
6. Scattering of X-Rays by Very Small Bodies 

6.1 Small-angle Diffuse Scattering 
When monochromatic X-rays are passed through very small particles, normally of the order 
of 10 to 2,000 A or through a body containing zones of non-uniform density of about this 
size, a diffuse scattering pattern generally results within a very small range of angles around 
the incident direction (Fig. 6.1). Since the scattering is dependent upon the geometrical 
structure of the minute inhomogeneous zones, it is possible to establish the size, shape, state 
of aggregation, etc. of the small particles by analysis of the scattering pattern. This scatter­
ing differs in principle from diffraction, but is sometimes accompanied by diffraction due to 
normal Bragg diffraction (Section 4.1) and characteristic long repeat distances which can 
occur at very small angles. Since it is frequently impossible to distinguish unambiguously 
between these two contributions the term "small-angle scattering" is generally applied, 
without distinction, to them both. 

In this section we attempt no more than an elementary explanation of the principle, an­
alytical methods, and applications of small-angle scattering in the strict sense. If considera­
tions of space did not preclude it, it would still be out of place in what is intended as a 
primer for experimental workers: the difficult theory and considerable overlap with other 
X-ray experimental methods have led the authors to refer the reader, instead, to the litera­
ture cited and to suitable textbooks for details. 

Small-angle scattering is produced by substances containing small zones of non-uni­
form density which may be linear, planar, or particulate. The phenomenon has a remark­
ably wide application to the measurement of small particles, particularly in comparison 
with other physical methods. Thus, the breadths of the Debye-Scherrer rings are used in 
well-known method for the investigation of crystalline powders, and measurement methods 
based on viscosity, light scattering, osmotic pressure, surface tension, centrifugation, and 
electron microscopy have all been widely used for colloids and high polymers. However, 
these methods are all to some extent limited by the necessity to prepare the sample: X-ray 
small-angle scattering, on the other hand, has the very important advantages that the sample 
may be liquid, solid, crystalline, amorphous, or a mixture of these, and may take the form 

(a) (b) bi) b2) b3) 

Fig. 6.1 X-ray small-angle scattering patterns, (a) With slit system, carbon black (c/. Fig. 15.1). 
(b) With pin-hole system, bi) Polyethylene (undrawn), isotropic, central diffuse scattering. 
hi) Curdlan(or p-(l—•3)-D-Glucan), (draw direction vertical), diffuse scattering along the equator, 
bs) Polyurethane, (draw direction vertical), merridional small-angle scattering and wide-angle 
diffractions on the equator. [Reproduced from K. Hess, H. Kiessig, cited by R. Hosemann, in 
"'Zur Struktur und Materie der Festkorper", p. 137, Deutsch. Mineral. Ges. (1951)] 
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of minute inclusions or voids. It also requires no special preparation of the sample, and is 
essentially non-destructive. Nevertheless, the method is not a simple panacea for all prob­
lems of small particle analysis: as with so many physical measurements, the legitimacy of 
an interpretation can only be established by checking very carefully the connection between 
theory and results (and the purpose for which they were obtained). 

6.2 Small-angle Scattering Theory 
The principles of X-ray small-angle scattering were established as early as 1930, and by 
about 1938, Guinier,^^ Kratky,̂ ^ and Hosemann^^ had developed a quantitative treatment and 
shown how this scattering could be used. Further progress has been made since then as a 
result of various investigations into the problem of mutual interference based on differences 
between aggregations of particles, as well as into analytical methods and types of experi­
mental equipment. 

6.2.1 X-ray scattering by a substance of any structure 
As summarized in Section 5.4, Eqs. 5.39 to 5.43 clearly show that, the central diffuse small-
angle scattering is observed regardless the cohesive state of the substance, i.e. liquid, amor­
phous, crystalline, or paracrystalline, and in the case of crystalline or paracrystalline state 
the small-angle scattering is observed associated with each diffraction spot. 

The other important conclusion obtained at the same time is that the intensity of the 
small-angle scattering depends upon the magnitude of l < A > P (or I F P for crystal or 
< I F I > ^ for paracrystal). This means that voids in substance can also give small-angle 
scattering as well as particles (Fig. 6.2)."̂ ^ Particle-like density heterogeneities in substances 

(a) (b) (c) (d) 

( a ' ) ( b ' ) (c') (d' 

Fig. 6.2 Random assemblies of spherical particles.'̂ ^ 
(a) Dilute system of identical particles; (b) Densely packed system of identical particles; (c) Dilute sys­
tem of non-identical particles; (d) Densely packed system of non-identical particles, 
(a'), (b'), (cO and (dO Complimentary system of (a), (b), (c) and (d), respectively. 
[Reproduced with permission from X-Ray Crystallography, (I. Nitta ed.). Vol. II, p.519, Maruzen 
(1961)] 
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such as precipitation in alloys (Guinier-Preston zone) and inclusion in the matrix lattice of 
grain with a different lattice but with the same composition (Fig. 6.3^ )̂, also can give cen­
tral diffuse small-angle scattering. Their intensities depend upon the electron density dif­
ference between void and matrix and that between the precipitation and matrix. This fact 
leads to the development of the "contrast variation method" (Section 6.2.2D). 
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Fig. 6.3 Inhomogeneities in substance.^* 
(a) Precipitation of foreign atoms; clustered without lattice deformation. 
(b) Inclusion in the matrix lattice of a grain with a different lattice but with the same composition. 
[Reproduced from A. Guinier, G. Fournet, Small-Angle Scattering ofX-Rays, p.201, John Wiley & 
Sons, Inc. (1955)] 

6.2.2 Small-angle scattering from systems of dilutely dispersed particles 
(or voids)̂ ^ 

The small-angle scattering intensity by one particle with uniform density, po. can be written 
as (c/Eq. 5.14a) 

7(5) = hp^ I S(S) P 

where the shape factor 

and then 

S(S) : J exp(2;rj(5-r))dv. 
particle 

(6.1) 

(6.2) 

m = hpJ I S(S) P = hpJ V nS) = hn' nS) (6.3) 

where I 5(5) P = V^ *F(5), ^(5) is the scattering function of the particle and n(= VpJ} is the 
number of electrons in a particle, respectively. 

If the shape of the particle is known as, for example, parallelepiped, sphere, ellipsoid of 
revolution, cylinder, etc. based on the theoretical equation for the three-dimensional particle 
shape, the scattering function can be obtained analytically or at least by numerical calcula­
tion. Some examples of the scattering functions are given below. 

A. Globular particles 
a) A globular particle fixed in a space. 

1) A spherical particle of uniform density with radius R. This is the simplest case, and 
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^WisR) 

Mean asymptotic curve 

^ V v ^ ^ Exponential approximation 

Fig. 6.4 Scattering intensity from a sphere of radius R, W{sR)}^ 
The curve is drav^n with different scales for the various ranges of sR{X 10̂ ^ for 4 <sR< 10; X 10^ 
for sR > 10) (s = iTtS, S =(2sin0)/A = lO/X = elX). 

Exponential approximation: exp j >; mean asymptotic curve: - 4 . 

[Reproduced from A. Guinier, G. Foumet, Small-Angle Scattering of X-Rays, p.20, John Wiley & Sons, 
Inc. (1955)] 

the scattering function has been given by Rayleigh^^ (Fig. 6.4), 

W(S) =0\2nSR) 

sinjlnSR) - (27j;SR)cos(27rSR)' 

{iKSRf 

9 ^ 
2 

Jy2(2nSR) 

{2KSRf (6.4) 

2) A rectangular parallelepiped with three edge lengths of a, b, and c.̂ ^ We assume 
that the a, b, and c edges of the parallelepiped are parallel to the x, y, and z axes, respective­
ly (Fig. 6.5), and that the y axis is parallel to, and the x and z axes perpendicular to the inci­
dent X-ray beam, and that three components of S, the ^, r\ and ^ axes are parallel to the x, y, 
and z axes, respectively. 
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Film 

Specimen 
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Fig. 6.5 Small-angle scattering from a fixed parallelepiped. 

Then, the scattering function is given 

"FiS) = »F((? 71 0 = -^^^'^^^^^ sin^nrib) s i n ' « c ) 
(6.5) (K^af {KTlbf {Kl^cf 

This equation indicates that the diffuse small-angle scattering appears along the ^, r\ and f 
directions with the broadening of \la, lib, and 1/c, respectively. As the X-ray incidence is 
parallel to the y (or b) axis the scattering diagram observed corresponds to the E,C, section of 

If the particle is a crystal, this small-angle scattering associates with all the reciprocal 
lattice points: the resultant is the Laue diffraction function (Eq. 2.38 and Fig. 5.12). 

3) A globular particle with any shape at a fixed position (Guinier's approximation).^^ 
In general, the shape of the particle is unknown or is so complicated that it is difficult 

to express its shape by analytical equation in order to obtain the scattering function. In such 
a case, the only information obtainable about the magnitude of the particle is the radius of 
gyration, Rg of the particle with respect to its center of gravity. 

Taking the y axis again parallel to and the x and z axes perpendicular to the incident X-
ray beam, and the origin at the center of gravity of the particle, the scattering observed on 
the xz plane is, since r] = ^ = 0, 

S{^, 0,0) = J exp(2;r/(̂ jc)djcd3;dz (6.6) 

As the scattering angle is small and therefore t, is small, the exponential function in Eq. 6.6 
can be expanded by a series. 

5((^,0,0)=j(l+2;r/<?jc-2;r'(?V + ...)djcd3;dz (6.7) 

The second term in Eq. 6.7 is zero by integration since the origin is taken at the center of 
gravity of the particle. If we write 
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R,^ = -jx^6xdydz yj (6.8) 
the scattering intensity is 

= hn^expi-47u'R.'^') (6.9) 

and 

log I(^, 0, 0) = log[/en'] - 4;r'/?x'f (6.10) 

The tangent of the log / vs. ^ plot in the neighborhood of (̂  = 0 gives the value of R^ and 
hence if the particle shape and the orientation of the particle with respect to the x and z axes 
is known the tangent gives an information on the particle size, (c/ Fig. 6.7 and also Table 5 
in the Appendix). 
h) Globular particles with random orientation. 

1) Spherical particles with radius R. The scattering function ^(S) shows no change 
from that given by Eq. 6.4, since the sphere shows no directional difference in shape, and 
the small-angle scattering intensity of a spherical particle is:̂ ^ 

< I(S) > = I(S) = W nsy (6.11) 

ns)=\ sinjlKSR) - (27rSR)cos(2nSR)^^ 

{InSRy 

If the specimen is a dilute system consist of M identical particles the intensity given in the 
above equation must be multiplied by M. 

< I(S) > = h Mn^^(S) (6.1 la) 

The scattering function ^{InSR) vs. IKSR or "FisR) vs. sR (where, s = 2KS and S ^ 2011 = 
elX (for very small angles)) is shown in Fig. 6.4,̂ ^ which is compared with its exponential 
approximations (cf. Fig. 15.5). 

2) Ellipsoids of revolution with axial lengths of 2a, 2a, and 2wa (axial ratio w = 
bla).'^ 

< I(S)> = hMn^j^'^xi/(27rSa^{cos^ O + w^ sin^ 0) )cos^d0 (5 12) 

The scattering curves for ellipsoids of revolution with various axial ratios w are shown in 
Fig. 6.6.̂ ^ The log I(S) vs. log S (or log /(e) vs. log e, etc.) plot of the scattering curve (log-
log plot) is often used to obtain a rough information on the overall shape of the particle 
(curve-fitting method cf. Section 15.2.2) 

3) Globular particles with any shape. If the orientation of particles is not fixed, Eq. 
6.7 must be averaged for all orientations of particles. The summation of the R^^ and its 
analogs along the y and z axes gives the square of /?g, the radius of gyration with respect to 
the center of gravity (Guinier's approximation). 
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Fig. 6.6 Theoretical scattering curves for ellipsoids of revolution with various axial ratios w.'̂  
(a) Scattering function •f vs. {sRf, (b) Log-log plot derived from (a) where sR = IjtSR = IneRll. 
[Reproduced from A. Guinier, Ann. Phys. (Paris), 12, 161, Masson et Cie. (1939)] 

R^^+Ry^+R,^ = -l(x^+y^+z^)dxdydz = Rs (6.13) 

For random orientation all the averages of R^^, 7?ŷ  and Rz^ are equal, and < R^^ > can be 
written equal to Rg^/3. 

< nS) > = e x p [ - 4;r'/?g'5V3] 

< I(S) > = h Mn'exp[ - V/^g'^VB] 

log < I(S) > - log(/e Mn^) - 4;r'/?g'5'/3 

= log[/(0)]-4;r'/?g'SV3 

(6.14) 

(6.15) 

(6.16) 

(6.16a) 

If we plot values of log I{S) against S^ (experimentally, log 1(e) vs. e^\ e = 26: scattering an­
gle) we can obtain a straight Hne in a small S (or e) region^^ (Guinier plot. Fig. 6.7), and we 
can easily determine the value of Rg from its slope, a ( = — An^Rg^BX'^) (Section 15.2). If 
the shape of the particles is known, information about the particle size will be obtained. 
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(a) 

Scattering angle, e 

= /(0)exp(- 4K' 
RW (b) log/ = log/(0) -fx2-/?le' 

Fig. 6.7 Small-angle scattering curve and Guinier plot (e: scattering angle). 

B. Rod-like particles ^̂  
a) A rod-like particle fixed in a space. If the long axis of the rod (length H) is parallel to 
the z axis {cf. Fig. 6.5), the scattering function is 

5(^,r],0 = \\f\ exp[2;r/((?x+r7y+C )̂](kd>dz 

(6.17) 

For the scattering observed on the ^^ plane, r] = 0, and by the approximation for the small-
angle Eq. 6.17 can be written as 

5(1,0,0 = //^'"(^y)ffexp[2;ri|x]dxdy 

and then 

1(^,0 = hMrf 
sin^ {KHO 

exp[-4;r',?'/?xq'] 

where, A is the transverse sectional area of the rod, V = HA, and 

R,^^=\\\x^6xdz 

(6.18) 

(6.19) 

(6.20) 

If H is large {i.e. the rod is long), the small-angle scattering intensity concentrates in the 
neighborhood of the ^ axis to give a streak along the | axis, of which the integral breadth is 
\IH. 
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b) Identical rod-like particles, of which all the long axes are parallel to the z axis but 
their transverse sections are randomly oriented. 

Average R^^ is 

</?xq'> = V / 2 (6.21) 

where, /?gs = is the radius of gyration of the section perpendicular to the long axis of the 
rod, and 

R,^ = -\{x^+y^)(^x&y 

and the small-angle scattering intensity on the ^ axis is 

7(5) = /e M^'exp[- 2 ; r ' 5X ' ] 

log I{S)= log[/e Mn^]- 27eS%s^ 

(6.22) 

(6.23) 

(6.24) 

The Guinier plot of the equatorial small-angle scattering gives the radius of gyration of the 
section, Rg^ of the rod-like particle (cf. Fig. 6.8(a) and Section 15.2.2). 

(a) (b) 

Fig. 6.8 Guinier plot of log(e • /)(= loghi) vs. e^ for /?gs and log(e^ • /) vs. e^ for Rgd. 

c) Randomly oriented rod-like particles (1/H < 5 < l/R, H: length, R: radius of the section), 
1) General case. 
The scattering intensity concentrated on the ^rj plane (Fig. 6.5) is dispersed for all 

directions and the intensity given by Eq. 6.23 is weakened by the factor 1/(25//) 

<I{S)> = hMn^ -J—exp[-2;r'/?gs'5'] 
2SH (6.25) 

and 

\og[S< I(S)>] = Const.- Ijf Rg,^S^ (6.26) 

As special cases, the scattering intensities from uniform cylindrical particles and from 
rods of infinitesimal transverse dimensions are given in the following formulae. 
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2) Cylinders of revolution of diameter 2R and length H^^^ 

rnnsin^iTtSHcosO) 4Ji\27tSRsme) . 
< I{S)> = hMn^j^ 

Jo (TtSHcosOf (iTTSRsinOf 

3) Fibers of extremely small radius and length //̂ o-i2) 

'SiilnSH) sin^KSH)' 

sinOdO 

<I{S)> = hMn' 
nSH 

where 
{nSHf 

(6.27) 

(6.28) 

•X s m t Si{x) = l -

C. Disc-shaped particle {IIH >S> IIRT 
The scattering intensity concentrate in the direction perpendicular to the disc plane. 
a) A disc-shaped particle fixed in a space. 

If the disc plane is parallel to the x axis, assuming that ^ = 0 in Eq. 6.19 

1(0 = hMn 2^n\7rHO (6.29) 

(6.30) 

b) Randomly oriented disc-shaped particles. For random orientation, the exact form of 
the small-angle scattering intensity from the flat disc of infinitesimal thickness and diame­
ter 2R is given^^^ 

<I{S)> = hMn^ 
{InSRY 

1 - -
1 

2KSR 
JI(2KSR) (6.31) 

That is, the scattering intensity to be concentrated on the ^ axis is weakened by the factor 
l/S^, and log[5'̂ /(.S)] vs. S'^ (or e^I (e) vs. £^) plot becomes linear, from its slope we can de-
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Fig. 6.9 Theoretical scattering curves for spherical, disc-shaped, and rod-like particles^\ 
R is the radius of the sphere, the diameter of the disc, or the length of the rod. The abscissa is trans­
formed as (sR)/(sR)m so that all three curves pass through the same point, which is defined as the point 
where the scattering function has exactly half its maximum value. {sR = ITTSR — IneRlX) 
[Reproduced from O. Kratky, G. Porod, J. Colloid ScL, 4, 35, Academic Press (1949)] 
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termine the thickness of the disc H (Fig. 6.8(b) and cf. Section 15.2.2B). 
In Fig. 6.9 the scattering curves for spherical, rod-like and disc-shaped particles are 

compared. ̂^ 
If we assume the overall shape of the particle to be a hollow sphere, cylinder, hollow 

cylinder, rod or other, and if we can calculate the scattering functions numerically, we can 
apply the curve-fitting method (log-log plot) to simulate the most suitable shape and size of 
the particle. 

D. Particles suspended in a medium 
If the particles are dispersed within a suspending medium and the particles are imperme­
able, the number of electrons n in Eq. 6.11 and other equations in the preceding sections 
must be replaced by the product of the difference Ap = pi — p2 between the electron densi­
ties in the two phases and the volume of the particles Vu i.e. by the effective electron excess 
or deficiency Ap Vi in the particles. 

< I(S) > = /e M(Ap Vif nS) (6.32) 

This means that increasing the electron density outside V\ is equivalent to decreasing the 
scattering intensity uniformly within the particle. In the early times Barton and Brill̂ '*̂  con­
firmed this fact experimentally for the small-angle scattering from carbon black suspended 
in aqueous solutions of inorganic salt by changing the concentration of salt. 
a) Contrast variation method}^~^^^ To obtain more information on the structure of inho-
mogeneous particles the contrast variation method is often used, especially in the field of 
neutron small-angle scattering. This method uses solvents of different electron densities. 

The contrast < Zip > is the mean difference in scattering density between the particle 
p\ and solvent pi. 

<Ap> = pi-p2 (6.33) 

where p\ and p2 are averages of pi and p2 over the volume Vu respectively. 
If we assume that within the volume Vi of the particle the electron density remains un­

changed while the surrounding solvent has a variable homogeneous electron density p^, the 
difference in electron density is then assumed to be the sum of the two terms. One de­
scribes the effect of excluding solvent from the region occupied by the particle; this term is 
directly affected by the contrast between the particle and solvent. The other term covers 
any variation within the particle (Fig. 6.10). 

< Ap{r) > = < Zip > (7i(r) + p3(r) (6.34) 

0"i(r)= 1 inside the particle and zero outside. Thus, J(Ti(r)dr = Vi. The ps is the deviation 
from the mean difference electron density < p > : it arises from any internal structure with­
in the particle. It further holds that 

J,p3(r)dr ir=0 (6.35) 

The scattering amplitude of the particle is calculated as 

A(S) = <p>Si(S) + AsiS) (6.36) 

where S\(S) and A3(S) are the Fourier transforms of 0"i(r) and psir), respectively. The scat­
tering intensity is 
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Fig. 6.10 Effect of the contrast. 
V\ denotes the volume of a particle; pu pi and ps are the densities of a particle, of the dispersion medi­
um and of internal inhomogeneity in the particle, respectively, 
(a) p\ =/= pii = 0), particle with uniform density in vacuum; (b) p\ #= pii > 0), particle with uniform den­
sity in a medium. A similar but less intense small-angle scattering(a) is observed; (c) px = pi, particle 
has the same density as the medium. No small-angle scattering is observed; (d) p\^ pi^ p3, particle 
which has internal inhomogeneity in a medium; (e) pi = p2 =̂  p3. Only internal inhomogeneities with 
density p3 give small-angle scattering; (f) pi # P2 = ps- Only inhomogeneity pi gives small-angle scat­
tering. 

I{S) = A(S)A^{S) 

= <Ap>'\ S,iS) P + < zip > I SiiS)A3{S) I + I A,(S) P (6.37) 

In Eq. 6.37, I Si(S) P is the "shape factor" of the volume Vi and can be determined by ex­
trapolation because A^iS) vanishes at 5* = 0. The square root of the scattering intensity at 
zero angle is linear in < Zip > ; and [1(0)^^ = < Zip > I 5i(0) I. I A3(S) P originates from 
P3(r) and is measurable if < Zip > = 0. I AiiS) P = 0 according to Eq. 6.35. The cross term 
I S\(S)A3(S) I establishes the correlation between I Si(S) P and I AsC )̂ P by the following gen­
eral inequality 

1 
l5i(S)A3(5)l ^ -Vl5i(5)P-IA3(5)P 

Introduction of Eq. 6.34 into the definition of the radius of gyration Rg yields 

/<Ap> 7<Ap>' ^ . ^ = ^ 3 + ^ / ^ A 0 > - ^ . A . . 2 

(6.38) 

(6.39) 
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where 

(6.40) 

(6.41) 

(6.42) 

/?3 represents the radius of gyration of a homogeneous particle and does not depend on 
<Ap>. a is the second moment of the electron density fluctuations. If the sign of a is 
positive the positive contributions dominate. (5 is an asymmetry parameter according to Eq. 
6.40. The Rg^ vs. l /< Z\p > is a straight Une if j8 = 0, and the slope of this line is a and the 
value of Rg^ at l / < Zip > = 0 is Rs\ 

The contrast variation method for X-ray small-angle scattering is performed by varia­
tions in the concentration of sugar or other low molecular weight solutes. Difficulties may 
arise from preferential interactions between solvent components and the macromolecule un­
der investigation. 

E. 5"^ Rule of scattering intensity 
As shown earlier the small-angle scattering intensity of a system of spherical particles of ra­
dius R and density p is given by Eq. 6.11, which can be written as follows as 

n^ = (pV)' = (4/3 . TtR^pf. 

AKR^ , 1 4/? . _ ^ _ 4/?' 1 P' 
'''' 8 .3 

4- — - - ^ sm{AKSR) - —— - — - cos(47cSR) 
S" KS" S' S" nS' 

(6.43) 

For sufficiently large S, the second and higher terms in the bracket can be neglected and 

,2 AD^ 

'̂ ^^ = ^ ' ^ (6.44) 

This means that theoretically the tail end (or fmal slope) of the small-angle scattering curve 
should conform to the asymptotic course for 5^.'^^ 

For the two-phase system the asymptotic value of S^I{S) is rational to the square of den­
sity difference and the area of the interface. 

lim S'^I(S) = —J (pi —p2) • (Area of the interface) (6.45) 

6.2.3 Correlation function and distance distribution function^^^^^ 

A. Correlation function 
a) Dilute particle system. The particles are randomly oriented and far from each other so 
that all the interparticle interference may be neglected. The scattering intensity is given 

<I(S)> = p'vl^ro(r)~^4KPdr (6.46) 

where 7o(r), the correlation function^ '̂̂ )̂ (characteristic function*^^ or distance probability 
function) of the particle, represents the probability that a point at a distance r in an arbitrary 
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direction from a given point in the particle will itself also be in the particle (See Fig. 5.8). 
The properties of yo{r) are: from the definition 7o(0)= 1 and jo decreases as r in­

creases. It becomes zero when r is greater than the maximum particle diameter. 

j ; W r o ( r ) d r = V = ^ j ; 5 V ( 5 ) d 5 , ĝ 47) 

and 

j ;7„ ( . )d r = ^ = ^ j ; s < / ( 5 ) > d 5 (6 48) 

< / > is the average of the diameters drawn through every point within the particle in all 
directions. 

d/o 
dr 

O 
^ (6.49) 

where O is the surface area of the particle. This relation is a consequence of the fact 
S^ < I{S) > must tend toward a constant limiting value 

lim5^</(5)> = 0 (6.50) 

as S increases. 
By Fourier inversion the correlation function 70 is obtained from the small-angle scat­

tering intensity measured. 

^"^'^ = ^ r ^ < ^ ( ^ » ^ ' " 2 ; r r S d S (^.Sl) 

b) General case. The specimen composed of matter of uniform electron density p filling 
a fraction Xi of the total volume Vo is 

I{S)=Vop'ZiX2l r(r) ^^^^ ^Ttr^dr (552) 

where X2~ ^ ~~ Xv /('') ^̂  ^^^ correlation function of the heterogeneous system, and for a 
system composed of identical particles /(r) becomes Yo{r), the correlation function of the 
particle. In the general case y(r) is defined in the following way: Let Y(r) be the probability 
that a point a distance r from another point occupied by matter is also occupied by matter. 

Then 

Yir) = x^+X2r('-) 
By Fourier inversion yir) may be obtained from the experimental data. 

The limit of the product S^I(S) is still given by (pV8;r^)Oo. (OQ: total surface area). 

B. Distance distribution function̂ "*̂  
a) Globular particles. Using the correlation function the distance distribution function 
of the particle is defined as 

p{r) = 7o(r). ^ . (6.53) 

47tp{r) represents the number of lines with lengths r, which are found in the combination of 
any volume element 7 with any other volume element k. 
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Inhomogeneous particles may have regions with positive and negative contributions to 
the p(r). 

1) Sphere. The distance distribution function of a sphere is given analytically.^°^ 

p(r) = const. • x\2 - 3x + x^) (6.54) 

where x = r/2R and R is the radius of the sphere. The maximum of the p(r) is near r = 
R(x = 0.5) (Fig. 6.11), Any deviation from spherical symmetry shifts the maximum to 
smaller r values if R is kept constant. 

100 150 200 

Fig. 6.11 Theoretical scattering function of a sphere (/?=100A, log / v .̂ sR plot) and theoretical distance distribu­
tion, p{r)}^^ [Reproduced with permission from I. Pilz et al.. Methods in Enzymology, 61, 168, 
Academic Press (1980)] 

2) Particles elongated in one direction which have a constant cross section of arbitrary 
shape. In this case, such as long cylinders and prisms, the p{r) show a linear decrease at 
large r values (Fig. 6.12). The maximum dimension of the cross section Jmax is much smaller 
than that of the particle. 

2/?/J„,ax^2.5 

The slope of the linear region is given by 

dp _A^<Pc>^ 
tana = -

dr 2K 

(6.55) 

(6.56) 
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Fig. 6.12 Distance distributions from homogeneous prisms with edge lengths of (a) 50:50:500, 
(b) 50:50:250, (c) 50:50:150.''^ 
[Reproduced with permission from I. Pilz et al.. Methods in Enzymology, 61, 169, 
Academic Press (1980)] 

A is the area of the cross section and 

pc = — \^pc{x)da 
AJA (6.57) 

where pc(jc) is the electron density in the cross section. Difference in the area of the cross 
section results in a pronounced difference in the slope from a according to Eq. 6.56. 

3) Lamellar particles. In this case, the number of distances in a plane is equal to 
Inry^if). In analogy to the distance distribution of the whole particle p(r), we define the 
distance distribution of a plane with 

Piir) = 7o(r)r = p{f)lr (6.58) 

The pxif) functions of lamellar particles with the same plane and different thickness 
t are given in Fig. 6.13. They start at r = 0 and show a rapid increase, and at a point near 
r — t begin to decrease almost linearly. The limiting value AL, of the piif) function result­
ing from the extrapolation of this quasi-linear part toward r = 0 contains information on the 
area of the basal plane of the lamella. 

^'^''-n^o^l ^^J— (6.59) 
where 

<pt> = -lp(x)dx 

The extrapolation to r = 0 is more accurate the larger the ratio of 2R/t. 
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II 

10 20 30 50 

[A] 

Fig. 6.13 Functions of lamellar particles with the same plane (100 X 100) and varying thickness t (10, 20, 30). 
The transition points are signalized by the vertical dashed lines.^" 
[Reproduced with permission from I. Pilz et al. Methods in Enzymology, 61, 170, Academic Press 
(1980)] 

Figure 6.14 gives a comparison of p{r) and/7L(r) between a sphere, a prolate ellipsoid 
and an oblate ellipsoid having the same number of excess electrons and radius of gyration. 

Fig. 6.14 Comparison of the distance distribution functions of a sphere ( ), a prolate ellipsoid of revolution 
1 :1 :3 ( ), an oblate ellipsoid of revolution 1 : 1 : 0.2 (-—) and a flat prism 1 : 1 : 0.23 (—) with 
the same radius of gyration, (a): p{r) function. 
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Fig. 6.14 (Continued) 
(b);/7L(r) function.^'* 
[Reproduced with permission from I. Pilz et ah. Methods in Enzymology, 61, 171, 
Academic Press (1980)] 

C. Distance distribution function and radius of gyration and zero angle intensity 
The radius of gyration of the particle, /?g, mentioned earlier is defined by the distance distri­
bution function, p{r). 

R. 
_ \p{r)r^dr 

~ 2j/7(r)dr (6.60) 

and the scattering intensity at zero angle, 7(0), is a constant: An times the integral of the 
p{ry. 

/(0) = 4;rj/7(r)d^ (6.61) 

D. The scattering intensity and the distance distribution function 
The relation between the scattering intensity and distance distribution of a particle is given 
by the Fourier transformation 

r/ox A r / .sin2;r5'r, . r . . sin2;r5'r , 

The corresponding relation between the scattering amplitude A{S) and the radial electron 
density distribution p{f) of a centrosymmetrical particle is given by 

A(S) = An\p{r)r 
sin27rSr 

InSr 
dr (6.63) 

Inverse transformation gives 



and from Eq. 6.63 
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/ X A f 7/OX02 sin2;r5r ,^ 
Y{r) = AK\l{S)S'^^^^S (6.64) 

p{r) = 2 j I(S) • Sr • sm(27tSr)dS (6.65) 

/ X A r A/OX o2 sin2;r5'rj^ 
p(r) = 47t\ A(S). 5^ ̂ ^ ^ ^ (6.66) 

6.2.4 Polydispersed system of particles with uniform shape 
When the shape is uniform but there is a distribution of particle diameters we may take 
M{Rg) as the mass distribution function of particles between Rg and Rg + d/?g, and the scat­
tering intensity will be given by 

/ = Ko\^M(Rg)Rg^ Qxpi-s^RgV 3)dRg (6.67) 

If this particle size distribution is approximately divided into N rectangular distributions 
and the ratio of the weight of the particles in the 7th component to the total particle weight 
is W(Rgj), then 

I=Kof^ W(R^ )R^' txpi-s'R// 3) 

= Kof^W(R^)R^'txp{-(47t'/3X')£' R^'} (6.68) 

In practice, a tangent drawn to the lower end of the log / vs. e^ curve (cf. Fig. 13.22) gives 
Rgu the minimum radius of gyration. The radius of gyration Rg2 of the second component is 
found by subtracting the intensity corresponding to this tangent from the original curve and 
drawing a tangent to the curve produced in this way. Successive repetitions of this opera­
tion give Rg\, Rg2, Rg3,.' The weight ratios W(Rgj) of the size fractions can then be found 
from the ratios of the intercepts of the tangents on the ordinate Kj = KoW{Rgj)Rgj^, the 
Jellinek-Solomon-Fankuchenmethod.^^^ 

The subject of errors due to the slit system and their elimination is covered in Section 
15.1.2. Correction in the case of the Guinier plot is, however, very simple. For measure­
ments made with a slit that is so narrow and long that it can be considered as approximating 
a slit of infinite height and zero width, calculation of/H from Eq. 6.68 and 15.2 gives 

IH = Kof^Wj(Rgj)R/[txp{(-47t'/3^}) (g' M^lr^) V } d r 

= ^o'|;w,(/?g,)/?g,^exp{(-4;rV3r)£^ 7?̂ ,̂ } (6.69) 

Accordingly, since the gradient of the Guinier plot for each component is not affected by 
the slit height, Rgj, may be calculated directly from Eq. 15.5. Since the value of the inter­
cept is K{ = KoWj(Rgj)Rgj^, as shown by Eq. 6.69 if the weight ratio is calculated using 
WjRgj^ in place of W/7?g,̂  the correct result is obtained without correction for the effect of er­
rors caused by the slit.̂ ^̂  
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A very convenient formula is given by Hosemann, ^ if M{Rg) is a Maxwellian 

r = ! is the T-function. The weight averaged particle radius < /?§ > and the 

polydispersity gR are given by 

< « , > = i ? r ( ^ ^ y r ( ^ ^ ] s R(n+l)/(2n+3)^ (6.7I) 

1 
2^ <"^m 

!< ]̂} 
{2(n+l)}2 (6.72) 

The intensity is given by 

/ = /e Mn'[l +(5/?g)'/3]-^" + '̂ '̂ (6.73) 

For small gR, hence n > 100 it reduces to the Guinier equation (Eq. 15.4). 

6.2.5 Small-angle scattering from systems of densely packed particles 
If particles producing small-angle scattering are sufficiently densely packed we must con­
sider not only the interference contributed by individual particles, but also the mutual inter­
ference between neighboring particles, just as the mutual interference between neighboring 
atoms had to be taken into account in extending the treatment of the X-ray diffraction by 
monatomic gases to the case of liquids. Since the scattering amplitude for one particle is 
(*P)*̂ ,̂ the system may be treated as a densely packed assembly of hypothetical atoms hav­
ing scattering factors (*P)̂ ^̂ , and the composite scattering amplitude may be found by the 
method of Section 2.5. The scattering theory for a monatomic liquid cannot, however, be 
applied without modification. The details of the treatment will not be given here, but small 
particles differ from atoms in that their size and shape are not constant. Moreover, the reg­
ular cohesive forces which exist between atoms (Van der Waals forces, etc.) lead to fairly 
regular statistical distributions of neighboring atoms, whereas the cohesive forces between 
small particles differ with their nature and external shape, so that the statistical distributions 
of such systems are rather complex. Thus there are very few cases in which the theory of 
X-ray scattering for liquids is strictly applicable, and special care is generally necessary in 
the interpretation of small-angle scattering from densely packed particles. 

The following is a brief description of the main points of scattering theories for densely 
packed systems of particles with certain specific shapes. 
A. Spheres of uniform size 
In the scattering Eq. 2.28, derived initially by Zernicke and Prins^^^ and by Debye and 
Menke^^^ for monatomic liquids, replacement of the atomic scattering factor/by the num­
ber of electrons n in one article and the scattering function, ^(s), for a sphere (see again 
Table 5 of the Appendix) gives 

liS) = hMn^Y{s) ' | l +JJ° Anr^ [p(r)-po ] ̂ ^ drj (5 74) 
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Po is the average particle density in the system and p{r) is the particle density in the imme­
diate environment of a particle. It should be noted that Eq. 6.74 is of the same form as Eq. 
2.28, with the scattering intensity *F for a single spherical particle in place of the square of 
atomic scattering factor,/^. 

If the radial particle density distribution P(r) is zero for 0 < r < /? and constant for 
r>R (the case with Fig. 2.16(a)), the value for intensity given by Eq. 6.74 is dependent 
upon the particle density, since particle density p(r) = P(r)/v. The effect is such that inter­
ference increases with increasing particle density, but approximates more closely to single 
particle scattering as the density decreases. This is shown in Fig. 6.15. The dependence 
does not change in character even if the scattering body is rod-shaped or lamellar rather 
than spherical. 

Fig. 6.15 Theoretical scattering curves for rigid spherical particles having various packing densities 
isR = 27tSR = 27t£Ra).^^ 
[Reproduced from A. Guinier, G. Foumet, Small-Angle Scattering ofX-Rays, p.50, John 
Wiley & Sons, Inc. (1955)] 

Foumet̂ ^^ has also derived a general equation, but based on a rather different approach. 
Lund and Vineyard^ ̂^ have calculated the scattering intensity for clusters of several spheri­
cal particles. 
B. Spheres and ellipsoids of revolution of different sizes 
Foumet̂ ^^ calculated the scattering intensity for dense assemblies of spheres having two dif­
ferent radii, and Kratky and Porod^^ and Hosemann^^^ calculated intensities for dense assem­
blies of spheres whose radii have a Maxwellian distribution. 

Roess and ShulP^^ calculated the scattering by an ensemble of ellipsoids of revolution. 
C. Dense accumulations of lamellae 
Kratky and Porod^^ calculated the intensity for this case as a model of the structure of the 
crystalline regions in natural and synthetic fibers. In this case neither the thickness of the 
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Fig. 6.16 Influence of m on the scattering curve for lamellar packing.^' 
[Reproduced from p . Kratky, G. Porod, /. Colloid Sci., 4, 35, 
Academic Press (1949)] 

lamellae nor the distance between them is constant. Various analyses all give scattering 
curves with a maximum in the same position despite differences in the statistical treatment 
of the thickness variation, as shown in Fig. 6.16.̂ ^ This maximum can be interpreted as cor­
responding to the position of the Bragg diffraction (Eq. 4.1) for the average distance be­
tween the layers in the crystalline region. Kratky and Porod extended the theory further 
and carried out numerous investigations on the structure of fibers. Section 13.6.3 gives 
more details of techniques, results, etc. 
D. Parallel bundles of long cylinders 
This theory, which is applicable to cellulose fibrils, was developed, and the calculations 
performed, by Kratky and Porod^^ using the same statistical methods as in C above. 

6.2.6 Small-angle scattering from a non-particulate system 
A. Scattering power and invariant 
If we write the electron density p(r) of an inhomogeneous system (volume V) as 

p(r) = <p(r)> + Ap(r), (6.75) 

where < p(r) > is the average electron density of the system and Ap(r) is fluctuation of the 
electron density. The scattering amplitude of the system is 

S(S) = j < p(r)> exp[27r/(S • r )]dv. + j Ap(r) exp[2;r/(5 • r )]dv. ^^j^^ 

In an ordinary case, the first term in the right side can be neglected in the very neighbor­
hood of Sr = 0, and if r = r2 — n 

S(S) = JAp(n)Qxp[-2m(S'ri)]dVri\Ap(r2)exp[2m(Sr2)]dVr2 

!U I Ap(ri + r)exp[2;r/(5 • r)dvri]dv, 
ir=ri-n) (6.77) 

file:///.5/-
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Let 

then 

Q{r) = j Apin )Ap(ri +r)dVri (5 78) 

I(S) = JQ(r)Qxp[2m(Sr)]dVr (5.79) 

or inversely 

e(r) = J/(5)exp[-27r/(Sr)]dv. 
(6.80) 

If r = 0 in Eqs. 6.78 and 6.80 

]_ 
;Q(0) = ^\{Ap{rj)fdVj = <(Ap(r)f> = y{l{S)dVs (6.81) 

Eq. 6.81 shows that the mean square deviation of the electron density <C(Ap{r)y > is equal 
to the total scattering intensity per unit volume. This may be called the "scattering 
power"of the system. 

For isotropic scattering the right side of Eq. 6.81 may be written as 

Q(0) = 47r[s'l(S)dS (6.82) 

This type of integral scattering intensity has been termed the "invariant".'^^ 
The volume of the particle can be determined, using the Q and 1(0), the scattering in­

tensity at zero angle, as 

V=m/Q (6.83) 

For the two-phase system, in which pi and Xi are the electron density and the volume frac­
tion of the disperse phase (or solute), respectively, and p2 and X2(~ ^ ~ X\) those of disper-
sant (solvent), respectively. 

(Pi - P^fx,X2 = (^pfx^X2 = < WP)' > (6.84) 

Substituting this into Eq. 6.81 

(pi-p2) 'ZiZ2=fi(0)/^ (6.85) 

This can be applied to the crystallinity (volume) measurement of the system consisting of 
crystalline and amorphous regions by means of X-ray small-angle scattering. 

B. Correlation function and specific internal surface 
The correlation function^ '̂̂ ^^ (or characteristic function^^"^^ )̂, /(r) mentioned before (Section 
6.2.3A) can be written as follows using the Q and 2(0). 

_ Q{r) _ J/(5)exp[2;r/(5.r)]dv. 

In a randomly distributed two-phase system, for electron densities pi and p2, such as 
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holes in a solid or particles interspersed with voids, it has been shown^^^ that 

Y(r) = e x p [ - rl< k > ] , (6.87) 

and 

O _ ^XiXi 
V <k> (6.88) 

The term OIV is the specific internal surface defined in terms of the overall volume of the 
system, V. k is the correlation length (or distance) or reduced inhomogeneity length,̂ '̂̂ ^^ a 
measure of the size of inhomogeneities, which gives the integral breadth of /(r). If we de­
fine the transversal, or inhomogeneity, lengths h and h as given below, 

<U> = ^ ^ and <h> = ^ ^ /6R9^ 
OIV OIV ^^'^^^ 

by comparison with Eq. 6.44 it can be written as 

-^l^-^l^^^i^ (6-90) 
According to Kratky and coworkers, the < /i > and < /2 > can be visualized as follows.̂ "̂ ^ If 
we imagine the system to be pierced in all directions at random by rays (Fig. 6.17), the 
mean length of all the line segments intercepted, by the disperse phase is < /i > whereas 
the mean length of all the segments intercepted by the dispersant is < /2 > . 

Fig. 6.17 Transversal or inhomogeneity length."^ '̂ [Reproduced with permission from O. Kratky, Angew Chem., 
72, 478, Verlag Chemie (I960)] 

The theory of small-angle scattering has been presented in outline. For further details 
the reader is referred to other books on the subject.̂ '̂ ^̂ '̂̂ '̂̂ '̂̂ "̂̂ ^̂  Experimental methods and 
applications will be described in later chapters. 
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