
5. Diffraction of X-Rays by Imperfect Crystals and 
Paracrystals 

5.1 Ideal Crystals and Imperfect Crystals 
The term "crystalline" as we have so far used it in this volume has usually referred to ideal 
crystals with perfectly regular arrangements of atoms. High polymer solids are often re
ferred to as crystalline, but, unlike ionic crystals or metals, the internal atomic arrangement 
is by no means as simple as this might imply. Although direct observation of the internal 
arrangement is impossible, reliable inferences from physical and chemical evidence lead us 
to believe that high polymers consist of various regions, each with a characteristic degree of 
internal order, ranging continuously from something close to the ideal crystalline state to 
the completely amorphous state.^' Chain polymers, for example, can exhibit a very wide 
variety of arrangements, with varying degrees of disorder. Even in one and the same highly 
crystalline region of such a substance the arrangement of the atoms and molecules is not al
ways perfectly regular, and even in amorphous regions there are often areas in which the 
molecules are roughly parallel to one another, i.e. in which the arrangement is quasi-crys
talline.^^ This complexity of polymer structure means that the distinction between a sub
stance which forms "ideal" crystals and that which is merely "crystalline" must be clearly 
drawn when referring to polymers. Cotton, silk, and nylon are "crystalline" high polymers. 
However, the crystalline regions of these substances are not "crystals" in the strict sense, 
and are more generally referred to as "paracrystals". The X-ray diffraction patterns of these 
materials give further evidence of a variety of atomic arrangements, in that they contain ele
ments which range from those more characteristic of a crystal with a perfect lattice to those 
resembling the diffuse halos given by amorphous substances. Three examples of such pat
terns are given in Fig. 5.1. The order of decreasing crystallinity is from left to right. 

There is another state which is regarded as crystalline, but in which the crystals are soft 
and plastic like wax. Substances in this state are known as plastic crystals. While the posi
tions of the molecules in the crystal remain unchanged, the molecules as a whole, or their 
side chains, rotate, weakening the intermolecular interactions to give these crystals plastici
ty and other characteristic properties. Liquid crystals, either nematic, smectic, or choles-
teric, are formed mostly by rod-like molecules. At elevated temperatures before melting, a 
regular arrangement of molecules in a crystalline state is disturbed by thermal motions of 
their end, side chain groups, or others, changing the crystal into a liquid crystalline 
mesophase (thermophilic liquid crystal). In lyophilic liquid crystals, this kind of disorder is 
caused by water or solvent molecules penetrated into the crystalline lattice, instead of ther
mal agitations. Their unique structures and properties are known well. Discotic mesophase 
mostly formed by disc-shaped molecules is also one of the mesophases between crystal and 
liquid (or solution) phases. 

'̂ We have to write here as ''non-crystalline soHd state" instead of amorphous state. Originally, "amorphous" 
means a-morphous (non morphological shape, non-crystalline.). "Amorphous" also means that the state in 
question belongs to a non-equilibrium state. However, the word "amorphous" is customarily and widely used 
in the field of high polymer science to mean non-crystalline. Accordingly, in this volume the word "amor
phous" is used instead of "non-crystalline." 

2̂ Not to be confused with the "quasicrystal," which was first discovered in rapidly solidified Al-Mn alloys.'̂  
The quasicrystals examined hitherto show icosahedral symmetry, or eight-, ten-, or twelve-fold symmetry. 
The discovery of quasicrystals has stimulated considerable research activity mainly because it appears to vio
late the classical rules of crystallography. 



84 5. Diffraction of X-Rays by Imperfect Crystals and Paracrystals 

(a) (b) (c) 

Fig. 5.1 Examples of X-ray diffraction diagrams of a single crystal and high polymer substances of varying crys-
tallinity (cylindrical film). 
(a) Dimethyltin bis(dithiocarbamate) (Oscillation photograph, single crystal); (b) Polyvinylidene-fluo-
ride (Fiber diagram, draw direction vertical); (c) Curdlan (or p-(\ - • 3)-D-glucan). 

Figure 5.2 is an attempt to illustrate these states using representative points for the unit 
assemblages of atoms or molecules. In the case of a high polymer the representative point 
corresponds to the repeating unit, e.g. -CH2-CH2- for polyethylene. Diagram (a) in Fig. 5.2 
shows the amorphous state, in which the arrangement is completely disordered; (d), at the 
opposite extreme, shows the ideal crystalline state, in which the atoms, ions or molecules 
have a completely regular arrangement in three dimensions. Crystals of substances having 
identical molecules of fixed shape can exhibit a very high degree of regularity; these are the 
so-called ideal crystals. To fall within this category, distortion of the arrangement within 
the crystal due to all operative factors should be such that the displacement of the lattice 
points from the ideal positions, expressed as a statistical average over the whole crystal, is 
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Fig. 5.2 Schematic representation of atomic and molecular assemblages. 
(a) Amorphous substance; (b) Paracrystal; (c) Plastic crystal (circular arrow indicates the rotation of each 
molecule around its center of gravity); (d) Crystal. 
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(say) less than 1% of the repeat distance (cf. Fig. 15.30). The crystalline state which is 
"perfect" within this 1% limit is more likely to be observed in substances of low molecular 
weight, where incipient distortion is generally corrected under the equilibration of the inter-
particle forces within the solid. 

The situation is different, however, with high polymers. It is particularly improbable 
that the molecular arrangement in the fibrous solids formed by linear chain polymers should 
be that of an ideal crystal as shown in Fig. 5.2(d). The crystal structures of various high 
polymers beautifully drawn in many textbooks are all ideal structures, and may be far from 
the real structure. In long chain macromolecules and very large three-dimensional ions 
such as are found in glasses, all atoms may not have time to assume the arrangement with 
the highest degree of crystallinity before they are "frozen" into position by the rapid cool
ing of the melt. Again, there may be thermodynamic factors which make the state with 
residual distortion inherently stable. This kind of imperfection is represented by Fig. 
5.2(b). Diagram (c) in Fig. 5.2 represents a plastic crystal. 

A classification of crystal imperfections (lattice distortions) follows. 

5.1.1 Lattice distortions of the first kind 

A. Thermal vibration 
The lattice points constitute an ideal crystal, but there is continuous thermal vibration about 
the lattice points. The ideal crystalline lattice is, however, maintained by the equilibrium 
positions of the atoms (Fig. 5.3(b)). 
B. Frozen structure 
The lattice points are displaced away from their theoretical positions, the displacements be
ing small compared with the interatomic distances, but the average lattice in the crystal is 
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Fig. 5.3 Schematic representation of distortions of the first kind. 
(a) Ideal two-dimensional crystal lattice, (b) Thermal motion, (c) Frozen thermal motion, (d) Defect lat
tice (vacancies and interstitials), (e) Mixed crystal or solid solution (substitution type), (f) Mixed crystal 
or solid solution (interstitial type). 
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ideally maintained. This imperfection corresponds to a thermally vibrating crystal lattice, 
the structure of which has been frozen at a certain instant (Fig. 5.3(c)). 
C. Vacancies and interstitials 
Most of the lattice points are correctly positioned, but a small number of atoms are missing 
from the lattice points, or a small number of extra atoms are inserted into the lattice but not 
on regular lattice sites (Fig. 5.3(d)). 
D. Mixed crystals or solid solutions 
The atoms, atomic groups, ions, or molecules forming the crystal are not all of the same 
type, but are a substituted mixture of different components which, on average, form an ideal 
lattice (Fig. 5.3(e) and (f)). 
E. Dislocations 
Edge and screw dislocations (Fig. 5.4)̂ ^ are typical one-dimensional defect of the atomic (or 
molecular) arrangement in crystals. In the top half of the Fig. 5.4 ai), a projection of a dis
torted structure looks like as if an extra atomic net plane is inserted perpendicular to the pa
per like a knife edge (edge dislocation). By shear the slip runs to left (or right) along with 
the broken line between the upper and lower structures, and the dislocation moves {cf. Fig. 
5.5(f)). Fig. 5.4 bi) and b2) show that the mistake of the atomic arrangement is helical 
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, ^ ^ ^ _ < j v . ^ ^ 

(b) b^)^ b2) 

Fig. 5.4 Dislocations. 
(a) Edge dislocation: ai) Section showing a mistake of atomic arrangement along with an edge disloca

tion; (_L denotes that one atomic net plane is excess above this mark), ai) Three-dimensional model 
(b) Screw dislocation: bi) Section showing an imperfection of atomic arrangement along with a screw 

dislocation (small white and black circles represent atoms above and below the slip plane, respective
ly); b2) Three-dimensional model. 

bi): [Reproduced from W. T. Read, Jr, Dislocations in Crystals, p. 17, McGraw-Hill (1953)] 
dii), b2): [Reproduced with permission from S. Koda, Introduction to Metal Physics (Revised ed.), pp. 

134, 135, Corona Pub. (1973)] 
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along the central, vertical line (screw dislocation). In this dislocation, the slip direction of 
atoms is parallel to dislocation line {cf. Fig. 7.1 l(b2)). 

Basic defects in crystalline regions of high polymer substances are also schematically 
shown in Fig. 5.5. In a regular arrangement of high polymer chain molecules, there is a de
fect where the number of repeating units of a chain is more (or less) than the other near-by 
polymer chains (Fig. 5.5(a)). Fig. 5.5(b) shows an interchange, but not a crossing, of two 
adjacent chains. A defect caused by a pair of back-foldings of chain molecules is illustrated 
in Fig. 5.5(c). Back-folding(s) or end(s) of polymer chains also make a defect (Fig. 5.5(d) 
and (e)). Fig. 5.5(f) may be considered formed from (d) or (e) by the successive movement 
of adjacent polymer chains to fill vacancies, which may be considered as a movement of an 
edge dislocation. 

The above imperfections of crystals introduce fluctuations into the distances between 
corresponding atoms throughout the substance, but preserve a long-range order which is 
distributed only to about the same extent as the short-range order. 
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Fig. 5.5 Schematic illustration of basic defects in high polymer crystalline regions {cf. Fig. 7.18). (Small black 
circles represent repeating units in high polymer chain molecules). 
(a) Mistake of the number of repeating units, (b) Spatial interchange of adjacent polymer chains, (c) 
Backfoldings of polymer chains, (d) Backfolding of polymer chain and vacancy, (e) End of polymer 
chain and vacancy, (f) Kinking of polymer chain to fill vacancy followed by moves of vacancy. 
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5.1.2 Lattice distortions of the second kind 

Whereas the average positions of all the representative points in distortions of the first kind 
correspond to the lattice points of an ideal crystal, there is a further kind of distortion in 
which not even the statistical averages of the positions of the representative points form an 
ideal lattice, the distortion being so great that they deviate significantly from the ideal lat
tice positions. Three-dimensional periodicity resembling that of an ideal crystal only per
sists over short ranges; over long ranges there is a permanent disorder resembling that of 
the amorphous state. These are known as distortions of the second kind, and it is this type 
of imperfection which Hosemann introduced as paracrystalline.^'^^ In one sense this classi
fication applies to all types of structure intermediates between the ideal crystal and amor
phous states. It also, however, covers those mixtures of crystalline and amorphous regions 
with continuous mutual gradation which are formed by chain molecules, so that the entire 
non-homogeneous structure may properly be described as paracrystalline. 

These different types of distortion are illustrated in Fig. 5.6,̂ ^ in which, again, only the 
representative points are shown. Fig. 5.6 ai) shows an ideal oblique crystal lattice. The lat-
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kind 
Schematic representation of distortions of the second kind compared with distortions of the first kind. 
(a) Distortion of the first kind: a,) Ideal oblique two-dimensional lattice,^* aa) Distortion of the first 1 

(frozen thermal motion),^^ as) Distribution function of the first kind.''' 
(b) Distortion of the second kind; bi) Ideal paracrystalHne lattice,'' bj) General paracrystalline lattice 

bil General paracrystalline lattice (three-dimensional), bs) Distribution function of the second kind 
ai) hi), as), bs): [Reproduced with permission from B. K. Vainshtein, Diffractions of X-rays by Chain 

Molecules, p.97, Elsevier (1966)] 
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tice in bi) still appears to possess the regularity of a crystal lattice. All unit cells are paral-
lelpipeds (parallelograms in this two-dimensional representation), so the vectors in any se
quence, e.g. left to right, bottom to top, are always parallel and equal in continuous part (an 
ideal paracrystalline lattice: lattice distortion of the second kind). Fig. 5.6 a2) again illus
trates the frozen structure of thermal vibration in an ideal crystal; the positions of the atoms 
fixed at an instant are denoted by the small black circles. In b2) the lattice is still dis
cernible with the aid of the lines joining the points, but if the lines were removed, the 
arrangement would be practically indistinguishable from the amorphous state (a general 
paracrystalline lattice). Fig. 5.6 hi) depicts a three-dimensional, general paracrystalline lat
tice. In the paracrystalline lattice we assume that we can clearly trace the three main direc
tions or three axes corresponding to those of the crystal, that each of these directions is a 
continuation of paracrystalline unit cell vector a, Z>, or c, the values and directions of which 
differ slightly from cell to cell, and that these directions do not fold back and never cross 
spatially. Fig. 5.6 as) and bs) respectively show distribution function for the lattice distor
tions of the first and the second kinds. 

This concludes our brief description of the paracrystalline state, but since the analytical 
methods we have so far developed are inadequate to explain X-ray diffraction by such sub
stances, it is necessary to introduce Fourier transform theory. 

5.2 Fourier Transform Theory of X-Ray Diffraction 

5.2.1 Fourier transform theorem 
Our discussion of X-ray diffraction theory has so far been confined mainly to simple meth
ods for calculating the amplitudes of X-rays diffracted from substances with various atomic 
structures. These are the most general ways of treating X-ray diffraction phenomena, al
though there is another straightforward way (applicable only to diffractions from crystals) 
which finds a place in most works on the subject. A far more refined mathematical analysis 
is needed, however, to explain the diffraction of X-rays by more complex structures, such 
as the paracrystalline substances dealt with in this chapter. A simple exposition of the fun
damentals of Fourier transform theory as it applies to X-ray diffraction follows. This 
should equip the reader to both interpret and apply X-ray diffraction from paracrystals and 
other substances. 

The relationship between the structure of a substance (in terms of its electron density 
distribution) and the X-ray scattering amplitude was shown in Eqs. 2.13 and 2.14. Eq. 2.13 
shows how the amplitude A(S) of the scattered X-rays may be derived from the structure of 
the substance p(r) by phase-dependent integration of the contributions from all elements of 
the system: 

A(S) = l^ p(r)Qxp{-2m(S-r)}dVr (5.1) 

According to the Fourier integral theorem, a function F(S) in Fourier space is equal to the 
integral over real space of a function p(r) in real space, i.e. 

F(S) = l^ p(r)Qxp{-2m(S-r)}dVr (5.2) 

Thus if p(r) in Eq. 5.2 is a function representing the electron density of the atoms in a sub
stance, it can be seen from the form of this equation that F(S) corresponds exactly to the X-
ray scattering amplitude A(S) for the substance. From the inverse Fourier transform theo-
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rem (Eq. 2.14), we may put 

p(r) = j ^ A{S)Qxp{2m(Sr)}dVs (5.3) 

The physical meaning of this is that the structure of a given substance is equivalent to the 
Fourier transform of its X-ray scattering amplitude. Using this theorem of Fourier trans
forms, we can take the mathematical analysis of X-ray diffraction a stage further. 

As we saw earlier, the intensity of the scattered X-rays, in units of the scattering inten
sity of an electron, is simply 

/(5) = A(5)A*(5)=IA(5)P 

Let us now examine the Fourier transform of this intensity /. 

(5.4) 

e(r) = £°/(5)exp{2;r/(S-r)}dv. 

= £° A(S)A * (S) exp {2m(S • r) }dv. 
(5.5) 

Eq. 5.5 is simply derived using Eqs. 5.1 and 5.3. Another useful theorem will now be intro
duced. 

For given functions p(r) and cr(r), the function p(r) * a(r) defined by 

[ p(y)a(r-q)dv,=p{r) * a(r)(=^(rJG(r)) (5 6) 

is known as the convolution of p(r) and (T(r), and the corresponding operation is known as 
convolution or folding, denoted by * (or ^ ) in the place of a multiphcation sign. A two-
dimensional illustration of this mathematical operation is given in Fig. 5.7. 

If A(S) and S(S) are Fourier transforms of p(r) and <T(r) respectively, the Fourier trans
form of the product of p(r) and (7(r) is 

\^ p(r)a(r)Qxp{-2m(S -r)}dVr=j A(S')S(S-S')dVs'=A(S) * S(S) (5.7) 

p(r) 

Fig. 5.7 The con vol 
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ution operation on two functions p(r) and a(r). 
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Thus the Fourier transform of the product of the functions is the convolution of their 
respective Fourier transforms A(S) and S{S). The inverse theorem is therefore 

£°A(5) * 5(5)exp{2;r/(5-r)}dv, = p(r)a(r) (5.8) 

i.e. the Fourier transform of a convolution is equal to the product of the Fourier transforms 
of the respective functions. 

Let us now return to Eq. 5.5. Since Q(r) is the Fourier transform of the product of two 
functions A(S) and A*(5), application of the theorem of Eq. 5.7 to Eq. 5.5 gives 

Q(r) = I p{q)p{r+q)dVq = p{r) * p{r) (5 9) 

Q{r) is the self convolution of p(r). In physical terms, when the vector r between a certain 
two points in the real space of the scattering substance is subjected to parallel displace
ments into every position in all space, the total of the products of the densities p{r) at the 
two ends of the vector is Q{r). Thus if there are atoms at two points in space separated by a 
vector corresponding in magnitude and direction to r, the value of Q{r) will be large. 
Otherwise the value of Q{r) for this r will be zero. Q{r) therefore seems to be geometrical
ly of the same nature as the density distribution functions of Eqs. 2.26, 2.33 and 6.74. This 
correspondence will be discussed later. If p{r) is the electron density of an infinitely large 
crystal, Q{r) is known as the Patterson function (usually written P(r)). The value of Q{r) is 
large if there are atoms at both ends of the vector r, and this important function assists ma
terially in structural analysis by determining the vectors between the atoms in the crystal. 
Thus, 

p{r)^p{r) = j/(S)exp{2;r/(S-r)}dv. 

= P(r) (the Patterson function in the case of crystals, cf. Eq. 11.41, Section 

11.2.5) 

= CW (general case) (5.10) 

These functions are obtained by Fourier transformation of the intensity distribution of the 
diffracted X-rays. The inverse transform is 

I(S) = \Q(r)txp{-27ii(S-r)}dVr (5jl) 

so that if the self convolution Q{r) of the electron densities in a substance is known, the X-
ray diffraction intensity is given by the Fourier transform of Q(r). This is therefore an im
portant equation.^ 

We shall now use the above Fourier transform and convolution theorems to derive a 
number of factors involved in X-ray analyses. (Fourier transformation of helical molecules 
is discussed in Section 11.4.) 

We have so far put forward Eq. 5.1 as the most convenient starting point for deriving X-ray intensities from 
the wave amplitude. What we fmd from experimental measurements are, however, not the wave amplitudes, 
but the intensity, and it is impossible to isolate the effect of phase from the amplitudes. Therefore, when we 
are seeking to determine structures on the basis of diffraction patterns it is safer to use Eq. 5.11. 



92 5. Diffraction of X-Rays by Imperfect Crystals and Paracrystals 

5.2.2 Shape factor for the scattering body 
The integrations in the equations beginning with Eq. 5.1 should in principle be carried out 
over all real space or reciprocal space. In X-ray diffraction experiments, however, even if 
the specimen is large enough to enable an approximation to this condition, only the scatter
ing from a limited region is in fact observed. The following procedure minimizes the atten
dant difficulties. 

The electron density distribution p(r) in a particle of matter scattering X-rays, or in the 
case of a large specimen in the entire volume v within the X-ray beam, is expressed in 
terms of the electron density distribution poo(r) for the unbounded body as follows. 

p(r) = p.(r).(j(r) (5.12) 

In this equation, the function (j(r), which is known as the shape function, always takes 
the value unity when r lies within v, and is zero for all r outside v. On substitution of Eq. 
5.12 in Eq. 5.1, by the convolution theorem, convolution of the Fourier transform 5(5) of 
<T(r) and the fourier transform Aoo(5) of poo(r) gives the following equation. 

A(5) = Aoc(5)*5(5) (5.13) 

If the scattering matter is represented as an infinite periodic arrangement similar to the 
lattice points of a crystal, then since Aoo(5) is the Fourier transform of the spatial distribu
tion, it, too, is a periodic function with very narrow peaks, like the Laue function L in Eqs. 
2.43 and 2.45. This is shown diagrammatically in Fig. 5.15(a) and (d). The convolution of 
Aoo(5) with 5(5) thus brings 5 = 0 in 5(5) to the positions of all the peaks (including the 
peaks with 5 = 0) of A^(5), as in Fig. 5.15(g). The width of the X-ray beam is usually large 
enough to ensure that the breadth of 5(5) is very small, and so there is seldom any practical 
necessity to take Eq. 5.13 into account when analyzing the structures of single crystals. 
Under these conditions I 5(5) P produces an effect only at very small values of 26, the so-
called "form scattering" of the sample. On the other hand, in cases where the crystals are 
very small, as in solid high polymers and metals, the volumes v of the crystals themselves 
that are responsible for the interference effects are small, irrespective of the width of the X-
ray beam, and 5(5) is found to have an appreciable broadening. This is seen in the broaden
ing of each diffraction spot, and around the central spot formed by the incident beam (the 
small-angle scattering). 

Where the scattering body is an assembly of particles, if p(r) is a function having a 
fixed average density pi only inside the particles and a density po outside the particles 
(which corresponds to the case of a single particle in space in small-angle scattering calcu
lations), the Fourier transform A^(S) of po over all space again has a very small peak like a 
point function 5(r) but now only at 5 = 0. Its convolution with 5(5) is thus 5(5) displaced 
to the origin on 5 = 0. I 5(5) P is therefore in itself a measure of the intensity distribution 
of the central small-angle scattering, which only depends on the shape (form) of the sample 
and, hence, is called form scattering (See text accompanying Eq. 6.1). To grasp the general 
application of this concept, let us consider the calculation of the diffraction intensity for a 
system of particles having an average electron density p\ in a medium {e.g. in a solution) 
having an average density po. If we consider the density po as being continuous over all 
space throughout the system, within which particles of density p\~ po float and if G\{r) = 1 
inside all particles and zero outside, the density distribution of the system is given by 
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po + {p\~ Po)cr(r). From the Fourier transform, the amplitude and intensity of the small-
angle scattering are 

A(S) = {po5(5) + (pi - po)5i(S)}* S(S) (5.14) 

The first term, like the Dirac point function 6(r), is usually unobservable since it occurs at 
the small angle 20, and it is called extremely form scattering: 

US) = p'\S(S)\' (5.14a) 

The second term of Eq. 5.14 remains observable however. Assuming that the particles are 
small compared with the shape of the whole sample, one obtains: 

/(S)= /o(S) + (pi - po)' I 5i(S) P (5.15) 

It is evident that this intensity is proportional to Ap^, where Ap = p\ — po; we have thus ver
ified the statement, made at the end of Section 6.2.2, concerning the influence of Zip on the 
scattering intensity. 

We shall now deal briefly with the self convolution of ai(r), i.e. 

CTi(r)*(ji(r)=es(r) (5.16) 

This function has a central peak at r = 0 consisting of the self-convolution of the shape 
function Ok of the Â  particles in the samples. If the particles have a Gaussian distribution, 
the particle distribution function P{r) (see Section 2.5) practically —\forr>2R and, hence 

By Fourier transformation Qs, like 2(r), again gives a diffraction intensity function that de
pends only on the number average self-convolution of the shape function cr^(r) of the parti
cles. Applying Eq. 5.8 we obtain 

/.(5^)=£°a(r)exp{2;r/(5r)}dv. 

7(5) = /o(5) + Ap'N< Sk(S)Sk *(S) > = /o(5) + Ap^N< I S^iS) P > (5.17) 

FromEq. 5.13 

A(S) = A4S) * S(Sl A(5)A*(S)= I Aoc(5) P* I S(S) P = 7(5) (5.18) 

It is evident that Eq. 5.18 contains terms which correspond to the intensity hiS) and the 
form scattering (I S(S) P). The two together give the distribution of the small-angle scatter
ing which corresponds to the shape of the particle and the shape of the whole sample, which 
is generally unobservable. 

Finally, we shall explain the geometrical significance of gs(^) utilizing Fig. 5.8 (c/ Eq. 
5.9) 
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Fig. 5.8 Particle of volume V undergoing displacement r (see text for meaning of Qsir) in this context). 

Figure 5.8 shows the shape of a particle (continuous line) whose volume is V. If the 
particle as a whole undergoes a parallel displacement in the direction of an arbitrary vector 
r from a fixed point O in the particle to bring O into coincidence with the other end of the 
vector r, its new position will be as shown by the broken line. The shape bounded by the 
broken line is called a ghost of the original particle (the scattering body). The value of the 
self convolution Qs(r) of the shape function of the particle for a given r is the sum of only 
those terms for which the product of the ends of r is 1 X 1 = 1 for parallel displacement of 
r to all possible positions in the original particle. If the volume common to the original par
ticle and the ghost is Vr, as shown in the diagram, and if the ratio of this part to the total vol
ume is V(r), 

Qs(r)=Vr=W(r) (5.19) 

This is a three-dimensional analogue of the situation in Fig. 5.7. 

5.2.3 Scattering factor of atoms undergoing thermal vibrations in a crystal 
As was shown in Eq. 2.15, the scattering factor of an atom at rest in a crystal lattice is given 
by the Fourier transform of its electron density po(r) in the theoretical position. This is the 
atomic scattering factor given by Table 3 of the Appendix. In reality, however, the atoms 
in a crystal are not at rest, but undergo thermal vibrations about their respective "rest" posi
tions. The displacements of the various atoms from their mean positions at a given instant 
must therefore be taken into account in calculating the structure factor F(hkl). 

To simplify the calculation it is assumed that each atom vibrates with isotropic harmon
ic motion, and that if the displacements from their rest positions of all the crystallographi-
cally equivalent atoms at a given moment are the same as that of any single vibrating atom, 
the electron densities of the individual atoms would be expressed by the average of a 
Gaussian distribution function having a mean square displacement u^. Thus if the function 
P()(r) is averaged for all positions of r by a function pi(r), the effective electron density 
Pat(r) is the convolution po * pi. Taking pi as a Gaussian function, therefore, we find 

pat(r) = po(r) * pi(r), pi(r) = (IKU^T'^^ exp( - r'/lu') (5.20) 
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The effective atomic scattering factor/at is therefore the Fourier transform of pat(r), and ap-
phcation of Eq. 5.8 gives 

/at (S)=J po (r) * pi (r)dVr =/(S) exp(- In^u^S") 

=/(5)exp{ - STT'M' (sin^ 0)/A'} 

D = exp{ - g/r̂ w' (sin' 0)/A'} = exp{ - 5(sin' e)IX^\ (5.21) 

In the above expressions,/ is the Fourier transform of po, i.e. the scattering factor of 
the atom at rest. D is known as the Debye factor and B is called the temperature factor. In 
many cases the thermal motions of atoms are not isotropic, and assuring the thermal motion 
of atoms to be ellipsoidal the anisotropic thermal parameters are used as the better approxi
mation. These are important factors in X-ray analyses, and their practical use will be 
shown later (Eqs. 11.34 and 11.36 (a, b)). 

5.2.4 Optical experiments on Fourier transforms 
The Fourier transformations in Eqs. 5.2, 5.6, 5.9, and 5.11, and their inverse transforma
tions, can only be performed numerically or analytically for a given function if the form is 
already known. If the form is not given, Eq. 5.2 cannot be calculated mathematically. 
However, Eq. 5.1 (Eq. 2.13), which is of the same form as Eq. 5.2, shows that the ampli
tude of the resultant diffracted wave is given combination of the phase-dependent contribu
tions from every element of the structure. Therefore, even if the mathematical form of the 
electron density function, pif), of a substance is unknown, it may still be possible to con
struct a model structure which will embody suspected characteristic features of the sub
stance. Comparison of the diffraction pattem from such a model structure with that from 
the substance itself can provide a means of evaluating the tentative structure. It is impossi
ble to construct prepared structures of the same order of magnitude as atoms themselves; 
the scale is usually some tens of thousands of times greater. The model may consist of a 
two-dimensional array of black dots or holes marked on film or glass, and the scale multi
plication is such that visible light can be used to produce the diffraction effects. The 
Fourier transform in this sense is effectively performed by so-called optical inversion. Eq. 
5.1 is, of course, equally valid for all forms of wave motion, including X-rays, visible light, 
and electron beams. Diffraction experiments with atomic models using visible light {e.g. 
the sodium D line doublet) are often useful for checking the validity of structures of great 
complexity, such as those involved in the detailed investigation of fiber paracrystals. 
Examples where such light diffraction patterns have been employed are given in Fig. 5.9,̂ ^ 
and 5.13.'̂ ^ The reader is referred to the various experiments which Hosemann has per
formed in this connection.^^ 

The experimental arrangements used and examples of their application are shown in 
Fig. 5.9. The upper diagrams of Fig. 5.9(a) and (b) show optical systems for Fourier trans
forms and convolutions (including self convolutions), respectively. Fig. 5.9(a) includes the 
model of the lattice function pif) to be transformed, and its transform A(5) is recorded pho
tographically as the intensity I A{S) P, giving the Fraunhofer diffraction pattem shown. In 
Fig. 5.9(b), if the second model differs from the first, the convolution of the two is ob
tained. If, however, both models are the same, which is the case illustrated, the self convo
lution of the model is obtained. This is the means by which p{r) * p(^^, i.e. Q(r), can be de
termined by visible light diffraction. 
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Fig. 5.9 Optical methods for Fourier transformations and convolutions.^'*^ 
(a) Fourier transformation, (b) Convolution (and self-convolution). 
[Reproduced with permission from R. Hosemann, Polymer, 3, 349, IPC Business Press (1962)] 

5.3 Diffraction of X-Rays by Paracrystals^ 
For diffraction from a crystal, since the unit cells are arranged in a regular manner in accor
dance with Eq. 2.37, the phases of their scattering amplitude Aceii can be combined as 
shown in Eq. 2.38. For paracrystals, on the other hand, the positions of the lattice points 
can be expressed only as a statistical average, as was mentioned earlier. It is therefore nec
essary to find some adequate means of representing the positions of the lattice points, just 

after Hosemann^' 
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Fig. 5.10 Diagram showing the distribution of lattice points in a linear paracrystal. 

as Eq. 2.37 does for crystals, and of combining their phases to find the diffraction due to the 
paracrystalline lattice. We first consider the paracrystal as a one-dimensional system hav
ing significant extension only in the a direction (Fig. 5.10). 

5.3.1 Statistical representation of paracrystalline lattice points and 
the derivation of their function Q{f) 

Let the lattice points in the a direction be Ai, A2, etc., where A\ is the nearest neighbor to 
some arbitrary origin, O. If the probability that A1 be located by a vector q from the origin 
is li\{q), then the probability that A2 is located by an independent vector t from the end of q 
will be H\{q) • Hxif). The total probability, //2(r), that A2 (the next nearest neighbor) will lie 
at the end of a single direct vector r~q-\-t from the origin is not, however, the product of 
two individual probabilities H\{q) and Hiif) if we assume that there is no statistical correla
tion between the individual q and t vectors. Since we are interested in the probability for a 
certain r, whatever the value of q we have to integrate overall q for a fixed r — q-\-t. 
Hence t — r — q and we finally obtain 

H2(r) = lHi(q)Hi(r-q)dq = Hi(r)^Hiir) (5.22) 

which is a convolution of Hi(r) with Hi(r) (cf. Eq. 5.6) and, in general, the probability fo 
the nth lattice point is 

Hn — H\^H\^"-^H\ (the (n — 1) fold convolution of H\) (5.23) 

Hn{r) is normalized as unity, and HJ/) = //„( — r), with JrHn(r)dr = rid. 
Let us now consider the extension of this treatment to three dimensions. In Fig. 5.11 

the three points Ai, A2, and A3 are located by vectors auUi, and as, corresponding to direc
tions a, b, and c in an ideal lattice. The "nearest neighbor" probabilities in the three direc
tions (corresponding to H\ along a in the preceding discussion) may be written Hm, How, 
and //ooi respectively, where Hpqr{r) denotes the probability that the vector r from the origin 
will locate the point which is the pth in the a\ direction, the ^th in the ai direction, and the 
rth in the a^ direction. This probability can be expressed in terms of the {p— \) fold convo
lution of//loo, the {q— I) fold convolution of//oio, and the (r — 1) fold convolution of//ooi, 
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Hpgr 

Fig. 5.11 Paracrystalline lattice in three dimensions (c/ Fig. 5.6(b2)). 

with an extra normalizing term if the probabiUty at the origin is taken as unity. Thus 

* Hioo * HQIO * ••• * Ho\o * Hooi * "* * ^ooi 

(p-l)Md (^-l)fold (r-l)fold (5.24) 

^000 is a point function having a definite value only at the origin. Eq. 5.24 expresses the 
probability that a lattice point (pqr) will exist at a point displaced by the appropriate num
ber of multiples (p, q, and r) of the average lengths au ^2, and ^3 of the sides of the cell 
from an origin at some arbitrary lattice point. 

A lattice point (pqr) can be reached by several independent paths, depending upon the 
directions taken from point to point along the route through the paracrystal. The Hpqr of Eq. 
5.24 is therefore but one element in the total probability, which must be summed for all 
possible paths from an arbitrary lattice-point origin to the point (pqr) located by vector r. 

X X X ^ ^ ^ ^ ~ X ^poo * X ^0^0* X Hoor-z(r)p (5.25) 

5.3.2 Lattice factor and diffraction intensity for a paracrystal 

Having derived a statistical distribution, z(r), for the distance between lattice points in a 
paracrystalline lattice, we proceed to use it to calculate the diffraction intensity. 

Let the Fourier transform of Hk(r) be '3'k(S), where Hk replaces Hpgr in the preceding 
analysis for (pqr) equal to (100), (010), or (001). We shall now calculate the scattering in
tensity for the X-ray scattering from all the lattice points of a paracrystal, taking the scatter
ing factor Aceii of the unit cells as unity and considering only the intensity due to the lattice 
structure. 
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The quantity z(r) is just the probabiUty function P(r)/v of Section 2.5, no longer spheri
cally symmetric but with paracrystalline lattice character. It may be regarded as the proba
bility distribution for the presence of lattice points of the same unit density at both ends of a 
given vector r. This is simply the self convolution of a density distribution p(r), i.e. Q(r), 
(cf. Eq. 5.9) having point function 6(r) only at positions occupied by lattice points. The X-
ray diffraction intensity due to the paracrystalline lattice structure itself is therefore given 
directly by the Fourier transform of z(r), according to Eq. 5.11. Let the Fourier transform 
of z(r) for the k direction (it =(100), (010), or (001)) be Kk{S). If M is the number of unit 
cells along each axis in the paracrystal, thenS^ 

A:, (S) = X (3^*'+9^* *") - 1 = lim 2 Re - — ^ - 1 

^k^ is the Fourier transform of Hk for points on the negative side of the origin, and is the 
complex conjugate function of that for points on the positive side, ^k. Re denotes the real 
part. If we let the second term in Eq. 5.26 be A (̂0), then 

^ ,„ , _ . Re(l-g^,*>^,^^^ 
^(0) = -21im (^ii\ 

The complex ^k may be represented by modulus and phase, thus 

'3^k{S)= I ^k{S) I exp{ - 2;r/(arS)}, 

g^,*(S)= I g^ (̂5) I exp{2;r/(flr5)}, and 

ak = 5rHk{r)dv (5.28) 

if Hk{r) has a center of symmetry. 
We obtain 

i^(0) = liml^J"^Hl^^^?M+l)(«»:S) 
M^< sin;r(flA:-5) (5.29) 

K,{S)-m) = R ^ ^ (5.30) 

The form of the second term of ^(0) in Eq. 5.29 is evidently similar to the form of the 
Laue function (Eq. 2.38). The presence of the I ̂ u 1̂  factor (with I 3̂ ^ l < 1), however, en
sures that ^(0) approximates to a peak function having significant values only for a small 
range of S centered about S = 0. Eq. 5.30, from which the central peak of K{S) has been 
subtracted, gives the most important part of the diffuse pattern which characterizes second 
and higher order diffraction from paracrystals. In fact, when M is not infinitely large, but is 
a finite, small number, we find a "broadening" similar to that for the Laue function in 
Section 2.9.2. This will be discussed further at a later stage. From Eq. 5.30, 

1 _ ig? |2 

' ' * ^ ^ ^ " ' ' ^ ° ^ = l + ISF.P-2ig^Jcos2;r(a.-S) (5.31) 
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Since the principal term on the left-hand side is Kk(S), we obtain from Eq. 5.31 

1 - I^J 
Kk(S)(max) = -—;;zr-r (if ak-b = hk) (5.32) 

K,(S)(mm) = j ^ ^ (if ak-b = h + -) (5 33^ 

where hk is an integer. These are the basic equations giving the maximum and minimum 
values of the intensity of the diffuse diffraction pattern from a paracrystal. They are a gen
eralization of the Laue conditions, Eq. 2.39. Gathering together the expressions for the 
three dimensions, one can prove that the result is 

Z(S) = K,K,K, = i 5 ( S - 0 ) + / / R e i ± j | i (5 34) 

S(S — 0) represents the term ^(0), which is a three-dimensional point function at 5 = 0, the 
suffixes 1, 2, and 3 refer to the three directions, and v is the average volume of the unit cell. 
Eq. 5.34 is the most important equation for the X-ray intensity for a substance having a 
paracrystalline structure. Z(S) is called the paracrystalline lattice factor, and it corresponds 
to the Laue function for the ideal crystal. The diffraction maxima occur at the same posi
tions as the diffraction spots for an ideal crystal, whereas the diffuseness of the diffraction 
peaks increases with the index of the diffraction (reflection) due to the contribution of the 
second term. The broadening also increases with increasing lattice distortion, and finally, 
for a given index, the intensity peaks merge indistinguishably with the background or with 
the peaks of the next higher index. This is schematically shown in Fig. 5.12. The right fig
ures show, from top to bottom, square of the average unit cell scattering ampHtude of an av
erage net plane (say the (hOO) plane), I < Aceii(5) > P, paracrystalline lattice factor, Z{S), and 
intensity, /(S)= I < Aceii(5:)> P • Z(5). In the left those for an ideal crystal (Fig. 2.20) are 
shown again for comparison. This topic will be covered in a later section {cf. 13.6.3). 

It should be noted that although several important equations were developed in terms of 
three dimensions, the treatment is basically one-dimensional in that it presumes no relation
ship between the dimensions. In the general case certain problems arise. Thus it was as
sumed at the beginning of this section that the "original ideal lattice" could be discerned. In 
the case of completely disordered amorphous substances, however, it is meaningless to 
speak of a vector in the a, h, or c directions, because the directions are indistinguishable in 
isotropic amorphous substances. The applicability of this method therefore depends upon 
the degree of distortion from the ideal lattice for a given single direction in the specimen, 
e.g. the direction of the molecular chains or a specified direction in the plane normal to the 
direction of the chains. A measure of the degree of distortion can be obtained by forming a 
weighted average of the probabilities Hk of finding displaced lattice points in the various di
rections. This average is taken over the whole of the specimen but, since H is very diffuse 
and small in value for the highest degree of distortion, it should be clear that the average 
will not be greatly affected by contributions from amorphous regions. Fig. 5.13"̂ ^ (p. 102) 
gives a comparison between the theoretical value of H and experimental values. Fig. 
5.13(a) shows //oo ̂ lo and HQ\ for a paracrystaUine lattice, and Fig. 5.13(b) shows the lattice 
point model constructed on this basis. Fig. 5.13(c) illustrates H for various lattice points as 
found by two-dimensional synthesis of the H values calculated from the model. Fig. 
5.13(d) shows the optical diffraction pattern obtained in an actual experiment with this 
model; this diffraction pattern corresponds to the Fourier transform of the H of Fig. 5.13(b). 
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Fig. 5.12 A schematic comparison of diffraction intensities by crystal and paracrystal. 
a) Crystal: (from top to bottom) Square of structure factor, | F{S) p; Laue function, G(S); Intensity, 
I{S)= I F{S) p • G{S) [Reproduced with permission from R. D. B. Fraser, T. P. Mac Rae, 
Conformations in Fibrous Proteins and Related Synthetic Polymers, p.8. Academic Press (1973)] 
b) Paracrystal: (from top to bottom) Square of average unit cell scattering ampHtude, | < Aceii(S) > p (for 
simplicity, magnitude of | < Aceii(5)> p is taken the same as | F(S) p); Paracrystalline lattice factor Z(5); 
Intensity, I(S)= \ < Aceii(5)> P • Z(5). 

We have so far referred to H only as the probability of the presence of a lattice point, 
and no reference has been made to its actual form. In many paracrystalline substances, 
bearing in mind the physical causes of distortion in the crystal, it is often legitimate to 
choose a Gaussian-type function for the H that expresses the distribution. As shown in Fig. 
5.14 (p. 103),"̂ ^ therefore, if we take the Hk{r) for the three principal directions of the orthog
onally paracrystalline lattice cell (/: = 1, 2, or 3) as a three-dimensional Gaussian function, 
it can be expressed in terms of a matrix Tjk consisting of nine elements of mean-square dis
placements from the regular lattice, A^rjt, in groups of three for each principal axis. The 
Fourier transform of H, when it takes the form of a one-dimensional Gaussian function is 
^k(S), which is already given in Eq. 5.28, and in the equation 

^^(5)= exp{-2;r '(5.7,-5)} (5.35) 

(s-n'S)=J^TjkSjSk 
(5.36) 

Tik = 

(A'm rn 
V22 A'r22 

A^r33 

(A'rjk=A'nj\ (5.37) 
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Fig. 5.13 A comparison between theoretical and experimental values of H.^^ 
(a) Hoo, Hou and Hw for a paracrystalline lattice; (b) The paracrystalline lattice model corresponding to 
(a); (c) Convolution values found from the diffraction pattern (d) and those calculated directly from the 
model; (d) Optical (Fraunhofer) diffraction pattern derived from this model (b). 
[Reproduced with permission from R. Hosemann, S. N. Bagchi, Direct Analysis of Diffraction by 
Matter, pp.143, 144, 146, North-Holland Pub. (1962)] 
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(see Fig. 5.14). It should be noted that Eq. 5.35 is of exactly the same form as the Debye 
factor, Z) of Eq. 5.21. 

kHAr) 

' Ideal crystal 

J^r small 

Fig. 5.14 Delineation of H, and its effect on I 9̂ ^ I (see text, and also cf. Fig. 11.8 for Z)."̂ ' 
(a) One-dimensional H\(r) (Gaussian, cf. Fig. 5.10 for the general case, unsymmetrical distribution); 
(b) Tensor representation of the corresponding paracrystalline lattice distortion in the directions 1, 2, 

and 3 by means of the nine symmetrical matrix elements An^, Azi^, etc.; (c) I S'k (S) I vs. S for vari
ous degrees of distortion. 

[Reproduced with permission from R. Hosemann, Polymer, 3, 349, IPC Business Press (1962)] 

This concludes the fundamental analysis of X-ray diffraction intensities for paracrys
talline structures, and we can combine the results to obtain an equation for the X-ray dif
fraction intensity found in practice. A paracrystal differs from a normal crystal in that the 
unit cells are not all identical, so there is no unique Aceii which expresses the composite am
plitude due to all the atoms in the unit cell. It is therefore necessary to use an 
averaged < Aceii > over all unit cells. Taking the system as a dense array of cells having 
different structure factors, and applying the reasoning which gave Eqs. 2.30, 2.33, and 2.34, 
we can find the intensity with the aid of the Z(S) obtained by the statistical method of this 
chapter for the distortion of the lattice period, thus: 

I(S)=N(<Acell'>-D',<Aeell>^) + -<Aell>^<D',>\Z(S)^\S(S)\') ( 5 3 3 ) 

D? is the distortion factor of the first kind, and is of the same form as Eq. 5.21. Â  is the 
total number of unit cells, and v is the average volume of one unit cell. I S(S) P is the shape 
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factor of the domain of the paracrystalhne lattice given in Eq. 5.17, or may be regarded as 
the contribution due to the shape of the coherent boundaries with shape factor I S(S) P in a 
polyparacrystalline material (see Eq. 5.17). 

5.4 Summary of the Relationship between Structure and X-Ray 
Diffraction Intensity 

The description of the X-ray diffraction intensities due to material systems, except for very 
small bodies (see Chapter 6), has now been completed for practically all forms of atomic 
structures and for cases ranging from those in which the structural units are large to those 
consisting of very small domains. The methods of finding the X-ray diffraction intensities 
for the various systems (single molecules, gases, liquids, amorphous materials, paracrystals, 
crystals, and including the effect on the scattering from particles due to their shape factor) 
can be roughly divided into two basic procedures. 

1) The first involves treating the smallest scattering units as the atoms and using the 
corresponding atomic scattering factor/to find the composite scattered amplitude from cal
culations using the phase differences due to the differing positions of the atoms. 

2) The second involves finding the self-convolution Q(r) = p(r) ^ p{— r) of the density 
distribution function of the system; the scattering intensities for the system are obtained by 
Fourier transformation of Q{r). 

Liquids and amorphous substances possess neither the complete long-range order of 
crystals, nor the partial long-range ordering of paracrystals, and it is not possible, therefore, 
to make unquaUfied use of a periodical lattice function like z(r) {cf. Eq. 5.25). In calcula
tions in these cases, z{r) should be considered as expressing the short-range order. Here we 
omit the intermediate equations and cite only the results. Their form shows distinct similar
ities with the results obtained by the methods of Section 5.2 and by calculation of the dif
fraction intensities for paracrystals. The general form of the equations for liquids, amor
phous substances, densely packed particle systems, etc., representing the scattering factors 
of the atoms or molecules of the liquid or amorphous substance or the scattering factors of 
the particles as A{S), is as follows: 

7(5) = M[< I A\S) I > I 5(5) P + l < A(5)> P0(5) * I 5(5) P] (5.39) 

where 

^ (5 ) = 1+ ^ j{P(p)- l}exp{2;r / (Xp)}dv (5 40) 

For the individual case, the reader is referred to earlier sections {cf. Sections 2.5 - 2.8). 
For crystals 

/(5) = i | F ( 5 ) P G ( 5 ) * l 5 ( 5 ) P (5.41) 

For crystals containing distortions of the first kind we have 

7(5) = I F(5) P m\ -D?) + ^ • D?G(5) * 15(5) P] (Thermal motion) (5.42) 

7(5) = A^[<l F(5) P > - l<F(5)> P] + - l<F(5)>'G(5) * 15(5) P 
V 

(Mixed crystals) (5.43) 
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For paracrystals containing distortions of both the first and second kinds (distortion 
factor Dt) we have 

7(5) = A^(<l ^.// P > - D?< Ac.//> I') + - \<Aceii>\^ D?Z(5) * I S{S) P (5 44) 

In the above equations, G{S)= L\\N\)L2{N2)L'i\N3) is the Laue function, Vi is the vol
ume occupied by one particle (atom or molecule), v is the volume of a unit cell, M the total 
number of particles, and N the number of unit cells. Since the shape of the crystalline or 
paracrystalline single lattice is taken into consideration by the shape factor I S{S) P, the 
numbers M, Â 2, and Â3 in the Laue function {cf. Eqs. 2.38 and 2.45) are infinitely large, and 
hence G{S) has point-like peaks in the reciprocal lattice points. 

1) For amorphous substances, the integral containing P{r) is the Fourier transform of 
the statistical distribution of the distances of the scattering points, while for paracrystals and 
crystals, Z{S) and G{S) are the Fourier transforms of the statistical distribution of the dis
tances of the lattice points. The similarity between Eqs. 5.43 and 5.44 is particularly obvi
ous. 

2) When the different phases of a substance (crystalline or paracrystalline, amorphous 
or liquid) are finely divided into very small regions, or in the case of fine particles, the 
small-angle scattering of X-rays to be discussed in Chapter 6 is quite appreciable because 
of the I S{S) P factor (see Eq. 5.17). In the case of crystals or paracrystals, small-angle scat
tering is observed not only for 5 = 0 {i.e. in the direction of the incident beam), but at each 
diffraction spot, owing to the convolution of the shape factor I S{S) P of the lattices with 
G{S) or Z{S). For amorphous substances, liquid or solution it is observed only at the center 
spot. 

3) When the crystals are small, broadening of G(5) occurs in accordance with Fig. 
2.16, and it should be understood that the resultant broadening of the diffraction spots will 
be further increased by convolution with the factor I S{S) P. The latter contribution, of 
course, is at its most intense in the direction of the incident beam. 

Reference to Fig. 5.15 will clarify the above conclusions. It also illustrates the method 
in 2) above for calculating X-ray diffraction intensities. 

Since direct Fourier transformation for a crystal of finite size (represented in one di
mension in Fig. 5.15(c)) is impossible {cf. Section 5.2.2), the lattice function of the crystal 
with finite size is obtained by considering an infinitely large crystal (a) conjunction with a 
shape function (T(r), (b). The self-convolution Q{r) (e) of the lattice function (c) is the 
product of the two self-convolutions z and QJj") (in Fig. 5.15(e). The diffraction intensity is 
then found by Fourier transformation of Q{r) {i.e. of z{r) • 2s(r)). The result is the convolu
tion (in (g)) of the individual Fourier transforms shown in diagram (f). The intensity distri
bution (g) can also be derived as the broadening of the Laue function due to the fact that in 
the case we are considering the crystals are finite with small numbers of unit cells, but here 
we have obtained it as the broadening of the shape function I S{S) P. The diagram shows 
that the small-angle scattering is not restricted to the center, but is associated with all the 
diffraction spots. In Fig. 5.15 ^ denotes a Fourier transform. 

A similar analysis for paracrystals in Fig. 5.16 gives the intensity distribution shown in 
diagram Fig. 5.16(g). Although we are considering a paracrystal with infinite extension, 
the broadening of z{r) increases with increase in the order of diffraction due to the distor
tion of the lattice, and the diffraction intensity also broadens out with increasing order num
ber, as shown in Figs. 5.12 and 13.16. For finite crystals, therefore, this broadening will be 
further increased by convolution with the broadening of I S{S) P {cf. Section 13.6). 
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(Small-angle scattering at center and also associated with all the diffraction spots) 

Fig. 5.15 Schematic representation of the steps involved in calculating the diffracted X-ray intensities 
(bounded crystals). Atomic scattering factors,/s are taken as unity. 
^ denotes a Fourier transform. 
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(a) 

(d) 

(g) 

. ( r) : 

Infinitely large paracrystal (one-dimensional) 

I z(r) 

Z{S)*\S{S)\' 

JL. 
Diffraction pattern 

/Small angle scattering added to the\ 
Vparacrystal inherent broadening / 

(Small-angle scattering added to the paracrystal inherent broadening) 

Fig. 5.16 Schematic representation of the steps in calculating X-ray intensities (bounded paracrystals). 
Only those steps corresponding to (a), (d), and (g) in Fig, 5.15 are shown. Atomic scattering factors 
are taken as unity. 

z(r)=Pir) 

(a) 

(b) 

zir)Qsir) 

(c) 

Fig. 5.17 Steps in calculating scattered X-ray intensities (amorphous substances). 
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The diffraction from a system of amorphous particles is simple, as is evident from Fig. 
5.17. Attention has already been drawn to the fact that Q(r) in this case is of essentially the 
same form as P(r). 

<Q(r)> = ^[S{r-0) + P(r)] (5.45) 

The Fourier transform of the Q(r) of Fig. 5.17(a) is shown in (b). I S(S) P is concentrated 
predominantly about the center (Eq. 5.15), and the halos corresponding to scattering from 
amorphous material are observed at greater angles. Of course the convoluted form of 15(5) P 
also makes its contribution to these halos. 
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