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Preface

That macroeconomic theory and macroeconometrics are, in the near future and more
than ever, indispensable tools in the study of economics is no longer a very contro-
versial statement. It is now generally agreed that economic theory, combined with
historical, statistical and mathematical methods are necessary at the theoretical level,
to formulate problems precisely, to draw conclusions from postulates and to gain in-
sight into workings of complicated processes, and at the applied level, to measure
variables, to estimate parameters and to organise the elaborate calculations involved
in reaching empirical results. This book is an illustration of the Editors belief in this
principle. It offers new insights in macroeconomic analysis. It deals with both theory
and empirical results related to the dynamics within the structure of macroeconomic
variables as well as between them. More precisely five axes are distinguished. There
are theoretical and applied works with developments on (1) mechanisms of economic
dynamics, (2) structures of macroeconomic variables, and (3) relationships between
macroeconomic time series. The book also presents methodologies where (4) linear
testing is improved and (5) new non-linear techniques are applied.
Turning to the individual contributions now.

Bénassy’s chapter studies the propagation of macroeconomic shocks using a dy-
namic model with wage and price staggering. He finds evidence in favour of a per-
sistent response of both output and inflation to monetary shocks.

Karagiannis, Palivos and Papageorgiou present an one-sector growth model
where the technology is described by a Variable Elasticity of Substitution pro-
duction function. It is shown that this model can exhibit unbounded endogenous
growth despite the absence of exogenous technical change and the presence of non-
reproducible factors, such as labour.

Stengos and Liang study the effect of financial development on growth using an
additive Instrumental Variable-augmented Partially Linear Regression model. They
conclude that financial development affects growth in a positive but non-linear way
employing a Liquid Liabilities index and in an almost linear way when a Private
Credit index is taken into account. Nevertheless, the effect becomes ambiguous in
the case of a Commercial Central Bank index.
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The transition from theoretical evidence to empirical testing is well done by
Hendry. Hendry’s chapter is focused in the gap that exists between macroeconomic
theory models and applied econometric findings. He describes some of the sources
of these gaps and suggests possible solutions.

In the Gogas and Serletis chapter the revenue-smoothing hypothesis is tested
using annual data for the US over the period form 1934-1994. Although Mankiw
(1987) and Poterba and Rotemberg (1990) works found evidence supporting the pre-
vious hypothesis in the US, the obtained results by Gogas and Serletis do not support
the theory of optimal seigniorage.

The performance of structural VAR models to capture structures produced by
two stochastic dynamic general equilibrium models is the main point of study in the
Canova and Pires Pina’s chapter. More specifically, their criticism is to a particular
type of identification restrictions routinely used in applied work. To avoid eventual
biases they propose an alternative identification technique.

Paya and Peel examine the Keynes-Einzig conjecture by using monthly data for
six currencies against the US Dollar for the period 1921-1936. Empirical findings
suggest that excess returns are predictable, and that deviations form covered interest
parity (CIP) are large and systematic. Evidence of non-linear adjustment of CIP is
also provided.

In a fractional cointegration framework given in Davidson’s chapter, it is investi-
gated the relationship between government popularity and economic performance in
the UK. The tests reveal little or no evidence of a link between the political and eco-
nomic cycles. This conclusion reinforces the idea that political cycles are generated
by the internal dynamics of the opinion formation process.

As it has been underlined by Hendry, the gap between macroeconomic the-
ory models and applied econometric findings arises because much of the observed
macroeconomic data variability is due to various non-stationarities. These sources of
non-stationarity, deriving from the technical progress, new legislation, institutional
change, financial innovation and political factors, induce both evolution and struc-
tural breaks which change the distributional properties of the data.

Darné and Diebolt, in their chapter, propose a more technical approach to deal
with non-stationarity in macroeconomic series. They give a selective survey on dif-
ferent non-stationarity tests and discuss some problems with these tests and some
solutions and alternatives that have been suggested. They also present the relation
between non-stationarity and some economic theory.

The importance of seasonality and non-stationarity for the forecasting accuracy
is emerged in the Kouassi and Labys’s chapter. This is illustrated in the context of
structural time series models. The major result of their work is that the recognition of
the presence of seasonal unit-roots can have important implications for forecasting
and modelling.

The Kyrtsou and Volrow’s chapter concludes this collective volume. The authors
suggest the use of a new methodology, well known in physical sciences, for the
identification of complex underlying dynamics in economic series. This method is
the Recurrence Quantification Analysis. The empirical results of the chapter pro-
vide evidence for the existence of highly complex deterministic dynamics in the US



Preface IX

macroeconomic and financial series. The possibility to obtain such features in real
economic series, that we would not be able to find using only traditional linear tech-
niques, makes the new world of non-linear complex dynamics very attractive. Further
research on the impact of the application of these new tools to macroeconomic data
is certainly needed.

From the mechanisms of propagation of macroeconomic shocks to growth and mone-
tary theories, macroeconometrics and complex dynamics, we hope to provide a com-
plete overview on the recent developments and ”New Trends in Macroeconomics”.
It is now time to let the authors speak for themselves!

Strasbourg, France Claude Diebolt
April 2005 Catherine Kyrtsou
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CERESUR, University of La Réunion,
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The Propagation of Macroeconomic Shocks: A
Dynamic Model with Contracts and Imperfect
Competition

Jean-Pascal Bénassy

CNRS and CEPREMAP-ENS, 48 Boulevard Jourdan, 75014 Paris, France.
jean-pascal.benassy@cepremap.cnrs.fr

Summary. In order to study rigorously the propagation of macroeconomic shocks, we con-
struct a dynamic model with wage and price staggering, where wage and price contracts are
set by fully maximizing agents in a framework of imperfect competition. We derive the op-
timal values for wage and price contracts and compute closed form solutions to the resulting
dynamics. We show that wage and price contracts of reasonable durations can create persis-
tence and a hump in the response of both output and inflation to monetary shocks.

Key words: Persistence, Staggered wages, Staggered prices, Imperfect competition.

JEL codes: E32, E52

1 Introduction

The purpose of this article is to construct a dynamic general equilibrium model in-
cluding staggered wage and price contracts, as well as imperfect competition. We
will study with it the issue of the propagation of macroeconomic shocks, and no-
tably whether one can obtain a response to monetary shocks similar to that observed
in reality. On the empirical side, a number of recent studies have shown that both
output and inflation display a persistent response to monetary shocks. Moreover this
response seems to be humpshaped, first increasing, then decreasing (see, for exam-
ple, Cogley and Nason [9]; Christiano, Eichenbaum and Evans [8]). On the other
hand RBC type models have often had problems creating such a response to mon-
etary shocks. Recently wage and price contracts1 have been introduced in that line
of models, in order notably to make the corresponding economies more responsive
to monetary shocks, and a debate has developed as to whether such modeling would
allow to obtain a persistent and hump shaped response to these shocks. Surprisingly

1In line with the initial works by Gray [12], Fischer [11], Phelps and Taylor [16], Phelps
[15], Taylor [17, 18] and Calvo [6].
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the answers are widely divergent. For example, Chari, Kehoe and McGrattan [5]
conclude that there will be no persistence with reasonable values of the parameters,
while Collard and Ertz [10] obtain a hump-shaped and persistent response with one
or two years wage contracts2. The objective of this article is to investigate the mat-
ter analytically, which seems particularly useful in view of the conflicting answers
indicated above. For that purpose we shall build a rigorous dynamic stochastic gen-
eral equilibrium model with both price and wage contracts3, solve it analytically and
express the dynamics of output and inflation as a function of the fundamental under-
lying parameters. The reason why we study wage and price contracts together, and
not in isolation, is that this appears to be instrumental in obtaining a hump-shaped
response in both output and inflation, as we shall see below. We shall see that a per-
sistent and humpshaped response of both output and inflation to monetary shocks
can be obtained with reasonable parameters.

2 The Model

2.1 Markets and Agents

The economy studied is a monetary economy with markets for goods, at the (average)
price Pt and markets for labor, at the (average) wageWt . The goods and labor markets
function under a system of imperfectly competitive labor contracts, which will be
detailed below. There are firms and households. Let us begin with the production
side. The output index Yt is an aggregate of a continuum of output types, indexed by
i ∈ [0,1]:

LogYt =
∫ 1

0
LogYitdi (1)

Each index Yit is itself the aggregate of another infinity of output types indexed by k:

Yit =
(∫ 1

0
Yiktdk

)1/

(2)

One should think of the index i as representing sectors, while the index k refers to
firms in these sectors. Quite naturally the substitutability is higher within sectors than
across sectors. The representative firm has a Cobb-Douglas technology4:

Yikt = ZtNikt (3)

2Other contributions along the same lines are found, for example, in Ambler, Guay and
Phaneuf [1], Andersen [2], Ascari [3], Jeanne [13] and Yun [19].

3Microfounded dynamic models with one rigidity and analytical solutions are found in
Jeanne [13] for price contracts, and in Ascari [3] and Bénassy [4, 5] for wage contracts. An-
dersen [2] compares the two types of contracts.

4Although capital could be introduced explicitly (cf. for example Bénassy [4]), we omit it
here because it complicates substantially the exposition, and does not add much to the dynam-
ics because of the low actual depreciation rate.
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The representative household (we omit the index k at this stage, since the situa-
tion of all households in a sector i is fully symmetrical) works Nit , consumesCit and
ends the period with a quantity of money Mit . He maximizes the expected value of
his discounted utility, with the following intertemporal utility:

U =
t

t
[
LogCit + Log

Mit

Pt
−V (Nit)

]
(4)

where V is a convex function. At the beginning of period t there is a stochastic
multiplicative monetary shock as in Lucas (1972): money holdings carried from the
previous period Mit−1 are multiplied by the same factor µt for all agents, so that the
representative household starts period t with money holdings µtMit−1. His budget
constraint in t is thus:

Cit +
Mit

Pt
=
Wit

Pt
Nit +

µtMit−1

Pt
+ it (5)

where it is the profits in sector i, which are distributed to the households who work
in this sector.

2.2 Wage and Price Contracts

We will now describe the wage and price contracts, which are taken from Bénassy
[4, 5], themselves inspired by Calvo [6]. Consider first the wage contracts. As in
Calvo [6], in each period there is a random draw for all wage contracts, after which
any particular contract continues unchanged (with probability ), or is terminated
(with probability 1− ). In this last case a new contract wage is decided in each firm
by the households working in that firm, on the basis of all information currently avail-
able. In period s a wage contract is negotiated for each period t ≥ s. This new contract
is denoted Xst . The difference with Calvo [6] is that he assumed Xst to be the same
for all t ≥ s, whereas we assume that the Xst can be different whatever t ≥ s. Price
contracts are modelled in a similar manner. If wages are not renegotiated, then the
price mechanism is completely symmetrical to the wage mechanism: price contracts
continue with probability , and are terminated with probability 1− . If, however,
wages in one particular firm are renegotiated, then prices in this firm are also auto-
matically renegotiated. These possibilities, and their probabilities, are summarized
in Figure 1. The basic idea underlying this formalization is that, if a firm is faced
with a change in its cost structure because of wage renegotiation, then it will always
want to change its price, which seems a reasonable assumption. We thus see that,
taking into account both possibilities, the probability for a price contract to continue
unchanged is , and the probability to be renegotiated 1− . We denote by Qst the
price contract signed in period s to be in effect in period t ≥ s.
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Fig. 1

�

�
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is renegotiated
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�

�

Both price and

wage stay

�

�

Both price and wage

are renegotiated

1-

We still have to specify more precisely how wage and price renegotiations are
related across firms and sectors. We shall assume that all firms in the same sector
i renegotiate their wages or prices at exactly the same time, which means that the
random draws are actually organized sector by sector. These random draws are inde-
pendent across sectors.
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3 The Walrasian Regime

We shall now compute as a benchmark the Walrasian equilibrium of this economy.
In that case there is a unique price Pt and wage Wt , which clear the goods and labor
markets. The real wage is equal to the marginal productivity of labor:

Wt

Pt
=

Yt
Nt

(6)

The households maximize the expected value of their utility (4) subject to the budget
constraints (5). The Lagrangean of this maximization program is:

t
[
LogCt + Log

Mt

Pt
−V (Nt)

]

+ t
t

[
WtNt
Pt

+
µtMt−1

Pt
+ t −Ct − Mt

Pt

]
(7)

and the first order conditions:

t =
1
Ct

(8)

t

Pt
=
Mt

+ Et

(
t+1µt+1

Pt+1

)
(9)

V ′ (Nt) = tWt

Pt
(10)

Using (8) and the fact that µt+1 =Mt+1/Mt , equation (9) is rewritten:

Mt

PtCt
= + Et

(
Mt+1

Pt+1Ct+1

)
(11)

which solves as:
Mt

PtCt
=

1− (12)

Combining (6), (8) and (10), we see that Walrasian employment is constant and
equal to N, given by:

NV ′ (N) = (13)

In what follows we shall work with the following disutility for labor:

V (Nt) =
Nt (14)

in which case equation (13) yields:

N =
( )1/

(15)
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and the Walrasian wageW ∗
t and price P∗t are equal to:

W ∗
t =

(1− )
( )1/

Mt (16)

P∗t =
1− ( ) / Mt

Zt
(17)

4 The Demand for Goods and Labor

We shall now study our model under wage and price contracts. It is assumed that
households, possibly through trade-unions, decide on the level of wages, and supply
the amount of labor demanded by firms at these wages. Similarly firms set prices and
supply the amount of goods demanded. An important element for the determination
of wage and price contracts is of course the demand for goods and labor, so we begin
with that.

4.1 The Demand for Goods

At any time there may be a multiplicity of prices. This variety of prices can be due
to two causes: first, there may be staggered prices, and thus there are different prices
because price contracts have been signed at different points in time. Secondly, even
if prices are fully flexible in each period, the workers in different firms may have dif-
ferent wage contracts, so that prices will differ even if all other economic conditions
are the same. Consider first the firms producing final output. They competitively
maximize profits, i.e. they solve the following program:

Max PtYt −
∫ 1

0
PitYitdi s.t.

∫ 1

0
LogYitdi= LogYt

whose solution is:

Yit =
PtYt
Pit

(18)

LogPt =
∫ 1

0
LogPitdi (19)

Now firms in a sector i will similarly maximize profits, i.e. they solve:

Max PitYit −
∫ 1

0
PiktYiktdk s.t.

(∫ 1

0
Yiktdk

)1/

= Yit

whose solution is:

Yikt = Yit

(
Pikt
Pit

)−1/(1− )

(20)
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Pit =
(∫ 1

0
P− /(1− )
ikt dk

)−(1− )/

(21)

Putting together equations (18) and (20) we obtain the expression of the demand
for goods:

Yikt =
PtYt
Pit

(
Pikt
Pit

)−1/(1− )

(22)

An important thing to remember for what follows is that, in view of equation
(18), all sectors have exactly the same value of sales:

PitYit = PtYt ∀i (23)

This will also imply that all households, whatever the sector they work in, have
the same income, and consequently the same consumption and money holdings.

4.2 The Demand for Labor

Since firms supply the quantity of goods demanded (22), the demand for labor is
simply obtained by combining (3) and (22), which yields:

Nikt =
(
PtYt
ZtPit

)1/ (Pikt
Pit

)−1/ (1− )

(24)

5 Price Contracts

We now turn to the derivation of optimal price contracts. They are characterized
through the following proposition:

Proposition 1: Assume that in period the wage in firm (i,k) is Wik . Then the price
contract Qik t signed in period for a period t ≥ is given by:(

Qik t

Qi t

)(1− )/ (1− )

=
Wik

(
1− )(1− )/ ( 1

Qi t

)1/

t (25)

with:

Qi t =
(∫ 1

0
Q− /(1− )
ik t dk

)−(1− )/

(26)

t = E
[
M(1− )/
t Z−1/

t

]
(27)

Proof: Appendix 1.
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Now we shall see below, within the proof of proposition 3 (Appendix 2), that all
firms in the same sector i will actually have the same wage, and therefore, in view
of (25), the same price. We shall now derive the value of this common price contract
through the following proposition:

Proposition 2: Assume that in period the common wage in sector i is Wi . Then
the price contracts Qi t signed in period for period t ≥ by all firms in sector i are
given by:

Q1/
i t =

1
(

1− )(1− )/

Wi t (28)

where t has been defined in formula (27).

Proof: Replace in formula (25)Wik byWi and Qik t by Qi t Q.E.D.

6 Wage Contracts

We shall now compute the wage contracts signed in a period s for a period t ≥ s. As
will appear in the proof of proposition 3 (Appendix 2), these contracts will be the
same for all firms and sectors, and we shall accordingly denote them as Xst . Before
moving to a precise proposition, let us define some probabilities. If the wage contract
Xst is still in effect at time t, it will be associated with prices which may have been
set in any period , s ≤ ≤ t. In view of the “survival rate” of price contracts, the
probabilities t that the price was set in period are computed as:

t = t−s = s t = (1− ) t− s< ≤ t (29)

Proposition 3: The wage contract Xst signed in s for period t ≥ s is given by:

Xst = 2 2

[
(1− )

]
s≤ ≤t

tEs

[(
Mt

Zt

) / ( 1

t

) ]
(30)

where t is given by equation (27) and the probabilities t by equation (29).

Proof: Appendix 2.

7 Macroeconomic Dynamics

We shall now compute the dynamics of the system under the following traditional
processes for money and technology shocks5:

5Lowercase letters denote the logarithms of the corresponding uppercase letters.
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mt −mt−1 =
ut

1− L
(31)

zt =
t

1− L
(32)

7.1 The Dynamics of Output and Inflation

We shall first characterize the dynamic evolution of output and inflation through the
following proposition:

Proposition 4: Under the monetary and technology processes (31) and (32) the
dynamic evolutions of output and inflation are given by:

yt = zt − t

1− L
+

ut
(1− L)(1− L)

+
(1− ) ut

(1− L)(1− L)
(33)

t = pt − pt−1 =
ut

1− L
− (1− )(1−L) t

(1− L)(1− L)

− (1−L)ut
(1− L)(1− L)

− (1− ) (1−L)ut
(1− L)(1− L)

(34)

Proof: Appendix 3.

With an explicit expression for the dynamics of output and inflation, we can poten-
tially compute any measure of persistence. With five autoregressive roots for output
and seven for inflation (formulas 33 and 34), a numerical discussion would quickly
become very clumsy, so we shall rather discuss the issue of whether the response
of output and inflation to monetary shocks displays a hump, since this has been the
object of controversy and is easily assessed from our formulas.

7.2 Output Dynamics and the Hump

Let us start with the output dynamics in response to a monetary shock, and see under
which conditions we shall obtain a humpshaped response. From formula (33) the
first period impact of a money shock on output is:

+(1− ) (35)

and the second period one:

( + )+(1− ) ( + ) (36)

So there is a hump if:
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+(1− ) < 2 (1+ )+(1− ) 2 2 (1+ ) (37)

which can be rewritten as:

(1+ ) >
+(1− )
+(1− ) 2 (38)

The corresponding region in ( , ) space is shown in Figure 2 as the set above
the heavy line.

Fig. 2

1+
√

2(1+ )
√

1

1

1
1+

√
1+

√
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For given the right hand side of formula (38) is maximal for =
√

/
(
1+

√ )
and then takes the value

(
1+

√ )
/2
√

. This means that if:

>
1+

√
2(1+ )

√ (39)

then there will be a hump in output no matter what the degree of rigidity of prices.
To get a numerical idea, we can consider the traditional values = 2/3, = 1/2.
Then we find that, if wage contracts are at least three quarters long on average, there
will always be a hump in the response of output to monetary shocks.

7.3 Inflation Dynamics and the Hump

From formula (34) the first period impact on inflation is:

1− − (1− ) (40)

and the second period one:

− ( + −1)− (1− ) ( + −1) (41)

The condition for a hump in inflation is thus:

1− < (2− − )+(1− ) (2− − ) (42)

The corresponding locus is represented in ( , ) space in Figure 3, together with
the corresponding locus for the hump in output. The relevant region is to the right of
the heavy line.

7.4 The Double Hump

The region with stripes in Figure 3 corresponds to the combinations of the ( , )
parameters such that the response of both output and inflation to monetary shocks
displays a hump. To get a practical idea about this region, with the traditional values

= 2/3, = 1/2, if > 3/4 and > 1/3, we will have a double hump. This corre-
sponds to an average duration of contracts of 3 quarters for wages, and 1 month for
prices, some very reasonable values indeed!
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Fig. 3

1
1+

1

1

1
1+

1−
1+

1−
1+

8 Conclusions

We constructed in this article a dynamic stochastic general equilibrium model where
both wages and prices are staggered and set in a rigorous framework of monopolistic
competition. We used a framework akin to that in Calvo (1983), so that the average
duration of wage and price contracts can take any value between zero and infinity.
We first derived the optimal prices and wages, then computed the resulting macroe-
conomic dynamics and obtained closed form solutions for the evolution of output
and inflation. These formulas showed that it was possible to obtain a persistent re-
sponse to monetary shocks. We investigated notably under which conditions a hump
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shaped response of output and inflation could be obtained, and we found that this
would obtain for very reasonable durations.

Appendix 1

Proof of Proposition 1

Firm (i,k) maximizes its discounted expected real profits weighted by the marginal
utility of goods (i.e. multiplied by 1/Ct since utility is logarithmic in consumption).
We shall consider here only the terms corresponding to the price contracts signed
at time and still in effect at time t. Since price contracts have a probability to
survive each period, the contract signed in has a probability t− t− to be still in
effect in period t, and the firm will thus maximize the following expected profit:

E
t=

( )t−
1
PtCt

(PiktYikt −Wik Nikt) (43)

subject to equation (22) giving the demand for goods :

Yikt =
PtYt
Pit

(
Pikt
Pit

)−1/(1− )

(44)

Note that in formula (43) we put Wik as the relevant wage for all periods t ≥ .
Indeed we consider only the price contracts that will still be in effect in period t.
But, as we indicated above, if the wage changes, then the prices are automatically
renegotiated, so that all price contracts that will remain must be based on the current
wage Wik . Note also that, in the above formulas (43) and (44), we have to replace
Pikt by Qik t and Pit by Qi t since these are the relevant prices for our maximization.
Firms indexed by (i,k) maximize (43) subject to (44). Let us insert the value of Yikt
(equation 44) into (43). Taking into account Yikt = ZtNikt , Ct = Yt , Pikt = Qik t and
Pit = Qi t , the part of the maximand concerning Qik t is written, omitting irrelevant
constant terms:(

Qik t

Qi t

)− /(1− )

−Wik

(
Qik t

Qi t

)−1/ (1− )( 1
Qi t

)1/

E

[
1
PtYt

(
PtYt
Zt

)1/
]

(45)

The first order condition in Qik t is:(
Qik t

Qi t

)−1/(1− )

=
Wik

(
Qik t

Qi t

)−1/ (1− )−1( 1
Qi t

)1/

E

[
1
PtYt

(
PtYt
Zt

)1/
]
(46)

In view of equation (12) this is rewritten:
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Qik t

Qi t

)(1− )/ (1− )

=
Wik

(
1− )(1− )/ ( 1

Qi t

)1/

E

[
1
Mt

(
Mt

Zt

)1/
]
(47)

which is equation (25).

Appendix 2

Proof of Proposition 3

Household (i,k) (i.e. a household working in firm k in sector i) maximizes his
discounted expected utility. We will consider here only the terms corresponding to
the wage contracts signed at time s and still in effect at time t, which we will denote
as Xikst . Since wage contracts have a probability to survive each period, the wage
contract signed in s has a probability t−s to be still in effect in period t, and the
household (i,k) will thus maximize the following expected utility:

Es
t≥s

t−s t−s
[
LogCikt + Log

Mikt

Pt
− Nikt

]
(48)

subject to the budget constraints in each period:

Cikt +
Mikt

Pt
=
Xikst
Pt

Nikt +
µtMikt−1

Pt
+ it (49)

and the equations giving the demand for labor (24):

Nikt =
(
PtYt
ZtPit

)1/ (Pikt
Pit

)−1/ (1− )

(50)

We see that Nikt depends on Pikt , the price effective in period t , which itself
depends on the period when it has been set. This period can be any period between
s and t. So we index employment by as well, denoting it Nik t , and formula (50) is
rewritten, for s≤ ≤ t:

Nik t =
(

PtYt
ZtQi t

)1/ (Qik t

Qi t

)−1/ (1− )

(51)

Now the price Qik t set in period , s≤ ≤ t, is given by formula (25), where the
relevant wage is Xikst :(

Qik t

Qi t

)(1− )/ (1− )

=
Xikst

(
1− )(1− )/ ( 1

Qi t

)1/

t (52)

where t is defined in equation (27). The employment corresponding to a price set
in period is thus, combining equations (51) and (52):



The Propagation of Macroeconomic Shocks 15

Nik t =
(

PtYt
ZtQi t

)1/
[
Xikst

(
1− )(1− )/ ( 1

Qi t

)1/

t

]−1/(1− )

(53)

So, to summarize, the household will maximize expected utility (48) subject to
the budget constraints (49) and the fact that employment Nik t is equal with probabil-
ity t to the value in equation (53), where the probabilities t are given by formula
(29) above. Inspecting this maximization problem we first see that all households
with the same index i face exactly the same economic situation, so that in equilib-
rium:

Xikst = Xist ∀k (54)

We have already seen that all households have the same income, and therefore
the same consumption and money holdings:

Cikt =Ct Mikt =Mt ∀i,k (55)

Households indexed by (i,k) maximize (48) subject to (49) and (53). Let us insert
the value of Nik t (equation 53), together with the relevant probabilities (29), into (48)
and (49). Taking into account (55), the corresponding Lagrangean is written (we only
keep the terms that we shall use):

Es
s≤ ≤t

t
ik t

Pt
X− /(1− )
ikst

(
PtYt
ZtQi t

)1/
1/(1− )
i t

−Es
s≤ ≤t

t X− /(1− )
ikst

(
PtYt
ZtQi t

) /
/(1− )
i t

+Es
s≤ ≤t

t (LogCt − ik tCt) (56)

where:

i t =
(

1− )( −1)/ Q1/
i t

t
(57)

Maximization inCt yields:

ik t =
1
Ct

(58)

so that the term in Xikst is:

X− /(1− )
ikst Es

s≤ ≤t
t

1
PtCt

(
PtYt
ZtQi t

)1/
1/(1− )
i t

−X− /(1− )
ikst Es

s≤ ≤t
t

(
PtYt
ZtQi t

) /
/(1− )
i t (59)
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The first order condition in Xikst is:

X−1/(1− )
ikst Es

s≤ ≤t
t

1
PtCt

(
PtYt
ZtQi t

)1/
1/(1− )
i t

= X− /(1− )−1
ikst Es

s≤ ≤t
t

(
PtYt
ZtQi t

) /
/(1− )
i t (60)

We have already seen (equation 54) that Xikst does not depend on the firm k,
but only on the sector i, so that in formula (60) Xikst = Xist . This means also that
in formula (25) giving firms’ prices, wages are independent of k, and therefore so
are prices. Proposition 2 gives the value of the price contract in that case. Since the
relevant wage is Xist , we replace Wi by Xist in formula (28), and obtain the price in
sector i:

Q1/
i t =

Xist t
(

1− )(1− )/

(61)

Inserting (61) into formula (57) we first obtain i t = Xist . Inserting this and (61)
into the first order condition (60) we obtain:

Xist
2 2
(

1− )( −1)/

Es
s≤ ≤t

t

[
1
PtCt

(
PtYt
Zt

)1/ 1

t

]

=

[ (
1− )( −1)/

]
Es

s≤ ≤t
t

[(
PtYt
Zt

) / ( 1

t

) ]
(62)

and using equation (12):

Xist
2 2Es

s≤ ≤t
t

[
M(1− )/
t Z−1/

t
1

t

]

= Es
s≤ ≤t

t

[(
Mt

Zt

) / (1− ) (
t

) ]
(63)

Now the term on the left hand side simplifies:

Es
s≤ ≤t

t

[
M(1− )/
t Z−1/

t
1

t

]
= Es

s≤ ≤t
t

[
M(1− )/
t Z−1/

t

E M(1− )/
t Z−1/

t

]

= Es
s≤ ≤t

tE

[
M(1− )/
t Z−1/

t

E M(1− )/
t Z−1/

t

]
= Es

s≤ ≤t
t = 1 (64)

so that formula (63) is rewritten:

Xist = 2 2

[
(1− )

]
Es

s≤ ≤t
t

[(
Mt

Zt

) / ( 1

t

) ]
(65)

We see that Xist does not depend on i, and we denote it as Xst . This yields formula
(30).
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Appendix 3

Proof of Proposition 4

We shall first derive the aggregate price. Loglinearizing equation (30) giving the
new wage contracts Xst , and using equation (27), we find:

xst =
1

s≤ ≤t
tEs

[
(mt − zt)− E

(
1−

mt − 1
zt

)]

=
1

s≤ ≤t
tEs

[
(mt − zt)−

(
1−

mt − 1
zt

)]

=
s≤ ≤t

tEsmt = Esmt = ms+
(1− t−s)us

(1− )(1− L)
(66)

Now the price q t set in period for period t ≥ , but on the basis of a wage xst
set in s≤ , is, from equation (28):

q t = xst + Log t = xst +(1− )E mt −E zt (67)

To obtain the aggregate price in t, we first sum across , with probabilities t :

s≤ ≤t
t [ xst +(1− )E mt −E zt ] (68)

and then, with probabilities (1− ) t−s across periods s, so that:

pt =
s≤t

(1− ) t−s
s≤ ≤t

t [ xst +(1− )E mt −E zt ] =

s≤t
(1− ) t−sxst

s≤ ≤t
t +

s≤t
(1− ) t−s

s≤ ≤t
t [(1− )E mt −E zt ] (69)

The first term is equal to:

s≤t
(1− ) t−sxst

s≤ ≤t
t =

s≤t
(1− ) t−sEsmt =

j≥0
(1− ) jEt− jmt (70)

As for the second term:

s≤t
(1− ) t−s

s≤ ≤t
t [(1− )E mt −E zt ]

=
≤t

[(1− )E mt −E zt ]
s≤ ≤t

(1− ) t−s
t
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=
≤t

[(1− )E mt −E zt ]

[
(1− ) t− t− +(1− ) t−

s<
(1− ) t−s

]

=
≤t

(1− ) t− t− E [(1− )mt − zt ]

=
i≥0

(1− ) i iEt−i [(1− )mt − zt ] (71)

So, to summarize, the aggregate price is equal to:

pt =
j≥0

(1− ) jEt− jmt +
i≥0

(1− ) i iEt−i [(1− )mt − zt ] (72)

Applying the formulas of lemma 1 in the appendix to the money and technology
processes (31) and (32), we obtain:

pt = mt − ut
(1− L)(1− L)

− (1− ) ut
(1− L)(1− L)

− (1− ) t

(1− L)(1− L)
(73)

which, combined with mt = pt + yt , yields (33) and (34). Q.E.D.

Appendix 4

Lemma 1: Assume the technological and monetary processes:

zt =
t

1− L
(74)

mt −mt−1 =
ut

1− L
(75)

Then:

j=0

jEt− jzt =
t

(1− L)(1− L)
(76)

(1− )
j=0

jEt− jmt = mt − ut
(1− L)(1− L)

(77)

Proof: Let us begin with the technology term:

j=0

jEt− jzt =
j=0

j j
t− j

1− L
= t

(1− L)(1− L)
(78)
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Let us now rewrite mt and compute its expected value:

mt = mt− j +
ut− j+1

1− L
+ ......+

ut
1− L

(79)

Et− jmt = mt− j +
ut− j

1− L
+ ......+

jut− j

1− L
= mt− j +

(
1− j

)
ut− j

(1− )(1− L)
(80)

(1− )
j=0

jEt− jmt = (1− )
j=0

j

[
mt− j +

(
1− j

)
ut− j

(1− )(1− L)

]

= (1− )

[
j=0

jL jmt +
j=0

jL jut
(1− )(1− L)

−
j=0

j jL jut
(1− )(1− L)

]

=
(1− )mt

1− L
+

(1− ) ut
(1− )(1− L)(1− L)

− (1− ) ut
(1− )(1− L)(1− L)

= mt − ut
(1− L)(1− L)

(81)

Q.E.D.
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Summary. We construct a one-sector growth model where the technology is described by a
Variable Elasticity of Substitution (VES) production function. This framework allows the elas-
ticity of factor substitution to interact with the level of economic development. First, we show
that the model can exhibit unbounded endogenous growth despite the absence of exogenous
technical change and the presence of non-reproducible factors. Second, we provide some em-
pirical estimates of the elasticity of substitution, using a panel of 82 countries over a 28-year
period, which admit the possibility of a VES aggregate production function with an elastic-
ity of substitution that is greater than one and consequently of unbounded endogenous growth.

Key words: Elasticity of Substitution, Endogenous Growth, VES Production Functions

JEL Classification: O42

1 Introduction

The elasticity of factor substitution plays a crucial role in the theory of economic
growth. Among others, it is one of the determinants of the level of economic growth;
see, for example, de La Grandville [4] and Klump and de La Grandville [14]. It
affects the speed of convergence towards the balanced growth path; see Klump and
Preissler [15]. It can alter the behavior of the savings rate during the transition; see
Smetters [31]. It influences the aggregate distribution of income; the seminal work
on this topic is Hicks [9]. Finally, it may itself be a source of unbounded growth; see
Solow [143] and Palivos and Karagiannis [26].

Most papers of economic growth that attempt to provide some quantitative prop-
erties of growth models rely on the Cobb-Douglas specification of the production

�Karagiannis and Palivos gratefully acknowledge financial support from the Greek Min-
istry of Education and the EU (Program PYTHAGORAS).
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function, which, as it is well known, describes a process with an elasticity of factor
substitution equal to one. Recently, several papers in the literature have investigated
both theoretically and empirically the role played by the Constant Elasticity of Sub-
stitution (CES) production function, which allows the elasticity to take constant val-
ues that are either greater or lower than one. Examples include, among others, Klump
and de La Grandville [14], Klump and Preissler [15], Miyagiwa and Papageorgiou
[22], Duffy et al. [7] and Masanjala and Papageorgiou [20].

This paper extends this literature a step further by analyzing the role of a vari-
able elasticity of substitution (VES) within a standard Solow-Swan growth model.
Whereas the CES production function restricts the elasticity of substitution to be
constant along an isoquant, this paper employs a specification, first introduced by
Revankar [27], which allows the elasticity of substitution to interact with the level of
economic development.

More specifically, a change in the economy’s per capita capital affects the elastic-
ity of substitution between capital and labor. This change feeds back into the econ-
omy influencing capital accumulation and output. It is shown that the model can
exhibit unbounded endogenous growth despite the absence of exogenous technical
change and the presence of non-reproducible factors, e.g., labor. Moreover, the paper
uses a panel of 82 countries over a 28-year period to estimate an aggregate production
function with variable elasticity of substitution. The estimation results provide first
evidence in favor of a VES production function. In addition, the estimated elasticity
of substitution in the sample is greater than one, which provides empirical support to
the aforementioned theoretical result regarding unbounded endogenous growth.

The remainder of the paper is organized as follows. Section 2 analyzes the prop-
erties of Revankar’s VES production function. Section 3 introduces this production
function in an otherwise standard Solow-Swan model and derives necessary and suf-
ficient conditions for unbounded endogenous growth. Section 4 offers a short review
of the previous studies that have estimated VES functions. Section 5 discusses the
data, the estimation techniques and the empirical results. Finally, Section 6 concludes
the paper.

2 A VES Production Function

2.1 The Revankar VES Production Function

We use standard notation to denote a general production technology as Y = F(K,L),
where Y, K, and L stand for output, capital and labor, respectively. Following Re-
vankar [27], we consider the following specification:4

Y = AKa [L+baK](1−a) . (1)

We mostly assume that the production function exhibits constant returns to scale,
i.e., = 1. This production function can be written in intensive form, y= f (k) where
y≡ Y/L and k ≡ K/L, as

4A very similar VES specification was developed by Sato and Hoffman [30].
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y= Aka [1+bak]1−a . (2)

It follows that
f ′(k) = a

y
k

+a(1−a)b
y

1+abk
, (3)

f ′′(k) = Aa(a−1)(1+abk)−a−1k−1. (4)

Hence, this function satisfies standard properties of a production function, namely
f (k) > 0, f ′(k) > 0 and f ′′(k) < 0 ∀k > 0, as long as

A> 0, 0 < a≤ 1, b> −1 and k−1 ≥−b.
Note that if b = 0 then (2) reduces to the Cobb-Douglas case. On the other hand if
a= 1 then it reduces to the Ak production function.

2.2 Some Properties of the VES

The limiting properties of (2) are:

lim
k→0

f (k) = 0, lim
k→

f (k) = if b> 0 (5)

lim
k→−b−1

f (k) = A(−b)−a(1−a)1−a > 0 if b< 0

Furthermore, it follows from (3) that

lim
k→0

f ′(k) = , lim
k→

f ′(k) = A(ba)1−a > 0 if b> 0, (6)

lim
k→−b−1

f ′(k) = A [−b(1−a)]1−a > 0 if b< 0.

Thus, if b> 0 then one of the Inada conditions is violated; namely, the marginal
product of capital is strictly bounded from below, which is equivalent to labor not be-
ing an essential factor of production, i.e., if b> 0, then limL→0F(K,L) =A(ba)1−a >
0. The labor share, sL, implied by (2) is:

sL =
1−a

1+bak
, where lim

k→0
sL = 1−a, (7)

lim
k→

sL = 0 if b> 0 and lim
k→−b−1

sL = 1 if b< 0.

On the other hand, the properties of the capital share, sK , follow easily since sK =
1− sL = a+bak

1+bak . For this production function, the elasticity of substitution between

capital and labor (x) = − f
′
(x)

x f (x)
f (x)−x f ′ (x)

f ′′ (x)
> 0 is

(k) = 1+bk > 0. (8)

Hence, >
<1 if b>

<0. Thus, the elasticity of substitution varies with the level of per
capita capital, an index of economic development. Furthermore, plays an important
role in the development process. To see why, note that (1) can be written as:
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Y = AKaL1−a
[

1+ba
K
L

]1−a
,

or, using (8),
Y = AKaL1−a [1−a+a (k)]1−a . (9)

Hence, the production process can be decomposed into a Cobb-Douglas part,
AKaL1−a, and a part that depends on the (variable) elasticity of substitution, [1−a+a (k)]1−a .
Once again, if b= 0 then = 1 and

Y = AKaL1−a,

which is the Cobb-Douglas production function. In intensive form (1) is written as

y= Aka [1−a+a (k)]1−a . (10)

Some of the properties of the VES are also shared by the CES. Exceptions include
the elasticity of substitution which for the CES production function is constant along
an isoquant, while for the VES considered here it is constant only along a ray through
the origin (see equation 8 ). Also, factor shares behave slight differently, since for the
CES limk→0 sL = 1 if > 1 and limk→0 sL = 0 if < 1.

3 VES in the Solow-Swan Growth Model

Next we introduce this VES specification in a standard Solow-Swan growth model
(Solow [143]). The accumulation equation is

k̇
k

= s
f (k)
k

−n, (11)

where s denotes the savings rate and n stands for the population growth rate. Using
(10), we have

f (k)
k

= Aka−1 [1−a+a (k)]1−a ,

lim
k→x

f (k)
k

= lim
k→x

f ′(k), x= 0, ,b−1

where limk→x f ′(k) is given by (6). Also,

( f (k)/k)
k

= −A(1−a)ka−2 [1+bak]−a < 0.

Upon substitution, equation (11) becomes

k̇
k

= sAka−1 [1−a+a (k)]1−a−n. (12)
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If b > 0 and hence > 1, the properties of the growth rate of per capita capital k̇/k
are

lim
k→0

k̇
k

= and lim
k→

k̇
k

= sA(ba)1−a−n.

Thus, if sA(ba)1−a > n, then the model exhibits unbounded endogenous growth; that
is, there exists an asymptotic balanced growth path with positive per capita growth.
This result is consistent with the findings of Jones and Manuelli [10, 11], who show
that unbounded growth can occur despite the presence of non-reproducible factors,
i.e., labor, and the absence of exogenous technical progress, as long as the marginal
product of capital is strictly bounded from below. It is also consistent with the results
in Palivos and Karagiannis [26], which shows that an elasticity of substitution that
becomes asymptotically (as k grows) greater than one is necessary and sufficient
for the existence of a lower bound on the marginal product of capital. Figure 1(a)
illustrates the possibility of unbounded growth.

This possibility arises also with a CES production function as long as > 1.
However, in this model the process is more explicit, since as it can be seen from (12)
an increase in k affects the growth rate k̇/k through two channels. The first is through
sAka−1 for any given . This term is decreasing in k (the Cobb-Douglas part). The
second is the change in , which is linear in k. So an increase in output raises ,
which raises output even further.

If sA(ba)1−a < n, then the growth rate will eventually become zero. The econ-
omy will reach a steady state, which is given as the solution to the following equation
(see Figure 1(b))

sA(k∗)a−1[1−a+a (k∗)]1−a = n. (13)

Consider next the case where −1 < b < 0 and 0 < k ≤ −(1/b). In this case, if
sA [−b(1−a)]1−a < n, then there is again a unique steady state, given by (13) (see
Figure 2(a)). On the other hand, if −1 < b < 0 and sA [−b(1−a)]1−a > n, then the
system will reach a corner solution, where k = −1/b (Figure 2(b)).

4 Empirical Considerations of VES

The previous empirical studies using a VES production function (see Table 1) can
be divided into two groups depending on whether they have used time-series or
cross-section data.5 The former group includes the studies of Sato and Hoffman [30],
Lovell [16], Revankar [28], Lovell [18], Roskamp [29] and Bairam [1, 2]. Sato and
Hoffman [30], using data from the private non-farm sector of the U.S. and Japan,
concluded that “the overall impression is that the VES is more realistic than the
CES,” without however providing a formal statistical test. Revankar [28], on the
other hand, using data for the private non-farm sector of the U.S., formally rejected
the Cobb-Douglas form in favor of the VES, while Lovell [18] could not reject the
CES specification in favor of the VES for the U.S. manufacturing sector as a whole.
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Fig. 1. b> 0.
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Fig. 2. b< 0.
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5Our (incomplete) review covers only production function that are linearly homogeneous.
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Nevertheless, Lovell [16] rejected both the Cobb-Douglas and the CES specifica-
tions in favor of the VES for 16 two-digit U.S. manufacturing industries. Moreover,
Bairam [1, 2] rejected the Cobb-Douglas in favor of the VES specification for the
Japanese and Soviet economies. Roskamp [29], using data for manufacturing in Ger-
many, provided estimates of the elasticity of substitution for 38 industries using both
the CES and the VES, without formally testing for the most appropriate specifica-
tion. With the exception of Roskamp [29], in 7 out of 38 industries, and of Bairam
[1], these time-series studies estimated the elasticity of substitution to be less than
one.

Study Country Period Sector
Lu and Fletcher (1968) U.S. 1957 Two-digit manufacturing
Sato and Hoffman (1968) U.S. 1909-60 Private non-farm sector

Japan 1930-60 Private non-farm sector
Lovell (1968) U.S. 1949-63 Two-digit manufacturing
Diwan (1970) U.S. 1955-57 Manufacturing firms
Revankar (1971a) U.S. 1957 Two-digit manufacturing
Revankar (1971b) U.S. 1929-53 Private non-farm sector
Lovell (1973a) U.S. 1958 Two-digit manufacturing
Lovell (1973b) U.S. 1947-68 Manufacturing
Meyer and Kadiyala (1974) U.S. Agriculture
Tsang and Yeung (1976) U.S. 1957 Food & kindred products
Roskamp (1977) Germany 1950-60 Manufacturing
Kazi (1980) India 1973-75 Two- & three-digit manufacturing
Bairam (1989) Japan 1878-1939 Economy
Bairam (1990) U.S.S.R. 1950-75 Economy & manufacturing
Zellner and Ryu (1998) U.S. 1957 Transportation equipment

Table 1. Previous Empirical Considerations of VES Production Functions.

The remaining studies reported in Table 1 fall in the group of cross-section stud-
ies. Lu and Fletcher [19] formally rejected the CES in favor of the VES specification
in 7 to 9 (depending on various definitions of capital and labor inputs) out of the 17
two-digit manufacturing sectors included in their analysis. Similarly, Revankar [27]
rejected the Cobb-Douglas in favor of the VES specification in 5 out of 12 two-digit
U.S. manufacturing sectors. Lovell [17] rejected the Cobb-Douglas and the CES in
favor of the VES specification in 3 out of 17 two-digit U.S. manufacturing sectors.
Kazi [13] rejected in most cases the CES in favor of the VES specification. Fur-
thermore, Diwan [5], using even more micro data for individual U.S. manufacturing
firms, rejected both the Cobb-Douglas and the CES specifications in favor of the
VES. A similar result was reached by Meyer and Kadiyala [21], who used agricul-
tural experimental data. Finally, Tsang and Yeung [36] and Zellner and Ryu [37]
provided estimates of both the CES and the VES for respectively the food and kin-
dred products and transportation equipment industries in the U.S., but they did not
formally tested for the more appropriate specification. With the exception of Lu and
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Fletcher [19] and of Kazi [13], these cross-section studies gave estimates of the elas-
ticity of substitution that were less than one.

5 Estimation of a VES Production Function

Whether or not the aggregate production technology is VES is an empirical question.
We now turn our attention toward this estimation exercise. Our estimation of a VES
specification for the aggregate production involves data on 82 countries for 28 years
(1960-1987)6. We consider nonlinear least squares (NLLS) regressions to obtain our
parameter estimates. We begin by briefly describing the data used in our estimation.

5.1 The Data

All of the raw data that we use are obtained from the World Bank’s STARS database.
In particular, GDP and the aggregate physical capital stock are converted into con-
stant, end of period 1987 $U.S. The database also provides us with data on the num-
ber of individuals in the workforce between the ages of 15-64, as well as data on the
mean years of schooling of members of the workforce. In addition to considering
raw (unadjusted) labor, L, as an input in our VES specification, we also examined
whether adjusting labor input for human capital accumulation affects our results.
Here we follow Tallman and Wang [35] and adopt a simple proxy for human capital
adjusted labor input. First, we define the stock of human capital in country i at time
t, Hit , as Hit = Eit , where Eit denotes the mean years of schooling of the workforce
(workers between the ages of 15-64 as in the measure of L) in country i at time t. The
mean school years of education, E, is defined as the sum of the average number of
years of primary, secondary and post-secondary education. Then we define human
capital adjusted labor supply as HLit = Hit ×Lit = Eit ×Lit . In estimating the VES
specification for aggregate production, we will use both L and HL as measures of
labor input. Further details concerning the construction of these data are provided in
Duffy and Papageorgiou [6] and mean values of all relevant variables appear in the
appendix.

5.2 Estimation Equation

Taking logs of both sides of (1) and assuming that technology grows exogenously at
rate (i.e., A= A0e t ) yields our estimation equations:

logYit = logA0 + t+a logKit +
+(1−a) log [Lit +baKit ]+ it , (14)

6These data are from Duffy and Papageorgiou [6].
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logYit = logA0 + t+a logKit +
+(1−a) log [Lit +baKit ]+ it , (15)

where A0 is initial technology, i is country index, t is time and is a random er-
ror. Note that in our estimations we consider both cases of non-constant ( 
= 1)
and constant ( = 1) returns to scale. We estimated equations (14-15) by nonlinear
least squares (NLLS) for the entire panel of 2,296 observations using our data on
real GDP, physical capital and either raw labor supply, L, or human capital adjusted
labor supply, HL, in place of L. The initial parameter choices for all of the NLLS
estimation results reported in Table 2 were based on estimates we obtained from a
preliminary OLS regression of logYit on a constant, logKit and logLit or logHLit . We
also considered other initial parameter choices and obtained similar NLLS estimates.

The second column of Table 2 presents estimates for the unrestricted ( 
= 1)
VES production function given by equation (14). All of the estimated coefficients
are significantly different from zero at the 1 percent level and economically plausi-
ble, regardless of whether L or HL is used for labor input. Consistent with other
studies using similar data, the time trend coefficient is negative and significant
( = −0.012,−0.014) indicating that for the 82 countries of our sample, the log
of real GDP has, on average, declined slightly over the period 1960-1987. The coef-
ficients for a are 0.66781 and 0.70473 (and highly significant) for the models using
raw and adjusted labor, respectively.

The key finding regarding our testable hypothesis is that the sign for the coeffi-
cient estimate b is found to be positive for both types of labor input and significant,
thus providing first evidence of a VES aggregate production function. In particular,
the estimated coefficient for b is 0.00050 for the unrestricted model using raw labor
and 0.00141 for the same model using skilled labor. These estimates may at first
seem too small but closer observation of their potential impact on the elasticity of
substitution (i.e., = 1 +bk) suggests otherwise. Further, our results imply that the
elasticity of substitution between capital and labor, , is in general greater than one.
Given that the coefficient estimates for b are found to be different from zero, we can
reject the Cobb-Douglas specification, for our 28 year and 82 country sample, over
the more general VES specification.

Finally, for the unrestricted models the coefficient estimate for is shown to
be very close to unity ( = 0.99779). Thus, the constant-returns-to-scale (CRTS)
restriction seems reasonable for the case where raw labor is used as input. Inter-
estingly, the same is not true for the model using adjusted labor (HL) as the labor
input since = 0.97126 which is consistent with mild diminishing-returns-to-scale
(DRTS). However, since the theory supposes that there are constant returns to scale
in production, we also estimate the “restricted version” of the model above, using
equation (15).

The results for the restricted ( = 1) VES production function are presented in
the third column of Table 2. We see that while the magnitude of the NLLS estimates
for all parameters in the restricted model differ slightly from those obtained using the
unrestricted model, the signs and statistical significance of the coefficient estimates
are largely unchanged by comparison. Once again the key parameter b is positive in
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Unrestricted ( 
= 1) Restricted ( = 1)
Labor (L) NLLS NLLS

a 0.66781∗∗∗ 0.67283∗∗∗
(0.06176) (0.03770)

b 0.00050∗∗∗ 0.00046∗∗∗
(0.00018) (0.00015)

-0.01170∗∗∗ -0.01177∗∗∗
(0.00093) (0.00091)

A0 24.753∗∗∗ 24.822∗∗∗
(1.8109) (1.8028)

0.99779∗∗∗ —
(0.00501) —

-ln L 837.58 837.68

Adj. Labor (HL)

a 0.70473∗∗∗ 0.73468∗∗∗
(0.06358) (0.03775)

b 0.00141∗ 0.00070∗∗
(0.00083) (0.00031)

-0.01401∗∗∗ -0.01549∗∗∗
(0.00098) (0.00090)

A0 29.336∗∗∗ 31.517∗∗∗
(1.9191) (1.9013)

0.97126∗∗∗ —
(0.00488) —

-ln L 955.96 974.50

Obs. 2,296 2,296

Note: Standard errors are given in parentheses. *** Significantly different from 0 at the 1% level.

** Significantly different from 0 at the 5% level. * Significantly different from 0 at the 10% level.

Table 2. Nonlinear Regression Estimates.

sign and very significant when we use raw labor (b = 0.00046). However, when we
restrict the model and use adjusted labor the coefficient estimate increases consider-
ably (b= 0.00070) than that in the unrestricted model and becomes significant only
at the 5 percent level. This result is not surprising because restricting the model with
HL to obey CRTS results in compromising the accuracy of the coefficient estimate
b.

Another interesting finding from our NLLS estimation concerns the implied
country-specific labor and capital shares (sL and sK , respectively). In the special
Cobb-Douglas case, the parameter b is equal to zero (see equation 15) and the terms
1−a and a are readily interpreted as the labor and capital shares of output. However,
under the VES specification, the labor share is given by sL = (1−a)/(1 +bak) and



32 Giannis Karagiannis, Theodore Palivos, and Chris Papageorgiou

the capital share by sK = (a+bak)/(1 +bak). Therefore both shares depend on the
values of K, L, a and most importantly b. Since our estimated coefficients for b are
positive and significantly different from zero, it follows that factor shares vary with a
country’s capital-labor ratio. This finding is important in light of Kaldor’s [12] “styl-
ized facts” about the shares of income accruing to capital and labor being relatively
constant over time and countries. This view has been first challenged by the pioneer
paper of Solow [33] and remains today an open research question (see, for exam-
ple, Gollin [8] who finds that labor’s share of national income across 31 countries is
relatively constant). Our results certainly suggest that capital shares can vary consid-
erably across countries and increase with the capital-labor ratio and therefore with
economic development.

To summarize, the main finding from our nonlinear estimation exercises is that
the coefficient estimates of b are found to be positive and significantly different from
zero, implying a variable elasticity of substitution between capital and labor that is
in general greater than unity. Of course, this is in contrast to the aggregate Cobb-
Douglas production specification assumed by most theoretical and empirical studies.

6 Conclusions and Extensions

We have analyzed a one-sector growth model with a variable elasticity of substitu-
tion production function. First, we have shown that the model can exhibit unbounded
endogenous growth despite the absence of exogenous technical change and the pres-
ence of non-reproducible factors, such as labor. Second, we have used a panel of
82 countries over a 28-year period to estimate an aggregate production function.
Our empirical estimates of the elasticity of substitution support the possibility of
unbounded endogenous growth.

In future work we plan to examine the robustness of our baseline OLS results
when we correct for the fixed effects and endogeneity problems usually cited in the
literature. Thus far, the aggregate input-output production relationship we have esti-
mated using NLLS does not allow for the presence of fixed effects across countries.
A “fixed-effects” specification would allow us to capture country-specific character-
istics, e.g., geography, political factors or culture, that might affect aggregate output.
Admitting the possibility of fixed effects implies that the error term in (14-15) can
be written as it = i + it , where i captures time-invariant fixed factors in coun-
try i. Given this specification, first differencing (14-15) gets rid of the fixed effect
component in the error term, yielding the nonlinear equations:

log

(
Yit
Yi,t−1

)
= +a log

(
Kit
Ki,t−1

)
+

+(1−a) log

[
Lit +baKit

Li,t−1 +baKi,t−1

]
+ it − i,t−1 (16)
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log

(
Yit
Yi,t−1

)
= +a log

(
Kit
Ki,t−1

)
+

+(1−a) log

[
Lit +baKit

Li,t−1 +baKi,t−1

]
+ it − i,t−1. (17)

While it is straightforward to estimate (16-17) using NLLS, the first-difference
specification leads to another difficulty in that the lagged error term, i,t−1, is likely
to be correlated with time t values of the explanatory variables,Kit and Lit . We plan to
use a generalized method of moments (GMM) approach to estimate the parameters in
(16-17), which is a more general estimation method than nonlinear two stage estima-
tion in that the GMM approach allows for the possibility of both autocorrelation and
heteroskedasticity in the disturbance term, it − i,t−1. Thus, it seems appropriate in
the present context7.

7The first paper that examined cross-country growth regressions adjusting for both the
fixed-effects problem as well as for the endogeneity problem is Caselli et al. [3]. For further
discussion on these issues the reader is referred to their paper.
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Appendix

Country Code GDP Capital Labor Education
(bill. US$) (bill. US$) (mill. age 15–64) (avg yrs of edu.)

Algeria DZA 38.7 142 7.87 2.51
Argentina ARG 90 250 16 6.38
Australia AUS 136 426 8.51 6.55
Austria AUT 83.7 240 4.74 8.7
Bangladesh BGD 11.3 22.4 38.3 2.56
Brazil BRA 162 420 59 3.13
Belgium BEL 104 274 6.24 7.87
Bolivia BOL 3.62 13.3 2.59 4.29
Cameroon CMR 6.4 9.75 4.03 1.68
Canada CAN 260 600 14 8.98
Chile CHL 13.8 35.5 5.9 6.06
China CHN 103 309 513 3.36
Colombia COL 21.5 48.2 13 3.54
Côte d’Ivoire CIV 6.65 14 3.35 0.93
Costa Rica CRI 2.87 10.9 1.04 6.14
Cyprus CYP 1.91 6.15 0.38 6.91
Denmark DEN 74.5 199 3.21 8.36
Ecuador ECU 6.52 20.1 3.60 4.22
Egypt EGY 17.2 25.5 19.9 3.59
El Salvador SLV 3.71 6.19 1.96 3.54
Ethiopia ETH 3.93 3.86 17.2 0.24
Finland FIN 58.6 199 3.11 8.2
France FRA 629 1620 33 8.01
Germany DEU 831 2420 42 8.43
Ghana GHA 4.27 8.77 4.97 2.98
Greece GRC 31.5 82.1 5.90 7.76
Guatemala GTM 5.08 10.1 3.04 2.72
Haiti HTI 1.78 2.18 2.66 1.9
Honduras HND 2.58 5.03 1.55 3.23
Iceland ICE 3.08 7.96 0.129 7.58
Indonesia IND 39 59.3 72.3 2.91
India IND 155 365 343 2.37
Iran IRN 109 183 17 2.02
Iraq IRQ 49 71.6 5.62 2.33
Ireland IRL 19.5 47.8 1.84 14.55
Israel ISR 21.9 59.8 1.95 4.69
Italy ITA 511 1480 36 6.96
Jamaica JAM 2.71 13.3 1.04 6.89
Japan JPN 1400 3600 74 10.67
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Country Code GDP Capital Labor Education
(bill. US$) (bill. US$) (mill. age 15–64) (avg yrs of edu.)

Jordan JOR 3.06 5.44 1.21 3.11
Kenya KEN 4.36 19.2 6.53 2.48
Korea, Rep. KOR 51.6 87.7 19.1 5.12
Madagascar MDG 2.33 3.83 4.05 2.4
Malawi MWI 0.77 2.03 2.68 3.34
Malaysia MYS 16.3 34.5 6.54 4.32
Mali MLI 1.36 3.34 3.04 0.49
Mauritius MUS 1.02 3.63 0.5 5.41
Mexico MEX 89.2 206 31 4.36
Morocco MAR 11.1 25.1 8.7 1.33
Mozambique MOZ 1.59 5.91 5.67 1.65
Myanmar (Burma) MMR 6.95 12 16.7 1.68
Netherlands NLD 159 483 8.59 8.1
New Zealand NZL 26.8 77.5 1.8 7.06
Nigeria NGA 22.4 68.8 37.6 1.34
Norway NOR 51.9 204 2.48 8.87
Pakistan PAK 16.7 31.8 36.3 1.49
Panama PAN 3.14 7.04 0.92 5.66
Paraguay PRY 2.12 4.12 1.41 5.42
Peru PER 18.6 52.8 8.0 4.79
Philippines PHI 23.5 49.5 22.5 6.14
Portugal PRT 23.9 75.6 5.98 4.44
Rwanda RWA 1.33 1.09 2.16 2.09
Senegal SEN 3.32 6.55 2.61 0.98
Sierra Leone SLE 0.44 0.83 1.59 1.21
Singapore SGP 9.26 24.5 1.39 4.68
Spain ESP 201 494 22 6.01
Sri Lanka LKA 3.95 7.5 7.59 5.15
Sudan SDN 12.4 13.8 8.44 0.88
Sweden SWE 120 320 5.25 9.12
Switzerland CHE 134 374 4.09 6.62
Tanzania TZA 2.39 7.44 7.84 1.23
Thailand THA 23.3 48.6 21.7 4.61
Tunisia TUN 5.36 16.6 3.01 3.0
Turkey TUR 37.1 93.2 21.9 3.11
Uganda UGA 5.33 9.31 5.31 2.1
United Kingdom GRB 510 1220 36 9.66
United States USA 3100 8300 135 10.91
Uruguay URY 5.96 18.4 1.77 6.07
Venezuela VEN 37.2 116 6.71 4.28
Zaire ZAR 6.2 8.1 11.9 2.57
Zambia ZMB 1.76 11.9 2.42 2.55
Zimbabwe ZWE 3.62 12.6 2.94 3.54
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Summary. In this paper we examine the effect of financial development on economic growth
in an additive Instrumental Variable (IV)-augmented Partially Linear Regression (PLR) model
using panel data of 66 countries for the period 1961-1995. Three common measures of finan-
cial development are used. Our results show that the effect of the exogenous component of
a financial intermediary development index on economic growth depends greatly on the defi-
nition and measurement of that index. Financial development affects growth in a positive but
non-linear way using a Liquid Liabilities index and in an almost linear way when using a Pri-
vate Credit index. The effect becomes ambiguous when a Commercial-Central Bank index is
used.

1 Introduction

The role of financial development on economic growth has been examined both the-
oretically and empirically in the recent literature. As summarized by Levine [11],
financial intermediaries act as facilitators to (i) produce information ex-ante about
possible investments and allocate capital accordingly (ii) monitor investments and
exert corporate governance after providing finance (iii) facilitate the trading, diver-
sification, and management of risk (iv) mobilize and pool savings and (v) ease the
exchange of goods and services. Below we will provide a brief review of the recent
theoretical and empirical literature on the subject.

The theoretical models focus on modeling the particular services provided by
the financial sector and how these services influence resource allocation, productiv-
ity improvement and economic growth. Diamond [4] highlights the role of improv-
ing corporate governance of financial intermediary. In his model the intermediary
mobilizes the savings of many individuals and lends these resources to firms. The
financial intermediary has a gross cost advantage in monitoring and eliminates the
free-rider problem since the intermediary does the monitoring for all the investors.
Furthermore, as financial intermediaries and firms develop long-run relationships,
the information acquisition costs can be further lowered. Bencivenga and Smith [2]
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emphasize the role of the financial intermediaries in diversifying the liquidity risk.
In their endogenous growth model, agents have to leave a part of their assets as liq-
uid assets, which is unproductive to meet their unforeseeable liquidity risk. Financial
intermediaries which pooled savings together enable the economy to reduce the frac-
tion of savings held in the form of unproductive liquid assets. Consequently, higher
proportion of savings is shifted to productive asset, which in turn affects the equi-
librium growth rate. Greenwood and Jovanovic [7] develop a model in which both
financial development and economic growth are endogenously determined. Finan-
cial intermediaries collect and analyze information, improve capital allocation and
promote growth. Concurrently, growth stimulates financial development because it
allows for implementation of costly financial structures. King and Levine [10] con-
struct a model in which the financial intermediary sector plays an active role in iden-
tifying, managing, and financing the most promising productivity-enhancing activi-
ties. In these ways, better financial systems stimulate economic growth by accelerat-
ing the rate of innovation.

The empirical studies examine the evidence regarding the possible contribution
of the financial sector to economic growth. The advent of large macroeconomic
data sets makes these empirical studies possible. The empirical work involves cross-
country studies, panel studies, pure time-series investigations, and country case stud-
ies. One of the most influential studies on the subject is King and Levine [9]. They
construct four different financial development indicators, and based on data cover-
ing a cross-section of 80 countries during the period 1960-1989, they report that
higher levels of financial development are significantly and robustly correlated with
faster current and future rates of economic growth, physical capital accumulation,
and economic efficiency improvements. In addition, they conclude that the link be-
tween economic growth and financial development is not just a contemporaneous
correlation. Instead, finance seems to lead economic growth in an important way.
This work does not, however, confront the potential biases caused by simultaneity or
omitted variables, including country-specific effects, as pointed out by Beck, Levine
and Loayza [1].

Levine, Loayza, and Beck [12] use econometric techniques that directly con-
front the potential biases induced by simultaneity, omitted variables and unob-
served country-specific effects to examine the role of financial development: a cross-
sectional instrumental- variable (IV) estimator and Generalized Method of Moments
(GMM) dynamic panel estimators. The cross-sectional and panel results confirm
that the weakly exogenous components of financial intermediary development ex-
ert a statistically significant and positive influence on economic growth. The authors
therefore conclude that the data suggest a strong, positive, link between financial
intermediary development and economic growth.

However, the above studies all rely on the notion that the relationship between
economic growth and financial intermediaries is linear. Some recent studies explore
the possible non-linear relationship between financial development and economic
growth. Economic theory exploring this aspect suggests that there is a nonlinear ef-
fect of financial intermediary development on economic growth. Khan [8] presents
a non-linear relationship between financial and economic development. Financial
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institutions have generally a positive effect on growth whose magnitude varies pos-
itively with the level of economic growth. Deidda and Fattouh [3] present a simple
model with risk averse agents and costly financial transactions such that the growth
effect of financial development is ambiguous at low levels of development, while it
becomes eventually positive as development proceeds. Running a threshold regres-
sion model they find that in low-income countries there is no significant relationship
between financial development and growth, whereas in high income countries there
is positive and strongly significant relationship. Similar work by Xu [20] using a
VAR model finds that there is strong evidence that financial development is impor-
tant to economic growth both in the short term and in the long term. For the low or
lower-middle income countries in his sample financial development display negative
effects on GDP growth and investment, while the reverse is true for the high income
countries.

Rioja and Valev [16] argue that the relationship between financial development
and growth varies according to the level of financial development of the country.
They divide the countries into three groups according some threshold level of fi-
nancial development. Using GMM dynamic panel techniques they find that financial
development has a large, positive effect on growth in the middle and high regions,
and negligible effects on economic growth in the low region.

The econometric techniques used in the literature involve GMM or IV estimation
in order to tackle the issue of simultaneity, VAR causality tests in order to find the
direction of causality between financial development and growth, or threshold regres-
sion model to uncover a possibly non-monotonic relationship. In this paper we adopt
a new methodological approach to confront the above issues that is more flexible
than what has been adopted so far in the literature. We use an IV augmented semi-
parametric partial linear regression (IV-PLR) model to investigate the possible effect
of financial development on growth. Hence we tackle both the issues of simultaneity
and nonlinearity at the same time. The data set we use is from Levine, Loayza and
Beck [12]. It consists of observation for 66 countries for the period 1961-1995. The
IV-PLR regression model employes an additive structure to investigate the marginal
effect of financial development on economic growth after controlling for simultane-
ity. We use the marginal integration method proposed by Linton and Nielsen [13]
and Fan et al. [5] to obtain consistent estimators. Our results show that the effects of
finance on economic growth vary in different types of countries, depending on how
we measure the level of development of the financial sector. The new methodological
approach is the contribution of this study to the existing literature.

The remainder of the paper is organized as follows. Section 2 discusses the data
that we use. Section 3 provides a brief discussion of the semiparametric regression
methodology that yields a graphical representation of the effect of financial develop-
ment on growth. Section 4 presents and discusses the results and finally we conclude
in Section 5.
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2 Data

The data set we use is from Levine, Loayza and Beck [12]. It consists of observa-
tions for 66 countries for the period 1961-1995. The data are averaged over five-year
intervals: 1961-1965, 1966-1970, , 1991-1995, so there are seven observations per
country. Table 1 presents the list of countries that are included in our sample and
Table 2 provides summary statistics on the variables used in this paper and their
correlations with each other.

There are different measures of financial development in the empirical literature,
and different indicators will proxy different aspects of the financial system. Each
has particular strengths and weaknesses. Since it is impossible to construct accurate,
comparable measures of financial services for a broad cross-section of countries over
the past 35 years, following Levine, Loayza and Beck [12] we use three measures
of financial intermediary development: Private Credit (PC), Commercial versus Cen-
tral Bank (CCB), and Liquid Liabilities (LL). Private Credit is the credit issued to the
private sector as a percentage of GDP. It measures the role of financial intermediaries
in channelling funds to the private sector, as opposed to governments, government
agencies and public enterprises. The assumption is that financial systems that al-
locate more credit to private firms are more engaged in research and development
by firms, providing risk management services, mobilizing savings and facilitating
transactions. Commercial versus Central Bank is defined as commercial bank assets
divided by commercial bank plus central bank assets. It measures the relative impor-
tance of commercial banks vis-a-vis the Central bank in allocating society’s savings.
It assumes implicitly that commercial banks are better at evaluating the potential re-
turns and risks of various projects. Finally, Liquid Liabilities is defined as currency
plus demand and interest-bearing liabilities of banks and non-bank financial interme-
diaries as percent of GDP. This variable, like Private Credit, is a measure of financial
depth and thus of the overall size of the financial intermediary sector. The underlying
assumption is that the quality of financial services is positively correlated with the
size of the financial intermediary sector.

3 Econometric Methodology

Semiparametric methods are quite useful in econometric modeling. To study the ef-
fect of financial development on economic growth we apply a particular version of
the PLR model which allows for the (unknown) nonlinear components to enter ad-
ditively, namely the additive PLR model. The advantage it has over the more widely
used semiparametric PLR model, see Robinson [17], is that the additive model allows
for the explicit estimation of the marginal effects of these non-linear components
on the dependent variable, whereas the traditional semiparametric PLR formulation
treats the variables that enter the (unknown) nonlinear part of the model as nuisance
variables. We can also graphically present the nonparametric component of the dif-
ferent measures of financial development to shed light into their nonlinear shape and
offer guide to a more suitable parametric specification.
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Argentina United Kingdom Norway
Australia Ghana New Zealand
Austria Gambia, The Pakistan
Belgium Greece Panama
Bolivia Guatemala Peru
Brazil Guyana Philippines
Canada Honduras Papua New Guinea
Switzerland Haiti Portugal
Chile India Paraguay
Cameroon Ireland Rwanda
Congo Israel Sudan
Colombia Italy Senegal
Costa Rica Jamaica El Salvador
Germany Japan Sweden
Denmark Kenya Syria
Dominican Republic Korea, Republic of Togo
Algeria Sri Lanka Thailand
Ecuador Mexico Trinidad and Tobago
Egypt, Arab Rep. Mauritius Uraguay
Spain Malaysia United States
Finland Niger Venezuela
France Netherlands South Africa

Table 1. Country List and Order in Data Sets: 66-Country Sample.

The semiparametric PLR model can be written as

yi,t = yi,t−1 + ′Xi,t + f (Fi,t)+ i,t (1)

where y is the logarithm of real per capita GDP, X represents the set of explana-
tory variables (other than lagged per capita GDP and indicators of development of
financial intermediation) that controls for other factors associated with economic
growth, is the error term, and the subscripts i and t represent country and time
period, respectively. F refers to indicators of financial intermediary development.

As mentioned in the introduction many theoretical models show that financial de-
velopment is likely endogenous (e.g. Greenwood and Jovanovic [7]), which implies
that E( i,t | Fi,t) 
= 0. Estimating model (1) directly will generate biased estimators.
We can handle this problem by introducing a set of instruments for F .3 Then we can

express Fi,t in terms of these instruments Gi,t as

Fi,t = g(Gi,t)+ui,t (2)

3The approach below has been used in the context of a system of Engel curves by
Lyssiotou, Pashardes and Stengos [14] to examine the effect of endogenous expenditures on
budget shares.
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where, for simplicity, g(Gi,t) is assumed to be parametric, say g(Gi,t) = b′Gi,t .
We choose lagged explanatory variables as instruments. Thus, (2) can be written as

Fi,t = b′Zi,t−1 +ui,t (3)

where Z represents all the explanatory variables in (1)
We assume that E( i,t | Zi,t−1,ui,t) =E( i,t | ui,t). It then follows thatE( i,t | ui,t) 
=

0, since E( i,t | Fi,t) 
= 0. Hence, one can decompose i,t into i(ui,t) + i,t , where
i(ui,t) = E( i,t | ui,t) and i,t = i,t −E( i,t | ui,t) . Equation (1) then becomes

yi,t = yi,t−1 + ′Xi,t + f (Fi,t)+ i(ui,t)+ i,t (4)

We replace the unobservable ui,t by the observable ûi,t = Fi,t − b̂′Zi,t−1. Then
equation (4) becomes

yi,t = yi,t−1 + ′Xi,t + f (Fi,t)+ i(ûi,t)+ ∗
i,t (5)

where the error ∗
i,t = i,t + i(ui,t)− i(ûi,t).

One can use Robinson’s [17] estimator to obtain root-n-consistent estimation of
parameters and in model (5), say ̂ and ̂. Then substitute ̂ and ̂ into the model
(5):

yi,t − ̂yi,t−1 −̂′Xi,t = f (Fi,t)+ i(ûi,t)+ ∗∗
i,t (6)

where ∗∗
i,t denotes the new composite error term that accounts for the estimation

of and . We use the marginal integration method proposed by Linton and Nielsen
[13] and Fan et al. [5] to obtain consistent estimates of f (Fi,t) and i(ûi,t), say f̂ (Fi,t)
and î(ûi,t). It is of course f̂ (Fi,t) the estimated function that we are interested in,
since it captures the marginal effects of the financial intermediary variable on per
capita growth clean of any endogeneity.

The important result from applying marginal integration to the additive PLR
model (5) is that the asymptotic distribution of ( f̂ (Fi,t)− f (Fi,t)) is the same as if
the other components were known. In other words, f̂ (Fi,t) behaves in the same way
as if it were an one dimensional local non-parametric estimator and avoids the so-
called curse of dimensionality that plagues many non-parametric and semiparametric
applications. This is one of the strongest supporting arguments in flavor of the above
method vis-a-vis the more traditional non-parametric estimation methods.

In this paper we will use the estimates of f (Fi,t) and its graphical representation
to detect the possible non-linear shape of f (Fi,t) in the context of a growth regression.

For estimation purposes we have used the Gaussian kernel. The choice of band-

width is according to the formula c · szs · n−
1
6 , where szs is the standard deviation of

F and û, respectively, c is a constant, and n is the number of observations. We use
different values of c to check for the sensitivity of our results to different bandwidth
choices.
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Regressors (1)priv (2)btot (3)lly

Initial income per capitaa
-0.0000

(−3.0905)
-0.0000

(−4.6154)
-0.0000

(−3.2183)

Avg yrs of sec. schooling
0.0033

(1.7030)
0.0036

(1.9519)
0.0027
(1.3740)

Goverment sizea
-0.0011
(−0.2578)

0.0010
(0.2443)

0.0009
(0.2249)

Openness to tradea
-0.0029

(−1.1578)
-0.0004
(−0.1566)

-0.0044
(−1.7530)

Inflationb
-0.0150

(−1.5640)
-0.0172
(−1.8248)

-0.0070
(−0.6930)

Black market premiumb -0.0227
(−5.5683)

-0.0172
(−4.0659)

-0.0250
(−6.4617)

Liquid Liabilitiesa

Comm. vs. Central Banka

Private Credita

Dummy OECD
0.0158
(2.7556)

0.0235
(4.4795)

0.0132
(2.2016)

a In the regression, this variable is included as log(variable). b In the regression, this variable is included as
log(1+variable). The t-statistics are given in parentheses. The number in Bold is significant at 5% level, and that in

Italics is is significant at 10% level.

Table 3. Semiparametric Regression for Growth Rates.

4 Empirical Results

Following Levine, Loayza, and Beck [12] we use a set of explanatory variables that
make up the standard human-capital augmented endogenous growth model. These
include the standard controls that have been used in the literature in addition to the
financial intermediation variables described above. They are initial income, educa-
tional attainment, government size, openness to trade, inflation, the black market
exchange rate premium, as well as the indicator of financial development. The de-
pendant variable is GDP per capita growth. We take all the explanatory variables
except for the financial indicators to be part of the linear part of the model, whereas
the financial indicators make up the non-linear components of the model. There are
three regression functions in which we use three different indicators of financial de-
velopment respectively.

Table 3 presents the regression results. From the table we can see that most ex-
planatory variables are significant at 5% significant level although their magnitude is
smaller than what was obtained by Levine, Loayza, and Beck [12]. The coefficient
on the logarithm of initial income is negative and significant, supporting the hypoth-
esis of conditional − convergence. Government size is not significant in all three
cases. Openness to trade is only significant in the third regression where Liquid Li-
abilities is used as an indicator of financial development. Black market premium is
insignificant in the third regression.

The estimates of the nonlinear effect of the financial development indices on eco-
nomic growth with their 95 percent confidence bands are presented graphically in
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Figures 1-3. The horizontal axis shows the indicators of financial development (Liq-
uid Liabilities, Private Credit and Commercial versus Central Bank, respectively),
and the vertical axis their marginal effect on growth, f (Fit). For comparison in each
figure we also include the benchmark line that corresponds to the linear effect under
a standard parametric specification. The relationship between financial development
and growth depends on how the financial development is measured. The relationship
is apparently non-linear in Figure 1 where the indicator is Liquid Liabilities. The
effect of financial development on growth varies according to the level of financial
development of the country. The curvature of the graph implies that, on average, in
the countries with low to intermediate levels of financial development, improving
financial services has a large, positive effect on growth. In the high level of financial
development region, additional financial improvements may have a negative effect
on growth.

The negative effect of financial development on growth at high levels of financial
intermediation may appear surprising and requires some discussion. One possible
explanation is the improper assumption of the positive correlation of the quality of
financial services and the size of the financial sector. The Liquid Liabilities indicator
assumes that the quality of financial services is positively correlated with the size
of the financial intermediary sector. This is true at low levels of Liquid Liabilities.
However, when Liquid Liabilities have reached a certain level, financial intermedi-
aries may find it more difficult to finance profitable projects and to maintain their
growth. As a result they would have to finance some projects that are less profitable,
something that implies that resources are allocated less efficiently resulting in lower
economic growth.

In Figure 2 where Private Credit is used a the measure of financial intermedi-
ary development, the effect on growth is almost linear and not different statistically
from zero. Financial development has little effect on growth when Private Credit is
used. Figure 3 presents an ambiguous relationship between financial development
and growth probably due to the poor measurement of Commercial -Central Bank
index as an indicator of financial development. The banking sector is just one of
sources of financial intermediation. There are other important sources of financial
intermediation, such as insurance companies, private pension funds and the securi-
ties market which is not accounted for. In countries with regulatory restrictions on
financial intermediaries and in countries with undeveloped legal systems that do not
effectively support formal financial development, firms frequently act as financial
intermediaries. Petersen and Rajan [15] show that firms frequently act as financial
intermediaries in providing trade credit to related firms. Banks may simply lend to
the government or public enterprises where they don’t care too much about potential
returns and risks. Furthermore, the definition of a bank and of a non-bank are not
always consistent across countries, and it is sometime difficult to distinguish devel-
opment banks from commercial banks in many countries. As in Levine, Loayza and
Beck [12], we note that this measurement is not a direct measure of the quality and
quantity of financial services provided by financial intermediaries.
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Our results show that the effect of financial development on economic growth
depends crucially on the definition and measurement of the financial development
index. Economic theory suggests that financial systems influence growth by eas-
ing information and transactions costs and thereby improving the allocation of capi-
tal, corporate governance, risk management, resource mobilization, and financial ex-
changes. However these three common empirical measures of financial development
do not directly measure these financial functions. They are all bank based measures
and only rough proxies for financial development. Lack of accurate measures of fi-
nancial development is one of the common problems that plague the empirical study
of finance and growth nexus. The role of other important financial intermediaries
should not be ignored.

5 Conclusion

In this paper we employ an additive IV-PLR model to study the potential nonlinearity
of the effect of financial development on growth. We did discover that financial inter-
mediary affects growth in a nonlinear way. However, this effect is highly dependent
on how the financial intermediary development is measured. We use three common
measurement of financial development and the results are different. Financial devel-
opment affects economic growth nonlinearly using a Liquid Liabilities index, while
the effect of Private Credit is almost linear and insignificant. The effect is ambiguous
when Commercial -Central Bank is used as an index. Our result suggest that these
three measurements capture different functions of the financial sector that have dif-
ferent effects on growth. Search for better variables measuring financial development
will help to improve our understanding of the finance growth nexus.

Appendix

Fan, Härdle, and Mammen [5] applied marginal integration to the following gen-
eral additive partially linear regression model:

Yi = +XTi +g1(Z1i)+g2(Z2i)+ · · ·+gp(Zpi)+ui i= 1, · · · ,n (A1)

where Xi is a discrete variable of dimension q, is a q×1 vector of parameters,
is a scalar parameter, Z

′
sis are univariate continuous variables, and gs(·) (s = 1,

. . . , n) are unknown smooth functions. The observations {Yi,Xi,Z1i, . . .Zpi}ni=1 are
independently and identically distributed (i.i.d). One needs also the identification
restriction that E [gs(Zz)] = 0 for s= 1, . . . , p.

Fan and Li [6] allow for Xi to be continuous as well as discrete. The important
result from applying marginal integration to the extended additive regression model
(A1) is that the asymptotic distribution of (ĝs(z)− gs(z))(s = 1, . . . , p) is the same
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as if the other components gl(·) for l 
= s and were known. In other words, ĝs(z)
behaves in the same way as if it were a one-dimensional local smoother. For details
about the asymptotic properties of the estimators of parameters and gs(z)(s =
1, . . . , p), see Fan and Li [6] and Fan, Härdle, and Mammen [5].

The idea behind marginal integration can be illustrated in the following additive
regression model with two regressors:

Yi = +g1(Z1i)+g2(Z2i)+ui i= 1, · · · ,n (A2)

where {Yi,Z1i,Z2i}ni=1 are i.i.d random variables, E(ui | Z1i,Z2i) = 0, is an
unknown parameter, g1(·) and g2(·) are unknown univariate functions that obey the
identifiability condition that E [g1(Z1)] = 0 and E [g2(Z2)] = 0.

As shown by Stone [18, 19] the additive components gs(z)(s= 1,2) in (A2) can
be consistently estimated at the same rate as a fully nonparametric regression with
only one regressor. In other words the additive regression model in some sense pro-
vides a way of tackling the “curse of dimensionality” problem that is one of the most
important weaknesses of nonparametric estimation methods. In recent papers Linton
and Nielsen [13], Fan, Härdle, and Mammen [5] and Fan and Li [6] employ marginal
integration as a way of obtaining estimates of the components of the additive regres-
sion model. Linton and Nielsen’s [13] paper deals with a simple additive model with
two components as in equation (A2), whereas Fan, Härdle, and Mammen [5] and Fan
and Li [6] extend the regression function to allow for a more general partially linear
formulation as in equation (A1).

The idea behind marginal integration in the context of equation (A3) can be de-
scribed as follows. Let E(Y | Z1 = z1,Z2 = z2) = (z1,z2). One can estimate (z1,z2)
by a non-parametric local smoother, say ̂(z1,z2) , and then obtain an estimator of
{ +g1(z1)} by integrating ̂(z1,z2) over z2, i.e. m̃1(z1) = n−1 n

j=1 ̂(z1,Z2 j). Since
E [g1(Z1)] = 0, we can obtain the estimator of g1(z1) by subtracting the sample mean
of m̃1(·) from m̃1(z1), i.e. g̃1(z1) = m̃1(z1)− n−1 n

j=1 m̃1(Z1i). Similarly, we can
obtain an estimator for g2(z2).

Equation (A2) can be extended to allow for an additive linear component. In that
case we have

Yi = +XTi +g1(Z1i)+g2(Z2i)+ui (A3)

where Xi is a variable (discrete or continuous) of dimension q, is a q×1 vector
of parameters, is a scalar parameter as before. We can obtain a

√
n-consistent

estimator of using Robinson’s [17] approach. Let us denote such an estimator bŷ. Equation (A3) can be then written as

Yi−XTi
̂= +g1(Z1i)+g2(Z2i)+ui+XTi ( −̂) (A4)

where ui +XTi ( − ̂) is the new composite error term. In a similar fashion as
with equation (A2) we can apply marginal integration to equation (A4) to obtain
estimates of g1(z1) and g2(z2).
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Summary. The marked gap that exists between macroeconomic theory models and applied
econometric findings arises because most observed data variability in macro-econometrics is
due to factors that are absent from economic theories, but which econometric models have
to tackle (particularly various non-stationarities). Ceteris paribus may be fine for theoretical
reasoning, but is unacceptable for empirical modelling. A ‘minor influence’ theorem is needed
instead which can only be established empirically. Thus, the chapter considers an automatic
selection approach to bring objectivity and credibility to empirical econometric modelling.

1 Introduction

The marked gap that exists between macro-economic theory models and applied
econometric findings arises because much observed data variability in macroeco-
nomics is due to factors that are absent from economic theories. Various sources of
non-stationarity impinge on macroeconomic data, deriving from technical progress,
new legislation, institutional change, financial innovation and political factors in-
cluding conflicts, inducing both evolution and structural breaks which change the
distributional properties of the data. In macroeconomics, forecast failure (defined as
a significant deterioration in forecast performance relative to its anticipated outcome,
usually based on historical performance) is the norm, and is almost certainly due to
structural breaks (see e.g., Clements and Hendry [5, 6]).

Apart from general equilibrium theory (see e.g., Kirman [48], on its evolution)
– where sameness would result, not non-stationarity – few economic theories claim
completeness. Thus, theory relies on many implicit ceteris paribus clauses. These
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Sophocles Mavroeidis, Grayham Mizon, Ragnar Nymoen, Tore Schweder, Bernt Stigum and
participants at the Econometric Methodology Conference at the Norwegian Academy of Sci-
ence and Letters, Oslo for helpful comments on an earlier draft.
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may seem valid for theoretical reasoning, but are not an acceptable basis for empiri-
cal modelling. Even if the impounded variables are strongly exogenous, it is mean-
ingless to appeal to ceteris paribus when the potential effects are non-stationary,
since ‘other things’ cannot be ‘equal’ (i.e., unchanged). Instead, ‘minor influence’
theorems or empirical evidence (preferably both) are needed, specifying why omit-
ted factors can be neglected, not because they will not change, but because changes
in them are of a smaller order of importance than the included effects. At present
such results rarely exist.

Generalizations about ‘macroeconomic theory’ are hazardous, as a huge range
of approaches and issues are addressed in the literature. Nevertheless, some generic
aspects seem open to discussion. Many economic theory models are derived from
constrained optimization, dating from the classic treatment in Samuelson [64]. Other
approaches regard the fundamental laws of economics as being entailed by hetero-
geneity of endowments, (see e.g. Hildenbrand [39, 40]), perhaps with agents hav-
ing incomplete information, or holding imperfect-knowledge expectations (see e.g.,
Aghion et al. [1]). Yet others advocate real-business cycle theories with rational ex-
pectations (see e.g., Kydland and Prescott [16, 51]). Dynamic stochastic general
equilibrium (DSGE) models abound (see e.g., Smets and Wouters [66], for a re-
cent implementation); yet Stiglitz [69] proposes the foundations of a new macroe-
conomics in asymmetric information inducing Keynesian effects, and derives com-
pletely different implications for economic policy from those of ‘new classical’ theo-
ries. Moreover, some aspects of economic theory models are au choix, such as forms
of utility functions: but with non-stationary data, at best one transformation will be
able to characterize the evidence in a constant relationship. For example, linear re-
lationships between variables often arise from Euler equations (as in Hall [23]), but
seem unlikely to be congruent descriptions in growing economies.

The absence from economic theories of the main forces for variability is com-
mon across different research arenas, but differs in form. In micro-economics, low
R2 values, usually ascribed to individual heterogeneity and idiosyncracies, reveal that
most of the variability is not accounted for by the postulated models. Heterogeneity
can generate high levels of unexplained variability, but there has to remain consid-
erable doubt that all the major factors have been included. Likewise, in panel-data
studies, most of the observed data variance is attributed to persistent ‘individual ef-
fects’ which need to be removed by (e.g.) differencing or deviations from individual
means. Such evidence that most micro variability is due to individual heterogeneity
hardly sustains using ‘representative’ agent theories for macro behaviour. Finally,
cross-country studies rarely account for key institutional differences between the
constituent economies, and often use averages of data over historical epochs where
considerable changes occurred between periods (see e.g., Sala-i Martin [63], and the
criticisms in Hoover and Perez [42], and Hendry and Krolzig [35]).

In the absence of clear and complete theoretical guidance on all relevant and
irrelevant variables, functional forms, exogeneity, dynamics, and non-stationarities,
empirical determination is essential. Economists are well aware of the importance of
changes in constraints and in institutions, and devote considerable effort to modelling
them, as in the vast literatures on credit rationing, policy rules, and economic crises,
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yet in most empirical studies, ad hoc solutions have to be adopted. Thus, large gaps
exist between theory and evidence, and this chapter describes some of their sources
and possible solutions. For earlier analyses, see Spanos [67], Juselius [44], Hendry
[25], and Nymoen [60].

Its structure is as follows. Section 2 discusses the roles of two important forms
of non-stationarity, namely unit roots, with the associated topics of cointegration and
data transforms, then structural breaks. Next, section 3 considers the substantive is-
sue of relating theory and evidence, focusing on links between means and variances
in sub-section 3.1, with the role of time in the specific guise of short-run versus
long-run theory being discussed in sub-section 3.2. The implications for theories
based on implicit or explicit ceteris paribus clauses are noted in sub-section 3.3,
expectations are considered in 3.4, and the consequences for economic forecasting
derived in sub-section 3.5. Section 4 then asks what determines the credibility of
empirical econometric evidence, before section 5 describes an automatic modelling
tool which makes model selection both objective and non-distortionary, given a con-
gruent, if potentially over-parameterized, initial general model. The role of theory in
that approach is to specify the general formulation and its parameterization, where
detailed implementation depends on institutional and historical contingencies, and
previous empirical evidence—hopefully encompassed by the new specification. Sec-
tion 6 concludes.

2 Non-Stationarities

A time-series process is non-stationary if its moments or distributional form change
over time. Two main forms of non-stationarity will be considered here. First, sub-
section 2.1 discusses unit roots which induce stochastic trends, with the associated
possibility of cointegrating relations that remove those unit roots, and retain linear
combinations of levels of the variables. The role of data transforms will be empha-
sized, as unit roots and cointegration are only invariant under linear transformations.
Since the topic is now the subject of a vast and well-known literature, the analysis
will be illustrative, using empirical time series. Then, in sub-section 2.2, for the same
data, we will consider structural breaks which induce location shifts in the processes
under analysis, together with the concept of co-breaking.

2.1 Data Transforms, Unit Roots, and Cointegration

Consider a typical group of macroeconomic variables like prices, P, money, M, in-
come, Y , and interest rates, RL, respectively the price deflator of Y , nominal broad
money (M4), real net national income, and the long-term nominal interest rate, as
shown in Figure 1 (graphs are usually shown in blocks of four, denoted a, b, d, c,
clockwise from top left, as labelled in Figure 1 for illustration). All four series are
manifestly non-stationary, with huge ranges of variation apparent over the period
1870–2000, the maximum/minimum ratios of the series being respectively 73, 1010,
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14 and a relatively small 6.5 fold. Linear models could never characterize such be-
haviour homogeneously.
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Fig. 1. P, M, Y , RL.

However, as all four variables are inherently positive, log transformations are fea-
sible, yielding series that are somewhat ‘better behaved’ (in lower case, denoted p,m,
y, rL): see Figure 2. To facilitate empirical modelling, economic theory would have to
derive such log transformations of the aggregates from agents’ optimizing behaviour.
Such a result might hold for some specific utility or profit functions, but cannot be
a generic property: and theories rarely deliver the requisite transforms. In practice,
log transformations are successful in ‘standardizing’ behaviour of long-run time se-
ries merely because percentage changes are more stable than absolute for strongly
trending series. Aggregates are linear cumulations, so the means thereof have smaller
variances than levels: if xi,t ∼ IN

[
µt , 2

t

]
then xt = M−1

t
Mt
i=1 xi,t ∼ IN

[
µt ,M

−1
t

2
t

]
.

Log transforms of totals and means only differ by population size, which is rela-
tively constant (ln Mt

i=1 xi,t = lnxt + lnMt), so standard deviations of log aggregates
are proportional to scaled standard deviations of means: SD[ln Mt

i=1 xi,t ]�M−1
t t/µt

(see e.g., Hendry [24], Chap. 2.17). Such a transformation implements a dramatic
variance reduction, independently of the underlying individual economic behaviour.
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This is not a minor issue, as an economic theory that M is a function of P, Y , RL
could be rejected simply because incorrect data transforms were used: for example,
M and m are not cointegrated. What economics does successfully deliver is that real
money, M/P, and inverse velocity, M/PY , will be better behaved, especially the last
of these: figure 3 confirms those implications for both M/PY and m− p− y, and
somewhat for m− p, but not for M/P. Even so, the range of the inverse velocity
series remains about 2.4 fold, from 65% of the mean to 160%: and this against a
current UK inflation target of 2%± 1%. Moreover, the hypothesis of a unit root in
m− p−y cannot be rejected despite the variance reduction of the log-velocity trans-
form. Nevertheless, a reduction by 3 orders of magnitude from a little reasoning is
impressive, even if not perfect, and indicates the potential advantages of cointegra-
tion as one bridge.

The series in Figure 1 may have stochastic trends, but differencing alone is in-
sufficient to induce stationarity. The changes in all four level series in Figure 4 are
highly non-stationary and unlikely candidates for agents to reason about, or base
their decisions on—or econometricians to model. Yet many Euler-based equations
are formulated in differences of levels.
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However, even growth rates can be non-stationary, with means and variances
evolving across epochs: see Figure 5, where panel b shows the means of m over suc-
cessive 25-year periods (log interest rates have no obvious finance meaning, but are
approximately equal to RL/RL, an appropriate heteroscedasticity-reducing trans-
formation). More generally, Figure 6 below shows changes in the 20-year means of
some UK time series.

How has economics coped? Many theories entail unit roots, including arbitrage
pricing, efficient markets and Euler equations. For example, RL should be close to
a martingale difference sequence to avoid creating a money machine from knowing
future bond price movements, and is approximately so (although badly behaved, as
Figure 4d demonstrates). Growth theory tries to explain the trending nature of output
series, but even endogenous growth models (see e.g., Crafts [11]) would be pushed to
explain trending growth rates. And equilibrium theories, of course, predict universal
cointegration.

How has empirical econometrics coped? By independently developing statisti-
cal models of non-stationarity. These are still in their infancy, but unit roots and
cointegration have proved successful tools. A key result is that both follow from a
reduced-rank condition on the agent’s decision system – specifically, that there are
fewer controls than targets – and do not need to be separately postulated: see Engle



Bridging the Gap: Linking Economics and Econometrics 59

1850 1900 1950 2000

0

1

2
P

1850 1900 1950 2000
0

100

200

300

M

1850 1900 1950 2000

0

5

10
Y

1850 1900 1950 2000

0.00

0.02

0.04 RL

Fig. 4. P, M, Y , RL.

and Granger [3]. Other models of non-stationarity are less developed, but are a major
focus of research effort, so we turn to these. An important issue for both economics
and econometrics is the need to simultaneously model all the non-stationarities if the
resulting theory or model is to be useful.

2.2 Location Shifts

Figures 1–3 not only manifest stochastic trends, their transforms in Figures 4 and 5
reveal clear evidence of location shifts. One can remove one unit root in an integrated
process by differencing, yet the series often remains non-stationary: Figure 5b high-
lights the location shifts for m, but also consider the mean and variance of p pre
and post 1914; or pre and post 1939.

How has empirical econometrics coped with this problem? By ‘modelling’ spe-
cial effects. Here, institutional knowledge and economic history become essential
ingredients, highlighting the contingency of economics. Consider the findings in
Hendry [26], which sought to reveal why earlier attempts at modelling food demand
had gone awry:
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For the period 1912–1989, [...] there was World War I (WWI); the 1920–21
flu’ epidemic that killed even more people than the war; prohibition (affect-
ing the drinks expenditure component); the Great depression from 1929–35
(approximately, but lingering on to 1939); World War II (WWII); the Ko-
rean war (which dramatically spurred demand and inflation); the Vietnam
war; and the Oil crises of the mid and late 1970s. Throughout, there was a
steady decline in family size, and an increase in average age of death. Such
factors need to be handled to avoid contaminating inference.

Other contributors to Magnus and Morgan [55] had eschewed modelling the 1930’s
data because models seemed non-constant over the combined inter-war and post-
war samples. However, one dummy for a period that seems to coincide with a food
program, and one for the immediate post-war de-rationing allowed a constant equa-
tion to be developed over the sample 1931–1989. Certainly an indicator variable is
a crude level of measurement, but the converse strategy of not modelling major in-
stitutional changes seems even less attractive. Theory does show that food programs
and switches in rationing matter; but few theory models allow for such factors in a
way suitable for empirical implementation (although Tobin [72], the original analyst
of this data, also published on rationing in Tobin [73]).
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The longer the historical epoch spanned by the data sample, the greater the likely
number of changes. For a second example, Hendry [30] initially needed 26 indicator
variables for modelling inflation over the period 1875–1991, which witnessed not
only all the factors in the above quote, but several other important conflicts, the
general strike, as well as major legislative, social, and technological changes, and
many policy regime shifts, including the end of the gold standard and the breakdown
of Bretton Woods. Despite the large number of measures proposed for all the factors
that might influence inflation, most ‘extreme event’ indicators proved significant (as
well as some for data mis-measurement): the theory examining their combination
into an ‘index’ is explored in Hendry and Santos [38].

Nevertheless, lest it be thought that the effort of modelling long historical periods
is not worthwhile, other studies manage without many indicators despite analyzing
the same long time period. For example, the equation first proposed for money de-
mand in Hendry and Ericsson [32] for data over 1878–1975, updated in Ericsson et
al. [17] to 1993, and then extended to the end of the twentieth century by Escribano
[18] was found to be constant (using the data series shown in the figures above).
Yet it only required one dummy for World Wars I and II combined, and one that
was unity over 1971–1975 (zero otherwise) for deregulation of the banking sector
following Competition and Credit Control (CCC) regulations. Other than CCC, the
postulated relationship captured all other major financial innovations (from the tele-
graph economizing on transported cash, through the introduction of the cheque book,
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the massive expansion of the building-society movement, credit cards and ATMs, to
interest-bearing retail sight deposits), as well as many different monetary control
policies and exchange rate regimes. Consequently, while unmodelled location shifts
are pernicious, they can be captured in general models, and empirical evidence is
essential to establish which breaks matter.

Underlying these two very different cases is the absence or presence of co-
breaking, namely the elimination of location shifts by linear combinations of vari-
ables (just as cointegration eliminates unit roots): see Clements and Hendry [6]
(Chap. 9) and Massmann [57]. A causal link between variables should entail that
shifts in one of the causes induces corresponding shifts in the outcomes. A major
role for economic theory is to specify such causal links. Unfortunately, when loca-
tion shifts are common, incomplete theories will fail empirically: co-breaking seems
more likely in general than in over-simplified models.

Indeed the import of this chapter should now be clear: far from diminishing the
importance of economic reasoning as a basis for empirical econometrics, modelling
the profusion of ‘contaminants’ and non-stationarities in macroeconomic data is the
only way to reveal the underlying economic behaviour. Conversely, theorists need to
devote greater effort to models of the likely behavioural reactions of economic agents
to major changes of the kind noted above, so that their practical treatment becomes
less ad hoc. As macrodata are simply the aggregates of the economic microcosm, the
same problems must afflict all empirical econometric studies, and are not merely an
endemic problem for time-series analysts alone.

3 Linking Economics and Econometrics

Five aspects are considered. First, we discuss the relationships between means and
variances in sub-section 3.1: economics is primarily about the former and econo-
metrics about the latter, so explicit links are essential. Economic theories postulate
connections between latent or unobservable variables, whereas econometric models
estimate the parameters from second moments of observables: this might be a bridge
too far. Secondly, the role of time, and more specifically the short run versus the
long run, is noted in sub-section 3.2. Thirdly, the viability of ceteris paribus clauses
is evaluated in sub-section 3.3. Fourthly, sub-section 3.4 considers expectations. Fi-
nally, sub-section 3.5 briefly considers the implications of the present framework for
economic forecasting.

3.1 Means versus Variances

Although much of modern finance concerns variances, most economic theory is im-
plicitly about relationships between means such as:

µy = µz. (1)

The most famous example is the permanent income hypothesis (PIH), where µy
is permanent consumption and µz is permanent income, so the income elasticity of



Bridging the Gap: Linking Economics and Econometrics 63

consumption is unity. However, other instances abound: most demand and supply
functions relate means; expectations and Euler-equation models relate conditional
first moments, as do GMM approaches; and so on. Constructs like µy and µz are in-
herently unobservable, so additional assumptions are needed to complete the model.
For example, Friedman [22] uses:

yt = µy+ y,t and zt = µz+ z,t

together with E [ y,t z,t ] = 0 where E [·] denotes an expectation. However, much
more general mappings could be used without affecting the point of this section.

In contrast, econometrics is a science of second moments. Consider the simplest
setting of a linear regression model of a random variable yt where there are n regres-
sor variables z′t = (z1 . . .zn) over a sample t = 1, . . . ,T :

yt =
n

i=1
izi,t + vt where vt ∼ IN

[
0, 2

v

]
(2)

when (2) is congruent (so matches the data evidence in all relevant respects).
Also, E [zt vt ] = 0, so:

E [yt | zt ] = ′zt , (3)

which can be written in model form as in (2), or in matrix notation as:

yt = ′zt + vt . (4)

Hence from (4):
E [yt ] = ′E [zt ] , (5)

which is precisely of the form of (1) when and µz are vectors:

E [yt ] = µy = ′E [zt ] = ′µz. (6)

At first sight, deriving the linear representation in (6) from (2) may suggest (2)
is of the appropriate form for throwing light on (1). However, if y′ = (y1 . . .yT ) and
Z′ = (z1 . . .zT ) then: ̂=

(
Z′Z
)−1Z′y (7)

which uses the second moments to estimate the parameters connecting the means.
Implicitly, (2) entails:

E
[
ytz′t
]
= ′E

[
ztz′t
]
,

which (having removed an intercept), implies a link between the variances:

yz = ′
zz. (8)

Thus, comparing (1) and (8), means and variances must be connected in exactly
the same way to infer about parameters of interest in models of means using estimates
based on second moments. One route is to assume some form of weak exogeneity
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(Engle et al. [15]), either directly as with the parameter linking (6) with (8), or
indirectly by postulating ‘valid instrumental variables’ which satisfy an equivalent
weak exogeneity condition. Such a restriction would not be valid for the PIH as
formulated in Friedman [22]. Much research remains to be done into when linking
means and variances is feasible in non-stationary processes: the current paradigm is
to transform the problem to a ‘stationary’ representation via cointegration, then link
the means to variances in the resulting model (such as a vector autoregression, VAR,
or a conditional system).

3.2 Short Run versus Long Run

A further discrepant factor which often precludes direct application of even dynamic
economic theory is the lack of a clear definition of ‘time’. Continuous-time formu-
lations suggest one solution, but most agents’ decisions are made discretely, and
‘economic time’ need not map 1–1 onto ‘clock time’. This issue is paramount in
understanding what aspects of econometric models are constrained by theoretical
reasoning. Often, only the long-run is specified, for a hypothetical steady state, leav-
ing open the adjustment behaviour. There are few viable theoretical models extant
for adjustment costs, and the main contender—quadratic adjustment costs—often
does not make sense: why would a super tanker, or a skyscraper ever be built if
costs grew quadratically with the size of the investment? The large coefficients on
lagged dependent variables found empirically (see e.g., Kennan [45]) are sometimes
taken to entail that adjustment costs are far from trivial, but that interpretation is
not unique. First, panel data studies suggest that ‘individual effects’ are persistent,
and that differencing provides a viable solution, which would lead to coefficients on
lagged dependent variables being unity. Secondly, the theory of forecasting shows
that differenced-data models are more robust to location shifts (see e.g., Clements
and Hendry [6]), with the same implication.

Cointegration may be thought to have endowed equilibrium approaches with a
second life by generalizing that notion to non-stationary processes. Unfortunately,
the most pernicious failing in an econometric model is that occasioned by a shift
in the equilibrium mean, an event that seems to happen all too often, and thereby
induces significant forecast failure. Such shifts are undoubtedly due to other factors
changing: money demand equations because of the introduction of new competing
assets; savings behaviour because of changes in legislation about health care pro-
vision in old age; consumption decisions because of changes in credit rationing –
the list could continue endlessly as non-stationarities abound. Thus, unless the the-
ory model is complete, correct, and immutable, there are no grounds for according
it a status beyond a cognitive guide. This has not stopped most referees and editors
ascribing to a false approach to what they call ‘science’ in which empirical models
must be derived from (their version of) economic theory. But if the theory model was
complete, correct and immutable, economics would be at an end: there would be no
‘economic theory research’ – which the same editors happily continue to publish. A
major difficulty to be overcome to bridge any gap is to first acknowledge that such a
gap exists.
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3.3 Ceteris paribus in a Non-Stationary World

In theoretical reasoning, a ceteris paribus clause could legitimately impound those
potential forces that were not caused by the variables under analysis (i.e., were at
least strongly exogenous): but that is not an acceptable basis for empirical mod-
elling of non-stationary processes. To cite Cartwright [4], and in a context where she
believes ceteris paribus has some value because of its explicit acknowledgment of
important procedures that must be taken to control experiments:

The too optimistic view supposes that theory can in principle always provide
us with non-causal concepts to cash out the concept of interference. I argue
that our best evidence suggests that that is wishful thinking.

Cartwright views ceteris paribus as roughly equivalent to ‘if nothing interferes then
.... some regularity is observed’. Thus, theories remain testable, albeit that a rejection
outcome could be rationalized by a failure of ceteris paribus rather than the invalid-
ity of the theory itself. In non-stationary processes that is precisely the problem:
nothing will interfere only if other factors are irrelevant, not because they do not
change. Econometric modellers are gradually uncovering various sources of non-
stationarity, and while there has been a significant attempt by economists to take on
board the unit root–cointegration revolution, this cannot yet be said of other sources
of non-stationarity, particularly structural breaks inducing location shifts. In effect,
it is meaningless to appeal to a ceteris paribus clause when the potential effects are
non-stationary even if they are strongly exogenous (and so do not change because
of changes in the variables under analysis). Instead, a ‘minor influence’ theorem is
needed, which must specify on theoretical or evidential grounds why omitted factors
can be neglected, not because they will not change, but because changes in them are
of a smaller order of importance than the included effects.

Many theories in economics already postulate that the economic system is a gen-
eral equilibrium in which everything depends on everything else, so ceteris paribus
is itself theoretically suspect. Partial equilibrium analysis therefore, requires both
a ‘minor influence’ theorem for feedback responses from affected variables, and a
ceteris paribus condition within the partial equilibrium model for all variables not
explicitly taken into account. Indeed, as sub-section 3.2 noted, when theory models
are not complete, correct, and immutable, additional factors will invariably matter.
That suggests embedding such theory models in more general systems that allow for
all the empirically-known influences, as well as the many historical contingencies
that have happened. Consequently, we should again expect to find models which in-
volve many, rather than few, factors in macroeconomics, an implication pursued in
section 5.

3.4 Models of Expectations

Another major area yet to be adequately bridged is that between theory models of ex-
pectations and the realities of economic forecasting. Economists often assume agents
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hold ‘rational’ expectations (RE), namely the correct conditional expectation E[·] of
the variable in question (yt+1) given the available information (It), written as:

yret+1 = E [yt+1 | It ] . (9)

The usual argument, often loosely worded to avoid contradiction, is that oth-
erwise there would be arbitrage opportunities, or unnecessary losses. But expecta-
tions are formed for a purpose, not an end in themselves—so are instrumental—and
agents should therefore equate the marginal benefits of improved forecasting accu-
racy against the additional costs of achieving it. That leads to ‘economically ratio-
nally expectations’ (ERE), as in Feige and Pearce [21]. In turn, ERE highlights that
RE implicitly assumes free information, free computing power, and free discovery
of the form of E [yt+1|It ]. Model consistent expectations suffer the serious additional
drawback of imposing an invalid specification on the expectations formation process,
unless the model is otherwise already perfect.

While ERE are more realistic than RE, they also suffer from the most serious
lacuna in (9), namely the assumption that agents can do the relevant calculations.
Explicitly, (9) should be written as:

yet+1 = Et+1 [yt+1 | It ] =
∫
yt+1 ft+1 (yt+1 | It)dyt+1 (10)

since only then will yet+1 even be an unbiased predictor of yt+1. But (10) requires
agents to have crystal balls that genuinely see into the future since it involves the
future conditional density function ft+1(yt+1|It). The best that any agent can do in
this framework is form the ‘sensible expectation’, yset+1, based on also forecasting

ft+1(·) by f̂t+1(·):
yset+1 =

∫
yt+1 f̂t+1 (yt+1 | It)dyt+1. (11)

Even more unfortunately, when {yt} is non-stationary, there are no guaranteed
good rules for estimating ft+1(yt+1|It); in particular, when the conditional moments
of ft+1(yt+1|It) are changing in unanticipated ways, f̂t+1(·) = ft(·) need not be a
good choice, yet underlies most of the formal derivations of RE of which I am aware.
Agents cannot actually do what (9) asserts outside of a stationary environment (see
e.g., Hendry [31]).

The drawbacks of (9) and (10), and the relative success of robust forecasting
rules are examples of imperfect-knowledge expectations (IKE: see Aghion et al. [1]).
Agents cannot know how It enters ft(·) (let alone ft+1(·)) when processes are evolv-
ing in a non-stationary manner. This gap is only bridgeable once extremely unreal-
istic assumptions are abandoned in favour of models that reflect the non-stationarity
of economic data. Of course, one might attempt to collect systematic evidence on
agents’ expectations (see e.g., Nerlove [59]) to replace the unobservables by out-
comes rather than postulates.

Another under-investigated aspect links back to sub-section 3.1. Re-consider (4),
and take expectations conditional on the available information set It−1:

E [yt | It−1] = ′E [zt | It−1] (12)
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as E [vt |It−1] = 0. Then, the conditional model, with valid weak exogeneity, im-
plies a form of expectational representation, although the converse is false.

3.5 Implications for Economic Forecasting

Attempts by economists to forecast confirm the force of the preceding arguments:
forecast failure is common. Either economists themselves uniquely fail their own
assumptions about other agents, or their assumptions are incorrect more generally.
The latter seems all too obvious.

In macro-economics, forecast failure is almost certainly due to location shifts
in time series (see e.g., Clements and Hendry [5, 6]). Most location shifts seem to
be unanticipated ex ante, and hence unforecastable. Once such shifts have occurred,
all forms of equilibrium-correction specifications will suffer forecast failure, which
class includes the vast majority of theories and models in economics. Whether fail-
ure is due to omitting relevant observable variables which shift, or internal shifts in
location, the outcome is the same.

Worse still, unanticipated location shifts are common (see e.g., Stock and Wat-
son [70]; Clements and Hendry [9]) and are pernicious for forecasting (see e.g.,
Clements and Hendry [10]). Surprisingly, other (i.e., zero-mean) changes are less
damaging to forecasts (see e.g., Hendry [29]). Nevertheless, once it becomes likely
that ft+1(·) 
= ft(·), then forecasting devices that are robust to location shifts tend to
dominate in forecasting competitions: see the theoretical analysis in Clements and
Hendry [7], the interpretation of the outcomes of the M3 forecasting competitions
(see e.g., Makridakis and Hibon [56]) by Clements and Hendry [8], and the empirical
corroboration by Eitrheim et al. [13]. Differencing converts step shifts to impulses,
as well as removing unit roots and lowering the orders of deterministic polynomials
by unity, so the apparent success of differenced models is probably due to their ro-
bustness, and while consistent with theories that deduce the presence of unit roots,
does not confer corroboration.

Two asides. First, on realizing the impossibility of forming RE, agents may well
opt for robust predictors, which should influence the specification of expectations in
theory models: see Favero and Hendry [20]. Secondly, the framework just sketched
also suggests that attempts to test the rationality (or even unbiasedness) of past fore-
casting models may not be valid. If unanticipated location shifts occurred, any eval-
uation period that included such a shift would make the corresponding forecasting
rule appear to be irrational, even if it was optimal before the break and the break
could not be predicted.

4 Credibility

This section concerns what makes econometric evidence credible. There are two key
dimensions to credibility, ‘persuasiveness’ and ‘verisimilitude’. The former relates
to whether or not scholars will deem the evidence credible relative to their belief
system; the latter whether or not they should do so.



68 David F. Hendry

‘Theory-driven’ approaches, where a model is derived from a priori theory and
calibrated from data evidence, are often deemed by economists to be credible be-
cause they are consistent with the basic axioms of economic theory. However, such
models suffer from theory dependence: their credibility depends on the credibility
of the theory from which they arose, and when that theory is discarded, so is the
associated evidence (see e.g., Hendry [25]). Since economic theory is progressing
rapidly, theory dependence is likely to induce transient and non-structural evidence.
Economists do not seem to feel the need to justify the principle of deriving empir-
ical models from theory—indeed they simply assert it is essential—but appear less
persuaded by the converse of deriving theoretical models from empirical findings.
Partly as a consequence, a substantial proportion of empirical econometric evidence
is ‘high level’ in that its credibility depends directly on the prior credibility of the
theoretical model from which it was derived.

The distinction in Karl Popper [62] between conjectures and refutations is help-
ful. Given any conjecture, we can usually test its empirical validity, thereby sus-
taining a destructive approach, although issues of inference from small and hetero-
geneous data samples complicate the analysis. What happens with rejections in the
theory-based approach? If an implementation is discarded when it cannot explain
the empirical evidence, the underlying theory should lose credibility; whereas if it
is not discarded, the theory must be altered to avoid maintaining two contradictory
propositions. In practice, the empirical model, the measurement instruments and the
associated theory may all be revised till ‘consistency’ is achieved. Depending on how
that is implemented, the result may or may not lack credibility. But postulating an
endless sequence of models and theories that get rejected in turn fails to incorporate
learning from the evidence. Our proposed solution is to conduct research in a pro-
gressive framework of successively encompassing, congruent models consolidated
by empirically-relevant theories.

Constructing models is another matter. Empirical econometric models are de-
signed to satisfy various criteria (including theory consistency or data coherency), so
thereby acquire no excess content. Nevertheless, validity is an intrinsic property of a
model independently of how it was discovered or of the initial credibility of the se-
lection (which might depend on the discovery route). Yet how a model was selected
is often claimed to affect its ‘credibility’: at its extreme, we find the claim in Leamer
[53] that ‘the mapping is the message’, emphasizing the selection process over the
properties of the final choice. Some economists have even come to doubt the value of
empirical evidence, to the extent of referring to it as a ‘scientific illusion’ (Summers
[71]). Many estimated models certainly lack credibility in my second sense, because
they are almost untested, imposing a variety of arbitrary and unjustifiable restric-
tions, but I doubt that was his point. However, by performing as anticipated against
new data, larger samples, new rival models or new tests, they should acquire objec-
tive credibility. Since the apparently problematic issue is data-based model selection,
we consider that in more detail.
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5 An Objective and Non-Distortionary Modelling Tool

Model selection is another contentious topic. To bridge the gap between fact and
fiction in this arena, Hendry [28] discusses and rebuts nine claimed model selec-
tion difficulties spanning complaints from Keynes [46] and Koopmans [49], through
Judge and Bock [43], Leamer [52, 53] and Lovell [54] to Pagan [61] and Faust and
Whiteman [19]. As established in Hendry [27], their criticisms are neither funda-
mental nor inevitable, and all have counter criticisms noted in section 6. Since the
best antidote is a procedure that works, section 5.4 describes the properties of our
approach, which we first outline in the next three sub-sections.

5.1 The PcGets Algorithm

PcGets is an Ox Package (see Doornik [12]) implementing automatic general-to-
specific (Gets) modelling based on the theory of reduction, as in Hendry [24] (Chap.
9). The present implementation is for linear regression models, but extensions to dy-
namic, cointegrated, simultaneous systems are clear (see e.g., Hendry and Krolzig
[34]). Given the available theoretical, historical, institutional, and measurement in-
formation, as well as previous empirical evidence, a general unrestricted model
(GUM) should be formulated carefully, preferably with a near-orthogonal parameter-
ization. There are two obvious mistakes that could be made when specifying a GUM:
it may have no subject-matter basis (non-encompassing of existing models), and it
may fail to describe the data (non-congruent). Both need rectified by better thinking
and more congruent specification before going further. The GUM is then estimated
from all the available evidence, and rigorously tested for congruence. If it fails, a
new formulation is required: but at least one has learned the general inadequacy of
a class of models. If congruence is accepted, it is then maintained throughout the
selection process by diagnostic checking (using the same statistics) at every putative
simplification, thereby ensuring a congruent final model.

Statistically-insignificant variables are eliminated by selection tests, both in
blocks and individually. Many reduction paths are searched, as in Hoover and Perez
[41], to prevent the algorithm from becoming stuck in a sequence that inadvertently
eliminates a variable that actually matters, and thereby retains other variables as
proxies (as in step-wise regression). Such path searches terminate when no vari-
able meets the pre-set elimination criteria, or any diagnostic test becomes significant.
Non-rejected (terminal) models are collected, then tested against each other by en-
compassing: if several remain acceptable, so are congruent, undominated, mutually-
encompassing representations, the reduction process recommences from their union
(providing that is a reduction of the original GUM), the entire sequence repeating till
a unique outcome is obtained. Otherwise, or if all selected simplifications re-appear,
the search is terminated using (e.g.) the Schwarz [65] information criterion. The sig-
nificance of retained variables in sub-sample is then used as a reliability check.

By making the procedure algorithmic, it can be subject to simulation studies with
no human intervention. In the latest Monte Carlo experiments reported in Hendry and
Krolzig [36], commencing from highly over-parameterized GUMs (between 8 and
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40 irrelevant variables; zero and 8 relevant), PcGets recovers the DGP with an accu-
racy close to what one would expect if the DGP specification were known initially,
but nevertheless coefficient tests were conducted. Empirically, PcGets selects (in sec-
onds) models at least as good as those developed over several years by their authors
(see Ericsson [16], for several examples). Although automatic model selection is in
its infancy, exceptional progress has been achieved for reasons we now explain.

5.2 Costs of Search and Costs of Inference

The header alludes to a key distinction. Costs of search arise from commencing with
an over-parameterized GUM, necessitating a search for a parsimonious undominated
model of the DGP. Costs of inference always confront empirical investigators—even
if they commence from the DGP, but do not know that their specification is correct,
and so have to test for congruence and significance. Costs of inference are inevitable
if tests have non-zero size and non-unit power: surprisingly in view of the multi-
tude of criticisms noted above, costs of search are small in comparison to costs of
inference—the key problem is not model selection, but the vagaries of sampling.

We assume that a congruent GUM has been achieved, so now must select a model
from that GUM; and again there are two obvious mistakes. The first is including
variables that do not actually matter in the DGP; the second is omitting variables
that do: type I and II mistakes respectively. Since the first cannot arise if the DGP is
the GUM, it is purely a cost of search. The second, however, could plague a study
that commenced from the DGP, so is primarily a cost of inference, with possible
additional search costs if there are lower probabilities of retaining relevant variables
when commencing from the GUM.

When the nominal rejection frequency of individual selection tests is set at the
conventional 5%, on average one irrelevant variable will be retained as adventitiously
significant out of 20 candidates, so 19 out of the 20 will be eliminated. However, the
5% critical value of a t-test (approximately 2) entails only a 50% chance of keeping a
variable with a non-centrality of 2. Thus, there is little difficulty in eliminating almost
all of the irrelevant variables when starting from the GUM (a cost of search), and a
small chance of retaining such relevant variables even if commencing from the DGP
(a cost of inference). A more stringent critical value (say at 1%, so 2.625) worsens
the latter dramatically for little gain in the former: now one irrelevant variable out
of 20 will be retained on average once in 5 exercises, whereas the retention proba-
bility of the relevant variable becomes 27%, even when the correct specification is
known. Costs of inference usually exceed costs of search, the exception being when
all relevant variables have non-central t-statistics in excess of 5.

5.3 Choice of Strategy

The contrast in the previous section between 5% and 1% reveals the crucial nature
of the testing strategy, albeit a topic little discussed in the literature. PcGets offers
a ‘Liberal’ and a ‘Conservative’ strategy with different baselines, roughly 5% and
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1% as above, but using sample-size dependent critical values. In the above illustra-
tion, 1% eliminates all 20 irrelevant variables four times out of five, and 19 on the
fifth occasion: hardly a serious ‘data mining’ problem. Unfortunately, inference costs
increase as shown: the choice of an appropriate strategy for the analysis at hand is es-
sential. PcGets using the ‘Liberal’ strategy applied to a GUM with say 25 irrelevant
variables will on average come closer to the DGP than the ‘Conservative’ strategy
beginning from the DGP unless all t-statistics are large.

However, empirical and subject-matter knowledge can be invaluable: if there are
40 irrelevant variables and almost no relevant (as in Lovell [54], say) the ‘Conserva-
tive’ strategy may be best, although pre-simplifying the GUM could be better still.

5.4 Actions Speak Louder than Words

How well does the algorithm do in practice? Hendry and Krolzig [36] summarize
of all the simulation findings to date for PcGets: see Hoover and Perez [41, 42] for
additional evidence.

‘Over-fitting’ as measured by a downward biased estimate of the equation stan-
dard error, denoted ̂, for the true value , does not occur: PcGets selection is not
based on fit, but a minimal congruent encompassing model will be best fitting for
the chosen significance level. The ‘Liberal’ strategy has a slight downward bias from
irrelevant variables retained by chance (under 5% of ), whereas the ‘Conservative’
is upward biased by a similar amount as it eliminates relevant variables.

Further, the rejection frequencies for the two strategies are close to their intended
significance levels of 5% and 1%. Thus, type I errors per test are well controlled.
If n irrelevant variables are included at significance level then n variables will
be retained adventitiously, and (1− )n eliminated. Some researchers think in terms
of the ‘size’ of the selection procedure, namely 1− (1− )n, which can be large,
but is uninformative about the success of simplification. Adventitiously retaining n
irrelevant variables could also be deemed over-fitting, but that seems unhelpful when
the associated under-fitting of omitting relevant variables is ignored.

The average rejection frequencies of the nulls for relevant variables depend on
their non-centralities. The ‘Conservative’ strategy never has higher power than the
‘Liberal’, confirming that the costs of avoiding ‘spurious’ variables can be high.
Adding up to 8 irrelevant orthogonal variables reveals only a small impact on power,
especially for the ‘Liberal’ strategy, confirming low search costs.

The probabilities of locating the DGP commencing from the GUM are reason-
ably close to the corresponding outcomes when the search commences from the DGP.
Thus, often the problem attributed to a search algorithm is actually a cost of infer-
ence, since the DGP is sometimes never retained even when it is the initial specifi-
cation. When population t-values are 2 or 3, the ‘Liberal’ strategy does best, and in
practice can outperform commencing from the DGP with a 1% significance level:
the two strategies cannot be ranked as their relative performance depends on the
unknown state of nature.

Finally, they show that a bias correction is feasible if desired to offset the se-
lection impact from only retaining variables whose t-test exceeds the criterion. This
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induces a slight increase in root mean square errors (RMSEs) when variables are rele-
vant, but a substantial reduction in RMSEs when variables are irrelevant: see Hendry
and Krolzig [36]. Thus, near unbiased estimates can be reported, despite data-based
selection. Moreover, since ̂ is nearly unbiased for , in orthogonal problems, the
reported standard errors of estimated coefficients in selected models are close to the
sampling standard deviations of the corresponding coefficients in the estimated DGP.

The main application for unbiased estimates is policy analysis. If a variable is
wrongly excluded, then a policy avenue may be missed, but no serious losses should
result. If a variable is wrongly included, false policy may ensue, but a small coeffi-
cient will decrease the chance of an ‘over-reaction’ by policy makers. If a variable
is correctly included, but with a biased coefficient, again incorrect policy could re-
sult, so unbiased coefficients seem valuable in this arena. As noted above, there is
little RMSE cost from bias correction for relevant variables (the bias reduction being
partly offset by a variance increase), and a substantive RMSE reduction for irrelevant
variables.

Overall, their findings confirm that the two strategies are close to their desired
operating characteristics, that ‘size’ is well controlled; that search costs are low; and
that over-fitting does not result.

5.5 Role of Theory

Variables deemed potentially relevant to the policies under analysis can be forced
to enter all specifications, including the final selected model. In Hendry and Krolzig
[33], we recommend that a user run the program both with and without such ‘fixed
variables’, and if the models differ, conduct an encompassing test between them. Nat-
urally, the ‘null’ is the restricted formulation, as that is deemed theoretically prefer-
able, so a stringent critical value is allowable, but equally, there must exist some level
of significance at which the theory—and entailed policy—should be questioned. Fur-
ther, note that the forcibly-retained variables need not be significant—and may even
have signs that clash with the theory, although the algorithm can be designed to seek
models satisfying sign constraints if such exist under the initial GUM.

We have come full circle to the role of theory, but with a more level playing field.
Theory cannot be the arbiter of empirical specifications no matter how beautiful and
general the framework from which it is derived. As ceteris paribus is not valid in
a non-stationary world, a much closer interaction between theory and evidence is
needed than econometrics simply being a tool for providing quantitative cloth on a
fully-formed theory (Kirman [47], discusses the absence of clothes on our present
emperor). This problem is compounded by the absence of a clear specification of
decision time, the lack of good theories of dynamic economic behaviour, and an
absence of guidance on definitive functional forms.

Most economic theories are ahistorical, and hence do not ‘predict’ that the be-
haviour of variables should depend on actual calendar time: consumption smoothing
theories are typical in that regard. Of course, theorists recognize that special fac-
tors may intrude (changes in credit rationing, technological change, wars, financial
innovation, deregulation, price controls etc.), but such special factors can dominate
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when accounting for data variability, so the empirical modelling problem cannot be
surmounted simply by estimating theory-derived models: see Morgan [58], Spanos
[68], and Hendry and Mizon [37] on the problems involved in testing theories using
non-experimental data.

Thus, the role of theory becomes one of specifying the general formulation where
detailed implementation then depends on institutional and historical contingencies,
and previous empirical evidence—hopefully encompassed by the new specification.
If there are competing theory models of a given variable, PcGets could be used to
select the ‘best representative’ of each, conditional on the specifications of their in-
formation sets and hence GUMs. Then encompassing tests could be used to deter-
mine their relative performance. This would automate the type of approach adopted
by (e.g.) Bean [3] and Ahumada [2], and ensure an objective and reproducible out-
come. Still, a parsimonious encompassing test of the best against the union remains
advisable.

6 Conclusion

We have argued that the marked gap between macroeconomic theory models and
applied econometric findings arises because much of the observed data variability
in macroeconomics is due to various non-stationarities that are absent from most
economic theories, but which empirical models have to tackle. Ceteris paribus con-
ditions can sometimes be justified for theoretical reasoning, but are unacceptable
as a basis for empirical modelling. A ‘minor influence’ theorem is needed instead
which can only be established empirically. This suggests formulating a general initial
model consistent with all the evidence: theory, institutions, history, and data. Once a
congruent encompassing general model is established, an automatic model selection
approach based on general-to-simple principles is proposed to bring objectivity and
credibility to empirical econometric modelling.

Such an approach is not a tract for mindless modelling of data. Our observations
are far from perfect, are subject to revision, and even to conceptual changes: it is
only ex post, for example, that M4 is the obvious choice of monetary measure. Key
series are often missing, and many proxies are adopted for want of the original.
There are major gaps between theory constructs (e.g., consumption, or the user cost
of capital), and the measured series (consumers’ expenditure or after-tax real interest
rates adjusted for depreciation). Aggregation introduces a further gap.

Lest it be mis-understood, nor is this chapter an anti-economics tract: quite the
opposite. Economics has delivered a vast range of invaluable insights into individual
decision taking, why some markets function well and others do not, how economies
as a whole behave, why trade is beneficial, and so on. It has created an impressive
edifice of theory, made rapid technical and intellectual progress, and looks like doing
so for some time to come. And that is one of the main points: economic theory is
not complete, correct, and immutable – and never will be. But that is precisely the
condition needed to justify an insistence on deriving empirical models from theory.
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Rather, because theory is improving, we cannot appeal to ceteris paribus in a non-
stationary world, and there is no generic ‘minor influence’ theorem, our theoretical
insights should be embedded in empirically congruent representations, not forced on
the data: marriage is required, not data rape.

Why have good bridges not been constructed previously? Perhaps because of a
misplaced fear that data basing was mindless data mining. Unfortunately, the present
theory-based paradigm encourages the latter covertly, so we do not actually know
how credible much of our ‘evidence’ really is. Data basing was shown above not
to have the pernicious properties ascribed to it by some: the general theory-model
embedding GUM can have many additional potentially relevant variables without
risking a ‘garbage in, garbage out’ approach. At 1% significance, one variable out
of one hundred will be significant by chance, yet all relevant factors with t-ratios in
excess of ±2.65 will be retained.

Another factor may have been a belief that ‘parsimony’ is good: it is, but in the
final model, not in the starting point when that is achieved by arbitrarily exclud-
ing many potentially relevant contenders. The time requirements for investigating
large models may also have seemed sufficiently daunting to dissuade all but the most
persistent investigators – that too is history. Indeed, so is the need for fewer candi-
date variables than observations: see Hendry and Krolzig [34]. There is now no case
against general-to-specific modelling, and a strong case in favour. At the same time,
that should not be interpreted as a case against the maximum use of our best available
theory to guide our empirical endeavours.
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Summary. This paper tests Mankiw’s [9] revenue-smoothing hypothesis, that the inflation
rate moves one-for-one with the marginal tax rate in the long run, using the new average
marginal tax rate series constructed by Stephenson [16] and the long-horizon regression ap-
proach developed by Fisher and Seater [5]. It reports considerable evidence against revenue-
smoothing.
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1 Introduction

A crucial implication of Mankiw’s [9] revenue-smoothing (or optimal seigniorage)
hypothesis is that higher tax rates are associated with higher inflation rates (and nom-
inal interest rates). There have been many attempts to test this hypothesis. For exam-
ple, Mankiw [9] and Poterba and Rotemberg [14] using the OLS method find support
of the hypothesis. However, more general tests (based on the cointegration and/or
VAR methodology) by Trehan and Walsh [17], Ghosh [6], Evans and Amey [4], and
Serletis and Schorn [15] generally reject revenue smoothing.

The present paper extends the literature by testing whether the inflation rate
moves one-for-one with the marginal tax rate in the long run, using the new aver-
age marginal tax rate series constructed by Stephenson [16] and the long-horizon
regression approach developed by Fisher and Seater [5]. Long-horizon regressions
have received a lot of attention in the recent economics and finance literature, be-
cause studies based on long-horizon variables seem to find significant results where
short-horizon regressions commonly used in economics and finance have failed.

�Serletis gratefully acknowledges support from the Social Sciences and Humanities Re-
search Council of Canada.
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In what follows, we provide a brief summary of Mankiw’s [9] theory of optimal
seigniorage (Section 2) and of the econometric approach developed by Fisher and
Seater [5] (Section 3). In Section 4, we discuss the data, investigate the integration
properties of the variables, and present the results. The paper closes with a brief
summary and conclusion (Section 5).

2 The Theory of Optimal Seigniorage

Following Mankiw [9], let Y be the exogenous level of real output and the tax rate
on output. The revenue raised by this tax is Y . It is assumed that the government
finances expenditure in excess of taxes from seigniorage. Assuming that the demand
for money is described by the quantity equation, M/P = kY , the real revenue from
seigniorage is

Ṁ
P

=
Ṁ
M
M
P

= ( +g)kY

where is the inflation rate and g is the growth rate of real output. The total real
tax revenue, T , is therefore the sum of the receipts from direct taxation, Y , and
seigniorage, ( +g)kY . That is, T = Y +( +g)kY .

The social costs of taxation and inflation are assumed homogenous in output and
denoted by f ( )Y and h( )Y , respectively, where f ′ > 0, h′ > 0 and f ′′ > 0, h′′ > 0.
The government’s goal is to minimize, with respect to and , the expected present
value of the social losses

Et
j=0

j [ f ( t+ j)+h( t+ j)]Y

subject to the present value budget constraint

j=0

jGt+ j +Bt =
j=0

jTt+ j

where Gt is real government expenditure at time t (taken to be exogenous), Bt is real
government debt at time t, and is the real discount factor, assumed constant over
time.

The first-order conditions necessary for optimal intertemporal monetary and fis-
cal policy are (see Mankiw [9])

Et
[
f ′( t+ j)

]
= f ′( t), (1)

Et
[
h′( t+ j)

]
= h′( t), (2)

h′( t) = k f ′( t). (3)
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The intertemporal first-order conditions (1) and (2) equate the marginal social
cost of taxation and inflation, respectively, today and in the future. The static first-
order condition (3), which relates the tax rate to the rate of inflation, equates the
marginal social cost of raising revenue through taxation and the marginal social cost
of raising revenue through seigniorage. This last condition expresses a crucial im-
plication of the theory of optimal seigniorage. Increases in the government revenue
requirement increase both taxation and inflation. Hence, over time higher tax rates
are associated with higher inflation rates and higher nominal interest rates.

3 Econometric Methodology

As already noted, we test the theory of optimal seignioarge using the long-horizon
regression approach developed by Fisher and Seater [5]. One important advantage
to working with the long-horizon regression approach is that cointegration is nei-
ther necessary nor sufficient for tests on the long-run derivative. We start with the
following bivariate autoregressive representation

(L) 〈 〉
t = (L) 〈 〉

t + t

(L) 〈 〉
t = (L) 〈 〉

t + t

where 0 = 0 = 1, = 1−L, where L is the lag operator, is the inflation rate,
is the marginal tax rate, and 〈z〉 represents the order of integration of z, so that

if z is integrated of order , then 〈z〉 = and 〈 z〉 = 〈z〉− 1. The vector ( t , t )
′ is

assumed to be independently and identically distributed normally with zero mean
and covariance , the elements of which are var( t ), var( t ), cov( t , t ).

According to this approach, revenue smoothing can be tested in terms of the
long-run derivative of with respect to a permanent change in , which is defined as
follows. If limk→ t+k/ t 
= 0, then

LRD , = lim
k→

t+k/ t

t+k/ t

Thus, in the present context LRD , expresses the ultimate effect of an exogenous
marginal tax rate disturbance on , relative to that disturbance’s ultimate effect on
the marginal tax rate . When limk→ t+k/ t = 0, there are no permanent changes
in and thus LRD , is undefined. In terms of this framework, revenue smoothing
requires that LRD , = 1.

The above bivariate autoregressive system can be inverted to yield the following
vector moving average representation

〈 〉
t = (L) t + (L) t

〈 〉
t = (L) t + (L) t

In terms of this moving average representation, Fisher and Seater [5] show that
LRD , depends on 〈 〉−〈 〉, as follows
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LRD , =
(1−L)〈 〉−〈 〉 (L)|L=1

(1)

Hence, meaningful long-horizon regression tests of the revenue smoothing hy-
pothesis can be conducted if both t and t satisfy certain nonstationarity conditions.
In particular, long-horizon regression tests require that both t and t are at least
I(1) and of the same order of integration. In fact, when 〈 〉 = 〈 〉 = 1, the long-run
derivative becomes

LRD , =
(1)
(1)

where (1) = j=1
j and (1) = j=1

j . Above, the coefficient (1)/ (1)
is the long-run value of the impulse-response of with respect to , suggesting that
LRD , can be interpreted as the long-run elasticity of with respect to .

Under the assumptions that cov( t , t ) = 0 and that the marginal tax rate is ex-
ogenous in the long-run, the coefficient (1)/ (1) equals the zero-frequency
regression coefficient in the regression of 〈 〉 on 〈 〉 — see Fisher and Seater
(1993, note 11). This estimator is given by limk→ bk, where bk is the coefficient
from the regression[

k

j=0

〈 〉
t− j

]
= ak +bk

[
k

j=0

〈 〉
t− j

]
+ ekt

In fact, when 〈 〉= 〈 〉= 1, consistent estimates of bk can be derived by applying
ordinary least squares to the regression

t − t−k−1 = ak +bk [ t − t−k−1]+ ekt , k = 1, ...,K. (4)

The null of revenue smoothing is bk = 1. If the null is not rejected across a range
of k-forecast horizons, the data supports the theory of optimal seigniorage.

4 Empirical Results

4.1 The Data

We examine two variables in this paper — the inflation rate, t , and the average
marginal tax rate, t . As a measure of the average marginal tax rate we use Stephen-
son’s [16] average marginal effective tax rate on personal income (AMETR). The
data is annual from 1934 to 1994 (a total of 61 observations).

It is to be noted that Mankiw [9] mostly uses federal government receipts as a
percent of GNP (TAX), as a measure of the average tax rate, and his analysis is over
the 1951 to 1985 period (that is, over 35 observations). He also uses the average
marginal tax rate (MAR) on labor income (including social security) as estimated
by Barro and Sahasakul [1], and finds a positive relation to both the inflation rate
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and nominal interest rate. However, only the relation to the nominal interest rate is
statistically significant, with the coefficient on MAR (in a regression of INT on a
constant and MAR) being 0.50.

Of course, as Mankiw ([9], p. 339) puts it ”[i]t is not clear a priori which of
the two tax measures, TAX or MAR, is preferable. One might argue that the average
marginal tax rate is the best measure of the marginal social cost of raising revenue.
Yet consider what makes these two variables different. Changes in the mix of taxes,
such as a shift between personal and corporate taxes, would change MAR without
changing TAX . It is not obvious whether such a change in the tax mix should be
associated with a change in the reliance on seigniorage as a source of revenue. Re-
solving this issue requires a model more extensive than that presented here.” With
this in mind, in what follows we use Stephenson’s [16] average marginal effective
tax rate on personal income (AMETR) as a measure of the average tax rate.

4.2 Integration Tests

As it was argued in the introduction, meaningful long-run revenue-smoothing tests
can only be conducted if both the t and t variables satisfy certain nonstationarity
conditions. In particular, revenue-smoothing tests require that both t and t are at
least integrated of order one and of the same order of integration. Hence, the first step
in conducting revenue-smoothing tests is to test for stochastic trends (unit roots) in
the autoregressive representation of each individual time series. In doing so, in what
follows we use four alternative testing procedures, to deal with anomalies that arise
when the data are not very informative about whether or not there is a unit root.

In Table 1 we report p-values (based on the response surface estimates given by
MacKinnon [8]) for the augmented Weighted Symmetric (WS) unit root test (see
Pantula et al. [11]), the augmented Dickey-Fuller (ADF) test (see Dickey and Fuller
[44]), and the nonparametric, Z(t̂), test of Phillips [124] and Phillips and Perron
[125]. We also report the KPSS (see Kwiatkowski et al. [71]) ̂µ and ̂ t-statistics.3

For the WS and ADF tests, the optimal lag length is taken to be the order selected
by the Akaike Information Criterion (AIC) plus 2 - see Pantula et al. [11] for details
regarding the advantages of this rule for choosing the number of augmenting lags.
The Z(t̂) test is done with the same Dickey-Fuller regression variables, using no
augmenting lags.

Based on the p-values for the WS, ADF, and Z(t̂) unit root tests reported in
Table 1, the null hypothesis of a unit root in levels cannot be rejected. Also, the t-
statistic ̂µ that tests the null hypothesis of level stationarity is large relative to the 5%
critical value of .463 given in Kwiatkowski et al. [71], for the t series. However, the
t-statistic ̂ that tests the null hypothesis of trend stationarity does not exceed the 5%

3Kwiatkowski et al. [71] argue that unit root tests have low power against relevant alterna-
tives and they propose tests (known as the KPSS tests) of the hypothesis of stationarity against
the alternative of a unit root. They argue that such tests should complement unit root tests and
that by testing both the unit root hypothesis and the stationarity hypothesis, one can distin-
guish series that appear to be stationary, series that appear to be integrated, and series that are
not very informative about whether or not they are stationary or have a unit root.
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p-values KPSS

Variable WS ADF Z(t̂) ̂µ ̂
t .666 .741 .072 .154 .081

t .946 .128 .501 .671 .146
Notes: Numbers in the WS, ADF, and Z(t̂) columns are tail areas of tests.

Table 1. Unit Root Tests in the Levels.

critical value of .146 (also given in Kwiatkowski et al. [71]), for both series. Although
the series do not appear to be very informative as to their integration properties,
combining the results of our tests of the stationarity hypothesis with the results of
our tests of the unit root hypothesis, we conclude that both series have at least one
unit root.

To test the null hypothesis of a second unit root, in Table 2 we test the null
hypothesis of a unit root [using the WS, ADF, and Z(t̂) tests] as well as the null
hypotheses of level and trend stationarity in the first differences of the series. Clearly,
the differenced series appear to be stationary, since the unit root null is rejected and
the level and trend stationarity null hypotheses cannot be rejected.

p-values KPSS

Variable WS ADF Z(t̂) ̂µ ̂
t .000 .000 .000 .136 .086

t .003 .000 .074 .296 .081
Notes: Numbers in the WS, ADF, and Z(t̂) columns are tail areas of tests.

Table 2. Unit Root Tests in the First Differences of Levels.

4.3 Cointegration Tests

Although cointegration is neither necessary nor sufficient for tests on the long-run
derivative, for information purposes we also test the null hypothesis of no cointegra-
tion (against the alternative of cointegration) between t and t using the Engle and
Granger [3] two-step procedure. In particular, we regress one variable against the
other (including a constant and a trend variable in the regression) to obtain the OLS
regression residuals t̂ . A test of the null hypothesis of no cointegration is then based
on testing for a unit root in t̂ , using the ADF test (with the number of augment-
ing lags being chosen based on the AIC+2 rule mentioned earlier) and asymptotic
p-values using the coefficients in MacKinnon [8].
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The cointegration tests are first done with t as the dependent variable in the
cointegrating regression and then repeated with t as the dependent variable.4. When
t is the dependent variable the p -value of the null hypothesis of no cointegration

is .511 and when t is the dependent variable the p-value is .143. Clearly, the null
hypothesis of no cointegration between t and t cannot be rejected (at the 5% level).

4.4 Long-Horizon Regression Tests

We start by estimating equation (4) for values of k ranging from 1 to 30, as in Fisher
and Seater [5], and present the estimates of bk along with the 95% confidence bands
(using the Newey and West [100] procedure) in Figure 1. The evidence shows that
the null hypothesis that bk = 1 can be rejected for any k ∈ [1,30]. Thus, we find
strong evidence that revenue-smoothing does not hold.

To investigate the robustness of this result, we also examine the relationship be-
tween the three-month Treasury bill rate, Rt , and t . In particular, we investigate the
univariate time series properties of Rt and Rt , we test for cointegration between Rt
and t , and estimate equation (4) with Rt−Rt−k−1 as the dependent variable. The in-
tegration tests in Table 3 indicate that the time series properties of Rt are very similar
to those of t , investigated in Tables 1 and 2. Also, when we test the null hypothe-
sis of no cointegration between Rt and t , we cannot reject the null (irrespective of
which variable is treated as the dependent variable).

Finally, we present the estimates of bk along with the 95% confidence bands
in Figure 2. The evidence shows that again the null hypothesis that bk = 1 can be
rejected for most values of k ∈ [1,30].

p-values KPSS

Variable WS ADF Z(t̂) ̂µ ̂
Rt .575 .730 .396 .690 .101

Rt .000 .000 .001 .159 .115
Notes: Numbers in the WS, ADF, and Z(t̂) columns are tail areas of tests.

Table 3. Unit Root Tests in Rt and Rt .

4We should wary of a result indicating cointegration using one series as the dependent
variable, but no cointegration when the other series is used as the dependent variable.
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Fig. 1. The LRD for the Inflation Rate.

5 Conclusion

We have tested the revenue-smoothing hypothesis using annual data for the United
States over the period from 1934 to 1994. In doing so, we have used the Fisher and
Seater [5] methodology, paying particular attention to the integration properties of
the data, since meaningful long-horizon refression tests critically depend on these
properties. Overall, although Mankiw [9] and Poterba and Rotemberg [14] found
evidence supporting revenue-smoothing in the United States using contemporaneous
ordinary least squares regressions, the evidence presented here, as well as in Trehan
and Walsh [17], Ghosh [6], Evans and Amey [4], and Serletis and Schorn [15], does
not support the theory of optimal seigniorage.
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Fig. 2. The LRD for the Interest Rates.

References

1. Barro RJ, Sahasakul C (1983) Measuring the average marginal tax rate from the individual
income tax. Journal of Business 56: 419-452

2. Dickey DA, Fuller WA (1981) Likelihood ratio statistics for autoregressive time series
with a unit root. Econometrica 49: 1057-72

3. Engle RF, Granger CW (1987) Cointegration and error correction: Representation, esti-
mation and testing. Econometrica 55: 251-276

4. Evans JL, Amey MC (1996) Seigniorage and tax smoothing: Testing the extended tax-
smoothing model. Journal of Macroeconomics 18: 111-125

5. Fisher M, Seater J (1993) Long-run neutrality and superneutrality in an ARIMA frame-
work. American Economic Review 83: 402-415

6. Ghosh AR (1995) Intertemporal tax-smoothing and the government budget surplus:
Canada and the United States. Journal of Money, Credit, and Banking 27: 1033-1045

7. Kwiatkowski D, Phillips PCB, Schmidt P, Shin Y (1992) Testing the null hypothesis of
stationarity against the alternative of a unit root. Journal of Econometrics 54: 159-178

8. MacKinnon JG (1994) Approximate asymptotic distribution functions for unit-root and
cointegration tests. Journal of Business and Economic Statistics 12: 167-176



88 Periklis Gogas and Apostolos Serletis

9. Mankiw NG (1987) The optimal collection of seigniorage: Theory and evidence. Journal
of Monetary Economics 20: 327-341

10. Newey W, West K (1987) A simple positive semi-definite, heteroskedasticity and auto-
correlation consistent covariance matrix. Econometrica 55: 703-708

11. Pantula SG, Gonzalez-Farias G, Fuller WA (1994) A comparison of unit-root test criteria.
Journal of Business and Economic Statistics 12: 449-459

12. Phillips PCB (1987) Time series regression with a unit root. Econometrica 277-301
13. Phillips PCB, Perron P (1988) Testing for a unit root in time series regression. Biometrica

75: 335-346
14. Poterba JM, Rotemberg JJ (1990) Inflation and taxation with optimizing governments.

Journal of Money, Credit, and Banking 22: 1-18
15. Serletis A, Schorn R (1999) International evidence on the tax- and revenue-smoothing

hypotheses. Oxford Economic Papers 51: 387-396
16. Stephenson EF (1998) Average marginal tax rates revisited. Journal of Monetary Eco-

nomics 41: 389-409
17. Trehan B, Walsh CE (1990) Seigniorage and tax smoothing in the United States: 1914-

1986. Journal of Monetary Economics 25: 97-112



What VAR Tell us about DSGE Models?�

Fabio Canova1 and Joaquim Pires Pina2

1 IGIER Bocconi, Universitat Pompeu Fabra, and CEPR, IGIER-Universit Bocconi, via
Salasco 5, 20136 Milano, Italia. fabio.canova@uni-bocconi.it

2 University Nova of Lisbon, Faculty of Economics, Campus de Campolide, 1099-032
Lisboa, Portugal. jagl@fct.unl.pt

Summary. We examine the consequences of extracting structural shocks in VAR models us-
ing standard standard inertial restrictions, when the data has been generated by two stochastic
dynamic general equilibrium (DSGE) models featuring different types of microfundations and
different sources of sluggishness. We find that, in general, misspecification is substantial: short
run coefficients often have wrong signs; impulse responses and variance decompositions give
misleading representations of the dynamics; inexistent puzzles are created. We show that an
omitted variables bias accounts for the results and propose an alternative identification tech-
nique which can cope with the inherent underidentification displayed by the DSGE models
currently used in macroeconomics.
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1 Introduction

The high correlation between monetary and real aggregates over the business cycle
has attracted the attention of macroeconomists for at least forty years. Friedman and
Schwartz [17] were among the firsts to provide a causal interpretation of this rela-
tionship: they showed that the comovements of money with output were not due to
the passive response of money to the developments in the real and financial sides of
the economy and argued that changes in money were good approximations to pol-
icy disturbances. Since their seminal work, several generations of macroeconomists
have tried either to empirically refute Friedman and Schwartz’s causal interpretation
or to provide theoretical models which can account for such a relationship (see for
examples, Lucas [20]; Cooley and Quadrini [11]; Chari, Kehoe and McGrattan [5]).

The empirical side of the literature has documented that unforecastable move-
ments in money produce responses in macroeconomic variables, in particular interest
rates, that are difficult to interpret - they generate the so-called liquidity puzzle (see
Leeper and Gordon [19]). To remedy these problems Sims [25], Bernanke and Blin-
der [1] suggested to use short term interest rate innovations as indicators of monetary
policy disturbances. However, also in this case, the responses of certain variables to
policy disturbances are difficult to justify (in particular, the responses of the price
level (Sims [26]). As a consequence of these difficulties, the last ten years have wit-
nessed a considerable effort in trying to identify monetary policy disturbances using
parsimoniously restricted multivariate time series models (see Gordon and Leeper
[18]; Christiano, Eichenbaum and Evans [8]; Bernanke and Mihov [2]; Uhlig [31]).

This literature has stressed the pitfalls of an incorrect choice of variables and
identification schemes and carefully documented the type of central bank reaction
function in place in various historical episodes. However, by concentrating on the
identification of monetary policy disturbances, this literature has disregarded possi-
ble feedbacks due to the general equilibrium nature of shocks. In particular, conven-
tional ”inertial” constraints are routinely imposed on equations other than the one
under consideration in order to obtain the minimum number of restrictions needed to
identify the full system of equations.

This paper examines the consequences of imposing (false) inertial restrictions
on the inference a VAR econometrician draws when two classes general equilibrium
models are used to generate the data. In particular, we are interested in knowing
whether it is possible to recover the underlying policy rule and whether statistics
characterizing the transmission properties of monetary policy shocks and the impor-
tance of policy disturbances in generating real fluctuations are reliable or not.

The mechanics underlying the transmission properties of monetary disturbances
are as elusive as ever and current theoretical models, although a bit more micro-
funded and articulated than those used in the past, still fall short in accounting for
many aspects of the monetary phenomena. For example, existing paradigms have
difficulties in accounting for the unconditional correlation of output, interest rates,
real balances and inflation observed in the last 40 years both in the US and Europe
and for the persistence of inflation. Rather than taking a position in the dispute of
what model better represents the data, we prefer to be agnostic: we take two pro-
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totype models with different microfundations off-the-shelf (a version of the limited
participation model of Christiano, Eichenbaum and Evans [7] and a version of the
sticky price, sticky wage model of Erceg, Henderson and Levin [12]), simulate them
under two different monetary policy rules and examine what structural VAR analysis
can tell us about their properties.

These two classes of models use different frictions to produce real effects of
monetary policy. Because of their internal structure, they generate different inter-
relationships between the real and the monetary side of the economy and different
intensity and timing in the transmission of shocks. Despite these differences they
are, approximately, equivalent in their poor fit to the data. On the other hand, both
models display desirable features which makes them good candidates for the exper-
iments we are interested in. First, they have built-in a liquidity effect, i.e. a surprise
increases in nominal interest rates produces negative responses of real balances. Sec-
ond, depending on the parametrization used, the response of prices to shocks may
be made instantaneous or sluggish. Third, most of the variations in the policy instru-
ment are accounted for by responses to the state of the economy and not by random
disturbances to policy. Finally, at least in the first model, the contribution of mone-
tary policy shocks to the variability of real variables can be made either modest or
sizable, depending on the policy rule used.

Using data simulated from these two models, we estimate a 4-variable VAR
model with output, inflation, interest rates and real balances and identify structural
disturbances by imposing exclusion restrictions on the contemporaneous impact of
innovations according to two schemes, a recursive and a non-recursive one. The first
scheme imposes that the estimated monetary policy rule is of a feedback (Taylor)
type while the second allows interest rates to partially accommodate movements in
real balances. Both schemes impose stringent ”inertial” restrictions on the data: pol-
icy disturbances are assumed not to affect output and inflation contemporaneously
and the static aggregate demand curve is assumed to cross a vertical aggregate sup-
ply curve.

We compare theoretical and the estimated structural models using impact coef-
ficients, impulse responses and the variance decomposition. We find that identified
VARs provide a poor characterization of the data generating process (DGP) and that
our conclusions are, to a large extent, robust to the choice of the DGP and of the pol-
icy rule. Misspecifications occur at all levels. Estimated short run coefficients often
have the wrong sign and, in same cases, are estimated to be the same regardless of the
monetary rule generating the data. The sign and the significance of impulse responses
differ across DGP, policy rules and identification schemes but there is a widespread
tendency to misrepresent the true dynamics. The variance decomposition underesti-
mates the importance of monetary policy shocks as sources of real variability in one
case and, in at least another, attributes most of the fluctuations to the wrong source
of disturbance.

We argue that the parametrization of the theoretical economy, the small size of
the sample and the failure to include state variables in the VAR can not account for
the poor behavior of the estimated structural models. To understand the reasons for
the poor performance of structural VARs note that, although based on different prin-
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ciples, the two economies (and many other variants of these) share one important
feature: the matrix of impact coefficients has several blocks of non-zero elements
and these elements are forced to be zero with both identification approaches. That
is to say, there equations which are not identifiable using contemporaneous zero re-
strictions. Structural VAR analyses which employ inertial restrictions in an under-
identified system omit important variables from certain equations when estimating
structural shocks and this omission biases inference in the entire system. As a result,
impact coefficients are mismeasured; the sign and the shape of impulse responses
misspecified; the contribution of monetary shocks to the variability of real variables
distorted. These outcomes obtain even when the estimated policy rule correctly rec-
ognizes the inputs of the theoretical policy rule and problems are more severe when-
ever contemporaneous feedbacks are stronger.

Economies where dynamic general equilibrium effects occur within one period
are therefore not suited to be analyzed with standard identification procedures be-
cause there is no natural ”inertial” restriction one can appeal to recover the distur-
bances. Frictions due to price and wage stickiness or adjustment costs may reduce the
extent of the underidentification present in the system but, as our simulations show,
they do not solve the problem. Stronger type of restrictions, for example, one period
in advance labor decisions, may induce sluggishness in the data but, by restricting the
response of one variable to all shocks, they leave unresolved the inherent underiden-
tification of the data. Furthermore, while certain frictions currently used may have
some intuitive appeal (e.g. habit persistence), other do not. In general, DSGE models
seldomly provide the full array of inertial restrictions typically used to identify VARs
and when they do, as in Sims and Zha [29] or Rotemberg and Woodford [22]), it is
because of rather ad-hoc formulations.

Given the large body of empirical VAR literature which claimed success in re-
covering structural disturbances, one may be tempted to conclude that our results
obtain because the class of models we consider provides a poor characterization of
the data, in terms of sources of shocks, contemporaneous impacts and richness of the
dynamics - after all, the world is different from our toy laboratories. While both mod-
els have problems, we are not aware of any alternative and fully articulated DSGE
paradigm which would give a significantly better match with the data. Furthermore,
we have not rigged the data so that VAR econometricians would stumble at the first
hurdle: the models are both standard and simple; they have been widely used in the
theoretical literature; and last but not least, they generate a considerable variety of
contemporaneous and dynamic effects.

The conclusion we would like to stress is different. If one takes the point of view
that general equilibrium feedbacks are important, inertial identification constraints
should be treated with care since misspecification is widespread and generic and
that answers to interesting economic questions can misleading. Clearly, this does not
mean that VAR analyses should be abandoned; it simply means that a different style
of identification should be used. Both models, in fact, contain a wealth of restrictions
which, although rarely used, can be employed for identification purposes. In the latter
part of the paper, we show that approaches along the lines of Canova and De Nicoló
[4], Faust [14] and Uhlig [32], where identification is obtained by means of sign re-
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strictions on the cross correlation function of certain variables in response to shocks,
do not suffer misspecification problems: estimated policy shocks produce dynamics
which reproduce the theoretical ones and correctly characterize their importance for
movements in real variables, regardless of the DGP and the policy rule we employ.
That is, VAR econometricians which use model based restrictions can learn about
the underlying features of the data, no matter how strong the contemporaneous in-
terrelationships across the reduced form innovations are. Hence, our criticism is not
directed to the VAR methodology per-se but to a particular type of identification
restrictions routinely used in applied work.

Several papers have examined misspecification problems in VARs (see e.g. Sar-
gent [24]; Cooley and LeRoy [9]; Hansen and Sargent [16]; Rudebusch [23]). Our
work looks at this issue from a different perspective: we show that inertial assump-
tions are inconsistent with the restrictions implied by a large class of general equi-
librium models and that the outcomes of the exercises conducted with conventional
identification scheme can be highly distorted. As far as we know, this last point has
not been sufficiently appreciated in the literature and only Cooley and Dwyer [10]
have produced an example where conventional long run restrictions may badly dis-
tort inference when applied to data generated from a simple DSGE model.

The rest of the paper is organized as follows. Section 2 briefly describes the two
models, the calibration and discusses the properties of the theoretical economies.
Section 3 describes the results obtained using identified VARs on data simulated from
the artificial economies. Section 4 provides explanations for the results. Section 5
present results obtained with an identification approach based on sign restrictions.
Section 6 concludes.

2 Models

Since the models we employ in our exercises are standard, we only describe their
main features and quickly proceed to the calibration and to the examination of their
properties. We use a richer probabilistic structure than it is typically assumed to have
a data generating process with more realistic features and an economy which has the
same number of shocks as the variables we will consider later on in the VAR.

2.1 A Limited Participation (LP) Model

The economy we use is a version of the model used by Christiano, Eichenbaum and
Evans[7]. There are five types of agents (households, firms, a bank, a government
and the monetary authority) and all markets are competitive. Since the behavior of
the fiscal and monetary authorities is similar in the two models we postpone the
description of their action to a later subsection.

The representative household maximizes the expected discounted sum of instan-
taneous utilities (with discount factor ∈ (0,1)) derived from consuming an ho-
mogenous good, Ct and from enjoying leisure. The timing of the decision is the
following: agents choose deposits, It , at the beginning of the period out of money
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held, Mt−1 before observing the shocks ; then all the shocks are realized, and the
monetary injection, XAt , is fed into the bank. At this point households choose the
number of hours to work, and how much capital to rent to firms. The time endow-
ment is normalized to one; capital is in fixed supply and normalized to one. At the
end of production time, households collect the wage payment,WtNt , and uses it with
the money left, Mt−1 − It , to buy goods. After goods are purchased agents receive
income from holding one-period government bonds, Rbt Bt−1, from renting capital to
the firm, rtKt−1, from owning shares in the firms and in the bank, and from deposits,
RMt It and pay taxes, where RMt is gross return on money deposits (and credit) and Rbt
is gross nominal return on bonds. Out of disposable income the household decides
the composition of its portfolio (money, capital and bonds) to be carried over next
period. The program solved is

Max{Ct ,It ,Nt ,Kt ,Mt ,Bt}E0
t=0

t [ t(ln(Ct))+ ln(1−Nt)] (1)

subject to

PtCt ≤ Mt−1 − It +WtNt (2)

Mt +PtKt +Bt ≤WtNt +PtrtKt−1 +RMt (It +Xt)+Rbt Bt−1

+Mt−1 − It −Pt(Ct +Tt) (3)

where t is a preference shock,M−1,B−1,K−1 are given and E0 is the expectation
conditional on information at time 0. Equation (2) is the cash-in-advance constraint
and equation (3) is the budget constraint. Given local nonsatiation, both constraints
are assumed to hold with equality.

There exists a continuum of identical firms, facing a constant returns to scale
technology perturbed by an exogenous technology shock vt . Each firm maximizes
profits subject to the given technology and to a cash-in-advance constraint, since
wages are paid before the firm collects revenues from the sales of the product. Profits
are measured by the difference between the receipts from selling the good, Yt , at
price Pt , and the costs associated with renting capital, PtrtKt , and paying wages,
(1+RMt )WtNt . Given the technology shock vt , the problem solved by the firm is

Max{Nt ,Kt}Profitst = PtYt − (1+RMt )WtNt −PtrtKt (4)

subject to

WtNt ≤ It +Xt (5)

Yt ≤ vtNt K
1−
t (6)

Also here we assume that the constraints (5)-(6) hold with equality.
Banks collect deposits from the households, IAt , pay RMt of gross interest and

receive XAt from the monetary authority, issued at zero cost and supplied at zero
price. They then rents these funds to firms at the price RMt . Profits from financial
intermediation, RMt X

A
t , are paid-out to the household in the form of dividends. (The

superscript A indicates aggregate variables).
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2.2 A Sticky Price, Sticky Wage (SPSW) Model

The economy is a version of the one studied by Erceg, Hendeson and Levine [12].
There are five agents also in this economy (households, intermediate and final good
producing firms, a government and a monetary authority). Household are monop-
olistic competitive in selling labor and intermediate firms are monopolistic com-
petitive in selling their product. Consumer maximize a separable utility function
defined over consumption (Ct), leisure (1 − Nt ) and real balances (Mt

pt
) given by

ln(ct)+ t ln(1−Nt)+ µ
1−µ(

Mt
pt

)1−µ where t is a preference shock. The household
constraint is

Ptct(h)+Mt(h)+PtKt(h)+Bt(h) ≤Wt(h)Nt(h)+PtrtKt−1(h)
+ Rbt Bt−1(h)+Mt−1(h)+ t(h)+Tt(h)

where t(h) is the household h share of firms profits, Tt(h) is a lump sum tax and
all the other variables have been already defined. Also in this case we assume that
capital is in fixed supply and normalized to 1. The labor demand aggregator Nt is
given by [

∫ 1
0 Nt(h)

1/(1+ w)dh]1+ w where w > 0. Since the cost of a unit of labor
index to the production sector is Wt = [

∫ 1
0 wt(h)

−1/ wdh]− w , the demand for labor

of household h is Nt(h) = [Wt (h)Wt
]−

1+ w
w Nt . We assume that a fraction 1− w of the

households renegotiate their wage contract in each period and they choose Wt to
maximize utility. Optimization implies:

Et
j

j j
w(

1
1+ w

jwt(h)
pt+ j

c−1
t+ j− t+ j(1−Nt+ j(h)−1)Nt+ j(h) = 0 (7)

When a consumer is not allowed to change the wage Wt+ j(h) = jWt(h) where
is the steady state gross inflation rate.

The output index is assembled using a constant returns to scale technology Yt =
[
∫ 1

0 Yt( f )
1/(1+ p)d f ]1+ p . Units of output are sold at the price Pt = [

∫ 1
0 Pt( f )

−1/ pd f ]− p

and the demand function for each good f is Yt( f ) = [
∫ 1

0
Pt ( f )
Pt

]−(1+ p)/ pYt . The pro-

duction function of each intermediate good is Yt( f ) = vtNt K
1−
t where vt is a tech-

nology shock. A fraction 1− p of the firms can reset their price at each t to maximize
their profits. Optimization implies

Et
j

t,t+ j
j
p(

1
1+ p

j pt( f )−MCt+ j)Yt+ j( f ) = 0 (8)

where MCt+ j is the marginal costs at t+ j and t,t+h is the Arrow-Debreu price
at t of a unit of profit at t+ j. If a firm is not allowed to change its price pt+ j( f ) =
j pt( f ).

2.3 Fiscal and Monetary Policy and Shocks

Fiscal and Monetary policy actions are similar in the two models. Stochastic govern-
ment consumption GA

t , is financed by issuing one-period bonds, BAt , after repaying
outstanding debt, Rbt B

A
t−1, and lump sum taxes. That is, Pt(GA

t −Tt) = BAt −Rbt B
A
t−1.
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The monetary authority issues cash at no costs every period and transfers to the
bank in the limited participation model or to the consumers in the sticky price, sticky
wage model in the form of an ”helicopter drop” of money. The policy rule can take
two forms: a partial accommodation rule or a feedback rule. At this stage, we specify
it in an implicit form as f (Rt ,Mt ,Pt ,Yt , t) = 0 where t governs the non-systematic
part and monetary injections are defined as XAt =MA

t −MA
t−1

In both specifications fluctuations are driven by four types of shocks: technology,
monetary policy, government expenditure and preference shocks. Structural shocks
are assumed to be uncorrelated at all leads and lags and represented with the follow-
ing AR processes

ln( t) = (1− ) ln( )+ ln( t−1)+ut , with ut ∼ iid(0, 2
u), | | < 1

ln(vt) = (1− ) ln(v)+ ln(vt−1)+ t , with t ∼ iid(0, 2 ), | | < 1

ln( t) = (1− ) ln( )+ ln( t−1)+ t , with t ∼ iid(0, 2 ), | | < 1

ln(Gt) = (1− ) ln(G)+ ln(Gt−1)+ t , with t ∼ iid(0, 2 ), | | < 1

2.4 Calibration and Computation of Equilibrium

To generate time series out of the model, we choose standard parametrizations. The
time unit of the model is a quarter. The parameters common to the two specifications
are:

N̄ c/y
0.33 0.65 1.005 0.99 0.80

where c/y is the share of consumption in output, N̄ is hours worked and is gross
inflation in the steady states, is exponent of labor in the production function,
is the discount factor. These parameters imply, for example, that in steady-state the
gross real interest rate is 1.01, output is 0.46, real balances 0.37 and the real (fully
flexible) wage 0.88. Moreover, for the limited participation model these parameters
imply that the share of leisure in utility is 0.65, and = 1.86, which are in line with
those used in the literature.

For the sticky price, sticky wage model we select the degree of price and wage
rigidity to be the same and set p = w = 0.75, a standard value in the literature
(it implies that on average firms (consumers) change their price (wage) every three
quarters). Lower values for these parameters imply that the economy is approaching
the flexible price situation. Also, we choose the elasticity of money demand µ to be 7.
The value of this parameter is uninfluential on our conclusions: any choice between
2 and 100 would produce the same results.

We parametrize the stochastic processes for the four shocks to all have the same
persistence and the same standard deviation. The conclusions we draw are robust to
the exact choice of the persistence parameters within the range [0.8, 0.98]. In the
benchmark case we set:
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v u

1.0 1.0 1.0 0.95 0.95 0.95 0.95 0.71 0.71 0.71

where v, , are the steady state value of the shocks, , , , are the AR pa-
rameters and , , u are the standard deviations for the shocks. We choose the
standard deviation of G shocks so that the coefficient of variation is the same as for
other processes, i.e., = GA ∗ 0.71 where GA is the steady state value of G. Note
that this parsimonious selection ties our hands since it reduces the number of degrees
of freedom we have to fine tune the data to the idiosyncracies of the identification
schemes.

To solve the model we transform the variables in real terms. This ensures, along
with the assumed parametrization, stationarity of simulated data. The policy rule is
of the form

m 0
t = 1

t R
2
t y

3
t t (9)

where is a constant. In percentage deviation from steady state, a partial accom-
modation (PA) rule is obtained setting 2 =−1, 0 = 0.3, 1 = 3 = 0; and a feedback
(FB) Taylor-type rule is obtained setting 2 = −1.0; 1 = 0.5; 3 = 0.1, 0 = 0. Note
that in both cases the supply of real balances is upward sloping in the (m,R) space 3.
A solution to the model is obtained log-linearizing the equilibrium conditions around
the steady state and using Uhlig’s [31] approach.

2.5 Policy Rules and the Dynamics of the Model

Inspection of the equilibrium policy functions and of the dynamics generated by
the model provides useful information on the characteristics of our economies. We
present the equilibrium policy functions as follows:

Limited Participation - Partial Accommodative Policy⎡⎢⎢⎢⎢⎣
m̂t
ît
ŷt
R̂t̂ t

⎤⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎣
0.0000 −0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
5.1118 −4.1118

⎤⎥⎥⎥⎥⎦
[
m̂t−1

ît−1

]
+

⎡⎢⎢⎢⎢⎣
0.9732 0.4428 −0.4428 −0.1061
0.4399 0.2123 −1.3934 0.1420
0.7786 0.3543 −0.3543 0.1151
0.2920 0.1328 0.8672 −0.0318
−2.9741 −1.3532 −2.7586 1.1465

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣
v̂t

t̂

t̂

ĝt

⎤⎥⎥⎦

Limited Participation - Feedback Policy⎡⎢⎢⎢⎢⎣
m̂t
ît
ŷt
R̂t̂ t

⎤⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎣
−0.4960 0.3990
−1.0039 0.8075
−0.3968 0.3192
0.9713 −0.7813
2.0219 −1.6264

⎤⎥⎥⎥⎥⎦
[
m̂t−1

ît−1

]
+

⎡⎢⎢⎢⎢⎣
1.3034 0.5930 −0.1941 −0.2257
1.1459 0.5621 −1.4786 −0.1260
1.0427 0.4744 −0.1552 0.0194
−0.3545 −0.1613 0.3800 0.2025
−0.9175 −0.4175 −1.2089 0.4011

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣
v̂t

t̂

t̂

ĝt

⎤⎥⎥⎦
3The reason to choose low feedback from inflation in the FB rule is that in the LP econ-

omy, explosive roots are generated whenever 1 approximate one from below. Since any value
of 1 is consistent with determinate equilibrium in the SPSW economy, we use the same spec-
ification in both cases to keep the message clear and simple.
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Sticky Price, Sticky Wage - Partial Accommodative Policy

⎡⎢⎢⎢⎢⎣
ŵt
ŷt
R̂t
m̂t̂ t

⎤⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎣
0.0012
0.5571
0.1082
0.1293
0.1050

⎤⎥⎥⎥⎥⎦[ ŵt−1
]
+

⎡⎢⎢⎢⎢⎣
0.5823 0.3857 −0.0970 −0.0005
0.2756 −0.4910 0.1235 0.0009
−0.3633 0.0832 −0.0197 1.0001
0.0957 −0.1275 −0.0040 −0.1410
−0.7817 0.2646 −0.0641 0.0027

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣
v̂t

t̂

t̂

ĝt

⎤⎥⎥⎦

Sticky Price, Sticky Wage - Feedback Policy

⎡⎢⎢⎢⎢⎣
ŵt
ŷt
R̂t
m̂t̂ t

⎤⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎣
0.0012
0.5571
0.0416
0.1386
0.1050

⎤⎥⎥⎥⎥⎦[ ŵt−1
]
+

⎡⎢⎢⎢⎢⎣
0.5823 0.3857 −0.0970 −0.0005
0.2756 −0.4911 0.1236 0.0008
0.0128 −0.0333 −0.0020 0.9595
0.0427 −0.1111 −0.0065 −0.1351
−0.7812 0.2644 −0.0641 0.0025

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣
v̂t

t̂

t̂

ĝt

⎤⎥⎥⎦

The responses of the endogenous variables for the two different policy rules fol-
lowing monetary policy and technology shocks in Figure 1 for the LP economy and
Figure 2 for the SPSW economy. Table 1 reports the variance decomposition for out-
put, inflation, nominal interest rate and real balances at the 16-periods horizon for
each model and each rule.

Few features of the policy rules should be highlighted. First, the dynamics gen-
erated with a feedback (FB) rule are richer than those obtained with a partial accom-
modative (PA) rule in the LP economy but not in the SPSW economy. Second, the
sign of certain impact coefficients changes with the nature of the policy rule. For ex-
ample, in the LP economy, switching from a PA rule to a FB rule changes the signs
of the impact coefficients of three shocks on the interest rate. In the SPSW economy,
switching rules changes the sign of the instantaneous responses of the nominal in-
terest rate and of real balances to technology and preference shocks. Third, in the
LP economy, the instantaneous response of the nominal rate to a monetary policy
shock is smaller in magnitude when a FB rule is employed. That is, nominal interest
rates are worse indicators of the stance of monetary policy with a FB rule than with
a PA rule (see also Bernanke and Blinder [1]). Fourth, in both economies inflation
instantaneously reacts to technology and preference shocks. Also, while it reacts in-
stantaneously and with a large coefficient to monetary and government expenditure
shocks in the LP economy, this is not the case in the SPSW economy. In this latter
model, sluggishness induced by price and wage rigidities implies little contempora-
neous effect of demand shocks on inflation. Note also that monetary policy shocks
have a sizable instantaneous impact on output in the LP economy while this is not
the case in the SPSW economy, regardless of the policy rule. Hence, instantaneously
monetary policy shocks in the SPSW economy have measurable effects only on real
balances, while in the LP economy they also have effects on inflation and real vari-
ables. These different features should be kept in mind when interpreting structural
VAR results.



What VAR Tell us about DSGE Models? 99

Y R m

Limited Participation - Partial Accommodative Policy

Technology shocks 69.7 37.1 10.0 70.2
Preference shocks 14.4 7.3 2.1 14.5
Monetary shocks 14.4 50.6 87.8 14.5
Government shocks 1.5 5.0 0.1 0.8

Limited Participation - Feedback Policy

Technology shocks 52.4 5.0 1.7 52.2
Preference shocks 11.8 0.7 0.2 11.7
Monetary shocks 35.2 93.6 97.9 35.1
Government shocks 0.6 0.7 0.2 1.0

Sticky Price Sticky Wage Economy -
Partial Accommodative Policy

Technology shocks 81.7 83.6 0.2 43.2
Preference shocks 17.1 16.3 0.1 10.5
Monetary shocks 0.0 0.0 99.6 45.5
Government shocks 1.2 0.1 0.1 0.8

Sticky Price Sticky Wage Economy - Feedback Policy

Technology shocks 81.1 82.0 23.7 56.7
Preference shocks 17.6 16.9 3.3 13.6
Monetary shocks 0.0 0.0 72.9 29.7
Government shocks 1.3 1.1 0.1 0.1

Table 1. Variance Decomposition at the 16-Period Horizon.

Figures 1 and 2 indicate that, regardless of the specification, surprise increases
in interest rates generate a liquidity effect. In the LP economy this obtains because
increases in nominal interest rates contracts employment, output and consumption
and decreases real and nominal wages and prices. In the SPSW economy, increases
in the nominal interest rates reduce the amount of real balances needed to support
a given volume of transactions, because they change the opportunity cost to hold
money - negligible aggregate demand effects are generated in this model. In fact as
Figure 2 shows, monetary disturbances have no real demand side effects either in the
short or in the medium run.

A technology shock has the standard effects on output, inflation and real balances
in both economies while, because of the lack of intertemporal smoothing opportuni-
ties, hours fall as their dynamics are dominated by a wealth effect. There are some
differences in the responses of the nominal interest rate depending on the policy rule
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used, but this difference is common to the two setups: it increases when a partial
accommodative rule is used and decreases when a feedback type rule is employed.
This is not surprising: with the latter rule nominal interest rates fall as inflation fall,
while with a partial accommodation rule interest rate rise with real balances.

Perhaps unsurprisingly given the dynamics we have just described, the contribu-
tion of shocks to the variability of output, inflation, real balances and nominal rate
dramatically differs in the two economies. In the LP economy most of the dynamics
at the 16-periods horizon in all variables are due to technology and monetary shocks,
regardless of the policy rule. Interestingly, monetary shocks explain a larger portion
of the variability of output in the FB economy then in the PA economy and their
size (35% vs. 14%) roughly corresponds to the range of estimates obtained in the
literature (see e.g. Uhlig [31]).

In the SPSW economy, technology shocks drive the majority of the fluctuations
in all variables but the nominal interest rate. Preference shocks also play some role
for all variables but the nominal interest rate. On the other hand, monetary shocks
have negligible explanatory power for output and inflation fluctuations, regardless
of the policy rule employed. This result is robust: increasing in the degree of nomi-
nal rigidity does not quantitatively change this conclusion. The problem, as pointed
out by Farmer [13] or Neiss and Pappa [21], is that in this model real rigidities are
too small to make monetary policy shock matter. Note that because monetary policy
shocks have no effects on output and inflation either in the short or in the long run,
this economy displays a block recursive structure with output and inflation preceed-
ing interest rates and real balances. As we will see, the presence of feedbacks in the
first two equations still creates problems, even in this special setup.

To summarize, both models have desirable and undesirable features. Among the
latters one should include, for example, that in the LP economy the instantaneous re-
sponse of inflation to monetary shock is probably too large, while, monetary shocks
in the SPSW economy play no role in generating real fluctuations. There are several
other features of the data that these models have hard time to reproduce. Table 3,
which reports the contemporaneous correlation of output, nominal interest rates, real
balances and inflation in the actual data and in the models, provides a glimpse of
some of these problems. For example, the correlation between output and inflation
is 0.35 in the US data, it is negative and large in both version of the SPSW model
and negative and large in one version of the LP model. Similarly, the correlation be-
tween output and nominal interest rates is roughly zero in the data while, depending
on the rule employed, it is either significantly positive or significantly negative in the
two models. Rather than using these numbers to discriminate between models, we
take the dynamics they produce as representative of the range of outcomes macroe-
conomists feel comfortable with and analyze what kind of information a structural
VAR econometrician, endowed with a standard set of tools, would extract from data
simulated from these models.

It is worth mentioning that while we employ very simple data generating pro-
cesses, we have also experimented with economies where capital accumulation is
allowed, where there are adjustment costs to capital (or investment) and where the
preference specification allows for richer interactions between the arguments of util-
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(Y,R) (Y,m) (Y, )

Actual Data 0.08 0.54 0.35
Limited Participation - PA -0.74 0.99 -0.72
Limited Participation - FB 0.49 0.99 0.05
Sticky Price Sticky Wage - PA -0.27 0.78 -0.86
Sticky Price Sticky Wage - FB 0.24 0.68 -0.89

Note: Actual data reports correlations obtained using US data from 1960:1 to 1997:2 (150 data points) when Output,

Real Balances and Inflation are detrended with Hodrick and Prescott filter. Simulated statistics are computed using 150

data points and no filtering.

Table 2. Contemporaneous Correlations.

ity. While all these additions make the dynamics of the model richer and real effects
of monetary shocks more persistent, they change very little the quantitative charac-
terization we have provided so far because the relative importance of various shocks
is unaltered. In other words, the main features we have highlighted in this section
would remain even when bells and whistles are added to the models to make them
more realistic.

3 VAR Models

3.1 Specification

We represent the simulated economies with a set of linear dynamic equations of the
form

A0zt = A(L)zt−1 + et (10)

where L is the lag operator, A(L) is a matrix polynomial in L, et = [vt , t , t ,Gt ] has
a mean of zero and a diagonal covariance matrix e. We assume that A0 is invertible
so that the VAR representation of the system is

zt = B(L)zt−1 + t (11)

where t = A−1
0 et has covariance matrix .

Our task will be to estimate a model like (11) using data simulated from the two
economies under the two monetary policy rules. Using the fact that A−1

0 eA
−1′
0 =

and exclusion restrictions on A0 we will extract structural disturbances. Then we ex-
amine (i) whether the sign and the magnitude of the coefficients of the estimated
monetary policy rule replicate those of the generating economy, (ii) whether the es-
timated dynamics in response to a monetary policy shock mimic those of the gen-
erating economy, (iii) whether the variance decomposition matches the one of the
theoretical economy.

Since our model has four structural shocks, we use a four variable VAR model
with output, inflation, real balances and nominal interest rates as our basic structure.
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Because the policy functions we presented in Section 2.5 produce restricted VAR
models in 5 variables and because state variables are omitted from the estimated
VAR, the DGP for the 4 variables we estimate is an ARMA of infinite length. Rather
than arbitrarily choose long lags to account for such a structure, we employ AIC and
SIC criteria to pick the optimal lag length, given the dynamics of simulated data. For
the LP economy the two approaches selected one lag for the PA rule and two lags for
the FB one. For the SPSW economy a lag length of two was chosen in both cases.

We assume that a VAR econometrician a-priori represents the monetary policy
rule as

Rt = f ( t)+qt (12)

where f is a linear function of t , the available information set, and qt is the
monetary policy innovation. We consider two specifications for t . The first, in the
spirit of Christiano, Eichenbaum and Evans [8] [CEE] assumes that t includes cur-
rent and lagged values of output and inflation, in addition to lagged values of real
balances and interest rates. In other words, we assume a contemporaneous relation-
ship between monetary policy shock and shocks to inflation and production of the
same type as the one described by the FB rule. To complete the identification of the
other disturbances (named for simplicity, aggregate supply, aggregate demand and
money demand) we assume that output contemporaneously reacts only to its own
innovations, that inflation responds contemporaneously to output and inflation inno-
vations and that real balances are contemporaneously affected by innovations in all
the variables. These restrictions imply a lower triangular A0 matrix with the vari-
ables in the VAR ordered as output, inflation, interest rates and real balances. The
second identification scheme is in the spirit of Sims and Zha [29] [SZ] and Leeper,
Sims and Zha [?]. It assumes that includes current and lagged values of real bal-
ances, in addition to lagged values of the interest rate, inflation and output. Hence
the policy equation we recover is characterized by the same type of contemporaneous
feedbacks we obtain with a PA rule. To complete the identification we assume that
output and inflation are not contemporaneously affected by monetary policy shocks,
that inflation reacts to output and inflation innovations contemporaneously and that
real balances respond contemporaneously to innovations in the other three variables.
It is important to stress both schemes impose stringent ”inertial” restrictions: policy
disturbances are assumed not to affect output and inflation contemporaneously and
the static aggregate demand curve is assumed to cross a vertical aggregate supply
curve.

3.2 The Results

We generate 600 data points for the endogenous variables for each specification we
consider and use the last 160 as our data set. Given the quarterly frequency of the
model, this corresponds to 40 years of data. VAR models are estimated by OLS,
equation by equation, and for each data set we apply the two identification schemes,
for a total of 8 combinations. We present estimates of the policy rules. In parenthesis
are asymptotically standard errors of the estimates.
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Limited Participation - Partial Accommodative Policy

CEE : Rt = −0.55 t −0.24 Yt
(0.004) (0.001)

SZ : Rt = 0.12 mt
(0.07)

Limited Participation - Feedback Policy

CEE : Rt = −0.55 t −0.24 Yt
(0.003) (0.002)

SZ : Rt = −0.30 mt
(0.01)

Sticky Price Sticky Wage - Partial Accommodative Policy

CEE : Rt = 0.96 t −0.77 yt
(0.03) (0.13)

SZ : Rt = −0.15 mt
(0.66)

Sticky Price Sticky Wage - Feedback Policy

CEE : Rt = 0.87 t +0.17 yt
(0.05) (0.14)

SZ : Rt = 2.17 mt
(0.49)

Recall that in the PA economy, the interest rate responds to real balances and the
contemporaneous coefficient is 0.3. With LP generated data, the SZ scheme correctly
captures the sign of this coefficient but the point estimate is insignificantly different
from zero. With the CEE scheme estimates of the coefficients on output and infla-
tion, which should be theoretically equal to zero, are instead negative and significant.
Hence, it appears that monetary policy is leaning against output and inflation inno-
vations while this is not the case in the theoretical economy. In the FB economy,
the coefficients on output and inflation innovations in the policy equation are equal
to 0.1 and 0.5, respectively. Estimates obtained with the CEE scheme suggest that
these coefficients are negative and significant. Interestingly, short run estimates of
the policy parameters are very similar across data sets with the CEE scheme. With
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the SZ identification scheme the sign of the coefficient on interest rate innovations is
negative and significant so that, in this case, this scheme fails to recover a (positively
sloped) supply function for real balances.

With SPSW generated data the results are similar. With the SZ scheme, the coef-
ficient on real balances in the PA economy is negative but insignificant while in the
economy with a FB rule the coefficient, which should be zero in theory, is estimated
to be positive and large. With the CEE scheme the coefficients on inflation and output
have the right sign but are slightly upward biased in the FB economy. However, in an
economy endowed with a PA rule, a CEE scheme gives significantly positive weight
on inflation innovations and significantly negative weight on output innovations.

To summarize, regardless of the DGP used, the identification schemes we have
used fail to capture the features of the true monetary policy rule in the majority of the
experiments. With LP generated data, a triangular scheme is worse while with SPSW
generated data, misspecification of the policy rule is larger with the SZ scheme.

Figure 3 presents the estimated dynamic response to policy (interest rate) shocks
with LP data and Figure 4 the dynamic responses obtained with SPSW data. Each fig-
ure presents 68% confidence bands obtained by Monte Carlo methods together with
the theoretical responses, scaled so that policy shocks in the theoretical economy and
in the VAR have the same variance. Each figure has four columns corresponding to
the two identification scheme for the two policy rules 4.

Consider first the CEE scheme with LP generated data. When a PA rule is used,
both the sign and the magnitude of the responses to monetary policy (interest rate)
shocks are wrong. For example, estimated output and real balances responses are
positive while they are negative in theory and the response of inflation is insignificant
throughout the range while in theory it has a jagged pattern. When a FB rule is
employed, the sign of the responses are correct except for inflation, but in two of the
four cases, the 68% bands do not contain the true responses at several horizons.

With a recursive identification scheme, it is possible that disturbances to real bal-
ances also capture important aspects of monetary policy shocks. Interestingly, there
is very little difference in how the system reacts to interest rates and real balances
disturbances. In the PA economy, they are exactly identical apart from a sign change
in all the responses. In the FB economy output and real balances median responses
are significantly positive while inflation and interest rates median responses are in-
significant.

The median responses obtained with SZ scheme are qualitative similar to those
obtained with the CEE scheme. The bands, however, are large and asymmetric re-
flecting the non-normality of estimated parameters in small samples. In general,
when a PA rule is used, the 68% bands for output and real balances responses never

4For the just-identified CEE system, Monte Carlo bands are constructed using the standard
WinRATS procedure. For over-identified SZ system we follow Sims and Zha [29], draw 1000
replications from the joint posterior distribution of the autoregressive parameters, the variance-
covariance matrix of the residuals and the matrix of the structural parameters; use importance
sampling to weight draws with different information and antithetic methods to speed up the
calculations. We report small sample confidence bands, as opposed to their asymptotic coun-
terparts, to allow for asymmetries in the distribution of impulse responses, if they exist.
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contains the true ones, while the ones of inflation and nominal interest rates are
wrong for a few quarters. Furthermore, the median responses of these variables are
persistently negative after few quarters while in the model economy this is never the
case. In the FB economy note that the scheme produces initially positive responses
of inflation - a reminiscent of the ”price puzzle” (see Sims [26]) . Furthermore, the
responses of output and real balances tend to stay persistently below zero while this
is not the case in the theoretical economy. Quantitatively speaking, in only less than
10% of the steps true responses are inside the (large) estimated bands for these two
variables.

The estimated responses obtained with the two schemes using SPSW data are less
dramatic but equally misleading. For example, when regardless of the rule employed,
misspecification of the impact coefficient with the CEE scheme implies that the true
responses of inflation and output fall outside the estimated 68% bands at all horizons
and dynamics which are the opposite of the true ones. Furthermore, misspecification
of the coefficients of the policy rule with the SZ scheme results in output and inflation
responses which are outside the 68% band at several or all horizons and, in the case
of inflation, have wrong signs with both data sets.

The variance decomposition (Tables 3 and 4) confirms the presence of misspec-
ification. Recall that in the LP economy monetary shocks explain, depending on the
policy rule, between 14 and 35% of the variance of output and real balances, between
50 and 93% of the variance of inflation and between 87 and 97% of the variance of
interest rates.
With the triangular scheme, the contribution of monetary policy shocks to the vari-
ance of real and monetary variables at the 16 periods horizon for both data sets is
negligible. Also, contrary to the theoretical decomposition, inflation innovations are
the only significant source of variations in interest rates at the 16 periods horizon with
both data sets. Hence, this identification scheme produces the erroneous impression
that liquidity effects are short lived and that expected inflation effects dominate the
variability of interest rates in the long run. Furthermore, contrary to what theory
predicts, aggregate supply (output) innovations fail to explain a significant portion of
inflation variability in the FB economy and aggregate demand (inflation) innovations
fail to generate significant long run variations in output and real balances in the PA
economy.

With the SZ scheme monetary policy innovations explain large and significant
portions of the variability of real variables in both economies. With this identification
scheme long run variations in interest rates appear to be driven, at least partially, by
monetary policy innovations suggesting that the liquidity effect of a policy shock is
much more long lived than with the CEE scheme. As with CEE scheme, however,
aggregate demand (inflation) innovations explain small but significant portions of
the variability of all variables while money demand (real balances) innovations play
a negligible role with all data sets. Contrary to what was obtained in the theoretical
economy, aggregate supply (output) innovations account for an insignificant portion
of the variability of real variables which are now driven by aggregate demand and
policy shocks. Finally, and quantitatively speaking, the 68% bands obtained with the
two schemes do not typically include the true values.
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Var(Yt) Var( t) Var(Rt) Var(mt)

1) CEE Identification Scheme
A) Partial Accommodative Policy

Innovations in yt [69.5,93.7] [8.7,17.1] [1.5,17.1] [70.4,94.1]
Innovations in t [0.9,15.0] [81.8,90.3] [74.7,95.8] [0.9,14.6]
Innovations in Rt [0.6,9.5] [0.1,0.9] [0.3,5.2] [0.6,9.2]
Innovations in mt [0.7,10.0] [0.1,1.1] [0.2,6.5] [0.7,9.5]

B) Feedback Policy

Innovations in Yt [32.4,59.7] [2.9,7.5] [1.6,7.5] [31.8,59.2]
Innovations in t [15.7,38.0] [73.9,91.3] [68.3,91.2] [15.7,37.8]
Innovations in Rt [0.7,12.2] [1.5,13.3] [1.6,17.9] [0.7,12.6]
Innovations in mt [7.2,35.5] [0.5,9.2] [0.5,11.3] [0.8,36.2]

2) SZ Identification Scheme
A) Partial Accommodative Policy

Innovations in AS [3.4,54.1] [3.4,12.9] [1.7,12.9] [3.4,50.2]
Innovations in AD [24.1,50.1] [42.9,79.8] [39.0,67.6] [24.9,50.0]
Innovations in MP [17.0,51.8] [9.2,51.0] [24.9,53.9] [18.7,51.8]
Innovations in MD [0.1,0.2] [0.1,0.1] [0.1,0.2] [0.1,0.2]

B) Feedback Policy

Innovations in AS [1.0,36.0] [0.4,4.2] [0.3,4.4] [1.0,35.7]
Innovations in AD [12.7,50.5] [45.6,73.3] [46.4,77.2] [12.3,50.5]
Innovations in MP [22.0,55.0] [21.1,51.3] [15.9,50.9] [22.2,55.1]
Innovations in MD [0.4,22.1] [0.2,3.3] [0.2,4.3] [0.4,22.4]

Note: AS stands for aggregate supply, AD for aggregate demand, MP for monetary policy and MD for money demand.

The numbers refer to the percentages explained at the 16 period horizon.

Table 3. Estimated Variance Decomposition - Limited Participation.

In sum, the liquidity effects of a monetary policy shock are estimated to be short
lived with the CEE scheme and this type of disturbances has negligible importance
in explaining real fluctuations. With the SZ scheme the opposite occurs: the liquidity
effects of monetary shocks have longer lasting repercussions and this type of distur-
bances explain between 20 and 50% of the variability of output.

The variance decomposition obtained with CEE scheme in SPSW data provides
a correct ordering of the relative importance of different sources of fluctuations with
both policy rules, even though there is a tendency to underestimates the contribution
to monetary shocks in the PA economy. The SZ approach also recognizes the relative
importance of each shock but overestimates the contribution of monetary shocks with
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Var(Yt) Var( t) Var(Rt) Var(mt)

1) CEE Identification Scheme
A) Partial Accommodative Policy

Innovations in yt [71.5,87.1] [7.2,20.2] [0.2,13.6] [0.0,0.0]
Innovations in t [70.2,80.1] [8.4,19.3] [0.3,14.4] [0.0,0.0]
Innovations in Rt [4.9,28.2] [0.3,6.6] [66.6,94.8] [0.0,0.0]
Innovations in mt [23.3,49.7] [4.4,15.2] [39.7,66.7] [0.0,0.0]

B) Feedback Policy

Innovations in Yt [72.2,85.5] [12.1,23.1] [0.5,5.5] [0.0,0.0]
Innovations in t [72.2,84.0] [14.6,24.8] [0.4,2.8] [0.0,0.0]
Innovations in Rt [9.2,26.3] [5.2,18.9] [58.2,81.7] [0.0,0.0]
Innovations in mt [29.1,54.0] [10.0,23.2] [29.4,55.2] [0.0,0.0]

2) SZ Identification Scheme
A) Partial Accommodative Policy

Innovations in AS [73.3,89.7] [5.2,15.7] [0.2,15.5] [0.0,0.0]
Innovations in AD [73.1,87.4] [8.8,16.7] [0.3,14.3] [0.0,0.0]
Innovations in MP [0.6,11.2] [0.7,2.4] [86.2,98.8] [0.0,0.0]
Innovations in MD [33.6,59.0] [4.2,11.8] [31.9,58.5] [0.0,0.0]

B) Feedback Policy

Innovations in AS [69.5,84.7] [13.2,24.3] [0.4,8.6] [1.0,35.7]
Innovations in AD [71.3,82.1] [14.9,24.8] [0.2,6.9] [12.3,50.5]
Innovations in MP [1.5,10.4] [1.3,11.6] [78.4,95.6] [22.2,55.1]
Innovations in MD [9.4,24.9] [2.2,4.6] [70.6,86.4] [0.4,22.4]

Note: AS stands for aggregate supply, AD for aggregate demand, MP for monetary policy and MD for money demand.

The numbers refer to the percentages explained at the 16 period horizon.

Table 4. Estimated Variance Decomposition - Sticky Price Sticky Wage.

the FB rule and underestimates that of preference shocks in the PA economy. Overall,
the magnitude of the distortions in the variance decomposition obtained in the SPSW
economy is smaller than the one obtained in the LP economy.

While this paper focuses on monetary policy shocks, we would like to stress that
responses to the other shocks are also misspecified. For example, the aggregate de-
mand shock partially captures both the dynamics generated by the technology and
the preference shock in the SPSW economy and, as a result, tends to produce in-
significant inflation responses in both economies. This means that the problems we
noted here are generic; regardless of the DGP or the rule employed, one or more
equations of the system may be misspecified.
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We have conducted several experiments to examine the sensitivity of the results
to parameter choices in the theoretical economy. In particular, we have changed the
variances and the persistence of the structural shocks: we cut by half the variance
of monetary innovations, we have calibrated their persistence to US data or made
them iid. We have also varied the coefficient in partial accommodation rule from
0.05 (which corresponds approximately to a interest rate rule) to 0.8 and changed
the parameter on inflation in the feedback rule from 0.5 to 0.8 (see Sims and Zha
[29] and Taylor [30] for an empirical justification of these ranges). We found that the
extent of the misspecification is robust to variations of the parameters within these
ranges.

4 Explanations

The results we have obtained are somewhat surprising and contradict the conven-
tional wisdom that (semi-)structural VARs can recover, when appropriately per-
formed, the true dynamics of the data. It is therefore worth investigating why our
results go against this commonly held perception.

One reason for why both identification schemes could fail to capture the features
of monetary policy disturbances is the small sample of the data. That is, structural
VAR estimates are far away from the truth - even when the estimated policy function
uses the correct inputs - because the sample is too short for any asymptotic approxi-
mation to hold. While this certainly possible, small samples typically imply insignifi-
cant estimated contemporaneous parameters and error bands that include zero, which
is not necessarily the case in our experiments.

To detect how important the small sample problem is, we conducted two ex-
periments. In the first one, we use 500 observations for estimation. The qualitative
features of the results are unchanged. With LP data, the coefficients of the policy
function estimated with the CEE scheme are still wrong and their magnitude is inde-
pendent of the data generating process. With the SZ scheme the coefficient on real
balances obtained with data from the PA economy is positive and now significantly
different from zero while the sign of the coefficient on real balances in the policy
function is still wrong with data from the FB economy. With SPSW data, the only
significant change concerns the estimate of the coefficient of real balances with the
SZ scheme when a PA rule is used: it now becomes positive and significant even
though it is still different from the 0.3 value we have inputted. The remaining fea-
tures of the impact coefficients and of the variance decomposition are unaltered.

In the second experiment, we artificially give to the VAR econometrician the ex-
act specification of the variance covariance matrix of reduced form VAR residuals,
computed analytically from the decision rules of the equilibrium policy functions in
Section 2.5 (omitting lagged deposits or lagged wage inflation from the specifica-
tions), and ask him/her to estimate the free parameters with the two identification
schemes. When we input the true covariance matrix in the routine to estimate impact
coefficients, we find no changes with the CEE scheme with both data sets while with
the SZ scheme the coefficient on real balances in the PA economy is positive and
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significant with both data sets. Also, in this case the qualitative features of the vari-
ance decomposition are unchanged. Hence, the presence of estimation and/or small
sample problems is unlikely to explain the pattern of results: even when the sample
is large, both schemes fail to capture the structure of contemporaneous interdepen-
dencies and the pattern of lagged dynamics exactly in those cases when problems
have previously emerged.

We have conducted a number of other robustness checks to examine whether
results are due to improper statistical assumptions we have made at the estimation
stage. In particular, for the LP economy, we have reestimated the VAR using money
and prices in place of real balances and inflation and we have taken into account that,
based on the policy rules presented in Table 1, the estimated VAR is misspecified -
there is a state variable which is omitted - allowing 18 lags for each variable. In
both cases, there are no significant changes in the qualitative features of the results.
Hence, what is the reason for the poor performance of identified VARs?

To understand the nature of the problem is worth turning back to the equilibrium
policy functions. Consider first the LP economy, the one for which misspecification
is larger, and focus attention on the subset of the impact coefficients which corre-
spond to the four variables used in the VAR. It is easy to check that with both rules
the system is econometrically underidentified. That is, the model produces impact
responses which are inconsistent with the inertial constraints imposed by the two
identification schemes. In particular, the entries of the rows corresponding to ŷ and
ˆ in the impact matrices are large while both identification scheme force many of
them to be zero. Imposing false zero restrictions produces an omitted variable bias
and the non-zero coefficients in other equations will capture the effect of omitted in-
novations. For example, the negative coefficients on inflation and output in the policy
rule obtained with the CEE scheme results from the omission of policy shocks from
the aggregate supply and the aggregate demand equations.

Sign and magnitude biases in the impact coefficients translate in distorted esti-
mates of the dynamics, since the matrix of contemporaneous coefficients enters the
matrices of estimated structural lagged coefficients. This may explain why both the
variance decomposition and the impulse responses are far from the true ones and
why, for example, the estimated contribution of monetary policy shocks to the vari-
ance of output is so different from the theoretical one.

One way to evaluate the soundness of this argument is to examine a recursive
identification scheme in the spirit of Sims [26], where VAR variables are ordered
as interest rate, real balances, inflation and output. Here the estimated policy rule is
misspecified (a interest rate rule is assumed) but the aggregate demand and supply
equations are more correctly characterized (inflation is allowed to respond to innova-
tions in the nominal rate and in real balances and output responds to innovations in
all variables). We report the impulses responses following an orthogonal interest rate
shock in Figure 5 and estimates of the variance decomposition in Table 5. Clearly,
the extent of the misspecification is reduced. For example, except for the sign of in-
flation responses in the FB economy, all other responses have now the correct sign.
However, it is still true that the relative contribution of shocks to the variability of
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the four VAR variables is incorrect (see, for example, the contribution of supply and
money demand shocks to the variability of output).

Var(ŷt) Var(̂ t) Var(R̂t) Var(m̂t)

A) Limited Participation - Partial Accommodative Policy

Innovations in ŷt [1.5,14.7] [0.2,1.4] [0.4,8.5] [1.3,14.3]
Innovations in ̂ t [0.6,6.2] [0.2,0.7] [0.1,3.5] [0.5,6.0]
Innovations in R̂t [3.2,25.6] [73.5,80.2] [79.7,97.3] [3.1,25.2]
Innovations in m̂t [60.4,88.3] [18.6,24.9] [0.4,10.3] [61.4,88.8]

B) Limited Participation - Feedback Policy

Innovations in ŷt [8.6,36.3] [0.4,7.4] [0.5,8.9] [9.0,37.0]
Innovations in ̂ t [0.4,7.3] [2.6,20.6] [3.7,26.5] [0.4,7.4]
Innovations in R̂t [50.7,79.0] [21.8,41.7] [24.2,47.1] [49.9,78.6]
Innovations in m̂t [5.0,12.6] [40.6,64.6] [31.4,57.4] [5.0,12.6]

Table 5. Estimated Variance Decomposition at the 16-periods horizon - Sims (1992) Scheme.

Why is it that this scheme better? Inspection of the equilibrium policy functions
in Section 2.5 indicates that the entries of the R̂ row in the impact matrix are much
smaller than those, for example, of the ˆ row. Hence the imposition of (false) iner-
tial constraints in the policy rule produces smaller distortions. Clearly, this outcome
depends on the parametrization: if the coefficients on real balances in the PA rule is
increased to 0.8 (from 0.3) also the entry of the R̂ row becomes large and imposing
false restrictions in the R̂ equation is not better than imposing them in the ˆ equation.

Can the inherent underidentification of our LP system be solved by introducing
additional frictions in the model? The answer is negative. First, extreme restrictions
(such as one period in advance decisions) may produce zeros in the matrix of impact
coefficients, but the zeros are not necessarily ”in the right position”. For example,
with complete one-period-in advance price decisions, inflation will not move in re-
sponse to all shocks and this produces a row of zeros in the matrix of contempo-
raneous impacts. Second, with the more conventional parametrizations adopted, for
example, in the SPSW economy, the matrix of impact multipliers is still misspecified,
exactly because of the existence of omitted variables. In that economy, the output and
inflation blocks are exogenous with respect to the rest of the model but the presence
of significant interrelationships between these two variables produce responses to
policy and non-policy shocks which have, at times, the wrong sign.

As we have already suggested the SPSW economy is somewhat extreme, in the
sense that two shocks have, by construction, no impact on two variables, while the
LP economy is probably extreme in the opposite direction, since all shocks have
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strong contemporaneous impact on all variables. Given that some form of misspec-
ification occurs in all setups, the issues we highlight here are general and should be
taken seriously by VAR researchers who use DSGE theory to organize their thoughts.
Standard DSGE models seldomly produce the full array of inertial restrictions used
by applied researchers to identify structural shocks. To generate them models need to
be rigged and some of the constraints that one must introduce may be difficult to jus-
tify theoretically (see e.g. the frictions imposed by Sims and Zha [29] or Rotemberg
and Woodford [22]). Hence, the class of general equilibrium models which produce
an underidentified matrix of impact coefficients is dense and the underidentification
problems discussed here widespread and pervasive.

5 An Alternative Identification Scheme

One way to respond to our arguments is to trash both models as empirically irrel-
evant and suggest, as some commentators have done, the use of models which fit
well known empirical regularities (such as those documented in Christiano, Eichen-
baum and Evans [8]). We do not find this approach palatable for two reasons: first,
empirical regularities do depend on the identification scheme used and the available
evidence is obtained primarily using sluggish restrictions which have little theoretical
underpinning in general equilibrium frameworks. Second, the two classes of models
span the range of DSGE structures macroeconomists feel comfortable with and there
are few operational alternatives to them.

A more productive approach is to take existing theoretical structures (of whatever
microfundation one feels comfortable with) as given and ask if there are alternative
identification schemes, which avoid the use of inertial constraints, and which could
be used to recover the true structural shocks. Since the work Blanchard and Quah [3]
several researchers have employed long run constraints to identify structural shocks.
From our point of view these restrictions are more appealing than those based on
contemporaneous constraints since they capture features present in many theoretical
models. Some of these restrictions naturally emerge from models like those con-
sidered here, e.g. money neutrality, and others can be obtained by adding assump-
tions on the data generating process of the disturbances, e.g. permanent technology
shocks. However, long run restrictions are seldomly used to identify monetary VARs;
furthermore, because these restrictions are scarce, it is hard to fully identify all the
equations of a medium sized VAR only with such restrictions, and in general, they
may be only weakly identifying the quantities of interest, in the sense of Faust and
Leeper [15]. Finally, as Cooley and Dwyer [10] have shown, also these schemes are
not immune from misspecification problems.

While information on the timing of the reaction of variables to shocks - which
are the basis for the inertial contemporaneous restrictions - and on the cumulative ef-
fect of disturbances - which are exploited with long run identification schemes - are
typically scarce in general equilibrium models, monetary DSGE models have abun-
dant sign restrictions on the dynamic response to shocks which can serve for iden-
tification. For example, regardless of the exact specification of the policy rule, our
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theoretical economies implies that a contractionary monetary policy shock produces
an increase in interest rates and a decrease in real balances. Hence, an orthogonal
shock can be termed ”a monetary policy disturbance” if it generates a cross correla-
tion function for interest rates and real balances which is negative for all leads and
lags.

Canova and De Nicoló [4], Uhlig [31] and Faust [14] have used restrictions of
this type to identify monetary shocks in the actual data. Such an approach works well
with data generated by DSGE economies like the ones considered here. To illustrate
the point we employ a variant of the two-step procedure suggested by Canova and
De Nicoló. The procedure first requires to find an orthogonal decomposition of the
covariance matrix of the reduced VAR shocks of the type = PDP′ where P is a
matrix of eigenvectors and D a diagonal matrix of eigenvalues. Since the matrix P
does not have any zeros and is not subject to the misspecifications we have mentioned
in the previous section. In a second step, the theoretical information about the joint
behavior of the variables of the system in response to a policy disturbance is used
to examine whether any of the four orthogonal shocks produces the required cross-
correlation pattern. If with the proposed decomposition there is no shock which fits
the theoretical pattern, an alternative orthogonal decomposition can be constructed
and the exercise repeated until one candidate is found 5.

In Figure 5 we present impulse responses to the orthogonalized monetary policy
disturbance in the LP economies for each policy rule. The sample size used to esti-
mates the parameters is 150 and the VAR is estimated as in Section 3. In all cases
such a shock represents a contractionary monetary policy shock: it increases inter-
est rates, it decreases real balances and output and makes inflation first decline and
then increase. Since the response of output and inflation was not employed to iden-
tify the policy shock they can be used to independently check the outcomes of the
identification approach. It is therefore remarkable that the method produces output
responses with the right sign and in the case of the FB economy with roughly the
right persistence.

Table 6 presents the percentage of the variance of output, inflation are explained
by identified policy disturbances. For reference, we also repeat those of the theo-
retical economy. Although in some cases the importance of policy disturbances for
output fluctuations is slightly overstated and for inflation fluctuations slightly under-
stated, 68% bands are not that far from the correct values. For example, in the LP-PA
economy, orthogonalized shocks to inflation explain in the median 24% of the vari-
ance of output, 63% of the variance of inflation, while in the theoretical economy
these percentages were 14%, 50% respectively. In the SPSW economy, estimated
bands are close to zero as are the true values in the economy.

5Since there is an infinite number of (non-recursive) orthogonal decompositions which
can be obtained from a symmetric matrix , all differing by an (orthonormal) matrix Q, it
may be the case that many orthogonalizations may produce the required pattern. When this is
the case, we select the decomposition which (a) produces the maximum number of identified
shocks, (b) come closest to reproduce the sign restrictions on the whole vector of theoretical
pairwise cross correlation functions considered. The reader interested in the technical details
concerning the selection criteria may consult Canova and De Nicoló [4].
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Var(ŷt) Var(̂ t) Var(R̂t) Var(m̂t)

A) Limited Participation Economy
Partial Accommodative Feedback

Theoretical MP shocks 14.4 50.6 35.2 93.6
Identified MP shocks [16.1,32.0] [61.5,64.2] [34.0, 53.1] [74.1,86.2]

B) Sticky Price, Sticky Wage Economy
Partial Accommodative Feedback

Theoretical MP shocks 0.0 0.0 0.0 0.0
Identified MP shocks [0.00,0.01] [0.01,0.01] [0.00,0.00] [0.00,0.01]

Table 6. Variance Decomposition - Alternative Identification.

In conclusion, VAR identified with sign restrictions correctly identify monetary
disturbances in both economies. Contrary to procedures that impose zero restrictions
on the contemporaneous impact of shocks, such an approach is able to properly iden-
tify the monetary policy disturbance, mimic their dynamic effects on real variables
and correctly measure their importance as source of fluctuations in the economy, re-
gardless of how strong are the true contemporaneous feedbacks. It is important to
stress that these results are obtained using the same sample size, the same variables,
the same VAR specification and applying the same estimation approach employed in
section 3. Hence, we confirm that small samples, the omission of a state variable, the
nature of the variables used in the VAR are not crucial ingredients to explain why
standard approaches fail.

6 Conclusions and Practical Suggestions

This paper examined whether structural VARs capture crucial features of theoretical
monetary policy disturbances when two types of widely used DSGE models are em-
ployed as DGP and identification is achieved via conventional inertial constraints.
The two types of models use different frictions to generate real effects of monetary
policy. As a consequence, the timing and the intensity of the dynamics and the inter-
relationships between the real and the monetary side of the economy they produce
are different. However, roughly speaking, they (mis)match existing data with the
same degree of (in)accuracy.

The two economies (and many other variants of these) have one important fea-
ture in common: the matrix of impact coefficients has blocks of elements which are
non-negligible but forced to be zero when conventional identification approaches
are used. The imposition of zero restrictions in an underidentified equation causes
an omitted variable problem which biases inference not only in the underidentified
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equation, but in the entire system. As a result, impact coefficients are mismeasured;
the sign and the shape of impulse responses misspecified; and the contribution of
monetary shocks to the variability of real variables distorted. It is important to stress
that these outcomes obtain even when the estimated policy rule correctly recog-
nizes the inputs of the theoretical policy rule. Clearly, problems are more acute in
economies where the degree of misspecification of contemporaneous relationships is
stronger.

If one takes the view that contemporaneous general equilibrium feedbacks are
important, VAR analyses conducted with a different style of identification maybe
preferable. For example, when identification is obtained by means of sign restric-
tions on the cross correlation function of certain variables in response to shocks,
estimated policy shocks produce dynamics which mimic the theoretical ones and
correctly characterize their importance for movements in real variables, regardless
of the DGP and the policy rule employed.

Because standard statistics measuring the contribution of shocks to the dynamics
of the endogenous variables may give an erroneous representation of the DGP, cru-
cial economic questions may receive the incorrect answers. For example, we have
seen that with at least one DGP the importance of monetary policy shocks for the
variability of real variables is underestimated, and this could explain why many au-
thors have questioned the importance of monetary policy disturbances as sources
of output fluctuations. When sign restrictions are used, the contribution of various
shocks to the variability of the four variables is correctly ranked, the dynamics in
response to structural shocks have the right qualitative features and, to a large extent,
the correct magnitude.

Most of the conclusions we have reached should not surprise sophisticated users
of structural VARs. The idea that the omission of variables correlated with those
included in a regression causes biases and distortions is as old as econometrics, as is
the statement that theoretical systems which are underidentified can not be estimated
using exclusion restrictions. What we have shown here is that these problems may
be quantitatively important for several questions of interest to macroeconomists, and
they can be solved using more theory based identification approaches.

One may be tempted to argue that the specifications we are using are unrealis-
tic, that they are very far away from the real economy to allow VAR econometri-
cians to learn from the data or that when stronger frictions in the form of adjustment
costs, implementation lags or habit persistence are present, our arguments will loose
steam. While we agree that such specifications may produce strong sluggishness in
responses of certain variables to shocks, it is also the case that this type of sluggish-
ness may not be helpful for identification. On the other hand, the claim that VAR
econometricans are not allowed to learn from the data is untenable: those which
are endowed with conventional constraints don’t, but those who use theory to derive
identifying restrictions do learn! We have shown that a method which uses a minimal
amount of theory to guide empirical research, works reasonably well both when there
are strong feedbacks across all reduced form equations. The reason why traditional
VAR econometricians do not learn about the features of the underlying economy is
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not because the DGPs are strange or unrealistic but because the tools they use to
analyze the data are inappropriate.

Whenever there are doubts about the features of the DGP and the extent of slug-
gishness of variables in reaction to disturbances, a case which we consider the norm
in practice, one should be very careful in using inertial constraints and should in-
stead prefer identification schemes which exploit robust and generic theory-based
restrictions. The suggestion of moving away from VAR identified using contempo-
raneous inertial restrictions is present in a latent form in e.g. Sims [27] and recent
contributions of Canova and De Nicoló [4], Faust [14] and Uhlig [31] makes the task
feasible.
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Fig. 1. Theoretical Responses.
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Sticky Price Sticky Wage economy
PA rule, technology shock
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Fig. 2. Theoretical Responses.
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CEE, PA policy
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Fig. 3. Estimated and Theoretical Responses.
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Limited Participation
Partial Accomodative policy
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Fig. 5. Estimated and Theoretical Responses. Sims’ (1992) Identification Scheme.
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Limited Participation
Partial Accomodative policy
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Summary. The Keynes-Einzig conjecture states that discrepancies between interest parities
and forward rates in the interwar period did not cause deliberate transfers through interest ar-
bitrage on a large scale unless and until the profit on the operation was at least 1/2 percent
per anum. We further examine this conjecture by employing monthly data for six currencies
against the US Dollar for the period 1921-1936. In particular, we analyse the ex ante real re-
turns to uncovered forward speculation in the interwar period. We find that excess returns were
predictable and that deviations from covered interest parity (CIP) were large and systematic.
Evidence of nonlinear adjustment of CIP is also provided.

1 Introduction

A number of authors have investigated the properties of spot and forward exchange
rates in the inter-war floating period (e.g. Hansen and Hodrick [14]; Taylor and
McMahon [28]; Fraser and Taylor [13]; Baillie et al. [1]; and Byers and Peel [2]).This
empirical work suggests that, as is consistent with analysis of post-war data (e.g.
Fama [10]), the forward exchange rate is a biased and inefficient predictor of fu-
ture exchange rates. As a consequence there are to be, at least ex-post, predictable
non-zero returns to speculation. However as is now well recognised if agents are
risk-averse rather than risk neutral, then speculative returns should be non-zero re-
flecting the required risk premium (see e.g. Hodrick and Srivastava [15]). Whilst
predictable non-zero returns to speculation may be a consequence of risk premia it is
also of course possible that they reflect inefficiency of expectations formation. This
type of explanation is given weight by those who regard the results of the analysis of
directly observed survey data on expectation formation as relevant. This work uni-
formly points to bias and inefficiency in expectation formation (see e.g. Frankel and
Froot [11]; MacDonald and Torrance [21]; MacDonald [20]; Cavaglia et al. [3]).

�Financial support from ESRC grant under grant L/138/25/1004 is gratefully acknowl-
edged.
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Another possible explanation of nonzero speculative returns in the inter war pe-
riod is the failure of covered interest arbitrage to hold. In the Tract on Monetary
Reform, Keynes conjectured that deviations from covered interest rate parity would
not be arbitraged unless a profit of at least a half of one percent on an annualised
basis was available, and that larger deviations would still be moderately persistent
because of the less than perfect elasticity of supply of arbitrage funds. This two-part
conjecture was given further emphasis by other writers on this period, notably Einzig
[6]. The following three quotations illustrate their thoughts on this issue:

1. ”It may be said, therefore, that discrepancies between Interest Parities
and forward rates do not cause deliberate transfers through interest ar-
bitrage on a large scale unless and until the profit on the operation is at
least 1/2 per cent per annum. This has been recognised by Mr. Keynes
and by other writers, but is often overlooked by those who are not in
contact with the market.” Einzig [6], pp. 172-173.

2. ”It must be remembered that the floating capital normally available, and
ready to move from centre to centre for the purpose of taking advantage
of moderate arbitrage profits between spot and forward exchange, is
by no means unlimited in amount, and is not always adequate to the
market’s requirements. . . .. [An] abnormal discount can only disappear
when the high profit of arbitrage between spot and forward has drawn
fresh capital into the arbitrage business.” Keynes [17], pp. 107-8.

3. ”So few persons understand even the elements of the theory of the for-
ward exchanges that there was an occasion in 1920, even between Lon-
don and New York, when a seller of spot dollars could earn at the rate of
6 per cent per annum above the London rate for short money.” Keynes
[17], p. 108.

The first two statements about the functioning of the exchange market during the
inter-war period are known as the ”Keynes-Einzig” conjecture. In a recent paper, Peel
and Taylor [25] apply non-linear econometric techniques to a previously unexplored
weekly data base for the period 1921-1923 for the London and New York markets.
They find strong support for the conjecture of Keynes and Einzig that there were
systematic deviations from covered interest arbitrage.
The purpose in this paper is to examine further the conjecture of Keynes and Einzig
employing monthly data for six countries over the period 1921-1936. The monthly
interest rate data for this period we have access to is taken from Einzig [6] and con-
sists of weekly averages. Consequently the returns from covered interest arbitrage
per se cannot be computed since, as it is now well known, it is important to mea-
sure deviations employing data recorded at the same instant in time at which a dealer
could have dealt (see e.g. Sarno and Taylor [27]). Nevertheless analysis of the time
series properties of this data (see Appendix 1) are consistent with the Keynes-Einzig
conjecture. Naturally if there were systematic deviations from covered interest ar-
bitrage during the inter war period the same will be true of uncovered arbitrage,
a fortiori. Consequently, we analyse the ex ante real returns to uncovered forward
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speculation in the inter-war period where data issues are less of an issue. We exam-
ine whether agents could have made profits from forward speculation. The general
framework will be to consider the case of an American investor operating in the for-
ward market with six different currencies –British sterling, French franc, Italian lira,
Swiss franc, Belgian franc and Dutch guilder– in the period 1921-1936.
The remainder of the paper is organised as follows. Section 2 sets out the deter-
minants of real excess returns employing the inter temporal asset pricing model as
developed in Frenkel and Razin [12], Engel [8], Cumby [4], and Kaminsky and Pe-
ruga [16]. The empirical tests of this hypothesis are described and the results set out
in Section 3. Section 4 describes and analyses the forecast of real return from forward
speculation. Section 5 concludes.

2 Excess Foreign Exchange Returns

An American investor taking a long forward position in foreign currency j at time
t agrees to buy the foreign currency forward for F j

t,k dollars at t+ k for each unit of

currency j purchased.3 At maturity, t+ k, the investor will receive S jt+k dollars for
the sale of the foreign currency. The return of this forward position will be:

r jt,k = (S jt+k−F j
t,k)/S

j
t (1)

If financial markets are efficient, investors are risk-neutral then uncovered interest
parity hypothesis states that expected profits to forward speculation are zero. That
is, Et(r

j
t,k) = 0, where Et is the rational expectation conditional on all information

available at time t. Using this framework, we can define the (nominal normalised)
risk premium as the expected return to forward speculation4, j

t,k = Et(r
j
t,k).

In this paper we extend this line of research taking into account the fact that the
relationship expressed in (1) does not hold in general if investors have utility over
consumption goods. As Frenkel and Razin [12] and Engel [8] point out, under equa-
tion 1, even if investors are risk-neutral (marginal utility of consumption constant),
expected nominal profits to forward speculation could be nonzero but expected real
profits should be zero for the optimal condition to hold as we describe below.5 Re-
jection of uncovered interest parity does not provide evidence of a risk premium in
the forward foreign exchange market, within this framework. Nevertheless, evidence
of ex ante real profits would be consistent with the existence of a risk premium.

The theoretical framework we consider is based on the intertemporal asset-
pricing model developed by Lucas (1982). In the international context, the first-order
condition for expected utility-maximising representative investors is:

3The subscript k in our case denotes months.
4For a comprehensively theoretical and empirical survey of risk premium, see Lewis [18]

and Engel [9].
5It could be the case that during the period of speculation, the domestic currency looses

purchasing power, so even if the investor can make a nominal profit in the domestic currency
through forward speculation, there would be no expected real profits.
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Et
[(
U ′(Ct+k)/U ′(Ct)

)
(Pt/Pt+k)

(
S jt+k−F j

t,k

)
/S jt
]

= 0 (2)

whereU ′(Ct) is the marginal utility of real consumption, and Pt is the consumer
price index in the domestic economy. Assuming that agents are risk neutral, the con-
dition of the absence of real profit opportunities from forward market speculation
can be written as:

Et
[(

(S jt+k−F j
t,k)/S

j
t

)
(Pt/Pt+k)

]
= 0 (3)

defining the real return for market speculation –e jt,k - in currency j as ((S jt+k−
F j
t,k)/S

j
t )(Pt/Pt+k), we can then test for the hypothesis that expected real returns are

zero. Figures 1 to 6 show e jt,3 –in percentage- for the six exchange rates under con-

sideration for the 1921-1936.6 We observe from the graphs that ex-post real profits
were large and persistent in the floating periods. In Table 1 we report some summary
statistics on the quarterly absolute deviations from our measure of covered interest
arbitrage in the floating periods and fixed periods as well as the absolute interest rate
differentials for the fixed periods. As noted above the interest rates are computed as
averages of weekly data. The summary data is suggestive that there were large devi-
ations from CIP in the floating period. The measured deviations in the fixed period
were, reassuringly, of much smaller magnitude and much closer on average to the
hypothesised transactions bands. The relatively high average absolute interest devia-
tion for the Lira (0.79%) but smaller average absolute deviation of CIP, of 0.48%, is
consistent with a persistent market perception of devaluation of the Lira during the
fixed period. Overall the summary statistics and figures are suggestive that profitable
ex-ante speculation may have been feasible in the floating periods.

3 Empirical Tests

The real return for forward market speculation, e jt,k, is constructed using exchange
rates and forward rates expressed in dollars per unit of foreign currency and a
price index in dollar terms –in particular, the retail price index RPI. We consider
three month returns for six different series of exchange rates –Dollar/Sterling, Dol-
lar/French Franc, Dollar/Lira, Dollar/Swiss Franc, Dollar/Belgian Franc, and Dol-
lar/Dutch Guilder. The data at monthly frequency spans from 1921 to 1936. The data
series are taken from Einzig [6] and described in detail in Appendix 1. During this
time period the different currencies experienced several exchange rate regimes.

6In the case of the Belgian franc, observations 1926:08, 1926:09 and 1926:10 have been
excluded due to their abnormal value-around 400% - which would have distorted the scale of
the graph, smoothing out the shape of the rest of the graph. The shaded areas correspond to
the periods considered as fixed for every currency in the sample period.
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Fig. 1. Ex post real speculative returns three month rate: British Pound.
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Fig. 2. Ex post real speculative returns three month rate: French Franc.
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Fig. 3. Ex post real speculative returns three month rate: Italian Lira.
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Fig. 4. Ex post real speculative returns three month rate: Swiss Franc.
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Fig. 5. Ex post real speculative returns three month rate: Belgian Franc.
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Fig. 6. Ex post real speculative returns three month rate: Dutch Guilder.
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Period British French Italian Swiss Belgian Dutch
Pound Franc Lira Franc Franc Guilder

Average Floating 0.18% 0.85% 1.06% 0.77% 0.62% 0.50%
CIP dev.
Median Floating 0.15% 0.39% 0.88% 0.35% 0.49% 0.24%
CIP dev.
Max Floating 1.58% 7.70% 5.13% 6.45% 1.97% 3.65%
CIP dev.

Average Fixed 0.12% 0.29% 0.48% 0.23% 0.19% 0.13%
CIP dev.
Median Fixed 0.12% 0.23% 0.44% 0.18% 0.13% 0.09%
CIP dev.
Max Fixed 0.41% 1.37% 1.87% 1.39% 1.65% 2.08%
CIP dev.

Average Fixed 0.17% 0.21% 0.79% 0.20% 0.23% 0.11%
Interest rate
differential
Median int. Fixed 0.15% 0.17% 0.89% 0.20% 0.15% 0.09%
rate diff.
Max int. Fixed 0.44% 0.52% 1.25% 0.54% 0.64% 0.41%
rate diff.

Without outliers in fixed regime

Average Fixed 0.12% 0.19% 0.37% 0.14% 0.12% 0.08%
CIP dev.
Average Fixed 0.17% 0.18% 0.70% 0.17% 0.17% 0.10%
Int. rate
differential

Table 1. Absolute Quarterly Deviations from CIP and Interest Rate Differentials.

In Appendix 1 we also define the periods in which each currency was under a
‘floating’ or a “fixed” regime.7

7That period was characterised by a generalised intervention by monetary authorities of
the different countries in order to control the value of their currencies.
”Even during the period of inter-war stability there was, generally speaking, much more of-
ficial activity in Foreign Exchanges than before 1914. Apart from other reason, this was due
to the operation of the gold exchange standard in a large number of countries. Central Banks
which pursued a policy of active intervention developed advanced techniques of squeezing
speculators”. Einzig [7], p.286.
In spite of this, we consider ”fixed” regime to be the one in which the monetary authorities
managed to keep the value of the currency within a very narrow band.
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If equation 3 holds, e jt,k should be uncorrelated with any variables in the time
t information set. It must be realised that in this case we are testing the joint null
hypothesis that markets are perfect; investors are risk neutral; and that they have ra-
tional expectations. Two different set of tests are considered for the estimation of the
null hypothesis that e jt,k cannot be explained by any information that investors have

at time t.8. The first test regresses e jt,k on its own lagged values; currency j lagged
forward premium, nominal interest rate changes in the US and in country j; and two
“macro” variables, namely the US inflation rate and the rate of change of US indus-
trial production; this group of variables will be named as set 1. The set of variables
used in the second test, set 2, includes one lag of e jt,k for every currency; lagged value
of forward premia of each currency plus the ‘macro’ variables considered in the first
set. These data are chosen since forward premia have proven useful in predicting
nominal returns (e.g. Cumby [4]), whilst inflation, the rate of change of industrial
production and changes in nominal interest rates are “fundamental” determinants
of exchange rates and saving and investment decisions. Augmented Dickey-Fuller
–ADF– and Phillips-Perron –PP– tests were performed in order to check the station-
arity properties of the time series. For all the variables employed in the orthogonality
regressions we were able to reject the null hypothesis of unit root9.
Table 2 reports the results of the orthogonality tests for the three-month ex ante real
profits from forward speculation. The estimation is carried out using Newey-West
[100] covariance matrix estimator that is consistent in the presence of both het-
eroskedasticity and autocorrelation. This is important since monthly observations
on quarterly returns (k =3) used in the empirical work lead to serial correlation in
the residuals and because the homoskedasticity in this case has been previously re-
jected in the literature (Cumby and Obstfeld [5]; Hodrick and Srivastava [15]). The
F-statistic reported tests the joint hypothesis that all slope coefficient (excluding the
constant) are zero.
The results of the tests for expected real profits using three-month forward rates
show that the null hypothesis of the absence of un-exploited profit opportunities can
be clearly rejected in every case using the second set of explanatory variables. This
same result is found when we run the regression with the first set of explanatory
variables, although in this case the null is not rejected for the Belgian Franc in the
floating period.
This evidence suggests that from the view of an American investor, there were clear
opportunities of profits in the foreign exchange market in the inter-war period that it
may have been possible to exploit using the appropriate information set available at
the time the investment decision had to be made. Notwithstanding, we have to bear
in mind that the financial market conditions at that time were different that the ones
investors face today. As was pointed out in the introduction, Keynes suggested that

8As pointed out by Engel [8], to test relationship 3 directly we would need to know the
price deflator of the risk-neutral investor. The availability of data forces us to use RPI as the
price index.

9Although the table with the result of the unit root test is not shown in this paper, they are
available on request from the authors.
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Set 1 Set 2
Currency Floating Period Floating Period

British Pound 0.048 0.000
French Franc 0.005 0.000
Italian Lira 0.001 0.000
Swiss Franc 0.005 0.018
Belgian Franc 0.128 0.008
Dutch Guilder 0.003 0.011

This table reports the p-value of the F-statistic with q−1 (q is the number of parameters in the regression excluding the
constant) numerator degrees of freedom and T − q (T number of observations) denominator degrees of freedom. The
null hypothesis is that all coefficients are zero. The regression with set 1 regresses ejt,1 on a constant, four of its own

lagged values-in particular e jt−3,k,e
j
t−4,k,e

j
t−5,k,e

j
t−6,k-, four lags of the currency j forward premia - f p jt,k = log(F j

t,k/S
j
t )-,

four lags of the inflation rate, four lags of industrial production growth and two lags of the interest growth of both US
and country j. The regression with set 2 regresses ejt,1 on a constant and one of its own lags, and one lag of the excess
return of each of the other currencies, lagged value of forward premia of each currency, four lags of inflation rate and
four lags of industrial production.

Table 2. Test for the Absence of Expected Real Profits in Forward Speculation: 3-Month.

only when deviations from CIP were above ±1/2 percent on an annualised basis
would arbitrage be profitable. Assuming the same band for uncovered deviations in
Table 3 we report the percentage of real excess return observations, -e jt,k- that are
outside that neutral band for every currency. The results overall indicate that most
of the time profit opportunities were substantial for an American investor trading
with these six different currencies in the FOREX market. It also appears to be the
case that the British Pound, Dutch Guilder and the Belgian Franc were the most
arbitraged currencies.

Currency Floating Period

British Pound 94.38%
French Franc 100%
Italian Lira 97.40%
Swiss Franc 98.46%
Belgian Franc 89.66%
Dutch Guilder 92.86%

This table reports the percentage of observations of ejt,k that fall outside the neutral band for every currency within the
different regimes. The upper and lower limits of the band are 0.5% per annum. Therefore, in the case of the one-month
rates, compounding up 0.5% per annum yields limits of 0.042%. In the case of three-month rates, the limits are 0.1247%.

Table 3. Percentage of e jt,k Observations Outside the Neutral Band in the Case of Three
Months Forward Rates.
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4 Prediction

The previous section showed evidence that two different sets of economic variables
were significant in explaining excess return from forward speculation during the
inter-war period. The next step is to investigate whether these information sets would
have been useful to forecast correctly the sign and size of those excess returns. We
aim to predict whether the excess return is going to be positive and outside the neu-
tral band - 1/2% per annum-; negative and below that band; or inside the transaction
cost band. According to that prediction, the speculation strategy would be to buy
forward the foreign currency; to sell it forward; or do nothing, respectively.
In order to generate predictions we run sets of rolling regressions for the excess
return from forward speculation for each exchange rate considered above using as
regressors the economic variables used before, namely, set 1 and set 2. The sample
under consideration is the respective floating periods between 1921 and 1936, and
the maturity for the assets is three months10. The rolling forecasts -ê jt,k- begin two
years after the first observations are available, so that, earlier forecasts are consistent
with a certain amount of historical information. We repeat this experiment using the
two different sets of explanatory variables in order to forecast the excess return.
Table 4 reports the percentage of times that the forecasts have been accurate in pre-
dicting whether the excess return was within the band, above the band and positive
or below the band and negative. It is interesting to note that the forecast ability is at
least fifty percent in all cases, and much higher in the case of the Swiss Franc and the
Dutch Guilder when set 2 is used. Although we have evidence of predictability this
does not give a measure of the profitability of the speculation, it simply implies that
in all cases the excess return would have been correctly forecast more times than it
would have been wrongly forecast.

Currency Set 1 Set 2

British Pound 58% 56%
French Franc 56% 56%
Italian Lira 54% 50%
Swiss Franc 63% 69%
Belgian Franc 50% 52%
Dutch Guilder 57% 73%

Table 4. Percentage of ê jt+k that Correctly Predicted e jt+k During the Floating Period in the
Case of Three Months Horizon.

Consequently, we investigate the possibility of making systematic profits in the finan-
cial markets at that period of time. For that purpose, let us assume that an investor

10Due to the availability of the data, for the case of the Italian lira the sample period spans
until December 1935.
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had invested $100 every period, we then add the excess returns that were correctly
predicted and subtract the ones that were inaccurate, leaving out the ones when the
forecast -ê jt,k- was within the band because there would not have been an investment
in that case. We then divide the total return by the number of quarters in which we
have speculated in the forward market of each currency, giving as a result the av-
erage quarterly real return from speculation. In the first and second rows of Table
5, we report the results when we employed set of variables 1 and 2 as regressors in
the forecast equations. Except for the Belgian Franc, all currencies exhibit positive
returns from forward speculation. Especially remarkable is the return in the French
Franc and the Lira. Although Table 4 shows that the percentage of cases correctly
predicted was not particularly high for these currencies, we could predict correctly
most of the major movements of these currencies during that period, giving as a re-
sult high speculative profits. As a final check, we employ as the predicted value of e jt,k
the previous available value, e jt−3,k, since one could argue that at that time computers
were not available and investors did not have the possibility of using the technique
applied in the earlier tests. The results are qualitatively unchanged using this proce-
dure as can be seen in the third row of Table 5. The final row of Table 5 reports the
average of the US quarterly real return of the risk free rate computed in the periods
when forward speculation was undertaken. Apart from the Belgian Franc the average
real returns from speculation were consistently positive and large in relation to the
average real rate of interest in the US.

British French Italian Swiss Belgian Dutch
Pound Franc Lira Franc Franc Guilder

Speculation 0.44% 1.88% 0.84% 1.19% -1.99% 0.61%
using set 1
Speculation 0.60% 2.01% 1.68% 1.64% -0.10% 1.02%
using set 2
Speculation 0.73% 1.41% 1.45% 1.29% -0.76% 0.77%
using e jt−3,k
US risk free -0.78% -0.57% 0.06% -1.19% -0.24% -0.64%
real rate

The US real risk free rate has been calculated for the periods where forward speculation was in operation in each
currency during ”floating” periods.

Table 5. Average quarterly profits from forward speculation in floating periods from 1921 to
1936.
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5 Conclusion

Keynes stated in the early 1920s that the functioning of the financial markets, and
specifically the Forward Exchange, allowed for the possibility of excess nominal
profits through absence of covered interest parity arbitrage. Absence of matched
data for interest and exchange rates precludes us from examining that hypothesis
directly for the six currencies. However the data based on interest rate averages is
suggestive that there were significant departures from CIP which would be consis-
tent with the evidence of Peel and Taylor [25] who employed weekly matched data
for the Pound/Dollar over the period 1921-1923. In this paper we investigated the
real excess returns from uncovered forward speculation in the inter-war period. We
examined this hypothesis conditional on the assumption of a wide variety of infor-
mation sets and found that real excess returns had a predictable structure. The large
predictable rates of return in the uncovered position that we obtained would appear
to be too great to explain in terms of time varying risk premia. These results seem
more consistent with systematic departures from the covered condition for which we
provided some empirical evidence detailed in Appendix 2.

Appendix 1. The Data

The data consists of monthly observations over the period December 1921 to
June 1936, taken from Einzig [6]. The period commences in December 1921 be-
cause this is when the forward rate quotations were changed to one or three calen-
dar months as opposed to the previous practice of quoting to the end of the current
month. The forward rates are three-months (13 weeks) ahead rates and are beginning
of month quotations. The corresponding future spot rates are sampled three months
(13 weeks) later. These data are extracted from the weekly circular published by the
Anglo-Portuguese Colonial and Overseas Bank Ltd.

The interest rate figures are based on the monthly average of market rates of
discount for three months’ prime bills in the various centres -New York, Lon-
don, Paris, Italy, Holland, Switzerland an Belgium-11. The average have been com-
piled from the following sources: Statistical Year Book of the League of Nations;
London and Cambridge Economic Service; Harvard Economic Service; Statisches
Jahrbuch des Deutschen Reiches; Bulletin Mensuel, Banque National Suisse; Bul-
letin d’information et de documentation, Banque Nationale de Belgique; Revue
d’Economie Politique; and Annual Report of the Netherlandsche Bank.

The sample periods considered as ”fixed regime” for each currency are shown
in the following table. We also report the observations that have been excluded in
every case as a result of special events that would have distorted the estimation of

11”Markets rates of discount are much more suitable than Bank rates as a basis for calcu-
lating Interest Parities”. Einzig [6], p. 159.
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the whole model, although in any case they would affect the main conclusions we
have pointed out in this paper12:

Currency Fixed Regime Excluded observations

British Pound 1925:05 1931:09 1931:07-1933:12
French Franc 1926:12 1933:01 1933:01-1933:12
Italian Lira 1927:08 1933:01 1933:01-1933:12
Swiss Franc 1924:10 1933:01 1933:01-1933:12
Belgian Franc 1926:06 1933:01 1926:08-1926:10

1935:01 1936:12 1933:01-1933:12
Dutch Guilder 1924:12 1933:01 1933:01-1933:12

Appendix 2. Time Series Representation of Deviations from Covered Interest
Parity

The Covered Interest Parity (CIP) condition can be written as:

f jt,k = it − i∗ jt (4)

where j = British Pound, French Franc, Italian Lira, Swiss Franc, Belgian Franc
and Dutch Guilder; it , and i∗ jt represent the domestic (US) and foreign –country j–
interest rates on assets with maturity k, and f jt,k is the forward premium of currency

j with the same term to maturity as the assets, in our case, three months, k = 313. If
CIP holds, in the absence of transaction costs, estimation of the equation

12”When following on the crisis in Central Europe a sweeping attack on sterling developed
during August 1931 the authorities hoped to cope with the situation by the time-honoured
method of raising the Bank rate”. Einzig [7], pp. 287-88.
”The failure of the first attempt at stabilisation (of the Belgian franc) early in 1926 was ac-
companied by a widening of the discount to abnormal proportions. Indeed, during the critical
days of July the discount on the forward Belgian franc was even wider than the discount on
the forward French franc”. Einzig [6], p. 304.
Year 1932 for the British pound and year 1933 for all currencies have been excluded from
the sample due to the abnormal behavior that the dollar suffered during that period as a con-
sequence of the banking crisis: ”As a result of the American banking crisis and of heavy
withdrawals of foreign funds from the United States, the dollar was allowed to depreciate in
1933. Indeed the Government declared itself in favour of a deliberate depreciation of the dol-
lar although, inconsistently enough, exchange restrictions were adopted to prevent export of
capital and speculation. This marked the beginning of an international exchange depreciation
race which threatened to create chaotic conditions”. Einzig [6], p. 289.

13Even though interest rate figures are based on a monthly average and subsequently cov-
ered interest parity, CIP, cannot be computed per se , we believe that the analysis below will
fairly reflect the adjustment process of CIP at that point in time.
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f jt,k = 0 + 1(it − i∗ jt )+ t (5)

should give estimates of 1 that do not differ significantly from unity14. Table 6
displays the unit root tests for the variables involved in equation 5. The majority of
interest rates and forward premia are very persistent and in fact appear to be nonsta-
tionary. Table 7 presents the results of the estimation of coefficient 1; the Wald test
of the null 1=1; and the ADF test of the residuals, t . If there is a cointegrating re-
lationship between the forward premium and the interest rate differential, we should
reject the null hypothesis of unit root in the residuals.

Interest iUS iUK iFR iIT iSW iBE iHO
Rate -4.01 -2.24 -1.21 -1.94 -1.70 -1.11 -3.03

Forward fUK fFR fIT fSW fBE fHO
Premium -6.99 -1.60 -2.02 -3.47 -2.47 -3.20

Interest Rate iUS-iUK iUS-iFR iUS-iIT iUS-iSW iUS-iBE iUS-iHO
Differential -1.08 -1.51 -1.50 -0.68 -1.85 -2.36

The critical value of the t-statistic at the 5% significance level reported by Perron [111] is -3.87. The corresponding DF
statistic is -3.41.

Table 6. Unit Root Test of the Components of CIP for Floating Period.

Currency 1(t-stat) Wald test 1 = 1 ADF resids ADF resids
(P-value) ( 1 = 1)

British Pound 0.88 (10.43) 0.15 -2.11∗∗ -2.11∗∗
French Franc 1.38 (4.81) 0.18 -2.85∗∗ -2.64∗∗
Italian Lira 2.90 (8.60) 0.00 -3.17∗∗ -2.54∗∗
Swiss Franc 1.61 (7.48) 0.00 -2.39∗∗ -2.23∗∗
Belgian Franc 2.21 (7.95) 0.00 -2.65∗∗ -1.99∗∗
Dutch Guilder 2.28 (17.42) 0.00 -3.36∗∗ -2.24∗∗

∗(∗∗) denotes rejection of the null hypothesis of unit root at 5%(1%) significance level according to MacKinnon [24]
critical values.

Table 7. Estimation of CIP for Floating Period.

This appears to be the case for all the different exchange rates under considera-
tion. Similar results are found when we constrain the coefficient of 1 to be equal to
1. Given this result we can then write deviations from CIP at time t as

14This is a necessary condition for covered interest arbitrage to hold.
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y jt = i jt − i∗t − f jt,k (6)

Once deviations from CIP are computed, we determine the properties of y jt and
whether it exhibits nonlinear adjustment during the period of time between 1921 and
1936 when the currencies were not at a fixed rate. The presence of transaction costs
implies a non-linear process in the yt term of identity 6. When deviations from CIP
are bigger than transactions costs capital should move in order to eliminate such de-
viations. However, as pointed out by Keynes, the capital needed to take advantage of
the arbitrage opportunity was not adequate and would depend on the size of devia-
tions. In that case, the nonlinear adjustment process can be characterised in terms of
an exponential smooth transition autoregressive (ESTAR) model15. Accordingly, the
following step is to test for linearity of y jt .

Linearity Test

If the delay parameter, d, in the ESTAR model is fixed, the linearity test consists
of estimating by OLS the regression,

yt = 00 + ( 0 jyt− j + 1 jyt− jyt−d + 2 jyt− jy
2
t−d)+ut (7)

and testing the null hypothesis

H0L : 1 j = 2 j = 0 j = 1, . . . , p (8)

We determine the delay parameter, d, as one; and p equals one as well. In order
to assist in the specification of the ESTAR model, we carry out another F-test based
on (7) by testing

H0k : 1 j = 0 j = 1, . . . , p (9)

Also provided that (9) is valid, a more powerful test of linearity is obtained by
testing the null hypothesis

H*0L : 2 j = 0/ 1 j = 0 j = 1, . . . , p (10)

The test statistics associated with 8-10 are denoted by FL, Fk, F*L, respectively.
These tests are used for the model selection procedure. The test statistics are com-
puted for the floating period of each exchange rate. The nonlinearity tests are reported
in Table 8. They show clear evidence of ESTAR nonlinearity.

Given the evidence for non linearity we found that the following ”simple” ES-
TAR model provided parsimonious fit to the data. In particular, we estimate the fol-
lowing equation:

yt = + exp{− (yt−1 − c∗)2}yt−1 (11)

15For an empirical study of transaction costs and non-linear adjustment in real exchange
rates using ESTAR modelling, see Michael et al. [23]. For a description of the linearity test
against LSTAR or ESTAR model, see Teräsvirta [29].
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Test Statistics $/British Pound $/French Franc $/Italian Lira

FL 0.081 0.000 0.011
FK 0.596 0.164 0.377
F∗
L 0.028 0.000 0.001

$/Swiss Franc $/Belgian Franc $/Dutch Guilder

FL 0.081 0.045 0.000
FK 0.596 0.060 0.812
F∗
L 0.028 0.105 0.000

Table 8. Linearity Tests for Floating Periods During Inter-War: P-values of the Linearity Tests
8-10.

where yt is the deviations from CIP during the inter-war period. In every sample
we have carried the estimations under two different cases. In the first case, we restrict
the parameter c∗ to be equal to 1/2% per annum as suggested by Keynes. The second
case, we do not restrict the value of the c∗ coefficient. Table 9 reports the estimates
of equation 11 with corresponding p-values in brackets. There are also some residual
diagnostic test reported. In particular, the Jarque and Bera (JB) test of normality;
Q(k) is the Ljung-Box statistic for residual autocorrelation up to order k; and A(k) is
the test for ARCH up to order k. An asterisk * (**) (***) denotes rejection of the null
hypothesis at 10% (5%) (1%) significance level. We also present the graphs (Figures
7-12) in which the transition function (1− exp{− (yt−1 − c∗)2}) is plotted against
yt−d for every currency and sample periods considered above. The estimates appear
to be broadly consistent with the conjecture of Keynes and Einzig.
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Fig. 10. $/Swiss Franc.
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Testing for Fractional Cointegration: The Relationship
between Government Popularity and Economic
Performance in the UK�

James Davidson

University of Exeter, School of Business and Economics, Streatham Court, Rennes Drive,
Exeter EX4 4PU, UK. james.davidson@exeter.ac.uk

Summary. This paper investigates the relationship between the quarterly opinion poll lead of
UK governments over the period 1955-1996, and a set of economic indicators. The hypothesis
of a causal link between these variables is often debated, but there is a difficulty in testing
the link by conventional econometric methods. These require either stationarity or the I(1)
property, but there is strong evidence from a number of different studies that opinion poll
series are fractionally integrated, being nonstationary but also mean-reverting.

This paper tests the hypothesis of fractional cointegration using bootstrap methods. It first
discusses the problem of defining a cointegrating relationship between series that may not
have the same order of integration, and suggests a generalized cointegration model that might
account for this case. Bootstrap tests of the regular and generalized (non-)cointegration hy-
potheses are performed, as well as tests of the null hypothesis that cointegration of either type
exists. Both the regular and double bootstrap statistics are calculated, the latter method provid-
ing a correction to the finite sample size distortion to the estimation of unknown parameters.

The tests reveal little or no evidence of a link between the political and economic cycles, a
conclusion that reinforces the results of earlier work suggesting that the political cycle is gen-
erated by the internal dynamics of the opinion formation process. The findings are reinforced
by a case-specific Monte Carlo study, showing that the methods have ample power to reveal
cointegrating relations, if they exist.

1 Introduction

A substantial literature has accumulated over recent decades, seeking theoretical and
econometric links between economic conditions and the popularity of governments.
Leading contributions include Goodhart and Bhansali [17], Nordhaus [28], Frey and
Schneider [16], Pissarides [29], Minford and Peel [26], Holden and Peel [20], Ro-
goff and Sibert [30]. The evidence from econometric studies, treating this as a con-
ventional time series modelling problem, has been at best equivocal. For example,
Pissarides [29] uses the time series techniques suggested by Davidson et. al. [12]
and finds some nominally significant correlation between government popularity

�Research supported by the ESRC under award L138251025.
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and economic indicators (growth, inflation, unemployment, the exchange rate and
tax rate). However, his equation does not have much predictive power. While plenty
of anecdotal evidence can be cited in support of either view, whether government
popularity follows the economic cycle remains an unresolved question.

More recent research has found that for a wide range of countries and democratic
political systems, party support is a fractionally integrated process. See for example
Byers, Davidson and Peel [6, 7, 8], Box-Steffensmeier and Smith [4] and Dolado,
Gonzalo and Mayoral [13]. Byers et al. [6], henceforth referred to as BDP, show that
for the UK, the monthly Gallup series for Conservative and Labour support can be
well modelled as ARFIMA(0,d,0) with d around 0.75. In other words, the series is
covariance nonstationary, but also not a random walk, tending to return from excur-
sions away from the median2. In their paper, BDP propose a model to account for
these findings based on the aggregation of heterogeneous poll responses, appealing
to a well-known result of Granger [18]. The model accounts for the magnitude and
duration of swings in aggregate opinion as due to the particular mix of committed
and floating voters in the population. The innovations in the process are assumed to
be news, of both the economic and non-economic variety. The BDP model there-
fore accounts for the cyclical behaviour of opinion by the internal dynamics of the
aggregate opinion-formation process.

This explanation contradicts the view that swings in support follow economic
indicators over the cycle. BDP explain this finding by noting that opinion polls ag-
gregate the heterogeneous opinions of voters who perceive economic circumstances
differently, so that issues on whose significance voters are divided, even if important,
may have little effect on support. Thus, borrowers and depositors take a different
view of the interest and inflation rates. Likewise, the unemployment rate can mean
different things to different people, witness the so-called ‘North-South divide’ and
the contrasting fortunes of manufacturing and service industries, in the UK.

However, a formal test of the relationship remains wanting. Two statistical ap-
proaches to testing for time series relationships are in common use, the correlation
approach and the cointegration approach. Neither of these is valid when the data in
question are fractionally integrated. Since the party support series are nonstationary,
ordinary tests of significance are subject to the well-known ‘spurious correlation’
critique. On the other hand, cointegration analysis relies on tabulations of the distri-
bution of certain functionals of Brownian motion, and accordingly are based on the
assumption that the time series have variances diverging at the rate n. In the case of
a fractionally integrated or I(d) process (d > 1/2) this rate is n2d−1, and the limit
processes are not Brownian motion but fractional Brownian motion. The Brownian

2Since support measures are confined to the unit interval, the random walk is not, of
course, a feasible model of the raw data. BDP model the series for log[X̄t/(1− X̄t)] where
100X̄t is the sample average support. Since this process is defined on (− ,+ ) a random
walk is a logically feasible representation. This would be manifested in the raw data by a ten-
dency for support to cluster near either 100% or 0%, a phenomenon not commonly observed
in democratic countries. In practice, note that the range of variation of the X̄t series is such that
the logistic transformation is nearly linear, and the same model explains either series equally
well.
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functionals that define the limit distributions depend on d, and the usual cointegration
tests are inappropriate.

The present paper reports some tests of the cointegration hypothesis using the
bootstrap, to overcome the problems with conventional tests. The theory of these tests
is discussed at length in Davidson [9, 10]. Section 2 of the paper presents the data set
to be analyzed. Section 3 considers some issues in the modelling of relationships in
such data. Section 4 describes and reports bootstrap tests where the null hypothesis is
noncointegration. Several variants of the null hypotheses are considered, including
one in which the distribution of the bootstrap data under the null is based on the
BDP model, allowing some data features to be captured that cannot be represented
by a simple linear data generation process. On the other hand, Section 5 reports
bootstrap tests where the null hypothesis is of cointegration. The consensus of the
findings is that there is no discernible evidence against noncointegration, and only
the most equivocal evidence in favour of cointegration. Section 6 gives the results of
some Monte Carlo experiments designed to evaluate the power of these tests. Finally,
Section 7 briefly reports a short-run correlation analysis, and Section 8 summarises
the findings, and concludes.

2 The Data Set

The data for the present study are quarterly observations for the period 1955:2 to
1996:4. The party support data are taken from the monthly Gallup poll series. The
variable ‘Lead’ is measured as the end-of-quarter difference between Conservative
and Labour percentage support in periods of Conservative government, and the dif-
ference between Labour and Conservative in periods of Labour government. This
series is plotted in the first panel of Figure 1.

A set of dummy variables is used to represent the so-called “election cycle” dis-
cussed in BDP. It has been observed that the popularity of governments, other things
equal, depends on the proximity of the most recent and forthcoming elections, largely
because of a tendency for voters to register a “protest vote” in mid-term. In BDP, this
effect is modelled as a quadratic function of the current government’s elapsed term,
and the effects were found to differ depending on whether Conservative or Labour
is the party in power. To capture these effects, dummies are constructed as follows:
(i) a zero-one “Labour in power” dummy (“LabGovt”); (ii) the number of quarters
elapsed since the last election (“Elapsed”); (iii) the square of (ii); (iv) the product of
(i) and (ii); (v) the product of (i) and (iii). The second panel of Figure 1 shows the
Lead series as residuals from the election cycle, fitted to the five dummies by least
squares.

Six economic indicators, plotted in Figure 2, have been chosen as possible ex-
planations of Lead. A valid test of the cointegration hypothesis requires the data be
purged of deterministic trends, and a linear trend dummy is therefore included in the
test equation. As an aid to intuition the ‘detrended’ variables (residuals from least
squares regressions on constant and trend) are shown in Figure 3. These series all
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appear covariance nonstationary (see Table 2). After partialing out the various dum-
mies, we posit the ‘political business cycle’ hypothesis as, in effect, the existence
of a cointegrating relationship between the second series in Figure 1, and those in
Figure 3. The null hypothesis of non-cointegration, by contrast, would imply either
that some unmeasured ‘non-economic’ factors drive the variations in Lead, or (more
plausibly) some variant of the BDP hypothesis.3
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Fig. 1. Lead, before and after Removing the Election Cycle.

The results of running the full regression are shown in Table 1, and graphically in
Figure 4.4 The signs of several coefficients, such as unemployment and real earn-
ings, are the opposite of what would be naively expected, although if the relationship
turned out to be statistically significant these findings might need to be accounted for,
rather than simply dismissed as spurious. Note that the residual Phillips-Perron statis-
tic in Table 1, assuming six regressors and trend, ‘rejects’ nominally at the 5% level
according to MacKinnon’s [24] Tables. However the presence of the extra dummy
variables are only the least of the complicating factors, in the correct interpretation
this result.

3The possibility of a short term relationship in the differences also exists, and this is tested
in Section 7.

4The usual standard errors and t statistics are reproduced for descriptive purposes, but
of course their distribution is non-standard even asymptotically, so they cannot be used for
purposes of inference.
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Dependent Variable: Lead Sample: 1955:2 1996:4

Coefficient Std. Error t-Statistic
Real Earnings −0.509 0.335 −1.55
Real GDP 1.14 0.503 2.27
Unemployment 4.07 0.830 4.90
TB Rate 1.61 0.274 5.88
Inflation −0.050 0.134 −0.375
Exch. Rate($/£) 1.53 4.537 0.337
LabGovt 12.31 3.53 3.48
Elapsed −2.66 0.500 −5.32
Elapsed2 0.141 0.027 5.06
LabGovt×Elapsed −2.23 1.02 −2.17
LabGovt×Elapsed2 0.086 0.060 1.41
Trend −0.626 0.196 −3.19
Constant −26.37 26.17 −1.00
R-squared 0.563 Adjusted R-squared 0.529
Durbin-Watson 0.789 F-statistic (all) 16.58
Residual PP −6.381 F-statistic (econs) 19.12

Table 1. Regression of Lead on Economic Indicators
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Fig. 4. Regression of Lead on Cycle and Indicators.

Consider next the results of the univariate time series modelling exercises re-
ported in Table 2. This table shows ARFIMA(p,d,q) models for each series in the
data set,5 chosen to optimise the Schwarz [32] selection criterion, subject to the side
condition that residual autocorrelation is insignificant by the Box-PierceQ test for 12

5The ARFIMA estimates were computed by maximizing the Whittle likelihood, using the
Ox package currently available as Time Series Modelling 4.0; see Davidson [11], Doornik
[14]. The data are differenced to satisfy the stationarity/invertibility condition |d| < 0.5, and
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Lead RE GDP Unempl TBR Infl. ExchR
d 0.765 0.920 0.978 1.169 0.626 0.664 0.991

(0.066) (0.079) (0.060) (0.150) (0.107) (0.092) (0.108)
p 0 0 0 2 2 1 0
q 0 0 0 0 1 0 0

ARMA Coefficients: - - - 0.518 0.397 0.473 -
(0.16) (0.105) (0.135)

- - - 0.208 0.466 - -
(0.107) (0.094)

- - - - 0.814 - -
(0.038)

Constant 0.084 46.59 38.98 -0.22 4.924 5.942 2.23
Trend -0.061 0.353 0.401 0.062 0.037 0.007 -0.008

Q(12) - levels 12.09 12.92 17.58 17.76 12.32 19.90 11.24
Q(12) - squares 11.40 12.71 9.85 19.80 9.20 17.61 11.87

Table 2. Best ARFIMA(p,d,q) models of the data set (std. errors in parentheses)

lags. The second Box-Pierce statistic provides evidence of possible ARCH-type non-
linear dependence (McLeod and Li [25]), which of course the ARFIMA framework
cannot account for. However, these models are generally adequate and parsimonious.

The Lead variable, in particular, is well represented by the ARFIMA(0,d,0)
model, with d significantly exceeding 0.5, indicating the series to be nonstation-
ary, but also significantly less than unity. This result may be compared with those
obtained by BDP, who estimated the d coefficients for Conservative and Labour sup-
port separately, in monthly and quarterly data, and obtained values close to 0.7 in
both cases.6 Those authors also found that the estimated value was not sensitive to
the removal of the election cycle. The difference of two I(d) processes is also I(d)
in general, although we note that this series has the additional feature of being sub-
ject to occasional switches of sign. This occurs at election dates where government
and opposition change places so that, in particular, Lead is negative at the relevant
dates. Such switches occurred four times during the present sample period, in 1964.4,
1970.2, 1974.1 and 1979.2. Inspection of the chart in Figure 1 does not reveal very
obvious jumps at these dates, but the fact that the generation process has these non-
linear features should not be overlooked. We return to this question in Section 4.2.

3 Models of Fractional Cointegration

The findings in Table 2 pose some unexpected problems for the formulation and valid
testing of the putative relationship. While unemployment, the interest and exchange

then 1 is added to the estimate of d so obtained. For the exchange rate model, the sample
period excludes the fixed parity period 1955.2 to 1971.3.

6Fractional processes are asymptotically self-similar, so that the value of d does not de-
pend on the frequency of the observations. The similar values obtained in monthly and quar-
terly support data accord with this interpretation.
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rates and earnings all have estimated d insignificantly different from unity, this is not
true of either Lead, or the interest and inflation rates. These variables are significantly
mean-reverting, although nonstationary (1/2 < d < 1). Is it possible that variables
with different orders of integration can be cointegrated?

To answer this question, consider the fractional vector ECM model given in
Davidson (2002). Let this take the form[

B(L)+ ′(K(L)−1 − I)
]

(L)(xt + Dt) = t (1)

where

(L) = diag{(1−L)d1 , . . . ,(1−L)dN} (2)

K(L) = diag{(1−L)b1 , . . . ,(1−L)bN} (3)

where d1, . . . ,dN are any nonnegative reals (assume d1 ≥ ·· · ≥ dN without loss
of generality), 0 ≤ bi ≤ di, B(L) is a N×N polynomial matrix whose characteristic
roots are strictly outside the unit circle. In the usual way, and are N× r matrices
with rank r. The model is modified here to include dummy variables Dt (S× 1),
which in the present set-up include the time trend and the election cycle, with a
constant N×S coefficient matrix. This system generates N series integrated to orders
d1, . . . ,dN , such that

(L)(xt + Dt) = wt ∼ I(0) (4)

(defining wt ). If = = 0 these are noncointegrated, but if r > 0 it is required,
to balance the equation, that

′K(L)−1wt ∼ I(0). (5)

If bi > 0 for one or more i, this implies cointegration. This set-up encompasses
a wide range of possible models. If bi = b and di = d for all i it corresponds to the
system proposed in Granger [19], and if b = d = 1 then it reduces to the Johansen
[21, 22] style VECM. More generally, we can pick out a number of other cases
yielding a possible modelling framework.

The first of these is where di−bi = a≥ 0 for each i, which implies that

′(xt + Dt) ∼ I(a). (6)

If a> 0, this is the case often called fractional cointegration, in which the cointe-
grating residual is long memory and possibly even nonstationary, but has a lower or-
der of integration than its constituent variables. It is clear that with bi > 0, this model
cannot have property (6) except subject to additional restrictions. As discussed in
Davidson [9], either d1 = d2 or the top row of must be equal to 0, so that x1t is
not cointegrated with the other variables. It is possible that this set-up could describe
the present case, since the data set contains three (plausibly) I(1) series. In other
words, the trends in GDP, unemployment and real earnings cannot individually drive
the trend in Lead, but a combination of these could, at least in principle, do so. We
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do not yet consider whether such a model would be behaviourally plausible, merely
note the possibility.

A second case where model (1) could generate cointegrated series is bi = b ≤
min1≤i≤N di for all i, which, to ensure the equation balances, implies that

[(1−L)−b−1] ′wt ∼ I(0). (7)

This model has the peculiarity that the cointegrated series are not the elements
of xt themselves, but the fractional differences of orders di− b.7 This case will be
referred to as generalised cointegration, to make the distinction with simple cointe-
gration in which linear combinations of the measured variables have a lower order of
integration, as in (6 ). This set-up imposes no restrictions on to ensure cointegra-
tion. It allows cointegration to be defined between arbitrary sets of I(d) variables, and
so resolves the main limitation of the fractional model as an econometric modelling
device.

Again, whether this is economically and behaviourally plausible is a matter for
consideration. There is nothing unusual in having the simple difference of a variable
appear in an economic relationship. For example, the (log-) price level contains (at
least) the same information as the level of inflation, but the latter variable is custom-
arily assumed relevant to agents’ decisions. While economic models do not normally
assign the same role to fractional differences, this is simply because such a modelling
strategy has never been entertained. There seems to be no inherent reason why they
should not do so. Just as the price level is relevant to some decisions and its rate of
change to others, in a representative-agent framework, so may the fractional differ-
ence of a trending variable contain the relevant information for a decision involving
a particular planning horizon. In turn, this could be reflected in the degree of persis-
tence of the target variable. The question of primary interest must be whether such
relationships are discoverable in the data.

The result of running the regression on the present data after semi-differencing
is shown in Table 3. The variables marked with a * have been semi-differenced8 to
have a d of 0.765, based on the models in Table 2.9 The filtered (and also detrended)
series are shown, with the originals for comparison, in Figure 5.

7Note that the orders of integration of the cointegrated series are indeterminate unless we
impose that the linear combination is I(0).

8This means that the series have been transformed by the filter (1−L)d−0.765 where d is
the estimated fractional integration parameter for the series in question. Note that the calcula-
tions are performed by truncating the expansions at lag t, for t = 1,2, . . . See Davidson [9] for
details.

9This model is actually a mixed case, in which the starred variables are assumed to make
a generalized cointegrating relation with Lead for some b ≤ 0.765, and then the unstarred
variables further cointegrate with this set in the regular way to yield an I(a) residual, for a< b.
With a = 0.101 , this would be equivalent to the pure generalized cointegration model with
b= 0.664 = mini di, but it also admits the stronger hypothesis in which a= 0. It’s convenient
for obvious reasons to keep Lead in its original form, and the bootstrap test has power to detect
either case.
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Table 3. The generalized cointegration model

Dependent Variable: Lead Sample: 1955:2 1996:4

Coefficient Std. Error t-Statistic
Real Earnings* −.0821 0.505 −1.62
Real GDP* 0.788 0.836 0.942
Unemployment* 4.00 2.03 1.96
TB Rate 1.53 0.294 5.21
Inflation −0.265 0.144 −1.83
Exch. Rate($/£)* −11.4 5.28 −2.16
LabGovt 8.82 3.91 2.25
Elapsed −2.85 0.562 −5.07
Elapsed2 0.145 0.031 4.59
LabGovt×Elapsed −2.57 1.17 −2.20
LabGovt×Elapsed2 0.103 0.069 1.50
Trend −0.156 0.054 −2.86
Constant 35.52 16.38 2.16
R-squared 0.420 Adjusted R-squared 0.375
Durbin-Watson 0.694 F-statistic (all) 9.31
Residual PP −5.81 F-statistic (econs) 10.36

On the conventional criteria, this regression is somewhat inferior to the original
in Table 1, and offers little support for the generalized cointegration approach in the
present context.

4 Tests of Noncointegration

4.1 The Basic Procedure

The bootstrap tests applied here are described in detail in Davidson [9, 10]. The ba-
sic procedure is to draw bootstrap replications of the model in (1) under H0, and
so generate the null distributions of two regression-based test statistics. The actual
statistics yielded by the regression in Table 1 are located in these empirical distribu-
tions to yield asymptotically valid p-values.

One of these statistics is the usual F statistic for the joint significance of the
economic variables. This is not a conventional statistic to test for cointegration, but its
consistency as a test for cointegration in the bootstrap context is proved in Davidson
[9]. Since it compares the sums of squared regression residuals with and without
the test regressors included, which should have different orders of magnitude when
the hypothesis of noncointegration is false, it should have some power to detect a
relationship. The second statistic is the Durbin Watson statistic, which represents the
more usual approach, of testing whether the regression residuals have significantly
shorter memory than the variables constituting them. These therefore represent a
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Fig. 5. Semi-Differenced Series, d = 0.765.

two-pronged attack on the test problem, by looking at two different features of the
fitted model. Being regression based, these tests may appear directly comparable
with the Engle-Granger or Phillips-Perron residual-based tests, and this is true in the
sense they can only test for the null of zero cointegrating rank.10 However as we
explain below, the tests may entail structural modelling of the short-run dynamics,
and in this sense have much in common with system-based tests such as Johansen’s
eigenvalue tests.

The test statistics are not asymptotically pivotal, meaning that they depend on
nuisance parameters under H0, specifically, the values of d and the autocovariances
of the data increments. Therefore, no conventional asymptotic tests can be based on
them. However, this is also true of the more conventional tests. While there exist
well known fixes to correct for such nuisance parameters in tests for conventional
I(1)/I(0) cointegration — of which the ‘augmentation’ of the Dickey-Fuller statistic

10Strictly speaking, the null hypothesis that is opposed to the regular cointegration alter-
native is that contains no column in which Lead has a non-zero element. We have already
noted that fractional cointegration amongst the I(1) regressors must be a feature of the alter-
native. Although the theory developed in Davidson [9] deals with the simplest case of = 0,
this generalization is perfectly valid provided the test regression is normalized on Lead.



Testing for Fractional Cointegration 159

is the best-known — there are no such fixes that can generate statistics not depending
on the d values, so that a bootstrapping approach is unavoidable. 11

The bootstrap draws are conditioned on the actual sample values of the regres-
sors, which is computationally efficient and should also be less prone to specification
error, because the generation processes of these variables do not need to be simu-
lated12. This method also yields potentially more powerful tests than would boot-
strapping the complete data set, noting that the conditional test distributions must
have smaller dispersion than the unconditional ones.

Two versions of the null hypothesis can be distinguished, depending whether the
matrix B(L) in (1) is assumed to be block-diagonal with respect to Lead (x1t , say)13

and the economic variables x2t , where xt = (x1t , x′2t)
′. If it is, then the null under test

is essentially that of independence between the series, which we call the strong null
hypothesis. The bootstrap distribution of Lead would be simply obtained by using
the univariate ARFIMA model from Table 2. In the case where this restriction is not
imposed, which we call the weak null hypothesis, the short-run dynamics under H0

have to be modelled to create the bootstrap distribution. Let wt be the I(0) vector de-
fined in (4). Because x2t is to be held conditionally fixed, it is necessary to estimate a
dynamic equation for w1t containing both w1,t−1, . . . and . . . ,w2,t+1,w2t ,w2,t−1, . . .,
where the ellipses represent lags of total length to be specified. The inclusion of the
leads as well as lags is to allow for the fact that w1t could Granger-cause w2t , which
is not ruled out, whether or not the regressors are weakly exogenous. With this struc-
ture, with leads/lags suitably chosen, the residuals from the regression should be
asymptotically both serially uncorrelated, and orthogonal to the regressors at all or-
ders. Resampling from the empirical distribution of these residuals, and then passing
them back through the same filter in reverse, should accordingly yield a bootstrap
sample having (asymptotically) the same correlation structure under H0 as the orig-
inal series. The resulting test distributions should therefore depend on the nuisance
parameters in just the right way.

There is one caveat to be observed in this procedure. The test as described, in
which the best-fitting dynamic equation is chosen by the usual consistent model se-
lection criteria, should be correctly sized asymptotically, because if H0 is true the
correct model is chosen with probability 1 in the limit. However, such a test would
have limited power, because when cointegration does exist, this long-run relation
will contaminate the short-run dynamics, and the best model must inevitably con-
tain a large number of leads and lags. This problem is avoided only by choosing a
deliberately parsimonious model, with short leads and lags, which should capture
the weak dependence under H0 but avoid contamination under the alternative. In

11Breitung and Hassler [5] show how to construct an asymptotically pivotal test of coin-
tegrating rank by fractionally differencing the data, but their approach would be difficult to
adapt to the present problem.

12ARFIMA models have been fitted to them in Table 2, but only for the purpose of mod-
elling the short-run correlations of their increments with those of Lead, so that these can be
incorporated into the conditional bootstrap model.

13Here we are ordering and partitioning the variables differently from equations (1), where
the ordering was by size of d parameter.
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practice, there is a trade-off of advantages between size and power. The simulations
reported in Davidson (2004a) may throw a degree of light on the nature of this trade-
off.

4.2 Modelling Lead

The simplest method of implementing the tests is to take the estimated value of d
from the first column of Table 2, and use this to generate an I(d) series represent-
ing Lead, less the election cycle. The bootstrap series are non-cointegrated with the
regressors by construction, but their increments reproduce the observed correlation
structure with those of the regressors, under H0, as described above. The use of this
approach is supported in the present case by the fact that the Lead series is well
described by a simple I(d) model, as is evident from Table 2.

However, this method has the drawback that it adopts at best a crude simulation
of the process that is believed to generate the sample data under H0. Note first that
Lead must exhibit occasional jumps, corresponding to the sign change when govern-
ing and opposing parties change places. The marginal distribution of the innovations
can be correctly simulated by bootstrap resampling on the actual model residuals,
but this method cannot represent the state-dependence of the large deviations (the
dates of elections are not randomly drawn) nor can it avoid the paradox of having
‘Lead’ remain negative both before and following an election. In other words, im-
portant nonlinear features of the data generation process have been lost. Moreover,
by treating the election cycle as conditionally fixed, it ignores the fact that elections
and ‘Lead’ are generated jointly. In the British political system, an election can be
called by the governing party at any time up to the limit of the five-year term, and
parliamentary terms of around four years are the norm, although they can be much
shorter. The probability of an election being called ahead of time obviously depends
on Lead itself, and is the less likely as Lead becomes negative.

An alternative approach is to construct the bootstrap distribution of Lead to em-
body these features. This has been done using the estimated BDP model as a basis,
notwithstanding that this is a monthly model fitted to a different, though largely
overlapping, sample period. The procedure is as follows. First, monthly series for
the log-odds of Conservative and Labour support, net of the election cycle, are gen-
erated by applying the appropriate fractional filter to the resampled BDP residuals.
After adding the respective cycles from the BDP model to each series and converting
to percentage form, the difference of the two series is constructed, signed according
to the party in power, and finally, a quarterly series obtained by taking the figure for
the last month in every quarter.

Within this setup, elections are modelled as random events whose probability
depends on the number of unexpired periods of the current term, and also whether
Lead is currently positive. This probability must in all events approach unity as the
number of unexpired periods approaches zero. A simple scheme with the required
properties is

P(election in month t) = exp{( − min(Lead,0))(t−T )}
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where T denotes the last possible date of the current term. The parameters and
are chosen by trial and error so that the number of elections, and changes of gov-

ernment, are typically close to those of the sample historical period. With = 0.15
and = 0.1 the averages in 1000 replications were respectively 11.5 elections and
3.7 changes of government, which is close enough for the purposes of the exercise to
the historical values of 11 and 4, respectively. Note that with this model, the dummy
election cycle variables have to be resampled randomly, in each bootstrap replication.

This approach to doing the test has one drawback, that we cannot model the
correlation between the increments of Lead and the economic indicators. In other
words we are testing the ‘strong’ form of the noncointegration hypothesis, which
is subject to the risk of spurious rejection, assuming we are only interested in the
existence of a cointegrating relationship. There are three reasons why this is seen as
an acceptable limitation; first, the strong hypothesis is in any case of independent
interest, by throwing light on the short run; second, the evidence indicates that the
amount of short-run correlation is small; and third, correcting the omission could not
change the test outcome actually obtained.

4.3 Results

Table 4 shows the results of bootstrap tests for the four cases described above, in
other words, the bootstrap models described respectively in Sections 4.1 and 4.2,
applied to the regular cointegration model and the generalized cointegration model.
The univariate ARFIMA models reported in Table 2 are used to provide estimates of
the d parameters. To perform the generalized cointegration test the series for unem-
ployment, real GDP and real earnings were semi-differenced as in Figure 5.

F DW

Null Hypothesis Regular Double Regular Double
Regular (non-)cointegration:

I(d), weak null 0.26 0.19 0.63 0.49
I(d), semi-weak null 0.31 0.27 0.59 0.42
BDP, strong null 0.12 - 0.69 -

Generalized (non-)cointegration:
I(d), weak null 0.42 0.49 0.69 0.48
I(d), semi-weak null 0.46 0.38 0.65 0.50
BDP, strong null 0.26 - 0.76 -

Table 4. Noncointegration Tests: p-values

In the tests of the weak null hypothesis, based on the simple I(d) representation
of Lead, its dth differences were modelled by regression on the lags of the regressors
of lag orders −2 through +2, as well as 2 own-lags. This distribution was resampled,
and passed back through the same filter in reverse. In the ‘semi-weak null’ the (not
unreasonable) restriction that there is no feedback from Lead to the economic vari-
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ables is imposed. In this case, future values of the differenced regressors are excluded
from the dynamic model.

The bootstrap tests were performed with 1000 replications, although note that
this number does not influence the precision of the estimated p-value. The tests are
asymptotic and the approximation depends on sample size, with T = 167 in this case.
It does however render the sampling error small enough to ignore, so that the tests
are directly comparable with conventional asymptotic tests.

In the case of the weak and semi-weak null hypotheses, the reported p-values
have been computed by the regular bootstrap and the double bootstrap. The double
bootstrap has been suggested by Beran [2] as a method of minimizing size distor-
tions. These are due to the fact that the bootstrap distribution differs from that of the
sample data because it depends on estimated parameters. Such distortions are known
to be worse when the statistics are not asymptotically pivotal, as in the present case.
The method entails using the bootstrap p-value itself as the test statistic, since its
asymptotic distribution under the null hypothesis is known (uniform on [0,1]). This
is done by bootstrapping the bootstrap, a computationally intensive procedure that
can, however, be made much more efficient by applying stopping rules, as proposed
by Nankervis [27].

The double bootstrap cannot compensate for errors of specification (as opposed
to estimation) in the bootstrap model, which in this case means, pre-eminently, the
incorrect choice of leads/lags in the weak-null specification. However, it has been
noted that increasing the lag length must tend to reduce the probability of rejection
in the event the null hypothesis is false. If the hypothesis is not rejected with the
chosen model, as in the present case, increasing the lag length is not likely to change
the decision. In the case of the BDP simulation the bootstrap parameters are extrane-
ously estimated, so the double bootstrap is not available. However, note here that the
parameters are computed from a much larger sample (monthly data) and moreover,
the assumptions of the strong null are imposed so that no parameters estimated from
the present sample are utilised. Since even this test fails to reject the null at the 5%
level, it is difficult to see how changing the bootstrap specification could result in a
reversal of the reported results.

In all these tests the p-values exceed 10%, so on this basis there is not even slen-
der evidence of a cointegrating relationship. The set of economic indicators chosen
may be incomplete, and for example the tax rate indicator used by Pissarides [29]
has not been considered here. However, the variables included should on any basis
be regarded as important. One would expect at least some mild evidence of a re-
lationship, if in fact it existed. While alternative models are clearly open to test on
the same lines, this evidence clearly favours either the dominance of purely non-
economic factors, in explaining the trend, or an explanation on the lines proposed by
BDP.
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5 Tests of Cointegration

Failure to reject the hypothesis of noncointegration at conventional significance lev-
els may simply tell us something about the power of the tests. A natural next step is
to interchange the null and alternative hypotheses, and see whether a rejection is ob-
tained in this case. This can be done applying Shin’s [33] test for the null hypothesis
of cointegration. Specifically, this is a test of the hypothesis that the residuals from
the putative cointegrating regression are I(0), and while Shin derives it for the usual
case of I(1) data, it can be adapted in the bootstrap context to the case of I(d) data,
as shown in Davidson [10].

The test is based on the KPSS statistic (Kwiatkowski et. al. [71]) from the cointe-
grating regression residuals that have been obtained using Saikkonen’s [31] efficient
estimation procedure. The problem for adapting this test to the bootstrap context is
to find a way of simulating the null hypothesis. In Davidson [10] this is done in
two ways. The “ECM” method is to fit an error correction model to the data. The
bootstrap series for the dependent variable is then solved from this model with an
inequality restriction on the error correction parameter. This restriction should be
satisfied in the data if the null hypothesis is true, but in all cases will force the boot-
strap data to be cointegrated, if the null is false. For the tests reported here, the upper
bound on the ECM parameter has been set to the minimum of the estimated value and
one of two bounding values, either −0.5 , or −1. This choice represents a potential
size-power trade-off, since making the bound smaller distorts the null distribution
but must raise the probability of rejection when the null is false.

The second method of implementing the test is simply to regress the model resid-
uals onto the fractionally differenced data, such that all the explanatory variables are
I(0). Use of this model to construct the bootstrap series from resampled residuals
again ensures that the null hypothesis holds for the series, although at the cost of
some distortion of its distribution. For further details of these procedures, and for-
mulae, see Davidson [10].

ECM (µ≤−0.5) ECM (µ≤−1) I(0) Regression

Null Hypothesis Regular Double Regular Double Regular Double
Regular cointegration 0.018 0.076 0 0.005 0 0.001

Generalized cointegration 0.046 0.147 0 0 0 0.003

Table 5. Shin Test: p-values

The results of these tests are shown in Table 5, where µ refers to the ECM pa-
rameter. The first columns show that the double bootstrap test with µ≤−0.5 cannot
reject the null at the 5% level, although the other variants have no difficulty in doing
so. However, the more relaxed bound must reduce the power of the test, in the inter-
ests of fixing the size more accurately. If the fitted value of µ in the sample data is
much less that 0, this test cannot have much power, and this is a plausible occurrence
even under the alternative, when the data are themselves fractionally integrated with



164 James Davidson

d < 1, and the lag structure is potentially overfitted. In the present case the fitted
value of µ is, respectively, −0.408 in the regular cointegration model, and −0.420
in the generalized cointegration model, whereas we know that these null hypotheses
cannot both be true. The results of the next section also provide some grounds for
placing most reliance on the other variants of the test.

6 Power Evaluation

6.1 Noncointegration Tests

One of the virtues of the bootstrap approach is that a power evaluation can be un-
dertaken, relevant to the specific model under test. Consider first the tests of non-
cointegration. Simulations have been used to estimate the power of the test of the
weak and semi-weak nulls described in Section 4.1. Note that the “BDP strong null”
cannot be evaluated in this way, simply because there is no way to construct a dummy
alternative hypothesis.

The first part of the simulation procedure is to construct an artificial process rep-
resenting a ‘cointegrating residual’, which is done using the fitted dynamic equation
described in Section 4.1, so that the correlation structure of the differences in the
observed data is preserved. Optionally, this series is fractionally integrated, using
an experimental d value. Finally, the fitted part of the regression in either Table 1
or Table 3 (to simulate regular or generalized cointegration, respectively) is added
to the series, to produce an artificial regressand. When the experimental value of d
is equal to 0, this method generates a fully cointegrated data set, while for cases
0 < d < 0.765 the data may be called fractionally cointegrated.

An artificial ‘null hypothesis’ is created, in this framework, by integrating using
the value d = 0.765 from Table 2, and then adding only the dummy components of
the fitted model. This null model was simulated 3000 times to tabulate the true sizes
of the tests. In each replication, the simulated test involves estimating the d value by
maximum likelihood for the experimental dependent variable (the ARFIMA(0,d,0)
specification is used) as well as the parameters of the short-run dynamics. The em-
pirical distribution functions of the p-values so obtained are shown in Figure 6. The
EDFs of correctly sized tests, for which the p-values are U(0,1) by construction,
should lie on the diagonals, shown by the dotted lines. These tabulations can be used
to compute size-corrected p-values, a procedure that is effectively equivalent to the
double bootstrap; see Davidson [10] for details.

The test procedure was simulated 1000 times, for each of five values of the exper-
imental d. The proportion of rejections at the 5% level are shown in Table 6. The two
columns relating to each test show, respectively, the nominal powers, and the size-
corrected powers, obtained by adjusting the p-values using the tabulations in Figure
6. The final column of the table shows the average of the 1000 R2s obtained in the
test regressions, to show how the rejection of non-cointegration relates to goodness
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of fit. Remember, in this connection, that the dummy variables for the election cycle
account for a large proportion of the observed variation.

6.2 Shin Tests

For the power analysis of the Shin test, it is necessary to simulate the data under
the null hypothesis of cointegration, to generate the EDFs for size correction. To do
this the cointegrating residuals were generated using the data-fitted error correction
model, modified by setting the ECM coefficient to the lesser of its sample value, and
−1.

d F DW R2

Nominal Corrected Nominal Corrected
0.8 0.15 0.13 0.015 0.13 0.88

Weak 0.6 0.36 0.33 0.043 0.25 0.93
Null 0.4 0.65 0.63 0.18 0.54 0.95

0.2 0.86 0.85 0.47 0.84 0.95
Regular 0 0.94 0.93 0.76 0.99 0.95

Cointegration 0.8 0.19 0.12 0.03 0.11 0.88
Semi- 0.6 0.39 0.27 0.07 0.19 0.93
Weak 0.4 0.64 0.52 0.19 0.45 0.95
Null 0.2 0.85 0.77 0.50 0.79 0.95

0 0.93 0.89 0.77 0.95 0.95
0.8 0.08 0.15 0.007 0.12 0.80

Weak 0.6 0.21 0.33 0.02 0.18 0.89
Null 0.4 0.42 0.56 0.06 0.35 0.92

0.2 0.69 0.80 0.19 0.68 0.92
Generalized 0 0.83 0.90 0.37 0.88 0.92

Cointegration 0.8 0.09 0.12 0.01 0.07 0.81
Semi- 0.6 0.20 0.25 0.02 0.10 0.89
Weak 0.4 0.44 0.49 0.07 0.21 0.92
Null 0.2 0.71 0.74 0.20 0.44 0.92

0 0.84 0.87 0.41 0.74 0.92

Table 6. Powers: Tests of noncointegration

The fitted part of the regressions in Tables 1 or 3 is then added to the generated
residual to produce the artificial regressand. The resulting tabulations are shown in
Figure 7.

There are two approaches to simulating an alternative hypothesis. The first is to
generate the residuals as under the null, but then to fractionally integrate these using
a spread of experimental d values (0.2, 0.4, 0.6, 0.8 and 1 are used) before adding
the fitted components. The second, denoted UR in Table 7, is simply to replace the
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Fig. 6. Empirical Distribution Functions of p-values for Tests of Non-Cointegration.
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ECM,  = 0.5µ

ECM,  = µ 1

I(0) Regression
I(0) Regression

ECM,  = 0.5µ

ECM,  = µ 1

Fig. 7. Empirical Distribution Functions of p-values for Shin Tests of Cointegration.

ECM coefficient by 0, so that the residual process contains a unit root. The former
procedure is somewhat contrived, but it allows us to evaluate the power of the test of
”full” cointegration (with I(0) cointegrating residuals) against fractionally integrated
alternatives.

d ECM, µ≤−0.5 ECM, µ≤−1 I(0) Regression R2

Nominal Corrected Nominal Corrected Nominal Corrected
0.2 0.19 0.14 0.20 0.14 0.35 0.24 0.94

Regular 0.4 0.33 0.24 0.45 0.37 0.72 0.61 0.94
Cointegration 0.6 0.56 0.47 0.76 0.70 0.93 0.88 0.91

0.8 0.80 0.74 0.93 0.91 0.99 0.98 0.82
1 0.93 0.91 0.99 0.98 1 0.99 0.76

UR 0.78 0.73 0.97 0.96 0.98 0.97 0.82
0.2 0.13 0.06 0.14 0.09 0.31 0.20 0.91

Generalized 0.4 0.29 0.17 0.38 0.30 0.69 0.55 0.89
Cointegration 0.6 0.52 0.38 0.66 0.59 0.93 0.87 0.82

0.8 0.77 0.65 0.91 0.86 0.99 0.98 0.68
1 0.90 0.82 0.99 0.98 1 0.99 0.72

UR 0.78 0.66 0.97 0.94 0.99 0.98 0.68

Table 7. Powers: Shin Tests of Cointegration

6.3 Results

A number of considerations need to be borne in mind in reviewing these results.
First, they are of course entirely specific to the data set and sample size in question.
The actual data are used to represent the regressors in the simulations. While they
should be generalized only with caution, the point is that, in principle, the same type
of evaluation can be performed on a case-by-case basis. Second, note that the simu-
lations of generalized cointegration do not tell us anything about the plausibility or



168 James Davidson

otherwise of that particular model, but merely about the ability of the tests to de-
tect (non)cointegration in fractionally integrated processes, where the common d is
0.765. In the Shin test, the cointegrated dependent variable under H0 is I(1.169) (to
match the largest regressor d) by construction. Hence, this evaluation is relevant to
that state of the world in which the d for Lead has been mismeasured. The main con-
trast sought between these experiments is between the different orders of integration
of the cointegrated variables.

Subject to these caveats, there is evidently reasonable power to detect both coin-
tegration and non-cointegration, in this setting. The Durbin Watson-based test is
shown in Figure 6 to under-reject quite seriously, but the F test is pretty well sized.
The three variants of the Shin test all over-reject to a small degree, but the case
with µ ≤ 0.5 appears not to be significantly better sized than the other two, even
though there is a fairly substantial cost in terms of power. This finding allows us to
be cautiously confident in relying on the clear rejections of the null, by the other two
variants of the Shin test.

7 Tests for Short-run Correlation

There remains one further hypothesis that can be tested, that of a ”short term” re-
lationship between the fractional differences. This is a possibility additional to, and
distinct from, cointegration. BDP carry out a short-run analysis in monthly data by
regressing the fractional differences of party support on innovations in a number of
economic series, with generally negative results (see their Table 7). We have the op-
portunity here to carry out an analogue of the BDP tests in quarterly data, using the
fractional differences of Lead as the dependent variable, instead of party support.

Two regressions were run. The first is on the I(0) series obtained by applying the
operators (1−L)d where d is the estimated differencing parameter from the relevant
column of Table 2. In the second, the residuals from the ARFIMA(p,d,q) models
were used, in those cases (Unemployment, TB Rate and Inflation) where there is a
fitted ARMA component. In each case, the regressor set was chosen by optimising
the Schwarz [32] model selection criterion with respect to the number of included
lags. In both regressions, zero lags (current values only) optimised the criterion. In
the interests of space, just the F statistics for overall significance of the regressions
are reported, together with the associated p-values; see Table 8, which also gives
residual autocorrelation statistics.14 The largest (absolutely) of the individual t values
in these regressions is −2.19, on GDP, but note the perverse negative sign. These
findings are quite closely comparable to the ones obtained in monthly data by BDP.

14The full regression results are available from the author on request.
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Significance of LM(4) Test for
the Regression Autocorrelation

F(6,161) [Prob > F] F(4, 159) [Prob > F]

Fractional Differences 1.602 [0.149] 0.511 [0.727]
ARFIMA Residuals 1.552 [0.164] 0.552 [0.697]

Table 8. Tests for short-run correlation

8 Conclusion

This paper has employed a variety of novel testing techniques to look for evidence
of a connection between the popularity of UK governments and economic indicators
over the business cycle, and has failed to find any. Since negative findings of any sort
can leave readers in doubt about the quality of the evidence, it is as well to spell out
what conclusions can be drawn here.

First, in addition to the evidence on the ‘short run’ in Table 8, also note that
the so-called ‘strong’ noncointegration hypothesis is effectively a test of statistical
independence. Although these tests are not consistent against noncointegrating al-
ternatives, the statistics will in general have their distributions shifted to the right in
the presence of correlation between the process increments, even in the absence of
cointegration.15 Even in these cases, neither of the noncointegration tests reject, even
at the 10% level, according to Table 4.

Second, while these may not be exact tests in finite samples, exact tests of level
can be constructed by rejecting only if the largest possible p-value, by choice of the
unknown nuisance parameters, is less than (see Dufour [15]). Clearly, no such test
can reject the non-cointegration hypothesis, and we can therefore treat these results
as exact, such that the rejection probability under the null is known not to exceed the
nominal level.

Third, the most hopeful result from the viewpoint of establishing the existence
of a relationship is the nonrejection of generalized cointegration by the most conser-
vative of the Shin test variants. However, this finding is at odds with the regressions
reported in Tables 1 and 3, which reverse the ranking of the two models on the ba-
sis of goodness of fit. This anomaly points to the likelihood of a ‘Type 2 error’ in
this case. The simulation evidence also gives us grounds to give credit to the more
powerful test variants, which reject the null even after size-correction.

Fourth, while the set of economic series chosen for the test may omit some impor-
tant ones, those included are undeniably important. The Monte Carlo evidence shows
that the noncointegration tests have some power even against alternatives where the
residuals are long-memory, and even nonstationary. The implication is that omission
of important factors ought not, in general, to mask an existing relationship. If the
important economic trend factors have been omitted, we are forced to the conclusion

15This property is demonstrated in Davidson [9].
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that these must be orthogonal to those included, and it is not at all obvious what these
factors might be.

Fifth, in focusing on the formalities of cointegration testing we have not com-
mented at length on the numerical magnitudes of the regression coefficients in Tables
1 and 3, but obviously these have dubious implications. Of the coefficients with large
t values, the positive relationship between unemployment and popularity appears
bizarre, although we can account for it anecdotally by pointing to, for example, the
catastrophic collapse of the 1992-97 Conservative government’s popularity, in step
with recovery from recession. Historians of the period will explain this decline in
terms of misbehaviour by politicians, internal divisions, and a loss of confidence fol-
lowing the exit from the Exchange Rate Mechanism. We know that such intangible
factors matter. What the present results show is that objective economic conditions
have an insignificant role by comparison.

In summary, this study can be claimed to provide, if anything, evidence in sup-
port of the BDP hypothesis, that local trends in popularity have quite different causes
relating to the aggregation of sampled opinions. Economic events send different mes-
sages to different individual voters, and aggregating their reactions to them has un-
predictable effects. Minor events are important if voters agree about them, major
events may be appear to be ignored in the aggregate if voters disagree. Whatever the
actual mechanism of opinion filtering, the effect is to scramble the original message
so effectively that it is undetectable in statistical tests The message for governments
may be that while the economy is undoubtedly important, the constituencies of win-
ners and losers under any change of policy have to be offset against one another, and
the effects are hard to disentangle.
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1 Introduction

Since the influential paper of Nelson and Plosser [99], much attention has been de-
voted to studying the non-stationarity of macroeconomic time series. The literature
observes two types of non-stationary processes: (i) trend-stationary [TS] processes
(or processes that are stationary around a trend) where non-stationarity is determin-
istic, and (ii) difference-stationary [DS] processes (or processes that are stationary
in first-differences) where non-stationarity is stochastic (presence of unit roots). In
the existence of a unit root, the underlying trend is stochastic, which implies that the
series has a long memory, and shocks have persistent effects. As a result, the series
does not return to its former path following a random disturbance, and the level of
the series shifts permanently. On the other hand, if the series does not contain a unit
root, the underlying trend is deterministic and the series has a short memory. In this
case, a shock has no permanent impact and the series returns to its steady trend after
the shock.

The distinction between the two classes of non-stationary processes is important
from the viewpoint of statistical inference because stationarity is achieved from dif-
ferent methods: by removing a time trend (detrending, i.e. regressing on time trend)
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for a TS process and by differencing for a DS process. There have been several stud-
ies that have investigated the effects that arise when stationarity is achieved from in-
appropriate method (Chan et al. [34]; Nelson and Kang [97, 98]). If the time series is
DS and we treat it as TS, this is a case of under-differencing and implies the creation
of short cyclical movements and, inversely, we have a case of over-differencing3

and creation of long cyclical movements. These two forms of non-stationarity have
radically different implications for forecasting time series: forecast-error variances
grow linearly in the forecast horizon for the DS process, but are bounded for the TS
process (Clements and Hendry [38]).

As suggested by Stock [145], there are four main areas for testing univariate non-
stationarity in economic time series: (1) data description; (2) medium- and long-term
forecasting; (3) a guide for subsequent multivariate modelling; and (4) information
on the degree of persistence in a time series and, in particular, on its order of integra-
tion can help to guide the construction or testing of economic theories. Here we focus
on the fourth area by establishing the direct relation between non-stationarity tests
and some economic theories such as business cycles, hysteresis, purchasing power
parity and convergence.

The nature of the trend or the non-stationarity (deterministic or stochastic) is
generally studied from the unit root tests4. Following the seminal work of Fuller [57]
and Dickey and Fuller [43], numerous procedures have been developed for testing
the hypothesis that a univariate time series contains a unit root against the alterna-
tive hypothesis that it is level or trend stationary, called ”standard unit root tests”.
However, the power of these unit root tests has been questioned. Evidence has been
provided indicating that these unit root tests have size distorsions and low power
against meaningful stationary alternatives. Therefore, some useful modifications of
these tests have been suggested to solve these problems. Moreover, these standard
unit root tests have a common feature of including a constant and/or a deterministic
trend in their test regression. However, some studies showed that elimination of de-
terministic components may bring an efficiency gain to the unit root tests, and this
type of tests is called ”efficient unit root tests”. Nevertheless, the tests mentioned
above are all based on the null hypothesis of a unit root, which assures that the hy-
pothesis will be accepted (at conventional significance level of 5%) unless there is
strong evidence against it. As a result, ”stationarity tests” have been proposed for
which the null hypothesis is level or trend stationary against the unit root alternative.
Besides, some studies have shown that the presence of breaks in the time series can
also bias the unit root and stationarity tests. Therefore, some tests taking into account
structural breaks have been developed: ”unit root tests with structural changes” and
”stationarity tests with structural changes”.

The outline of the paper is as follows. In Section 2, we briefly describe the differ-
ent types of non-stationarity tests as mentioned above. The direct relation between

3There has been some debate in the literature on the over-differencing versus under-
differencing issue, arguing that the former is a less serious error than the latter.

4This paper focus only on univariate time series.
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non-stationarity tests and four economic theories (business cycles, hysteresis, pur-
chasing power parity and convergence) is presented in Section 3. Section 4 con-
cludes.

2 Non-stationarity Tests

2.1 Standard Unit Root Tests

The standard Dickey-Fuller test [43] [DF] was developed around three univariate
order-one autoregressive models:

No drift case: yt = yt−1 + t (1)

Drift case: yt = + yt−1 + t (2)

Trend case: yt = + t+ yt−1 + t (3)

where { t} is a sequence of independent normal random variables with mean zero
and variance 2, i.e. t ∼ IN(0, 2).
The ’s parameters of the three models are estimated from the ordinary least squares
(OLS) method for testing the hypothesis of the presence of a unit root, i.e. the null
hypothesis5 H0 : = 1, against the alternative H1 : | | < 1. There are two possible
tests based on either the least squares estimator of , T ( ˆ −1), or the t-ratio associ-
ated with that estimator, t ˆ , defined by

T ( ˆ −1) =
T−1 T

t=1 yt−1 t

T−2 T
t=1 y

2
t−1

(4)

t ˆ =
T ( ˆ −1)

ˆ
(5)

where ˆ is the standard error of ˆ .
The standard Dickey-Fuller [DF] test is based on independently and identically

distributed (i.i.d.) errors. When the errors are correlated, there is a need to either
change the estimation method (adopt another regression model) or modify the statis-
tics to obtain consistent estimators and statistics. Dickey and Fuller [44] use the
first approach of changing the estimating regressions using the parametric approach
whereas Phillips [124] and Phillips and Perron [125] follow the second approach of
modifying the statistics using a nonparametric approach.

Dickey and Fuller [44] extended the standard DF test by developing the Aug-
mented Dickey-Fuller [ADF] test by estimating an autoregression of yt on its own
lags and yt−1 using OLS (for the model without constant and linear trend)

5The unit root hypothesis implies that the coefficient is unity, and random shocks have
a permanent effect on the series. If this coefficient was less than unity, the series would be
stationary (mean reverting) and random shocks would dissipate over time.
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yt = yt−1 +
k

j=1
j yt− j + t (6)

where k is the number of lags.
In the presence of moving-average errors (the presence of the serial correlation

in errors), the ADF tests incorporate the additional regressors ( yt−k) into the model
to correct the serial correlations in the errors. It has been observed that the size and
power properties of the ADF tests are sensitive to the number of lagged terms used
(Schwert [137]; Agiakoglou and Newbold [1, 2]). Several guidelines have been sug-
gested for the choice of k. See Ng and Perron [102].

ADF test results are very responsive to the presence of intercept and trend terms.
In general, including too many deterministic regressors results in lost power, whereas
not including enough of them increases the probability of not rejection the unit root
null.

Phillips [124] and Phillips and Perron [125] [PP] proposed a non-parametric ap-
proach to correct residual autocorrelation by modifying the test statistics

Z = T ( ˆ −1)− (1/2)(s2
Tl− s2)

(
T−2

T

t=1
X2
t−1

)−1
(7)

Z = (s /sT l)t ˆ − (1/2)(s2
Tl− s2)

(
s2
T lT

−2
T

t=1
X2
t−1

)−1/2

s2 and s2
T l are consistent estimators of the short-run ( 2) and long-run ( 2) variances6

of the estimated residuals ˆt . They are defined as

s2 = T−1
T

t=1

ˆ2
t

s2
wa = s2 +2T−1

l

t=1
w(s, l)

T

t=i+1
(ˆt ˆt−i)

where w(s, l) is an optimal weighting function corresponding to the choice of a
spectral window. Newey and West [100] suggested the Bartlett window, w(l,s) =
1− s/(l+1). Perron [110] provide some guidelines for the selection of l7. Note that
the PP tests are less sensitive to the choice of l than the ADF test to the choice of k.

One of the major problems of the standard unit root tests based on AR models
has been that they have size distorsions and low power against meaningful stationary
alternatives in the presence of large MA components (Schwert [136, 137]; Dejong
et al. [42]). There have several solutions to the problems of size distortion and low
power of the ADF and PP tests.
The modifications of ADF tests are unit root tests in ARMA models (Said and Dickey
[132, 133]) and unit root tests based on instrumental variable regressions (Hall [59];

6The variances are defined as 2 = limT→ T−1 T
t=1E( 2

t ) (variance of errors) and 2 =
limT→ T−1E(S2

T ) (variance of the sum of errors), where ST = T
t=1 t .

7Generally, the value l = T 1/4 is chosen.
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Pantula and Hall [107]). Several news have been suggested such as unit root tests
based on weighted symmetric estimators (Park and Fuller [109]; Fuller [58]), tests
based on conditional (Dickey and Gonzalez-Farias [45]; Yap and Reinsel [153])
or unconditional maximum likelihood estimation (Shin and Fuller [139]), and tests
based on reverse and forward regressions (Leybourne [81]).
The PP tests suffer from serious size distortions when there are negative MA errors8.
Perron and Ng [115] suggest modifications of the PP tests to correct this problem
using methods proposed by Stock [144].

2.2 Efficient Unit Root Tests

The standard unit root tests have a common feature of including a constant and/or a
deterministic trend in the test regression. However, some studies showed that elim-
ination of deterministic components may bring an efficiency gain to the unit root
tests, i.e. increasing power of tests (Schmidt and Phillips [135]).

Elliott, Rothenberg and Stock [50] [ERS] developed a unit root test based on a
quasi-difference detrending of the series. They suggested the Dickey-Fuller general-
ized least squares (DF-GLS) test using the following regression

ydt = 0y
d
t−1 +

k

j=1
j ydt− j + t (8)

where ydt is the locally detrended series yt . The DF-GLS t-test is performed by testing
the null hypothesis 0 = 0 against the alternative 0 < 0. The local detrending series
is defined by

ydt = yt − ˆ ′zt

where zt equals to 1 for the constant mean case, and (1, t) for the linear trend case,
and ˆ is the GLS estimator obtained by regressing ȳ on z̄ where

ȳ = (y1,(1− ¯B)y2, . . . ,(1− ¯B)yT )′

z̄ = (z1,(1− ¯B)z2, . . . ,(1− ¯B)zT )′

and ¯ = 1+ c̄/T . ERS advise c̄= −7 for the constant mean case and c̄= −13.5 for
the linear trend case9.
Ayat and Burridge [6] extended the ERS test to the quadratic trend case (with c̄ =
−18.5) and Xiao and Phillips [152] to the ARMA models.

Dufour and King [47] also proposed a test analogous to that of ERS with a point
optimal invariant test10. Hwang and Schmidt [66] suggested another type of GLS

8The DF tests do not have such serious size distortions but it is less powerful than the PP
tests.

9Elliott [49] extended the ERS test to the case where the initial observation is drawn from
its unconditional distribution under the alternative rather than the more usual assumption of a
fixed initial observation (see Burridge and Taylor [23]).

10See King [69] for a detailed discussion on point optimal invariant tests.
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tests by detrending the series for the Bhargava [19], Schmidt and Phillips [135] and
Dufour and King [47] tests. Recently, Ng and Perron [103]11 considered the Perron
and Ng [115] tests under GLS detrending.

Another type of efficient unit root tests have been developed based on recursive
demeaning (Shin and So [141, 142]) and detrending (Taylor [147]) of the data.

2.3 Stationarity Tests

There have been several tests for stationarity as null, although these are not as nu-
merous as tests using unit AR root as null. Some of these are: Kwiatkowski, Phillips,
Schmidt and Shin [71] and Leybourne and McCabe [82], among others.

Kwiatkowski et al. [71] [KPSS] developed a stationary test which takes into ac-
count the possible residual autocorrelations in the time series. This procedure tests
the null hypothesis of level or trend stationarity against the unit root alternative. The
KPSS test starts with the model

yt = t+ rt + t

where t is a stationary process, and rt is a random walk given by rt = rt−1 + ut
with ut ∼ N(0, 2

u). The initial value r0 is treated as fixed and serves the role of an
intercept. The stationarity hypothesis is 2

u = 0 (or rt is a constant). Under the null
hypothesis if 
= 0 then yt is trend-stationary, and if = 0 then yt is level-stationary
(i.e. stationary around a level r0). KPSS suggest to use a Lagrange multiplier test for
the null hypothesis of stationarity. The test statistic is defined by

= T−2
T
t=1 Ŝ

2
t

s2
T l

where Ŝt is the partial sum of the residuals êt from the regression of yt on either a
constant or a constant and a time trend defined by

Ŝt =
t

i=1
êi for t = (1, ...,T )

and s2
T l is the long-run variance of the residuals êt , as used by Phillips and Per-

ron [125]. As parameter l is to be determined, KPSS suggest l = int[12(T/100)1/4]
where int[.] is the enter part.

Hobijn, Franses and Ooms [65] generalized the KPSS tests in two directions:
First, they advise use of the automatic selection procedure in the estimation of the
long-run variance introduced by Newey and West [101]; second, they test the null
hypothesis of trend stationarity, level stationarity and zero mean stationarity.

11Moreover, Ng and Perron [103] suggested use of a class of Modified Information Criteria
(MIC) which performs better in selecting appropriate values of k (the number of lags).
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Leybourne and McCabe [82] [LMC]12 suggested a similar test for stationarity
that differs from the KPSS test in its treatment of autocorrelation based on additional
lagged autoregressions (as in the ADF test).
The test is based on a generalization of the local level model (Harvey [10]) defined
by

(L)yt = t + t+ t

t = t−1 + t , 0 = , t = 1, . . . ,T

where (L) = 1− 1L− 2L2 − ·· ·− pLp is a pth order AR polynomial with the
roots outside the unit circle, t ∼ iid (0, 2) and t ∼ iid (0, 2), and t and t are
independent. This model can be shown to be equivalent to the ARIMA(p,1,1) process

(L)(1−L)yt = +(1− ) t 0 < ≤ 1

with t ∼ i.i.d. (0, 2), 2 = 2 −1, and is related to 2 by the relation =

(r+ 2− (r2 + 4r)1/2)/2, r being the signal/noise ratio r = 2/ 2. Here, 2 = 0 im-
plies that = 1 and 2 > 0 involves that 0 < < 1. Therefore, the null hypothesis
of stationarity is H0 : 2 = 0, i.e. yt is a stationary ARIMA(p,0,0) process, and the
alternative is H1 : 2 > 0, i.e. yt is an ARIMA(p,1,1) with a positive MA(1) coeffi-
cient.

The LMC test procedure consists of the following steps:

1. Estimate the ARIMA(p,1,1) model by the maximum likelihood method yt =
+ p

i=1 i yt−i+ t − t−1 to get î

2. Construct y∗t as y∗t = yt − p
i=1 îyt−i

3. Regress y∗t on either an intercept or an intercept and a time trend to get the
residuals ˆt .

Then the test statistic is

ŝ= T−2
T
t=1 Ŝ

∗2
t

ˆ 2

where ˆ 2 = ˆ′ ˆ/T is a consistent estimator of 2, and Ŝ∗t is the partial sum of the
residuals Ŝ∗t = T

t=1 ˆt . Leybourne and McCabe [82] show that the asymptotic dis-
tribution of the test statistics are the same as the corresponding statistics derived by
KPSS and thus one can use the critical values tabulated by KPSS.
Leybourne and McCabe [83] extended the LMC test by proposing an optimal method
of selecting the order of the AR component in the fitted ARIMA model.

Caner et Kilian [26] showed the size distorsions of KPSS and LMC tests if
the model under the null hypothesis is stationary but highly persistent. Lanne and
Saikkonen [80] proposed modifications of the parametric tests of Saikkonen and
Luukkonen [134] and Leybourne and McCabe [82] to solve this problem.

12The LMC test can be viewed as an analogue of the ADF test whereas the KPSS test is an
analogue of the Phillips-Perron test.
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Others stationarity tests have been developed, for example Tanaka [146], Saikko-
nen and Luukkonen [134] and Arellano and Pantula [5] presented analogy between
tests for an MA unit root and tests for stationarity as null, Choi [36] proposed a test
based on the residuals whereas that of Xiao [151] is based on fluctuation tests.

3 Non-stationarity Tests with Structural Changes

3.1 Unit Root Tests with Structural Changes

One major drawback of unit root tests is that, in all of them, the implicit assumption
is that the deterministic trend is correctly specified. Perron [111] and Rappoport and
Reichlin [127] showed that the unit root tests can be biased toward the non-rejection
of the unit root null hypothesis when the time series is stationary around a struc-
tural break in the deterministic trend (see also Hendry and Neale [64]; Montañés
and Reyes [96]; Leybourne and Newbold [85]). Leybourne, Mills and Newbold [84]
showed the converse phenomenon that the presence of a break in a time series gener-
ated by a difference-stationary process can lead to spurious rejections of the unit root
null hypothesis. Perron [111] proposed a unit root test with structural break based on
the assumption that the break point is known a priori.

Given a known structural break which is assumed to be given exogenously, Per-
ron [111] has proposed a modified DF test for a unit root in the noise function with
three different types of deterministic trend function. The time of a structural change
is referred to as TB, with 1 < TB < T . The models are

Model A: DTt = µ0 +µ1DUt + t

Model B: DTt = µ+ 0t+ 1DTt
Model C: DTt = µ0 +µ1DUt + 0t+ 1DT

∗
t

where DUt = 1 if t > TB, 0 otherwise; DTt = t−TB if t > TB, 0 otherwise; DT ∗
t = t if

t > TB, 0 otherwise. Model A, the crash model, allows for a one-time change in the
intercept of the trend function, Model B, the changing growth model, allows for a
change in the slope of the trend function without any change in the level at the break
time, and Model C, the mixed model, allows both effects.

The null hypothesis assumes a unit root with exogenous structural break since
the deterministic trend function includes dummy variables (DUt ,DTt , DT ∗

t ), and the
alternative is a segmented- or broken-trend stationary system which also incorporates
the same dummy variables. Perron [111] extended the Dickey-Fuller testing strategy
to ensure a consistent testing procedure against shifting trend functions, using the
t-statistics t ˆ ( ) which depend on the location of the break point = TB/T with
∈ [0,1]. Perron tabulated critical values for fixed values of .

Others unit root tests with a break at a known point in time have been developed.
Perron [112, 113]) and Perron and Vogelsang [119] extended the Perron test for a
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break in mean, whereas Amsler and Lee [4] modified the Schmidt-Phillips [135] test
in the presence of a structural change13.

Perron’s procedure is a conditional test given a known break point. This assump-
tion of a known break date (treated as an exogenous event) raised the problem of
pre-testing and data-mining regarding the choice of the break data (Christiano [37]).
Kim et al. [67] showed that that the Perron [111] tests are biased in the presence of
an erroneous location of the break point14.

After Perron [111], several methods have been developed for endogenizing the
choice of a break point into testing procedures in which the date of the break point
is a priori unknown and determined from the data. One of these is the Zivot and An-
drews [155] test. They developed unit root tests with an endogenous structural break.
The test procedure specifies the null hypothesis as an integrated process without ex-
ogenous structural break, and the alternative assumes a trend-stationary process with
a one-time break in the trend occurring at an unknown time. The goal is to estimate
the breakpoint that gives the most weight to the trend-stationary alternative. The time
of break is selected by choosing the value of TB for which the Dickey-Fuller t-statistic
t ˆ is minimized:

t̃ ˆ ,i = inf
∈∧
t ˆ ,i( ) i= A,B,C

where ∧ is a closed subset of (0,1) and = TB/T .
Nunes, Newbold and Kuan [104, 105], Vogelsang and Perron [150], and Lee

and Strazicich [78] criticized the Zivot-Andrews test in two ways: first, assuming no
break under the null hypothesis15 and second, using a minimum sequantial Dickey-
Fuller test. There have several solutions to these problems. Lee and Strazicich [77]
and Perron and Rodriguez [116] proposed endogenous break unit root tests based
on Schmidt-Phillips [135] test, and ERS [50] and Ng-Perron [103] tests, respec-
tively, rather than Dickey-Fuller test. Perron and Vogelsang [118] and Perron [114]
suggested an alternative method to select the break date by choosing it such that
the absolute value of the t-statistic on the coefficient of the break is maximized16.
Banerjee, Lumsdaine and Stock [13] applied variety of recursive and sequential tests
endogenizing the break point.

Moreover, Lee and Strazicich [78] showed that the Zivot-Andrews [155] and
Perron [114] endogenous break unit root tests tend to determine the break point in-
correctly at TB− 1 instead of at the true break TB, and more so as the magnitude of
the break increases (results are similar under the null and alternative hypotheses).

13See Lanne and Lütkepohl [73] for a comparison of different unit root tests with a break
at a known point in time.

14Hecq and Urbain [62] and Montañés [95] obtained similar results in the context of the
Perron [112] tests.

15Nunes et al. [105] and Lee and Strazicich [78] provide evidence that assuming no break
under the null in endogenous break test lead to significant rejection of the unit root null when
the data generating process is a unit root with break.

16Perron and Rodriguez [116] showed that this method can yield tests with less power.
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This previous literature consider endogenizing only one break point but do not
consider the possibility of two break points. Kim, Leybourne and Newbold [67]
showed that the Perron [111] and Zivot-Andrews tests may be biased when a sec-
ond break is present but not taken into account. Therefore, Lumsdaine and Papell
[91], Clemente et al. [39], and Lee and Strazicich [80] developed endogenous two-
break unit root tests by extending the Zivo-Andrews [155], Perron-Vogelsang [118]
and Lee-Strazicich [77] tests, respectively. However, no endogenous break unit root
tests have been proposed to more than two breaks17.
It can also be observed that these tests generally propose three models according to
the form of break but do not select them. This gives different results depending on
the model chosen. The conclusions thus depend on the choice of model. Further-
more, Sen [138] showed that serious power distorsions occur if the form of break is
misspecified.

The breaks considered were breaks in trends, mostly one break and in a few cases
multiple breaks. However, the non-stationarity tests can be biased by another type of
points: the outliers. Furthermore, Balke and Fomby [12], Bradley and Jansen [22]
and Darné and Dieblot [41] showed that these outliers exist in most macroeconomics
series and most of them correspond to major economic events. Generally, four main
types of outliers are considered: the additive outliers (AO), the innovative outliers
(IO), the level shifts (LS) and the temporary changes (TC)18. The structural breaks
considered above correspond to one type of outliers19 (see Maddala and Kim [92]).
It has been noted in several papers that outliers lead to size distortions in unit root
tests. The type of distortion depends on the type of outliers. For example, Franses
and Haldrup [52] and Shin et al. [140] showed that the presence of additive outliers
induces in the errors a negative moving-average component which causes the unit
root tests to exhibit substantial size distorsions towards rejecting the null hypothesis
too often (Vogelsang [149]). To solve this problem, Franses and Haldrup [52] and
Shin et al. [140], Vogelsang [149] and Perron and Rodriguez [117] proposed pro-
cedures for testing unit roots in the presence of AOs. Another approach to dealing
with AOs is to apply the Ng and Perron [103] tests that are robust to negative MA
errors (which is a consequence of additive outliers). See Yin and Maddala [154] for
the effects of the other types of outliers.

3.2 Stationarity Tests with Structural Changes

Following the studies on the unit root tests, Lee et al. [76], Carrion et al. [29] and
Badillo et al. [7] showed that the stationarity tests of KPSS [71] and LMC [82]
can be biased toward rejecting the null hypothesis of stationarity in favor of the false

17Moreover, Bai [8, 9], Bai and Perron [10, 11] and Altissimo and Corradi [3], among
others, developed procedures for detecting the number of structural breaks in a time series.

18See Tsay [148] and Chen and Liu [35] for a detailed discussion on the outliers.
19As suggested by Harvey, Leybourne and Newbold [61] and Lee and Strazicich [80], a

structural break under the unit root null hypothesis can be interpreted as a large permanent
shock or outlier.
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alternative unit root hypothesis when the series contains structural breaks. Therefore,
Lee and Strazicich [79] proposed a test for stationarity in the presence of a structural
break, where the unknown break point is endogenously determined. They consider
two models:

Model A: yt = + 1Dt + et
Model B: yt = + t+ 1Dt + 2DT

∗
t + et

whereDt = 1 andDT ∗
t = t−TB for t > TB and zero otherwise, with TB being the break

point. Model A describes a stationary process with a one-time shift in the level, and
Model B allows for a sudden change in the level followed by a change in the slope
of the trend function.
Lee and Strazicich [79] select the break point by minimizing the test statistic analo-
gous to that of KPSS [71]:

˜ i = inf
∈∧ i( ) i= A,B

with i = T−2
T
t=1 Ŝ

2
t

s2
T l

where ∧ is a closed subset of (0,1) and = TB/T .
Busetti and Harvey [24] and Kurozumi [70] also extended the KPSS test to take

into account the presence of one structural break20, whereas Carrion et al. [30] deal
with two structural breaks. Moreover, Carrion et al. [29] generalized that of LMC
[82].

Recently, Carrion [28] showed that the KPSS test that allows for a level shift di-
verges when the breaking date is erroneously positioned. Therefore, the drawbacks
attributed to the unit root tests with structural breaks can be also attributed to the sta-
tionarity tests with structural breaks, namely the presence of multiple breaks (more
than two breaks), the specification of break form, and the presence of outliers21.

4 Non-stationarity and Macroeconomic Theory

4.1 Business Cycles

Real Gross National Product [GNP] is a particularly important series to investigate
in this regard because the evidence for or against the existence of a unit root in GNP

20Moreover, Busetti and Taylor [25] showed that stationarity tests can be biased in the
presence of variance shifts. They generalized the Busetti-Harvey [24] approach to develop
tests that are invariant to breaks in slope/level and variance. Kim et al. [68] obtained the same
results for the ADF tests and suggested modifications of the ADF tests to allow structural
break in the variance.

21Recently, Darné [40] showed that the KPSS tests are very robust to AOs whereas the
LMC test exhibits size distorsions and loss of power.
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provides support for the validity of competing macroeconomic theories. If GNP can
be characterized by stationary movements around a deterministic trend, this supports
monetary theories of the business cycle (Friedman [55]; and Lucas [89, 90]). In this
case, monetary shocks are the main source of output fluctuation, but have a tempo-
rary effect. Therefore, the output returns to its ”natural rate”, representing the long
run path of the economy. Conversely, if GNP has a unit root, and is therefore char-
acterized by a random walk (possibly with a drift), this provides support for real
business cycle [RBC] models (Kydland and Prescott [72]; Long and Plosser [86]).
The RBC models postulates that the long run path of the economy is mainly guided
by real factors such as technological changes. Otherwise, the permanent productiv-
ity shocks resulting from technological changes are the main source of economic
fluctuations. Therefore, the GNP can be characterized by permanent shocks that are
assumed to be randomly generated every observation period.

For the analysis of current economic conditions, if the non-stationarity is deter-
ministic, the shocks driving the fluctuations have no effect on the long term. The
output series is then decomposed into a secular component, i.e. a long run determin-
istic trend (growth), and a cyclical component, i.e. a stationary short run fluctuations
around trend. The variations of the current economic conditions are only due to in-
novations affecting the cyclical component. We have independence between growth
and economic fluctuations.
On the contrary, if the non-stationarity is stochastic the output consists of a non-
stationary growth component plus a stationary cyclical component, and the fluctua-
tions can be attributed to the both components. In this case, the movements in output
are persistent: since the cyclical component is assumed to be stationary, the output
fluctuations are mostly associated with the secular component.

4.2 Hysteresis

Theorical investigations consistent with a unit root in unemployment have been un-
dertaken (see, for example, Blanchard and Summers [20]; Lindbeck and Snower
[88]). Time series results have played an important role in the controversy over the
natural rate and hysteresis hypotheses22.
The23 high and persistent levels of unemployment experienced by European coun-
tries since the mid-1970s have led to a major reconsideration of the natural rate
paradigm of Phelps [121, 122] and Friedman [55]. Theories that describe fluctua-
tions in unemployment as movements around the natural rate have been challenged
by hysteresis theories, which model extreme persistence in unemployment, and struc-
turalist theories, which describe fluctuations in unemployment as both movements
around and shifts of the natural rate.

22See Røed [129] and Mikhail, Eberwein and Handa [94] for a review on persistence and
hysteresis in unemployment.

23See Papell, Murray and Ghiblawi [108].
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Traditional theories describe movements of unemployment as fluctuations around
the natural rate24, which is generally defined as the equilibrium (correct expectations)
unemployment rate (Phelps [121, 122]; Friedman [55]). They argue that the rise in
unemployment rates is caused by adjustment to an underlying long-run equilibrium
natural rate of unemployment which has increased in response to changes in struc-
tural characteristics of the labour market. The unemployment rate is then assumed to
converge to an exogenously determined constant natural rate. Since the natural rate
of unemployment is attained when employment is on its normal trend path, shocks
to the economy have a temporary effect on unemployment. Therefore, traditional
theories imply that unemployment is either level stationary or trend stationary.

Recently, structuralist theories of unemployment (Layard, Nickell and Jackman
[75]; Phelps [123]) propose to endogenize the natural unemployment rate in terms of
structural characteristics of the economy. They assume that the structural factors in
the economy affect the natural unemployment rate25. The most of shocks cause tem-
porary movements of unemployment around the natural rate, but occasional shocks
cause permanent changes in the natural rate itself. In this case, the unemployment
would be stationary around a process that is subject to structural breaks.

Theories incorporating hysteresis have become the most popular explanation for
the increase in unemployment in Europe. Hysteresis arises when the medium-term
equilibrium rate of unemployment is path dependent, i.e. its depends on the history
of unemployment. Otherwise, the current level of unemployment will depend on its
own history (Blanchard and Summers [20, 21]). Formally, hysteresis means that tem-
porary shocks have permanent effect on the level of unemployment. There are two
notions of hysteresis26: (1) the full or pure hysteresis in which the unemployment
depends on a linear combination of its own past values with coefficients summing
to one (this means that unemployment should exhibit a unit root); and (2) the par-
tial or loose hysteresis in which temporary shocks have highly persistent, but not
permanent, effect on unemployment, where the sum of coefficients is close but not
necessarily equal to one. Generally, the hysteresis hypothesis implies the presence of
a unit root (or close to a unit root) in the literature on the time series properties of
unemployment.

4.3 Purchasing Power Parity

The purchasing power parity [PPP] states that once converted to a common currency,
the real exchange rate, national price levels should be equal. The basic idea is that
if goods market arbitrage enforces broad parity in prices across a sufficient range of

24The concept of the natural rate of unemployment - since its introduction by Friedman
[55] in an analogy to Wicksell’s concept of the natural rate of interest and its formulation by
Phelps [121, 122] - applies the doctrine of monetary neutrality to the unemployment level.

25See Papell, Murray and Ghiblawi [108] and Everaert [51] for some possibles examples
of structural factors.

26See Blanchard and Summers [20].



186 Olivier Darné and Claude Diebolt

individual goods (the law of one price), then there should also be a high correlation
in aggregate price levels (Froot and Rogoff [56]; Rogoff [130])27.
The PPP can be viewed as a long-run equilibrium condition for the exchange rates:
the real exchange rate should tend toward PPP in the very long run. The long-run
PPP is also a central building block in the monetary models of exchange rate deter-
mination (Frenkel [53, 54]; Dornbusch [46]).

Research on long-run PPP can be in the form of testing the stationarity of real
exchange rates. The rationale behind such tests is simple. The real exchange rate
can be expressed as a deviation from PPP (in log form). The real exchange rate28

is defined as the nominal exchange rate deflated by a ratio of foreign and domestic
price levels. In logarithmic form

qt = st + p∗t − pt

where st is the logarithm of the nominal exchange rate (the home-currency price of
foreign currency), and pt and p∗t are the logarithms of the domestic and foreign price
indexes, respectively.

If the real exchange rate is stationary around a constant mean, it converges to a
constant mean (the PPP value). This implies that deviations from PPP dissipate over
time, and therefore PPP is said to hold in long run. There is evidence of long-run
mean reversion. The deviations of the real exchange rate from its mean value are
only temporary.

If the real exchange rate contains a unit root, it has no mean-reversion property,
in which case all deviations from PPP are permanent. This implies that there is no
tendency for PPP to hold in the long run.

If the real exchange rate is stationary but around a mean which is subject to
occasional structural changes, there is reversion to a changing mean. This hypothesis
is called the quasi purchasing power parity [QPPP] by Hegwood and Papell [63].

4.4 Convergence

The degree to which (per capita) incomes have converged across countries (or re-
gions), over time, has been the subject of extensive research, and is connected with
research in economic growth theory. Two theories have come to dominate the litera-
ture on economic growth. The traditional neoclassical growth models (Solow [143];
Cass [31])29 predict that given the same saving rate, population growth, and tech-
nology, economies will ”converge absolutely” to the same per capita income in the
long-run steady-state. As such, convergence implies that countries with relatively low

27The concept of PPP is widely attributed to Cassel [32, 33]. See Officer [106] for an
extensive discussion of the origins of PPP theory.

28Dealing with absolute rather than relative PPP (see Officer [106], and Rogoff [130])
and imposing the symmetry and proportionality conditions: (1) symmetry between domestic
and foreign prices, and (2) proportionality between relative prices and the exchange rate (see
Edison, Gagnon and Melick [48]).

29See Barro and Sala-i-Martin [15].
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initial levels of income (poor countries) will grow faster than countries with relatively
initial levels of income (rich countries) in order to catch-up. That is, differences in per
capita income across different economies will tend to decrease or narrow over time
(Baumol [16]; Barro [14]). Given persistent heterogeneous characteristics, neoclas-
sical growth models predict that incomes will ”converge conditionally” to their own
steady-state or ”compensating differential”. In contrast endogenous growth models
(Romer [131]; Rebelo [128]) can generate patterns of growth that do not exhibit any
tendency towards convergence. Initially it was suggested that the presence or other-
wise of convergence could form the basis of a test of the neoclassical growth model
against the more recent endogenous growth models.

Most empirical work on convergence showed that there exists a negative relation-
ship between initial log per-capita income and rates of growth. Given its dependence
upon the factors determining the steady state, Mankiw, Romer and Weil [93] and
Barro and Sala-i-Martin [15] refer to this form of convergence as conditional con-
vergence30.

Recently, another form of convergence examines the presence of unit root in the
log of the per capita income of one country relative to that of the economy as a whole.
We refer to this notion of convergence as time series convergence31.
For each country i, the logarithm of the ratio of per capita income relative to the
average of all countries is define as

RIi,t = ln

(
yi,t

1
n

n
j=1 y j,t

)
i= 1, . . . ,n

where yi,t is the per capita income for country i, and n is the number of countries of
interest.

Failure to reject the unit root null hypothesis indicates evidence against income
convergence. In this case, following a shock to relative income in country i there is no
tendency for per capita income to return to the average; thus implying that incomes
diverge.

Contrary to this, rejection of a unit root supports the alternative hypothesis that
shocks to relative income are temporary, implying that incomes converge.
Carlino and Mills [27] defined stochastic convergence (or weak convergence) which
postulates convergence if the log relative income is trend stationary whereas Li and
Papell [87] proposed a stronger definition of convergence, deterministic convergence,
where the log relative income is level stationary.

5 Conclusion

This paper presented a selective survey of the literature on non-stationarity tests.
We also discussed some problems with these tests and some solutions and alterna-

30This is a cross-section notion of convergence or -convergence.
31Bernard and Durlauf [17, 18] also proposed definitions of convergence from long-run

forecasts. Their definitions of convergence, catching-up and long-run convergence, are closely
linked to the concepts of stochastic and deterministic cointegration.
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tives that have been suggested. Although often used, the Dickey-Fuller and Phillips-
Perron tests lack power against meaningful alternatives and should not be employed
any more in applied work. More efficient and powerful non-stationary tests are now
available. We also advocate to pre-test the presence of breaks and outliers before to
apply non-stationarity tests because they can imply spurious results.
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Summary. In this paper we focus on two STS models suitable for forecasting the index of
industrial production. The first model requires that the index be transformed with a first and
seasonal difference filters. The second model considers the index in its second difference filter,
while seasonality is modeled with a constant and seasonal dummy variables. Tests designed
to discriminate empirically between these two models are also conducted. Our results pre-
fer the performance of the second model, particularly when the conventional ML estimation
procedure is replaced by the ALS procedure. This process together with appropriate seasonal
adjustment advances the possibility of using the suggested index forecasts to help to predict
business cycle turning points.
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1 Introduction and Motivation

The analysis and forecasting of indexes of industrial production, both in aggregate
and for individual sectors, continues to capture interest, because of their pertinence
as measures of economic performance and international cross-performance compar-
isons. Despite this notable role, consensus has not yet been reached as to which
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appropriate modeling and forecasting strategy to adopt. In this paper we consider
two structural models as possibilities for forecasting the index of industrial produc-
tion. The first is the well-known basic structural time series (STS) model advocated
by Harvey and Durbin [13], which requires that the series under consideration be
transformed by first and seasonal difference filters (e.g., see Harvey [10, 11]) respec-
tively to achieve stationary. The second is the STS model that makes use of a second
difference filter and assumes that the sum of the seasonal components in twelve con-
secutive periods equals zero and hence the seasonal pattern can be described with a
constant and seasonal dummy variables (e.g., see Harvey [10, 11]).

The rationale and primary motive of the present study is the observation that
the forecasts for the index of industrial production from the first model, following
Harvey and Todd [12], Harvey and Durbin [13] and Harvey [10, 11], fluctuate too
widely. This might indicate that the model is mis-specified; and that the second would
be more appropriate.

This paper continues as follows. In Section 2, the two competing forecasting
models are introduced and their theoretical backgrounds discussed. In Section 3, a
brief account is given of a method to test for (seasonal) unit roots in monthly data,
as a procedure to choose between the models. Section 4 introduces and extends the
asymptotic least squares (ALS) estimation method for the case of monthly data, as
an alternative to the classic and well-known maximum likelihood (ML) estimation
method of STS models developed by Harvey and Peters (1990). In Section 5, an ALS
method is applied to estimate both STS seasonal models, while in Section 6 forecast-
ing schemes are applied to the industrial production series under investigation. From
an extensive predictive performance analysis the appropriate model for forecasting
the index of industrial production emerges. Finally, in Section 7, some concluding
remarks and suggestions for future research are given.

2 Model Specification

Consider yt a time series to be modeled and which can be decomposed as:

yt = µt + t + t , t = 1, . . . ,T (1)

where µt is the trend component, t is the seasonal component, and t is the
irregular component.

In the STS methodology described by Harvey [10, 11], the process generating
the trend is regarded as a local approximation to a linear trend, i.e.,

µt = µt−1 + t−1 + t , t = 1, . . . ,T (2)

and
t = t−1 + t , t = 1, . . . ,T (3)

where, t is the slope and t and t are distributed independently of each other
and over time with means zero and variances 2 and 2, respectively.
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The process generating the seasonal component, t , (in the case of monthly data),
is

t = −
11

j=1
t− j + t , t = 1, . . . ,T (4)

where is an independently distributed term with mean zero and variance 2 .
Here, we assume that the seasonal pattern is slowly changing, but by a mechanism
which ensures that the sum of the seasonal components over any s consecutive time
periods has an expected value of zero and a variance which remains constant over
time (e.g., see Harvey [10]).

Unlike the trend and the seasonal component, the irregular component is assumed
to be stationary. In the basic model it is a white-noise disturbance term with mean
zero and variance, 2 .

2.1 Model 1

Substitution of the processes for the trend and seasonal component in equation (1)
leads to the first competing STS forecasting model which is:

12yt = (1+L+L2 +L3 +L4 +L5 +L6 +L7 +L8 +L9 +L10 (5)

+L11) t−1 + 12 t + 2
t + 12 t , t = 14, . . . ,T

with L the lag operator, = 1−L and 12 = 1−L12, and thus 12yt ∼ a MA(13)
process3, but with a number of non-linear restrictions on the parameters (e.g., see
Harvey [10]). In equation (5), 12yt is stationary since it has been obtained by a first
and seasonal difference filters, respectively, and hence has thirteen roots (solving for
the equations 1−L= 0 and 1−L12 = 0 in ∀, the vector space of complex numbers),
a double unit root, L= 1, and eleven seasonal unit roots which are.

−1;±i;−1
2

(
1± i

√
3
)

;
1
2

(
1± i

√
3
)

;−1
2

(√
3± i

)
;−1

2

(√
3± i

)
(6)

where i2 = −1. The seasonal roots correspond to 6, 3, 9, 8, 4, 2, 10, 7, 5, 1, and
11 cycles per year, respectively. The frequencies of these roots are , ± /2, ±2 /3,
± /3, ±5 /6 and ± /6, respectively.

2.2 Model 2

One may also assume that seasonal pattern is not stochastic but constant over time.
In terms of the basic STS model, we have 2 = 0. For the observed yt it follows that:

2yt = t−1 + t + 2
t + 2

t , t = 14, . . . ,T (7)

3More generally the autocovariance function of the basic STS model syt based on sea-
sonal dummies indicates that the reduced form is such that syt ∼ MA(s+ 1). The unre-
stricted reduced form therefore contains more parameters than the structural form, namely
s+2 as opposed to s (e.g. Harvey [10], pp. 69, 75 and 511).
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The assumption that the sum of the seasonal components in twelve consecutive
periods equals zero implies t = t−12 - (and therefore 2

t = 2
t−12) - and hence the

seasonal pattern can be described with seasonal dummy variables (e.g., see Winder
[21], p. 99). According to equation (7), 2

t ∼ a MA(10) process4 with deterministic
seasonal components (e.g., see Harvey [10], p. 69), t has, therefore, only 10 unit
roots (e.g., see Harvey [10], pp. 69, 75 and 511).

2.3 Problems of Mis-specification

These two structural forecasting competing models and, more generally, the class of
STS models are often used in modeling exercises (e.g., see Harvey [10, 11]). A prac-
tical problem which often occurs in empirical studies is that this class of models may
produce forecasts that are either very low or very high. This may be caused by the
fact that the appropriate model for yt is equation (5) while using equation (7), or vice
versa. This results in over-differencing and mis-specification. Transforming a series
with the 12 filter assumes the presence of 13 roots on the unit circle, two of which
are at the zero frequency. Hence, in the case which only the filter (or more gener-
ally the k filter applied k times (k ∈ R\{0}) is sufficient to remove non-stationarity,
the incorrect assumption of the presence of the other roots implies over-differencing.
The mis-specification also can originate from treating deterministic seasonality in-
correctly, as being stochastic or vice versa. Osborn [19] and Franses [6] empirically
demonstrate that this type of mis-specification often occurs.

Since over-differencing and mis-specification are serious dangers in modeling,
we will examine the time series structure of the index of industrial production for
the countries under investigation without any predisposition regarding the nature of
seasonality and/or the non-stationarity they may have.

3 Testing for (Seasonal) Unit Roots

To determine what might be the most appropriate STS specification for a particular
data series, we first must understand the underlying data generating process. Indexes
of industrial production for (i) Canada, (ii) Germany, (iii) Japan, and (iv) the United
States are considered in the present study. The data are from the OECD (1998) his-
torical series ”Main Economic Indicators” covering the period January 1960 until
April 19985. In the empirical analysis that follows, we consider the log-transformed
series.

A preliminary step in industrial production modeling strategy is to examine the
seasonality and/ or non-stationarity issues related to these series. Therefore, we tested
all indexes of industrial production for the presence of (seasonal) unit roots. Since

4In fact S(L) t ∼ MA (s−2), (e.g., see Harvey [10], pp. 69, 75 and 511).
5The data for Canada start in January 1961 while that of Germany are available only on

the period March 1990 to April 1998 because of the reunification of the western and eastern
parts.
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the differencing operator L12 assumes the presence of 12 roots on the unit circle, this
becomes clear by observing that:(

1−B12) = (1−B)(1+B)(1− iB)(1+ iB) (8)[
1+
(√

3+ i
)
B/2
][

1+
(√

3− i
)
B/2
]

[
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(√
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B/2
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(

i
√

3−1
)
B/2
]

where all terms other than (1−B) correspond to seasonal unit roots.
Following the methodology developed by Franses [6], the presence of (seasonal)

unit roots can be tested using the auxiliary regression which is given by:

(B)y8,t = 1y1,t−1 + 2y2,t−1 + 3y3,t−1 + 4y3,t−2 + 5y4,t−1 +

6y4,t−2 + 7y5,t−1 + 8y5,t−2 + 9y6,t−1 + 10y6,t−2 +

11y7,t−1 + 12y7,t−2 + + t (9)

The yi,t variables are constructed from the original series, yt , as follows:

y1,t = (1+B)
(
1+B2)(1+B4 +B8)yt

y2,t = −(1−B)
(
1+B2)(1+B4 +B8)yt

y3,t = −(1−B2)(1+B4 +B8)yt
y4,t = −(1−B4)(1−

√
3B+B2

)(
1+B2 +B4)yt

y5,t = −(1−B4)(1+
√

3B+B2
)(

1+B2 +B4)yt
y6,t = −(1−B4)(1−B2 +B4)(1−B+B2)yt
y7,t = −(1−B4)(1−B2 +B4)(1+B+B2)yt
y8,t =

(
1−B12)yt

where B is the backshift operator given by (1−Bi)yt = yt − yt−i and all the in-
dustrial production index series are in natural logarithms. Lagged values of the de-
pendent variables y8,t are included as right-hand-side variables in the regression to
account for a possible ARMA error process where the lagged dependent variables
enter the regression through the (B) lagged polynomial term (e.g., see Joutz et al.
[15]). The number of lagged dependent variables is chosen by minimizing the Akaike
FPE and the Bayesian Schwartz Criterion. Following the guidelines above, the term
includes a constant, eleven seasonal dummies, and a trend. For comparison purposes,
we also test for unit roots in an equation where the includes a constant with eleven
seasonal dummies, but no trend.
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Applying ordinary least squares (OLS) to equation (9) gives estimates of the i.
In case there are (seasonal) unit roots, the corresponding i are zero. Due to the fact
that pairs of complex unit roots are conjugates, it should be noted that these roots are
only present when pairs of i’s are equal to zero simultaneously. For example, the
roots i and −i are only present when 3 and 4 are equal to zero. There will be no
seasonal unit roots if 2 through 12 are significantly different from zero. If 1 = 0
then the presence of root 1 can not be rejected. When 1 = 0, and when 2 through

12 are significantly different from zero, this implies the presence of a unit root but
no seasonal unit root. Therefore, a first difference seasonal dummy variable model
is appropriate. However, i = 0 for i = 1,2, . . . ,12 implies the presence of both a
unit root and eleven seasonal roots. In this case a multiplicative seasonal difference
model of the form (1−B)(1−B12 would be the model of choice.

The general result of testing the null hypothesis that i = 0 for i = 1,2, . . . ,12
is that seasonality and non-stationarity in the series of industrial production can be
appropriately modeled with a STS model with a constant and seasonal dummy vari-
ables (e.g., see Tables 1 and 2). Therefore the regularly and commonly applied 12

not to mention the 12 filter, is inappropriate for the data under investigation. This
latter conclusion is consistent with Beaulieu and Miron [3], Osborn [19], Franses [6]
and Joutz et al. [15] who argue in favor of seasonal dummies rather than seasonal
differencing.

4 Asymptotic Least Squares Estimation Procedure

There are a number of estimation techniques in the econometric literature that can be
used to estimate STS models including the traditional ML (e.g., see Harvey [10];
Harvey and Peters [14]) estimation procedure. ML estimation of the parameters
of unobserved components models is generally carried out with the Kalman filter.
The review of the Harvey and Peters [14] indicates, however, that this can be quite
complex, even if relatively simple STS models are considered; not to mention non-
convergence and/or non-optimality issues often encountered in applied econometric
studies with the Kalman filter. Various studies have therefore examined frequency
domain estimation as an alternative. Young et al. [22], for instance, apply the sequen-
tial spectral decomposition approach which enabled them to carry out the estimation
process in completely recursive terms, albeit at the cost of strict optimality in ML
sense.

In this paper, however, we consider the ALS procedure6 suggested by Gourier-
oux, Monfort and Trognon [8], Kodde et al. [16], and Monfort and Rabemananjara
[18]. ALS is a two-stage estimation procedure and explores the relationships between
univariate ARIMA models and STS models. In the first stage an ARIMA model is
estimated and in the second a non-linear optimization problem subject to inequal-
ity constraints is solved. This approach yields estimators which are asymptotically
efficient and ALS is therefore an alternative for ML estimation via the Kalman filter.

6ALS estimation technique is very attractive and easy to implement, although it has some
limitations (e.g., see Dagenais and Dufour [5]; Hansen et al. [9]).
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Canada Germany Japan USA

t-statistics
1 0.0210 -0.0602 0.0008 0.0609a

2 -0.1010a 0.0373 0.0070 -0.1242a

3 -0.0298c 0.1633b 0.0085 -0.0498b

4 -0.0121 -0.1899a -0.0490b -0.0572b

5 -0.0529c -0.1348 -0.0846a -0.1027b

6 0.0035 -0.2261a -0.0889a 0.0065
7 0.0011 0.2281a 0.0332 0.0136

8 -0.0403 -0.3588a -0.1046a -0.0723b

9 -0.0605 0.0254 -0.0428 -0.1884a

10 0.0098 -0.1745 -0.0578 0.0472
11 0.0041 0.0703 0.0459 -0.0044

12 -0.0072b -0.2418b -0.1739a -0.1180a

F-statistics
3, 4 1.8104 4.2160a 2.6494c 8.6111a

5, 6 4.5489a 3.2171b 4.2730a 8.4041a

7, 8 11.3400a 12.3412a 27.1688a 16.3382a

9, 10 1.4224 1.8846 1.0239 6.1451a

11, 12 5.6636a 3.7671b 13.8730a 13.0988a

3, . . . , 12 5.7823a 4.3591a 8.9659a 11.0993a

Notes: (i) The auxiliary regression contains constant, trend and seasonal dummies, while (B) is (1− B12) and the
number of observations for each series equals 447. (ii) a, b and c denote statistical significance at 1, 5, and 10% levels,

respectively.

Table 1. Testing for Seasonal Unit Roots (Constant, Trend and Seasonal Dummies).

In its most simple form, the ALS procedure first estimates an ARIMA model and
then performs a GLS regression.

4.1 Description of the ALS Procedure

The basic idea of ALS estimation is to use a general specification which is easy to
estimate containing the model of interest as a special case. The correspondence be-
tween the general and specific model is described by a set of relationships between
the parameters of the general model and those of the specific one. ALS estimation is
carried out in two stages. In the first stage the parameters of the general model are es-
timated. Given these estimates and the set of relationships between the parameters of
the general and specific model, the ALS estimators of interest are determined in the
second stage. This approach yields estimators which are asymptotically equivalent
to ML, if the parameters of the general model have been estimated with ML.

Equation (5) implies a restricted MA (13) process for 12yt . For the general
model, which is easy to estimate, an unrestricted MA (13) process is chosen:
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Canada Germany Japan USA

t-statistics
1 0.0206 -0.0027 0.0004 0.0599a

2 -.1028a 0.0454 0.0067 -0.1337a

3 -0.0288 0.1200 0.0088 -0.0489b

4 -0.0088 -0.2350a -0.0483b -0.0437c

5 -0.0502 -0.1766b -0.0840a -0.0961b

6 0.0061 -0.2534b -0.0883a 0.0162

7 -0.0026 0.1977b 0.0329 0.0034

8 -0.0376 -0.3348 -0.1042a -0.0637b

9 -0.057 -0.0361 -0.0420 -0.1758a

10 0.0138 -0.2085b -0.0568 0.0677
11 0.0020 0.0597 0.0453 -0.0153

12 -0.0701 -0.2600b -0.1733a -0.1058a

F-statistics

3, 4 1.5637 4.2054a 2.5955c 6.4298a

5, 6 4.3684a 3.3550b 4.2333a 8.1403a

7, 8 11.9587a 10.0507a 27.2199a 16.9767a

9, 10 1.3569 1.6944 0.9941 5.9401a

11, 12 5.7489a 3.9862a 13.8455a 12.2980a

3, . . . , 12 5.9927a 3.6329b 8.9839a 10.9079a

Notes: (i) The auxiliary regression contains constant and seasonal dummies, while (B) is (1− B12) and the number of
observations for each series equals 447. (ii) a, b and c denote statistical significance at 1, 5, and 10% levels, respectively.

Table 2. Testing for Seasonal Unit Roots (Constant and Seasonal Dummies).

12yt = (1+ 1L+ 2L
2 + 3L

3 + 4L
4 + 5L

5 + 6L
6 (10)

+ 7L
7 + 8L

8 + 9L
9 + 10L

10 + 11L
11 + 12L

12

+ 13L
13) t t ∼ NID (0, 2)

The relationships between the parameters in equations (5) and (7) can be established
with the autocovariance of 12yt , yielding:
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(1+ 2
1 + 2

2 + 2
3 + 2

4 + 2
5 + 2

6 + 2
7 + 2

8 + 2
9 + 2

10 + 2
11 + 2

12 + 2
13)

2 =

12 2 +2 2 +6 2 +4 2

( 1 + 2 1 + 3 2 + 4 3 5 4 + 6 5 + 7 6 + 8 7 + 9 8 + 10 9 + 11 10 +

12 11 + 13 12) 2 = 11 2 −4 2 −2 2

( 2 + 3 1 + 4 2 + 5 3 6 4 + 7 5 + 8 6 + 9 7 + 10 8 + 11 9 + 12 10 +

13 11) 2 = 10 2 + 2

( 3 + 4 1 + 5 2 + 6 3 7 4 + 8 5 + 9 6 + 10 7 + 11 8 + 12 9 +

13 10) 2 = 9 2

( 4 + 5 1 + 6 2 + 7 3 8 4 + 9 5 + 10 6 + 11 7 + 12 8 + 13 9) 2 =

8 2

( 5 + 6 1 + 7 2 + 8 3 9 4 + 10 5 + 11 6 + 12 7 + 13 8) 2 = 7 2

( 6 + 7 1 + 8 2 + 9 3 10 4 + 11 5 + 12 6 + 13 7) 2 = 6 2

( 7 + 8 1 + 9 2 + 10 3 11 4 + 12 5 + 13 6) 2 = 5 2

( 8 + 9 1 + 10 2 + 11 3 12 4 + 13 5) 2 = 4 2

( 9 + 10 1 + 11 2 + 12 3 13 4) 2 = 3 2

( 10 + 11 1 + 12 2 + 13 3) 2 = 2 2

( 11 + 12 1 + 13 2) 2 = 2 + 2

( 12 + 13 1) 2 = − 2 −2 2

( 13) 2 = 2

or in matrix notation
g( ) = A (11)

with g a vector of functions in = ( 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13,
2 )′,

= ( 2, 2 , 2 , 2 )′ and therefore:
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AStochasticSeasonality =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

12 2 6 4
11 0 −4 −2
10 0 1 0
9 0 0 0
8 0 0 0
7 0 0 0
6 0 0 0
5 0 0 0
4 0 0 0
3 0 0 0
2 0 0 0
1 0 0 1
0 −1 0 −2
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Further details of this solution are provided in Appendix 1.

Accounting for the restriction imposed in Section (fixed seasonality), we have a
special case of matrix AStochasticSeasonality:

AFixedSeasonality =

⎛⎝1 2 6 6
0 −1 −4 −6
0 0 1 1

⎞⎠
see Appendix 2 for more details

Turning to the general case, given the first-stage estimate of , ˆ ALS minimizes
the distances of g(ˆ)−A in the metric of the matrix

S−1 =
[

g
′

g′
]

(12)

where is the covariance matrix of ˆ, i.e.[
g(ˆ)−A

]′
S
[
g(ˆ)−A

]
(13)

yielding the ALS estimate

ˆ =
[
A′SA

]−1
A′S
[
g(ˆ)

]
(14)

4.2 Asymptotic Properties

If consistently, ˆ will also be consistent. Moreover, the large sample distribution of
ˆ is √

T ( ˆ − ) L⇒ N
(
0,(A′SA)−1) (15)

if ˆ has a large sample normal distribution.
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Since the variances are non-negative, an iterative algorithm minimizing the
quadratic form (11) subject to inequality restrictions for the parameters is neces-
sary. If, however, all the variance parameters are strictly positive the ALS estimator
in equation (12) is equivalent to the GLS estimator in the model:

g(ˆ) = A +u, E(u) = 0, and E(uu′) = S (16)

The unrestricted MA (13) model (equation 5) contains fourteen parameters. Since
the basic STS model has only twelve unknown parameters, two restrictions have
been imposed. These restrictions are based on the Wald test. The Wald statistic has a
value equal to the minimum of the objective function (11) multiplied by the number
of observations.

5 Asymptotic Least Squares Estimation Results

The ALS estimation procedure is now used to estimate the above STS models. For
the sake of clarity and conciseness, the econometric analysis is based upon the fol-
lowing steps:

5.1 Step 1: STS Model Specification

Since the basic STS model has often been applied successfully (e.g., see Harvey [10];
Harvey and Todd [12]; Harvey and Durbin [13]; Winder [21]), we adopt its specifi-
cation. Also, since unit root tests strongly reject the presence of seasonal unit roots,
we examine the alternative model using a deterministic seasonal specification. This
model is described by equations (1)-(3) and 11

j=0 t− j = 0. It has been argued above
that this model implies a MA (10) process with deterministic seasonals for 2yt . This
ARIMA process can be used as the general model. In this case, both the STS model
and the corresponding ARIMA model have twenty-two parameters. Equation (7) is,
therefore, only a reparameterization of the general model. The relationships between
the parameters of interest and those of the MA (10) with seasonal dummies can be
derived in an analogous way, as performed in the previous section for the basic STS
model. Summarizing the two STS models, we have:

Model 1:

12yt = (1+L+L2 +L3 +L4 +L5 +L6 +L7 +L8 +L9 +L10

+L11) t−1 + 12 t + 2
t + 12 t

Model 2:

2yt = t−1 + t + 2
t + 2

t

Preliminary Tests
Before estimating these two STS models, we first investigate the underlying time
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series properties of the level and first differences of the data. Our results indicate an
important increase in volatility occurred in the post–1970 and -1980 periods. These
periods correspond to:

• 1973 – first oil price shock,
• 1979 – second oil price shock, and
• 1987 – stock market crash.

These findings have important implications for the specification of STS models
(e.g., see Goldstein [7]). The heteroscedasticity and trend shifts can be theorized in
one of four ways as a result of (e.g., see Goldstein [7]): (i) the normal evolution of
the stochastic components of the STS model; (ii) a structural change in the data gen-
eration process; (iii) an increase in volatilities, a consequence of (significant) random
shocks which increase variances and levels in an autocorrelated (damped, but persis-
tent) manner; or (iv) in the case of increased volatility only, a simple heteroscedas-
ticity pattern (as a continuous function of time). Each of these four perspectives sup-
ports, respectively, a different statistical specification: (i) a STS model for the entire
sample; (ii) two (or more) separate STS models, one estimated prior to the struc-
tural break and the other after; (iii) an autoregressive conditional heteroscedasticity
(ARCH) model integrated with a single period STS model; and (iv) a STS model for
log (Yt) rather than Yt .

The heteroscedasticity pattern in the data and the possible trend shifts cast seri-
ous doubt on the appropriateness of a single uncorrected STS model with assumed
homoscedasticity error variances for the entire sample range (e.g., see Goldstein [7]).
The existence of a heteroscedasticity pattern which is a positive step-function, rather
than a continuous function of time, also suggests that a log transformation may (not
necessarily) improve the properties of the statistical estimates.

The ARCH and structural change models are competing perspectives on the evo-
lution of a heteroscedasticity pattern. The former is a stochastic explanation, whereas
the latter is structural/deterministic. An ARCH interpretation implies that the damp-
ing process is slow enough such that significant supply shocks in the 1970s and 1980s
have resulted in increased volatility into the 1990s without a return of 2

t
to its steady

state. In contrast, a structural break argument focuses on major regime shifts, circa
1970 and 1980, associated with a significantly lower rate of productivity growth,
increased levels of indebtedness, the intensification of international competition, a
decline in profitability, and weakness in the international monetary system. These
fundamental changes in both the economic and institutional structures created a per-
manently more uncertain and volatile environment for macroeconomic time series
and particulary for the index of industrial production; accounting for these changes
is thus, crucial in the modeling process.

Based upon a model selection strategy and the structural shift arguments which
are the most likely, we thus report estimation results for three distinct periods:
[1960:01–1973:03], [1973:05–1987:09] and [1987:11–1998:04]. These break points
have been identified in two recent and separate papers by Goldstein [7] and Badillo
et al. [2]. The results reported below are robust for alternative break points between
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these sub-periods and the log-transformation appears to improve diagnostics and
post-sample testing.

5.2 Step 2: STS Model Estimation and Results

Tables 3 and 4 present the ALS estimates for the two STS models, respectively.
Because of the large amount of information, all results of estimation will not be dis-
cussed in detail. Instead, we focus on some general features and mention some salient
facts. The first remarkable result is that for all of the industrial production index se-
ries, the seasonal dummy variables are significant in the 2 lnyt STS model; this
confirms the appropriateness of the inclusion of these variables in this STS model.
A second important result is that for the STS models with stochastic seasonality two
of the hyper-parameters equal zero, namely the variance of the seasonal disturbance
term and the variance of the slope. This might suggest that seasonality is fixed or
constant over time rather than stochastic and thus seasonality may be modeled by a
constant and seasonal dummy variable. In the case of the STS model with seasonal
dummy variables the two hyper-parameters that equal zero are the variance of the
level and the slope. In addition, the hyper-parameters from the STS model with sea-
sonal dummy variables are significant and relatively smaller than that of the basic
STS model; this implies that the STS model with seasonal dummy variables ( 2 lnyt
model) is more accurate than the STS model with stochastic seasonality ( 12 lnyt
model).

5.3 Step 3: Diagnostics

The appropriateness of the two STS models ( 12 lnyt and 2 lnyt models) is now
evaluated based on goodness-of-fit statistics7 which are reported in Tables 3 (for
the 12 lnyt model) and 4 (for the 2 lnyt model), respectively. The goodness-of-
fit statistics considered are: the prediction error variance for one-step-ahead predic-
tions, the Box-Ljung test for serial correlation of the residuals, Q(lag length), the
Jarque-Bera test for normality of the residuals, N, a standard split sample test for
heteroscedasticity, H, the percentage improvement in fit over a random walk plus
drift model, R2

D, and the percentage improvement in fit over a random walk plus drift
and fixed seasonals, R2

S. The normality statistic has under the null a 2(2) distribu-
tion. The statistic for heteroscedasticity (F(25,25)) distributed and the Ljung-Box
statistic has under the null of white noise a 2(12) distribution. The prediction error
variance for one-step-ahead predictions is globally satisfactory for all of the indexes
of industrial production (e.g., see Table 4). In addition, results in Table 4 show that
normality and heteroscedasticity have to be rejected for the majority of the industrial
production index series when using the 12 lnyt model.

The R2
D statistics, which report the percentage improvement in fit over the random

walk with drift model, range from 0.03 to 0.15 for the 12 lnyt model, while they

7The goodness-of-fit statistics used are based on Harvey’s definitions and notations (e.g.,
see Harvey [10]).
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range from 0.21 to 0.43 for the 2 lnyt model. This result provides further evidence
for the appropriateness of this latter specification ( 2 lnyt model) in modeling the
index of industrial production.

The R2
S statistics, which also report the percentage improvement in fit over the

random walk drift model and fixed seasonals, range from 0.05 to 0.11 for the
12 lnyt model and 0.15 to 0.35 for the 2 lnyt model. This result is indeed an-

other support for the appropriateness of this latter specification ( 2 lnyt model) in
modeling the index of industrial production.

5.4 Step 4: Post-Sample Testing

To further evaluate the adequacy of the estimated models, we also assessed their
post-sample predictive performance. In each case, the formal post-sample predic-
tive test was based on the CUSUM test (e.g., see Harvey [10], pp. 257 and 272).
An alternative test considered as well is the Chow test. Under the null hypothesis
that the model is correctly specified, the Chow statistic is F(14,119) distributed for
sub-period 1, F(17,145) distributed for sub-period 2, and F(12,100) distributed for
sub-period 3; while on these same sub-periods the CUSUM statistic has a t(119),
t(145) and t(100) distribution respectively. Except in a few cases (e.g., see Table 4),
the post-sample results indicate rather better prediction performance for the 2 lnyt
model than for the 12 lnyt model; this provides additional evidence of the appro-
priateness of the STS with seasonal dummies in modeling the index of industrial
production.

6 Forecasting

To evaluate the 12 lnyt and 2 lnyt models with respect to their forecasting per-
formance; and following Andrews [1], forecasts for the 12 months out-of-sample are
generated from each of the two models.

To investigate whether there are significant differences between the forecasts, the
non-parametric sign (exact binomial), sign (normal approximation), Wilcoxon-ranks
and Van der Waerden (normal scores) tests and a number of evaluating criteria are
considered in Table 5. Discriminating test results do not establish a clear superiority
for either of the two models. The general result with respect to the criteria mean error
(ME) through root mean squared error (RMSE) and Theil’s U statistic, however,
seems to be that the 2 lnyt model outperforms the 12 lnyt model, irrespective
of country and sub-period consideration. It is also clear that the number of positive
forecast errors M from using the 2 lnyt model are closer to what might have been
expected on average, while those when using a 12 lnyt model are higher and out
of any reasonable range.

From the results of (i) PIMSE, which denotes the percentage improvement of
forecasts from the 2 lnyt model with respect to mean squared error, and of (ii)
SIGNSE, which reports the number of times the squared error of 2 lnyt model is
smaller than that of 12 lnyt model in pairwise comparison, it clearly appears that
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most of the differences between the models are significant and are in favor of the
2 lnyt model.

7 Final Remarks

In this paper, it has been shown that correctly taking account of the type of seasonal-
ity and non-stationarity in monthly data can improve forecasting performance. This
is illustrated in the context of the STS models which include a number of variants
(STS with trend; STS with trend and cycle; STS with trend and seasonality; STS
with trend, cycle and seasonality etc.), and thus feature a high risk of increased mis-
specification based on inappropriate data transformations.

The major result of the paper, which is applied to the forecasting of the index of
industrial production, is that the recognition of the presence of seasonal unit roots can
have important implications for forecasting and model building. Recent additional
arguments for not automatically and systematically applying difference or moving
average filters can be found in Franses [6]. The understanding and control of the
properties of these filters based on their transfer functions is a necessary, though
not sufficient, condition for adequately modeling and forecasting of economic time
series. Finally, we have shown that employing the ALS estimation procedure together
with the STS approach can provide production index forecasts of high accuracy,
making it a useful alternative to other production index forecasting approaches based
on explanatory variables for forecasting turning points in the business cycle.
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Appendix 1. Autocovariances of 12yt

12yt = (1+L+L2 +L3 +L4 +L5 +L6 +L7 +L8 +L9 +L10

+L11) t−1 + 12 t + 2
t + 12 t

= t−1 + t−2 + t−3 + t−4 + t−5 + t−5 + t−7 + t−8

+ t−9 + t−10 + t−11 + t−12 + t − t−12 + t −2 t−1

+ t−2 + t − t−1 − t−12 + t−13

Define Xt = 12yt , we obtain:

1. E[XtXt ] = 12 2 +2 2 +6 2 +4 2

2. E[XtXt−1] = 11 2 −4 2 −2 2

3. E[XtXt−2] = 10 2 + 2

4. E[XtXt−3] = 9 2

5. E[XtXt−4] = 8 2

6. E[XtXt−5] = 7 2

7. E[XtXt−6] = 6 2

8. E[XtXt−7] = 5 2

9. E[XtXt−8] = 4 2

10. E[XtXt−9] = 3 2

11. E[XtXt−10] = 2 2

12. E[XtXt−11] = 2 + 2

13. E[XtXt−12] = − 2 −2 2

14. E[XtXt−13] = 2

15. E[XtXt−h] = 0, ∀h≥ 14.

Appendix 2. Autocovariances of 2yt

2yt = t−1 + t + 2
t + 2

t

= t−1 + t − t−1 + t −2 t−1 + t−2 + t −2 t−1 + t−2

Define Xt = 2yt , we obtain

1. E[XtXt ] = 2 +2 2 +6 2 +6 2

2. E[XtXt−1] = − 2 −4 2 −4 2

3. E[XtXt−2] = 2 + 2

4. E[XtXt−3] = 0, ∀h≥ 3.
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Appendix 3. Discussion of ML Estimates via the Kalman Filter

In order to compare the ALS estimation results with the ML estimates obtained
via the Kalman filter, the two STS models have also been estimated with the com-
puter package STAMP, version 5 (e.g., see Koopman et al. [17]). The results of ex-
act ML estimation in the time domain with numerical optimization carried out by a
quasi-Newton algorithm can be obtained upon request from the authors.

In general results from the STS model with seasonal dummy variables based on
ML estimation are fairly good and closed to those of ALS estimates discussed in the
paper. The estimates of the seasonals are very similar also. The differences for the
estimates of the variance parameters are somewhat larger. The t-ratios appear to be
larger than those of the ALS estimates, but this result does not hold for all series.

For the results based on the basic STS model, the discrepancies between the
Kalman filter estimates and those according to ALS are larger. This holds notably
for the series for which two or three variance parameters were found to be zero with
ALS.

The appropriateness of the models estimated by ML via the Kalman filter has
been examined by the same statistical criteria as in the main text. The results for
diagnostics or post-sample testing are very similar to those for the STS models esti-
mated by ALS. This holds notably for the tests for normality and heteroscedasticity
except for Canada and Germany and for the second sub-period. With respect to the
Ljung-Box statistic the differences between the ALS – and Kalman filter – estimated
models are somewhat larger; Ljung – Box statistic being larger for the Kalman filter
– estimated models.

The results on post sample predictive testing (CUSUM and Chow test) also yield
a similar picture to those for the ALS – estimated models except in the case of Canada
and Japan and for the first sub-period.

Appendix 4. Forecast Summary

The following Table provides comparisons of forecast and actual values over
time for the index of industrial production.
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Complex Dynamics in Macroeconomics: A Novel
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Summary. In this work we employ the Recurrence Quantification Analysis (RQA) frame-
work, effective in discovering evidence of non-linear determinism and complex dynamics in
short, noisy and irregular signals. We apply RQA to a set of US macroeconomic time series
and simulated sequences in order to provide a classification based on topological aspects of
their dynamics. Through RQA we can in general obtain useful information on the quality and
complexity of the structure of the dynamics in an economy, as this is embedded in its macroe-
conomic time series.

Key words: Recurrence Plots, Recurrence Quantification Analysis, Chaos, Complex Dynam-
ics, Macroeconomic Time Series Analysis.

1 Introduction

Deterministic chaos, usually referred to simply as “chaos”, implies presence of struc-
ture and often very complex order on a global scale but absence of these charac-
teristics on a local scale. Self-organization and emergence are also salient features
of chaotic systems. In general, chaotic processes may be characterized by irregular
and long-term unpredictable behavior, however this behavior is purely deterministic.
Sequences that are outcomes of chaotic dynamics often exhibit some qualitative fea-
tures of stochastic-random time series. Chaos can often appear as noise, as a quasi-
periodic or aperiodic sequence, as a bounded oscillation with an infinite period and
a broadband spectrum. Kellert [37] suggests as a working definition for chaos the
aperiodic behavior in a deterministic system which exhibits sensitive dependence on
initial conditions. The important point here is that complex and chaotic systems can
self regulate and respond to external stimulations (such as new information, shocks
and “extreme” events) more effectively and flexibly than linear or non-deterministic
systems. Moreover such systems have the ability to self-organize and return to sta-
ble states only due to internal dynamics and not some exogenous influence. They
are often characterized by a feedback mechanism which could be used to control or
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forecast their future states. Hence, although sensitive to small perturbations of initial
conditions, chaotic dynamics may allow for a greater level of efficiency in short term
predictions, and they can be controlled around a periodic dynamically unstable state
(Ott et al. [52]). Chaos and randomness are frequently confused as there are a few
similarities between them (Mayer-Kress [46]) and “traditional” statistical analysis
tools may often misinterpret chaotic determinism as randomness. For this reason,
the investigation of nonlinearity and complex dynamics (chaos not excluded) should
rely on a more sensitive toolkit (Abarbanel [1]).

Nonlinear determinism and complexity is usually observed in various open and
dissipative physiological and physical systems, with feedbacks and qualitative dy-
namics that occasionally resemble much those of economies or financial markets
(Mandelbrot [42]; Brock [13]; Hommes [32]; Mandelbrot and Hudson [43]).3 The
possibility of the existence of non-linear determinism in financial or economic phe-
nomena is not a novel idea. One should refer to Mirowski [49, 50] for a historic
perspective on the issue and to Barnett and Chen [7], Frank and Stengos [24, 25],
Frank et al [23], Scheinkman and LeBaron [58], Brock and Sayers [17], Hsieh [34],
Brock et al [16], Brock and Dechert [15], Brock [14], Peters [53], Mayfield and
Mizrach [47] for the earlier influential work. However, due to the limitations posed
by the available theoretical background, data quality and research technology, there
has been no clear answer on the issue of the existence of chaotic-complex dynamics,
especially in financial markets. The search for chaos is still an area of rigorous re-
search as the ability to determine the types of dependence and forecast the dynamics
of stock prices or key economic indicators, is of paramount importance to activi-
ties such as economic planning, financial risk management and optimal design of
securities.

Nonlinearity and chaos has been a area of substantial research in economics
(Kesley [38]; Barnett and Chen [7]; Baumol and Benhabib [9]; Boldrin and Wood-
ford [11]; Brock [13]; Barnett and Hinich [8]; Butler [19]; Bordignon and Lisi [12]).
While there are several pieces of literature centered on the theoretical considerations
of the existence of complex or chaotic dynamics in macroeconomic systems (Grand-
mont [28, 29, 30]; Boldrin and Woodford[11]), empirical confirmation has been dif-
ficult, mainly due to the absence of a framework applicable to small information sets
such as macroeconomic time series (Frank and Stengos [25, 24]; Brock and Say-
ers [17]; Scheinkman and LeBaron [59]; Scheinkman [57]; Brock [14]; Brock and
Dechert [15]; Brock et al. [16]; Liu et al. [41]). A large part of earlier empirical in-
vestigation evolves around the BDS test (Brock and Dechert [15]) which is based
on the correlation integral. The main limitation of investigations for chaotic dynam-
ics is the absence of a well established statistical test for chaos. There have also
been serious considerations about procedures based on invariant measures, as they
may produce biased results for short and noisy sequences (Theiler [62]; Osborne
and Provenzale [51]; Wolff [68]; Ramsey et al. [55]; Abarbanel [1]). Hence, practi-
cal as well as theoretical issues (Ramsey [54]; Granger [31]), appear to be the main

3Hence the influence of practices in economic research from other sciences and the birth
of Econophysics to which research on nonlinear dynamics is a large contributor.
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factors contributing to an earlier relative unpopularity of the hypothesis of chaos in
economics and finance. However, even in the absence of conclusive empirical evi-
dence and support, the presence of chaos in an economic system has posed in the
past serious considerations, especially for policy makers (Bullard and Butler [18]).

In this work, avoiding some of the pitfalls or ambiguities of existing research, we
employ a fairly novel methodology effective in discovering evidence of nonlinear
determinism and complex dynamics in short, noisy and irregular signals. Recurrence
Quantification Analysis (RQA, Zbilut and Webber [69]) aims at revealing the details
of the system’s higher dimensional phase space dynamics from a single observable
output. In our case and for demonstration purposes, as such an output we consider se-
quences of growth rates of key economic indicators from the US economy. Through
RQA we can obtain a qualitative and quantitative view of periodical or nonstanionary
dynamics, economic shocks, or even examine how long an economy or market re-
mains in a period of relative calmness. Although our aim is not to strongly support
the premise that key economic indicators are governed by chaotic dynamics, we en-
tertain the idea that significant lessons can be learned by the application of RQA
on economic and financial time series in general. Intuitively, a methodology such as
RQA could shed more light on the quality and complexity of internal dynamics of
economies such as the US. It could also be used to provide results for comparison
with those of more traditional and established business cycle methodologies and to
reexamine the validity of stylized facts.

The structure of this paper is as follows: In Section 2 we briefly discuss phase
space reconstruction and the basics of RQA. In Section 3 we present the RQA results
on a set of macroeconomic time series and simulated sequences. Finally in Section
4 we conclude providing pointers for future research.

2 Recurrence Quantification Analysis

According to embedding theorems developed by Takens and others (Takens [61];
Sauer et al. [56]), phase space dynamics can be faithfully reconstructed in a pseudo
phase-space by delay coordinate embedding 4 from a system’s single observable
output. For example, in the case of modeling an economy as a complex system, as
such an observable we can accept the Gross Domestic Product (GDP) or the level
of unemployment. Time series embedding answers to the problem of unfolding the
dynamics as received from one dimensional time series, preferably obtaining through
this process a good idea of the dimensionality of the original phase-space dynamics.
When the examined sequence obeys to random dynamics, the original phase space
will be most probably of a very high dimension and the dynamics of the system-
economy will be characterized by a very high entropy. However, if its dynamics
follow chaotic laws, they are expected to be concentrated in a small area of the phase
space which will be of low dimensionality.

The reconstruction of the phase-space dynamics is achieved via the determina-
tion of the embedding dimension dE and the time delay . The embedding technique

4Also known as time series embedding.
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simply generates a set of vectors which are lagged non-homogeneous sub-samples
of the original series. Defining the original time-series process x as vector of N ele-
ments:

x1,x2,x3, ...,xN , (1)

the following sequence of vectors can be generated:

y1,y2,y3, ...,ym, (2)

where m = N − (dE − 1) , dE is the embedding dimension and the time delay.
Hence the m vectors from (2) consist of dE elements:

yk = [xk,xk+ ,xk+2 , ...,xk+(dE−1) ] = y(k), (3)

for k=1,2,...,m. In the special case of dE=1 we obtain a one dimensional embedding
which is equivalent to no embedding at all. It is obvious that the whole embedding ex-
ercise is based on the determination of the parameters dE and . Inappropriate choice
of their values can either prevent the discovery of any low-dimensional dynamics or
lead to false positive indications of nonlinear-deterministic structure. However, for
the purpose of RQA it has been shown lately that embedding is not such a crucial
issue (see Section 2.1).

Phase portraits (i.e., delay scatter plots) can be used to visualize nonlinear dy-
namics. However, they can be realized in two or three dimensional representations
and can sometimes provide mixed or unclear information. Another effective way to
visualize phase space dynamics from a reconstruction as in equations (2-3), are re-
currence plots introduced by Eckmann et al. [21]. Thresholded recurrence plots (also
called “recurrence matrices”) are simply the graphical representation of a matrix
computed according to the following equation:

Ri, j = ( −‖y(i)−y( j)‖), i, j = 1, · · · ,m, (4)

where y denotes the vectors obtained from an embedding, (•) is the Heaviside func-
tion and is a predefined threshold (also called “resolution”), and measured usually
in units of the standard deviation of the time series x. By construction of the recur-
rence matrix, the probability of a recurrence occurring at a point with coordinates
(i,j) (i, j ≤m) is given by the correlation integral for the time series, which measures
the probability that two points are within a certain distance from one another:

C( ) =
2

m(m−1)

m

i=1

i−1

j=1
( −‖y(i)−y( j)‖). (5)

Recurrence matrices may be very dense or relatively sparse, depending on the
dynamics observed. They are square symmetrical m×m grids of 1 and 0 values de-
noting closeness or distance of the embedded vectors, according to the Heaviside
function. Usually black color is assigned to close points when graphically repre-
senting thresholded recurrence matrices. A black dot simply shows that the system
returns to the -neighborhood of the corresponding point in phase space, hence the



Complex Dynamics in Macroeconomics 227

term “recurrence” (see Figure 2). Due to construction, the upper and lower trian-
gular areas of the plots are symmetrical as the distance ‖y(i)− y( j)‖ is the same
as ‖y( j)− y(i)‖. All the 45 degree angle (lower) diagonal elements are darkened
as every vector is close to itself. If we omit the Heaviside function in eq. (4), we
obtain what is loosely termed as a global recurrence plot, a colored version of the
thresholded one, where a predefined set of colors measures the range of distances
between all embedded vectors(Figure 1). In thresholded plots, strong recurrent and
deterministic dynamics will appear as repeating patterns and parallel line segments to
the lower diagonal. Random dynamics lead usually to unstructured recurrence plots
with homogeneously distributed points all over the diagram (refer to Antoniou and
Vorlow [2] and Casdagli [20] for examples). Usually a change in the density of re-
currence plots and diagonal segments (lines) are evidence enough of nonstationarity
and chaotic dynamics respectively. However, the interpretation of these diagrams can
often be very difficult and the results may be misleading or subjective.

Following Marwan [44] we can interpret recurrence plots via large scale (ty-
pology) and small scale patterns (texture). The typology gives us a general concept
of the involved dynamics and can be classified as homogeneous, periodic, drifting
or disrupted. Homogeneity in recurrence points usually implies that the system ob-
served is characterized by stationary and autonomous dynamics, such as the random
processes. Periodic structures such as diagonal lines or patterns, appear in plots of
systems that are characterized by periodic or chaotic oscillations. The more complex
the periodic structures the more complex the recurrence plot will be. Drift is observed
by a change in the density of the recurrent points around the main diagonal. The up-
per left and lower right corners of the plots are less dense in points for systems with
slowly varying dynamics. Finally, sudden changes of dynamics and extreme events
can cause large areas of the plots to be vacant.

Small scale structures (texture) can be defined on the basis of recurrence point
formations. Isolated recurrences can be observed for rare states or heavy fluctua-
tions, though they are not unique indications of noise or randomness (Marwan [44]).
Strongly chaotic systems will be replete with parallel line segments. This simply in-
dicates that trajectories visit the same regions of phase space at different times. The
length of these segments are an indication of the duration of these “visits” and is
related to the Lyapunov exponents of the system. Line segments sometimes appear
to be perpendicular to the main diagonal (45 degrees). These can often be a good in-
dication of an unfortunate selection of embedding parameters (Marwan [44]). Some-
times strong vertical (and horizontal due to the symmetry of recurrence plots) lines
will appear. These are typical in systems that exhibit intermittent dynamics (such
as atmospheric turbulence) and their length is an indication of the time for which
the system remains in a stable state or exhibits very slow dynamics, referred to as
laminar states.

The reader can observe several of the typology and texture classification criteria
in both unthresholded (Figure 1) and thresholded recurrence plots (Figure 2). How-
ever it becomes apparent that an unfortunate selection of either the graphical resolu-
tion or the size of the recurrence plot, can severely distort our view of the dynamics
and introduce bias in interpretation. One obvious way to improve the informational
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content of recurrence plots is to focus on magnified portions of the matrices and
inspect these for line segments and other indications of nonlinear and complex dy-
namics (see Figure 3). However, this achieves still a rather subjective and qualitative
view of the phase space dynamics. To overcome the above limitations of the sim-
ple visual inspection of recurrence plots, Zbilut and Webber [69] have introduced
(RQA) methodology, based on the information contained in recurrence matrices.
RQA allows for the determination of an array of measures that can indicate even
more precisely whether the dynamics of the system are governed by randomness or
complexity and deterministic chaos. The RQA measurement set has been enriched by
the work of Marwan [44] and for our analysis here, we will be utilizing the following
subset of available RQA metrics:

1. Recurrence (REC) is defined as the percentage of recurrent points in an RP:

REC =
1
m2

m

i, j=1
Ri, j. (6)

Usually, when the threshold level increases, the percentage level of recurrent
points in the recurrence matrix is expected to increase.

2. Determinism (DET) is defined as the percentage of recurrence points which form
diagonal lines (segments) parallel to the main diagonal:

DET =
m
l=lmin lP(l)
m
i, jRi, j

, (7)

where l denotes length of diagonal line and P(l) denotes the frequency (distri-
bution) of l length parallel to the main diagonal segments in the RP. In the case
of a deterministic-chaotic system, these parallel line segments are an indication
of the trajectories being close in phase space for time scales that are equal to
the length of the segments. However, very long lines should be regarded as an
indication of non-chaotic periodicity.

3. The longest diagonal line is defined as:

Lmax = max({li; i= 1,2, · · · ,Nl}), (8)

where Nl denotes the number of lines that appear in the plot. Lmax is inversely
proportional to the maximal (positive) Lyapunov exponent of the sequence and
is also referred to as “divergence”.

4. Entropy:

ENT = −
m

l=lmin

p(l) ln p(l). (9)

This does not refer to the entropy of the sequence or the system but the entropy
of the distribution of the lines in the recurrence plot. It is a good indicator of
the structure of the overall plot and the complex deterministic character of the
underlying dynamics.
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5. Trend:

TREND =
m̄
i=1(i− m̄/2)(RECi−〈RECi〉)

m̄
i=1(i− m̄/2)2

. (10)

This measures the paling of the plot towards the edges. It is estimated as the
slope of the linear regression line of REC on the displacement from the main
diagonal (excluding the last 10% of the total range) and is expressed in units of
the percentage of local recurrence per 1000 points. It provides information on
the stationarity of the process and the presence of any trend or drift.

6. Laminarity is an analogous definition to that of determinism (DET in eq. 7) and
is defined as:

LAM =
m
= min

P( )
m
=1 P( )

, (11)

where denotes the length of the vertical line structure. The LAM measure
shows the amount of vertical sections in the recurrence plot and indicates the
occurrence of laminar states. It does not though provide any information on the
duration of these states. LAM is low when there are more single recurrence
points than vertical sections.

7. The average length of all laminar states (from eq. 11) is called “Trapping Time”
and is defined as:

TT =
m
= min

P( )
m
= min

P( )
. (12)

This measures the average time the system spends “trapped” in a “laminar” state.
It also provides an indication for the amount of laminar phases.

The RQA measures based on vertical structures are the contribution of Marwan
[44] over the original work of Zbilut and Webber [69]. The main functionality of
measures such as LAM and TT is that they allow us to determine chaos to chaos tran-
sitions, such as the ones that can be found in the logistic map (xn+1 = axn (1− xn)).
Applications on physiological time series have proven that RQA can detect, quan-
tify and forecast states that lead to catastrophic events (e.g. life-threatening cardiac
arrhythmia).

2.1 Embedding Considerations

From the presentation of RQA so far, it becomes clear that the embedding dimension
dE , time delay and resolution parameters are of crucial importance to the genera-
tion of an “accurate” recurrence plot. As mentioned earlier, unfortunate choices can
either hinder the discovery of low-dimensional dynamics or produce false positive
indications of chaotic structure. However, Iwanski and Bradley [35] relaxed the ne-
cessity for accurate embedding whereas more recently Thiel et al. [66] show that
with no embedding in recurrence plots, we can actually receive accurate and unbi-
ased information on the complexity of the sequence under examination. In Atay and
Altıntaş [5] it is also shown that the time delay may be more crucial than the em-
bedding dimension dE as the average length of line segments parallel to the main
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diagonal can be insensitive to the choice of the latter. Moreover, according to Thiel
et al. [64], the most crucial statistic to quantify the predictability of the system via
RQA, is the distribution of the diagonal line segments. It is also suggested that the
topological reconstruction of an attractor from the thresholded recurrence plot is pos-
sible, whether the series exhibit deterministic or stochastic dynamics or a mixtures of
those (see also Balakrishnan et al. [6]; Gao and Cai [26]). Thus recent research sug-
gests that accurate embedding in the case of RQA may not be a crucial issue and this
simplifies procedures considerably. In our analysis, following Iwanski and Bradley
[35] and Thiel et al. [66], we adopt the strategy of dE = = 1 in all recurrence plots
and quantification analysis of macroeconomic time series. Regarding the level of
resolution , we follow Webber and Zbilut [67] who suggest a threshold level of the
lower 10% of the maximum rescaled distance between all embedded vectors, using
a maximum norm in equation (4). However, when the noise component is known,
threshold levels up to five times its standard deviation may be appropriate as sug-
gested in Thiel et al. [65] and Matassini et la. [45]. Although the noise content may
be unknown in many economic and financial time series, existing techniques such as
wavelets, can be used to preprocess the data before RQA and provide stronger evi-
dence of recurrent dynamics (Antoniou and Volrow [3]). Recurrence plots and RQA
have been used in the past in economics to analyze mainly financial time series and
exchange rate sequences, however the methodology has still not enjoyed the same
popularity as in the physical sciences (Antoniou and Volrow [2, 3]; Gilmore [27];
Holyst et al. [33]; McKenzie [48]; Belaire-Franch et al. [10]; Ferreira et al. [22]).
This work can be regarded as a “pilot” application of RQA in macroeconomic time
series analysis.

3 RQA Results

We applied RQA on a set of macroeconomic time series from the US economy
as well as on some simulations of popular stochastic and chaotic processes. The
macroeconomic data are monthly time series that span the period 1960 to 2002.
We analyzed the growth rates (logarithmic differences) of five US macroeconomic
time series: Interest Rates (NBER series 13002), the Consumer’s Price Index (CPI
all urban consumers, Bureau of Labor Statistics, series CUUROOOOAA0), the In-
dustrial Production Index (NBER series 01001), the Dow Jones stock price index
(NBER series 11009) and the Unemployment level (Bureau of Labor Statistics, se-
ries LNS13000000). The results of the RQA on the rates of these sequences are
listed in Table 1. Some of the unthresholded recurrence plots are depicted in Figure
1, whereas thresholded recurrence plots are depicted in Figure 2.

An immediate observation from the tabulated results is that the recurrence plots
of the macroeconomic data suggest a very strong nonstochastic nature for the un-
derlying dynamics. The level of DET ranges between 16% (Industrial Production
Index) to 70% (Interest Rate), which shows that the recurrence plots are replete with
parallel line segments to the main diagonal. This has a serious implication on the
predictability of the sequences as the low entropies of the distributions of these lines
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Fig. 1. Unthresholded Recurrence Plots. From left to right, top to bottom: CPI, Industrial
Production, Unemployment, Interest Rate, Dow Jones Stock Index, Sine with noise.
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Fig. 2. Thresholded Recurrence Plots. From left to right, top to bottom: White Noise, Brown-
ian Motion, Lorenz attractor, Hénon attractor, Industrial Production index growth (detail), and
detail of Mackey-Glass process from equation (13).
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REC DET ML ENT TREND LAM TT

CPI 43.967% 43.503% 30 2.417 27.629 59.523% 6.760
Ind. Prod. 30.842% 16.020% 36 2.095 -5.406 16.497% 4.471
Int. Rate 66.346% 70.165% 91 3.494 33.115 79.543% 11.253
DJ Returns 53.168% 38.000% 26 2.224 1.503 45.431% 5.928
Unemployment 39.002% 20.215% 13 1.755 -11.743 30.670% 5.382
Hénon 6.364% 81.229% 33 2.697 -0.029 5.194% 2.568
Lorenz 29.266% 96.398% 3496 4.908 -0.396 99.470% 22.327
ARIMA(1,1,1) 2.493% 2.801% 7 1.086 -4.599 1.262% 5.125
white noise 3.965% 0.006% 5 0.000 0.097 0.000% N/A
MG 34.153% 19.738% 167 4.084 -0.055 0.006% 10.000
noisyMG 50.246% 2.110% 25 2.197 -0.154 9.616% 12.444
s-noisyMG 49.054% 20.050% 28 2.073 -0.276 35.091% 6.866

Table 1. RQA results.

(ENT) also suggest very strong non-random dynamics. When these results are com-
pared to those of random or chaotic sequences, we see that the recurrence plots of
the macroeconomic data reveal similar dynamics to those of the Hénon and Lorenz
attractors (for details for the chaotic processes and their phase space reconstruction
parameters refer to Sprott [60]). These attractors reveal the highest level of DET as
expected. On the other side, simulated normal noise and ARIMA processes (the AR
and MA coefficients are 0.5), exhibit very low levels of deterministic structures and
recurrent points in their recurrence plots. The laminar states (LAM) are also lower
for these processes than the rest of the data with the random sequence having the low-
est measurements. The trapping time (TT) statistic shows that the periods of slowly
drifting dynamics or stable states range between 4 (Industrial Production Index) and
11 months (Interest Rate). In a nutshell, the macroeconomic data reveal dynamics in
the recurrence plots that can be characterized as complex-deterministic as opposed to
the random-stochastic ones of the autoregressive and random processes. For all the
macroeconomic sequences we used an embedding dimensionDE=1, a time delay =1
and a threshold level of =10% of the maximum rescaled distance between embed-
ded vectors of each sequence. The rest of the sequences where embedded according
to the stylized facts on the reconstruction of their phase space dynamics (Zbilut and
Webber [69]; Sprott [60]; Webber and Zbilut [67]; Marwan [44]). The above results
agree with the typology and texture classification criteria as outlined in Section 2. In
Figure 2 we can also see very clearly the differences between the recurrence plots of
the simulated processes and the Industrial Production Index, which exhibits a high
level of deterministic dynamics.

Visual inspection of all recurrence plots confirms the story of the RQA results
as discussed in the previous paragraph and tabulated in Table 1. In Figure 1, the un-
thresholded plots show a wealth of complexity of dynamics in all macroeconomic
sequences. Detailed examination of the plots revealed that outliers were reported by
the recurrence plots in all macroeconomic sequences with similar time signatures.
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These refer mainly to the financial oil crises of the 70’s, strongly evident in the CPI
recurrence plot as light colored vertical and horizontal segments. The unthresholded
recurrence plots are more informative. A comparison of known chaotic processes,
such as the Hénon and Lorenz sequences, with details of the plot for the Industrial
Production index, show that the latter exhibits more the characteristics of the former
than those of random sequences. Careful examination of the recurrence plots of the
macroeconomic sequences revealed that they were replete with small diagonal seg-
ments which could imply the presence of strong quasi-periodic components in their
data generating processes. However, we should point out that the macroeconomic
sequences we examine are monthly time series, thus even small parallel segments to
the main diagonal are of crucial importance for the classification of the observed dy-
namics. Series with a finer resolution, such as daily stock index returns, reveal more
details as we can see in Figure 3. There we can easily discern the diagonal lines of
some length, which may imply strong non-linear determinism present in the FTSE
index returns.
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Fig. 3.A detail of a thresholded recurrence plot for daily FTSE all share returns since 1/1/1970
(8192 daily observations).

Interesting features presents the high-dimensional Mackey-Glass (MG) equation
as studied in Kyrtsou and Terraza [40]. In our simulation the following discrete form
is used:

xt = 2.1
xt−1

1+ x30
t−1

−0.05xt−1. (13)
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As it can be seen in Table 1, for a MG simulated process as in equation (13),
we obtain high levels for determinism and entropy. The addition of noise to the de-
terministic sequence perturbs the initial results. Adding a heteroskedastic stochastic
part in the first equation we get the noisy Mackey-Glass model (noisyMG), orig-
inally proposed by Kyrtsou and Terraza [40]. The radical change in the empirical
findings, when heteroskedastic noise is present in process MG, could mean that in
reality the underlying deterministic structure is more complex. As a first attempt to
identify such structures, we simulate a heteroskedastic MG with additive seasonality
(s-noisyMG). Looking again at Table 1 we observe that the RQA measures for s-
noisyMG take values which are closer to those obtained for the US macroeconomic
series. This may imply some qualitative resemblance in the gata generating processes
of our simulated time series and the original macroeconomic sequences.

The message that recurrence plots deliver is that the sequences are characterized
by complex dynamics. The extent to which this complexity may imply chaos can be
assessed by the RQA results of Table 1 which suggest the presence of strong nonlin-
ear determinism. However to maintain the hypothesis of chaos, while our results do
not refute it, a more rigorous empirical framework is suggested (Kantz and Schreiber
[36]; Abarbanel [1]; Kyrtsou [39]; Antoniou and Vorlow [4]), combining RQA with
statistics based on invariant measures and a statistical hypothesis testing framework
(Theiler et al. [63]).

4 Conclusions and Future Research

In the previous section we presented RQA results on a set of macroeconomic time
series from the US economy. As the RQA measures suggest,the macroeconomic
sequences are characterized by a nonlinear dynamic structure that could even be
considered to be chaotic. The significant levels of determinism imply nonlinear pre-
dictability whereas there is also a strong indication of the presence of complex cycles
and laminar states. The existence also of high-dimensional underlying dynamics can-
not be excluded. The comparison of the results on real data and simulations reveals
that macroeconomic variables behave more complexly, rather like either chaotic or
noisy chaotic sequences than pure random signals. This is also corroborated by the
visual information provided by the recurrence plots. The above results can be re-
garded a step bringing us closer to understanding economic dynamics as highly com-
plex and possibly chaotic. While we do not exclude the existence of chaos, its ver-
ification in our case should involve a more rigorous investigation, possibly utilizing
a Monte-Carlo statistical hypothesis testing framework. Such an exercise could be
realized by employing Surrogate Data Analysis (Theiler et al. [63]) which allows to
test for the presence of “weak” chaos and the absence of linear stochastic dynamics.
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