawing an Example
from the Training Set, and Virtual Leave-One-Out

In the present section, we show that the effect of withdrawing an example from
the training set on a nonlinear model can be predicted. Specifically, we prove
that the modeling error made by the model on the withdrawn example can
be accurately predicted without actually withdrawing the example (virtual
leave-one-out), and that a confidence interval on the predictions of the model
can be estimated. Finally, we show that the influence of an observation on
the model can be summarized with a single parameter: the leverage of the
observation.

2.6.3.1 Local Approximation of the Least Squares Method

Consider a model g(x,w*). A first-order Taylor expansion of the model, in
parameter space, in the neighborhood of w*, can be written as

glz,w) 2 g(x,w*) + Z(w — w"),

where g is the vector of the N predictions of the model, and where Z is
the Jacobian matrix of the model, as defined above. That model is linear
with respect to its parameters, and matrix Z is equivalent to the matrix of
observations.

In order to derive a local approximation, to first order in w — w*, of the
gradient of the least-squares cost function, a second-order approximation of
the cost function, hence a second-order approximation of the model output,
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must be used ([Monari et al. 2000] the same result is derived in [Seber et
al. 1989], albeit with an incorrect proof). The following approximation of the
least-squares solution wy,g is found:

wis 2 w' +(272)7' 2y, — gz, w")).

That result is approximate for a nonlinear model, but is exact for a lin-
ear model: in the case of a linear model, Z is the matrix of observations

2, and g(z,w*) = Sw*. Then one gets wrs = w* + (ETE) 15Ty, —
(ETE)1ETEw*) = (ETE)1ETy,, which is the exact result, as shown in

the section devoted to the training of linear models.

2.6.3.2 The Effect of Withdrawing an Example on the Model

The results of the previous section are useful for estimating the effect, on the
predictions of the model, of withdrawing an example from the training set.
As defined in the section on leave-one-out, we use the superscript (—k) for all
quantities related to a model that was designed after withdrawing example &
from the training set; the quantities that have no superscript are related to
models whose training was performed with all available data.

The Effect of Withdrawing an Example on the Prediction: Virtual
Leave-One-Out

Assuming that the withdrawal of example £ has a small effect on the least-
squares solution, the relation that was derived in the previous section can be
used to compute the vector of the parameters of the model that is trained
with the training set deprived of example k, as a function of the vector of the
parameters of the model trained with the whole data set,

—k) ~ —1 Tk
wI(_‘S ) :'LULs—(ZTZ) Zki,
where z* is the vector whose components are the kth column of the Jacobian
matrix Z, 1y, is the predication error (or residual) on example k when the latter
belongs to the training set

i = Y — f(2F, wis),

and where hpp = 2" (ZTZ)~12% is the leverage of example k [Lawrance
1995]. Geometrically, hgy is the kth component of the projection, onto solution
subspace, of the unit vector borne by axis k. Since these quantities are the
diagonal elements of an orthogonal projection matrix, they obey the following
relations:

N
thk:q, 0< hy < 1.
k=1
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An efficient procedure for computing the leverages hgj is discussed in the
additional material at the end of the chapter.

In the section devoted to the rank of the Jacobian matrix, we have shown
that it is useful to know whether that matrix has full rank. It can be checked
as follows: the leverages are computed according to the procedure that is
described in the additional material. That procedure can be performed ac-
curately even if Z does not have full rank, and the above two relations are
checked. If they are not obeyed, then matrix Z does not have full rank. There-
fore, the model must be discarded.

A particularly useful result for the estimation of the generalization error
is the following: the prediction error %) on example k, when the latter is
withdrawn from the training set, can be estimated in a straightforward fashion
from the prediction error r; on example k& when the latter is in the training

set
(=k) ~ "k

Here again, the result is exact in the case of a linear model (see for instance
[Antoniadis et al. 1992]), and it is approximate for a nonlinear model.

A similar approach is discussed in [Hansen 1996] for models trained with
regularization.

As an illustration, we describe an academic example: a set of 50 train-
ing examples is generated by adding a Gaussian noise, with zero mean and
variance 1072, to the function sinz/z. Figure 2.21 shows the training set and
the output of a model with two hidden neurons. A conventional leave-one-
out procedure, as described in a previous section, was carried out, providing
the values of the quantities (= (vertical axis of Fig. 2.22), and the previ-
ous relation was used, providing the values on the horizontal axis. All points
are nicely aligned on the bisector, thereby showing that the approximation is
quite accurate. Therefore, the virtual leave-one-out score Ej,

1 N T 2
B — | — _ Tk
P N;(l—hkk> ’

& Training set
= 5%, canfidence interval
Model output

Fig. 2.21. Training set, output and confidence interval on the output, for a model
with two hidden neurons
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Fig. 2.22. Accuracy of residual estimation in virtual leave-one-out

can be used in a very computationally economic fashion in lieu of the leave-
one-out score F,; defined above,

insofar as E, is a good estimate of the generalization error. It is an essential
ingredient in the model selection procedure that will be described in the next
section: it provides an estimate of the generalization error, with a computation
time that is IV times as small as conventional leave-one-out, since training is
performed once instead of being performed Ntimes with N — 1 examples.

Effect of Withdrawal of an Example on the Confidence Interval on the
Prediction

In [Seber et al. 1989], an approximate confidence interval is derived for a
nonlinear model, with confidence 1 — «,

E(Y, | z) € g(z,wrs) £ t) s\ /2T(ZTZ) 12,

where t) ~4 is the value of a Student variable with N —q degrees of freedom and
a confidence level 1 — o, and s is an estimate of the variance of the prediction
error of the model. Figure 2.22 shows the confidence interval computed from
that relation, at all points of the interval of interest.

One can define many different confidence intervals for nonlinear models
[Tibshirani 1996]. They can be either computed analytically, or estimated
with resampling methods, which are described in Chap. 3. The confidence
intervals that are used here are convenient because their expression involves
the quantities that allow the computation of the virtual leave-one-out score.

For observation k of the training set, that confidence interval can be writ-
ten as

E(Y, | *) € g(x", wis) £ ) 95,/ 2+T(ZTZ) 12k

= g(:ck,'st) + tg‘qsvhkk.
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Thus, the confidence intervals on the prediction of the model involve the same
quantities hgi (leverages) as the prediction of the effect of the withdrawal of
an example from the training set. That is not surprising since both groups of
relations arise from a Taylor expansion of the output of the model.

The confidence interval on the prediction of an example that is with-
drawn from the training set can also be estimated: given an input vector
x¥, the approximate confidence interval on the prediction of that example is
given by

Pk

ECR(Y, | 2¥) € g(x*,wrs) £tV 97 1s(h) |
1— Ry

[Seber et al. 1989]. In general, s(=%) can be approximated by s.
Interpretation of the Leverages

The leverages are the diagonal elements of an orthogonal projection matrix:
they sum to the dimension of that matrix. In the present case, the orthogonal
projection is onto the solution subspace, hence its dimension is equal to the
number of parameters of the model: therefore, the sum of the leverages is
equal to the number of the degrees of freedom of the model. That property
can also be expressed as follows: the leverage of example k is the fraction of
the degrees of freedom used for fitting example k& [Monari et al. 2000, 2002].
Some specific cases are of interest:

e If all leverages are equal, they are equal to ¢/N: a fraction ¢/N of the
parameters of the model is devoted to each example, and all examples
have the same influence on the model: such a model should not exhibit
overfitting since it is not “focused” on any example. That property can be
used with advantage for model selection, as shown below.

e If a leverage is equal to zero, the model does not devote any degree of
freedom to example k. That has a simple geometric interpretation: hgy is
the k—th component of the projection, onto solution subspace, of the unit
vector borne by axis k in observation space; if that axis is orthogonal to
the solution subspace, example k& does not contribute to the model output,
which lies in solution subspace (see Fig. 2.5); therefore, it has no influence
on the parameters of the model. Whether that example is in the training
set or has been withdrawn from it, the prediction of that example has the
same error, as evidenced by relation: rR) = /(1 — hgr). The confidence
interval on that prediction is zero; the prediction of the model is certainly
equal to the expectation value of the quantity of interest.

The fact that the confidence interval is equal to zero does not mean that the
prediction of the corresponding point is exact. It is not contradictory with
the fact that the prediction error r; is not zero: the prediction error is the
difference between the measured value and the predicted value: it contains both
the modeling error (difference between the predicted value and the unknown
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expectation value) and the noise (difference between the measured value and
its unknown expectation value). If the model is perfect, the prediction error
is due to the noise only. Therefore, one can obtain a leverage equal to zero if
and only if the family of functions within which the model is sought contains
the regression function.

If a leverage is very close to 1, the unit vector borne by axis k is very close
to solution subspace; hence that example is almost perfectly learnt, and it
has a large influence on the parameters of the model. The prediction error on
that example is almost zero when the example is in the training set and it is
very large when the example is withdrawn from the training set. Therefore, the
model is overfitted to that example. The confidence interval on that example
is very small when the example is in the training set, and very large when it
is not in the training set.

The above interpretation of the leverages is central to the model selection
methodology that is discussed in the next section.

2.6.4 Model Selection Methodology by Combination of the Local
and Global Approaches

Assume that inputs have been selected as described in the sections devoted
to input selection. We try to design the best model given the available data.

We discuss here a constructive procedure, whereby the complexity of the
model is increased gradually until overfitting occurs. For didactic purposes,
we split the procedure into two steps:

For a family of functions of given complexity, nonlinear with respect to
its parameters (for instance, neural networks with a given number of hidden
neurons), several trainings are performed with all available data, with dif-
ferent parameters initializations. Thus, several models are obtained; models
whose Jacobian matrices do not have full rank are discarded. The next section,
explains how to make a choice between the models that were not discarded
because of the rank of their Jacobian matrices.

For a model that is linear with respect to its parameters, that step is
very simple since the cost function has a single minimum: a single training is
performed with all available data.

The previous step having been performed with families of models of in-
creasing complexity, the best model is selected as explained in the section
entitled “Selection of the best architecture”.

2.6.4.1 Model Selection Within a Family of Models of Given
Complexity: Global Criteria

For a given model complexity, several trainings are performed, and, at the end
of each training, the rank of the Jacobian matrix of the model thus designed
is computed. If that matrix does not have full rank, the model is discarded.
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The fact that the global minimum of the cost function, for a family of
models of given complexity, gives rise to a model whose Jacobian matrix
does not have full rank does not mean that all models that have the same
complexity must be discarded: a local minimum may give rise to a perfectly
valid model whereas the global minimum gives rise to an overfitted model.
That strategy is somewhat similar to early stopping: selecting a model that
is not a global minimum of the cost function may be a form of regularization.

In order to perform a selection among the surviving models, the virtual
leave-one-out technique is used. The leave-one-out score was defined above as

1 N T 2
o L k
Ep = NZ<1—hkk> ’

k=1

which is an unbiased estimate of the generalization error.
That score must be compared to the mean square error on the training set
(TMSE),

It should be remembered that, in virtual leave-one-out, training is performed
with all available data; hence the same quantity NV is involved in E, and Erin
the present case.

Generalization Error and TMSE

Since the leverages are positive and smaller than 1, E, is larger than the
TMSE; very overfitted models have numerous leverages on the order of 1,
hence have a generalization error that is much larger than the TMSE.

The Case of Large Training Sets

If all leverages are equal to ¢/N, one has: E, = N/(N —q)Er - E, and Er are
equal in the limit of very large training sets for a model without overfitting,
which makes sense since the difference between TMSE and the generalization
error stems from the fact that the number of elements in training set is finite:
if an infinite amount of data were available, the regression would be known
exactly.

As an illustration, consider a neural network with four hidden neu-
rons, whose training was performed, with different initializations, with the
Levenberg-Marquardt algorithm, with the training set shown on Fig. 2.21.
Five hundred different trainings were performed. Figure 2.23 shows the re-
sults, with the following conventions:
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Fig. 2.23. Virtual leave-one-out scores for 500 different models

e For models whose Jacobian matrix does not have full rank, each model is
shown as a point in a plane: the horizontal axis is the TMSE, and the verti-
cal axis is the virtual leave-one-out score (estimation of the generalization
error of the model); note that the vertical scale is logarithmic.

e For models whose Jacobian matrix does not have full rank, the correspond-
ing points are shown below the graph, on a horizontal scale that shows the
TMSE’s of those models.

Note that

e The Jacobian matrix of the model with smallest TMSE does not have full
rank: that model must be discarded.

e In the present example, 70% of the minima found do not have a Jacobian
matrix with full rank.

e The estimate of the generalization error varies by several orders of mag-
nitude, which requires a logarithmic scale for E,. Models with very high
virtual leave-one-out scores are very “specialized” on one or several points,
with leverages very close to 1.

Figure 2.24 shows the outputs of the model that has the smallest value
of Er and of the model that has the smallest value of E, (shown as a gray
circle and a gray triangle respectively on Fig. 2.23). Note that the model
with minimal Er gives a prediction that is less smooth than the model with
minimal E,. Therefore, the latter is more satisfactory; however, it is the most
satisfactory model among models that have four hidden neurons. In order to
finalize the selection, that model must be compared to the best models found
for different complexities

Figure 2.25 shows the virtual leave-one-out scores and the TMSE’s of
the best networks, found by the above procedure, for complexities increasing
from 0 hidden neuron (linear model) to 5 hidden neurons. As additional in-
formation, the graph also displays the standard deviation of noise (which, in
general, would be unknown in a real application). As expected, the TMSE
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Fig. 2.24. Outputs of two models with 4 hidden neurons: the model that has the
minimal TMSE, and the model that has the minimal virtual leave-one-out score
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Complexity (number of hidden neurons)

Fig. 2.25. Variation of the TMSE and of the virtual leave-one-out score as a function
of the number of hidden neurons

decreases when the number of hidden neurons increases, whereas the virtual
leave-one-out score seems to go through a minimum and subsequently to in-
crease. However, the choice between 2, 3 and 4 hidden neurons is not perfectly
clear, since the leave-one-out scores are not very different. The next section is
devoted to the problem of the choice of the most appropriate architecture.

For more than three hidden neurons, the TMSE becomes smaller than the
standard deviation of the noise; one can rightly conclude that models with
more than three hidden neurons tend to be overfitted. However, that is not a
practical selection criterion, since, in real applications, the standard deviation
of the noise is generally unknown.

2.6.4.2 Selection of the Best Architecture: Local Criteria (LOCL
Method)

In the previous section, a global criterion—the virtual leave-one-out score—
was used for finding the model that is least prone to overfitting, among models
having the same complexity. We have also shown that that criterion may not
be sufficient for making a choice between models of different complexities. In
such a case, it is advantageous to use the local overfitting control via leverages
method (LOCL), based on the values of the leverages [Monari 1999; Monari
et al. 2002].
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Fig. 2.26. Model output and confidence intervals; model with 2 hidden neurons,
and model with four hidden neurons

When we defined the leverages, we showed that a model that is equally
influenced by all examples is unlikely to exhibit overfitting. In addition, we
showed that, in such a case, all leverages are equal to ¢/N. Therefore, for
models of different complexities having virtual leave-one-out scores of the same
order of magnitude, the model whose leverage distribution is most peaked
around ¢/N will be favored, except in cases where it is known from prior
knowledge that it is important that the model fit very accurately some specific
observations.

Figure 2.26 shows, for the example that was discussed previously, the pre-
dictions of the best models selected with 2 and 4 hidden neurons. The same
graphs display the 95% confidence intervals for the predictions of those models.
For the two hidden neuron model, the confidence interval is roughly constant
over the whole training domain, whereas, for the four-hidden neuron model,
the confidence interval is large in [8, 12]; the output of that model oscillates,
and it is not clear whether that oscillation is significant, or is just a con-
sequence of fitting the model to the local realization of noise. The leverage
distribution, shown on Fig. 2.27, reveals that the latter are more scattered for
the model with 4 hidden neurons (gray), than for the model with two hidden
neurons (black).

It is convenient to associate the quantity u, defined as,

N
1 I N
:—E —h
H Nk:l p kk,

to the leverage distribution. That quantity has the following properties:

e It is always smaller than 1.
e It is equal to 1 if and only if all leverages are equal to gq/N.
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Fig. 2.27. Histogram of leverages for the best model with 2-hidden neurons and for
the best model with 4 hidden neurons

Thus, p is a normalized quantity that may characterize of the leverage distri-
bution: the closer p to 1, the more peaked the leverage distribution around
q/N. Thus, among models of different complexities having virtual leave-one-
out scores on the same order of magnitude, the model whose p is closest to 1
will be favored.

We illustrate the usefulness of p on the previous example. A test set of
N¢g = 100 examples was generated. The generalization error of the candidate
models can be estimated by computing the mean square difference between
the expectation value of the quantity to be modeled (which, in the present
academic example, is known to be sinx/x) and the prediction of the model,

1 e

Eg = |~ > (By(z*) — g(z*,y))".
k=1

Figure 2.28 shows the quantities E,, Er, Eg and p, as a function of model
complexity. p goes through a maximum that is very close to 1 for two hidden
neurons; that is the architecture for which the generalization error Fg is
minimum. Thus, p is a suitable criterion for a choice between models whose
virtual leave-one-out scores do not allow a safe discrimination.
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Fig. 2.28. TMSE, virtual leave-one-out score, generalization error and pu, as a func-
tion of the number of hidden neurons
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2.6.4.3 What to Do in Practice?

We summarize here the model selection procedure that has been discussed.
For a given complexity (for neural networks, models with a given number
of hidden neurons),

e Perform trainings, with all available data, with different parameter initial-
izations.

e Compute the rank of the Jacobian matrix of the models thus generated,
and discard the models whose Jacobian matrix does not have full rank.

e For each surviving model, compute its virtual leave-one-out score and its
parameter u.

For models of increasing complexity: when the leave-one-out scores become
too large or the parameters u too small, terminate the procedure and select
the model. It is convenient to represent each candidate model in the F, —
plane, as shown, for the previous example, on Fig. 2.29. The model should be
selected within the outlined area; the choice within that area depends on the
designer’s strategy:

e If the training set cannot be expanded, the model with the largest u should
be selected among the models that have the smallest E,.

e If the training set can be expanded through further measurements, then
one should select a slightly overfitted model, and perform further experi-
ments in the areas where examples have large leverages (or large confidence
intervals); in that case, select the model with the smallest virtual leave-
one-out score F,, even though it may not have the largest u.

2.6.4.4 Experimental Planning

After designing a model along the guidelines described in the previous sec-
tions, it may be necessary to expand the database from which the model was
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Fig. 2.29. Assessment of the quality of a model in the E, — p. plane
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designed. Then one should perform experimental planning, taking advantage
of the results obtained during the design of the model, with emphasis on
confidence intervals: the presence of large confidence intervals in an area of
input space may be due to an inappropriate number of examples in that area.
Therefore, measurements should be performed in the areas of input space
where confidence intervals are too large.

2.6.4.5 Conclusion

The design of a good model requires a systematic, principled methodology. We
have shown that such a methodology exists, which can be applied for designing
essentially any nonlinear model, including, but not limited to, neural networks.
Its principles are the following;:

e Neural networks are parsimonious approximators, that can be advanta-
geously used for models having more than two variables; for models with
less than two variables, models that are linear with respect to their para-
meters, such as polynomials, give excellent results and are trained more
easily.

e Whether the model is linear or nonlinear with respect to its parameters,
the first step consists in an analysis of the input data, in order to find a
data representation that is as compact as possible, and in a subsequent
input selection in order to select only the candidate variables that are
really relevant.

e A model architecture is subsequently chosen (number of monomials for a
polynomial model, number of hidden neurons for a neural model, etc.),
and the parameters of the model are estimated (training). Those tasks
are performed from the simplest architecture (linear model), gradually
increasing the complexity of the models.

e For each architecture the best model is selected, and the “best” models
of the different structures are mutually compared, until the final choice is
performed.

2.7 Dynamic Black-Box Modeling

The previous section discussed the design of static models, i.e., models that
implement a static input-output mapping. Those models are very useful for
modeling a process in a steady state, or for finding relations between time-
independent data.

In the present section, we discuss dynamic models, whose inputs and out-
puts are related through differential equations, or, for discrete-time systems,
by recurrent equations or difference equations. In the present chapter, we con-
sider only discrete-time systems because the vast majority of real applications
of neural networks involve computers or digital integrated circuits, which are
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sampled systems: the quantities of interest are measured at discrete times,
which are integer multiples of a sampling period T.

For simplicity, the quantity T will be omitted in equations below: the value
of a variable z at time kT, k positive integer, will be denoted as z(k).

Chapter 4 offers a general view of nonlinear dynamic systems. In this chap-
ter, the presentation will be restricted to a cursory introduction to continuous-
state stochastic modeling, which derives directly from the previous discussions
on static modeling. The elements of dynamic modeling that are presented here
are sufficient for understanding the methodology of semiphysical modeling,
which is very important for industrial applications.

2.7.1 State-Space Representation and Input-Output
Representation

Dynamic modeling has several specific features, which are not relevant to
static modeling.

The first specific feature is the existence of several representations for the
dynamic model of a given process (see for instance [Kuo 1995] for an introduc-
tion to dynamic systems, and [Kuo 1992] for an introduction to discrete-time
systems). In the following, the modeling of a single-output process is dis-
cussed; its extension to multiple-output systems is relatively straightforward.
A model is said to be a state-space representation if its equations are in the
form:

x(k) = f(x(k—1),u(k —1),b;(k — 1)) state equation

y(k) = g(x(k),ba(k)) observation equation or output equation,
where vector x(k) is the state vector (whose components are the state vari-
ables), vector w(k) is the control input vector, by (k) and bs(k) are the vectors
of disturbances, and scalar y(k) is the model output. f is a nonlinear vector
function, and g is a nonlinear scalar function. The dimension of the state vec-
tor (i.e., the number of state variables) is called the “order” of the model. The
state variables may be either measured or not measured.

For a single-input process with control input u(k), the components of vec-
tor u(k) may be u(k) and past values of the input control signal: u(k) =
[u(k),u(k —1),...,u(k —m)]T.

The disturbances have an influence either on the output, or on the state
variables, or on both. As opposed to control inputs, they are not measured.
Therefore, they cannot be inputs of the model, although they do have an
influence on the quantity to be measured. For instance, for an oven, the current
intensity that flows in the heating resistor is a control input; the measurement
noise of the thermocouple is a disturbance that can be modeled, if necessary,
as a sequence of realizations of random variables.

The output may be one of the state variables (an example will be described
in the section “What to do in practice?”.
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Thus, the designer of a state-space model seeks approximations of func-
tions f and g, through training from sequences of inputs, of outputs and
possibly of state variables if the latter are measured.

A model is in input-output representation if its equations are in the form

y(k) =h(y(k=1),...,y(k—n),u(k = 1),...,u(k —m),blk —1),...,
b(k —p)),

where h is a nonlinear function, n is the order of the model, m and p are
two positive integer constants, u(k) is the vector of input control signals, b(k)
is the vector of disturbances. Input-output representations are special forms
of state-space representations, where the components of the state vector are
ly(k —1),y(k —2),...y(k —n)].

In linear modeling, state-space representations and input-output represen-
tations are equivalent: one chooses the representation that is most convenient
in view of the purpose that the model is intended to serve. By contrast, in
nonlinear modeling, state-space representations are more general and more
parsimonious than input-output models [Levin et al. 1993], as will be illus-
trated below on a real application; however, the design of a state-space model
may be slightly more difficult than that of an input-output model, since two
functions f and g must be approximated, while input-output models require
the approximation of a single function h.

Once a choice has been made between state-space and input-output rep-
resentation, an assumption must be made as to the influence of noise on the
process. That is a basic fact that is often overlooked in the neural network
literature, whereas it is common knowledge in linear dynamic modeling, as is
shown in Chap. 4. In the present chapter, we show that the assumption on
the noise has a deep influence on the training algorithm that must be used, on
the structure of the model that must be implemented, and on its subsequent
mode of operation. In the next section, the main assumptions on noise are
discussed, and the resulting constraints on the training of the model, on its
structure and on its operation are explained.

2.7.2 Assumptions on Noise and Their Consequences on the
Structure, the Training and the Operation of the Model

In the present section, various assumptions on the influence of noise on the
process are considered. We first discuss the assumptions and their conse-
quences on the structure, training and operation of input-output models, then
the consequences of the assumptions on state-space models.

2.7.2.1 Input-Output Representations
State Noise Assumption (Input-Output Representation)

We assume that the model can be appropriately described, in the desired
validity domain, by a representation of the form

yp(k) = w<yp(k - 1)’ o 7yp(k - n)’u(k - 1)) R u(k - m)) + b<k)7



152 G. Dreyfus

Yo (k-1) yp(k_n+‘| )

q-1

J"}J(k'n)
b(k) u(k-1) u(k-m) Valk-2)
Yplk-1)

Fig. 2.30. Input-output representation, state noise assumption

where y, (k) is the measured process output. We assume that additive noise oc-
curs at the process output (see Fig. 2.30), and that, at time k, noise influences
the present output, and also the n past outputs. In nonlinear modeling, that
assumption is known as NARX (Nonlinear Auto-regressive with eXogenous
inputs) (see also Chap. 4) or equation error (see for instance [Ljung 1987;
Goodwin et al. 1984]), or series-parallel [Narendra et al. 1989] in adaptive
modeling.

Instead of the term assumption, the term postulated model is sometimes
used in the statistics literature.

We assume that noise acts on the output, not only directly at time k,
but also through the outputs at the n previous time steps; since the model
that is sought should be such that the modeling error at time k is equal to
noise at the same time step, it should take into account the process outputs
at the n previous time steps. Consider the feedforward neural network shown
on Fig. 2.31; it obeys the equation

g(k) = LPNN(yp(k - 1)7 s ,yp(k - n)au(k - 1)7 cee 7U(k - m)vw)v

where w is a vector of parameters, and where function ¢y is performed by
the feedforward neural network. Assume that the neural network ¢xy has
been trained, i.e., that a vector of parameters w has been found such that
the network computes exactly function ¢. Then relation y,(k) — g(k) = b(k)
holds for all k. Thus, the model is such that the modeling error is equal to
the noise of the process: it is the ideal model, since it captures all that is
deterministic in the representation and does not model noise. Note that the
inputs of the model are the control inputs and the measured process outputs:
the ideal model (also called “predictor”) is not trained as a recurrent neural
network.
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Fig. 2.31. The ideal model for an input-output representation with state noise
assumption

Training of the Model: Directed (Teacher-Forced) Training

Since the ideal model is a feedforward neural network, it is trained with the
techniques that were discussed in the section devoted to the training of static
models. Training is called directed or teacher-forcing.

Operation of the Model

Since the inputs of the predictor are (in addition to control inputs) the mea-
sured outputs of the process, the output of the model can be computed only
one step ahead of time; the predictor is said to be a “one-step ahead predic-
tor”. If the model is intended for use as a simulator, i.e., for predicting the
process output on a time horizon that exceeds one sampling period, the inputs
are necessarily the previous outputs of the predictor: the latter is no longer
operated in optimal conditions.

Output Noise Assumption (Input-Output Representation)

Now we make a different assumption, namely, that the process can be appro-
priately described, in the desired validity domain, by a representation of the
form

zp(k) = o(zp(k—1),...,2p(k —n),u(k —1),...,u(k —m))
Yp(k) = zp(k) + b(k).

Therefore, the present assumption considers that the noise is additive on the
output (Fig. 2.32). Thus, it appears outside the loop, hence it has an influence
on the output at the same time step only. That assumption is known , in linear
adaptive modeling, as “output error” or “parallel” [Narendra et al. 1989]. Since
the output at time k is a function of the noise at the same time step only, the
model that is sought should not involve the past process outputs. Therefore,
we consider a recurrent neural network, shown on Fig. 2.33, which obeys the
equation

g(k) = L)ONN(g(k - 1)’ e 7g(k - n)vu(k -1),.. 'au(k - m)’w)7
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Fig. 2.32. Input-output representation, output noise assumption
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Fig. 2.33. The ideal model for an input-output representation with output noise
assumption

where w is a vector of parameters, and where function ¢y is computed by
a feedforward neural network. Assume that the network has been trained so
that oy is exactly equal to ¢. Moreover, assume that the prediction error
is equal to the noise at the first n time steps: y,(k) — g(k) = b(k) for k =0 to
n—1. Then one has y, (k) — g(k) = b(k) for all k. Thus, the prediction error of
the model is equal to the noise: the model is therefore ideal, since it accounts
for all that is deterministic in the representation, and does not model noise.

If the initial condition is not obeyed, but nevertheless ory = ¢, and if
the model is stable irrespective of the initial conditions, the modeling error
vanishes as k increases.

Note that, in that case, the ideal model is recurrent.
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Training of the Model: Semidirected Training

The training of a recurrent model can be cast into the framework of the
training of a feedforward neural network, as will be shown below in the section
devoted the training of recurrent neural networks (“semidirected training”).

Operation of the Model

As opposed to the previous case, the model can be operated as a simulator in
optimal conditions. Of course, it can also serve as a one-step-ahead predictor.

2.7.2.2 Illustration

Before carrying on with the main assumptions, we illustrate the importance
of the proper choice of the training procedure depending on the influence of
the noise on the process. This illustrative example is excerpted from [Nerrand
1992] and [Nerrand et al. 1994].

Modeling a Process with Output Noise

We consider a computer-simulated process that obeys the following equations:

T c+day,(k—1)

zp(k) = |1— a+b:€,,(/€1):| zp(k—1) + [Taer:cp(kl) u(k — 1),

Yp(k) = (k) + b(k),

with a = —0.139, b = 1.2, ¢ = 5.633, d = —0.326, and sampling period T" = 0.1
sec. b(k) is a white noise with maximum amplitude 0.5. Thus it is a process
with output noise. Figure 2.34 shows the response of the simulated process to
a pseudo-random sequence of steps.

When modeling a real process, the influence of noise is generally not
known. Therefore, several possible assumptions are made; trainings are per-
formed according to each assumption, and the results are compared. We use
that approach in the present academic example.

104
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Fig. 2.34. Response of the simulated process to a pseudo-random step sequence
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Fig. 2.35. Modeling error for a process with output noise, after training according
to the output noise assumption

Output Noise Assumption

We first consider the (correct) assumption that noise can be modeled as out-
put noise. Therefore, the ideal predictor is recurrent. Figure 2.35 shows the
modeling error after training a recurrent neural network with 5 hidden neu-
rons. The modeling error is white noise with amplitude 0.5: by making the
right assumption and using the appropriate structure and training (recurrent
neural network and semidirected training), the modeling error is equal to the
noise, which is the best achievable result.

State Noise Assumption

Now, we consider the (wrong) assumption that the noise is state noise. Accord-
ing to that assumption, a feedforward neural network with 5 hidden neurons is
trained. Figure 2.36 shows the resulting modeling error: its amplitude is larger
than 0.5. As expected, the result is not as satisfactory as the result obtained
with the output noise assumption, since we made the wrong assumption. It
should be clearly understood that this is not a “technical” problem (too few
or too many hidden neurons, inefficient optimization algorithm, inappropriate
training set, etc.), but a basic problem: even with the best training algorithm,

0.4 ..
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0.2, .

Modeling error
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Fig. 2.36. Modeling error for a process with output noise, after training according
to the state noise assumption
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a perfectly appropriate architecture, and an arbitrarily large training set, one
cannot obtain a modeling error equal to the noise if an inappropriate noise
assumption is made.

Modeling a Process with State Noise

We consider a computer-simulated process, which obeys the following equa-
tion:

yp(k) = [1 - a—l—byr;l,j(k—l)} Yp(k —1)
{Tm] ulk — 1) + b(k).

It is thus a process with state noise, whose deterministic part is the same
as above: it will be modeled by a feedforward neural network with 5 hidden
neurons, as above. Again we make the two noise assumptions (output noise
and state noise).

Output Noise Assumption

We first make the (wrong) assumption that the noise is output noise. The ideal
model would be a recurrent one. Figure 2.37 shows the modeling error after
training a recurrent neural network with 5 hidden neurons. The modeling
error is clearly not white noise: the modeling error contains deterministic
information that the training of the model was unable to capture. Here again,
the failure is not due to a technical problem (too few or too many neurons,
inefficient training algorithm, inappropriate training data): it is due to the
fact that the model has a wrong structure, following the wrong assumption
that was made at the beginning.
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Fig. 2.37. Modeling error for a process with state noise after training according to
the output noise assumption
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Fig. 2.38. Modeling error for a process with state noise after training according to
the state noise assumption

State Noise Assumption

Finally, we make the (right) assumption that the noise is state noise. The ideal
model is a feedforward neural network. Figure 2.38 shows that the modeling
error is white noise with amplitude 0.5: the ideal predictor was thus obtained.

2.7.2.3 Output Noise and State Noise Assumption (Input-Output
Representation)

Now we make the assumption that the noise has an influence both on the
output and on the state; the process can be appropriately described by a
model of the form

zp(k) = o(zp(k—1),...,2p(k —n),u(k —1),...,u(k —m),blk —1),...,
b(k —p))
yp(k) = 2p(K) + b(k),
as shown on Fig. 2.39. That assumption is sometimes called NARMAX (non-
linear autoregressive with moving average and exogenous inputs).

In the present case, the model must take into account both the past values
of the process output and the past values of the model output.

2.7.2.4 Summary on the Structure, Training, and Operation of
Dynamic Input-Output Models

Table 2.1 summarizes the noise assumptions and their consequences on the
raining of input-output models.

2.7.2.5 State-Space Representations

We consider here the same assumptions as in the previous section, but we
discuss their consequences on state-space models.
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Fig. 2.40. NARMAX model

Table 2.1. Noise assumptions and their consequences on the training of input-
output models

Usual name in  Equivalent in Recommended
Assumption nonlinear linear modeling  Training operation
State noise ARX Directed One-step-ahead
predictor
Output noise Output error Semidirected Simulator
State noise and NARMAX ARMAX Semidirected One-step-ahead

output noise predictor
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Fig. 2.41. State-space representation, output noise assumption

Output Noise Assumption (State-Space Representation)

In the previous sections, we discussed several noise assumptions, and derived
ideal models in each case, under the form of input-output representations. We
now discuss the same assumptions, but we seek models that are in state-space
representations, which are more general and parsimonious than input-output
representations.

We first make the output noise assumption, whereby the process can be
appropriately described by equations of the form

x(k) = p(x(k — 1), u(k - 1))
y(k) = ¢((k)) + b(k),

as shown on Fig. 2.41 for a second-order model.

Because noise is present in the observation equation only, it has no in-
fluence on the dynamics of the model. From arguments similar to those we
developed for input-output representations, the ideal model is recurrent, as
shown on Fig. 2.42:

where ¢ s exactly function ¢ et ¢y is exactly function .
State Noise Assumption

We now assume that the process can be appropriately described by equations

@(k) = ¢ (k—1),u(k—-1),b(k—-1)),
y(k) = ¢ (z(k)) .
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Fig. 2.42. Ideal model for a state-space representation with the “output noise”
assumption

Then, from an argument that is similar to those developed for input-output
models, the inputs of the ideal model should be, in addition to the control
inputs u, the state variables of the process. Two situations must be considered:

e Those variables are measured: then they can be considered as outputs, so
that the problem is amenable to the design of an input-output model: the
ideal model is a feedforward one, which can essentially be operated as a
one-step-ahead predictor.

e Those variables are not measured: then the ideal model cannot be con-
structed; in such a case, one should either use an input-output representa-
tion (although not completely general), or design a feedback model (al-
though non optimal).

Output Noise and State Noise (State-Space Representation)

Finally, we assume that the process can be appropriately described by the
equations

z(k)=p(@(k—-1),u(k—1),b (k—1)),
y(k) = (z(k)).
Here again, two cases must be considered:

e If the state variables are measured, they can be regarded as outputs, so that
the problem is amenable to the design of an input-output representation,
as described previously.
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e If the state variables are not measured, the ideal model should involve both
the state and the measured process output; therefore, it is in the form

2.7.2.6 Summary on the Structure, Training, and Operation of
Dynamic State-Space Models

Table 2.2 summarizes the noise assumptions and their consequences on the

training of state-space dynamic models.

Table 2.2. Consequences of noise assumptions on the training of dynamic state-
space models

Recommended
Assumption Training operation
State noise Directed One-step-ahead
(measured state) predictor
State noise Semidirected Simulator
(state not measured) (non optimal)
Output noise Semidirected Simulator
State noise and output Semidirected One-step-ahead
noise predictor

2.7.3 Nonadaptive Training of Dynamic Models in Canonical Form

The previous sections have shown how to choose the structure of the dynamic
model, as a function of the noise that is likely to be present in the process, so
that one can hope to approach the ideal model, i.e., the model that accounts
for the deterministic part of the process. We assume that appropriate sequence
of inputs and outputs are available: we consider nonadaptive (batch) training.

In all the following, we assume that the model whose training must be
performed is in canonical form, i.e., it is under the form

z(k+1) =P (2(k), u(k))
y(k+1) =& (2(k), u(k)),
where z(k) is the minimal set of v variables, which allows the computation of

the model at time k+ 1 knowing the state and the inputs of the model at time
k, and where the vector functions @ and ¥ are feedforward neural networks.
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v is the order of the model. Therefore, that form is the minimal state-space
representation; if the state vector is in the form

2(k) = [y(k),y(k = 1),... y(k —v+ DT,

the canonical form is an input-output model: the output is the only quantity
involved in the state vector.
Two cases must be considered:

e A black-box model is sought: then a model should be designed under the
canonical form, since there is no reason to choose another form;

e A semiphysical model is sought, taking into account prior knowledge: the
latter may lead to a model that is not in canonical form; then, prior to
training, the predictor should be put in canonical form, which is always
possible. The section entitled “Casting dynamic models into a canonical
form” is devoted to that problem.

In the following sections, the model is always assumed to be in its canonical
form.

We first discuss the training of feedforward models, then the training of
recurrent models.

2.7.3.1 Nonadaptive (Batch) Training of Feedforward
Input-Output Models: Directed (Teacher-Forced) Training

Under the state noise assumption, the ideal model is a feedforward (static)
model whose inputs are the control inputs and the measured process outputs
at the previous n time steps. The training is called directed by the process,
or teacher-forced, since the measured process outputs are input to the model
during, as shown on Fig. 2.43. Thus, the model is permanently “driven” by the
process outputs. The training of that model is exactly similar to the training
of a static model. The training set is a sequence of N input-output pairs
{z*,y*}, where N is the length of the training sequence,

2 = [u(k),uk —1),...,ulk —m+1),y,(k), yp(k = 1),...,yp(k —n+1)]7T,
Y =y, (k+1).
The Dumb Predictor Pitfall

In directed training, the measured outputs of the process are input to the
model, at each time step. Therefore, deceptively good results can readily be
obtained, if the quality of the model is assessed by carelessly superimposing
graphically the measured output and the predicted output. Actually, a “dumb
predictor” made of a simple unit time delay, i.e., a predictor that states that
the process output at time k+1 will be equal to the process output measured
at time k, may provide excellent results, if the process output does not vary
much during a sampling period, i.e., if the sampling frequency is high enough.
Therefore, after training by teacher forcing, the results should always be com-
pared to those of the dumb predictor. Disappointments are not infrequent.
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Fig. 2.43. Copy k of the feedforward neural network of the canonical form, for
semidirected training

2.7.3.2 Nonadaptive (Batch) Training of Recurrent Input-Output
Models: Semidirected Training

Under the output noise assumption, or the output noise and state noise as-
sumption, the ideal model is a recurrent model, the inputs of which are

e the control inputs and the outputs of the model at the n previous time
steps (under the assumption of output noise alone),

e the control inputs, the outputs of the model and the modeling errors on a
suitable horizon p (under the NARMAX assumption).

Output Noise Assumption

Because the model is recurrent, its training, from a sequence of length NN,
requires unfolding the network into a large feedforward neural network, made
of N identical copies of the feedforward part of the canonical form. The input
of copy k (shown on Fig. 2.43) is

e the control input vector u(k) = [u(k),...,u(k —m + 1)]7,
e the vector of outputs at time k and at the previous n time steps [y(k), ...,
y(k—n+1)]7T.

The output vector of copy k is the vector of the outputs at time k + 1 and at
the previous n time steps [r(k+1),...,7(k —n+2)]T. Therefore, the network
actually computes 7(k + 1) only, the other components of the output vector
being derived from the input vector by a unit delay. The output vector of copy
k is part of the input vector of the next copy, corresponding to time k + 1.
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The designer must choose the input vector at time zero. If the process
output is known during the first n time steps, those values are natural can-
didates for being the initial values. The process output is taken into account
during the first n time steps only: that is why the present algorithm is called
semidirected, as opposed to directed algorithms, whereby the process output
is input to the model at each time step.

NARMAX Assumption

Because the predictor is recurrent, its training requires, as in the previous
case, unfolding the recurrent network into a feedforward neural network,
made of N identical copies of the feedforward part of the canonical form.

All copies have the same vector of parameters. The input of copy & (shown on
Fig. 2.44) is

the control input vector [u(k),...,u(k —m + 1)]T,

the vector [y,(k), ..., yp(k —n+ 1)]7T,

the vector of errors at time k and at the previous p time steps [r(k),...
r(k—p+1)T.

The output vector of copy k is the vector of errors at time k + 1 and at the
previous p time steps [e(k + 1),...,e(k — p + 2)]T. Therefore, the network
computes only e(k+1), the other components of the error vector at time k+ 1
being derived from the errors at time k£ by a unit time delay. The vector of
errors at time k41 is part of the input vector of the next copy, corresponding
to time k + 1.

Errors at time k+1

T, hp+2)

glk+1) yplk+1)

Feedforward neural network

o B R 4 T
u(k) ulkem+1) y(k)  y(kentt) | rik) rk-p+1),

Errors at time k

Fig. 2.44. Copy k of the feedforward neural network of the canonical form, for
training a NARMAX model
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Fig. 2.45. Copy k of he feedforward neural network of the canonical form, for
semidirected training of a state-space model

2.7.3.3 Nonadaptive (Batch) Training of Recurrent State-Space
Models: Semidirected Training

Just as in the case of input-output models, training requires unfolding the
model into a feedforward neural network made of N identical copies of the
feedforward neural network of that canonical form, whose inputs are, for
copy k,

e the control input u(k),
e the state vector at time k[z1(k),...,z,(k)]T,

and whose outputs are

e the output y(k+1),
e the state vector at time k+1 [z1(k+1),...,z,(k + 1)]T.

The latter vector is part of the state inputs of the next copy, corresponding to
time k+1 (Fig. 2.45) The initialization of the first copy is less straightforward
than for an input-output model, since the initial state is not known. It can be
taken equal to zero, for instance.

Because the state is imposed for the first copy only, the algorithm is called
semidirected.

2.7.3.4 Nonadaptive (Batch) Training of Feedforward State-Space
Models: Directed Training

Under the state noise assumption, and if state variables are measured, the
ideal model is a feedforward model that predicts the state and the output,
either with a single network, or with two different networks.
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Fig. 2.46. Copy k for the training of a state-space model with two different networks
for state and output prediction

Both the state predictor and the output predictor are feedforward. State
prediction can be performed either by n different networks, which have iden-
tical inputs, but which predict different state variables, or by a single network
that predicts all state variables,

e The state at time k 4+ 1 is computed from the measured state at time k
and from the control inputs at time k.

e The output at time k + 1 is computed from the state computed at time
k+1.

Figure 2.46 shows the model if two different neural networks are used for
computing the state variables and for computing the output.

Because the training of those networks is directed, it is performed as the
training of a feedforward neural network.

The note related to the dumb predictor, in the section devoted to the
directed training of input-output models, is also relevant to the training of
state-space models.

Implementation of Directed and Semidirected Algorithms

All equations for the implementation of directed or semidirected algorithms
can be found in Chap. 3, pages 64 to 69 (input-output models) and 72 to 81
(state-space models), of [Oussar 1998]. A very complete technical discussion
can be found in that document.

2.7.3.5 Adaptive (On-Line) Training of Recurrent
Neural Networks

Dynamic models, just as static ones, can be trained adaptively. Adaptive
algorithms for dynamic models are described in Chap. 4, in the framework
of stochastic approximation. The same principles as those described above
for nonadaptive training apply (influence of noise on the choice of training
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algorithm). Directed and semidirected algorithms also apply, with the addition
of a third type of training: undirected training.

2.7.4 What to Do in Practice? A Real Example of Dynamic
Black-Box Modeling

In the first sections of this chapter, we emphasized the questions related to
the design of a black-box static model, such as

e preprocessing and selection of relevant variables,
e choice of the complexity of the model (e.g., number of hidden neurons).

The design a dynamic models involves the following additional choices:

choice of the representation (input-output or state),
choice of the noise assumption (state noise, output noise, state and output
noise),

e choice of the order of the model.

If no prior knowledge on the process is available, all combinations of assump-
tions and representations should be tested, and models of increasing order
should be designed, until a satisfactory model is found. However, the follow-
ing arguments should alleviate the designer’s task:

e State-space models are more general and more parsimonious, but more
difficult to train, than input-output models; therefore, it is recommended
to first design input-output models, then, if the latter turn out to be
unsatisfactory, try state-space models.

e Prior knowledge, however cursory, may give useful hints as to the influence
of noise on the process.

e Similarly, a cursory analysis of the process response to typical inputs may
provide valuable insights into the order of the model.

In order to illustrate the design methodology discussed above, the example of
the black-box modeling of the hydraulic actuator of a robot arm is presented.
Experimental data was gathered by the Linkoping University (Sweden), and
black-box modeling was performed by several groups (see for instance [Sjoberg
1995; Norgaard 2000]).

The control input is the opening of the liquid admission valve in the ac-
tuator, the output is the resulting hydraulic pressure. Sequences of input and
output data are available for training (512 points) and testing (512 points).
Figure 2.47(a) shows the available input data, and Fig. 2.47(b) shows the
corresponding responses.

Because no validation set was provided, the performances reported here
are the best performances obtained on the test set.

First, it appears clearly that he model must be nonlinear in order to ac-
count for the observations: input variations by a factor of 2 (for instance
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Fig. 2.47. Training and test sequences for the modeling of the hydraulic actuator
of a robot arm

around times 10 and 380) do not elicit responses whose amplitudes have the
same ratio.

No knowledge is available on the physics of the process, nor on any source
of disturbances. Therefore, assumptions on state noise and on output noise
must be tested.

Moreover, responses to stepwise inputs (for instance around time 220)
suggest that the order of the model should be larger than 1.

Finally, since the application does not require adaptive training, we con-
sider here batch training only.

2.7.4.1 Input-Output Model

Since input-output modeling is easier than state-space modeling, input-output
models are designed first. Since no prior knowledge about noise and distur-
bances is available, the state noise assumption (directed training of a feedfor-
ward model, NARX model), the output noise assumption (semidirected train-
ing of a recurrent model), and the output noise and state noise assumption
(training with both the model predictions and the process outputs present as
model inputs), are tested.

The assumptions involving state noise lead to very poor results when the
resulting models are operated as simulators, i.e., if they are asked to perform
predictions more than one-step ahead; they are not shown here. Semidirected
training of a recurrent model yields more satisfactory results. The best model
is a second-order model with three hidden neurons with sigmoid activation
function. Its equation is
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g(k) = QONNN(g(k - 1)’ g(k - 2)’u(k - 1)aw)a

where w is the vector of parameters, of dimension 19.

Its TMSE is 0.092 and the mean square error on the test set is 0.15. For
each structure, 50 trainings were performed with different parameter initial-
izations. Additional hidden neurons generate overfitting, and a higher order
does not improve the performance. The parameters are estimated with a semi-
directed algorithm using the Levenberg-Marquardt optimization algorithm.

2.7.4.2 State-Space Model

In view of the result obtained with an input-output model, models of order 2
seem satisfactory. Two possibilities arise,

e model with two state variables (not measured, in the present application),
e model in which one of the state variables is the output (hence that state
variable is measured).

As in the previous case, models trained under the state noise assumption give
poor results when operated as simulators.

Table 2.3 shows the best results obtained on the test set after semidi-
rected training, for a network with three hidden neurons, optimized by the
Levenberg-Marquardt algorithm.

Table 2.3. Results obtained after semidirected training of a network with three
hidden neurons, with the Levenberg-Marquadt optimization algorithm

Mean square error Mean square error

on the training set on the test set
Network with no measured state
variable 0.091 0.18
Network whose output is one of
the state variables 0.071 0.12

Therefore, the best model is a network whose output is one of the state
variables. Its equation is

The network has 26 parameters, but is has better performances, on the
test set, than an input-output network with 19 parameters. That is an exper-
imental illustration of the parsimony of state-space models, which allow the
use of a larger number of parameters without overfitting.
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To the best of our knowledge, these are the best published results on the
problem. The detail of the results, together with an application of wavelet
networks to the same problem, can be found in [Oussar 1998].

2.7.5 Casting Dynamic Models into a Canonical Form

In the previous sections, we assumed that no prior knowledge of the process
was available to the model designer, so that the form of the algebraic or differ-
ential equations that would be derived from a physical analysis was unknown.
That is a typical black-box modeling situation.

In the next section, we show that any prior knowledge, available under the
form of algebraic or differential equations, can be embodied into the structure
of a neural network. The model thus designed is a “gray-box” or “semiphysical
model”. The design of such a model may lead to a complex recurrent network
structure, which is neither an input-output representation, nor a state-space
representation; since the training algorithms that are described in the previous
section were applicable to state-space models or input-output models, how
can one train networks that are neither? Should one design a special training
algorithm for each specific architecture?

Similarly, Chap. 4 presents a set or network “models” (where the term
model does not have its scientific meaning, but its commercial meaning—as
in car or TV model), which are generally named from their author (Hopfield
model, Jordan model, Elman model, etc.), whose structures are different from
the architectures discussed above. Again, one may ask whether each specific
architecture requires a specific training algorithm.

The answer to that question takes advantage of the following property.

Property. Any recurrent neural network, however complex, can be cast into
a minimal state-space form, called canonical form, to which the training algo-
rithms discussed in the previous section can be applied. The latter are therefore
fully generic, since they can train any recurrent network, provided it has been
cast into a canonical form.

Therefore, the present section shows how the canonical form of an arbi-
trary recurrent neural network, stemming from instance from a semiphysical
modeling, can be derived. That task is performed in two steps,

e derivation of the order of the network,
e derivation of a state vector and of the corresponding canonical form.

A reminder: when designing a purely black-box model, without any prior
knowledge, the model is sought directly in a canonical form.

2.7.5.1 Definition

The canonical form of a recurrent neural network is the minimal state-space
representation
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where z(k) is the minimal set, made of v variables, that allows the derivation
of the state of the model at time k + 1, given the state of the model and
its inputs at time k, and where functions ¢ and ¥ can be implemented as
feedforward neural networks.

The order of the canonical form is v. It is convenient, but not mandatory, to
design the predictor as a single neural network, whose inputs are the control
inputs and the state variables at time k, and whose outputs are the state
variables at time k + 1 (Fig. 2.48).

Qutput at State variables

time k at time k
I 1 I 1

? ylk) T ‘ z(k) —

Feedforward neetwork

Eﬂ E-t Unit

delays

u(k-1) z(k-1)
L ] L 1
External inputs State variables
attime k-1 attime k-1

Fig. 2.48. Canonical form of a recurrent network

A general technique, which allows a fully automatic derivation of the
canonical form of any recurrent network, is described in [Dreyfus et al. 1998].
An illustrative example is given below.

2.7.5.2 An Example of Derivation of a Canonical Form

The analysis of a process has led to the following model:

I = ¢1(21, 72, 23, )
Ty = ¢o(T1,73)

I3 = ¢3(z1,02)

Yy = x3.

Its discrete-time equivalent, derived with the explicit Euler discretization
method, is given by
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21 (k4 1) = pafoa (k). 1 (5 — 1), 2k — 1), 5k — 1)l — 1),
zo(k 4+ 1) = ofx1(k + 1), 23(k + 1)],

z3(k+1) = s[ws(k), z3(k — 1), 21(k — 1), 22(k), z2(k — 1)]
y(k+1) = z3(k +1).

The explicit Euler discretization method consists in approximating the
time derivative of a function f(¢) at time kT (where T is the sampling period,
or integration step, and k is a positive integer) by

{f[(k+1)T] = f(KT)}/T

The question of the discretization of continuous-time differential equations
is discussed in more detail in the section devoted to semiphysical modeling.

Clearly, the above equations are not in canonical form. For a clear analysis
of the model, and for training it if the functions are parameterized, it is very
desirable to know the minimum number of variables that are necessary for
a complete description of the model, and to put it in canonical form. Note
that a given recurrent neural network does not have a unique canonical form:
generally, several different canonical forms can be derived; obviously, they all
have the same number of state variables.

The network graph is useful for deriving the canonical form. Its nodes are
the neurons, and its edges are the connections between neurons; each edge is
assigned a length, which is the delay (possibly equal to zero), expressed as an
integer multiple of the sampling time, and a direction, which is the direction
of information flow in the edge. The length of a path in the graph is the sum
of the lengths of the edges that belong to the path.

A cycle in a graph is a path that starts and ends at the same node, with-
out going through the same node more than once, and complying with the
directions of the edges. The length of a cycle is the sum of the lengths of its
edges.

For a discrete-time neural network to be causal, its graph must have no
cycle of length equal to zero. If a cycle had a length equal to zero, the value of
the output of a neuron would be dependent on the value of the same output
at the same time step.

Figure 2.49 shows a representation of the equations of the model as the
graph of a recurrent neural network; nodes 1, 2 and 3 represent neurons whose
activation functions are ¥y, ¥, and W3 respectively. The figures in squares are
the delays associated to each connection (number of sampling periods).

Vector z(k) = [x1(k), 22(k—1),23(k),73(k — 1)]T can be chosen as a state
vector. The corresponding canonical form is shown on Fig. 2.49. It has a
feedforward neural network with three hidden neurons (neuron 1, and neuron
2 which is duplicated in the canonical form with shared weights, and output
neuron (neuron 3) which is also a state neuron. Since the order of the model
is 4, there are 4 state outputs, which are connected back to the state inputs
through unit delays, denoted by the conventional delay operator symbol ¢ !.
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ylk+1)

Fig. 2.49. Example of network graph

A Y(k+1)
z,(k+1) z,(k+1) zy(k+1) z,(k+1)
= x,(k) = X, (k+1) = Xy(k+1) = X5(k),
1 3
xy(k-1) x,(K)
q’ 2 2 q’
k-1 k1 k k k-1
u(k-1) o (K) z,(k) zy(k) z,(K)
=x (k1) = x,(K) =xyk) = x(k1)

Fig. 2.50. The canonical form of the network of Fig. 2.49

The network shown on Fig. 2.50 is fully equivalent to the network shown
on Fig. 2.49: it is simply re-written in a very convenient way, which makes the
structure of the network more legible, and, even more importantly, that allows
the training of the network with the conventional, generic training algorithms.

Algorithmic details for deriving the canonical form automatically can be
found in [Dreyfus et al. 1998].
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2.8 Dynamic Semiphysical (Gray Box) Modeling

In the previous sections of this chapter, the design methodology for black-
box modeling was emphasized; it is the traditional view of neural networks,
whereby models are designed from measurements only. Such an approach is
very useful when no satisfactory knowledge-based model exists. However, it
is frequently the case that a knowledge-based model does exist, but is not
satisfactory, either because the computation time necessary for integrating
the model with the requested accuracy is too long and precludes a real-time
implementation of the model, or because the model is no accurate enough
due to the present limitations of the knowledge of the phenomena that occur
in the process. It is therefore desirable to take advantage of that knowledge,
albeit not fully satisfactory, for the design of a more accurate, or faster, model
making use of training from data: a semiphysical model is designed. Thus, one
can design a model that combines the legibility of knowledge-based models
with the flexibility and speed of black-box models.

In the following, we discuss a general design methodology for semiphysical
models that takes advantage of the properties of neural networks. We empha-
size the importance of the discretization of the continuous-time knowledge-
based model, which has a strong impact on the stability of the resulting
discrete-time model.

In the present section, we discuss the principles of the design of semiphys-
ical models. An industrial application of that method is presented in Chap. 1.

2.8.1 Principles of Semiphysical Modeling
2.8.1.1 From Black-Box Modeling to Knowledge-Based Modeling

A knowledge-based model is a mathematical description of the phenomena
that occur in a process, based on the equations of physics and chemistry
(or biology, sociology, etc.); typically, the equations involved in the model
may be transport equations, equations of thermodynamics, mass conservation
equations, etc. They contain parameters that have a physical meaning (e.g.,
activation energies, diffusion coefficients, etc.), and they may also contain
a small number of parameters that are determined through regression from
measurements.

Conversely, a black-box model is a parameterized description of the
process, all parameters of which are estimated from measurements performed
on the process; it does not take into account any prior knowledge on the
process (or a very limited one).

A semiphysical (or gray-box) model may be regarded as a tradeoff between
a knowledge-based model and a black-box model. It may embody all the
engineer’s knowledge on the process (or a part thereof), and, in addition,
it relies on parameterized functions, whose parameters are determined from
measurements. This combination makes it possible to take into account all the
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phenomena that are not modeled with the required accuracy through prior
knowledge. Since a larger amount of prior knowledge is used in the design of a
semiphysical model than in the design of a black-box model, a smaller amount
of experimental data is required to estimate its parameters reliably.

2.8.1.2 Design and Training of a Dynamic Semiphysical Model
Design Principle

The design of a semi-physical model requires the availability of a knowledge-
based model, which is usually in the form of a set of coupled, possibly
nonlinear, differential, partial differential, and algebraic, equations. We as-
sume that model to be in standard state-space form,

dx
& = Fla(t), u)
y(t) = glz(t)],

where x is the vector of state variables, y is the vector of outputs, u is the
vector of control inputs, and where f and g are known vector functions. That
model may be unsatisfactory for various reasons: functions f and g (or some
of their components) may be too inaccurate for the purpose that the model
should serve, or they may involve parameters that are not estimated accu-
rately, etc. In a black-box model, neural networks are used to approximate
functions f and g; they are trained from experimental data. In a semiphysi-
cal neural model, those functions that are not known accurately enough are
implemented as neural models, whereas those functions, which are known re-
liably, are either kept under their analytic form, or implemented as a neural
network with fixed parameters and nonlinearities.

In general, the design of a semiphysical neural model is performed in three
steps:

e Step 1: construction of a discrete-time semiphysical model that is de-
rived, by an appropriate discretization scheme (discussed below) from the
knowledge-based model.

e Step 2: training of the semiphysical model, or of specific parts thereof, from
results obtained by numerical integration of the knowledge-based model;
that step is generally necessary in order to obtain appropriate initial values
of the parameters, to be used in step 3.

e Step 3: training of the semiphysical neural model from experimental data.

That design strategy is exemplified in the next section.
An Illustrative Example

A knowledge-based model is described by the following equations:
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Fig. 2.51. process response to two input sequences: (a) training sequence, (b) test
sequence

O (a(9) + 222(0))° + (0)
dxo(t)

(ft = 8.32x1(t)

y(t) = (0.

The state variables 21 and x2 are measurable. Figure 2.51 shows the process
response to two sequences of input steps; throughout this section, the left-
hand input and output sequences will be used as the training set, and the
right-hand ones as the test set. The results obtained by numerical integration
of the knowledge-based model are in poor agreement with experimental mea-
surements of the output, as shown on Fig. 2.52. The mean square modeling
error on the test set is equal to 0.17, which is much larger than the noise
standard deviation of 0.01.

Experts of the process are reasonably confident that the first state equation
is valid, but there are serious doubts about the second equation because

e The parameter 8.32 may be inaccurate.

e The linear dependence is controversial.

e It is even conjectured that the right-hand side of the second equation might
depend on 5.

Therefore, in order to build a more accurate model, it may be advantageous
to use a semiphysical model. Actually, three different models, of increasing
complexity, may be designed in order to meet the above three criticisms. We
describe below the design of those models and the results thus obtained.

As mentioned above, the first step of the procedure consists in creating a
discrete-time model from the knowledge-based model. Since data is gathered
with a sampling period T, the latter is a natural candidate for being the
discretization step of the equations. The simplest discretization method is
Euler’s explicit method, whereby the derivative df(¢)/dt is approximated as
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Fig. 2.52. Modeling error of the knowledge-based model

[f[(k+1)T] — f(kT)]/T (where k is a positive integer). Thus the following
discrete-time model is obtained:
z1[(k + 1)T)
z2[(k+ 1)1

21 (kT) + T[— (21 (KT) + 222 (kT))* + u(kT)]

Hence the simplest semiphysical model:

z1[(k +1)T) = 21 (KT) + T[— (21 (kT) + 229(kT))? + u(kT)]
zo[(k+ 1)T] = 2o (kT) + T'(wx:1(kT)).

where w is a parameter that is estimated through appropriate training from
experimental data. The equations are under the conventional form of a state-
space model: it is therefore not necessary to cast the model into a canonical
form; were that not the case, the model would have been cast into a canonical
form as explained above. The model is shown on Fig. 2.53.

For simplicity, in all the following figures, the constant input (bias) will
not be shown; furthermore, discrete time k7" will be simply denoted by k. ¢~ *
is the usual symbol for a unit time delay. On Fig. 2.53, neuron 1 performs a
weighted sum s of 1 and x5, with the weights indicated on the figure, followed
by the nonlinearity —s?, and adds u(k). Neuron 2 multiplies its input by the
weight w. Neurons 3 and 4 just perform weighted sums. If w is taken equal
to 8.32, then this network gives exactly the same results as the numerical
integration of the discrete-time knowledge-based model by Euler’s explicit
discretization, with integration step 7. If w is an adjustable weight, then its
value can be computed by training the network from experimental data with
any good training algorithm (evaluation of the gradient of the quadratic cost
function by backpropagation through time, and gradient descent with the
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Fig. 2.53. Canonical form of the knowledge-based model discretized by the explicit
Euler method

Levenberg-Marquardt or BFGS algorithm), using for instance a semidirected
algorithm under the output noise assumption. For that training, it would be
reasonable to initialize weight w to 8.32. Note that, in that very simple case,
step 2 of the algorithm is bypassed.

Figure 2.54 shows the modeling error with that improved model. The mean
square modeling error on the test sequence is 0.08 (instead of 0.17 for the
knowledge-based model); since the noise variance is 0.01, further improvement
may be expected from a more elaborate model.

Therefore, one considers the second level of criticism towards the knowledge-
based model, i.e., the fact that the right-hand side of the state equation might
be a nonlinear function of x;. Therefore, neuron 2 is replaced by a feedforward
neural network whose input is x;, as shown on Fig. 2.53 with three hidden
neurons (hence 6 parameters shown on the figure, and 4 parameters related
to the bias, not shown).

The feedforward neural network made of the non-numbered neurons shown
on Fig. 2.55 can be trained from data generated by the knowledge-based
model (step 2 of the design procedure): although those values are known to be
inaccurate, the weights resulting from that training are reasonable estimates,
which are subsequently used for initializing the training of the neural network
from experimental data (step 3 of the design procedure). Figure 2.56 shows
the modeling error of that model, with two hidden neurons in the black-box
part of the model (additional neurons generate overfitting). The mean square
modeling error on the test sequence is 0.02, which is a sizeable improvement
over the previous model.
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Fig. 2.55. Canonical form of a semiphysical model
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Fig. 2.56. Modeling error on the test set

Since the results are still unsatisfactory (the root mean square error on
the test set is twice the standard deviation of noise), the conjecture that the
right-hand side of the second state equation does not depend on z; only, but
also depends on x5, must be taken into account. Then a third knowledge-based
neural model may be designed, where the right-hand side of the second state
equation is implemented as a neural network whose inputs are x; and xs.
That is shown on Fig. 2.57 (with a feedforward network having three hidden
neurons).

Steps 2 et 3 of the design are performed as for the previous model. The
variance of the modeling error being on the order of the noise variance (see
Fig. 2.58), the model can be considered satisfactory.

2.8.1.3 Discretization of a Knowledge-Based Model

The first step of the design of a semiphysical model is the discretization of
the knowledge-based model, which is generally a continuous-time model, in
order to find a discrete-time model whose structure is used for the design of
the recurrent network. The choice of the discretization technique has impor-
tant consequences regarding the stability of the model to be designed. The
discretization of continuous-time differential equations is a basic chapter in
any textbook of numerical analysis; we recall a few basic elements that are
important for the design of a semiphysical model.
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Fig. 2.58. Modeling error on the test set
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Ezplicit (Forward) vs. Implicit (Backward) Discretization Schemes:
Definitions

Consider a first-order differential equation,

dz(t)

ar flz(t)].

An explicit scheme discretizes it to
z[(k+1)T] = [z(kT), T],

e where T is the discretization (or integration) step, which is usually the
sampling period of experimental data,
where k is a positive integer,
and where function ¢ depends on the discretization technique (examples
are shown below).

An implicit scheme discretizes the same differential equation to
z[(k +1)T] = ¢[z[(k + )T, 2(kT), T].

The main difference is the fact that the quantity z[(k + 1)T| appears in the
left-hand side only if an explicit scheme is used, whereas it appears on both
sides if an implicit scheme is used. Therefore, if a one-step-ahead predictor for
x is to be designed, the computation of z[(k + 1)T] from z[kT] is trivial if an
explicit scheme is used, whereas it requires solving a nonlinear equation if an
implicit scheme is used.

More generally, consider a set of state-space equations written in vector

form,
dz
& = fla(t),u(o)].

If an explicit discretization scheme is used, the discretized equations can be
written under the general form,

Klz(kT))z((k + 1)T] + ®lz(kT), w(kT),T] = 0,

where K is a matrix and ¥ is a vector function, whereas, if an implicit dis-
cretization scheme is used, the discretized equation can be written under the
general form,

Klz[(k + 1)T)|z[(k + 1)T] + @[z[(k + 1)T), 2(kT), u[(k + 1)T],T] = 0.

Again, the computation of x[(k + 1)T] from x[kT)] is trivial if an explicit
scheme is used (provided matrix K is invertible):

z[(k+1)T) = —K '[x(kT)|®[z(kT), w(kT), T),

whereas it requires solving a system of nonlinear equations if an implicit
scheme is used.
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Examples

Consider again the first-order differential equation dx/dt = flx(t), u(t)].

Euler’s explicit scheme consists in considering that function f is constant,
equal to f[z(kT)], between kT and (k + 1)T, so that the integration of the
differential equation between kT and (k + 1)T gives

2[(k + 1)T] = 2(kT) + T flz(kT)].

By contrast, Euler’s implicit scheme consists in considering that function f
is constant, equal to f[z((k + 1)T] between kT and (k + 1)T, so that the
integration of the differential equation between kT and (k + 1)T gives

o[(k + 1)T] = 2(kT) + Tf[z[(k + 1)T]].

Similarly, Tustin’s scheme consists in considering that function f varies lin-
early between kT and (k + 1)T, so that the integration of the differential
equation between kT and (k4 1)T gives

ellk + DT] = 2(KT) + 5 f [#l(k + VT]) + 7 [o(T)].

Because the values of quantities at time (k + 1)T are present on both sides
of the equation, the computation of x[(k 4+ 1)7'] requires solving a nonlinear
equation.

Application

We consider again the knowledge-based model described by the equations

dxl(t) B 2
= (@) 4 222(1))* + u(t)
dxjt(t) — 8.3221(t)

y(t) = aa(t).

Euler’s explicit method discretizes it to

z1[(k +1)T) = 2y (KT) + T[— (21 (kT) + 2x2(kT))? + u(kT)]
zo[(k + 1)T] = zo(KT) + T'(8.32x1(kT)).

Its discretization by Euler’s implicit scheme discretizes it to

(14 Tz [(k + 1)T) + 4Tz [(k + 1) T2 [(k + 1)T] + 4Tz2[(k + 1)T]
= z1(KT) + Tu[(k + 1)T)x2[(k + 1)T] — T(8.3221[(k + 1)T7)

These equations are of the form
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Klz[(k+1)T)x[(k+ 1)T] +¥lz[(k + 1)T], x(kT),u[(k + 1)T],T] =0,
with
Klal(k + 1)]T] ([ I( )_}Tw [(k +1)T7] [(1 ) ])

and

Wl ((k + DT], 2(kT), ul(k + 1)T),T] = (xﬂkT) +Tul(h + 1>T1> .

Ezxplicit vs. Implicit Discretization Scheme: Impact on Stability

The above examples show that an explicit discretization scheme makes the
design of a semiphysical model simpler than an implicit scheme. The main
incentive for using implicit scheme is the stability issue: implicit schemes may
have better stability properties than implicit schemes. In order to illustrate
that, we discuss the simple first-order linear differential equation

du(t)
dt
Euler’s explicit method discretizes it to

u[(k+ 1T — u(kT)
T

= —au(t),a > 0.

= —au(kT),

or equivalently
u[(k+ 1)T) = (1 — oT)u(kT).

Thus, u[(k+1)T] is computed from u(0) recursively, and the recursion con-
verges if and only if the magnitude of (1 — aT) is smaller than 1, or T < 2/a.
The computation time necessary for integrating that equation numerically is
proportional to 1/a: if « is very large, numerical integration may become
impossible since the integration step 7" must be very small.
Now we consider the discretization of the same equation by Euler’s implicit
method; one has
u[(k + 1)T] — w(kT)
T

= —au(kT),

or equivalently,

ul(k + 1)T) = u(kT).

(1+aT)
Because the denominator on the right-hand side is larger than 1, the compu-
tation of u[(k + 1)T] converges irrespective of a.

However, the price to be paid is the fact that (in contrast to the previous
very simple example), the computation of the quantities of interest at time
(k + 1)T requires the resolution of a nonlinear equation. This has important
consequences on the architecture of the corresponding neural model.
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Fig. 2.59. Canonical form of the network resulting from the discretization by an
explicit scheme

Explicit vs. Implicit Discretization Schemes: Impact on Neural Network
Implementation and Training

The explicit discretization of a knowledge-based model provides equations
that are readily put in neural network form, as shown in the above illustrative
example: one has

z[(k+ 1)T] = —K [x(kT)|¥[x(kT), w(kT), T,

which is the canonical form of a recurrent neural network, as shown on
Fig. 2.59, where the neural network is an approximation of function —K ~'&.
The didactic example discussed above is an example of the design of a semi-
physical model from a knowledge-based model discretized by an explicit
scheme.

When an implicit discretization method must be used for stability reasons,
the neural implementation of the resulting equations is less straightforward,
but still feasible. A detailed description of that technique can be found in
[Oussar et al. 2001].

2.9 Conclusion: What Tools?

This chapter gave a presentation of the basic concepts of modeling with neural
networks. Elements of statistics were first provided, then a complete design
methodology of nonlinear models, including but not limited to neural net-
works, was described. Static and dynamic models were discussed (the latter
being considered in a deeper fashion in Chap. 4). Finally, the design method-
ology of semiphysical models was described.
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For practical applications, the designer must understand the basic concepts
in order to obtain reliable results, but he must also use appropriate tools (or
build his own, which may be a lengthy process).

At present, available development tools fall into two categories:

e neural network toolboxes within general-purpose engineering software;
typically, Matlab releases a toolbox that allows easy training of feedforward
neural networks; the programming effort is very small for classical func-
tions, but it may become important for the implementation of elements
of methodology that are not specifically “neural” (leverage computation,
input selection), or for recurrent neural networks;

e specific development tools that include a complete development method-
ology, requiring no programming effort; typical is the NeuroOne® package;
such tools do not allow for the flexibility of personal programming, but
they provide reliable results in a short time.

Some academic software packages are available freely on the Web. They are
excellent for didactic purposes, but they may not stand up to the quality
requirements of industrial applications.

Therefore, the model designer, whether in academy or industry, must
choose his tools considering the time constraints, the development policy
within the company, the size of the applications, etc. The best solution con-
sists in having both types of tools available. Anyway, however powerful and
user-friendly the programming tools, a good understanding of the basic con-
cepts and methods, and the application of a principled methodology, are the
keys to the development of successful applications.

2.10 Additional Material

This section is devoted to additional definitions, proofs, algorithms, which can
be skipped on first reading.

2.10.1 Confidence Intervals: Design and Example
2.10.1.1 Design

In order to estimate a confidence interval for a random variable Y, one seeks
a random variable Z, function of Y, whose distribution pz(z) is known and
independent of Y. Since the distribution pz(z) is known and tabulated, the
equation Pr(z; < z < z3) = f;f pz(z)dz = 1 —a can be solved easily: one just
has to compute the value of z; such that Pr(z < z1) = «/2, and the value of
z9 such that Pr(z > z3) = /2. When z; and z; are found, function Z(Y) is
inverted in order to find the values of a et b such that Pr(a <y <b) =1—a.

6 By NETRAL S.A.; several illustrations and applications described in Chaps. 1
and 2 were developed with that software.
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2.10.1.2 Example

As an example, let us derive a confidence interval for the mean of N mea-
surements: the latter quantity is an unbiased estimator of the expecta-
tion value. Assume that the N measurements are realizations of a random
Gaussian variable G of mean p and standard deviation o. Using the distrib-
utions discussed in the next section, it can easily be shown that the random
variable (M — u)/(0/v/N) has a normal distribution, and that the variable
SN ((Gy — M)?)/(0?) has a Pearson distribution with N — 1 degrees of
freedom.

From the definition of the Pearson variable, one might conclude that the
above variable has N (not N — 1) degrees of freedom. One should note that
the random variable M depends on the random variables G; since one has
M= ZnN:1 G;/N: hence the variable has only N — 1 degrees of freedom.

Those variables are independent. From a theorem stated below, the ran-
dom variable
M—p

SN (G — M)?

Z = N(N = 1)

has a Student distribution with N — 1 degrees of freedom. One can easily
compute the value of z; and zs such that a realization of the random variable
Z lie between those two values with probability 1- «, where a is a known
quantity (e.g., @ = 0.05 if a 95% confidence interval is sought). The quantity
2= monK NN —1),
N
>iz1(gi —m)?

where m is the mean of the N measurements ¢;, and where y is the only
unknown, is a realization of the random variable Z. Therefore, the only re-
maining task is the resolution of the two inequalities z; < z and z < z9; they
are linear in u, hence the resolution is trivial. The two solutions p; = a and
o = b are the boundaries of the confidence interval

N oo N2
P D1l R

N(N - 1)

N
S o —m)?
N(N -1) '
Because the Student distribution is symmetrical, z; and z3 may be chosen
symmetrically, e.g., z1 = —z9 < 0 and 2z = zg > 0. The confidence interval is
symmetrical around m:

Y
PR DSLC k)N S S

N(N — 1)

SN L (gi —m)?

NN—1) ©

where m, {¢g;} and N depend on the experiments, and 2z, depends on the
chosen value of « only.
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As expected, the width of the confidence interval depends both on the
number of experiments N and on the noise through the scattering of the data
around the mean value, as expressed by the summation under the square root.
The larger the number of experiments, the smaller the confidence interval,
hence the more reliable the estimation of the expectation value p by the
mean m. Conversely, the larger the variability of the results, the larger the
confidence interval, hence the less reliable the estimation of y by m.

2.10.2 Hypothesis Testing: An Example

N measurements {g;} have been performed, which can be modeled as inde-
pendent realizations of a random Gaussian variable of mean p and standard
deviation . One would like to know, with a risk a of getting a wrong answer,
whether the mean of the distribution has a given value pg. Thus, the null
hypothesis Hy is: u = pg, and the alternative hypothesis H; is p # pp. If the
null hypothesis is true, then variable

M — po
S (G — M)?

is a Student variable with V — 1 degrees of freedom.
A realization of that random variable can be computed,

m — to
Zilil (Gi —m)?

where m is the mean of the measurements. The values of z; and z5 such that
Pr(z < z1) = a/2 and Pr(z > z2) = a/2 can easily be computed. Then the
null hypothesis can be rejected if z is outside the interval [z7, 23].

In that particular case, the hypothesis test consists in checking whether
the assumed value of the mean pg is within the confidence interval computed
in the previous section, and rejecting the null hypothesis if it is outside the
confidence interval.

7 =

NN —1)

7 =

N(N_ )7

2.10.3 Pearson, Student and Fisher Distributions
2.10.3.1 x2?(Pearson) Distribution

If a random variable S is the sum of the squares of N random independent
Gaussian variables, then it has a x? (or Pearson) distribution with N degrees
of freedom. It can be shown that E(S) = N and that var(S) = 2 N.

2.10.3.2 Student Distribution

If Y7 is a normal variable, and if Y5 is a random variable, which is independent
from Y; and which has a y? (Pearson) distribution with N degrees of freedom,
the random variable Z = (Y1)/(1/Y2/N) has a Student distribution with N
degrees of freedom.
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2.10.3.3 Fisher Distribution

If Y7 is a Pearson variable with N; degrees of freedom, and if Y5 is a
Pearson variable with Ny degrees of freedom, the random variable Z =
(Y1/N1)/(Y2/N2) has a Fisher distribution with Ny and Na degrees of free-
dom.

2.10.4 Input Selection: Fisher’s Test; Computation of the
Cumulative Distribution Function of the Rank of the Probe
Feature

2.10.4.1 Fisher’s Test

We first describe the use of Fisher’s test for model selection.

We assume that the measurements of the quantity of interest can be mod-
eled as the realizations of a random variable such that Y, = ¢Tw,, + £2, where
¢ is the vector of the variables of the model (of unknown dimension), where
w),, is the vector (nonrandom but unknown) of the parameters of the model,
and where {2 is an unknown random Gaussian vector, with zero mean. Thus,

one has
E(Yy) = ¢"w,.

We want to find a model g, from a set of N measurements {y;;, k=1to
N}; Yy, is the N-dimension vector whose components are the y;f. The model
depends on the training set: therefore, it is also a realization of a random
variable G.

Assume that a set of () variables, which contains certainly the measurable
variables that are relevant to the modeling of the quantity of interest, has
been found. A model that contains all relevant variables is called a complete
model. Then a model is sought, of the form

Go=(HWe,

where () is the input vector of the model (of dimension @Q+1 since, in addition
to the relevant variables, a component equal to 1 is present in the input
vector), and where W is a random vector, which depends on the realization
of the vector Y, that is used for the design of the model. That model is said to
be true: there exists certainly a realization w,, of the random vector W such
that gQ = E(Yp)

In the present chapter, the vector of the parameters of the model was
always found by minimizing the least squares cost function (except when using
weight decay) J(w) = 31, (45 — g0 (¢*, w))? = |ly, — 9o (¢, w)||, where w
is a realization of the vector of parameters W, ¢* is the vector of the Q + 1
inputs for example k, and where go (¢, w) is the vector of the realizations of
Ggq for the N measurements.
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We denote by 'wgs the vector of parameters for which the least squares cost

function J is minimum. The resulting model is thus of the form gg = ¢ Twi?s,

_ =, @
and one can define vector gg = Zwyy, where

® g is a vector whose N components are the predictions of the model for
the N measurements.

e E is the observation matrix: column 7 (i = 1 to Q@ + 1) is the vector =, of
which the components are the N measurements of the ¢th input: matrix

= has N rows and @ + 1 columns,

¢ oAl ey

NN (CN)T

The input selection problem is the following: are all () candidate variables
relevant? If a variable is irrelevant, the corresponding parameter in the com-
plete model should be equal to zero. A submodel is a model that is obtained
by setting to zero one or several parameters of the complete model. Thus,
in order, to solve the problem, the complete model must be compared to all
its submodels. We consider a submodel whose last ¢ components (numbered
from Q — g+ 2 to @ + 1) are equal to zero: g,_, = EwS:?, where w9
is the vector of parameters that is obtained by minimizing the least squares
cost function J = |ly, — go_,(¢, w)||* under the constraints that the last ¢
components of the vector of the parameters be equal to zero. We want to test
the null hypothesis Hy: the last ¢ parameters of the random vector W are
equal to zero. If that hypothesis is true, then the random variable

_N-Q-1]IY, -~ Go-|* - Y, — Gal’

Z 2
q 1Y, — Gall
_N-Q-1]lGq - Go-’
q 1Y, — Goll®

is a Fisher variable with ¢ and N — Q-1 degrees of freedom.

Proof. The quantity ||Y, — Go||® is the sum of the squares of the components
of vector Y, — G, which is orthogonal to the subspace spanned by the @ +1
columns of the observation matrix &. Thus, it is the sum of N — (Q + 1)
squared independent Gaussian variables: it has a Pearson distribution with
N — Q-1 degrees of freedom. Similarly, vector G —Gg—q is in a g-dimensional
space, hence the square of its norm is the sum of ¢ squared independent
Gaussian variables: therefore, ||Gg — GQ_qH2 is a Pearson variable with ¢
degrees of freedom. The ratio Z of those Pearson variables is a Fisher variable,
as mentioned above.
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Assume that a very large number of measurements is available; if the null
hypothesis is valid, the numerator of Z is very small since the minimization
of the cost function gives values equal to zero to the “useless” parameters of
the complete model, hence g, and gg,_, are very close; if the null hypothesis
is not valid, the two models cannot be very similar, even if the amount of
data is large, since the submodel does not have the appropriate complexity
for accounting for the data. That explains why the realization of Z must be
small if the null hypothesis is valid.

Thus, Fisher’s test consists in choosing a risk a, and computing, from the
Fisher distribution, the value z, such that Pr(z < z,) = . Then the quantity

L N=Q-1yy 90y (WG ~ lly, — 90 (wie)|”

2
q [~ 90 (wit)]

(realization of Z with the available data) is computed, and the null hypothesis
is accepted if and only if z < z,.

2.10.4.2 Computation of the Cumulative Distribution Function of
the Rank of the Probe Feature

In the present section, we discuss the computation of the probability for the
probe feature to have a higher rank (rank 1 being the highest rank), at a given
step of the selection procedure, than one of the features selected during the
previous steps. The complete computation can be found in [Stoppiglia 1998].

We denote by Hy_1 the probability for the probe vector to be ranked higher
than one of the k—1 features selected at previous steps. The probability for the
probe feature to have a lower rank than the first k£ — 1 features is therefore 1 —
Hj,_1. The probability for the probe feature to be ranked higher than the k—1
first features but lower than the kth feature is thus Py _(cos?(0x))[1 — Hy_1],
where Py _j(cos?(0y)) is the probability for the angle of the projection of the
feature k£ under consideration, onto the null subspace of the previously selected
features, and the projection of the process output on the same subspace, to
be smaller than 6. Therefore, the probability Hj for the probe feature to
be more significant than one of the k& selected features is given by: Hyp =
Hy 1+ Pn_j(cos? 0;)(1 — Hy_1). Thus, Hy can be computed recursively, with
Hy = 0. That requires the computation of Py_j(cos? 6), which is given by
the following relations:

P,(cos?0) =1 — fr,(cos? ) (n positive integer), with
o for n even: fr,(z) = 2/x[sin™!/z + /(1 — 2)P"/?~2(z)], where, for

n > 6, PM/2=2(x) = 14 S22 19k (k1) /(2k + 1) (1 — 2)*]; for n =
4:P°=1;forn=2:P 1 =0
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e for n odd: fr,(z) = oP"3/2(x), with, for n > 6: P(n —3)/2(x) =
14+ 921120 (2k — D) /(K (1 — 2)F]; for n = 3: PO(z) = 1; for n
=1: Pil(x) =0.

2.10.5 Optimization Methods: Levenberg-Marquardt and BFGS

That presentation is from [Oussar 1998]. The algorithms are also described in
[Press et al. 1992].

2.10.5.1 The BFGS Algorithm

The BFGS algorithm consists in updating the parameters, at iteration 4, by:
w(i) = w(i — 1) — uM;V j(w(i — 1)) where p; is positive, and where M; is
an approximation, computed iteratively, of the inverse of the Hessian matrix;
the latter is computed, at each iteration, by

YE M 11 65 161 61 T My + M)\ F

M; =M1+ |1+ -
o 1 vie1 6 1viea 6 1 vie1

where 7,1 = VJ (w(i)) — VJ (w (i — 1)) and §;_1 = w(i) — w (i — 1). The
initial value Mj is the identity matrix. If, at some iteration, the matrix is not
found to be definite positive, it is re-initialized to the identity matrix.

That approximation is valid only in the neighborhood of a minimum of the
cost function. Therefore, it is recommended to use simple gradient descent (or
stochastic gradient descent) at the beginning of training, in order to get close
to a minimum, then switch to BFGS when the minimum is close enough.

2.10.5.2 The Levenberg-Marquardt Algorithm

The Levenberg-Marquardt algorithm consists in updating the parameters, at
iteration i, by

w(i) = wi 1) — [H(w(i — 1)) + ]V (w(i — 1)),

where p; is positive. For small values of the step pu;, the Levenberg-Marquardt
algorithm is close to the Newton method, whereas, for large values of u;, the
Levenberg-Marquardt algorithm is equivalent to simple gradient descent with
step 1/p;.

The application of the algorithm requires the inversion of matrix [H (w (i —
1))+ u:1]. The exact expression of the Hessian matrix of the total cost function
J(w) is

H (w(i)) = i (8‘;’0()) (ai())ZiV;W

with e* = yzlf — k.
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The above relations are valid for a single-output model. The extension to
multiple outputs is straightforward.

Because the second term of the above relation is proportional to the error
e, it can be neglected in a first approximation, which yields

=3 () () =52 () ()

k=1 k=1

In the case of a model that is linear with respect to its parameters, y is a
linear function of w), so that the second term of the expression of is equal to
zZero.

Several techniques can be useful for inverting matrix [H + p;1].

e Indirect inversion.

The inverse of a matrix can be computed recursively by the following
inversion lemma. If A, B, C' and D denote four matrices, one has:

(A+BCD) ' =A"'—A'B(C™'+DA'B)” DA™

Moreover, with the notation ¢* = (9y*)/(dw(i)), matrix Hcan be con-
structed recursively by defining “partial” matrices H*_ of dimension (k, k),
by H* = H*1 4+ 25(2")T with k =1,...,N. One has H = H" as desired.

If the inversion lemma is applied to the previous relation with A = H, B
=¢F, C=1,and D = (C’“)T, one gets:

f{k—l)il ¢k (Ck)T (ﬁk—l)il
@ () e

)= -

At the first step (k := 1), one takes HOY = 4,1, which gives, at step N:

(}NIN)% = |() + il |

-1

e Direct inversion.

Many inversion methods exist. Since the algorithm is iterative, and since
the line search procedure (described below) often requires several matrix in-
versions, an efficient inversion method is mandatory. Since the approximation
of the Hessian matrix p; I is symmetric definite positive, it is advantageous
to use Cholesky’s method [Press et al. 1992].

As for simple gradient descent and for BFGS, u; must be adjusted at each
iteration. A line search method can be used as discussed in the next section.

Note that the expression of the Hessian of the cost function is specific to the
least squares cost function; in contrast to the BFGS method, the Levenberg-
Marquardt algorithm cannot be used for minimizing arbitrary cost functions,
in particular the cross-entropy cost function, often used for classification.
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2.10.6 Line Search Methods for the Training Rate

At iteration ¢ of an optimization method, an update direction must be com-
puted; in BFGS for instance, the direction d' = —M;V.J (w (i — 1)) is com-
puted by evaluating the gradient of the cost function by backpropagation,
and by computing matrix M; as indicated in the previous section; in simple
gradient, the update direction is d° = —V.J (w (i — 1)). The magnitude of
the parameter update along that direction depends on the value of u;: one
seeks the value of p; for which the cost function will be minimum after updat-
ing the parameter vector along that direction, for which J(w) is minimum if
w=w(i— 1)+ p;d". Insofar as y; is the only unknown, the problem is a line
search problem. That search must be performed at each iteration of the train-
ing procedure: therefore, it must be fast; since the value of u; is not critical
for second-order methods, a simple technique may be used. Nash’s method
produces satisfactory results; it seeks a step such that the updated value of
the cost function is smaller than a given bound.
The technique seeks a step that complies with the descent condition,

T (w (i = 1)+ pd) < J (w (i — 1)) + map; (d°) VT (w (i — 1)),

where m is a factor, much smaller than 1 (typically m; = 10~3). The research
proceeds iteratively as follows: u; is given an arbitrary positive value. The up-
per boundary condition is checked. If it is obeyed, the parameter update is
accepted. Otherwise, the step is multiplied by a quantity smaller than 1 (typ-
ically 0.2), and the condition is tested again. The procedure is iterated until
satisfaction. If the step value becomes too small, e.g., on the order of 10716,
without the condition being obeyed, or if the number of such search iterations
exceeds a limit, the search is abandoned and the procedure is terminated.

An even simpler strategy, often used in conjunction with the Levenberg-
Marquardt technique [Bishop 1995], is the following: we denote by r > 1
(generally equal to 10) a scale factor. At the beginning of the algorithm, pu
is initialized to a large value ([Bishop 1995] suggests 0.1). At iteration iof the
algorithm:

1. Compute J(w(7)) with p; computed at the previous step.

2. If J(w(i)) < J(w(i — 1)), then accept the update and multiply p; by r.

3. Otherwise, retrieve w(i — 1) and multiply p; by r. Iterate until a value of
1; producing a decrease of J is found.

The above procedure requires a small number of matrix inversions at each
iteration of the algorithm. However, the choice of the initial step has an in-
fluence on the rate of convergence of the algorithm. That drawback can be
circumvented by a method that requires a larger number of matrix inversions:

1. Initialize po top an arbitrary value.
2. Compute J(w(i)) with p; found at the previous step.
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3. If J(w(i)) < J(w(i— 1)), then retrieve w(i — 1), divide p; by r and go to
step 2.

4. Otherwise multiply p; by r. Iterate until a suitable value of y; is found.

2.10.7 Kullback-Leibler Divergence Between two Gaussians

The expression of the Kullback-Leiibbler divergence between two Gaussians

with mean and standard deviation (1, o1) and (uz, o2) respectively is derived.
The following relations are useful:

1 +oo _ 2
1 teo x — )2
o 2%/_00 mexp<(2az))dx:u
1 +o0 x_MQ
—00

The Kullback-Leibler divergence is defined as

D(p1,p2) = /+<><> p1(z)In <p1(x)) dz.

—00 pg(l‘)

Because that definition is not symmetrical with respect to the two distri-
butions, the following quantity is preferred:

A = [D(p1,p2) + D(p2,p1)]/2

1 Heo (x — py)?
D =
(p1.p2) o1V 2w /,oo P < 202

oy (x—m)? | (x—p)?
In— — d
. {n o1 202 + 202 .

1 oo (x — ,u1)2> o9
exp | ——— | In—dx
o1V 2T [/Oo P < 20% o1
e (z = m)*Y\ (& —m)?
[ e (ME) e
+o0 T — 2 T — 2
L Zew() g

The first two terms are equal to In(og/c1) — (1/2).
For the third term, one writes

(x — p2)?® = (& — pa + pa — pi)?
= (2 = p)® + (11— p2)® +2(x — ) (i1 — paa)-
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Hence,

1 /+°°exp<(3«”—ul)2> (@—m)* _ o

oV 2T 20% 20% 20%
1 +o0 _ 2 _ 2 _ 2
/ exp ((w /;1) ) (1 52) gy = Y étz)
o1V2T J_ 201 203 203

1 +o0 _ 2 _ _
7/ exp <(3€ /~2L1) ) (z Ml)(lél p2) oo,
o1V2T J o 207 203

Finally, one gets
g 1 0'2 _ 2
Dl =n(2) 1o gl oz
g o
Then A can be computed as

2 2
A:_1+ﬁ+g+(u1—uz) (11 — po2)

2 40% 40% 40% 40%
_ —20}03 + 0} + 04 + (11 — p2)” (0} + 03)
B 402032
2
(02— od) + (= ) (o + o)
40%03 '

2.10.8 Computation of the Leverages

Many discussions of the computation of leverages can be found in the litera-
ture. The present one is from [Monari 1999].

Z is an (N, q) matrix, with N > ¢:Z = [z',---,2"]T. The leverages
to be computed are the diagonal terms of the orthogonal projection matrix
H=2z"z)"'Zz,

hir = ZkT(ZTZ)_lzk.

As diagonal elements of an orthogonal projection matrix, the terms
{hik b b=1,...N

are defined only if Z has full rank, i.e., if ZT Z is invertible. If it is, the following

relations are valid:

N
VEkel,...,Nl, 0<hp <1, trace(H)=» hy =rank(Z).
k=1

A first leverage computation technique consists in computing matrix ZTZ,
inverting it with a classical method (Cholesky, LU decomposition, etc.), then
in left and right multiplying by z* and z*7". That method is satisfactory only
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if ZVZ is well conditioned. Otherwise, that computation will give values of
the leverages that are larger than 1, or negative.
A better solution consists in decomposing matrix 7 as

Z=UWVT,
where:

e Uisan (N, ¢) matrix such that UTU = I.

e W is a diagonal (g, ¢) matrix, whose diagonal terms called singular values
of Z, are positive or zero, and ranked in order of decreasing values.

e Visa (q,q) matrix, such that VTV = VVT =T

That decomposition, known as singular value decomposition or SVD decompo-
sition, is accurate and robust, even if Z is ill-conditioned, or has rank smaller
than ¢ (see [Press et al. 1992], and Chap. 3).

Thus, one has

ZTz =vwuTtuwvT = viw?vT,

then
(Zz'Z) "t =vw VT,

That decomposition allows the direct computation of matrix (ZT2)~!, the
elements of which can be written as

q
Tl Z VieVik
(Z Z)lj - k=1 Wl?k .

After some algebra, one gets

q q
hiw = 2" (272) 7 2 =30 Zuzi; (27°2),)

=1 j=1

and, finally
q

hkaZ

i=1

q

1
Wy 2 Vi
J=1

Thus, the leverages can be computed without resorting to the computation
of (Z¥Z)~1, which is important in the case of ill-conditioned matrices. Since
the singular values are ranked in order of decreasing values, it is advantageous
to compute the leverages by varying i from ¢ to 1, not from 1 to q.
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3

Modeling Methodology: Dimension Reduction
and Resampling Methods

J.-M. Martinez

3.1 Introduction

This chapter provides additional elements of methodology for neural network
design. It provides answers to methodological questions raised by neural net-
work modeling. As explained in the previous chapter, there is more to the
design of a neural model than choosing the number of hidden neurons and
implementing a training algorithm:

e Before using a neural network or any other statistical model, it may be
necessary to construct new input variables to decrease their number whilst
losing as little information as possible concerning their distribution.

e After estimating the parameters of the model (training if the model is a
neural network), the user should assess the risk of using the model thus
designed; that risk is linked to the generalization error, which cannot be
computed, hence must be estimated. In the previous chapter, we discussed
a method for estimating the generalization error by computation of the
virtual leave-one-out score. In this chapter, we describe another recent
statistical technique, based on resampling, which is used to estimate the
statistical characteristics of the generalization error.

Therefore, the aspects of the methodology described in this chapter are re-
lated to

the preprocessing to be performed on the data,
the techniques for reducing the number of inputs, based on principal com-
ponent analysis and curvilinear component analysis,

e the estimation of the generalization error using statistical resampling tech-
niques, with emphasis on the bootstrap.

The reduction in size is not only intended to decrease the number of vari-
ables describing each example: it also attempts to design more compact data
representations, thus making their analysis easier. In the context of linear
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modeling, the conventional method of input dimension reduction is termed
principal component analysis (PCA): the latter consists in projections, and
is limited to linear varieties. To process nonlinear representations, we will de-
scribe an alternative method, termed curvilinear component analysis (CCA),
which may be considered as a “nonlinear” extension of PCA. It is similar to
the “Kohonen maps” (Chap. 7), but it is more flexible than them, since the
structure of the projection space is not imposed.

Resampling methods aim at performing estimations estimates when the
probability distributions of the variables to be analyzed are not known. In the
problems raised by regression, particularly regression by neural networks, they
allow estimations of the generalization error, and they lead to efficient and
robust assessments of the variability of the network with respect to the data;
that is the key element of the bias-variance dilemma (described in Chap. 2),
which arises in the generation of any statistical model. Those advanced tech-
niques are computer-intensive, but the increased speed of computers makes
them more and more popular. A new method will be described, combining the
bootstrap and early stopping (described in the previous chapter) to automate
and monitor the training of neural networks.

3.2 Preprocessing

3.2.1 Preprocessing of Inputs

In the previous chapter, we mentioned that the values of model variables are
generally expressed in different units and have different orders of magnitude.
It is therefore necessary to pre-process those values so that they have the same
influence on the design of the model. Therefore, variables must be centered
and reduced or at least normalized. The preprocessing described in the sec-
tion “Input normalization” of Chap. 2 transforms the input components into
variables with zero average and unit standard deviation.

Standardize or Reduce

For distributions with uniform and centered inputs, the ratio between stan-
dardization and reduction is only \/3 for the standard deviation. The standard
deviation of a uniform distribution over an interval I is [/ 2+/3 and standard-
ization over the same interval divides the variable by /2.

Boolean Variables

The values 0 and 1 of Boolean variables should be transformed into —1 and
+1 respectively; variables resulting from fuzzy encoding should be subject to
similar processing.

Figure 3.1 shows the effect of preprocessing. It corresponds to a shift of
the centre of gravity of the scatter diagram followed by standardization of the
dispersion of values on each axis without altering the distribution of points.
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Fig. 3.1. Data centering and reduction

That simple preprocessing, applied to all components, is often used to
detect anomalies in the database. A standard deviation that is too low may
mean that the corresponding variable has too small variability to actually
have an influence on model. Variables with zero standard deviation should
of course be ignored, since they do not provide any information in the design of
the model. For a more extensive diagnosis of such “anomalies”, the advice of
the process expert must be sought.

3.2.2 Preprocessing Outputs for Supervised Classification

Preprocessing of outputs is link to output encoding. For supervised classifi-
cation (described in detail in Chap. 6), the encoding of outputs is associated
with posterior probabilities, so that the problem of preprocessing is irrele-
vant: the encoding of posterior probability leads to representing each class by
an output neuron with a logistic activation function. The associated cost is
cross-entropy rather than the least-squares cost. For two-class discrimination,
where y and y* are the network output and the desired class code respectively,
cross-entropy is defined by

J=y"Iny+ (1 -y )n(-y).
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Note that the minimum of that function is obtained for y = y*, as for the
least squares cost function. The extension to problems with several classes is
straightforward. For example, for n classes, the logistics are replaced by the
softmax function,

e~
= n
>
j=1

For each example, cross-entropy is expressed by

Ui with z; = Z WikTr + Wig.
k

E=> yiny + (1-y)In(l—y,).
=1

Training

The interested reader will note that, maybe surprisingly, that approach does
not makes computations more complicated: on the contrary, it makes them
simple: actually, that consists in not taking into account the nonlinearity
provided by the logistics in the computation of the gradient,

OF
Bwi k

= (Z/z' —Y; )$k~

That is equivalent to Widrow-Hofl’s training rule described in Chap. 2.

3.2.3 Preprocessing Outputs for Regression

In regression problems, the outputs represent conditional averages. The res-
idues around the average value are assumed to follow a normal centered law.
In order to optimize the design of the model, outputs are therefore centered
and reduced; the averages and variances of the outputs are estimated on the
basis of examples.

The average quadratic error EQM,., computed in the reduced output space,
corresponds to the average quadratic error EQM computed from raw data,
divided by the estimated variance.

N
1 ~ ~ %
EQM, = = > (k — §i)° = EQM = EQM, x o7
k=1

Reduced Error and Coefficient of Nondetermination

The relation between the average quadratic error computed from the centered
reduced variables is the “residual variance divided by total variance” used in
linear regression to express the percentage of the variance not taken into
account by the model. In that case, the one’s complement of the average
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quadratic error, known as the coefficient of nondetermination, defines the
contribution of the model: the least expensive and least powerful model is the
model that predicts the output as the average value of the measured output,
irrespective of the input. For that model, the average quadratic error EQM,,
is 1.

3.3 Input Dimension Reduction

The design of the model g(x,w) may require a reduction in dimension of the
input vector x. That is particularly important when the number variables is
too large to be handled conveniently; or when it is assumed that they are not
mutually independent. In the latter case, their reduction simplifies the design
of the model. The latter is therefore more robust with respect to the variability
of the data, and is less sensitive to overfitting due to over-parameterization
(see Chap. 2).

In order to explore the structure of multidimensional data, the analysis is
based on the observation of the distribution of variables in the input space.
When the number of factors is too high for visual analysis or digital process-
ing, it must be decreased. In linear statistics, PCA (Principal Component
Analysis) is used for reducing the number of factors. The method is based
on a linear combination of factors by projection. It provides a more synthetic
representation of the data.

In this section, we will review the principles of PCA; we will then discuss
CCA (Curvilinear Component Analysis), which may be viewed as a nonlinear
extension of PCA, well suited to representations of more complex data struc-
tures. A parallel will be drawn with self-organizing Kohonen maps, which are
also used for nonlinear data analysis.

3.4 Principal Component Analysis

Principal component analysis is one of the oldest statistical analysis tech-
niques. It was developed to study samples of individuals described by several
factors. The method is therefore suited to the analysis of multidimensional
data: in general, the separate study of each factor is not sufficient, since it
does not allow for the detection of possible dependencies between factors.

3.4.1 Principle of PCA

To reduce the number of factors (components), PCA constructs sub-spaces of
input space (also termed representation space), whose dimensions are there-
fore smaller than the number of factors, in which the distribution of obser-
vations (points) is as similar as possible to their distribution in representa-
tion space. The similarity criterion is the total inertia of the scatter diagram.



208 J.-M. Martinez

Therefore, PCA is a linear projection method that maximizes the inertia of
the scatter diagram.

Before describing the theoretical developments, let us review, as a simple
illustration, the example of the distribution of a scatter diagram in R? shown
in Fig. 3.1. The first main axis found by PCA is the axis with respect to which
the inertia of the scatter diagram is maximal. The second axis, orthogonal to
the previous one, is the axis with respect to which the inertia of the scatter
diagram, in the null space of the first axis. The other axes are defined similarly.

PCA and Gram-Schmidt Orthogonalization

This procedure may be reminiscent of the Gram-Schmidt orthogonalization
described in the previous chapter for the selection of inputs. That analogy,
however, is deceptive. PCA is a procedure that is carried out in representation
space, in which each observation is represented by a point, whose co-ordinates
are the values of the factors that correspond to that observation. By contrast,
Gram-Schmidt orthogonalization for the selection of inputs is carried out in
the observation space, where each factor is represented by a vector, the compo-
nents of which are observations of this factor in the database. The dimension
of representation space is the number of factors of the model, whilst the di-
mension of observation space is the number of observations in the database.

Figure 3.2 shows the 2 main axes defined by the 1st and 2nd bisector
respectively (the orthogonality of the axes is distorted by the scale of the
graph). The main components will be represented by projections of points on
the main axes. Linear transformation by PCA therefore consists in changing
the variables, defined by the main axes, on the centered data.

We will show that the “mechanical” concept of total inertia of the scatter
diagram is equivalent to the “statistical” concept of variance. The inertia
of points is computed with respect to the centre of gravity of the scatter
diagram. We denote by ¢ the centre of gravity and by I, the inertia of the
scatter diagram defined in R™, we have

n N
1 2
9i = NZ% = I=Y Y (- 9"
Inertia I,, is therefore equal to the trace of the variance-covariance matrix of
the data X defined by
V=(X-1Ig9)" (X -Ig),

where I denotes the identity matrix.

Since inertia is shift-invariant, the data may be centered by X' = X — Ig,
so that one has the following simple relation between the inertia and the
variance-covariance matrix on the new centered data X':

I,, = Trace (X’TX’) )
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Fig. 3.2. Change of variables by PCA

Inertia on Centered and Reduced Data

For centered and reduced data, one has Tr (X TX ) =n.

Consider a sub-space of dimension ¢ < n, and denote by V,,«, the matrix
associated with the projector on R?; the scatter diagram projected on R? is
represented by matrix XV the inertia of which is

I =Tr(V'XTXV).

PCA defines the linear projection that maximizes I, the value of the inertia
of the points computed in R%. That problem is solved by finding the first axis
with respect to which the inertia is maximum, then a second axis, orthogonal
to the previous one, to carry on with the maximization of the inertia, and
so on up to the pth axis. The axes obtained are borne by the eigenvectors of
matrix X T X, ranked in order of decreasing eigenvalues \;. The eigenvalues \;,
j =1,...,n are positive or zero, since matrix XTX is positive symmetrical.
The transformation to be performed on of the centered data to obtain the
main components is

zeR" >V, xeRIT
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The selection of the main components (¢ out of p) results from an analysis of
the eigenvalues. Before describing it, it is worthwhile reviewing a technique,
similar to PCA, which is extensively used in linear algebra: singular value
decomposition (SVD) [Cichoki 1993]. That technique, which is very useful for
solving linear systems, was mentioned in the previous chapter as a tool for
calculating leverages for nonlinear models.

Theorem. For all A € R™*P matrices, there exist two orthogonal matrices
U e R"™P and V € RP*P such that

o1 0 0
- 0 o9 --- 0
: . 0
0o .- 0 Om

with o1 > 09 > -+ > 0y, > 0, where m = min(p, n).

The elements of the diagonal matrix S are the singular values o, ranked
in decreasing order. The singular values o; are the square roots of the eigen-
values \; of the positive symmetrical matrix ATA or matrix AAT if m < n.
The columns of the matrix V' associated with the change of variables are the
eigenvectors of matrix AT A.

PCA and SVD

Therefore, PCA and SVD are equivalent when operated on centered data.
Unlike diagonalization techniques for square matrices, singular value de-
composition applies to all types of matrices. The index for the 1st singular
value equal to 0 is the rank of the matrix; its condition number is the ratio of
the largest to the smallest singular value o1/0,.
From the orthogonality of matrices U and V, one has

UTAV =S = A=USV".

In a modeling application, if A is the matrix of centered observations (defined
in the previous chapter), matrix US = AV describes the same observations in
an “orthogonal” representation: the new inputs obtained after transformation
are not subject to linear correlation. The same technique is used for “cleaning”
signals [Davaud 1991]. In order to reduce the new inputs, matrix U is retained
as a new base of examples: the linear transformation thus becomes S~V Tz
instead of VTz.

Singular value decomposition of the matrix of centered data X is used to
express the inertia with respect to the singular values o; or the eigenvalues
A; of matrix XTX,

p p
L=T(X"X)=>L,=Y N\=1=) o
j=1 j=1
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Inertia and Matrix Norm

That result is familiar in linear algebra since the inertia of the scatter diagram
corresponds to the Frobenius matrix norm, which is expressed as a function

of singular values,
1Xle = [2 2t = 2o
i,J J

The projection matrix P,y, associated with the first ¢ axes is therefore
represented by the first ¢ vectors of matrix Vjx,. The contribution to the
inertia of each main axis is given by the ratio of ¢ to the sum o7 +035+- - -+0.
The contribution of the first ¢ axes is:

q<p

The quality of the dimension reduction depends on the value of ¢q. There is
no general rule for determining the best value. A few rules used to determine
the number ¢ of components [Saporta 1990] may be mentioned:

e The part of the explained inertia to contribute at least a fixed percentage
of the inertia,

e Kaiser’s rule,which retains eigenvalues larger than the average of eigenval-
ues (for reduced centered data, that consists in retaining the eigenvalues
that are larger greater than 1, since the sum of the eigenvalues is equal
to n),

e The “scree test” which, from the curve of I; as a functionof ¢ = 1,2,...,n,
selects the value of ¢ that corresponds to the 1st break in the gradient, as
shown in the example given in Fig. 3.3 with a break in the gradient from
the 4th eigenvalue.

Before applying PCA systematically, it must be remembered that the so-
called principal component is defined from the criterion concerning the inertia
of the scatter diagram. For certain problems, the principal component is by
far not the most informative aspect. For example, in a set of human faces of
several different races, the recognition of race is based more fully on the sec-
ondary components; the first component is more representative of the average
characteristics of the faces.

3.5 Curvilinear Component Analysis

For more complex distributions, dimensionality reduction may require nonlin-
ear processing. Curvilinear component analysis was proposed by [Demartines
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1995] for analyzing and reducing the dimensions of nonlinear distributions. It
may be viewed as a nonlinear extension of principal component analysis. CCA
uses a more local criterion than PCA, which allows it to keep the local topol-
ogy of the distribution of input points. An analysis of this method, together
with examples of applications may be found in [Hérault 1993; Vigneron 1997].

Figure 3.4 shows CCA applied to dimension reduction of nonlinear data
structures: on the left, the left-hand part shows a set of points defined in
R3, and the right-hand part shows a representation in R2. The dimension
reduction may therefore be seen as a “nonlinear” projection that retains the
proximity of points and therefore the local topology of the distribution.

In closed structures, such as a sphere or a cylinder, dimensionality re-
duction will inevitably result in some local distortion, as shown in Fig. 3.5,
which shows an example of the projection of a sphere on the plane. The main
principle of CCA is the gradual control of local distortion, during training.

Since the main goal of CCA is a dimensionality reduction that preserves the
local topology, it is ideally suited for the representation of nonlinear varieties.
A variety in RP may be defined roughly as a set of points, the local dimensions
of which are smaller than p. The envelope of a sphere defined in R? is an
example: the dimension of the variety is 2. More strictly, a variety of dimension
q in R? is a sub-set of R™ obtained by applying a function defined by R? in R9.
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The rank of the differential of the application determines the local dimensions
of the variety.

In relation to PCA, that method is therefore used to represent data struc-
tures that are distributed in a nonlinear manner. It is similar to methods
based on Kohonen'’s self-organizing maps, but its principle is different. There
are no constraints on the points in the projection space. In theory, no neigh-
borhood is defined between the points in the projection space. That gives
great flexibility to the method.

3.5.1 Formal Presentation of Curvilinear Component Analysis
The co-ordinates of the p points are defined

e byax; € R" i={l1,...,p} in the original space;
e byy, e R"<" i={1,...,p} in the reduced space.
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If X;; and Yj; are the distances between points 7 and j, computed in the
original space and in the reduced space respectively, one has:

e original space: X;; = \/ZZ:l(ka — zji)?,
e reduced space: Y;; = \/22;1(%1« — Yjk)2.

The transformation of components generates a distortion of the variety. By
retaining the same metrics (euclidean distance), a measurement of distortion
may be given by comparing distances X;; with distances Yj;:

Z Z (Xij — Yiy)*.

1=1 =141

A parallel may be drawn with PCA, which defines linear projection by min-
imizing the objective function: 3, ; X5 - ; Y;5. That function expresses
the difference between the average of distances ij computed in the original
space and the average of distances Y;2 computed in the reduced space. By
contrast, the cost function used for CCA tends to preserve differences in dis-
tances X;; — Y;;, and is therefore used to represent nonlinear varieties with
minimum distortion.

In order to be able to unfold the varieties, a weighting term F(Y;;,p),
which a decreasing positive function of distance Y;;, may be introduced in the
cost function (Fig. 3.6).

The term F(Y;;) favors short distances in projection space. Parameter p
plays the same role as the radius parameter defined in Kohonen maps: in

A
F(Yij)

. p decreasing
,

Fig. 3.6. Distance weighting function
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output space, distances greater than p will no longer be taken into account.
The decrease in parameter p during training allows the opening, and possibly
the breaking, of certain nonlinear varieties. The projection of a sphere R? in
R? (Fig. 3.4) shows an example of a variety for which the projection requires a
breaking. The function is therefore used to open certain varieties by retaining
the local topology as far as possible.

Therefore, the objective function minimized by CCA takes the following

form:
P
P>

F(}/va)

H MB

3.5.2 Curvilinear Component Analysis Algorithm

The algorithm consists in minimizing the above cost function with respect to
the coordinates of each point in the database in reduced space. As for learning,
we may use any of the optimization algorithms given in Chap. 2. Training can
be performed by any minimization algorithm, as described in Chap. 2. For
illustration, we describe the minimization of the cost function by stochastic
gradient.

Thus, we compute the partial derivatives of the cost function with respect

to each parameter; we denote by y;, the k=" coordinate of point i,
Z OF 0Y;
aym « 0Yij Oy

== ” Y 2 R(Y) — (Xiy — Yig )P (Vi) ik — ).
J#i

Parameters are updated as follows, where p is the gradient step:

uz _ 2F (Yij) — (Xij — Yij ) F'(Yiy)] (i — y;)-
Jj#i

A condition should be provided to guarantee the convergence of the minimiza-
tion. The term 3;; = 2F (Y;;) — (X;; — Yi;) F'(Y;;) must be positive. If Y;; is
too large with respect to X;;, point j should be brought closer to point ¢. The
functions F'(Y;;) should be selected in order to guarantee 3;; > 0. That condi-
tion is difficult to satisfy: for instance, for F' (Y;;) = exp (—Y;;/p), the stability
requires p > (Y;; — X;;)/2. That condition cannot always be fulfilled because
p decreases during training. The following simplification of the training rule
guarantees, almost everywhere, that 3;; =2 > 0:

ny. ” Y (i — ) Y >
Ayz = j#i
0 otherwise.
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Fig. 3.7. Example of a dead end

The contribution of the n — 1 points j on point ¢ produces an average effect.
In certain situations, this may lead to dead ends. Figure 3.7 shows an example
of such a situation.

In input space (a) point i« = 1 at the center of gravity of the other three
points. In output space (b), the initial conditions located it outside the three
points. With the exact rule, point 3 in output space will be blocked by points
2 and 3. Therefore, point 1 cannot reach the optimum position.

To overcome such problems, a simple empirical rule can be used. Instead
of adapting point ¢ to the other points, the new rule consists in adapting all
other points to point 4,

X — Vs )
Nzu(yj_yi) it Yi; > p;
Ayj =3 A Vi

0 otherwise.

To a certain extent, this stochastic version of the gradient is used to over-
come problems of local minima, whilst guaranteeing the average minimization
of the cost function.

3.5.3 Implementation of Curvilinear Component Analysis

The implementation of the method requires the selection of

e preprocessing of data x;;,
e the initial values of components y;;
e a law for the decrease of parameter p.
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Given the metrics used to compute distances, and for the same reasons
as for PCA, the adapted preprocessing operations consists in a reduction of
each component in order to standardize their importance in the computation
of the distances. Although that is not mandatory, data may also be centered
in order to obtain graphic representations around the origin.

As for Kohonen maps, the components y;; of units in the output space, are
initialized to random values. To standardize their distribution, each compo-
nent may be uniformly distributed in [—1, 1]. Given the computations of the
euclidean distances X;; and Y;; evaluated respectively in spaces of different
dimensions, p and ¢, the comparison of distances is biased. To overcome that
problem, especially for high dimension reduction rates, the recommended rule
consists in assessing average distances while taking into account the dimen-
sions of the spaces:

X - \/22—1 (wir — zj1)" v — \/Z£—1 (yir — yjn)”
iy = D s ij = p .

The selection of parameter p has a large impact on the quality of the projec-
tion. During the first iterations, all points y; in output space should contribute
to the cost function. The rule consists in initializing parameter p to the max-
imum of distances Y;j,

p(0) = maxYj;.
ij
The final value of p should correspond to the smallest value required on Y;;,
i.e., to the smallest of values Xj;,
P (tmax) = min X;;.
ij

Parameter decreases according to a law that depends on the number of iter-
ations t from the initial value p(0) to the final value p(tmax),

p(t) = p(0) (p(pt(n(l]a)x))t/tmax-

3.5.4 Quality of the Projection

One of the important aspects of curvilinear analysis is the criterion used to
assess the quality of the result. That criterion is based on the comparison of the
values X;; and Y;; that correspond to the distances between points, computed
in the original space and in the reduced space respectively. The distances are
represented in a plane dx—dy by a point of coordinates dz = Y;; and dy = X;.
The points close to the line dr = dy correspond to neighboring distances. The
distortion due to the dimensionality reduction is therefore proportional to the
average distance from the points to the straight line dx = dy. Figure 3.8 shows
the average distribution of the distances for the example of the hemisphere
and for that of the sphere.
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Fig. 3.8. Distribution of distances in the plane (dy — dz) for the hemisphere and
sphere

For the nonlinear varieties illustrated by those examples, the projection
must exclude certain points. That is true for the map of the earth obtained
using Mercator’s projection. The “western” projection separates the coastlines
of the Bering straits.

In the plane dy — dx, the scatter diagram takes the form of a bell: points
close to each other in the original space (dz small) will be further apart (dy
large) in projection space. The bell shape appears clearly for the projection of
the sphere, where an opening separates the points on the large diameter (Fig.
3.5). Checking the projection consists in checking that the bell shape retains
the local topology as far as possible: if two points are close in the reduced
space, they must be close in the original space.

3.5.5 Difficulties of Curvilinear Component Analysis

Before describing an application, we outline the shortcomings of CCA. The
first problem is that of computation time. The distances between points should
be computed. If the number of points is too great, CCA cannot be applied
directly to the data. A preliminary sampling step is necessary to reduce the
number of examples.

The second problem is related to the use of CCA in on-line mode. Unlike
PCA, reduced components cannot be computed directly. They are obtained
by iterations of gradient descent. Let us describe the CCA procedure. Let
zo be a new input; we want to find the corresponding component 4. The
algorithm consists in initializing yo by the center of gravity of 3 or 4 points y
that correspond to the points x; closest to xg. The projection yg is calculated
using the same algorithm:
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Fig. 3.9. Example of a spectrum
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0 otherwise.

That initialization method appears to be very efficient; convergence is
obtained in a few iterations (less than ten) [Pilato 1998].

3.5.6 Applied to Spectrometry

The application described below was performed in the Saclay Study Centre
[Pilato 1998]. It deals with the measurement of the concentration of radioac-
tive materials. The inspection of nuclear processing units (power plants, re-
processing factories) requires the measurement of concentrations of certain
radioactive materials. Concentration measurements are performed on solu-
tions from the water circuits of the plants. One of the techniques used is the
X-ray fluorescence, which enables fast, non-destructive analyses to be carried
out directly on sampling containers or pipes. X-ray fluorescence consists in
exciting the material of interest, and in analyzing the spectra of the photons
generated by deactivation.

Figure 3.9 shows an example of a spectrum obtained by X-ray fluores-
cence on a vessel containing Uranium 235 and Thorium. The peaks denote
the presence and concentration of those two elements. In our application, each
spectrum is quantized on 4096 energy values. Each value on the vertical axis
indicates to the number of photons counted for a given energy level.
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Conventional spectrum analysis methods are based on physical models,
which assess correlations between the proportion of an element and the in-
tegral around the peaks that correspond to certain lines of the element to
be analyzed. In that case, the physics is relatively complex: overlapping of
peaks, spurious effects or measurement noise. The method is based on a local
analysis of the phenomena. Concentrations are estimated using computations
on data from the spectrum in the vicinity of the lines.

The CCA approach is different. It is based on a global analysis of the curve.
The spectrum is viewed as part of a space with 4096 components. In that
R4996 gpace, the actual dimension of the distribution surfaces of the spectrum
points is equal to two: the spectra depend on 2 parameters only, namely, the
uranium and thorium concentrations. A reduction in size of R*%% to R? was
found to be suitable for the problem: the information “lost” by projection is
not a discriminating factor for the measurement of concentrations.

The database contains 60 spectra. Each spectrum has 4096 components.
The dimension of the matrix of the data sample is thus 60 x 4096. Reduction
by CCA therefore consists in transforming that sample into a matrix of 60 x 2.

Figure 3.10 shows all the examples in the space reduced to 2 dimensions.
We have deliberately meshed the representation by showing the spatial topol-
ogy of the quantification performed by the investigators on the values of con-
centrations of uranium and thorium.

The projection obtained by CCA has the same topology as the experimen-
tal quantification. The concentrations of uranium and thorium were quantified
on the Cartesian product [(u1,us,...,us) X (t1,t2,...,t10)]. Actually, closer
inspection shows that a test is missing: the base only contained 59 spectra.
Figure 3.10 shows the data missing in the CCA projection.

The example shows the advantages of CCA: despite the nonlinear combi-
nations of several effects on the spectra, dimensionality reduction allowed us
to display the inherent size of the data, that of the variation in relation to the
concentration of thorium and uranium. Using reduced spectra, the estimation
of concentrations in uranium and in thorium becomes: regression with a small
neural network, or even simple linear interpolation is more than sufficient.

Applied to more complex problems, when inherent size is not that obvi-
ous, one may proceed iteratively by increasing, if necessary, the number of
components of the projection space, whilst monitoring the preservation of the
local topology on the bisector for short distances.

3.6 The Bootstrap and Neural Networks

The final section describes a new approach that allows automatic design and
training of neural networks. It is based on the statistical bootstrap method and
on the early stopping technique (the latter technique is described in Chap. 2).
The approach advocated here consists in starting the design of the model
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Fig. 3.10. Experimental quantification—Representation by CCA

with a complex network, which is regularized by early stopping of the train-
ing process. The bootstrap is used to assess efficiently the variability of the
network and its error in relation to the data. Combined with early stopping,
it is used to monitor the training process by automatically optimizing the
number of training epochs, whilst providing the statistical characteristics of
the generalization error.
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The bootstrap, proposed by [Efron 1993] is a technique that has been
extensively investigated in the context of statistical inference, especially for
hypothesis testing and confidence interval estimation. It does not require any
assumptions about the probability laws. When applied to regression, the boot-
strap is used to estimate the statistical characteristics of the difference between
the training error and the generalization error. The approach is ideally suited
to problems for which the number of observations is small. That is particularly
true for scientific computing, and for the simulation of complex systems. An-
alytical functions are created by regression or interpolation from a database,
which are used as replacements of software modules that are more computa-
tionally demanding.

In the previous chapter, we emphasized the importance of model valida-
tion (estimation of the modeling error, of confidence intervals, etc.) in the
general context of nonlinear modeling. In the type of applications mentioned
above (replacement of a complex computation code by regression on data gen-
erated by that code), the problem is exactly the same, except for the fact that
computer-generated-data does not have noise other than numerical roundoff
errors. This section describes an alternative to the approaches discussed in
the previous chapter.

3.6.1 Principle of the Bootstrap

We will illustrate the principle of the bootstrap by the example of the estima-
tion of the confidence interval for the expectation p of a random variable. The
purpose of the example, taken from [Wonnacott 1990], is simply to demon-
strate clearly the principle of the bootstrap. In this example, the confidence
interval of the expectation of a random variable is derived accurately from the
average and variance computed on the sample (as described in Chap. 2). That
result stems from the central limit theorem, which states that the distribution
of the average of a sample converges quickly towards a normal law.

Let us take a sample of the random variable of n = 10 observations:
x = {16, 12, 14, 6, 43,7,0,54,25,13}. The average of the sample is

The 95% confidence interval of the expectation u is

_ 17.09
f=X £t =19.0+£2.26— ~19+£12 =7 < pu < 3L

vn V10



3 Dimension Reduction and Resampling Methods 223

The confidence interval may be also calculated by the bootstrap, with the
following algorithm.

Using the initial sample, we simulate new samples, known as “boot-
strapped” bases, the size of which is n, by random selection with replacement.
For instance, consider the initial sample defined above x = {16, 12,14, 6,43, 7,
0,54,25,13}. By random selection with replacement, we obtain for exam-
ple the following bootstrapped base z* = {54,0,16,7,43,54,0,25,25,6}, in
which some values of the initial sample are missing, whilst others appear sev-
eral times. Several samples are thus simulated. For each sample, an average is
computed. The confidence interval at 95% is defined for that set of averages.
The simulation produces the following:

9 < p < 26.

It should be noted that the interval obtained using the bootstrap is virtually
identical to the 95% confidence interval computed above from the central limit
theorem.

Bootstrap—General

The bootstrap does not require any assumption on the underlying statistical
distribution.

The bootstrap may therefore be applied to all estimators other than the
average, such as the median, the coefficient of correlation between two ran-
dom variables, or the largest eigenvalue of a variance-covariance matrix, for
example. For those estimators, no analytical expression is available for the
standard error or the confidence interval. The only applicable methods are
the so-called resampling methods, which consist in the simulation of samples
such as the bootstrap or the jackknife [Efron 1993].

3.6.2 Bootstrap Estimation of the Standard Deviation

Consider a random variable X that obeys the probability distribution F'.
We want to estimate a parameter 6 of F. 6 is estimated from an n-sample

x = {x1,22,...,2,}. We denote by F the empirical distribution, and by
0 = s (x) the estimation of § from sample x. The algorithm is as follows:

1. Select B bootstrapped n-samples, =*!, £*2, ..., *B, each of them being

obtained from the initial sample & by n random selections with replace-
ment

2. For each bootstrapped n-sample, compute a replica of the estimate of 6
as

6(b) = s(x*®), b=1,2B.
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3. Estimate the standard deviation from the standard error computed for all
replicas,

Sy}

> 00
b=1

() =

A2
75 = B—1

One of the theorems proved by Efron deals with the composition of the
bootstrap estimator. The estimate 6 converges to the standard deviation
aﬁ(é*) of the parameter 0 estimated from the sample distribution,

Blgnoo OB = O0p.

That algorithm applies to any estimator. For instance, consider the com-
putation of the largest eigenvalue for PCA. It is the largest eigenvalue of the
variance-covariance matrix X, x, = X TX of the observations. The bootstrap
consists in simulating the replicas X, x, obtained by n random selections of
the lines of matrix X, «,. The statistics (average and standard deviation) may
then be generated easily. That shows the power of the method and its ease of
use. However, that method was not widely used in the past, because of the
amount of computation required: 50 to 200 bootstrapped bases are enough to
estimate an average, but several thousand bootstrapped bases are required to
determine the confidence intervals.

3.6.3 The Generalization Error Estimated by the Bootstrap

In the previous chapter, we emphasized the importance of estimating the
generalization error, and we described the estimation by <«leave-one-outs.
The bootstrap technique can also be used advantageously to estimate that
error. The principle is the same: it consists in simulating B “bootstrapped”
bases. Each base may contain the same example several times, because of
random selection with replacement.

Binomial Distribution of Bootstrapped Bases

For each random selection, all examples have the same probability p = 1/n,
where n is the number of examples. The number of occurrences of an example
in a bootstrapped base therefore obeys a binomial distribution B(n,p = 1/n).
The probability of an example appearing k times is given by P(k) = C¥p*(1—
p)"~k [Saporta 1990].

The probability of an element not appearing in the bootstrapped base
is therefore P(0) = (1 — 1/n)™. For sufficiently large values of n, one has
P(0)y—00 = €71 2 0.368. On the average, 37% of the examples will not be
used for training.



3 Dimension Reduction and Resampling Methods 225
Statistics of the Generalization Error

The difference between the training error computed on the bootstrapped base
and the testing error evaluated on the initial base is considered to be a random
variable that represents the difference between the training error and the
generalization error.

Statistics are produced for all those differences (1 per bootstrapped base)
in order to estimate the probability law of the difference between the training
and the generalization error.

We denote by B the initial database and by Bj, b = 1,..., N the set of
bootstrapped bases. Denote by e; the training error on bootstrapped base
k, and by e, the error of the same network computed on the initial base
B. The difference §, = €, — € between the errors may be considered as a
random variable that arises from overtraining. That difference may also be
viewed as the bias that appears when estimating the generalization error by
the training error. The expectation value ¢ and the variance a§ of the bias
may be estimated on the set of values of dy,

ss]

I 1< =2
b=e—cp, =5 0 of=p5—D (8-0)
b=1 b=

1

3.6.4 The NeMo Method

The algorithm proposed above was programmed in the NeMo software. The
bootstrap is associated with early stopping for automatic monitoring of the
training of the network.

The NeMo Tool

NeMo is a tool developed by the Systems and Structure Modeling Department
of the Study Centre at Saclay using the Stuttgart neural network simulator
(SNNS) available on http://www.ra.informatik.uni-tuebingen.of/SNNS, which
is designed to simplify neural network learning and testing tasks.

The user chooses the number of training cycles N. and the number of
bootstrapped bases B. NeMo performs B training cycles and saves the average
quadratic training and test errors for each cycle. NeMo analyses the training
and test error profiles in order to select the most appropriate value for the
number of cycles.

Modeling of Errors

The average quadratic error EQM,. is calculated from the centered and re-
duced output variables (estimated and measured). Therefore, the analysis of
the error deals with the part of the variance that is not explained by the model
or coefficient of nondetermination that was described in the section on output
preprocessing.
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We denote by j the rank of the bootstrapped base and by i the iteration
on the number of cycles; the average quadratic learning and testing errors are
represented by the following two tables:

R T R B
el g2 ... B e &2 ... B
*1 *2 *B 1 2 B
ENC &‘Nc 8Nu ENC ENC &‘NC
learning error testing error

After that phase, NeMo determines the number of cycles by application of
heuristics based on game theory. A first pessimistic player considers the worst
possible situation on the test error, for each number of cycles value,

eMax = Maxg, ().

The second player then determines the number of cycles that corresponding
to the worst situation obtained; that is, the number of cycles that corresponds
to the maximum testing error,

Nevtimal — Arg. {Min e} .

That strategy for the selection of NoP'™al may be relaxed by adopting
only a fraction of the set of B training cycles. To make it more robust, just
exclude the outliers, that is, training situations that differ greatly from the
average. By default, NeMo determines the optimum number of cycles on the
90th percentile of the test error.

Percentile

The ath percentile corresponds to the interval made up of the values for which
the distribution function is smaller than a: a fraction (1 — ) of the maximum
values is excluded.

The optimum number of cycles may also be estimated by the tri-median
method, which is more stable but more risky since 25% of cases are rejected:
the last quartile that corresponds to the largest test errors.

Quartile

If F is the distribution function, the 1st and 3rd quartile Q; and Q3 and the
median Qo are defined respectively by F(Q1) = 0.25, F(Q2) = 0.5, F(Q3) =
0.75.
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Tri-Median

The tri-median corresponds to 0.25 Q; (1st quartile) + 0.5 Q2 (2nd quartile
or median) + 0.25 Q3 (3rd quartile).

After determining the optimum number of cycles by one of the strategies,
NeMo starts a new training cycle based on all examples, with the optimized
number of cycles NoPU™al defined during the previous phase. For that last
training cycle, the same training parameters (initial value and variation law
of the gradient step) are used. If £, denotes the average error computed on
the initial base, and 0 the average value of the bias, the generalization error
is estimated by

£g=6Eq+0.

More generally, the distribution function of the generalization error is esti-
mated by the empirical distribution function of the shifted bias of the value
€4. Note the contribution of the bootstrap associated with early stopping in
relation to cross-validation,

e to some extent, the automation of the design of the network by adapting
the number of early stopping cycles,

e a wider estimate of the variability of the model with respect to the data
set,
estimates the confidence intervals (margins, uncertainty),
the use of all examples to construct the network.

Finally, it should be noted that NeMo may monitor the suitability of the
model to the data: if the optimized number of cycles is too close to user-chosen
maximum number of cycles, there is no minimum test error. In that case, the
user must increase the complexity of the network (number of hidden neurons)
or increase the number of training cycles.

3.6.5 Testing the NeMo Method

In the following, we describe the results of an experiment designed to validate
the method. The test consists in comparing the average error estimated by
NeMo to the actual error. The actual error is approximated according to the
Monte Carlo method, i.e., by making a very large number of computations of
the average quadratic error, then by computing its average. We used NeMo
for the approximation of two nonlinear analytical functions,

o #s(r) R® =R,
L] ¢12(a?) R12—>R.

We chose those functions in order to evaluate the method on the approx-
imation of sufficiently complex functions (large dimensions of input space).
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Fig. 3.11. Function ¢s

Using those two functions, several bases of examples were generated by vary-
ing the number of examples from 100 to 1500 by steps of 100. The inputs were
uniformly distributed in [—1,1].

The model networks adopted are feedforward networks with one hidden
layer and a linear output neuron. For the bases generated by the first function
¢s, five model networks were proposed to NeMo with 4, 6, 8, 10 and 12 hidden
neurons respectively. For the bases generated by the second function ¢15 (a
larger input space), six networks were tested, with 10, 14, 18, 22, 26 and 30
hidden neurons respectively.

Large Dimensions

It should be noted that the very low density of points in R'?; 1500 points in
R'2 mean that the average number of points per axis is smaller than two.

The actual error is obtained from 10% random selections using the same
input generation law (uniform distribution) and by computing the reduced av-
erage quadratic error EQM,. between the measured output and the estimated
output.

The figures below show (on a log-log scale) the true error EQM,. (horizon-
tal axis) vs. the error estimated by NeMo (vertical axis). The points displayed
correspond to the different networks created from all bases of examples. Each
network was generated 15 times from databases with 100,200, ...,1500 ex-
amples respectively.
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The analysis of all results given in Figs. 3.11 and 3.12 illustrate the salient
features of the NeMo method,

e the generalization error is estimated accurately, even in complex cases
(large number of inputs + few examples);

e the bootstrap is used to automate the adjustment of the network to the
data by monitoring the termination of training.

Figures 3.11 and 3.12 show estimates of the generalization error very close
to the real values. The low error values correspond to training cycles performed
from databases with enough examples. For these cases, the estimated error on
the Y-axis is virtually equal to the actual error on the X-axis.

A slight overestimate should be noted for 4 cases out of 75 between val-
ues 0.01 and 0.02 for $sEMBED (Fig. 3.11) and less precision for the more
complex ¢1oEMBED (Fig. 3.12). In the latter case, regression concerns a rela-
tion from R'? to R with a maximum of 1500 points to represent the relation.
There is an overestimate of the error for the low values and a underestimate
for values greater than 0.2. Nevertheless, and in spite of the large dimensions
of the input spaces, the relation of R'2 in R is correctly modeled using a few
hundred examples.

3.6.6 Conclusions

The above illustrative example shows that
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networks generated automatically are sufficiently well adjusted, even in the
most difficult cases, where the number of examples is small. The statistics
provided by the bootstrap allow for the automatic control of the early
stopping of training, and provide sound statistics for the generalization
error;

the second point is associated with the problem of the size of the input
space. Even in the example of the relation application of R'? in R, a few
hundred points are enough to represent the relation. In many problems,
nonlinear relations may be approximated easily from a low density of ex-
amples. It should be noted that from a certain level of complexity, networks
created and adjusted using the same sample appear to be equivalent. Dif-
ferent networks may be adapted to represent the same relation.

Within the context of statistical learning theory, the adjustment of models

may be monitored, hence optimized, by bootstrapping. That approach should
be compared with more formal methods based on the theory of [Vapnik 1995],

the
the

goal being the adaptation of the computing capacity (VC dimension) of
model to the data. In that context, statistical resampling methods provide

real solutions, which can easily be implemented, and can run in reasonable
time on present-day computers.
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Neural Identification of Controlled Dynamical
Systems and Recurrent Networks

M. Samuelides

Modeling of controlled dynamical systems or “process identification” is a
major application of neural networks. This topic was cursorily addressed in
Chap. 2. It is more systematically developed hereafter. Moreover, it is com-
pared to similar statistical methods that are commonly used, especially for
linear systems identification.

We start with the presentation of several examples of controlled dynam-
ical systems. We show that the addition of a “state noise” in order to take
into account the uncertainty of the model leads to viewing the evolution of
the state as a Markov process. Neuronal identification of nonlinear processes
is essentially a generalization of well known linear regression. We first recall
the elements of linear regression in the section “Regression, a tool for con-
trolled dynamic al system identification.” Based on examples, we show how
to compute the regression coefficients of an auto-regressive model. Then neural
identification is presented as a natural nonlinear regression methodology. Fol-
lowing section is devoted to on-line or adaptive identification of dynamical
systems. Our starting point is recursive identification of linear systems, which
is a mere generalization of the basic statistical Law of Large Numbers. Fur-
thermore, we develop the recursive prediction error method (RPEM), which
is a nonlinear extension thereof. Adaptive identification algorithms, including
neural identification algorithms, will be addressed.

In most applications, the state of the system cannot be completely known
because some state variables cannot be measured and because one cannot
avoid measurement errors. Therefore, filtering techniques are commonly used
to reconstruct the state of a dynamical process from the measurement results.
The popular technique of Kalman filtering is addressed in the section “Inno-
vation filter in a state model.” It is subsequently used for designing a neural
learning algorithm that may be used to identify dynamical processes. At the
end of the chapter, the sections “Recurrent neural networks” and “Learn-
ing for recurrent neural networks” are devoted to recurrent neural networks.
The most popular models of recurrent neural networks (Elman networks and
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Hopfield networks) are described. Finally, we show how to use that type of
networks for the identification of controlled dynamical system.

4.1 Formal Definition and Examples of Discrete-Time
Controlled Dynamical Systems

4.1.1 Formal Definition of a Controlled Dynamical System by
State Equation

Since all the applications of neural networks to control are implemented on
computers, the present chapter, and the next, will be essentially devoted to
discrete-time dynamical systems. The sampling techniques of analog signals
that are delivered by physical devices will not be addressed.

The mathematical model of a dynamical system is defined by a set E,
called the state space of the system, and an evolution equation, which de-
scribes completely the evolution of the state of the system in state space
from the initial state conditions. In most problems, the evolution is said to be
autonomous: the evolution law is not time-dependent. We will stick to that
hypothesis in order to alleviate the notations. In control problems, the state
of the system at time t + At does not depend on the state of the system at
time t only: it also depends on an external signal at time ¢, which is called
input or control of the system. In such a case, the system is termed controlled,
in contrast to autonomous. The set of controls will be referred to as F'. Using
classical notations, we will write

o x(t) € E for the state of the system at time ¢,
o wu(t) € F for the value of the control at time ¢.

Thus, in order to define the whole state trajectory of a controlled system
from time O to time 7, one needs the initial state x(0) of the system and
the control trajectory [u(t)]ie[o,r]- The control system is designed in order
to build a control trajectory that is as close as possible to a reference state
trajectory, or that minimizes the cost of the trajectory with respect to a given
cost function.

Notice that if a closed loop control law is implemented, i.e., if the control
system computes the control as a function of the current state (or the past
state trajectory of the system, or the past results of measurements performed
on the system), then the whole system (controlled dynamical system+-control
system) is an autonomous dynamical system. The design of closed-loop control
law and their neural implementation will be the main topic of the next chapter.

As mentioned above, we focus here on discrete-time dynamical systems.
A discrete-time dynamical system can be derived from a continuous-time dy-
namical system by sampling the state trajectory of the system. As previously
in Chap. 2, the sampling period is denoted by T and we write time & for time
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= kT. The controlled dynamical system time evolution is described by the
following evolution equation

w(k+1) = flz(k), u(k)],

where f is the mapping from E x F' into E that allows us to infer the state
at time (k+ 1)T from the state at time k7. It is possible to make this general
set-up more specific for particular systems.

The more classical model is the linear model. In that case, the state space
and the control space are vector spaces, A is a linear mapping from E to E, B
is a linear mapping from F to E and the evolution equation has the following
form:

z(k+1) = Az(k) + Bu(k).

Because mathematical models are just an approximation of the real evo-
lution of physical devices, the modeling error is generally represented by a
random additional term. This term is often called the state noise.

For instance, in the stationary linear model, the model error is modeled by
an additive noise that is generally White and Gaussian. Then the evolution
equation takes the form

x(k+1) = Ax(k) + Bu(k) + v(k + 1),

where the v(k) are gaussian centered (null expectation) independent random
vectors with covariance matrix I.

In that case, the state trajectory is partially random, and the process is
called a stochastic process. In the following, we provide some examples of
controlled dynamical systems, as illustrations for more formal considerations.

4.1.2 An Example of Discrete Dynamical System

First consider an example of a dynamical system with discrete state space. A
labyrinth with 18 possible positions is shown on Fig. 4.1.

The state space is an 18-element set {12, 13, 14, 15, 21, 22, 24, 32, 33, 34,
35, 41, 42, 44, 52, 53, 54, 55}. The set of controls may be chosen as the set of
four directions (N, W, S, E). The evolution is given by the natural mapping
that associates to an initial position and a course order either the resulting
position if the order is feasible, or the initial state if it is not:

f(12,N) =12, f(13,N) =13, ..., f(21,N) =21, f(22,N) =12, ...,
F12,W) =12, f(13,W) =12, ..., f(21,W) =21, f(22,W) =21, ...,
£(12,8) = 22, £(13,S) =13, ..., f(21,8) =21, £(22,8) =32, ...,
f(12,E) =13, f(13,E) =14, ..., f(21,E) =22, f(22,E) =22, ....

Other modeling rules may be chosen, corresponding to other state repre-
sentations of the same problem. For instance, one may prefer characterizing
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Fig. 4.1. A labyrinth

the state of a robot by the couple of the actual position and of the direction.
In our example, the state space would have then 18 x 4 = 72 elements and it
will be completed by a control set of three elements (A for move ahead, L for
move towards left, R for move towards right).

Software products that are used to exploit large database or to perform
data mining on the Web are facing a lot of problems that are formalized as
navigation problems in a graph. The state space is the set of the nodes of the
graph.

4.1.3 Example: The Linear Oscillator

Let us consider now the harmonic oscillator that is governed by the second-
order linear differential equation,

First, notice that the differential equation does not provide a genuine state
representation since it is a second-order equation. The associated continuous

state representation is
d (21 [ 22
dt T —I1 ’

where the state incorporates the mobile current position x; and its speed x».
In order to derive a discrete time evolution, we have to solve the differential
equation on the sampling period T'. In that trivial example, the solution is
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obvious, and the function that maps the state at time t to the state at time
t + T can be written explicitly. Generally, it will not be the case, neither
for other models in the following nor for most applications. Therefore, one
has to obtain a numerical approximation with a differential equation solver
(Runge-Kutta algorithm for instance [Demailly 1991]).

To control the mobile, we consider a scalar additive control on the speed,
denoted by wu.

For instance, in our example, the second time derivative is easily obtained,

dz (= =
dt2 T2 N —X2 '

From that expression, one can derive a second-order Taylor approximation of
the state evolution

T €1 d [z T? 42 €1 0
<x2> (t+T) = (@) )+ 7 <x2> )+ 5 1 (@) ) + (u(t)> .

Thus, the following dynamical discrete-time controlled system is obtained

<x1 (k+1)) _ (3:1 (k)) _ ( 1 (k) + Txa (k) — Ty (k) )
2o (k+1) 2 (k) 2y (k) = Ty (k) — oy (k) +u (k) )

such that the trajectories of that system are a close approximation of the
sampled trajectories of the continuous-time dynamical system.

4.1.4 Example: The Inverted Pendulum

We consider now the nonlinear dynamical system called inverted pendulum
because its unstable equilibrium is considered as the Reference State. The
device diagram is represented on Fig. 4.2.

The differential equation of the controlled system is

d20 dé
o gsin(0) — k— + u.

dt
Its continuous-time state representation is

d [z _ To n 0
dt \ zo N gsinxy — kxo ul/’

Notice that the state space is not really a vector state, since the angle 6 is
only defined up to a multiple of 2. Actually the physical problem makes sense
only if the angle is constrained within a given viability domain. The differential
equation solver is not detailed. Simulations that are used to illustrate the
present chapter are performed using Matlab™ software.
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Fig. 4.2. Diagram of the inverted pendulum

4.1.5 Example of Nonlinear Oscillator: The Van Der Pol Oscillator

Stable oscillations in uncontrolled operating mode are another example of ad-
verse oscillations in physical devices. They arise very frequently from nonlin-
earities. A typical example is provided by the following Van der Pol differential
equation:
d?z dx dz

dt at "

The parameter z is the damping rate of the system and wy is the eigenfre-
quency of the oscillator. The state representation is 2-dimensional, i.e.,

d X1 . To I 0
dt \ z, n 2zw0x2—w3x1—3kx§x2 ul’

Note that the system is linear with respect to the control. The dynamics
of the uncontrolled system (v = 0) in the 2-dimensional sate space features
a limit cycle as an attractor. That means that, whatever the initial state,
the state trajectory winds around a specific periodic trajectory when times is
going on. This phenomenon is illustrated on Fig. 4.3:

+ wiz + 3ka?

4.1.6 Markov Chain as a Model for Discrete-Time Dynamical
Systems with Noise

Let us now return to discrete-time dynamical systems. Consider first the fol-
lowing very simple dynamical system: the random walk on a triangle. The
state space has three elements a,b and c. The dynamics is defined by the
following evolution function f:
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Fig. 4.3. Trajectory of a Van der Pol oscillator. In figure (a) a limit cycle is observed.
In figure (b), the trajectory is perturbed by an additive random input in the equation

Let us introduce now uncertainty in the model. We assume that, at any
time, there is a probability of 0.1 of heading into the wrong direction,

Plf(a) =b] =09, P[f(a)=d =0.1,

and so on.

The picture of that random dynamics is outlined on Fig. 4.4.

The state trajectory is no longer deterministic. That random dynamical
system, or stochastic process, is called a Markov chain. In the long time limit,
the behavior of a Markov chain is quite different from that of a deterministic
dynamical system. In that simple example, the state does not depend on the
initial state and it is straightforward to show that it is distributed according
to the uniform law in the limit of large time. That probability law is called
the stationary distribution of the Markov chain.

The dynamics of a Markov chain can be conveniently described by a matrix
representation. The state set is ordered, and a matrix is built, whose rows
are the transition probabilities: the elements of row i are the values of the

Fig. 4.4. Diagrams of random dynamical evolutions on the triangle. (a) Peri-
odic dynamics with random disturbance (b) Point attractor dynamics with random
disturbance
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probability of going from state i to the other states. The matrix is called the
transition matrix, denoted by IT. The general term of that matrix is defined
as

IIjj=Plz(k+1)=j|z (k) =]
using the conditional probability formalism. For instance, the transition ma-
trix of the random walk on the triangle is

0 09 01
II=101 0 09
09 01 O

One can check that the stationary distribution is invariant under the ap-
plication of the transition matrix. Actually, 1 is an eigenvalue of any transition
matrix. It can be shown that the magnitude of any eigenvalue is smaller than
or equal to 1. For instance, in our example, the eigenvalues of the transition
matrix IT are (approximately) 1, —0,5 + 0.69281 and —0, 5 — 0, 6928i. The
uniform distribution can readily be checked to be invariant.

0 09 0.1
(1/3 1/3 1/3) (o1 0o 09| =(1/3 1/3 1/3).
09 01 0

The invariant distribution plays the same role as the equilibrium state of
deterministic dynamics. In statistical physics it is termed precisely equilibrium
state (see, for instance, Gibbs state in statistical physics).

Here is another example of dynamics on the triangle that exhibits symme-
try breaking. The evolution function f is defined by

fla)=a, f(b)=a, f(c)=a.

Then, the transition matrix is

1 0 0
=109 0 01
09 01 O

Its spectrum is {1, 0.1} and its stationary distribution is (1, 0, 0). In
that case, the equilibrium state is deterministic although the dynamics is
stochastic.

Of course, a state noise can be introduced into the controlled dynamical
system as well. In that case, the transition probability from state (k) to state
(k + 1) depends on the control w(k) which is applied at time k.

For instance, in the case of the labyrinth that was presented at the begin-
ning of this section, f(13,N) = 13. If we introduce a uniformly distributed
error probability of 0.1 for the control system, then f(13,N) is a random
variable that takes the values 13, 12 and 14 with probabilities 0.9, 0.05, 0.05
respectively.
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4.1.7 Linear Gaussian Model as an Example of a Continuous-State
Dynamical System with Noise

Engineers are commonly dealing with state noise in continuous state dynami-
cal systems. In that case, probability calculus is more complex and cannot be
solved analytically except for the case of linear models with additive gaussian
noise. We will describe that model because it is frequently used for Kalman
filtering.

Let us consider the linear controlled dynamical system with state equation

x(k+1) = Ax(k) + Bu(k) + Cv(k + 1),

where (v(k)) is a centered reduced white gaussian noise, i.e., a sequence of
random independent identically distributed random vectors which follow a
gaussian distribution with 0 mean and identity covariance matrix.

If (k) is a gaussian vector with expectation equal to m(k) and covariance
matrix equal to P(k), then, from the stability of gaussian law under linear
transform, x(k + 1) is a gaussian vector with mean equal to

m(k + 1) = Am(k) + Bu(k)
and with covariance matrix equal to
P(k+1)=AP(k)AT + CC",

where AT and CT are transposed matrices A and C.

We recall that if P is the covariance matrix of a random vector x, that
takes its values in a finite-dimensional vector space E, and if A is a linear
mapping defined on E, then the covariance matrix of the random vector Ax
is APAT. (We merge here the notations for linear mapping A and its ma-
trix representation in the reference basis). That result will be crucial for the
computation of the Kalman filter.

The above equation is termed the propagation equation of covariance.
Then we can determine the asymptotic behavior of gaussian stochastic process
(z(k)) for long times. If matrix A is stable (i.e., if the magnitude of all its
eigenvalues is smaller than 1), the gaussian process converges when times goes
to infinity towards a gaussian law with 0 mean and with covariance matrix
P, which is the solution of the following equation:

P.,=AP AT +CC".

Conversely, if A is not stable (i.e., if there exists an eigenvalue whose
modulus is larger than or equal to 1) then there does not exist a stationary
regime and the process diverges for long time. The linear model is said to be
unstable.
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Fig. 4.5. Wolf sunspot file from 1700 to 1997

4.1.8 Auto-Regressive Models

The Wolf sunspot file is an example of database that is commonly used as a
benchmark for identification and prediction algorithms. It is maintained since
1700; its variations are shown on Fig. 4.5.

The diagram exhibits some regularity with obvious cycles with approxi-
mate period of 11 years. Therefore, it is natural to look for a law that predicts
the evolution of the phenomenon [Tong 1995]. There is a wealth of papers on
that topic; we consider, for instance, the following model, built up in 1984 by
Subba and Gabr (the original data were first centered):

z(k+1) =1.22z(k) — 0.47x(k — 1) — 0.14x(k — 2) + 0.17z(k — 3)
—0.152(k — 4) + 0.052(k — 5) — 0.052(k — 6)...
10.07z(k — 7) + 0.011z(k — 8) + v(k + 1),
where (v(k)) is a gaussian white noise with variance equal to 199. Such a

model is called an auto-regressive (AR) model.
Thus, an AR(p) model is defined by the following regression equation

z(k+1)=az(k)+---+apr(k—p+1)+v(k+1),

where (v(k)) is a gaussian white noise. Note that the relevant signal may be
interpreted as the response of a linear filter [infinite impulse response (IIR)]
to white noise [Duvaut 1994].
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Remark. An infinite impulse response filter (IIR filter or “recursive filter”)
is characterized by the fact that its response at time k 4+ 1 depends on its
input at time k£ and on its response at previous times. On the other hand, a
finite impulse response filter (FIR filter or “transverse filter”) is characterized
by the fact that its response at time k + 1 does not depend on its response
at previous instants but solely on the input signal at the same instant and at
previous instants.

In addition, the model of the response of FIR filters to white noise input,
such as

w(k+1)=bov(k+1)+byv(k)+ - +bgv(k—q+1),

are usually called moving average process MA(g). The natural generalization
of these two models is the auto-regressive moving average model of order (p, q),
or ARMA (p, q), model.

Although ARMA models enjoy universal approximation property, it is
more efficient to build nonlinear evolution equations to model phenomena
or signals that admit parsimonious nonlinear representations [Tong 1995]. So
NARMA models are introduced with the following regression equation

z(k+1) = flek),...,x(k—p+1),v(k+1),v(k)...,v(k —gqg+1)].

We point out that these models are particular examples of dynamical sys-
tems that have been addressed in previous paragraphs. Their state represen-
tations are obvious but quite voluminous. For instance in the previous order
(p,q) NARMA model, the state of the system at time k is the vector x(k),
which has p 4+ ¢ components, namely,

[z1(F)

o(k), ..., X p(k) =k —p+1),zpp1(k)
0(k) .. @y (k) = vk — g + 1)),

and the state equation is

Zpralk+1) = i (K)
z1(k+1) = flei(k),...,xp(k),v(k+ 1), zpi1(k)...,), Tprq(k)].

In the same way we considered controlled dynamical systems built from
autonomous dynamical systems by introducing an input, time series the-
ory considers autoregressive models with exogenous inputs which are called
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ARMAX models or NARMAX models (with X for exogenous). In these mod-
els, the evolution equation takes into account exogenous variables at current
instant or in the past. These exogenous variables are known and are the exact
equivalent of the control signal. So we get the ARMAX (p, ¢,7) model,

z(k+1)=aix(k)+... +apx(k —p+1)+bov(k+ 1) + biv(k) + ...
+ bv(k —q+1)+culk)+ -+ culk —r+1),

and the NARMAX (p, ¢, ) model,

x(k+1) = fle(k),...,z(k —p+1),v(k +1),v(k),...,
vk —q+1),uk),...,ulk—r+1)].

4.1.9 Limits of Modeling Uncertainties Using State Noise

We introduced in the previous sections the state noise (v(k)), which models
uncertainty on the state variables using random variable and the probabilis-
tic framework. Of course this type of model is relevant if the uncertainty is
subject to statistical regularity that enables to identify some knowledge about
this uncertainty and to improve prediction and the quality of control. Yet, it is
not always the case and the occurrence of uncertainties or unknown that are ill
represented by random variables is an intrinsic limitation of any statistical al-
gorithm. A good example of this situation is the example of a non-cooperative
target tracking: if we model the unknown control of the target by a stochastic
process, the intention of the pilot is badly represented by such a statistical
modeling.

In that case, when there is no other specific knowledge, probabilistic frame-
work is just a less evil. Then it is important to use all the available information
rather than to represent all the ill-identified variables in a large-dimensional
stochastic process. The number of unknown parameters to be identified has
to be reduced. These considerations support the use of parsimonious models
and among them neural networks as it was explained in Chap. 2.

4.2 Regression Modeling of Controlled Dynamical
Systems

4.2.1 Linear Regression for Controlled Dynamical Systems
4.2.1.1 Outline of the Algorithm

In Chap. 2, linear regression was described as the task of finding the (n,1)
column vector w = (wy;. . .;w,) that minimizes the sum of the squared errors

(SSE)
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N
J = Z (yr — wkw)2

k=1
from N(1,n) input vectors (21, ..., &g, ...,xy) and N output scalars (y1,. . .,
Yk, --->YN), Or, equivalently that minimizes the half mean squared error

(MSE),
1 )
on (w) = N Z (yk — Tpw)”.
k=1

We restrict ourselves to the classical case of a scalar output. The extension
to the case of a vector output is trivial. It is well known (see Chap. 2) that a
quadratic cost function has a single minimum, which can be derived through
the following matrix formula:

-1
W= (XTX) xTy,

where the (IV,n) observation matrix X = (x1;...;xk;... zy) and the (N, 1)
column vector y = (y1;...;Yk;---;yn) are constructed from the input and the
output data. This result is available if the quadratic minimization problem is
well-posed, i.e., the matrix (X T X) is invertible.

That algorithm may be used for autoregressive model identification. That
type of model (ARX model) was introduced in the previous section.

zk+1)=az(k)+ -+ apz(k —p+1)+bov(k + 1)+ cru(k) +---
+cu(k—r+1).

Note that there is a correlation of the input and the output. Here the
regression coefficient vector is w = [a1,...,ap, by, c1,. .., 0] L.

When an input trajectory [u(1),...,u(k),...,u(N)] and an output tra-
jectory [x(1,...,z(k),...,z(N)] are available, the (1,p + r) input vectors of
the regression are constructed as follows: x; = [z(k);...;z(k — p + 1);
u(k);...;u(k —r 4+ 1)] for k varying from max(p,r) + 1 to (N — 1) and the
associated output is yr = z(k + 1).

High quality results are obtained provided that the linear model of the
estimator is relevant. This assertion is supported by the following example.

4.2.1.2 Example of Application
Let us consider the (2, 2) order ARX model,
z(k+1) =ajz(k) + asx(k — 1) + bov(k + 1) + cru(k) + - - + cou(k — 1),
with the following real values for the parameters:
ap =1.2728, as =081, by=05, ¢ =05, c3=—0.5,

and where the operator-designed input trajectory (uy) is a white noise.
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As requested by the method, we build the input vectors of the regression
x(k) = [z(k);x(k — 1);u(k); u(k — 1)] for k varying from 2 to N — 1.
The computation of regression coefficients yields the following numerical
results:
a1 =129, a,=-0.83, ¢ =049, ¢&=-0.51.

Assume now that we ignore the input data; then the regression input
vectors are two-dimensional x(k) = [z(k);z(k — 1)]. We have a simple AR
model, and the computation gives the following, inaccurate estimations:

4y = 1.17, g = —0.71.

The model was not relevant: since the input trajectory was white noise,
an AR model was used to process data that were actually generated by an
ARMA model with vector noise (uy, vg).

Now, assume that a measurement noise is introduced into the simulator,
so that our observation of the state is inaccurate while the process dynamics
is unaffected (that point will be developed further in the section devoted to
filtering). Then the data-generating process is the following:

{x(k‘ +1) = a1z(k) + agx(k — 1) + cru(k) + cou(k — 1)
y(k) = (k) + bow(k) '

In that case we have poor results if we use the ARX regression, even when
the input trajectory is taken into account. We get

41 =0.61, G =—0.36, ¢ =049, & =—0.11.

That numerical simulated example shows how it is important to get a
relevant model for the noises to achieve linear regression. This problem was
already addressed in Chap. 2 in the framework of dynamical neural modeling.
We shall give a more detailed account further in this chapter: the occurrence
of measurement noise creates a new problem, namely the filtering problem.

4.2.1.3 Statistical Background

Statistical analysis of time series is well known and will not be detailed here-
after. One can consult [Chatfield 1994] for a classical and practical handbook
and [Gouriéroux 1995; Azencott 1984] for more mathematical details. We shall
just outline here the explanation of the least-squares methodology in the sim-
plest case of a stable autoregressive model with a gaussian centered noise.
The variables are written with capital letters because they are considered as
random variables.
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Consider the gaussian stationary stochastic process associated to the
AR(p) model,

X(k+1)=ai X(k) 4+ apX(k —p+1) + bV (k+1).

Assume that the model is stable (i.e., the roots of the polynomial P(z) =
1—aiz —--- —apzP are outside the unit ball) and that the white noise (V)
is gaussian and centered. Then set r; = Cov(Xy, Xk—;), and take the co-
variance of the two members of the previous equation binding the variables
(Xk—i)i=0...p—1. Then the classical Yule-Walker relations are obtained

rL=airo+ -+ aprp
Tp =a1Tp—1+ -+ apro

The same relations are obeyed approximately by the empirical estimators
7 = 1/(N — p) Z’;iﬁl x(k)z(k — i) of the covariance coefficients r; and by
the mean-squared estimators a; of the regression coefficients a; (for higher
accuracy, one should consider the truncation errors that vanish as the ratio
p/N).

The estimators 7;, however, are consistent, without bias and asymptot-
ically gaussian with a variance of order 1/N. Then, it may be proved that
the estimators a; are consistent, asymptotically without bias, asymptotically
gaussian with a variance of order 1/N too. That result allows us to build
statistical tests in order to validate the model.

Remark. An estimator is said to be consistent if the mean squared estimation
error goes to 0 when the sample size goes to infinity.

We have just provided here a cursory introductory outline of linear re-
gression. Actually, statisticians and control engineers have improved those
methods to a great extent. Spectral representation is a key tool of linear mod-
eling, and the transfer function of linear filters associated to ARMA models
are generally the object of identification process. Those basic techniques are
addressed in the literature (see the references) and are not within the scope of
this book. Neural networks are a methodology that is relevant in the nonlinear
framework.

4.2.1.4 Application to a Linear System: The Harmonic Oscillator

Let us use the previous algorithm to identify the harmonic oscillator that
was described in the previous section. Suppose we know only the input tra-
jectory and the angle trajectory (oscillator position). If a hundred step data
file is available, ARX(2, 2) model-based identification gives the correct coef-
ficients with high accuracy. Note that the order of the model is 2. If we use
an ARX(2, 1) model to perform the identification, the results are significantly
corrupted. That can easily be explained: since the control is implemented on
speed increment, its order is 2.
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Fig. 4.6. Prediction of sunspot using AR(9) model based linear regression (a) One
step prediction (b) 50 step horizon prediction

4.2.1.5 Application to Sunspot Data Modeling

If we use an AR(9) model based on linear regression to the sunspot series,
omitting any data preprocessing, from a 150-step data file, we obtain a predic-
tive model. Its performances on a 50-step test set are shown on Fig. 4.6. The
difference between the real observation and the predicted value computed from
the 9 closest past observations is represented on picture (a). That prediction is
quite accurate. In picture (b), we represented the difference between the real
observation and a predicted value, which uses solely the initial 9 first values of
the data file. Of course, oscillations are damped. The damping phenomenon is
normal because the autoregressive model is stable and the predictions do not
use new measurements, but initial values only. Nevertheless, the regression
process captured the basic frequency of the phenomenon.

4.2.2 Nonlinear Identification Using Feedforward Neural Networks
4.2.2.1 Limitations of Linear Regression

When the linearity assumption on the state equation is not obeyed, linear-
regression-based modeling of controlled dynamical systems is very inaccurate
and uses very heavy models with too many parameters. That is illustrated on
Fig. 4.7.

In that example, which was described in previous section, there is no pos-
sible linear model, which exhibits both a stable equilibrium and an unstable
equilibrium. Yet, the linear regression captured the right frequency of the
oscillator.

4.2.2.2 Network with Delay (NARX Model)

The simplest example of neural identification of a controlled dynamical system
is based on regression algorithms. The model is an autoregressive model with
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Fig. 4.7. Identification of Van der Pol oscillator using linear regression (1000 step
regression) (a) Initialization on the attractor (limit cycle) (b) Initialization far from
the attractor

exogenous input (NARX model). The stochastic NARX(p, ) model equation
is

X(k+1) = fIX(K),...,X(k—p+1),V(k+1),u(k), ..., u(k —r+1)].

Regression order is p for the state and r for the control. The diagram of
the network, which is used for that purpose, is displayed on Fig. 4.8.
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Controlled
Dynamical g!
Y Pan
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u(ky ulk=r+1) x(ky x(k-=1) x(k-p+1)

Input
(Control)

Fig. 4.8. Learning diagram of a NARX based neural model to identify a controlled
dynamical system (see also Chap. 2, Fig. 2.31)
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A feedforward neural network implements the function ¢@ry. An input
of the network is made of the signal values from time k to time kK —p + 1
(output of the process f interest) and of the control values from time k to
time k —r + 1 (input of the process of interest). In that case, p is the order of
model with respect to the state and r is the order of the model with respect
to the control. The estimation is based on the minimization of the modeling
error, i.e., the difference between the output of the process x(k + 1) and
the prediction g(k + 1) that has been produced by the model. It follows the
strategy of parameter estimation that was presented in Chap. 2 (see dynamical
modeling with state noise assumption and input-output representation).

The training is a set of input vectors of the type x; = [x(k);...;x(k —
p+ 1);u(k);...;u(k —r 4+ 1)] and of associated output scalars of the type
gr = x(k + 1). Two strategies can be used for building the training set:

e If a simulator of the process is available, it will be used to build the train-
ing set. In that case, one has the freedom of choosing a representative
sampling of the network output. To that effect, one can select either a reg-
ular sampling of the input space, or select the input samples according to
a probability law, which favors the usual operating region of input space.
Sometimes, on the contrary, the limit operating points and the boundary
of the safety domain are favored to ensure security and accuracy of the
representation on the entire operation domain. That situation, where a
simulator is available, is common when one is looking for a semi-physical
representation or “grey-box model” (see Chap. 2).

e By contrast, if training is performed from actual experimental data, a sam-
pling of input space cannot be chosen at will: the training set is obtained
from the sampling of the input-output experimental trajectory. In that
case, it is important to use the experimental device with correct initial-
ization and for a sufficiently long time in order to visit with a sufficient
frequency the input space of the network (which is basically the prod-
uct of the state space by the control space up to the order of the NARX
model). To identify a controlled dynamical system, one generally excites
the system with open-loop randomly generated control. The selection of
an appropriate control trajectory is tricky. In the case of linear systems,
harmonic excitations are sufficient to identify the system via the transfer
function. For nonlinear systems, one has to mix the use of a random gen-
erator and physical knowledge about the system. Sliding frequency control
signals may be used or filtered noisy control signals. Chapter 2 provides
some elements that are useful for experiment design.

Figure 4.9 shows an identification example of the Van der Pol oscillator.
Neural model has been built from a basis of 15> = 3375 examples. The ex-
amples were provided by the sampling of the input-output trajectory of the
oscillator, subject to a random control signal. That training set was used be-
fore, for linear regression, as shown on Fig. 4.7. The results are far better
here.
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Fig. 4.9. Comparison of controlled Van Der Pol oscillator with its neural model:
(a) No control has been used for learning (b) A random control signal has been
provided to the system during learning

Those results have been obtained with a classical neural architecture with
three inputs, ten hidden neurons and two output neurons. If training is
performed from a training set that has the same size, but that was built
from a regular sampling of the state space and of the feasible control set, the
results are poor (if there is no data preprocessing). That result shows the cru-
cial importance of the selection of the training set. Actually, as emphasized in
Chap. 2, it is important to build the training set according to the probability
distribution of visit on the input space in experimental conditions. That will
be further elaborated when on-line training will be explained. Note the im-
portance of the implemented open-loop control signal to visit the full input
space, especially when the system is pushed on a single attractor (like the
limit cycle of Van der Pol oscillator. In the next chapter, we will come back
to that “exploration policy” in the neuro-dynamical programming framework.

The choice of the order of the model is important because it has a direct
impact on the number of parameters to be estimated. It is more critical than
in the linear case. Actually, the problem of selecting the model order is not
fully solved in nonlinear regression theory. In practice, one combines an empir-
ical approach (estimation of the generalization error) and theoretical criteria
that were designed for linear models [Gouriéroux 1995]. Moreover, the model
may be validated ex-post using hypothesis testing [Urbani 1993]. Nonadaptive
identification from a representative training set is not especially troublesome
when neural networks with supervised training are used, provided a cautious
methodology, and efficient training algorithms are used.

Similar considerations apply in the framework of adaptive identification,
where one has to use a flow of experimental data in an adaptive way, i.e., as
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the process is operating. Nevertheless, the adaptive character of the problem
requires a new framework, which will be presented in the next section.

4.3 On-Line Adaptive Identification and Recursive
Prediction Error Method

4.3.1 Recursive Estimation of Empirical Mean

Let us consider first the elementary problem of computing the mean of a data
series. This problem can be formulated as a linear regression problem of order
zero, Ty = a + v, where (vg) is a numerical white noise and where parameter
a is scalar. We look for a good estimation of a. It amounts to compute the
mean of a sequence of independent identically distributed random variables.

The minimization of the cost function Jy(a) = 1/2N Zszl(l‘k —a)? with
respect to a is a well-known problem. Its solution is the empirical mean ay =
Zszl z/N.

That estimate has all the desirable properties of current linear regression
estimators such as consistency, bias free, minimal variance among bias free
estimates. Its consistency (i.e., its convergence towards a when the sample
size goes to infinity) is called the law of large numbers. It intuitively expresses
that the arithmetic mean of a sequence of independent random measurements
provides an accurate estimate of the expectation value of the random variable
that models the phenomenon of interest.

A simple rewriting of the previous definition gives

N

(N+ 1)dN+1 = Zxk +IN41 = Nay + TNt
k=1

The following recursive definition follows immediately:
aAN+1 = anN + Ni_’_l (Ik—‘rl 7@1\/’).

This recursive formulation of the definition of the empirical mean allows
an adaptive estimation. A single observation is sufficient to initialize the al-
gorithm. To update the estimate, it is not necessary that all the observations
be available. The previous estimate and the current observation are sufficient
to perform the update. The coefficient 7,41 = 1/(IN +1) is called the learning
rate.

Another advantage of the recursive estimation is that it allows tracking
slow variations of the parameter, which is currently estimated if the model is
not stationary. The estimation is adaptive. In that case, one has to replace
the slowly decreasing learning rate by a small constant learning rate. Then,
estimation amounts to filtering (in that case, a first order filter). In order to
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Fig. 4.10. Behavior of the empirical mean estimate. (a) Original signal (b) estimate
of the parameter using a constant-gain filter (c) Estimate of the parameter using
decreasing gains

compare a first order filter and a recursive estimation of the mean, the behav-
ior of such an estimator has been shown on Fig. 4.10. The task is to track the
quasi-periodic variation of the deterministic component of a random signal
with a signal-to-noise ratio of 1/5. The original signal is shown on picture
(a). On picture (b), the results for various values of the gain are compared.
On picture (c), the performances of slowly decreasing gain estimates are com-
pared. It is shown that the ability of the estimate to track the slow variations
of the parameter in that case are poor.

One can notice that the empirical mean estimation is based on the
minimization of a quadratic cost function using gradient descent. Actually,
in the case of the stationary model, the data are a sample of the prob-
ability distribution of a random variable X. The quadratic cost function
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J(a) = 1/2 E[(X — a)?] is minimized. As the probability distribution is un-
known, it is not possible to compute its mathematical expectation. The gra-
dient of J (i.e., its first derivative) is VJ(a) = E(X — a). A gradient descent
algorithm is

ap1 = ar — Y1 VJ(ar),

where 7,41 is a positive scalar.
Replacing the gradient VJ(ax) by the expression (Xgy1 — ag) yields the
empirical mean recursive estimate,

ap1 = ap — Yrr1 (X1 — ag)

Note that the expectation of the random variable (X1 —ax) is E(X)—ay,
which is exactly the value V.J(ay) of the gradient of the cost function J taken
at the current value ay of the parameter estimate. Therefore, this algorithm
is termed stochastic gradient. In the gradient descent, the gradient of the cost
function has been replaced by a random variable, whose expectation is equal
to this gradient. The stochastic gradient is known at any time, whereas the
“total” gradient depends on the law of X, which is unknown. The stochastic
gradient algorithm has already been mentioned in Chap. 2. We will study it
more in detail in the following.

That algorithm performs the optimization task without prior estimation
of the unknown probability distribution. Actually, the optimization and the
estimation tasks are performed simultaneously. By contrast, in the classical
estimation process, the estimation phase is performed first. In that phase, the
criterion is estimated by the associated empirical criterion, here the estimate
of J(a) = 1/2 E[(X — a)?] would be Jy(a) = 1/2N Zszl(zk — a)?; then,
the optimization phase is performed using that estimate. Actually, on that
example, the two approaches lead to the same result because the mo