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Abstract. This paper is concerned with methods of three-way two-mode multi­
dimensional scaling which were developed for the joint analysis of a number of 
promities matrices. The classification of these methods into trilinear and quadrilin-
ear models (Kruskal (1983)) is outlined, and it is shown, that a number of specific 
properties and interpretations are associated with this classification the methods 
within each class have in common. Finally, relationships of the methods within and 
between the two model classes are outlined. 

1 Introduction 

Models and methods of three-way two-mode multidimensional scaling were 
developed for the analysis of individual differences in the representation of 
proximities. In the following, the scalar product form of the models will be 
outlined. The input data consist of a three-way data matrix X = {^ijj')^ 
i = 1 , . . . , / , j , j ' = 1 , . . . , J , that can be thought of as comprising a set of 
/ ( > 2) J X J scalar products matrices. Xi, a slice of the three-way matrix, 
consists of estimated scalar products between objects j , j ' and they represent 
the co-occurrence of objects under the point-of-view of an individual or a 
condition i. Obtained proximities estimated by a specific individual i may be 
transformed into scalar products by the procedures described by Torgerson 
(1958). 

Three-way scaling models may be classified into those which rest on a 
trilinear or a quadrilinear decomposition of the data (Kruskal (1983)). Asso­
ciated with the type of decomposition are different assumptions on the nature 
of individual differences. 

2 Trilinear scaling methods 

Trilinear approaches assume that there is a common space which underlies 
the objects in general. Thus, different subjects are presumed to perceive or 
judge stimuli on common sets of dimensions. On the basis of the common 
object space, it is assumed that individuals may distort the object space in 
their perception by attaching different importance or weights to the object 
dimensions than others do. The basic equation is given by 

F 

/ = 1 
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where F denotes the number of dimensions, or, equivalently, 

X = AFI{B'F ®B'F)^-E (2) 

where / denotes the three-way identity matrix, Ap is a / x F matrix with 
the weights or saliences of the subjects on the F dimensions, reflecting the 
subject space, and Bp is a J x F matrix representing the common object 
space. The Cijj' are the errors of approximation collected in the three-way 
matrix E and (g) denotes the Kronecker product. 

A very compact representation of trilinear models is obtained if the values 
of a subject i in the subject dimensions are arranged in a diagonal F x F 
matrix Ai. This yields the expression 

Xi = BpAiBp + Ei 

where Ai contains the dimensional weights under the point-of-view of subject 
i. Applying the individual weights to the common object space Bp yields the 

object space specific to the individual, Yi = BpAf. 
The most prominent trilinear model is the INDSCAL approach proposed 

by Carroll and Chang (1970). To fit the model to a given three-way data 
matrix, an alternating-least-squares algorithm is used. 

Recently, two methods termed "SUMM-ID 1" and "SUMM-ID 2" (Kro-
lak-Schwerdt (in press); Krolak-Schwerdt (1991)) were introduced where 
SUMM-ID 1 rests on the same model equation as INDSCAL, but uses another 
method to decompose the data matrix according to Equation (1). Basically, 
the method uses a three-way generalization of the centroid approach such 
that dimensions correspond to the centroids of the data. The central feature 
of the method is to base the object dimension bf on the introduction of sign 
vectors Zf for the objects j , Zjf G {—1,1}, and, in an analogous way, to base 
the subject dimension a/ on sign vectors Sf for individuals i, Sif G {—1,1}, 
where 

^ ^ ^ SifZjfZj>fXijj> = 7 / := max . (3) 

i 3 J' 

The vectors Zf and Sf are the basis for the determination of dimension 
a/ and 6/ in the following way: 

^if = - ^ '^if , where mj = Y.j Hj' ^jf^j'f^ijf . 

^jf = - ^ ^Jf ' where Qjf = J2i J2r ^ifZj'fXijy , (4) 

and 7/ = Y.i ^ifUif = E j ^jfQjf • 

In the equations, the scalar 7/ is a normalizing factor. After the determi­
nation of af and bf in this way, the procedure continues in computing the 
residual data x*- •, = Xijj^ ~^if^3f^3'f ^^^ repeating the extraction of dimen­
sions according to (3) and (4) on the residual data until a sufficient amount 
of the variation in the data is accounted for by the representation. 
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As Equation (3) shows, the values of the sign vectors Zf and Sf are deter­
mined in such a way that the sum of the data values collected in a dimension 
will be maximized. To compute the sign vectors, an algorithm is used that 
alternates between the subject and the object mode. That is, given the sign 
vector of one mode, multiplying the data matrix (the residual data matrix, 
respectively) with this sign vector yields the signs of the other vector. This 
is due to the cyclical relation between the modes 

E i E j E j - Sif^jfZj'fXijf = E i Sif^if = Y.i I '^if I 
= Ej- ^jfQjf = Ej I Qjf 1 = 7 / , 

which also motivates the definition of the normalizing factor 7/ in Equation 
(4). The relation between the modes is used in the SUMM-ID algorithm by 
iteratively fixating one vector and estimating the other vector until the values 
of both sign vectors have stabilized. The procedure was first introduced by 
Orlik (1980). 

3 Quadrilinear scaling models 

Quadrilinear models share the assumption of the common object space with 
trilinear approaches. Furthermore, they assume that individual representa­
tions of the object space are distortions of the common object space. How­
ever, these distortions are more complex than in trilinear models. Besides the 
introduction of differential weights attached to the object dimensions, it is 
assumed that individual representations may be rotated versions of the com­
mon object space in which independent dimensions may become correlated. 

The basic equation of the approaches can be expressed as 

M P P 

m = l p = l p' = l 

A matrix formulation of the model is 

X = AG{B' (8) B') -h E, (6) 

The coeflftcients aim and bjp are the elements of matrices A and 5 , the gmpp' 
are the elements of a three-way core matrix G (cf. Tucker (1972)). A is a 
I X M matrix with the coefficients of the subjects on M dimensions. 5 is a 
J X P matrix specifying an object space which is common to all subjects. 

A more compact matrix representation is 

Xi = BHiB' + Ei (7) 

where the i7^, termed 'individual characteristic matrix' (cf. Tucker (1972)), 
is a linear combination of the M frontal slices, Gm-, of the core matrix 

M 

Hi = 2_^ CiimGm (8) 
m = l 
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Thus, Hi is a, P X P symmetric matrix designating the nature of individual 
i^s distortion of the object dimensions. Diagonal elements hppi of Hi cor­
respond to weights applied to the object dimensions by individual i, while 
off-diagonal elements hpp'i indicate the perceived relationships among the 
object dimensions p and p' under the point-of-view of individual i. As Equa­
tion (7) shows, the matrix Hi transforms the common object space into the 
individual representation. 

The most prominent model of this type is the Tucker (1972) model which 
uses normalized principal components of scalar products of the data to derive 
the dimensions both in the subject space and in the object space. More 
precisely, writing the three-way data matrix as an ordinary two-way matrix 
X(/), X(/) G R^^^'^ ^ by making use of combination modes (Tucker (1966)), 
A consists of the eigenvectors of X(/)X/jx. In an analogous way, B consists 
of the eigenvectors of X^j^X'^jy X(j) G R'^^^'^. Kroonenberg and De Leeuw 
(1980) developed an alternating-least-squares algorithm to fit the Tucker 
model to a given three-way data matrix. 

SUMM-ID 2 also rests on Equation (5). The model derives from its tri-
linear counterpart SUMM-ID 1 in the following way. It involves a rotation 
of the common object space 

B = BFT , (9) 

where the orthonormal transformation matrix T evolves from the singular­
ly 

value decomposition Bp = KA^T\ 

Analogously, the subject space is rotated 

A = ApV (10) 

with the orthonormal transformation matrix V deriving from the singular-

value decomposition Ap = LA^V, Inserting the rotated matrices into the 
model equation from SUMM-ID 1, that is 

X = AF 

= A 
= A 

I {B'p ® B'p 
V'I{T ® T) {B' ® B') 

G {B' (g) B') 

)+E 
+E 
+E 

yields the final representation that was introduced in Equation (6). 
As a very general approach, IDIOSCAL (Carroll and Chang (1970), Car­

roll and Wish (1974)) introduces a symmetric positive definite matrix Ci into 
the model equation Xi = B dB' in order to allow for idiosyncratic rotations 
of the object space for different individuals. The central question within the 
model is how to decompose Ci. Two diflPerent ways of decomposing Ci have 
been proposed (cf. Carroll and Wish (1974)). 

One procedure is given by Ci = TiAiT^, with Ti orthonormal and Ai a 
diagonal matrix. Geometrically, the decomposition consists of an orthogonal 
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rotation to a new coordinate system for subject i and a rescaling or weight­
ing of dimensions of this new coordinate system by the diagonal entries of 
Ai. By this procedure, IDIOSCAL becomes equivalent to the SUMM-ID 2 
formulation with the extra constraint in IDIOSCAL that individual spaces 
for subjects consist of orthogonal object dimensions. The second procedure 
is the one introduced by Tucker (1972). In this case, IDIOSCAL becomes an 
identical account to the Tucker model (cf. Kroonenberg (1994), Carroll and 
Wish (1974)). 

4 Properties of trilinear and quadrilinear models 

Associated with the classification into tri- and quadrilinear decompositions 
are specific properties the models within each class have in common. Perhaps 
the most important feature of trilinear models which is common to INDSCAL 
and SUMM-ID 1 is the 'intrinsic axis property' (Kruskal (1983)). That is, the 
dimensions of the object space BF and of the subject space Ajr are uniquely 
determined up to a joint permutation of the columns of the two matrices, 
and up to a scaling of the columns of the two matrices. Thus, both accounts 
provide solutions where the rotational position of dimensions is fixed. 

Another special feature of trilinear models is that the number of dimen­
sions in the subject space and the object space must be the same. In other 
words, one set of dimensions is extracted from the data matrix which then 
specifies the dimensionality F in both spaces. 

Furthermore, both in INDSCAL and in SUMM-ID 1 the dimensionality of 
AF and Bp is very high. For data forming a three-way array of size I x J x J 
the number of dimensions necessary to reproduce the data is larger than 
min{I^J) (cf. Kruskal (1976, 1983)). This implies that the dimensions are 
generally oblique and may become even linear dependent. 

With respect to formal characteristics, quadrilinear models are different 
in nature. As has already been stated, these models introduce additional 
parameters by means of the core matrix G which have to be estimated along 
with the other unknown parameters in A and B. Thus, these models are 
more general formulations than trilinear approaches. As a consequence of 
using singular-value-decomposition either to extract dimensions or to rotate 
spaces, quadrilinear models retain rank properties of one-mode methods. 
That is, the number of dimensions does not exceed the number of subjects 
or objects and dimensions are always orthogonal. 

Furthermore, as another consequence of the introduction of the core ma­
trix, both the subject space and the object space are subject to rotations. 
Specifically, postmultiplication of the matrices A and B by orthonormal 
transformation matrices does not affect the model estimates provided that 
the core matrix is counter-rotated. Thus, these models are not uniquely iden­
tified. Another property due to the introduction of the core matrix is that 
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the dimensionality M of the subject space may differ from the one of the 
object space which is P. 

5 Connections between three—way scaling methods 

As has been outlined above, trilinear and quadrilinear methods have very 
different properties. Thus, connections between these models have been found 
under rather restrictive conditions only. That is, the Tucker model becomes 
algebraically equivalent to INDSCAL if the core matrix can be diagonalized 
(Kroonenberg (1983), Carroll and Wish (1974)). However, there exist more 
general relations in that the quadrilinear models can be derived from trilinear 
methods by the SUMM-ID approach even in the case of unconstrained core 
matrices. These model connections will be outlined in the following. 

SUMM-ID has some very close model relations to INDSCAL and the 
Tucker approach. The relationship to INDSCAL refers to SUMM-ID 1 and 
will be presented first in the following. Subsequently, the connections of 
SUMM-ID 2 to the Tucker model will be outlined. 

To present the relationship between SUMM-ID 1 and INDSCAL, the 
triple product of the matrices Ap and Bp will be denoted in a more com­
pact manner (cf. Kruskal (1976)) by [AF,BF,BF\, that is ApIiB'p.® B'p.) = 
[AF, BF, BF]^ In the following, the SUMM-ID 1 will be termedJ^F, BF, BF] 
and the INDSCAL representation will be referred to by [A, B, B]. Theorem 1 
states the relationship between the two models (cf. Krolak-Schwerdt (1991)). 

Theorem 1. Suppose that X = [A^B^B] is of minimum rank R such that 
R = rank{X). Then jR = F , and there exist two permutation matrices PA 
and PB and two non-singular diagonal matrices DA and DB such that 

'A = AFPADA and ^ = BFPBDB where 

[PADA,PBDB,PBDB]=L 

As Theorem 1 states, the number of dimensions F of the SUMM-ID 1 rep­
resentation is the same as the dimensionality of the INDSCAL representation. 
Furthermore, from the SUMM-ID 1 configuration the INDSCAL dimensions 
in both the object and the subject space may be derived by simply permuting 
and rescaling the dimensions where the effects of permutation and rescaling 
in the two modes compensate each other. 

If the standard procedure of INDSCAL to scale the dimensions (that is, to 
normalize the object space so that the variances of projections of objects on 
the several dimensions are equal to one and to compensate the normalization 
in the object space by multiplying the weights in the subject space by the 
reciprocal scaling factors) is applied to the SUMM-ID 1 representation in 
this way, then SUMM-ID 1 and INDSCAL simply differ in the sequence in 
which the dimensions are extracted. Thus, both accounts create equivalent 
representations although they use a very different rationale and method of 
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analysis. Stated in other words, INDSCAL may be derived from SUMM-ID 1 
by two classes of transformations, permutation and rescaling of dimensions. 

If the classes of permissible transformations on SUMM-ID are extended 
to orthogonal rotations of the subject and the object space, then the Tucker 
(1972) model derives from SUMM-ID 2 as will be shown in the following. 

The Tucker model will be denoted by X = 1 GiW (g) W). Writing the 
three-way data matrix as an ordinary two-way matrix X(/), X(7) e R^^'^'^, A 
thus consists of the eigenvectors ofX(^j^Xij^ and B consists of the eigenvectors 
of X(j)X(^), X(j) G R^''^'^ (cf. Section 3). 

For the SUMM-ID 2 model X = AG{B'®B'), the three-way core matrix 
G will be represented as an ordinary two-way matrix in the two different 
forms G(M), G(M) e R^""^^, and G(p), G^p) G i ? ^ ^ ^ ^ . 

To present the relationship between SUMM-ID 2 and the Tucker model, 
the SUMM-ID 2 representation is rescaled according to the reasoning of 

1. 

the Tucker model. That is, the object space matrix B = KA% as well as 
the subject space matrix A = LA\ are normalized so that the variances of 
projections of objects (of subjects, respectively) on the dimensions are equal 
to one. This yields K in the object space and L in the subject space. To 
compensate the normalization, the core matrix is rescaled in a reciprocal 

manner, that is, Z \ | G ( M ) ( ^ | ( 8 ) ^ | ) := ^ ( M ) or A\G(^p){A\® A\) := Z(p). 
With this normalization. Theorem 2 states the relationship between SUMM-
ID 2 and the Tucker model (cf. Krolak-Schwerdt (1991)). 

Theorem 2. Suppose WA consists of the eigenvectors of Z(^M)^[M) ^^^ 
WB consists of the eigenvectors of Z(p) Z/px. Then 

I^LWA. B = KWB and 

G^M) = W'AZ^M){WB^WB). 

As Theorem 2 states, the Tucker model derives from SUMM-ID 2 by two 
transformations which consist of rescaling the SUMM-ID configuration and 
subsequently rotating the configuration orthogonally. The rescaling step in­
volves normalizing the length of dimensions in the subject and in the object 
space as well as weighting the elements of the core matrix with the corre­
sponding variances of the dimensions. The eigenvectors of the weighted core 
matrix constitute orthogonal rotation matrices which map the SUMM-ID 
2 dimensions onto the Tucker configuration in both modes. Furthermore, 
the Tucker core matrix is obtained from orthogonally counter-rotating the 
rescaled SUMM-ID 2 core matrix. 

6 Concluding remarks 

Although differing in formal properties, there exist some general relationships 
between trilinear and quadrilinear models for three-way data analysis. The 
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latter methods can be derived from the trilinear class without restricting the 
core matrix to a diagonal form. 

In sum, SUMM-ID appears as a unifying account which establishes these 
connections and which may easily emulate other three-way multidimensional 
scaling representations, each by two transformations. To derive INDSCAL, 
the SUMM-ID 1 representation must be rescaled and dimensions must be per-
mutated. To obtain the Tucker (1972) model, the rescahng of the SUMM-ID 
2 representation must be followed by orthogonal rotations of the configura­
tion. Prom this it is directly evident, that IDIOSCAL may be obtained from 
SUMM-ID 2. 

Finally, it should be noted on more practical grounds that the estimates 
from SUMM-ID are computationally quite efficient and fast to obtain in 
terms of CPU time as compared to alternating-least-squares algorithms. 

Another aspect of importance in applied research concerns the interpre­
tation of the core matrices. Within the Tucker model the eigenvalues of di­
mensions obtained in both modes are connected with the core matrix which 
makes the interpretations of the values of the core matrix rather difficult 
(cf. Kroonenberg (1983)). In contrast, the core values in SUMM-ID 2 were 
defined as 

Qmpp' ^^ ^ m - ' V^P ^ ^p') ^^ i'^m^'p^p'\ 

with unit length vectors Vm^tp and tpf. This corresponds to the three-way 
generalization of the standard scalar product. Thus, in SUMM-ID 2 values 
of the core matrix have a much more specific meaning in terms of interrela­
tions between dimensions which makes the model parameters more easy to 
interpret. 
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