Stump-Socket Interface Conditions
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Introduction

Each year, hundreds of thousands of people undergo a limb amputation. In
the US alone, the amputation rate is approximately 84,500 to 114,000 cases
per year [1, 2]. There are, in general, two reasons necessitating the surgical
removal of a limb: (1) traumatic injury to the point that an extremity cannot
be salvaged, for example as experienced in motor vehicle accidents or falls; (2)
peripheral vascular disease, e.g. consequent to diabetes or cardiovascular dys-
function. Traumatic injury patients are typically more active and will have a
greater number of years as an amputee than dysvascular patients. Thus the
performance needs of a prosthesis, a mechanical device intended to replace
the missing extremity, are typically more demanding for these individuals.

A prosthesis is made up of a socket that surrounds the residual limb, a
terminal device (hand or foot), and an apparatus to connect and adjust the
position of the socket relative to the terminal device (Fig.9.1). Typically
the socket is custom-designed for the individual patient while the terminal
device and connecting apparatus are purchased commercially. It is recog-
nized in clinical practice that proper design of the socket shape is crucial
to the successful clinical performance of a prosthesis. Much of a prosthe-
tist’s effort goes into designing and fabricating the prosthetic socket.

Pressure Ulcer Problems Related to Wearing Prostheses

Though both upper-limb and lower-limb prostheses are common, it is low-
er-limb amputees who most often experience pressure ulcer problems from
mechanical irritation with the prosthetic socket. The relatively high loads
and their lengthy application times from continual weight bearing and, for
the trans-tibial case, the close proximity of the bone to the socket are the
reasons. The challenge to a prosthetist is to create a socket that distributes
interface stresses in such a way that the prosthetic limb is stably coupled
to the bony skeleton yet does not overstress soft tissues. On some patients,
this is a seemingly impossible challenge. Stable residual limb-prosthesis
mechanical coupling, which will induce a sense of stability to the amputee
during gait, requires that high interface stresses be applied. But to avoid
skin trauma, interface stresses should be kept low. The skin over the leg
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( Fig. 9.1. Prosthetic limbs. A trans-tibial
. prosthesis (left) and a trans-femoral pros-
.~ thesis (right) are shown. From Seattle
Limb Systems (http://www.soginc.com/
SLS) and Ossur Prosthetics (http://
www.reykjavikresources.com), respectively
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was not intended to tolerate the stresses of weight bearing. Skin there is
very different from that on the bottom of the foot, for example.

To design an effective socket, a prosthetist must consider these conflict-
ing design goals and achieve an effective stump-socket interface stress dis-
tribution. Using traditional socket design techniques, prosthetists concen-
trate stresses at load-tolerant areas, for example at the patellar tendon and
popliteal fossa on trans-tibial amputees [3, 4] (Fig. 9.2). Loading at the dis-
tal third of the residual limb, often a sensitive region, however, is unavoid-
able. Total contact sockets [5] intended to distribute load uniformly over
the stump surface have also been successful and have become increasingly
popular in recent years. High distal load-bearing on the bottom of the
stump is generally recognized as unfavorable since it can traumatize the
soft tissues between the distal end of the bone and bottom of the residual
limb. Excessive tissue trauma from distal end-bearing might necessitate
surgical revision or amputation to a higher anatomical level. Stresses can
be applied in two directions - pressure, which is perpendicular to the skin
surface, and shear stress, which is tangential to the skin surface. Both can
provide support at the stump-socket interface but above a certain level and
duration can induce breakdown.

Skin responds to pressure differently than it does to shear stress. Con-
stant pressure reduces perfusion and can lead to ischemia and tissue ne-
crosis. Just 8 kPa (60 mmHg) pressure is sufficient to occlude skin blood
flow [6]. Often, under static loading conditions underlying muscle tissue is
affected sooner than skin [7, 8] due to its greater vascularity and metabolic
demands. Thus soft-tissue injuries can form in deeper tissue before even
being visible on the skin surface.
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Fig. 9.2. Interface loading during gait. With a patellar-tendon-bearing prosthesis, pressures and
shear stresses are concentrated at the patellar tendon bar and at the popliteal fossa. Anterior
distal and posterior distal loading, however, are unavoidable. Left panel is during heel contact,
center panel is during mid-stance, and right panel is during push-off. From: Radcliffe CW, Foort
J. The patellar-tendon-bearing below-knee prosthesis. The Regents of the University of Califor-
nia, 1961

Skin response when shear stress is added is much dependent upon how
the shear stress is applied. If shear is applied with slip between the sup-
porting surface and the skin, then it is termed “friction”. Friction can lead
to blister formation, with blister fluid collecting below the granular layer
and above the basal cell layer of the epidermis [9, 10]. Heat built up be-
tween the two sliding surfaces may be an important contributor to blister
formation. At locations where the epidermis is very thin, an epidermal
abrasion will form instead of a blister. For shear stress application without
slip between the supporting surface and the skin, often termed “tangential
shear,” the applied force is distributed through a greater volume of tissue,
thus reducing local stress concentrations and reducing the risk of injury.
Heat build-up is also reduced. Skin can thus tolerate greater stresses if tan-
gential shear is applied rather than friction [11].

Studies have been conducted attempting to quantify relationships be-
tween interface stresses and breakdown. An inverse relationship between
pressure and duration in the development of a pressure ulcer was initially
proposed in 1942 [7] and later studied further by a number of investigators
[8, 12-18]. The results demonstrate a second-order relationship between
the threshold pressure for ulcer formation and the duration of pressure ap-
plication. The threshold pressure decreases quickly as duration is in-
creased. Furthermore, soft tissue can tolerate moderately high load levels
provided they are applied intermittently and not continuously. Other stud-
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ies show that at a sufficiently high level of shear, shear stress will reduce
the pressure necessary to cause blood flow occlusion by about one half
[19]. Thus in this sense adding shear stresses is unfavorable. However, cy-
clic shear stresses, as occur on the stump during ambulation with a pros-
thetic limb, presumably allow release during each step, thus reducing the
duration of occlusion and the associated detrimental effects of shear. Under
frictional loading where there is slip between the support surface and skin,
often unavoidable in prosthetics, quantitative evaluations demonstrate that
it is more favorable to apply low frictional loads for a long time than to
apply high frictional loads for a short time [20]. Therefore, concentrated
frictional stresses should be avoided, and low stresses applied often are a
more favorable alternative. Small amounts of fluid added to the interface,
as might occur during sweating for example, will increase shear stresses. If
the interface is extremely wet (flooded), however, the shear stress will de-
crease [21]. Thus sweat can alter the original stress distribution designed
by the prosthetist. The effects of sweat at the skin-support interface are
discussed in more detail in a separate chapter (Chap. 8).

While there is no doubt that interface stresses induce breakdown, it is im-
portant to recognize that soft tissues have the capability to remodel and
adapt to repetitive stresses. Thus the threshold for inducing injury can be al-
tered through practice. Clinical experience, for example, shows the effective-
ness of a mobilization program for an individual with spinal cord injury who
has undergone myocutaneous flap surgery to treat a pressure ulcer [22-24]. A
3-week period of pressure relief is followed by short periods of weight bear-
ing in bed. Subsequently, range of motion is increased so as to apply tensile
forces to the area, and then a sitting program is initiated, increasing weight
bearing duration over time. Tissue tolerance should slowly improve. For an
amputee patient with adherent scar tissue on the stump, lubricated tissue
massage might be used to improve deep tissue mobilization.

Despite the relevance of soft tissue adaptation to mechanical stress, skin
adaptation at the cellular and molecular level is a minimally investigated area
of research [25]. A study on pigs showed that after a 1-month period of com-
bined pressure and shear loading on the hind limb, collagen fibrils, the major
load-bearing components in skin, were 20.4% larger in diameter than fibrils
from unstressed control skin [26]. Similar results were obtained using an in
vitro skin organ culture model [27], suggesting that the adaptation process
can occur without blood flow being present. In tendon release studies, col-
lagen fibers disaggregated and the density of nonsulfated proteoglycans in-
creased when tension was released [28, 29]. When the tendons were repaired
and tension restored, collagen fibers reappeared, the density of nonsulfated
proteoglycans decreased, and the density of sulfated proteoglycans increased.
Epidermal proliferation and thickening in response to repetitive mechanical
loading has also been demonstrated [30, 31]. Thus distinct structural adap-
tations to repetitive mechanical stress have been shown.

Further investigation into the bioprocesses of adaptation is needed if the
adaptive capabilities of soft tissue are to be used to maximal advantage in
clinical prosthetic treatment. Molecular-based therapies might be pursued
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to facilitate adaptation in cases where it is impeded or lacking. A hypoth-
esis of the detailed bioprocesses involved in skin adaptation has been sug-
gested [32] but is currently unproven.

Given that tissue response, whether breakdown or adaptation, is so sen-
sitive to the applied stresses, an important need in prosthetics is to quanti-
fy the magnitudes and directions of stresses applied at the stump-socket
interface and to identify the prosthesis design features to which they are
most sensitive. Such knowledge could enhance treatment as well as pros-
thetic componentry design.

Interface Stress Measurement

Interface pressures and shear stresses during ambulation with a prosthetic
limb have been studied by a number of investigators using a variety of instru-
ments (see Fig. 9.3 for an example system). Strain-gauge transducers [33-48],
fluid-filled sensors [49, 50], pneumatic sensors [51-53], printed circuit sheets
[54-57], and a field coil and magnet transducer [58] have been used. Only
Sanders’ and Williams’ transducers measured both pressure and shear stress
simultaneously. Results show interface pressures to approximately 415 kPa
and resultant shear stresses to approximately 65 kPa [57, 59, 60]. As a refer-
ence, peak pressures on the foot during walking typically range from 700 to
870 kPa pressure [61, 62], and peak shear stresses from 24 to 70 kPa [63].
95 kPa of suction applied for 17 min can produce a skin blister [64].
53 kPa of frictional shear for 40 rubs on a human limb can induce a blister
[20]. Thus it is of little surprise that amputees experience breakdown on their
residual limbs; the stresses induced are relatively high.

Of relevance to prosthetic design is what happens to interface stresses
when features of the prosthesis or amputee subject are changed. The most
studied prosthesis design parameter is alignment of the prosthetic compo-
nents [35, 38, 65-68]. Typically changes in peak interface stresses or inter-
face stresses at the first peak in the axial force curve are analyzed. Results
from testing trans-tibial amputee subjects, in general, show that interface
stress changes at anterior sites for misaligned compared with aligned pros-
theses are greater than those at posterior sites [35, 66, 67]. This is a rea-
sonable result given the much thinner layer of soft tissue over bone on
anterior trans-tibial stump surfaces compared with posterior surfaces. For
translational and angular misalignments that were substantial but deemed
clinically safe for lab testing, pressure changes at a site up to 40 kPa [65,
68], 16 kPa [67], and 81 kPa [66] have been reported. If transducers were
inserted between the limb and socket instead of flush with the interface,
however, much higher pressure changes were measured: 266 kPa [35] and
147 kPa [38]. Sensor protrusion into the skin, however, may have caused
erroneously high measurements in these latter studies [69, 70].

Interestingly, three studies showed that compensation for an alignment
change in a positive direction was not simply the reverse of the compensa-
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Fig. 9.3. Example of interface stress measurement
system. With this system pressures and shear
stresses are monitored at 13 socket sites during
standing or walking. The transducers and mounts
are small and lightweight (<25 g) so as to mini-
mize weight addition to the prosthesis

tion for the alignment change in the negative direction [35, 66, 67]. At
most sites, subjects adjusted their gaits to maximize or minimize interface
pressures at the clinically-deemed optimal alignment instead of at the
modified alignments. This result points to the importance of an amputee’s
ability to compensate to prosthesis changes. Subjects adjusted their gaits to
accommodate the modifications, in part by the interface conditions they
sensed, and those adaptations were not predictable. Variability (standard
deviation/mean) did not increase for steps at misaligned compared with
aligned settings [66, 67], a result similar to that reported by Jones [71] in
analysis of pylon force and moment data.

Effects of changes in socket design and componentry on interface pres-
sures have also been studied [46, 50, 53, 54, 56]. However, most of these re-
ports were in-depth case studies investigating the performance of one par-
ticular feature. Generalizations about socket design could not be made.
Krouskop [53], however, conducted pressure studies on 18 trans-femoral
subjects and noted consistent differences in the pressure distributions be-
tween quadrilateral and normal-shape, normal-alignment (NSNA) sockets.
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The NSNA had distal loading around the distal femur, while the quadrilat-
eral socket did not.

With advances in materials technology, novel interface liners have been
created that can potentially help to improve interface stress distributions.
Closed-cell foams are used extensively in the industry. They are typically
polyethylene, urethane, or silicone-based. Liners made of polyethylene
foams such as Pelite or Plastezote are easily fabricated since these are rela-
tively moldable materials. They also are easily modified later if necessary,
using grinding or heat. However, an important weakness is that they de-
form over time in an unpredictable way, thus altering the original interface
shape. More recently, elastomeric liners have become increasingly popular.
They are typically made from urethane, silicone elastomers, silicone gels,
or an elastomer/gel combination. Elastomeric liners fit snugly on a residual
limb, providing direct support during stance phase and, if equipped with a
locking pin, suspension during swing phase. They are intended to maintain
total contact with the residual limb, thus reducing localized skin tension
and shear compared with a conventional closed-cell foam material. This
environment should be more comfortable for the amputee. Importantly, be-
cause different products have different mechanical properties [72-74], a
wide range of liners to meet a range of clinical needs are available. This
variety is helpful to prosthetic fitting.

Though the stress changes induced by prosthesis or liner modifications
can be relevant to fit, to date the most important feature shown to induce
changes in interface stress loading is time. While for short leg-off times
(minutes) interface stress changes have been measured at approximately
10%, for sessions more than 3 weeks apart differences can be higher than
50% [46, 60, 65, 66, 67]. In one study even 5-h intervals showed appreci-
able changes [75]. In this later study, the absolute magnitude pressure dif-
ference for 5-h intervals was comparable to that between sessions 5 weeks
apart. Thus diurnal changes, not just long-term changes, can be appreci-
able. Limb shape changes are the most likely sources of interface stress
fluctuations, and would be expected to have a strong impact given how
sensitive fit is clinically to socket shape.

Problems with Changes in Stump Shape Over Time

Changes in residual limb shape occur for a number of reasons and to vary-
ing degrees, depending on the patient’s activities, weight, amputation pro-
cedure, health, and other factors. Part of the challenge in prosthetic fitting
is to accommodate these shape changes.

Differences in the time courses of the two types of changes, diurnal and
long-term, must be recognized. Diurnal changes are cyclic, occurring over
a 24-h period. In general, residual limbs shrink from the morning to the
evening. The change is likely due to extracellular fluid movement, as this
mechanism of transport is relatively slow compared with the blood [76,
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77]. The pumping effect the socket has on residual limb soft tissues during
ambulation may help drive out fluid from within the interstitial spaces over
the course of a day [78]. Fluid flow entering the interstitial spaces from the
vasculature is low because the prosthetic socket acts as a rigid container to
prevent limb expansion, thus preventing an increase in the blood-intersti-
tial fluid pressure difference. The result is an overall dehydration of soft
tissues. At night, with no socket to constrain the tissues and the dynamic
pumping effect removed, the blood-interstitial fluid pressure difference in-
creases, interstitial fluid returns, and the limb swells back to a larger size.

Long-term shape changes are different than diurnal. They occur over
weeks or months, and typically are not easily reversible. They are probably
due to soft-tissue remodeling, and can be caused by a variety of factors, in-
cluding limb maturation, large weight changes, muscle atrophy, and
changes in the patient’s vascular condition. Thus the mechanisms of diur-
nal and long-term shape changes are quite different, and one would expect
the way they change residual limb shape to be quite different as well.

Experimental research suggests shape changes are distributed differently
for diurnal variation than for long intervals [75]. In eight trans-tibial am-
putees, diurnal changes tended to induce a relatively uniform shrinkage
over the residual limb surface. Six-month changes tended to be localized.
Variance of the change in cross-sectional area down the length of the resi-
dual limb for 6-month intervals was on average 2.8 times higher than that
for diurnal intervals. The differences are important because they suggest
that different treatment methods might be needed to accommodate diurnal
vs. long-term differences.

There are a limited number of methods to accommodate residual limb
shape change. Adding/removing stump socks, filling/deflating inflatable in-
serts, modifying the inside socket shape, and using elastic stockinet shrin-
kers are examples. The former three methods add material inside the socket
to replace departed tissue. Limited data collected on trans-tibial amputee
subjects suggests that adding/removing stump socks of uniform thickness
does not return interface stresses back to their original values before shrink-
age occurred [79]. This result well illustrates one reason why prosthetic fit-
ting is so difficult. A prosthetist must design a limb that will distribute inter-
face stresses properly despite substantial changes in limb shape.

Most air-inflatable insert products are problematic because they tend to
perform well at only a single volume level as opposed to a range of levels
[80]. Thus they lack versatility. Use of liquid-filled inserts might help to
overcome this problem since liquid is relatively incompressible. Whatever
route is used to address this challenge, a successful approach will likely
need to have some means for allowing subtle volume changes over the
course of a day, preferably without the patient needing to manually make
the adjustments.

Though progress is being made in interface liners and treatments for
shape change, part of the challenge is that it is difficult to conduct con-
trolled testing where just one variable, e.g. the type of liner, is changed.
Other features that depend on liner performance, including the patient’s
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stump shape, might change as well. Therefore, the quality of a design is
difficult to assess quantitatively, and enhancements and improvements are
slow. If an additional means to test different designs that did not have
these limitations could be developed, then progress would likely proceed
more quickly. Clinical testing could then be used to test only the most pro-
mising treatments. Computer modeling is one possible option.

Computer Models for the Design of Stump Sockets

Computer models have been used to try to predict interface stresses for
different prosthesis designs and residual limb conditions. Several reviews
exist on the topic [81-83]. An advantage of computer models over direct
interface stress measurement is that they allow different sockets to be
tested without subjecting an amputee’s residual limb to potentially detri-
mental interface stress patterns. In concept, optimization strategies could
be developed to interface with the computer models to design an optimal
socket for each individual amputee early on in fitting.

Finite-element modeling has been the most common computer modeling
method used to try to predict stresses at the stump-socket interface [44,
48, 68, 84-104]. The concept of finite-element modeling is to describe the re-
sidual limb and proposed socket design computationally as collections of
small blocks or elements. Use of these small simple shapes to characterize
the complex residual limb and socket makes the analysis computationally fea-
sible. The stiffness and other material properties of the residual limb and
socket, information typically derived from mechanical testing experiments,
need to be specified for the analysis to be carried out. Then the mechanical
interaction of each element with its neighboring elements is analyzed, based
on loads applied in the computer model to the prosthesis or to the proximal
residual limb reflective of standing, walking, or some other activity of inter-
est. The computational analysis corresponds to a minimization of the poten-
tial energy in the system. The result is a complete description of the stress
distribution throughout the residual limb and socket (Fig. 9.4).

The results from finite-element models are potentially very attractive and
useful to prosthetists. With this tool a prosthetist can determine the interface
stress loading patterns as well as stresses within different residual limb soft
tissues for a number of different socket designs before ever actually putting a
prosthesis on the patient. However, prosthetic computer models are still in
their nascent stages, and they are not yet accurate or rapid enough for clinical
use. Part of what makes these models so difficult to develop is that it is com-
putationally very difficult to describe movement between a residual limb and
prosthetic socket (pistoning). Some progress has been made using gap [68,
103] or automated contact elements [104]. Further, accurately specifying
the material properties of the residual limb for each individual amputee is
very challenging. Some instruments for assessment have been developed
and used in clinical research [105-107]. Much progress has been made in
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Fig. 9.4. Residual limb finite element model. Donning pressures are predicted for a trans-tibial
residual limb in a patellar-tendon-bearing socket. Pressures are concentrated at the patellar ten-
don and tibial flares, as expected. Units are kPa

the measurement of both the socket and the residual limb shape [108]. Sev-
eral imaging methods have been used, though the use of video cameras with
optical or laser light sources are currently the most common [109-118].
Mesh-generation strategies to create the models quickly and easily have also
been developed [119]. Thus considerable progress in finite-element modeling
of residual limbs has been made since it was first attempted in 1985 [84],
though quality of the models to a level acceptable for clinical practice is still
in the future. Once the models are developed a range of features could be
tested to establish how they affect interface stress loading, including diurnal
and long-term shape change and treatments for stabilization, amputation
procedure, and fluid inserts.

Future Perspectives

It is important to recognize that though interface stresses are a crucial fea-
ture of prosthetic fit and performance, ultimately it is the response of soft
tissues to the stresses that determines breakdown. Several measurements
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related to tissue quality are possible, including transcutaneous oxygen ten-
sion [120, 121], laser Doppler flowmetry [122, 123], and thermal recovery
time [124-126]. Transcutaneous oxygen tension is the partial pressure of
oxygen in tissue and is typically used to determine level of amputation.
Electrodes containing photoelectric sensors capable of distinguishing the
wavelengths of oxygenated versus reduced hemoglobin are positioned on
the skin to take the measurement. Laser Doppler flowmetry, a technique
for assessing flow or perfusion in the microcirculation, is similarly used to
determine amputation level. Here the Doppler effect is assessed using a
low-power laser directed at the moving blood particulates. Thermal recov-
ery time is a method under development intended to predict the risk of
skin breakdown. It is the time after release of a moderate load that is re-
quired for the skin temperature difference between the stressed site and a
control site to reach either a maximum or a constant value. In a population
of nursing home patients, thermal recovery time was shown to correlate
strongly with the risk of developing pressure ulcers, with risk defined using
data on ulceration occurrence over a 1-month follow-up period [125]. The
method was also used in a separate investigation to demonstrate that dia-
betic patients with autonomic neuropathy had an impaired thermal recov-
ery time after pressure relief compared with normal control subjects [126].
Use of thermal recovery time or a feature from some other imaging modal-
ity may possibly quantify breakdown risk at different locations on a stump
before a definitive prosthesis is designed. Such instrumentation would be
very advantageous to prosthetic fitting.

The direct attachment of a prosthesis to the bony skeleton is a treatment
strategy that has been pursued for over 50 years [127]. The concept is to
surgically implant a strong biocompatible post within the medullary cavity
of a femur or tibia that projects out through the skin. A prosthetic pylon,
foot, and, in the trans-femoral case, a knee are then attached to this im-
plant. During weight bearing, ground-reaction forces are transmitted di-
rectly to the bony skeleton. An advantage of this method of prosthesis at-
tachment over the traditional prosthetic socket is that soft tissue loading is
minimal. Thus skin breakdown problems from contact with a prosthetic
socket are non-existent.

Interestingly, mechanical failure at the bone-implant interface has not
proven particularly problematic in either animal [128, 129] or human
[130-132] studies of direct skeletal attachment. In some patients, the bone-
implant interface has proven stronger than either the bone or the prosthe-
sis itself. There is, however, an important limitation with the treatment.
The difficulty is that the skin-implant interface is a major source of bacte-
rial penetration and migration. Achieving an effective seal between the
skin and the implant is very difficult. Exit site problems are similar to
those experienced by peritoneal dialysis patients, prosthetic urethra wear-
ers, and individuals with indwelling blood access devices [133]. Epidermal
cells tend to migrate on the implant rather than attach directly to it. Not
only can bacteria migrate through spaces at the cell-implant interface, epi-
dermal cells can migrate down and attempt to “grow out” the implant. The
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result is a site that is, to some degree, perpetually irritated. In some cases
the site will be stable for a lengthy period, while in other cases it worsens
and an infection develops. Once the bone-implant interface is infected, the
implant typically must be removed. Thus direct skeletal attachment is an
area of active research and has shown some promising results, but there
are still important challenges to be overcome.

Summary

Wearing a prosthesis puts high demands on soft tissues covering the resi-
dual limb, particularly for active lower-limb amputees. A prosthetist must
use clinical experience, knowledge gained from research studies on tissue
response to stress, the capability of the skin to adapt, and individual tissue
quality assessment to design an effective prosthesis for an amputee. If
stresses at the stump-socket interface are not properly distributed, the am-
putee can experience blister, cyst, or ulcer formation on the residual limb,
conditions that in severe cases worsen and lead to further disability.

Prosthetic interface mechanics studies have provided insight into how
amputee and prosthesis characteristics alter interface stresses. Those stud-
ies highlight the importance of a person’s adaptive capabilities to accom-
modate prosthesis modifications. An amputee uses, in part, pressure and
shear sensation at the stump-socket interface to alter walking style so as
to adjust to changing conditions. Results from interface stress studies sug-
gest that while changes in prosthetic alignment, walking speed, and com-
ponentry can be accommodated for, changes in the residual limb over time,
particularly stump shape and volume, are very difficult to manage. A chal-
lenge to prosthetists, amputees, bioengineers, and others in the prosthetics
community is to develop effective treatments to overcome shape and vol-
ume changes and stabilize fit.

Computer models may eventually contribute towards improvement in
the speed and quality of individual socket design for amputee patients.
Much progress has been made in computer modeling towards limb geome-
try and mechanical property characterization, and towards interface speci-
fications. However, until models are shown to accurately predict interface
pressures and shear stresses, the capability to use finite element modeling
in prosthetic socket design is a goal for the future.

Direct skeletal attachment of a prosthesis to the bony skeleton has been
performed on a limited number of amputee patients and may represent a
viable means of avoiding the stump-socket interface challenge altogether.
However, another interface, the skin-implant interface, is proving proble-
matic in direct skeletal attachment efforts. The interface, once again, will
be our challenge.
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