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Preface 

More than thirty years have past since the publication of X-Ray Diffraction by Polymers by 
the authors (original edition in Japanese published by Maruzen, Tokyo, 1968, and English 
edition by Kodansha-Elsevier, Tokyo-Amsterdam, 1972). 

Since then, accelerated by the very rapid and the remarkable development of electronic 
computers, both hard- and software as well as new experimental techniques, marvelous de
velopments have been achieved on X-ray sources. X-ray detectors. X-ray apparata in exper
imental technique and methods of identification of crystalline materials, methods of struc
ture solution and structure analysis of small and macromolecular crystals X-ray diffraction 
data, presentation of the results obtained, i.e. crystal and molecular structures, and the crys-
tallographic databases related to them. 

Today, we can see the words, "'mail-in' crystallography" in scientific journals, refer
ring to sending sample(s) with appropriate information to an institution by mail, making it 
possible to obtain the structure of a complex biological molecule by mail within days 
('mail-in' service). However, the authors believe that there are many scientists who are not 
satisfied with the results obtained by conventional analysis and wish to try to find a way to 
obtain more detailed structural information on macromolecules or high polymers by them
selves based on the fundamentals of X-ray diffraction. 

The present volume is divided into three parts as in earlier editions: fundamental, ex
perimental and analytical. In the fundamental part. X-ray small-angle scattering is more 
precisely described in Chapter 6. In the experimental part, recently developed devices and 
the latest version of X-ray instruments equipped with these detectors are described. On the 
other hand, for the basic understanding of X-ray diffraction, descriptions and usages of 
rather old X-ray instruments are also given. In the analytical section, in addition to the 
structure analysis of high polymers, a new introduction has been added on the crystalliza
tion and structure determination of biological macromolecules in Chapter 13. 

In this way, it is hoped that whichever section the reader turns to, depending on the re
search field, knowledge and experience, a contribution will be made. That is to say, the 
volume is intended as an intermediate textbook bridging the gap between beginners and 
specialist workers. Explanatory daigrams have been planned as far as possible to provide 
an intuitive understanding, and in the description of the equipment and methods it is shown 
how these are adapted to suit the aims of the analysis. The procedure adopted in the analyt
ical part is to advance from the simple to the complex, starting with analyses of crystalline 
diffraction spots, amorphous haloes, broadening of diffraction spots, and overall back
ground scattering, then concentrating of X-ray diffraction pattern, and proceeding eventual
ly to composite analytical methods constructed from these individual analyses. Also, many 
pages have been allotted to examples from original works in order to facilitate the practical 
application of the analysis for the less experienced. It is hoped that these examples will 
serve as a further step beyond the level of most primers, but without obscuring the forest for 
the trees. 



VI Preface 

Most of the revised manuscripts were finished at the end of 1994. However, the homes 
of both authors were severely damaged by the heavy earthquake which hit Kobe and nearby 
areas in Japan on 17 January, 1995, causing delay in the publication of the monograph. 
Last year minimum revisions were again made on the manuscripts and pictures of the latest 
instruments were included in the experimental part of the work. 

The painstaking work of the staff of Kodansha Ltd. in preparing the text is gratefully 
acknowledged. One of the authors (N.K.) deeply thanks the late Mrs. Maria Hiroko KA-
SAI for her assistance in the initial stages. 

Kobe 
February 2005 

Nobutami KASAI 

Masao KAKUDO 
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Part I 

Fundamental 

X-ray diffraction patterns of substances in various states are tabulated overleaf. Before go
ing on to the analysis of these patterns, this part deals first with X-rays (Chapter 1) and X-
ray diffraction by matter (Chapter 2), and then with how these patterns (except for the pat
terns obtained by the dynamical scattering of X-rays, which are outside the scope of this 
volume) are obtained by means of X-ray diffraction (Chapters 2 to 5). The essence of 
small-angle scattering is described in Chapter 6. Chapter 7 briefly summarizes the struc
ture of high polymer substances. 
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1. Essential Properties of X-Rays 

1.1 X-Rays as Electromagnetic Waves 
X-rays, like light and ultraviolet radiation, are electromagnetic waves. Since the accompa
nying magnetic field plays no role in X-rays diffraction, an X-ray may, for the purposes of 
this book, be pictured as an electric field oscillating in a single plane, where the plane is 
perpendicular to the direction of propagation (i.e. a polarized transverse wave), as shown in 
Fig. 1.1. X-ray wavelengths are generally considered to lie between 0.1 A and about 100 A 
[1 A (Angstrom) = 0.1 nm]. 

It is also possible to think of electromagnetic radiation as consisting of particle-like 
photons advancing with the velocity of light, and having energy hv, where v is the frequen
cy of oscillation and h is Planck's constant (6.626 X 10 "̂ "̂  Js). It is the wave-like proper
ties of X-rays, however, which are of greater importance for diffraction phenomena. Fig. 
1.1 shows the X-ray as a vibration in a single plane, but it is often helpful to regard an X-
ray as having a wavefront with considerable lateral extension, like a wave on the sea shore. 

Electric field 

Wavefront 

Propagation, 
velocity c 

Fig. 1.1 X-ray propagation; polarized transverse electromagnetic wave. 

1.2 Generation of X-Rays 

1.2.1 X-ray tube 
X-rays are produced when thermal electrons released from a heated filament under vacuum 
are accelerated towards, and eventually strike, a metal anode (anticathode) at a high poten
tial (Fig. 1.2). The most important process for the generation of X-rays is the deceleration 
of these electrons as they penetrate matter. According to Maxwellian theory each change in 
velocity of a charged particle produces a continuous /-spectrum. For electrons with ener
gies of 5-100 keV, this so-called "Bremsspektrum" has the wavelength of X-rays. If, how
ever, a bombarding electron should eject an electron from, say, the K shell of an atom, the 
resulting vacancy will be filled by an electron falling from a higher energy (L, M, etc.) 



1. Essential Properties of X-Rays 

Filament (cathode) 

_- High voltage source 
X-ray 

Window 

Anode (anticathode) 

Cooling water 

ntJT 

Fig. 1.2 Principle of the X-ray tube (cf. Fig. 8.1). 

shell, the energy difference being radiated in the form of an X-ray photon. The X-rays re
sulting from the fall of electrons from the L, M, etc. shells into the K shell are known as 
Ka, Kp, etc. radiation (Fig. 1.3). Since the various shells have fixed energies for a given 
type of atom, these radiations also have a fixed energy, a fixed frequency, and a fixed 
wavelength characteristic of the atom; these are known as characteristic X-rays. The ener
gy differences between the various shells increase with atomic number so the wavelength of 
the Ka radiation of Mo, for example, is shorter than that of the Ka radiation of Cu. Ka ra
diation is more intense than Kfi radiation, and has a longer wavelength. Table 1.1̂ ^ shows 
the wavelengths of Ka\ characteristic X-rays obtained from tubes with various anode met
als: the suffix 1 refers to a fine structure within Ka radiation (c/Fig. 1.3). 

X-ray diffraction requires, in the majority of cases, a source which is as monochromatic 
as possible. Because of its comparatively high intensity, Ka radiation is usually chosen, 
which means that it must be isolated from the accompanying background of continuous ra
diation and Kfi, etc. radiation. The form of the continuous spectrum obtained with different 
tube voltages is shown in Fig. 1.4(a). Since the energy hv cannot exceed that of the bom
barding electrons, i.e. the product eV of the electronic charge e and the accelerating voltage 
V, we have 

/iVmax = eV^ hclXmm aud 

Amin = 12.4/y (Vin kV ( = 1000 volt units)) (1.1) 

Thus the radiation shows a continuous distribution from Amin toward longer wavelengths. 
The characteristic X-rays are generally superimposed on this continuous spectrum, as 

shown in Fig. 1.4(b), but the same wavelengths limit applies: unless Amin is less than the 
wavelength of, say, the Ka line, this line cannot appear. It follows that there are critical 

Table 1.1 Ka wavelength for various anode (anticathode) metals" 

Anode Cr Fe Co Cu Mo Ag 

Wavelength,/sTai [A] 2.289877 1.936306 1.789188 1.54059292(45) 0.70931713(41) 0.55942177(76) 

[Reproduced with permission from Intematinal Tables for Crystallography, Vol. C, 2nd ed., (A. J. C. Wilson, E. 
Prince eds.), Intemational Union of Crystallography, D. Reidel Pub., Dordrecht (abbreviated as lUCr, hereafter) 
(1999)] 



K series 

L series 

0, Lu Lm 

1.2 Generation of X-Rays 

Energy state 

/Identity of \ 
\lost electron/ 

--U\L 

-11 
: III \ M 
:IV 

V 

• I ) 
' II 
• a i 
: iv 

V 

:Vi 
vn 

Fig. 1.3 Orbital electron energies and characteristic X-rays. 

B JJ 

00 C 

2 e 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

(a) Wavelength, A[A] 

Ka^ 

Characteristic 
spectrum 

K^ 

Continuous 
spectrum 

0 1.0 2.0 

(b) Wavelength, A[A] 

Fig. 1.4 Typical X-ray spectral intensity distributions. 
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3 5 k V , E : 4 0 k V , F : 5 0 k V . 
(b) Characteristic X-rays superimposed on the continuous spectrum. Intensity ratio of continuous spec
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/ ( / :« , ) : I(Ka2): I{KI3)^ 100 : 50 : (20-30). 
[Reproduced from C. Urey, Phys. Rev., 11, 401, Am. Inst. Phys. (1918)] 
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voltages, VK, VU etc., below which the particular charateristic X-rays cannot be excited, i.e. 
the incident electrons do not possess sufficient energy to eject a K, L, etc. electron from its 
orbit. 

Since the radiation emitted from an X-ray tube is actually a mixture of X-rays of vari
ous wavelengths, in order to obtain substantially monochromatic X-rays it is necessary to 
eliminate unwanted wavelengths as much as possible. This can be achieved by diffraction 
of the mixed radiation by means of a crystal and subsequent isolation of the desired charac
teristic radiation (e.g. that corresponding to A = Ka in Fig. 1.4(b)) on the basis of its orien
tation. Another method utilizes the fact that the intensity of the characteristic X-rays is 
very high. When the beam is passed through a substance that specifically absorbs the un
wanted X-rays, the relative intensity of the characteristic radiation is increased because of 
absorption of the radiation at all other wavelengths; the resulting radiation, however, is still 
a mixture. This is the most commonly used filtration method and will be described in more 
detail in Section 1.3.2. 

If the lowest excitation voltage for the production of the Ka characteristic radiation is 
VK, and if V and i are the tube voltage and current, the intensity / of the characteristic X-
rays is given empirically as 

I^HV-VKT (1.2) 

where n has a value of about 1.5. It is found experimentally that there is no useful increase 
in intensity when V/VK is increased beyond a certain limit, and the ratio to the intensity of 
the continuous X-rays is constant for V/VK — 3-4. This range of V/VK is therefore the most 
suitable. In the case of Cu Ka. radiation, for example, since VK is about 9 kV, the most suit
able effective (r.m.s.) voltage should be less than 36 kV and the most suitable peak voltage 
less than 45 kVp. Some important VK values are given in Table 1.2.̂ ^ 

Table 1.2 Excitation voltage for various anode metals'^ 

Anode Cr Fe Co Cu Mo Ag 

Excitation voltage, ^g^g ^^^^ ^j^^ g^g j 20.00 25.60 
VK [i^y\ 

[Reproduced with permission from International Tables for Crystallography, Vol C. 2nd ed., (A. J. C. Wilson, E. 
Prince eds.), p.71, lUCr. (1999)] 

1.2.2 Synchrotron radiation 

Synchrotron radiation, obtained from an electron synchrotron or electron storage ring by ac
celerating electrons up to several GeV, has a continuous spectrum, as shown in Fig. 1.5^\ 
and is now used as the more powerful X-ray source. This is because synchrotron radiation 
has the excellent properties listed below."̂ ""̂  

1. High intensity 
2. Very broad continuous spectral range 
3. Narrow angular collimation 
4. Small focal size 
5. High degree of linear/circular polarization 
6. Regularly pulsed time structure 
7. Ultra-high vacuum environment 
8. Computability of properties 
However the use of synchrotron radiation is limited to laboratories with available syn

chrotron sources (Fig. 1.6).'̂ ^̂  
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1.3 Properties and Effects of X-Rays 
When X-rays pass through a substance their energy is dissipated by the ejection of orbital 
electrons and by scattering. The absorption of X-rays by a substance is expressed by true 
absorption and apparent absorption due to scattering. The true absorption is caused by an 
atom as a result of absorption of X-ray energy and ejection of orbital electron outside(pho-
toelectric effect). Ordinarily this photoelectron release is accompanied by the emission of 
X-ray characteristic of the atom (Fig. 1.3) (fluorescent X-ray), but sometimes an Auger 
electron is ejected without emitting the fluorescent X-ray instead. The incident X-rays are 
scattered elastically (Thomson scattering) or inelastically (Compton scattering) by electrons 
in the substance, which results in decrease of the intensity of the incident X-rays. These ef
fects are summarized in Fig. 1.7. 

Incident X-ray-

, Scattered X-ray 

Elastic scattering A = A 

(Thomson scattering) 

Inelastic scattering A'>A 

(Compton scattering) 

Matter 

rFluorescent X-ray (characteristic for atoms 
included in the matter) 

'Transmitted X-ray / = / o e x p ( - ; u O 

( Photoelectron 

(Photoelectric efTect) 

Electron J Auger electron 

(Auger efTect) 

Recoil electron 

(Compton effect) 

Heat 

Fig. 1.7 Interaction between X-ray and matter. 
/o and /: intensity of incident and transmitted X-rays, respectively; /I and A': wavelengths of X-rays; fi'. 
absorption coefficient; T, <7 and X'. absorption coefficients due to true absorption (photoelectron effect), 
scattering and annihilation, respectively; t: thickness of the matter. 

1.3.1 Absorption of X-rays 

A. Absorption coefficient (or attenuation coefficient) 
When X-rays pass through a substance their energy is dissipated by scattering and the ejec
tion of orbital electrons. If /o is the intensity of the incident monochromatic X-rays {i.e. the 
X-ray energy passing through unit area in unit time), the X-ray intensity / after passage 
through a thickness ^ cm of a substance having density p is given by 

^r 

/ = /o exp (— jXmpt) = /o exp (— jut) (1.3) 

I (or = jj./p) [cm^-g ~ ]̂ is known as the mass absorption coefficient: it is characteristic of 
the substance and also varies with wavelength for a given substance. Reference books 
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quote values for the so-called linear absorption coefficient jj. rather than the mass absorp
tion coefficient jUm (above); this is the reciprocal of the thickness of substance which attenu
ates the beam by a factor e, and is equal to jiimp[cm~^] in Eq. 1.3. Since jUm is often re
quired in X-ray work, a number of values are given in Table 1 of the Appendix. 

If the chemical constitution A .̂B^^Cnj... of a substance is known, the absorption by this 
substance can be found as follows. The mass absorption coefficients m̂A, ÂmB, /imc, etc. of 
the various elements for the wavelength of the X-rays used are first found from the table, 
and the mass absorption coefficient of the substance is then calculated by adding these in 
accordance with the weight ratios of the elements present. Thus if AA, AB, AC, etc. are the 
atomic weights of the elements A, B, C, etc., 

lLlm = 
HlAAlilmA+niABlLlmB-^-

niAA+n2AB+'--
(1.4) 

B. Discontinuous nature of absorption 
It is evident from Table 1 of the Appendix that the variation of absorption with increasing 
atomic weight is not monotonic for a given wavelength, but shows sudden changes, and 
that discontinuous variations are also to be expected for a given element with varying 
wavelengths. This is shown much more clearly by the curves of experimentally determined 
absorption coefficients in Fig. 1.8.̂ ^ The discontinuities are known as absorption edges. 
The abrupt changes in absorption are due to the loss of energy associated with the genera
tion of characteristic X-rays by the atoms of the substance. The wavelengths AK, AL, etc. of 
the absorption edges thus correspond to the excitation voltages VK, VU etc. of the character
istic X-rays (Table 1.2). One therefore speaks of K, L, etc. absorption edges which corre
spond to the K, L, etc. characteristic radiation of the element. 

The absorption curve of X-rays by atom shows a fine structure in the range down to 
several hundreds eV from the absorption edge. This is called extended X-ray absorption 
fine structure (EXAFS), which can be used to obtain information about the spatial arrange
ment of atoms neighboring the atom. 
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Fig. 1.8 Experimental absorption coefficients.^^ 
(a) Mass absorption coefficients jiim of Pt vs. wavelength A. 
(b) Mass absorption coefficients /im for Cu Ka (X = 1.54 A) v .̂ atomic number Z. 
[Reproduced with permission from A. Guinier, Theorie et Technique Radiocristallographie 
p.l4,Dunod (1960)1 
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1.3.2 X-ray scattering 
A. Thomson scattering 
Since X-rays are electromagnetic waves, it is not surprising that they cause vigorous vibra
tion of the shell electrons of the atoms of substances through which they pass. When elec
trically charged particles such as electrons are accelerated, secondary radiation is always 
emitted. Because the secondary emission is stimulated by the oscillating electric field of 
the incident X-rays, it is synchronous with it, consisting therefore of X-rays having the 
same frequency and wavelength as the incident X-rays. This scattering without change in 
wavelength is known as Thomson scattering and is the main type of scattering involved in 
X-ray diffraction (coherent scattering). 

B. Compton scattering 
X-rays also behave as particle-like photons having momentum hvic: momentum is trans
ferred when these particles collide inelastically with electrons, and the radiation is convert
ed into X-rays with lower energy (longer wavelength). Since the energy change varies with 
the collision conditions, these scattered X-rays have a continuous spectrum at wavelengths 
greater than that of the incident X-rays. This scattering is known as Compton scattering 
and is of historical importance as experimental evidence for the dual wave/particle nature of 
X-rays. Fig. 1.9 shows the geometry of such a colhsion. Since these scattered X-rays do 
not give rise to diffraction, this type of scattering is of minor importance in the present vol
ume. 

X-ray photon,/iv/c, A \ ^ 2^ 

Recoil electron 

Fig. 1.9 Compton scattering. 

In Thomson scattering the incident radiation behaves as a broad-fronted wave stimulat
ing oscillations in many widely separated electrons thus inducing numerous secondary 
waves. Since the latter are all produced by the same incident wave there is a clear relation
ship between their phases and consequently mutual interference giving rise to diffraction 
effects. Compton scattering, on the other hand, is due to independent collisions between X-
ray photons and electrons, with no phase relationship between the scattered waves, and 
therefore no diffraction occurs (incoherent scattering). Even though there is no diffraction 
effect, the presence of this scattering is a further source of overall blackening of the film 
used for X-ray measurements; this must be subtracted when precise measurements must be 
made of the intensities of the diffracted waves in calculating the Thomson scattering inten
sities. Special care is necessary in measuring the diffuse halos from amorphous regions. 
The intensities will be discussed quantitatively in the section on the scattering of X-rays by 
electrons. 



1.3 Properties and Effects of X-Rays 11 

1.3.3 X-ray refraction 

It can be shown theoretically that all substances have refractive indices extremely close to 
unity for short wavelength electromagnetic waves such as X-rays. If the frequency of the 
incident radiation is considerably greater than the critical absorption frequencies of the scat
tering atoms, the refractive index n for X-rays of wavelength A, be given aŝ ^̂  

n=l-d 

e^ Z 
^ = ^ P^^ (15) 

iTtmc^mHA A ^ ^ 
where e and m are charge and mass of the electron, c the velocity of light, mn the mass of 
the hydrogen atom, Z the total number of electrons in the atom, A the atomic weight of the 
scattering atoms, and p the density of the medium. For Mo Ka, X = 0.70926 A, and S = 
1.36 X 10 ~^ pZ/A. Since Z/A is always about one-half, the value is usually so small 
(10^^— 10"^) that it can be neglected in practice. This means that lenses cannot be con
structed for X-rays which thus, unlike light, cannot readily be made to converge or diverge. 
However, if the X-ray hits the surface of a solid material at a very minute angle, the total 
reflection of the X-ray may be observed. The critical angle iŝ ^̂  

ec = ^2(\-n) = 425 (1.6) 

6c has a value of the magnitude of 10 - 30 min; the longer the wavelength of the X-ray the 
larger the Qc. Total reflection from a curved surface may be used to focus the X-ray beam 
(Section 8.2.5D). 

1.3.4 Effects used for the detection of X-rays 

A. Photographic effects and photostimulated luminescence 
1) Photographic effect. The exposure of photographic film to X-rays is widely used in 
fields ranging from medical diagnosis to the inspection of various materials in industry, and 
is of course a principal means for the observation of X-ray diffraction patterns. Here we 
shall simply describe the characteristics of film specially produced for X-ray applications. 

Owing to the high penetrating power of X-rays, more than 50% of the radiation having 
wavelengths about that of Cu Ka passes through a normal photographic film with little ef
fect on the silver grains. The bases of X-ray films are therefore coated fairly thickly on 
both sides with a high-sensitivity emulsion. Films of this type, which are intended primari
ly for recording X-ray transmission patterns, are very sensitive, but their nonlinear 
energy/sensitivity characteristic curve renders them far from ideal for the measurement of 
X-ray intensities (cf. Section 8.2.2.C.a). 
2) Photostimulated luminescenceJ^ Photostimulable phosphor such as BaFBr : Eu^^ 
shows "photostimulated luminescence" (PSL). That is, when the phosphor is exposed to X-
rays it stores a fraction of the absorbed X-ray energy temporarily in the form of quasistable 
color centers, and when they are later stimulated by visible light, they emit PSL with an in
tensity proportional to the number of X-ray photons absorbed {cf. Section 8.2.2. B.l)). 

B. Ionization 
When X-rays are passed through a gas energetic photons ionize it by stripping electrons 
from the gas atoms in their path. These electrons and the still energetic X-ray photons lose 
further energy by subsequent collision with other atoms and the formation of numerous ion 
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pairs. This ionizing ability of X-rays can be exploited to measure the radiation dose. The 
X-rays are passed into a sealed chamber containing a gas (usually Ar, Ne, or Xe). The elec
trons produced are captured by an electrode of high potential (about 1,000-2,000 V) inside 
the chamber, and an electric current flows. This current is produced by a number of elec
trons that corresponds to the energy of the incident photons, and is therefore a measure of 
the radiation dose. If the body of the ionization chamber is the negative electrode and the 
positive electrode is a fine wire in the center of the chamber, the ejected electrons are ac-
cerelated towards the wire and ionize many more atoms on their way, so that an avalanche 
of electrons converges on the electrode and produces a large instantaneous current. The 
amount of ionization, hence the intensity, may be measured after amplification of these 
electric pulses. This is the principle of the ionic chamber and the proportional and Geiger-
Miiller (GM) counters. Earlier, GM counters were used in most X-ray diffraction apparata. 
Now however, proportional counters are widely used because they have the following ad
vantages over GM counters: the pulse height observed is proportional to the energy of the 
incident X-ray photons, the dead time is much shorter, and the counting loss is very small 
up to a high counting rate of 10"̂  — 10̂  cps (c/. Section 8.2.2.A and B). 

When X-rays are irradiated to a lithium drifted silicon or germanium semiconductor, 
Si(Li) or Ge(Li), or high-purity germanium semiconductors the energetic photons absorbed 
by the semiconductor ejects photoelectrons of high speed, which form numerous ion pairs, 
electrons and positive holes. The number of ion pairs formed is proportional to the energy 
of X-ray photons. The electrons and positive holes produced are swept toward the anode 
and cathode respectively under a high potential, and the flow of an electric pulse current 
can be detected.^^ In order to stabilize the semiconductor, increase the mobility of electrons 
and positive holes, and minimize the dark current due to the thermal formation of the ion 
pairs the semiconductor must be kept at low temperatures (c/Section 8.2.2.A.b). 

C. Fluorescence 
Although X-rays are not directly visible they can be observed indirectly as a yellow to vio
let fluorescence with the aid of a fluorescent screen. The substances most commonly used 
are CaS, ZnS, and CaWOs, as these give a strong yellow fluorescence. If a fluorescent 
screen is fixed to the back of a film, the X-rays passing through it produces fluorescence, 
and the film emulsion is affected by this as well as directly by the X-rays. Screens giving 
violet fluorescence are widely used in this way to increase sensitivity because of the high 
actinic value of fluorescence in this wavelength region. 

The widely used scintillation counters utilize fluorescence (scintillation) to detect X-
rays and other radiation by means of scintillators and photomultipliers (Section 8.2.2.A). 

The X-ray image-orthicon used in the X-ray television for the real time observation of 
X-ray topographs or intensity data collection of single crystals is another example of the ap-
phcation of this fluorescence effect (c/. Section 8.2.2.C.d). 

1.3.5 Other effects 

A. Chemical effects 
Because of the high energy of X-rays, they are capable of decomposing substances by 
breakdown of chemical bonds, and also of synthesizing substances by the formation of new 
bonds. It has long been known, for example, that a solution of iodoform in chloroform 
turns violet upon X-irradiation due to the liberation of iodine. 

The decomposition and polymerization of macromolecular substances by radiation is 
widely used in industry at the present time. X-rays resemble both ultraviolet (UV) and P 
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radiation in producing many characteristic chemical effects, but as these fall outside the 
scope of this book they will not be detailed here. However, if we admit the possibility of 
changes in the sample itself during the course of X-ray diffraction studies, this presents im
portant problems: one must always bear in mind that X-rays can have pronounced chemical 
effects. 

B. Biological damage 
Living organisms are complex assemblages of organic compounds with proteins as the 
main constituents, and are therefore susceptible to the chemical action of X-rays. 
Moreover, since the living body is the seat of a delicate system of chemical reactions, even 
slight chemical damage due to X-rays can disturb the entire physiological function of the 
organism. The risk of bums due to X-rays is well known, but also, because of malfunctions 
that can result from unknown metabolic changes, the investigator must always beware of 
the X-ray beam. 
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Captions to and sources of the X-ray diffraction patterns cited in "State of specimens 
(diffracting matter) and X-ray diffraction patterns" 

(a) Pendellosung fringes appeared in the traverse pattern of the 020 diffraction of Taurine (2-
Aminoethylsulfonic acid) large crystal [Dynamical scattering] (Flat dry plate) 
[Reproduced with permission from L Suzuki, et al.. Sulfur Amino Acids, 4, 254, Research Society for 
Sulfur-containing Amino Acids (1981)] (in Japanese). 

(bi)Rotation photograph of a single crystal like Poly(ethylene oxide)-Urea complex (Rotation about the c axis, 
cf Figs. 7-13, 10-8 (a)). {Cylindrical film) 

(b2)Fiber diagram of drawn Poly(ethylene oxide)-Urea complex (draw direction vertical, cf. Fig. 10.8 (b)). 
(Cylindrical film) 

(bi) (ba) : [Reproduced with permission from H. Tadokoro, et al, J. Polym. Sci. B2, 363, John Wiley & 
Sons, Inc. (1964)]. 

(c) Precession photograph of Cytochrome c' from Rhodospirillum rubrum, hOl diffractions. (Flat film) 
[Reproduced with permission from M. Yasui, et al., J. Mol. Biol, 111, 845, Academic Press (1984)] 

(d) Fiber diagram of Silk fibroin (Bombyx mori). (draw direction vertical). (Flat film) 
[Reproduced with permission from Y. Takahashi, Silk Polymers, Material Science and Biotechnology, ACS 
Symposium Ser., 544, 168, Am. Chem. Soc. (1994)] 

(e) Fiber diagram of Poly (/3-propiolactone) IL (draw direction vertical). (Cylindrical film) 
Discrete diffractions have been observed on the equator but streaks on every layer line. 
[Reproduced with permission from K. Suehiro et al., J. Polym. Sci., 1, 352, John Wiley & Sons, Inc. 
(1975)] 

http://www.spring8.or.Jp/e/general.info/overview/
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(f i) Debye-Scherrer patterns of five randomly oriented crystals of fluorite. {Cylindrical film) 
(fi) Debye-Scherrer patterns of fluorite powder. (Cylindrical film) 

(fi), (f2) : [Reproduced with permission from F. A. Bannister, The Powder Method in Mineralogical 
Research in X-Ray Dijfraction by Poly crystalline Materials (H. P. Reiser, H. Rocksby, A. J. C. Wilson eds.), 
p.526, Chapman and Hall (I960)] 

(g) Amorphous halo of poly (ethylene terephthalate) fibers showing preferred orientation. (Flat film) 
[Reproduced with permission from W. O. Statton, Characterization of Polymers in Handbook of X-rays for 
Diffraction, Emission, Absorption and Microscopy (E. F. Kaelbe ed.), p.21-15, McGraw-Hill (1967)] 

(h) X-ray diffraction halo of a linear eicosamer of a tripeptide, (PPG)2o. (Flat film) 
[M. Kakudo et al. Unpublished data] 

(i) X-ray diffraction halo of water. (Flat film) 
[Reproduced with permission from D. L. Hukins, X-Ray Diffraction by Disordered and Ordered Systems, 
Covering X-Ray Diffraction by Gases. Liquids and Solids and Indicating How to the Theory of Diffractions 
by These Different State of Matter is Related and How It Can be Used to Solve Structural Problems, p.66, 
Pergamon Press (1981)] 

(j) X-ray small-angle diffraction pattern of rat sciatic nerve. (Flat film) 
[N. Kasai, M. Kakudo, Unpublished data] 

(ki)X-ray small-angle scattering patterns of polyethylene. (Flat film) 
(k2)X-ray small-angle scattering patterns of polyethylene. (Flat film) 

(ki), (k2) : [Reproduced with permission from W. O. Statton, Characterization of Polymers in Handbook of 
X-rays for Diffraction, Emission, Absorption and Microscopy (E. F. Kaelbe ed.), p.21-15, McGraw-Hill 
(1967)] 

(1) Schematic X-ray small-angle scattering pattern of amorphous solid. (Flat film) 
(m)X-ray small-angle scattering pattern of a silica gel. (Flat film) 

[N. Kasai, M. Kakudo, Unpublished data] 
(n) X-ray small-angle scattering pattern of a vanadium sol (Wiirtz sol, in glass capillary). (Flat film) 

[N. Kasai, M. Kakudo, UnpubUshed data] 
(o) Schematic X-ray small-angle scattering pattern of a solution. (Flat film) 



2. X-Ray Scattering, Interference and Diffraction 
The preceding chapter dealt with the general properties of X-rays that are essential to dif
fraction. This chapter proceeds to give a more detailed account of X-ray scattering and dif
fraction, and presents the principles on which the practical observation and analysis of dif
fraction phenomena are based. 

Section 1.3.2 detailed the various types of scattering that occur when X-rays strike an 
object (atom or electron). Fig.2.1 illustrates the scattering of X-rays by a single electron. 
The following conventions form the basis of the scattering theory presented in this chapter. 

1. The wavelengths of both the incident and scattered X-rays are identical (Thomson 
scattering). Thus, in both the following theory and experimental practice, fixed wavelength 
is always used. 

2. The scattered X-rays are propagated over the whole of space. When the distribution 
of intensities is anisotropic, a particular direction is identified by a suitable angular parame
ter, the direction of the incident radiation being taken as the datum. When only one scatter
ing angle is involved, as in Fig.2.1, it may be adequately specified by its magnitude 20. In 
general, however, the direction in three-dimensional space with reference to the datum is 
expressed by a vector. 

Thomson scattering (spherical wave) 

Electric field 

Incident 
X-ray 

Transmitted 
X-ray 

Fig. 2.1 Propagation of a spherical wave with amplitude Ae in direction A. 

3. All the scattered X-rays arriving at a given observation point are parallel, just as the 
incident X-ray beam is taken to be parallel. This condition excludes observation points at a 
distance from two or more scattering points that is comparable with the separation between 
the points; in this case the scattering angle would differ for each point (29\, 2^2, etc., in Fig. 
2.2). The observation distance should therefore be thought of as effectively infinite, so that 
26u 2O2, etc., are all equal despite the divergence of the scattered rays in the immediate 
vicinity of the scattering points. 

4. Scattered X-rays interfere with other scattered X-rays, but do not undergo any fur
ther interactions with other atoms. This condition is, in effect, an assumption that the X-
rays from a given atom (which spread out over all space and so necessarily strike other 
atoms in the vicinity) will only induce secondary scattering interactions with other atoms to 
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Scattered 
X-rays 

Observation 
point 

Transmitted 
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Fig. 2.2 The effect of a non-remote observation point. 

a negligible extent (Kinematical theory of diffraction). 
Condition 3. is widely known as the Fraunhofer approximation. Conditions 3. and 4. 

are particularly fundamental to the kinematical theory of diffractions as presented in this 
volume. With a few, rare exceptions, they may be taken as valid in practice for the applica
tions treated. Condition 4. is vital to the dynamical theory of diffraction, which is not 
dealt with in this volume, although it is important in both X-ray and electron diffraction 
theory. The reader is referred to a suitable text̂ "̂ ^ for further details. In the following sec
tions we shall consider successively the nature and intensity of the scattering by objects 
ranging from the smallest scattering unit, the single electron, to complex assemblies of 
many atoms. 

2.1 Scattering by a Single Electron 
We have already noted that when X-rays strike an electron, scattered X-rays of the same 
wavelength are produced. This section presents the basic information necessary for experi
mental work involving such Thomson (coherent) scattering, i.e. scattering with no change 
in wavelength, which gives rise to interference. Fig. 2.3 illustrates an X-ray impinging on a 
single electron, and a section of the resultant spherical wave of scattered Thomson X-radia-
tion(c/:Fig.2.1). 

Incident 
X-ray 

Ao 

Z 
, 

Electron 

I 

N \ \ 
\ 

\?-

\ \ 

Fig. 2.3 X-ray coherent (Thomson) scattering by a free electron. 
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Let the electric field that accompanies the wave motion of the incident X-ray have an 
amplitude Ao and a direction parallel to OZ. The corresponding amplitude of the scattered 
spherical wave at a point in the X7 plane P, at a distance RF from the electron, is 

Ap^Ao— ^ (2.1) 
RF mc ^ ^ 

where m is the mass of the electron, e its charge, and c the velocity of light. The angle 26 
shown between OP and OX is at this stage immaterial, but see Eq.2.3 below. 

Since the intensity of the wave, i.e. the energy passing through unit area per unit time, 
is proportional to the square of the amplitude of the wave, the intensities /o and I? of the in
cident X-ray and the scattered wave at P will be 

''-''-^-;r^ (2.2) 

Equations 2.1 and 2.2, based on the given restrictions upon angle of incidence, observa
tion direction and plane of vibration, in fact give the maximum observable intensity for an 
X-ray scattered by a single electron at a distance Rv from the electron. In general, however, 
when the point P lies on the spherical surface of the wave outside the XY plane (point P) , 
where Ao and Ap' are no longer parallel, the component normal to the XY plane is reduced to 
Ap sin (p, where cp is the angle between Ao and OP'. 

The above scattering calculation also rests on the assumption that there is a single po
larized incident wave. An actual beam, on the other hand, is not uniquely polarized as a 
whole, but consists of waves with all possible directions of polarization within a plane per
pendicular to the propagation direction. The amplitude Ae and intensity h of the scattered 
X-rays then vary with the scattering direction as follows: 

, , 2 . 1 ^ ' l + cos'20 
le=Ae =h' 

\F m'c' 2 

= 7 . 9 0 X 1 0 - . / o ^ i ± ^ 5 ^ (2.3) 
RF^ 2 

Thus the amplitude and intensity of the X-rays scattered in a particular direction when an 
X-ray beam strikes a single electron can be found from Eq. 2.3. 

A few words should be added at this point about Compton (incoherent) scattering, 
which does not give rise to interference. 

In the case where X-rays of wavelength X give rise to Compton scattering of wave
length A' we may put A' = A + AA, where AA corresponds to the increase in wavelength of 
the center of the Compton spectrum. Where A?i is small we have 

AX = ^ sin' 6 = 0.024(1 - cos 26) n 4) 

where 26 is the scattering angle. 
The values of AX are in fact very small, and the intensity is only a few percent that of 

the Thomson scattering. Compton scattering does not cause diffraction, but is observed as 
a weak background scattering over the whole angular range, and may be disregarded for the 
present. However, since this scattering must be subtracted in the quantitative measurement 
of the diffuse halos from amorphous material, its intensity will be discussed in more detail 
later (Eq. 2.17). 
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2.2 Interference and Diffraction of Scattered X-Rays 

2.2.1 The phenomena of interference and diffraction 
Reference has already been made to interference, diffraction, and the phase of a wave. We 
now proceed to a detailed exposition of the phenomenon which is essential to this volume, 
i.e. the diffraction of X-rays. 

Figure 2.4 represents part of a large tank filled with water, on the surface of which 
wave crests, induced by the lateral oscillations of a vertical plate (shown to the left of the 
diagram), are traveling from left to right. Upon encountering two corks, 1 and 2, which 
have been fixed so that they are partially submerged, the energy of the wave train is partial
ly scattered in the form of circular ripples of lower amplitude (crest height) but having the 
same frequency and wavelength as the original waves. The encounter with 1 and 2 replaces 
the plane parallel wave train with a complex wave system resulting from the superimposi-
tion of the two circular waves upon the incident wave. 

If we now regard the plane wave arriving from the left of the diagram as the wave front 
of a single X-ray wave (cf. Fig. 1.1), 1 and 2 as scattering electrons, and the circular waves 
as spherical waves spreading out from the electrons, the situation in the above diagram pro
vides an analogue of the phenomenon that occurs in the plane containing OP and the inci
dent ray in Fig. 2.3. 

The formation of a composite wave by superimposition of two or more waves is known 
as interference. The incident wave, confined initially to a single direction of propagation, is 
found (due to the scattering effect of 1 and 2 and the resultant spherical propagation) to be 
deflected so that it propagates in new and other directions. This latter phenomenon is 
known as diffraction. 

The principles of diffraction can readily be understood with the aid of the diagram. In 
Fig. 2.4, the Hues denote wave crests, with the troughs lying in the spaces between the lines. 
Since the incident wave reaches 1 and 2 simultaneously, the crests of the scattered waves 
traveling in direction Ao (parallel with the incident wave) coincide, as do also the troughs. 
This is evident from the diagram, which represents the wave motion at a particular instant, 
by considering a section along this direction. When the crests and troughs of two waves do 
not coincide, however, there is a difference in phase between them. This phase difference is 
normally expressed either in wave numbers (the ratio of wave displacement or path differ
ence to wavelength) or in terms of the angular difference between the associated circular 
motions. Fig. 2.5 (p.20) shows the relationship between these quantities for waves in direc
tion C, where there is a significant difference in phase. The wave from 1 leads that from 2 
by AC, so the phase difference is AC/X in wave numbers, or InAC/X in radians. Since one 
period (the interval within which a wave completes one cycle of oscillation) usually appears 
in the equations of wave motion as the angular period 27r, phase difference in this volume 
will usually be expressed in terms of phase angles. 

Let us consider the superimposition of the waves along the directions Ai, An, Bi, and Bu, 
as we have for directions Ao and C. Both Ai and An are similar to Ao in that crests and 
troughs coincide, i.e. there is effectively zero phase difference, and this results in waves 
with doubled amplitude, as shown for Ai in Fig. 2.4. The figure also indicates how the 
wave crests tend to become parallel at locations remote from the scattering electrons. The 
assumption that the scattered waves are parallel when viewed from a sufficiently remote 
observation point is known as the Fraunhofer approximation, mentioned at the start of this 
chapter. The lines joining such a point to 1 and 2 would be parallel, and would differ in 
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Fig. 2.4 Interference and scattering from two scattering centers. 
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Phase difference (angle) 
AC (wave displacement) 

Amplitude 

(propagation direction) 

Fig. 2.5 Phase difference between wave trains and the phase angle of the associated circular motion. 

length by an amount AA\, ziAn, etc., leading to a corresponding phase difference. AAi in fact 
equals one wavelength (A), i.e. a phase difference of IK. ABX, on the other hand, has a 
phase difference of n, so that the troughs of one wave coincide with the crests of the other, 
giving a resultant null as shown in Fig. 2.4. The intermediate case (along direction C) and 
the consequent formation of a composite wave are also given in this diagram. 

Diffracted X-rays in direction A 

Scattered wave from 
electron 1 

Time difference at start 
of scattering 

Incident X-rays 

Front of compositê "̂Ŝ ® ̂ ^ 
ŝcatterd wave 

Scattering from 
electron 2 

Scattering 
.electron 3 

Wavefront 

Transmitted X-rays 

Difference between starting positions in direction A 

Fig. 2.6 Interference and scattering from three electrons. 
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Let us now examine the more complex case of Fig. 2.6. This is an extension to a more 
general situation where X-rays are incident in an arbitrary direction upon three electrons 
fixed in space. The incident wave front first reaches 1, simultaneously producing a scat
tered wave. After traveling a further distance xi the wave reaches 2, and another scattered 
wave is formed; finally, scattering occurs at 3 after a further distance xi. We now consider 
the composite wave observed at a remote observation point in an arbitrary direction A. The 
waves from 2 and 3 lag the wave from 1 by xi and xi + X2 initially, and are further retarded 
by y\ and y2 respectively, distances which depend upon the observation direction. The total 
path differences between the component waves are found from the sums of distances x and 
_y, and the amplitude of the composite wave can, in principle, be found by the same kind of 
graphical treatment which yielded the amplitude of the scattered waves in various direc
tions in Fig. 2.4 (p. 19). 

2.2.2 Basis for calculating the amplitudes of, and phase differences between, 
diffracted waves 

However useful the above semi-graphical method may be in providing a picture of the 
physical processes which underlie X-ray diffraction, it obviously has serious limitations in 
applications to the actual problems of data computation. The following mathematical treat
ment confirms the preceding intuitive conclusions and permits a deeper understanding of 
the relationships between the variables involved, and a broadening of the range of possible 
applications. The details of the mathematical treatment may present some problems to the 
student, but it is sufficient at this stage merely to understand and memorize the principal re
sults. 

In wave theory, an electromagnetic wave is usually represented by a complex quantity 

A = Aoexp (— 2ni V) = AQ (COS 2K'V— i sin Ini 'v) (2.5) 

rather than by a simple sine wave with a real amplitude as shown in Fig. 1.1. In the above 
expression, Ao is the maximum amplitude of the electric field, 'v is the distance from the 
source to the observation point in wave number units, and A is the amplitude of the electric 
field at the observation point. The intensity / of the wave, is given by the product of A and 
its complex conjugate A*: 

/ = AA* = Ao exp (— Ini ^)'Ao exp (2;r/ F) — A^ (2.6) 

These are general expressions for wave motion. The time dependence of the wave mo
tion does not appear explicitly because the mutual phase shifts of the waves produced by 
scattering and the resultant interference depend only upon the geometry of waves and ob
jects, and are independent of time. However, if one is interested in the energy passing in 
unit time per cm^ one must take into account that A is proportional to cos Invt, and hence 
A^ is proportional to cos^ Invt. Since this (averaged over time) is equal to 2, the energy is 
proportional to ^l. In the mathematical treatment of diffraction problems throughout the 
remainder of this volume it is important to remember that the amplitude is generally a com
plex quantity involving the phase, and the intensity is AA*, or IA P. Thus far, with the aim 
of making our explanations more readily intelligible, we have depicted X-rays as wave-
fronts or undulations. Now, on the other hand, we need to develop a simple mathematical 
formulation which will be adequate for calculating diffracted intensities, directions, etc., 
from complex scattering systems such as atoms, molecules, and crystals. For this purpose it 
is convenient to employ vectors to express the direction of the incident X-rays, the observa
tion direction, and the position of the origin of scattering. 
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Figure 2.7 shows an analytical construction for finding the resultant amplitude of the 
waves scattered by more than two points; cf. Fig. 2.6 which indicated a qualitative treat
ment for the case with three electrons. The X-rays are scattered in a direction s (I s I = 1) 
which makes an angle of 26 with the direction of the incident beam So (I *o I = 1). Points 1 , 
2, etc., are at locations ri, ri, etc., with respect to the origin O (Fig. 2.7(a)). To obtain the 
amplitude of the diffracted wave, the path differences {x and y in Fig. 2.6) must first be cal
culated. Whereas in the former case we simply considered the path differences between 1, 
2, and 3, we now follow the more general procedure of finding the path differences with re
spect to the origin O. Consider the general case of the nth point shown in Fig. 2.7(b), with 
position vector r„. If we define the vector S such that S — S—SQ (see diagram), then there 
will be no path difference between waves passing through n and those passing through n' 
(in direction S as shown). Thus the path difference between waves passing through n and 
those passing through the origin may be found by considering n as if it were at n\ 

x-rays / Incident 
wavefront 

(a) 

Scattered composite 
wavefront 

Incident 
wavefront 

Scattered composite 
wavefront 

Fig. 2.7 General analytical construction for interference and scattering from two or more scattering centers. 
(a) Scattering centers at n, ri, etc. from an origin O. 
(b) The general scattering center at r^. 
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If X is the angle between r„ and S, then the path difference is QO + OP', that is 
Irn COS X sin Q. But since 5 = 5 — So (where both are unit vectors), 

IS I = I s -So l = 5 = 2 sine (2.7) 

so the path difference may be written Srn cos % or (in vector terms) 5-r„, the scalar product 
of S and r„. 

The path differences with respect to the origin in Fig. 2.7(a), are therefore 
for point 1, (5ri) 

and for point 2, {S-TT) 
etc., 

and the difference between points 1 and 2 is 

(5.ri)-(5.r2) = (5.(ri-r2)) 

— (S-(displacement of 2 with respect to 1)) (2.8) 

To calculate the amplitude, the phase differences of the waves scattered from 1 , 2, etc. 
with respect to the wave reaching the origin are first determined, and then substituted in the 
general wave equation, Eq. 2.5. Summation of these component amplitudes ultimately 
gives the composite total. Since ^ in Eq. 2.5 corresponds to path difference, we have 

Ai = Ao exp{ — Ini (S-rO), A2 = Ao exp{ — Ini {S-ri)] (2.9) 

T>, it should be remembered, is in wave number units, so that we would expect a factor 1/A 
to appear in association with so, s, and S. To avoid this, i.e. to enable Eq. 2.9 to be cited in 
the above form, I So I and I s I are usually defined as \IX rather than as unity (as we have 
done hitherto). This does not, of course, affect the validity of the foregoing analysis. The 
amplitude A and intensity / of the composite wave in direction s for a total of Â  points is 
therefore 

A = A i + A 2 + A3 + - + A ^ 

= Ao[exp{ - Ini {S-n)} + exp{ - Ini (Sr2)} + - + exp{ - Ini (S-r„)}] (2.10) 

= Ao51exp{-2;r/(5-r„)} (2.ii) 

/=AA*=Ao'[Xexp{-2;r/(S-r„)}][Xexp{2;r/(S-r„)}] (2.12) 

With reference to Eq. 2.11, it is clear that any variation in either S (due to changes in 
incident direction So or observation direction s) or in r (the spatial location of the scattering 
points) will lead to a change in the path differences between the various component waves, 
with a consequent change in the composite amplitude A. If the scattering points are elec
trons, Ap of Eq. 2.1 may be used for AQ. 

2.2.3 The relationship between real and reciprocal space 

From this point on, expressions of the form (S-r) will often be encountered, and as men
tioned earlier, these path differences, which are determined by the directions of the X-rays 
and the positions of the scattering points, will be expressed in wavelength units (wave num
bers). Since I 5 I has the dimensions A~ ^ and I r I has the dimensions A, they are reciprocal-
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ly related: r is called the physical-space or real-space vector, and the direction vector 5 is 
called the Fourier-space or (as distinct from real-space) reciprocal-space vector. 

The set of vectors r denotes a physical structure in real space, whereas the diffraction 
due to scattering from such a structure is represented by the set of vectors S in reciprocal 
space. X-ray structural analysis may thus be regarded as the determination of the pattern in 
real space which corresponds to the directions and amplitudes of the scattered X-rays in 
reciprocal space. 

We now proceed to develop an equation which, though rather unwieldy, is vital to an 
understanding of the relationship between X-ray diffraction and physical structures. 

Referring to Fig. 2.7 again, if the number of scattering points is large, the amplitudes of 
the component waves, i.e. the scattering powers of the points, are simply multiplied by their 
phase factors (exponential factors), and the products added together as in Eq. 2.11. The dis
crete points denoted by the vectors r are, as a set, equivalent in their X-ray scattering pow
ers to a substance whose scattering power has a continuous distribution p{r). If the form of 
this function is known, the product of the function and the corresponding exponential phase 
factors for all values of r with respect to the origin can be integrated over real space without 
first being evaluated. Fig. 2.8 (a) and (b) illustrate the significance of the systems of real-
and reciprocal-space coordinates in this situation. In Fig. 2.9 the combined amplitude A of 
the scattered waves from all points in the substance as observed from the direction s can be 

Scattering 
amplitude 

A{S) 

Fig. 2.8 Systems of coordinates in real and reciprocal space. 
(a) Real space (coordinates have dimensions [L]). 
(b) Reciprocal space (coordinates have dimensions [L~']). 

Scattering ^ 
amplitude . 

AiS) 

Angular distribution of 
the amplitude A {S) of 
the scattered wave from 
the system p{r) 

Fig. 2.9 Relationship between scattering substance and scattered radiation in terms of real 
and reciprocal space coordinates. 
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expressed as follows: 

A(S)=r p(r)Qxp{-2m(S'r)}dVr (2.13) 
Jo 

The integration is carried out over the entire volume of the substance with a volume el
ement dVr. This integral has the same form as the well-known Fourier integral (hence the 
term "Fourier space" above). Since the scattering points are generally electrons, p(r) may 
be taken as the density of the electron distribution at r. This is a single-valued continuous 
function in real space, and thus satisfies the conditions for Fourier transforms. We can 
therefore also write 

p(r) - £° A(S) exp {27ri(S • r)} dv, (2.14) 

The integration is carried out in this case over the whole of reciprocal space with a volume 
element dVs. Whereas Eq. 2.13 shows that the function A(S) can be derived from the 
Fourier transform of p(r), Eq. 2.14 (by means of the theory of Fourier integrals) shows that 
p(r) can be obtained from the inverse Fourier transform of A(5), i.e. that mutual transforma
tion is possible. The physical significance of this is that the amplitudes of the diffraction 
pattern of a substance can be calculated from Eq. 2.13 if the electron density distribution is 
known, and the structure p(r) of a substance can be calculated from Eq. 2.14 if the ampli
tudes of the diffracted X-rays are known for all S. The structure of a substance and the X-
ray scattering amplitude are therefore always related as shown by Eqs. 2.12 and 2.14 and 
Fig. 2.9. 

2.3 Scattering of X-Rays by a Single Atom 

2.3.1 Atomic scattering factor 
In our initial discussion of Thomson scattering by a single electron, the electron was treated 
as a stationary point charge (cf. Section 2.1). Atomic electrons, however, are in constant 
orbital motion around the nucleus, so that the scattering of X-rays by a hydrogen atom with 
its single orbiting electron, or by other atoms with more numerous orbital electrons, is in 
fact rather different from the simple qualitative picture presented in Fig. 2.3. Whether the 
extranuclear electrons are regarded as particles circling in orbits or as a continuous electron 
cloud surrounding the nucleus, the atomic electron density should be expressed in terms of 
a time average of the density, for the probability of finding an electron in a given position 
varies continuously. Thus, in Eq. 2.13, taking the nucleus as the origin, the amplitude of 
the X-rays scattered from a single atom becomes 

f(S)=A\ p(r)exp{-2m(S'r)}dv (2.130 

with p(r), the electron density surrounding the atom, expressed in polar coordinates with 
the origin at the nucleus. If yAf) is the wave function of the atom, I//I/A* is the instantaneous 
probability of finding an electron in an element of space dv in the vicinity of the atom. The 
i//(r) can be computed numerically by approximations of Hartree-Fock, Thomas-Fermi, or 
others, and hence the values of atomic scattering factors,/can be obtained as a function of 
(sin 9)/X (i.e. S in wave-number units) in good approximation.Table 2.A in the Appendix 
lists scattering factors, / ((sin^)/A) for free atoms.̂ ^ Some of them are drawn in Fig. 2.10 
against (sin 6)/X.^^ Table 2.B in the Appendix gives the coefficients aj, bj, and q for fitting 
the scattering factors of Table 2.A to the analytic expression 
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/((sin^)/A) = £ « , Qxp{-bj sin^ ^/A^} + c, ••• (2.15) 

This analytic expression is a convenient form for entering the form into a computer.^^ 
/ i s variously known as the atomic scattering amplitude, atomic scattering factor, atom

ic scattering power, and atomic structure factor. Although "atomic scattering amplitude" is 
probably the more accurate term, "atomic scattering factor" is very widely used. 

It is clear from the foregoing that the amplitude of the X-rays scattered from one atom 
is not the same as that from an equivalent number of electrons assumed to be at rest, but 
must include a further factor due to the motion of the electrons about the atom (the/factor). 
If Ae is the scattered amplitude by a single electron, then we must have A = A^-f, and since 
Eq. 2.3 gives h — Ae^ 

I = hP (2.16) 
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Fig. 2.10 Atomic scattering factors of some free atoms. 
[Reproduced from L. Pauling, J. Sherman, Z Krist., 
81,24, Akademische Verlag (1932)] 
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2.3.2 Anomalous dispersion 

The atomic scattering factor / derived here is independent of the wavelength X of the inci
dent X-rays only under the assumption that the bound electrons of the atom scatter as free 
electrons. However, if the wavelength is very close to an absorption edge the scattering 
power of a bound electron may be either greater or less than that of a free electron, and the 
phase of the scattered electron may be different, and should be taken into account. Thus the 
atomic scattering factor must be represented as a complex quantity: 

/ = /o + Zi/ '+/zl /" (2.17) 

where /o is equal to the usual / for A > > Ak independent of A, and dependent only on the 
scattering angle, viz. (sin Q)IX. 4 / ' is a small correction to the real part and Af " is the imag
inary dispersion correction, which is non-zero (a few percent of/o + 4/^) only if A < Ak.̂  

This is so-called anomalous dispersion of an atom, which can be applied in the phase 
determination of structure factors (c/. Section 11.2.6) during the course of crystal structure 
analysis. Table 4 in the Appendix lists values of 4 / ' and Af" for some characteristic radia
tions. '̂ ^ Fig. 2.11 shows changes in values of Af' and Af " of atoms for Cu Ka radiation. ̂ ^̂  

Fig. 2.11 Af and Af of atoms for Cu Ka radiation.''^ 
[Reproduced from C. H. Dauben, D. H. Templeton, Acta Cryst., 8, 841, lUCr. (1955)] 

2.3.3 Compton scattering intensity 
Reference has already made to the wavelength distribution of the scattered radiation in 
Compton (incoherent) scattering. The only information about this radiation that is required 
in practice, however, is its intensity distribution. Since Compton scattering does not lead to 

^ In some text/' and/'are used instead of A/' and A/'. 
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diffraction, there is no need to consider the positions at which scattering occurs and the 
phase difference due to the path differences between these points. The intensity thus de
pends only upon the scattering angle with respect to the direction of the incident X-rays. 
Since it results from an inelastic collision between an X-ray photon and an electron (cf. Fig. 
1.6) the Compton scattering has an intensity of zero in the incident direction, i.e. at zero 
scattering angle. In general, the intensity /inco of the Compton scattering from an atom hav
ing an atomic number Z is obtained by summation of the Compton scattering intensities for 
its Z electrons as follows: 

/inco — le^BD [^~2li' Z"'" ' ~ X X ' Z'"" ' ^ 

fm is the scattering factor of the mth electron, and 

fmn = \y/m Qxp{-2m(S• r)}\i/n dv 

(2.18) 

(2.19) 

fmn is an exchange term due to interaction of the mth and nth electrons. RED is the Breit-
Dirac electron recoil factor. Where the double summation term may be omitted in practice, 
and at zero scattering angle, since E I fmm 1̂  is equal to Z, /inco is zero. As (sin 6)/?i increases, 
/inco also increases to give a continuous intensity distribution. The correction of diffraction 
intensities by subtraction of /inco will be described in Part III (Analytical) (Section 13.1) 
Compton scattering factors for some important atoms are given in Table 4 of the Appendix. 

2.4 Scattering of X-Rays by a Single Polyatomic Molecule 
We now turn to consider the scattering of X-rays from a single molecule formed by N 
atoms held closely together by chemical bonds, as shown schematically in Fig. 2.12. (See 
alsoFig.2.13(a)(p.30)). 

The molecules are assumed to be sufficiently distant from one another to avoid interfer
ence between scattered waves from different molecules. Though the molecule is moving 

Composite wave 

I Parallel to S 

Fig. 2.12 Interference and scattering from the atoms within a single molecule. 
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and freely changing its orientation, we shall first combine the scattered waves from its indi
vidual atoms with respect to the position occupied by the molecule as a whole at a given in
stant. Let the scattering factors of the atoms in the molecule be/i,/2,.../Ar, and let the posi
tion vectors of these atoms with respect to a given origin be r^ rj^.-.r^, so that the path dif
ferences of the scattered waves from the various atoms with respect to this origin are (5-ri), 
(S-rz), etc. The molecular amplitude Am which results from the combination of waves hav
ing the above phase differences and ampUtudes/1,/2, etc., is found with the aid of Eq. 2.13 
(or Eq. 2.13') (refer also to Section 2.3) as follows. The factor Ae, which is common to all 
the scattering equations derived in the following sections, is omitted. We find that 

N 

^m=Y,fj exp{-27r/(5:-r,)} (2.20) 
i 

Thus, since /„, = AmAm*, the intensity Im is given by 

Im= [J/yexp{-2;r/(ST,)}][X/,exp{27r/(S.r,)}] 
j j 

N i*k 

= I//+II/^/^{-2;r/(5.r,,)} 
N j*k 

= l f ' + £S / ; / *cos2 ; r (ST , . ) (2.21+) 

Since the molecule is in motion, however, the amplitude and intensity given by Eqs. 2.20 
and 2.21 for the fixed molecule must be averaged over all orientations and positions of the 
molecule. For translational motion, though the r, vectors are all continuously changing, the 
intensity /m as given by Eq. 2.21 depends only on the vector rjk between the 7th and /d;h 
atoms, and so does not change provided that the structure of the molecule remains undis-
torted. For rotation, since rjk is constantly changing with respect to s and So, /m must be av
eraged for the free rotations of the rjk vectors with respect to s and So or with respect to (as
suming that I rjk I is constant), i.e. for all angles between the polar coordinate rjk and S, and 
for all angles of rotation about S. This average is readily calculated: 

<cos2KiS-r,)> = ^ - ^ (2.22) 

Thus the X-ray diffraction intensity for a moving polyatomic molecule is 

T T luSrjk 
</.W> = I//+II/./.^^;^ (2.23) 

= Ja(S) + /„.(5) (2.23') 

where 5" = I 5 I, and r = I r I. In Eq. 2.23', the first term. 

- 2 ./a(S) = S / / 

is the scattering from individual atoms, and the second term, 

^ The appearance of a cosine term alone in place of the exponential term in Eq. 2.21 is due to the fact that when 
;• and k are interchanged in rjk the sign of the sine term changes so ihdXjk and kj terms cancel to give zero. 
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j^k 

MS)=yyfjf, 
smlnSri jk 

j k 27tSrjk 

is the scattering dependant upon the molecular structure itself. If the structure of the mole
cule is known, the set of vectors rjk for all the atoms in the molecule can be determined, 
whereupon multiplication by the atomic scattering factor for each atom and summation 
over the entire set of vectors will give a numerical value for the angular distribution of the 
scattering intensity of the molecule Jm(s) (s = InS). 

Figure 2.13(b) shows the variation in scattering intensity with scattering angle for X-

Composite amplitude 
of diffracted wave in 
direction Id 

6 8 JO 
5( = 2 T 5 ) [ A - M 

Fig. 2.13 Interference and scattering from a molecule of carbon tetrachloride due to the composite scattering from 
the individual atoms. 
(a) Schematic representation of the molecule. (b)Scattering intensity (after polarization correction).'^^ 
(b):[ReproducedReproduced with permission from X-Ray Crystallography (I. Nitta ed.), Vol.11, p.423, 

Maruzen(1961)] 
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ray diffraction by carbon tetrachloride gas. 

Jt(s) = Ja{s) + Jm(s) + Jmco(s) 

where, J\ncis) is the incoherent scattering intensity (Eq. 2.17). 

2.5 X-Ray Scattering from a Dense, Disordered Assemblage of 
Identical Atoms (a Monatomic Liquid) 

We now turn to consider the amplitude and intensity of the X-rays scattered from a large 
number of identical atoms (i.e. all having the same/) separated by distances of the order of 
the atomic radius, as for example in liquid mercury. 

Let the instantaneous positions of the atoms (which are in constant thermal motion) be 
as shown in Fig. 2.14(a). If r, locates theyth atom, Â  is the total number of atom, and the 
directions of the incident and scattered radiation are So and s, Eq. 2.20 applies, and gives the 
amplitude (and hence ultimately the intensity) of the scattered wave. Both the effect of 
phase differences with respect to the origin and of the individual scattering amplitudes of 
the atoms are included in this equation. Thus, exactly as in the case of the single polyatom
ic molecule, we have 

A(S) = f^fjtxp{-27ri(S-rj)} = ff^^xip{-2m{S'rj)} (2.24) 
j j 

I=AA*, I(S)=fCLfjexp{-2m(Srj)}f^exp{27ii(S-n)}] 
j * 

=f[N+fj^exp{~2m{S-irj-n))}] 
' " j k 

jtk 

=/'[^+£lcos2;r(ST;,)] (2.25) 
;• k 

The problem here is to find a means of summing the second term of Eq. 2.25 over an al
most infinite number of pairs of atoms. If the atoms are completely disordered (the dia
gram attempts to indicate this), their statistical distribution may be assumed to be indepen
dent of the particular choice of atom as origin, and statistical methods may be applied to the 
pairs of atoms Tjk. 

In Fig. 2.14(b), if the total volume is V and the total number of atoms is N, the average 
volume per atom is VIN = v. The probability of finding an atom in a volume element dv is 
therefore dv/v. Consider a particular atom. The probability that a second atom will be 
found within a volume element dv at a distance and direction r from this atom should, ap
parently, also be dv/v. In fact, however, this would only be true for values of I r I (or r) 
very much greater than the average inter-atomic distance. It certainly is not true for liquids 
at small values of r; the atoms or molecules exhibit short-range order due to interactions op
erating over relatively short distances. In this case the probability of finding an atom in 
volume dv at r should be expressed as dP(r), where Pir) is known as the radial density dis
tribution function. We may therefore write dP(r) = P(r)dv/v. P{r) is a function which must 
clearly take the value zero for r less than twice the contact radius of the atoms, and which 
must tend to unity for sufficiently large r. Fig. 2.14(c)̂ ^^ shows the actual form that this 
function takes in a representative case, intermediate values of P(r) oscillating above and be
low unity. For this reason the double summation in Eq. 2.25 cannot be carried out by 
means of arithmetic addition, with equal weight given to each of the phase terms associated 
with a pair of atoms (jk). Instead a weight (P(r)— l)/v must be assigned to the vectors r 
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Fig. 2.14 Interference and scattering from a monatomic liquid, (a) Schematic representation of the 
monatomic liquid (b) Statistical assembly of Â  particles in volume V. (c) The form of a typical 
radial distribution function P(ry^^ 
(c): [Reproduced from P. Debye, H. Menke, Phys. Z., 31, 798, Verlag von S. Hirzel (1930)] 

(i.e. rjk) of the pairs of atoms. Moreover, Vjk may be assumed to be continuously variable in 
the system and integration can be carried out instead of the summation. Thus outside the 
domain of the form scattering that occurs for S values which are not too small (see Eq. 
5.14a), one obtains 

XS^^P{-27r/(5T, ,)} = - r { P ( r ) - l } e x p { - 2 ; r / ( 5 r ) } d v (2 26) 
j k V •'^ 

If the system is isotropic, r is independent of direction, and may be replaced by r, and 
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the exponential term is averaged over all angles between r and 5 and all angles of rotation 
about S. Eq. 2.25 thus becomes 

I v-'o InSr J (2.27) 

Substituting the atomic density p(r), where p(r)= P(r)/v, and the average density po = 1/v, 
we obtain: 

< / (S )> = 7 V / ^ [ l + j ; 4 ; r r ^ { p ( r ) - p o } ^ | | ^ d r } (2.28) 

Figure 2.15 is an example of the X-ray diffraction intensity curve for liquid mercury. 
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Fig. 2.15 X-ray scattering intensity distribution for liquid mercury.'^^ 
[Reproduced from P. Debye, H. Menke, Phys. Z., 31, 798, 
Verlag von S.Hirzel (1930)] 

Liquid and amorphous polymers such as polyethylene, since scattering by the hydrogen 
atoms is slight, may be regarded for practical purposes as consisting of carbon atoms alone, 
and Eq. 2.28 is applicable. 

2.6 A Dense, Disordered Assemblage of Dissimilar Atoms 
We now turn to consider scattering from a uniform mixture of dissimilar atoms, where the 
experimental conditions are otherwise as before. As in the previous calculations of the 
composite amplitude, the scattered amplitudes from all points are multiplied by the appro
priate phase term, and the products summed. In this case, however, / cannot be isolated 
from the summation as a constant factor, because the atoms are no longer all alike. The 
combined amplitudes and intensities at any particular instant will be of the form 

A{S) = J^fjCxp{-27tiiS-rj)} 

Mk 

I(S) = I / Z + I X / y / . exp{-2;r/(S-r,0} (2.29) 

Since the set of atomic scattering factors^ refers to a mixture of different atoms, Z^fj is 

statistically equivalent to the average <^^ > of the values of̂ ^ of all the atoms, multiplied 
by the total number of atoms, Â . The second term is a summation over Â (Â  — 1) pairs of 
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atoms, and the coefficient is the product of the scattering factors of any pair of atoms, so 
that it may be replaced by < / >^. Replacing the vectors Vju by scalar r, and applying the 
same statistical technique as for Eqs. 2.26 and 2.27, Eq. 2.29 becomes 

<I(S)> = N <fj'> + <fj>'-r47rr'{P(r)-l} 
V •'0 

sin2;r5'r 

InSr 
dr (2.30) 

This also can be expressed in terms of p{r) {cf. Eq. 2.28). Examples of scattering sub
stances of this type are molten alloys and glasses. 

2.7 A Dense, Disordered Assemblage of Polyatomic Molecules 
(a Molecular Liquid) 

By analogy with the cases which we have so far examined, it might be thought that the 
atomic scattering factor/of Section 2.5 could be replaced by a molecular scattering factor 
Am {cf. Eq. 2.20) calculated with respect to a convenient origin. It is true that if we consider 
only the center of gravity of the molecules, i.e. if we represent the positions of the atoms in 
the molecules, etc., by means of single points, then we should be able to perform statistical 
calculations with the aid of a purely atomic density distribution P{r). What this does not 
take into account, however, is the fact that diffracted X-ray intensities ultimately depend 
upon interference between pairs of atoms as in Eq. 2.20. The trouble arises because the 
vectors rjk for atoms of the same molecule are indistinguishable from those between atoms 
of different molecules, so that it is impossible to attach a non-ambiguous meaning to a dis
tribution P{r) of our "representative" points. This renders a rigorous calculation of the sec
ond term in Eq. 2.20 extremely difficult. One approximate method treats the system as a 
statistical distribution of molecules, each of which is assumed from the outset to possess the 
average molecular scattering amplitude < A;„ > and intensity < /̂ n > for all orientations of 
one molecule. From Eq. 2.18, using the averages given in Eq. 2.22, we obtain 

sin2;r5'r, 
~ ^ ^ ^ (2.31) A.=X/^exp{-2;!:/(Sr,)}, l<A„>l=X/; 

; ' ; • 

<Im>-<Am >-Z,Zafi^~7r-7, (2.32) 

If it were legitimate to treat the scattering from this system in the same way as that 
from a dense collection of fictitious atoms < A^ > , it would be possible to use Eq. 2.27. 
Molecules, however, unlike atoms, are not in general even approximately spherical, so that 
l < A^ > P =/= < A J > , and the system must therefore be treated as a collection of dissimilar 
atoms. Rather than Eq. 2.27 we should therefore use Eq. 2.30, with < A,„̂  > replacing 
<ff > and I < A. > P replacing < / > ' : 

</(S:)> = Â  ^ a ^ r A 2rr>, ^ n sin iKSr , ' . > P - | 47rr^{P(r)-l} dr (2.33) 

where P(r) here is not an atomic density distribution, but the appropriate molecular equiva
lent. If the structure of the molecule is known, evaluation of Eqs. 2.31 and 2.32 is possible, 
so that calculation of Eq. 2.33 is also possible provided the form of P{r) can be inferred. 
The latter, however, is rarely the case, so that it is more common for the experimental val
ues of I(S) to be used in the direct Fourier transformation of Eq. 2.33 to find P(r), which is 
important in connection with intermolecular forces in liquids. The form of P{r) is discussed 
in more detail in Section 2.8 below. 
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Eq. 2.33 may be rewritten in the form 

< / (S )> = N[<Aj> +1<A^>P - \<Am>\^ 

+ \<Am>r — \ ^nr{P{r)-1} dr 
V •'0 InSr 

A^I<A^>I \ ^ ^ r A 2 r r./ X n s in IKSV , 

1 + — AKr^{P{r)-\} dr (2.34) 

The first and second terms of Eq. 2.34 are independent of the molecular shape factor, and 
hence of P(r). The third term has exactly the same form as the right hand side of Eq. 2.27, 
with l < A^ > P in the place o f / I We are justified, therefore, in regarding the scattering in
tensity for a collection of molecules as equivalent to that for a collection of hypothetical 
atoms whose scattering factor is equal to an appropriately calculated average scattering fac
tor for the molecules. 

2.8 Scattering of X-Rays by Amorphous Solids 
Use of the term "amorphous" implies the absence of regularity in the arrangement of the 
atoms, ions, or molecules of a substance. In amorphous solids, however, the spatial 
arrangement is not completely disordered, normally being subject to certain restraints. A 
completely disordered arrangement may be provisionally defined as one which would have 
P{r)= 1 for all r which are larger than twice the contact radius (as in an ideal gas). The 
scattering intensity for such a system would thus be the same as that for diffraction by a 
gas, i.e. Np or N<C A J > , since the integral terms in Eqs. 2.27 and 2.34 are zero. 

The above considerations apply strictly only to a completely disordered system, where
as we have already noted that virtually no amorphous substance will be completely without 
order. For example, let us consider a totally random collection of linear macromolecules. 
Irrespective of the particular molecular skeleton, its atoms will inevitably be linked by a 
succession of chemical bonds with fixed lengths and angles. Thus the P(r) for the system 
will be highest for r corresponding to the bond length ro of the most common bond type in 
the system, and P(r) will oscillate in the vicinity of ro. Not only in this special case, but 
also in most other amorphous substances, it is found that P(r) oscillates around a certain 
mean value. The corresponding form of P(r) for various degrees of molecular disorder, in
cluding a schematic representation of the macromolecule, is shown in Fig. 2.16. 

The X-ray patterns which are characteristic of each structure will be considered in later 
sections (cf. Fig. 13.1). Here, only one typical example of the X-ray diffraction intensities 
for an amorphous substance (a glass) is given in Fig. 2.17.̂ "̂ ^ The diffuse scattering, result
ing in a typical diffuse halo, is mainly due to the predominant contribution of the third term 
in Eq. 2.34, which in turn results from the oscillations of the function P(r), which corre
spond to the length of the most common Si-0 bond (ca. 1.6 A) and the 0 - 0 and Si-Si sep
arations. The function differs in this respect from that of liquid (cf. Section 2.5). 

Although X-ray diffraction from amorphous substances is of vital importance in con
nection with polymers, the discussion so far has been confined to the basic essentials. X-
ray scattering from the amorphous component of a real polymer, however, is essentially 
similar to that for the P(r) discussed above. 

We now consider the case in which P(r) is isotropic. In Fig. 2.14 the direction of r is 
immaterial, and r can be replaced by scalar r. The volume element dv of the second point 
then becomes the volume of a spherical shell between radii r and r + dr. The probability of 
finding the second point in this volume element is therefore Anr^P{r)dr. If the substance 
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Fig. 2.16 Schematic representation of molecular ordering and the corresponding form of the distribution function. 
(a) Totally disordered system. 

P{r) for totally disordered spheres of radius ro. 
(b) Atoms or molecules in an amorphous substance. 

P(r) for a general amorphous substance. In the case of high polymers the first maximum often corre
sponds to the distance between parallel polymer chains. 

(c) Monatomic liquid or paracrystalline state. 
P{r) for monatomic liquids with atomic radius ro. Liquid mercury gives a distinct maximum in P(r), 
and paracrystals are similar. 

(d) Close-packed crystal. 
P{r) for close-packed crystal with higher order than (c) but same atomic radius. P(r) is discontinu-

consists of single atoms, the appropriate X-ray diffraction intensities are given directly by 
substitution in Eq. 2.28. 

I(S) = Nfll + j^4Kr'P(r)^^^^dr\ 
InSr 

(2.28') 

I{S)l{Np)-\--r(s)= r4;rr'P(r)^^5^dr 
Jo cr 
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Fig. 2.17 X-ray diffraction intensity distribution for a glass.'"^^ 
[Reproduced from B. E. Warren et al, J. Am. Ceramic Soc, 
19, 202, Am. Ceramic Soc. (1936)] 

where 

s = 27tS = (47tsine)/X 

Fourier transformation gives 

47rrP{r) = (2/7u)fsr (s)smsrds (2.35) 

This equation is of fundamental importance in finding the radial density distribution 
function P(r) from the X-ray diffraction intensities of amorphous substances and liquids: 
the function shown in Fig. 2.14(c) was calculated in this way. An example of the treatment 
when P(r) is anisotropic is given in Section 14.3, where the case of cylindrical symmetry is 
discussed. 

2.9 Scattering of X-Rays by Crystals 

2.9.1 Amplitude and intensity of the scattered rays 
In this section we shall confine ourselves to a simple explanation of X-ray diffraction with 
crystals as the scattering material, postponing a more detailed discussion of crystals them
selves until a later section. 

A crystal is a regular periodic three-dimensional arrangement of the structural units 
(atoms, ions, or molecules) which constitute the substance in question. Even if the periodi
cally arranged assembly of atoms consists of complicated molecules, each molecule or 
group of molecules can be replaced by some fixed representative point, and these points 
will then form a regular arrangement having the characteristic period of the particular crys
tal, as shown in Fig. 2.18. Although this figure is confined to two dimensions, the concepts 
can readily be extended to the third dimension. Each point is referred to throughout the fol
lowing discussion as if it were a single atom. This is of course legitimate even if the atom is 
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Atom 
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Representative point 
(origin of unit cells) 

Fig. 2.18 An array of regularly repeating two-dimensional assemblies of atoms showing a lattice of representative 
points. Each assembly (unit cell) has composite scattering amplitude Aceii (see text). 

ionized or forms part of a molecule: the argument still applies if the points are taken to rep
resent whole molecules. 

The broken lines in Fig. 2.18 divide the groups of atoms into identically similar assem
blies, each within its own parallelogram, the parallelograms repeating periodically across 
the plane of the crystal. In three dimensions we visualize the atoms as within paral
lelepipeds which repeat along directions parallel to their three sides. A unit cell may be 
tentatively defined here as a parallelepiped which has the smallest regularly repeating vol
ume element of the crystal lattice. Even this restriction on the volume, however, is not 
enough to define the choice of unit cell uniquely; this is usually made on the overruling 
considerations of crystal symmetry, which sometimes even dictate a unit cell with volume 
greater than the minimum possible. The position of each atom of the crystal within a unit 
cell of the lattice may be defined with respect to some representative point chosen as the 
origin. The positions of corresponding atoms in other unit cells may be found by transla
tions through various multiples of the repeat distances along the three principal directions. 
This feature of crystal structure is exploited in considering the interference between X-rays 
scattered from a crystal. 

If the set of all the atoms in one unit cell is treated as if it were a single molecule (in 
Fig. 2.18 the choice of "unit cell" ensures that this is actually so) and the position vectors r, 
of the various atoms are taken with respect to the origin of the cell, the composite amplitude 
for the set is given by an equation of the same form as Eq. 2.18. In fact it is unusual for one 
molecule to be associated with each unit cell. If we let this amplitude be Aceii (not, in gener
al Am, which is a special case) then, omitting Ae as before, we obtain 

Acell = X fj ^ ^ P {~ ^^^(^ •'*/)} (2.36) 
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Since all the atoms in the crystal can be located in terms of a three-dimensional parallel 
translation of the unit cell, and since the value of Aceii is the same for each unit cell, the scat
tering from the crystal as a whole is exactly the same as if there were a hypothetical atom 
with a scattering amplitude Aceii situated at each lattice point in the crystal. In Fig. 2.19, 

Fig. 2.19 A three-dimensional lattice of representative points, i.e. unit cell origins (cf. Fig. 2. 18). 

with one lattice point as the origin, the length and direction of the sides of the unit cell are 
represented by the vectors a, b and c, in the x, y, and z directions (known as the crystallo-
graphic axes) respectively. Using these vectors, the positions of all the lattice points in the 
crystal can be expressed as follows. 

The vector Rnmin^ for a lattice point displaced m units in the a (or x) direction, «2 units in 
the b (or y) direction, and ns units in the c (or z) direction is given by 

Rn , = ma + n2b + nsc (2.37) 

where riu /̂ 2, and ^3 are integers. The amplitude Acr of the scattered X-rays from the crystal 
as a whole is therefore found by a procedure similar to that used hitherto; summation over 
all values of ninim for the product of Aceii with the associated phase factors 
exp{ — 2Ki{S- Rn.nind]- Thus, where N\ N2. and N3 are the limits, 

M N2 N3 

Acr = X ^^A^cii^^V{-'^^KS-(nia+n2b+mc))}} 
m=ln2=ln3=l 

' A:el 
sinTrNiiS-a) sin7tN2(Sb) sin7tN3(S'C) 

exp(/ao) 

^cr -Acr -^ cr I - ' '^ell I 

s in; r (5a) sin7r(S-^) sin7r(5c) 

2 J sin;rM(5-fl) sin7rN2(Sb) sinKN3(S'C) 

sinK(S'a) sin7t(Sb) sin;r(5^c) 
(2.38) 

= \A,J%\N0L2\N2)L3\N3) (2.38') 

sinjtNiiS-a) ^ sin7rN2{S-b) ^ sin;rA^3(5-c) 
where U = —; — L2 = —-, — - — L3 = 

sin K{S a) , sin7t(S'b) , sin;r(5-c) • 
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The exp(/ao) factor is the phase contribution which depends upon the particular choice of 
origin used in the calculation of the composite amplitude Aceii. If the center of symmetry of 
the lattice can be chosen as the origin, the combination of + M/2, ± N2I2 and ± N2>I2 en
sures that this phase term disappears (exp(/ao) becomes unity). 

When Â i, Â 2, and Â3 are large, i.e. as they are in an ordinary crystal, which usually con
sists of very many unit cells, if 

(S-a)=h\ (S'b)=k\ (S'C)=r (2.39) 

the expression within brackets in Eq. 2.38 reduces to NyNrNi when h\ k\ and /' are all inte
gers or zero, and may otherwise be taken as equal to zero. Due to the influence of this ex
pression, although Aceii has a continuous value for all S(cf. Section 2.4), Acr has a value only 
for directions such that the conditions on Eq. 2.39 are satisfied, and is equal to zero for all 
other directions. The scattering amplitude for the crystal as a whole is therefore discontinu
ous. Eq. 2.39 gives what are known as the Laue conditions, where h', k\ and /' are the Laue 
indices, and the expression within brackets in Eq. 2.38 is the Laue function. This analysis 
demonstrates the conditions under which the X-ray diffraction from a crystal is a discontin
uous function of direction, giving a pattern in the form of spots (Fig. 2.20). 

To calculate the resultant amplitude Aceii for all the atoms in one unit cell, the position 
vectors r, of the atoms are replaced by their coordinates x,, yj, and Zj with respect to the axes 
of the unit cell. Using these coordinates and introducing the Laue conditions, since 

, _ ^ja , yjb ZjC 

a b c 

then 

{S-rj)-h--- + k -y + l — (2.40) 

Now we have already established that diffraction from the whole crystal is discontinuous, 
and that Acr of Eq. 2.38 exists only for h\ k\ and /' which satisfy Eq. 2.39. Let A ceii be the 
cell ampUtude that corresponds to this condition, giving 

A'ceii = ^fjexip{—2m(h'Xj / a + k'yj / b + l'zj / c} = F{h'k'l') (2.41) 
j 

FQiVl") is a function both of the coordinates of the atoms in the unit cell and of their scat
tering factors (which are specific to each atom). It is therefore literally a function of the 
structure of the unit cell, and is known as the structure factor. It expresses the amplitude in 
the diffraction direction denoted by Qi'k'l') and therefore plays a vital role in the determina
tion of structures. Quantities of the type Xjla in Eq. 2.41 are the ratios of the coordinates of 
the atoms to the dimensions of the unit cell. These ratios will in future be represented sim
ply Xj, yj, and Zj (dropping the cell dimensions from the denominator); they are therefore the 
coordinates of the atoms expressed as fractions of the dimensions of the unit cell dimen
sions along the three principal axes. Moreover, we shall find in the next chapter that h\ k\ 
and /', the Laue indices, are identical with the indices Qikl) of the crystal lattice planes. 

Since FQi'k'l') gives the amplitude of the scattered X-rays, the intensity for diffraction 
from the unit cell /ceii is 

iceiiihrn = FihrryF^ihrn (2.42) 
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Fig. 2.20 Combination of the square of unit cell scattering amplitude (or structure factor), I F(S) P ( = I Aceii P and 
Laue function, G(S) (= L\N)) to give diffraction intensity of a crystal, / (S)= I F{S) \^-G{s) vs. (5a) . 
[Reproduced with permission from R. D. B. Fraser, T. P. MacRae, Conformation in Fibrous Proteins 
and Related Synthetic Polymers, p.8, Academic Press (1973)] 

2.9.2 Form of the X-ray diffraction pattern 

If Ave write Li(M)̂ 2(A 2̂)Z.3(A 3̂) for the Laue diffraction function (the expression in brackets 
in Eq. 2.38) we have 

Acr = Ace l lL i (M)L2(A^2)L3(A^3) 

/cr = A,,iiA%ML2%^ = F(hrnF^(h'k'n G 

= I F(hrn PG 

(2.43) 

(2.44) 

where, G = L^L2^L^^. If the crystal is sufficiently large, i.e. if M, Â 2, and N3 are at least of 
the order of 100, G (or L^) has the value N1N2N3 only over a very small solid angle (cf. Fig. 
2.20) and the X-ray diffraction amplitude Acr, as mentioned above, is zero except in those 
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directions where the Laue conditions are satisfied. ̂ ^̂  It is also instructive, however, to con
sider the form of G (or L )̂ when M,A^2and Â3 are fairly small, as they are for very small 
crystals. 

If we consider only the a direction we have 

h\NO 
_sin^{7rNi{S-a)} 

sm^{n{S'a)} (2.45) 

This equation enables calculation of the angular distribution of the diffracted X-ray intensi
ty when N\ (the number of unit cells extending in the a direction) is small. Fig. 2.21^^^ gives 
plots of the calculated values of Li\N) against (S-a) for several small values of Â i, and for 
the limit as Ni-^<^. The function has the maximum value Ni^ for (S'a)= 0,+ 1,± 2, etc., 
and Ni minima (zero) for (S-a) = p/Ni (/? = 0 ,± 1,± 2, ..., Â i - 1). There are M - 2 
small maxima; those for iVi = 3, 5, 10 and 50 are also shown in Fig. 2.21. For N\ = 10, the 
function drops continuously from 100 to 0 for values of (Sa) between 0 and \/N\ (= 0.1), 
with eight subsidiary maxima before reaching 100 again at (S'a)= 1, of which the values 
of the second and third maxima are 5.1 and 2.0 respectively. If S and a are parallel. 

Fig. 2.21 Variation of the form L\N){ = G) vs. (5a) for different values of L^(N) is normalized to unity 
in this diagram.'^^ 
[Reproduced with permission from R. D. B. Fraser, T. P. MacRae, Conformation in Fibrous Proteins 
and Related Synthetic Polymers, p.9, Academic Press (1973)] 
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(5-a)— a-2 (sin 6)IX, and an edge of the major maximum is located at sin 0 — 0.015 for 
N\= 10, with a = 5A and A = 1.5 A. Diffraction peaks are not, therefore, very sharp, hav
ing an edge-to-edge spread of approximately sin~ ^ 0.03, and we can make quantitative esti
mates of the broadening. Similarly for the b and c directions, the diffraction pattern be
comes less clearly defined as the number of unit cells decreases. Conversely, measurement 
of the broadening of the X-ray diffraction pattern, by yielding information about the form 
of L^ can be used to find the sizes of the diffracting crystalHtes. Scherrer^^^ and Joneŝ ^^ 
have both developed methods based on measurement of the breadths of Laue functions. 
Practical applications will be discussed in Section 13.3. 

2.10 Summary 
This chapter has touched upon the nature of the interference that occurs when X-rays are 
scattered by objects, the amplitude of the resulting composite wave, and the classification 
of scattering bodies according to their shape. The main points concerning the amplitudes 
and intensities of the scattered wave will now be summarized. 

1. Free electrons and electrons in the shells of atoms can give rise to coherently scat
tered X-rays {i.e. with no change in wavelength). The intensity varies with the observation 
direction, and is given by Eq. 2.3. 

2. Every type of atom has its own characteristic number of extranuclear electrons. Their 
distribution throughout the space surrounding the nucleus may be taken as continuous, and 
the amplitude of the coherent scattering due to this atomic electron "cloud" {i.e. the atomic 
scattering amplitude/) can be found from the Fourier transform of the electron density p{r) 
around the nucleus, see Eqs. 2.13 and 2.13'. 

3. Inverse Fourier transformations can be applied to determine the angular distribution 
of the X-ray scattering amplitude from the electron density of the scattering substance and, 
conversely, to determine the electron density from the amplitude distribution, see Eqs. 2.13 
and 2.14. 

4. The scattering from an atom (paragraph 2) above) may be conveniently regarded as a 
wave of amplitude f originating from the position of the atomic nucleus. The amplitude of 
the scattered X-rays from an assembly of atoms (molecule, liquid, etc.) can therefore be 
found by appropriate summation of the scattered waves originating from all the points j 
(signifying a particular atom) having a scattering amplitude fj. The method is that of para
graph 5. below. 

5. The composite amplitude of the scattered waves from a discontinuous set of points 
may be found by a simple summation of the products of their individual scattering ampli
tudes (Ae,/, etc.) and the appropriate exponential phase terms for their path differences rela
tive to a convenient origin (see Eq. 2.12). 

6. If the scattering substance is a crystal, the scattering amplitude is found by combina
tion of the scattered waves from the atoms of a single unit cell by the method of 5) above. 
The resultant composite ampHtude is known as the structure factor F{h'k'l') (see Eqs. 2.41 
and 2.42). 
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3. Crystal Structure 

3.1 Crystal Systems and the Unit Cell 
The concept of the unit cell as a regularly repeating element from which a crystal is formed 
by parallel displacements in three dimensions was introduced in Section 2.9. The relative 
positions of atoms within a unit cell are constant from cell to cell, so that any one atom in 
the assemblage of atoms within the cell, or indeed any fixed point in its vicinity, can act as 
a representative point in defining the cell's location within the crystal. The set of such 
points is known as the space lattice. It should be obvious, however, that although the space 
lattice is here defined in terms of the unit cell, the choice of unit cell is by no means unique. 
The lines joining the lattice points may be drawn in any number of different ways, each of 
which (provided it satisfies the usual condition that the volume of the repeating element 
should be a minimum) would satisfactorily define the shape of an appropriate unit cell (see 
Fig. 3.1). This two-dimensional array of atoms is the same as that of Fig. 2.18, but it is 
clear that in only one case will the group of atoms in the unit cell correspond to the true 
molecule of the crystal, although in this example each cell will contain the same number of 
atoms as the molecule. In fact, it is rare for only one molecule to be associated with each 
lattice point, so that a unit cell will usually either contain the atoms from more than one 
molecule or only a fraction of the atoms from a single molecule. The choice of unit cell is 
not, however, completely arbitrary. The lengths of the three edges of the unit cell, a, b, and 
c, where a, (5, and / are the angles between them as shown in Fig. 3.2, are measured in the 
directions of the crystallographic axes. The right choice of crystallographic axes can con
siderably simplify calculations and help to make apparent the inherent symmetry of the lat-

/ Grouping of 
/ ^ atoms in unit 

/ cells / 

Representative 
point (origin) i 

Fig. 3.1 Two-dimensional array of atoms showing various groups (molecular and other) possible within 
different unit cells, c/. Fig. 2.18. 
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Origin 

Fig. 3.2 Unit cell constructed on the origin. 

tice. Crystals which belong to different symmetry groups can in some cases be referred to 
the same set of crystallographic axes. All crystals which can be referred to the same set of 
axes are said to belong to the same crystal system.̂ ^ Table 3.1 shows the seven crystal sys
tems and the corresponding crystallographic axes and unit cell conditions (see also Fig. 
3.2). Note that a, ^, and y are chosen to be either 90° or 120° wherever possible. We 
should also note, in passing, that before the advent of X-ray crystallographic techniques 
crystallographic axes could only be determined by inspection of the external symmetry of a 
crystal and its optical properties. An unambiguous identification could (and can still) be 
made in many cases on this basis, but the details do not concern us here. 

Table 3.1 The seven crystal systems 

Crystal svstem Axial and angular relationships^ 

Triclinic a^bi^c a¥^^^y 

Monoclinic 

Rhombohedral 

(Trigonal) 

1st setting 

2nd setting 

(Rhombohedral axes) 

a—b — c 

(Hexagonal axes) 

a-b^c 

a = /3=90°7^y 

a = y =90° 9^(5 

Orthorhombic 

Tetragonal 

Cubic 

a#^7^c 

a=b^c 

a=b = c 

a = l3=y=90° 

a = (3=y=90° 

a = (3=y=90° 

a = 13 =y 9^90° {<120°) 

a = l3=90°, 7 = 120° 

Hexagonal a=b^c a = (5=90\y = \20° 

' The sign # implies non-equality by reason of symmetry; accidental equality may occur. 
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3.2 Crystal Planes and Their Indices 

3.2.1 Crystal planes 
The term ''crystal planes" suggests the beautiful crystal faces appearing in naturally occur
ring crystalline minerals such as quartz or rock salt. Natural crystals occur in many differ
ent shapes, but the crystals of a given substance are generally bounded by crystal faces 
which have characteristic interfacial angles to each other. In another sense, however, the 
term crystal plane is equally applicable to the lattice planes we have been discussing. The 
latter, in fact, are far more important for an understanding of X-ray diffraction than the for
mer, which are primary concern in the fields of mineralogy or macroscopic crystallography. 
The set of non-visible lattice planes is directly related to the arrangements of the atoms 
within a crystal, as detailed in Section 3.1. 

We have already seen that a simplified representation of the assembly of atoms in a 
crystal can be obtained by choosing representative points (lattice points) for each repetitive 
group of atoms. Fig. 3.3(a) shows some of the multiplicity of planes which can be drawn 

(100) planes 

(010) 
planes 

(400) .(010) 

(001) 
(100) 

(003) 

(c) 

^(231) \ ^ / 4 \ a / 2 (111) 

^(111) (231) 

(100) 

(101) / ^ / \ ^ \ - . A \ ^^ ' \ \ 
V /\(ioo)^^AU (101)̂  \ \ 

I 
(201) 

j O O D W V 

\ ^ : v \ ( 2 0 0 ) y , \ (301) 

(201) \(301);^<,poi) 

(̂ 201) 

(30I)\ 

(201)\ 

(b) 

Fig. 3.3 Sets of lattice planes and their relationships with the unit cell. 
(a) Some of the many possible sets of parallel lattice planes. 
(b) Two-dimensional lattice: planes parallel to the third axis {b: down) are shown 

by broken lines (c/. Fig. 3.4). 
(c) Lattice planes intersecting the unit cell. 
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parallel to a plane through any arbitrary group of three lattice points. It is important to note 
that although the number of planes may be virtually infinite, there are only a discrete num
ber of directions in which they can run, and that any parallel group of planes will be charac
terized by a constant spacing. The directions and interplanar spacing of each set of lattice 
planes are properties of great significance for X-ray crystallographic studies. 

As mentioned above, the lattice points referred to here are representative points (the 
origins of the unit cells) the positions of which are chosen to some extent arbitrarily. The 
precise locations of the lattice planes passing through them will therefore vary with the 
choice of lattice point. It must be clearly understood, however, that the directions of the 
groups of planes and the distances between them do not change. In crystal structure analy
sis the origins of the unit cells are generally chosen on the basis of symmetry considerations 
to facilitate calculations, and the positions of the lattice planes are accordingly also fixed. 

When the lattice points have been chosen, since a three-dimensional diagram such as 
that shown in Fig. 3.3(a) is difficult to construct, a two-dimensional lattice is drawn (Fig. 
3.3(b)), the third axis being taken as perpendicular (down) to the plane of the paper. 

The lattice planes perpendicular to the paper (parallel to the third axis) are shown as 
broken lines in Fig. 3.3(b). Examination of Fig.3.3 (a), (b), and particularly (c), shows that 
the lattice planes adjacent to a plane through the origin will cut the axes at distances from 
the origin which are fractions or fractional multiples of the cell dimensions. 

Having outlined the principal characteristics of the lattice planes, it is necessary to be 
able to identify, or "index", individual planes and sets of planes. 

3.2.2 Lattice plane indices 

As will be clear from Fig. 3.3(a), (b), and (c), one plane from any parallel groups (the plane 
which is the nearest neighbor to a plane passing through a given origin) intersects the three 
principal axes of a given unit cell at distances from the origin which we may write as alh, 
b/k, and c/l respectively, h, k, and /, written in the form (hkl), are known as the indices of 
the plane: they also identify the set of parallel planes. A zero index characterizes planes 
which are parallel to the corresponding principal axis: the planes may be regarded as meet
ing the axis at infinity, so that e.g. a/h-^^, and /i = 0. Indies (hOl) in Fig. 3.3(b) and 
(hkO) in Fig. 3.4 refer to such planes. Thus a plane cutting the a axis at a/5, the b axis at 
b/3, and running parallel to the c axis, has the indices (530). If the intercept with an axis is 
negative with respect to the origin, the fraction is for example, — a/h, and a negative sign is 
assigned to h, the indices being written (hkl). A plane cutting the a axis on the negative 
side at — a/3, the b axis at b, and the c axis at c/2, therefore has indices (312). As will be 
clear from the method of assigning indices, indices with common factors, or multiple series 
of indices (e.g. (100), (200), (300),...; ( I l l ) , (222),...) refer to groups of parallel planes 
which differ only in their interplanar spacing, the distances between (200) and (300) planes 
being respectively 1/2 and 1/3 that between (100) planes. Half of the set of (222) planes is 
identical with the set of (111) planes, and the other half is interleaved equidistantly between 
them. Similarly there are three times as many (333) planes as (111) and their interplanar 
spacing is correspondingly 1/3 less. This kind of relationship is illustrated in Fig. 3.5. 
Common factors in indices are generally ignored (i.e. canceled) in references to macroscop
ic crystal planes where the directions of crystal faces, etc., are more important than interpla
nar spacing. They are significant, however, in X-ray crystallography, where interplanar 
spacing is also important. 
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Fig. 3.4 Intersections between sets of planes parallel to the c axis (c: down) and the unit cell in the c plane 
(or ah plane), and their indices. 
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Fig. 3.5 Relationship between multiple indices and interplanar spacing(s). 

3.2.3 The spacing of lattice planes and the relationship between plane indices 
and Laue indices 

We shall first present the basic method for calculating the absolute value of the distance be
tween crystal planes. 

Let OP (Fig. 3.6(a) and (b)) be the perpendicular from the origin to the {hkl) plane in 
Fig. 3.3(c) where OP = d{hkiy We must consider whether the Laue conditions iS-d) = h' etc. 
of Eq. 2.39 have some geometrical significance with respect to these planes. 

If the direction consines of OP in the diagram are cos a, cos j3, and cos 7, then OP = 
dihki) is given by 

d{hki) = (a/h) cos a = (b/k) cos p = {ell) cos 7 (3.1) 

If OP*, the direction of S for which the Laue conditions are satisfied {i.e. for which diffrac
tion occurs) coincides with OP, then we have 

{S-a) = Sa cos a, {S-b) = Sb cos /3, (S-c) = Se cos 7 (3.2) 
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Incident 
X-rays 

{A)t/) plane 

-^Diffracted X-rays 

^ " ^ . ^ ( / i A:/) plane 
"̂  parallel to 

(/rW) plane 

(AW) plane 

Fig. 3.6 Diagrams for calculating the interplanar spacing(s) d(hki). 
(a) Intersection of the (hkl) plane with the unit cell. 
(b) Relationship between the (hkl) planes and the diffraction vector S. 

SI 

Elimination of a, P, and / from Eqs. 3.1 and 3.2 gives 

If h = h\k = k\ and 1=^ r,we obtain 

. _ 1 
"( /?«) — — 

and conversely if d(hki)— l/S we obtain 

h = h\k = k\ I =" r 

(3.3) 

(3.4) 

(3.5) 

This shows that where the direction of S coincides with the perpendicular to a lattice plane, 
and its scalar magnitude is equal to the reciprocal of the spacing between similar planes, the 
Laue indices are also the crystallographic indices (hkl) of the planes associated with the dif
fraction, i.e. the planes for which Bragg diffraction occurs (cf. Section 4.1). 
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3.2.4 Coordinates of atoms, lattice points, and reciprocal lattice points and 
indices of crystal planes and zone axes 

[w V w] 

(b) 

C H I ] t i T i ] 

[I IT] ^\ \ a^\ / 
\ 1 V ^ 

^ \ 1 

^ 

b\ 

& ^ 1 

' 1 

A 
:^ 

[^ 

/^^ 
Y 
Y' 

"^ 

c 

L^ 
(c) 

Fig. 3.7 Coordinates and indices. 
fl, h and c are unit cell edges, and a*, /?* and c* are 

those of the reciprocal lattice. 
(a) Atomic coordinates, jc, y, z 
(b) Coordinates of a lattice point, u, v, w, and index 

of a zone axis, [MVW]̂ ^ _ _ 
(c)Four zone axes [ H I ] , [111], [111], and [111] 

are equivalent in this example (cubic crystal), 
which are expressed as <111> as a whole^' 

(b), (c): [Reproduced with permission from T. Sakurai, X-ray Crystal Structure Analysis, p. 44, Shokabo (1967)] 

Table 3.2 Coordinates and indices 

Index 

X. y, z 

U, V, W 

[uvw] 

Description 

Coordinates of an atom. 

(x, y, and r are expressed infraction of cell edges, a, h, and c, respectively (Fig. 3.7(a)). 

Coordinates of a lattice point. 

(u, V. and w are expressed as multiples of cell edges, a, b, and c, respectively (Fig. 3.7(b)). 

Index of a zone axis. 

(Direction is from the origin toward the lattice point, u, v, w (Fig. 3.7(c)). 

(^uvwy Index of equivalent zone axis. 

For example, in a cubic crystal, four zone axes [ 1 I 1 ], [ 1 1 1 ], [ 1 I 1 ], and [ i l l ] are equivalent 

(Fig. 3.7(c), which are expressed as <11 1> as a whole. 

hkl Coordinates of a reciprocal lattice point (Fig. 4.4), or Index of a diffraction. 

{hkh Index of a crystal (lattice) plane (Figs. 3.3, 3.4, and 4.4, etc.) 

\hkl\ Index of equivalent lattice planes {cf. Fig. 3.5) 
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The indices and properties of crystal planes are discussed in the preceding section. In rela
tion to this, here we tabulate and confirm the definitions of coordinates of atom, lattice 
point, and reciprocal lattice point and indices of zone axes and the crystal plane (Fig. 3.7, 
Table 3.2). 

3.3 Crystal Symmetry^^ 

3.3.1 Point groups and their symmetries 
We have seen that groups of atoms in a crystal form unit cells, and that these groups repeat 
with periodic parallel translations along the three principal axes, the relative positions of the 
atoms remaining unchanged from group to group. The atoms in the unit cell, and indeed 
throughout the crystal, may be regarded as an assembly of points exhibiting a certain sym-

(a) 

kUL 

(b) 

4 fold 

/ " " 

/ 2i 

^ / 
' / ^ ^ ' / 
/ 2' 

y 

kd 
'V / 

/_ ^Y 

(d) 

Fig. 3.8 Point-group, symmetry elements and equivalent points.^' 
(a) l (or^O. Center of symmetry, 1 at the origin (oblique axis). Two equivalent points: \{x, y, z) and 

2(x, y_, z). 
(b)m(=2, or Cs). Plane of symmetry_(mirror symmertry), m. The mirror plane: ZX plane. Two 

equivalent points: l(jc, y, z) and 2(x, y,^. 
(c) 4_(or ^4). Four-fold_inversion axis, 4 on the Z axis. Four equivalent points: l(jc, y, z), 2(j, x, z ), 

3(x, y, 7) and 4(j, x, z ). 
(d) 6(or Q) . Sixĵ fqld axis_of rotation, 6 on the Z axis. Six equivalent points: l(x, y, z), 2(>, y-x, z), 

3(j-x, X, z), 4(x, y, z), 5(j, x-y, z ) and 6(x->', x, z). 
[Reproduced with permission from Dan McLachlan, X-Ray Crystal Structure, pp.47, 49, 50, 57, 
McGraw-Hill (1957)] 



3.3 Crystal Symmetry 53 

metry. Illustrations of this symmetry will be given later, but it will be helpful, first, to ex
amine Fig. 3.8(a). In considering the symmetry of an arrangement of atoms in space, the 
atoms are all treated as points. Real crystals, however, contain atoms of different species, 
and it becomes necessary to distinguish between the corresponding points. The most useful 
distinction to make in this case is between those points which can be mutually transposed 
by means of some symmetry operation (reflection, rotation, etc.), and those which cannot. 
The origin in this diagram is a center of symmetry, and an arrangement of atoms displaying 
this symmetry is shown. Atoms such as 1 and 2, and 1" and 2 ' can obviously be transposed 
by means of the center of symmetry: the two sets of points are known as sets of equivalent 
points. In a crystal, 1 and 2, and 1' and 2 ' must be atoms of the same type. Since no sym
metry relationship holds between 1 and T, or between 2 and 1\ they are known as sets of 
non-equivalent points (or atoms): the positions of points 1 and V are unrelated and mutual
ly independent, so that they may (though not necessarily will they) be atoms of different 
types. 

If the positions of points are related to an origin and a coordinate system, the points 
may display symmetry elements other than the center of symmetry. These include a plane 
of symmetry {i.e. mirror symmetry), an axis of symmetry (rotational symmetry), and an in
version axis, each of which may be displayed alone or in various combinations. The equiv
alent points in (b) have mirror symmetry, in (c) rotational inversion symmetry, and in (d) 
rotatory symmetry. In (b), reflection of the point 1 (xyz) in the plane of symmetry (ZX) 
gives 2 ixyz). Fourfold rotatory inversion symmetry is illustrated in (c), the inversion axis 
in this case coinciding with the Z axis. This symmetry operation gives the set of equivalent 
points I (xyz), 2 (jxz), 3 (xjz), and 4 iyxz). 

The symmetry elements found in real crystals are the center of symmetry (symbol 1), 
the plane of symmetry (symbol m), twofold, threefold, fourfold, and sixfold axes of symme
try (symbols 2, 3, 4, and 6), and threefold, fourfold, and sixfold inversion axes (symbols 3, 
4, and 6) (c/. Table 3.3). The number of ways in which a set of points can be symmetrically 
arranged in space is surprisingly small, and it has been shown on theoretical grounds that 
for crystals in which all the atoms are identical there is a maximum of only 32 possible 
combinations from the most highly symmetrical to the completely asymmetric class. These 
32 types are known as the point group symmetries, and in crystallography as the 32 crystal 
classes. Even of this limited number of possibilities not all have naturally occurring repre
sentatives. 

As can be seen from Fig. 3.8(d), planes normal to the planes passing through equivalent 
points and the origin have the same symmetry as the points themselves (sixfold rotational 
symmetry in this example). Sets of such planes for the equivalent points of the various 

Table 3.3 Symbols of lattice and symmetry elements 

(a) Symbols of lattice 

Symbol Lattice type 

P Primitive lattice 

A, B, C Base-centered lattice 

F Face-centered lattice 

/ Body-centered lattice 

R Rhombohedral lattice 

(Continued) 
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Table 3.3 Symbols of lattice and symmetry elements (Continued) 

(b) Symbols of symmetry elements 

1) Symmetry elements without translation 

Symbol 
Symmetry Graphical 

axis symbol 

Rotation 
onefold 

None 

Rotation 
threefold 

4 Rotation 
fourfold 

Symbol 
Symmetry Graphical 

axis symbol Symbol 

Rotation • 
twofold (normal to paper) 

(parallel to paper)t 

(m) 

Symmetry Graphical 
axis symbol 

Rotation 
sixfold 

Inversion 
onefold or 
Center of 
symmetry 

Inversion 
twofold 

or 
Reflection 

plane 
(Mirror) 

Inversion 
threefold 

m 

o 

(normal to paper) 

n / 
(parallel to paper)t 

A 

Inversion • 
fourfold 

Inversion 9 
sixfold 

^ Ifthe plane is at r = ^ t h i s is shown 
by printing 7- beside the symbol. 

2) Symmetry elements with translation 

Symmetry „ . . , Translat ion Symmetry „ . . , Translat ion 
,-, , , ^ . •' Graphical , c u i • Graphical , Symbol axis or ^, , along Svmbol axis or ^, , along 

•̂  , symbol .u • ' 1 symbol ,. . plane ^ the axis plane ^ the axis 

Right-handed 63 0 3c/6 
21 Screw f screw ^^ ^ 4^.^^ 

twofold (normal paper) c/2 i^ ^ , , 

65 4|^ 5c/6 

_, Either -̂ ^ Gilde plane a/2 along [100] or 
(parallel to paper) a/2oTh/2 axial < " — . to paper, , / 2 along [010]; or 

~ l , n , n ^ along <100> 
(normal to paper) (parallel to paper) (parallel to paper) 

c Glide plane c/2 along r-axis; or 
' , V^, A^ r / 3 axial (normal to paper) (a + 6 + c) /2 along 

threefo d ^ ^ ' m n u u 
[111] or rhombo-

3, A 2c'/3 hedral axes 
(normal to paper) 

4| Screw ^ c/4 n Glide plane (a+b)l2ox {h+c)l2 
fourfold diagonal (normal to papen or ( c + a ) / 2 ; or 

4, 4 2c /4 ^ ^ (a+/>+c-)/2(tetra-
(parallel to paper) gonal and cubic) 

4, ^ 3c/4 d Glide plane —-> (a±b) I'X or {b±c) IA 
" d i a m o n d " ^ or ( c ± a ) / 4 ; or 

61 Screw ^ f /6 (normal to paper) (a±b±c-)/4 (tetra-
sixfold ^ -71 i -7» g'^"^' ^^^ cubic) 

(parallel to paper) 

'^ If the plane is at z = 7- this is shown by printing -j beside 
the symbol. 

[Reproduced with permission from International Tables for Crystallography, Vol. A (Tec Hahn ed.), pp. 7-10, 
lUCr. (1983)1 

symmetries of the crystal correspond to the symmetries possessed by the macroscopic crys
tal planes, i.e. those of the outer faces of the crystal as found in nature. Thus the 32 point 
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groups for the arrangement of the atoms in crystals are identical with the 32 crystal classes 
which refer to the possible symmetries of the crystal shapes. Conversely, since the faces of 
a crystal can be represented by points, the external symmetries of the crystal can be under
stood in terms of point group symmetries, and are directly related to the internal symmetry 
of the atomic arrangements in the crystal. 

3.3.2 Space groups 
The positions of atoms in the crystal are not determined by the point groups alone. The 
point groups are related to the symmetries for a collection of points around an origin in 
space, and in crystals they correspond to the symmetries of the collection of atoms in one 
unit cell around the lattice origin. The groups of atoms forming a real crystal are therefore 
not arranged only according to point group symmetries, but also form a lattice by means of 
regular translation along the directions of the three principal axes, the lattice exhibiting the 
symmetry inherent in its periodicity. Combination of translation with rotation gives a sym
metry element known as a screw axis, while combination of translation with reflection 
gives yet another symmetry element called a glide plane. Combining lattic type, screw 
axis, and glide plane symmetries with the point group symmetries gives 230 different possi
ble symmetries for the arrangement of points in a periodic array in space. These 230 sym
metries are known as space groups. Fig. 3.9 (p. 56) shows the configurations of representa
tive points for various types of lattice. Fig. 3.10 and 3.11 give examples of screw axis and 
glide plane symmetry respectively. 

4^ tt-^ 

.,,0t 
0,1 0,1 

2i 3i 32 

Fig. 3.10 Twofold and threefold screw axes 2i, 3i and 33 (cf. text). 

Glide plane 

Fig. 3.11 Glide plane symmetry. 
T is the unit cell dimension in the glide direction. 
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Figure 3.9 illustrates the characteristic features of all 14 possible lattices (the "Bravais" 
lattices). Each lattice point corresponds to an atom or group of atoms. The letter P identi-

Triclinic 

Monoclinic 90° 

-^—-ly 

p -v-—r < 

j ^ ^^ f=i S 
Orthorhombic 

90'b m iM'c « ? . 

Tetragonal 

Rhombohedral 

M 
Jtf, 

Hexagonal 

Cubic 

120° P 

rx 
A—/\ J 4 ^ ^ W ^ ^ 

Fig. 3.9 The Bravais lattices (Each small white circle is a representative point of one or more atoms). 



3.3 Crystal Symmetry 57 

fies primitive lattices, i.e. those in which the three axes pass through each and every lattice 
point. R (used for the rhombohedral lattice) is also primitive. The other letters refer to var
ious degrees of centering, i.e. the inclusion of lattice points through which axes do not pass. 
It might seem that the possibility of centering introduces further arbitrariness and complexi
ty into the choice of lattice unit cell. The main requirement, however, is that the unit cell 
should show at least the same degree and kinds of symmetry as the whole crystal, and this 
resolves most ambiguities. Those which remain can be settled by reference to the X-ray 
diffraction pattern. Such lattices are termed multiple primitive. 

Screw axes may be two-, three-, four-, or sixfold, as indicated by the numbers 2, 3, 4, 
or 6, with suffixes which reveal the relationship between the angle of rotation and the trans
lation along the axis expressed as a fraction of the repeat distance. Fig. 3.10 shows a 
twofold screw axis two threefold screw axes, 2i, 3i and 32. With the 2i screw axis a transla
tion of one half the repeat distance is accompanied by a rotation of 360° -f 2/1 ( = 180°), 
and with the 3i screw axis a translation of one third has an angle of rotation 360° ^ 3 / 1 ( = 
120°). Note that a 32 axis is equivalent to a 3i axis with the direction of rotation reversed. 
Table 3.3 gives the complete list of symmetry elements. 

A simple glide plane, as shown in Fig. 3.11 involves successive reflections in a plane, 
each accompanied by a translation equal to one half of the unit cell dimension along the a, 
b, or c axes: the letters a, b, or c are used appropriately to designate this kind of glide plane. 
It is also possible for translation to occur simultaneously along two axes (a diagonal gUde 
plane, symbol n) or along all three (a diamond glide plane, symbol d). The symbols given 
in Table 3.3, some of which have been detailed above, may be used to describe the various 
symmetry elements present in a crystal, although an exhaustive description is not possible 
in the most complex cases. The details of nomenclature have little direct connection with 
X-ray diffraction, and moreover the point groups, space groups, equivalent points, and for-
mular for structure factor calculations, and for electron density and Patterson functions (see 
Section 11.2.5), are all available in the International Tables for Crystallography, Vol. A. 
This, and the fact that to cite superfluous crystallographic information here might obscure, 
rather than clarify, the underlying X-ray diffraction-related phenomena, render it unneces
sary to give more than a few examples. 

P2\lc (No. 14), for instance, is a type found very often for crystalline organic com
pounds. The P indicates a primitive cell, and 2i denotes a twofold screw axis which, be
cause it is a monoclinic crystal, must necessarily be parallel to the unique axis. If we take 
the b as the unique axis (second setting), the 2\ must be parallel to the b axis, i.e. perpendic
ular to both the a and c axes. The oblique stroke means "perpendicular to," so that there is 
a glide plane normal to the 2i axis and having a translation of c/2. 

Finally, the space group Pnma (No. 62) for the crystal structure of polyethylene 
(Section 11.2.8) is detailed in Table 3.4, which is taken from the International Tables for 
Crystallography.^^ This table gives the symmetry elements present in the unit cell of the 
space group Pnma, as well as the positions assumed by any point with coordinates (x, y, z) 
in the unit cell after application of the appropriate symmetry operation. The symmetry ele
ments are shown in the top left (the other two projection in the top right and bottom left) di
agram of Table 3.4, and the positions occupied by the points as a result of symmetry opera
tions are shown in the bottom right diagram.̂ ^^ In these diagrams the a and b axes are pre
sumed to lie within the plane of the paper, being drawn vertically and horizontally respec
tively, with the c axis passing through the plane of the paper. Thin solid lines represent the 
axes of the unit cell; thick solid lines represent sections of glide planes n. The symbol i—\-
at the top left of the unit cell indicates the presence of a-type glide planes parallel to the 
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Table 3.4 Equivalent positions, extinction rules, etc. for the space group Pnma^' 

Pnma 
No. 62 

r 
Pill nil I mill 2i 

„ 2 , 2i 2i 
/ -TT -yvr -7T 

mmm Orthorhombic 
Patterson symmetry Pmmm 

1̂s 

r̂  

Origin at [ on 1 2i 1 

Asymmetric unit 

Symmetry operations 

(1)1 
(5) ! 0,0,0 

o2, 2, 2, 

I • 

I i 
-® 

o* 

® i -

-® 

T-O 

o- -® 

® T 4 0 

O- -(T) 

0 < A : < - ^ 0 < V < - 4 ^ 0 < Z < 1 
2 ' ' 4 ' 

(2)2(0,0,4-) i'O,; (3)2(0,4-,0) 0,>',0 

(7)m ;c,4-,r 

®i-

(4)2(4-,0,0) x,4-,4-
(8) A7(0,4-,4-) 4-,V.Z 

Generators selected 

Positions 

Multiplicity, 
Wyckoff letter. 
Site symmetry 

(1); /(1,0,0); /(0,1,0); r(0,0,l); (2); (3); (5) 

Coordinates 

1 {\)x, y, z (2) .Y+4-, y, z+4- (3) x, v4-i-, z (4) x+4- , >'+4-, z+^ 

(5) X, y. z (6) JC+4-, 7, z + ^ (7) x, v + 4 , z (8) .r+4-, >'+4-, z+A 

4 c m X. 4-, ^ X+4-' 4r 
4 ^ 1 0,0,4- 4", 0,0 
4 a T 0,0,0 4-, 0,4" 
Symmetry of special projections 
Along [001] p2gm 
a' = 4-a b' = b 
Origin at 0, 0, z 

^+i X, 4 , z ;t:+4, 4 , z+ 
' 4 ' 2 ' 4 ' 

"' 2 ' 2 2 ' 2 ' " 
0 -L 0 J- -L J_ 
'J, 2 ' " 2 ' 2 ' 2 

Along [100] c2mm 
a' = b b' = c 
Origin at x, 4-,4-

Reflection conditions 

General: 

Oki.k + l=2n 

hkO:h = 2n 

hOO: h = 2n 

OkO:k = 2n 

00/: l = 2n 

Special: as above, plus 

no extra conditions 

hkl:h-^l,k = 2n 

hkl:h+l,k = 2n 

Along [010] p2gg 

a' — c b' = a 

Origin at 0, v, 0 

[Reproduced with permission from International Tables for Crystallography, Vol. A. (Tec Hahn ed.), pp. 288-289, 
lUCr. (1983)1 
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plane of the paper at heights of z =— and —. The single arrows \ indicate twofold screw 
axes; those with no accompanying numbers indicate that the axis lies in the plane of the pa
per (z = 0), while the — beside others shows that the axis is situated at a height of — (z = 
4") from the z = 0 plane in the c direction. The unshaded small circles denote centers of 
symmetry, and the black f symbols are the normal indication for the 2i screw axes parallel 
to the c axis (cf. Fig. 3.10). It should be clearly understood that not all symmetry elements 
can be included in this kind of diagram. For example, there are two twofold screw axes 
parallel to the a axis at a height of -j-, and a further two at a height of -j- in the unit cell, but 
since these coincide in a two-dimensional projection of this type, only those at — are 
shown. 

The bisectors of the unit cell are included only to facilitate identification of the posi
tions of the points (bottom right diagram). The various positions adopted by some arbitrary 
point in the unit cell as the successive symmetry operations of the space group are applied 
to it may readily be traced from this diagram. The initial position of such a point is here 
shown at the top-left marked " + ". With the top left-hand comer as the origin, the coordi
nates of this point in the a and b directions are x and y, and that in the c direction is z (posi
tive, i.e. above the plane of the paper). For rotation about the center of symmetry the coor
dinates of this point will therefore become (x, y, z). The positions assumed by the point as 
a result of each of the symmetry elements in the top-left hand diagram are shown. The 
symbols 4 — and 4~+ indicate that the z coordinates are 4 — z and 4"+ ^ (given as z +4" 
and z +4" in the International Tables for Crystallography Vol. A) respectively. The points 
shown in the bottom right diagram are, of course, the equivalent points of the arbitrarily 
chosen point (x, y, z) with respect to the various symmetry operations. There are eight gen
eral equivalent points in the unit cell of this space group. If the initial choice of point lies 
actually upon one of the symmetry elements, e.g. on a center of symmetry, the correspond
ing symmetry operation leaves the position of the point unchanged, so that the number of 
equivalent points obtained when the other symmetry operations are applied is immediately 
reduced by a half. The locations of points with coordinates (x, y, z) chosen so that they do 
not lie on symmetry elements are referred to as general positions, while those on symmetry 
elements, with a consequent reduction in the number of equivalent points by 4", 4~,... com
pared with the number for the most general position, are called special positions. 

3.3.3 Relationship between the atoms present in the unit cell and the equiva
lent points of the space group 

It is appropriate at this point to summarize the relevance of the equivalent points of the 
space groups to the space groups to the actual positions of atoms in the unit cell. 

Equivalent points are occupied by atoms of the same species. It is possible for one set 
of equivalent points to be occupied by the different atoms of the same species within a sin
gle molecule, but it is more usual for them to be occupied by atoms of the same species in 
corresponding positions within different molecules. It follows, therefore, that in molecular 
crystals the number of molecules (or more generally the number of chemical units) in the 
unit cell (Z) is usually equal to the number of general positions. Since the number of mole
cules in the unit cell (Z) should be integral, the number of equivalent points in the space 
group of such molecular crystals should therefore be an integral multiple or sub-multiple of 
Z. If the molecule possesses an inherent internal symmetry, some of the atoms of the mole
cule may occupy certain equivalent positions related by symmetry operations, and certain 
kinds of atoms may occupy special positions. This has the advantage for crystal structure 
analysis that it may not be necessary to determine the positions of every atom in the mole-
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cule, but only of (say) one half or one third of them, since the locations of the remaining 
atoms can found by application of the appropriate symmetry operation or operations. 
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4. Detailed Interpretation of the Diffraction of X-Rays 
by Crystals 

4.1 The Bragg Diffraction Condition 
As was mentioned in Section 3.2.3, if X-rays are to be diffracted in a certain direction by a 
crystal, the Laue conditions must be satisfied. This occurs whenever the orientation of the 
crystal with respect to the direction of the incident X-rays is such that a particular lattice 
plane (hkl) is normal to S, and dihki)= 1/1 S L These relationships have been illustrated in 
Fig. 3.6(a) and (b). The condition that S should be perpendicular to (hkl) is equivalent to 
the condition that both the incident and diffracted beams subtend the same angle with re
spect to (hkl). Before diffraction can occur, however, the second condition must also be 
satisfied. Thus if 0, the angle that the incident beam makes with (hkl), is gradually altered, 
diffraction occurs only at those angles for which \S\ = lld^hkiy These values of 0 are neces
sarily those which satisfy the Laue conditions. While the Laue conditions were derived 
from a rigorous analytical treatment, it is also possible, because of the geometrical disposi
tion, to understand X-ray diffraction from crystals intuitively in terms of reflection of the 
incident beam by the (hkl) planes, as shown in Fig. 4.L This approach also enables a re
statement of the conditions upon the integers /z', k\ and V'm Eq. 2.39 in simpler form. 

Figure 4.1 shows four of a set of parallel crystal lattice planes at which both incident 
and diffracted (reflected) X-ray beams subtend angles 0. The path difference between 
waves reflected by the first plane and those reflected by the second plane (and between 
each successive pair of planes) is Id sin 0. If the path differences between successive 
waves are equal to the wavelength of the X-rays used, or some integral multiple of it, there 
is constructive interference, i.e. all waves are in phase, and the reflected beam is very in
tense. Thus if Id sin 0 = A an intense diffracted wave is produced in the direction indicat
ed, the intensity decreasing abruptly with any deviation from the critical value of 6. Note 
that there is no path difference between waves scattered from different points on the same 
plane, i.e. there will be no difference in phase between waves scattered from point 4 in 

Lattice 
planes 

Fig. 4.1 Diffraction of X-rays considered as reflection from a set of lattice planes. 
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plane 4, and those from points 4 ' and 4". The difractions from the set of planes may there
fore be treated as the set of reflections from the points 1, 2, 3,... on a normal T through the 
planes. The intuitively derived geometrical condition that 2d sin 0 = A can also be derived 
from Section 3.2.3, for since I S I =(2sin 6)lX, we have 

l/J(Mo=l5:i=(2sine)/A 

Id^hki) sin 0 = A (4.1) 

Eq. 4.1 is known as the Bragg diffraction condition or Bragg's law. 
Figure 4.2 shows an essentially similar situation to that of 4.1, but expressed in terms 

of the analytical and semi-graphical methods developed in Chapter 2. The two planes 
shown are the (100) planes of an imaginary crystal. There are two atomic species, and each 
unit cell contains three atoms. The incident wave excites many atoms in the crystal, and 
each atom gives rise to a scattered X-ray amplitude of/i or/2 according to its species. The 
scattered waves from the three members of the unit cell combine to give an amplitude Aceii 
(c/. Eq. 2.41). The individual amplitudes Aceii, each of which is continuous over all direc
tions, combine to form a diffracted X-ray of amplitude F(IOO) (the structure factor of Eq. 
2.41) and intensity / ^ F(100)F*(100), where / has a non-zero value only in directions G 
such that 2d sin 6 = X. 

The scattering of X-rays by a crystal gives a diffraction pattern in the form of an array 
of spots, the total number of which corresponds to the number of (hkl) planes for which the 
Laue conditions are satisfied. The particular directions of the spots are given by specular 
reflection of the incident beam in the corresponding lattice planes, i.e. the Bragg reflection 
condition, although the latter gives no information about their relative intensities. In so far 
that it indicates diffraction directions, the Bragg condition resembles the Laue function G 
(or L )̂ of Eq. 2.45, which is also concerned with the possible directions in which diffraction 

Incident wavefront 

Diffracted 
wave 

Only for directions such 
that 2i/sin5=A 

f (100) 

(lOO)pIane 

^ ' ^ Nucleus of /^7) 

Fig. 4.2 Diffraction of X-rays in terms of the combined scattering amplitudes from atoms and unit cells. 



4.3 Reciprocal Space and Reciprocal Lattice 63 

by crystal planes can occur. The Laue function, however, is of more general significance 
than the Bragg condition in that it yields information on the angular distribution of the dif
fracted beam about the average direction (the so-called diffraction (or reflection) profile). 

4.2 Lattice Structure Factors 
As outlined above, the Bragg condition simply gives the average directions for which dif
fracted X-rays are produced by a crystal. The more general Laue conditions were detailed 
in Section 2.9.2. Incorporating the Laue function in a combination of Eqs. 2.42 and 2.44 
gives the intensity distribution for all diffracting planes 

I{hkl) = Io^^^^^^f^GF(hkl)F^(hkl) (4 2) 

where /o is the intensity of the incident X-rays (cf. Eq. 2.3). This expression for the intensi
ties due to the crystal consists of the product of the Laue function G, which gives the distri
bution of the diffracted rays due to the lattice structure, and I F(hkl) P, the composite ampli
tude due to the atoms of the unit cell. Provided that the crystal is not too small, the Laue 
function may be assumed to take finite values only at a limited number of points, and to be 
zero at all others (cf. Fig. 2.21). The essentially continuous function F is governed by the 
Laue function, and it follows that the intensity, too, will have finite values at certain fixed 
points, the value of F at these giving the amphtude of the diffracted beam (cf. Fig. 2.20). 
If, however, the crystal is very small, or the lattice highly disordered, the Laue function is 
no longer a sharply defined point function, but has a certain broadening. There is conse
quently, as mentioned in Section 2.9.2, an inherent broadening in the diffraction spot. The 
factor F(hkl), which depends upon the structure of the unit cell, is however the same in both 
cases. If (h^kl^ in Eq. 2.44 is replaced by (hkl), and if x,, jy, and Zj are the coordinates of 
the yth atom in the unit cell expressed as fractions of the unit cell dimensions a, b, and c. 
then 

F(hkl) = ̂  fj exp{- 2m(hxj +kyj +lzj)} .^^. 

This is known as the lattice structure factor, or simply as the structure factor. This in fact 
governs the diffracted intensities in the case of most ordinary single crystals, for the latter 
are almost infinitely large in terms of their effect on the Laue function, which assumes its 
constant, non-zero value over very narrow angles. 

4.3 Reciprocal Space and Reciprocal Lattice 
Section 2.2.3 first dealt with the relationship between real space, in which the function p(r) 
expresses the structure of the scattering substance, and reciprocal space, which is used in 
representing the angular distribution A(S) of the X-ray scattering amplitude. Fig. 4.3(a) 
(p.64) shows the geometrical relationship between reciprocal space and the angles at which 
X-rays are diffracted by a crystal. If diffraction (reflection) occurs at a plane, the direction 
of S is normal to the plane, and, as we have already seen, its magnitude equals the recipro
cal of the interplanar spacing. If the angle 6 subtended at a particular plane is gradually in
creased by changing the direction of the incident beam or (which is physically equivalent) 
by rotating the crystal, reflection occurs successively from the planes with multiple indices. 
The reflected directions si, Si, and S3,... have angles ^1, 62, and ^3,... as shown. In general, Si 
will be associated with a particular (hkl) plane, and 5„ at angle 6n with the nth multiple plane 
(nh, nk, nl). The planes of Fig. 4.3(a) are all parallel to the (100) planes, so that diffraction 
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Fig. 4.3 Geometrical relationship between reciprocal space and the angles at which X-rays are diffracted. 
(a) Reciprocal lattice points 100, 200,... and diffractions from the corresponding crystal lattice planes 

with changing angle of X-ray incidence. 
(b) Diffractions of (a) redrawn as for crystal rotation, showing the diffraction sphere in reciprocal space 

(see text). 
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from the latter gives way in turn to that from the (200), (300),... planes as 6 increases. It 
follows that I S21 ̂  21 Si I, and I S31 = 31 5i I, and in general I S J = «l Si I. 

Consider now Fig. 4.3(b), which demonstrates the relevance of the concepts of recipro
cal space to X-ray diffraction. Here the directions SQ of Fig. 4.3(a) all coincide along SO, 
corresponding to the case where the crystal rotates in the X-ray beam. The angle between 
So and the reflected directions Si, 52,... are those of Fig. 4.3(a), and the magnitudes of Si, 
S2,... are also identical. Therefore Si, S2,... meet Si, S2,... at points on the circumference of a 
circle with center O. The argument may be extended to all planes in the three-dimensional 
crystal, so that if all possible directions are to be included, the general vector S„ (with O as 
its origin) should meet s„ on the surface of a sphere with center S. Since So, Si,... 5„ are unit 
directional vectors (in wave number units), I So I, I Si I,... I Sn I (and therefore the radius of the 
sphere) are all 1/A. The diffraction sphere, radius 1/A, is known as the Ewald sphere. 

It follows from Fig. 4.3(b) that if a certain group of planes (nh, nk, nl) is reflecting, S„ 
(with its origin at O) should touch the surface of a sphere with radius 1/A and center S; 
moreover, the (nh, nk, nl) planes should be normal to S„, with an interplanar spacing 1/1 S„ I. 
Conversely, if an arc on the perpendicular from O to a particular lattice plane cutting off a 
length equal to the reciprocal of the interplanar spacing does not intersect it at the surface of 
the sphere, that plane does not give rise to diffraction. It also follows that n in the above 
discussion is not some indefinitely large integer, but is subject to strict physical limitations 
associated with the X-ray wavelength used and the geometrical features of the crystal lattice 
planes. 

We have effectively restated the conditions for diffraction from a crystal (or reflection 
from the lattice planes) in terms of a diffraction sphere in reciprocal space rather than an in
cident direction So, where the center of the diffraction sphere is at the center of diffraction, 
and its radius is l/A. The reflections from lattice planes, in contrast to those of light from a 
mirror, are thus shown to be inherently discontinuous: planes in real space are represented 
by points in reciprocal space, and contact between a set of points and the surface of a 
sphere is necessarily discrete. 

It is evident from Fig. 4.4 (a) that the set of points in reciprocal space which are at dis
tances \/d(hki) along the normal from the origin to the (hkl) lattice planes for all values of h, 
k, and /, forms a lattice not unlike that of the crystal lattice in real space. This is a conse
quence of the geometrical arrangement of the crystal lattice planes discussed in Section 3.2. 
There is a one-to-one correspondence between the points of the reciprocal lattice and the 
sets of crystal lattice planes. For example, the sets of planes (100), (200), (300),..., with in
terplanar spacing (i(ioo), ^(ioo)/2, J(ioo)/3,..., are represented by points similarly designated 
100, 200, 300,..., at increasing distances from the origin, the reciprocals of these distances 
being related in exactly the same way as the interplanar spacing. The reciprocal lattice is 
obviously a very convenient device for representing crystal lattice planes: a set of planes 
can be represented by a single point, rendering unnecessary complex diagrams like Fig. 3.3. 
The one point represents both the inclinations of the planes to the unit cell and their inter
planar spacing. It is vital that these facts should be clearly grasped, for more use will be 
made in this volume of Fourier theory and the concepts of reciprocal space and reciprocal 
lattices than of geometrical explanations based on real space relationship (like those we 
have employed hitherto) in interpreting diffraction effects. 

The above geometrical relationship between real and reciprocal lattices requires that 
the reciprocal lattice axes a*, ^*, and c* be perpendicular to the planes containing the b and 
c, c and a, and a and b axes, respectively, of the real lattice (cf. Fig. 4.4), and that the pairs 
of angles a and a*, /3 and ^*, and 7 and 7* between the axes should be supplementary. 
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•240 ^ •HO 
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First layer, 

311 hki 

3IQ Equator, hkO 
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311 First layer, hkJ 

Fig. 4.4 Geometrical relationships between real and reciprocal lattices. 
(a) Geometrical relationship for the lattices of a monocHnic crystal (1st setting, the c and c* axes vertical 

at the origin.) {cf. Table 3.1). The broken hnes indicate the unit cell and the dotted lines indicate (hOO) 
planes. 

(b) Reciprocal lattice of a triclinic crystal, and the vectors r*, ^, and f. The c and c* axes do not coincide. 
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These relationships may be expressed by the following conditions upon the scalar products 
of the vectors representing the various axes. 

(a-^*)= 0, (fl-c*)= 0, («•«*)= 1, 

(b'a^)=0, (Z>-c*)= 0, ib'b^)=- 1, 

(c-fl*)=0, (c-Z»*)=0, (c-c*)=l (4.4) 

A reciprocal lattice point that is the hih lattice point from the origin in the direction of 
the a* axis, the ^ h in the Z?* direction, and the /th in the c* direction is designated hkl, and 
corresponds exactly to the (hkl) planes in real space. Moreover, using vector r*(M/) for the 
location of this point (cf. Fig. 4.4(b)), we have 

or 

where 

r^^hM)= ha^ + kb^ + IC' (4.5) 

r*2 = f + ^ (cf. Section 4.4.1) (4.6) 

l/r*(/jit/) = dihki) (4 .7) 

The relationships between parameters a, b, c, a, P, and y of the real lattice and the cor
responding parameters of the reciprocal lattice are given in Table 4 of the Appendix for the 
seven crystal systems. 

The geometrical conditions for X-ray diffraction by a crystal in terms of reciprocal 
space and the reciprocal lattice are shown in Fig. 4.5. In Fig. 4.4(a) the origins of the crys
tal and reciprocal lattices were drawn to coincide so that the significance of indices, coordi
nates, angles, etc., could be more readily grasped. Fig. 4.5, however, is similar to Fig. 
4.4(b): the center of the diffraction sphere S and the origin of the reciprocal lattice O are 
separated by a distance SO = 1/A, where A is the wavelength of the X-rays. The incident 
direction is XSO. The broken line PQ indicates the incHnation of a set of planes (hkl) with 
interplanar spacing d. If the X-ray beam is diffracted by the PQ planes, it will pass through 
a point R on the surface of the diffraction sphere as shown, with an angle 20 between the 

Fig. 4.5 Geometrical conditions upon the reciprocal lattice for X-ray diffraction by a crystal. 
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unit direction vectors SO and SR of the incident and diffracted beams. The Bragg condi
tions holds, which requires that 2d sin Q — X. Thus 2(1/A) sin 0 = \ld, and OR = \ld (cf. 
Eq. 4.1). The point R is the reciprocal lattice point hkl for the (hkl) planes. 

The possibility remains that for certain orientations of the crystal the direction of the 
incident X-rays will be unsuitable, with no reciprocal lattice points lying on the surface of 
the diffraction sphere, and therefore no reflection from the planes (i.e. no diffraction). In 
this case a change in the direction of the incident X-rays (corresponding, in reciprocal 
space, to rotation of the entire reciprocal lattice about its origin O, or to rotation of the dif
fraction sphere about O while the lattice remains fixed) will usually bring a lattice point 
into coincidence with the surface of the sphere, ensuring that the crystal lattice planes corre
sponding to this point will satisfy the Bragg condition and give rise to reflection (diffrac
tion). This relative motion between diffraction sphere and reciprocal lattice sweeps out a 
spherical volume of reciprocal space with radius 2/X (the larger circle with center at O in 
Fig. 4.5). All lattice points within this volume can be brought into coincidence with the 
sphere, and the associated planes will give rise to diffraction. When the volume, which de
creases with increasing A, is so small that it encloses no reciprocal lattice points, all direc
tions of the incident beam alike fail to give rise to reflection. There is thus an upper limit to 
the wavelength of X-rays which can be used effectively for X-ray diffractional analysis. 

In cases where the crystallographic axes, i.e. the axes of the unit cell, have already been 
established from the external shape of the crystal, all information concerning the directions 
of the incident X-ray beam, the orientation of the crystal, and the diffracted beam, can be 
found from the geometrical relationships of Figs. 4.5 and 4.6 by drawing the real lattice and 
deriving the reciprocal lattice. It is then possible to tell whether or not reflection can occur. 
Conversely, the indices of crystal planes causing a diffraction pattern can be readily found 
from the positions of the pattern with the aid of this diagram. This will be discussed in 
greater detail in the next section. 

4.4 Wider Applications of the Reciprocal Lattice 
We saw in the last section that the phenomena of X-ray diffraction (reflection) by crystals 
can be very readily understood from diagrams which replace X-rays by a diffraction sphere 
and crystal planes by reciprocal lattice points. Complex sets of crystal planes and their X-
ray diffraction can be represented very simply in this way. We shall now illustrate various 
methods of making diffraction photographs in actual X-ray diffraction experiments and ex
plain the broad principles of the methods used for their analysis. 

4.4.1 Interpretation of rotating-crystal and oscillating-crystal photographs 

Figure 4.6 shows the principle of the camera used in the oscillating-crystal method. A crys
tal is fixed to a goniometer head in such a way that (say) its c axis coincides with the axis of 
rotation. Though the principal axes are not known at the outset of the experiment, it is as
sumed at first that the direction in which the face-edge lines are clearly visible is the c axis, 
as shown in the diagram. The X-rays incident on the camera are fixed direction, and the 
axis of the collimator system, the crystal, and the axis of the microscope used for accurate 
positioning of the crystal must be very precisely aligned at the beginning of the experiment. 
The crystal is brought into the field of vision and placed at the point of intersection of the 
microscope cross-wires, and the orientation of the crystal adjusted by means of the go
niometer screw so that its c axis coincides with the vertical wire. To facilitate the construc
tion of the reciprocal lattice, one of the well-developed faces of the crystal is assumed to be 
a (100) plane, i.e. an a plane. This plane is fixed parallel to the direction of the X-rays 



4.4 Wider Applications of the Reciprocal Lattice 

Rotation of diffraction 
sphere 

Diffraction sphere 

Fig. 4.6 Physical disposition of apparatus for rotation/oscillation photographs (a) and the corresponding 
reciprocal space diagram (b). 

(Section 8.7.1 describes the practical adjustment), and the rotation is started from this posi
tion. Since this is the starting point in the experiment, the reciprocal lattice is constructed 
for this situation, and this juxtaposition must be noted. The construction representing the 
relationship between the reciprocal lattice in this situation and the incident X-rays and crys
tal planes is shown in Fig. 4.6(b). Reference to Fig. 4.5 should make the construction clear. 
In this case, however, no more than the direction of a* (normal to the a planes, i.e. QiOO) 
planes) is known. The incident X-rays are parallel to the a planes and perpendicular to «*, 
and the diffraction sphere is drawn with its radius equal to the reciprocal of the wavelength 
used. It will be convenient later if the diagram is drawn on graph paper, the large circle 
having a radius of 20 cm and the smaller a radius of 10 cm. For plotting the lattice points, 
the length of the vector ^ = 2 sin ^ is multiplied by 10 and expressed in centimeters. If the 
crystal is rotated through 15° to the left (as seen from above) and caused to oscillate be
tween this and the original position, the crystal lattice oscillates, and so does the reciprocal 
lattice. The same effect would be produced if the incident direction were oscillated be
tween the 0° position and 15° to the right, and it is convenient to think of it in this way. 
Rotation of the incident direction through 15° to the right causes rotation of the diameter 
XO of the diffraction sphere to the right with O as the center of rotation. During this rota
tion the surface of the sphere is brought successively into coincidence with the reciprocal 
lattice points. In accordance with the principles described above, therefore, diffraction (re
flection) occurs at the crystal planes at the instants when the surface of the diffraction 
sphere passes through the corresponding reciprocal lattice points. 

Diagram (a) in Fig. 4.7 shows the equatorial plane {hkG) (the plane containing the (2* 
and /?* axes) of the reciprocal lattice, the axis of rotation of the crystal in this case being the 
c axis. XO is the incident direction, S is crystal, and O is the origin of the reciprocal lattice. 
The crystal oscillates through 15° to the left from the starting position, in which the a planes 
are parallel to XO. The crystal appears to move from S to S', but this is of course because 
our diagrams are drawn on the assumption that the reciprocal lattice remains fixed while the 
direction of the X-rays changes. Diagram (b) shows the appearance of the diffraction pat
tern obtained by this method when a film is placed behind the crystal and normal to the in
cident X-rays. The incident X-ray beam meets the film at its center, O', which is also the 
point of intersection of the film with the projection of XO in the reciprocal lattice space. If 
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Fig. 4.7 Reciprocal lattice and oscillation photograph. 
(a) Reciprocal lattice diagram for oscillation photograph of a monoclinic crystal, (equatorial level). 
(b) Schematic representation of the corresponding oscillation photograph (cylindrical film, superim

posed by the Bemal chart (Fig. 2 in the Appendix)). 
(b): [Reproduced from M. J. Buerger, X-Ray Crystallography, p. 148, John Wiley & Sons, Inc. (1942)] 
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the film is observed from the rear of the camera, the crystal is situated at a fixed distance 
behind the film, with its c axis vertical. The rotation or oscillation photograph is analyzed 
with the aid of the geometrical relationships which follow from the orientation of the crys
tal and the interpretation of the diffraction pattern recorded on the film given below. 

If we consider the crescent-shaped areas swept by the surface of the diffraction sphere 
on which X and X' lie, the diffraction pattern on the right-hand half of the film corresponds 
to diffraction by the reciprocal lattice points contained in the right-hand crescent, and the 
pattern on the left-hand half of the film corresponds to the reciprocal lattice points in the 
left-hand crescent. 

The horizontal row of diffractions in the middle of the pattern is known as the equator. 
The diffractions on this line correspond to reciprocal lattice points on the ^*Z?* plane, i.e. on 
the lattice plane for which C ~ 0 (cf. Fig. 4.4(a)), and are therefore all diffractions of planes 
of the type (hkO). The diffractions on the first rows above and below the equator conse
quently correspond to the next layer of reciprocal lattice points above and below the hkO 
layer, i.e. to the hkl and hkJ layers respectively. This follows immediately from the infor
mation we have already gained concerning the reciprocal lattice, the diffraction sphere, and 
the direction of diffraction. The interpretation of oscillating-crystal photographs thus re
duces to the analysis of the reciprocal lattice planes normal to the axis of rotation of the 
crystal. We can therefore determine h and k, and the analysis should then be possible sim
ply from the vector £, on the plane of the reciprocal lattice. The analysis and indexing of the 
equatorial diffractions is given below by way of illustration. 

Several diffractions close to the center, where ^ is small, are chosen and labeled <̂ i, 
(^2v, <?nv The distance from the diffracted point to the center is measured, and tan 26 found 
from this and specimen-to-film distance, /??• <? is then found from (̂  = 2 sin 0 (Fig. 4.8). 

2d = x/R^ 

Diffraction spot 

O' Direct beam 
Crystal 

Film plane 

(a) Flat film (b) Cylindrical film 

Fig. 4.8 Determination of 6 from the geometry of diffraction. 

Diffraction spot 
on the equator 

O' Direct beam 

Film plane 

The smallest £,, i.e. <̂ i, is assumed to be a*, and is plotted on the a* axis to the right of 
the origin as the 100 reciprocal lattice point, at the appropriate distance on the chosen scale. 
An attempt is then made to find a suitable combination of low-index reciprocal lattice 
points 110, 200, 210, 120,... on arcs having radii ^2, < 3̂,... such that the t, values and the peri
odicity of the lattice points (giving a regular network) are satisfied. The trial lattice for the 
right-hand half of the diffraction pattern must then agree with the ^ values found for the 
left-hand crescent from the diffractions in the left-hand half of the film. The lattice can be 
established with the aid of a mathematical representation of the reciprocal lattice, but here 
we give only the simpler graphical method. It should be particularly noted that this proce
dure yields reciprocal lattice points, the lattice lines connecting them being selected after 
careful scrutiny, generally with the aim of making the reciprocal lattice as nearly rectangu
lar as possible. It is also found that diffraction does not necessarily occur in practice from 
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all sets of planes associated with reciprocal lattice points which fulfill the conditions we 
have so far been considering. There are other conditions, connected with the symmetry 
properties of the crystal, which may be responsible for the systematic absence of certain 
diffractions, e.g. for (hOO) or (OM)) planes for which h or k are not even (cf. Fig. 4.9(a)), or 
for hOl for which h-h lis not even (cf. Fig. 4.9(b) and Section 11.2.3). Other diffractions 
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Fig. 4.9 Schematic representation of diffractions with systematic absences as they might be observed in practice 
(see text). 
(a) The systematic absences, OM): k ^ 2n, in the reciprocal lattice. 
(b) The systematic absences, hO\: /z + / #= 2n, in the reciprocal lattice indicate that a larger reciprocal 

unit cell (i.e. a smaller real cell) can be chosen. 
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may be absent because their structure factors, F{hkl), dictate an intensity which is too low 
to darken the film. The true reciprocal unit cell is found by the use of the higher order dif
fraction data (c/ Fig. 4.9(b)). 

The indexing procedure for the other diffractions, i.e. general diffractions of the type 
hkl, is as follows. As was mentioned earlier, the first layer diffractions above and below the 
equator are the hkl and hkJ diffractions respectively. The indices to be determined in this 
case are h and k: let us refer again to Fig. 4.4(a). If the third axis, i.e. the c axis in this case, 
is normal to the a and b axes, c* will coincide with the c axis, also being perpendicular to 
both a* and /?*, and lying in the (hkO) plane. In this case the ^ values of all reciprocal lat
tice points hkl and hkJ will be equal to the ^ values of the reciprocal lattice points having 
the same values of h and k in that equator plane. To index the points, therefore, a point 
whose ^ value is the same as that of an hkO point is given the same indices h and k, and so 
becomes hkl or hkl. The values of x on the photograph in Fig. 4.8 will be different because 
of the different crystal-to-film distance, but a chart giving the different values of § and f for 
different positions on the film is available, and is known as a Bemal chart, see Fig. 2 in the 
Appendix. This chart is simply placed over the film, and the value of ^ for each diffraction 
spot can be read off (Fig. 4.7(b)). If this is not used, ^ must be found by measuring the 

Fig. 4.10 Reciprocal lattice diagram for oscillation photograph with monoclinic crystal: 
first and higher order layer lines. 
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distance from the diffraction spot to the origin to find 6 and then utiUzing the equation 
>̂}=2 — ^2 _̂  ̂  where r* = 2 sin G (cf. Section 11.2.2). The indices h and k can be found by 
determining only the values for the spots on the layer lines by comparison with the corre
sponding spots on the equator. It must be noted that equator corresponds to the hkO recipro
cal lattice plane, so that it is correct to represent the diffraction sphere by an equatorial cir
cle. The hkl reciprocal lattice plane, on the other hand, is at a distance, ^ above the equa
tor: intersection between this plane and the diffraction sphere is therefore a circle of slightly 

Fig. 4.11 Reciprocal lattice diagrams. 
(a) Reciprocal lattice (on a larger scale) looking straight down the c axis. 
(b) Reciprocal lattice diagram for oscillation photograph with triclinic crystal for the third layer line. 
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smaller radius, around the circumference of which diffraction can occur. This can be repre
sented by drawing a full-size circle (diameter equal to that of the diffraction sphere) for the 
hkO reciprocal lattice plane, and concentric circles of successively smaller diameter for the 
second and subsequent diffracting planes. The radii can be calculated from the values of ^, 
and the reciprocal lattice points lying on the crescents formed by these circles correspond to 
planes that are capable of diffraction (cf. Fig. 4.10 (p. 73)). 

If the third axis is not normal to a* and /?*, as in Fig. 4.4(b), the procedure is more te
dious. In this case the ^ values of the points on the layer lines are no longer the same as 
those of the hkO points having the same values of h and k. This is because, as can be seen 
from Fig. 4.11, the projections of the lattice points on the equatorial plane do not coincide 
with the equatorial lattice points. However, utilizing the fact that all the lattice layers are 
identical, we can still make provisional use of this equatorial plane. The origin (the point 
with both h and k zero) of the first layer of the reciprocal lattice is projected on the equator
ial plane, and a new lattice is drawn about the projected point as lattice origin. It will there
fore be slightly offset from the previous lattice. The original origin of the equatorial plane 
is taken as the center of the diffraction sphere, which is then rotated. The same result is ob
tained if the center of rotation of the diffraction sphere is moved from the origin by exactly 
the same amount as the offset of the points in the first layer, the diffraction sphere then be
ing rotated in the usual manner. By repetition of this procedure for the first layer below the 
equator, and for the second, third, and other higher order layers, all the diffractions hkl on 
the film can be indexed. The smaller diffraction circles forming the intersections of the lat
tice layers with the diffraction sphere are shown in Fig. 4.11(b). 

We have now established the basis of interpreting rotation and oscillation photographs 
in terms of the reciprocal lattice. In most cases the normal flat film may be replaced by a 
cylindrical film, the axis of which coincides with the axis of rotation of the specimen. This 
also applies for high polymer samples. Since the film almost completely encircles the spec
imen in this case, diffractions can be recorded up to large diffraction angles. Moreover, in
stead of being curved in the case of flat film, the layer lines are parallel to the equator as in 
Fig. 4.7(b). The exact values of ^ and f for given camera conditions can be derived by re
ferring to Section 11.2.2 and utilizing Eqs. 11.15 and 11.16. 

4.4.2 Interpretation of Weissenberg photographs 

The method most commonly used in practice for crystal structure analysis is the 
Weissenberg method. The analysis of the diffraction pattern obtained will now be de
scribed with the aid of the reciprocal lattice. The special feature of this method is that as 
the crystal is rotated the film is moved parallel to its cylinder axis. This movement is illus
trated in Fig. 4.12 by means of the reciprocal lattice. Experimental details are given in 
Section 8.2.3C. 

In Fig. 4.12, for simplicity, we consider only the diffractions produced by the recipro
cal lattice points 300 and 350 during the rotation of the crystal. The film is cylindrical, the 
axis of the cylinder being normal to the reciprocal lattice plane a*Z?*. The left-hand dia
grams represent the relation between reciprocal lattice and diffraction sphere, while the 
right-hand diagrams represent films unrolled (not to scale). Fig. 4.12(a) shows that the di
rect X-ray beam strikes the film at O' when the crystal is set with its a plane parallel (i.e. 
the a* axis perpendicular) to the incident X-rays. When the crystal rotates through an angle 
ft)i the reciprocal lattice point 300 just touches the diffraction sphere and a diffraction spot 
300 is produced on the film at a distance X300 from O'l on the direct beam trace, the film 
meanwhile shifting leftward a distance zi (Fig. 4.12(b)). Further rotation of the crystal (ro-
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Film (radius, RF) 

Rotation direction of 
»v^ » | Q ' reciprocal lattice 

(a) 

Film translation 

^Film (radius, /?F) 

300 diffraction 

(b) 

Fig. 4.12 Weissenberg projection of reciprocal lattice lines in the equatorial level (See text. 
cf. Fig. 8.22 for actual Weissenberg photographs). [Reproduced with permission from 
E. W. Nuffield, X-Ray Diffraction Methods, p. 306, John Wiley & Sons, Inc. (1966)] 

tation angle CO2) brings the 350 point into coincidence with the surface of the diffraction 
sphere and a diffraction spot 350 is produced at a distance X350, the distance of film transla
tion being zi (Fig. 4.12(c)). The difference 0)2-0)1 between the rotation positions at which 
the two diffractions occur is related to zi-Zi by the translation/rotation constant of the 
Weissenberg camera (cf. Section 8.2.3C), and can therefore be found after measurement of 
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/Film (radius, Rf) 

330 diffraction 

Diffraction sphere 

(c) 

Diffraction sphere 

(d) 

Fig. 4.12 —Continued 

the distance of zi-Zi on the film. This gives the angle between the diffraction planes of the 
crystal. Further rotation brings the 300 point into coincidence with another part of the sur
face of the diffraction sphere again, and another diffraction spot 300 is produced at the low
er half of the film at a distance JC300 from the direct beam trace (Fig. 4.12(d)). A similar in
terpretation for all the reciprocal lattice points that diffract in the course of a 360° rotation 
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automatically gives the reciprocal lattice net for the a*/?* plane. Whereas a geometrical 
construction was necessary to index the sports and find the reciprocal lattice in the oscillat-
ing-crystal method, a camera like a Weissenberg camera, which is constructed so that the 
diffraction times for the angles of rotation are derived automatically, gives both the recipro
cal lattice and the corresponding indices. In practice, a Wooster chart (c/. Fig.l in the 
Appendix) showing corresponding values of ^ and x for a given cylinder diameter and film 
displacement are used for the analysis of Weissenberg photographs. Details of this method 
are given in Section 8.6.2. 

Another system that automatically gives the reciprocal lattice is the precession camera 
{cf. Sections 8.2.3D and 8.6.3). 

4.4.3 Interpretation of diffraction from crystalline powders or polycrystalline 
specimens 

The reciprocal lattice can also be used in interpreting the diffraction of X-rays by finely 
powdered crystalline specimens (which would include metals), specimens consisting of 
small crystals (crystallites), or crystalline high polymer substances throughout which small 
crystalline regions are distributed (such as polyethylene). 

If the tiny crystals in such specimens are all randomly orientated, the systems are effec
tively isotropic, and the origins of the reciprocal lattices of all the crystallites are brought 
into coincidence, all the reciprocal lattice points of a given type hkl should be uniformly 
distributed in the space around the origin at a distance r'^^hkiy The reciprocal lattice points 
would therefore form concentric spheres about the origin as center. In Fig. 4.13, if X-rays 
from direction X are incident upon the specimen, the diffraction sphere is as indicated, and 
intersects the reciprocal lattice spheres. A simple extension of our previous analysis to this 
situation shows that the diffracted X-rays will be directed towards the circumferences of the 

X-ray 
beam X 

/ ^ Reciprocal lattice 

Diffraction 
sphere 

Diffracted 
X-rays 

Diffraction pattern 
(Flat film) 

Fig. 4.13 Derivation of a powder diffraction pattern (Debye-Scherrer rings). 
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circles of intersection between the diffraction sphere and the reciprocal lattice spheres. If 
the film is flat, as shown in the diagram, the diffracted X-rays will clearly produce concen
tric circles with point of intersection of the incident direction and the film as center. These 
circles are known as Debye-Scherrer rings. It is easy to deduce how the pattern will change 
with the position and shape (e.g. cylindrical rather than flat) of the film. It will also be ob
vious from the above that powder diagrams of this type can yield only the lengths I r*l of 
the reciprocal lattice vectors, and tell us nothing about their directions. Even in oscillating-
crystal photographs, where the directions of the axes and the plane corresponding to the po
sition from which rotation commences can be found, the construction of the reciprocal lattice 
is generally very troublesome. It is considerably more difficult to determine the reciprocal 
lattice by combination of the scant data which can be obtained from powder diagrams, i.e. 
the distances to the reciprocal lattice points. In the case of highly symmetrical lattices, such 
as those of the cubic, tetragonal, and hexagonal systems, it is possible to assign the indices 
and determine the unit cell by certain graphical methods. In general, however, for lattices 
with low symmetry, particularly if their interplanar spacings are large, an accurate analysis 
is practically impossible. Consequently, although the Debye-Scherrer rings may be readily 
understood in terms of the reciprocal lattice, they are not used to determine lattices; the 
importance of the powder method lies rather in comparative and qualitative analysis. 

4.4.4 Fibrous polycrystalline specimens 
Fibrous substances are generally polycrystalline systems with one axis of the crystals 
arranged parallel to the fiber axis, as will be described in more detail in Chapter 10. Many 
systems of this type, in which the crystals are not entirely disordered but exhibit a certain 
degree of preferred orientation, are found in nature as fibers, membranes, etc. The distribu
tion of the unit cells and their directions for the simplest case of this type, i.e. simple fiber 
structure (uniaxial orientation), is shown in Fig. 4.14(a). Since the reciprocal lattice points 
in such a system also have the same orientation, they are arranged in groups of concentric 
circles around the fiber axis (Fig. 4.14(b) and (c)). The type of diffraction pattern obtained 
with an incident X-ray beam normal to the fiber axis is the same as the rotation photograph 
of a single crystal, as shown in Fig. 4.14(d). The rotating crystal photograph is produced by 
diffractions that occur as the crystal rotates, and the same effect is produced by the random 
orientation of the crystals around the fiber axis. Since the reciprocal lattice in this case is in 
the form of concentric circles, intersection with the diffraction sphere always occurs, even 
if the direction of the incident X-rays is not varied, so that a large number of diffraction 
spots arise. Only part of the group of concentric circles forming the reciprocal lattice is 
shown in the diagram in order to illustrate how the so-called X-ray fiber patterns are pro
duced. As an example of a real fiber diffraction pattern. Fig. 4.15^^ shows the diffraction 
photograph of a fibrous DNA gel. The analysis of such patterns is precisely similar to that 
for the rotation photographs of single crystals. The ^ values obtained for the diffractions on 
the equator are used to construct the equatorial plane of the reciprocal lattice and to find the 
two axes a* and /?*. The third axis c* is found by measurement of ^ (see Section 
8.6.2.A.d)). These results are used to identify the crystal system and to establish the unit 
cell parameters. 

It should be noted that in the case of diffraction by fibers, diffraction can also arise 
from reciprocal lattice circles which fail actually to intersect the diffraction sphere. This is 
in part due to imperfect alignment within the fibers for there is generally a distribution of 
orientations about the mean which is not necessarily uniform, giving rise to broad bands 
rather than clearly defined circles in reciprocal space. Furthermore, if the crystals are small 
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(c/. Section 2.9.2) or have low crystallinity {cf. paracrystals in Section 5.1), the reciprocal 
lattice points are no longer properly so called; instead, they have definite three-dimensional 
extension. Consequently, the reciprocal lattice of the assembly is not in the form of circles 

(a) 

Crystalline 
particles 

Crysralline 
region (CR) 

Amorphous 
region (AR) 

Crystalline fibers 
(Fringed-micelle model, cf. 1.2.2.A) 

Fig. 4.14 Diffraction pattern from a uniaxially oriented fibrous specimen. 
(a) Distribution of the crystalline particles or crystalline regions within the specimen. 
(b) Reciprocal lattice of a crystallite, and concentric circular distribution of reciprocal lattice 
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(c) 

DifTraction 
sphere 

Fig. 4.14 — Continued 
(c) Distribution of reciprocal lattice points along the fiber axis. 
(d) Geometrical relationship between the distribution of reciprocal lattice points and the diffraction 

pattern (fiber diagram). 
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as shown in Fig. 4.14(d), but consists rather of toroidal (doughnut-shaped) zones. This is 
why the diffraction patterns from fibers are generally diffuse, like that of Fig. 4.15, rather 
than in the form of sets of points, like those of single crystals. 

Just as the main features of the diffraction patterns of simple fiber structures can be un
derstood in terms of the associated reciprocal lattice (above), so those of other special types 
of assembly can be similarly interpreted with the aid of their reciprocal lattices, and con
versely, their structure can be determined in principle (and very often in practice) by analy
sis of their diffraction patterns. This will be the basis of applications discussed in Chapter 
10. 

Fig. 4.15 Diffraction pattern from an oriented L/ DNA gel. '̂  
[Reproduced with permission from R. Langridge et aL, J. Mol. Biol, 2, 30, 
Academic Press (I960)] 

Reference 

1. R. Langridge, H. R. Wilson, C. W. Hooper, M. H. F. Wilkins, L. D. Hamilton, J. Mol. Biol, 2, 30 (1960). 



5. Diffraction of X-Rays by Imperfect Crystals and 
Paracrystals 

5.1 Ideal Crystals and Imperfect Crystals 
The term "crystalline" as we have so far used it in this volume has usually referred to ideal 
crystals with perfectly regular arrangements of atoms. High polymer solids are often re
ferred to as crystalline, but, unlike ionic crystals or metals, the internal atomic arrangement 
is by no means as simple as this might imply. Although direct observation of the internal 
arrangement is impossible, reliable inferences from physical and chemical evidence lead us 
to believe that high polymers consist of various regions, each with a characteristic degree of 
internal order, ranging continuously from something close to the ideal crystalline state to 
the completely amorphous state.^' Chain polymers, for example, can exhibit a very wide 
variety of arrangements, with varying degrees of disorder. Even in one and the same highly 
crystalline region of such a substance the arrangement of the atoms and molecules is not al
ways perfectly regular, and even in amorphous regions there are often areas in which the 
molecules are roughly parallel to one another, i.e. in which the arrangement is quasi-crys
talline.^^ This complexity of polymer structure means that the distinction between a sub
stance which forms "ideal" crystals and that which is merely "crystalline" must be clearly 
drawn when referring to polymers. Cotton, silk, and nylon are "crystalline" high polymers. 
However, the crystalline regions of these substances are not "crystals" in the strict sense, 
and are more generally referred to as "paracrystals". The X-ray diffraction patterns of these 
materials give further evidence of a variety of atomic arrangements, in that they contain ele
ments which range from those more characteristic of a crystal with a perfect lattice to those 
resembling the diffuse halos given by amorphous substances. Three examples of such pat
terns are given in Fig. 5.1. The order of decreasing crystallinity is from left to right. 

There is another state which is regarded as crystalline, but in which the crystals are soft 
and plastic like wax. Substances in this state are known as plastic crystals. While the posi
tions of the molecules in the crystal remain unchanged, the molecules as a whole, or their 
side chains, rotate, weakening the intermolecular interactions to give these crystals plastici
ty and other characteristic properties. Liquid crystals, either nematic, smectic, or choles-
teric, are formed mostly by rod-like molecules. At elevated temperatures before melting, a 
regular arrangement of molecules in a crystalline state is disturbed by thermal motions of 
their end, side chain groups, or others, changing the crystal into a liquid crystalline 
mesophase (thermophilic liquid crystal). In lyophilic liquid crystals, this kind of disorder is 
caused by water or solvent molecules penetrated into the crystalline lattice, instead of ther
mal agitations. Their unique structures and properties are known well. Discotic mesophase 
mostly formed by disc-shaped molecules is also one of the mesophases between crystal and 
liquid (or solution) phases. 

'̂ We have to write here as ''non-crystalline soHd state" instead of amorphous state. Originally, "amorphous" 
means a-morphous (non morphological shape, non-crystalline.). "Amorphous" also means that the state in 
question belongs to a non-equilibrium state. However, the word "amorphous" is customarily and widely used 
in the field of high polymer science to mean non-crystalline. Accordingly, in this volume the word "amor
phous" is used instead of "non-crystalline." 

2̂ Not to be confused with the "quasicrystal," which was first discovered in rapidly solidified Al-Mn alloys.'̂  
The quasicrystals examined hitherto show icosahedral symmetry, or eight-, ten-, or twelve-fold symmetry. 
The discovery of quasicrystals has stimulated considerable research activity mainly because it appears to vio
late the classical rules of crystallography. 
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(a) (b) (c) 

Fig. 5.1 Examples of X-ray diffraction diagrams of a single crystal and high polymer substances of varying crys-
tallinity (cylindrical film). 
(a) Dimethyltin bis(dithiocarbamate) (Oscillation photograph, single crystal); (b) Polyvinylidene-fluo-
ride (Fiber diagram, draw direction vertical); (c) Curdlan (or p-(\ - • 3)-D-glucan). 

Figure 5.2 is an attempt to illustrate these states using representative points for the unit 
assemblages of atoms or molecules. In the case of a high polymer the representative point 
corresponds to the repeating unit, e.g. -CH2-CH2- for polyethylene. Diagram (a) in Fig. 5.2 
shows the amorphous state, in which the arrangement is completely disordered; (d), at the 
opposite extreme, shows the ideal crystalline state, in which the atoms, ions or molecules 
have a completely regular arrangement in three dimensions. Crystals of substances having 
identical molecules of fixed shape can exhibit a very high degree of regularity; these are the 
so-called ideal crystals. To fall within this category, distortion of the arrangement within 
the crystal due to all operative factors should be such that the displacement of the lattice 
points from the ideal positions, expressed as a statistical average over the whole crystal, is 

• • • 

• • • 

(a) (b) 

®©®© 
®0®© 
0®©® 

(c) (d) 

Fig. 5.2 Schematic representation of atomic and molecular assemblages. 
(a) Amorphous substance; (b) Paracrystal; (c) Plastic crystal (circular arrow indicates the rotation of each 
molecule around its center of gravity); (d) Crystal. 
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(say) less than 1% of the repeat distance (cf. Fig. 15.30). The crystalline state which is 
"perfect" within this 1% limit is more likely to be observed in substances of low molecular 
weight, where incipient distortion is generally corrected under the equilibration of the inter-
particle forces within the solid. 

The situation is different, however, with high polymers. It is particularly improbable 
that the molecular arrangement in the fibrous solids formed by linear chain polymers should 
be that of an ideal crystal as shown in Fig. 5.2(d). The crystal structures of various high 
polymers beautifully drawn in many textbooks are all ideal structures, and may be far from 
the real structure. In long chain macromolecules and very large three-dimensional ions 
such as are found in glasses, all atoms may not have time to assume the arrangement with 
the highest degree of crystallinity before they are "frozen" into position by the rapid cool
ing of the melt. Again, there may be thermodynamic factors which make the state with 
residual distortion inherently stable. This kind of imperfection is represented by Fig. 
5.2(b). Diagram (c) in Fig. 5.2 represents a plastic crystal. 

A classification of crystal imperfections (lattice distortions) follows. 

5.1.1 Lattice distortions of the first kind 

A. Thermal vibration 
The lattice points constitute an ideal crystal, but there is continuous thermal vibration about 
the lattice points. The ideal crystalline lattice is, however, maintained by the equilibrium 
positions of the atoms (Fig. 5.3(b)). 
B. Frozen structure 
The lattice points are displaced away from their theoretical positions, the displacements be
ing small compared with the interatomic distances, but the average lattice in the crystal is 

0®®00 . • • • • 
0000® . • . • . 
00000 • . • . • 
00000 
00000 

(a) (b) (c) 

o 

• o 

(d) (e) (f) 

Fig. 5.3 Schematic representation of distortions of the first kind. 
(a) Ideal two-dimensional crystal lattice, (b) Thermal motion, (c) Frozen thermal motion, (d) Defect lat
tice (vacancies and interstitials), (e) Mixed crystal or solid solution (substitution type), (f) Mixed crystal 
or solid solution (interstitial type). 
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ideally maintained. This imperfection corresponds to a thermally vibrating crystal lattice, 
the structure of which has been frozen at a certain instant (Fig. 5.3(c)). 
C. Vacancies and interstitials 
Most of the lattice points are correctly positioned, but a small number of atoms are missing 
from the lattice points, or a small number of extra atoms are inserted into the lattice but not 
on regular lattice sites (Fig. 5.3(d)). 
D. Mixed crystals or solid solutions 
The atoms, atomic groups, ions, or molecules forming the crystal are not all of the same 
type, but are a substituted mixture of different components which, on average, form an ideal 
lattice (Fig. 5.3(e) and (f)). 
E. Dislocations 
Edge and screw dislocations (Fig. 5.4)̂ ^ are typical one-dimensional defect of the atomic (or 
molecular) arrangement in crystals. In the top half of the Fig. 5.4 ai), a projection of a dis
torted structure looks like as if an extra atomic net plane is inserted perpendicular to the pa
per like a knife edge (edge dislocation). By shear the slip runs to left (or right) along with 
the broken line between the upper and lower structures, and the dislocation moves {cf. Fig. 
5.5(f)). Fig. 5.4 bi) and b2) show that the mistake of the atomic arrangement is helical 

(a) a i ) a2) 

, ^ ^ ^ _ < j v . ^ ^ 

(b) b^)^ b2) 

Fig. 5.4 Dislocations. 
(a) Edge dislocation: ai) Section showing a mistake of atomic arrangement along with an edge disloca

tion; (_L denotes that one atomic net plane is excess above this mark), ai) Three-dimensional model 
(b) Screw dislocation: bi) Section showing an imperfection of atomic arrangement along with a screw 

dislocation (small white and black circles represent atoms above and below the slip plane, respective
ly); b2) Three-dimensional model. 

bi): [Reproduced from W. T. Read, Jr, Dislocations in Crystals, p. 17, McGraw-Hill (1953)] 
dii), b2): [Reproduced with permission from S. Koda, Introduction to Metal Physics (Revised ed.), pp. 

134, 135, Corona Pub. (1973)] 
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along the central, vertical line (screw dislocation). In this dislocation, the slip direction of 
atoms is parallel to dislocation line {cf. Fig. 7.1 l(b2)). 

Basic defects in crystalline regions of high polymer substances are also schematically 
shown in Fig. 5.5. In a regular arrangement of high polymer chain molecules, there is a de
fect where the number of repeating units of a chain is more (or less) than the other near-by 
polymer chains (Fig. 5.5(a)). Fig. 5.5(b) shows an interchange, but not a crossing, of two 
adjacent chains. A defect caused by a pair of back-foldings of chain molecules is illustrated 
in Fig. 5.5(c). Back-folding(s) or end(s) of polymer chains also make a defect (Fig. 5.5(d) 
and (e)). Fig. 5.5(f) may be considered formed from (d) or (e) by the successive movement 
of adjacent polymer chains to fill vacancies, which may be considered as a movement of an 
edge dislocation. 

The above imperfections of crystals introduce fluctuations into the distances between 
corresponding atoms throughout the substance, but preserve a long-range order which is 
distributed only to about the same extent as the short-range order. 
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Fig. 5.5 Schematic illustration of basic defects in high polymer crystalline regions {cf. Fig. 7.18). (Small black 
circles represent repeating units in high polymer chain molecules). 
(a) Mistake of the number of repeating units, (b) Spatial interchange of adjacent polymer chains, (c) 
Backfoldings of polymer chains, (d) Backfolding of polymer chain and vacancy, (e) End of polymer 
chain and vacancy, (f) Kinking of polymer chain to fill vacancy followed by moves of vacancy. 
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5.1.2 Lattice distortions of the second kind 

Whereas the average positions of all the representative points in distortions of the first kind 
correspond to the lattice points of an ideal crystal, there is a further kind of distortion in 
which not even the statistical averages of the positions of the representative points form an 
ideal lattice, the distortion being so great that they deviate significantly from the ideal lat
tice positions. Three-dimensional periodicity resembling that of an ideal crystal only per
sists over short ranges; over long ranges there is a permanent disorder resembling that of 
the amorphous state. These are known as distortions of the second kind, and it is this type 
of imperfection which Hosemann introduced as paracrystalline.^'^^ In one sense this classi
fication applies to all types of structure intermediates between the ideal crystal and amor
phous states. It also, however, covers those mixtures of crystalline and amorphous regions 
with continuous mutual gradation which are formed by chain molecules, so that the entire 
non-homogeneous structure may properly be described as paracrystalline. 

These different types of distortion are illustrated in Fig. 5.6,̂ ^ in which, again, only the 
representative points are shown. Fig. 5.6 ai) shows an ideal oblique crystal lattice. The lat-

($)($)^(j)0(D(S) 
(i)(?)(!)($)(D($)0 

(a) 

Fig. 5.6 

as) 

kind 
Schematic representation of distortions of the second kind compared with distortions of the first kind. 
(a) Distortion of the first kind: a,) Ideal oblique two-dimensional lattice,^* aa) Distortion of the first 1 

(frozen thermal motion),^^ as) Distribution function of the first kind.''' 
(b) Distortion of the second kind; bi) Ideal paracrystalHne lattice,'' bj) General paracrystalline lattice 

bil General paracrystalline lattice (three-dimensional), bs) Distribution function of the second kind 
ai) hi), as), bs): [Reproduced with permission from B. K. Vainshtein, Diffractions of X-rays by Chain 

Molecules, p.97, Elsevier (1966)] 
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tice in bi) still appears to possess the regularity of a crystal lattice. All unit cells are paral-
lelpipeds (parallelograms in this two-dimensional representation), so the vectors in any se
quence, e.g. left to right, bottom to top, are always parallel and equal in continuous part (an 
ideal paracrystalline lattice: lattice distortion of the second kind). Fig. 5.6 a2) again illus
trates the frozen structure of thermal vibration in an ideal crystal; the positions of the atoms 
fixed at an instant are denoted by the small black circles. In b2) the lattice is still dis
cernible with the aid of the lines joining the points, but if the lines were removed, the 
arrangement would be practically indistinguishable from the amorphous state (a general 
paracrystalline lattice). Fig. 5.6 hi) depicts a three-dimensional, general paracrystalline lat
tice. In the paracrystalline lattice we assume that we can clearly trace the three main direc
tions or three axes corresponding to those of the crystal, that each of these directions is a 
continuation of paracrystalline unit cell vector a, Z>, or c, the values and directions of which 
differ slightly from cell to cell, and that these directions do not fold back and never cross 
spatially. Fig. 5.6 as) and bs) respectively show distribution function for the lattice distor
tions of the first and the second kinds. 

This concludes our brief description of the paracrystalline state, but since the analytical 
methods we have so far developed are inadequate to explain X-ray diffraction by such sub
stances, it is necessary to introduce Fourier transform theory. 

5.2 Fourier Transform Theory of X-Ray Diffraction 

5.2.1 Fourier transform theorem 
Our discussion of X-ray diffraction theory has so far been confined mainly to simple meth
ods for calculating the amplitudes of X-rays diffracted from substances with various atomic 
structures. These are the most general ways of treating X-ray diffraction phenomena, al
though there is another straightforward way (applicable only to diffractions from crystals) 
which finds a place in most works on the subject. A far more refined mathematical analysis 
is needed, however, to explain the diffraction of X-rays by more complex structures, such 
as the paracrystalline substances dealt with in this chapter. A simple exposition of the fun
damentals of Fourier transform theory as it applies to X-ray diffraction follows. This 
should equip the reader to both interpret and apply X-ray diffraction from paracrystals and 
other substances. 

The relationship between the structure of a substance (in terms of its electron density 
distribution) and the X-ray scattering amplitude was shown in Eqs. 2.13 and 2.14. Eq. 2.13 
shows how the amplitude A(S) of the scattered X-rays may be derived from the structure of 
the substance p(r) by phase-dependent integration of the contributions from all elements of 
the system: 

A(S) = l^ p(r)Qxp{-2m(S-r)}dVr (5.1) 

According to the Fourier integral theorem, a function F(S) in Fourier space is equal to the 
integral over real space of a function p(r) in real space, i.e. 

F(S) = l^ p(r)Qxp{-2m(S-r)}dVr (5.2) 

Thus if p(r) in Eq. 5.2 is a function representing the electron density of the atoms in a sub
stance, it can be seen from the form of this equation that F(S) corresponds exactly to the X-
ray scattering amplitude A(S) for the substance. From the inverse Fourier transform theo-
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rem (Eq. 2.14), we may put 

p(r) = j ^ A{S)Qxp{2m(Sr)}dVs (5.3) 

The physical meaning of this is that the structure of a given substance is equivalent to the 
Fourier transform of its X-ray scattering amplitude. Using this theorem of Fourier trans
forms, we can take the mathematical analysis of X-ray diffraction a stage further. 

As we saw earlier, the intensity of the scattered X-rays, in units of the scattering inten
sity of an electron, is simply 

/(5) = A(5)A*(5)=IA(5)P 

Let us now examine the Fourier transform of this intensity /. 

(5.4) 

e(r) = £°/(5)exp{2;r/(S-r)}dv. 

= £° A(S)A * (S) exp {2m(S • r) }dv. 
(5.5) 

Eq. 5.5 is simply derived using Eqs. 5.1 and 5.3. Another useful theorem will now be intro
duced. 

For given functions p(r) and cr(r), the function p(r) * a(r) defined by 

[ p(y)a(r-q)dv,=p{r) * a(r)(=^(rJG(r)) (5 6) 

is known as the convolution of p(r) and (T(r), and the corresponding operation is known as 
convolution or folding, denoted by * (or ^ ) in the place of a multiphcation sign. A two-
dimensional illustration of this mathematical operation is given in Fig. 5.7. 

If A(S) and S(S) are Fourier transforms of p(r) and <T(r) respectively, the Fourier trans
form of the product of p(r) and (7(r) is 

\^ p(r)a(r)Qxp{-2m(S -r)}dVr=j A(S')S(S-S')dVs'=A(S) * S(S) (5.7) 

p(r) 

Fig. 5.7 The con vol 
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ution operation on two functions p(r) and a(r). 
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Thus the Fourier transform of the product of the functions is the convolution of their 
respective Fourier transforms A(S) and S{S). The inverse theorem is therefore 

£°A(5) * 5(5)exp{2;r/(5-r)}dv, = p(r)a(r) (5.8) 

i.e. the Fourier transform of a convolution is equal to the product of the Fourier transforms 
of the respective functions. 

Let us now return to Eq. 5.5. Since Q(r) is the Fourier transform of the product of two 
functions A(S) and A*(5), application of the theorem of Eq. 5.7 to Eq. 5.5 gives 

Q(r) = I p{q)p{r+q)dVq = p{r) * p{r) (5 9) 

Q{r) is the self convolution of p(r). In physical terms, when the vector r between a certain 
two points in the real space of the scattering substance is subjected to parallel displace
ments into every position in all space, the total of the products of the densities p{r) at the 
two ends of the vector is Q{r). Thus if there are atoms at two points in space separated by a 
vector corresponding in magnitude and direction to r, the value of Q{r) will be large. 
Otherwise the value of Q{r) for this r will be zero. Q{r) therefore seems to be geometrical
ly of the same nature as the density distribution functions of Eqs. 2.26, 2.33 and 6.74. This 
correspondence will be discussed later. If p{r) is the electron density of an infinitely large 
crystal, Q{r) is known as the Patterson function (usually written P(r)). The value of Q{r) is 
large if there are atoms at both ends of the vector r, and this important function assists ma
terially in structural analysis by determining the vectors between the atoms in the crystal. 
Thus, 

p{r)^p{r) = j/(S)exp{2;r/(S-r)}dv. 

= P(r) (the Patterson function in the case of crystals, cf. Eq. 11.41, Section 

11.2.5) 

= CW (general case) (5.10) 

These functions are obtained by Fourier transformation of the intensity distribution of the 
diffracted X-rays. The inverse transform is 

I(S) = \Q(r)txp{-27ii(S-r)}dVr (5jl) 

so that if the self convolution Q{r) of the electron densities in a substance is known, the X-
ray diffraction intensity is given by the Fourier transform of Q(r). This is therefore an im
portant equation.^ 

We shall now use the above Fourier transform and convolution theorems to derive a 
number of factors involved in X-ray analyses. (Fourier transformation of helical molecules 
is discussed in Section 11.4.) 

We have so far put forward Eq. 5.1 as the most convenient starting point for deriving X-ray intensities from 
the wave amplitude. What we fmd from experimental measurements are, however, not the wave amplitudes, 
but the intensity, and it is impossible to isolate the effect of phase from the amplitudes. Therefore, when we 
are seeking to determine structures on the basis of diffraction patterns it is safer to use Eq. 5.11. 
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5.2.2 Shape factor for the scattering body 
The integrations in the equations beginning with Eq. 5.1 should in principle be carried out 
over all real space or reciprocal space. In X-ray diffraction experiments, however, even if 
the specimen is large enough to enable an approximation to this condition, only the scatter
ing from a limited region is in fact observed. The following procedure minimizes the atten
dant difficulties. 

The electron density distribution p(r) in a particle of matter scattering X-rays, or in the 
case of a large specimen in the entire volume v within the X-ray beam, is expressed in 
terms of the electron density distribution poo(r) for the unbounded body as follows. 

p(r) = p.(r).(j(r) (5.12) 

In this equation, the function (j(r), which is known as the shape function, always takes 
the value unity when r lies within v, and is zero for all r outside v. On substitution of Eq. 
5.12 in Eq. 5.1, by the convolution theorem, convolution of the Fourier transform 5(5) of 
<T(r) and the fourier transform Aoo(5) of poo(r) gives the following equation. 

A(5) = Aoc(5)*5(5) (5.13) 

If the scattering matter is represented as an infinite periodic arrangement similar to the 
lattice points of a crystal, then since Aoo(5) is the Fourier transform of the spatial distribu
tion, it, too, is a periodic function with very narrow peaks, like the Laue function L in Eqs. 
2.43 and 2.45. This is shown diagrammatically in Fig. 5.15(a) and (d). The convolution of 
Aoo(5) with 5(5) thus brings 5 = 0 in 5(5) to the positions of all the peaks (including the 
peaks with 5 = 0) of A^(5), as in Fig. 5.15(g). The width of the X-ray beam is usually large 
enough to ensure that the breadth of 5(5) is very small, and so there is seldom any practical 
necessity to take Eq. 5.13 into account when analyzing the structures of single crystals. 
Under these conditions I 5(5) P produces an effect only at very small values of 26, the so-
called "form scattering" of the sample. On the other hand, in cases where the crystals are 
very small, as in solid high polymers and metals, the volumes v of the crystals themselves 
that are responsible for the interference effects are small, irrespective of the width of the X-
ray beam, and 5(5) is found to have an appreciable broadening. This is seen in the broaden
ing of each diffraction spot, and around the central spot formed by the incident beam (the 
small-angle scattering). 

Where the scattering body is an assembly of particles, if p(r) is a function having a 
fixed average density pi only inside the particles and a density po outside the particles 
(which corresponds to the case of a single particle in space in small-angle scattering calcu
lations), the Fourier transform A^(S) of po over all space again has a very small peak like a 
point function 5(r) but now only at 5 = 0. Its convolution with 5(5) is thus 5(5) displaced 
to the origin on 5 = 0. I 5(5) P is therefore in itself a measure of the intensity distribution 
of the central small-angle scattering, which only depends on the shape (form) of the sample 
and, hence, is called form scattering (See text accompanying Eq. 6.1). To grasp the general 
application of this concept, let us consider the calculation of the diffraction intensity for a 
system of particles having an average electron density p\ in a medium {e.g. in a solution) 
having an average density po. If we consider the density po as being continuous over all 
space throughout the system, within which particles of density p\~ po float and if G\{r) = 1 
inside all particles and zero outside, the density distribution of the system is given by 
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po + {p\~ Po)cr(r). From the Fourier transform, the amplitude and intensity of the small-
angle scattering are 

A(S) = {po5(5) + (pi - po)5i(S)}* S(S) (5.14) 

The first term, like the Dirac point function 6(r), is usually unobservable since it occurs at 
the small angle 20, and it is called extremely form scattering: 

US) = p'\S(S)\' (5.14a) 

The second term of Eq. 5.14 remains observable however. Assuming that the particles are 
small compared with the shape of the whole sample, one obtains: 

/(S)= /o(S) + (pi - po)' I 5i(S) P (5.15) 

It is evident that this intensity is proportional to Ap^, where Ap = p\ — po; we have thus ver
ified the statement, made at the end of Section 6.2.2, concerning the influence of Zip on the 
scattering intensity. 

We shall now deal briefly with the self convolution of ai(r), i.e. 

CTi(r)*(ji(r)=es(r) (5.16) 

This function has a central peak at r = 0 consisting of the self-convolution of the shape 
function Ok of the Â  particles in the samples. If the particles have a Gaussian distribution, 
the particle distribution function P{r) (see Section 2.5) practically —\forr>2R and, hence 

By Fourier transformation Qs, like 2(r), again gives a diffraction intensity function that de
pends only on the number average self-convolution of the shape function cr^(r) of the parti
cles. Applying Eq. 5.8 we obtain 

/.(5^)=£°a(r)exp{2;r/(5r)}dv. 

7(5) = /o(5) + Ap'N< Sk(S)Sk *(S) > = /o(5) + Ap^N< I S^iS) P > (5.17) 

FromEq. 5.13 

A(S) = A4S) * S(Sl A(5)A*(S)= I Aoc(5) P* I S(S) P = 7(5) (5.18) 

It is evident that Eq. 5.18 contains terms which correspond to the intensity hiS) and the 
form scattering (I S(S) P). The two together give the distribution of the small-angle scatter
ing which corresponds to the shape of the particle and the shape of the whole sample, which 
is generally unobservable. 

Finally, we shall explain the geometrical significance of gs(^) utilizing Fig. 5.8 (c/ Eq. 
5.9) 
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Fig. 5.8 Particle of volume V undergoing displacement r (see text for meaning of Qsir) in this context). 

Figure 5.8 shows the shape of a particle (continuous line) whose volume is V. If the 
particle as a whole undergoes a parallel displacement in the direction of an arbitrary vector 
r from a fixed point O in the particle to bring O into coincidence with the other end of the 
vector r, its new position will be as shown by the broken line. The shape bounded by the 
broken line is called a ghost of the original particle (the scattering body). The value of the 
self convolution Qs(r) of the shape function of the particle for a given r is the sum of only 
those terms for which the product of the ends of r is 1 X 1 = 1 for parallel displacement of 
r to all possible positions in the original particle. If the volume common to the original par
ticle and the ghost is Vr, as shown in the diagram, and if the ratio of this part to the total vol
ume is V(r), 

Qs(r)=Vr=W(r) (5.19) 

This is a three-dimensional analogue of the situation in Fig. 5.7. 

5.2.3 Scattering factor of atoms undergoing thermal vibrations in a crystal 
As was shown in Eq. 2.15, the scattering factor of an atom at rest in a crystal lattice is given 
by the Fourier transform of its electron density po(r) in the theoretical position. This is the 
atomic scattering factor given by Table 3 of the Appendix. In reality, however, the atoms 
in a crystal are not at rest, but undergo thermal vibrations about their respective "rest" posi
tions. The displacements of the various atoms from their mean positions at a given instant 
must therefore be taken into account in calculating the structure factor F(hkl). 

To simplify the calculation it is assumed that each atom vibrates with isotropic harmon
ic motion, and that if the displacements from their rest positions of all the crystallographi-
cally equivalent atoms at a given moment are the same as that of any single vibrating atom, 
the electron densities of the individual atoms would be expressed by the average of a 
Gaussian distribution function having a mean square displacement u^. Thus if the function 
P()(r) is averaged for all positions of r by a function pi(r), the effective electron density 
Pat(r) is the convolution po * pi. Taking pi as a Gaussian function, therefore, we find 

pat(r) = po(r) * pi(r), pi(r) = (IKU^T'^^ exp( - r'/lu') (5.20) 
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The effective atomic scattering factor/at is therefore the Fourier transform of pat(r), and ap-
phcation of Eq. 5.8 gives 

/at (S)=J po (r) * pi (r)dVr =/(S) exp(- In^u^S") 

=/(5)exp{ - STT'M' (sin^ 0)/A'} 

D = exp{ - g/r̂ w' (sin' 0)/A'} = exp{ - 5(sin' e)IX^\ (5.21) 

In the above expressions,/ is the Fourier transform of po, i.e. the scattering factor of 
the atom at rest. D is known as the Debye factor and B is called the temperature factor. In 
many cases the thermal motions of atoms are not isotropic, and assuring the thermal motion 
of atoms to be ellipsoidal the anisotropic thermal parameters are used as the better approxi
mation. These are important factors in X-ray analyses, and their practical use will be 
shown later (Eqs. 11.34 and 11.36 (a, b)). 

5.2.4 Optical experiments on Fourier transforms 
The Fourier transformations in Eqs. 5.2, 5.6, 5.9, and 5.11, and their inverse transforma
tions, can only be performed numerically or analytically for a given function if the form is 
already known. If the form is not given, Eq. 5.2 cannot be calculated mathematically. 
However, Eq. 5.1 (Eq. 2.13), which is of the same form as Eq. 5.2, shows that the ampli
tude of the resultant diffracted wave is given combination of the phase-dependent contribu
tions from every element of the structure. Therefore, even if the mathematical form of the 
electron density function, pif), of a substance is unknown, it may still be possible to con
struct a model structure which will embody suspected characteristic features of the sub
stance. Comparison of the diffraction pattem from such a model structure with that from 
the substance itself can provide a means of evaluating the tentative structure. It is impossi
ble to construct prepared structures of the same order of magnitude as atoms themselves; 
the scale is usually some tens of thousands of times greater. The model may consist of a 
two-dimensional array of black dots or holes marked on film or glass, and the scale multi
plication is such that visible light can be used to produce the diffraction effects. The 
Fourier transform in this sense is effectively performed by so-called optical inversion. Eq. 
5.1 is, of course, equally valid for all forms of wave motion, including X-rays, visible light, 
and electron beams. Diffraction experiments with atomic models using visible light {e.g. 
the sodium D line doublet) are often useful for checking the validity of structures of great 
complexity, such as those involved in the detailed investigation of fiber paracrystals. 
Examples where such light diffraction patterns have been employed are given in Fig. 5.9,̂ ^ 
and 5.13.'̂ ^ The reader is referred to the various experiments which Hosemann has per
formed in this connection.^^ 

The experimental arrangements used and examples of their application are shown in 
Fig. 5.9. The upper diagrams of Fig. 5.9(a) and (b) show optical systems for Fourier trans
forms and convolutions (including self convolutions), respectively. Fig. 5.9(a) includes the 
model of the lattice function pif) to be transformed, and its transform A(5) is recorded pho
tographically as the intensity I A{S) P, giving the Fraunhofer diffraction pattem shown. In 
Fig. 5.9(b), if the second model differs from the first, the convolution of the two is ob
tained. If, however, both models are the same, which is the case illustrated, the self convo
lution of the model is obtained. This is the means by which p{r) * p(^^, i.e. Q(r), can be de
termined by visible light diffraction. 
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Fig. 5.9 Optical methods for Fourier transformations and convolutions.^'*^ 
(a) Fourier transformation, (b) Convolution (and self-convolution). 
[Reproduced with permission from R. Hosemann, Polymer, 3, 349, IPC Business Press (1962)] 

5.3 Diffraction of X-Rays by Paracrystals^ 
For diffraction from a crystal, since the unit cells are arranged in a regular manner in accor
dance with Eq. 2.37, the phases of their scattering amplitude Aceii can be combined as 
shown in Eq. 2.38. For paracrystals, on the other hand, the positions of the lattice points 
can be expressed only as a statistical average, as was mentioned earlier. It is therefore nec
essary to find some adequate means of representing the positions of the lattice points, just 

after Hosemann^' 
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Fig. 5.10 Diagram showing the distribution of lattice points in a linear paracrystal. 

as Eq. 2.37 does for crystals, and of combining their phases to find the diffraction due to the 
paracrystalline lattice. We first consider the paracrystal as a one-dimensional system hav
ing significant extension only in the a direction (Fig. 5.10). 

5.3.1 Statistical representation of paracrystalline lattice points and 
the derivation of their function Q{f) 

Let the lattice points in the a direction be Ai, A2, etc., where A\ is the nearest neighbor to 
some arbitrary origin, O. If the probability that A1 be located by a vector q from the origin 
is li\{q), then the probability that A2 is located by an independent vector t from the end of q 
will be H\{q) • Hxif). The total probability, //2(r), that A2 (the next nearest neighbor) will lie 
at the end of a single direct vector r~q-\-t from the origin is not, however, the product of 
two individual probabilities H\{q) and Hiif) if we assume that there is no statistical correla
tion between the individual q and t vectors. Since we are interested in the probability for a 
certain r, whatever the value of q we have to integrate overall q for a fixed r — q-\-t. 
Hence t — r — q and we finally obtain 

H2(r) = lHi(q)Hi(r-q)dq = Hi(r)^Hiir) (5.22) 

which is a convolution of Hi(r) with Hi(r) (cf. Eq. 5.6) and, in general, the probability fo 
the nth lattice point is 

Hn — H\^H\^"-^H\ (the (n — 1) fold convolution of H\) (5.23) 

Hn{r) is normalized as unity, and HJ/) = //„( — r), with JrHn(r)dr = rid. 
Let us now consider the extension of this treatment to three dimensions. In Fig. 5.11 

the three points Ai, A2, and A3 are located by vectors auUi, and as, corresponding to direc
tions a, b, and c in an ideal lattice. The "nearest neighbor" probabilities in the three direc
tions (corresponding to H\ along a in the preceding discussion) may be written Hm, How, 
and //ooi respectively, where Hpqr{r) denotes the probability that the vector r from the origin 
will locate the point which is the pth in the a\ direction, the ^th in the ai direction, and the 
rth in the a^ direction. This probability can be expressed in terms of the {p— \) fold convo
lution of//loo, the {q— I) fold convolution of//oio, and the (r — 1) fold convolution of//ooi, 
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Hpgr 

Fig. 5.11 Paracrystalline lattice in three dimensions (c/ Fig. 5.6(b2)). 

with an extra normalizing term if the probabiUty at the origin is taken as unity. Thus 

* Hioo * HQIO * ••• * Ho\o * Hooi * "* * ^ooi 

(p-l)Md (^-l)fold (r-l)fold (5.24) 

^000 is a point function having a definite value only at the origin. Eq. 5.24 expresses the 
probability that a lattice point (pqr) will exist at a point displaced by the appropriate num
ber of multiples (p, q, and r) of the average lengths au ^2, and ^3 of the sides of the cell 
from an origin at some arbitrary lattice point. 

A lattice point (pqr) can be reached by several independent paths, depending upon the 
directions taken from point to point along the route through the paracrystal. The Hpqr of Eq. 
5.24 is therefore but one element in the total probability, which must be summed for all 
possible paths from an arbitrary lattice-point origin to the point (pqr) located by vector r. 

X X X ^ ^ ^ ^ ~ X ^poo * X ^0^0* X Hoor-z(r)p (5.25) 

5.3.2 Lattice factor and diffraction intensity for a paracrystal 

Having derived a statistical distribution, z(r), for the distance between lattice points in a 
paracrystalline lattice, we proceed to use it to calculate the diffraction intensity. 

Let the Fourier transform of Hk(r) be '3'k(S), where Hk replaces Hpgr in the preceding 
analysis for (pqr) equal to (100), (010), or (001). We shall now calculate the scattering in
tensity for the X-ray scattering from all the lattice points of a paracrystal, taking the scatter
ing factor Aceii of the unit cells as unity and considering only the intensity due to the lattice 
structure. 
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The quantity z(r) is just the probabiUty function P(r)/v of Section 2.5, no longer spheri
cally symmetric but with paracrystalline lattice character. It may be regarded as the proba
bility distribution for the presence of lattice points of the same unit density at both ends of a 
given vector r. This is simply the self convolution of a density distribution p(r), i.e. Q(r), 
(cf. Eq. 5.9) having point function 6(r) only at positions occupied by lattice points. The X-
ray diffraction intensity due to the paracrystalline lattice structure itself is therefore given 
directly by the Fourier transform of z(r), according to Eq. 5.11. Let the Fourier transform 
of z(r) for the k direction (it =(100), (010), or (001)) be Kk{S). If M is the number of unit 
cells along each axis in the paracrystal, thenS^ 

A:, (S) = X (3^*'+9^* *") - 1 = lim 2 Re - — ^ - 1 

^k^ is the Fourier transform of Hk for points on the negative side of the origin, and is the 
complex conjugate function of that for points on the positive side, ^k. Re denotes the real 
part. If we let the second term in Eq. 5.26 be A (̂0), then 

^ ,„ , _ . Re(l-g^,*>^,^^^ 
^(0) = -21im (^ii\ 

The complex ^k may be represented by modulus and phase, thus 

'3^k{S)= I ^k{S) I exp{ - 2;r/(arS)}, 

g^,*(S)= I g^ (̂5) I exp{2;r/(flr5)}, and 

ak = 5rHk{r)dv (5.28) 

if Hk{r) has a center of symmetry. 
We obtain 

i^(0) = liml^J"^Hl^^^?M+l)(«»:S) 
M^< sin;r(flA:-5) (5.29) 

K,{S)-m) = R ^ ^ (5.30) 

The form of the second term of ^(0) in Eq. 5.29 is evidently similar to the form of the 
Laue function (Eq. 2.38). The presence of the I ̂ u 1̂  factor (with I 3̂ ^ l < 1), however, en
sures that ^(0) approximates to a peak function having significant values only for a small 
range of S centered about S = 0. Eq. 5.30, from which the central peak of K{S) has been 
subtracted, gives the most important part of the diffuse pattern which characterizes second 
and higher order diffraction from paracrystals. In fact, when M is not infinitely large, but is 
a finite, small number, we find a "broadening" similar to that for the Laue function in 
Section 2.9.2. This will be discussed further at a later stage. From Eq. 5.30, 

1 _ ig? |2 

' ' * ^ ^ ^ " ' ' ^ ° ^ = l + ISF.P-2ig^Jcos2;r(a.-S) (5.31) 
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Since the principal term on the left-hand side is Kk(S), we obtain from Eq. 5.31 

1 - I^J 
Kk(S)(max) = -—;;zr-r (if ak-b = hk) (5.32) 

K,(S)(mm) = j ^ ^ (if ak-b = h + -) (5 33^ 

where hk is an integer. These are the basic equations giving the maximum and minimum 
values of the intensity of the diffuse diffraction pattern from a paracrystal. They are a gen
eralization of the Laue conditions, Eq. 2.39. Gathering together the expressions for the 
three dimensions, one can prove that the result is 

Z(S) = K,K,K, = i 5 ( S - 0 ) + / / R e i ± j | i (5 34) 

S(S — 0) represents the term ^(0), which is a three-dimensional point function at 5 = 0, the 
suffixes 1, 2, and 3 refer to the three directions, and v is the average volume of the unit cell. 
Eq. 5.34 is the most important equation for the X-ray intensity for a substance having a 
paracrystalline structure. Z(S) is called the paracrystalline lattice factor, and it corresponds 
to the Laue function for the ideal crystal. The diffraction maxima occur at the same posi
tions as the diffraction spots for an ideal crystal, whereas the diffuseness of the diffraction 
peaks increases with the index of the diffraction (reflection) due to the contribution of the 
second term. The broadening also increases with increasing lattice distortion, and finally, 
for a given index, the intensity peaks merge indistinguishably with the background or with 
the peaks of the next higher index. This is schematically shown in Fig. 5.12. The right fig
ures show, from top to bottom, square of the average unit cell scattering ampHtude of an av
erage net plane (say the (hOO) plane), I < Aceii(5) > P, paracrystalline lattice factor, Z{S), and 
intensity, /(S)= I < Aceii(5:)> P • Z(5). In the left those for an ideal crystal (Fig. 2.20) are 
shown again for comparison. This topic will be covered in a later section {cf. 13.6.3). 

It should be noted that although several important equations were developed in terms of 
three dimensions, the treatment is basically one-dimensional in that it presumes no relation
ship between the dimensions. In the general case certain problems arise. Thus it was as
sumed at the beginning of this section that the "original ideal lattice" could be discerned. In 
the case of completely disordered amorphous substances, however, it is meaningless to 
speak of a vector in the a, h, or c directions, because the directions are indistinguishable in 
isotropic amorphous substances. The applicability of this method therefore depends upon 
the degree of distortion from the ideal lattice for a given single direction in the specimen, 
e.g. the direction of the molecular chains or a specified direction in the plane normal to the 
direction of the chains. A measure of the degree of distortion can be obtained by forming a 
weighted average of the probabilities Hk of finding displaced lattice points in the various di
rections. This average is taken over the whole of the specimen but, since H is very diffuse 
and small in value for the highest degree of distortion, it should be clear that the average 
will not be greatly affected by contributions from amorphous regions. Fig. 5.13"̂ ^ (p. 102) 
gives a comparison between the theoretical value of H and experimental values. Fig. 
5.13(a) shows //oo ̂ lo and HQ\ for a paracrystaUine lattice, and Fig. 5.13(b) shows the lattice 
point model constructed on this basis. Fig. 5.13(c) illustrates H for various lattice points as 
found by two-dimensional synthesis of the H values calculated from the model. Fig. 
5.13(d) shows the optical diffraction pattern obtained in an actual experiment with this 
model; this diffraction pattern corresponds to the Fourier transform of the H of Fig. 5.13(b). 
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Fig. 5.12 A schematic comparison of diffraction intensities by crystal and paracrystal. 
a) Crystal: (from top to bottom) Square of structure factor, | F{S) p; Laue function, G(S); Intensity, 
I{S)= I F{S) p • G{S) [Reproduced with permission from R. D. B. Fraser, T. P. Mac Rae, 
Conformations in Fibrous Proteins and Related Synthetic Polymers, p.8. Academic Press (1973)] 
b) Paracrystal: (from top to bottom) Square of average unit cell scattering ampHtude, | < Aceii(S) > p (for 
simplicity, magnitude of | < Aceii(5)> p is taken the same as | F(S) p); Paracrystalline lattice factor Z(5); 
Intensity, I(S)= \ < Aceii(5)> P • Z(5). 

We have so far referred to H only as the probability of the presence of a lattice point, 
and no reference has been made to its actual form. In many paracrystalline substances, 
bearing in mind the physical causes of distortion in the crystal, it is often legitimate to 
choose a Gaussian-type function for the H that expresses the distribution. As shown in Fig. 
5.14 (p. 103),"̂ ^ therefore, if we take the Hk{r) for the three principal directions of the orthog
onally paracrystalline lattice cell (/: = 1, 2, or 3) as a three-dimensional Gaussian function, 
it can be expressed in terms of a matrix Tjk consisting of nine elements of mean-square dis
placements from the regular lattice, A^rjt, in groups of three for each principal axis. The 
Fourier transform of H, when it takes the form of a one-dimensional Gaussian function is 
^k(S), which is already given in Eq. 5.28, and in the equation 

^^(5)= exp{-2;r '(5.7,-5)} (5.35) 

(s-n'S)=J^TjkSjSk 
(5.36) 

Tik = 

(A'm rn 
V22 A'r22 

A^r33 

(A'rjk=A'nj\ (5.37) 
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Fig. 5.13 A comparison between theoretical and experimental values of H.^^ 
(a) Hoo, Hou and Hw for a paracrystalline lattice; (b) The paracrystalline lattice model corresponding to 
(a); (c) Convolution values found from the diffraction pattern (d) and those calculated directly from the 
model; (d) Optical (Fraunhofer) diffraction pattern derived from this model (b). 
[Reproduced with permission from R. Hosemann, S. N. Bagchi, Direct Analysis of Diffraction by 
Matter, pp.143, 144, 146, North-Holland Pub. (1962)] 
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(see Fig. 5.14). It should be noted that Eq. 5.35 is of exactly the same form as the Debye 
factor, Z) of Eq. 5.21. 

kHAr) 

' Ideal crystal 

J^r small 

Fig. 5.14 Delineation of H, and its effect on I 9̂ ^ I (see text, and also cf. Fig. 11.8 for Z)."̂ ' 
(a) One-dimensional H\(r) (Gaussian, cf. Fig. 5.10 for the general case, unsymmetrical distribution); 
(b) Tensor representation of the corresponding paracrystalline lattice distortion in the directions 1, 2, 

and 3 by means of the nine symmetrical matrix elements An^, Azi^, etc.; (c) I S'k (S) I vs. S for vari
ous degrees of distortion. 

[Reproduced with permission from R. Hosemann, Polymer, 3, 349, IPC Business Press (1962)] 

This concludes the fundamental analysis of X-ray diffraction intensities for paracrys
talline structures, and we can combine the results to obtain an equation for the X-ray dif
fraction intensity found in practice. A paracrystal differs from a normal crystal in that the 
unit cells are not all identical, so there is no unique Aceii which expresses the composite am
plitude due to all the atoms in the unit cell. It is therefore necessary to use an 
averaged < Aceii > over all unit cells. Taking the system as a dense array of cells having 
different structure factors, and applying the reasoning which gave Eqs. 2.30, 2.33, and 2.34, 
we can find the intensity with the aid of the Z(S) obtained by the statistical method of this 
chapter for the distortion of the lattice period, thus: 

I(S)=N(<Acell'>-D',<Aeell>^) + -<Aell>^<D',>\Z(S)^\S(S)\') ( 5 3 3 ) 

D? is the distortion factor of the first kind, and is of the same form as Eq. 5.21. Â  is the 
total number of unit cells, and v is the average volume of one unit cell. I S(S) P is the shape 
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factor of the domain of the paracrystalhne lattice given in Eq. 5.17, or may be regarded as 
the contribution due to the shape of the coherent boundaries with shape factor I S(S) P in a 
polyparacrystalline material (see Eq. 5.17). 

5.4 Summary of the Relationship between Structure and X-Ray 
Diffraction Intensity 

The description of the X-ray diffraction intensities due to material systems, except for very 
small bodies (see Chapter 6), has now been completed for practically all forms of atomic 
structures and for cases ranging from those in which the structural units are large to those 
consisting of very small domains. The methods of finding the X-ray diffraction intensities 
for the various systems (single molecules, gases, liquids, amorphous materials, paracrystals, 
crystals, and including the effect on the scattering from particles due to their shape factor) 
can be roughly divided into two basic procedures. 

1) The first involves treating the smallest scattering units as the atoms and using the 
corresponding atomic scattering factor/to find the composite scattered amplitude from cal
culations using the phase differences due to the differing positions of the atoms. 

2) The second involves finding the self-convolution Q(r) = p(r) ^ p{— r) of the density 
distribution function of the system; the scattering intensities for the system are obtained by 
Fourier transformation of Q{r). 

Liquids and amorphous substances possess neither the complete long-range order of 
crystals, nor the partial long-range ordering of paracrystals, and it is not possible, therefore, 
to make unquaUfied use of a periodical lattice function like z(r) {cf. Eq. 5.25). In calcula
tions in these cases, z{r) should be considered as expressing the short-range order. Here we 
omit the intermediate equations and cite only the results. Their form shows distinct similar
ities with the results obtained by the methods of Section 5.2 and by calculation of the dif
fraction intensities for paracrystals. The general form of the equations for liquids, amor
phous substances, densely packed particle systems, etc., representing the scattering factors 
of the atoms or molecules of the liquid or amorphous substance or the scattering factors of 
the particles as A{S), is as follows: 

7(5) = M[< I A\S) I > I 5(5) P + l < A(5)> P0(5) * I 5(5) P] (5.39) 

where 

^ (5 ) = 1+ ^ j{P(p)- l}exp{2;r / (Xp)}dv (5 40) 

For the individual case, the reader is referred to earlier sections {cf. Sections 2.5 - 2.8). 
For crystals 

/(5) = i | F ( 5 ) P G ( 5 ) * l 5 ( 5 ) P (5.41) 

For crystals containing distortions of the first kind we have 

7(5) = I F(5) P m\ -D?) + ^ • D?G(5) * 15(5) P] (Thermal motion) (5.42) 

7(5) = A^[<l F(5) P > - l<F(5)> P] + - l<F(5)>'G(5) * 15(5) P 
V 

(Mixed crystals) (5.43) 
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For paracrystals containing distortions of both the first and second kinds (distortion 
factor Dt) we have 

7(5) = A^(<l ^.// P > - D?< Ac.//> I') + - \<Aceii>\^ D?Z(5) * I S{S) P (5 44) 

In the above equations, G{S)= L\\N\)L2{N2)L'i\N3) is the Laue function, Vi is the vol
ume occupied by one particle (atom or molecule), v is the volume of a unit cell, M the total 
number of particles, and N the number of unit cells. Since the shape of the crystalline or 
paracrystalline single lattice is taken into consideration by the shape factor I S{S) P, the 
numbers M, Â 2, and Â3 in the Laue function {cf. Eqs. 2.38 and 2.45) are infinitely large, and 
hence G{S) has point-like peaks in the reciprocal lattice points. 

1) For amorphous substances, the integral containing P{r) is the Fourier transform of 
the statistical distribution of the distances of the scattering points, while for paracrystals and 
crystals, Z{S) and G{S) are the Fourier transforms of the statistical distribution of the dis
tances of the lattice points. The similarity between Eqs. 5.43 and 5.44 is particularly obvi
ous. 

2) When the different phases of a substance (crystalline or paracrystalline, amorphous 
or liquid) are finely divided into very small regions, or in the case of fine particles, the 
small-angle scattering of X-rays to be discussed in Chapter 6 is quite appreciable because 
of the I S{S) P factor (see Eq. 5.17). In the case of crystals or paracrystals, small-angle scat
tering is observed not only for 5 = 0 {i.e. in the direction of the incident beam), but at each 
diffraction spot, owing to the convolution of the shape factor I S{S) P of the lattices with 
G{S) or Z{S). For amorphous substances, liquid or solution it is observed only at the center 
spot. 

3) When the crystals are small, broadening of G(5) occurs in accordance with Fig. 
2.16, and it should be understood that the resultant broadening of the diffraction spots will 
be further increased by convolution with the factor I S{S) P. The latter contribution, of 
course, is at its most intense in the direction of the incident beam. 

Reference to Fig. 5.15 will clarify the above conclusions. It also illustrates the method 
in 2) above for calculating X-ray diffraction intensities. 

Since direct Fourier transformation for a crystal of finite size (represented in one di
mension in Fig. 5.15(c)) is impossible {cf. Section 5.2.2), the lattice function of the crystal 
with finite size is obtained by considering an infinitely large crystal (a) conjunction with a 
shape function (T(r), (b). The self-convolution Q{r) (e) of the lattice function (c) is the 
product of the two self-convolutions z and QJj") (in Fig. 5.15(e). The diffraction intensity is 
then found by Fourier transformation of Q{r) {i.e. of z{r) • 2s(r)). The result is the convolu
tion (in (g)) of the individual Fourier transforms shown in diagram (f). The intensity distri
bution (g) can also be derived as the broadening of the Laue function due to the fact that in 
the case we are considering the crystals are finite with small numbers of unit cells, but here 
we have obtained it as the broadening of the shape function I S{S) P. The diagram shows 
that the small-angle scattering is not restricted to the center, but is associated with all the 
diffraction spots. In Fig. 5.15 ^ denotes a Fourier transform. 

A similar analysis for paracrystals in Fig. 5.16 gives the intensity distribution shown in 
diagram Fig. 5.16(g). Although we are considering a paracrystal with infinite extension, 
the broadening of z{r) increases with increase in the order of diffraction due to the distor
tion of the lattice, and the diffraction intensity also broadens out with increasing order num
ber, as shown in Figs. 5.12 and 13.16. For finite crystals, therefore, this broadening will be 
further increased by convolution with the broadening of I S{S) P {cf. Section 13.6). 
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(a) ^ A 

(b) 

p<x>{r): [Infinite point function] 

I I 
Infinitely large crystal (one-dimensional array of 

• I identical atoms, /= I) 

I 

Shape function 

(c) 

I I 
pir) =p^{r)'(j{r) 

I • 

Crystal of finite size 

(d) 

po.{r)*po={r) -z{r) 

(e) 

(f) 

Statistical distribution function 
for the distance between lattice points 

a{r)*a{-r)=Q,{r) 

I z ( r ) - e s ( r ) = e ( r ) 

Fourier transformation ..ii I I . . 
Fourier transformation 

I 
Fourier transformation 

^[z{r)]=Z{S)^G{S) 

I 
I I I I I I I 

0 — S 

Lattice factor 

'¥IQM] = \S(S)\' 

-A-
Shape factor (small angle scattering) 

(g) 

Z(S)*|5(S)|2 

— - A / \ A A / \ / \ A 
0 — s 

Diffraction pattern 

(Small-angle scattering at center and also associated with all the diffraction spots) 

Fig. 5.15 Schematic representation of the steps involved in calculating the diffracted X-ray intensities 
(bounded crystals). Atomic scattering factors,/s are taken as unity. 
^ denotes a Fourier transform. 
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(a) 

(d) 

(g) 

. ( r) : 

Infinitely large paracrystal (one-dimensional) 

I z(r) 

Z{S)*\S{S)\' 

JL. 
Diffraction pattern 

/Small angle scattering added to the\ 
Vparacrystal inherent broadening / 

(Small-angle scattering added to the paracrystal inherent broadening) 

Fig. 5.16 Schematic representation of the steps in calculating X-ray intensities (bounded paracrystals). 
Only those steps corresponding to (a), (d), and (g) in Fig, 5.15 are shown. Atomic scattering factors 
are taken as unity. 

z(r)=Pir) 

(a) 

(b) 

zir)Qsir) 

(c) 

Fig. 5.17 Steps in calculating scattered X-ray intensities (amorphous substances). 
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The diffraction from a system of amorphous particles is simple, as is evident from Fig. 
5.17. Attention has already been drawn to the fact that Q(r) in this case is of essentially the 
same form as P(r). 

<Q(r)> = ^[S{r-0) + P(r)] (5.45) 

The Fourier transform of the Q(r) of Fig. 5.17(a) is shown in (b). I S(S) P is concentrated 
predominantly about the center (Eq. 5.15), and the halos corresponding to scattering from 
amorphous material are observed at greater angles. Of course the convoluted form of 15(5) P 
also makes its contribution to these halos. 
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6. Scattering of X-Rays by Very Small Bodies 

6.1 Small-angle Diffuse Scattering 
When monochromatic X-rays are passed through very small particles, normally of the order 
of 10 to 2,000 A or through a body containing zones of non-uniform density of about this 
size, a diffuse scattering pattern generally results within a very small range of angles around 
the incident direction (Fig. 6.1). Since the scattering is dependent upon the geometrical 
structure of the minute inhomogeneous zones, it is possible to establish the size, shape, state 
of aggregation, etc. of the small particles by analysis of the scattering pattern. This scatter
ing differs in principle from diffraction, but is sometimes accompanied by diffraction due to 
normal Bragg diffraction (Section 4.1) and characteristic long repeat distances which can 
occur at very small angles. Since it is frequently impossible to distinguish unambiguously 
between these two contributions the term "small-angle scattering" is generally applied, 
without distinction, to them both. 

In this section we attempt no more than an elementary explanation of the principle, an
alytical methods, and applications of small-angle scattering in the strict sense. If considera
tions of space did not preclude it, it would still be out of place in what is intended as a 
primer for experimental workers: the difficult theory and considerable overlap with other 
X-ray experimental methods have led the authors to refer the reader, instead, to the litera
ture cited and to suitable textbooks for details. 

Small-angle scattering is produced by substances containing small zones of non-uni
form density which may be linear, planar, or particulate. The phenomenon has a remark
ably wide application to the measurement of small particles, particularly in comparison 
with other physical methods. Thus, the breadths of the Debye-Scherrer rings are used in 
well-known method for the investigation of crystalline powders, and measurement methods 
based on viscosity, light scattering, osmotic pressure, surface tension, centrifugation, and 
electron microscopy have all been widely used for colloids and high polymers. However, 
these methods are all to some extent limited by the necessity to prepare the sample: X-ray 
small-angle scattering, on the other hand, has the very important advantages that the sample 
may be liquid, solid, crystalline, amorphous, or a mixture of these, and may take the form 

(a) (b) bi) b2) b3) 

Fig. 6.1 X-ray small-angle scattering patterns, (a) With slit system, carbon black (c/. Fig. 15.1). 
(b) With pin-hole system, bi) Polyethylene (undrawn), isotropic, central diffuse scattering. 
hi) Curdlan(or p-(l—•3)-D-Glucan), (draw direction vertical), diffuse scattering along the equator, 
bs) Polyurethane, (draw direction vertical), merridional small-angle scattering and wide-angle 
diffractions on the equator. [Reproduced from K. Hess, H. Kiessig, cited by R. Hosemann, in 
"'Zur Struktur und Materie der Festkorper", p. 137, Deutsch. Mineral. Ges. (1951)] 
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of minute inclusions or voids. It also requires no special preparation of the sample, and is 
essentially non-destructive. Nevertheless, the method is not a simple panacea for all prob
lems of small particle analysis: as with so many physical measurements, the legitimacy of 
an interpretation can only be established by checking very carefully the connection between 
theory and results (and the purpose for which they were obtained). 

6.2 Small-angle Scattering Theory 
The principles of X-ray small-angle scattering were established as early as 1930, and by 
about 1938, Guinier,^^ Kratky,̂ ^ and Hosemann^^ had developed a quantitative treatment and 
shown how this scattering could be used. Further progress has been made since then as a 
result of various investigations into the problem of mutual interference based on differences 
between aggregations of particles, as well as into analytical methods and types of experi
mental equipment. 

6.2.1 X-ray scattering by a substance of any structure 
As summarized in Section 5.4, Eqs. 5.39 to 5.43 clearly show that, the central diffuse small-
angle scattering is observed regardless the cohesive state of the substance, i.e. liquid, amor
phous, crystalline, or paracrystalline, and in the case of crystalline or paracrystalline state 
the small-angle scattering is observed associated with each diffraction spot. 

The other important conclusion obtained at the same time is that the intensity of the 
small-angle scattering depends upon the magnitude of l < A > P (or I F P for crystal or 
< I F I > ^ for paracrystal). This means that voids in substance can also give small-angle 
scattering as well as particles (Fig. 6.2)."̂ ^ Particle-like density heterogeneities in substances 

(a) (b) (c) (d) 

( a ' ) ( b ' ) (c') (d' 

Fig. 6.2 Random assemblies of spherical particles.'̂ ^ 
(a) Dilute system of identical particles; (b) Densely packed system of identical particles; (c) Dilute sys
tem of non-identical particles; (d) Densely packed system of non-identical particles, 
(a'), (b'), (cO and (dO Complimentary system of (a), (b), (c) and (d), respectively. 
[Reproduced with permission from X-Ray Crystallography, (I. Nitta ed.). Vol. II, p.519, Maruzen 
(1961)] 
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such as precipitation in alloys (Guinier-Preston zone) and inclusion in the matrix lattice of 
grain with a different lattice but with the same composition (Fig. 6.3^ )̂, also can give cen
tral diffuse small-angle scattering. Their intensities depend upon the electron density dif
ference between void and matrix and that between the precipitation and matrix. This fact 
leads to the development of the "contrast variation method" (Section 6.2.2D). 

1 L-i—i-4̂  M i l l rnTti) Ht In 
1 1 1 1 1 1 1 1 1 1 X—J 

Wtl 
I t 

1 1 AA. 1 4^ M i l l 
r t t t t n 

^ ^ ^ 

^ 
VrA^ 

^Plffl 
(a) (b) 

Fig. 6.3 Inhomogeneities in substance.^* 
(a) Precipitation of foreign atoms; clustered without lattice deformation. 
(b) Inclusion in the matrix lattice of a grain with a different lattice but with the same composition. 
[Reproduced from A. Guinier, G. Fournet, Small-Angle Scattering ofX-Rays, p.201, John Wiley & 
Sons, Inc. (1955)] 

6.2.2 Small-angle scattering from systems of dilutely dispersed particles 
(or voids)̂ ^ 

The small-angle scattering intensity by one particle with uniform density, po. can be written 
as (c/Eq. 5.14a) 

7(5) = hp^ I S(S) P 

where the shape factor 

and then 

S(S) : J exp(2;rj(5-r))dv. 
particle 

(6.1) 

(6.2) 

m = hpJ I S(S) P = hpJ V nS) = hn' nS) (6.3) 

where I 5(5) P = V^ *F(5), ^(5) is the scattering function of the particle and n(= VpJ} is the 
number of electrons in a particle, respectively. 

If the shape of the particle is known as, for example, parallelepiped, sphere, ellipsoid of 
revolution, cylinder, etc. based on the theoretical equation for the three-dimensional particle 
shape, the scattering function can be obtained analytically or at least by numerical calcula
tion. Some examples of the scattering functions are given below. 

A. Globular particles 
a) A globular particle fixed in a space. 

1) A spherical particle of uniform density with radius R. This is the simplest case, and 
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^WisR) 

Mean asymptotic curve 

^ V v ^ ^ Exponential approximation 

Fig. 6.4 Scattering intensity from a sphere of radius R, W{sR)}^ 
The curve is drav^n with different scales for the various ranges of sR{X 10̂ ^ for 4 <sR< 10; X 10^ 
for sR > 10) (s = iTtS, S =(2sin0)/A = lO/X = elX). 

Exponential approximation: exp j >; mean asymptotic curve: - 4 . 

[Reproduced from A. Guinier, G. Foumet, Small-Angle Scattering of X-Rays, p.20, John Wiley & Sons, 
Inc. (1955)] 

the scattering function has been given by Rayleigh^^ (Fig. 6.4), 

W(S) =0\2nSR) 

sinjlnSR) - (27j;SR)cos(27rSR)' 

{iKSRf 

9 ^ 
2 

Jy2(2nSR) 

{2KSRf (6.4) 

2) A rectangular parallelepiped with three edge lengths of a, b, and c.̂ ^ We assume 
that the a, b, and c edges of the parallelepiped are parallel to the x, y, and z axes, respective
ly (Fig. 6.5), and that the y axis is parallel to, and the x and z axes perpendicular to the inci
dent X-ray beam, and that three components of S, the ^, r\ and ^ axes are parallel to the x, y, 
and z axes, respectively. 
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Film 

Specimen 

X-ray 

Fig. 6.5 Small-angle scattering from a fixed parallelepiped. 

Then, the scattering function is given 

"FiS) = »F((? 71 0 = -^^^'^^^^^ sin^nrib) s i n ' « c ) 
(6.5) (K^af {KTlbf {Kl^cf 

This equation indicates that the diffuse small-angle scattering appears along the ^, r\ and f 
directions with the broadening of \la, lib, and 1/c, respectively. As the X-ray incidence is 
parallel to the y (or b) axis the scattering diagram observed corresponds to the E,C, section of 

If the particle is a crystal, this small-angle scattering associates with all the reciprocal 
lattice points: the resultant is the Laue diffraction function (Eq. 2.38 and Fig. 5.12). 

3) A globular particle with any shape at a fixed position (Guinier's approximation).^^ 
In general, the shape of the particle is unknown or is so complicated that it is difficult 

to express its shape by analytical equation in order to obtain the scattering function. In such 
a case, the only information obtainable about the magnitude of the particle is the radius of 
gyration, Rg of the particle with respect to its center of gravity. 

Taking the y axis again parallel to and the x and z axes perpendicular to the incident X-
ray beam, and the origin at the center of gravity of the particle, the scattering observed on 
the xz plane is, since r] = ^ = 0, 

S{^, 0,0) = J exp(2;r/(̂ jc)djcd3;dz (6.6) 

As the scattering angle is small and therefore t, is small, the exponential function in Eq. 6.6 
can be expanded by a series. 

5((^,0,0)=j(l+2;r/<?jc-2;r'(?V + ...)djcd3;dz (6.7) 

The second term in Eq. 6.7 is zero by integration since the origin is taken at the center of 
gravity of the particle. If we write 
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R,^ = -jx^6xdydz yj (6.8) 
the scattering intensity is 

= hn^expi-47u'R.'^') (6.9) 

and 

log I(^, 0, 0) = log[/en'] - 4;r'/?x'f (6.10) 

The tangent of the log / vs. ^ plot in the neighborhood of (̂  = 0 gives the value of R^ and 
hence if the particle shape and the orientation of the particle with respect to the x and z axes 
is known the tangent gives an information on the particle size, (c/ Fig. 6.7 and also Table 5 
in the Appendix). 
h) Globular particles with random orientation. 

1) Spherical particles with radius R. The scattering function ^(S) shows no change 
from that given by Eq. 6.4, since the sphere shows no directional difference in shape, and 
the small-angle scattering intensity of a spherical particle is:̂ ^ 

< I(S) > = I(S) = W nsy (6.11) 

ns)=\ sinjlKSR) - (27rSR)cos(2nSR)^^ 

{InSRy 

If the specimen is a dilute system consist of M identical particles the intensity given in the 
above equation must be multiplied by M. 

< I(S) > = h Mn^^(S) (6.1 la) 

The scattering function ^{InSR) vs. IKSR or "FisR) vs. sR (where, s = 2KS and S ^ 2011 = 
elX (for very small angles)) is shown in Fig. 6.4,̂ ^ which is compared with its exponential 
approximations (cf. Fig. 15.5). 

2) Ellipsoids of revolution with axial lengths of 2a, 2a, and 2wa (axial ratio w = 
bla).'^ 

< I(S)> = hMn^j^'^xi/(27rSa^{cos^ O + w^ sin^ 0) )cos^d0 (5 12) 

The scattering curves for ellipsoids of revolution with various axial ratios w are shown in 
Fig. 6.6.̂ ^ The log I(S) vs. log S (or log /(e) vs. log e, etc.) plot of the scattering curve (log-
log plot) is often used to obtain a rough information on the overall shape of the particle 
(curve-fitting method cf. Section 15.2.2) 

3) Globular particles with any shape. If the orientation of particles is not fixed, Eq. 
6.7 must be averaged for all orientations of particles. The summation of the R^^ and its 
analogs along the y and z axes gives the square of /?g, the radius of gyration with respect to 
the center of gravity (Guinier's approximation). 



6.2 Small-angle Scattering Theory 115 

M;=1 \ 

w=^\ 

1 i 
/ 2 / 4 yO 

(a) isRV 

loge = 0 for 
w=i i i foO 
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(b) log e 

^ T 

log e 

Fig. 6.6 Theoretical scattering curves for ellipsoids of revolution with various axial ratios w.'̂  
(a) Scattering function •f vs. {sRf, (b) Log-log plot derived from (a) where sR = IjtSR = IneRll. 
[Reproduced from A. Guinier, Ann. Phys. (Paris), 12, 161, Masson et Cie. (1939)] 

R^^+Ry^+R,^ = -l(x^+y^+z^)dxdydz = Rs (6.13) 

For random orientation all the averages of R^^, 7?ŷ  and Rz^ are equal, and < R^^ > can be 
written equal to Rg^/3. 

< nS) > = e x p [ - 4;r'/?g'5V3] 

< I(S) > = h Mn'exp[ - V/^g'^VB] 

log < I(S) > - log(/e Mn^) - 4;r'/?g'5'/3 

= log[/(0)]-4;r'/?g'SV3 

(6.14) 

(6.15) 

(6.16) 

(6.16a) 

If we plot values of log I{S) against S^ (experimentally, log 1(e) vs. e^\ e = 26: scattering an
gle) we can obtain a straight Hne in a small S (or e) region^^ (Guinier plot. Fig. 6.7), and we 
can easily determine the value of Rg from its slope, a ( = — An^Rg^BX'^) (Section 15.2). If 
the shape of the particles is known, information about the particle size will be obtained. 
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(a) 

Scattering angle, e 

= /(0)exp(- 4K' 
RW (b) log/ = log/(0) -fx2-/?le' 

Fig. 6.7 Small-angle scattering curve and Guinier plot (e: scattering angle). 

B. Rod-like particles ^̂  
a) A rod-like particle fixed in a space. If the long axis of the rod (length H) is parallel to 
the z axis {cf. Fig. 6.5), the scattering function is 

5(^,r],0 = \\f\ exp[2;r/((?x+r7y+C )̂](kd>dz 

(6.17) 

For the scattering observed on the ^^ plane, r] = 0, and by the approximation for the small-
angle Eq. 6.17 can be written as 

5(1,0,0 = //^'"(^y)ffexp[2;ri|x]dxdy 

and then 

1(^,0 = hMrf 
sin^ {KHO 

exp[-4;r',?'/?xq'] 

where, A is the transverse sectional area of the rod, V = HA, and 

R,^^=\\\x^6xdz 

(6.18) 

(6.19) 

(6.20) 

If H is large {i.e. the rod is long), the small-angle scattering intensity concentrates in the 
neighborhood of the ^ axis to give a streak along the | axis, of which the integral breadth is 
\IH. 
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b) Identical rod-like particles, of which all the long axes are parallel to the z axis but 
their transverse sections are randomly oriented. 

Average R^^ is 

</?xq'> = V / 2 (6.21) 

where, /?gs = is the radius of gyration of the section perpendicular to the long axis of the 
rod, and 

R,^ = -\{x^+y^)(^x&y 

and the small-angle scattering intensity on the ^ axis is 

7(5) = /e M^'exp[- 2 ; r ' 5X ' ] 

log I{S)= log[/e Mn^]- 27eS%s^ 

(6.22) 

(6.23) 

(6.24) 

The Guinier plot of the equatorial small-angle scattering gives the radius of gyration of the 
section, Rg^ of the rod-like particle (cf. Fig. 6.8(a) and Section 15.2.2). 

(a) (b) 

Fig. 6.8 Guinier plot of log(e • /)(= loghi) vs. e^ for /?gs and log(e^ • /) vs. e^ for Rgd. 

c) Randomly oriented rod-like particles (1/H < 5 < l/R, H: length, R: radius of the section), 
1) General case. 
The scattering intensity concentrated on the ^rj plane (Fig. 6.5) is dispersed for all 

directions and the intensity given by Eq. 6.23 is weakened by the factor 1/(25//) 

<I{S)> = hMn^ -J—exp[-2;r'/?gs'5'] 
2SH (6.25) 

and 

\og[S< I(S)>] = Const.- Ijf Rg,^S^ (6.26) 

As special cases, the scattering intensities from uniform cylindrical particles and from 
rods of infinitesimal transverse dimensions are given in the following formulae. 
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2) Cylinders of revolution of diameter 2R and length H^^^ 

rnnsin^iTtSHcosO) 4Ji\27tSRsme) . 
< I{S)> = hMn^j^ 

Jo (TtSHcosOf (iTTSRsinOf 

3) Fibers of extremely small radius and length //̂ o-i2) 

'SiilnSH) sin^KSH)' 

sinOdO 

<I{S)> = hMn' 
nSH 

where 
{nSHf 

(6.27) 

(6.28) 

•X s m t Si{x) = l -

C. Disc-shaped particle {IIH >S> IIRT 
The scattering intensity concentrate in the direction perpendicular to the disc plane. 
a) A disc-shaped particle fixed in a space. 

If the disc plane is parallel to the x axis, assuming that ^ = 0 in Eq. 6.19 

1(0 = hMn 2^n\7rHO (6.29) 

(6.30) 

b) Randomly oriented disc-shaped particles. For random orientation, the exact form of 
the small-angle scattering intensity from the flat disc of infinitesimal thickness and diame
ter 2R is given^^^ 

<I{S)> = hMn^ 
{InSRY 

1 - -
1 

2KSR 
JI(2KSR) (6.31) 

That is, the scattering intensity to be concentrated on the ^ axis is weakened by the factor 
l/S^, and log[5'̂ /(.S)] vs. S'^ (or e^I (e) vs. £^) plot becomes linear, from its slope we can de-

l.U 

0.8 

0.6 

0.4 

0.2 

- \ \ 

-

-
Sph e r c ^ N. 

Rod 
Disc 

/ 
/ 

JCZ: 

isR)/isR)i 
2 

Fig. 6.9 Theoretical scattering curves for spherical, disc-shaped, and rod-like particles^\ 
R is the radius of the sphere, the diameter of the disc, or the length of the rod. The abscissa is trans
formed as (sR)/(sR)m so that all three curves pass through the same point, which is defined as the point 
where the scattering function has exactly half its maximum value. {sR = ITTSR — IneRlX) 
[Reproduced from O. Kratky, G. Porod, J. Colloid ScL, 4, 35, Academic Press (1949)] 
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termine the thickness of the disc H (Fig. 6.8(b) and cf. Section 15.2.2B). 
In Fig. 6.9 the scattering curves for spherical, rod-like and disc-shaped particles are 

compared. ̂^ 
If we assume the overall shape of the particle to be a hollow sphere, cylinder, hollow 

cylinder, rod or other, and if we can calculate the scattering functions numerically, we can 
apply the curve-fitting method (log-log plot) to simulate the most suitable shape and size of 
the particle. 

D. Particles suspended in a medium 
If the particles are dispersed within a suspending medium and the particles are imperme
able, the number of electrons n in Eq. 6.11 and other equations in the preceding sections 
must be replaced by the product of the difference Ap = pi — p2 between the electron densi
ties in the two phases and the volume of the particles Vu i.e. by the effective electron excess 
or deficiency Ap Vi in the particles. 

< I(S) > = /e M(Ap Vif nS) (6.32) 

This means that increasing the electron density outside V\ is equivalent to decreasing the 
scattering intensity uniformly within the particle. In the early times Barton and Brill̂ '*̂  con
firmed this fact experimentally for the small-angle scattering from carbon black suspended 
in aqueous solutions of inorganic salt by changing the concentration of salt. 
a) Contrast variation method}^~^^^ To obtain more information on the structure of inho-
mogeneous particles the contrast variation method is often used, especially in the field of 
neutron small-angle scattering. This method uses solvents of different electron densities. 

The contrast < Zip > is the mean difference in scattering density between the particle 
p\ and solvent pi. 

<Ap> = pi-p2 (6.33) 

where p\ and p2 are averages of pi and p2 over the volume Vu respectively. 
If we assume that within the volume Vi of the particle the electron density remains un

changed while the surrounding solvent has a variable homogeneous electron density p^, the 
difference in electron density is then assumed to be the sum of the two terms. One de
scribes the effect of excluding solvent from the region occupied by the particle; this term is 
directly affected by the contrast between the particle and solvent. The other term covers 
any variation within the particle (Fig. 6.10). 

< Ap{r) > = < Zip > (7i(r) + p3(r) (6.34) 

0"i(r)= 1 inside the particle and zero outside. Thus, J(Ti(r)dr = Vi. The ps is the deviation 
from the mean difference electron density < p > : it arises from any internal structure with
in the particle. It further holds that 

J,p3(r)dr ir=0 (6.35) 

The scattering amplitude of the particle is calculated as 

A(S) = <p>Si(S) + AsiS) (6.36) 

where S\(S) and A3(S) are the Fourier transforms of 0"i(r) and psir), respectively. The scat
tering intensity is 
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Fig. 6.10 Effect of the contrast. 
V\ denotes the volume of a particle; pu pi and ps are the densities of a particle, of the dispersion medi
um and of internal inhomogeneity in the particle, respectively, 
(a) p\ =/= pii = 0), particle with uniform density in vacuum; (b) p\ #= pii > 0), particle with uniform den
sity in a medium. A similar but less intense small-angle scattering(a) is observed; (c) px = pi, particle 
has the same density as the medium. No small-angle scattering is observed; (d) p\^ pi^ p3, particle 
which has internal inhomogeneity in a medium; (e) pi = p2 =̂  p3. Only internal inhomogeneities with 
density p3 give small-angle scattering; (f) pi # P2 = ps- Only inhomogeneity pi gives small-angle scat
tering. 

I{S) = A(S)A^{S) 

= <Ap>'\ S,iS) P + < zip > I SiiS)A3{S) I + I A,(S) P (6.37) 

In Eq. 6.37, I Si(S) P is the "shape factor" of the volume Vi and can be determined by ex
trapolation because A^iS) vanishes at 5* = 0. The square root of the scattering intensity at 
zero angle is linear in < Zip > ; and [1(0)^^ = < Zip > I 5i(0) I. I A3(S) P originates from 
P3(r) and is measurable if < Zip > = 0. I AiiS) P = 0 according to Eq. 6.35. The cross term 
I S\(S)A3(S) I establishes the correlation between I Si(S) P and I AsC )̂ P by the following gen
eral inequality 

1 
l5i(S)A3(5)l ^ -Vl5i(5)P-IA3(5)P 

Introduction of Eq. 6.34 into the definition of the radius of gyration Rg yields 

/<Ap> 7<Ap>' ^ . ^ = ^ 3 + ^ / ^ A 0 > - ^ . A . . 2 

(6.38) 

(6.39) 



R^ 

a = 

P = 

= —CTi(r)rMr 

Vl 

— P3(r)p3(0-r 
Vl 
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where 

(6.40) 

(6.41) 

(6.42) 

/?3 represents the radius of gyration of a homogeneous particle and does not depend on 
<Ap>. a is the second moment of the electron density fluctuations. If the sign of a is 
positive the positive contributions dominate. (5 is an asymmetry parameter according to Eq. 
6.40. The Rg^ vs. l /< Z\p > is a straight Une if j8 = 0, and the slope of this line is a and the 
value of Rg^ at l / < Zip > = 0 is Rs\ 

The contrast variation method for X-ray small-angle scattering is performed by varia
tions in the concentration of sugar or other low molecular weight solutes. Difficulties may 
arise from preferential interactions between solvent components and the macromolecule un
der investigation. 

E. 5"^ Rule of scattering intensity 
As shown earlier the small-angle scattering intensity of a system of spherical particles of ra
dius R and density p is given by Eq. 6.11, which can be written as follows as 

n^ = (pV)' = (4/3 . TtR^pf. 

AKR^ , 1 4/? . _ ^ _ 4/?' 1 P' 
'''' 8 .3 

4- — - - ^ sm{AKSR) - —— - — - cos(47cSR) 
S" KS" S' S" nS' 

(6.43) 

For sufficiently large S, the second and higher terms in the bracket can be neglected and 

,2 AD^ 

'̂ ^^ = ^ ' ^ (6.44) 

This means that theoretically the tail end (or fmal slope) of the small-angle scattering curve 
should conform to the asymptotic course for 5^.'^^ 

For the two-phase system the asymptotic value of S^I{S) is rational to the square of den
sity difference and the area of the interface. 

lim S'^I(S) = —J (pi —p2) • (Area of the interface) (6.45) 

6.2.3 Correlation function and distance distribution function^^^^^ 

A. Correlation function 
a) Dilute particle system. The particles are randomly oriented and far from each other so 
that all the interparticle interference may be neglected. The scattering intensity is given 

<I(S)> = p'vl^ro(r)~^4KPdr (6.46) 

where 7o(r), the correlation function^ '̂̂ )̂ (characteristic function*^^ or distance probability 
function) of the particle, represents the probability that a point at a distance r in an arbitrary 
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direction from a given point in the particle will itself also be in the particle (See Fig. 5.8). 
The properties of yo{r) are: from the definition 7o(0)= 1 and jo decreases as r in

creases. It becomes zero when r is greater than the maximum particle diameter. 

j ; W r o ( r ) d r = V = ^ j ; 5 V ( 5 ) d 5 , ĝ 47) 

and 

j ;7„ ( . )d r = ^ = ^ j ; s < / ( 5 ) > d 5 (6 48) 

< / > is the average of the diameters drawn through every point within the particle in all 
directions. 

d/o 
dr 

O 
^ (6.49) 

where O is the surface area of the particle. This relation is a consequence of the fact 
S^ < I{S) > must tend toward a constant limiting value 

lim5^</(5)> = 0 (6.50) 

as S increases. 
By Fourier inversion the correlation function 70 is obtained from the small-angle scat

tering intensity measured. 

^"^'^ = ^ r ^ < ^ ( ^ » ^ ' " 2 ; r r S d S (^.Sl) 

b) General case. The specimen composed of matter of uniform electron density p filling 
a fraction Xi of the total volume Vo is 

I{S)=Vop'ZiX2l r(r) ^^^^ ^Ttr^dr (552) 

where X2~ ^ ~~ Xv /('') ^̂  ^^^ correlation function of the heterogeneous system, and for a 
system composed of identical particles /(r) becomes Yo{r), the correlation function of the 
particle. In the general case y(r) is defined in the following way: Let Y(r) be the probability 
that a point a distance r from another point occupied by matter is also occupied by matter. 

Then 

Yir) = x^+X2r('-) 
By Fourier inversion yir) may be obtained from the experimental data. 

The limit of the product S^I(S) is still given by (pV8;r^)Oo. (OQ: total surface area). 

B. Distance distribution function̂ "*̂  
a) Globular particles. Using the correlation function the distance distribution function 
of the particle is defined as 

p{r) = 7o(r). ^ . (6.53) 

47tp{r) represents the number of lines with lengths r, which are found in the combination of 
any volume element 7 with any other volume element k. 
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Inhomogeneous particles may have regions with positive and negative contributions to 
the p(r). 

1) Sphere. The distance distribution function of a sphere is given analytically.^°^ 

p(r) = const. • x\2 - 3x + x^) (6.54) 

where x = r/2R and R is the radius of the sphere. The maximum of the p(r) is near r = 
R(x = 0.5) (Fig. 6.11), Any deviation from spherical symmetry shifts the maximum to 
smaller r values if R is kept constant. 

100 150 200 

Fig. 6.11 Theoretical scattering function of a sphere (/?=100A, log / v .̂ sR plot) and theoretical distance distribu
tion, p{r)}^^ [Reproduced with permission from I. Pilz et al.. Methods in Enzymology, 61, 168, 
Academic Press (1980)] 

2) Particles elongated in one direction which have a constant cross section of arbitrary 
shape. In this case, such as long cylinders and prisms, the p{r) show a linear decrease at 
large r values (Fig. 6.12). The maximum dimension of the cross section Jmax is much smaller 
than that of the particle. 

2/?/J„,ax^2.5 

The slope of the linear region is given by 

dp _A^<Pc>^ 
tana = -

dr 2K 

(6.55) 

(6.56) 
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Fig. 6.12 Distance distributions from homogeneous prisms with edge lengths of (a) 50:50:500, 
(b) 50:50:250, (c) 50:50:150.''^ 
[Reproduced with permission from I. Pilz et al.. Methods in Enzymology, 61, 169, 
Academic Press (1980)] 

A is the area of the cross section and 

pc = — \^pc{x)da 
AJA (6.57) 

where pc(jc) is the electron density in the cross section. Difference in the area of the cross 
section results in a pronounced difference in the slope from a according to Eq. 6.56. 

3) Lamellar particles. In this case, the number of distances in a plane is equal to 
Inry^if). In analogy to the distance distribution of the whole particle p(r), we define the 
distance distribution of a plane with 

Piir) = 7o(r)r = p{f)lr (6.58) 

The pxif) functions of lamellar particles with the same plane and different thickness 
t are given in Fig. 6.13. They start at r = 0 and show a rapid increase, and at a point near 
r — t begin to decrease almost linearly. The limiting value AL, of the piif) function result
ing from the extrapolation of this quasi-linear part toward r = 0 contains information on the 
area of the basal plane of the lamella. 

^'^''-n^o^l ^^J— (6.59) 
where 

<pt> = -lp(x)dx 

The extrapolation to r = 0 is more accurate the larger the ratio of 2R/t. 
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II 

10 20 30 50 

[A] 

Fig. 6.13 Functions of lamellar particles with the same plane (100 X 100) and varying thickness t (10, 20, 30). 
The transition points are signalized by the vertical dashed lines.^" 
[Reproduced with permission from I. Pilz et al. Methods in Enzymology, 61, 170, Academic Press 
(1980)] 

Figure 6.14 gives a comparison of p{r) and/7L(r) between a sphere, a prolate ellipsoid 
and an oblate ellipsoid having the same number of excess electrons and radius of gyration. 

Fig. 6.14 Comparison of the distance distribution functions of a sphere ( ), a prolate ellipsoid of revolution 
1 :1 :3 ( ), an oblate ellipsoid of revolution 1 : 1 : 0.2 (-—) and a flat prism 1 : 1 : 0.23 (—) with 
the same radius of gyration, (a): p{r) function. 
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Fig. 6.14 (Continued) 
(b);/7L(r) function.^'* 
[Reproduced with permission from I. Pilz et ah. Methods in Enzymology, 61, 171, 
Academic Press (1980)] 

C. Distance distribution function and radius of gyration and zero angle intensity 
The radius of gyration of the particle, /?g, mentioned earlier is defined by the distance distri
bution function, p{r). 

R. 
_ \p{r)r^dr 

~ 2j/7(r)dr (6.60) 

and the scattering intensity at zero angle, 7(0), is a constant: An times the integral of the 
p{ry. 

/(0) = 4;rj/7(r)d^ (6.61) 

D. The scattering intensity and the distance distribution function 
The relation between the scattering intensity and distance distribution of a particle is given 
by the Fourier transformation 

r/ox A r / .sin2;r5'r, . r . . sin2;r5'r , 

The corresponding relation between the scattering amplitude A{S) and the radial electron 
density distribution p{f) of a centrosymmetrical particle is given by 

A(S) = An\p{r)r 
sin27rSr 

InSr 
dr (6.63) 

Inverse transformation gives 



and from Eq. 6.63 
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/ X A f 7/OX02 sin2;r5r ,^ 
Y{r) = AK\l{S)S'^^^^S (6.64) 

p{r) = 2 j I(S) • Sr • sm(27tSr)dS (6.65) 

/ X A r A/OX o2 sin2;r5'rj^ 
p(r) = 47t\ A(S). 5^ ̂ ^ ^ ^ (6.66) 

6.2.4 Polydispersed system of particles with uniform shape 
When the shape is uniform but there is a distribution of particle diameters we may take 
M{Rg) as the mass distribution function of particles between Rg and Rg + d/?g, and the scat
tering intensity will be given by 

/ = Ko\^M(Rg)Rg^ Qxpi-s^RgV 3)dRg (6.67) 

If this particle size distribution is approximately divided into N rectangular distributions 
and the ratio of the weight of the particles in the 7th component to the total particle weight 
is W(Rgj), then 

I=Kof^ W(R^ )R^' txpi-s'R// 3) 

= Kof^W(R^)R^'txp{-(47t'/3X')£' R^'} (6.68) 

In practice, a tangent drawn to the lower end of the log / vs. e^ curve (cf. Fig. 13.22) gives 
Rgu the minimum radius of gyration. The radius of gyration Rg2 of the second component is 
found by subtracting the intensity corresponding to this tangent from the original curve and 
drawing a tangent to the curve produced in this way. Successive repetitions of this opera
tion give Rg\, Rg2, Rg3,.' The weight ratios W(Rgj) of the size fractions can then be found 
from the ratios of the intercepts of the tangents on the ordinate Kj = KoW{Rgj)Rgj^, the 
Jellinek-Solomon-Fankuchenmethod.^^^ 

The subject of errors due to the slit system and their elimination is covered in Section 
15.1.2. Correction in the case of the Guinier plot is, however, very simple. For measure
ments made with a slit that is so narrow and long that it can be considered as approximating 
a slit of infinite height and zero width, calculation of/H from Eq. 6.68 and 15.2 gives 

IH = Kof^Wj(Rgj)R/[txp{(-47t'/3^}) (g' M^lr^) V } d r 

= ^o'|;w,(/?g,)/?g,^exp{(-4;rV3r)£^ 7?̂ ,̂ } (6.69) 

Accordingly, since the gradient of the Guinier plot for each component is not affected by 
the slit height, Rgj, may be calculated directly from Eq. 15.5. Since the value of the inter
cept is K{ = KoWj(Rgj)Rgj^, as shown by Eq. 6.69 if the weight ratio is calculated using 
WjRgj^ in place of W/7?g,̂  the correct result is obtained without correction for the effect of er
rors caused by the slit.̂ ^̂  



128 6. Scattering of X-Rays by Very Small Bodies 

A very convenient formula is given by Hosemann, ^ if M{Rg) is a Maxwellian 

r = ! is the T-function. The weight averaged particle radius < /?§ > and the 

polydispersity gR are given by 

< « , > = i ? r ( ^ ^ y r ( ^ ^ ] s R(n+l)/(2n+3)^ (6.7I) 

1 
2^ <"^m 

!< ]̂} 
{2(n+l)}2 (6.72) 

The intensity is given by 

/ = /e Mn'[l +(5/?g)'/3]-^" + '̂ '̂ (6.73) 

For small gR, hence n > 100 it reduces to the Guinier equation (Eq. 15.4). 

6.2.5 Small-angle scattering from systems of densely packed particles 
If particles producing small-angle scattering are sufficiently densely packed we must con
sider not only the interference contributed by individual particles, but also the mutual inter
ference between neighboring particles, just as the mutual interference between neighboring 
atoms had to be taken into account in extending the treatment of the X-ray diffraction by 
monatomic gases to the case of liquids. Since the scattering amplitude for one particle is 
(*P)*̂ ,̂ the system may be treated as a densely packed assembly of hypothetical atoms hav
ing scattering factors (*P)̂ ^̂ , and the composite scattering amplitude may be found by the 
method of Section 2.5. The scattering theory for a monatomic liquid cannot, however, be 
applied without modification. The details of the treatment will not be given here, but small 
particles differ from atoms in that their size and shape are not constant. Moreover, the reg
ular cohesive forces which exist between atoms (Van der Waals forces, etc.) lead to fairly 
regular statistical distributions of neighboring atoms, whereas the cohesive forces between 
small particles differ with their nature and external shape, so that the statistical distributions 
of such systems are rather complex. Thus there are very few cases in which the theory of 
X-ray scattering for liquids is strictly applicable, and special care is generally necessary in 
the interpretation of small-angle scattering from densely packed particles. 

The following is a brief description of the main points of scattering theories for densely 
packed systems of particles with certain specific shapes. 
A. Spheres of uniform size 
In the scattering Eq. 2.28, derived initially by Zernicke and Prins^^^ and by Debye and 
Menke^^^ for monatomic liquids, replacement of the atomic scattering factor/by the num
ber of electrons n in one article and the scattering function, ^(s), for a sphere (see again 
Table 5 of the Appendix) gives 

liS) = hMn^Y{s) ' | l +JJ° Anr^ [p(r)-po ] ̂ ^ drj (5 74) 
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Po is the average particle density in the system and p{r) is the particle density in the imme
diate environment of a particle. It should be noted that Eq. 6.74 is of the same form as Eq. 
2.28, with the scattering intensity *F for a single spherical particle in place of the square of 
atomic scattering factor,/^. 

If the radial particle density distribution P(r) is zero for 0 < r < /? and constant for 
r>R (the case with Fig. 2.16(a)), the value for intensity given by Eq. 6.74 is dependent 
upon the particle density, since particle density p(r) = P(r)/v. The effect is such that inter
ference increases with increasing particle density, but approximates more closely to single 
particle scattering as the density decreases. This is shown in Fig. 6.15. The dependence 
does not change in character even if the scattering body is rod-shaped or lamellar rather 
than spherical. 

Fig. 6.15 Theoretical scattering curves for rigid spherical particles having various packing densities 
isR = 27tSR = 27t£Ra).^^ 
[Reproduced from A. Guinier, G. Foumet, Small-Angle Scattering ofX-Rays, p.50, John 
Wiley & Sons, Inc. (1955)] 

Foumet̂ ^^ has also derived a general equation, but based on a rather different approach. 
Lund and Vineyard^ ̂^ have calculated the scattering intensity for clusters of several spheri
cal particles. 
B. Spheres and ellipsoids of revolution of different sizes 
Foumet̂ ^^ calculated the scattering intensity for dense assemblies of spheres having two dif
ferent radii, and Kratky and Porod^^ and Hosemann^^^ calculated intensities for dense assem
blies of spheres whose radii have a Maxwellian distribution. 

Roess and ShulP^^ calculated the scattering by an ensemble of ellipsoids of revolution. 
C. Dense accumulations of lamellae 
Kratky and Porod^^ calculated the intensity for this case as a model of the structure of the 
crystalline regions in natural and synthetic fibers. In this case neither the thickness of the 
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Fig. 6.16 Influence of m on the scattering curve for lamellar packing.^' 
[Reproduced from p . Kratky, G. Porod, /. Colloid Sci., 4, 35, 
Academic Press (1949)] 

lamellae nor the distance between them is constant. Various analyses all give scattering 
curves with a maximum in the same position despite differences in the statistical treatment 
of the thickness variation, as shown in Fig. 6.16.̂ ^ This maximum can be interpreted as cor
responding to the position of the Bragg diffraction (Eq. 4.1) for the average distance be
tween the layers in the crystalline region. Kratky and Porod extended the theory further 
and carried out numerous investigations on the structure of fibers. Section 13.6.3 gives 
more details of techniques, results, etc. 
D. Parallel bundles of long cylinders 
This theory, which is applicable to cellulose fibrils, was developed, and the calculations 
performed, by Kratky and Porod^^ using the same statistical methods as in C above. 

6.2.6 Small-angle scattering from a non-particulate system 
A. Scattering power and invariant 
If we write the electron density p(r) of an inhomogeneous system (volume V) as 

p(r) = <p(r)> + Ap(r), (6.75) 

where < p(r) > is the average electron density of the system and Ap(r) is fluctuation of the 
electron density. The scattering amplitude of the system is 

S(S) = j < p(r)> exp[27r/(S • r )]dv. + j Ap(r) exp[2;r/(5 • r )]dv. ^^j^^ 

In an ordinary case, the first term in the right side can be neglected in the very neighbor
hood of Sr = 0, and if r = r2 — n 

S(S) = JAp(n)Qxp[-2m(S'ri)]dVri\Ap(r2)exp[2m(Sr2)]dVr2 

!U I Ap(ri + r)exp[2;r/(5 • r)dvri]dv, 
ir=ri-n) (6.77) 

file:///.5/-
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Let 

then 

Q{r) = j Apin )Ap(ri +r)dVri (5 78) 

I(S) = JQ(r)Qxp[2m(Sr)]dVr (5.79) 

or inversely 

e(r) = J/(5)exp[-27r/(Sr)]dv. 
(6.80) 

If r = 0 in Eqs. 6.78 and 6.80 

]_ 
;Q(0) = ^\{Ap{rj)fdVj = <(Ap(r)f> = y{l{S)dVs (6.81) 

Eq. 6.81 shows that the mean square deviation of the electron density <C(Ap{r)y > is equal 
to the total scattering intensity per unit volume. This may be called the "scattering 
power"of the system. 

For isotropic scattering the right side of Eq. 6.81 may be written as 

Q(0) = 47r[s'l(S)dS (6.82) 

This type of integral scattering intensity has been termed the "invariant".'^^ 
The volume of the particle can be determined, using the Q and 1(0), the scattering in

tensity at zero angle, as 

V=m/Q (6.83) 

For the two-phase system, in which pi and Xi are the electron density and the volume frac
tion of the disperse phase (or solute), respectively, and p2 and X2(~ ^ ~ X\) those of disper-
sant (solvent), respectively. 

(Pi - P^fx,X2 = (^pfx^X2 = < WP)' > (6.84) 

Substituting this into Eq. 6.81 

(pi-p2) 'ZiZ2=fi(0)/^ (6.85) 

This can be applied to the crystallinity (volume) measurement of the system consisting of 
crystalline and amorphous regions by means of X-ray small-angle scattering. 

B. Correlation function and specific internal surface 
The correlation function^ '̂̂ ^^ (or characteristic function^^"^^ )̂, /(r) mentioned before (Section 
6.2.3A) can be written as follows using the Q and 2(0). 

_ Q{r) _ J/(5)exp[2;r/(5.r)]dv. 

In a randomly distributed two-phase system, for electron densities pi and p2, such as 
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holes in a solid or particles interspersed with voids, it has been shown^^^ that 

Y(r) = e x p [ - rl< k > ] , (6.87) 

and 

O _ ^XiXi 
V <k> (6.88) 

The term OIV is the specific internal surface defined in terms of the overall volume of the 
system, V. k is the correlation length (or distance) or reduced inhomogeneity length,̂ '̂̂ ^^ a 
measure of the size of inhomogeneities, which gives the integral breadth of /(r). If we de
fine the transversal, or inhomogeneity, lengths h and h as given below, 

<U> = ^ ^ and <h> = ^ ^ /6R9^ 
OIV OIV ^^'^^^ 

by comparison with Eq. 6.44 it can be written as 

-^l^-^l^^^i^ (6-90) 
According to Kratky and coworkers, the < /i > and < /2 > can be visualized as follows.̂ "̂ ^ If 
we imagine the system to be pierced in all directions at random by rays (Fig. 6.17), the 
mean length of all the line segments intercepted, by the disperse phase is < /i > whereas 
the mean length of all the segments intercepted by the dispersant is < /2 > . 

Fig. 6.17 Transversal or inhomogeneity length."^ '̂ [Reproduced with permission from O. Kratky, Angew Chem., 
72, 478, Verlag Chemie (I960)] 

The theory of small-angle scattering has been presented in outline. For further details 
the reader is referred to other books on the subject.̂ '̂ ^̂ '̂̂ '̂̂ '̂̂ "̂̂ ^̂  Experimental methods and 
applications will be described in later chapters. 
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7. Structure of High Polymeric Substances 
As a basis for the discussion of the diffraction of X-rays by high polymers, we have dis
cussed the nature of X-rays themselves and the scattering of X-rays by various states of 
matter. The theory of X-ray diffraction as so far presented is, in general, applicable to the 
particular subject of this volume namely high polymers. High polymers, however, unlike 
low molecular weight substances in general, and ionic and metallic crystals, consist of huge 
molecules, and the shapes and detailed structures assumed by the molecules or their aggre
gates in liquid and solid states are very complex. These substances consequently form a 
unique class of structural systems. Since X-ray diffraction phenomena vary with structure, 
the structural uniqueness of high polymers should give rise to X-ray diffraction patterns 
which exhibit important characteristics not found with other substances. Before proceeding 
to a discussion of the practical applications of X-ray analysis to the special features of high 
polymers, we must first in this chapter make a brief general survey of the peculiarities of 
high polymer structure. 

The word "structure" applies to a substance at many different levels: in the normal 
crystalline substance, in so far as it affects X-ray diffraction, the first problem to be consid
ered is that of the structure at the atomic level ("fine structure"). This involves the steric 
arrangement of the atoms in the molecules from which the substance is formed. This, in 
turn, leads to an examination of the bonding relationships between atoms and the mutual 
orientations and contacts between the molecules. This kind of structural information gives 
valuable insights into the nature (i.e. the physical and mechanical properties) of the sub
stance. The situation is not so simple in the case of high polymers. 

In general, as will be discussed later on, crystalline high polymer substances can be 
thought of as consisting of two phases, crystalline and amorphous. This concept is impor
tant for "fine texture" (see brief remarks below) and has a strong effect on the physical and 
mechanical properties of high polymers. 

As this stage it becomes necessary to consider "crystallinity," that elusive variable 
which indicates the proportion of the crystalline to the amorphous regions in the polymer. 
Imperfections in crystalline regions (cf. Chapter 5) and some ordered arrangement of mole
cules in amorphous regions break down the clear distinction between the crystalline and 
amorphous regions. Differences in experimental technique can thus give rise to a different 
estimate of crystallinity (cf. Section 14.2.3), so that it is difficult to define crystallinity un
ambiguously. A second factor in high polymer fine texture is that of "preferred orientation 
of the crystalline region." This refers to the "type of orientation" and also to the "degree of 
orientation," an average direction—or distribution of directions—of (say) a certain axis of 
the unit cells with respect to some fixed direction of the polymer substance, in that type to 
preferred orientation. A third factor is the average "size of the crystalline regions" in such 
high polymer substances. In some favorable cases the average "shape of crystalline re
gions" may also be determined. "Lattice imperfections in crystalline regions" affect the av
erage size estimated of the crystalline regions and must be separated before determining the 
average size. The fourth factor is the detailed "structure of amorphous regions", and the 
fifth is the "arrangement of crystalline and amorphous regions throughout the polymer sub
stance" (higher order structure). Table 7.1 summarizes various factors of solid high poly
mer structure. 



136 7. Structure of High Polymeric Substances 

Table 7.1 Structure of solid high polymers 

Classification 

Fine structure 

Fine texture 

Higher order structure 

Itemization 

Molecular structure 
Crystal structure 
Distortion of the atomic arrangement 

(crystalline / paracrystalline / amorphous) 

Preferred orientation of crystalline regions 
Type of orientation (simple fiber structure, hehcal fiber 

structure, ring fiber structure, etc.) 
Degree of orientation 

Size and shape of and / or lattice imperfection in crystalline 
region 

Crystalhnity 

Structure of amorphous regions (or amorphous state) 
Short range order 
Chain orientation 

Arrangement of crystalline and amorphous regions and 
their interconnection with each other 

Regions 

Crystalline 

Amorphous 

Crystalline and 
Amorphous 

7.1 Structure of High Polymer Chains in the Liquid State and in 
Solution 

It is practically impossible to determine accurately the shapes of high polymer molecules in 
a liquid. However, if the molecule is globular of the like in shape or if the molecule has a 
random coil structure, some information on the structure of the molecule can be obtained by 
means of X-ray small-angle scattering (Chapter 15) or light scattering of its dilute solution. 

To determine the detailed structure of a molecule, it is usual first to assume the molecu
lar shape and size from the arrangement of atoms found by crystal structure analysis. In the 
case of linear high polymers, however, the general form of the molecules is often estab
lished without the need for a complete crystal structure analysis. For instance, the mole
cules of a linear high polymer may be built up from a constant monomer unit, and their 
stereoregularity may be predictable from the feature of the polymerization reaction and 
from the fiber period found by X-ray analysis. Their three-dimensional structures may be 
investigated with the aid of models, and further information may be obtainable by infrared 
absorption, especially by nuclear magnetic resonance (NMR),'^ or by other physical meth
ods. 

7.1.1 Configuration and conformation 

The structure of high polymer chain molecules is determined by two factors, i.e. configura
tion and conformation. 
A. Configuration 
In vinyl polymers consisting of — CH2 — CHR — monomer units, for instance, head-to-tail 
( - CH2 - CHR - CH2 - CHR - )n and head-to-head ( - CH2 - CHR - CHR - CH2 - )„ 
isomers may be obtained during the polymerization process. The head-to-tail isomers again 
have isotactic, syndiotactic, and atactic isomers due to the stereoregularity, i.e. due to the 
regular or irregular appearance of the R substituents along the main chain (Fig. 7.1(a)). In 
the polymers of diene compound, = CH2, there exist isomers due to 1,4-
cis-, lA-trans-, 1,2-syndiotactic, and 1,2-isotactic addition (Fig. 7.1(b)).̂ "̂̂ '*̂  
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Fig. 7.1 Configuration of polymer chains. 
(a) Stereoregularity of vinyl polymers head-to-tail isomers, 
bi) Configurational isomers of poly butadiene. 

(Continued on p. 138.) 
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Fig. 7.1 — Continued. 
b2): Molecular structure of polybutadiene. 
[Reproduced with permission from G. Natta, Makromol Chem., 35, 112, Hiithig & Wepf Verlag 
(I960)] 
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B. Conformation 
Basic structures of high polymer chains are determined by three states, trans{T), gauche(G), 

ai) 

(a) a2) 

H 
gauche (G) 

120* 240' 

Internal rotation angle 

H 
gauche(G) 

4000 

800 

360° 

x-i L; _] <^o 
(b) T2'' {TG)^^^ TGTG,"'^ {TG)2{TG)2^^ T^GT.G' iT2G): (T2G2)2' 

Fig. 7.2 Conformation of polymer chains.'̂ ^ 
(a) aO Conformations along the C — C single bond in 1,2-dihalogenoethane; trans and two gauche. 

aa) Internal rotation angle along the central C — C single bond of w-butane vs. potential energy. 
(b) Conformations of polyethylene ^hains determened (except {TG)2{TG)2), among which the left 6 

conformations, from T2 to T3GT3G, were proposed by Bunn.^*'' H. Tadokoro: Right 2) 
[Reproduced with permission from H. Tadokoro, Structure of Crystalline Polymers, p. 18, Kagaku Doiin, 
Kyoto (1976)] 
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and the other gauche(Gy^ caused by the internal rotation along the C — C single bond of the 
main chain (Fig. 7.2).'̂ -̂'̂ ^ 

The conformation of a polypeptide chain is determined by two factors cp and y/: the 
twist about the Ca — N bond axis, cp, and that about the Ca — C axis, y/, since the two 
amide planes of amino acid residues are joined by the tetrahedral bond of a carbon atom. If 
the twist at every a carbon atom is the same, the chain forms a helix. Some foldings are 
easily achieved but others are not. These conditions are given in Ramachandran plot̂ ^ (Fig. 
7.3). Among the possible conformations, a-helix (or 3.613 helix) (Fig. 7.4),̂ ^ 310 helix,̂ ^ Ij 
ribbon, polyproline helix and antiparallel j3-pleated sheets^^ (Fig. 7.5) are important types. 
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Fig. 7.3 Ramachandran plot for a polypeptide chain of fixed dimensions."^^ 
(p: The twist about the Ca — N bond axis; (p: The twist about the Ca — C bond axis. 
a: Right-handed a-helix CUL: left-handed a-helix; j8: Antiparallel-chain /3 pleated sheet; 
pp-. Parallel chain f5 pleated sheet; C: Collagen-like coiled coil; PGII: Poly (glycine) II type heHcal 

structure. [Reproduced with permission from G. N. Ramachandram, V. Sasisekaran, Adv. Protein 
Chem., 23, 283, Academic Press (1968)] 

'̂ Bunn first used A; B and C for T; G and G?^^ Mizushima and Shimanouchi adopted T; G and G\^''^ In the 
field of high polymer solution, t, g^ and g ^ are being used.̂ '*' 

^̂  The 3/1 helix is customarily expressed as 310 helix in polypeptides. Three amino residues make one turn and 
hydrogen bonds complete rings of 10 atoms in the helix (Fig. 7.4).^' 
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(a) 3.6i3 or a-helix (b) 3io Helix 

Fig. 7.4 Helical chain.^^ 
(a) Right-handed 3.6i.3 of «-helix (ofR); hydrogen bonds complete 13-atom rings. 
(b) Right-handed 3io helix; hydrogen bonds complete 10-atom rings. 
[Reproduced with permission from T. L. Blundell, L. N. Jhonson, Protein Crystallography, 
p.32, Academic Press (1976)] 
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Fig. 7.5 P Pleated sheets. 
o and @ show that the side chains are below and above the paper, respectively. 
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7.1.2 Classification of chain molecules 
The classification of chain molecules on the basis of their shape in accordance with this 
scheme is shown in Fig. 7.6. Let us now consider how these molecular shapes arise. The 
shape depends primarily on the individual molecules themselves. New stable structures 
may, however, be found in the sohd state, owing to interactions between the molecules. 

(a) (b) (c) (d) (e) 

Fig. 7.6 Classification of chain molecules by shape. 
(a) Random coil: disordered form in liquid and amorphous states. 
(b) Straight chain: fully extended backbone. 
(c) Folded: linear or helical molecule folded with period of about lOOA. This group includes lamellar 

crystals of synthetic polymers {cf. Figs. 7.11 and 7.12) and cross-j3 type polypeptides {cf. Fig. 7.5). 
(d) Helical: a-helix of proteins and helical molecules of isotactic synthetic polymers: single, double, and 

triple helices. 
(e) Cyclic: ring-condensed peptides and siloxanes. 

A. Random coil 
Chain molecules in solution, for instance, have many possible, energetically similar confor
mations, and they have no fixed structure. They are like a mobile coil constantly changing 
due to rotation caused by thermal motion, intermolecular forces, and / or interaction with 
the solvent {cf. Fig. 15.24). 
B. Straight chain 
Trans conformation (7) is the energetically minimum state in linear polyethylene (R = H in 
( - CH2 - CHR - CH2 - CHR -XT^'K and the polymer chain takes a fully-extended pla
nar zigzag {T^ conformation (Figs. 7.2(b) and 11.12). Long extended chain crystals of 
polyethylene can be obtained by slow cooling of the melt from 227 °C under high pressure 
(5,000 atm).̂ ^ Poly amides such as Nylons and Kevlars basically have planar zigzag struc
tures, {cf. Fig. 7.5). 
C. Helical chain 
Polypropylene (R = CH3 in ( - CH2 - CHR - CH2 - CHR -)n) has two stereoregular 
configurations: isotactic and syndiotactic isomers. The main chain of the isotactic 
polypropylene, in which the R substituents change from small hydrogen atom to bulky CH3 
group, takes {TG)^ conformation (Fig. 7.2(b)) because of the intramolecular repulsion be
tween adjacent R ... R substituents along the main chain. The molecular shape changed to 
take a 3/1 helix (Fig. 7.7(ai).^^ On the other hand, syndiotactic polypropyrene takes a 72G2 
(or r2G2) conformation (Figs. 7.2(b) and 7.7(a2)).'̂ ''̂  Isotactic polystyrene molecule (R = 
C6H5) also has a similar 3/1 helical shape'̂ ''̂  as isotactic polypropyrene {{TG)^, Fig. 7.7(bi)). 
However, isotactic poly-o-methylstyrene molecule (R = C6H4(CH3-o) and isotactic poly-m-
methylstyrene (R = CeH^CHs-m) have a 4/1 and a 11/3 helical structures, respectively 
(Fig. 7.7(b2) and (bs)).̂ ^ Isotactic poly(methyl methacrylate) (PMMA) has a double helical 
structure consisting of two 10/1 helical PMMA molecules bound by van der Waals attraction. ̂ ^̂  
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a-Helix is one of the most important conformations found as a basic unit in many fi
brous and globular proteins (Fig. 7.4(a)). The keratins are mostly a-helix. Myosin, epider-
min, fibrinogen, etc. are also a-helical. Whereas nucleic acids have a double helix 
structure"^ (Fig. 7.8 (p.l45)) and collagen is a triple-helix.^^^ 

a )̂ 

Fig. 7.7 Helical molecules of some synthetic polymers. 
ai) isotactic polypropylene,"" aa) syndiotactic polypropylane.'^''^ 
[Reproduced with permission from G. Natta, Makromol. Chem, 35, 97, Hiithig & Wepf Verlag (I960)] 

{Continued on p. 144) 
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:JS^>^ 

bi) b2) b3) 

Fig. 7.7 —Helical molecules of some synthetic polymers. (Continued) 
bi): isotactic polystyrene'^''^ ba): isotactic poly-o-methylstyrene,^' 
bs); isotactic poly-m-methylstyrene''\ 
[Reproduced with permission from G. Natta, et al., Nuovo Cimento, 15, 69, Nicola Zanichelli Editore 
(I960)] 

D. Folded chain 
As described in Section 7.3, after the success of the growth of polymer lamellar crystals it 
has been concluded that inside the lamellar crystals of polyethylene and of many other syn
thetic and natural polymers straight chain or single helical chain molecules fold back and 
forth between the two faces of each lamella. 

The j3-pleated sheet structure found in many proteins is also one of the most important 
basic units to have a folded chain structure. Two neighboring polypeptide chains running 
in opposite directions are tightly connected by hydrogen bonds to form a sheet (Fig. 7.5). 
E. Cyclic chain 
Cyclic siloxane molecules, ring-condensed polypeptides are examples of this type of struc
ture. 



7.1 Structure of High Polymer Chains in the Liquid State and in Solution 145 

34 A 

3 - 4 / 

Fig. 7.8 Double hehx of nucleic acid (B-type)."^ [Reproduced with permission from H. R. Wilson, Diffraction 
ofX-Rays by Proteins, Nucleic Acid and Viruses, p. 103, Edward Arnold Pub. (1966)] 



146 7. Structure of High Polymeric Substances 

7.2 Molecular Aggregations in Solid High Polymers 

7.2.1 Globular proteins 
Globular proteins and the like can form almost perfect single crystals (Fig. 7.9), which con
tain water (or solvent) of crystallization (about 30% to 60%) and other molecules added to 
the protein solution in order to promote the crystallization (c/ Section 12.2). 

Fig. 7.9 Crystals of a flavoprotein, FP390 from Photobacterium phosphoreumP^ 
(a) Crystals appeared as thick square plates from potassium phosphate solutions. 
(b) The largest crystals were grown up to 1.5 mm in the square edge dimension. The crystallographic c axis 

lies perpendicular to the square plane, while the a and b axes are parallel to the edges of the square. 
[Reproduced with permission from A. Kita et al, J. Biochem., 110, 749, Japanese Biochem. Soc. (1991)] 

7.2.2 Synthetic and some natural high polymers 

The crystallization mentioned above is inherently impossible with ordinary synthetic and 
some natural high polymers; the non-uniformity of the molecules makes impossible. 
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The structure of these crystalUne high polymers is usually described by reference to the 
crystalline and amorphous components. Essentially two models have been proposed hither
to. 

A. Fringed-micelle model̂ "̂ ^ 
Chain molecules are stacked in a regular fashion in some regions and so give rise to a crys
tal structure (crystalline region or crystalline part) {cf. Fig. 11.12). The portions of mole
cules between crystalline regions, where molecules wander from one crystalUne region to 
the next constitute amorphous regions (or amorphous parts) (Fig. 7.10).̂ ^^ There may exist 
an intermediate region (paracrystalline region) between crystalline and amorphous regions 
(see Fig. 7.17). 

Fig. 7.10 Fringed-micelle model of a polymer. 
CR: cryotalline region, AR: amorphous region. 
(a) random orientation (unstretched)'^''^; (b) uniaxial orientation (stretched).^^''^ 
(a): [Reproduced with permission from M. Takayanagi, Buturi, 16, 19, Phys. Soc. Jpn. (1961)] 
(b): [Reproduced with permission from R. Hosemann, Polymer, 3,380, Butterworths (1962)] 

B. Folded-chain model 
In 1957-1958, Till,̂ ^^ Keller,̂ ^^ Fischer,̂ ^^ and Kobayashi'^^ discovered that linear polyeth
ylene molecules form lamellar crystals (so-called polymer single crystals) when crystallized 
from dilute solution under conditions approximating equilibrium (Fig. 7.11).̂ ^^ Based on the 
results of electron microscopic and electron diffraction studies, it was concluded that poly
ethylene molecules in the lamellar crystal assume a folded-chain structure.^^^ Outer, minor 
portions of the lamellar crystal where chain molecules fold back are considered to be an 
amorphous region, whereas major portions where chains stack regularly as crystalline re-
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Fig. 7.11 Lamellar crystals {cf. Fig. 7.12).̂ °) 
(a) Polyethylene: the a and b axes of the unit cell coincide with long and short diagonals of 

rhombohedron respectively. The c axis vertical to the plane of lemella. 
(b) Polyoxymethylene: (bi) two thin lamellae, (bi) spiral growth. 
[Reproduced with permission from N. Kasai, K. Kobayashi, Structure and Properties 
of High Polymers, pp.101. 102. 105, Maruzen (1963)] 
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gion (Fig. 7.12). This discovery led to the wide acceptance of the folded-chain model in
stead of the fringed-micelle model for the structure of many synthetic and natural crys
talline polymers. 

However, modifications such as short chain loops and long chain loops, and others 
were later introduced in the uniform chain folding assumed at the initial stage. Then the 
switch-board model,̂ ^^ in which some (or many) molecular chains go through from a lamel
la to the upper and / or lower lamellae, closer to the fringed-micelle model provided a much 
better explanation for the physical, mechanical, and rheological properties observed in the 
polymer specimen. 
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Fig. 7.12 Folded-chain model (lamellar crystal) of a polymer. 
CR: Crystalline region, AR: Amorphous region (looped portion), SCL: Short chain loop, LCL: Long 
chain loop, SBM: Switch board model part. *Unlooped chains to adjacent lamella(e). 

C. Some special cases of crystallization of polymers 
As a special case the urea adduct of poly(ethylene oxide) gives prismatic, single crystal
like crystals, the prism faces of which appear to be very similar to those of single crystals 
of small molecules but both ends of the prism do not have any well-defined shapes (Fig. 
7.13).'̂ ^ 

Fig. 7.13 Single crystal-like crystal of poly(ethylene oxide)-urea complex. Obtained by cocrystaUization from a 
solution containing poly (ethylene oxide) and urea.^'' [Reproduced with permission from H. Tadokoro, 
et ai, J. Polym. ScL, B2, 366, John Wiley & Sons, Inc. (1964)] 
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Spherulites (Fig. 7.14)̂ °^ are birefringent, usually spherical, structures (for X-ray stud
ies see Section 10.2.2) observable in polymers by optical (or electron) microscopy during 
the crystallization process through various stages of crystal growth. Formation of 
spherulites is recognized to be the most characteristic mode of crystallization from the melt. 

Fig. 7.14 Spherulites of polyethylene.^"^ 
[Reproduced with permission from N. Kasai, K. Kobayashi, Structure 
and Properties of High Polymers, p.l 10, Maruzen (1963)] 

Opal consists of spherical particles of silicon dioxide (Si02) with fairly uniform size 
and shape. Synthetic opals, made of either silicate or polystyrene, are commercially avail
able. Inside the spherical particle the silicate or the polystyrene does not form a crystal. It 
is amorphous by X-ray examination. However, these spherical particles pile up regularly to 
form a three-dimensional lattice. The size of these uniform amorphous spheres are of the 
order of the wavelengths of visible light. Therefore, it is supposed that an X-ray amorphous 
but optically crystalline lattice of opal gives Bragg reflections of visible light, which gives 
the fire and play of color in the opalescence of reflected and transmitted light.̂ '̂ ^ 

7.3 Structure of the Amorphous State and of Amorphous Regions in 
Solid High Polymers 

7.3.1 Random-coil model 
Figure 7.15(a) shows a random coil model for the structure of the amorphous state in linear 
high polymers consisting of chemically bonded long chains (cf. Fig. 15.24). This model 
was presented by Flory^^^ based on his thermodynamical theory on high polymers. All long 
chain molecules have random coil structure; each of the chain molecules has locally no or
dered structure and none of the molecular aggregates possess well-defined arrangement be
tween molecules. 

However, as was mentioned in Section 2.8, the spatial arrangement of the atoms in 
matter which is identified as being in an amorphous state generally exhibits at least some 



(a) Random-coil model (Flory).^^^ 
Solid line, dotted line, broken line, etc. 
are used in order to make individual 
molecular chain clear. 
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(b) Fo lded-cha in- f r inged-mice l la r -gra in 
model (Yeh).''^ 
OD: ordered region, GB: grain boundary, 
IG: inter-grain. 

(c) Collapsed-ball model (Vollmert), (d) Meander model (Pechhold), 

Fig. 7.15 Models of amorphous structures. 
(a) Random-coil model (Flory); (b) Folded-chain-fringed-micellar-rain model (Yeh); (c) Collapsed-
ball model (VoUmart); (d) Meander model (Pechhold). 
(b): [Reproduced with permission from G. S. Y. Yeh, J. Macromol. Sci. Phys., 86 465, Marcel Dekken, 

(1972)] 
(c): [Reproduced with permission from B. Vollmert, H. Stutz, Angew. Makromol. Chem., 3, 188, Hiithig 

&WepfVerlag(1968)] 
(d): [Reproduced with permission from W. Pechhold, S. Blasenbrey, Kolloid-Z. Z. Polymere. 241, 955, 

Dr. Dietrich Steikopff Verlag (1971)] 

short range order. The experimental results on amorphous materials suggest that the aggre
gates of these chain molecules have some ordered structures and arrangements. 

7.3.2 Folded-chain-fringed-micellar-grain model 

Among the alternate models proposed so far for the structure of amorphous state (Fig. 
7.15(b)-(d)),̂ ^"^^^ the folded-chain-fringed-micellar-grain model (Fig. 7.15(b)), presented by 
Yeĥ ^̂  based on the results of electron microscopic and other studies, is presently consid
ered the most plausible for the structure of amorphous state. 

7.4 Fine Texture in Solid High Polymers 
From the above account of the special features of crystalline and amorphous structures 
based on polymer molecular structure, it will be readily appreciated that actual structures of 
solid high polymers can be rather complicated. To close this brief chapter, the complexities 
of polymer structure will be systematized (cf. Table 7.1) and some characteristic types illus
trated. 

Figure 7.16 shows two model structures of crystalline linear polymer with different fine 
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(a) (b) 

Fig. 7.16 Two model structures (fringed micelle model) of crystalline linear polymer with equal crystallinity but 
different size of crystalline region (rectangles represent crystalline regions).^^^ 
[Reproduced with permission from G. Bodor, Structural Investigation of Polymers, p.264, Akademiai 
Kiado(1991)] 

Amorphous 

Paracrystalline 

Fig. 7.17 Paracrystalline regions between crystaUine and amorphous regions (fringed micelle model). 

texture.̂ ^^ They are well-known fringed micelle-type model of structures. In Fig. 7.16(a) 
small regions of crystalline order (crystalline region, crystalline part, crystallite) are formed 
by sections of molecules: the polymer consists of crystalline and amorphous regions. For 
simplicity, in these models paracrystalline regions transitional between crystalline and 
amorphous regions (Fig. 7.17) are not considered. In this model 1/4 of the structure is crys
talline region. The crystalline regions are small, the section of which are square, and these 
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regions are spread in an amorphous matrix with random orientation. The other model is 
given in Fig. 7.16(b). Crystalline regions are two times larger than those in (a), their sec
tions are rectangular, and in an amorphous matrix they dispersed so that the chain axes (say 
the c axes) are vertical (presumably the structure has a uniaxial orientation). However, both 
structures have equal crystallinity of 25%. Naturally since there is a density difference be
tween the crystalline and amorphous regions in the two models, both structures may give 
central diffuse small-angle scattering with slightly different feature with each other. Fig. 

Fig. 7.18 Model of fine texture of stretched linear polyethylene. 
A: Amorphous region; CF: Clustered fibrils (hot stretched)^°^; CG: Part corresponding to crystal growth 
in the bulk material; E: End of molecular chain; FP: Structure giving four-point diffraction pattern; LB: 
Long backfolding of molecular chain; MF: Migrating fold; P: Paracrystalline layer lattice; S: Straight 
chains; SB: Short backfolding of molecular chains; SC: Lamellar crystals (single crystals); SF: Single 
fibrils (cold stretched); SH: Shearing region; ST: Texture corresponding to the Statton model (cf. Fig. 
7.10(b)); V: Void 
[Reproduced with permission from R. Hosemann, Polymer, 3, 387, IPC Business Press (1962)] 

7.18 is a model of fine texture of stretched linear polyethylene.^^^ In this figure many struc
tural elements of the fine texture are shown. 

In Figs. 7.19 - 7.21 are shown mostly models for the structure of some biologically 
interesting substances, such as photoreaction center in a membrane of photosynthetic bacte
ria,̂ '̂  riboflavin synthase,̂ ^^ and muscle.̂ ^^ 
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Fig. 7.19 Stereoscopic drawing of the photoreaction center of Rhodopseudomonas viridis. H, M, L, and C show 
H, M, L, and C subunits, respectively.^'^ 
[Reproduced with permission from J. Deisenhofer et al., J. Mol. Biol., 180, 385, Academic Press 
(1984), Nature, 318, 618, MacMillan (Journals)(1985)] 

(a) 

Fig. 7.20 Riboflavin synthase of snake asjSio- Three a-subunits (Mr. 23,500) are included in an eicosahedrally 
symmetrical 60-mer of jS-subunits (Mr. 16,200, 154 amino residues).̂ ^-* 
(a) Eicosaheadral symmetry of a 60-mer with crystallographic symmetry axes; (b) Structure of a /3-sub-
units; (c) Structure of a 60-mer of j8-subunits; Projected along a five-fold axis of an eicosahedral struc
ture. (Three a-subunits are not located.); (d) As above. Projected along a three-fold axis. 
[Reproduced with permission from R. Ladenstein et al., J. Mol. Biol., 203, 1045, Academic Press (1988)] 
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Fig. 7.21 A skeletal muscle and actin-myosin interaction.^^^ 
(a) Structure of a skeletal muscle. Each myofibril is made up of thousands of identical repeating units 
called sarcomeres, which are the smallest functional units of the muscle; (b) Structure of a sarcomere; 
(c) Actin-myosin interaction. 
[Reproduced with permission from K. Wakabayashi, Y, Amemiya, Handbook of Synchrotron 
Radiation, (S. Ebashi et al eds.), 4, pp.601, 602, 606, Elsevier (1991)] 
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Experimental 



8. Experimental Methods 

8.1 Preliminary Considerations 
Before commencing an experimental investigation, careful attention must be given to the 
choice of apparatus and procedure: the resultant X-ray diffraction pattern should be that 
which most readily yields the required information about the specimen. The right decision 
on the type of diffraction pattern to be obtained obviously depends upon a knowledge of the 
kind of information educible from each particular type of pattern. A similar knowledge of 
the types and applications of available apparatus is necessary for a suitable choice of exper
imental equipment (X-ray camera, diffractometer, etc.), X-ray parameters (wavelength, in
tensity, monochromatization, etc.), and the establishment of experimental procedures 
(method of recording diffraction intensities, etc.). Knowledge of the state of the specimen 
{e.g. its dimensions, chemical and physical stability, toxicity, etc.), information on its pre-
treatment, and any information already obtained by other methods, all provide essential 
data for planning the investigation. 

When X-rays are incident upon an object in one direction, the diffracted rays are dis
tributed among all directions in space centered upon the object. If the orientation of the ob
ject with respect to the incident X-rays is changed, a different diffraction pattern results de
pending on its internal structure, and the intensity of each diffracted ray also varies. The 
object of all X-ray diffraction investigations is to find one or more of the following three 
essential variables, which therefore form the three basic criteria in X-ray diffraction studies. 

1. The features of the diffraction pattern (whether sharp or broad spots, lines, or arcs, 
or broad halos) 

2. The directions (in 20) in which the scattered X-rays are diffracted (which necessari
ly involves measuring the orientations of the specimen and the observation point with re
spect to the incident X-rays) 

3. The intensity of the diffraction in the various directions (in the case of a continuous 
pattern, the intensity distribution within the pattern) 

The importance of these evaluations, and the precision with which they must be made, 
will depend upon the objective of the analysis. Even during the course of an investigation, 
the ultimate usefulness of a particular X-ray diffraction pattern may come into question, 
and it may be that the need to verify some tentative conclusion (or a requirement for more 
detailed information) will dictate the subsequent course of the investigation. 

8.2 X-Ray Equipment 
As mentioned earlier. X-rays obtained from X-ray generators or from synchrotron radia
tions are used in the experiments. 

8.2.1 X-ray generators 

X-ray generators can be divided roughly into (A) equipment using sealed tubes and (B) 
equipment using demountable tubes. Sealed tubes are employed in ordinary investigations. 
On the other hand, demountable tubes can incorporate rotating anodes (or anticathodes) 
which will support a high current density, and can therefore give greater X-ray intensities. 
Both are designed for convenience in use, and various safety devices are incorporated, so 
that even the beginner should experience no trouble if they are used in accordance with in
structions. 
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Fig. 8.1 Sealed X-ray tube. 
(a) Commercial sealed X-ray tube (Philips); (b) Diagram; (c) X-ray intensity distribution. 
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A. Sealed X-ray tubes 
The X-rays generally emerge through four windows; a point focus is seen in one direction 
and a line focus in the perpendicular direction. The direction of maximum X-ray intensity 
varies from tube to tube, but is inclined at an angle of about 6-10° to the surface of the an
ode {cf. Fig. 8.1). The maximum operating current for this type of tube depends upon the 
anode material. 

B. Rotating anodes X-ray tubes 
To increase the intensity of the X-rays, the anodes of these tubes are made to rotate, so that 
cooling is improved and greater currents are possible. At present, tubes which permit cur
rents at 200-300 mA are widely used (Fig. 8.2), and those up to 1.5 A (90 kVA) are com
mercially available. 

(a) (b) 

Fig. 8.2 Rotating anode X-ray generator, (a) X-ray generator (Rigaku, UltraX 18). (b) UltraX 18 
(Right) installed with small- and wide-angle diffraction apparatus with Imaging plate (IP) 
(Left) (Rigaku, SWXD). 

Figure 8.3 (p. 162) shows an X-ray generator with a self-rotating anode combined with 
a high-frequency power supply, which bears no direct or indirect anode drive system. This 
unit has the advantages of generating X-rays under a smooth high voltage and cutting off 
vibration or belt friction noise as well as minimizing the window-to-instrument distance. 

C. Micro-focus X-ray tubes 
If the width of the electron focus on the anode is less than about 0.1 mm, the effectiveness 
of the anode cooling system is improved, and the permissible current density is greatly in
creased. It therefore becomes easy to obtain a sharp X-ray beam of high intensity, which is 
very effective for the production of intense diffracted rays from small crystals or from small 
areas of the specimen. The electron beam of a micro-focus X-ray tube is focused with elec
trostatic or electromagnetic lenses. Tubes with cored electromagnetic lenses are smaller 
than those with electrostatic lenses, and give a stable focus. Very high brilliancy is ob
tained with the rotating anode micro-focus tube. 
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Fig. 8.3 Rotating anode X-ray generator (Turbo X-ray Source (TXS), Bruker AXS). 
(a) Outlook of D8 Super Speed Solutions Turbo X-ray Source (D8 SSS TXS). 
(b) Elevation view of TXS (Only point focus is shown). 
(c) D8 SSS TXS (Left) installed with Multilayer Optics (Gobel mirror) 

and D8 Goniometer (Right) (Bruker AXS). 
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8.2.2 X-ray detectors 

A. Point detectors 
a) Scintillation counters and proportional counters. Both counter tubes are widely used 
for the collection of diffraction intensity data by point by point scanning. Structures and 
characteristics of these counter tubes and a GM counter tube are compared briefly in Table 
8.l'>(c/:Fig. 8.5). 

Table 8.1 Comparison of counter tubes" 

Cross section^ 

Energy analysis 

Pulse-height 
analyzer 

Sensitivity to short 
wavelength X-rays 

Dead time 

Operating voltage 

Other remarks 

GM counter tubes 

C A 

Not possible 

No 

Poor 

50-300 IIS 

about 1,300 V 

Proportional counter tubes 

fP^T'^'^^TT J 

E w ^ ^ 
X-rays 

Excellent 

Yes 

Poor 

about 0.2 jUs 

about 1,850 V 

Incident X-ray quanta re
maining after excitation of 
fluorescence in the gas give 
rise to low energy (escape) 
peaks 
icf. Fig.8.33(b)) 

Since the sensitivity near the center is low, this area is 
avoided. 

Scintillation counter tubes 

. „ l l PMT 1 
sc 

Good 

Yes 

Good 

about 0.2 jLis 

about 1,000 V 

Noise level higher than in 
proportional counters 

^ Key—A: anode; C: cathode; W: window; SC: scintillation crystal; PMT: photomultiplier tube. 
Figs: [Reproduced with permission from lUCr, International Tables for X-Ray, Crystallography, Vol. Ill , p. 145, 

Kynoch Press (1962)] 

b) Solid-state detectors (SSD) (or semiconductor detectors)}^ The detector consists of 
two conducting electrodes and the region between these electrodes is filled with a semicon
ductor crystal. A voltage difference is applied across the electrodes, producing an electric 
field in the semiconductor. An X-ray entering the semiconductor is totally absorbed and 
loses its energy by producing free charge carriers, i.e. electron-positive hole pairs, in the 
semiconductor. The carriers, the number of which is proportional to the X-ray energy, 
move under the influence of the electric field until they are collected at the electrodes or 
trapped internally in the crystal. The signal is amplified and shaped to produce a pulse 
whose amplitude is proportional to the energy lost by the X-ray. 

The structure of the detector most commonly used is shown in Fig. 8.4.̂ ^ A trench de
fines the sensitive volume of the detector and also serves to protect the highly sensitive 
junction between the i and p type semiconductor regions from contamination (Fig. 8.4(a)). 
For optimum resolution the detector capacitance must be low; a typical high performance 
detector has an area of 25 mm^ and a thickness of 3 mm, which keeps the capacitance be-
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Fig. 8.4 Solid state detector (SSD).^^ 
(a) Configuration of a semiconductor detector; (b) X-ray detector mount; (c) Detector-cryostat assem

bly. 
[Reproduced with permission from A.F.H. Meggleton, Nucl Instr. Methods, 101, 114, North-Holland 
Pub. (1972)] 
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low 1.5 pF. The detector entrance window is formed by a gold surface barrier having thick
ness equivalent to 0.2 jLim of silicon or 1 /im of germanium. In order to stabilize the com
pensation by lithium in germanium or in silicon, in operation the detector must be cooled to 
liquid nitrogen temperature (77 K) to minimize electrical noise due to thermally excited 
carriers in the bulk material. The diode is required to operate at liquid nitrogen temperature 
with a collection field of up to 2,000 V/cm and a leakage current less than 10 pA. As the 
intrinsic surface is extremely sensitive to atmospheric contamination, efficient cryogenic 
equipment is required to contain the device. Currently cooling by liquid nitrogen or cool
ing by Peltier effect is employed. Resolution between scintillation, proportional and semi
conductor detectors for Ag^ radiations is compared in Fig. 8.5. 

AgKa 

400 

Channel number 

Fig. 8.5 Comparison of resolution between scintillation, proportional and semiconductor Si(Li) detectors for AgK 
radiations.̂ ^ [Reproduced with permission from A.F.H. Meggleton, Nucl. Instr. Methods, 101, 114, 
North-Holland Pub. (1972)] 

B. Line detectors 
Position sensitive proportional counter (PSPC). In this proportional counter, the position 
where an electron avalanche, caused by an incident X-ray photon, hits the positive electrode 
is read out electronically by delay-line,^^^ resistive wire^^\ charge division '̂'̂  or wire-free-
wire"̂ "̂ ^ read-out technique. 

In the delay-line method, due to the high electrical potential of the anode wire, the elec
trons are collected on the anode wire and generate an electrical charge, which is transferred 
to the capacitively coupled delay-line. This charge is carried away by two pulses moving in 
opposite directions and they arrive at different times at the end of the delay-line. This time 
difference is measured, which corresponds to the location of incident photon (Fig. 8.6). 
Both linear and curved PSPC (Fig.8.17) are available. 
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Fig. 8.6 Scheme for delay-line position sensitive proportional counter and intensity data transfar system with 
multi-channel analyzer and computer-aided measurement and control.^^* 
[Reproduced with permission from T. Yamanaka, et al.. Adv. X-Ray Anal, 35, 417, Plenum Press 
(1992)] 

C. Area detectors 
a) X-ray film. X-ray film is an integration type two-dimensional position-sensitive detec
tor, which is very useful to obtain information on the whole feature of the diffraction. The 
spatial resolution is very high. X-ray film is cheap, and the diffraction diagram obtained 
can be kept semi-permanently. However, it has some drawbacks in that careful chemical 
processing such as development, fixing, washing, and drying is necessary before obtaining 
the X-ray diffraction photograph, densitometry is necessary to obtain intensity data digital
ly, the S/N ratio is not so large due to the fogging, and the dynamic range of the non-linear 
energy/sensitivity characteristic curve is narrow compared to the counter tubes and imaging 
plate. 

Reports have been published on the characteristics of X-ray film produced in various 
countries."^^ However, very few are commercially available at present. 

Coating both sides of the base by emulsion practically doubles the blackening for inci
dent X-rays normal to the film. In some cases, however, the X-rays strike the film oblique
ly so that the diffraction pattern is sHghtly displaced on the side away from the incident 
beam. In such cases, the emulsion on the backside must be masked by an appropriate tape 
during development or the backside emulsion must be removed after fixing by an aqueous 
solution of sodium hydroxide {ca. 6N in concentration) for accurate measurement. 
b) Storage phosphor detector. A storage phosphor detector, called an Imaging plate (IP) 
is an erasable new two-dimensional detector to supersede X-ray film. It was originally de-



8.2 X-Ray Equipment 167 

veloped by Fuji Film Co. Ltd., Japan, mainly for diagnostic radiography.^^ The IP is ap
proximately 0.5 mm in thickness and is composed of a flexible plastic plate coated with 
fine photostimulable phosphor crystals, BaFBr : Eu^^, typically 150 ^m in thickness, com
bined with an organic binder. The photostimulable phosphor is capable of storing a fraction 
of the absorbed incident energy from irradiation with X-rays (or ultraviolet light, electrons 
or protons). When later stimulated by visible or infrared radiation, it emits photo-stimulat
ed luminescence (PSL), the intensity of which is proportional to the radiation energy ab
sorbed. As shown in Fig. 8.7, the X-ray image stored in IP is read out by a scanning He-Ne 
laser beam (A = 632.8 nm) which releases the PSL radiation (A ^ 390 nm). Scanning is 

-Photostimulable phosphor crystals 

-Support 

X-ray photons 

fe^ kMk Exposure 

Laser beam scanning 
-Luminescence 

Laser beam 

V 
Reading 

Light 

^A-^A^A-^A^i^t^ 

Photomultiplier tube 

Y////////////ZZ1 

Imaging plate 

Erasing 

Fig. 8.7 Principles of image recording, reading and erasing with an imaging plate (IP), a storge phosphor 
detector.^^ 
[Reproduced with permission from J. Miyahara, et ai, Nucl. Instr. Methods, A246, 573, North-Holland 
Pub. (1986)] 

performed with the laser beam which is deflected by a scanning mirror, while the IP is tra
versed so as to form an orthogonal scan. The PSL radiation released by laser scanning is 
collected through a light guide and channeled into a photomultiplier tube (PMT), which 
converts the PSL radiation into electrical signals. The output signals form histogram slices 
of the incident X-ray intensity in the IP. In ordinary cases, the residual X-ray image in the 
IP can be erased simply by exposing it to a large dose of visible light. 

In order to obtain an X-ray diffraction diagram, the digital signals are reconverted into 
analog signals that modulate the intensity of another He-Ne laser beam. The modulated 
beam is then used to scan a photographic film to imprint the image on it. The film is finally 
developed to display the image. Many IP detector systems for X-rays are commercially 
available. 
c) Multi-wire proportional counter (or multi-wire proportional chamber) (MWPC). The 
MWPC is simply a chamber containing a large number of anode wires, each acting inde
pendently as a position-sensitive proportional counter. The MWPC usually consists of a 
parallel array of wires in a plane which is separated from the plane of anode wires by a few 
millimeters. The MWPC used for X-ray experiments normally has two planes of cathode 
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wires, one on either side of the anode plane (Fig. 8.8), and the delay-line read-out technique 
is ordinarily apphed.^^ 

Incident diffracted X-rays 

Cathode 1 
Pulses 

r̂  r ^ r /̂  
Pulses 

Fig. 8.8 Principle of multi-wire proportional chamber (MWPC).^^ 
[Reproduced with permission from G. Charpak, F. Sauli, Nucl. Instr. Methods, 152, 185, North-
Holland Pub. (1978)] 

d) Charge-coupled device (CCD) area detector J^^ In a CCD area detector a two-dimen
sional array of photodiode is used as pixel to replace the image orthicon in the TV area de
tector. Diffracted X-rays are first converted to light usually by means of a scintillator or a 
phosphor, which are then guided to CCD for detection by optical relay, either high-quality 
lens system or coherent fiber-optic taper or faceplate (Fig. 8.9 (a)). A CCD area detector 
coupled with Be-windowed X-ray image intencifier is also used for synchrotron radiation 
experiments especially for small-angle scattering studies. 

Detective quantum efficiency and signal-to-noise (S/N) ratio of some X-ray detectors 
are respectively compared in Fig. 8.9 (b).̂ ''̂  As compared with a CCD, an IP has large de
tecting area for diffracted X-rays and also has very wide dynamic range in recording the 
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Fig. 8.9 Charge-coupled device (CCD) area detector. 
(a) Fiber-optic taper (FOT) CCD (Left) and direct imaging CCD (Right) (Bruker AXS). 
(b) Comparison of detective quantum efficiency of X-ray detectors'''^) 

[Reproduced with permission from A. Amemiya, K. Ito, / . Cryst. Soc. Jpn., 45, 171, 
Cryst. Soc. Jpn. (2003)] 
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diffraction intensity. However, the read-out time of X-ray image stored in CCD detector is 
much faster than that in IP. The CCD detector is therefore often used for synchrotron radia
tion experiments for alignment of protein crystal, native or heavy atom derivative, and also 
for qualification examination of a crystal within a short time. 

e) Television area detector. In short this is a scintillation screen with television-type 
read-out.̂ ^^ Direct and indirect type detector systems have been developed: the former uti-
Hzes an X-ray sensitive image orthicon to detect X-ray diffractions whereas the latter uses 
an ordinary image orthicon to detect scintillations on a screen caused by X-ray diffraction. 
This TV detector also has higher sensitivity and wider dynamic range. 

8.2.3 X-ray cameras 

A. Laue cameras 
This is the simplest type of camera, with both specimen and film stationary. A flat film (or 
IP) is used, and diffraction patterns can be recorded by the transmission method, the back-
reflection method, or side-reflection method. The specimen-to-film distance depends on 
the greatest angle at which diffraction is to be recorded, but is normally about 3-5 cm. 

Powder diagrams and fiber photographs are commonly made using characteristic X-
rays. Methods using this simple camera have the advantage that the specimen can be readi
ly heated, cooled, stretched, or compressed. They suffer from the disadvantages, however, 
that the range of measuring angles is small, the layer lines are hyperbolic, and specimen-to-
film distance and the shapes of the spots vary from spot to spot. It is therefore recommend
ed that cylindrical film be used in quantitative studies. 

With regard to alignment of the camera, the fiber axis need not be perpendicular to the 
X-ray beam, and specific high-order diffraction patterns can be obtained by inclining the 
axis of the specimen in the vertical plane containing the X-ray beam (Tilt photograph). 
Since the front of the film is completely exposed in this type of camera, care is necessary to 
avoid fogging by X-rays scattered from the sides. 
Goppel camera}^ With this camera (Fig. 8.10) the diffraction patterns of a polymer speci
men and the inner lines of the patterns of a standard sample are recorded simultaneously on 
the flat film or IP. Any variation in the intensity of primary beam can be ignored and those 

Diffraction 
from a polymer 

Fig. 8.10 Diagram of Goppel camera for simultaneously recording the diffraction patterns of polymers and the 
inner lines of the pattern of a standard sample.^' 1, Collimator; 2, Polymer specimen; 3, Reference 
specimen; 4, Goppel reference chamber for the reference specimen; 5, Film. 
[Reproduced from J. M. Goppel, Appl. Sci. Res., Al , 8. Academic Press (1949)] 
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due to thickness change of polymer specimen can be calibrated. This camera of equivalent 
diffractometer technique^^ is useful for X-ray crystallinity measurement. 

B. Rotating- (oscillating-) crystal cameras 
The crystal is rotated about one axis {cf. Section 4.1), at a rate of one cycle per 3-6 min, ei
ther through one complete revolution (360°) in one direction or with an oscillatory motion 
through 5-10°. In the latter case the crystal may be oscillated by a reversing synchronous 
motor (or an eccentric cam). The diameter of the film is usually 57.296 mm, which ensures 
that 1 mm on the film corresponds to a scattering angle of 2°. 

The reciprocal lattice of a uniaxially oriented specimen consisting of an aggregation of 
crystallites gives concentric circles {cf. Fig. 4.12), and the photograph obtained without ro
tation of the specimen is the same as if the specimen, with its crystal lattice and reciprocal 
lattice, had turned through 360°. The arrangement is basically the same as in the Laue 
method, except that a cylindrical film is always used. In the case of a doubly oriented spec
imen, however, if the direction of a second axis in the specimen is known, the reciprocal 
lattice is drawn as described in Section 4.4.1. The diffraction patterns can then be recorded 
separately by oscillation in such a way that diffractions are produced separately from spe
cific regions of the reciprocal lattice. However, the Weissenberg method is more conve
nient for this purpose. 

Figure 8.11 shows an automated oscillation camera for the intensity measurement of 
crystals of macromolecular substances.^^^ This camera has eight film cassettes and a maxi
mum of eight different oscillation diagrams can be taken. 

Fig. 8.11 Oscillation camera for crystals of macromolecular substances (Bruker-Nonius). 

C. Weissenberg cameras 
The principle of this camera has been described in Section 4.4.2 {cf. Fig. 4.12). The crystal 
is made to oscillate at a fixed angular velocity through an arbitrary angle, and the cylindri
cal film (or IP) is moved synchronously to and fro along the direction of the axis of rota
tion. A screen is placed between the specimen and the film so that the diffractions from a 
certain layer line is isolated and recorded alone on the film. 

A diameter of 57.296 mm and a gearing constant of 2 °/mm is the standard for conven
tional Weissenberg cameras. If the film-cassette carriage is disconnected from the crystal 
drive the camera can be used for oscillating-crystal or rotating-crystal experiments. In this 
case the screen is replaced by a beam stop. 
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a) Equi-inclination method (cf. Section 8.6.2 and Fig. 8.42). It is possible to measure 
spots close to the origin of the reciprocal lattice on the layer lines. Moreover, comparison 
of the diffraction intensities is very easy since the specimen-to-film distance and the angle 
of incidence on the film are constant for the spots on a given layer line with an single film. 
Because of the use of a screen, background scattering is reduced to one-tenth that of the os
cillating crystal method and one-hundredth that of the rotating crystal method, so weak 
spots can be measured more easily. 

In the case of highly oriented polymer specimens (e.g. those which are biaxially or 
doubly oriented), this is the most convenient method of separating the diffraction patterns, 
as well as of indexing diffractions, measuring intensities, and accurately locating the axis 
(see Fig. 8.47). 

If the unit cell is very large as in protein crystallography, a specially designed 
Weissenberg camera with large diameter utilizing IP may be used in combination with syn-

Weissenberg camera 

Bent Si (111) Sample 
crystal 

/Storage^ 
\ring 

Tangent 
point 

Imaging 
plate 

(a) 3m 1.2 m 

Fig. 8.12 Weissenberg camera with large diameter for macromolecular crystals. 
(a) Optical system of the large Weissenberg camera used at Beam line 6A2, Photon Factory, 
Tsukuba, Japan.'̂ ^ (b) Large Weissenberg Camera (Rigaku).'^' 
[Reproduced with permission form Y. Satow, et al.. Rev. Sci. Instr., 60, 2394. Am. Inst. Phys. 
(1989)] 
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chrotron radiation.^^^ Fig. 8.12 shows a picture of this type of Weissenberg camera system: 
with normal beam method, controlling the ratio of IP translation (0 .005^ mm/s) and speci
men rotation speed (0.002-2 7s), the best data collection conditions, such that there is no 
overlap of the diffraction spots on the IP and as many diffractions as possible are recorded 
on a single sheet of IP can be chosen. The radius of the film cassette can be set to either 
143.25, 286.5, 430.0 or 57.296 mm. In principle, the camera requires no screen, but the use 
of a screen with multi layer-line sets (radius of 132.5 mm) improves the S/N ratio by a fac
tor of at least 2 or 3. One of the weak points of this camera is that when the longest axis of 
the crystal is approximately parallel to the incident beam, diffraction spots will have a ten
dency to overlap each other with horizontally adjacent spots. This drawback can be avoid
ed if another movement of the cassette along the 26 direction perpendicular to the base line 
is added. 

b) Normal beam method.^^^ The experimental conditions are similar to those for the 
equator, except that the layer line screen has to be shifted to prevent all but desired nth lay
er diffractions, to be recorded on the film or IP. The method is called normal-beam 
method, since the incident beam is still normal to the crystal rotation axis. The disadvan
tage of this method is that it allows the recording of only those layer lines which appear on 
a rotation photograph. The displacement of the layer line screen is discussed in Section 
8.7.1C (See also Fig. 8.47). 

D. Precession cameras 
A photograph of this type of camera is shown in Fig. 8.13(a). In this camera the crystal 
axis precesses at a constant angle ^ to the incident X-rays. At the same time, the film exe
cutes a precession mechanically geared to the movement of the crystal (Fig. 8.13(b)), and 
an undistorted reciprocal lattice is recorded (Fig. 8.13(c) and (d)).'^^ The diffractions from 
a single layer line are selected by means of a screen placed between the crystal and the film. 

Whereas the layer lines in the rotating-crystal and Weissenberg methods give a recip
rocal lattice plane perpendicular to the axis of rotation of the crystal, an important charac
teristic of the precession method is that the layer lines selected are those of reciprocal lat
tice planes parallel to the axis of rotation. 

Since a flat film is used, the part of the reciprocal lattice that can be photographed is 
not large, and the design is usually such that /i ^ 30°. The region covered by the measure
ments naturally increases as the wavelength of the X-rays is decreased. This camera is use
ful when the unit cell is large and the reciprocal lattice points are consequently crowded 
into the "small angle" part of the film, as with proteins. Moreover, the exposure times are 
generally shorter than for Weissenberg photographs. The method is useful for recording 
diffraction intensities, but the multiple film technique (cf Section 8.6.2D) cannot be used. 
For specimens with diffuse patterns, such as polymers, the fact that the reciprocal lattice is 
undistorted in the diffraction photograph permits accurate measurement of the lattice con
stants, interplanar distances, and degree of orientation. 

The precession and rotation chamber, the combination of a precession goniometer with 
a rotating crystal chamber, is also commercially available. Under exactly equal conditions 
precession and rotation photographs are possible, adjustment is required only once. 
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(d) 

Fig. 8.13 Precession camera. 
(a) Commercial precession camera (Bruker-Nonius); (b) Movement mechanism: The crystal and the 
film are moved in such a way that each can rotate about two perpendicular axes. A pantograph ensures 
that the single reciprocal lattice plane (representing the crystal in the diagram) remains parallel with the 
film; '̂ ^̂  (c) Geometry for recording the nth reciprocal lattice point. To achieve same magnification for 
nth and zero levels the film must be moved a distance d/^ — R/dn^ nearer to the crystal {cf. Section 
8.7.2B); ^^^^ (d) hOl Precession photpgraph of Pseudoazurin from Methylobacterium extorquens AMl.^^''* 
(b), (c): [Reproduced with permission from M. J. Buerger, The Photography of the Reciprocal Lattice. 
pp.4,5, Am. Cryst. Assoc. (1994)] 
(d): [Reproduced with permission from T. Inoue, Doctral Thesis, p.20, Osaka Univ. (1994)] 
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E. Debye-Scherrer cameras (powder cameras) 
In this camera (cf. Section 4.4.4) the sample, often in powder form, is molded into a small 
rod or packed into a glass capillary tube. The resulting polycrystalline specimen is placed 
in the center of the camera, and as the specimen is rotated, the diffraction pattern is record
ed on a cylindrical film. Debye-Scherrer cameras are generally used for the qualitative 
identification of polycrystalline specimens. The accuracy naturally increases with the ra
dius of the camera, since the separation of the various diffraction lines improves. There is, 
however, a corresponding increase in exposure time. 
Gandolphi device. A tiny crystal or crystal fragment, which cannot be powdered, is given 
an infinite number of orientations by simultaneous rotation about two axes. The first axis is 
perpendicular to the X-ray beam; the second axis is inclined at 45° to the first axis (Fig. 
8.14). 

Fig. 8.14 Gandolphi device mounted in a small Debye-Scherrer camera (Bruker-Nonius). 

F. Convergent beam (focusing) cameras 
a) Convergent beam powder cameras. The principle of this type of camera is shown in 
Fig. 8.15. The specimen is smeared over a length of 3—4 cm along the circumference in 

Specimen 

Source 

(a) 

Specimen 

Film 
Film 

Focus (2) 

Source 

Fig. 8.15 Principle of convergent beam cameras, (a) Asymmetrical type; (b) Symmetrical type. 
[Reproduced with permission from International Tables for X-Ray Crystallography, 
(C.H. MacGillavry, G. D. Rieck eds.) Vol. Ill, p.85, lUCr. (1968)] 
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both the symmetrical (b) and the asymmetrical (a) types. Since the diffracted X-rays con
verge in accordance with the Bragg condition, the exposures are short. However, the 
method has the disadvantage that the low-order diffractions are weak because of the shal
low angle at which they strike the film. Polymer films can be curved and fixed directly to 
the specimen mount. 
b) Guinier cameras. In this type of camera a curved-crystal monochromator is used to 
cause the X-rays to converge. As shown in Fig. 8.16, both transmission types and reflec
tion types are available. In the normal Guinier camera, the convergent monochromatic X-
rays pass through the specimen, and the converging diffracted X-rays are recorded. By this 
method, all wavelengths except the Ka doublet are removed, and the background is good. 
Moreover, the quantity of specimen is comparatively large and the diffracted rays are made 
to converge. Consequently the exposures are not too long despite the use of the monochro
mator. Since the incident X-rays are separated from the diffracted X-rays by an angle of AG 
at the center of the camera, the dispersion is twice that of a Debye-Scherrer camera of the 
same diameter. This method is therefore more suitable for qualitative identifications. 

Curved /^ ^ X Curved 
crystal J ^^^^^^^f^^ \ crystal 

I Focus Specimen 

Fig. 8.16 Principle of Guinier cameras. 
(a) Transmission type (Bragg angles < 45°); (b) Reflection type (Bragg angles > 45°). 

G. Microbeam cameras 
This type of camera is suitable for the examination of very small crystals or particles, or for 
the investigation of the structure of texture of very small regions of polymers. Clear dia
grams of weak diffractions from small crystals or small areas can be obtained with short ex
posures by the use of an intense X-ray beam 10-100 /im wide. The apparatus is simple, and 
instead of using commercially obtainable equipment, the experienced investigator could 
well design and construct equipment to suit the purpose of his experiments. 

8.2.4 X-ray diffractometers 

Instead of recording diffraction pattern on a film. X-ray diffractometers measure the inten
sity distribution, either one-dimensionally or tw-dimensionally by means of a counter tube 
or an area detector. 

A. Powder diffractometers 
a) Scanning type diffractometers. The optical system of a goniometer, which, like the 
majority actually in use are based on the Bragg-Brentano technique, has its counter tube set 
to scan point by point, in a horizontal plane, is shown in Fig. 8.17. Using a 'line-focus" X-
ray source, the Soller slits, Sj and S2, limit the vertical divergence of the incident and dif
fracted beams to (say) 2°, so that the error in defining the equatorial direction is small. The 
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Anode ( c / Fig. 8.1) 
Divergence 
slit 

Receiving 
slit 

Divergence 
slit 

Fig. 

Anode 
(using line focus) 

.17 X-ray powder diffractometer (scanning type) : Principle of finding the diffracted intensity at Bragg an
gle 6 (equatorial). 
F: Focus (width co, height h); a: Glancing angle; Si, S2: Soller slits; I: Center of focus; II: Center of 
goniometer; III: Center of receiving slit; 7: Horizontal divergence angle; R: Goniometer radius. 
[Reproduced from L. Alexander, H. Klug, X-ray Diffraction Procedures for Poly crystalline and 
Amorphous Materials, p.241, John Wiley & Sons, Inc. (1954)] 

X-rays, which are also limited horizontally by the divergence slit, are diffracted by the 
specimen, and the rays having a diffraction angle of 26 are focused on the receiving slit and 
enter the counter tube. Vertical goniometers are also available and, although the movement 
of force exerted by the counter tube affects the spring loading of the worm gear during the 
scanning, they have the advantage that powder or liquid specimen is less likely to be lost. 

Scintillation counters or proportional counters give reduced background counts and 
great accuracy in intensity measurements. The intensities may be determined by 1) the 
strip-chart recording method using a rate mater or 2) the fixed-count method using a scaler 
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and timer. Method 1) is suitable for measurement of the diffraction profile, but it is neces
sary to use a suitable combination of scanning speed and time constant. Method 2) is useful 
for accurate measurement, since the random error of the measurements is constant, but the 
time required is excessive for angles at which the intensity is very low. 

Possible ancillary equipment for the investigation of high polymers includes mono-
chromators, facilities for heating and cooling the specimen, and holders for liquid speci
mens. Special equipment may also be provided for investigation of stretched or swollen 
specimens. Holders for fibrous specimens and equipment for the determination of pole fig
ures may be useful for determining the orientation of crystallites, and computer-controlled 
measuring devices are also available for the construction of pole figures. The blind region 
caused by the specimen holder is eliminated by a combination of the reflection and trans
mission methods. 

A Guinier diffractometer is also commercially available {cf. Section 8.2.3F(b)). 
b) Position-sensitive type diffractometers. A curved position-sensitive proportional 
counter with a large radius, installed horizontally on the 26 arm of the usual powder diffrac
tometer, has made possible the simultaneous collection of diffracted X-rays over 120° in 26 
(Fig. 8.18). Only a few seconds are needed to obtain a whole powder diffraction pattern be
cause of the extremely high counting efficiency due to the streamer mode. This type of dif
fractometer has advantages for the time-resolved observations of solid reactions and struc
ture transitions (Fig. 8.18 (c)) and other. 

(b) 

Fig. 8.18 X-ray powder diffractometer with curved position-sensitive proportional counter (PSPC). 
(a) Diffractometer for the time-resolved diffraction study (Rigaku, PSPC-MDG). 
(b) Illustration of a curved PSPC {cf. Fig. 8.6). 
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Mg(OH); 

(c) 

Fig. 8.18 —Continued 
(c) An example of the time-resolved diffraction pattern of the dehydration of Mg(OH)2 taken every 30 s. 
Every tenth pattern is presented in the figure.'̂ ^ 
[Reproduced with permission from T. Yamanaka, et al.. Adv. X-Ray Anal., 35, 421, Plenum Press 
(1992)] 

c) Energy dispersive diffractometers. Diffractions by various reciprocal lattice points 
due to several characteristic X-rays from a X-ray tube can be measured by a single scan by 
means of a multi-channel analyzer connected to the solid state detector (SSD). Compared 
to the ordinary angular dispersive diffractometer the S/N ratio is much improved.'"^^^ 

This diffractometer is convenient for the precise determination of the lattice constants 
and also for the measurement of scattering by non-crystalline substances. Four-circle dif
fractometers equipped with the SSD is reported to be good for the measurement of anom
alous dispersion which leads to phase determination.̂ '̂ '̂̂  Because of the weight of SSD 
many diffractometers are designed so that the X-ray tube, which is lighter than the SSD, ro
tates during the experiment instead of the detector. 

See also Fig. 8.32 for small-angle scattering. 

B. Single crystal diffractometers 
a) Four-circle diffractometers. For the accurate determination of crystal structures, accu
rate measurement of the positions and intensities is important. Counter diffractometers of 
the point by point measurement type were the first to be developed. The linear diffractome
ters were the first commercially available, and in some laboratories efforts have been made 
to produce a scanning equi-inclination Weissenberg counter diffractometer. However, all 
of them were replaced by four-circle single crystal diffractometers after several years. 

The crystal orientation is varied by rotation about three axes ((p, x^ and co or (p, /c, and co 
in Fig. 8.19), and the direction of the diffracted beam is brought to coincide with the equa
torial direction, so that the measurements are always carried out on the equator. The blind 
regions due to each crystal axis are very small, especially in the latter K'-geometry diffrac-
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(a) 

^Y 

(c) 

Fig. 8.19 Four-circle single crystal diffractometer. 
(a) Geometry of crystal rotation about the four axes {26, (p, x, O),) and (29, (p, K, (O). 26 is the diffrac
tion angle. The dotted line of the 20-axis indicates that the movement around the 20-axis is independent 
from those around the other three axes. X'Geometry: ;^-circle rotates along the Z-axis by rotation of the 
(y-axis. The ^-axis and hence the crystal on the ^-axis moves on the j;^-circle by rotation of the ;^-circle. 
K'-Geometry: The ^-axis makes precession movement around the K*-axis by rotation of the K*-axis. (b) 
;^-Geometry four-circle goniometer (Rigaku, AFC-7R -i- scintillation counter) % or 1/4 • x circle with 
CCD is commercially available, (c) ^--Geometry four-circle goniometer (Bruker AXS, XSAPEX ( X 8 -I- C C D ) . 
(a): [Reproduced with permission from Chem. Soc. Jpn, ed. Experiments in Chemistry, 4th ed., Vol. 10, 
Diffraction, p.58, Manizen (1992)] 
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Fig. 8.20 Imaging Plate (IP) diffractometer. 
(a) Outlook (Rigaku, R-AXIS HTC). (b) Schematic illustration of optical system. Three IP's are 
continuously used for Intensity data collection, exposure for recording, reading out the data (by the 
usual X-Y scan of the laser beam), and erasing the data recorded. [Reproduced with permission 
from Rigaku] 

tometer. An example of each geometry goniometer is shown in Fig. 8.19(b) and 8.19(c). 
Since the diffraction intensities are measured point by point, it takes a long time to collect 
all the intensity data desired. 
b) Area-sensitive detector diffractometers. In order to collect intensity data in a short 
time, especially for data collection in protein crystallography, single crystal diffractometers 
using the IP (Figs. 8.19, 8.20 and 8.21), multi-wire proportional counter or CCD detector 
are commercially available. This kind of diffractometer is also very useful for precise in
tensity measurement of fiber diagrams of high polymer specimens. 

The adequate use of IP, which is flexible and can be used in a cylindrical shape, and its 
read-out and erasing system accelerated the development of various types of IP diffrac
tometers with original or modified camera geometries, enabling rapid and precise intensity 
measurement and even time-resolved study of the fast structural changes in crystals or other 
crystalline materials. 
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Fig. 8.21 Imaging Plate diffractometer for polymers (Bruker AXS). 
(a) Plan view, (b) Optical system. Specimen stretcher may be replaced by usual goniometer head for 
single crystal studies, (c) Intensity data recorded on the IP are read out by the spiral scan of the laser 
beam, the coordinates are converted to the orthogonal coordinates (pixel). 

An example of the IP diffractometer of the Weissenberg type is that of Sakabe men
tioned above and the other is that of Iwasaki.^^^ The latter consists of three parts: a 
Weissenberg chamber with adjustable screens (Fig. 8.22), an IP read-out mechanism and a 
partition board between these two parts. The Weissenberg chamber is composed of an X-
ray optics, a three-axes goniometer, an adjustable multi-layer line screen system and two 
cylindrical IP's. The IP read-out mechanism is composed of a rotary optics for the He-Ne 
laser light and photostimulated luminescence and a halogen lamp for erasing the IP. The 
X-ray optics consists of a self rotating anode X-ray tube (Mo, Cu, or Ag anode), a focusing 
monochromator of graphite or LiF, a collimator and other optical elements such as a beam 
tunnel, a shutter, attenuators, slits and a beam stop. 

C. Goniometer heads 
These are devices for attaching the specimen to the mount of the camera or diffractometer 
in such a way that the orientation can be adjusted as desired (Fig. 8.23). Close manufactur
ing tolerances and stability are necessary to ensure precision in the orientation of the crys
tal. Goniometer heads can be broadly divided into two types. 
a) Cross-type goniometer heads. These are the normal type, permitting adequate parallel 
movement for adjustment of the orientation of the specimen. 
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Fig. 8.22 Block di
agram of an IP dif-
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Weissenberg type 
with adjustable 
screen (Bruker 
AXS).'^' 
[Reproduced with 
permission from N. 
Kamiya, et al., J. 
Appl. Cryst., 28, 
746, lUCr. (1995)] 
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b) Eucentric goniometer heads. These are designed so that the centers of the two axis 
adjustment arcs exactly coincide on the axial line of specimen rotation. 

The fitting for attaching the goniometer head should be the same for cameras and spec
imen mounts of diffraction equipment to enable the specimen and the head to be transferred 
as a unit form one piece of equipment to another without alteration of the setting. The in
ternational standard is gradually gaining ground. 

Fig. 8.23 Goniometer heads (Bruker-Nonius). (a) Cross type; (b) Eucentric type. 
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8.2.5 X-ray small-angle scattering cameras 
This equipment is used for the measurement of diffraction intensities at small angles (26 ^ 
5°) and/or sometimes at middle angles between the small and wide angles around the inci
dent X-ray beam, normally by means of the transmission method.̂ ^^ Modifications of the 
cameras mentioned below equipped with IP, CCD, MWPC or other area detector systems 
can be easily used as small-angle diffractometers. 

A. CoUimating cameras 
Fine parallel X-ray beam is produced by using an optical system consisting of small pin
holes or narrow slits as apertures in this camera. The optical system is simple and easy to 
handle, but in order to obtain a small-angle scattering diagram with good resolution both 
strong monochromatic X-ray source and long exposure time are required. The geometry of 
the slits camera has been discussed by Bear and Bolduan.̂ ^^ 

Figure 8.24(a) is a sketch of a simple small- and medium-angle scattering camera de
signed by Statton.̂ ^^ Specimen-to-film distance can be changed stepwise to suit the purpose 
of the experiment. In the other type of apparatus size and shape of aperture, collimator 
length, and specimen-to-film distance can be adjusted. The optical system can be placed 
under vacuum. This kind of apparatus is fitted with equipment allowing heating and 
swelling of the specimen, and is therefore very versatile. By the addition of a simple flat 

Beam stop 

Sample 

(a) 
Collimator 

Fig. 8.24 X-ray small-angle scattering apparata. 
(a) Small-angle scattering camera (W.O. Statton)'^\ 
[Reproduced with permission from L. E. Alexander, X-Ray Diffraction Method in Polymer Science, 
p. 103, John Wiley & Sons, Inc. (1969)] 
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11 12 13 14 15 16 17 (18) (19) (20) (21) (22) (23) (24) (25) m 

(c) 

Fig 8.24 —Continued 
(b) Small-angle diffractometer with two-dimensional PSPC (Bruker AXS, Nano STAR). 
(c) Small-angle diffractometer for muscle used at the Beam line 15A1, Photon Factory, Tsukuba, Japan. 

(A) bellows; (B) upstream beam viewing port; (C) beryllium window; (D) incidence sHt; (E) mir
ror chamber; (F) beryllium window; (G) vacuum gate valve; (H) bellows; (1) downstream beam 
viewing port; (J) monochromator vacuum box; (K) bellows; (L) scatter suppressor slit; (M) speci
men slit; (N) table for specimen; (O) Kapton window; (P) specimen position; (Q) and (R) Kapton 
windows; (S) vacuum chamber for film cassette; (T) table for detector; (U) safety hutch. Figures 
indicate distances from the source in meters. 

(c): [Reproduced wtih permission from K. Wakabayashi, et ai. Hand book on Synchrotron Radiatin. 4, 
614, Elsevier (1991)] 

film cassette, the wide-angle diffraction and small-angle scattering patterns from the same 
portion of the specimen can be taken simultaneously (cf. Fig. 15.40). Fig. 8.24(b) shows an 
apparatus. 

Gigantic long path small-angle cameras^ '̂̂ ^^ are used at some laboratories. Kratky 
made a cone camera,̂ ^^ to overcome both the problems of difficult slit-length collimation 
correction in the weak tails of scattering curves obtained in long-slit geometry and the prob
lems of the weak scattering in point geometry. 
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B. Block coUimating cameras 
Block slits, made of stainless steel or glass the surfaces of which are cut and finished with 
high precision, are used in the optical system of this camera (Fig. 8.25). The small-angle 
scattering intensity at one side of the direct beam is measured free from the parasitic scat
tering. 

Figure 8.25 illustrates the Kratky U-slit camera.̂ ^^ A diaphragm D3 lies across the gap 
between the two ends of the U-shaped body. The incident X-rays passing through the slit S 
cross the space between the edge Ei of the U and the diaphragm D3 to strike the sample, 
where they produce small-angle scattering. The top surface D2, the bottom surface D3, and 
the top surface of beam stop are located in the same plane, so that parasitic small-angle 
scattering from the diaphragm is avoided. The small-angle scattering is recorded on only 
one side of the slit; a very fine linear X-ray beam is necessary. Measurements are possible 
at scattering angles down to the order of 16" (0.7 X 10""̂  rad, corresponding to a Bragg 
spacing of about 2 X 10"̂  A) with a properly adjusted instrument having a high resolving 
power. An X-ray tube with a line focus of uniform intensity distribution is preferable as the 
source of X-rays. This type of camera (or diffractometer) is particularly recommended for 
small-angle scattering measurements on high polymer solutions. 

(a) 

(b) 

(c) 

Fig. 8.25 Block coUimating camera (Kratky U-slit camera).^^^ 
(a) General view; (b) Correct positioning of the diaphragm D3. The lower edge of D3 and the upper 
surface of D2 are in the same plane; (c) A means of avoiding parasitic small-angle scattering. The low
er edge of D3 is chamfered. 
[Reproduced with permission from H. Brunberger ed., Small-Angle X-Ray Scattering, pp.78, 79, 
Gordon & Breach (1965)] 
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C. Multiple reflection cameras (Bonse-Hart cameras) 
Figure 8.26 shows the multiple reflection camera developed by Bonse and Hart.̂ "̂ ^ This in
strument offers very high angular resolution, 9 seconds of arc, with intense highly mono
chromatic radiation. With a pair of grooved crystals in place of the usual pair of plane crys
tals in a double crystal diffractometer, the angular resolution is obtained by using multiple 
(alternately h and h) reflections from nearly perfect crystals of germanium or silicon and at 
the same time the troublesome background of the rocking curve (the tails of the single crys
tal reflection curve) is eliminated. By using two double crystal arrangements with mutually 
orthogonal axes the effective slit height can be rendered negUgible (Fig. 8.26(b)). 

(a.) 

X-ray 
source 

**'**̂  ^<ss^ 
C«^^^ 
^ ^ 
Fore crystal 

1st Grooved 
crystal 

1 

^ r — ^ ^ ^ ^ 
< 7 ^ 

Sample 

1 1 . 
^>>^>:-^.-'^^vLo 

2nd Grooved 
crystal 

Detector 

Detector 

2nd Grooved crystal 

Sample position 

Fore crystal 

Fig. 8.26 Multiple reflection camera.̂ '̂ ^ 
(ai) Plan view of Bonse-Hart's camera—Each grooved crystal contains five Bragg reflections. The 
fore crystal acts as a radiation collector providing an enhanced diffracted intensity from the source, (SLT) 
A commercial multiple reflection camera (Rigaku, USAXS). (b) A multiple-reflection diffractometer 
with zero effective slit height. A double-reflection vertical collimator is added. 
[Reproduced with permission from U. H. Brumberget ed., Small-Angle X-Ray Scattering, pp. 123,124, 
Gordon & Breach (1965)] 
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D. Focusing cameras 
In the optical system of this type of camera a curved total reflection mirror, curved crystal 
monochromators (Tables 8.2 and 8.3) or a combination of curved total reflection mirror and 
curved monochromator are applied in order to focus the small-angle scattering on the surface 
of the detector. With this kind of camera strong small-angle scattering can be observed with 
better resolution than the collimating small-angle scattering cameras. However, the optical 
system of these cameras is much more complicated than that of the collimating cameras. 
a) Curved total reflection mirror cameras (Franks cameras) P^ The point focusing cam
era using two curved total reflection mirrors with mutually orthogonal arrangement (Fig. 
8.27(a)) or the line-focusing camera using a curved total reflection mirror is used for the 
studies on supra-structure of viruses, membranes, and muscles or studies on fiber structures 
of biological or synthetic high polymer substances. Small-angle resolution of this camera is 
about 1,000 A. Fig. 8.27(b) shows a structure and the optical system of the latter type 
Franks camera. The curved mirror is located on a midpoint, c between the center of the line 
focus, Fi in a X-ray tube and the center of the detector surface, F2. In Fig. 8.27(b) / — m, 
where / and m are the distances between Fi and c and c and F2, respectively. 

Vertical mirror 

Point-focus 

Guard slit 

Horizontal mirror 

Mirror 
Focusing 
ellipse 

Guard slit 

Specimen pocushigN^ 
circle / 

(Source) 
Film 

Diffraction 

(b) 

Fig. 8.27 Optical system of a curved total reflection camera (Franks camera).^^^ 
(a) Point-focusing camera; (b) Line-focusing camera 
[Reproduced from A. Franks, Proc. Phys. Soc, 68, 1054, Phys. Soc. (1955)] 
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b) Toroidal mirror cameras (Elliott cameras) }^^ Only a toroidal mirror is necessary to 
obtain point-focusing X-rays. This camera is useful for structural studies on fibrous macro-
molecules and membranes by using middle-angle and wide-angle scatterings of the speci
men. The optical system and the structure of this camera is given in Fig. 8.28. 

-21.5 cm- -21.5 cm-

Toroidal mirror 
Guard slit 

5 cm 

(a) 

-43 cm-

1st slit Front stop Toroidal mirror 

Source Guard stop 

V-block 
Sample holder 

Film cassette 

Fig. 8.28 Optical system of a toroidal mirror camera (Elliott camera).^^^ 
(a) Optical system modified by Vibert and coworkers; (b) Design of an Elliott camera 
[Reproduced with permission from R. A. Elliot, J. Sci. Inst., 42, pp.312, 314, Inst. Phys. 
&Phys. Soc. (1965)] 
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c) Cameras with curved total reflection mirror and curved monochromator. Point-fo

cusing X-rays are obtained by using an optical system in which a curved total reflection 

mirror (Franks type mirror) is used in combination with a curved crystal monochromator 

(Fig. 8.29).''̂ ^ 

Mirror ds+v 

X-ray (Source) \ \ 

Monochrometer 

Focal circle 

Film 

Plan 
v1^F2 Diffraction 

Elevation 

Roland circle 

Diffraction 

^Focusing ellipse 

Fig. 8.29 Optical system of a camera with curved total reflection mirror and curved monochromator.^^' 
(Mirror and monochromator are not in size.) 
[Reproduced with permission from (K. Kora ed.), X-Ray Dijfraction, p.404, Kyoritsu (1988)] 

For the preparation of curved mirrors made by glass or stainless steel a grinding appa

ratus with high precision is commercially available. 

Table 8.2 Characteristics of total reflection mirrors (for the CxxKa radiation (A = 1.54 A)) 

Critical angle (0c) 

Refractivity {R{e,)) 

(R{e,){C\iKa))/{Rm)(CuKa)) at 6^ of Ka 

Glass 

i r - 1 4 ' 

0.73 

0.048 

Nickel-deposited 

23' 

0.65 

0.021 

Gold-deposited 

32' 

0.45 

0.13 

[Reproduced with permission from J. Witz, Acta Cry St., A25, 34, lUCr. (1969)] 
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Table 8.3 ( 

Crystal system 

Crystal face 

Bragg angle 

Bandpath (cOcrystO 

[Crystals used for curved crystal monochromator 

Quartz 

hexagonal 

(101) 

13° 20' 

1 .6X10" ' 

Ge 

cubic 

(111) 

13°44' 

7.1 X 1 0 " ' 

Si 

cubic 

(111) 

14° 13' 

3.4X 1 0 " ' 

LiF 

cubic 

(111) 

22° 29 ' 

^ for Cu Ka radiation. 

d) Point-focusing monochromator cameras, 
1) Two curved crystal monochromator cameras (DuMond).̂ ^^ The optical system of 

this type of camera developed by DuMond is used to obtain a point-focused X-ray using a 
combination of mutually crossed, two Johansson-type, curved crystals: divergent X-rays are 
first line-focused by the bent quartz monochromator, which are then point-focused by the 
second bent quartz monochromator (Fig. 8.30). The (310) plane of the quartz is used. 

Focus 

(a) X-ray source 

Fig. 8.30 Optical system of two curved crystal monochromator camera (DuMond).^^^ 
(a) Mutually crossed, two Johausson-type curved crystals; (b) Optical system for point-focusing 
[Reproduced from J. W. M. DuMond, L. Sheufil, W. E. Danielson, Rev. ScL Instr., 21, 188, Am. 
Inst. Phys. (1950)] 

2) Double-bent crystal monochromator cameras (Beereman).^^^ Beereman devised a 
method bringing the divergent X-rays to a point focus with a crystal having double curva
tures at right angles to each other (Fig. 8.31(b)). The double-bent point-focusing LiF 
monochromator gives about 10 times stronger intensity, but the intensity distribution in the 
cross-section was reported not uniform. However, an improved technique applied to the 
preparation of this type of monochromator succeeded is giving uniform point-focused X-
ray beam. 
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(b) 

( i i ) (iii) 

Ri 

X 

( iv) 

^ £7 ^ 
Fig. 8.31 Double-bent crystal monochromator camera (Beereman).^^'^^' 

(a) Optical system (6: Bragg angle).; (b) Preparation of point-focusing double-
bent monochromator (X, focus of curvature, R\, R2: Radii of curvature). 
[Reproduced from D. W. Berreman, et al. Rev. Sci. Instr., 25, 1219, Am. Inst. 
Phys. (1954)1 

E. Energy-dispersive X-ray small-angle scattering system '̂̂  
An example of this type of system used at NINA in Daresbury Laboratory is shown in Fig 
8.32. 

Evacuated beam pipe 
to the synchrotron 
source Lead 

collimator 

Collimator to select 
X-rays scattered at 
angle Id 

o II- r I J 0 1 I Solid state 
Beryllium fo.l window Sample g^^cuated tibe to reduce detector cooled 

scattering of X-rays by air by liquid nitrogen 

Power supply 
signal amplifier 

Multichannel 
analyser 

Fig. 8.32 Energy-dispersive X-ray small-angle scattering system.^°^ 
[Reproduced with permission from J. Bordas. et al. Nature, 262, 541, Macmillan (Journals) (1976)] 
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8.3 Selection of the X-Ray Parameters 

8.3.1 X-ray wavelength 
Specimen-related factors affecting the optimum choice of X-ray wavelength include the fol
lowing. 

1. The absorption coefficients of the element present in the specimen must be taken 
into consideration (see Table 1 of the Appendix); wavelengths at which the absorption coef
ficients of major constituents elements are very high are unsuitable. This condition cannot 
always be satisfied, however, for metals and inorganic and organometallic compounds. 

2. It is clear from the Bragg equation, Id sin 0 = A that when X-rays of shorter wave
lengths are used, all the diffractions are displaced to smaller angles and the number of dif
fractions measured increases, the opposite being true for X-rays of longer wavelength. 

Sometimes it is only a combination of two or more wavelengths that will provide a sat
isfactory means of analyzing a given specimen. For example, in the case of a strongly ab
sorbing specimen. X-rays of short wavelength for the absorption is proportionately less may 
be used for intensity measurements, while X-rays of longer wavelength can be used for the 
determination of unit cell parameters and for other measurements in which slightly greater 
absorption can be tolerated. Another possibility is to use short wavelengths for large dif
fraction angles and long wave-lengths for small angles, the results then being combined. 

A. X-ray tubes 
a) Anode materials. Cr, Fe, Co, Cu, Mo, Ni, and Ag anode (anticathode) tubes are com
mercially available. Among these, Cu and Mo tubes are widely used, the most common be
ing Cu. With rays of longer wavelength, such as Cr Ka and Fe Ka, absorption and scatter
ing by air are significant. In the case of Mo Ka radiation, the characteristic K line may be 
superimposed on the maximum of the continuous X-rays, thus rendering the measurement 
of intensity more difficult. Moreover, the low sensitivity of the film to this radiation entails 
long exposures. Another disadvantage with Mo Ka and radiations of shorter wavelength is 
the danger of stray emission of X-rays from points other than the slit aperture of the X-ray 
tube. 

In the case of high polymers, since they consist mainly of light atoms such as C, N, and 
O, Cu Ka radiation is generally used; however. Mo Ka radiation may be useful, for exam
ple, in recording high order layer lines for the accurate measurement of fiber periods (c/ 
Section 8.6.2 A, c) and d)). 

For small-angle scattering studies the Cu Ka radiation is normally used. In general, the 
optimum wavelength Aopt is determined by the thickness of the specimen, r, and the amount 
of X-ray absorption by the atoms comprising the specimen.̂ ^^ 

Xo,i = [2IOat)r (8.1) 

where a is the coefficient in which the linear absorption coefficient of the specimen is ex
pressed in the form ji = aX^. For biological specimens a == 0.26 mm ~ ^ A ~ \ and for r = 1 
mm, Aopt ^ 1.4 A or r = 0.7 mm for the Cu Ka radiation.^^^ 
b) Tube voltage and current. To obtain photographs of maximum contrast, or to minimize 
statistical errors in intensity data obtained with a diffractometer, it is necessary to ensure 

1) optimum diffraction intensity and, consistent with this, 
2) optimum peak/background intensity ratio. 
To obtain the optimum diffraction intensity, the X-ray tube voltage must be several 
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times as large as the excitation voltage of the characteristic radiation (25-60 kV, cf. Table 
1.2). As shown by Eq. 1.2, the X-ray intensity increases with increasing tube voltage, but a 
limit is imposed by the fact that the intensity of the continuous X-rays also increases {cf. 
Section 8.2.1). In order to satisfy condition 2), background scattering must be reduced to a 
minimum {cf. Section 8.3.3 below). In order to minimize the exposure time reasonably the 
X-ray tube must be operated with an economically maximum current. 

B. Synchrotron radiation 
By using the monochromator the most desirable wavelength may be selected. It is easy to 
select the suitable wavelengths for anomalous dispersion studies or others. 

8.3.2 Production of monochromatic X-rays^^^ 

A. j8-Filters 
a) Elimination ofKp radiation by filtration. Table 1.3 shows the filters and their thick
ness for commonly used X-rays. The filter is normally a metal foil. Where a foil cannot be 
made, filters can be obtained by compressing the element to form a disc, spraying a solution 
on filter paper, or dispersing a powder on a polymer film. Even the use of a Kp filter, of 
course, does not ensure the complete elimination of Kp radiation, which will play a part in 
diffraction at very high intensities. A considerable fraction of the continuous X-radiation 
will also pass the filter. 
b) Use of Kp filters in conjunction with pulse-height analyzers. In measurements using 
scintillation or proportional counters, the X-ray can be rendered more nearly monochromat
ic by the use of a pulse-height analyzer to eliminate the pulses due to continuous X-rays 
passed by the Kp filter (Fig. 8.33).''^ 

Ni filter 

C\iKj3 

CuKa 

EP 
Cu K/3 

L 

CuKa 

L 
(a) (b) 

Fig. 8.33 Effect of pulse-height analyzer.^^^ 
(a) Residual continuous radiation with use ofKp filter alone, (b) With addition of pulse-height analyzer 
(EP is the escape peak registered by the proportional counter; cf. Table 8.1). [Reproduced with permis
sion from International Tables for X-Ray Crystallography, (C.H. McGillavry, G.D. Rieck eds.) Vol. 
m.p . l51 , IUCr . (1962)] 

c) Balanced filters.^^^ This method is mainly used in measurements with counters (Fig. 
8.34). The standard balanced filters are listed in International Tables for X-Ray 
Crystallography, Vol. III.̂ ^̂  Using a respective j3-filter of the balanced pair the measure
ments must be carried out two times under equal conditions. An example of a diffraction 
intensity measurement with balanced filters is shown in Fig. 8.34 
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100 

10 K absorption 
edge of Co 
(1.607 A) 

(a) A [A] 

(b) Id [deg] 

Fig. 8.34 Balanced-filter and use of it for the diffraction intensity measurement. 
(a) Absorption edges for balanced-filter monochromatization (Cu/Ca). 
(b) Equatorial diffraction intensity for a drawn polyethylene specimen using balanced-filters. 

(—-) hi. Intensity measured with Ni filter; (....) Ico- Intensity measured with Co filter; 
(—) hi — ho- Intensity difference ( = Intensity obtained by monochromatic CuKa radiation), 
(a):[Reproduced with permission from A. Guinier, Theorie et Technique de la Radiocristallo-
graphie, p. 17, Dunod Editeur (I960)] 

B. Single crystal monochromators 
The X-rays obtained by using the j8-filter(s) still contain some continuous radiation. 
Almost completely monochromatic X-rays can be obtained if use is made of rays diffracted 
by a crystal. The crystals which find use as monochromators include graphite, LiF, penta-
erythritol, NaCl, MgO, calcite, and quartz. LiF is one of the most efficient crystals for Cu 
Ka radiation, its reflective power amounting to some 30%. Graphite monochromator is 
used in most experiments. For the selection and monochromatization of X-rays from syn
chrotron radiation a silicon monochromator is currently used. 
a) Flat crystal monochromators. These make use of the fact that intensity can be in
creased by the use of a crystal cut in such a way that the reflection is asymmetrical with re
spect to the surface of the crystal (Fankuchen cut, see Fig. 8.35(a2). A transmission-type 
monochromator is also applicable (Fig. 8.35(b2)). 
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b) Curved crystal monochromators. The use of a suitably curved crystal surface ensures 
not only that the X-rays from the tube or from the synchrotron radiation can be monochro-
matized, but also brought to a line (Figs. 8.15, 8.35(bi), b2)) or point (Figs. 8.29, 8.30, 8.31) 
focus after a certain distance, allowing very efficient measurement. Even when a mono-
chromator is used, harmonics (A/2, A/3,...) may be present at high tube voltages, but these 
are generally of negligible intensity. 

(a) 
X-rays 

Focus 
Focus 

Fig. 8.35 Single crystal monochromators {6: Bragg angle). 

(a) Flat crystal monochromators 
ai) Flat crystal; aa) Fankuchen-cut crystal (cut angle a) 

(b) Curved-crystal monochromators 
bi) Johanson type; DuMond-Kirkpatrick type; ba) DuMond-Kirkpatrick type 

R: Radius of focal circle; 2R: radius of curvature of the crystal planes. The curved-crystal 
surface is cut to fit the focal circle. In some cases an uncut crystal is used, but this does not 
give a perfect point focus. 
[Reproduced with permission from International Tables for X-Ray Crystallography, (C. H. 
McGillavry, G. D. Rieck eds.), Vol. Ill, p. 81, lUCr. (1962)] 

C. Multilayer optics* 
Development of multilayer deposition technology has made possible to produce a thin film 
coating consisting of alternating layers of high atomic number material (e.g. W, Mo or Ni) 
and low atomic number material (e.g. Si, C or B4C). 

Multilayer diffracts X-rays in a fashion analogous to the Bragg reflection by the atomic 
planes of a crystal. For CuKa radiation the reflectivity is 70 % and the half width of the 
rocking curve is 0.055° (cf. LiF (200): 18 %, 0.05° or pyro-graphite (002): 39%, 0.53°). 

Multilayer can be bent along a geometrical curve (e.g. elliptical or parabolic), which 
made possible to produce either focusing or collimating multilayer optics. These optics 

* Max-Flux Optics, Marketed by all major X-ray instrument manufacturers under a variety of names such as 
Gutman Optics, Amdt Optic, Prefix Optics, Gobel Mirrors. 
Ref. Catalogue issued by Osmic Inc., or J. Harada, J. Cryst. Soc. Jpn, 45, 306 (2003). 
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transform a divergent polychromatic X-ray beam into either a focused or parallel mono
chromatic X-ray beam. 

High quality optics require precise (i-spacing profiles, whether uniform or graded, on 
curved or flat optical surfaces. Side-by-side connected confocul optics solves problems in
herent in both traditional and crosse-coupled optical scheme. 

8.3.3 Elimination of unwanted scattered X-rays 

The X-ray diffraction analyses of high polymers, unlike those of single-crystal structures, 
often require continuous measurements of intensity over the entire range of diffraction an
gles. This makes it essential to minimize the background radiation due to unwanted scatter
ing whatever its cause. The residual scattering, which cannot be prevented despite every 
effort, must be identified and assessed, and its contribution deducted from the measured re
sults. The factors which are responsible for background scattering are associated with the 
X-ray source, or with the specimen itself. These factors are detailed below. 

A. Use of X-rays that are not strictly monochromatic 
a) Halos or streaks due to continuous X-rays. The effects are not too serious where only 
sharp crystalline diffraction is being considered, but for investigations of diffuse scattering 
due to crystal distortions or thermal vibrations, these halos or streaks must be eliminated by 
the use of a monochromator. 
b) Presence of KP radiation. Normal Kp filters reduce the Kp intensity to less than 
1/ 100 of the Ka intensity from the X-ray source. Where the diffractions are very intense, 
however, diffraction due to the KP radiation can still be detected. This is of no importance 
in the case of crystals, provided only that Ka and KP diffractions do not overlap. It is sig
nificant, however, both in the paracrystalline diffraction of high polymers and in the contin
uous diffuse diffraction of amorphous specimens, and it is therefore essential to minimize 
the Kp radiation. 

B. Scattering due to contamination of the target or window of the X-ray tube 
During the life of an X-ray tube, its output radiation contains increasing proportions of the 
characteristic radiation from Fe, Ni, Co, W, among others, with a corresponding reduction 
in the intensity of the original characteristic radiation of the tube. These elements evolve 
from the filament and its stem, etc. Since the presence of such extraneous radiation inter
feres with the recognition of desired diffractions and with accurate intensity measurements, 
the spectrum of the X-rays from the tube must be checked from time to time. 

"Clean" X-rays can be obtained again from rotating-anode tubes by dismantling and 
polishing the anode and renewing the windows. 

C. Scattering by the slits, screens, and other parts of the apparatus and by air 
The diffraction pattern as recorded can be deleteriously affected by scattering between the 
window of the tube and the camera and by scattering of X-rays from adjacent windows in 
front of the camera. This radiation reaches the film through chinks in the camera. 
Although careful attention is given to this point in the manufacture of most cameras, care is 
still necessary in certain methods which are particularly vulnerable to the fogging caused by 
this type of unwanted scattering. Scattering due to air itself can be reduced to a tolerably 
low level by a beam stop of suitable shape and size placed close to the specimen, and by 
placing the camera under vacuum or by filling it with hydrogen or helium. 
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D. Scattering by materials used to seal or cover the specimen and by adhesives and 
mounting materials 

Scattering may be caused by materials used to seal or cover specimens that are unstable in 
air, or by adhesives or mounting substances. A certain minimum amount of these sub
stances is essential to the preparation of a specimen, and to that extent the scattering is un
avoidable. The absence-or if present, the positions-of diffuse halos or Debye-Scherrer 
rings produced in this way must be ascertained beforehand, and any contributions subse
quently deducted from the results.^^^ Diffraction due to NaCl or other inorganic salts 
mixed with the material and, in low temperature experiments, due to the presence of ice ad
hering to the specimen or the perimeter of the slit, may also contribute to unwanted scattering. 

E. Fluorescent X-rays from various elements in the specimen 
This can be reduced by selection of X-rays of suitable wavelength with respect to the ab
sorption coefficient of the specimen. Fluorescent X-rays from the specimen can sometimes 
also be blocked by a suitable filter. In the investigation of a specimen containing iron with 
Cu Ka radiation, for example, an aluminum foil covering the film is used in addition to the 
KP filter. This is because aluminum has a higher absorption coefficient for Fe Ka than for 
Cu KP radiation. Background scattering is also caused by recoil electrons and photoelec-
trons resulting from absorption by the specimen. 

F. Natural radiation counts 
Cosmic rays and radiation due to radioactive substances must be taken into account, partic
ularly in measurements with GM counter tubes. With proportional counters, background of 
this type is reduced to about 1/10 of that found with GM counters. 

G. Noise due to nearby electrical equipment 
This applies only to measurements with counter tubes. The pulse due to the opening or 
closing of a switch can have a considerable effect. Measurements taken with a rate meter 
are not too badly affected, but care is necessary when a scaler is used. 

8.4 The Specimen 

8.4.1 Preparation of the specimen 
An adequate knowledge of the properties of the specimen is obviously essential for the for
mulation of satisfactory experimental procedures. Desirable information would include the 
name of the substance and its chemical or structural formula (which affect its chemical sta
bility. X-ray absorption, fluorescence, etc.). Physical constants including the melting point, 
boiling point, and various phase transition points are relevant. They affect the magnitude of 
the thermal vibrations at the measuring temperature, recrystallization, molding, and the sta
bility of the specimen. The solubility of the substance, also, naturally has a marked effect 
on the conditions for recrystallization, molding, etc. Decisions on the desirability of sealing 
the specimen in a capillary, the changing of the specimen during the investigation, and the 
necessity of performing the investigation at low temperatures will obviously depend upon 
any tendency to sublime, and upon hygroscopicity, etc. Handling of the specimen must 
also be affected by the degree of toxicity. 

These are therefore the most pressing reasons for a thorough examination of the sub
stance prior to the investigation. The methods of preparing the specimen once this prelimi
nary information has been obtained will now be described. 
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A. Single crystal specimens 
Experience has shown that the most critical property governing the choice of single crystal 
specimens for analysis is the linear absorption coefficient jii (cf. Section 1.3.2A) of sub
stance for the wavelength of X-rays used. For a cylindrical specimen, the optimum radius 
R is such that jj^R — 1.0.̂ ^̂  This may also be taken as a suitable criterion for needle- or 
prism-like specimens with cross sections which are not circular. As a rough measure for an 
organic crystal, the best is that with approximate dimensions of 0.2 X 0.2 X 0.2 mm and a 
needle crystal with approximate sectional dimensions of 0.2 X 0.2 mm. The wealth of in
formation available on single crystal specimens in other publications renders any further 
discussion here unnecessary.'̂ ^^ 

If the crystal is unstable in air it should be properly coated by collodion or other film or 
sealed in a thin-walled glass capillary tube. 

For macromolecular single crystal specimens see Chapter 12. 

B. Polycrystalline specimens 
In view of the very wide variety of polycrystalline specimens, rather than attempting to dis
cuss those methods which are suitable for all such specimens under this heading," '̂̂  the vari
ous methods which apply generally to high polymer specimens are entered under the appro
priate headings below. 

C. Solid high polymer specimens 
a) Bulk specimens. As a result of chemical or mechanical treatment during the prepara
tion of the sample, the fine structure and fine texture of the surface often differ from those 
of the interior. Therefore the specimen should be taken from the interior of the sample, 
avoiding the superficial regions. 

For measurements by the reflection method with an X-ray powder diffractometer, a flat 
specimen with a large enough surface to receive the whole of the X-ray beam from the ver
tical collimator slit should be used. If the thickness of the specimen in this case is 3//i cm 
or more (typically 2.4-3.0 mm or more for high polymers), not only does correction for ab
sorption become unnecessary, but the intensity of the diffracted X-rays is increased. 
b) Fiber specimens. Since the diameter is usually very small, many filaments are held in 
a parallel bundle by means of holders such as those shown in Fig. 8.36. If twisting is pre
sent, the filaments are held so as to minimize it. 

Single filaments, say 0.4-0.5 mm thick or less, may be examined individually, although 
thicknesses of this order are by no means ideal, for special purposes such as very precise 
measurement of preferred orientation or studies with microcameras. 

Figure 8.36 shows some examples of specimen holders. The provision of notches at 
the points where the specimen is grasped, as in Fig. 8.36(b), has the advantage that distor
tion of the bundle of filaments is avoided. The device in (c) allows the specimen to be 
placed under slight tension to eliminate any slack, and also permits the sample to be 
stretched to some extent should this be advisable. A simple arrangement consisting of two 
scraps of X-ray film or card with their centers cut out and with the two ends of the speci
men fixed between them (d) may also be improvised. 
c) Film specimens. The intensity of diffracted X-rays from a single thickness of film is 
too low unless the film is at least 0.5 mm thick. Exposures can be shortened by the use of 
several layers of film to give a total thickness of about 0.8-1.0 mm. If the layers of speci
men are cut from one large film, they must be cut from areas that are not likely to possess 
special characteristics as a result of the method of manufacture or subsequent treatment. 
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(a) (b) 

(d) 

Fig. 8.36 Fiber-specimen holders. 

The cutout layers should be placed together in such a way that their directions with respect 
to the original film are the same (Fig. 8.37). The layers are cemented together at both ends 
or fixed in a specimen holder. Specimens cut as shown in Fig. 8.37(a) are too long for X-
ray measurements in the Z direction, and specimens cut as shown in (b) should be used for 
this purpose. 

In drawn specimens, simple stretching may give local differences in elongation and the 
cross section of the film may no longer be uniform (Fig. 8.37(c)). A fairly wide piece of 
film is therefore drawn, and the specimen is cut from the central part, where the thickness is 

t ^ 

&7y) 

^ 

(c) 

PQ t̂  < t̂  
1 1 
1 i 

Simple 
stretching 

_^ (cross 
sections) 

^ ^ . .,., ^ 
Stretching with 
a tenter 

Fig. 8.37 Specimen preparation from film samples. 
(a), (b) Strips cut from the sample are laid on top of one another to give the required thickness, with di

rections in which the strips were machined all parallel. 
X: Direction normal to the machining and parallel to the film plane; 7: Normal to both the direction 
of machining and the film plane; Z: Machining direction. 
[Reproduced from W. O. Statton, G. M. Goddard, /. Appl Phys., 28, 1112. Am. Inst. Phys. (1957)] 

(c) Stretching a film sample. 
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more uniform. If possible a tenter should be used as shown in the Fig. 8.37(c); this should 
ensure a uniform elongation and consequently no change in the shape of the cross section. 

8.4.2 Determination of the specimen density 
The principal methods are indicated in Table 8.4. The density gradient tube method and the 
flotation method are those most widely used for high polymers. Table 8.5"̂ ^̂  lists hquids 
used in the density gradient tube method, although naturally they can equally well be used 
with the flotation method. 

Method 

Density 
gradient 
tube^^a) 

Flotation 
method 

Immersion 
micro-
balance'^b) 

Volume-
nometry 

Table 8.4 

Principle 

A liquid of low density is 
gently layered over a liq
uid of higher density 
with which it is readily 
miscible, and a density 
gradient is produced by 
diffusion. 
The specimen is intro
duced into the density 
gradient tube, and the po
sition at which it comes 
to rest is noted. Its densi
ty can then be found 
from the density gradient. 
The density gradient is 
calibrated by introduction 
of floats or droplets of an 
immiscible liquid of 
known density into the 
tube. 

The specimen is placed 
in a given liquid, and de
pending on whether it 
floats or sinks, another 
liquid that is miscible 
with the first, but of low
er or higher density, is 
added until the specimen 
neither floats nor sinks. 
The density of the liquid 
is then measured imme
diately by some appro
priate method. 

A crystal immersed in the 
mother hquor is weighed, 
and its density is calcu
lated from the density of 
the mother liquor and the 
volume of the crystal. 

The difference in the gas 
pressures in a vessel 
when the specimen is 
present and when it is ab
sent is measured. 

Principal methods for density measurement 

Characteristics 

Once prepared, a densi
ty gradient tube can be 
used for several 
months. 
Measurement can be 
carried out any temper
ature between the 
freezing point and the 
boiling point of the liq
uids by placing the 
density gradient tube in 
a thermostatically con
trolled bath at the de
sired temperature. 
In the case of a non
uniform specimen, the 
density distribution can 
be found. 

Measurements are pos
sible with as httle as 0.5 
mg of specimen. 
The change in the den
sity of the liquid with 
temperature can also be 
utilized. In the case of 
non-uniform speci
mens, the average den
sity is obtained. 

Suitable for the mea
surement of densities of 
protein precipitated 
from the mother liquor 
denatured. 
A well developed sin
gle crystal 0.1 mm^ or 
larger is preferred. 

A gas that is inert to
wards the specimen is 
used. 

Accuracy 

Varies with the 
l iquids used, but 
an accuracy of 
± 0.002 g/ml is 
generally quite fea
sible. 

An accuracy of 
0.02% is possible. 

The closer the den
sities of the mother 
liquor and of the 
crystal, the greater 
is the accuracy. 

Down to 0.1% 

Notes 

In the case of pow
dered specimens, the 
density gradient 
method may be car
ried out in a cen
trifuge (though the 
gradient is practically 
unchanged, correction 
is necessary). 
Has the disadvantage 
that there is no satis
factory technique for 
removing the speci
men used. 

The measurement 
may be carried out by 
sedimentation in a 
centrifuge in the case 
of powdered speci
mens. 

This is the only 
method available if 
the specimen dis
solves in all suitable 
liquids. 
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Table 8.5 Liquids for use in the density gradient tube method^' 

Lipopiiiiic iiquius 

Liquid 

Iso-octane 
Kerosene 
Toluene 
m-Xylene 
Benzene 

Chlorobenzene 
Bromobenzene 
Carbon tetrachloride 
Methyl iodide 
Methylene bromide 
Bromoform 
5-Tetrabromomethane 
Methylene iodide 

Approximate 
density at 25°C 

[g/ml] 

0.69 
0.79 
0.867 
0.86 
0.8799 

(10°C) 
1.10 
1.49 
1.60 
2.28 
2.496 
2.89 
2.96 
3.32 

«+ 

- 0 . 8 
- 0 . 5 , - 0 . 8 

- 0 . 8 5 

- 1 . 1 
- 1 . 3 
- 1 . 9 
- 2 . 7 

- 0 . 9 
- 2 . 2 
- 2 . 6 

Aqueous solutions (with max. density 
of concentrated solutions) 

Solute 

Water 
Sodium chloride 
Potassium tartrate 
Potassium iodide 
Ferric sulphate 
Zinc bromide 
Zinc iodide 
Thallium formate 
Toulette solution 

(prepared by adding 
aqueous thallium 
malonate solution to 
aqueous thallium 
formate solution) 

Approximate 
density at 25 °C 

[g/ml] 

0.99823 (20°C) 
1.20 
1.40 
1.63 
1.80 
2.00 
2.39 
3.5 
4.3 

^ The density at fC is found from the density at 25°C with the aid of the formula dt — d25+ 10 ^•a(/ — 25). 
[Reproduced with permission from lUCr, International Tables for X-Ray Crystallography, (C. H. McGillavry, 
G. D. Rieck eds.), Vol. I l l , p.l9, lUCr. (1962)] 

8.5 Diffraction Studies for Identification Purposes 

8.5.1 Qualitative identification using poly crystal diffraction data (unoriented 
X-ray diagrams) 

Qualitative identification using polycrystalline diffraction depends ultimately upon mea
surement of the precise locations and intensities of the diffraction lines. The interplanar 
spacings corresponding to the diffracted X-rays are found first, and the intensities are then 
measured. Either a Debye or a Guinier camera with a large radius is suitable for the photo
graphic method. Where considerations of speed and accuracy of measurement of diffrac
tion lines are paramount, X-ray powder diffractometers especially those equiped with 
curved PSPC give excellent results, (c/. 8.2.4.A) Graphite monochromatized or Ni-filtered 
Cu Ka radiation is used. {cf. Section 8.3.1). 

The following special points concerning preparation of the specimen should be noted 
{cf. Section 8.5.2). It is essential that the specimen be crushed to form uniform particles no 
larger than, say, 10 micrometers. If the particles are plate- or rod-like in form, external 
force in inserting the particles into the sample holder, etc. may produce a preferred orienta
tion of the individual particles: care must therefore be taken to avoid the undue application 
of force in the preparation of the specimen. Mixing a small amount of isotropic material 
(like MgO) usually reduces the orientation effect, and if an internal standard is desirable, 
the proper choice of standard can serve both purposes."̂ "̂ ^ 

8.5.2 Treatment of the results 

The positions of the diffraction lines on a photographic film can be located on a scale divid
ed into tenths of a millimeter. A simple comparator is generally used. A higher degree of 
accuracy is possible if a reference substance with precisely known interplanar spacings is 
mixed with the specimen as an internal standard. 

When the diffractions are very intense, the residual Kp radiation due to incomplete fil
tering produces weak diffractions with smaller diffraction angles. Care is also necessary in 
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interpreting results at large diffraction angles, for separation between the Ka\ and Ka2 dif
fractions can occur. 

The Bragg equation 2d sin ^ = A is used to fmd the interplanar spacing from the mea
sured angle 6. Useful tableŝ '̂*^^ are available for the ready determination of d. The relative 
intensity, I/Ii (usually expressed as a percentage of the highest intensity observed in the dif
fraction pattern /j) is measured. 

When a powder diffractometer is used, the angular position of the diffraction line is 
read off with the aid of an angular scale marked on the recording chart. Where accuracy is 
crucial, the diffraction diagram of a reference specimen is used for calibration. If the speci
men has high crystallinity, the intensities are found by simply subtracting the height of the 
background from the heights of the diffraction peaks on the chart. 

If the reader is using the latest model of powder diffractometer and if the powder data 
file, JCPDS-PDF (See Section 9.2.2) is loaded on the computer attached to the diffractome
ter, measurement of the diffraction leads directly to the identification of the specimen. 

High polymers generally give a few broad diffraction lines, on which is superimposed 
the diffuse scattering due to the amorphous regions. They are not, therefore, in this respect, 
suitable for identification purposes. If the degree of orientation is fairly high, however, the 
whole of the X-ray diffraction pattern of the specimen is compared with that of the refer
ence substance, and then the latter should, ideally, be as nearly identical to the specimen as 
possible in its mode and degree of orientation and its crystallinity. There is also the virtual 
impossibility of positively identifying polycrystalline proteins by the powder method, 
which means that the identification should be made on the basis of single-crystal diffraction 
patterns whenever possible. 

8.6 Diffraction Studies for Crystal Structure Analysis 

8.6.1 General remarks 
Basically both the photographic and diffractometer methods, using IP, CCD, MWPC or 
else, involve the following two steps. 

A. Determination of the unit cell parameters and the space group 
In order to make these determinations it is necessary to locate precisely the positions of a 
large number of diffraction spots, and to obtain a semiquantitative estimate of their intensi
ties. 

B. Collection of intensity data 
The principal object is the accurate measurement of the intensities of the diffraction spots, 
and it is necessary only to verify the indexing to the spots by determining their locations. 

C. Apparatus to be used 
a) Use of four-circle single crystal diffractometer. For single crystals of small molecules, 
it is recommended that an oscillation photograph be taken or, better, that the crystal chosen 
be examined to check whether it is good and stable for the diffraction studies. However, in 
general, this step is apt to be skipped. For the crystal mounted on a goniometer head at
tached to the goniometer of the diffractometer, rocking curves (profiles) of some diffractions 
are usually examined instead before the collection of intensity data (cf. Fig. 8.18). 

If the crystal looks good and stable, collection of intensity data starts on the diffrac
tometer, followed by background correction, Lp correction, indexing and estimation of 
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measuring weight from the counting statistics for each diffraction, automatically leading to 
the establishment of the structure by using an appropriate program stored in the computer 
attached to the diffractometer. 
b) Photographic method. The apparatus normally used is a Weissenberg camera, which 
can provide all the data necessary for the structure analysis. Precession cameras are also 
very effective in combination with Weissenberg cameras, and are widely used on their own 
for specimens with large unit cells, such as proteins. The use of single-crystal diffractome-
ters has been increasing recently, and the accuracy of the measurements is being further im
proved by the use of computer-controlled diffractometers. 

The X-rays are usually monochromatized by means of filters in the case of single-crys
tal specimens, since the diffraction spots are distinct. Cu Ka radiation is employed most 
frequently, though Mo Ka radiation is often used with precession cameras because of the 
narrow range of angles which is the most that can be photographed with these cameras. For 
further information affecting the choice of wavelength see Section 8.3.1. 

For polymers, the cameras mentioned above in connection with single crystals may be 
used for highly oriented specimens. Measurements on specimens with cylindrically sym
metrical {e.g. uniaxial or spiral) orientation are generally carried out with rotating-crystal 
cameras. In the case of fibrous polymers, highly oriented specimens should, if possible, be 
used for structure analyses. When specimen is in the form of very fine fibers, a microbeam 
camera used in combination with a microfocus X-ray tube gives good results. 

We have already stressed (cf. Section 8.3.2) the desirability of monochromatic X-rays 
for use with high polymers in view of the diffuse amorphous scattering that always accom
panies the crystalline diffraction, not to mention the broadening of the diffraction pattern 
due to lattice distortions, 

8.6.2 Weissenberg photographs 

A. Oscillation (or rotation) photographs 
These are taken for single-crystal and fiber specimens in order to align a fixed crystal axis 
accurately with the axis of rotation of the camera. The film cassette of the Weissenberg 
camera is fixed (diameter of the film: say 57. 296 mm), and the specimen is made to oscil
late through an angle of + 5 ~ 10° (for crystals of small molecules). 
a) Adjustment of the axis. Since the axis of rotation is unlikely to coincide directly with 
the principal axis of the crystal at first, a photograph with distorted equator and layer lines 
similar to that shown in Fig. 8.38 will be obtained. Fig. 8.38(a) shows the result when the 
principal axis is inclined out of the plane of the paper, while (b) shows that for downward 
inclination of the crystal axis (the axis of rotation being horizontal). In practice, the result 
is more likely to be a combination of these two examples, as shown in Fig. 8.38(c). The 
misalignment of the principal axis is corrected by means of the two arcs of the goniometer 
head. Different workers use different methods of adjustment, but the following method is 
recommended. 

For ease of adjustment of the axis, the oscillation photograph is taken with oscillation 
about a position in which the face of one of the two arcs of the goniometer head is practi
cally parallel to the incident X-rays. On the far side of the film from the incident X-rays, 
and with the film spread out so that the axis of rotation of the crystal is on the right, the de
viations a and b of the equator (zero layer line) from the normal position at distances of 45 
mm {26 — 90°) from the center {cf. Fig. 8.38(c)) are measured in millimeters. If the dis
placement components due to inclination out of the plane of the film and to downward in
clination are A and B respectively, then 
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Equator 

45 mm 

45 mm 

1 
45 mm 

45 mm 

1-1 
Equator 

(a) (b) 

Fig. 8.38 Oscillation photographs showing the effect of misalignment of the principal axis. 
(a) Principal crystal axis inclined out of the plane of the paper, (b) Principal axis inclined downward, 
(c) Principal axis inclined both outward and down ward. 
The axis of rotation is horizontal, the cylindrical film vertical. X-rays rise out of the plane of the paper. 
Diameter of the film: 57.296 mm. 

a = A-\-B, b=A-B 

The angular adjustments of the arcs required to correct the inclination of the crystal axis are 
therefore 

2A = a-\- b (in the horizontal plane) 

2B = a — b (in the vertical plane) 

The required adjustments of the arcs are numerically equal to 2A and 2B respectively. 
This procedure is repeated until the inclination of the principal axis has been corrected. 

The crystal is then rotated through about 90°, and another oscillation photograph is made to 
verify that the principal axis of the crystal coincides exactly with the axis of rotation. Once 
one axis of the crystal has been accurately aligned, the identity period (axial length) for the 
axis that coincides with the axis of rotation can be found from oscillation- or rotation-crys
tal photographs (cf. Subsection A.d) below). We can then proceed directly to take a 
Weissenberg photograph of the equator. 
b) Orientation of high polymers (cf. Section 4.4.4). When the high polymer specimen is 
oriented, the axis of rotation of the camera should either coincide with or be parallel to an 
orientation axis. However, a precise adjustment of the orientation cannot be made as it was 
in the case of single crystals. An alternative approach, not dealt with in this book, which 
gives satisfactory alignment, is to examine the specimen under a microscope between 
crossed nicols. 
c) Higher order layer lines of high polymer specimens. In normal oscillation or rotation 
cameras, the height of the film cassette is sometimes insufficient to record the high-order 
layer lines. In such cases the Weissenberg camera has the advantage that the film cassette 
can be displaced to record the high-order layer lines on one side. The values of the identity 
periods (fiber periods) obtained from the lower-order layer lines must be used to calculate 
whether the required higher-order layer lines are capable of being recorded. For example, 
polyethylene has a fiber period of 2.534 A. It is clear, therefore, that measurements beyond 
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the first layer lines are inherently impossible with Cu Ka radiation. In such cases, X-rays 
of shorter wavelength, e.g. Mo Ka, may be used. For the method of indexing cf. Section 
4.4.1. 
d) Measurement of identity period along the axis of rotation. The layer line separation 
Zn on the film from the equator (the zero layer line) to the nth layer line is measured, and the 
identity period can then be calculated from the film radius RF and the wavelength A of the 
X-rays using the following equations. 

/ s in jLin = n?i. 

tan^„ 
Zn 

RF 
(8.2) 

/ is the identity period of the crystal parallel to the axis of rotation (usually the fiber period 
in the case of oriented high polymers) and jj^n is the angle of elevation of the nih layer line 
(see Fig. 8.39). The layer line separation Zn is measured as follows. The film is spread out 
flat and distance between corresponding layer lines on either side of the equator is mea
sured. The measurements are taken from center to center of corresponding diffraction 
spots, although in some cases the distances from peak to peak and from trough to trough 
may be measured and averaged. In oscillating-crystal photographs in which the layer lines 
are situated asymmetrically with respect to the equatorial line, straight lines are drawn on 
the film through the layer lines, and the distances between these lines are measured. When 
a flat film has been used, an approximate value can be obtained with the aid of a Bemal 
chart (cf. Appendix, Fig. 2). 

The following should be noted. 
1) Precise alignment of the crystal is essential. 
2) Layer lines of low intensity may be overlooked if exposures are short. 
3) The value of the axial length found by this method should be regarded as tentative, 

for use only in the early stages of the analysis, and not to be used as the final value of the 

Cylindrical film 

nth layer line 

Fig. 8.39 Geometry for measurements of identity period along the axis of rotation (cylindrical film). 
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lattice constant. It will undoubtedly need correction in the light of accurate measurement of 
the corresponding unit cell parameter obtained, for example, from the higher order diffrac
tions of an equatorial Weissenberg photograph {cf. Subsection B . ^ below). 

4) Tables are available for finding the identity period / from the layer-line separation z 
for Cu, Ni, Mo, and other X-rays, and for camera radii of 28.65, 30 and 45 mm."̂ ^̂  

B. Equatorial Weissenberg photographs 
a) Screen test, 

1) The layer line screen is used to select only the equatorial line, and the oscillation 
photograph of this line is recorded. 

2) The position of the film cassette is altered, and at the same time the crystal is rotat
ed through about 90°, and the oscillation photograph is again recorded. 

3) It is ascertained whether the equator has been correctly selected by the screen or 
not. 
b) The Weissenberg photograph. The Weissenberg photograph is made by means of si
multaneous oscillation of the crystal and displacement of the film cassette. The crystal is 
made to oscillate through an angle of about 200°, and the length of the exposure is usually a 
matter of hours. Examples of Weissenberg photographs are shown in Fig. 8.40. If the vari
ous elements in the diffraction pattern shown by the Weissenberg photograph are unduly 
elongated, or if the intensity distribution is uneven, or if there are clusters of small diffrac
tion spots, it can be assumed that twinning or other faults are present in the crystal. A new 
Weissenberg photograph should then be made with another crystal. 
c) Indexing, 

1) A print is made from the Weissenberg photographic film, or the positions of the 
various, diffraction spots are marked on tracing paper. The position of the incident X-rays 
on the center line of the film is also marked. 

2) A Wooster chart (see Appendix, Fig. 1) is placed on the resulting diffraction distri
bution diagram. The chart is positioned so that the bottom edge passes through a row of 
diffraction spots lying on one reciprocal lattice axis, i.e. lying in a straight line. 

3) A curve is drawn joining diffraction spots standing on similar curves in the Wooster 
chart. 

4) Another reciprocal lattice axis is selected and the sloping edge of the Wooster chart 
is placed along this axis. Diffraction spots standing on similar curves are again joined up, 
and the diffraction spots are indexed by means of the coordinates of the intersections of the 
two curves (cf. Fig. 8.40(c)). 
NOTE: (1) The first reciprocal lattice axis selected is usually that in which the distances be
tween the colinear points are smallest, i.e. the axis with the largest interplanar spacings. If 
the intensities of the corresponding diffraction spots on either side of a given row of spots 
are symmetrical, this row may be selected as a reciprocal lattice axis. 

(2) Following the same criteria as for the first axis, the second axis is taken as one 
about 45 mm from the first (corresponding to an angle of about 90° between the axes). 

(3) If the unit cell contains glide planes or screw axes, only diffractions with even 
indices will appear according to the extinction rules (cf. Section 11.2.3), and the correct in
dices are determined after indexing the higher order layer lines. 
d) Measurement of the interplanar spacings of the principal planes. The Bragg angles 
On for the diffraction spots on the two reciprocal lattice axes chosen for indexing are deter
mined, and the interplanar spacings d found from the Bragg equation Id sin 0 = A. The 
Bragg angle itself is found from the distance IXn between corresponding diffraction spots 
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Fig. 8.40 Weissenberg photographs. 
(a) 2-Aminoethanesulphonic acid (taurine). Equatorial photograph for the c axis. 
(b) Doubly oriented Nylon 6. Equatorial photograph for the fiber axis (/? axis), 
(ci) Doubly oriented Nylon 12. Equatorial photograph for the fiber axis {h axis). 
(c2) Indexing of (ci) {hkl, indices in parentheses are the diffractions of the second component indexed by 

the a* and ci* axes). [Reproduced with permission from T. Ishikawa, et ai, J. Chem. Soc. Jpn., 
105, Chem. Soc. Jpn. (1973)] 

on either side of the center Hne of the film (Fig. 8.41) with the aid of the equation On = 
Xnl(2Rv). Since the value of d obtained is generally the interplanar spacing for arbitrary in
dices, e.g. for /zOO in the case of the (2* axis, multiplication of this value by h gives the in
terplanar spacing for the (100) planes, i.e. lla^. The interplanar spacings obtained are cor
rected by photographing the diffraction lines of a reference substance {e.g. aluminum) on 
the same film, using the higher order diffractions. The interplanar spacings for diffraction 
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Fig. 8.41 Measurement of parameters on a Weissenberg photograph. 
The diagram illustrates the measurement of 1%^ (in the general case 2;̂ „) for the 300 diffractions on the 
a* axis. 

spots that do not lie on the axis, i.e. spots having the general indices hk\, are measured by a 
precisely similar procedure. 
e) Determination of the unit cell parameters. Table 8.6 shows the relationship between 
the oscillation photograph for one axis, the equatorial Weissenberg photograph, and the 
crystal system, and Table 8.7 shows the minimum set of photographs required to determine 
the unit cells for these crystal systems. Weissenberg photographs for other crystal axes will 
naturally also be helpful if available. 

Table 8.6 Relationships between the oscillation and the equatorial Weissenberg photograph for one crys
tal axis, and the crystal system 

Oscillation photograph 

Asymmetrical^^ 

Symmetrical^' 

Weissenberg photograph 

Axial angle between axes^^ ^ 90° 
= 90° 

Axial angle between axes^^ =# 90° 

= 90° 

Crystal system 

Triclinic 
Monoclinic^^ 

(rotation about cox a axis) 

Monoclinic" 
(rotation about /? axis) 

Orthorhombic or system of higher symmetry 

'̂ Asymmetrical denotes that the nth layer hne and (— n)th layer line do not agree, while symmetrical means that 
corresponding diffraction spots in both layer lines agree in position and naturally in intensity. 

^̂  The angle found from the distance between the two reciprocal lattice axes on the direct beam trace of the 
Weissenberg photograph. 

"̂̂  The b axis is the unique axis (2nd setting of the monoclinic system, see Table 3.1). 

Table 8.7 Minimum photographs required for unit cell determination in different crystal systems 

Orthorhombic system 
Monoclinic system 
Triclinic system 

Oscillation and Weissenberg photograph for one axis 
Oscillation and Weissenberg photograph for h axis (unique axis) 
Oscillation and Weissenberg photographs for two axes 
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If the minimum number of photographs given in Table 8.7 for the determination of the 
unit cell cannot be made, e.g. in the case of an acicular crystal of the triclinic system having 
a pronounced cleavage parallel to the needle axis, or if the axis of rotation of a crystal of the 
monocHnic system (2nd setting) is the a axis or c axis and it is difficult to mount the crystal 
for rotation about an axis other than the needle axis, the following alternatives are available. 

1) The nth layer line Weissenberg photograph for this axis is made by the equi-inclina-
tion method,"̂ ^̂  and the equatorial Weissenberg photograph is made by the anti-equi-inclina-
tion method, these two photographs being utilized."̂ ^̂  

2) The zero level precession photograph is made for the reciprocal lattice plane con
taining this axis. 

The second of these two methods is the more accurate. The data obtained from the 
above measurements are used to calculate the lattice parameters a, b, c, a, /?, and 7 utilizing 
Table 5 of the Appendix. 
f) Number of chemical formula units per unit cell, 

1) The equation used is 

^ _ yPm 

M niH ^^'^^ 

Dm', measured density of the crystal. Methods of measuring the density were detailed in 
Section 8.4.2. In the case of crystalline high polymers, the density of the polymer including 
amorphous regions is provisionally used. 

V: volume of the unit cell. V is found from the lengths and angles of the unit cell as 
given in Table 5 of the Appendix for the various crystal systems. Thus it is generally nec
essary to know a, b, c, a, /3, and 7, or at least the reciprocal lattice of the basal plane and the 
cell length along the axis of rotation. 

M: molecular weight of the chemical formula unit. Where the unit cell is made up of 
parts of huge molecules, as in the case of high polymer crystals, the sum of the atomic 
weights of the repeat unit is used. 

mn: mass of one hydrogen atom (1.66 X 10"^"^ g). 
NOTE: (1) The value found for Z should be a whole number within the limits of experimental 
error. Thus, if the value differs significantly from a whole number, it is probable that the 
unit cell size used was in error, or that the value assumed for the density was incorrect, and 
these must therefore be checked. If they are found to be correct, the chemical formula of 
the specimen must be checked. In the case of high polymers, since the specimen is general
ly not 100% crystalline, the value for Z will be 5 ~ 10% lower than the true value, depen
dent upon the actual degree of crystallinity. 

(2) The density of the crystal is given by the following equation, which is derived 
fromEq. 8.3: 

^ 1.660ZM 
^- = y (8.4) 

The value calculated in this way for the density of the crystalline regions will often be 5 ~ 
10% higher than the experimental value, e.g. when the specimen is a high polymer typically 
containing amorphous regions having lower densities than the crystalline regions. 

(3) Molecular weight can be found from the size of the unit cell and the density by 
employing knowledge of the space group to which the crystal belongs: 
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M= 
VDm 

1.660Z 
(8.5) 

Example: 2y2,3,3,5,5,6,6-octamethyl'ly4-dioxa'2,3,5,6-tetrasilacyclohexanej 
[(CH3)4Si20]2 

Experimental values :''^ a = 7.67 A, Z? = 6.64 A, c = 17.39 A, j3 = 111.0°, Dm = 1.04 
gcm~^(orMgm"^)(20°C) 

Calculation: from Eq. 8.3 

Z= 
VDm 7.67X6.64X 17.39X0.9336X 1.04 

MMH 264.6X1.660 
= 1.96 = 2 

NOTE: The crystal in this example was originally thought to be tetramethyldisilanediol 
HO(CH3)2SiSi(CH3)20H (I). However, this gave a value for Z of 3.45, which deviates un-
acceptably (— 13.7%) from the next highest whole number, Z = 4. This difference was 
significantly greater than the errors in the measurements of unit cell parameters and of the 
density. Since the crystals had an extremely high vapor pressure and readily sublimed, it 
was thought possible that the molecule contained the siloxane linkage — Si — O — Si —. 
The calculations were therefore performed for the linear and cyclic dimers (II) and (III) re
sulting from condensation of the hydroxyl groups in (I), and the results were used to calcu
late the molecular weight (Table 8.8). The experimental errors for (II) and (III) were both 
found to be small, and it was therefore difficult to decide which was correct. However, the 
error was slightly smaller for (III), and on re-examination of the infrared spectra and ele
ment analyses, it was concluded that the substance was in fact (III).**"̂  

Table 8.8 A comparison between the calculated and experimental molecular weights 
for possible structural formulae 

(I) 

(11) 

(III) 

Structural formula 

CH3 CH3 
1 1 

HO—Si Si—OH 
1 1 

CH3 CH3 

CH3 CH3 CH3 CH3 
1 1 i 1 

HO—Si Si-O-Si Si—OH 
1 1 1 1 

CH3 CH3 CH3 CH3 

H3C CH3 H3C CH3 
\ / \ / 

Si Si / \ 
0 0 \ / 

A -/\ 
H3C CH3 H3C CH3 

Molecular 
wt.(calc.) 

150.3 

282.6 

264.6 

Z 

3.45 = 4 

1.83 = 2 

1.96 = 2 

Molecular 
wt.(exptl.) 

130 

259 

259 

Error 

- 13.7% 

- 8.5% 

- 2.0% 
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C. Layer line Weissenberg photographs 
Layer line Weissenberg photographs can be made by the equi-inclination method,"̂ ^̂  the 
normal beam method,^ ̂^ or the flat cone method.̂ ^^ 
a) Equi-inclination method. The equi-inclination method is in most common use, and 
the procedure is detailed below. The principle is shown in Fig. 8.42.̂ ^̂  The axis of rotation 
of the crystal is inclined at an angle v„ to the incident X-rays, and the Weissenberg photo
graph of the layer line in question is recorded when the screen is displaced at the correct lo
cation. Fig. 8.42(c) shows the case where the axis of rotation of the crystal coincides with 
the reciprocal lattice axis, i.e. in the case of crystals of orthorhombic or higher symmetry 
and monoclinic crystals where the axis of rotation is the b axis (unique axis). Indexing is 
exactly the same as for the equatorial diffraction, except that diffractions for rows of recip
rocal lattice points having the same J* move farther away from the center line with increas
ing order number. Moreover, the Old) spots for the various layer lines always satisfy the 
diffraction conditions and form a line on the center line. 

Figure 8.42(d) shows the situation for the triclinic system or for the monoclinic system 
with rotation about the a or c axis. Since the reciprocal lattice axis does not coincide with 
the axis of rotation (though a principal crystal axis naturally does), the reciprocal lattice 
points on the reciprocal lattice axis are increasingly displaced from the axis of rotation with 
increasing order number. Consequently, e.g. for rotation about the c axis, the Okl and hOl 
rows (both /'s being the same, and for monoclinic crystals only the Okl row) curve away 
from the normal, so that the 00/ diffraction may be found at a point outside the center line 
of the /th layer line. 

Boundary sphere 
(Ewaid sphere) 

Diffracted 
X-rays 

Incident 
X-rays 

I Diffraction 
Axis of rotation /̂ ,\ sphere 
of crystal „ • , 

. Reciprocal 
Axis of rotation Divergence j lattice axis 
of reciprocal ' 
lattice 

Diffracted 
X-rays 

Diffraction 
sphere 

Fig. 8.42 Principle of the equi-inclination Weissenberg method. 
(a) Plan view; (b) Cross section; (c) Axis of rotation coincident with reciprocal lattice axis; (d) Axis of 
rotation not coincident with reciprocal lattice axis. [Reproduced with permission from E. W. Nuffield, 
X-Ray Diffraction Methods, p.312, John Wiley & Sons, Inc. (1966)] 
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1) Fixing the angle of inclination v„. If / is the axial length of the crystal in the direc
tion of the axis of rotation as found from the oscillation photograph, the angle of inclination 
required for the nth layer line Weissenberg photograph is the angle v„ that satisfies the fol
lowing Bragg condition: 

2 / sin Vn = nX 

Vn may be calculated from the above formula, but it is usually found in practice from a 
graph (Fig. 8.43). '̂̂  

12 16 20 
Layer line separation, z [mm] 

24 

Fig. 8.43 Graph for deriving the angle of inclination, v„ and screen displacement s from layer-line separation 
(equi-inclination method). [Reproduced with permission from E. W. Nuffield, X-Ray Diffraction 
Methods, p.314, John Wiley & Sons, Inc. (1966)] 

2) Displacements of the layer line screen. This can be found from a graph (Fig. 8.43) 
or calculated from the following equation: 

s = Ts tan Vn (8.6) 

where r̂  is the radius of the layer line screen, and Vn is the angle required for the nth layer 
line photograph. 

3) Experimental procedure. 
(1) The axis of rotation of the crystal is inclined at an angle v„ to the incident X-rays. 
(2) The layer line screen is displaced a distance s. The linkage between the screen and 

the beam stop must be adjusted to move the beam stop through a distance of about 1.5 X s^ 
in the direction opposite to that in which the screen is moved, in order to block the primary 
X-rays. 

(3) The screen test is carried out. The correct positioning of the screen is checked in 
the same way as for the equator (Section 8.6.IB) 

(4) The layer line Weissenberg photograph is taken. The oscillation of the crystal is 
carried out under exactly the same conditions as for the equatorial Weissenberg photograph. 

'̂ For an angle of inclination v„, the displacement t of the beam stop is given by t = (r̂  + u) tan v„, where u is 
the distance between the tip of the beam stop and the crystal. 
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Unless the film cassette is moved through a distance equal to the displacement of the screen 
and in the same direction, one side of the Weissenberg photograph will not be recorded on 
the film. Since the angle of inclination of the crystal with respect to the incident X-rays be
comes more acute with increasing order number, the absorption increases, and the expo
sures accordingly become longer. Crystal samples which give layer line photographs that 
are, unlike those of the equatorial photograph, split up as a result of twinning or other 
faults, should be replaced, and the experiment repeated from the beginning with the new 
crystal. 

(5) Indexing. Where the crystal is of orthorhombic or higher symmetry, or monoclinic 
with rotation about the b (unique) axis, the diffractions can be indexed in exactly the same 
way as for the equator (cf. Fig. 8.42(c)). Care is necessary, on the other hand, in the case of 
monoclinic crystals with rotation about the a or c axis (^* axis curved) and of tricUnic crys
tals (both reciprocal lattice axes curved) (cf. Fig. 8.42(d)). 
b) Normal beam method. 
Figure 8.44 illustrates the theoretical basis for the reconstruction of the reciprocal lattice.̂ ^^ 

Position of 
reciprocal lattice 
line when P reflects 

Initial 
position of 
reciprocal 
lattice line 

Fig. 8.44 Plan view and elevation view of the normal-beam Weissenberg method. 
[Reproduced from M. J. Buerger, X-Ray Crystallography, p.231, John Wiley & Sons, Inc. (1942)] 
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The screen displacement Sn for the nth layer line can be calculated from 

5„ = r, tan/x„ (8.7) 

where r^ is the radius of screen and fin the angle of elevation of the nth layer line {jin — 
ZnlRv\ Zn is the layer line separation on the film and Rv the film radius). 

D. Photographs for intensity measurements 
To obtain the three-dimensional diffraction intensity data required for crystal structure 
analysis, data must be accumulated from as many layer lines as possible in Weissenberg 
photographs for at least two axes. The oscillation-angle ranges and other required condi
tions are summarized in Table 8.9. In practice, the oscillation-angle range should prefer
ably be considerably above the minimum cited in Table 8.9. The film cassette can only 
cover an angular range of about 220°, so photographs that must cover a range of 270° or 
360° (or more) are made in two parts. Moreover, the angular ranges given in Table 8.9 are 
those for cases where only one side of the center line of the Weissenberg photograph is 
used. 

Table 8.9 Angular ranges and axes for Weissenberg photographs for diffraction intensity measurements 

Crystal system 

Triclinic 

Monoclinic 
{b axis (unique axis)) 

Monoclinic 
{a or c axis) 

Orthorhombic 
(tetragonal, cubic) 

Angular range 

Equatorial line 

180° or more 

180° or more 

90° or more 

90° or more 

Layer line 

360° or more 

180° or more 

270° or more 

90° or more 

Axes for which diffraction data are 
required. 

For at least two axes 

At least the b axis (unique axis) and one 
other axis (either the a or the c axis) 

Orthorhombic: at least two axes 
Tetragonal: at least the a axis 

Diffraction intensities are recorded by the multiple-film technique, in which several 
films are placed in the cassette at the same time. It is desirable to record diffractions having 
a wide range of relative intensities (1 : 10,000), and a single exposure can range from 24 h 
to a week for an ordinary sealed tube. Care must therefore be taken to avoid fogging due to 
X-rays scattered from the side of the camera during the exposure. All the films exposed to
gether are necessarily developed together. 

8.6.3 Precession photographs 
A. Adjustment of the axis alignment and orientation of the crystal 
a) Procedures peculiar to the precession camera, 

1) One axis (or to be precise one reciprocal lattice axis) of the crystal is brought into 
coincidence with the axis of rotation of the camera with the aid of the attached magnifying 
glass or telescope. 

2) The position of the shaft is adjusted to bring a cleavage plane into an orientation 
normal to the incident X-rays. It is convenient, for this purpose, to place a pair of crossed 
nicol prisms in the optical system and make the adjustment while watching the extinction of 
the crystal. 

3) Maintaining the orientation determined in this way, a precession photograph is tak
en, without the screen and the filter, and at a small angle of inclination, e.g. fi = 5° or 10°. 
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4) Further orientation adjustment is made subsequent to analysis of the precession pho
tograph. Without the screen, the higher order level lines are recorded at the same time as 
the zero level; however, these can be distinguished, for the continuous X-rays give radial 
streaks with the position of the incident X-rays at the center for the zero level, whereas for 
the higher order levels they give loops. In this case, if the camera is fitted with a circular 
(not annular) screen of radius r̂  = 5 mm, corresponding to /i = 10°, the zero level alone 
will be recorded. The radial streaks due to the continuous X-rays generally have the form 
shown in Fig. 8.45. The adjustment of the crystal orientation starts with the incHnation AV 
of the vertical direction of the crystal. The angle of inclination AV of the streak with re
spect to the spindle axis is measured on the photograph (Fig. 8.45(a)), and the inclination of 
the vertical arc of the goniometer head is adjusted. Another precession photograph is made, 
and the inclination AH of the horizontal arc and the stagger AD of the spindle direction are 
adjusted with the aid of the following relationship: 

RfAH = XRt ~- Xu 

RfAD = yup — jDn (8.8) 

(a) 

>'Dn 

A^Lt 

>'Up 

(b) (d) 

Fig. 8.45 Effect of crystal misalignment on precession photographs. 
(a) Vertical inclination, horizontal inclination and spindle stagger all incorrect; (b) Horizontal inclina
tion and spindle stagger slightly misaligned; (c) Correct orientation; (d) Misalignment greater than [i 
Cvup changes sign). 
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If the two arcs of the goniometer head are not approximately vertical and horizontal, the ad
justment should strictly be made by dividing ZiV and AH into two components each. 

If the crystal is seriously misaligned, the zero level will become a collection of loops 
instead of streaks, e.g. as shown in Fig. 8.45(d). Since the lengths of the various loops ap
proximately 4Rf sin ^, the area due to the zero layer is found from the precession photo
graph taken without a screen, and the orientation is adjusted by the above method. 
b) Adjustment of the alignment by using a Weissenberg camera. A certain crystal axis, 
e.g. the c axis, is aligned with the aid of a Weissenberg camera. The goniometer head and 
the crystal are then transferred as a unit to the precession camera. In crystals for which the 
c axis does not coincide with the c* axis of the reciprocal lattice, the arcs of the goniometer 
head are shifted to bring the c* into coincidence with the axis of rotation. The orientation 
of the c* axis with respect to the c axis is determined beforehand from the Weissenberg 
photograph. The <2* or Z?* axis is then positioned normal to the incident X-rays. This is a 
simple matter, for the orientation of the a* or /?* axis can readily be found from 
Weissenberg photographs. Accurate adjustment of the crystal orientation on the basis of a 
precession photograph taken without screen or filter, and with /i = 5° or 10° (as described 
under a) above) is possible as soon as these adjustments have been made. Preliminary 
alignment of the axis can also be made on the basis of Laue photographs. 

B. Taking precession photographs 
a) Zero level photograph. A suitable angle of inclination jx must first be selected. If ji is 
large, a large area of the reciprocal lattice can be recorded, but the exposures required are 
correspondingly longer, jii normally has a value of up to 30°. Even with ju = 30°, the range 
of diffraction measurements is much narrower than with cylindrical cassette cameras, but 
this can be compensated for by selecting an appropriate wavelength for the X-rays used. 
For example, with jLi = 30° and Mo Ka radiation, the range of angles covered is almost ex
actly the same as that covered in the Weissenberg camera using Cu Ka radiation. 

The next factor to be selected is the value of the screen radius n, corresponding to the 
distance s from the screen to the crystal; the relationship between n, 5, and jii is as follows: 

s = ncoijd (8.9) 

The camera is normally fitted with screens having rs= 15, 20, 25, and 30 mm. The most 
suitable value is chosen from this range. The screen gap is TS ± 2.5 mm, and the range over 
which the screen-to-crystal distance can be varied is normally 20 to 45 mm. 

When the chosen screen is at the correct distance, the zero level precession photograph 
is taken at the selected angle of inclination //. The standard crystal-to-film distance, Rf is 60 
mm. Care must be taken at this stage to ensure that the filter is re-inserted. 
b) The nth level photograph. Values of n and s for which the nth level can be pho
tographed are found by considering the distance J„* between the zero level and the nth lev
el on the reciprocal lattice plane; both jn and the screen are chosen correspondingly. The 
standard film-to-crystal distance (60 mm) is reduced by moving the film a distance /?f J„* 
closer to the crystal, and the nth level precession photograph is taken(c/ Fig. 8.17(c)). The 
values of n and s for the nth level can be calculated from the following equation: 

S = Ts co t [cos ~ ^(COS jLL — Jn*)] (8 .10) 

In practice, however, they are determined from a graph supplied with the camera or from 
the nomogram in Fig. 8.46.̂ ^̂  

A very characteristic splitting of the diffraction spots into two occurs when Rfdn^ (the 
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Rfd* I 
Rf = 6.0 cm 

fOA 

rs [mm] 

Fig. 8.46 Adams-Evans nomogram. 
Values of the screen radius, rs and the screen-to-crystal distance, s are obtained by the nomogram for 
making the nth level precession photogrtaph. (r. 1. u.: reciprocal lattice unit) 
[Reproduced with permission from E. W. Nuffield, X-Ray Dijfraction Methods, p.262, John Wiley & 
Sons, Inc. (1966)] 

crystal-to-film distance for the nth level) is incorrectly adjusted. This results from a differ
ence between the positions at which diffraction occurs when the reciprocal lattice point en
ters the small circle of Fig. 8.17 and when it leaves the circle during the precessional mo
tion. If/?f<i„* is too small, needle-like streaks diverging outwardly appear as shown in Fig. 
8.47(a); if it is too large, the streaks diverge inwardly as shown in Fig. 8.47(b). 

If J* is unknown, it may be determined by wrapping a film in light-proof paper and in
serting it in the screen-holding frame before taking a precession photograph. The diffrac
tions from the reciprocal lattice levels are recorded on concentric rings, the zero level being 
nearest the center, followed by the first and subsequent levels in order. This is known as a 
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cone-axis photograph. If the radius of the circle corresponding to the nth level is r„, then 
(i„* is given by the following equation: 

6?„* = cosjii-s/{(rn^-\-s^y} 

fi and s are parameters of the cone-axis photograph in this case. 

(8.11) 

s^ 
> A 

1 > 

i ^ ^ 
\'^yf 

V A ^ 
^ < 

o ^ 
1 V r 

^ V 

(a) (b) 

Fig. 1.47 Effect of incorrect Rdn* adjustment, 
(a) Ridn* too small; (b) R^dn^ too large. 

C. Photographs for intensity measurements 
It is not possible to use the multiple film technique for intensity measurements, so several 
photographs are made with stepped exposures to vary the intensity. From the zero level to 
the nth level of the reciprocal lattice plane, there are diffractions that cannot be measured 
simply by making a precession photograph of each level (blind regions). If the diffraction 
intensity data are being collected entirely from precession photographs, Lp (Lorentz and po
larization) corrections can be made relatively easily by changing the orientation of the crys
tal about (say) the c* axis and taking zero level photographs for the h,2hj; h,h,l\ 3K2h,l; 
etc. reciprocal lattice planes as well as for the hOl and Okl planes, as shown in Fig. 8.48. 
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Fig. 8.48 Making zero-level precession photographs to derive intensity data for easy Lp correction (see text). 
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D. Analysis of precession photographs 
a) Indexing* Since the reciprocal lattice is reproduced without distortion, no explanation 
is necessary. 
b) Determination of the unit cell parameters. The translation distance r* of the diffrac
tion spots in the direction of the principal axis of the reciprocal lattice may be measured on 
the film. It is, however, more accurate to measure the distance J* between the rows of dif
fraction spots and to find r* with the aid of the axial cp*, which is measured at the same time 
(cf. Fig. 8.49): 

Fig. 8.49 Measurement of interplanar spacing along the principal reciprocal lattice axis. 

r* = J*/cos(90° - <p) = ^*/sin cp* (8.12) 

The interplanar spacing d along the principal axis is calculated from *̂ and the specimen-
to-film distance Rf by using the following relationship: 

6/ = 7?fM*=A/c/* (8.13) 

The axial angle can be determined by measurement of the angle of intersection <)!?* of 
two principal axes of the reciprocal lattice on the film with an accurate protractor. 

With the exception of crystals of the triclinic system, the unit cell dimensions can be 
readily found from the interplanar spacing (i* (the distance between rows of reciprocal lat
tice points) along the principal axis of the reciprocal lattice with the aid of the following re
lationships: 

a = X/d^m, b = A/J*oio, c = X/d^m (8.14) 

For triclinic crystals, the reciprocal lattice is determined by the values of a*, Z?*, and c* 
along the axes of the reciprocal lattice and the inter-axial angles, and the dimensions of the 
unit cell are found from the equations given in Table 6 of the Appendix. 

8.7 Diffraction Studies for Analysis of Fine Textures 

8.7.1 Measurement of crystallinity 
The normal method for the determination of crystallinity is based on the theoretical presup
position that the specimen exhibits no preferred orientation. The photographic method is 
therefore used first to verify that the specimen is unoriented; this entails scrutiny of the en
tire X-ray diffraction diagram. If the diagram shows a preferred orientation, the specimen 
may be reduced to an unoriented (randomly oriented) state before measurements are made. 
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For example, the specimen may be chopped as finely as possible and the pieces aggregated 
in a completely random manner. Alternatively, the specimen may be retained in its original 
form if it is rotated by using a Gandolfi (Fig. 8.14) or other devices during measurements 
with the diffractometer. 

The continuous intensity distribution in the diffraction direction (26) is measured. 
Since the intensity values found in this way are essential to the analysis, the measurements 
must be carried out over the widest possible range of angles, and must be of adequate accu
racy. Adequate data can normally be obtained with a rotation camera. However, a powder 
diffractometer or area detector diffractometer is preferable for accurate intensity measure
ments. The need to measure the intensities of amorphous halos dictates the use of mono
chromatic X-rays. 

8.7.2 Analysis of crystallite orientation 
The analysis of orientation requires knowledge of the form of the entire diffraction pattern, 
i.e. the spatial distribution of the reciprocal lattice. It is necessary to determine accurately 
the continuous azimuthal intensity distribution in the i//direction (cf. Fig. 10.16; corre
sponding to the X direction of the specimen in Fig. 8.6) for at least two sets of crystal planes 
(reciprocal lattice points) giving intense diffractions. This obviously involves determining 
a three-dimensional intensity distribution with measurements at various angles of incidence 
(p. 

If it is necessary only to check qualitatively for the presence of orientation or the deter
mine the type of orientation, a Laue camera or a simple oscillation or rotation camera may 
be used. 

The investigation of sheet-like specimens often requires diffraction diagrams from at 
least three directions (one normal to the plane of the sheet and two at right angles to each 
other in a plane parallel to the sheet) (cf. Figs. 10.1, 10.2 and 15.36). Fiber specimens, 
when it is thought that the orientation will be cylindrically symmetrical, require only the 
use of two directions (parallel to the fiber axis and in a direction normal to the fiber axis). 
The systematic classification of types of orientation is discussed in Section 10.2.2). 

The most accurate quantitative measurements of the degree of orientation are obtained 
with X-ray diffractometers fitted with fiber-specimen mount or apparatus for readily obtain
ing pole figures. A single-crystal X-ray diffractometer is the most suitable for this purpose. 
Weissenberg, Sauter, and other goniometer cameras are also generally suitable for quantita
tive measurements. Since the measurements are concerned with the crystal diffraction pat
tern, satisfactory results can be obtained with filtered X-rays, provided that the filtering ef
fectively removes the Kp radiation and eliminates superposition of KP diffractions. 

8.7.3 Measurement of the size and shape of and/or lattice distortion in 
crystallites 

This involves accurate determination of the three-dimensional form of the reciprocal lattice, 
i.e. of the diffraction pattern. Thus, although a Laue camera may be used, a rotation camera 
that allows movement of the specimen is preferable. High resolution is desirable, because 
the accuracy with which the crystallite size can be determined depends upon the accuracy 
of measurement of the diffraction line breadths. 

High polymer diffractions are generally diffuse, with low intensities, because the crys
tallites are small and the lattice imperfect. The diffractions consequently merge into the 
background at higher order numbers. It is therefore most important to minimize extraneous 
background scattering. Moreover, since it is necessary to measure the diffraction profile. 
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the X-rays should be monochromatic if at all possible. 
Any broadening of the diffraction lines induced by the geometry of the optical system 

(shape and size of the specimen, errors in the collimating system, etc.) must be minimized. 
The extent of this broadening due to experimental conditions can readily be determined. 
The diffractions for a standard specimen of adequate crystal size, and for the specimen with 
crystallite size as yet undetermined, are measured simultaneously or separately under iden
tical conditions. The broadening of the diffractions due to the experimental conditions is 
estimated from a comparison of the results, and the inherent broadening for the specimen in 
question can then be determined. Descriptions of this procedure are given in Chapter 13; it 
is also described in many other books.̂ ^^ 

When two or more broad diffraction lines overlap it is necessary to resolve them and 
determine their individual shapes. 

The relevant information theory is usually applied by using an electronic computer. 
Line profiles of the components of an incompletely resolved diffraction are first assumed to 
belong to a single type such as the Gauss, Lorentz (Cauchy), or some other distribution, e.g. 
a Voigt, pseudo Voigt, or Pearson VII function.̂ ^^ The line profile of the diffraction is then 
calculated for various positions, heights, and half widths of the component diffractions. 
The method of least-squares indicates the best fit between observed and calculated profiles 
of the incompletely resolved diffraction. Some methods for the numerical calculations 
which give a rapid convergence of the least-square residuals have been reported.̂ ^^^^ On 
the other hand, though the precision is a little inferior to the above method, analogue com
puters are also convenient for this purpose. A commercial curve analyzer is also available. 

For the conventional graphic resolution we may apply the method of DuMond-
Kirkpatrick,^^^ Rachinger,^^^ or Pease.̂ ^^ The DuMond-Kirkpatrick method is given below. 

If the profiles of the two diffraction lines are similar, the profile F{x) of the double line 
can be expressed as F(x)—f(x)-\-kf(x — S), where/(x) and kf(x — 5) are the profiles of two 
component diffraction lines separated by a distance S (Fig. 8.50). We find that 

f(x)= F(x)-kF(x - S)+k'F(x - 2S)-J^F{x - 3S) + -" (8.15) 

In these expressions, k is the ratio of the heights of the two component lines. 
If k and 5 are known, as in the resolution of the Kai/Kaj doublet or of overlapping 

lines in the diffraction pattern of a crystal the structure of which is already known, a set of 
ordinates spaced at intervals of S are read off for the profile obtained in the experiment. 

Fix) fi.x) 

Fig. 8.50 Resolution of overlapping diffraction lines with similar profiles. 
[Reproduced from J. W. M. DuMond et al., Phys. Rev. 37, 136, Am. Inst. Phys. (1931)] 
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These ordinates are substituted in the right-hand side of Eq. 8.15 to find/(x). If either or 
both k and 5 are unknown, or if the profiles of the component peaks are not similar, two 
suitable component peaks must be found by trial and error. 

8.7.4 Measurement of diffuse halos due to amorphous solids and liquids 
In contrast with the study of diffractions from crystals, it is necessary to record continuous
ly and accurately the intensity distribution of a diffraction pattern extending over a wide an
gular range. As in the measurement of the degree of crystallinity, therefore, background 
scattering must be reduced to a minimum. Since most of the diffraction patterns are 
isotropic and simple, the measurements can be made with a Debye-Scherrer camera, but an 
X-ray diffractometer meets the requirement for accuracy more satisfactorily. Oscillation or 
rotation cameras, Weissenberg cameras, or single crystal diffractometers may naturally also 
be used. A monochromator must be employed to obtain monochromatic X-rays. Since the 
scattering measurements should in principle be carried out up to large values of (sin 0)IX, 
radiation of shorter wavelength than. Mo Ka such as Ag Ka or W Ka is used. 

Except in the special case of diffuse halos exhibiting orientation, the intensity may be 
recorded by scanning the film with a photometer in any radial direction. A large area of the 
film must be kept unexposed by masking with a lead plate to allow assessment of the base 
density for comparison with an intensity scale. The specimen is mounted as in the powder 
method, and diffraction or scattering due to any supporting substance used must be taken 
into account {cf. Section 8.4.3). 

8.7.5 Analysis of distorted crystalline diffraction 

A monochromator should preferably be used to ensure a monochromatic X-ray beam. 
Study of the diffraction must be particularly comprehensive because the overall intensity 
throughout reciprocal space is to be recorded, and must include both crystalline and amor
phous elements. Suitable apparatus includes rotation, Weissenberg, or precession cameras 
and automatic single crystal diffractometers. A complete analysis would require a three-di
mensional intensity representation of the three-dimensional reciprocal lattice over all space. 
In the case of a fibrous high polymer, however, it is enough if the £, and ^ projections of the 
reciprocal lattice (i.e. all the diffraction intensities in planes containing the fiber axis and 
the equator) are accurately recorded. This may be achieved directly in a precession photo
graph with the fiber axis as the axis of rotation. 

8.7.6 Measurement of small-angle scattering (or diffraction) 

A. X-rays 
The intensity of small-angle scattering is generally very weak, and the path of the X-rays is 
several times as long as that in an ordinary camera. A powerful X-ray source is therefore 
desirable, and fine-focus rotating anode X-ray tubes with currents of 100 mA or more are 
often used. The use of synchrotron radiation is also favorable. Cu Ka radiation is normally 
employed, although the use of longer wavelength X-rays such as Cr Ka or Al Ka may be 
considered in order to obtain improved dispersion {cf. Section 8.4.1 A). With Cr Ka or X-
rays of longer wavelength, the optical system must naturally be placed under vacuum. 

B. Optical system 
The accuracy of the analysis increases with decreasing slit width and with increasing slit 
distance and specimen-to-film distance. On the other hand, the small-angle scattering in-
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tensity simultaneously decreases. The experimental conditions must therefore be chosen to 
give the shortest exposures consistent with the degree of accuracy appropriate to the nature 
of the specimen and the purpose of the measurements. This is discussed in some detail in 
other books,̂ "̂ ^̂ ^ and will not be dealt with here. 

8.7.7 Special experimental methods 
It is sometimes necessary to study the crystal structures and fine textures of polymeric spec
imens at high and low temperatures in connection with the investigation of the temperature 
dependence of their properties. The methods used for high- and low-temperature studies of 
low molecular weight single crystals and powder specimens are applicable in such cases, 
and the reader is referred to accounts of these techniques.^^^^^ Whereas experiments at a 
fixed temperature (whether high or low) are fairly straightforward, studies in which the 
temperature is continuously varied generally present considerable difficulties. 

Stein and his co-workers have developed so-called "rheo-optics" which permits dy
namic X-ray diffraction measurements, i.e. the measurement of the change in the diffraction 
pattern during tensile stress and deformation measurements.^^^ Sakurada et aC^^ have deter
mined crystal elasticity from the change in the diffraction pattern. 
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Part III 

Analytical 

As we have already often had cause to note, the diffraction patterns of high polymers gener
ally consist of a rather broad crystalline diffraction pattern which is superimposed upon 
strong background scattering that includes the effect of amorphous diffraction. In view of 
these special characteristics of high polymers, Chapters 9 to 12 and part of Chapter 13 deal 
mainly with methods of analysis based on only the crystalline diffraction patterns of high 
polymers, whereas, Chapters 13 and 14 proceed to describe methods applicable to the com
plete diffraction intensity distribution (including the background). Chapter 15 treats the 
analysis of small-angle scattering from high polymers. By dealing with these topics sepa
rately, and with the aid of practical examples, we hope to make it easier for the reader to 
understand the methods used for the analysis of the X-ray diffraction patterns of solid high 
polymers and the structural features of the diffracting substances. The diagram below gives 
a systematic scheme listing the various peculiarities which may be exhibited by X-ray dif
fraction patterns from high polymers and correlating them with the structural feature or fea
tures from which they may arise. 
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9. Identification of Crystals by X-Ray Diffraction 

9.1 Principles of Identification 
The structure of a crystal is essentially a three-dimensional periodic repetition of a basic 
structural element (the unit cell), as was shown in Section 3.2.1. The various groups of 
crystal planes may be identified in terms of a particular unit cell by means of indices (hkl) 
which refer to their intercepts with the axes of the unit cell. According to Eq. 4.1, the angle 
of diffraction 26 for X-rays diffracted by a set of crystal planes depends upon the interpla-
nar spacings d. This implies that if two different crystalline substances happen to have unit 
cells of the same size and shape, all the spots in the X-ray diffraction patterns of the two 
crystals will appear in exactly the same positions. Even if the size and shape of the unit 
cells are identical, however, the nature and numbers of the atoms in the cells and their spa
tial arrangement must be different because the substances are different. From Eq. 4.3, 
therefore, the diffracted intensities for corresponding crystal planes should differ. Thus, 
even if there is a strong superficial resemblance between the diffraction patterns of two dif
ferent substances, it will always be possible to distinguish between them; there is a one-to-
one correspondence between crystal and diffraction pattern. In other words, under identical 
conditions, crystals of the same substance will always give identical diffraction patterns (in 
both position and intensity), and identity of diffraction patterns is definitive evidence for 
identity between the diffracting crystals. 

It is clear from the above that differences in the positions of the diffraction lines or 
spots (i.e. in the diffraction angles) are indicative of differences in the unit cells. 
Differences in the relative intensities of the various diffraction lines or spots reflect differ
ences in the internal structures of the unit cells. It follows, therefore, as we have seen in 
Section 8.5, that any meaningful comparison of diffraction patterns for qualitative identifi
cations depends upon effective standardization of all factors that affect the locations or in
tensities of the diffraction pattern elements. 

9.2 Identification by the Powder Method 
If it is possible to hazard an informed guess at the nature of the unknown substance, a sim
ple and positive identification is often possible by comparison of its X-ray diffraction pat
tern with that of the substance it is thought to be. 

The diffraction data of the unknown substance are generally compared with standard 
diffraction data. This presupposes the availability of standard X-ray diffraction data for the 
widest range of substances possible. The most comprehensive compilation of this type, 
both in quality and quantity, is the JCPDS^^ file (former ASTM^^ file), which is supple
mented annually. There are others suitable for identifications purposes, though none on 
the same scale. 

9.2.1 The JCPDS system 

The .ICPDS Powder Diffraction File (JCPDS-PDF),'^ containing over 46,000 data on organ
ic and inorganic compounds, is available on cards and microfiche and in book form.̂ ^ It 
should be noted, however, that from Set 37 no data on cards have been released. Electronic 
database on CD-ROM and magnetic tape convenient for quick search is also available. 

'̂ JCPDS: Joint Committee for Powder Diffraction Standards. 
^̂  ASTM: American Society for Testing and Materials. 
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9.2.2 Locating a JCPDS card 
A. Search by computer 
Rapid identification is possible by electronic computer with the aid of the JCPDS database. 
This database can be installed in the computer attached to most of the latest versions of the 
X-ray powder diffractometer, and identification can be made immediately after measure
ment of the diffraction patterns. 

Among the search program systems, JohnsonA^and,^^ PDSM,̂ ^ and SANDMAN"̂ ^ are 
well known. The Jonson/Vand program system is the earliest one, and is offered free by 
the JCPDS to those who purchase the JCPDS-PDF in magnetic tape: the source program is 
open to the public. 

B. Search by hand 
Indexing card(s) for a given substance can be found manually with aids such as the JCPDS 
Index by Hanawalt method^^ or other indexing methods such as Fink Inorganic Index and 
Mathews Coordinate Index (Termatrex Index). 

C. Procedure for identification 
The procedure to identify the unknown substances is divided into the two cases discussed 
below. 
a) Single phase. If the unknown specimen consists of a single substance, and 

1) if the diffraction data observed can be located in the JCPDS-PDF, searching by 
hand may not be so difficult. However, 

2) if the diffraction data observed cannot be located in the JCPDS-PDF, but crystal 
data are obtainable elsewhere, or 

3) if the unknown specimen is a new phase, determination of unit cell parameters fol
lowed by indexing of all the diffraction patterns observed is required. Graphical method by 
Hull,̂ ^ Bijurstrom,^^ Harrington,^^ or the methods of Hesse^^ and Lipson'̂ ^ may be used for a 
crystal belonging to a system with higher symmetry. For any crystal system, the use of 
Ito's method and related articles^^"^^^ is recommended. If the crystal data determined, 
searching will be carried out in a way similar to the identification of single crystals de
scribed below (Section 9.3). 
b) Two or more phases. If the unknown specimen consists of two or more component 
substances, and 

1) if the diffraction data of all the component substances can be located in the JCPDS-
PDF, hand search may take longer, and computer search is much better. 

2) If the diffraction data of one component is not found but those of the other compo
nents are found in the JCPDS-PDF, subtract the contributions of all the components identi
fied by the JCPDS-PDF from the diffraction patterns observed, then try to identify the un
known component using residual diffraction patterns. 

3) If the diffraction data of more than two components are not found, a very rare and 
difficult case, try using the last method 2) described above. 

In practice, the identification will be carried out in the following order: 

[a) Single phase -1)] -^ [b) Two or more phases -1] ^ [a)-2)] -^ [a)-3)] -^ [b)-2)] -^ 
[b)-3)]. 
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9.3 Identification by the Single Crystal Method 
Databases of structural information on crystals, such as their lattice constants, space group, 
measured and calculated densities, and coordinates of the atoms in the unit cell, as well as 
optical and morphological data may by used for this purpose. All these databases are up
dated yearly. 

9.3.1 Computer databases 
A. Cambridge structural database system 
Among the database systems, the Cambridge Structural Database System (CSDS), com
piled and offered by the Cambridge Crystallographic Database Center, U.K, is excellent. 
The CSDS system consists of two major components: the Cambridge Structural Database 
(CSD) and Software for Search, Retrieval, Analysis and Display of CSD contents. 

The CSD is mainly a database of small organic and organometallic molecules. The 
CSD continues to grow in number of entries: presently the entries are more than a quarter 
of million, 251,515 (30 Oct. 2001) and they are expected to increase to half a million in 
2010. A total of 227,181 (90.3%) entries is with 7?̂  < 0.100, which includes 202,848 
(80.7%) with R < 0.075 [125,112] (49.7%) with R < 0.050 and 22,346 (8.9%) with 
R<0.030]:'^ 

The software system is available in two forms: Basic software system and Graphics 
software system. 

B. Protein data bank 
The Protein Data Bank (PDB) is the single worldwide archive of primary structural data of 
biological macromolecules, which contains a total of 18,770 molecules (17,233 protein, 
peptides and viruses, 839 protein/nucleic acid compleses, 684 nucleic acids and 14 carbo
hydrates) and also a total of 3,352 NMR experimental entries (2 July 2002).'^^ 

C. Database for inorganic compounds and minerals and for metals and alloys 
For inorganic compounds and minerals, the Inorganic Crystal Structure Database, FIZ, 
Germany (41,629 entries (1996)) is available^^^^ and CRYSMET:CITI/NRC, Canada^^^^ 
( > 4,000 entries) can be used for the identification of metals and alloys. 

9.3.2 Others 

Besides the databases mentioned above, the Crystal Structure Determinative Tableŝ °̂ ^ may 
be of some help for identification purposes. These are also distributed by magnetic tape as 
NBS Crystal Data File,̂ ^̂ ^ and an indexing program system, NBS*LATTICE, was released 
by NBS in 1986. 

Strukturberichte (Vols. 1-7) succeeded by Structure Reports (Vols. 8-49 and the latest 
publications) and Molecular Structure and Dimensions also can be referred to for this pur
pose. 

9.4 Identification of High Polymers 
This is not necessarily confined to identification of the substance from the crystalline region 
by the usual means described above, but can extend to complete identification starting with 
analysis on the basis of each one of the elements of fine texture discussed in Section 7.4. 

^ for R, see Eqs. 11.38 and 11.39. 
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However, it is more usual simply to identify the substance from the X-ray diffractions of 
the crystalline region. The reader is also referred to Section 9.5. 

9.4.1 Identification by unoriented X-ray patterns 
There is basically no difference between this and the identification of low molecular weight 
substances by their powder diffraction data. In the case of high polymers, however, the dif
fraction lines are broadened owing to the imperfections of the crystal, and the number of 
lines is small. These factors, together with the superposition of the diffuse halo due to 
amorphous regions, make identification very difficult. Except where the diffraction pattern 
is very distinctive, therefore, unoriented X-ray diagrams are not often used for identifica
tion; oriented specimens are used as far as possible. 

9.4.2 Identification by oriented X-ray patterns 
This is the same, in principle, as identification by single-crystal X-ray diffraction. Whereas 
the powder method is a one-dimensional analysis making use only of the interplanar spac
ing d, this method involves a two-dimensional analysis of the reciprocal lattice using ^ and 
^. It should therefore be capable of higher precision than identification attempted on the 
basis of unoriented specimens and patterns. 

Crystal data of high polymers are given by Miller.̂ ^^ 

9.5 X-Ray Diffraction Patterns of Copolymers and Polymer Blends 

9.5.1 X-ray diffraction patterns of copolymers 
The propensity of a copolymer to crystallize depends upon whether the monomer units A 
and B are three-dimensionally very similar in shape and size (as in styrene/o-fluorostyrene 
copolymers, cf. Table 14.2) or only moderately similar (as in ethylene/carbon monoxide 
copolymers, cf. Table 9.2 below), and upon any differences between the lateral dimensions 
of the molecular chains. There is a corresponding variety in the possible X-ray diffraction 
patterns displayed by copolymers, as detailed below. 

1. The crystalline diffraction pattern of the homopolymer of just one component may 
be very distinct (though the lattice constants and intensities will not necessarily be those it 
would have displayed in isolation). 

2. The diffraction patterns of homopolymers of A and B may be superimposed (in this 
case, too, the lattice constants and intensities may be modified). 

3. A new diffraction pattern, distinct from the homopolymer of either component, may 
appear. 

4. The crystallinity may disappear, whereupon the pattern will consist entirely of 
amorphous diffraction halos. 

These are idealized categories, and the diffraction pattern is affected in practice by oth
er factors including the following. 

1) The proportions of monomer units A and B. 
2) The mutual affinities of the monomer units of A and B (this may be thought of as 

their mutual solubilities). 
3) The relative sizes of monomer units A and B. 
4) Any difference in the crystallinities of the homopolymers of A and B. 
5) The incidence of blocks of either A or B. 
In view of the complexity of the above effects, the analysis of the X-ray diffraction pat

terns of copolymers can be very tedious, and a positive identification of crystals is often 
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much more difficult than when the identities of solid solutions of low molecular weight are 
being investigated. Some examples of data derived from the X-ray diffraction patterns of 
copolymers are given below, together with some typical patterns. 

Table 9.1 shows the unit cells derived at different monomer ratios for copolymers of 
two monomer units whose sizes are very similar, but whose homopolymers differ in the 
sizes of the side chains, the numbers of repeat units per turn of the helices, and the unit 
cells.̂ ^^ Table 9.2̂ ^̂  lists the unit cell parameters of a polyketone (ethylene/carbon monox
ide copolymer). 

Table 9.1 3 -Methyl-1 -butene/4-methy 1-1 -pentene copolymers'^' 

3-Methyl-1 -butene 

100 

75 

50 

25 

13 

0 

4-Methyl-1 -pentene 
[%] 

0 

25 

50 

75 

87 

100 

m.p. 
VC] 

300 

256 

218 

208 

225 

240 

No. of units 
pertum 

4/1 

3/1 

Unit cell cross 
section 

[ 

/ l 16-30', 

a =9.55 "̂ i/ 

^ * - < ^ 

/.99-22' 1 

, = 9 . 0 9 ^ / 

^ « - 9 7 ^ 

- 9 0 - ^ 

"•Q 

fl=9.27 

. 90 - ; ! 
II 

a =9 .27 

/ ao 

c 
[A] 

6.85 

6.85 

6.85 

13.85 

13.85 

[Reproduced from F. P. Redding, E. R. Walter, J. Polym. Sci, 37, 555, John Wiley & Sons, Inc. (1959)] 

Table 9.2 Ethylene/carbon monoxide copolymers'-

Ethylene/CO ratio I [A] b[A] c [A] (fiber axis) 

oo (polyethylene) 
3.5/1 
2.2/1 
1.3/1 

1.1/1 
1/1 

7.36 
7.53 
7.73 
7.86 

7.97 

4.29 
4.91 
4.85 
4.81 

4.76 

2.534 
2.54 
2.54 
2.54 

7.57 
7.57 

[Reproduced with permission from Y. Chatani et al., J. Polym. Sci., 62, S27, John Wiley & Sons, Inc. (1962)] 

Figure 9.1̂ "̂ ^ shows the diffraction patterns of some vinylidene chloride/vinyl chloride 
copolymers. The detailed crystal structure of copolymers presents many difficult problems, 
but some interesting articles on the X-ray diffraction patterns of various copolymers have 
been published. Examples of such articles include a paper by Beevers and White^^^ on 
copolymers of acrylonitrile and styrene and an article by Ishibashi.^^^ 
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(1.000) (0.685) 

(a) 
(0.820) (0.560) 

(b) 

Long period [A] 

3(X)2(X) 100 

Scattering angle e (= 26) 

Fig. 9.1 X-ray diffraction from vinylidene chloride (VDC) /vinyl chloride (VC) copolymers."^^ 
(a) Wide-angle diffraction patterns—The figures refer to mole fractions of VDC. From fractions 1.000 

to 0.603 the patterns change little. Crystallinity and orientation suddenly collapse at mole fraction 
0.560. 

(b) Small-angle scattering intensity curves—The specimens were cold drawn then heat-treated. Long 
period diffraction is visible down to mole fraction 0.603, but only central diffuse scattering is found 
at 0.560. 
[Reproduced with permission from K. Okuda, J. Polymer ScL, A2, 1749, John Wiley & Sons, Inc. (1964)] 
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9.5.2 X-ray diffraction patterns of polymer blends 
Identification seems to be often rather simpler for blends than for copolymers. Thus the ra
tio of the components should be proportional to the intensities of the crystalline diffraction 

0.1 

(a) 

No heat treatment 

J_L 

_I_L JJL 

±L 

0.2 0.3 

sin 6 

0.4 0.5 

[%] 

PVAIOO 
PAN 0 

PVA70 
PAN30 

PVA60 
PAN40 

PVA50 
PAN50 

PVA30 
PAN70 

PVAIO 
PAN90 

Heat-treated 

0.1 0.2 
(b) 

0.3 

sin 6 

0.4 0.5 

PVAIOO 
PAN 0 

PVA70 
PAN30 

PVA60 
PAN40 

PVA50 
PAN50 

PVA30 
PANTO 

PVAIO 
PAN90 

Fig. 9.2 Equatorial X-ray diffractions from PVA-PAN blended fibers. 
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patterns of the components. The crystal growth of the two components may, however, be 
affected in some cases by the degree of mutual dispersion of the component polymers, and 
by the interactions between polymers. If the mixing is such as to bring the molecular 
chains of the two components into fairly intimate contact, the eventual structure may be en
tirely different from any of its components. The degree to which this is observed in a par
ticular case will obviously depend very largely upon the blending and crystallization condi
tions. 

Since it is far easier to give an example than to talk in general terms here, we cite data 
for blends of poly (vinyl alcohol) (PVA) and poly (acrylonitrile) (PAN) in various ratios in 
Fig. 9.2. The X-ray diffraction directions are given in terms of sin 0, and the intensities 
represented by the length of the vertical lines, for the equatorial line. The components were 
dissolved in dimethylsulphoxide and spun into thread by a dry method. Diagrams are given 
both for specimens heat-treated for 1 h at about 100°C and for untreated specimens. It is 
difficult to explain the various structural changes solely with the aid of these diagrams, but 
the following conclusions have been established by comparison with the diffraction dia
grams as a whole. Specimens that have not received heat treatment are still recognizable as 
blends of PVA and PAN, despite the changes in the diffraction patterns. It therefore ap
pears that the two polymers have retained their respective structures. Some changes in the 
relative positions and intensities are also evident in the diffraction patterns of the heat-treat
ed specimens except where the proportion of one component is very large. The heat treat
ment may have caused rearrangement of the molecules, with a change in the structure at 
least near the recrystallized regions. However, a detailed explanation of the structural 
changes on this basis alone is difficult, and we shall therefore merely note that, from the 
point of view of identification by X-ray diffraction, significant changes are observable. 
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10. Analysis of Crystallite Orientation 

10.1 Crystallite Orientation and the X-Ray Diffraction Diagram 
Figure 10.1 shows a schematic illustration of the structural changes of a high polymer spec
imen by drawing, according to the fringed-micelle model {cf. Section 122.A), and the cor
responding X-ray diffraction diagrams obtained from three different directions, mutually 
orthogonal two directions perpendicular to the drawing direction and the direction parallel 

(a) amorphous (b) crystalline 
unoriented 

(c) crystalline 
oriented 

(c) crystalline 
uniaxially 
oriented 

,, ,\ : perpendicular to the drawing direction (Through and Edge views). 
: parallel to the drawing direction (End view). 

Fig. 10.1 Schematic illustration of structural changes by crystallization and by drawing for a linear high polymer 
specimen (according to the fringed-micelle model) and the corresponding X-ray diffraction diagrams. 

to the drawing direction. An example of X-ray diffraction diagrams obtained for a drawn 
Nylon 12 specimen from the three directions is given in Fig. 10.2.̂ ^ By drawing or by other 
mechanical treatments, the central diffuse small-angle scattering taken from the directions 
mentioned above also show different diagrams corresponding to the different wide-angle 
diffraction diagrams. An example of a doubly oriented poly (ethylene terephthalate) speci
men is given in Fig. 15.36. Fig. 10.3 depicts a schematic illustration of structural change in 
the metal wire by drawing from a random orientation to a uniaxial orientation. By drawing 
the randomly oriented < 111 > axis of each cubic unit cell has become parallel to the draw 
direction.^^ This chapter deals with the preferred orientation of crystallites in high polymer 
substances. We can easily apply this method to determine the preferred orientation of other 
substances included in high polymer specimens, such as the preferred orientation of platelet 
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crystals of Mg(OH)2 in a rolled rubber sheet. The preferred orientation of molecular chains 
in the amorphous state will be discussed briefly in Section 14.5. 

Through view Edge view 

(a) 
End view 

Through view Edge view 

(b) 
End view 

Machine direction 

Sheet plane 

Fig. 10.2 X-ray diffraction diagrams of a drawn Nylon 12 specimen taken from three different directions.'^ 
(a) drawn out uniaxially to 3.0 times from its original length at 100°C (Ai and A2 not split). 
(b) as above at 160°C (Ai and A2 split). 
(c) schematic representation of (b). 
[Reproduced with permission from T. Ishikawa et ai, J. Chem. Soc. Jpn., Chem. Industrial Chem., 
p. 103, Chem. Soc. Jpn. (1978)] 
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-^-I^S-.^.JS^ 

(c) 

(b) (d) 

Fig. 10.3 Schematic illustration of preferred orientation in metal wire by drawing.̂ ' 
(a) Random orientation in a cylindrical specimen. 
(b)< 111 > Axis of each crystallite (represented by a cubic unit cell) is parallel to the draw direction 

(horizontal direction). 
(c) Random orientation in a plate specimen. 
(d) (100) plane of each crystalUte is parallel to the plane of the specimen. 
[Reproduced with permission from T. Imura, X-Ray Diffraction (K. Kohra ed.), p. 600, Kyoritsu Pub. (1980)] 

10.1.1 General survey 
In a well-oriented specimen, the crystallites or crystalline regions^ are generally aligned in 
such a way that, say, all the c axes lie in the same direction, while the directions of the other 
two axes are uniformly distributed around the c axis direction. Moreover all the directions 
of the c axes are uniformly inclined at a constant angle (jO to a reference axis {e.g. draw di
rection), OZin the specimen (cf. Fig. 10.4, p. 242). 

Let a point O in the specimen be the origin, and let the origins of all the crystallites be 
transposed to this point. The reciprocal lattice points R of an arbitrary set of planes (hkl) in 
the crystallites (where OR is inclined at an angle a to the c axis, at a distance from the ori
gin O/? = r* = l/d(hki)) trace out a circle (the reciprocal lattice point circle) with the c axes 
passing through its center, as shown in Fig. 10.4(b). Since the c axes of the crystallites are 
uniformly distributed around the fixed direction OZ in the specimen at an angle (p to OZ, 
the small circle traced by the reciprocal lattice points R generates a band (the reciprocal lat
tice point distribution band) by revolution about OZ as shown in Fig. 10.4(b). There is a 
corresponding band for the (hid) planes, and the two together form a symmetrical arrange
ment along the Z axis (Fig. 10.4(c)). 

If X-rays are incident upon the specimen from (say) the FO direction, the reciprocal 
lattice points on the intersection of the distribution band with the diffraction sphere, i.e. on 
the arc R\R2 in Fig. 10.5, give rise to diffraction. A diffraction arc P1P2, corresponding to 
the arc R1R2, will now appear on a flat film placed normal to the incident X-rays. Due to 
the symmetrical arrangement of the reciprocal lattice distribution bands along the X and Z 
axes, the result will be four diffraction arcs arranged symmetrically with respect to the ^ 
and ^ axes on the film. 

In Fig. 10.4(b), the distribution of the reciprocal lattice point R around the c axis is con
stant, but as this axis itself revolves, the density distribution on the reciprocal lattice point 

"Crystallite" will be used throughout this chapter to indicate "crystallite", "crystalline region" or "crystalline 
part." 
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Z c 

(b) (c) 

Fig. 10.4 Crystallite onentation, the reciprocal lattice, and the reciprocal lattice point distribution bands 
(a) Reciprocal lattice orientation corresponding to the orientation of the crystallites 

Left: orthorhombic; right: triclinic system. 
(b) Distribution band for an arbitrary reciprocal lattice point R. 
(c) Symmetrical arrangement of the distribution bands about the Z axis. 

distribution band is at its densest along the upper and lower edges of the band, and is least 
along the path of the center Q. The intensity distribution along the diffraction arc P1P2 is 
accordingly greatest at its ends and least in the center (Fig. 10.5(b)). The two ends of the 
diffraction arc P1P2 are located by the following relationships (cf. Fig. 10.5(a)): 

cos di = cos((p - (j)/cos 0, cos di = cos((p + cr)/cos 0 (10.1) 

The form of the reciprocal lattice point distribution bands, and hence also of the dif
fraction patterns, varies with the relationship between (p and a. The four arcs may be 
joined in pairs to give two arcs intersecting either the ^ or the f axis, or all four may even 
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S(Center of 
diffraction sphere) 

Intersection of reciprocal lattice point 
distribution band and diffraction sphere 
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Fig. 10.5 Spiral Orientation. 
(a) Geometrical relationship between lattice point distribution and the diffraction pattern. 
(b) Form of the diffraction pattern that would be given by an ideally oriented sample. 
(c) General form of the diffraction pattern as actually observed. 
(d) Form of the diffraction pattern that would be given by an ideally oriented sample where 

{(p + d) > 90° (see Fig. 10.6), i.e. where the distribution bands overlap. 

be joined to form a complete circle. The principal variants of the forms of the reciprocal 
lattice point distributions and of the diffraction patterns are shown in Figs. 10.5, 10.6, 10.7, 
and 10.9. Diffraction patterns for the ideally oriented state are shown, together with sketch
es of those actually observed. In practice, the orientations of the crystallites in a specimen 
never correspond to a single fixed value of (p. Some crystallites with orientations at differ
ent angles will always be present, the number of crystallites inclined at a given angle de
creasing as the deviation A(p of this angle from (p increases (see Fig. 10.7(b) and(d)). 
Examples of the kinds of diffraction patterns obtained under these circumstances are also 
given in Figs. 10.5, 10.7, and 10.9. 
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10.1.2 Types of orientation 
Crystallite orientations are generally classified as uniaxial or biaxial. The uniaxial orienta
tion includes simple fiber structures ((p = 0°), spiral fiber structures (0<(p< 90°), and ring 
fiber structures ((p = 90°). Certain special kinds of intermediate orientation are also recog
nized. The characteristics of various types of orientation are described below. 

0 > ff 

9J + ff = 90° 

Z 
i 

/ / \c 

I ^ 

Y ^ ^ 

-JRZ 

^ + a > 90° 

< ff 

Ri 

) ^ ^ ^ • i — 

r 

^-^^--J/is 

Fig. 10.6 Various fonns of reciprocal lattice point distributions for spiral orientation. 
As in Figs. 10.4 and io.5, (p is the helix angle (i.e. the inclination of the c axis to the fiber axis) and 
(T is the angle between the reciprocal lattice vector and the c axis. 

A. Uniaxial orientation (simple fiber structure) 
Here ((p = 0°, i.e. the c axis coincides with the Z axis (Fig. 10.7). The reciprocal lattice is 
cylindrically symmetrical with respect to the fiber axis (cf. Fig. 4.14(c)), and the X-ray dia-



10.1 Crystallite Orientation and the X-Ray Diffraction Diagram 245 

Z,c 

y \ 
wicp) 

\ ^ 
1/ 
Y 

V 

u 
A 

/ 

^7 
, / 
/*~ 

1 
y /T 

/ 

~7 —7 

/ 

\l—^ 
7 

} 

7\ 

7 

/ 

t 

(a) 

C 

*-x 

t 

r 
V 

^ 

O' 

(c) (d) 

Fig. 10.7 Uniaxial orientation, the reciprocal lattice point distribution, and the resultant diffraction pattern 
(c/Figs. 4.14, 4.15). 
(a) Orientation with respect to the fiber axis Z (ideal case, (p = 0). 
(b) Distribution for a reciprocal lattice point R, showing the effect of small deviations, w{(p). 
(c) Diffraction from an ideal specimen. 
(d) Diffraction from an actual specimen with imperfectly aligned crystallites (c/ (b)). 

gram obtained with the incident X-rays normal to the fiber axis is essentially the same as a 
complete rotation photograph for a single crystal (c/ Section 4.4.4 and Fig. 10.8). Since 
<p = 0°, we find for the general reciprocal lattice point: 

d — d\ — &, cos d — cos cj/cos Q (10.2) 

and a four-point diagram is obtained instead of a four-arc diagram. If the incident X-rays 
are parallel to the fiber axis, on the other hand, the diffraction pattern made for this direc
tion is as if the specimen were unoriented, forming a complete circle {i.e. a Debye-Scherrer 
ring see Fig. 10.1(cOand (d^). 

B. Spiral orientation (spiral fiber structure) 
Spiral fiber structure is the most general case, 0° < (p < 90°, and all that appears in connec
tion with Fig. 10.4 to 10.6 (above) applies to this category of structures. 

C. Ring orientation (ring fiber structure) 
Here (p — 90°, and Eq. 10.1 gives, therefore, 

cos 5i = sin CT/COS Q — — cos Si .-. & = 1 8 0 ° - 5 i (10.3) 
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Fig. 10.8 X-ray diffraction patterns of a polyethylene oxide-urea complex. 
(a) Single crystal rotation photograph (rotadon about the c axis). 
(b) Fiber diagram of complex prepared by immersing uniaxially oriented polyethylene oxide in urea. 

The similarity with (a) is evident. [Reproduced with permission from H. Tadokoro et a I., J. Polxm. 
Sci., B2, 363, John Wiley & Sons, Inc. (1964)1 

When the incident X-rays are normal to the X axis, this type of structure always gives 
two arcs or spots intersecting the equator and extending symmetrically above and below the 
equator (Fig. 10.9). 
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Fig. 10.9 Ring orientation, the reciprocal lattice point distribution, and the resultant diffraction pattern. 
(a) Orientation with respect to the fibre axis Z (ideal case, (p = 90°). 
(b) Distribution for a reciprocal lattice point. 
(c) Diffraction from an ideal specimen. 
(d) Diffraction from an actual specimen. 
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If the incident X-rays are in the Z direction, however, the diffraction sphere and the rec
iprocal lattice point distribution band are parallel. Thus, when the diffraction sphere inter
sects the distribution band, a circle of uniform intensity is produced. The diffraction dia
gram is therefore of the same form as that given by an unoriented specimen. To distinguish 
between an unoriented structure and a ring-oriented structure in such cases, the specimen is 
inclined {cf. Section 10.1.3). The diffraction diagram of an unoriented specimen will be un
changed, whereas a change to two arcs intersecting the equator indicates ring orientation. 

D. Tilted orientation 
In tilted orientation, the crystallite distribution corresponds to a cylindrically symmetrical 
distribution of the tilted c axis, with no rotation about the c axis. The reciprocal lattice is 
shown in Fig. 10.10. It is evident that the equatorial line and the layer hnes are generally 
not well developed, and vary with the angle of inclination. The diffraction is observed 
around the position in which it should appear as a layer line in the case of uniaxial orienta
tion. This corresponds to a rotation photograph for a single crystal with inaccurate align
ment of the crystal (a tilted single crystal), and where the axis of rotation corresponds to the 
fiber axis. 

(a) (b) 

Fig. 10.10 Tilted orientation and the corresponding reciprocal lattice point distribution. 
(a) Orientation with respect to the fiber axis Z: 0° < 9 < 90°, but this orientation is not to be confused 

with spiral orientation; there is no rotation about the c axis. 
(b) Distribution for a reciprocal lattice point R. Compare the uniaxial orientation in Fig. 10.7. 

E. Biaxial orientation 
This type of orientation is the most restrictive one. Like a single crystal of low molecular 
weight compound mounted on a goniometer head, a crystal axis is oriented parallel to the Z 
axis (reference axis) and one of the other two axes is also oriented parallel to a reference 
plane (say) the film plane (for further details see Section 10.3.2.). This type of oriented 
structure cannot be further ordered except by decreasing the number of crystallites by join
ing them into larger ones. The fact that a Weissenberg or precession photograph is very 
similar to that of a single crystal enables ready identification of this type of orientation. 
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The density distributions of the various reciprocal lattice points can be determined from the 
intensity distribution of diffractions on a Weissenberg or precession photograph. 

F. Double orientation 
In this structure, a crystal axis is oriented parallel to the Z axis and a particular crystal plane 
to lie in the reference plane, the film plane. In many circumstances, there may be two or 
more different orientations of the unit cell in the specimen; four different orientations are 
possible for crystals of the monoclinic and triclinic systems (see Fig. 10.11).''^ This type of 
orientation gives photographs which are like the oscillation photographs of single crystals 
or twinned crystals (see Fig. 10.8). 

" ' ^ r a / ^ ' 

d(c)U d 
R^ 

\ty\ 

/=7l 

^ 

Fig. 10.11 Twinned orientations of unit cell in specimen.^^ 
Examples of twins. 

(a) Orthorhombic system with fiber axis c, favored plane (110) (or any (hkd) where h,k^O). 
(b) MonocUnic system with fiber axis b, favored plane (101) (or any (hOl) including (100) and 

(001)). 
(c) Monoclinic system with fiber axis c, favored plane (010). 
(d) As in (c), but favored plane (100). 

Examples of quadruplets. 
(e) Triclinic system with fiber axis c, favored plane (110) (or any (hkO), including (100) and (010)). 
(f) Monoclinic system with fiber axis c, favored plane (110) (or any (hkO) where h,k=h 0). 
[Reproduced from C. W. Bunn, Chemical Crystallography, p. 179, The Clarendon Press (1945)] 

10.1.3 Interpretation of inclined X-ray diagrams 
These are the diffraction diagrams obtained when the incident X-rays are inclined at an 
oblique angle with respect to the Z axis. The locus of the reciprocal lattice point distribu
tion is unchanged. However, since the diffraction sphere is inclined as shown in Fig. 
10.12(a) (angle of inclination = jLi), the top two of the four arcs are situated closer together, 
while the bottom two are farther apart. 

If the angular displacements of the ends of the upper and lower arcs from the f axis are 
Su &, ^3, and ^4, we obtain relationships of the type (cf. Fig. 10.12 (b)) 
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COSd\ = {cos((p-CJ)+ sin fisin6} I cos jiicosG 
cos 62 = {cos((pH- CT)+ sin n sin 6} I cos ji cos 0 

cos ̂ 3 = {- cos((p+(T)+ sin ji sin ̂ } / cos fx cos ^ 
cos ̂ 4 = {- cos((p- C7)+ sin // sin ̂ } / cos fi cos 0 

(10.4) 

(10.5) 

(a) 

S (Center of diffraction sphere) 

\ 
\ 
\ 

1 

.•••' 1 

V 

<r^ 
/ 

v-.J 5.» 

y 

Diffraction pattern 
disappears here 

5 
= (sin GI cos &) 

^ ' 

1 < 
_ 1 ^ 

\ / 
\ 1 

,v 
(b) 

Reciprocal lattice point sphere 
smaller than diffraction sphere 
(7<(90''- Q) 

Reciprocal lattice point sphere 
larger than diffraction sphere 
C T > ( 9 0 ° - 0) 

Fig. 10.12 The effect of oblique X-ray incidence upon the diffraction pattern. 
(a) Geometry of the reciprocal lattice point distribution and the diffraction pattern. 
(b) Variation of the diffraction pattern with inclination angle, ^ of X-ray incidence. The arrows 

indicate movement of the diffraction elements. 
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C,C 

Diffraction 
sphere 

First layer 

Equator 

— First layer 

Fig. \0.12 —Continued 
(c) Ideal case for uniaxial orientation {cf. Fig. 4.14(d)) 

For uniaxial orientation, since (p = 0, we obtain 

cos du = cos ̂ 1 = cos ̂ 2 = {cos <J+ sin /x sin 6) I cos ̂  cos 0 
cos 5D — cos (53 = cos ̂ 4 = {- cos (7+ sin [i sin Q) I cos \i cos Q] ^ ̂  ̂ -^^ 

where 5u and (5D are the upward and downward displacements respectively. 
If the angle of inclination ^ of the incident X-rays in Fig. 10.12(a) is gradually in

creased, the positions at which the diffraction sphere cuts the reciprocal lattice point distrib
ution band in the upper half of the sphere move closer together, and the lengths of the inter
sections increase, until the two intersections merge into one. The changes in the positions 
of the diffraction arcs on either side of the meridian with ^ are shown in Fig. 10.12(c). 

Inclined X-ray diagrams are very useful for measurements of the 001 diffractions, 
which do not appear with a normal incident beam. However, for the reasons given above, 
non-meridional diffractions which appear near the 00/ diffractions merge to give a single-
arc diffraction pattern on the meridian (see also Section 10.3.1 A). 

10.2 Analysis of the Type of Crystallite Orientation 

10.2.1 Establishing the presence or absence of orientation 
This is established by inspection of the X-ray diffraction photographs of the specimen. It 
follows from the relationship between the form of the reciprocal lattice point distribution 
band and the diffraction pattern (established in Figs. 10.4 to 10.9) that diffractions in the 
form of points or arcs, Le, rings with non-uniform intensity distributions, indicate the pres
ence of orientation. The presence of orientation may also be assumed if, even when Debye-
Scherrer rings of uniform intensity are obtained, certain of the rather intense diffractions 
that would be expected from an unoriented specimen are missing; there is a strong possibil
ity that uniaxial or ring orientation is responsible in this case {cf. Section 10.1). If a single 
X-ray diffraction photograph does not indicate the presence of orientation, the shapes of the 
diffraction patterns obtained for various incident directions of the X-rays are examined. 
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The specimen may safely be assumed to unoriented in the majority of cases if this still fails 
to produce evidence of orientation. It is advisable, however, to check for the presence of 
spherulites under (say) a polarizing microscope, particularly for specimens in which 
spherulites readily develop. It is then finally possible to say whether the uniform intensity 
distribution of the X-ray diagram is due to averaging of the orientations in all directions 
caused by the presence of many spherulites small in size relative to the X-ray beam, or 
whether the specimen is in fact quite unoriented. Section 14.4 deals with the case where 
oriented diffraction may be masked by amorphous halos. 

10.2.2 Identification of the type of orientation 

A. Utilizing special features of the X-ray diffraction diagram 
Table 10.1 presents various criteria for the determination of the type of orientation in com
paratively highly oriented specimens. Using a schedule of this nature, the possible types of 
orientation may be deduced from the features of the diffraction diagram {cf. Figs. 10.4 to 
10.9). The next stage is to index the diffraction spots (or arcs), and establish the type of ori
entation from the reciprocal lattice. 

Table 10.1 Criteria for determination of the type of crystallite orientation 

1st pattern; X-rays are 
normal to the specimen 
axis^ 

2nd pattern; X-rays 
still normal, but in 
different direction 

3rd pattern; X-rays 
are oblique to the 
specimen axis 

Possible types 
of orientation 

(1) Layer lines clearly developed 
Resembles single crystal 
oscillation/rotation 
photograph; 
period in axis direction 

—unit cell edge length 

(2) Layer lines not very clearly 
developed 
Consists of many arcs 

(3) Layer lines unrecognizable 

Arcs, intensity con- ^ 
centrated at equator r " 

I
Pattern differs, but 
still resembles 
oscillation/rotation 
photograph 
Pattern unchanged 

Pattern unchanged 

Pattern unchanged • [ Rings, each with 

Biaxial 
(Double) 

Uniaxial 

Tilted 

Spiral 

Rings, each with 1 
uniform intensity Pattern unchanged' 

uniform intensity 

Arcs, intensity con
centrated at equator 

Pattern unchanged -

>—* Ring 

Unoriented 

^ Taken as the direction of rolling or drawing. 

If the degree of orientation is low, it may not be possible to determine the type of orien
tation, even though the presence of some kind of orientation may be evident. In such cases 
the degree of orientation must be increased by suitable treatment such as drawing or rolling 
to enable identification of the type. 
a) Determination of the helix angle (pfor specimens with spiral orientation. The helix 
angle (p for specimens with spiral orientation, i.e. the inclination of the c axis with respect 
to the fiber axis, is found from the azimuthal angle 5 as follows: 

1) ^e is found from the hkO diffractions (the equatorial diffractions). Since <7 = 90° for 
the equatorial (hkO) planes, Eq. 10.1 gives 
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COS ^1 = sin (T/COS 0 = — COS ^2 •'• & = —5i 

The complementary angle 5^ of di satisfies the following equation 

sin (p = sin ^e cos 0 (10.7) 

Thus (1) cos 0=1, and Se= (p when the diffraction angle is small, but (2) 5^ is generally 
slightly greater than cp. 

2) dm is found from the 00/ diffractions (the meridional diffractions). If the a and b 
axes of the crystallites are both perpendicular to the c axis, a = 0 for the (00/) planes, and 
Eq. 10.1 gives 

cos ^1 = cos (p/cos 0 = cos di •*• 61=62 

Whereas the diffractions from the other crystal planes are all in the form of arcs, those from 
the (00/) planes are points, and give a four-point diagram. 

It we let 61 = 5m, we obtain 

cos 6m cos 0 = cos (p (10.8) 

Thus (1) cos ^ = 1, and 6m = (p when the diffraction angle is small, but (2) 6m is generally 
slightly smaller than cp. 

3) The average of the measured values of 6m and 6d gives a reasonably close approxi
mation to the helix angle (p. 

4) If only one of 6m and 6d can be found, this may be taken as a measure for (p. 
b) Determination of the azimuthal angle 8. 

1) When a flat film is used, the azimuthal angle 6 can be obtained by direct measure
ment of the angle between the meridian and the point of maximum intensity of the diffrac
tion arcs (or points) on the film. 

2) There are two cases when a cylindrical film is used; (1) the fiber axis may be paral
lel to the cylinder axis, and (2) the axis may be perpendicular. In 1), with the film unrolled 
(see Fig. 10.13(a)), the value of Z for the point of maximum intensity is measured, and 6 
found from Eq. 10.9. 

cos 5 = sin v/sin 20, tanv = z//?F (10.9) 

where RF is the radius of the cylindrical film camera. In the case of 2) the procedure is ex
actly the same (see Fig. 10.13(b)), with z measured and 6 found from Eq. 10.10. 

sin 6 = sin v/sin 20, tan v = zJRv (10.10) 

c) Determination of the fiber axis. The fiber axis may be found from the "layer-line con
ditions." Thus, in a rotation photograph with the fiber axis [uvw] as the rotation axis, if a 
diffraction having the indices hkl appears in the nth layer line, the following relationship 
holds.'^ 

hu-\-kv-\-lw = n (10.11) 

The fiber axis can therefore be easily found from the layer line in which the hkl diffraction 
appears, with the aid of Eq. 10.11. 
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Film 

X-rays 

(a) 

Zl 

Film 

X-rays ^ 

Fig. 10.13 Measurement of the azimuthal angle 5 in the case of a cylindrical film. 
(a) Fiber axis parallel to the axis of rotation of the camera. 
(b) Fiber axis perpendicular to the axis of rotation of the camera Film as unrolled. 
[Reproduced with permission from lUCr., International Tables for X-Ray Crystallography, (C.H. Mac 
Gravry, G.D. Rieck eds.), Vol. Ill, p. 295, lUCr. (1968)] 

B. Utilizing the pole flgurê ^ 
Pole figures are stereographic projections showing the density of crystallographic poles of 
certain planes as a function of orientation,^^ and so provide a good method of representing 
orientation. A pole is the point of intersection of the normal to a crystal plane with the sur
face of a sphere having the crystal at its center. If the radius of the sphere is r* = l/d^hki), 
the pole coincides with the reciprocal lattice point of this plane, and the density of the poles 
on the surface of the sphere is a faithful representation of the reciprocal lattice point density 
distribution. 

If the crystallite orientation is completely random, the poles will be scattered all over 
the stereographic projection.^ If orientation is present, on the other hand, the poles will tend 
to be concentrated in certain areas within the projection, while the remaining areas will be 
completely unpopulated. 

Figure 10.14 shows pole figures for the (00/) planes and those for (hkO) planes contain
ing the fiber axis (c axis) for various types of orientation. These can be used for compari
son with experimental pole figures to determine the type of orientation. 

The degree of orientation can also be found from the pole density. The fiber axis can 
be determined graphically by using a pole figure.̂ ^ 

C. Utilizing small-angle scattering 
This heading is included for completeness here, but a full description accompanied by actu
al examples is deferred until Section 15.4.2. 

For a completely unoriented specimen, the number of poles in a given area on the surface of the projection 
sphere with the specimen as its center will be constant. Since the stereographic projections is a planar projec
tion of the spherical surface, however, areas are not faithfully reproduced, and the apparent pole distribution 
even in the pole figure of an unoriented specimen will have a lower concentration near the center. 
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Biaxial 
orientation 

Uniaxial 
orientation 
(normal 
sense) 

Tilted 
orientation 

Spiral 
orientation 

Ring 
orientation 

Fig. 10.14 Pole figures for various types of orientation. 
The Z direction is taken as parallel to that of drawing or rolling (milling), and in the latter the X 
direction is parallel to the rolled surface and normal to the rolling direction. 
[Reproduced with permission from C.J. Heffelfinger, R.L. Burton, J. Polym. Sci., 47, 290, John 
Wiley & Sons, Inc. (I960)] 
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D. Determination of the type of orientation 
The variation of the type of orientation in the necking portions of cold-drawn polyethylene 
is described in Section 15.4.1 in connection with the results of small-angle scattering analy
ses. In the present section we shall discuss the analysis of the type of orientation in the in
terior of spherulites and of the orientation of extruded polyethylene film. 
a) Radial variation of the orientation in spherulites. As was mentioned earlier, if the X-
ray beam is very large in proportion to the size of the spherulites in the specimen, the orien
tations in the various regions inside the spherulites average out, and a completely unorient-
ed X-ray diagram may be obtained. If, on the other hand, we use microbeam X-ray diffrac
tion (cf. Section 8.2) with a sufficiently small beam in proportion to the size of the 
spherulites, the X-ray diagram will give evidence of orientation. 

Figure 10.15^^ shows a large polyethylene spherulite measuring 0.5 ^ 1 mm. 
Extinction rings are observed at intervals of about 50 micrometers. As shown in the dia
gram, the continuous radial variation of the orientation was traced by making X-ray diffrac
tion patterns at intervals of 13 micrometers along a radius, using a microbeam having di
mensions of about 2 X 1.3 micrometers. The variations of the 110 and 200 diffractions are 
shown in Fig. 10.15(b). 

The results were analyzed in terms of the reciprocal lattice as follows. Fig. 10.15(c) 
shows the limited distribution of the reciprocal lattice points for part of the reciprocal lattice 
of polyethylene. The intersections of the reciprocal lattice points with the diffraction 
sphere are therefore arcs, and the diffractions are accordingly also arcs rather than spots. 
Fig. 10.15(d) shows the projection of the reciprocal lattice onto the fl*c* plane; I, II, III,..., 
VII identify the successive directions of the Incident X-rays. The shapes of the intersec-

(a) 

-te 7^ 

(b) I II 

^ ^ 

III IV VI VII 

Fig. 10.15 Investigation of the orientation in polyethylene spherulites by microbeam X-ray diffraction.̂ ^ 
(a) Photomicrograph of the specimen taken in polarized light. The points marked along the 

superimposed arrow show the positions at which diffractions were obtained. 
(b) Sketches of the 110 and 200 diffractions obtained at successive positions. 
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c * — I 

.O0(D(D(I)(l)(D 
Fig. 10.15—Continued 

(c) Part of the reciprocal lattice of polyethylene. 
(d) Projection of the reciprocal lattice onto the a*c* plane. 

I, II,...,VII indicate the directions of the incident X-rays corresponding to the diffractions in (b). 
(e) Helical arrangement of unit cells along the radius of the spherulite (upper diagram). 

Corresponding rotation of the index ellipsoid with refractive indices a, /3, and 7 (lower diagram). 
[Reproduced with permission from Y. Fujiwara, /. Appl. Polym. Sci., 4, 11, John Wiley & Sons, Inc. (I960)] 

tions of the reciprocal lattice points with the diffraction sphere vary when the diffraction 
patterns obtained (Fig. 10.15(b)) are interpreted as follows. The b axis is always directed 
along the radius, while the variation of the 110 intensity shows that the c axis twists as il
lustrated in Fig. 10.15(e). It is also interesting to note that orientations II and VI in Fig. 
10.15(b) are practically identical, and that a rotation through 180° occurs in a distance of 
4 X 13 = 52 micrometers. The half-period of this twisting of the c axis thus coincides with 
the spacing of the rings due to double refraction, and a dark ring is observed whenever the c 
axis is perpendicular to the basal plane. 
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b) Pole figures of extruded polyethylene film. Figure 10.16 shows the pole figures ob
tained for the 200, 020, and 002 diffractions from extruded polyethylene (Marlex 50) tubu
lar film.'^ 

It is clear from the (200) pole figures that at a blow ratio of 1.7 : 1, the a axis is directed 
along the extrusion direction, but with maximum concentrations at 45° and at 135° to the 
plane of the film. This result shows that the a axes in the extruded material are not parallel 
to the extrusion direction, as had been thought, but are oriented at an angle of 45° to this di
rection. As the blow ratio is increased the a axes naturally become parallel to the extrusion 
direction in accordance with the earlier view. 

Examination of the (020) pole figures shows that the b axes are distributed in a plane 
perpendicular to the extrusion direction, and that the degree of orientation is much higher 
than that of the a axes. This is also something that had not previously been established con
clusively, since the 020 intensity is much lower than the 200 intensity. Moreover, the di
rection of orientation of the b axes shows practically no change with increasing blow ratio. 

The (002) pole figures show that at a blow ratio of 1.7 : 1, the orientation of the c axis 

1.7: 1 
Blow ratio 

TD 

(200) a axis 

MD 

TD 

TD 

(002) c axis 

Fig. 10.16 Pole figures of extruded polyethylene film.̂ ^ 
MD: Machine (roUing) direction. 
TD: Transverse direction (parallel to rolled surface and normal to rolling direction) 
[Reproduced with permission from P.H. Lindenmeyer, S. Lustig, J. Appl. Polym. Sci., 9, 235, 
John Wiley & Sons, Inc. (1965)] 
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is rather complex, but corresponding to the orientation of the a axis, the orientation distrib
ution has maxima at angles of 45° and 135° to the plane of the film. 

10.3 Determination of the Degree of Orientation 
Specimens in which the crystallites exhibit the various types of orientation discussed hither
to can differ widely in the degree of the orientation. The reciprocal lattice point distribution 
bands are obviously affected by any spread in the orientations, and there is a corresponding 
effect on the X-ray diffraction patterns. The latter generally have an intensity distribution 
taking the form of arcs on Debye rings, but may (depending on the degree of orientation) 
vary from sharp points to uniform rings. The distribution of the reciprocal lattice points for 
a given crystal plane, i.e. the degree of orientation, can therefore be inferred from the inten
sity distribution of the corresponding diffraction on the Debye ring. 

10.3.1 Criteria of the degree of orientation 
A. Using meridional diffractions 00/ 
In a uniaxially oriented specimen, if the a and h axes of the crystallites are perpendicular to 
the c axis (fiber axis), d\ disappears for the 00/ planes, i.e. the planes normal to the c axis, 
since ^ = 0 and (7 = 0 and hence cos 5m — cos d\ = 1/cos 0. The 00/ reciprocal lattice 
points should therefore lie on the Z axis, and since the diffraction sphere does not pass 
through the Z axis, no 00/ diffractions should be observed. However, since the 00/ recipro
cal lattice points actually have a distribution w((p) they are distributed around the Z axis as 
well as on it. For low order numbers of /, therefore, the diffraction sphere cuts the distribu
tion band of the reciprocal lattice points, and 00/ diffractions are then produced (Fig. 
10.17). Since the diffraction intensity distribution corresponds to the distribution w((p) of 
the reciprocal lattice points, it can be used directly to find the distribution of orientation. 
However, the 00/ diffraction intensity distribution corresponds only to the flanks of the rec
iprocal lattice point distribution. In practice, therefore, 
a) It is necessary to know the 00/ intensity distribution from an inclination photograph for 
which the specimen was inclined at an angle of ji = 6m (where 6m is the Bragg angle for 
the 00/ diffractions) to the incident X-rays in order to be able to place the distribution band 

Diffraction 
sphere 

0 0/diffraction 

fX = dc 

/"l 

L h v\ 
0 0/ diffraction 

0 0/ reciprocal lattice 
point distribution 

Fig. 10.17 Measurement of the degree of orientation using meridional diffractions. 
Measurement of the meridional diffractions is possible when the specimen is inclined appropriately 
(see text). 
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of 00/ reciprocal lattice points exactly on the diffraction sphere. Since this intensity distrib
ution is along a small circle of the diffraction sphere, the following equation is used to con
vert it into a distribution along the great circle, and so to find the correct orientation distrib
ution. 

cos (p = cos 8 cos Oooi (10.12) 

(p is the angle from the OZ axis, and 5 is the angle from the meridian measured on the 
Debye ring (c/ Fig. 10.17). 
b) Alternatively, the 00/ diffraction intensity distribution can be found without the need for 
the correction (Eq. 10.12) required in a) above, by taking precession photographs of recip
rocal lattice planes containing the c* axis or from Weissenberg photographs for axes per
pendicular to the c axis.^ 

B. A practical measure of parallelism^^ 
If the degree of orientation is low, it is difficult to obtain pure meridian 00/ diffraction in
tensity measurements. In such cases a practical measure of parallelism 77 is found as fol
lows from the intensity distribution of diffraction spots on the equator, and is used as a cri
terion of the degree of orientation. This quantity is defined by the equation 

/ T = ^ X 1 0 0 (10.13) 

where H° is the half width of the intensity distribution on the Debye ring of the most intense 
diffraction on the equator. /7 has a value of 0 if the specimen is completely unoriented, 
while if the crystallites are all arranged perfectly parallel to one another it is equal to 100. 

10.3.2 Determination of the mean of the crystallite orientation distribution 
(orientation coefficient) 

This method determines not the orientation distribution, but its mean value. The value ob
tained in this way should agree with the mean of the orientation distribution function de
scribed in Section 10.3.3, but the work and calculations are naturally less onerous than 
those involved in first determining the orientation distribution function and then its mean. 

A. Uniaxial orientation^^^ 
If the Z axis is the fiber axis (Fig. 10.18) and the angles made by the a, b, and c axes of the 
crystallite with the Z axis are cpa, cpt, and (pc, respectively, the orientation coefficients. Fa, 
Fb, and Fc^ representing the degrees of the three axes with respect to the Z axis are defined 
by the following equations. 

F«=(3<cos^(Pa>-l)/2l 

F , = ( 3 < c o s > , > - l ) / 2 i (10.14) 
F, =(3< cos>c > -1 ) / 2 J 

The 00/ diffraction is easily confused with the nearby 10/ and 01/ diffractions. These generally have small 
values of 8\ and appear close to the meridian; they sometimes merge to give a single arc cutting the meridi
an. As the degree of orientation of the specimen increases, however, the intensity of the 00/ diffraction spot 
decreases, whereas those of the 10/ and 01/ diffractions do not decrease but sometimes separate on either 
side of the meridian. 
These F's are not to be confused with those (structure factors) in Sections 2.9, 4.2, 11.2, 11.4, etc. 
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Fig. 10.18 Parameters used in the description of uniaxial crystallite orientation. 
[Reproduced from R.S. Stein, J. Polym. ScL, 31, 327, John Wiley & 
Sons, Inc. (1958)] 

The values of < cos^ (p̂  > , < cos^ cpb > , and < cos^ (pc > required for the determination of 
the orientation coefficients are found as follows. 

If we consider, say, the orientation coefficient for the a axis, we have cos (pa = cos Ohm sini/4oo, 
with the mean given by 

< cos^ (pa> = cos^ 6hoo < sin^ y/hoo > 

< sin^ y/hoo > is in turn given by 
pn/2 ^ 

J I(\j/hoo) sin^ y/hoo cos V/'/,ood v̂ /̂ oo 
<sinV/^oo> = 

Hence 

<COS^(Pa> = 

Similarly, for the b and c axes 

rn/2 

rn/2 ^ , 

Ĵ  liyfhm) sin^ y/hm cos y/hoocos^Ohoody/h rn/2 

Ĵ /(V/̂ ;,oo)cosv/̂ /̂ oodv/̂ ;,, 

<COS^ (pb> = 

rn/2 ry J 

J I{yfQko)^in yfoko^o^WokQCos^OokQdy/Q 
rn/2 

^J{yfQM)cosy/Qkody/Q 

rn/2 ~ ^ 
/(V^oo/)sin^ y/mi QO^yfmCO^ OmAy/o 

<cos^ (Pc> = - rn/2 

J /(V/̂ oo/)cosv/̂ oo/dv/̂ oo/ 

(10.15a) 

(10.15b) 

(10.15c) 

liy^hoo), Ky/oko), and I(y/m) are the intensity distributions of the hOO, OAO, and 00/ diffractions 
on the Debye-Scherrer rings, and Ohoo, Ooko, and Omi are the measured values of the Bragg 
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angle for the /lOO, OM), and 00/ diffractions. Xj/ (= 90° — 5) is the angle from the equator, 
measured on the Debye-Scherrer ring (Fig. 10.19). 

In the special case where the a, b, and c axes of the crystallites are orthogonal, then 

COŜ  (pa + COŜ  (pb + COŜ  (pc= I 

Fa + Ft + Fc = 0 

(10.16) 

(10.17) 

Fig. 10.19 Sketch of an X-ray diffraction pattern from oriented polyethylene. 
The a axes are oriented perpendicular to the drawing direction. The degree of orientation is indicated 
by the intensity distributions along the diffraction arcs (i.e. the variation with (p). 

I bi a axis 
High density polyethylene 

Low density polyethylene 

Fig. 10.20 Orientation diagram for polyethylene showing the effects of cold drawing.'*^ 
The orthogonal dotted lines are the axes of Fa and Fb and the origin corresponds to the unoriented 
state. Circles indicate low density polyethylene, and crosses indicate high density polyethylene. 
[Experimental data supplied by R.S. Stein in private communication (1958)] 
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SO that we need only determine the values of any two of the orientation coefficients. 
Orientation coefficients of poly ethylene.^^^ Polyethylene belongs to the orthorhombic 

system (see Section 11.2.8), so Eq. 10.16 and 10.17 are normally valid. For spiral orienta
tion as represented schematically in Fig. 10.19, Fa and Fb can be found by measuring the 
200 and 020 intensity distributions /(1/̂ 200) and liy/oio) and calculating < cos^ (p«>and 
< cos^ (pb > from Eq. 10.15a and 15b. Fig. 10.20̂ ^̂  shows how the orientation coefficients 
found in this way depend upon the conditions of cold drawing. 

B. Biaxial orientation^^^ 
If the Z axis is the direction of the fiber axis and the Y axis lies in the plane of the film, the 
X axis is normal to the plane of the film. Two of the angles cpa, (pb, and (pc used in the case 
of uniaxial orientation and any one of the angles cOa, cOb, and cOc between the Y axis and the 
projections of the a, b, and c axis of the crystallite on the XY plane are required to define the 
orientation of the crystallites in the film specimen (cf. Fig. 10.18). The biaxial orientation 
coefficients Fia, F2b, and Fjc corresponding to the three angles just defined are given by the 
following equations. 

F2a=(3<COS^COa>-l)l 

F2^=(3<cos^ 0)b>-ln (10.18) 
F2c=0<cos^ C0c>-V)\ 

The coefficients F2«, Fit, and F2c are not independent, but obey the following relationships: 

sin^ (pa cos^ 0)a + sin^ (pb cos^ cOb + sin^ (Pc cos^ cOc = 11 
. 9 . 9 . 9 . 9 . 9 . 9 A n o 19) 

sm (̂Pasm (Oa + sm (pbsm^(Ob + sm^(pcsm^C0c=lj \ - ^ 

Thus if Fa and Fb are found as in the case of uniaxial orientation, there is a further re
quirement for two of F2a, F2b,^nd F2c, before the degree of orientation can be expressed. In 
the special case where (say) the c axes are parallel to theZaxis, Fc— I and Fa — Fb — ~ 1/2, 
and since F2b — F2a, it is necessary only to find either F2b or F2a-
a) Calculation of biaxial orientation coefficients, 
I((Pa, }i)mo or I{(pb, lX)QkQ is found from the /iOO or 0/:0 diffraction intensity /(i/^oo, jJ) or 
/(V̂ oM), jJ) measured as a function of the angle ji between the incident X-rays and the X axis, 
i.e. between the incident X-rays and the normal to the film plane. For example, I{(pa, /f)hoo 
is easily found from the hOO diffractions using the relationship 

c o s (pa = COS Ohoo s in y/hoo 

This I((pa, fi)hm is then used in the calculation of < cos^ (Oao > , and hence to find F2a (see 
Fig. 10.21). 

(Oa = (OaO + Jil 

< COS^ (OaO > = 

r I((pa, lii)hoo [(sin^ ehoo) / (sin^ (pa )+{l - (2 sin^ Ohoo) / (sin^ (pa)} cos^ /i]d^ 
j^2 (10.20a) 
y{(Pa.J^)h00dlil 
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Similarly, F2b is calculated with the aid of < cos^ (Om > from the OM) diffraction 

< COS^ CObQ > = 

£" licpb, l^)oko[(sin^ Ooko) / (sin^ (pb )+{l - (2 sin^ ô̂ to) / (sin^ cpb)} cos^ iu]dfi 
PKll 

y{(pt,lil)okodlil 
(10.20b) 

If the uniaxial orientation coefficients Fa and Fb are calculated as described in the previous 
section, we now have all the orientation coefficients Fa, Fb, Fia, and F2b generally required 
to express the degree of orientation in cases of biaxial orientation. 

^X 

Fig. 10.21 Parameters used in the description of a tilted film. 
[Reproduced from R.S. Stein, /. Polym. ScL, 31, 338, John Wiley & Sons, Inc. (1958)] 

10.3.3 Analysis of the crystallite orientation distribution (orientation distribu
tion functions)̂ ^̂ ^̂  

Crystallite orientation distributions are most suitably expressed in terms of crystallite orien
tation distribution functions. The calculations to determine these functions are rather labo
rious, and require high speed electronic computing facilities. The method has the compen
sating advantage, however, that the orientation distribution functions for planes giving very 
weak diffractions can be calculated from experimental results for many other planes. 

A. Biaxial orientation distribution functions 
The specimen is referred to the coordinate system O-XFZ, where the Z axis lies along the 
drawing direction, and the YZ plane is the plane of the specimen. The crystallites in the 
specimen have the coordinate system 0-xyz, where the jc direction is that of the molecular 
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chains. The orientation of the crystalHtes in the specimen is expressed by the Euler angles 
a, P, and 7 (Fig. 10.22(a)). The reciprocal lattice vector r* ,̂ normal to a given crystal plane 
in a crystallite, can therefore be defined in terms of the angular parameters Gj and 0j in the 
coordinate system O-xyz of the crystallite (Fig. 10.22(b)) and in terms of ;̂ ; and rfj in the co
ordinate system O-XYZ of the specimen (Fig. 10.22(c)). The two sets of angles (0/, 0j) and 
(XP rjj) are related by the formula 

^sinj^ 

s inz 

COST] 

smrfj 
COSXJ J 

= T-\a,p,r)\ sin 0j sin 0j 
cos 0j 

(10.21) 

for changing from the O-xyz system to the O-XYZ system. In this formula, 

C COS a COS j8 cos 7—since sin 7 sin a cos ̂  cos 7+cos a sin 7 — sinj8cos7A 
— cos a cos P sin 7— sin a cos 7 

cos a sin j8 
- sin a cos ̂  sin 7+cos a sin 7 sin/3 sin 7 

sin a sin )8 cos 7 
(10.22) 

Fig. 10.22 Relationships between the coordinate systems and the reciprocal lattice vector r*,. 
(a) Specimen coordinate system, O-XYZ, and crystallite system, O-xyz, where a, /3, 7 are the 

Euler angles. 
(b) Crystallite coordinate system and the arbitrary reciprocal lattice vector. 
(c) Specimen coordinate system and reciprocal lattice vector r*,. 
[Reproduced with permission from R.-J. Roe, W. R. Krigbaum, J. Chem. Phys., 40, 2608, Am. 
Inst. Phys. (1964)] 
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With ^ — COS P and ^j = cos;^;, the crystallite orientation distribution function 
w((̂ , a, y) may be expressed in terms of the experimental orientation distribution function 
qj(Q, rjj) for the reciprocal lattice vector r, by means of the expanded forms of both w(^, a, 
y) and qjiQ, T]j) which are obtained from the associated Legendre polynomials.^^^ The ex
pressions derived are of the following forms. 

w{^,a,y)=Y,^ £W/^„Z/^„((^)exp(-/ma)exp(-m7) n o 23^ 
/=Om=-/n=-/ ^ ' ^ 

/ 

I 
n=-l 

QJ=2n{2l{2l+\)}"^ X WimnPi\Ej)QXi^{-in0j) (io.25) 

E = cos 0 

Pr{0 ^^^ PP{E) are both normalized associated Legendre functions, while Zimn is a gener
alized associated Legendre function. ̂ ^̂  w(<̂ , a, y) is of course normalized. 

The orientation distribution function qj(^j, rjj) for the reciprocal lattice vector r* is 
found from the measured intensities /(^y, rjj) for various independent lattice planes. 

qj{Cj,nj)=IiCj,rij)' fj fji^j,rij)dCjdnj (10.26) 

QJ is then calculated from the following equation. 

Having found the value of a given QiJ from Eq. 10.27, we find Wimn {n = — 1,...,0,...,1) for 
certain fixed values of /, m, and; with the aid of Eq. 10.25 by solving (2/ + 1) simultaneous 
first-order equations in the complex plane. If the number of qji^j, rjj) obtained from experi
mental values is Â , then Wimn is found for at least (N — l)/2 values of /. Finally, w((̂ , a, / ) 
can be calculated from Eq. 10.23. 

It is convenient in practical calculations to express Wimn and QJ as 

Wlmn = Aimn+iBlmn (10.28) 

(10.29) 

Then 

^;(Cy.^y)=X £ Pri^j)[aJcosmrij+bjsinmrij] (10.30) 

w(^,a,y)=^ ^ ^Zim(OlAimnCos(ma+ny)+BimnSm(ma+ny)] (10.31) 
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a J=2K\ ——- [ y Pi" (Sj )[Aimn cosn0j-Bimn sinnOj ] 
L2/+1J n^-l 

bJ=27i;\——-\ ^/^"(S^OLA/^nsmn0j-Bimn cosn0j]\ 
L2/+1J „=-/ J 

(10.32) 

Moreover, from the symmetry of Z/̂ „ and PT, we obtain 

e/m=(-irG/m*i 
aim =(-iraim \ 

Aim ={-ir^''AMn 

Blm = ( ~ 1 ) ' " " Bimn] 

(10.33) 

(10.34) 

If the statistical distribution of the crystallites in the specimen has a certain symmetry, and 
if the crystallites themselves possess crystallographic symmetry elements, many of the Wimn 
become zero, as shown in Tables 10.2 and 10.3,̂ ^^ with corresponding simpUfication of the 
calculation. The coordinate systems 0-xyz and O-XYZ should therefore be chosen in such a 
way as to give the greatest possible number of symmetry elements. 

When the crystallite coordinate system is changed to 0-xyY by rotation of the 0-xyz 
coordinate system through the Euler angles a\ P\ and / ' in order to manifest the highest 
degree of symmetry possible, the equation for the change of coordinates is 

Table 10.2 Symmetry properties of Qim and Wimn due to statistical symmetry of crystallite distribution 

Statistical symmetry element 

Mirror plane normal to x axis 

Mirror plane normal to y axis 

Mirror plane normal to z axis 

Three mirror planes normal to 
X, y, and z axes respectively 

Cylindrical symmetry about 
zaxis 

qii, 1) 

^qii,7r-ri) 

-qii,-V) 

= qi~C,Tl) 

-q(^,0) 

Qlm 

^Qlm 

-{-ITQM 

J #= 0 (m even) 
l = 0(modd) 

r = Qim{m even) 

l = 0(modd) 

r=/= 0, m = 0 
L=0,m=/=0 

Wimn 

= H^/^=( - l ) ' "^"W*/ .n 

{-irWi^-i-XyW^lmn 
J=hO(m even) 
l = 0(modd) 

r = Wirm == ( - 1 yW'^imnim cvcu) 

1 = 0 (m odd) 

r=/=0, m = 0 
1 = 0 , m=^0 

[Reproduced with permission from R.-J. Roe, J. Appl. Phys., 36, 2024, Am. Inst. Phys. (1965)] 

Table 10.3 Symmetry properties of Wimn due to crystallographic symmetry of crystallites 

Crystallographic symmetry element Equivalent vectors of 0 and O 

Mirror plane normal to X axis 

Mirror plane normal to Y axis 

Mirror plane normal to Z axis 

r-fold rotational symmetry with 
respect to Z axis 

(0 , K~0) 

{K - 0, 0) 

{0,0 + 2KJ/r)ij--

--{-\rWlrrrn={-\rW''lfnn 

= W U - 1 ) ' " + " W * / ^ 

r ̂  0 (n even) 

1,2,..., r - 1 ) 

r=/=0(n( 
i = 0 (n odd) 
r^O 

1 = 0 
^ 0 (if n is a multiple of r) 

~ (other cases) 

[Reproduced with permission from R.-J. Roe, J. Appl Phys., 36, 2024, Am. Inst. Phys. (1965)] 
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sin Gj cos 0j ^ 
sin Oj sin 0; 

cos6); 
^T-\a\p\r)\ 

sin 6) / cosCP/^ 
sin6>/ sinC^/ 

cos 6)j' (10.35) 

where Gf and C^/ are the polar and azimuthal angles respectively of the reciprocal lattice 
vector r*y in the new coordinate system. 

B. Uniaxial orientation distribution functions 
For uniaxial orientation, w(<̂ , a, y) and qj(̂ y, r\j) no longer contain the variables a and r\j\ 
the orientation distribution functions and their interrelationships therefore reduce to the fol
lowing. 

vv(^,7) = £A/O/^ ' ( ( ? )+£ X [A./^'"© cos m7+B/./^'"((?) sin mr)] 

I2/+1J 

m = l 

Qj is found from the experimental ^ / Q as follows. 

qj (C;) = ^; iX) I \l h iX) sin XdX 

(10.36) 

(10.37) 

(10.38) 

(10.39) 

C. Procedure for the calculation of w(^, 7) 
1) The parameters G and O are calculated for the various diffractions from the size of 

the unit cell. 
2) Ij(x) is measured for the yth diffractions, and after correction for absorption, polar

ization, and Lorentz factors, ^ / Q is found from Eq. 10.39. 
3) Eq. 10.38 is used to find the Ql for / = 0, 2, 4,... for the various diffractions. The 

expanded form of qj{C,j) obtained with the aid of g/, i.e. 

qj(^j) = I,Qi'Pi(^j) (10.40) 

is tested for convergence by means of Eq. 10.41, at the same time determining the number 
of terms of the associated Legendre polynomial required for convergence within the expect
ed error, i.e. the minimum number of diffractions required to find the orientation distribu
tion function with the expected accuracy. 

(y.'=(_,kj(Cj)?dCj-t{Qn' (10.41) 

4) The coefficients Aim and Bim required for the calculation of w(<̂ , 7) are found by ap
plying Eq. 10.37 to each of the Q/ obtained and solving the simultaneous equations. 

5) w(^, 7) is calculated. 
6) Where the orientation distribution function of a given crystal plane cannot be deter

mined, e.g. because the diffraction intensity is too low, or because there is an unacceptable 
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amount of overlapping with other diffractions, the coefficients Aim and Bim used in the calcu
lation of the orientation distribution functions of the crystal planes from other independent 
diffractions are used in Eq. 10.37 to calculate the required Qi. If qj(Q is then calculated 
from Eq. 10.40, w(^, y) can be calculated by the same procedure as for the other crystal 
planes. 

7) When several superimposed diffractions are measured as one, the measured intensi
ty must be broken down into the contributions due to the various components using the 
"weights" of the reciprocal lattice vectors r/*. These weights Cjp are derived from the fol
lowing equation. 

Cjp=(Fj,y/'Z(Fj,y (10.42) 

Fjp is the structure factor of the reciprocal lattice vector r,p* measured as the reciprocal lat
tice vector r,* resulting from the superposition of other diffractions with very similar Bragg 
angles. We obtain 

^j(^j) = Y,^Jp^Jp^^J^ (10.43) 
p 

Q'^lCpQ,'" (10.44) 

so that Eq. 10.37 is replaced by 

r 1 i i/2 / 

l i Z + l J p m=\ p 

+ BimY,CjpPr{Ej)^mm^jp]] (10.45) 
p 

where Ejp — cosOjp. 
Orientation distribution functions of drawn polyethylene, '"̂^ Since poly-ethylene crys

tals are orthorhombic (cf. Section 11.2.7), the coordinate systems are chosen so that the x, _y, 
and z axes coincide with the a, b, and c axes, respectively, of the unit cell. Owing to the 
presence of a mirror plane normal to the z axis, all the Aim disappear from 
w((̂ , 7) except those for which / and m are both even. Eqs. 10.36 and 10.45 thus become 

K$,7)= £ A/oP/'(^) + 2 £ Y^AimPr{^)cosmr (10.46) 

0^ =2;r{2/(2/ + l)r{AzoXCi.^/°(^;p) + 2 X A/ .XQp^" ' (^ i )cosm^,} ^^^^^^ 

{even) 

The specimen in this case a sheet of polyethylene (Alathon-10) that had received 10 
Mrad of radiation and was drawn (draw ratio 5.58 : 1) to induce uniaxial orientation. The 
intensity distributions I(x) of 12 diffractions were measured, and the q{l^ were calculated. 
Fig. 10.23 shows the q{Q) for the four diffractions with the smallest angles. The circles are 
the experimental values, and the solid curves indicate the values found from the expanded 
approximation obtained from Eq. 10.40 with / = 16. The dashes give curves obtained by 
expanding the intensity distribution curves of the 12 diffractions (isolated from the 23 over
lapping diffractions of Table 10.4) into a series and applying corrections so as to minimize 
the differences from all the experimental curves. The dotted curve shown in the 200 dia-
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1.2 

r„ 0.8 
^ 

0.4 

-

( C ^ 

210 /^v 

//%^ ij \ 

I 

30* 60* 90* 

Fig. 10.23 Reciprocal lattice point distribution functions ^(f) of the first four diffractions for uniaxially oriented 
polyethylene (see text)."̂ ^ 
[Reproduced with permission from R.-J. Roe, W. R. Krigbaum, J. Chem. Phys., 41, 737, Am. Inst. 
Phys. (1964)] 

Table 10.4 Identification of the diffractions, etc. for Fig. 10.23'' 

20, diffraction angle [deg] hkl 

9 
10 

11 

12 

21.62 
24.02 
30.15 
36.38 
39.79 

40.85 

41.69 

43.07 

47.01 
55.00 

57.32 

61.92 

1.0 
1.0 
1.0 
1.5 
0.7 

0.7 

0.7 

0.7 

0.5 
0.5 

0.5 

0.5 

110 
200 
210 
020 
Oil 
310 
310 
Oil 
111 
111 
310 
201 
201 
220 
111 
211 
311 
130 
130 
221 
401 
230 
420 

0.81 
0.19 
0.55 
0.30 
0.15 
0.70 
0.19 
0.11 
0.71 
0.15 
0.14 

0.88 
0.12 
0.66 
0.34 
0.60 
0.36 
0.04 

^ Weight due to superposition of diffractions. 
[Reproduced with permission from W.R. Krigbaum, R.-J. Roe., J. Chem. Phys., 41, 737, Am. Inst. Phys. (1964)] 
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gram is the q(^ obtained from the intensity distribution curves of diffractions other than the 
200 diffraction, using Eq. 10.47 and 10.40. Fig. 10.24 shows the resulting orientation dis
tribution functions in the form of G((̂ , 7) = 4nw(^, 7) instead of w((̂ , 7). As the number of 
terms in the expanded approximation increases (/ = 6, 12, 16), the approximation is im
proved and the negative regions decrease. 

Fig. 10.24 Orientation distribution functions G(^, y)=4w{^, 7)."^^ 
The number of terms used in the expanded approximation for (a), (b), and (c) were 1 = 6, 12, and 16, 
respectively. As the number of terms is reduced, the negative (shaded) area due to the approximation 
error increases. 
[Reproduced with permission from W.R. Krigbaum, R.-J. Roe., / . Chem. Phvs., 41, 737, Am. Inst. 
Phys. (1964)] 

10.4 Preferred Orientation of Two-dimensional Lattices 
In the previous sections the orientation of three-dimensional lattices has been discussed. 
The diffraction intensity of a two-dimensional lattice is represented in reciprocal space by a 
periodic array of parallel rod-like intensity distributions. The asymmetric interference 
hues produced by a randomly oriented two-dimensional lattice were discussed by Lauê ^̂  
and later by many other authors. The effect of non-random distribution of the two-dimen
sional lattices has been treated by Guentert and Cviekevich,^^^ and has been generalized by 
Ruland and Tompa.̂ ^^ Ruland and coworkers also interpreted the effect of preferred orien
tation on (hk) interferences as shown by electron diffraction of carbon fibers.̂ ^^ Orientation 
of polymer chains (one-dimensional cases) will be dealt with in Section 14.5 (refer also 
14.4 and 14.6). 
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11. Crystal Structure Analysis of High Polymers 
It may not be immediately apparent why the methods used for the structure analysis of sin
gle crystals of low molecular weight substances should so often prove inadequate (unless 
considerably modified) in the case of polymers. This, however, is to ignore the many dif
ferences between X-ray diffraction from high polymer crystals and that from single crys
tals. The structure analysis of high polymers is particularly complicated by the imperfect 
crystallite orientation and the smaller total number of diffractions. On the other hand, the 
fact that the molecular structure of a given high polymer can often be al least partially in
ferred from its chemical composition compensates to some extent for the necessity to base 
structure analyses on data which is limited in scope and precision. 

11.1 Use of Unoriented Diffraction Patterns 
In an unoriented polycrystalline specimen it is inevitable that certain information is lost as a 
result of the random orientation of the crystallites. A further, and in practice more serious, 
loss of information is a result of the overlap of independent diffraction peaks in the powder 
pattern. However, latest developments in the powder diffraction method have gained new 
importance in the field of materials science for crystal structure determination and charac
terization of polycrystalline specimens. 

The methods of analysis for powder diffraction patterns are roughly divided in two^ :̂ 
the Rietveld method^^ and the pattern decomposition method.̂ ^ The former involves crystal 
structure determination using the whole diffraction pattern to refine the structural parame
ters, and in the latter the observed diffraction pattern is decomposed into individual Bragg 
diffraction components before analysis regardless of the structural model. 

11.1.1 Rietveld method̂ ^ 
In this method, the model structure assumed for the crystalline specimen is refined by a 
least-squares procedure fitting a calculated powder diffraction pattern to the observed 
whole diffraction pattern. 

The quantity minimized in the least-squares refinement is 

AJ = XW.[/obs,/ - / ca lcXG/v) ] ' (11 .1) 

where /obs, / is the diffraction intensity as measured, on which no correction has been made. 
Wi is the weight. 

The calculated diffraction intensity for the model structure /caic. / ( C - ) is 

ĉaic, /(C/,..) = mdA{Qr)c Y.jk Ek PkLpiQk) I F, P G{Qi - Qd-f B{Qj) (11.2) 

where I{Qj) is intensity distribution in the incident beam, A{Qj) absorption factor̂ ^ and B{Q^ 
the background intensity, c the scale factor,"̂ ^ k order of diffractions, jk multiplicity of a 
Bragg diffraction, Ek and Pk correction factors for the extinction''^ and preferred orienta-
tion̂ '̂ ^ respectively, Lp(Qk) Lorentz and polarization factor and Ek structure factor. Qk is the 
position of the ^ h peak, and Q is given by the following equation, 

Q = Iji/d = (471 sin d)/?i = InSIX 

= 27t(h^a^^ + ŷ Z?*' + / 'c*' + 2/:/Z7*c* cos a* Q 1 3) 

+ llhc^a"^ cos j3* + 2hka^b^ cos y*)̂ ^̂  
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where d is the interplanar spacing and a*, Z?*, c*, a*, j8*, and 7* are reciprocal unit cell pa
rameters. 

The structure factor Fk is given by 

Fk = lofjDjCxp[2m(hXj + kyj + Izj)] (11.4) 

where Xj, yj and Zy are fractional coordinates of the7th atom in the unit cell, oj occupancy and 
fj atomic scattering factor. Dj, thermal parameter is expressed in the form either isotropic 

Dj = Qxp[-Bj(smea)] (11.5) 

or anisotropic 

Dj = QXp[-(h%y + I^Pllj + 1%3J + 2hkl5nj + 2hip,3j + 2kip23j)l (11.6) 

G{Qi — Qk)= G(AQ) is the profile-shape function to approximate the diffraction pro
file. Among the profile-shape functions applied hitherto,^^ the Voigt, pseudo-Voigt and 
Pearson VII functions, especially the latter two, are mostly used for the analysis at present. 
For the powder diagrams obtained by the energy dispersive method different profile-shape 
functions suitable for the measurement should be used. 
Voigt function: 

V(x)=I(0) - ^ C^ (z)G^ (x-z)dz (117) 
iScî G 

with 

C^(x)={l +;r'x'/j3c'}"' = {l +4xV(2w.)2)}-' 

G^(jc)= exp{ - TexVpc"} = exp{ - ( 4 In 2)JCV(2WG)')}, (11.8) 

where C^ and G^ denote the Cauchy and Gaussian components of the Voigt function with 
integral breadth Pc and PG respectively, and full width at half maximum 2wc and 2WG, re
spectively. 7(0) is the maximal intensity value at x = 0 and P is the integral breadth of V(x). 
pseudo- Voigt function: 

pV(x) = 7(0) {(y'ix) + G^'^ix)} (11.9) 

with 

CP^(x)=77{l+;r'x'/(/3cO}"^ 

G^\x) = (l - T])Qxp{- Kx'/ipGf], 0 ^ 7 7 ^ 1, (11.10) 

where Pc and J8G , denote the integral breadths of the Cauchy and Gaussian components, 
and 77 and I — rj prescribe the fractions of Cauchy and Gaussian components included. 
Pearson VIIfunction: 

PW7(x) = 7(0){(l+xVm(2')}-^ l ^ m ^ o o , (11.11) 

with 

a=pr{m)l[imny'^r{m - 1/2)], (11.12) 

where m = 1 or m = 00 yields a Cauchy or Gaussian function, respectively. The symbol 7" 
denotes the gamma function. 

A flow chart for the structure determination is shown in Fig. 11.1. The powder diffrac-
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Chemical 
informations 

HRTEM 
images 

Structure model 

Crystal 
chemistry 

Fourier and/or 
Difference syntheses 

Substance under investigation 

Powder diffraction patterns 
(whole or selected area) 

Determination of unit cell 

Indexing diffraction 

Determination of space group 

Refinement of unit cell parameters 

Simulation 

/esU 

Rietveld 
refinement 

Calculation of 
distances and angles 

FINAL 
STRUCTURE 

Fig. 11.1 Flow chart of the structure determination by Rietveld method. 
HRTEM: high resolution transmission electron microscope, /est,k: integrated intensity estimated from the 
result of the Rietveld method. 
[Reproduced with permission from F. Izumi, J. Cryst. Soc. Jpn., 34, 82, Cryst. Soc. Jpn. (1992)] 
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tion pattern of the specimen is first obtained by precise intensity measurement. This is fol
lowed by the assignment of unit cell, indexing of observed diffractions, determination of 
space group and refinement of unit cell parameters. 

In the second step, a model structure, which is assumed to be closest to the structure to 
be determined, is selected, taking into consideration information regarding the specimen. 
Examination of chemical crystallographic information, searching for isomorphous or 
isostructural compound(s) in the crystallographic database, and observation of the specimen 
under the high resolution transmission electron microscope (HRTEM) are helpful for the 
screening of the model structure. The success of the Rietveld method to determine a struc
ture appears to depend solely on the proper choice of the starting model structure. 

The third step is the determination of the position of each peak on the diffraction dia
gram observed and refinement of the unit cell parameters. 

The structural parameters of the model are then refined by the Rietveld method {cf. Fig. 
11.1). The refined structure is examined and confirmed by the absence of unwanted extra 
electron density on the Fourier and/or Difference (or D) synthesis maps if necessary. 

Finally, interatomic distances and angles are calculated based on the refined structure 
in order to confirm that all these values are reasonable. 

Many indices have been proposed in order to estimate the degree of coincidence be
tween observed and calculated diffraction intensities. Among those frequently used are: 

/^-weighted pattern ^^P 

and 

Goodness of fit ^ ^ 

^Wj[Joh^J -Jc^\c,i{Qi,.)Y 
(11.13) 

(11.14) 
N-P 

where Â  is the number of points measured and P the number of parameters refined. 

11.1.2 Pattern decomposition method 
In this method, overlapped diffraction patterns are decomposed to individual component 
Bragg diffractions without assuming the structure model.̂ ^ The profile fitting method̂ '̂ ~̂ ^̂  
and Pawley method '̂* '̂̂ -̂ belong to this category. The difference between these two meth
ods is that in the profile fitting method a part (in a narrow range) of the diffraction pattern is 
decomposed to component Bragg diffractions whereas in the Pawley method the whole pat
tern is used and decomposed to the components, and the unit cell parameters are refined si
multaneously. In the former no angular dependency (in the case of angular-dispersive mea
surement) or wavelength dependency (in the case of energy-dispersive measurement) is tak
en into account since the diffraction pattern in a narrow angular range is considered. 
However, in the latter it is necessary to assume a profile shape since the whole diffraction 
pattern is used for the analysis. The latter also requires approximate values of the unit cell 
parameters in the beginning. 

The quantity minimized in order to optimize the structural parameters in both methods 
is again A J (Eq. 11.1). Standard deviation of the structural parameters are obtained in a 

H. Toraya proposed a "position unconstrained pattern decomposition method" for the pattern-fitting method 
and a "position constrained pattern decomposition method" for the Pawley method, respectively, in The 
Rietveld Method, (R.A. Young ed.), Oxford Univ. Press, Oxford, 1992. 
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similar way as in the single crystal structure analysis. However, it has been pointed out that 
values of standard deviation are much lower than those obtained for the single crystal. ̂ "̂̂  

The use of convolution function in the pattern fitting method derives physically mean
ingful information from the profile shape (See Section 13.5). 

11.1.3 Extension to fibrous materials 

An extension of the Rietveld method from the one-dimensional case (powders) described 
above to a two-dimensional case (fibers), application to a stretched isotactic polypropylene, 
has been reported by Immirzi and Innelli.̂ ^^ It is reported that in spite of the structural com
plexity, low resolution, and diffraction overlap, well-distinguishable fits have been obtained 
by considering two structural models, P2\lc and C2/c, which are closely related to each oth
er. The only assumptions made are that of known bond lengths and 3i symmetry of the 
molecular chain. The results obtained are the C-C-C chain angles of 116.9° and 112.4°, 
chain torsion angle of 178° and 59° and methyl-to-chain angles of 108.20°. 

The other example is an extended application of the pattern fitting method to the struc
ture determination of one-dimensionally oriented fibrous crystal of tetrakis-(dimethyl-am-
monium)hexamolybdate(VI) dihydrate, [(CH3)2NH2]4Mo602o •2H20.̂ ^^ This complex crys
tallizes in the form of a bundle composed of a number of fibrous crystals with their c axes 
parallel to the needle axis. The pattern fitting technique was applied by Toraya, Marumo 
and Yamase to obtain structure factors of overlapping diffractions. 

11.2 Structure Analyses Using Uniaxially Oriented Diffraction Patterns 
This method is probably the one in most common use for the structure analysis of high 
polymers. The steps in the analytical procedure are outlined in Fig. 11.2, and described in 
more detail in the following sections. See also Fig. 11.16, which details the general proce
dure for the crystal structure analysis of ordinary single crystals. 

11.2.1 Determination of fiber period 
The first step in the structure analysis of a high polymer is usually to determine the fiber pe
riod from the oriented X-ray diagram. The method was described in Section 8.6.2A. A 
certain amount of information about the molecular structure and the crystal structure can of
ten be obtained from the structural formula unit and the fiber period, particularly in the case 
of chain polymers. 

A. Fiber period and models of the molecular chain 
1) The fiber period for the fully extended state of the high polymer chain is calculated 

from the chemical structure of the repeat unit of the polymer chain, using the standard inter
atomic distances given in the International Tables for Crystallography, Vol. Ĉ ^̂  for various 
types of bonds. Information about planarity, partial structures, etc., of any groups con
tained in the molecular chain may be obtained by reference to the Cambridge Structural 
Database'^^ which give the molecular structures of related low molecular weight com
pounds and to sources of crystallographic polymer data.̂ ^^ 

2) The measured value of the fiber period is compared with the value calculated from 
the model of the molecular chain. If the values agree within the limits of experimental er
ror, the proposed model often proves ultimately to have been correct. When the calculated 
period is slightly greater than the experimental value, this often indicates a twisted or loose
ly folded conformation of the molecular chains, and the degree of twisting or folding can be 
estimated from the discrepancy between the two values. Another possibility is that the 
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Substance under investigation 
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informations 

Measurement! 
of density 

Heat treatment, drawing, rolling etc. 

Preparation of specimen 
(best oriented & 
best crystalline) 

X-ray fiber diagram (Film or IP) 

NON-helical structure HELICAL structure 
(c/. Section 11.4) 

3 € 
Determination of fiber period 

Determination of unit cell 
(Construction of reciprocal lattice) 

•4 

Indexing 
diffractions 
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^ 
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Constrained least-squares refinement 

FINAL STRUCTURE 

Fig. 11.2 Flow chart of the structure determination of well-oriented high polymers. 
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chains are slightly inclined with respect to the principal axis of the unit cell. A large dis
crepancy, particularly if the experimental value is much smaller than the calculated value, 
often points to a helical conformation of the chains. Methods of ascertaining the presence 
of a helical structure will be discussed in a later section {cf. Section 11.4.3). 

3) Repeat period (fiber period) of poly (vinyl alcohol) (- CHzCH (OH) -)„. The repeat 
period for the carbon atoms in poly(vinyl alcohol) is 2.53 A (Fig. 11.3(a)), while the repeat 
period for the oxygen atoms in the head-to-tail structure is 5.1 A similar to the poly(vinyl 
chloride) (Fig. 11.3(b)). On the other hand, the observed value of the fiber period (along 
the b axis) is 2.53 A, Le. 1/2 of the calculated fiber period. Since the molecular chains are 
in the extended state, it must be concluded that some kind of disorder (Fig. 11.3(c)) exists 
in the arrangement of the oxygen atoms in the direction of the b axis.̂ ^^ 

NOTE: 
(1) In the above comparison it is also necessary to take into account not only the ef

fects of internal rotation but also the restrictions imposed by the van der Waals radii on the 
shapes that the molecular chain can assume. 

(2) The possibility of intermolecular hydrogen bonding must always be examined in 
view of the strong effect this phenomenon has on the shape of the molecular chains. 

5.1A 

(a) (b) (c) 

Fig. 11.3 Repeat period (fiber period) of poly(vinyl alcohol).^°^ 
(a) Repeat period expected for a head-to-tail structure similar to that of poly(vinyl chloride) is 5.1 A 

but the period observed is 2.53 A, which corresponds the repeat distance of the C...C atoms along 
the polymer chain. 

(b) Repeat period observed for the head-to-tail structure of poly(vinyl chloride) is 5.1 A. 
(c) Disorder of the hydroxyl groups along the molecular chain must be considered to explain the un

usually short period of 2.53 A. 
[Reproduced from X-Ray Crystallography, (I. Nitta ed.), Vol. I, p. 550, Maruzen (1959)] 

B. Where the fiber periods determined from diffractions of different order show 
discrepancies 

In some cases, values of the fiber period determined from diffractions of different order 
show considerable discrepancies. This is presumably due to broad principal maxima of the 
Laue function, G(S) (or paracrystalline lattice factor, Z(S)) caused by very small crystallite 
size and, at the same time, to rapid decrease or increase of structure factor in the neighbor
hood of the principal maxima (See Section 13.2.2). 



280 11. Crystal Structure Analysis of High Polymers 

C. Where the fiber period is indeterminate 
Polyacrylonitrile^'^ and poly (vinyl trifluoroacetate)^^^ give clear diffractions on the equator, 
whereas only diffuse scattering is found in the layer-line region. The approximate fiber pe
riod as found from the region of maximum intensity of the scattering in the layer-line re
gion is not always consistent with the expected value (Table 11.1). Specimens of this type 
cannot be regarded as three-dimensional crystals, but must be treated as two-dimensional 
crystals consisting of rod-like molecules or as paracrystalline structures {cf. Sections 13.6.1 
and 14.8). 

Table 11.1 Non-equatorial diffractions for poly(vinyl trifluoroacetate)^*^' 

n \ 2 3 4 

Intensity Very faint Strong Faint (on meridian) Faint (on meridian) 
c/n[k] 9.5 4.9 2.9 2.4 
cln[k\ 9.5 9.8 8.8 6.7 

11.2.2 Indexing diffractions and determining unit cell parameters 
A. Reciprocal lattice coordinates | and ^ from rotation or fiber photographs 

1) In most cases the film is placed on the Bemal chart for the appropriate film radius 
and the values of ^ and ^ are read off directly. Diffraction diagrams made with a micro-
camera may be enlarged to a suitable size and the values read with the aid of the Bemal 
chart. For diffraction diagrams made with the fiber axis slightly inclined to the incident X-
rays, correction must naturally be made for the inclination. 

2) Where accuracy is important, ^ and C, are found the coordinates (x, z) of the diffrac
tion spot on the film in the following relationships. 

(1) Cylindrical film: 

E,={\ + \l[\Hzl Ri?]-2cos{z/ Ri)l[lHzl Rfff-y^^] 

i;={zlR,)l[\HzlRfyr (11.15) 
/?f=film radius. 

(2) Flat film: 
2 n "I 1/2 

. 1 ^ l+{xlRiy-2[lHxlRifHzlRif]\ 
1 IHxIRffHzlRif J 

i;=(zlRi)l[lHz/Ri?r 

Rf ̂ specimen - to - film distance 

(11.16) 

B. Indexing the equatorial diffractions: subsequent unit cell determination 
The procedure is identical with that for indexing rotation photographs of low molecular 
weight specimens. For details, see Section 4.4. If the equatorial diffractions are readily 
amenable to this method of indexing, the unit cell is assumed to be monoclinic, with the c 
axis (unique axis) along the axis of rotation (fiber axis); tentative axial lengths (a^ and y) 
and a tentative axial angle (/ ') are found from the equation 

f (hkO)= h^ iXlaf +1^ {Xlh'f + 2h{Xla)k{Xlh')co^ f (11.17) 

The volume of the unit cell, the number of formula (monomer) units in the unit cell, and the 
crystal density can then be calculated exactly as described in Section 8.6.2B before the true 
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unit cell is known. Subsequent to indexing the layer line diffractions the actual unit cell pa
rameters are found and the values refined by the method of least-squares. The coordinate 
system should be taken right-handed. 

11.2.3 Determination of the space group 
A. Space groups and structure factors 
As mentioned in Section 4.3, X-ray diffractions from a crystal can only occur (if at all) in 
directions defined by the reciprocal lattice points, and with intensities which are governed 
by a structure factor of the form 

Fihkl) = ^ / ; exp{2ni{hxj +kyj +lzj)} ( H I g ) 

where fj is the atomic scattering factor of the 7th atom in the unit cell, and Xj, yj, and Zj are 
the fractional coordinates of this atom in the unit cell. The summation is carried out over 
all the atoms in the unit cell. The atoms in the unit cell are not independent, but generally 
fall into groups within which the atoms are related by the symmetry of the crystal. Since 
comparatively simple relationships hold between the coordinates of the atoms in these 
groups, insertion of these relationships into Eq. 11.18 simphfies the equation and reduces 
the number of terms in the summation. This is illustrated below with the aid of some exam
ples. 
a) Center of symmetry present. In a cell with center of symmetry at the origin if there is 
an atom at (x,, yj, zi), there must also be one at (jc,, jy, z,). Collecting the terms in pairs, 
therefore, and continuing to write Xj in place of — Xj for convenience, we obtain 

Fj(hkl) = fj [Qxp{27ri(hxj + kyj + lzj)}-\- Qxp{2m(hxj + kyj + IIj)]] 

= f [exp{2m(hXj + kyj + Izj)} + e x p { - 2Ki(hXj + kyj + /z,)} ] (11.19) 

Since 

2 cos a = exp(/a) + exp( — ia) (11.20) 

Eq. 11.19 can be written in the form 

Fj(hkl) = 2f [cos 27r(hxj + kyj + Izj)] (11.21) 

Hence 
N/2 

F(hkl) = 2^f cos 27r(hxj +kyj+lzj)} (11.22) 

Thus the imaginary part has been eliminated, and the structure factor is twice the contribu
tion due to one of two independent halves of the atoms in the unit cell. 
b) Twofold screw axis present. If a twofold screw axis 2i, passing through the point 
where x = 0 and z = 1/4, lies along the b axis, the atoms at {xj, yj, Zj) and ( — x,, 1/2 + yj, 
1/2 — Zj) are connected by the symmetry element. Therefore 

Fj{hkl) = fj [exp{2;r/(/2JC, + kyj + lzj)} + exp{2;r/(- hxj + /:(l/2 + >;,)+ /(1/2 - Zj)} 

= ^[exp{27r/(^/4 + ^ , + l/4)} 

X {Qxp{2Ki{hxj - k/4 + Izj - 1/4)} + exp{2;r/(- hxj + k/4 - Izj + 1/4])] 

= f [Qxp{2m(k/4 + kyj + 1/4)} X 2cos 2n(hxj + Izj - k/4 - 1/4) (11.23) 
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For OkO diffractions, we get 

F(0kO)=fj [Qxp{2m(k/4 + kyj]}X 2cos(k7c/2) (11.24) 

For k odd, cos(k7r/2) = 0, hence 

F{OkO)=0 ifk = 2n+l. (11.25) 

If the lattice contains a twofold screw axis in the b direction, all OkO diffractions with k = 
2n-\- \ are systematically absent (axial extinction rule). 
c) c Glide plane present. Assuming that in space group P2\/c, the pair of equivalent 
points concerning the c-glide plane is (JC,, yj, Zj) and (x,, 1/2 — yj, 1/2 + Zj). Then we get 

Fj(hkl)=fj [exp{2m(hxj + kyj + fe,)} + exp{2;r/(/ix, + k(l/2 - yj)+ 1(1/2 + Zj)}] 

=fj [exp(2Ki(hxj + Izj)X {exp(2;r%,)+ exp(2Kik(l/2 - yj))exp(i7rl)]] (11.26) 

For hkl diffractions with ^ = 0, we obtain 

Fj(hOl)=fj [exp{2Ki(hXj + Izj)} (1 + exp(/;r/))] (11.27) 

For / odd, exp(/7r/)= — 1, hence 

Fj(hOl)=0 ifl = 2n+l (11.28) 

If a lattice contains a glide plane perpendicular to the b axis with glide component c/2, all 
hOl diffractions with / = 2At + 1 are systematically absent (zonal extinction rule). 
d) Lattice is C-centered. In a C-centered lattice, if there is an atom at (Xj, yj, Zy)there must 
also be one at (xj + 1/2, yj -1-1/2, Zj). 

Then we have 

Fj(hkl)=fj [Qxp{27ri(hxj -h kyj + lzj)}-\- txp{2m(h(xj -h l/2)-h % , -h 1/2) + kj)}] 

=fj [txp{2m(hxj + kyj-{-lzj)}{l+Qxp{iK(h + k)}] (11.29) 

With h-\-k odd, exp {i7r(h -h ^)} = — 1, hence 

Fj(hkl)=-0, ifh-\-k-=2n + l. (11.30) 

That is: if a lattice is C-centered, all the hkl diffractions with /i -h /: = 2n -h 1 are systemati
cally absent (general extinction rule). 

The above examples 2) to 4) are known as an extinction rule (a systematic absence) of 
diffractions, and because it arises from the crystal symmetry, the space group of the crystal 
may be identifiable from the characteristic, systematic absence of diffractions. Table 11.2 
shows the diffractions that disappear for various lattice types and symmetry elements. 

B. Determination of the space group 
Space group determination starts with the assignment of the Laue class and the determina
tion of the unit cell geometry. Since the X-ray diffraction from a single crystal does not 
give the crystal symmetry but gives the intensity symmetry, Laue class is determined from 
the intensity symmetry observed (Table 11.3). The Laue class determines the crystal sys
tem. 
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Table 11.2 Extinction rules^ 
(a) Dependent on lattice types 

Space lattice General hkl diffractions 

(Rhombohedral axes) 
(Hexagonal axes) 

R—^H (Hexagonally-centered lattice) 

All present 
Only those with k + l = 2n present 

l + h 
h + k 
h + k^l 

h + k, h + I, k + I Q)Y h, k, and / all even or all odd 
All present 
Only either — h-\- k + l — ?>n (Obverse setting) 

or h — k + l — 3>n (Reverse setting) 
h - k = ?>n 

(b) Dependent on glide planes (valid only where independent of the lattice types extinction rules) 

Position of glide plane normal to a normal to / normal to c {110} 110} 

diffractions observed Qkl mi hkO hhl hhl 

a 
h 
c 
n 
d 

glide plane 
glide plane 
glide plane 
glide plane 
glide plane 

— 
k = 2n 
l = 2n 
k + l = 2n 
k + l = An,k -2n 

h = 2n h = 2n — 
— k = 2n — 

l = 2n — l = 2n 
h + l = 2n h + k = 2n — 
h + l = 4n,h = 2n h + k = 4n,h = 2n 2/z + 1 = 4« 

l = 2n 

Mirror plane m All present All present All present 

(c) Dependent on screw axes (valid only where independent of the lattice types and glide plane extinction rules) 

Direction of screw axis Parallel to a Parallel to b parallel to c 

Diffractions observed hOO OkO 00/ 

2, , 42, 63 

3] , 32, 62, 64 

4 . , 43 

61,65 

h = 2n 

— 
h = 4n 

— 

k = 2n 

— 
k = 4n 

— 

/ = 2« 
l = 3n 
l = 4n 
l = 6n 

2, 3, 4, 6 All present All present All present 

^ See International Tables for Crystallography, Volume A, Space Group Symmetry (T. Hahn ed.), D. Reidel 
Pub., Dordrecht, 1985. 

The indices of all the diffraction spots (or arcs) for the crystal are first tabulated. 
Regularities are then sought in the indices of observed diffractions. This is because some
times a very weak diffractions may be observed due to the experimental conditions, obscur
ing the regularity of the indices of completely missing diffractions. The symmetry is deter
mined from the general, zonal, and axial extinction rules respectively corresponding to the 
information on lattice type, glide plane, and screw axis, in that order. At this stage it is ad
vantageous to use specially compiled space-group sorting tables in the International Tables 
mentioned above or others.^^^ Finally, the space group(s) is found by consulting the 
International Tables for Crystallography, Vol. A* 

The older edition, International Tables for X-Ray Crystallography, Vol. I, can also be used. 
In some cases W. H. Baur, E. Tillmanns, Acta Cryst., B42, 95 (1986) may be helpful for space group 
determination. 
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Table 11.3 Laue classes and intensity symmetry 

Crystal Laue 
system class 

Included 
crystal classes Intensity symmetry 

Asymmetric unit 
of limiting sphere 

Triclinic 1 

Monoclinic 21m 
{b unique) 

Orthorhombic mmm 

Tetragonal Aim 

Almmm 

Rhombohedral 3 
(Trigonal) 

3m 

Hexagonal 61m 

Cubic 

6/mmm 

m3 

m3m 

1; 1 

2; m; 21m 

222; mm2; mmm 

4:4 ; Aim 

422; 4mm; 42m; 
AImm 

3; 3 

32; 3m; 3m 

6; 6; 6/m 

622; 6mmm; 6m2 
6/mmm 

23; m3 

432; 43m; m3m 

I{hkl)=I{hkl) 

I{hkl)= I{hkT) 
+ 
I{hkl)-= I(hkl) 

i(hki)=i(hkT) 
i(hki)^ lihki) 
+ _ _ 
i{hki)=i{hki)^i{hki) 

I(hkl)= lihkT) 
+ 
l(hkl)=Iihkl)=I(khl) 

I(hkl)= I(hkT), 
I(hkl)= Iihkl)= likhl) 
+ 
I(hkl)= I(khl) 

I{hkl)= I{hkT) 

IQikl) = I{k, h-\-k,l)= I{h + k, h, I) 

I(hkl) = l(hkT), _ 
IQikl) = I(k, h+k,l)= I{h + k, h, I) 
+ 
l{hkl) = I{khl) 

l(hkl)= lihkT), _ 
I(hkl)=Iik, h + k,l)^ /{h + 1 , h, I) 
+ 
I{hkl)^I{hkl) 

IQikl)^lihkT), _ 
IQikl) = I{k, h-\-k,l)= lih + k, h, I), 
IQikl)^ lihkl) 
+ 
IQikl)^ I{khl) 

I(hkl) = l(hkl), 
I(hkl) = I(hkl)= likhl) 
+ 
I(hkl) = liklh) 

I(hkl) = lihkT), 
I(hkl) = I(hkl)=-I(khl) 
I{hkl)= I{klh) 
+ 
IQikiy-^ likhl) 

[1]^' 1/2 sphere 

[I]^' 1/4 sphere 

[2/m]'' 

[4/m]'' 

[3]^' 

13]̂ ' 

[6/m]'" 

[4/m]'' 

[m3r 

1/8 sphere 

[1]" 1/8 sphere 
or less'^ 

(as above) 

[1]^' (as above) 

(as above) 

(as above) 

(as above) 

(as above) 

(as above) 

' ' The intensity symmetry may be expressed briefly as that of the Laue class given in parentheses plus extra 
symmetry. 

'" See International Tables for Crystallography, Vol. A, for structure factor expressions. 
[Reproduced with permission from Experiments in Chemistry, 4th ed. (Chem. Soc. Jpn. ed.), Vol. 10, 
Diffraction, p. 41, Chem. Soc. Jpn. (1992)] 

C. Notes on the determination of space groups of high polymer crystals 
A very similar procedure to the above (for single crystals of low molecular weight sub
stances) may be used. There is, however, the added complication that diffraction diagrams 
can often be obtained only for uniaxially oriented specimens of high polymers, and it is of
ten impossible to verify the extinction rules because of difficulty of indexing due to over-
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lapping of reciprocal lattice points, inability to observe the high order diffractions, etc. In 
such cases, one solution is to select a possible space group and carry out the analysis, as
suming initially that the symmetry is high. If this fails, other space groups are tried in turn 
in an attempt to find the correct one. However, this is a rather trial and error method, and it 
is better to try to obtain as many independent I F(hkl) P as possible, e.g. by preparing a bi-
axially drawn specimen, making inclined fiber photographs or Weissenberg photographs, or 
using X-rays of shorter wavelength, such as Mo radiation, to obtain data for higher order 
diffractions. 

11.2.4 Structure analysis 

A. Measurement of diffraction intensities and determination of observed structure 
factors I Fo I 

Measurement of the diffraction intensity normally requires the total intensity for the various 
reciprocal lattice points intersecting the circumference of the diffraction sphere, i.e. the in
tegrated intensity. From Eq. 4.2, taking the specimen-to-film distance Rf as equal to 1/A 
(the radius of the diffraction sphere), we can generally write 

/ m t = / o — y - ^ ^ A ' ^ - A / L \Fihkl)\^ D^ Ql 21) 
Rf m^c^ Vo 2 \i-i..ji-j 

where Av is the volume of the crystal irradiated by X-rays and Vo volume of a unit cell. A 
and 7 are absorption and multiplicity factors, respectively. L in this case is the Lorentz fac
tor: the rate at which the reciprocal lattice points pass through the circumference of the dif
fraction sphere varies with the diffraction angle, for which the factor makes due correction. 
D is the thermal parameter (see Eqs. 11.5 and 11.6). The Eq. 11.31 assumes that the dif
fracted X-rays are unaffected by the special absorption effect known as extinction. 

If X-ray film in used to record the diffraction, and where the degree of orientation is 
high as in single-crystal rotation photographs, the intensities of the various diffractions are 
measured by comparison with a standard intensity scale. If the multiple-film technique is 
used for diffraction intensity measurements, for successive films, the intensities decrease by 
the film factor which depends on the absorbance of the sheet of film used, and which can be 
found from a comparison of intensity values for diffractions having the same indices. 

If the degree of orientation is low, so that the various diffractions are drawn out into 
arcs, it is necessary to find the integral of the intensity distribution found on the various arcs 
(cf. Fig. 11.4). Where several diffractions with different indices overlap on the film, all 
those that can be resolved from the diffraction intensity curve are so resolved (see Fig. 11.5 
and cf. Section 8.3.3 for a method of resolving overlapping diffractions). Where this is im
possible, one solution is to take the average of the intensity reading over the number of 
overlapping diffractions, and to use this as a provisional value for each of the diffractions. 
The distribution is then adjusted on the basis of the calculated structure factor obtained as 
the analysis progresses. 

B. Corrections to be applied to the observed diffraction intensity 
a) Distance correction. A correction is naturally necessary when the distances of the dif
fractions from the specimen differ (cf. Eq. 4.2 or 11.31). 
b) Absorption correction. Accurate absorption coefficients can be calculated and used 
when the specimen is a sphere,̂ ^^ a cylinder,^^^ or a right-angled parallelepiped.̂ "^^ It is, 
however, difficult to determine the absorption factor for general specimens of complex 
shape. It is therefore usual to avoid the problem of an absorption correction by using speci-
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(b) 

Fig. 11.4 Intensity measurements on diffraction arcs. 
(a) The diffraction pattern. 
(b) Radial intensity distributions for the sections (0, 1, 2,...) indicated. 

The arrows in curve 2 indicate the background level. 

Fig. 11.5 Photometric intensity curves illustrating resolution of overlapping diffractions. 
a: Equator; b and d: second and third layer lines; c: radial intensity distributions for 102 and 012 
diffractions; e: standard intensity curve;/: unexposed film background. 
[Reproduced with permission from R. Laugridge et al, J. Mol. BioL, 2, 29, Academic Press (I960)] 

mens so small that absorption may be neglected (cf. Section 8.4 and Eq. 1.4). 
c) Lp correction. The corrections of the Lorentz and polarization factors are usually con
sidered together and referred to as the Lp correction. The reciprocal of the Lorentz factor 
(1/L) for the rotating-crystal method (as well as the oscillating-crystal and Weissenberg 
methods) is as follows. 

Equatorial diffractions, 1/L = sin 20 (11.32) 

Equi-inclination method, 1/L = A(̂ cos 0 = sin2^(sin^0 — sin^/j^y^/sinO (11.33) 

The polarization factor is the factor (1 + cos^ 26)/2 given earlier in Eq. 4.2. With single 
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crystal monochromators, however, the incident X-rays are already partly polarized, and the 
above expression should be replaced by (1 + cos^ 26M COS^ 20)/2, where ^M is the Bragg an
gle used with the monochromator. In practice, the Lp correction can be made by a comput
er. But, if X-ray film is being used, the Lp correction is found from charts^^^ as (Lp)~ \ The 
Lp correction for precession photographs is complicated, but this correction can also be 
made with the aid of a computer or charts.̂ ^^ 
d) Multiplicity correction. In the rotating crystal method (and in fiber photographs), the 
diffraction intensity is divided by the multiplicity^^^ of the crystal planes. 

C. Fixing the structure factor scale 
The method described below requires the absolute value of the structure factor. This can be 
found experimentally,^^^ but is usually determined by means of a statistical method pro
posed by Wilson.̂ ^^ Since any experimentally determined structure factor will be measured 
on a relative scale, it must be multiplied by a scale factor c to transpose it to the absolute 
scale. 

cF,(hkl)=J^fj^xp{2m(hxj+kyj+lzj)}Qxp{-B[(sme)/Xf] ^^^ ^^^ 

B is the temperature factor {cf. Section 5.2.3), with all the atoms executing identical isotrop
ic thermal vibrations. 

c ' I Fo(M/) P = ( X / ; txp{hxj+kyj+lzj)} 
j 

X [ ^ X exp{-2;r/(/zjc,+yly,+/z,)}]exp{-25[(sin0)/Af} 
i 

= [ I / /+ZI / i /y ' exp{2 ; r / [Wx,+x/ )+A:(y ;+y / )+Z(z ;+z / ) ]} ] 

Xexp{-25[(sin0)/Af} (11.35) 

If I F P is averaged over roughly equal intervals in (sin 6)IX, the second terms of Eq. 11.35 
for various h, k, and / cancel out, giving 

c^<\Fo{hkl)\'> = Y^<fj'>txp[-2B[{^ine)lXf} ^^^^^^^ 

This equation can be rewritten 

l o g . [ X < / / > / < l ^ o ( M / ) l ' > ] = log.(c^)+25[(sin0)/Af ^^^3^^^ 

In this equation the average of I Fo P is readily calculable for a series of ranges of (sin Q)IX, 
while X ifl) can be calculated from tables of atomic scattering factors for the central points 
of the ranges. By plotting the term on the left-hand side of the equation as a function of 
[(sin 0)lXf a straight line should be obtained, the zero intercept and slope of which give the 
scale factor c and the temperature factor 5, see Fig. 11.6. 

D. Procedure for structure analyses 
There are generally less than 100 independently observable diffractions for all layer lines In 
the X-ray diagram of a fibrous polymer. This clearly imposes limitations on the precision 
which can be achieved in polymer structure analysis, especially in comparison with the 
2,000 or more diffractions observable for ordinary single crystals. However, the molecular 
chains of the high polymer usually possess some symmetry of their own, and it is often pos-
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Fig. 11.6 Determination of scale and temperature factors. 

(O) Equal ranges of (sin 6)/X (•) Corresponding ranges 

sible to devise a structural model of the molecular chain to interpret the fiber period in 
terms of the chemical composition by comparison with similar or homologous substances 
of known structure. Structural information from methods other than X-ray diffraction (e.g. 
infrared and NMR spectroscopy) is also sometimes helpful in devising a structural model of 
the molecular chain. The majority of the structure analyses which have so far been per
formed are based on models derived in this way. This is, of course, a trial and error 
method. The most credible models are arranged in the unit cell, and two-dimensional struc
ture factors projected in the fiber direction (i.e. Fc(hkO) if the c axis is the fiber axis) are 
usually calculated first. The model giving the best agreement with the observed I Fo(hkO) I 
is then selected. In the preparation of this first model, and in fitting it into the unit cell, use 
is often made of the Patterson function, as will be described later. When this approximate 
analysis has been carried out, the analysis is naturally extended to the third dimension, and 
a more precise structure can be found by the usual Fourier-series method and refined by the 
least-squares procedure. 

E. Calculation of the structure factor 
For the structure factor (Section 11.2.3) we have in general, from Eq. 11.19. 

F(M/)p = A^+B\ a(hkl) = im~\B/A) 
n 

A = 2^fj COS 2 n( hxj+hyj +hz j) 
0 
n 

B=2^fjSm27C( hXj+hy j -\-hz j) 

(11.37) 

where the summations are carried out over all the atoms in the unit cell. This is simplified 
in practice as a result of the symmetry of the crystal, and structure factor formulae for the 
various space groups are given in International Tables for Crystallography, Vol. B.̂ ^̂  
When the arrangement of the model of the molecular chain in the unit cell has been de
duced, the coordinates (Xj, yj, Zj) of the various atoms are determined, and structure factors 
are calculated for the various combinations of h, k, and / and compared with the experimen
tal values. 
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The measure of agreement between the calculated I F(hkl) I and the observed value is 
expressed by the reliability index or factor, or discrepancy index, R, in Eq. 11.38. 

or by the weighted R index, R^. 

"XvKl^ l - IFcD^ '^ 
R^= 

X w l F o P 
(11.39) 

R or Rw approaches zero as the agreement between the observed structure factor Fo and the 
calculated value Fc improves. The results is usually accepted as reliable when the value is 
0.15 or less. 

The necessary values of the atomic scattering factors / may be obtained from the 
International Tables for Crystallography, Vol. C.̂ ^̂  Equation and coefficients for the atomic 
scattering factor calculation are also given in the International Tables for Crystallography, 
Vol. C.̂ '̂  

11.2.5 Fourier transforms and syntheses and Patterson functions 

A. Fourier transforms and syntheses 
We have already seen in Sections 2.2.3 and 5.2.1 how the Fourier transform theory can be 
very successfully applied to the phenomenon of X-ray diffraction. This section presents 
some additional basic information necessary for successful application of the theory to vari
ous kinds of crystal structures and their diffraction patterns. 

Equation 2.13 gives the amplitude of the diffracted wave for a continuous structure of 
infinite extension. When the scattering body is a crystal, A becomes F(hkl) (cf Eqs. 2.41 
and 4.3), which is not continuous, but takes finite, non-zero values only at the positions of 
the reciprocal lattice points expressed by the indices hkl. Eq. 2.14, the Fourier transform of 
Eq. 2.13, shows that a continuous structure is given by the continuous integral over all 
space of its reciprocal space amplitude. 

p(r) = j A(S)exp{-27ri(S -r)}dvs 

In the case of a crystal, from Eq. 2.38, 

Pcryst(x, j , z ) = j F(hkl)exp{-2m(hx+ky+lz)}dvs 

= -y^^F{hkl)Qxp{-27ri{hx+ky+lz)] 
V h k I 

= - X X Z ' ^(^^^)' exp{-2;r/(/ix+)ty+/z) + a(hkl)] (11.40) 

The reason for the change in form from an integral to a summation in Eq. 11.40 is that the 
ampHtude in reciprocal space for a crystal is not continuous over all space, but is concen
trated only at the positions of the reciprocal lattice points, its value elsewhere being zero, so 
that it is sufficient to pick out the amplitudes for the positions of the lattice points hkl and 
sum them. This equation shows that the electron density at an arbitrary point (x, y, z) in the 
unit cell of the crystal can be calculated simply by determining the F for all the diffractions 
hkl and carrying out the above summation. The structure can thus be determined from the 
electron density and the positions of the atoms. Eq. 11.37 shows, however, that the F^s are 
generally complex quantities, and the I Fo I obtained experimentally cannot, unfortunately. 
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be used directly for the calculation of Eq. 11.40. This equation is known as a Fourier se
ries; its evaluation as a Fourier synthesis, and the method of analysis as Fourier analysis. 
The usual procedure for the evaluation of Fourier series in crystal analyses is first, as de
scribed in the previous section, to identify by some means the most credible model, and 
then to calculate the Fc for this model. Form the phase angles aihkl) of these Fc for the ob
served Fo, the summation of the series is possible. The provisional models are initially 
based, as we have seen, upon various physical and chemical data. A powerful method of 
assessing their ultimate congruity has been developed with the use of the Patterson func
tion, which is described below. 

B. The Patterson function^^ ^'^ 
If the scattering intensity 7(5) in Eq. 5.10 is replaced by the diffraction intensity I F(hkl) P 
for a single crystal, then since 7(5)= F{hkl)F*{hkl)~ I FQikl) P this equation takes the fol
lowing form. 

G(M) = J7(5)exp{-2;r/(S-M)}dV5 =\\F{hkl)\^ Qx^{-2ni{hx+ky+lz)]dVs (11.41) 

Since the right-hand side of Eq. 11.41 is the Fourier transform of FF*, it is equal to the con
volution of the Fourier transforms p{r) and p(r) of F and F* 

Q{u) = \ p(r)p(r+u)dVr (1142) 

As in Eq. 11.40 we can replace the integral by a summation over the reciprocal lattice 
points in the case of a single crystal, and we then define the Patterson function P{u, v, w). 

Q{u) = P(u,v,w) = -Y,^^\F(hkl)\^Qxp{-2m(hu+kv+lw)} ... ... 
V h k I UA.H-j; 

Unlike the Fourier series, Eq. 11.43 does not contain quantities that cannot be measured 
(e.g. phase angle, a cf. Eq. 11.40), and is therefore very useful in that it allows an unam
biguous calculation using only the I F(hkl) P found from the diffraction intensities. 
Moreover, whereas x, y, and z in Eq. 11.40 are coordinates in the unit cell, P(u, v, w) is not 
the electron density at the point (w, v, w). On the contrary, from the very nature of such 
convolutions (as explained in connection with Eq. 5.9), it is the sum of the products of the 
electron densities at the two ends of a vector u(u, v, w) for parallel translations of this vec
tor to all positions in the crystal (see Fig. 11.7). Thus, if there is an interatomic vector in 
the crystal that coincides with the vector u(u, v, w), P(u) has a maximum. The value in
creases with the electron densities of the atoms at the two ends of u(u, v, w), and also with 
the number of interatomic vectors in the crystal that correspond to this vector. In setting up 
the model mentioned earlier and arranging it in the unit cell, the interatomic vectors for all 
the intramolecular and intermolecular pairs of atoms must coincide exactly with the maxi
ma of P(u, V, w). In this sense the use of the Patterson function is a most important means 
of determining structures by assessing structural models purely on the basis of the diffrac
tion pattern without other assumptions. The reader is referred to accounts of the various 
other methods in the literature.^ 

Methods devised for the determination of actual structures from P(u, v, w) include the Harker method, su
perposition methods, and minimum function methods. For descriptions of the former, the reader is referred 
to D. Harker, J. Chem. Phys., 4, 381 (1936), and for the latter two, to M.J. Buerger, Vector Space and its 
Application in Crystal Structure Investigation, Chapter 10, John Wiley & Sons, Inc. N.Y. (1959). 
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(a) 

1 I 

One period 

One period 

ibi) pix,y) (ba) P{u, v) 

Fig. 11.7 Significance of the Patterson function. ^ 

(a) In this one-dimensional example P(u)=j p(x)pix+u)(h:. Peaks appear in P(M) at M = + 

{X2 — x\) corresponding to the peaks at xi and X2 in p{x). 
(b) In this two-dimensional example each unit cell contains three point atoms (bi), from which 

are derived an interatomic vector assembly (ba) and the Patterson function 

P{u, V, w)=j^ j ^ p(x, y)p{x+u, y+v)dxdy. 

The Patterson symmetry,̂ '̂ ^ that is the space group of the Patterson function, P(u, v, w) 
is given in Table 11.4. 

C. Patterson function for fiber X-ray patterns 
In the analysis of X-ray diffraction patterns where the orientation of the crystallites in the 
specimen or the aggregation of chain molecules is expected to exhibit a statistical density 
distribution with cylindrical symmetry, it is often convenient to use a cylindrical Patterson 
function rather than the normal Patterson function. Cylindrical Patterson functions will be 
discussed in detail in Section 14.6. If the layer lines are clear in the diffraction diagram, i.e. 
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Table 11.4 Patterson symmetry 

Laue class 

Two dimensions 
2 
2mm 
4 
4mm 
6 
6mm 

Three dimensions 
1 
2/m 
mmm 
41m 
4/mmm 
3 

j 3ml 
1 31m 

6/m 
6/mmm 
m3 
m3m 

Lattice type 

P 
pc 
P 
P 
P 
P 

P 
PC 
PCIF 
P I 
P I 
P R 
P R 
P 
P 
P 
P IF 
P IF 

Patterson symmetry (with space-number) 

p2i2) 
p2mm (6) 
/74(10) 
pAmm (11) 
p6mm (17) 

P\{2) 
P2/m (10) 
Pmmm (47) 
P4/m (83) 
PAImmm (123) 
P3 (147) 
P3ml (164) 
P31m(162) 
P6/m(175) 
P6lmmm (191) 
Pm3 (200) 
Pm3m(221) 

c2mm (9) 

C2/m(12) 
Cmmm (65) Immm (71) Fmmm (69) 

/4/m (87) 
/4/mmm (139) 

/?3 (148) 
/?3m(166) 

/m3 (204) Fm3 (202) 
/m3m(229) Fm3m(225) 

Account is taken of the fact that Laue class 3m combines in two ways with the hexagonal translation lattice, 
namely 3ml as 31m. [Reproduced with permission from International Tables for Crystallography, Teo Hahn ed. 
p. 15,IUCr.(1985)] 

if periodicity exists in the direction of the fiber axis, Eq. 14.36 is used. If, on the other 
hand, the layer lines are completely unrecognizable, or if layer lines are observed but a dis
tinct fiber period cannot be found {cf. Table 11.1), then the more general equation Eq. 13.21 
is used. 
a) Patterson function of deoxyribonucleic acid (DNA), DNA fibers assume various 
structures (A type,̂ ^^ B type,̂ ^^ C type,̂ ^^ etc.), depending on the base added to neutralize 
their phosphoric acid groups or on the relative humidity. Fig. 11.8 shows cylindrical 
Patterson functions (cf. Eq. 13.35) computed by Franklin and Gosling^^^ for an A type Na-
DNA. Curve (i) in Fig. 11.8(a) shows the Patterson function for a helix of radius 9.0 A. 
There is a strong peak at c = 1/2 on the fiber axis, from which it was concluded that the 
phosphoric acid groups of two different chains are separated by about c/2, and a model con
sisting of two coaxial helices with a mutual displacement of c/2 in the axial direction was 
proposed. Curve (ii) in Fig. 11.8(a) is the Patterson function of the second strand of the he
lix. The principal peaks of the cylindrical Patterson function can be largely explained by 
these two curves. The well-resolved peaks situated at 5.7 A from(0, ^) are thought to cor
respond to the vector between the heavy atoms P-P in Na-DNA. The only diffraction ob
served near the meridian of the X-ray diagram belongs to the 11th layer line, and this can 
be interpreted as implying that each turn of the helix of radius 9 A contains 11 nucleotides. 
In this case the intrahelix P-P vectors should appear in the positions marked X in the dia
gram. The Patterson diagram is obviously capable of this interpretation. Fig. 11.7(b) 
shows the positions of the interhelix P-P vectors when one molecule, i.e. a double molecu
lar chain, is fitted into the unit cell (a = 22.0, b = 39.8, c = 28.1 A, /3 = 96.5°). The 
weights for the positions marked O are 1/11 those of the positions marked X in diagram 
(a). The various diffractions were eventually indexed, and the analysis continued by syn
thesis and interpretation of the normal three-dimensional Patterson function. 
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(ii) 

293 
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curve (ii) 

10 
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Fig. 11.8 Patterson function of crystalline Na-DNA.^^^ 
(a) Cylindrical Patterson function. The curves (i) and (ii) are the Patterson functions of the two he

lices. The symbol =t= denotes intrahelix P-P vectors. 
(b) The same function as (a). The symbols O and X denote interhelix P-P vectors. 
(c) Sections of the three-dimensional Patterson function. The left-hand side is at c = 0 and the right-

hand side at c = I . 
[Reproduced with permission from R.E. Franklin, R.G. Gosling, Nature, 111, 156, Macmillan (1963)] 

11.2.6 Determination of phases in Fourier syntheses 
The procedure followed in structure analyses based on X-ray diffraction is, generally speak
ing, as shown in Fig. 11.9. The continuous arrows in the diagram show what can always be 
found experiment or by calculation. Thus there are two possible routes from the experi
mental value or I F P to the desired electron density distribution. One of these, the determi
nation of the electron density from the Patterson function, is the so-called imageseeking 
method. This method presents considerable practical difficulties. The corresponding step 
in the other path is the determination of the phase of the structure factor. The defects atten
dant upon both of these methods are indicated by the broken lines, which represent them in 
the diagram. If it were indeed a simple matter to determine the phases and carry out the 
calculation of Eq. 11.43, structures could be estabUshed almost as readily and unambigu
ously as by examining an object under a microscope. Since this is far from the actual situa
tion, various experimental and analytical methods have been developed. 
a) Heavy atom method.^^^ The phase contribution due to heavy atom (e.g. CI, Br, I, Ag, 
or Hg, depending upon the molecular weight), which is originally included in the molecule 
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Fig. 11.9 Main steps in the crystal structure analysis. 

or introduced by chemical reaction or other method to the molecule at some point, is deter
mined first. The phases for the entire molecule are then represented by the phases calculat
ed in this way. 
b) Isomorphous replacement method,"^^"^^^ If the crystal of unknown molecular structure 
is isomorphous to the crystal of a known molecular structure, and if the unknown molecule 
is supposed to have a structure similar to that of the known molecule except for a small 
part, phases calculated from the crystal of known molecular structure except the small part 
in question may be used to approximate the corresponding phases of the crystal of unknown 
structure to solve the structure. This isomorphous replacement method is often used to 
solve the structure of macromolecules in combination with the heavy atom method. 
(Section 12.4.1). 
c) Direct method."^^"^^^ In this method the phases of various structure factors are found, 
without the use of semi-empirical procedures, by treating the intensities or phases of the 
structure factors as statistical groups and finding the phases from the probabilities of these 
quantitative relationships or phases. Very many analyses, including those of complicated 
substances, have been successfully carried out by such methods. They are described in de
tail in specialized textbooks^^^ and will not be discussed here. 

At present, the structures of organic and organometallic crystals of low molecular 
weight or even inorganic crystals are mostly solved by the direct method immediately after 
intensity data collection. Many convenient program systems have developed and are com
mercially available. These can be loaded on a computer attached to a single crystal diffrac-
tometer. 

11.2.7 Refinement of the structure 
In the case of organic and organometallic crystals of small molecules, the structure solved 
is usually refined by the least-squares procedure: the quantity minimized being 
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Zw(l Fo I ~ I Fc 1)̂ , where w is the weight obtained from the counting statistics of diffraction 
intensities. The structure is first refined for non-hydrogen atoms with isotropic temperature 
factors, followed by the determination of the location of hydrogen atoms by difference 
Fourier synthesis and further refinement with anisotropic thermal parameters for non-hy
drogen atoms and isotropic temperature factors for hydrogen atoms. 

However, in the case of crystalline high polymers the number of intensity data is much 
less than that obtained from a single crystal. For instance, for Cu Ka radiation (A = 1.5418 
A), a single crystal of poly(ethylene terephthalate) theoretically could give 588 independent 
diffractions within 26 =? 100° (average spacing of 1 A), while only 140 diffractions occur in 
the observable region for the crystalline fiber (the lowest spacing 1.1 A). This lack of re
solving power in the diffraction data has limited or precluded the use of powerful methods 
such as Fourier synthesis of electron density or least-squares refinement of atomic parame
ters since in the former, atomic positions would not be located, and in the latter the calculat
ed diffraction amplitudes are insufficiently sensitive to changes in individual atomic coordi
nates even where there is a sufficient excess of data on parameters for the method to be un
dertaken. Consequently the usual method of structure refinement in such cases has been to 
incorporate knowledge of chemical sequence, bond lengths and bond angles in molecular 
models and then, by systematic trial and error, to adjust their conformations and crystal po
sitions to obtain a good agreement between the structure factor observed, I Fo I, and that cal
culated, I Fc I, from the model system."̂ ^̂  

11.2.8 Crystal structure analysis of polyethylene 

The fiber period c in the direction of the fiber axis is found with the aid of Eq. 8.1 from the 
spacing z\ of the layer lines in the well oriented X-ray diagram given as Fig. 11.10(a). The 
value of c is also accurately determined from the 00/ diffractions in rotation or Weissenberg 
photographs (Fig. 11.10(b)) for an axis normal to the fiber axis. The best value for c is 
2.534 A. 

Fig. 11.10 X-ray diffraction patterns of oriented polyethylene. 
(a) Cu Ka X-rays normal to vertical fiber axis. 
(b) Equatorial Weissenberg photograph for axis normal to fiber axis. 

The arrows indicate the 002 diffractions. The photograph yields an accurate measure of the 
fiber period and includes diffractions not observed in the fiber-axis rotation photograph. 
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Fig 11.10 —Continued 
(ci) Fiber diagram obtained by using flat IP. 
(C2) (^^-Transformed diagram of (ci). 
(C3) (C2) After Lp correction. 
(ci), (C2), (cs) : [Reproduced with permission from K. Tashiro, 
MAC Science, 7, 32-43, MAC Science (1994)] 
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Since the unoriented X-ray diagram is similar to that of saturated hydrocarbons^^^ and 
the crystal structure were also expected to be similar, Bunn determined the unit cell dimen
sions after indexing the equatorial and layer-line diffractions by trial and error based on the 
values for saturated hydrocarbons. The best values were a = 7.40 A and b = 4.93 A, with 
a = P = Y = 90°. The results of the indexing are shown in Table 11.5,̂ ^^ which also gives a 
comparison between the measured interplanar spacing d and the values calculated from the 
lattice constants obtained. 

Table 11.5 Polyethylene diffraction data used in early analyses^' 

Interplanar spacing [A] 

Experimental 

4.106 
3.696 
2.964 
2.467 
2.346 
2.252 
2.202 
2.162 
2.088 
2.063 
1.925 
1.849 
1.720 
1.665 
1.598 
1.499 
1.434 
1.381 
1.294 
1.267 
1.237 
1.210 
1.123 
1.098 

Calc. 

4.102 
3.696 
2.956 
2.467 
2.340 
2.254 
2.203 
2.156 
2.089 
2.050 
1.924 
1.848 
1.720 
1.663 
1.596 
1.502 
1.435 
1.379 
1.292 
1.267 
1.236 
1.210 
1.127 
1.098 

hkO diffractions^" 

Indices 

110 
200 
210 
020 
120 

310 

220 

400 
320, 410 

130 
230 
510 
330 

520 
040, 600 

530 

Obs. 
intensity 

4400 
1160 

35 
100 
(10) 

100 

70 

(5) 
(5) 

(2) 
(1) 
(0) 
(0) 

(0) 
(0) 

Calc. 
intensity 

4400 
1165 

48 
226 

18 

248 

175 

41 
56 

28 
20 

9 
9 

28 
1 

Indices 

Oil 

111 
201 

211 

121 
311 
221 

Other diffractions 

Obs. 
intensity 

105 

75 
140 

70 

20 
10 

(3) 

321,411 (3) 
031 
231 
002 
511 
112 
022 
312 

(2) 
(2) 
(3) 
(2) 
(5) 

« 1 ) 
(1) 

2̂ 

Calc. 
intensity 

73 

48 
94 

60 

161 
134 
35 

56 
67 
89 
36 

103 
108 
34 
61 

'̂ Ref. 50 ^̂  The intensity values in parentheses were estimated visually, while the other values were mea
sured with a photometer. The table lists only the diffractions for which measurements were made. 
[Reproduced from C.W. Bunn, Trans. Faraday, Soc, 35, 482, The Faraday Soc. (1939)] 

Table 11.6 shows the indices of the observed diffractions in a form which readily en
ables the systematic extinctions to be identified. Reference to Table 11.5 indicates that the 
corresponding symmetry elements (lattice type, glide planes, and screw axes) are consistent 
with either Pnam or Pnali space groups. 

From Eq. 8.2 the number of repeat units -CH2- in the unit cell is 

7.40X4.93X2.534X0.96 _ ^ ^ ^ _ , 
A 3.0Z = 4 

14X1.66 

With Z = 4, the crystal density found from Eq. 8.3 is Dx — 1.01 g cm~^(Mg m~^) which is 
about 5-10% greater than the experimental values of 0.92-0.96 g cm~^ 
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Table 11.6 Extinction rules space group for polyethylene 

Diffractions 
Occurrence characteristics 
(extinction rules) 

Corresponding symmetry 
element (c/. Table 11.3) 

Space 
group 

hkl All present 

0^/ k + l = 2n present 

hOl h = 2n present 

hkO All present 

hOO (h = 2n, but this is included 
in the more general extinction 
rule for hOl) 

0^0 (k = 2n, but this is included 
in the more general extinction 
rale for Okl) 

00/ {l = 2nl Only 002 present. 
This is included in the more 
general extinction rale for 
{m) 

Lattice type 

Glide plane 

Glide plane 

Mirror plane present 

or no symmetry element 

\ 
\ 
"^ 

^ 

p 

n{l- a axis) 

a{l- b axis) 

m or 1 
(-L c axis) 

•—• 

Pnam 

Pna2x 

i l 

Indices of the observed diffractions (marked with black 
circles)(c/ Table 11.5) 

The more highly symmetrical of the two possible space groups, Pnam, is listed in 
International Tables for Crystallography, Vol. A, as No. 62 D\i-Pnma (cf. Fig. 3.11 and 
Table 3.4); we must therefore think of the b and c axes in the present example as being in
terchanged. Application of the symmetry operations for this space group gives eight gener
al equivalent points. The fact that the unit cell was found only to contain four-CHz-units 
implies that the carbon atoms must be located at the special points c in Table 3.4. 

Pnma standard, 
as appearing in 

V International Tables ^ 

Pnam (present example) 

X, 

_ , 1 3 

3 

z\ 

z+t; 

_ 1 
Z+2-

b and c axes 

interchanged 

X, 

J__ 

2 ~ 

X, 

1 

J ' 

1 

y^ 

1 
2+-^, ^+y. 

2. 
4 ' 

2. 
4 ' 

2 
4 • 

(11.44) 

Since the z coordinates are fixed at 4 and 4, the positions of the carbon atoms can be found 
by determining the values of the coordinates x and y. The length of the c axis (the fiber pe
riod), 2.534 A, is roughly equal to the calculated value of 2.52 A for the distance between 
alternate carbons in the same molecular chain. Thus, since Z = 4, two molecular chains 
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.^^. 

Fig. 11.11 R (see Eq, 11.41) for /iM) diffractions vs. JJ. (angle between the b axis and the plane containing 
the zigzag molecular chains). 

*-H 4̂̂ " I I 
Fig. 11.12 Crystal structure of polyethylene (left) and that with symmetry elements (right). 

pass through the unit cell in the c direction, with two -CH2- units of each chain in the unit 
cell. The coordinates of the carbon atoms of one molecular chain are therefore (x, y, 4) and 
(x, J, 4) and the remaining two sets of coordinates are assigned to the carbon atoms of the 
other chain. The chains possess a natural zigzag conformation, and so possess 2i symme
try. The positions of the atoms in the unit cell, and hence the crystal structure, can there
fore be found by determining, for instance, the angle jii between the b axis and the plane in 
which the chains zigzag. Fig. 11.11 shows how the value of R(cf. Eq. 11.38) for the hkO 
diffractions varies with JLI. The value of ^ ~ 40°, corresponding to the minimum of R, is 
close to that for the now accepted structure, and it is found by trial and error that the frac
tional coordinates of the carbon atoms are x = 0.038 and y = 0.065. The accepted crystal 
structure of polyethylene is given in Fig. 11.12. Calculation of the structure factors natural-
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Fig. 11.13 Electron density projection of a molecular chain of polyethylene along the c axis (c axis down).^" 
[Reproduced with permission from N. Kasai, M. Kakudo, Repts. Progress Polym. Phys. Jpn., 11, 145, 
Assoc. Sci. Documents Information (1968)] 

Fig. 11.14 Electron density projection in the plane of a zigzag molecular chain of polyethylene.^ 
[Reproduced from C.W. Bunn, Trans. Faraday. Soc. 35,482, Faraday. Soc. (1939)] 
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(c) 90°C 

Fig. 11.15 Bounded projection, B {x,y; 0^-2) of a molecular chain of polyethylene along the c axis (projection 
of a -CH2- unit) (c axis down).^'^ 
[Reproduced with permission from N. Kasai, M. Kakudo, Repts. Progress Polym. Phys. Jpn., 11, 
146, Assoc. Sci. Documents Information (1968)] 

ly also gives the phases. By equating the phases of the FoQikO) with those of the corre
sponding Fc(hkO)y we obtain the electron density projections p(x, y) shown in Fig. 11.13,̂ ^^ 
and by extension to three-dimensional data it is possible to obtain electron density distribu
tions for a section containing a zigzag carbon chain (Fig. 11.14)̂ °^ and for a section contain
ing a-CH2-unit (Fig. 11.15). 

Kasai and Kakudo^^^ obtained a greater number of accurate diffraction data than Bunn 
by employing Mo Ka radiation in conjunction with diffractometer measurements using a 
G.E. Single Crystal Orienter, and were able to refine the structure by the least-squares pro
cedure. Diffraction intensity measurements were also carried out at — 100°C and at 90°C. 
The electron density projections shown in Fig. 11.13 and the bounded projections from 
z = 0 to z = 2, B(x, y; 0—^^)^ given in Fig. 11.15, were obtained from the results of these 

Projection of the electron density from z = 0 to z == | in the unit cell on the (001) plane; in the case of 
polyethylene the electron density distribution for one CH2 group is projected. 
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measurements. The effect of thermal vibrations was observed in the rounding of the elec
tron density distribution with rising temperature; the angle ju between the plane of the 
zigzag chain and the b axis simultaneously underwent a corresponding increase, and the 
plane showed a slight but definite swing towards the a axis. This is thought to be a factor 
of major significance in the anisotropic coefficient of thermal expansion of polyethylene; 
the coefficient in the a direction is an order of magnitude greater than that in the b direction. 

An X-ray diffraction method for the simultaneous determination of crystallinity, tem
perature factors, and atomic positions has been developed by Kavesh and Schultz,̂ ^^ and 
they applied it to polyethylene. They assumed the space group Pna2\, the, lower of the two 
possible space groups (Table 11.16). In the structure determination, deviations between 
calculated and observed intensities of six hkO and three hk\ diffractions were minimized: the 
volume fraction of crystalline region, the atomic coordinates of carbon and hydrogen, and 
constants characteristic of radial and axial disorder were taken as parameters in the mini
mization process. In the study, errors in the theoretical atomic scattering factors were com
pensated by scaling the calculations to measurements on an extended chain polyethylene 
sample (Marlex 50: Mn = 8300, MJMn = 18; crystallized at 215°C, 5,000 atmospheric pres
sure; Xcv = 1). 

11.3 Analyses Using Biaxially or Doubly Oriented Diffraction Patterns 
We have previously had cause to note (cf. Section 10.1) that biaxially oriented and doubly 
oriented specimens yield diffraction patterns which are similar to those of single crystals 
and of twins respectively, and the analyses can therefore, at least in principle, be carried out 
in similar ways.̂ ^^ Fig. 11.16 gives the scheme of procedure for single crystal structure 
analysis. 

Biaxially and doubly oriented diffraction patterns, however, although they have better 
resolution between individual elements of the diffraction pattern, do not always give suit
able diffraction diagrams for analysis. Indeed, these specimens are generally neither very 
significantly more crystalline nor more highly oriented than uniaxially oriented specimens. 
This means that their usefulness is limited to indexing, determination of the unit cell para
meters and the space group, and measurement of the intensities of diffractions that overlap 
in uniaxially oriented diagrams, i.e. where the higher resolution is helpful. 
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Substance under investigation 
T 

Necessary chemical mo
dification {e. g. intro
duction of heavy atoms) 

Preparation of single crystals 

Measurement 
of density 

Chemical, 
|~| physical, and 

crystallo-
graphic 
information 

Morphological observation 
{e. g. under polarizing microscope) 

Using diffractometer 
(cf. Fig. 12. (b)) 

Making diffraction photographs 
Oscillation (or Rotation), 
Weissemberg and Precession. 

X 
Determination of unit cell 

Determination 
of number of 
formula units 
per unit cell 

Indexing diffraction 

Determination of space group 

T 
Measurement and correction of diffraction intensities 

Trial and 
error 
method 

Direct 
method 

Pattaerson function 

Heavy atom 
method 

X 

Isomorphous re
placement method 

I 

Determination of phases of diffractions 

I 
Fourier and/or difference Fourier syntheses 

I 
Establishment of Structure model 

Anisotropic thermal parameterrs. 
Location of hydrogen atoms ; 
Absolute configuration (Bijvoet pair 
examination and/or Hamilton test) 

Least-squares refinement 

I 
FINAL 
STRUCTURE 

Image-seeldng 
method 

Interatomic distances, 
bond angles, torsion 
angles, planarity, 
dihedral angles etc. 

Fig. 11.16 Flow chart of the procedure for single crystal structure analysis. 
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11.4 Analyses Using Diffraction Patterns from Helical Structures 

11.4.1 Diffraction of X-rays by a continuous helix 
Very many natural and synthetic linear polymers have helical backbones. Though the 
atoms making up such helical chains should occupy general positions according to the 
space group, the spiral arrangement makes it possible to express the structure factors of 
molecular chains in a simple form. If the electron density along the continuous helix in Fig. 
11.17(a) is uniformly equal to unity, the scattering factor FM(X*, J* , Z*) of the helix is given 
simply by the Fourier transform of the shape function H{x, y, z) {cf. (J(r) in Eq. 5.12) of the 
continuous helix: 

^M(^*,y*,z*) = JjJH(x,y,z)exp{2;r/(xx*,>'y*,zz*)}dx:djdz (11.45) 

The fundamental parameters of the helix are the radius r and pitch P. Changing to cylindri
cal coordinates (Fig. 11.18)^ 

ix = rcos27t(z/ P) 
ry = rsin27r(z/P) 

(x'^=Rcos0 
\y'^=Rsm0 (11.46) 

and using delta function̂ "̂ ^ 6{x — r cos 2K{ZIP)) ( J — r sin 2n{zlP)) having finite, non-zero 
values only on the helix as the shape function, we obtain, instead of Eq. 11.45, 

FM (/?, ^ , Z) = £ 5{Z-{n I P))Jn ilKRr) exp {/ [n{0^K 12) (11.47) 

where 7„ is the nth order Bessel function.^^^ This equasion has the value F^ — 
Jn(27rRr)exp{i[n(0 + 7r/2)]] only on the reciprocal space planes Z = n/P. This means that 
with the incident X-rays normal to the axis of the helix, the diffractions obtained will be in 

(a) (b) 

Fig. 11.17 Continuous right-handed helix and its representation in cylindrical coordinates, 
(a) Physical space; (b) Reciprocal space. 

R is equivalent to ^ and Z is equivalent to f in previous sections. 
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the form of layer lines, where n is the order number of the layer line. Calculation of I Fu 1̂  
from Eq. 11.47 gives a quantity that is proportional to the diffraction intensity. This is 
shown in Fig. 11.18(a), and the characteristics of the diffraction due to a continuous helix 
are shown in Fig. 11.18(b).̂ ^^ 

Layer line (the figures are 
the order numbers) 

/ = 3 

-^ 
\ "T 

^ 

s 

\ 

• • / 
/ / 

/ / 
/ / / 

f 
t 

\IP\ 

-i 1 ^ 
/ 

/ 
/ 

/ / 
/ / 

> t 1 L t 1 J 

\ 
\ \ \ 

\ 
\ \ \ 

\ \ 
L . 1 _ J — 1 1 1—1 

(a) (b) 

6 5 4 3 2 1 0 1 2 3 4 5 6 

Order of Bessel function 

Fig. 11.18 Characteristics of the diffraction pattern from a continuous helical structure. 
(a) Bassel function distribution for « = 1 (The intensities of various layer lines are influenced by 7„) 
(b) The angle a is roughly equal to the pitch angle of the continuous helix*^̂ ': [Reproduced with permis
sion from H. R. Wilson, Diffraction ofX-Ray by Protein, Nucleic Acids and Viruses, p. 42, E. Arnold Pub. 
(1966)] 

11.4.2 Diffraction of X-rays by a discontinuous helix 

Consider a succession of points arranged with a constant interval /? on a helix of pitch P. 
Each point can be represented as the intersection of the shape function H of the helix with a 
plane z — kp (where k is an integer), see Fig. 11.19. This can be written with the aid of a 
delta function as K(x, y, z) = Î  S(z — kp), and the Fourier transform FM is the transform of 
H(x, y, z) • K(x, y, z). From the convolution theorem Eq. 5.7, we obtain 

FM (/?, ̂ , Z) = - X X ^(Z-(m/p)-(n/P))Jn (InRr) exp {i[n{0+n 12)]} 
P m n 

Thus the structure factor for a discontinuous helix has finite values only when 

(11.48) 

Z = n/P + mlp (11.49) 

where n and m are integers (including zero), and FM is given by summation over all values 
of n that satisfy this condition. 
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Layer line (the figures are 
the order numbers) 

Fig. 11.19 Discontinuous helix formed by the 
intersections between a continuous 
helix, H{x,y,z) and a group of paral
lel planes z — kp (k: integer). 

n ^ 

\ / 

/ \ \ / \ 

/̂  m = +1 / 

1/AX' 

/ \ . 
Xm = 0 \ / ( 

\ / 

/ \ 
J ^ m = - 1 \ 

t \ « 1 _ -
« 1 1—J 1 |__J 1 L - 1 ... 1 1 1 

\\IP 

6 5 4 3 2 1 0 1 2 3 4 5 6 

Order of Bessel function 

Fig. 11.20 Characteristics of the diffraction pattern 
from a discontinuous 5/1 helical structure.^^' 
[Reproduced with permission from H.R. 
Wilson, Diffraction of X-Ray by Protein, 
Nucleic Acids and Viruses, p. 42, E. Arnold 
Pub. (1966)] 

A. When P/p is a whole number 
For M points on N turns of a helix, the period in the z direction is 

NP = Mp = c 

Eq. 11.48 then becomes 

FM (/?,^, Z)= - y /„(27iRr)Qxp{i[n(0+K 12)]) 
Pn 

and the condition for Eq. 11.49 becomes 

l = nN + mM 

in which the layer line number / is related to the period c (Fig. 11.20)" 

(11.50) 

(11.51) 

(11.52) 
56) 

B. When Pip is not a whole number 
There is no period of the type described above, and the number of layer lines in the diffrac
tion pattern becomes very large. However, the analysis can be carried out with aid of an 
approximate period found by taking layer lines relatively close in integral ratios, see Fig. 
11.21''^ 

C. Extension to real helical structures 
If atoms of different kinds are arranged within the interval p along the z direction of the 
above discontinuous helix, so that there is an atom 7 having a scattering factor Jj at the point 
(ry, (pj, Zj), the structure factor of one helical molecule is as follows. 
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Layer line (the figures are 
the order numbers) 

6 5 4 3 2 1 0 1 2 3 4 5 6 

Order of Bessel function 

(a) 

Fig. 11.21 

Layer line (the figures are 
the order numbers) 

-12 A 7 ^ 1 / . A "-- 1 2 : 

- 1 5 : 

- 1 8 : 

- 2 1 -

\.,tv y / t 

•«W ~!n< m = — 2Z 

m = - 3 " 

(b) 

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 

Order of Bessel function 

Characteristics of the diffraction pattern from discontinuous helical structures with non-integral P/p.^^^ 
(a) 16/3 heUx. (b) 7/3 hehx. 
The black spots in the left-hand half of the diagrams correspond to the maxima of the Bessel functions. 
[Reproduced with permission from H. R. Wilson, Diffraction ofX-Ray by Protein, Nucleic Acids and 
Viruses, pp.42.43, E. Arnold Pub. (1966)] 

Fu (R, F, l/c) =-yyfj {2KRC rj) exp {/[n(F-(p+(7r/2))+ 2KI{ZJIC) } ] 
P J n 

(11.53) 

When r such helical molecules are arranged parallel to one another to form a unit cell, 
the structure factor is obtained by summation over the r molecules using the coordinates 
{xr, yr, Zr) of Standard points of the various helical molecules in the unit cell and the direc
tion angles cpr about the axis of the spiral. 

FQikl) =Y^FM (R, O, Z ) exp {27t(hxr+kyr+lzr)} exp(-/[n(p, ]) (11.54) 

11.4.3 Interpretation of the diffraction pattern and structure analysis of heli
cal polymers^ 

A. Indications of the presence of a helical structure 
The presence of the following features in the X-ray diffraction pattern is a fairly reliable in
dication that the molecular chains have a helical structure. 

1) The average intensities of the layer lines show a periodic variation from lower to 
higher order numbers. 

2) There are diffraction sports near the meridian that are sufficiently intense to give a 
high average intensity, and the pattern has the characteristic X shape shown in Figs. 11.18, 
11.20 and 11.21. 

^ This is not to be confused with the spiral orientation discussed in Chapter 10. 
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B. Determinations of the parameters of the helix 
1) Taking each of the layer hnes in turn as the first layer line, the identity period is de

termined {cf. Section 8.7). 
The fiber period c is then found as the least common multiple of the identity periods 

obtained from the various layer lines, and this is used to find the order number / of the layer 
line. 

2) If a model of the molecular structure has already been derived, the orders n of the 
Bessel functions contributing to the various layer lines are found from Eq. 11.52 {cf. Table 
11.7 on p. 330). The geometrical characteristics of the helix are then verified by plotting 
the values of n found in this way against the order number / of the layer line (the n-l plot) 
{cf. Fig. 11.27 in the following Section 11.4.4). 

3) For a simple helix, the pitch P is obtained as the reciprocal of the layer line spacing 
of the first layer line, and the interval p of the fundamental units making up the helix in the 
z direction is similarly found from the meridional diffraction nearest the equator. Then if, 
for example, the Bessel function making the principal contribution to the fourth layer line is 
74, the radius r of the helix can be found from the position /̂ max of the intensity maximum 
on the fourth layer line and the position x = 5.3 of the first maximum of J4{x) by means of 
the relationship InrRm^^ = 5.3. 

4) If the helix is complex, with (say) two or three turns per period, the pitch P cannot 
be found simply from the layer hne spacing. However, for a helix with, for example, one 
period per three turns, Â  in Eq. 11.50 is 3, and c = 3P. The first, second, fourth, fifth,...lay
er hnes thus correspond to high order Bessel functions of low intensity, whereas the third, 

Fig. 11.22 Specially prepared diagram for determining the parameters Z'(n) vs. Pip of Eq. 11.55.^^' 
Since m in independent of the layer line intensity {cf. Eq. 11.51), only n values (for n<9) are shown. 
The positions of the various layer lines are recorded according to the Z ' values, together with their 
average intensities, on a uniformly extensible tape. This tape is stretched out parallel to the ordinate 
at various Pip positions to obtain the best possible agreement between its Z ' and the corresponding 
Z' values in the diagram, and the Pip for this point is then read off. Intense layer lines must naturally 
correspond to small n. [Reproduced with permission from Y. Mitsui, Acta. Cryst. 20, 694, lUCr. (1966)] 
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sixth, etc. layer lines correspond to low-order Bessel functions, with the result that intense 
diffractions appear close to the meridian. The pitch P can therefore be found from the spac
ing of the layer lines of the latter type, and the number of turns N of the helix is obtained 
from P and the period c, 

5) It is clear from Eq. 11.50 that when Pip is not an integer, Â , M, and c are naturally 
large, and if Pip is slightly changed, Â , M, and c undergo a large change. In such cases, 
therefore, it is preferable to find the parameters of the helix in terms of P and p instead of 
Â , A/, and c. From Eq. 11.49 we obtain 

T = ZP-=n^-m {Pip) 

Z" — Zp — n ipIP) + m 

(11.55) 

(11.56) 

The relative values of the Z' or Z" coordinate of the various layer lines can thus be ex
pressed by a first order equation in Pip or pi P. The parameters are determined with the aid 
of prepared diagrams as shown in Fig. 11.22 and 11.23^^^ which give explicitly the relation
ships expressed in Eqs. 11.55 and 11.56. We first find Pip (or pIP), and then look for is 
smallest integral multiple M(the number of units per period). Â  is then found from Eq. 
11.50, and the order number / of the layer line is obtained from Eq. 11.52. When the order 
numbers of the layer lines have been correctly found in this way, it is possible to calculate 
the fiber period c. 

P/p ^ 
5 6 7 8 9 10 12 14 16 18 

2.5 2.6 2.7 2.8 2.9 3.0 3.2 3.4 3.6 3.8 4.0 4,5 1 0 
_ 

Fig. 11.23 Specially prepared diagram for determining the parameters Z7(n) vs. pIP of Eq. 11.56.^^' 
Used in the same way as Fig. 11.22 this diagram is more convenient for meridional diffractions. 
[Reproduced with permission from Y. Mitsui, Acta. Cryst. 20, 694, lUCr. (1966)] 
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C. Analysis of helical structures 
Structure factors are calculated from Eqs. 11.33 and 11.34 for definite positions of the vari
ous atoms in the helical model found. Comparison between calculated and observed values 
enables refinement of the model by the trial and error method, the Fourier method, or, pre
cisely, by the least-squares procedure. Since this stage is identical with the corresponding 
stage of the general crystal analysis of polymers, which has already been described in some 
detail, it will not be discussed again here. 

The methods described by Shimanouchi and Mizushima,^^^ Miyazawa,^^^ and Nagai and 
Kobayashî ^^ may be used to calculate the coordinates of the atoms in the helix. Another 
method of gaining an understanding of the structure is to examine the model in the form of 
a two-dimensional diagram, using the radial and helical projections^'^ of the helix. 
a) Radial projection. Consider a helix of uniform radius drawn on the surface of a cylin
der. If this cylindrical surface is cut and spread out flat, inside uppermost, we obtain a two-
dimensional picture of the helix (c/ Fig. 11.31). If the whole of the helical molecule does 
not lie on helices having the same radius, it may be projected on a suitable cylinder as 
shown in Fig. 11.24.̂ ^^ This is the radial projection of the helix. Klug, Crick, and 
Wyckoff̂ ^̂  have shown that the Fourier transform of the lattice obtained in this way is the 
n-l plot. The relationship between the radial projection of the helix and the n-l plot is also 
useful for estimating, from the diffraction diagram, the magnitude of the modified Bessel 
term corresponding to a small modification of the model of the helical molecule during the 
analysis. 

Fig. 11.24 Radial projection of a helix. '̂̂  [Reproduced with permission from K.C. Holmes, D.M. Blow, The Use ofX-
Ray Diffraction in the Study of Protein and Nucleic Acid Structures, p. 221, John Wiley & Sons, Inc. (1966)] 

b) Helical projection. A point A (n, cpu Zi) on a hehx of radius r\ and pitch P is projected 
along the helix in a plane normal to the helix, i.e. in a horizontal plane, to give the projec
tion A\, and a point B (r2, (p2, Zi) on a helix of radius r2 and pitch P is projected in the same 
way to obtain the projection B\. Application of this procedure to the entire helical molecule 
gives the horizontal helical projection shown in Fig. 11.25.^'^ The azimuthal coordinate of 
the point B in the projection is (p^ = (p2~ IKZTJP- The azimuthal coordinate of atom A in 
Fig. 11.25 is taken as (p^ = 0, i.e. (pi = 2KZ\IP. 

The projection in a plane parallel to the helix, i.e. in a vertical plane, is the vertical heli
cal projection. The point A is projected to Ai and A2, which are separated by a distance 
equal to the pitch P, and B is projected to Bi and B2 (see again Fig. 11.25). Ai and A2 are 
used to define the repeat distance of the projection, and the coordinate z' of B2 measured 
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Fig. 11.25 Helical projection.^'^ [Reproduced with permission from K.C. Holmes, D.M. Blow, The Use ofX-Ray 
Diffraction in the Study of Protein and Nucleic Acid Structures, p. 223, John Wiley & Sons, Inc. (1966)] 

from A2 is given by z^ = Z2~ Pcpil^n. Vertical helical projections are used where the pitch 
is small. In general, however, the horizontal helical projection is used. Helical projections 
are useful for finding the order of the Bessel function on layer line /. Thus if the projections 
of various points for pitch p = ncll exhibits n-fold symmetry, the 7n term will be strong. 

11.4.4 Determination of helical structures 
A. Poly(oxymethylene) (POM) (-CH2-0-)n 
The initial crystal structure analysis of POM was carried out using a c-axis rotation photo-
graph^^^ as shown in Fig. 11.26(a), and a more accurate analysis was then carried out on the 
basis diffraction data, Fig. 11.26(b) and (c), for highly oriented specimens obtained by 
polymerization of tetraoxane in the soUd phase.̂ "̂ ^ POM crystal belong to the trigonal sys
tem; the unit cell dimensions, expressed for a hexagonal lattice, are a = 4.46 A and c = 
17.35 A, and the extinction rules indicate a C^ or C^ space group. The unit cell contains 
one molecular chain, and there are nine repeat units per fiber period (17.35 A). 

The average intensities of the layer lines (Table 11.7) are consistent with either a 9/4 or 
a 9/5 helix. Eq. 11.52 gives 

l = 5n + 9m (9/5 model) 

l = 4n-\-9m (9/4 model) 

(11.57) 

(11.58) 
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'/ ^ \ \ 

(u) 

1 • ( ' - » \ > 1 

Fig, 11.26 X-ray diffraction patterns from POM. 
(a) Fiber photograph of a uniaxially oriented Delrin specimen.^^' 
(b) c-Axis rotation photograph of the product of radiatin-induced polymerization of tetraoxane in 

the solid phase. ' 
(c) Equatorial Weissenberg photograph (the same sample (b), c axis oscillation).^'*^ 
[Reproduced with permission from T. Uchida, H. Tadokoro, J. Polym. Sci., 63, John Wiley & Sons, 
Inc. (1967)] 

It is not possible in this case to decide which model is correct merely from the orders of the 
Bessel functions corresponding to the various layer lines (Table 11.7). However, whereas 
the Bessel functions corresponding to the fourth and fifth layer lines are both first order 
(though of opposite signs), the average intensities of these two layer lines are very different 
(see again Table 11.7). The molecular symmetry is such that two-fold axes normal to the 
molecular axis pass through the C and the O atoms. If the radii of the C and O helices are 

Table 11.7 Average intensities of the layer hues and orders of the Bessel functions for POM 

Order 
number 
Lof 
layer line 

0 
1 
2 

1 3 
1 4 

5 
6 
7 
8 
9 

18 

Average intensity 
of layer line 

Very strong 
(Not observed) 
(Not observed) 
Weak 
Weak 
Strong 
(Not observed) 
(Not observed) 
Medium 
Medium 

Medium 

Order n 
of Bessel 
function 

0 
2 
4 

- 3 
- 1 

1 
3 

- 4 
- 2 

q 

6 

9/5 helix 

Phase relation of 
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— 
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Order n 
of Bessel 
function 

0 
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9/4 helix 

Phase relation of 
C and 0 contribution 
to structure factor^ 

+ 
— 
+ 
— 
+ 
— 
+ 
— 
+ 
7 

+ 
^ + indicates that the C and O contributions have the same phase, and so reinforce each other, while — indicates 
that the contributions have opposite phases, and so tend to cancel each other out. See text. 
[Reproduced with permission from T. Uchida, H. Tadokoro, J. Polym. Sci., 63, John Wiley & Sons, Inc. (1967)] 
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taken to be equal, the structure factors of the fourth and fifth layer lines, considering only 
the first term of Eq. 11.58, are given by: 

(for a 9/5 helix) 

FM(/?, 0, 4/c) = / exp( -i(p){-fcJ-i {IKRVO)+foJ-x (2nRro)} (4th layer line) 

FM{R, 0, 5/c)= i exp(/(p){/c Ji(27tRrc)-\-foJi (InRro)} (5th layer line) 

(for a 9/4 heUx) 

FM{R, 0, 4/c)= / exp(/(p){/c /i (2;r/?rc)+/o Ji {InRvo)} (4th layer line) 

Fu{R, 0, 5/c) = /exp(~ i(p){—fcJ-i (InRrc)+/o7-1 {InRro)} (5thlayerhne) 

It follows, therefore, that the structure factors for the 9/5 helix involve the sum of the C and 
O contributions for the fifth layer line and the difference for the fourth, whereas the condi
tions are reversed in the case of a 9/4 helix. Examination of the other layer lines confirms 
that the 9/5 helix model is the more appropriate, as shown in Table 11.7. 

Figure 11.27̂ "̂ ^ shows the n-l plot which was constructed for POM using the order 
numbers n obtained from the solution of Eq. 11.57. The figure is symmetrical about the 
origin, indicating that a point {n, I) appears in company with the point (— n,— /). 
Application of the formula given by Shimanouchi and Mizushima^^^ gives a value of r = 
0.691 A for the radius of the helix. This value was used to calculate 7„(2;r/?ry) for n = 0-8, 
and it was confirmed that the contributions of the second and subsequent terms of the 
Bessel functions are very small (Fig. 11.28).̂ "̂ ^ For this reason, only the first term was used 

m = 0 

Fig. 11.27 The n-l plot for POM. 
Table 11 .8 shows part of the solution of Eq. 11.53 
[Reproduced with permission from T. Uchida, H. Tadokoro, J. Polym. Sci., 
A5, 63, John Wiley & Sons, Inc. (1967)] 
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Inc. (1967)] 

50f- 5th Layer line, n = 1 

150h 

lOOh 

50h 

50r 

4th Layer line, /i = — 1 

3rd Layer line, /i = — 3 

2nd Layer line, « = 4 

1st Layer line, « = 2 

Equator /i = 0 

- 0 

0 0.5 1.0 

18th Layer line, n 

15th Layer line, n 

^ 1 1 1 1 11 

14th Layer line, n 

13th Layer line, n 

10th Layer line, n 

9th Layer line, n 

8th Layer line, n 

7th Layer line, n = 

6th Layer line, n 

= 0 

= 3 

= I 

= - . 

= 2 

= 0 

= - 2 

= - 4 

= 3 

L i. I 1. I... I L .L.L-1 1 , 1 I 1 1 

Fig. 11.29 
Observed and calcu
lated structure factors 
ofPOM.^^ 

[Reproduced with 
permission from T. 
Uchida, H. Tadokoro, 
J. Polym. ScL, A5, 63, 
John Wiley & Sons, 
Inc. (1967)] 

R [A- ' ] R [A- ' ] 



11.4 Analyses Using Diffraction Patterns from Helical Structures 315 

in the remainder of the analysis. Refinement of the structure to an R value of 8.8% (starting 
with Tc = To = 0.691 A and an isotropic temperature factor B = 5.0 A ,̂ and finally using an 
anisotropic temperature factor) gave the parameters listed in Table 11.8.̂ "̂ ^ Calculated 
structure factors and molecular structure are given in Fig. 11.29,̂ "̂ ^ and Fig. 11.30, respec
tively. 

Table 11.8 Atomic positional and thermal parameters of the POM molecule* 

c 
o 
H 
H' 

r[A] 

0.691 
0.671 
1.507 
1.507 

(p 

0° 
100° 

- 2 8 ° 4 8 ' 
28°48' 

Bi 

5.3 
3.9 

B2 

4.3 
2.8 

B3 

0.0394 
0.0394 

Ref. 64. [Reproduced with permission from T. Uchida, H. Tadokoro, J. Polym. Sci., A5, 63, John Wiley c 
Sons, Inc. (1967)] 

c = 17.39 A 

5 

Fig. 11.30 The structure of FOM.^^ O, Oxygen atom;#, Methylene group 
[Reproduced with permission from T. Uchida, H. Tadokoro, J. Polym. Sci., 
AS, 63, John Wiley & Sons, Inc. (1967)] 
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B. Native curdlan, (fi- (1 -^ 3)-D-glucan) 
Curdlan is an extracellular, bacterial polysaccharide composed of/3-(l—^3) linked D-glu-
cose residues (Fig. 11.31), and is produced from the mutant strain of Alcaligenes faecalis 
var. myxogenes 10C3. This polysaccharide was first isolated by T. Harada and co-
workers,̂ ^^ and has several interesting physicochemical features, such as the ability to form 
a firm and resilient gel when heated in aqueous solution. 

HO-

I 

cp y/ 

Fig. 11.31 ^-(1-^3)- Glucosidic linkage between two j3-D-glucopyranese rings. 

A number of X-ray diffraction patterns of oriented curdlan gel reported so far ^ ^ are 
classified into three crystalline forms. Form I (the native form) is prepared from a 4% 
(w/v) aqueous suspension of curdlan powder, sealed in a glass tube, by heating in not water 
at about 70°C for 10 min (Fig. 11.32). Form II, prepared from form I by heat treatment 
above 120°C in a sealed bomb in the presence of water, is transformed into form III by dry
ing in vacuum. Forms II and III are highly crystalline, the structures of which are shown to 
be a triple helix composed of right-handed 6/1 helices.̂ "̂̂ "̂ ^ On the other hand, the form I 
allomorph is low crystalline and the molecular structure has not yet been made clear: 7/1 
triple helix^^^ mixture of 7/1-single and 7/1-triple helices,̂ '̂̂ ^^ or others.̂ ^^ 

Figure 11.32 shows an X-ray diffraction pattern of the form I recorded with a cylindri
cal camera.̂ ^^ The crystal data obtained are given in Table 11.9. All diffractions except 
two (one with the spacing of 18.4 A on the first layer line and the other with 6.13 A on the 
third layer line) could be indexed with the hexagonal unit cell similar to those proposed by 
Fulton and Atkins.̂ ^^ 

A total of 12 diffractions were observed. Besides this, 28 weaker diffractions were rec
ognized but their intensities were below the threshold value. Their intensities were as
sumed to be one-half the weakest intensity observed, and they were used in the calculation 
only when I Fo l < I Fc I. Since there were not enough diffractions to determine the space 
group, PI was assumed in the following calculations. 

Considering the size of a pyranose ring (ca. 5A), single-, double- and triple-helices 
composed of 5/1, 6/1, 7/1, 8/1 and 9/1 helical symmetry molecules were first adopted for 
molecular models. In addition to this, for the triple-helix model, shifts (1/3 and 2/3 or 
— 1/3 and — 2/3 of the unit height) of two component helices to the third component along 
the fiber axis must be considered. The fiber repeating period, 22.8 A and pyranose rings of 
the standard "̂ Ci chair conformation,^^^ were generated using a linked-atom descrip-tion.^^^ 
In these models all bond lengths and bond angles were held constant. Since two variable 
parameters at the glycosidic Unkage, (p and y/, (Fig. 11.31) are constrained by the fiber re
peating period and the helical symmetry, there is no degree-of freedom in the main chain 
conformation (e.g. in the case of 6/1 helix, (p — Z C2C1O1C3 = 168.6° and i// = 
Z C1O1C3C2 = ~" 1 13.2°). For the molecular conformation, therefore, the torsional angle 
% — ^ O6C6C5O5 is the only variable parameter (Fig. 11.31). In the calculations, the initial 
value of this angle was set to one of— 60°, 60° and 180°. Since the right-handed helical 
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Fig. 11.32 X-ray diffraction pattern of curdlan, form I.̂ '̂  [Reproduced with permission from 
K. Okuyama et al, J. Carbohyd. Chem., 10, 648, Marcel Dekker (1991)] 

Table 11.9 Crystal data of curdlan, form I 

Okuyama et alJ Takeba et al° Fluton and Atkins 

Sample condition 
Crystal system 
«[A] 
b[M 
c (fiber axis) [A] 
Density [g cm ~ ]̂ 
Proposed helix model 

98% 
Orthorhombic 
28.8 
16.6 
22.8 

1.27 
6/1-single 

Wet 
Orthorhombic 
26.4 
16.4 
22.65 

1.17 
7/l-single + 7/l -triple 

100% 
Hexagonal 
17.01 
17.01 
22.70 

1.24 
7/1-triple 

[Reproduced with permission from K. Okuyama et al, J. Carbohyd. Chem., 10, 648, Marcel Dekker (1991)] 

sense in forms II and III, obtained from form I by solid state transformation, have been es-
tablished,̂ '̂̂ ^^ only right-handed models were considered. All the double- and triple-helix 
models except those having 5/1 helical symmetry have 04-H...05 intramolecular hydrogen 
bondings but have no unusual short intramolecular atomic contacts. The 6/1 helical sym
metry molecules are connected by 02-H...02 intermolecular hydrogen bondings. 

Further, in forms II and III, all the curdlan molecules are packed in a parallel fashion, 
only the parallel packing models were examined. The 8/1 and 9/1 triple-helix models have 
too large radii of helices (r > lOA) to be located in the unit cell. When the curdlan mole
cules is located in the unit cell, three parameters must be determined. They are the az-
imuthal angles jUi and JJ.2 for curdlan molecules on the corner and the center of the unit cell, 
respectively {cf. Fig. 11.11), and the shift of the relative position along the fiber axis, u. 
The packing models were generated systematically by changing the values of these JLI and u 
at 30° and 0.04 A intervals, respectively. 

Of 120 models, 11 which were found to be suitable in terms of interatomic contacts and 
agreement between observed and calculated structure factors were refined further. Of these 
11 models, 6 converged to the same structure (R = 0.14) and the rest showed rather poor X-
ray agreement (/? = 0.18 — 0.22). Therefore, the former structure was refined further. 

Finally, the 6/1-single helix model (Fig. 11.33) was found to be the most preferable in 
terms of interatomic contacts and agreement between observed and calculated structure fac-
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tors: R = 0A35 and R^ = 0.179. The final packing parameters fii, ^2 and u are 24.0°, 
163.5° and 0.103, respectively. The only one variable dihedral angle, x indicated a trans 
conformation (— 175.4°). 

16.6 A 

Fig. 11.33 Molecular and crystal structures of curdlan form I.^" 
(a) Molecular structure. 
(b) Cryotal structure. 
[Reproduced with permission from K. Okuyama et. al, J. Carbohyd. Chem., 10, 649, 
Marcel Dekker, Inc. (1991)] 
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12. Crystal Structure Determination of Macromolecules 
This chapter is a brief summary of the crystal structure determination '̂̂ ^ of macromolecular 
substances such as proteins, nucleic acids, viruses and others.̂  A flow chart of the structure 
determination of macromolecular substances is given in Fig. 12.1. 

Measurement 
of density 

Extraction and purification of protein 

Crystallization 

Determination of unit cell 

Determination of space group 

Measurement of diffraction intensities 

Isomorphous replacement 
method 

•n Protein database 

Molecular replacement 
method (c/. Fig. 12.21) 

Molecular structure model 

Refinement of the structure 

FINAL STRUCTURE 

Fig. 12.1 Flow chart of the structure determination of macromolecules. 

^ These are simply called proteins in this chapter. 
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12.1 Characteristics of Protein Crystals 

12.1.1 Solvent of crystallization 
The protein crystals usually contain solvent of crystallization, mostly water: the amount of 
crystalline water being ordinary 30% to 60% or more. Some of them on the surface of the 
protein molecules are bound with the protein molecules by hydrogen bonding, whereas 
most of them fill up the spaces between protein molecules inside the crystal. This fact 
make easy the thermal motion or more or less disordering of protein molecules in the crys
tal, which often leads to rapid decrease in intensity of high angle diffractions. 

Secondly, these solvent are so fluid to allow small molecules to penetrate and diffuse 
into the crystals when native (or parent) crystals are immersed in an aqueous solution of the 
small molecules, which make easy the preparation of isomorphous heavy atom derivative 
crystals. The penetration and diffusion of small substrate (or ligand) molecules into crys
tals also give possibilities to carry out the enzyme reaction inside crystals. 

12.1.2 Special features of X-ray diffraction by a protein crystal 
Protein crystals usually belong to crystal systems with lower symmetry because of the opti
cal activity of the protein molecule the crystals belong to polar space groups, i.e. protein 
crystals have no center of symmetry. 

Protein crystals have much larger unit cells compared to the crystals of small mole
cules. For example, the unit cell volume of ferricytochrome c' of Rhodospirillum rubrum is 
about 2,000 times of that of sodium chloride. This means that the number of diffractions of 
cytochrome c' to be observed is about 2,000 times more than that of sodium chloride and 
that the distribution of reciprocal lattice points is so dense that a good number of diffrac
tions can be observed even if the crystal is kept still (still photograph). On the other hand, 
the diffraction intensities of cytochrome c^ are about 1/2,000 that of sodium chloride on av
erage. Moreover, thermal, vibrations and disordering of protein molecules in the crystal ac
celerate the decrease in intensity down to about 10 ^ ̂  

NaCl Cubic system, a = b = c = 5.640 A 
V = 179.4 A^, 

Cytochrome c ' Hexagonal system, a = b — 51.63, c—\55.39 A, 

03=120°) 

V = 3 . 5 6 X 10^ A' 

The presence of the solvent of crystallization lowers the resolution. It is usually re
quired to collect diffraction intensities up to 2 A resolution or more in order to carry out 
precise crystal structure analysis. The fluid solvent of crystallization also lowers the S/N 
ratio of diffraction intensities. 

Partly because of the solvent of crystallization, protein crystals are sensitive to irradia
tion by X-rays or other radiations and suffer from radiation damage. Therefore, the fresher 
the crystal the better. The best crystals of adequate size should be prepared and grown just 
before intensity data collection. 

file:///55.39
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l-t) 

12.2 Crystallization 

12.2.1 Solubility of protein 
Protein molecules in an aqueous solution ordinary take globular forms: molecular chains 
are folded to form a rather fixed shape. Among the amino acid residues in a polypeptide 
chain of a protein molecule, those that have a hydrophilic side chain are generally distrib
uted on the surface whereas those having a hydrophobic side chain are found inside the 
globular molecule. Many hydrophilic amino acid residues on the surface have a carboxyl 
or amino group in their side chains; these have their own pK^ values and dissociate depend
ing upon the pH value of the solution. Protein molecules are, therefore, considered to be 
polyvalent electrolytes. The solubility of a protein in water is affected by the ionic strength. 
The solubility dependence on ionic strength for a protein is shown in Fig. 12.2.̂ ^ 

For the crystallization of a protein the principle is to decrease gradually the solubility 
of the protein in aqueous solution.̂ '̂ ^ 

S 10 

7y-~^—cr-

oNaCl 
• KCl 
<D MgS04 
A (NH4)2S04 

I.O 2.0 
Square root of ionic strength 

Fig. 12.2 The solubility of carbonmonoxyhemoglobin in various electrolytes at 25°C.^' 
[Reproduced from A. A. Green, J. Biol. Chem. 95, 47, Am. Chem. Soc. (1932)] 

A. Precipitants and additives to control solubility 
In order to decrease the solubility of protein precipitants are generally added to the protein 
solution. These include salts, organic solvents and high polymers. 
a) Salts, Addition of a salt to an aqueous solution of protein makes the ionic strength of 
the solution higher, making the solubility of the protein lower (salting out). Commonly 
used salting out reagents are given in Table 12.1. Among them a typical example is ammo
nium sulfate, (NH4)2S04, which is the most frequently and successfully used. Sodium chlo
ride, potassium or sodium phosphate and sodium citrate are also often used. 
b) Organic solvents, A water soluble organic solvent can be used as an additive to pro
duce marked change in solubility of proteins. This is partly the result of the lower dielectric 



324 12. Crystal Structure Determination of Macromolecules 

constant of water-organic solvent mixture compared to water. The organic solvent may 
also decrease solubility through specific solvation of the protein and displacement of bound 
water. Commonly used organic precipitants are listed in Table 12.2. Among them 2-
methyl-2,4-pentanediol (MPD or hexyleneglycol) has proved very useful. Ethanol is com
monly used. Dioxane (1,4-dioxacyclohexane) is also useful. 
c) High polymers. Poly (ethylene glycol) (PEG) is probably the only polymer additive 
that is used often. PEG 4,000, PEG 6,000 and PEG 8,000 (DP = 4,000, 6,000 and 8,000, 
respectively) are widely used. Sometimes PEG 20,000 or PEG 400 is also used. 

Table 12.1 Commonly used salting-out reagents Table 12.2 Commonly used organic precipitants 

Ammonium or sodium sulfate Ethanol 
Ammonium or sodium citrate 2-Methyl-2,4-pentanediol (MPD) 
Potassium or sodium phosphate Acetone 
Sodium chloride Methanol 
Lithium chloride Dioxane 
Magnesium sulfate /i-Propanol 
Lithium sulfate /-Propanol 
Sodium nitrate tert-ButSino\ 
Poly(ethylene glycol)(PEG) 

B. Other factors modifying solubility 
a) Dialysis, An increase of solubility at low ionic strengths is characteristic of most ions 
and is commonly found with proteins, which are more soluble in the presence of a small 
amount of electrolyte than in pure water. This is the well-known salting in phenomenon. 
Conversely, this means that if the amount of the electrolyte in the solution is decreased the 
proteins become less soluble. This is achieved by dialysis of a protein solution with some
what high ionic strength against distilled water or a solution of lower ionic strength. 
b) pH, The pH and the presence of counter-ions are factors which can be changed in or
der to modify solubility. With pH the solubility changes and reaches a minimum in the re
gion of the isoelectric point. 
c) Temperature, Many of the factors which govern solubility have a marked temperature 
dependence. Increase or decrease of temperature may bring the protein solution to satura
tion. This depends on the protein and experimental conditions. 
d) Increasing the protein concentration in solution, A traditional method of crystalliza
tion is to increase the concentration of the solution by evaporating the solvent. This tech
nique is not generally useful with proteins as it is difficult to control and is conducive to 
crystallization of salts in the mother liquor. 

Even after crystals have been obtained, it is often worthwhile to continue to explore 
other conditions which may produce a crystal form polymorph more suitable for X-ray 
study. 

12.2.2 Techniques for crystallization^ ^̂ ^̂  

Before growing good protein crystals with appropriate dimensions for X-ray diffraction it is 
necessary to take a wide survey to find crystallization conditions with a minimum amount 
of protein, say a few or favorably some tens of milligrams. In practice, crystallization con
ditions are examined for concentration of the protein, precipitants, ionic strength, pH, tem
perature and so on. For this purpose the following techniques are usually applied 
(Table 12.3). 
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b) 

c) 
d) 

Button method, 
Hanging drop method,^^ 
Sitting drop method, ̂ ^̂  

A. Methods of protein crystallization 
a) MicrodialysiSy 1) Zeppezauer method,^^ 

2) 
Vapor diffusion, ̂ ^ 1) 

2) 
Seeding,''-'^^ 
Layering or free interface diffusion?^^^^ 

These are summarized briefly in Table 12.3. 
Techniques for automated survey for crystallization conditions of proteins have been 

reported'̂ ^ {e.g. Fig. 12.3) and automated instruments are commercially available. 
Recently, studies on crystallization of proteins under a microgravity environment in 

space have been begun̂ "̂̂ ^̂  in order to scrutinize the effects of gravity on crystal growth 

Serial I/O 
^ Pfpelting station ^ 

Motor-actuated 
Tip 

Z-down 

Buffer 
solution 

*B* 

Fig. 12.3 An example of automated survey for crystallization conditions of proteins. 
(a) A schematic drawing of hardware components in the liquid handling system. The system is 
operated by a microcomputer that controls movements of the pipetting station and rotary valve 
whose positions are relative to those fixed on initialization. The depression plate, shown as a 
6 X 4 array of circles with the inner 4 X 4 filled, and the coverslip holder are fixed on the x,y 
translation table of the pipetting station. The coverslip holder, shown to scale in (b), was ma
chined from plexiglass. Coverslips (one is shown) are positioned between three small pegs. 
Machined indentations facilitate manual pickup of the coverslips for inversion over the wells of 
the plate. Holes at either end of the holder are for set screws to attach the holder to the transla
tion table. Additional holes position the protein-containing vials. 
[Reproduced with permission from M.J. Cox, P.C. Weber, J. AppL Cryst, 20, 366, lUCr. (1987)] 
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Table 12.3 Methods of protein crystallization 

Batch 
crystallization 

To a solution ( ~ 1 ml) of protein, 
dissolved at low ionic strength, 
precipitating reagent (salt or or
ganic solvent) is added to bring a 
solution to a state of super-satura
tion to induce crystal l izat ion 
(classical technique). 

i.— protein solution 

precipitating 
reagent 

Microdialysis 
Zeppezauer method 

Protein solution (20-100 ml) is 
injected in a glass microdiffusion 
cell, bottom of which is sealed 
with a semipermeable membrane, 
and the cell is introduced in a rel
evant buffer so that the buffer 
cover the dialysis membrane. pH 
of the protein solution can be 
modified easily. 

Button method Plastic vessel (button, 20-100 ^1), 
instead of the glass cell, is placed 
in the buffer for the microdialysis. 
Care must be paid not to spill the 
protein solution and not to intro
duce air bubbles by sealing the 
top of button with membrane. 

Vapor diffusion 
Hanging drop 

method 

Protein is dissolved in 10-20 jj\ 
of solvent at a salt concentration 
slightly below where the protein 
crystallizes. A droplet of the so
lution hanged under a cover glass 
is placed above the reservoir solu
tion. 

Siliconized cover glass 

_z. 

Sitting drop Protein solution, as a droplet on a 
method cover glass or in a very small ves

sel, and reservoir solution are 
kept in a plastic Petri dish to sub
ject to vapor diffusion for crystal
lization. 

Seal tape 

Seeding Minute crystals are suspended in 
a protein solution as seeds for 
crystallization. Can be applied in 
all methods described above. reservoir 

solution 
-minute crystals 
in protein solution 

Layering or 
free interaction 

Inside a capillary, protein solution 
is added gently on a layer of pre
cipitating reagent solution. 

protein solution 
precipitating 
reagent solution 

[Reproduced with permission from Y. Matsuura, J. Jap. Assoc, Cryst. Growth, 12, 112, Jap. Assoc. Cryst. Growth 
(1985)] 
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and to apply the information obtained on the crystal growth of proteins of better quality for 
X-ray diffraction studies on Earth. 

B. Extraction, purification and crystallization of cytochrome c" from Rhodopirillum 
rubrum (R. rubrum) 

The cytochrome c^ was extracted from R. rubrum and purified by the method of Horio and 
Kamen with some modification (See scheme). The purified cytochrome c ' in 50 mM-Tris-
HCl buffer (pH 8.0) was precipitated by adding 50% (w/v) PEG 4,000. The resulting pre
cipitate collected by centrifugation was dissolved in a minimum amount of 50 mM-Tris-
HCl buffer (pH 8.0) containing 22% (w/v) PEG 4,000. Crystals are grown by dialyzing this 
protein solution against 50 mM-phosphate buffer (pH 7.0) using a Zeppezauer tube (Table 
12.3). Long hexagonal, rod-shaped crystals shown in Fig. 12.4 grew within a few weeks.̂ ^^ 

Scheme. Extraction and purification of cytochrome c ' from Rhodospirillum rubrum} 

Cells R. rubrum (carotenoid-less blue-green mutant strain G-9) (Wet weight 325 g) 

i Sonication: 20 kHz 50% duty cycle for 10 min. 
i Ultra-centrifugation: 100,000 g for 90 min. 
i 

Supernatant {ca. H (in 0.1 M tris-HCl, pH 8)) 
i 
i Hydrogen bond chromatography on DEAE-Sepharose CL-6B (bed volume 310 ml) 
i Linear gradient of concentrations from 75 to 30% sat. (NH4)2S04 
i Desalting and concentration 
i 

Purified cytochrome c ' {ca. 70mg) 

^ T. Horio, M.D. Kamen, Biochim. Biophys. Acta., 48, 266 (1961). 

Fig. 12.4 A microphotograph of crystals of cytochrome c ' from R. rubrum. Crystals were rod-shaped with a 
hexagonal section. Typical dimensions of the crystals were 0.1 to 0.4 mm in diameter and 0.5 to 2.0 
mm in length. [Reproduced with permission from M. Yasui et al, J. Mol. Biol., Ill, 845, Academic 
Press (1984)] 

12.2.3 Preparation of isomorphous heavy atom derivative crystals 

For the phase determination of diffractions by the isomorphous replacement method, heavy 
atom derivatives crystals isomorphous to the native (or parent) crystals must be prepared. 
This is usually achieved by immersing the native protein crystals in the aqueous solution of 
appropriate heavy atom derivatives {soaking): heavy atom derivative ions penetrate the na-



328 12. Crystal Structure Determination of Macromolecules 

tive crystal, spread inside the crystal by diffusion and bind preferentially at the special site 
of the protein molecule without destroying the isomorphism to the native crystal. 

Among the heavy atom compounds reported^^^ the following are frequently used: 
HgAc2,*^ HgCl2, K2Hgl4, MeHgCl, PCMBS,*^ mersaryl,*^ UO2AC2, K2UO2F5, K2Pt(CN)4, 
AgNOa, and SnCl2, etc. 

A. Heavy atom derivative crystals of cytochrome c' from R. rubrum 
The general conditions for soaking surveyed are given below :̂ ^̂  

Concentrations of heavy atom reagent: 1-20 mM in the mother liquor 

(Mother liquor: 30% PEG 4,000 in 50 mM potassium phosphate 

buffer) 

Soaking time: 2-5 days 

The soaked crystals were then examined for isomorphism with the native crystal by 
taking precession photographs: the quality and quantity of diffractions, i.e. changes in unit 
cell dimensions, diffraction intensities and resolutions. The results are summarized in 
Table 12.4. K2PtCl6 gave good derivative crystals and CHsHgCl fairly good ones. Both of 

Table 12.4 Results of survey for heavy atom derivatives for cytochrome c' from R. rubrum 

Heavy atom reagent 

KsPtCle 
CHsHgCl 

K3UO2F5 

SmCl3 

K2lrCl6 

Concentration (mM) 

saturated ( < 3) 

20 

0.8^' 

1 '̂ 

r ' 

Soaking time (day) 

5 

2 

1/24 

2 

1 

2 

4 

Result 

good 

fair 
bad^2 

bad^3 

bad+3 
bad^^ 

bad^^ 

'̂ Mother liquor: 30% PEG4000 in 50 mM HEPES buffer pH7. 
2̂ Cracked. 

^̂  Neither isomorphous difference Patterson and Fourier map could be solved. 

them were used for the preceding isomorphous replacement studies. 

12.2.4 Crystal mounting^ ^'^'^ 

Protein crystals are usually mounted in thin-walled (0.001 mm thick) glass or quartz capil
lary tubes.̂ '̂̂ ^^ A very small quantity of mother liquor should remain around the crystal so 
that the crystal is kept moist because a protein crystal contains much solvent of crystalliza
tion and some of them are fluid like a liquid, which will quickly distill out and cause the 
crystal structure to break. 

Introduction of the crystals into the capillary tubes can be achieved by drawing up crys
tal by capillary action or gentle suction. A Pasteur pipette is also useful to pipette a crystal 
and a small amount of liquid into the capillary tube (Fig. 12.5). 

Ac = acetate, CH3COO "; x—\ 
PCMBS = p-chloromercuribenzene sulfonate, c i -Hg-<7jVso3; 

/;:N^OCH2COONa 

mersary = Mersalate sodium mersaryl, x;/^co-NH-CH2-CH-CH2-Hg-OH 
I 

OCH3 



12.3 Data Collection 329 

High vacuum 
wax 

I 
(a) Qi ^ ^ 0 

(b) 

Crystal bathed Mother liquor 
in mothor liquor 

Thin glass capillary 

0̂ —-— €̂) (c, ^JI 
Fig. 12.5 Mounting protein crystals in thin-walled tubes.'̂ ^ 

(a) The solvent reservoir is held by capillary action of the mounting tube itself. 
(b) The reservoir comprises two thin capillaries inside the mounting tube. 
(c) The mounting tube has been flattened to prevent slippage. 
[Reproduced with permission from T. L. Blundell, L. N. Jhonson, Protein Crystallography, p.81, 
Academic Press (1976)] 

In order to improve X-ray diffraction pattern of a protein crystal sealed in capillary tube 
soft ablation of undesirable portion in the crystal by pulsed UV-laser processing has been 
reported useful.̂ '̂ ^ 

12.3 Data Collection 

12.3.1 Determination of preliminary crystallographie data 
Prior to the systematic measurement of diffraction intensities, it is important to characterize 
the unit cell dimensions, Vm value, internal symmetry, and extent of diffraction from a crys
tal. This is most readily done on precession cameras. 

The Vm (or VM) is the crystal volume per unit of protein molecular unit, which is de
fined by Matthews as follows î"̂^ 

Vm=V/(N'n'M) (12.1) 

where V is the volume of the unit cell, N the number of equivalent positions in the unit cell, 
n the number of molecules in an asymmetric unit and M the molecular weight. Usually, Ki 
has values of 1.68-3.53 AVamu (av. 2.37 AV amu). Assuming the partial specific volume 
of proteins to be 0.74 ml/g the solvent content of a protein crystal Vsow is given as 

Vsoiy=l-(l23Vm). 

A. The hkO and hOl precession photographs^^^ of cytochrome c ' of /?. rubrum 
These photographs shown in Fig. 12.6. revealed that the Laue symmetry of the crystal was 
61m and that the systematic absence of diffractions as 1 = 6n for 00/. The corresponding 
space group is either P6i or its enantiomorph P65. Approximate unit cell dimensions were 
determined from the precession photographs. They are given in Section 12.1.2. Assuming 
that one dimeric molecule of cytochrome c' is in an asymmetric unit, the volume of molec
ular mass, Vm calculated was 2.12 AVDa, which is comparable to that normally found in 
protein crystals.̂ ^^ The solvent content is 38%. 
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Fig. 12.6 Precession photographs of cytochrome c ' from R. rubrum?^^ 
(a) /zM) diffractions, (b) Wl diffractions. [Reproduced with permission from M. Yasui et al, J. Mol. 
Biol, 111, 845, Academic Press (1984)] 

12.3.2 Collection of intensity data 
For the collection of three-dimensional intensity data, the main techniques used are: auto
mated diffractometry on a four-circle diffractometer (c/. Table 12.4), rotation or 
Weissenberg photography using imaging plate or electronic area-detector diffractometry 
with multi-wire proportional chamber (MWPC), X-ray CCD or X-ray TV system. Laue 
diffractometry using imaging plate (IP) with white X-rays is sometime useful."^^ 

The number of diffractions, Âdiff, to be measured will depend upon the resolution, dm, 
the minimum interplanar spacing for which I F I's are included in the Fourier summation of 
the electron density. The Nm can be estimated by the following formula^^^ 

A^diff = 
7tV_ 

dj (12.2) 

where y = 1 for primitive lattice, j — 2 for body-centered lattice or bottom-centered lattice 
and 7 = 4 for face-centered lattice. For a set of data in which each diffraction is measured 
only once, Mef must be divided by m, where m is the multiplicity factor of the Laue group. 

Accurate unit cell parameters and intensity data collection statistics of cytochrome c' 
and heavy atom derivatives are given in Table 12.5. 

Table 12.5 Unit cell parameters and data collection statistics of cytochrome c ' from R. rubrum 
and two isomorphous heavy atom derivatives^^'*' 

Cell constants 

a[k] 

Native 51.72 
K2PtCl6 51.76 
CHsHgCl 51.65 

c[A] 

155.49 
155.20 
154.92 

No. of 
crystals 

8 
11 
6 

No. of observed 
diffractions 

21,203 
32,250 
14,291 

No. of independent diffractions^' 
(oo to 2.8 A) 

12,092 
10,791 
5,851 

•'»-merg 

0.039 
0.104 
0.036 

The native and platinum derivative data include Bijvoet pair diffractions {hkl and hkl). 
/?merg = ^h IX, IX,,/, I — < IX/, I > I / NXh < I F/, I > , whcrc I Fi,h I is an individual measurement of diffraction h 
of the /th crystal, < I F/, I > the mean amplitude of that diffraction and Â  the numberof crystals. 
[Reproduced with permission from M. Yasui et al, J. Biochem., I l l , 318, Japanese Biochem. Soc. (1992)] 
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12.4 Phase Determination 
Three categories of problems arise, all pertinent to the design of modified proteins.̂ '̂̂  

1) If the crystal of a modified protein is nearly isomorphous with a parent crystal 
structure, then the difference Fourier method can be used with phases from the parent struc
ture to show up the changes in structure. 

2) If the crystal is novel but is composed of molecules that are similar to one of a 
known structure, then the molecular replacement method can often be used to build a model 
of properly positioned components from which phases can be computed by the structure 
factor equation. 

3) If the molecule is the first of its class to be analyzed, then the crystallographic 
phase problem must be solved ab initio. 

12.4.1 Isomorphous replacement̂  ^̂^ 
The isomorphous replacement method played a central role in the diffraction analysis of 
nearly all truly new protein structures. In this method the small differences in the X-ray 

(a) 

(b) (0 

Fig. 12.7 Schematic illustration of the principle of the heavy atom isomorphous replacement method.^' ^̂^ 
(a) A single crystal of the native protein (only four unit cells are given). 
(b) A single crystal of a heavy atom derivative which is isomorphous to the native crystal. Black cir

cle represents the heavy atom group introduced. 
(c) Phase relationships between various heavy atom derivatives. From top to bottom, illustrations for 

the native protein and derivative of heavy atom group 1 (HI), of heavy atom groups 1 and 2 (HI 
and H2), and of heavy atom groups 1 and 3 (HI and H3). In each row from left to right are given 
molecular structure, vector diagram showing the native protein (Fp) and heavy atom (fun) for the 
heavy atom derivatives, and phase differences in the resultant structure factors. In the fourth row a 
part of the molecular chain (shown by an arrow) changed its shape by the introduction of heavy 
atom group 3. [Reproduced with permission from Alexander McPherson, Preparation and 
Analysis of Protein Crystals, pp.177, 260, Krieger Pub. (1982)] 
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diffraction intensities caused by the addition of a heavy atom to an otherwise unchanged 
crystal structure are used to determine the phases of diffractions. The essence of the 
method is shown in Fig. 12.7.̂ '̂ ^^ It depends upon the preparation of heavy atom deriva
tives; this is usually possible by rational design or with reference to prior experience. 

There are five stages in the isomorphous replacement:^^ 
(1) The preparation of heavy atom derivatives (Section 12.2.3). 
(2) The measurement of intensities of X-ray diffraction patterns for native and deriva

tive crystals. 
(3) The reduction and correction of intensity data. 
(4) The determination of the heavy atom positions. 
(5) The determination of phases. 
The general theory of the isomorphous replacement method is described here. 

A. Single isomorphous replacement^^ 
Let Fp be the structure factor for the native protein. F? is a vector and can be described 

in terms of structure factor magnitude, IF? I, and phase, ap. The structure factor, FPH, of the 
heavy atom derivative is also a vector with magnitude I FPH I, and phase am- FPH can be de
rived from Fp by the vector addition of FH, which is the contribution of the heavy atoms to 
the structure factor of the derivative. This can be written (cf. Fig. 12.8) 

Fig. 12.̂  

Real axis 

A vector diagram (Argand diagram) illustrating the native protein (Fp) and heavy atom (FH) contribu
tions to the structure factor (FPH) for the heavy atom derivative of the protein. 
[Reproduced with permission from T. L. Blundell, L. N. Johnson, Protein Crystallography, p. 156, Academic 
Press (1976)] 

F P + FH (12.3) 

Assuming that the FPH and Fp are measured and that the position of heavy atoms in the 
unit cell is known, i.e. the vector FH is known, from Fig. 12.9 using the cosine law 

1 F P H 1 - - I F P P - I F H 1 M _ ^ , 

2iFpllRd J ~ ""-" (12.4) ap = aH+ cos ^ 

This equation shows that there are two possible values for a? which cannot be distin
guished with one isomorphous derivative. Only when vectors Fp and FH are colinear is 
there no ambiguity. This is illustrated graphically by the Harker construction for phase cal-
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culation^^^ in Fig. 12.10. The vector — FR is drawn from the center O. The circle of radius 
I FpH I is drawn centered on the end of the vector at J. In general there are two points of 
intersection at G and H. The vectors OG and OH represents the two possibilities for Fp. It 
can be seen from Eq. 12.8 that the vectors OG and OH are symmetrically disposed about 
FH. When FH and Fp are colinear there is only one point where the circles touch and the so
lution is unambiguous. 

Real axis 

Fig. 12.9 A vector diagram defining the structure factor amplitudes and phases referred to in the text. 
[Reproduced with permission from T. L. Blundell, L. N. Johnson, Protein Crystallography, p. 156, 
Academic Press (1976)] 

Fig. 12.10 Harker diagram for phase calculation by the method of single isomorphous replacement corresponding 
to the situation shown in Fig. 12.9. The vector OJ represents — FH. Circles of radii I Fp I and I FPH I 
are drawn with their centers at O and J respectively. The vectors OH and OJ represent the two possi
bilities for Fp. 
[Reproduced with permission from T. L. Blundell, L. N. Johnson, Protein Crystallography, p. 157, 
Academic Press (1976)] 

B. Multiple isomorphous replacement (MIR) 
The ambiguity mentioned above may be resolved by double isomorphous replacement in 
principle. The situation is shown in Fig. 12.11. Similar to Fig. 12.10 the first heavy atom 
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derivative indicated that F? may be one of two possible vectors given by OG and OH. The 
heavy atom contribution of the second derivative is drawn as — Fm. Two possible values 
of Fp are given by vectors OH and OL. The vector OH is indicated by both derivatives and 
this must be the correct choice for Fp. From this graphic construction it is obvious that if 
FH2 is colinear with Fm the second derivative will not help in sorting out the ambiguity in 
the phasing. Two derivatives with different heavy atoms or different occupancies (but the 
same relative occupancies for different sites) at the same atom positions will not be very 
useful. 

For most diffractions two isomorphous derivatives give an estimate of a?. However, it 
is advisable to include phase information from more than two heavy atom derivatives be
cause for some diffractions Fn for one of the derivatives will be small, and for others FHI 
and Fm may colinear by chance. The most important reason is that the values used for FPH, 
Fp and an will be estimates which may be somewhat in error. Consequently the circle in 
Fig. 12.11 will usually not intersect at one point, H, but rather they will give rise to several 
intersections which may not be quite clearly separated if there are large errors. In fact it is 
necessary to estimate the errors for each phase determination.^^^ 

Imaginary 
axis 

Fig. 12.11 Marker diagram for phase determination by the method of double isomorphous replacement. The con
struction is an extension of that shown in Fig. 12.10. The vector OK represents — Fn for the heavy 
atom contribution to the structure factor of the second heavy atom derivative. A circle of radius FPH2 
is drawn with its center at K. F? is given unequivocally by OH. 
[Reproduced with permission from T. L. Blundell, L. N. Johnson, Protein Crystallography, p. 161, 
Academic Press (1976)] 

12.4.2 Anomalous scattering 

In the calculation of phases of diffractions, small differences In the X-ray intensities may be 
caused by heavy atoms as a result of anomalous scattering (cf. Section 2.3.2) 

A. Anomalous scattering and structure factor: Bijvoet pair 
As shown earlier, if the X-ray v^avelength is very close to the absorption edge of a heavy 
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atom, the atomic scattering factor,/, must be represented as a complex quantity: 

(12.5) 

The imaginary part,/', lags K/2 behind the primary wave, i.e. it is always K/2 in front of the 
scattered wave. The magnitude of/" is proportional to the absorption coefficient. 

In the protein structure which contains some heavy atoms the contribution of the heavy 
atom to the F(hkl) diffractions of the derivative crystal are written as: 

and 

Fn(hkl) = ^fj' exp[2mihxj+kyj-\-lzj)] 
7=0 

Fuihkl) = ^ / / ' Qxp[2m{hxj +kyj +lzj)]. 

(12.6) 

(12.7) 

for real and imaginary parts respectively, where H is number of heavy atoms in a unit cell. 
Corresponding expressions can be written for the inverse F{hkl) diffractions. Then, the 
structure amplitudes of the direct and inverse diffractions, f^Qikl) and F*(hkl) (abbreviat
ed as F( + ) and F( —), respectively, hereafter) are expressed as 

FPH( + ) = FP( + ) + FH( + ) + / F H ( + ) 

F P H ( - ) = F P ( - ) + F H ( - ) + / F H ( - ) . 

(12.8) 

(12.9) 

These relationships are shown in Fig. 12.12. The vectors FH and FiTare drawn at right an
gles to each other assuming that anomalous scattering atoms are all identical. This diagram 
shows that in general FPH( + ) is no longer equal to F P H ( ~ ) . Friedel's law is no longer 
obeyed. F( + ) and F( —) are known as the Bijvoet pair. 

rH(+) 

rH(-) 
Fni-) 

Fig. 12.12 Vector diagrams for the structure factors for the direct and inverse diffractions. Subscripts P and H 
express atoms which scatter normally and anomalously, respectively. 
[Reproduced with permission from T. L. Blundell, L. N. Johnson, Protein Crystallography, p. 172, 
Academic Press (1976)] 
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B. Anomalous scattering differences and phase determination'^ 
Bijvoet̂ ^^ obtained the following useful results for the relation of the anomalous difference 
FPH( + )"~ F P H ( ~ ) to the phases am and a? using the cosine rule (Fig. 12.13): 

F P H ( + ) - F P H ( - ) = -FHCOsiam-CCn-—] (12.10) 

2FH . , , 
—— sin(apH-aH) 

k (12.11) 

where k = FR/FR. 

Hence am = OfH + 7r/2 + 6, where 

6 = ±cos 
^ [ F P H ( + ) - F P H ( - ) ] 

2FH (12.12) 

Thus the phase of the heavy atom derivative apu cannot be determined unambiguously. 
There are two possible phases which are symmetrically disposed about an + ^/2. These 
two possibilities are illustrated in Fig. 12.14. This diagram is constructed in the same way 
as that for isomorphous replacement by drawing circles of radii FPH( + ) and FPH( ~ ) with 
their centers at — (FH + FH) (DO and — (FH — FJJ) (CO- The two points of intersection indi
cate the two possible vectors for FPH, i.e. JH and JM. Thus two possibilities for Fp are giv
en as OH and OM. 

^ imaginary 
axis 

Real axis 

Fig. 12.13 Structure factors for the real and inverse diffractions (shown reflected across the real axis). 
[Reproduced with permission from T. L. Blundell, L. N. Jhonson, Protein Crystallography, p. 178, 
Academic Press (1976)] 

This difficulty may be solved by a combination with isomorphous replacement method 
(Fig. 12.15). The third circle of radius Fp added to the two circles of radii FPH( + ) and 
FPH( —) indicate that Fp is given by the vector OH. 
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Imaginary 
axis 

Fig. 12.14 Marker diagram to illustrate phase determination using anomalous scattering. The diagram is 
constructed in the same way as that for isomorphous replacement (Fig. 12.11). Circles of 
radii FPH( + ) and FPH( —) are drawn with their centers at — (FH + FH) —(FH — FH). The two 
points of intersection indicate the two possible vectors for FPH, i.e. JH and JM. Two possibil
ities for Fp are given as OH and OM. 
[Reproduced with permission from T. L. Blundell, L. N. Jhonson, Protein Crystallography, 
p. 178, Academic Press (1976)] 

I Imaginary 
axis 

Fig. 12.15 Harker diagram to illustrate phase determination using anomalous scattering (Fig. 12.14) combined 
with isomorphous replacement for situation shown in Fig. 12.13. The intersection of the three circles 
of radii Fp, FPH( + ) and FPH( —) at H indicates that F P is given by the vector OH. 
[Reproduced with permission from T. L. Blundell, L. N. Jhonson, Protein Crystallography, p. 180, 
Academic Press (1976)] 

12.4.3 Determination of the position of heavy atoms 

A. Isomorphous difference Patterson function 
Ordinary Patterson function with coefficient I FPH P may not be useful to locate the heavy 
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atom in the unit cell because of low contrast between heavy atom-heavy atom vectors and 
other vectors concerning light atoms. However, a difference Patterson function with coeffi
cients, II Fp I — I FpH IP will give a good vector map.̂ '̂̂ "̂ ^ Since 

I FH I = I FpH I - I Fp I # II FpH I - I Fp II, 

AP(uvw) = X X Z " ^nH I - IF/7 IF Qxp[-2m(hu+kv+lw)] 

(12.13) 

(12.14) 

a) Isomorphous difference Patterson and Fourier Syntheses of heavy atom derivatives 
and native cytochrome c^ from R, rubrum. Fig. 12.16 is one of Harker sections of an iso
morphous difference Patterson map of K2PtCl6 derivative and native cytochrome c^ from R. 
rubrum?^^ Peaks marked A and B correspond to the self vectors of Pti-Pti and Pt2-Pt2, re
spectively. The Hg sites of the CHsHgCl derivative could not be located by the isomor
phous difference Patterson map. They were located by isomorphous difference Fourier 
synthesis using the best phase angles of the native protein calculated by the single isomor
phous replacement method combined with anomalous dispersion data of K2PtCl6. 

Fig. 12.16 A Harker section (w = 1/2) of the isomorphous difference Patterson map of the platinum derivative of 
cytochrome c\ Peaks marked B and A correspond to the self vectors of Pti-Pti and Pti-Pta, respective-
ly.̂ ^̂  [Reproduced with permission from M. Yasui et ai, J. Biochem, 98, 77, Japanese Biochem. Soc. 
(1991)] 

B. Anomalous scattering and heavy atom positions 
As mentioned above, anomalous dispersion data may be combined with the isomorphous 
replacement method for the phase determination. If the protein contains two heavy atoms 
or more the atomic numbers of which are very close to each other, these heavy atoms may 
be identified by the use of anomalous dispersion.^^^ 
a). Location of heavy atoms by anomalous scattering. Intensity data of cytochrome c' 
from R. rubrum were collected on a four-circle diffractometer using synchrotron X-rays 
(BL-14A) at the Photon Factory, National Laboratory for High Energy Physics, Tsukuba.̂ ^^ 
Since cytochrome c' contains iron in its heme, three wavelengths, Ai = 1.077, ^2= 1.730 
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Ae=1.743A 

Fig. 12.17 Anomalous dispersion of the iron atom around the A'-absorption edge.̂ ^^ Three sets of intensity data 
obtained with three wavelengths. Ai, A2, and A3 were used to determine the positions of the iron atoms. 
[Reproduced with permission from S. Harada et al, J. Cryst. Soc. Jpn., 29, 272, Cryst. Soc. Jpn. (1987)] 

Fig. 12.18 Difference patterson maps of cytochrome c ' (w = 1/2) with coefficient (a) (I Fi I — I F21) ,̂ 
(b) (I F, I - I F31)^ and (c) (I FzC+) I - I FsC - ) 1)1 The positions of iron self vectors are marked.''^ 
[Reproduced with permission from S. Harada et al, J. Appl Cryst., 19, 450. lUCr. (1986)] 
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and ^3=^ 1.757 A were used (i^-absorption edge of iron, Ae = 1.743 A) (Fig. 12.17). 
Observed intensities were corrected for Lorentz and polarization factors, radiation damage 
and absorption effects.̂ ^^ Structure amplitudes I Fi( + ) I, I F2( + ) I and I F3( + ) I for hkl dif
fractions were obtained with wavelengths Ai, A2 and A3 and those I F2( —) I and I F3( —) I for 
hkl diffractions with /I2 and A3. 

Figure 12.18 shows difference Patterson maps, the coefficients used of which were (a) 
(I F, I - I F2 I)', (b) (I Fi I - I F3 I)', and (c) (F2( + ) - F2( - ))l The (a) and (b) maps are 
based on differences in f for the two wavelengths, and are analogous to the isomorphous 
difference maps. These two Patterson maps (w = 1/2) are somewhat noisy and the highest 
peak did not coincide with the iron self vector. However, by inspecting three other Harker 
sections (w = 1/6, 1/3 and 1/6) two iron atoms could be located; these were confirmed by 
checking the iron-iron cross vectors. 

The map (c) is a regular anomalous difference Patterson map based on f\^^ but this is 
the worst among the three. The combined difference Patterson map with coefficient [(I Fi I — 
I F2 \f-\-(k/2)\\ F2( + ) I — I F2( —) 1)̂ 1, which is ordinarily expected to give a better esti
mate for iron than (a) or (c), was similar to (a). 

From these Patterson maps iron atoms were located (Fig. 12.19), the parameters of 
which were refined for electron density calculations. Table 12.6 lists atomic parameters of 
iron and mercury used in the final phase calculations at 2.8 A resolution.''^^ 

Fig. 12.19 Composites of four sections (z = 0.10 ~ 0.16) of the difference Fourier maps of cytochrome c ' with 
coefficient (a) (I F, I - I F2 l)exp[/«], (b) (I F, I - I F3 l)exp[/a], and (c) F2( + ) - F 2 ( - ) e x p [ / ( a -
7t/2)], where a are phase angles obtained by the MIR method. The two iron positions (Fd and Fe2) are 
indicated.^* '̂ [Reproduced with permission from S. Harada et al, J. AppL Cryst., 19, 450. fuCr. 
(1987)] 
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Table 12.6 Heavy atom parameters of cytochrome c ' from Rhodospirillum rubrum^^^ 

. . . X y z Occupancy D ^ X 2x 
Derivative site (j^ fractional unit of cell edges) (electrons) ^ ^^ ^ 

K.PtCU 1 0.253 0.535 - 0 . 3 7 8 41.6 39.6 
2 0.162 0.186 0' 48.8 45.5 

CH.HgCl 1 0.900 0.600 0.094 12.5 28.8 
2 0.930 0.065 0.121 13.5 21.5 

' fixed at 0 to define the origin of the Z axis. 
[Reproduced with permission from M. Yasui, Doctral Thesis, Osaka Univ.] 

12.5 Molecular Replacement Method̂ ^̂  
As the number of protein crystal structures analyzed has increased remarkably, a large 
amount of structural data has been and are being accumulated in the Protein Data Bank at 
Brookhaven.'̂ ^^ Looking at these data, the existence of structural similarity has been recog
nized in groups of proteins. Many proteins have been found that consist of the same sub-
units. In such cases, it may be possible to determine the molecular structure by limiting the 
phase angles of diffraction. 

If two identical molecules differ only in orientation and position, it is possible to define 
a general operation involving only rotation and translations which bring the equivalent 
points of electron density in each molecule into coincidence. 

If the equivalent points on the two molecules are defined by position vectors Xi and X2 
in reference to a common orthogonal coordinate system, then 

X2 = [C]Xi + r (12.15) 

where [C] is a rotation matrix and T a vector defining translation. 
The Patterson function, which is the Fourier transform of I F? P, contains intramolecu

lar and intermolecular atomic vectors, and the intramolecular vectors are generally short 
and most of them are distributed near the origin. Picking up these vectors included in a 
sphere with radius r, which corresponds to the approximate size of the molecule, rotate 
them to search for the best rotation angle until they show good coincidence with the corre
sponding vectors of the known structure or with the self vectors (rotation search). Then, 
displacing the molecule in the crystal lattice to find the best translation vector until coinci
dence between the observed and calculated I F? I's or that between corresponding vectors is 
obtained (translation search); then the protein molecule is placed at the correct position 
with correct orientation. The electron density map is then computed using the phases deter
mined with the orientation and positions of the protein molecule (cf. Fig. 12.20). 

12.5.1 Structure solution of bacterial cytochrome C2 from Rhodopseudomonas 
viridis (Rps. viridis).^^^ 

The structure of cytochrome C2 from Rps. viridis (trigonal rhombohedral system, space 
group P3i21 or P3221, a = b = 16.13 and c = 40.40 A; one protein molecule per asymmet
ric unit, Vm = 2.70 A^/Da) was solved on the basis of the structure of tuna cytochrome c^^^ 
as a search model by an automatic molecular replacement procedure."̂ "̂ ^ This procedure 
consists of four parts: structure factor calculation of the model molecule, fast-rotation func
tion, multiple translation function and rigid-body refinement. 

The model molecule, in which all the atoms of tuna cytochrome c together with those 
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Unreasonable molecular 
packing(s) excluded 

Evaluation by R value 

I Conversion of molecular structure • 
from model to the target molecular I (c/Fig. 12.22) 

Refinement of the structure (Sec section 12. 7 ) 

FINAL STRUCTURE 

Fig. 12.20 Structure solution of a protein crystal by the molecular replacement method. 

* Correlation coefficient = — „ , ^ -, = ^ - = ^—-

where n is the number of diffractions 

Figs.: [Reproduced with permission from Alexander MacPherson, Preparation and Analysis of 
Protein Crystals, p.260, Krieger Pub. (1982)] 
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of the side chains were included, was placed in a PI cell with a = b = c= 100 A and a = 
P = y = 90°. Triclinic structure factors were calculated between 10 and 6 A resolution. 
Cross rotation function"̂ "̂̂ ^̂  was calculated as a function of the orientation angles i/A, (p, x in 
the angular range, 1//= 0 to 90°, (p = Oio 360°, ;̂  = 0 to 360° with 5° steps in each direction 
using the data between 10 and 6 A resolution. The radius of the cut-off sphere in the 
Patterson function was set to 20 A. A translation search was carried out for the 20 highest 
peaks in the rotation search. The agreement of observed and calculated structure factors 
was evaluated with a correlation coefficient between Fobs and Fcaic at every position translat
ed by about a 1 A step. The molecular packing in the unit cell was checked and those cases 
giving packing with short intermolecular contacts were rejected. The model position was 
then improved by the rigid-body refinement"̂ ^^ using the data between 10 to 6 A resolution. 

I 5 10 
G D V A K G K K T F V Q Q K Cytochrome c 

from tuna 

Cytochrome Cz E D A A S G E Q V F 
^TomRps.viridis 

100 

A Y L K S A T S 

I 

f f f f f f I f T 

Replacement 

Deletion and INSERTION 

K Q C 

INSERTION 

A Y L K Q F N A D G S K K 

Regularization 

Fig. 12.21 Conversion from cytochrome c from tuna, adopted as a starting model to solve the structure by the 
molecular replacement method, to the structure of cytochrome ci from Rhodopseudomonas viridis for 
the refinement of the structure. 
1) 50 different amino acid residues (indicated by arrows, only some of them are shown in this figure) 
2) One amino acid residue was deleted and four new residues were INSERTED. 
3) Regularization of the molecular chain with the reasonable bond lengths and bond angles etc. was 

carried out for further refinement. 

Before starting refinement, the tuna cytochrome c model molecule used in the molecu
lar replacement was modified so as to fit the sequence of the Rps. viridis cytochrome C2 
(Fig. 12.21). Refinement was carried out by both the restrained least-squares procedure and 
simulated-annealing method (Section 12.7): current R = 0.219 (3 A resolution)."^^^ 

12.6 Interpretation of Electron Density Maps: Model Building 
Density map interpretation depends on two factors, the accuracy of phasing and the resolu
tion limits (c/ Fig. 12.22).̂ *̂ ^ 

In early times the Richard box was used to build an initial atomic model that fit the 
electron density map obtained. Minimaps, i.e. transparent stacks of contour sheets at a 
scale of 0.5 cm/A are still used to trace the peptide chain. 

Use of computer graphics systems to display the electron density superimposed on the 
structure model for chain tracing and also for detailed model building has become almost 
universal'*'̂  (Fig. 12.23). '̂̂  
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5.0 4.0 

2.0 

Fig. 12.22 Electron density distribution for the C helix of myohemerythrin at various resolutions. Each frame 
shows the projected electron density distribution from a Fourier synthesis truncated at the indicated 
nominal resolution. The number of terms included approximately doubles with each successive step 
in resolution: 638 unique diffractions contribute at 5.0 A resolution, 1,208 at 4.0 A, 2,699 at 3.0 A, 
4,531 at 2.5 A, 8,618 at 2.0 A and 16,747 at 1.5 A. In each case the final refined backbone model, in
cluding Cp atoms from the side chains, is shown superimposed on the density map. (Drawings by 
Steven Sheriff.) [Reproduced with permission from W. A. Hendrickson, Protein Engineering, p. 11, 
AlanR.Liss, Inc. (1987)] 
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i/1.... 

M i -
Fig. 12.23 Stereoscopic drawing of the improved electron density of the heme and the side-chain of His 120 of cy

tochrome c ' from Rhodospirillum rubrum which was obtained after 5 cycles of phase refinement using 
the non-crystallographic 2-fold symmery.^'^' The part of the model which was refined at 2.8 A resolu
tion is superposed on the electron density. 
[Reproduced with permission from M. Yasui et al., J. Biochem., I l l , 318 Japanese Biochem. Soc. 
(1992)] 

12.7 Refinement of the Structure 
The refinement is usually carried out by a series of steps. 

1) Each step consists of a few cycles of least-squares refinement with stereochemical 
and internal packing restraints."̂ "̂̂ ^^ 

2) Next step is the re-fitting of the model structure to difference electron density maps 
with interactive computer graphics.^^^ 

3) At an appropriate stage of the final refinement, solvent molecules are usually in
cluded and alternative conformations for some atoms or residues in the protein may be in
troduced. 

12.7.1 Restrained least-squares refinement 
The aim of least-squares refinement is to minimize the difference between the observed and 
calculated structure amplitudes, I FoQikl) I and I Fdhkl) 1. In the case of small molecules 
many strong reflections can be measured to carry out the least-squares refinement rigorous-

ly-
Macromolecules usually consist of a great many atoms and the number of atomic para

meters to be refined is too many compared to the number of diffractions, even if hydrogen 
atoms are ignored. Secondly, relatively weak diffraction intensities of macromolecules lim
it the accuracy of intensities measured and the number of diffractions observed. Thirdly, 
initial structure models of macromolecules are usually quite inaccurate. These facts limit 
the rigorous structure refinement of macromolecular crystals. However, the wealth of prior 
knowledge about the stereochemistry of macromolecular structures can supplement the lim
ited diffraction data. Several different methods have proposed to incorporate stereochemi
cal knowledge into the refinement process.̂ ^^ These subsidiary conditions^ '̂̂ ^^ on refine-
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ment against diffraction data serve to restrict model features to a realistic range of possibili
ties. 

According to Hendrickson,̂ "^^ a grand function for minimization in the refinement with 
restraint is 

0 = 10,, (12.16) 

where 0; is the observational function to be minimized, namely, crystallographic structure 
factors usually minimized in small-molecule crystallography, 0i, deviations of bond dis
tances and bond angles, 02, deviations from planarity of groups of atoms expected to be pla
nar, 03, deviations from ideal chiral volumes (sign included) required for given chiral cen
ters, 04, deviations from ideal contact distances, 05, deviations from ideal torsional angles, 
06, isotropic temperature factors, 07, anisotropic thermal parameters, 08, deviations from 
noncrystallographic symmetry, 09 (positional) and 0io (thermal), resistance to excessive 
shifts, 011, and occupancy factors, 0i2. 

A. Structure refinement of cytochrome c' from R, rubrurn^^^ 
Structure was first refined by the restrained least-squares refinement program, PROL-

3Q 59-61) Observed diffractions data of 4481 between 5.0 and 2.8 A resolution (I Fo I ^ 
(7(F)) were used. An overall temperature factor 15 A^ was adopted for all protein atoms at 
the initial stage. At the end of the 18th cycle the refined structure was checked against the 
multi-isomorphous replacement map, the averaged map and the omit map computed with 
coefficients (2 I Fo I — I Fc I). After the rebuilding of the model, successive cycles of the re
finement were carried out. The R factor decreased from 0.44 to 0.32. 

Simulated annealing procedure of the refinement (See following Section) using the 
XPLOR program package.̂ '̂̂ "̂ ^ Dynamics were carried out at 3,000 K (time steps 0.67 fs), 
then at 4,000 K, and slowly cooled down to 300 K in steps of 50 K. Final energy mini
mization and refinement of individual temperature factors gave the R factor of 0.22. 

The atomic parameters obtained were further refined for 6 cycles with PROLSQ. This 
refinement did not reduce the R factor. However, stereochemical parameters such as bond 
lengths, bond angles and others showed improvement (root mean-squares (r.m.s.) deviation 
of bond lengths from ideal values: 0.022 A and the r.m.s. error of atomic positions accord
ing to Luzatti:̂ ^^ ca. 0.25-0.35 A). 

12.7.2 Crystallographic refinement by simulated annealinĝ "̂̂ ^̂  
In the case of macromolecules, the restrained least-squares refinement procedure mentioned 
before is easily trapped in a local minimum and does not correct the positions of residues 
that are misplaced by more than 1 A so that manual adjustments of the structure, using a 
computer graphics system to display the electron density superimposed on the structural 
model, are necessary. It has recently been shown that the introduction of simulated anneal
ing into the refinement procedure can reduce the need for manual intervention.^^^ Monte 
Carlo and molecular dynamics simulations are both ways of generating conformations of 
the system that are consistent with a Boltzmann distribution appropriate to the specified 
temperature. For large biomolecular structures the molecular dynamics algorithm is gener
ally more efficient at generating equilibrium structures,^^^ and a molecular dynamics was 
therefore used to implement a simulated annealing procedure for refining protein 
structures.̂ ^"^^^ The application of molecular dynamics to X-ray refinement is also a natural 
extension of the use of high-temperature molecular dynamics and cooling in searching for 
stable peptide conformations^^^ and is closely related to the use of molecular dynamics to 
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derive structures from nuclear magnetic resonance measurements 7̂ '̂ ^̂  
The basic principle of this method is that the crystallographic discrepancy term, Ex, is 

added as a pseudo-energy term to the total potential energy, EMD, of the system. 

£̂MDx = EMD + Ex. (12.17) 

Then the total potential energy, EMDX, is minimized during the refinement. This is achieved 
by solving the Newtonian equations of motion for all atoms using the forces derived from 
the energy terms, including the "X-ray energy," Ex- The temperature is kept constant by 
couphng to a heat bath.̂ ^^ Owing to the presence of kinetic energy in the simulated system, 
energy barriers can be overcome in this process. This means that, for example, peptide 
planes can be flipped and loops can be rearranged by exploring large areas in conformation
al space. Thus, in principle, it is possible to reach a lower energy minimum than the nearest 
minimum.̂ ^^ 

The first term, the total potential energy of the system, £̂ MD, is given as 

EMD = EiEr'''\ (12.18) 

Here, E,, the empirical potential energy, is a function of all atomic positions of the system 
describing internal stereochemical interactions (bond lengths, bond angles, dihedral torsion 
angles, chiral centers, planarity of aromatic rings) as well as nonbonded (van der Waals and 
electrostatic) interactions. 

E,= J^ko(r-rof+ X ^6(6-60) 
bonds angles 

+ ^ k(l) cosincj) + d) 
dihedrals 

+ X k(o(co-0)0? (12.19) 
chiral,planar 

+ ^ (ar-'^+br^+cr-^). 

The parameters of the empirical potential energy Ei are inferred from experimental as well 
as theoretical investigations.^^"^^^ Since the system considered is a crystal but not a mole
cule, the influence of the crystal packing is important in crystallographic refinement, and 
the crystal symmetry interaction energy Ei""^^^^^ should be added to the empirical potential 
energy Ei. 

.̂crystal = J^J^^B{\&^-'MmG(^n -2^^n + u)\} ^^^^^ 

where NB { } and MinG( ) are functions that are defined below, 9̂  is the matrix that con
verts orthogonal coordinates into fractional coordinates, the first sum extends over all sym
metry operators (Os, ̂ s) of the crystal, and the second sum extends over all pairs of atoms (/, 
j) for which the argument of the function NB { } is less than a specified cutoff rout, and n 
and Tj are coordinates of atoms / and7 respectively. The function MinG(r) defines the mini
mum image distance in fractional coordinate space. It operates on each component of the 
three-dimensional vector r separately where the operation on each component x is given by 

MinG(jc)= s ign(- jc)int(l x I + 1/2) + x (12.21) 
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The function int(y) is defined as the integer part of y, and sign(j) is defined as the sign of y. 
NB{ } has the form of a nonbonding interaction potential, i.e. it is the sum of van der 
Waals and electrostatic interactions, 

NB{r} = ar" '^ - Z r̂"̂  + cr-' (12.22) 

The second term, "X-ray energy", Ex, is given as 

^x=I-4777( l Foih) I -k I FAh) l)^ (12.23) 
h OF {n) ^ ^ 

where Fo(h) corresponds to observed structure factors, Fc(h) to calculated structure factors 
based on the current structure model, k is the scale factor between Fa and Fc, and ap(h) 
(h substituted here for hkl) is a weighting term. 
A. Structure refinement of cytochrome C2 from Rps. viridis^^^ 

Refinement by the simulated annealing was performed by the X-PLOR program. ̂ '̂ ^ 
After 200 steps of preliminary energy minimization, 6,000 steps (time steps of 0.25 fs) of 
molecular dynamics were carried out at 6,000 K, followed by decreasing the temperature 
from 6,000 to 300 K in steps of 25 K. Tolerance by which any atomic coordinates from a 
position is specified as 0.2. Another 80 steps of energy minimization and individual tem
perature factor refinement completed the process. 

12.7.3 Further refinement 

At the final steps, water molecules and sulphate and other molecules, which were added as 
a precipitant or additive for the crystallization of the protein and which have migrated in the 
crystal during crystal growth, may be located on the difference Fourier maps. They are 
added in further cycles of the refinement. 

12.7.4 Expression of the result 

How to explain the result obtained effectively, attractively, easy to understand for the read
er of your paper is very important. Currently used typical models are the following. There 
are of course many modifications and the reader can modify and improve them to express 
the results in the best way. At an initial stage, the balsa wood model may be used for the 
low resolution data just to obtain an idea of the whole shape and rough features of the 
macromolecule. For a detailed exhibition of the molecule in whole or part a solid ball and 
spoke model (including the ORTEP drawing) (Fig. 12.24) and space-filling model are used 
as well as in the case of small molecules. For simplicity, only the a-carbon atoms are con
nected by spokes to trace the feature of the folding of the main chain (Fig. 12.25). The oth
ers are the ribbon model or its modifications in which the a-helix part is expressed as a he
lically wound ribbon (or cylinder) and the ^-pleated sheet part by a flat plate (or sometimes 
by a flat arrow showing the direction of the pleated sheet) (c/. Fig. 12.26). The accuracy of 
the results should also be given appropriately, if necessary. 
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Fig. 12.24 View of tlie heme prosthetic group of cytochrome c' from R. mbrum., from two different directions 
(ball and spoke model drawing).^'^' 
[Reproduced with permission from M. Yasui et al., J. Biochem., I l l , 320, Japanese Biochem. Soc. 
(1992)] 

Fig. 12.25 Stereoscopic drawings of cytochrome c' from R. mbrum viewed from the direction of the non-crystal-
lographic two-fold axis (a), and from the bottom of the helix bundle (b).̂ ^* a-Carbon atoms are con
nected by spokes. Heme groups are also shown. 
[Reproduced with permission from M. Yasui et al., J. Biochem., I l l , 320, Japanese Biochem. Soc. 
(1992)] 
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Fig. 12.26 Different drawings of the molecular structure of pseudoazurin from Methxlobacterium extorquens 
AMI. 
(a) All the non-hydrogen atoms are connected by spokes. Water molecules are not shown. 
(b) Main chain structure; Of-carbon atoms are connected by spokes. 
(c) Ribbon model; a-helix part is expressed as hehcally wound ribbon and /3-pleated sheets by flat ar

rows. Four ligands around the copper atom, expressed by a flat disc, are drawn by balls and 
spokes. 
[Reproduced with permission from T. Inoue, Doctral Thesis, pp.68, 69, Osaka Univ. (1994)] 

12.8 Structure Analysis of Macromolecules by Image Reconstruction 
from Electron Micrographs (Electron Crystallography)̂ ^^^^ 

12.8.1 Principle 
This is a method for reconstructing the three-dimensional structure of a macromolecule 
from a set of electron microscopic images of the specimen. The images obtained by a 
transmission electron microscope (TEM) are hmited in that they are two-dimensional, i.e., 
they are only magnified projections of three-dimensional objects at all levels perpendicular 
to the direction of view, and therefore more than one image is generally needed to see the 
objects in three dimensions. 

Assuming that the structure of the object is expressed by a function,/(.x, j , z), its elec
tron microscopic image, s (y, z), is 

The Fourier transform 5(F, Z) of image s{y, z) 

S{Y,Z) = [^dy[^dxs(y,z)txp[2miYy+Zz)] 

(12.24) 

(12.25) 

is, in the reciprocal space (Fourier space), a section F(0, 7, Z) passing through the origin 
and perpendicular to the projected direction (Fig. 12.27), where F (X, Y, Z) is 

F(X,Y,Z) = JZ^[jy[jzf(x, y,z)exp[2m{Xx +Yy+Zz)] (12.26) 

That is, an electron microscopic image gives the information about a section in the recipro
cal space. If the structure of the object has adequate symmetry, a small number of sections 
can give a reasonable amount of information on F (X, F, Z), and the three-dimensional 
structure of the object/(jc, y, z) may be obtained by the inverse Fourier transformation of F 



12.8 Image Reconstruction from Electron Micrographs 351 

(X, r, z). 
In the case of a two-dimensional crystal, if the crystal plane is assumed to be the yz 

plane, its Fourier transform F is discontinuous in the plane defined by X = const, and con
tinuous in the X direction. Information on F can, therefore, be obtained from many images 
of various electron beam incidence by Fourier transformation, the tilt method being often 
apphed for this purpose (Fig. 12.27). If the crystal is one-dimensional with helical symme
try, a three-dimensional structure may be reconstructed from an image perpendicular to the 
screw axis. In the case of a zero-dimensional crystal such as spherical viruses having high 
point symmetry, a small number of images enable us to reconstruct the structure. 

Electron microscopic images have a number of distortions due to various "noises": in
stability and discreteness of the beam, instability of the power supply of the lens, mechani
cal vibrations, the effect of extraneous fields, the inhomogeneity of photographic emulsion, 
and so on. In addition there are instrumental errors in measurements of electron micro
graphs. Quantitative data on the image in the digital or graphical form may be obtained us
ing computer-controlled densitometers. Corrections of systematic instrumental effects, lens 
aberrations, defocusing, and phase constrast can be made. 

Electron microscopic images can be improved experimentally by using optical diffrac
tion and filtering technique or by using a computer. 

Electron beam 

Specimen 

-zfe TZZJL 

^ yth position (tilted) 

•A 

(a) 

Fig. 12.27 Tilt method.' 
(a) " The specimen is placed on the plane (defined by the y and z axes), and ordinarily the elec

tron microscopic image is taken in this position with the electron bram perpendicular to 
this plane (0 direction), 

(b) The Fourier transform of the image corresponds to the plane X = 0 in the reciprocal space 
(0 section). 

Electron microscopic images from directions 1, 2,... and V, 2',... respectively correspond to 
sections 1, 2,... and 1', T,... in the reciprocal space. These provide information around the cen
tral section and enable us to reconstruct the three-dimensional structure in real space by inverse 
Fourier transformation. 
(b): [Reproduced with permission from C. Toyoshima, Protein, Nucleic Acid, Enzyme (Tokyo), 

37, 1279, Kyoritsu (1992)] 
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Fig. 12.28 Schematic illustration of structure analysis of two-dimensional crystal by electron crystallography.^' 

(a) Preparation of two-dimensional crystal of macromolecules for electron microscopy: the specimen 
is tilted at three different angles. The arrow shows the direction of electron beam incidence, 

(bi) Electron micrographs of the two-dimensional crystal obtained with various incident angles of 
electron beam. (Because of quantum noise the S/N ratio of the images is generally not good). 

(b2) Corresponding electron diffraction patterns, 
(c) The best part of each image is selected with the aid of optical transformation. 

[Reproduced with permission from Y. Fujiyoshi, Protein Nucleic Acid, Enzvme (Tokyo), 37, 561, 
Kyoritsu (1992)] 

12.8.2 Procedures for the image reconstruction 

The procedures for the image reconstruction are schematically illustrated in Fig. 12.28. 
They are: 

A. Preparation of a two-dimensional crystalline specimen 
Glucose embedding was developed first.̂ ^̂  Very rapid cooling enabled us to embed the 
specimen in thin amorphous ice.̂ "̂ ^ This technique gives diffractions higher than 20 A reso
lution with much lower background noise than conventional glucose embedding. 

In order to make the specimen visible to the TEM it is necessary to. add heavy metals 
as an electron dense contrasting medium by either ordinary or negative staining. 

Bulk specimens such as muscle may be embedded, sectioned, and stained. 

B. Electron micrographs and electron diffraction patterns 
a) Electron micrographs. For the reconstruction of the three-dimensional structure of the 
specimen, numbers of electron microscopic images of the specimen with various tilt angles 
to the electron beam are needed. The necessary number of images will increase when the 
desired resolution of the structure to be reconstructed is high, the symmetry of the crystal is 
low, and the crystal is thick. For example, if the resolution desired is 20 A and the thick-
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(e) 
Amplitude 

0.005 0.01 A"' 0.01 A-

(0 

Fig. 12.28 (d) Density measurement of the selected part of each image, followed by Fourier transformation. 
(Continued) refinement of the unit cell parameters, and noise-filtering. 

(e) Phase determination. 
The origin of the phase is first determined on the Fourier transforms of the image with zero-
section. The determination proceeds in order from the Fourier transform of the images taken 
with the least tilt (1st section), the second least tilt (2nd section), the third least tilt (3rd sec
tion), etc. to those taken with the largest tilt angle. Amplitudes obtained are converted to the 
same scale. Better values of amplitudes may be obtained from the intensities of electron dif
fraction spots. Optimum phases(ei) and amplitudes(e2) are then determined plotting against '̂ *. 

(f) The three-dimensional structure is obtained by a procedure similar to the Fourier synthesis in 
the case of crystal structure analysis. 
[Reproduced with permission from Y. Fujiyoshi, Protein Nucleic Acid, Enzyme, 37, 561, 
Kyoritsu (1992)] 

ness of the specimen is ca. 100 A, it is necessary to record images with tilt angles 6 of 
every 10° from — 60° to + 60° along one direction. For the crystal with lower symmetry 
many more images such as another set of images along a different direction are needed. 

As the electron microscopic image is a projection of the structure, the Fourier trans
form of an image corresponds to the section passing through the origin in the reciprocal 
space (Fourier space). The Fourier transform of the image with no tilt gives the Fourier 
components on the basal plane (zero section), and that of the image with any tilt angle 0 
gives those on the plane tilted with 0*(= 90° - 6) (Fig. 12.28). 

For the symmetry of plane groups refer to the International Tables for Crystallography. 
Vol. A. 
b) Electron diffraction patterns. At each tilt angle for the electron microscopic image the 
electron diffraction pattern of the corresponding part is recorded for auxiliary use. 

C. Data processing 
a) Selection of the best part in each electron microscopic image. The part of the image 
where the details of the structure show up best is selected by optical diffraction patterns. 
b) Sampling of the optical density. Optical density of the selected part of the image is 
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measured and digitalized. With the map obtained by Fourier transformation unit cell para
meters of two-dimensional lattice in the basal plane in the Fourier space, t?* /?*, and 7* are 
determined and refined. Noise-filtering is then carried out optically using the refined unit 
cell parameters. 
c) Determination of amplitude. The sampled and filtered data of the image are trans
formed into amplitudes to be used for the reconstruction. Better values of amplitudes may 
be obtained from the intensities of the electron diffraction patterns. 
d) Determination of phases. The basic procedure is as follows: 

1) On the Fourier transform of the image with no tilt (zero section), the origin of the 
phase is first determined considering the symmetry of the transform and positions of sym
metry-related diffraction spots (peaks on the Fourier transform). Based on this origin, phas
es of the other diffraction spots are determined. 

2) On the Fourier transform of the image with the tilt (first section), the origin of this 
section is determined so that the phases of all the diffraction spots are close to the corre
sponding spots of the zero section. 

3) A procedure similar to that for the first section is extended to the second, third, and 
higher sections in order. 

4) As values of the phase and amplitude spread in some extent, both of them are plot
ted against z* in order to estimate the most plausible values. 

D. Fourier synthesis (Reconstruction of the structure) 
A Fourier synthesis is finally carried out taking into account the symmetry of the object^ 
and building up a three-dimensional map of the structure. The density at each point on this 
map is made up of all the different images of the object. 

12.9 Structural Study of Macromolecules in Solution—NMR 
Investigations—''''^ 

Recent development of the nuclear magnetic resonance (NMR) spectroscopy offers excel
lent information on the structure of macromolecules and also provides a powerful means of 
elucidating structure-function relationships in solution. NMR spectroscopy of small pro
teins has advanced to the point where one can routinely obtain site-specific information 
such as conformational changes, apparent p^a values, hydrogen-bonding geometry, and 
side-chain mobility. These are mainly due to the progress of two-dimensional Fourier 
transform NMR, and especially the use of nuclear Overhauser effect (NOE) data and dis
tance geometry algorithm.̂ ^"^^^ They are also supported by the development of multiple-
quantum techniques, sequence-specific assignment of NMR data, and heteronuclear two-di
mensional Fourier transform techniques, and others. Instead of distance geometry, applica
tion of molecular dynamics (cf. Section 12.7.2) is also carried out.̂ '̂̂ ^̂  

Figure 12.29 shown is an example of the molecular structure of Tendusmit determined 
by the use of NOE data and distance geometry algorithm,̂ "̂ ^ compared with the structure de
termined by X-ray diffraction.̂ ^^ A good coincidence can be seen between the two struc
tures with the exception of the N terminus. 

For example, for a helical particle the three-dimensional Fourier program takes the form of a Fourier-Bessel 
synthesis into which the appropriate helical parameters can be inserted. 



(a) 

Fig. 12.29 Molecular structure of r^«JM5m/r. 
(a) Structure in solution obtained by NMR studies.̂ '̂ ^ Structures obtained from four independent ini

tial structures generated randomly. Convergence of the Â  terminus is not superimposed. 
(b) Determined by means of X-ray diffraction.^ 
[Reproduced with permission from (a): A. D. Kleine et al., J. Mol Biol, 189, 377, Academic Press 
(1986), (b): J. W. Pflugrath e? al, J. Mol Biol, 189, 383, Academic Press (1986)] 
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13. Analysis of the Breadth and Shape of Diffraction 
Patterns 

The broadening of X-ray diffraction patterns observed consists of instrumental broadening 
(broadening due to observation and recording conditions) and true broadening. As shown 
schematically in Fig. 13.1, the true broadening of the diffraction patterns is determined by 
two factors: 1) broadening due to the crystallite^ size (cf. Fig. 2.21) and/or 2) broadening 
due to the lattice distortion inside the crystallites. Fig. 13.2 gives an example of powder 
diffraction photographs.^^ Line profiles show remarkable changes due to crystallite size. 

Broadening One-dimensional array of 
unit cells 
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due to 
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d=do 

Uniform strain 

Non-uniform strain 

a '^do + Jd 

^28 

arm 
d' = do±Ad ^26 

Fig. 13.1 Schematic illustration of the broadening of the diffraction pattern. 
[Reproduced from B.D. Cullity, Elements ofX-Ray Diffraction, p.266, Addison-Wesley Pub. (1956)] 

^ In this chapter, as in Chapter 10, "crystallite" means "crystallite" and "crystalline region" (or "crystalline part"). 
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Fig. 13.2 Crystallite-size effects.'^ 
(a) Raney nickel, about 10^^ cm average diameter; (b) nickel powder of "ideal" size, about 10''^ cm; 
(c) rutile, Ti02 powder insufficiently ground, about 1 0 ' ^ cm 
[Reproduced with permission from L.V. Azaroff, Elements ofX-Ray Dijfraction, p.550, McGraw-Hill 
(1968)] 

13.1 Instrumental Broadening 

13.1.1 Systematic errors in measured diffraction breadths 
The measured breadth (width) of a diffraction Hne includes not only the inherent breadth of 
the diffraction G(S) (or more correctly /th(5)), but also broadening that is characteristic of 
the measuring apparatus. This is illustrated in Fig. 13.3. If the broadening contributed by 

a{S) G{S) 

Fig. 13.3 
Contributions to the mea
sured breadth of a diffraction. 
(a) Broadening due to the 

apparatus, f 
(b) Diffraction profile for 

ideal pinhole X-ray 
beam. 

(c) Actual broadening of the 
diffraction. 
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the apparatus alone is of the form a(S) (the instrumental broadening function), and that due 
only to the very small but otherwise perfect crystals is of the form G(S), the overall broad
ening (for the given crystals with the given apparatus) will be of the form G(S) * a{S). This 
is an application of the convolution operator described in Section 5.2.1, which is here used 
to average a function G(S) over a function a(S) for all values of G(S). The intensity is given 
by 

I,US) = [^G{S-S')a(S')dS' = G{S):^a(S) (13.1) 

13.1.2 Methods of correcting the line profile 

A. Reference method (including Kai, Kai doublet correction) 
The instrumental broadening function a{S) is determined from a reference line of a standard 
specimen which gives no broadening due to particle size {i.e. which consists of particles of 
effectively infinite size). Debye-Scherrer lines of the standard specimen are produced un
der the same experimental conditions as the specimen under study. If the integral breadths 
of/(5),a(5), andG(5)are 

B = 
\l{S)dS 

1(0) ' 
b = 

\a(S)dS _ JG(5)d5 
a{0) 

G = 
G(0) (13.2) 

the correction curve, p/B vs. bIB can be constructed (Fig. 13.4).̂ ^ Then, if a{S) and G{S) 
can be approximated by Gaussian functions, 

B^ = p^ + b^ (13.3) 

while if a(S) and G(5) are Cauchy (Lorentz) functions^ 

B = p + b (13.4) 

Before this correction is applied, however, a further correction must be made: the 
monochromatic X-rays normally used contain both Kai and Kai radiations, and this presents 

1.0 

0.8 

0.61 

0.4 

0.2 

\ v Half-width \ \ \ \ \\ 
Integral breadth \ \ 

Fig. 13.4 Correction curve for the broadening due to the apparatus.^^ 
[Reproduced from F.W. Jones, Proc, Roy, Soc, A156, 16, Royal Society (1938)] 

These B's are not to be confused with those expressing isotropic temperature factors. 
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a further source of broadening for which correction is necessary. The separation 6 of the 
Ka\ and Kai diffractions increases with the diffraction angle 20 as shown in Fig. 13.5.̂ ^ 

20 40 60 80 100 120 140 160 180 

2 ̂ [degrees] 

Fig. 13.5 Angular separation between Ka doublet components for the principal X-rays vs. diffraction angle.^^ 
[Reproduced from H.P. Klug, L.E. Alexander, X-Ray Diffraction Procedures for Poly crystalline and 
Amorphous Materials, p.505, John Wiley & Sons, Inc. (1954)] 

Postulating that the Ka\ and Ka2 profiles are usually similar figures having an intensity ra
tio of 2 : 1, Jones showed that the sum of the two profiles divided by the height of the com
posite maximum is the observed integral breadth.^^ Fig. 13.6 shows the correction curve 

0.3 0.4 0.5 0.6 

8/bo or 8/BQ 

0.8 0.9 1.0 

Fig. 13.6 Correction curve for the broadening due to the Ka doublet.^^ 
A, Using the integral breadth of a diffraction due to a\ radiation alone, for 6 close to 80° (Jones' 

curve). B, Profile intermediate between C and D. 
C, Profile approximates to Gaussian function. 
D, Profile approximates to Cauchy (Lorentz) function between B and C. 
[Reproduced from H.P. Klug, L.E. Alexander, X-Ray Diffraction Procedures for Polycrystalline and 
Amorphous Materials, p.504, John Wiley & Sons, Inc. (1954)] 
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obtained in this way. The values labeled 0 are the uncorrected experimental breadths. 

B. Fourier method 
The instrumental broadening function can be represented by a convolution 

a{S)= a\(S) * a2(S) * ... * aj(S) * ... (13.5) 

where aj(S) is a line broadening function due to a single special cause, such as finite width 
of the X-ray source, width of the counter slit, height of the source and of the counter slit, 
horizontal and vertical divergences, absorption, specimen orientation, misalignment of the 
sHts, etc.̂ ^ The Fourier transform of Eq. 13.5 gives 

A = ^[a(S)] = AA2...An = UAj ^^3 ̂ ^ 

from which an unknown broadening function can be obtained by inverse Fourier transfor
mation. 

a. = g^->[A/i7A,] (13 7) 

C. Variance method 
If we denote the variance of the broadening function aj{S) by W,, 

£° {S-<S>faj{S)diS 

From Eq. 13.6 we obtain 

7 = 1 

This also permits the isolation of the broadening due to a single cause. Some of the approx
imate functions {e.g. Lorentz function) encountered have infinite variances, which may be 
avoided by using truncated profiles. However, in the Fourier method, the truncated profile 
leads to a meaningless oscillation of the broading function.̂ ^ 

13.2 Relationship between the Size and Shape of an Ideal Crystal and 
the Broadening of Its Diffraction Pattern 

13.2.1 Broadening due to the Laue function 
As mentioned in Section 2.9, the shape of the X-ray diffractions due to ideal crystals de
pends on the product of the structure factor and the Laue diffraction function. From Eq. 
2.38, therefore 

sin'{7rM(^-^)} sm^[KN2{S-b)} s,in'[KN^JS-C)] 

sin'{;r(5-a)} * sin'{;r(5-Z^)} ' sin'{;r(5-c)} ^^^-^^ 

where G is the broadening of the reciprocal lattice point in reciprocal space, i.e. the broad
ening of the diffraction pattern (c/ Fig. 2.21). The broadening of the reciprocal lattice 
points can thus be made to yield a measure of the number of unit cells along the direction 
normal to the planes producing the diffraction in question (that is, the direction from the 
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origin to the reciprocal lattice point for the planes) and subsequently an estimate of the cor
responding crystallite size. Eq. 13.9 is the analytical expression of the function for a crystal 
in the form of a parallelepiped with M, Â 2, and Â3 unit cells respectively in the directions of 
the principal axes. The geometrical characteristics of crystals with other, specific shapes 
(e.g. spheres, ellipsoids, etc.) influence the summation of the exponential terms in Eq. 2.38 
in the Fourier synthesis of the lattice points, and lead to functions which differ in form from 
G, In these cases G takes a form similar to the scattering function (see Appendix, Table 5). 
The reader is referred to other publications" '̂̂ ^ for further details, but with the exception of 
high polymers, which in almost every case exhibit significant lattice distortion (see Section 
13.6.1), the function G is generally a satisfactory approximation. 

13.2.2 Variation in the shape of diffractions with IF P • G 
We now turn to another problem that arises in the analysis of the shapes of diffractions, par
ticularly when considerable broadening is caused by imperfect or very small crystals. The 
shape of the diffractions is determined ultimately by the product of G and I F P, although 
hitherto in our treatment the dominant factor has been G. This dominance is effective as 
long as the variation of I F P with diffraction angle is much slower than that of G. 

It must not be forgotten, however, that I F P may significantly affect the product (and 
therefore the shape of the diffractions) if, when G is fairly broad, it varies at all rapidly with 
diffraction angle. 

A further complication, even in the absence of any rapid variation in I F P, can arise 
whenever the number of unit cells (N in Fig. 2.21) is very small and G correspondingly 
broad, for then the secondary maxima between the principal maxima at the reciprocal lat
tice points may be clearly distinguishable, and will appear to be diffractions from a separate 
reciprocal lattice. This effect will be discussed in Section 13.3.4 in connection with the dif
fraction pattern of Nylon 6,6. 

13.3 Calculation of Crystallite Size from the Broadening of the 
Diffraction Pattern 

13.3.1 The Scherrer formula 
Assuming that the crystallite is a cube of edge length L — Na, Scherrer and Bragg gave the 
following approximation, based on the Laue diffraction function, for the broadening of dif
fractions: 

^ " I ^ ^ (13-10) 

where A is the wavelength of the X-rays, and 0 the Bragg angle. K is known as the Scherrer 
constant (Table 13.1).̂ ^ 

Table 13.1 Values for the Scherrer constant K^^ 

Form of j3 K 

For the half-breadth/3i 0.9 
For the integral breadth P (general) 1.05 
Case of a disordered layer lattice 1.84 

(For irregularity in the drection of the c axis, the 00/ dffractions are sharp, while the 
unsymmetrical hk diffractions are broadened. This value is for the hk diffractions.) 

[Reproduced from B.E. Warren, Phys. Rev., 59, 693, Am. Inst, Phys. (1941)] 
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A. Jones'method^^ 
The background is first eliminated from the intensity distribution curves of the various dif
fractions, and any overlapping diffractions are resolved {cf. Fig. 13.3). The integral breadth 
5o of the various diffractions is then found from these corrected intensity curves. The inte
gral breadths bo, are also found for the various diffractions of a standard specimen. It is of
ten necessary to convert the resulting integral breadths into the breadths due only to the Ka\ 
radiation. This is achieved by finding the Kau Ka2 separation angle <5 from Fig. 13.5 for 
the appropriate Bragg angle, and calculating 5/Bo and S/bo. B/Bo is found from S/Bo and 
b/b() from d/bo with the aid of Fig. 13.6, and it is then possible to find the breadths B and b 
of the diffractions due only to the Kai radiation, and to calculate b/B. A b/B — p/B correc
tion curve (cf. Fig. 13.4) for the conditions under which the apparatus operates is used to 
obtain p/B, from which the true breadth p of the diffraction is found. 

B. Crystallite size of polythylene 
An X-ray powder diffractometer, using Cu Ka radiation (with Ni-Co balanced filters) at 30 
kV and 20 mA, was used to estimate the dimensions of polyethylene crystallites in an un
drawn specimen of polyethylene, assuming that the broadening of the diffraction lines 
might be taken as entirely attributable to small crystallite size. Breadth standards were de
rived from measurements on a standard quartz specimen under identical experimental con
ditions. The integral breadths of the diffraction lines were used. The analysis proceeded as 
follows. 

1) The Ka\, Kai separation angles d for the various diffraction angles were read off 
from Fig. 13.5 (Table 13.2, (a) and (b) column 4). 

2) The values of b/bo and B/Bo were found for 6/bo and 5/Bo respectively from Fig. 
13.6 (Table 13.2, column 6). 

3) Using the b values for the standard specimen in the vicinity of the appropriate 26 
value, p/B corresponding to the b/B for the specimen under examination was found from 
Fig. 13.4 and used to calculate j8 (Table 13.2(b), columns 8-11). 

Table 13.2 Estimation of crystallite size: typical calculation 
(a) Standard quartz specimen 

hk-l 20[deg] bo d/bo b/bo 

100 
10-1 

no 
20-1 
11-2 

20.8 
26.55 
36.4 
45.7 
50.0 

0.21 
0.21 
0.21 
0.21 
O.2I5 

0.07 
0.072 
O.II7 
0.143 
0.159 

0.333 
0.343 
0.557 
0.681 
0.739 

0.88 
0.88 
0.73 
O.7O5 
0.698 

0.185 
0.185 
0.153 
0.143 
0.15 

(b) Polyethylene 

hkl 

110 
200 
220 
400 

specimen 

20[deg] 

21.65 
23.8 
44.0 
49.18 

Bo 

1.022 
1.014 
I.4O5 
1.31, 

5 

0.07, 
0.07, 
0.14, 
0.159 

5/Bo 

0.065 
0.070 
0.100 
0.121 

B/Bo 

0.995 
0.995 
0.99o 
0.985 

B 

I.OI7 
I.OO9 
1.39, 
1.29, 

hkl 

110 
200 
220 
400 

b/B 

0.182 
0.183 
O.lOe 
0.116 

p/B 

0.964 
0.964 
0.984 
0.97 

i8[deg] 

0.980 
0.973 
1.369 
1.252 

i8[rad] 

0.0171 
0.0171 
0.0239 
0.0218 

cos 6 

0.9822 
0.9785 
0.9272 
0.9092 

L[A] 

96 
96 
73 
81 
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4) The crystallite dimension L was calculated from Eq. 13.10. Since the integral 
breadth was used, the value used for K was 1.05 (cf. Table 13.1). 

13.3.2 Effect of crystallite size distribution 

When there is a distribution of crystallite sizes in the specimen, the broadening of the dif
fraction profile results from the combination of the profiles due to the various size fractions, 
and is generally of the form 

• sin'{;rA^(5-a)}„^^ 
s in^{; r (5 .a)}^^^^^^ (13.11) 

where [sin^{7rA^(S*a)}]/[sin^;r(S-a)] is the one-dimensional diffraction function, and W{N)dN 
is the number of crystallites with sizes between N and N + dÂ , The experimental I{S) is 
therefore resolved by some suitable method into the I{Sj) due to the various crystallite size 
fractions (c/. Fig. 13.22(a)), and the resulting profile curves are analysed (c/. Section 
13.6.2D). 

13.3.3 Effect of crystallite shape 

Powder diffraction diagrams caused by different crystal habits are pictured in Figs. 13.7 and 
13.8^̂  Diffractions in Fig. 13.7 give saw-toothed line shape due to one-dimensional array 
such as random layer lattices, regular interposition of amorphous materials, and others. 
Needle-like or plate-like crystals may give a diffraction pattern, schematically shown in 
Fig. 13.8. In the case of a needle crystal (needle axis: c axis), for example, among the 
broad hkl diffractions only the 00/ diffraction will give sharp diffractions, whereas in the 

Diffraction angle, [26] 

Fig. 13.7 Schematic illustration of a diffraction diagram with saw-toothed line shape caused by two-dimensional 
crystals, random layer lattices, regular interposition of amorphous material, or displacement of whole 
lattice layers.^' 
[Reproduced from F. Schossberger, Adv. X-ray Anal., 1, 85, Plenum Press (1957)] 
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DifTraction Plate-like crystal Needle-like crystal ^^/7| 
hkl sharp broad 
001 broad sharp 

Diffraction angle, 26 

Fig. 13.8 Schematic illustration of selective line broadening in a diffraction diagram, caused by needle-like or 
plate-like crystals having large dimensions in one direction and small in the other.^' 
[Reproduced from F. Schossberger, Adv. X-ray Anal., 1, 85, Plenum Press (1957)] 

case of a plate-like crystal in which the a and b axes are in the plane of plate, among the 
sharp hkl diffractions broad 00/ diffractions will be observed. Distinction between these 
needle- and plate-like crystals is possible because of selective broadening of the lines if the 
small dimensions are in the range of Scherrer broadening (20-1,500 A). 

13.3.4 Application to very small crystallites 
When the crystallites are very small, consisting of only a few unit cells, the principal maxi
ma of the Laue function (Fig. 2.16) exhibit considerable broadening. If I F P varies at all 
rapidly with diffraction angle in the region of these maxima, the shape of the diffraction 
changes. The effect of the change is such that the position of the principal maximum of 
Ah = I F P G is displaced in the direction of higher I F P and vice versa (Fig. 13.9), which af
fects values of the cell constants determined. 

A. 020 Diffraction of Nylon 6 (Perlon L)̂ ^ 
An example is given in Fig. 13.10 of the broadening of 020 diffraction of Nylon 6 (Perlon 
L). Fig. 13.10 gives the the calculated variation of the position and approximate shape of 
the 020 diffraction of Nylon 6 as the number of unit cells in the direction of the b axis (fiber 
axis) varies from one to five. Wallner^^ found that the maximum of the 020 diffraction 
moved from sin 6 = 0.095 for a normal specimen to sin 6 = 0.092 for a heat-treated speci
men. On comparison with the calculated positions of the maxima in Fig. 13.10, he deduced 
that the crystallite size in the normal specimen corresponded to about two unit cells in the 
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0.115 

S-a 

Fig. 13.9 Shifts of diffraction peakes. 
When G is fairly broad, each diffraction peak shifts in
side or outside from the peak position of G depending 
upon rapid decrease or increase of I F P. 

Fig. 13.10 
Variation in the intensity of the 020 dif
fraction from Nylon 6 (Perlon L) for 
one to five unit cells in the b direction 
(fiber axis).^^ 
[Reproduced from L.G. Wallner, 
Monatsh. Chem., 79, 271, Springer 
Verlag(1949)] 

fiber direction, while the heat treatment had resulted in crystal growth giving a crystallite 
dimension of about four unit cells. 

B. OkO Diffraction of Nylon 12 
Table 13.3 gives a result of a discrepancy of the fiber period {b axis) of Nylon 12 deter
mined from various 0A:0 diffractions at different temperatures. Values of the fiber period 
determined showed an increase for the higher order diffractions. A schematic representa
tion of diffraction profiles at different drawing temperatures is given in Fig. 13.11. In Fig. 
13.11, as a measure of the crystallite size the half breadth of each diffraction in 20, / 3 | is 
shown by an arrow at the peak position, and also as a measure of the degree of crystallites 
orientation, the half breadth of each diffraction arc along the azimuthal (I/A) direction, H\ is 
given by a vertical arrow. Fig. 13.12 depicts changes in diffraction profiles of Nylon 12 
with draw ratio. With increase of the draw ratio slight shifts of the 0A:0 diffraction peak and 
slight increase of crystallite size were noted, while improvement in the degree of crystallite 
orientation was observed. 



13.3 Calculation of Crystallite Size from the Broadening of the Diffraction Pattern 369 

Drawing temp. 
VC] 

Table 13.3 Fiber period determined of a Nylon 12 specimen 

Fiber period [A] 

020 040 060 080 0,10,0 0,12,0 

room temp. 
50 
70 

100 
130 
140 
140 
140 
140 
150 
160 

1.0 
4.0 
4.0 
4.0 
4.0 
2.4 
3.0 
3.4 
4.0 
4.0 
4.0 

31.72 
29.26 
29.63 
29.97 
30.27 
30.82 
30.78 
30.65 
30.67 
30.72 
31.li 

30.34 
30.58 
30.94 
31.2i 
31.4o 
31.4o 
31.33 
31.34 
31.4o 
31.57 

30.65 
30.93 
31.26 
31.45 

31.39 
31.48 
31.49 
31.56 
31.58 

31.76 

31.86 
31.82 
31.87 

31.72 

31.78 

31.7, 

31.78 

[Reproduced with permission from T. Ishikawa et ai, J. Chem. Soc. Jpn., p. 1747, Chem. Soc. Jpn. (1973)] 

150 

130 

110 

90 

70h 

50 
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-f 
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> 
^ 

4* 
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-f 
-f 
H* 
• ^ 

•^—^-^ 
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l̂ T̂̂  
6.0 11.7 17.4 

^ 
21.0 

2^n 

Fig. 13.11 Schematic representation of the change in Old) and hOl diffraction profiles from Nylon 12 with drawing 
temperature.^ Vertical and horizontal arrows respectively show half widths, H{ and P\ measured 
along the i/Aand 26 directions of OM) and M)l diffractions. 
[Reproduced with permission from T. Ishikawa, et. ai, J. Chem. Soc. Jpn., p. 1749, Chem. Soc. Jpn. 
(1973)] 
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Fig. 13.12 Schematic representation of the change in OkO and hOl diffraction profiles from Nylon 12 with draw 
ratio.^^ [Reproduced with permission from T. Ishikawa, et. ai, J. Chem. Soc. Jpn., p. 1749, Chem. 
Soc. Jpn. (1973)1 

C. Laue Functions for Uniaxially Oriented a-Nylon 6,6 
Taking as an example a uniaxially oriented fiber photograph, the behavior of the Laue func
tion for rotation of triclinic crystallites about the fiber axis (c axis) is as follows. If the 
number N3 of unit cells along the c axis is sufficiently large, the Laue function is given by 

GiR,lie) = Ni^[N,N2+2£ £ (D+E)(N,-p)(N2-q) 
p=0 q=0 

XJoilKRlp^A^+q^B^-lpqABcosy^f^) 
Ni-lN2-\ ( 13 .12 ) 

+2X J,(D-E)(N,-p)(N2-q) 
p=0 q=0 

XM27tR{p^A^+q^B^ + 2pqABcosY''Y^^) 
where 

A = asinp, B = b sin a, 7* = 180° — y 

C\ = /(2(cos /3)/c, C2 = /Z7(cos a)lc 

D — cos InpCi cos 2nqC2, E = sin InpCx sin InqCi 

a, b, c, a, P, and 7 are the unit cell constants; iVi, N2, and NT, the number of unit cells in the 
directions of the a, b, and c axes respectively; / the order number of layer line in the direc
tion of the fiber axis (the c axis); and R the distance from the fiber axis in the cylindrical co
ordinate system of the reciprocal lattice. 

Figure 13.13 shows the Laue functions G(R, lie) found by Keller and Maradudin^^ with 
the aid of Eq. 13.12 for the second layer line of uniaxially oriented Nylon 6,6 {a form). 
Fig. 13.13(a) and (b) show the Laue functions for two-dimensional net planes with M = 1 
^ 7 , Â2 — 1, and Ni= I, N2= I ^1. These net planes correspond to the 010 and 100 
planes respectively. Calculations were also carried out for three-dimensional lattices with 
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I5h 

1 ^̂̂  /"« 

. . . . ^ ^._„_,.„.,.,. ^ _,^..„ „̂  

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 
R 

0.02 0.04 0.06 0.08 O.IO 0.12 0.14 0.16 0.18 
R 

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 
R 

^ lOh 

0 0.01 0.02 0.03 0.040.050.060.070.08 0.090.10 
R 

Fig. 13.13 Laue functions G(R, lie) for uniaxially oriented a form Nylon 6,6.̂ ^ 
(a) Two-dimensional net planes {Ni =\,N2~\'^1) 

, M = l ( / . e . G = const. = 1); ,M = 2; ,A î = 3; , Â , = 

2; ,A^2=3; • , M 

—,A^ i = 5; ,A^i = 6; x x x x , M = 7 
(b) Two-dimensional net planes (Â i = 1, Â2 = 1 ̂  7) 

, N2 = 1 {i.e. G = const. = 1); , N2 = 
— , A^2;= 5; , Â 2 = 6; x x x x , Â 2 = 7 

(c) Three-dimensional lattice (Â i = 5). The maximum at /?~0.10 corresponds to the 002 diffrac
tion. Note the secondary maximum at /?~0.03 

, M = 1; , N2 = 2; , N2 = 3; — , N2 = 4; , Â2 = 5 
(d) Three-dimensional lattice {N\ = 7), the extension of (b) to the tnird dimension. The figures in 

the diagram give the height of the maximum for /?=0.01. The secondary maximum at /?~0.027 
is the same as in (c) 

, M = 1 ; ,A^2 = 2; ,A^2 = 3; —,A^2 = 4; ,A^2 = 5; 
x x x x , Â 2 = 6; - X — X - A ^ 2 = 7 
[Reproduced from A. Keller, A. Maradudin, / . Phys. Chem. Solids., 2, 301, Pergamon Press 
(1957)] 

N\ = 5, N2= I "-^ 5 and N\ = l, N2= \-^l. It is evident that the Laue function varies in a 
complex manner at small values of ^ (Fig. 13.13(c) and (d)). Fig. 13.13 (d) shows the Laue 
functions for the three-dimensional analogues of the net planes of Fig. 13.13 (b); a maxi
mum appears close to /? = 0.10 for 7V2 ^ 3. This maximum corresponds to the 002 diffrac
tion (/? = 0.104) of well-developed crystals of Nylon 6,6 (a form) as illustrated in Fig. 
13.14.̂ ^ As this maximum appears, the small peak at i?~0.03 disappears, only to reappear 
atiV2 = 4 - 5 . 

The P form of Nylon 6,6 has also been reported. *̂^ The presence of several diffractions 
that cannot be indexed in accordance with the a form has been interpreted as implying the 



372 13. Analysis of the Breadth and Shape of Diffraction Patterns 

presence of the P form. The j3 form, diffractions characteristically are observed in various 
layer lines in pairs on either side of the meridian. The diffraction at /?—0.027, which has 
been identified as a ̂  form diffraction, may, however, be thought of as due to the secondary 
maximum that appears in the Laue function for Ni = 5 and Â2 — 4 as a result of the pro
nounced broadening of G(cf. Fig. 13.14^^ and Section 13.2.2). Moreover, all the diffrac
tions which could be associated with the P form are very weak compared with those clearly 
of the a form (which makes it difficult to determine their positions exactly) and usually ap
pear only when the specimen has very low crystallinity. This led Keller and Maradudin to 
the conclusion that the 002 diffractions attributed to the /3 form were in fact secondary max
ima of the 002 diffractions of very poorly developed a form crystalhtes. They also sought 
to explain the mechanism of crystallization of Nylon 6,6 on the basis of this interpretation. 

Fig. 13.14 Diagrammatic representation of the maximum in R at —0.01 corresponding to the 002 diffraction from 
a form Nylon 6,6.̂ ^ [Reproduced from A. Keller, A. Maradudir, J. Phys. Chem. Solids. 2, 301, 
Pergamon Press (1957)] 

13.4 Estimation of Lattice Distortion from Line Broadening 
If the crystal has lattice distortions due to stress by mechanical or physical treatments or if 
the atomic density of some component in crystalline substance is not uniform, the interpla-
nar spacing d is not constant throughout the crystal, and different parts of the crystal dif
fract at different angles (Fig. 13.1). 

The broadening of a diffraction pattern of such distorted crystals may be estimated 
from the Bragg equation. If the maximum strain in the crystal is g( = Ad/d), the spacing d 
will vary from d(l + g) to d(l — g), and 0 will vary over a range numerically equal to 
2g tan 6. Since the deviation of the rays is 20, the range of angle over which the diffraction 
is appreciable is twice this,̂ ^^ or 

/ 3 ° # 4 g t a n 0 (13.13) 

Eq. 13.13 can be written as 
/3° = 4^ tan0 (13.13a) 

where g is the weight averaged strain. For a Gaussian strain profile, it follows that 
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g = (l/2)(2;r)"^<g^>"^ 

where < <ĝ  > ^'^ is the mean-square strain of the lattice. 
As shown earlier, the integral breadth of the line broadening due to the volume-weight

ed crystallite size < L > v is given by the Scherrer equation 

/3c = 
KX 

<L>vCos6 (13.10a) 

If at least two orders of diffractions are observed and if only one source of the broaden
ing is operative (either crystallite size or distortion, but not both), it is possible in principle 
to distinguish which factor is present by ascertaining whether the /3/tan 6 vs. 0 or the p cos 
6 vs. 6 plot is approximately constant (Fig. 13.15). 

Small particles Lattice distortion 
(or stress) 

Lattice distortion 
in small particles 

A 

M f\ / ±J2t 

-TTLI w 
V jy^ 

f/tan^ 

/?cos^ 

90° 

(a) (b) 

Fig. 13.15 Line broadening due to crystallite size and lattice distortion.'̂ ' 
(a) Small particles (small crystallites); p cos6 vs. 6 is approximately constant 
(b) Lattice distortion (or stress); j8/tan^ v̂ . 0 is approximately constant 
(c) Lattice distortion in small particles 
[Reproduced from F. Schossberger, Adv. X-ray Anal., 1, 81, Plenum Press (1957)] 

13.5 Separation of Line Broadenings Due to Crystallite Size and 
Lattice Distortion 

13.5.1 Method of integral breadths 

If both size and distortion broadening are operative, we can estimate the magnitude of two 
contributing factors by approximating the shapes of two contributing diffraction profiles ap
propriately. Frequently they are assumed to be either Cauchy (Lorentzian) or Gaussian 
function. If both diffraction profiles are approximated as being of the Cauchy type, the net 
integral breadth, /3, of the pure diffraction profile will be the sum of the size and distortion 
breadths, j8̂  and j8^ 
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j3 = ^s + ^D (Cauchy), (13.14) 

whereas for two Gaussian profiles 

p2 ^ ^psy _^ ^pD^ (Gaussian). (13.15) 

This method is convenient if the diffraction peaks are isolated or if the overlapped 
peaks can be resolved to individual peaks correctly. The labor of evaluating Fourier trans
forms can be avoided, although at the cost of reduced information and accuracy, by restor
ing to integral breadths in place of the complete profiles of the diffractions. 

It has been experimentally verified that crystallite size broadening can often be approx
imated by a Cauchy function, whereas distortion broadening is better described by a 
Gaussian function.̂ '̂ "̂ ^ A Voigt function (Eq. 11.7) is often adopted as the profile-shape 
function in the profile fitting method. In this case the Cauchy and Gaussian components of 
the structurally broadened profile (integral breadths j8c and J8G, respectively) are due to size 
and strain broadening, respectively. Thus 

and 
P'' = Po (13.16) 

13.5.2 Method of profile fitting 

The development of the least-squares profile-fitting method for the determination of the 
crystal structures using powder diffraction patterns has made possible the simultaneous de
termination of crystallite-size and lattice-strain parameters. 

As profile shape functions the Voigt, V(x), pseudo-Voigt, pV{x) and Pearson VII, 
pVII(x) functions are frequently considered; these afford approximate descriptions of pro
file shape of about the same accuracy.'̂ '̂ ^^ On the one hand, the Voigt function provides 
some physical basis for the size-strain analysis because it implies the convolution of the 
constituent Cauchy and Gaussian components. On the other hand, the pseudo-Voigt (Eq. 
11.9) and Pearson VII (Eq. 11.11) functions are more readily applied in the profile-refine
ment method. ̂ ^̂  

From the kinematical diffraction theory the weighted crystallite size < L > a, and the 
mean-square (local) strain, < g^ > are respectively related to the first and second order dif
ferentials of diffraction lines. ̂ '̂̂ ^̂  

'dAf(«,/)| 
<L>a=-(d/) 

<s'> = 

dn nioJ 

4;r/' 

d^A'(n,l) 

dn' 

d^A\n) 

niO dn' niO. 

(13.17) 

(13.18) 

where A^ and A^ are the normalized cosine Fourier coefficients of the pure only structurally 
broadened profile and of the size profile, respectively, n is the harmonic number, d is the in-
terplanar spacing of the diffracting planes and / is the order of the diffraction. 

According to Eq. 13.17,< L > a can be determined from a single-line, whereas < g' > 
[and d^A^(n)/dn^] can be determined from two orders of a diffraction. However, because of 
experimental difficulties, Eq. 13.17 and 13.18 have not been used as the basis of a multiple-
line method for size-strain analysis: Owing to truncation of profiles and background levels 
estimated too high, the Fourier coefficients of small harmonic number become unreliable 
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("hook" effect).̂ ^^ Because the profile-shape assumptions are of different strength for the 
various orders of a diffraction, the reUability of multiple-Hne method on the basis of Eqs. 
13.17 and 13.18 is very limited and even nonsense may result (negative size and/or nega
tive strain values). However, if the size estimates, according to Eq. 13.17 from the separat
ed orders coincide, a valuable strain estimate, according to Eq. 13.18, may be obtained.̂ "̂̂ ^^ 

In single-line analysis an additional assumption is required. From a recent review on 
single-line methods^^^ it appears that the following assumptions may be appropriate: 

(Assumption 1) 

d'A^(n)| 

dn^ ao~' ' (1^-1^) 

which includes the approximative description of the size-broadened profile by a Laue func
tion, or 

(Assumption 2) 

d^A^n) 

dn" ^,=^^P^'^' (13.20) 

where the size-broadened profile has been approximated by a Cauchy function (The period 
a is expressed in the same units as the integral breadth pc of the structurally broadened pro
file). 

For the case of a 
Voigt profile-shape function: 

By Assumption 1 

La = A/(2/3c'cos0) (13.21) 

and 

<g'>'' = {(/3G? -(2/7r)(i3G?}^''/{2(2;r)'^' tan 6} (13.22) 

and for a meaningful result 

l5G'M27ty^'Pc'. (13.23) 

Alternatively (by Assumption 2) 

<g'> "^ = PG/{2{27rf' tan 6}. (13.24) 

Similarly, for the case of a pseudo-Voigt profile-shape function, useful equations are also 
given.'̂ ^ 

13.5.3. Method of Fourier transforms^^^^^ 

The experimental diffraction profile, corrected for instrumental broadening, G{S) is the con
volution of the crystallite size profile, Gs(S) and distortion profile, GD{S), 

G(s)=Gs(S)^Gjy{S). (13.25) 

By the convolution theorem, As(t), the Fourier transforms of Gs{S) and AD(0. that of GD(S) 
are related to the transform, A(t, S), of the corrected experimental profile, G(5) 

A(r,5) = As(0-AD(r,5) (13.26) 

where, S = (2sin 6)/k and t is the length of vector t vertical to the diffraction plane. 
If we denote the mean square lattice distortion over the domain r by < gt̂  > , according 
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to Bertaut̂ '̂ ^ Warren and Averbach,^^^ and Warren,̂ ^^ AD(^, S) can be expressed for small 
values of g, and low orders of diffraction as 

A D ^ 5)= e x p [ - 27esY<g,^ > ] . (13.27) 

If we substitute Eq. 13.27 into Eq. 13.26 and take logarithms, the result is 

log A(t, S) = log As(t) - IT^SV < g? > (13.28) 

If several orders of diffraction can be observed, plotting the log A(r, S) against S^ for any 
desired values of t, As(0 and < gt^ > can be obtained from the ordinate intercept and slopes 
at low angles, respectively. 

For details and practical applications the reader is referred to papers of Warren and 
Averbach (Cu-Si single crystal)^^^ and Buchanan and Miller^^' (isotactic polystyrene). 

13.6 Analyses Including Background Scattering Due to Imperfect 
Crystals 

In Chapter 5 we discussed Hosemann's theory of X-ray diffraction by paracrystal lattices. 
According to this theory, in addition to the broadening due to the Laue function (G or L^ cf. 
Sections 2.9 and 13.2), there is a significant contribution to the X-ray diffraction broaden
ing from lattice distortions of the second kind (function g, cf. Section 13.6.1). The mea
surements of crystallite size mentioned in Section 13.3 are based on broadening due to the 
Laue function, and those in Section 13.4 are based on lattice distortion, but these are obvi
ously inadequate where the specimen has a typically paracrystalline structure {e.g. a high 
polymer crystal). On the other hand, it is doubtful on theoretical grounds whether the es
sentially one-dimensional statistics of Hosemann are entirely adequate to deal with this 
phenomenon. It is, however, in the authors' view, a major step forward beyond analyses 
which treat only "pure" diffraction breadths toward a soundly-based general treatment for 
the diffraction patterns of distorted crystals. As such it yields results which can be mean
ingfully compared with those of the earlier methods. The practical difficulties of drawing a 
rather arbitrary distinction between crystalline and amorphous scattering in the diffraction 
pattern or scattering curve which treatment involves, are nevertheless considerable. A few 
examples of analytical methods based on this theory will now be presented. The reader is 
referred to Chapter 5 for a statement of the basic principles. 

13.6.1 Broadening of diffraction patterns from paracrystalline structures 

The diffraction patterns of paracrystalline structures are often represented by a continuous 
X-ray intensity curve as shown in Fig. 13.16. Eq. 5.44 {cf. Eq. 5.38) is expressed in general 
by the following equation. 

+ -<A, ,z />^A'Z(5)*l5(5)P (1^-2^) 
V 

The crystalline diffraction peak is represented by the third term, in which the main fac
tor determining the shape and breadth of the diffraction pattern is Z{S) * I S{S) P. Where 
the value of < Aceii > ^ changes abruptly within an angular range smaller than the breadth of 
Z{S) * I S{S) P, the shape of the diffraction pattern is drawn out under the influence of 
< Aceii > ^ and is consequently governed by < Aceii > ^ Z{S) * I S{S) P. If the change in 
< Aceii > ^ is assumed to be slow in relation to Z{S) and I S{S) P the shape of the diffraction 
curve may in general be regarded as given by Z{S) * I S{S) P. For cases where the variation 



13.6 Analyses Including Background Scattering Due to Imperfect Crystals 377 

CO 

N 

(a) 

Fig. 13.16 Continuous intensity distribution for X-ray from a paracrystalline substance. 
(a) Crystalline peaks superimposed on background scattering. 
(b) Enlarged section of (a) (see text). 

of<Aceii>^ has an important effect, the reader is referred to Section 2.9.1 (c/. Fig. 
5.12(b)). The influence of Z(S) * I S{S) P on the shape of the diffraction depends upon the 
following factors. 

1) If the breadth of Z(5) is much greater than that of I S{S) P, i.e. if both the degree and 
extent of lattice distortions are large, the breadth of the diffraction pattern is dominated by 
the influence of Z(S), the paracrystalline lattice factor. 

2) If the breadth of I S(S) P is greater than the breadth of 2(5), i.e. if the regularity of 
the lattice is high but the regions themselves are small, the shape of the diffraction pattern is 
more strongly influenced by the profile of I S(S) P (the shape factor or the small angle scat
tering function). 

3) If the breadths of I 5(5) P and of Z(S) are comparable, the shape of the diffraction is 
affected by both, depending upon their convolution Z(S) * I S{S) P. 

We now consider the two elements which constitute Fig. 13.13, i.e. the crystalline 
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peaks and the background scattering which extends over the entire angular range. The 
paracrystalUne lattice factor Z{S) ( = Kk(S)) is a one-dimensional periodic function with a 
reciprocal lattice vector S = a* as the period (c/. Eq. 5.26). With h as the diffraction index 
for the one-dimensional crystal, the maximum of the /ith order diffraction peak and the min
imum between the Mh and Qi + l)th order peaks are given by (cf. Eqs. 5.32 and 5.33) 

^ ^^^^ \ + \^{ha^)\ ^ ^ ^ . ,^^ \-\mh^)a^]\ 

^ is the Fourier transform of Hkir), the probability finding the lattice point with vector r 
from the origin in the a direction (See Sections 5.3.1 and 5.3.2). Consider now the resolu
tion of the total scattering intensity curve Z(S) into the background scattering ZB, which we 
take to be the line joining the Zmm, and the part due to crystalline diffraction, which projects 
above this line (Fig. 13.13(b)), i.e. 

Z ( S ) = ZP(S) + ZB(S) (13.31) 

The fact that K(S) in Eq. 5.26 (i.e. Z(S) is a one-dimensional function with a period equal to 
the reciprocal lattice length a"^ = l/a corresponding to an average cell dimension a was 
mentioned above. It represents a periodic diffraction having maxima at points S = ha"^ 
such that h= 1, 2, 3,..., (corresponding to the 100, 200,... diffractions from crystals). As 
shown in Fig. 13.13, for a given period a* having order number h, the area under the total 
diffraction intensity Z(5), integrated over the interval a* from midway between the peak in 
question and the previous peak to midway between the peak in question and the next peak, 
is constant, i.e. 

CXy^^^'^^='"' (13-32) 
From Eq. 5.33 and Fig. 13.13, the following equation is approximately valid for Z(S). 

Jih--)a-
Z.(S)dS^a*j^^^=Z,(S)/a (1333) 

The area of the crystalline diffractions is therefore 

Cty^^^^'^^^i^^-^'^^^^ (13.34) 
2 

Since Zmax = l/Zmin, thc height Zp,max above ZB at the maximum Zmax is 

Zp, ma.(S) = 1/ZB(S) - ZB(S) (13.35) 

The integral breadth /3p(/i) of the crystalline diffraction emerging above the background lev
el is therefore the area (Eq. 13.34) divided by the expression in Eq. 13.35. 

P^^'^-^^rY^'-^'''' (13-36) 
The actual form of ^(S) for the hih order diffraction, i.e. for 5 = /za*, is given by Eq. 5.35, 
and the integral breadth of the diffraction due to the paracrystalline lattice is: 
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Mh) = ^{l-exp(-2K'g'h'} (13.37) 

Of the three possibilities, 1), 2), and 3) mentioned at the beginning of this section, 1) 
(where Z(5) is dominant) has broadening which is clearly that due to Eq. 13.37. In case 3), 
on the other hand, where neither Z(5) nor I S(S) P predominates, the correct procedure in 
principle is to calculate I S{S) P * Z(5), but this is difficult in practice. It may therefore be 
acceptable experimental procedure to take the root mean square of the breadths due to the 
two effects as an approximation to the measured breadth of the diffraction. Thus if the inte
gral breadth of the broadening due to the small-angle scattering accompanying the hth order 
diffraction is /3s, the breadth P(h) of the hih order diffraction due to the two effects is 

P(h) = [pAh) +PsTH^-^^) 
In our one-dimensional model, let the scattering body consist of a row of N units with 

average cell dimension a, so that its total length is A^ = L. Determination of the integral 
breadth from the small angle scattering function (scattering function of a rod in Table 6 of 
the Appendix) gives 

\S{S)\'=[^^~j, ps=ilL=\l{N-a) (13.39) 

The combination of Eqs. 13.37 and 13.39 with Eq. 13.38 gives 

la - ^ + { l - e x p ( - 2 ; r V / ^ ' ) } ' 
Â  

(13.40) 

Eq. 13.40 gives the diffraction breadth due to both effects. From Eqs. 13.38 and 13.40 we 
obtain 

p\h)- \IL^ = [\l{Aa)}[\-tx^{-27eg'h^)? 

g - (0.342//i)[- log(l - 2a{p\h)- IIL"]"^)]"^ (13.41) 

where /i = 1, 2, 3,... Since 1/L̂  is common to this set of diffractions, it can be eliminated 
and g can be found. This is a useful method of finding g without eliminating the effect of 
I S{S) P form P to obtain the diffraction breadth due purely to the paracrystal structure {cf. 
Section 13.6.2). 

13.6.2 Analysis of the broadening of diffractions from paracrystal structures 

A. Calculation of the factor Di for distortions of the first kind 
We shall now examine in detail the effect of the factor D\ (Debye factor) for distortions of 
the first kind upon the diffraction intensity. As is evident from Eq. 13.29, this factor D\ so 
acts on the crystalline diffraction terms as to reduce the intensity. All the energy lost from 
the crystalline diffraction in this way is dissipated as continuous background scattering in 
the form of the second term in the equation. Thus if the intensity of the scattering due to D\ 
in the continuous scattering cannot be correctly estimated, crystallinity measurements based 
on the background scattering are meaningless. D{ is totally disregarded in the simple 
method given in Section 14.2 for the measurement of crystallinity. If D\ is referred purely 
to distortions due to the temperature factor, its effect might cancel out when the measure
ments were carried out at a constant temperature. In reality, however, D\ arises from distor
tions of the first kind due to various causes. Consequently, differences in the structures of 
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different specimens will also influence the values of Di, and there are many cases where 
this factor cannot be disregarded. In this section we shall examine in detail the significance 
of Di particularly for paracrystalline theory. 

For a paracrystal, if the size of the crystalline regions, i.e. N, is very large (say N^5), 
I S(S) P is point-like with respect to ZB(S). Thus, from Eqs. 13.29 and 13.31, 

/ = /P + /B; /B = /B, + /B. + /B3 (13.42) 

/B, = N[< A\eii > - < Aceii > ' ] (13.43) 

/B, - A ^ < Aceii > ' [ 1 - D,\S)] (13.44(a)) 

/B3 = A^< Aceii > 'DI\S)ZB(S) (13.44(b)) 

/p = ̂ < Aceii>'A'(S)Zp(S) * 15(S) P (13.45) 

The diffuse scattering /B, is usually negligible. The integral intensity of /? for the hih order 
diffraction is given by the product of the integral value of I S(S) P and Eq. 13.34 multiplied 
by(l/a)<Aceii>'Z)' 

I h(S)d5 = 4<Aceii>' A'(S)j^ Zp(S)d5ĵ 15(S) P dS 

\ (13.46) 
= ;^<Acel,>'A'(/z){l-ZB(/z)} 

Division by the interpolated background intensity hiK) at S = ha^ gives the new variable 

f/pd5 

Thus the distortion of the first kind, D\\h), is obtained by the calculation of Eq. 13.47, 
which can also be expressed in the form 

o , , , _ aCih) 1 
D,'(h) = 

l + aC(h)l-ZB(h) 

1 _ l + m _ l + exp( -2 ; rV/ i ' ) 
(13.48) 

1-ZB(/Z) 21^1 2 e x p ( - 2 ; r V ^ ) 

B. Determination of the crystallinity of a paracrystalline specimen 
Ruland̂ "̂̂ ^̂  and Kilian̂ '̂̂ '*̂  have proposed a method of finding the crystalHnity by appUca-
tion of the paracrystal theory. This is an important method of paracrystal analysis, and 
gives the distortion factor as well as an estimate of the crystallinity. The scattering energy 
of the coherent X-rays scattered over all space by the specimen is expressed by the follow
ing equation. 

[l(S)dVs = 47t[s'l(S)dv = 4n\^S'<f>dS (13.49) 

<f> = J^^jfj^ ^ll^j (13.50) 
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fj is the scattering factor of the atom j , rij is the number of atoms j in the unit cell, and 
< / ^ > is the mean scattering intensity of the atoms. 

If the proportion by weight of the crystalline regions of the specimen is Xcr, then 

\^ Icr{S)dVs = ̂ n^'^ S^Icr{S)dS = Xcr'^KJ'^ S^<f>DMS (13.51) 

Dt^ in this equation is a distortion factor, but unlike Du it includes distortions of both the 
first and second kinds. From Eqs. 13.49 and 13.51 we obtain 

ĉr = ^ 7^^ (13 52) 

This equation should be valid even if the limits of integration are not 0 to OQ, provided that 
the range (say Si ~ S2) is sufficiently wide. We can therefore write 

f'S^Icr{S)dS f'S^<f>dS 

r f's^hr{S)dS 
IsT-, (13.54) 
Ĵ  S^I(S)dS Js, 

r 
1 2 ^ J-2 ^ x _ Js, 

Since the crystallinity jCcr is independent of the limits of integration, Xcr is found from Eq. 
13.51 for various ranges of integration, and K and Dt are adjusted so that :\Ccr • K = XCT is in
dependent of the limits of integration S\ ^ S2. The resulting value of Xa is a true measure of 
crystallinity. From Eqs. 13.42 to 13.48, the background scattering /B is 

= i V < A c e l l > ' [ l - A ' ( S ) ] + i V < A e e l l > ' D , ' ( S ) Z B ( S ) 

21^1 
=A^<Acen>' l-Di\S)-

(13.56) 

1 + 19̂ 1. 
=A^<Aceii>'[l-A'(S)] 

The distortion factor is therefore 

^• ' ( ^ )=« ' (^ ) l7 | i (13.57) 

Among the distortions of the first kind, the component due to thermal vibrations can be ap
proximated by the Debye-Waller temperature factor exp(— BjS^), and the effect of lattice 
imperfections by the Gaussian factor exp(— Bi S^). If the component due to distortions of 
the second kind is also assumed to be Gaussian it can be expressed as exp(— ^2 5^). Thus, 
as a first approximation, we can write 

A ' = exp(-5S^) 



382 13. Analysis of the Breadth and Shape of Diffraction Patterns 

B = BT-\-BI + B2 (13.58) 

This is a useful equation which shows the possibility of finding the factors for distortions of 
the first and of the second kinds independently of the total distortion factor Dt. 

C. Crystallitinity and lattice distortion of some polymers 
a) Crystallinity of polypropylene?^^ Fig. 13.17^^^ shows the S'^I(S) vs. S curve obtained 

Fig. 13.17 Diffraction intensity distribution (5" I{S) vs. S) for a polypropylene specimen.^^' 
[Reproduced with permission from W. Ruland, Acta. Cryst., 14, 1184, lUCr. (1961)] 

from the diffraction intensity distribution of a specimen of polypropylene. The broken line 
is the curve joining the minima between the crystalline diffractions. Above this is the 
S^Icr{S) vs. S curve, and below it is the background scattering. The values of jc^ in Eq. 
13.54 for the case in which there is no distortion are found by graphical integration of the 
S^I{S) vs. S and S^h,{S) vs. S curves from Si ( = 0.1) to the points indicated by the vertical 
dot-dash lines (see Table 13.4).̂ °^ For A^(5), a nomogram showing the relationship be
tween K and 2̂ with 5i = 0.1 and for various values of B must also be prepared (see Fig. 
13.18). This is used to find the value of K such that x^r is constant and independent of the 
integration range Si-Si. 

It is evident from Table 13.4 that although the crystallinity naturally varies with the 
thermal history of the specimen, the value of the distortion function is the same. It is 
thought, however, that the lattice distortion generally varies with the treatment of the speci
men. Ruland^^^ therefore concluded that the effect of lattice distortion is small in compari
son with that of thermal vibration in the case of polypropylene. 
b) Crystallinity and lattice distortion factor of Nylon .̂̂ ^̂ ^̂  The crystallinity and the B 
values are found in exactly the same way as for polypropylene (see Table 13.5).̂ ^^ The B 
value, unlike that of polypropylene, varies considerably with the thermal history. This B 
value includes contributions due to lattice distortions of the first and of the second kinds as 
well as to thermal vibrations, as shown in Eq. 13.58. 

The measurements on Nylon 6 for Table 13.5 were all carried out at room temperature, 
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Table 13.4 The crystallinities of polypropylene speciments for B = 0 and 4^' 

Range 

0.1 -0.3 
0.1 -0.6 
0.1 -0.9 
0.1 - 1.25 

< X,r > 

Specimen T' 

(B = 0) 

0.270 
0.159 
0.105 
0.067 

(5 = 4) 

0.329 
0.294 
0.305 
0.315 

0.31 

Specimen 11̂ ^ 

(fi = 0) 

0.353 
0.222 
0.145 
0.095 

Xcr 

(5 = 4) 

0.431 
0.411 
0.421 
0.447 

0.43 

Specimen IIÎ ^ 

(B -0) 

0.546 
0.333 
0.220 
0.145 

(5 = 4) 

0.666 
0.616 
0.638 
0.682 

0.65 

Specimen IV̂ "̂  

X'cr 

(B = 0) 

0.120 
0.078 
0.044 
0.029 

(B = 4) 

0.146 
0.144 
0.128 
0.136 

0.14 

" Isotactic polypropylene heated to its melting point and quenched in water at room temperature, 
heated for 1 h at 105°C. " As above, heated for 30 min at 160°C. ^̂  Atactic polypropylene. 
[Reproduced with permission from W. Ruland, Acta. Cryst., 14, 1184, lUCr. (1961)] 

as above, 

i< 4 

0.2 0.4 

Fig. 13.18 Nomogram giving K for various values of B and ^2 for polypropylene specimens (with 5i 
[Reproduced with permission from W. Ruland, Acta. Cryst., 14, 1184, lUCr. (1961)] 

= 0.1).3 

and since the various specimens cannot belong to different crystal systems, it may be as
sumed that the thermal vibration contribution Bj to B does not vary from specimen to speci
men. The variation of B must therefore reflect the degree of lattice distortion. Bj must be 
equal to or smaller than the smallest B value in Table 13.5, i.e. 3.0. If we take (B — 3.0) as 
the contribution due to lattice distortions, it varies between 0 and 2.6. Thus 

B T ^ 3 . 0 , 51 + ^ 2 ^ ^ - 3 . 0 

The contributions Bi and B2 can be resolved by finding B2 with the aid of the broaden
ing of the diffraction pattern. If it is assumed that the crystalline regions are very large and 
the term containing N can be disregarded in Eq. 13.40 (which gives the breadth of the dif
fraction), expansion of the exponential term gives an approximation to the lattice distortion 

g s ajp(h)/n;h (13.59) 
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The contribution B2 of lattice distortions the second kind to B can be found from the broad
ening of the diffraction by means of the following equation. 

B2 = 0.7 X iTt^A^ = 1.47rVV (13.60) 

In Eq. 13.59, p(h) is the integral breadth of the diffraction, GJ is the average spacing of the 
crystal planes giving this diffraction, and A in Eq. 13.60 is the variation of GJ. The B2 found 
in this way are shown in Table 13.5. The âm in Table 13.5 are the g obtained by consider
ing parts of the amorphous regions that exhibit regularity as a type of paracrystal that is dif
ferent from that in the crystalline regions, and treating the maximum at the beginning of the 
diffraction intensity curve as a primary interference due to this type of paracrystal. 

Table 13.5 The crystallinities and lattice distortions of Nylon 6 specimens^^* 

Specimen JCcr B B2 gcr gam 

1. Bulk specimen heated for 10 min at 195°C in nitrogen 

2. Bulk specimen heated for 6 h in boiling water 

3. Bulk specimen powdered and heated for 10 min 
at 195°C in nitrogen 

4. Bulk specimen powdered and heated for 6 h in 
boiling water 

5. Specimen 4 heated for a further 15 min at 200°C in 
nitrogen 

6. Precipitated from formic acid solution and washed 
with boiling water 

7. Precipitated from formic acid soln. and heated for 
20 min at 2000°C in nitrogen 

[Reproduced with permission from W. Rulland, Faserforsch. Textiltech., 15, 532, Akademie Verlag (1964)] 

0.33 

0.24 

0.27 

0.33 

0.31 

0.35 

0.32 

3.0 

4.2 

3.0 

5.6 

3.9 

4.4 

3.7 

0.39 

0.30 

0.34 

0.45 

0.37 

0.45 

0.35 

0.042 

0.037 

0.039 

0.045 

0.041 

0.045 

0.040 

0.18 

0.17 

0.17 

0.17 

0.17 

0.17 

0.18 

c) Crystallinity and lattice distortions of polyethylene .^^"^"^^ Fig. 13.19 shows how the 
crystallinities of polyethylenes (low density polyethylene and Marlex 6015) vary with tem
perature between — 150°C and their melting points, and Fig. 13.20 shows the variation of 5 
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Fig. 13.19 Variation of crystallinity in two polyethylene specimens with temperature.^^' "̂̂^ 
(a) Marlex 6015; (b) Low density polyethylene 
[Reproduced with permission from H.G. Killian. Kolloid-Z. Z Polymere, 183, 9, 
Dr. Dietrich Steinkopff Verlag (1962)] 
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over the same range. The crystallinities were estimated in the same way as in Example a) 
above. The B values found at the same time show a linear decrease with falling tempera
ture, until at very low temperatures they become practically constant. 

5f-

4 

3 

2h 

I 

^̂ ) ^-r--^^^ 

(b) 

i J . . . 1 , 1 . , 

v4—<r 

I 1 ,1 1 
- 1 0 0 - 5 0 50 100 150 

T['C] 

Fig. 13.20 Variation of B with temperature."' ̂ "̂^ 
(a) Marlex6015; (b) Low density polyethylene. 
[Reproduced with permission from H.G. Killian. Kolloid-Z. Z. Polymere, 183, 9, Dr. Dietrich 
SteinkopffVeriag(1962)] 

According to the Debye theory, the temperature factor Bj for isotropic crystals in gen
eral is expressed as followŝ "̂ ^ 

Bj = [6hy(MK0)][0(x)/x + 1/4][(sin 0)af 

x = 0/T, 0(x) = ( l /x)r^/(exp(^-l)5(^ 

(13.61) 

M is the molecular weight, K is the Boltzman constant, and 0 is the characteristic tempera
ture. 

The B value obtained from the distortion factor found in the crystallinity measurements 
also contains the effect of lattice distortions. 

B = BT-\-BI-\-B2 = BT + BP (13.62) 

In general, however, the effect of the thermal vibrations predominates at high temperatures, 
and 5T, i.e. the expression in Eq. 13.61, may be taken as a good approximation to B. At 
low temperatures, on the other hand, the effect of thermal vibrations is small and the effect 
of lattice distortions (5?) predominates. The effect of lattice distortions (5p) is therefore 
given by the difference between the B^ curve based on the plot of the measured B value 
against temperature and the theoretical B' curve obtained on the assumption that the high-
temperature B value approximately follows Eq. 13.61, the curves obtained being extrapolat
ed to 0 K (see Fig. 13.21). Distortion of the lattice distortion factor g from 

g = {Ar'/a=(l/7t)[{Bp/2y'/a] (13.63) 

which closely resembles Eq. 13.59, gives g -
0.04 for Marlex 6015. 

• 0.06 for low density polyethylene and g -
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T/0 

Fig. 13.21 Variation of B ' with temperature according to the equation 5 ' ={6h^lK){0{x)lx + 1/4} = IBMG?^^^^ 
(a) Marlex6015; (b) Low density polyethylene 
[Reproduced with permission from H.G. Killian. Kolloid-Z. Z. Polymere, 183, 10, Dr. Dietrich 
SteinkopffVerlag(1962)] 

D. Determination of ^ from line breadth P(h) 
The factor g( = Aa/a), which expresses the degree of distortion of the lattice points (distor
tion of the second kind), was dealt with in some detail in Chapter 5, and examples of ana
lytical methods have also been given. We shall now describe a method of calculating g di
rectly from the broadening of the X-ray diffraction pattern. 

The first step is to record the diffraction pattern and the intensity distribution (including 
the background intensity) over the entire range of angles with a diffractometer (or photome
ter). A one-dimensional intensity curve is then constructed for some fixed direction radiat
ing from the origin of the reciprocal lattice and passing through a succession of reciprocal 
lattice points with indices which are simple multiples of each other, e.g. the 100, 200, 300, 
etc. or the 110, 220, 330, etc. points. The integral breadths pih) of the parts of these dif
fractions which emerge above the background level are then measured. The greater the 
number of diffractions the better, but a minimum of three (those with h— \,2, and 3) are 
necessary. The equation used is Eq. 13.41, and a is the interplanar spacing found from the 
first order diffractions. Thus, when the 100, 200, 300, etc. diffractions are used, a = (i(ioo). 
Substitution of a and PQi) for the various order numbers h and elimination of L enables g to 
be found. 

Alternatively, if we square both sides of Eq. 13.40, expanding the bracket containing 
the exponential term, and take the first two terms of the expansion, we obtain 

p\h) = {\la\llN^ + n^g'U') = IIL" + n^g^'la" (13.64) 

This shows that a linear relationship holds between the square of the integral breadth fi\h) 
of the diffraction and h"^. N and g can therefore be found from the gradient and the intercept 
on the ordinate, respectively, of the plot of p\h) against h^. Moreover, since Na = L, the 
crystal dimension L can also be found. 

E. Analysis in cases where the crystallite size is not uniform 
If the crystallite size is not uniform, there will obviously no longer be a linear relationship 
between P\h) and /?̂ . If the diffraction profile is assumed to be Gaussian, a method for the 
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resolution of Gaussian functions having different breadths is applied, as in the Jellinek-
Solomon-Fankuchen analysis for small-angle scattering^^^ (cf. Section 6.2.5). A graph of 
log / against I 5 — 5h P is drawn (Fig. 13.22(a))^^^ for a given diffraction, using the values of 
S — Sh(5 =(2sin 6)/X)) measured from the maximum Sh of the intensity profile of this dif-

5-5 .1^ [A-2] IS-Snl^ [A-^] 

1 \ \ 'exp 

t \ \ 

[ A V S X 

\ /2 

220 ! 

JQ-4^ 

1 

(a) \S-Sn\' [A-^] \S-Sn\' [A-^] 

Fig. 13.22 Crystal lattice distortion and paracrystal size analysis.^^' ^̂^ 
(a) Log Ivs.\S~ Sh 1̂  for hhO diffractions of polyethylene with draw ratio 60 :1. 
(b) Plot of P\h) vs. h"" for component /fusing pih) of the 000, 110, and 220 diffractions). 
(c) Plot f5-(h) vs. h^ for component h (using 000, 110, 220, and 330 diffractions). 
[Reproduced with permission from F.J. Balta-Calleja et al, Makromol. Chem., 92, 25, Hiithig 
&WepfVerlag(1966)] 
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fraction. The component I\ is found by drawing a tangent to the lower end of this curve. A 
second component h is obtained by drawing a tangent to the lower end of the curve derived 
by subtraction of the diffraction intensity of the first tangent, i.e. of the component /i, from 
the original diffraction intensity curve. Successive repetitions of this operation give the 
components /i, h, /s,..., and in this way the diffraction can be resolved into the component 
diffractions due to the crystals of different sizes. Using the /i, h, h,... for various diffrac
tions with multiple indices, the diffraction breadths p{h) are obtained, and L and g can then 
be derived with the aid of Eq. 13.64 from the p\h) vs. h!^ curve for the h direction used. 
a) Crystal lattice distortion and paracrystal size in drawn polyethylene,^^^ The specimen 
used was polyethylene (Hostalen G) that had been drawn by a factor of six at 70°C and then 
by a further factor of ten at 120°C, i.e. which had been drawn to 60 times its original length. 
Fig. 13.22(a) shows the log I vs. \ S — Sh P plots obtained from the hhO diffraction profiles, 
including the zero order diffraction, i.e. the small angle scattering. The components I\ were 
obtained by drawing tangents to the lower ends of these diffraction intensity curves, and 
then the components h and h were obtained. The log I vs. \ S — S^ P plot for the 330 dif
fraction was already linear, and corresponded to the component h. The integral breadths 
^{h) of the various diffractions were then calculated for the resulting groups of/i, /z,..., and 
the P\h) vs. h^ plots were constructed (see Fig. 13.22(b) and (c)). Since h was obtained 
only for the zero order diffraction, this component was not used in the analysis. The results 
derived from the intercepts and gradients of the p\h) vs. H^ plots for the components h and 
h were U = 90.7 A, gi = 3.15% and L2 = 185.5 A, g2 = 2.2%. 

13.6.3 Shape of the diffraction pattern of a three-dimensional paracrystal and 
calculation of the degree of distortion 

Figure 13.23^^^ gives a schematic representation of K\(S){= Z\(S)), one of the three K fac
tors of Eq. 5.32 for a given Hi{x) (= //mo), a three-dimensional Gaussian function (cf. Fig. 
5.11): 

U x' ^ y' ^ z' 
H\{x+a\)= — expl 

(2;r)^^^DnD2iD3i "^^ 2 l D „ ^ D21' D : ^ >'31 
(13.65) 

and 

Z,{S)= e x p [ - IK" (An^X^ + AH'Y'+ A3i^Z')] (13.66) 

The zone of maxima in the Zi(5) consists of a family of 'biconcave lenses' arranged along 
the ^1* axis and at right angles to it, the separations being ^1*. With increasing I S I, the 
differences between maxima and minima diminish and they also merge into one another 
(see also Fig. 13.13(a) and Fig. 15.30). According to Hosemann,̂ ^^ the number of diffrac
tions Hi] in the ai direction which do not merge into neighboring diffractions in the a, direc
tion (cf. Fig. 5.11) is given by the simple relation 

_Zi .a_0.35 ._^ . . 

The outer boundary of the region containing peaks is an ellipsoid having axes inversely 
proportional to zln, Zi2i, and A31 . The same situation is found in all dimensions, so that for 
a three-dimensional paracrystal, the condition analogous to Eq. 13.67 gives an ellipsoidal 
surface (a limiting ellipsoid of diffraction) in reciprocal space. This condition gives I ̂  I 
--0.1 in Eqs. 5.30 and 13.30. 

http://_Zi.a_0.35
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Fig. 13.23 Schematic representation of a diffraction pattern from a one-dimensional paracrystal.^^' 
[Reproduced with permission from B.K. Vainshtein, Diffraction of X-rays by Chain 
Molecules, p.233, Elsevier (1966)] 

A. X-ray diffraction from j3-keratin fibers from seagull's featherŝ ^^ 
Figure 13.24 shows the analysis of the X-ray diffraction from /3-keratin fibers from seag
ulls' feathers in light of the above results. Diagram (a) shows the X-ray diffraction pattern, 
and diagram (b) shows a representation of (a) by means of reciprocal lattice coordinates in a 
plane containing the fiber direction. The line delineates the boundary I ^ I = 0.1 for 
the /z2 direction, and the line delineates that for the h\ direction; the two together give 
an ellipse. The average lattice constants au ^2, and ^3 can be found from the diffraction an
gles, and gu g2, g3, and AiXk can be obtained from the diffraction orders riik on either side of 
the boundary. 

For example, in the range /22 ^ 4 in diagram (b) of Fig. 13.24, the diffraction pattern is 
indistinguishable at 1̂ = 7 to 8, and in the meridional direction, the boundary passes 
through (2, 15) and (3, 14) to meet the axis at fe = 17. Thus from Eq. 13.67 we find 

n2i = 17 = 035a2/AiX2, AxXi = 0.35 X 95/17 = 1.8 A 

Similarly, from /tn = 5 we obtain zi 1X1 = 0.35a"i/5 = 2.5 A. The various constants found in 
this way are given in (c) of Fig. 13.24. //i , H2, and H3 can then be calculated from the de
grees of distortion. Diagram (d) shows Hu H2, and Hi * H2. Figure 13.24(e) shows a mod
el of the paracrystalline lattice constructed with the aid of (d), and (f) shows the diffraction 
pattern obtained by its optical Fourier transformation (cf. Section 5.2.4). The broadening of 
this pattern is very similar to that of the X-ray diffraction pattern in (a). This provides a 
good example of one fruitful application of Hosemann's theory. In real structures, howev
er, the atoms are not so point-like, hence the structure factor < Aceii > ^ weakens the intensi
ty at larger values of I S I. In this case the limiting ellipsoid of diffraction is actually given 
by I 9̂  1^0.3 and the numerical factor Eq. 13.67, 0.35, becomes 0.24.̂ ^^ 
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Fig. 13.24 Analysis of the X-ray diffraction from /3-keratin fibers from seagull's feathers.^^^ 
(a) X-ray diffraction diagram. 
(b) Representation of (a) in reciprocal lattice coordinates. 
(c) Values of the constants derived experimentally. 
(d) Fluctuation tensors of paracrystalline superlattice cell. 
(e) A two-dimensional model of the paracrystalline super lattice constructed from (d). 
(f) Optical transformation of (e). 
[Reproduced with permission from R. Hoseman, S.N. Bagchi, Direct Analysis of Diffraction 
by Matter, pp.650, 651, North-Holland Pub. (1962)] 
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14. Analyses Using the Total Diffraction Intensity 
Distribution Curves of High Polymers 

In the method of paracrystal analysis described in the previous chapter, and in the method 
for the determination of crystalUnity from the intensity of scattering due to the amorphous 
component to be described in Section 14.2 below, as with many other methods of X-ray dif
fraction analysis, it is necessary to deal with the background scattering (as distinct from the 
crystalUne diffractions) over the entire angular range of measurable intensities. Adequate 
precision can usually be obtained, in such cases, with relative measurements of intensities. 
However, just as the absolute intensity is essential for the analysis of crystal structure, so 
the determination of the absolute intensities gives access to more precise information when 
the background diffraction (which arises from interatomic coherent scattering) is to be used 
for structural analysis. The determination of P(r) in Sections 2.5 to 2.8 is an example of 
this kind of analysis. 

We commence this chapter with an account of methods for eliminating systematic er
rors from the continuous diffraction intensity background as distinct from the crystalline 
diffractions, not only so that overall quantitative factors such as crystalUnity can be deter
mined, but also in order to extend the analysis to the details of atomic structure. 

14.1 Correction for Coherent Background Scattering 

14.1.1 Correction of the measured intensity for the effect of polarization 
As was mentioned earlier in connection with crystal structure analyses, polarization is pre
sent in the atomic scattering intensities themselves, and a correction is normally made for 
this by multiplying by the reciprocal of the polarization factor (1 + cos^ 2^)/2 over the en
tire scattering intensity curve. When a monochromator is used, the polarization factor be
comes (1 + cos^ 2^MCOS^ 16)12, where OM is the Bragg angle of the monochromator. 

14.1.2 Normalization of the scattering intensity 

After correction for the effect of polarization, the scattered intensity still includes an ele
ment due to Compton scattering. This has an intensity given by Eq. 14.1, where c is a scal
ing constant. 

I{s) = c/obs(5)X 1/(polarization factor) = h{s)^ Inis)+ U^cois) (14.1) 

/inco is the Compton scattering intensity, and s =(AK sin0)/A. 
The coherent scattering has been resolved into /a(the first term of Eq. 2.28 ^ p. 35) and 

/m(the second term of Eq. 2.28') {cf. Fig. 2.13). When the scattering angle 26 is very large, 
the effect of IJ^s) is negligible, and we obtain 

/(5)=/a(5)+/.„co(5) (14.2) 

In this equation, 

W) = tfjHs) (14.3) 

where ̂  is the atomic scattering factor of the 7th atom. 
The incoherent scattering term is given by Eq. 2.18. 
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If the number and nature of the atoms in the structure are known, his) and /inco('̂ ) can be 
calculated from Eqs. 14.3 and 2.18 after the appropriate atomic scattering factors'^ and 
Compton scattering factors^^ have been found from International Tables for Crystallogra
phy, Vol. C. The right-hand side of Eq. 14.2 is then calculated, and the scaling constant c is 
found by comparison at sufficiently large scattering angles with the /cor(5') obtained by cor
rection of the observed scattering intensity for the polarization, absorption, etc. The I(s) of 
Eq. 14.1 is then obtained by using this constant c to normalize Imco{s). The coherent diffrac
tion Ico(s) can be found in crystallinity analyses by elimination of Iinco(s), and the molecular 
interference term Im{s) can also be found, e.g. in the analysis of the radial distribution func
tion P(r), by subtracting [h(s) + Imcois)] from I(s). 

14.2 Determination of Crystallinity 
As illustrated in Fig. 14.1, for the determination of crystallinity, unoriented diffraction dia
gram should be used in order to measure the intensity distribution along the radial direction. 

Fig. 14.1 Schematic illustration of an diffraction diagram of an unoriented crystalline polymer. Radial intensity 
distribution is given in the first quadrant (cf. Fig. 14.4). 

Fig. 14.2 shows intensity distribution of a crystalline polyethylene measured at different 
temperatures.^^ Sharp crystalline 110 and 200 diffractions were observed overlapped on the 
first peak of amorphous halo at 27°C. With increase of temperature from 60° to 100°C, the 
crystalline diffraction peaks showed remarkable decrease in intensity, whereas the amor
phous peak showed intensity increase. Finally, at 120°C the crystalline peaks disappeared 
completely and only the amorphous halo increased in intensity. These results have made 
easier the separation of the first peak of amorphous halo and two crystalline diffraction 
peaks after the correction for incoherent scattering, polarization effect, and other back
ground scattering. 
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Fig. 14.2 X-ray diffraction intensity curves of an unoriented polyethylene specimen at four different temper
atures.^^ [Reproduced from S. Krimm, A.V. Tobolsky, / . Polym. Sci., 7, 52, 53, John Wiley & Sons, 
Inc. (1951)] 

14.2.1 Principles of the measurement of crystallinity 

Under conditions of constant incident X-ray intensity, the total intensity of the coherent 
scattering from a scattering body of fixed mass should be constant, irrespective of the steric 
structure of the atoms inside the body. 

Striking with a structure of iV electrons, whose scattering amplitude is given by Eq. 2.10, 
the Q function has at x = 0 a hump, which consists of N self-convolution products of each 
electron density 5k(x). Since the integral intensity of an electron is given by (cf. Eq. 2.3) 
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IhdVs 
one obtains from Eqs. 5.5 and 5.9 

Q(x) = j p(y)p(x+y)dVy = jl(S)Qxp{2m{Sx)}dVs (14.4) 

l imGW = [j(S)dVs = lpHy)dVy = NJledYs. (14.5) 

Â  is the total number of electrons in the scattering body so that the integral intensity will be 
constant whatever the ratio of the crystalline to the amorphous regions in the scattering 
body. If the structures of the crystalline and amorphous regions are clearly distinguishable, 
and if the mutual interference between the scattering from these two regions may be ig
nored, the total scattering from a high polymer which remains after subtraction of the inco
herent background scattering is separated into the crystalline scattering /cr and amorphous 
scattering /am. 

The crystallinity of a high polymer, jCcr, is defined in terms of its total mass, M, and the 
respective masses of the crystalline and amorphous regions, Mcr and Mam, by 

Xcv = MJM, where Mcr + Mam = M (14.6) 

Thus, the ratio of the scattering intensities due to the crystalline and amorphous regions is 
nearly equal to the ratio of the masses of the two types of region, since the average electron 
densities of organic substances are closely proportional to the densities of the substances. 
Hereupon we obtain 

r/an,(S)5MS N: 
JO 

M ('4.7) 

Thus the principle that the ratio of the total scattering intensities of these two regions is 
equal to the ratio of the total masses of the regions is established here. This is the basis of 
the crystallinity measurement in general use. 

14.2.2 Differentiation between crystalline and amorphous scattering in coher
ent scattering 

This is very difficult, and errors can arise which may have serious consequences upon the 
measurement of crystallinity. 

A. Cases where completely amorphous or completely crystalline specimens cannot be 
obtained 

Since there are no a priori indications of the true apportionment, a smooth curve is drawn 
as in Fig. 14.3"̂ ^ (not to be confused with Fig. 14.5) to connect the minima between the crys
talline peaks on the assumption that the intensity above it is contributed by the crystalline 
region, /„, and that below it by the amorphous region, /am. This method gives an excessive
ly high value for /am, with a crystallinity Xcr which is therefore smaller than the true value. 
The principal sources of error are as follows. 

1) The smooth curve will inevitably mask weak crystalline diffractions (including 
paracrystalline diffractions) and transfer their contribution to amorphous scattering, /am, ef
fectively reducing the measured crystallinity. 

2) The density of packing of the molecular chains does not vary greatly from the crys
talline to the amorphous regions, so that the strong crystalline peaks are usually superim-
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Fig. 14.3 Resolution of the diffraction pattern of isotactic crystalline forms of polypropylene.'̂ ^ 
Shaded area: amorphous scattering. Background due to incoherent scattering is not shown. 
[Reproduced with permission from A. Turner-Jones et al, Macromol. Chem., 75, 134, Hiithig 
&WepfVerlag(1964)] 

posed on the maxima of amorphous halos, and the base of the crystalline peak is included in 
/am, again with an effective reduction in the measured crystallinity. 

3) Diffuse scattering due to crystal lattice imperfections, and in particular the back
ground scattering due to crystal lattice distortions of the first kind, cannot be properly dis
tinguished from the amorphous halo. It is generally impossible to assess what effect the 
contribution of distortions of the first kind may have upon the measured crystallinity. 

It is obvious from the foregoing that the crystallinity values obtained in this way are 
suspect, depending as they do upon how the amorphous scattering curve is drawn, and that 
too much credence cannot be given to their absolute values. In this respect, the crystallinity 
determination of Section 13.6.2B, which involved the appHcation of the paracrystal theory, 
is probably to be preferred; it does take into account formally the structural distortion that is 
a characteristic feature of high polymers. 

B. Cases where completely amorphous or completely crystalline specimens can be 
obtained 

The basic problem of resolving the diffraction pattern into its crystalline and amorphous el
ements still remains in these cases, but it is possible, for instance, to determine the amor
phous fraction by comparing the intensity of the halo for a completely amorphous specimen 
over a certain angular range with that for the unknown specimen under identical conditions. 
The crystallinity can thus also be obtained. 

In practice, there are few so-called crystalline polymers which can be obtained in the 
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completely amorphous state apart from substances such as poly(ethylene terephthalate) and 
rubber. In the absence of completely amorphous specimens, therefore, it is customary to 
use specimens that are as nearly amorphous as possible. In the case of polyethylene, for ex
ample, the halo of the molten polymer has been used as the amorphous halo.̂ ^^ The amor
phous halo of a real specimen, however, will change in shape with temperature, and also 
varies with the method of synthesis and the history of the specimen.^^ Matthews, Peiser, 
and Richards^^ have used the halo of an amorphous paraffin with a similar structure instead 
of the halo of the melt. 

14.2.3 Measurement of crystallinity 

A. Using a relatively narrow range of the diffraction intensity curve 
It is convenient to use the following equation^"^^ in the determination of crystallinity using 
the amorphous halo. 

1 - Xcr = ( l / r ) ( /an .7 /oO/( l /0( /am/ /o) (14 .8) 

/am and /am' arc the intensities of the amorphous halos for a completely amorphous specimen 
and for the specimen with crystallinity yet to be determined, and /o and W are the intensities 
of the incident X-rays used in the measurements. The area of each specimen upon which 
the X-rays are incident is the same, and t and f here are their thicknesses. This method can 
also be applied to specimens with orientation in the crystalline regions, in which case the 
intensity in a direction unaffected by crystalline diffraction (for example, the meridional) 
may be used as the intensity of the amorphous halo. However, the use of the method is 
open to question when orientation is also present in the amorphous halo. 

The number of empirical equations which have been proposed for the estimation of 
crystallinity of individual substances is very great. The reader is referred to other 
textbooks'^'^^ and reviews'-^^ for details. 
a) Crystallinity of polyethylene determined by an empirical equation. The correction for 
the background scattering due to incoherent scattering and other reasons is first carried out. 
Based on the changes in diffraction intensity distribution curves at different temperatures 
shown in Fig. 14.2, the amorphous scattering was assumed to be similar to that of the 
molten sample (Fig. 14.2(d)), and it was first subtracted from the corrected intensity distrib
ution curve. The resolution of the remaining two crystalline diffraction patterns is based on 
the symmetric nature of the 110 and 200 diffractions (Fig. 14.4). The areas under the three 
component curves, Aam, Ano and A200, were determined planimetrically (or by graphic inte
gration), which should be corrected for Lorentz, polarization and thermal factors. The crys
tallinity can be determined by the empirical equation, 

r -^cr T̂  ^am j ^ V^am-^am 
K A ri4 9̂  

•^cr /1IO+/2OO 2II0A110+22O0A20O • 

0IOA1IO+22OOA2OO .^ ^ ^ X 

(14.9a) Cam Aam + 0 10 Ai i o + ^200 A20O 

where the combined correction factors are 2am = 0.75, Quo =1 .0 and Q200 = 1.46, respec
tively.'"^^ Mathews and coworkers gave values of these factors as 0.74, 1.0 and 1.43, respec
tively, whereas Bryant et al. gave 0.69, 1.0 and \A3^^\ 
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Diffraction angle 2^[deg] 

Fig. 14.4 Resolution of the diffraction pattern of polyethylene (See text). 

B. Using a wide range of the diffraction intensity curve'̂ ^^^ (Crystallinity Index) 
Instead of seeking to establish an absolute crystallinity for a given substance, it may be 
enough to find a relative crystallinity (a crystallinity index) with respect to reference speci
mens which exhibit the highest degree of observable crystallinity and, on the other hand, 
which approach most closely the completely amorphous. Let the diffraction intensity of the 
specimen with unknown crystallinity take the values h over a wide angular range, and let 
the corresponding intensities of the most crystalline and the most nearly amorphous speci
mens of the same substance over the same wide range of angles be hr and hm respectively. 
The crystallinity Xcr is then given by the following equation. 

-^cr Lv^u -'am)/' A.J/(^icr 'am)j (14.10) 

and the analytical procedure is as follows. 
1) The diffraction intensity differences (/u — hm)j and (hr -~ hm)j are determined at var

ious diffraction angles j . 
2) The results are plotted on a graph with (/u — hm)j as the ordinates and (hr ~ hm)j as 

the abscissae. 
3) The straight hne that best fits the plotted points is drawn. The slope of this straight 

Hne is the crystallinity jCcr. It takes the value unity for a 100% crystalline specimen, and ap
proaches zero for a completely amorphous specimen. If the scales of the various diffraction 
intensity curves are well matched, the intercept K is zero. 
a) Crystallinity index of poly {ethylene terephthalate)}^^ Figure 14.5(a) shows the dif
fraction intensity profiles of crystalline and amorphous reference specimens of unoriented 
polyethylene terephthalate, together with that of the specimen with undetermined crys
tallinity. The plot of intensity differences gives the graph shown in Fig. 14.5(b). From the 
slope of the straight line, the crystallinity index Xcr = 0.695. 
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AJ /ar 

Amorphous 
reference 
specimen. 

IcT-h cr /am 

"Specimen of unknown 
crystallinity, /u 

^Crystalline reference 
specimen, kr 

(a) Diffraction angle,[2^] 

Fig. 14.5 Derivation of the crystallinity index Xcr from the diffraction intensity curves 
for polyethylene terephthalate.'̂ '̂ ^ 
(a) Diffraction intensity curves for the specimen, and for crystalline and 

amorphous reference specimens. 
(b) Plot of the intensity differences derived from (a), see text. 
[Reproduced with permission from W.O. Statton, J. Appl, Polym. Sci., 7, 803, 
John Wiley & Sons, Inc. (1963)] 



14.3 Analysis of the Radial Distribution Function P(r) 401 

C. Determination of the crystallinity of a paracrystalline specimen 
(See Section 13.6.2A) 

D. Other methods for the assessment of crystallinity 
The above methods are based on th assumption that the crystalUne regions have an ideal 
crystal lattice. The measurement of crystallinity for paracrystalline structures with lattice 
distortions has been described in Section 13.3.2. and methods of analysis based on small-
angle scattering will be discussed in Section 15.4. 

E. Comparison with methods of crystallinity measurement not involving X-rays 
Crystallinity can be measured by many methods other than those described above. The 
most important of these are summarized in Table 14.1. 

Apart from the extreme case, where perfect crystals are mixed with completely amor
phous material, high polymers are generally thought to contain regions in which the distor
tion of the arrangement of the molecular chains shows a continuous, gradual variation from 
the regular arrangement of crystalline regions to the completely random arrangement of the 
amorphous regions. If a line is drawn through such regions of gradual variation such that 
everything on the side with the more regular arrangement is regarded as crystalline and 
everything on the other side as amorphous, the "crystallinity" will vary according to where 

Table 14.1 Principal methods of crystallinity measurement 

Method 

r Wide-angle diffraction 
X-ray i 

[ Small-angle scattering 

jn \ Bands that change with 

spectroscopy] ^ ^ ^ ' 

NMR 
spectrpscopy 

Density 

r Measurement of specific 

Thermal J^^f ,. , , . , ,, , J Ditierential thermal 

[ Heat of combustion 

Adsorption 

' Latent heat of freezing of 
adsorbed water 

Adsorption ratio (water, 
iodine) 

Hailwood-Horrobin 
method 

Other fHeavy hydrogen exchange 
chemical <̂  Hydrolysis rate 
methods [Acetal formation 

Crystallinity (jCcr) 

Intensity of crystalline diffraction I„ 
Intensity of amorphous halo /am etc. See text 
Long period L and crystallite size t Xcx'^tlL 

Extinction of crystalline band Ec x,r _Ec , 
Extinction of amorphous band Ea \-Xcr~ E/ 

Width and shape of the absorption curve 

Density of crystalline fraction pc ( = px) 
Density of amorphous fraction pa 
Density of specimen p _ = : ^ _ ^" 

P Pc Pa 

Heat of fusion AHC of a 100% crystaUine specimen 
Enthalpy //a of the amorphous material 
Enthalpy H of the specimen H -H 

Xcv = — 

A//c 

Ratio of quantity adsorbed by test 
specimen to that of reference specimen 
Adsorption isotherm 

Measurement of accessibility 

^a: accessibility of specimen 
acr'. accessibility of crystalline 

fraction 
a = flcrXcr+Cl ~-^cr) 

Other methods tried: comparison of dichroism and birefringence, comparison of X-ray and optical orientation, 
recrystallization of amorphous specimens, moisture permeability, dielectric constant, gas diffusion and density, 
modulus of elasticity in torsion, elongation, etc. 
^ In addition to the bands mentioned here, bands that are unaffected by crystallization and bands that depend on 
both the crystalline and the amorphous fractions have been used. 

file:///-Xcr~


402 14. Analyses Using the Total Diffraction Intensity Distribution Curve 

the line is drawn. Each method of measurement will, in effect, have its own characteristic 
means of settling the position of this boundary line. Thus, it is the exception rather than the 
rule for the values given by the methods listed in Table 14.1 to be in agreement for the 
same specimen. 

These very differences, however, and the characteristics of the methods of measure
ment which give rise to them, can be exploited to obtain further information about the mol
ecular structure, crystal structure, or fine texture. For example, copolymers of styrene and 
o-fluorostyrene are always classified as crystalline under X-ray analysis, but the IR spectra 
indicate that copolymers with o-fluorostyrene contents from 30 to 70% are amorphous,^^^ as 
shown in Table 14.2. This is because the sequence of styrene and o-fluorostyrene units is 
completely random, with the result that the so-called crystalline bands in the IR spectrum, 
which faithfully reflect the partial structures, absorb only very weakly, and are therefore not 
observed. On the other hand, the molecular chains have the same fiber period as the 
homopolymers (6.63 A), and the presence or absence of a fluorine atom attached to the ben
zene ring makes little difference to the cross section normal to the molecular chains, so that 
the packing of the chains is practically unaffected; consequently the copolymers always 
crystallize. The marked difference between the crystallinities found by X-ray methods and 
by IR spectroscopy is therefore highly significant. 

Table 14.2 Comparison between the X-ray and IR crystallinities of copolymers'^^ 

Polymer 

Isotactic polystyrene 
Styrene/ o-fluorostyrene copolymer 
Isotactic poly-o-fluorostyrene 

Crystallinity 

X-ray 

crystalline 
crystalline 
crystalline 

IR 

crystalline 
amorphous (for compositions between 30 and 70%) 
crystalline 

Polymer M.p. VC] Unit cell dimensions [A] 

Isotactic polystyrene 
Styrene/ o-fluorostyrene copolymer 
Isotactic poly-o-fluorostyrene 

235 
I continuous variation 

270 

= 6.63, a = 21.90 
= 6.63, I continuous variation 
= 6.63, fl = 21.10 

14.3 Analysis of the Radial Distribution Function P{r) 

14.3.1 Calculation of the radial distribution function 
In the most commonly occurring cases, i.e. isotropic amorphous solids and liquids, the radi
al distribution function P(r) is given by Eq. 2.35 (Section 2.8). 

47trP(r) = (2/K)j^ sr(s) sin srds (2.35) 

where s = (4K sin 6)/X. 
Thus the distribution function P(r) can be calculated from the Fourier transform of the re
duced scattering intensity r(s), Eq. 2.35. 

The radial distribution function obtained in this way is used as a basis for the investiga
tion of the average macromolecular structure in isotropic amorphous specimens. The statis
tical arrangements of the nearest neighbors and of the next-nearest neighbors of a given 
atom, the short-range order of the structure, can be found from the radial distribution func
tion of an amorphous solid or liquid. Particularly, the contribution of atoms in the same 



14.3 Analysis of the Radial Distribution Function P(r) 403 

molecule (intramolecular radial distribution function Pintra(̂ )) can be estimated by compari
son with the radial distribution functions of similar amorphous polymers, from the tempera
ture dependence of the radial distribution function of the same polymer/^^ or from the dis
tribution of heavy atoms introduced into the polymer molecules.^^^ Subtraction of Pintra(̂ ) 
gives the intermolecular radial distribution function Pinter(r), from which we can obtain in
formation about the arrangement of the molecular chains in relation to one another. 

A. Termination-effect correction 
Whereas the angular range of the Fourier integral giving the radial distribution function 
P{r) is 0 -oo, the experimental scattering intensity curve is recorded between the measure
ment limits si and S2. The lower limit si is close to zero, while the upper limit 2̂ is the high
est value at which measurements are possible, and depends on the apparatus and the wave
length of the X-rays. Since the integrated function sr{s) in Eq. 2.33 tends to zero as 5-^0, 
the termination (truncation) effect in the region where s is smaller than si is negligible. 
Where s is large, however, sr{s) is also large. This terminal effect leads to broadening of 
the peak of the distribution curve P(r), and a secondary-maximum appears on the flank of 
the peak, which results in large errors. It is usual to induce an artificial convergence of 
sr{s) by multiplying by a factor such as exp(— as^). 

14.3.2 The radial distribution function of Nylon 6,6 

Figure 14.6(a) shows the radial distribution function P(r) obtained from the amorphous 

Fig. 14.6 
Radial distribution functions of 
Nylon 6,6.2'̂  
(a) Continuous curve: P(r) 

derived from observed in
tensity distribution. 
Broken curves: Pintra(̂ ) for 
an infinite planar zigzag 
molecular chain. 

(b) Pinter(^) derlvcd by sub
tracting the broken curve 
in (a) from the continuous 
curve 

(c) Continuous curve: as in 
(a). 
Broken curve: synthesis of 
the broken curve in (a) 
with that in (b), showing 
good agreement with the 
experimental distribution 
function. 

[Reproduced from A. Bj0run-
hang et al., J. Polym. Sci., 12, 
691, John Wiley & Sons, Inc. 
(1954)] 
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scattering of Nylon 6,6 using Eq. 2.35. Comparison of the radial distribution functions of 
other polymers, such as poly (vinyl acetate), poly (vinyl alcohol), and polystyrene (given for 
comparison in Fig. 14.7)̂ ^̂  reveals the presence of common maxima at about 1.5 A and 2.5 
A. These maxima are thought to be due to a partial structure that is common to these high 
polymers and consists mainly of pairs of successive carbon atoms and pairs of alternate car
bon atoms in the molecular backbone. P(r) thus appeared to be strongly dependent on the 
arrangement of the molecular chains with respect to one another, and the intramolecular in
teratomic vector contribution Pintra(r) was obtained (see broken curve in Fig. 14.6(a)). Fig. 
14.6(b) shows the intermolecular radial distribution function Pinter (A*) = P (r) — Pmra(r) de
rived by subtracing the broken curve in Fig. 14.6(a) from the continuous curve and smooth
ing out minor irregularities. The first maximum in this curve shows that the average dis
tance between adjacent chains is about 5 A. 

Fig. 14.7 Radial distribution functions for various polymers. 
Note the common maxima at about 1.5 and 2.5 A.̂ '̂  
[Reproduced from A. Bj0runhang et al., J. Polym. Sci., 
12, 691, John Wiley & Sons, Inc. (1954)] 

14.3.3 Special cases where the shape of the molecular chains can be deduced 
without determining the radial distribution function 

The shapes of the molecular chains in the amorphous regions can occasionally be deduced 
by special methods. Perhaps the clearest example of this comes from Natta's work on poly-
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p-chlorostyrene.^^^ Natta obtained amorphous poly(p-chlorostyrene) by polymerization of 
/7-chlorostyrene in the presence of stereospecific catalysts, Hydrogenation and dechlorina
tion of this amorphous poly(p-chlorostyrene) with Raney nickel as the catalyst gave a crys-
talHne product which was identified from its unoriented X-ray diffraction pattern and IR 
spectrum as isotactic poly(vinylcyclohexane). It was therefore concluded that the amor
phous poly(/7-chlorostyrene) had also been isotactic. 

-iCH2-CHhr 

stereospecific 

polymetization 

200* C 
Rancy nickel 

hydrogenation 
dechlorination 

HCHz-CH^TT 

stereospecific ^ [ u I < '̂>'̂ '̂ "'"* 
polymetization I I isotactic 

Scheme 
Polymerization ofp-chlorostyrene and dehydrogenation/dechlorination of the product to poly(vinylcyclohexane).^ 
[Reproduced with permission from G. Natta, Makromol Chem., 35, 94, Hiithig & Wepf Verlag (I960)] 

14.4 Recognition of Oriented Diffraction Mixed with Unoriented 
Amorphous Scattering 

The discussion in the previous section was concerned with the spherically symmetrical ra
dial distribution function P{r) (cf. Eq. 2.35, quoted above). This may also be regarded as a 
two-dimensional Q function (cf. Eq. 5.9) involving the radius r and the angle 6 with respect 
to a fixed direction in space, averaged with respect to 6. 0 here is a spherical polar coordi
nate as in (r, 6, (p), and is not be confused with the Bragg angle. 

P(r)^Qo(r) = < Q(r, e)>e = (1 / 2) JJ Q{r, 6) sin OdO 

= ^P2n(cose)sm Ode (14.11) 
n=0 

where Pin is Legendre's polynomial. Thus the contribution which the diffraction intensity 
due to the oriented part makes to the total observed intensity is given by the Fourier trans
form of the difference between the Fourier transform g(r, 6) of the observed intensity and 
the spherically symmetrical Qo{r) of Eq. 14.11. 

fjQ(r,e)-Qo(r)}cxip{27ti(Rr)dr] = I(R,0)- Io(R) = nR,e) (14.12) 

Subtraction of the average of the observed diffraction intensities /(/?, G) (cf. Fig. 14.12) 
over all directions 

Io(R) = (1 / 2)1^ I(R,0)sm0d0 (14.13) 
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from the observed diffraction intensity gives the divergence r(R, &) of the diffraction in
tensity from spherical symmetry. It is thus possible to ascertain the presence and determine 
the intensity distribution of oriented diffraction even when it is mixed with a predominantly 

^ 

L j^ 

V . ô-̂  

n. ., 

^-j\. 

t 

450 

400 

350 

300 1 

1 • I 1 
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 

(a) s[k-' 

0 0.2 0.4 0.6 0.8 1.0 0 

(b) s[k-'] 

0.2 0.4 0.6 0.8 

Fig. 14.8 The effect of elongation on the diffraction intensity distribution of natural rubbers.̂ ^̂  
(a) Equatorial intensity distribution as observed (left-hand diagram) and after ehminating 

the contribution due to unoriented amorphous scattering (right-hand diagram). 
(b) As in (a) for the meridional intensity distributions. 
[Reproduced with permission from M.E. Milberg, J. Polymer Sci., A 4, 801, John Wiley 
& Sons, Inc. (1966)] 
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unoriented amorphous scattering and would not normally be accessible to direct measure-
ment.̂ ^̂  

14.4.1 Resolution of oriented diffraction masked by unoriented amorphous 
scattering.̂ ^̂  

The left-hand diagram of Fig. 14.8(a)̂ ^^ shows the equatorial diffraction intensity distribu
tions / (R, 0) of stretched natural rubber, while the right-hand diagram shows the difference 
/'(/?, 0)=I (R, 0) — Io(R) between these intensity distributions and the average Io(R) of 
such diffraction intensity distributions over all directions. The oriented crystalline diffrac
tion, which is completely masked by the very strong unoriented amorphous diffraction in 
the original intensity distribution, appears in these diagrams at an elongation of only 350%. 
This is even more clearly evident in the meridional diffraction intensity distributions in Fig. 
14.8 (b).̂ ^̂  Fig. 14.9 shows the ehmination of unoriented amorphous scattering with the aid 
of Eq. 14.12 in the case of atactic polystyrene fibers to leave the oriented amorphous scat
tering (cf. Section 14.5). 

7 = 0 

/ = 0 

Fig. 14.9 Comparison between meridional and equatorial diffraction intensity distributions of atactic 
polystyrene.̂ ^* 7' is the broad amorphous scattering halo that remains after ehmination of the effect of 
unoriented amorphous scattering from 7. The difference between meridional and equatorial distribu
tions indicates intrinsic orientation. [Reproduced with permission from M.E. Milberg, /. Polym. Sci., 
A 4, 801, John, Wiley & Sons, Inc. (1966)] 

14.5 Analysis of the Orientation of Molecular Chains in Amorphous 
Regions 

14.5.1 Orientation of molecular chains in amorphous regions 
Just as drawing, rolling, compression, etc., lead to the orientation of crystallites, so the mol
ecular chains in amorphous regions can acquire a degree of orientation under the influence 
of drawing, rolling, compression, etc. The presence of this orientation can be recognized 
by the appearance of intensity maxima in the originally uniform amorphous halos in the 
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equatorial or meridional regions. Fig. 14.10(a) shows the diffraction pattern of an amor
phous silicone rubber; (b) and (c) respectively show the patterns obtained when this speci
men was elongated by factors of 4.5 and 8.75 at room temperature.̂ "^^ The drawing direc
tion corresponded to the vertical direction in the diagram. In contrast with the behavior of 
drawn specimens in general, no crystalline diffractions appear in this case. However, the 
amorphous scattering shows a distinct concentration of intensity around the equator, sug
gesting partial orientation of the molecular chains parallel to the drawing direction. Despite 
the partial orientation of the molecular chains, the drawing was not sufficient to cause crys
tallization of the specimen. In Fig. 14.11, on the other hand, the molecular chains become 
so highly oriented as a result of drawing that crystallization occurs, and oriented crystalline 
diffractions appear with equatorial concentration of the amorphous halo.̂ "̂ ^ 

(a) 

Fig. 14.10 The effect of elongation at room temperature on the diffraction intensity of amorphous silicone 
rubber.^'^' (a) Undrawn; (b) Drawn by a factor of 4.5 : 1; (c) Drawn by a factor of 8.75 : 1 
[Reproduced from S. Ohlberg, et ai, J. Polym. Sci., 27, 2, John Wiley & Sons, Inc. (1958)] 

Fig. 14.11 The effect of elongation at sub-normal temperatures on the diffraction intensity of silicone rubber.^' 
(a) Drawn by a factor of 6.5 : 1 at - 20°C; (b) As (a), but at - 30°C; (c) As (a), but at - 6 0 ^ 
[Reproduced from S. Ohlberg, et al., J. Polym. ScL, 27, 10, John Wiley & Sons, Inc. (1958)] 

14.5.2 Degree of orientation of the molecular chains; practical measure of 
parallelism of amorphous chains 

A. Practical measure of parallelism of amorphous chains 
Corresponding to the practical measure of parallelism used in the case of crystals (Section 
10.3.1), a criterion of orientation based on the half-width H° of the azimuthal intensity dis
tribution of the amorphous halo is given by (cf. Eq. 10.13). 

a amorph 
180° xioo (14.14) 

Alternatively, however, the < (p > discussed below may be determined and employed. 
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B. Mean orientation angle of molecular chains 
The average of the orientation angles <p of the molecular chains is found from the azimuthal 
intensity distribution of amorphous scattering with the aid of the following equation (Fig. 
14.12''^andc/:Fig. 10.19). 

pnl2 enll 

< (p> - J V̂ /(V̂ ) sin i/Adi//̂  / J /(I/A) sin i/di//̂  (14.15) 

Here, (p is the angle of orientation of the molecular chains with respect to the reference axis 
{e.g. drawing direction), and y/is the angle made with the equator {cf. Fig. 10.19). /(y/) is 
the intensity of the amorphous scattering in direction \^. It is clear from Eq. 14.15 that 
< (p >has a value of 57.3°(= 1 rad) when /(y/) is constant, i.e. when the arrangement of 
the molecular chains is completely random. 
a) Oriention of molecular chains in drawn amorphous silicone rubber,^"^^ Figure 14.12 
shows the directional intensity distribution in the amorphous halo of silicone rubber drawn 
by a factor of 6.15, which exhibits a distinct concentration of intensity towards the equator 
(\l/= 0°). Determination of the mean orientation angle < (p > of the molecular chains from 
this intensity distribution with the aid of Eq. 14.15 gives < (p > = 45.0°. 

0 10 20 30 40 50 60 70 80 90 

(b) V^[deg] 

0 10 20 30 40 50 60 70 80 90 

(a) V^[deg] 

Fig. 14.12 Directional intensity distribution of the halo of amorphous silicone rubber in various directions, 
(a) [(y/) vs. y/; (b) /(I/A) sin y/vs. y/ 
[Reproduced from S. Ohlberg, et ai, J. Polym. ScL, 27, 2, John Wiley & Sons, Inc. (1958)] 

14.5.3 Estimation of the degree of orientation of molecular chains in amor
phous regions by methods other than X-ray methods 

Methods based on optical birefringence and infrared dichroism are currently under investi
gation. It should be possible in principle to find the degree of orientation from the values of 
these quantities. At present the results are being evaluated in comparison with the crys-
tallinities and degrees of crystallite orientation found by X-ray methods. As is evident from 
Fig. 14.13,̂ ^^ the variations of the orientation with elongation merely exhibit the same over
all trend, with very considerable differences in detail. However, it may be that these meth
ods will prove useful at small extensions (where determination by X-ray methods is diffi-
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0.8r 

Fig. 14.13 Variation of the orientation of amorphous molecular chains with elongation.^^' 
Determined by using f: bond polarizabilities of Bun & Daubeny (B & D) and of Denbigh (D). 
[Experimental data supplied by R.S.Stein in private communication (1957)] 

cult), provided, of course, that detailed investigation is able to solve the interpretational 
problems posed by the negative of orientation found at these extensions. 

14.6 Cylindrical Patterson Functions of Uniaxially Oriented Fiber 
Diffraction Patterns 

We have already seen that the reciprocal lattice of a uniaxially oriented assembly of crystal
lites is a group of concentric circles with the fiber axis as center {cf. Sections 4.4.4 and 
10.1). It has also been mentioned that the Patterson function of an ordinary single crystal 
(Section 11.2.5) gives the interatomic vectors for the atoms in the unit cells. In the case of 
fibers, however, the diffraction patterns correspond to those of single crystals rotating 
around the fiber axis {cf. Fig. 10.8), and reciprocal lattice points at the same distance R^ 
from the fiber axis in a plane normal to the axis are all combined to give a single circle 
(Fig. 4.14). Thus the diffraction intensities I FQikl) P of the crystal planes contributing to 
this circle cannot be separated, and consequently Patterson functions cannot be calculated 
on the basis of the individual I FQikl) P. However, although the Patterson function cannot 
be employed, the fiber diffraction pattern itself will necessarily reflect the atomic arrange
ment within the fiber structure. Moreover, in distinction from the case of single crystals, 
where only the reciprocal lattice points hkl can be measured, fiber specimens give rise to an 
additional, background intensity. It must therefore be possible to derive some structural in
formation from the continuous total scattering intensity distribution. A method has been 
proposed for the direct Fourier transformation of the rotationally averaged intensity (corre
sponding to the normal X-ray fiber diagram) of a fiber structure. Since this method, which 
is described in more detail below, makes use of the two-dimensional continuous intensity 
over the entire range of diffraction angles, it can even be applied to diffraction patterns that 
lack crystalline diffractions, such as those of nematic or smectic assemblies of chain mole
cules. 
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14.6.1 The cylindrical distribution function 
The convolution Q(r) of Eq. 5.9 is generally expressed as the Fourier transform of the X-
ray intensity distribution I{S): 

Q(r) = jp(u)piu+r)du = jl(S)txp{-2m(Sr)}dS (14.16) 

Where the atomic density distribution in the specimen is on average cylindrically symmetri
cal about the fiber axis, whether the specimen is an assembly of crystallites or of parallel 
chain molecules, it is convenient to express the electron density p(r) in terms of cylindrical 
coordinates (r, (jO, z) (Fig. 14.14). We have, of course, already found that the reciprocal lat
tice of a fiber structure is such that it is more convenient to give the continuous intensity 
distribution in terms of cylindrical coordinates (R, O, Z) than the indices hkl. Calculation 
of the Fourier transform of the intensity (Eq. 14.16) using I(R, 0 , Z) for 7(5) gives 

Q{r) = Q(r,z) = l^ [RI(R,Z)exp(-2mZz) 

X \fjtxp{-2mRrcos{0-(p)}d(p\dRdZ 

The integral in cp becomes the Bessel function Jo(2KRr), and we can write 

e(r, z) = 27r£° £^ RI{R, Z)Jo (2Rr) cos(27tZz)dRdZ 

This is the cylindrical distribution function. 

Fiber 
axis,z 

(14.17) 

(14.18) 

rx ^ 
pr^^'^v^ 

0 

/RP 

/ r \ 

5 

z 

Fig. 14.14 Representation of r and S in cylindrical and polar coordinates. 

Since 7(5) and Q(r) are both cylindrically symmetrical in this case, Eq. 14.18 is applic
able whenever 1) the polymer chains themselves are arranged parallel to the fiber axis and 
have a statistical density distribution, p(r), which is cylindrically symmetrical about the 
fiber axis (nematic or smectic states) or 2) the distribution of the orientations of the crystal-
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lites in the specimen is cylindrically symmetrical (uniaxial, spiral, ring, or tilted orienta
tions, cf. Section 10.1). For example, in the case of a uniaxially oriented group of crystal
lites in a fiber, i.e. where the reciprocal lattice can be regarded statistically as a group of 
concentric circles of uniform density around the fiber axis as in Fig. 4.14, the diffraction in
tensity generally depends only on the reciprocal lattice axis Z in the fiber direction and the 
radii R of the various reciprocal lattice circles in a plane normal to the fiber direction. It is 
independent of the angle O between the radius R and a reference line {cf. Fig. 14.14). Thus, 
although direct determination of the unit cell dimensions and indexing of the diffractions is 
not possible for specimens with cylindrically symmetrical orientation of the crystallites 
(case 2) above), the cylindrical distribution function is obtainable. Moreover, Eq. 14.32 be
low can be used where periodicity exists in the direction. 

14.6.2 Representation of Q{r) in polar coordinates 

When the statistical density distribution in the specimen is cylindrically symmetrical, but 
the divergence from spherical symmetry is not very large, it is convenient to express the 
density distribution function in polar coordinates. If the spherical polar coordinates 
(rp, 0, (p) and (/?p, 0 , OY are used in place of the cylindrical coordinates (r, (p, z) and 
(R, 0, Z) in real and reciprocal space (cf. Fig. 14.14), since the density distribution in the 
specimen is cylindrically symmetrical, it varies with the radius r of the spherical surface 
and the colatitude 6, and the density distribution function Q(r) can be expanded as follows 
with the aid of Legendre polynomials Pn(cos 0).̂ '̂̂ ^̂  

Q(r) = Q(r,e)=f^Q2n(r)P2n(cose) (14.19) 

I(S) = I(R,0)=J^l2n(R)P2n(cose) (14.20) 
n=0 

Since Q(r) and 7(5) are both cylindrically symmetrical with a center of symmetry at the 
origin, the expansion contains only the Legendre polynomials of even order P2n(cos 6). In 
the above equations, moreover, 

Q2n(r) = [(4n+l)f2]f^Q(r,e)P2„(cose)smede (14.2I) 

hn (R) = [(4n+1) / 2] £ /(/?, 0)P2n (cos 0) sin 0d0 (14.22) 

Since Q{r, 6) cannot be calculated directly, the relationship between Q2n{r) and hriR) must 
be found. When expressed in polar coordinates, g(r, 0) has the general form 

Q{r,e) = 0JV/(/?,0)cos(27r/?rcos;fc:)sin6Wd^6W/? .^^ ^^. 

;̂  is the angle between r and S (Fig. 14.14), and from Fig. 14.12 

cos X ~ cos Q cos 6) + sin 0 sin 0 cos((P — cp) (14.24) 

Using the Bessel function addition theorem and the Legendre polynomial addition theorem, 
we obtain 

" The suffix p of Tp and /?p is omitted in the description which follows in this section. 
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Q(r,e)=rri(R,e)f^(-ir(4n+l)J2n(2KRr) ^ ^ ^ ^ P 2 . ' ^ ( c o s ^ ) 
•'0 •'0 ^0 m^n(n+m)\ 

(14.25) 
: P2n"'(cosO)\fJexp{im(0-(p)}d0\R^ smOdOdR X J 

Because of the integral inside the brackets in Eq. 14.25 , the terms with m =# 0 disappear, 
and 

e(r, 6>) = £ ( -1) ' P2n (cos e)\^ 47tR'J2n {2nRr) 

"^' r f̂  1 (14.26) 
X[{(4n+1)/2}]^ /(/?,e)P2n(cos0)sinOdO^dR 

Comparison of Eq. 14.26 and Eq. 14.22 shows that the expression in square brackets is 
equal to hniR), and comparison with Eq. 14.19 leads to the desired relationship 

Q2n{r) = {-\yAK\^^R^l2n{R)J2n{2KRr)dR (14.27) 

Thus l2n(R) is found from the observed diffraction intensity 1{R, 0) with the aid of Eq. 
14.22, and Q2n(r) is then obtained from Eq. 14.27. Q(r, 6) can then be found from Eq. 
14.19. When the specimen exhibits perfect spherical symmetry, Eq. 14.19 reduces to the 
radial distribution function P(r) (cf. Eqs. 2.35 and 14.11). 

In practice, instead of Eqs. 14.18 and 14.19, we frequently use the forms obtained after 
subtraction of the average electron density in the specimen, Q^(r\ z) or Q%r, 6). 

Q(r\z) - Q\r\z) = 27r\JR'I(R\Z)M27tR'/)cos(2KZz)dR'6Z (14.28) 

Q(r,0) - Q\r,e) = £{Q2n(r) - Q2n\r)}P2n(cose) (14.29) 

Q2n (r) - Q2n' (r) = ( - D" (1 / 2n' )£ s'hn XRVm {sr)ds (14.3O) 

where s = 2nS — {An sin 0)/X 

/2/(/?) = {(4n+l)/2}£/(/?,0)P2n(cose)sin6W0 (14.31) 

/(/?, O) is naturally the intensity obtained on subtraction of the incoherent scattering and of 
the atomic coherent scattering. 

A. Analysis of the diffraction pattern of ramiê ^̂ ^̂  
The diffraction intensities used were obtained mainly from a Weissenberg photograph for 
an axis normal to the fiber axis, and secondarily from a fiber-axis rotation photograph. The 
latter was necessary because of the blind region due to the shadow of the specimen holder 
in the Weissenberg photograph. Diagrams (a) and (b) in Fig. 14.15 show the results ob
tained after application of the corrections for polarization and absorption to the diffraction 
intensities. Fig. 14.15(c) shows the diffraction intensity distribution /(/?, Z) derived from 
these. Fig. 14.15(a) shows the distribution function g(r, z)~ Q^ derived from Eq. 14.28; 
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(a) 

30 40 50 60 
2(9 [deg] 

(b) 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 

Fig. 14.15 Diffraction intensities of ramie.̂ '̂̂ ^^ 
(a) Data from a Weissenberg photo

graph (axis normal to the fiber 
axis). The dotted sections are the 
"blind" regions due to the shadow 
of the specimen holder. 

(b) Data from a rotation photograph: 
used to "fill in" the blind regrons in 
(a). The dotted sections are derived 
from the Weissenberg photograph 
data of (a). 

(c) Diffraction intensity distribution 
/(/?, Z) derived from (a) and (b). 
The contour lines are at intervals of 
20 in arbitrary intensity units. The 
broken lines indicate contours of 
100 and 200, and areas with less 
than 20 units are shaded. 

[Reproduced from N. Norman, Doctoral 
Thesis, pp.57, 59, Univ. Oslo (1954)] 
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(a) 

5A 
.J I 1 I r I t 

5A 
— I 

(b) 

Fig. 14.16 Cylindrical distribution func
tions for ramie. 
(a) Qir, 2)-Q° (Shaded ar

eas have negative val
ues). 

(b) rQ{r,zHr(f^ 
(c) Q(r, 0)-(2" (Shaded ar

eas have negative val
ues). 

[Reproduced from N. Norman, 
Doctoral Thesis, pp.61, 67, 
Univ. Oslo (1954)] 
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the packing of the molecular chains is found from the density distribution in the circumfer
ential direction, and the density distribution for r = 0, i.e. on the z axis, corresponds to the 
distribution of the interatomic distances in the molecules. Fig. 14.16(a) shows the average 
density distribution for the circumferential direction of the cylinder, which must be multi
plied by the weighting factor r to obtain the true density distribution. Fig. 14.16(b) shows 
the resultant rQ{r, z) obtained after multiplication by r and addition of the average density 
distribution rQ^. Fig. 14.16(c) shows the density distribution function Q(r, 6)— Q^ derived 
using the first three terms of the Legendre polynomials. 

14.6.3 Where there is periodicity along the cylinder axis 

When the above cylindrically symmetrical electron density distribution p{r) exhibits peri
odicity in the axial direction (z), i.e. for smectic specimens, the diffraction intensity (from 

sin^(A^;rcZ) 

sin^(;rcZ) 

the number of periods. When Â  is sufficiently large, Eq. 14.18 takes the form 

Eq. 2.38) is /(/?, Z)—. ^ _ ^^ , where c is the equivalent period in the z direction and A'̂  is 

Q{r) = Q(r,z) = {IKNIC) £ COS2(KIZ/C)\^RI{RJ/c)M27[Rr) dR (1432) 

This is the relationship derived by MacGillavry and Bruins.̂ ^^ The projection in a plane 
normal to the fiber axis is given by 

llQ(r,z)dz = 27tNJ^RI(R,0)M27rRr)dR (14 33) 

When the specimen is crystalline and the crystallites are uniaxially oriented (with the c axis 
as the fiber axis), the diffracted intensity is expressed with the aid of 5 functions^^^ by 

/ = /(/?, Z)d(R ~ Z)5(Z - Zi) (14.34) 

Since Z/ = //c, the distribution function can be derived from Eq. 14.19. 

Q(r.z)= X cos2(7i:lz/c)^27tRhkI(RhkJ/c)M27tRhkr) (14.35) 
/=-°o hk 

Again, since the 27tRhkI{Rhh He) of the second summation on the right-hand side is the inte
gral intensity of the circle with indices hkl resulting from rotation of the hkl reciprocal lat
tice points about the fiber axis {cf. Fig. 4.14), we obtain 

27tRhkI(Rhk, He) = (N/v) I F(hkl) P (14.36) 

Q(r, z) is therefore simply the cylindrical Patterson function. 

P(r,z) = Q(r,z) = (N/V)J^ COS2(KIZ/C) J^J^l F(hkl) \'M27rRHkr) (,^2n^ 
/ = - - h,k=-00 ^ • ^ 

Thus for smectic specimens or crystalline specimens which exhibit (say) uniaxial orienta
tion, the cylindrical Patterson function may be derived from Eq. 14.32 rather than from Eq. 
14.18. The reader is referred to Section 11.2.5 for an example of the analysis and for the 
significance of the general Patterson function. 
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15. Analysis of X-ray Small-angle Scattering 

15.1 Preparative Procedure 

15.1.1 Detection and recording of the small-angle scattering 
It was shown in Chapter 6 that X-ray small-angle scattering generally occurs within an ex
tremely narrow range of angles. Further, the intensity must be measured continuously over 
a range that can exceed 1 : 10^ This is far wider than the range of densities that can be 
recorded on one film, so that it is necessary to build up the total scattering intensity curve 
from a number of emulsions which have received different exposures. It is also necessary 
to use suitable attenuators or to reduce the X-ray tube current in order to keep the measured 
intensities within the optimum range for the detector. The scattering profile for the entire 
intensity range is then obtained by combining the measured values, (cf. Fig. 15.1).̂ '̂ ^ 

However, the development of the imaging plate (IP) saves the scientist from this trou
blesome procedure: only one or two exposures are enough to record the whole small-angle 
scattering pattern because of its excellent dynamic range (cf. Section 8.2.2.C.b)). The posi-

10̂  

10̂  

•^ 10* 

1"^ 

102 

10 

(1) 

H-

- Optimum range 
for intensity 

,^x.ox/r.w,/x. - - , measurement 
(7)(8)(9)(10)(U)(12)(13)(14) (15) of X-ray film vW:^:.^ 

f \ (4 ) | (6 ) 0.01 0.02 0.03 

(2)(3)(5) Scattering angle e [rad] 

Fig. 15.1 Derivation of the complete scattering intensity curve from a number of films exposed within their linear 
range of density vs. intensity (cf. Fig. 6.1.a). '̂2) 
Cu Ka radiation (pentaerithrytol crystal monochromator) was used with the silica gel specimen 
(Santocel C.S.). x (distance from the center to the observed point on the film) or s (= InelX) may sub
stitute for e (e ^ ;C/^F, RV- specimen-to-film distance). 
[Reproduced from M. Kakudo et al., J. Chem. Soc, Jpn.Chem. Sect., 78, 823, Chem. Soc. Jpn. (1957)] 
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tion-sensitive proportional counter (PSPC) and multi-wire proportional counter (MWPC) 
are also useful for measuring the intensity distribution precisely for a wide range of scatter
ing angles. These procedures make time-resolved measurements of the small-angle scatter
ing diagram possible (say) by the order of milliseconds or less. 

15.1.2 Corrections to the scattering intensity distribution 

A. The polarization factor 
Since the scattering angle £ ( = 26) is extremely small, cos 20=1. The polarization factor 
(1 + cos^20)/2 is therefore also approximately equal to unity, and generally no correction is 
required. 

B. Elimination of scattering caused by air and by the collimator edges 
Measurements of the scattering caused by air, by the edges of the collimator, by dispersing 
media (solvents), by glass capillaries, etc. are carried out under conditions identical with 
those used in the measurements on the specimen, and the results are deduced from the scat
tering intensity obtained with the specimen in position, see Fig. 15.2.̂ ^ 

14 

12 

10 

4h 

10 20 30 40 50 

Scattering angle e [X 10̂  rad] 

60 

Fig. 15.2 Corrections to the scattering intensity distribution for bovine serum albumin.^' 
Corrections for the effects of scattering by air, dispersing medium (solvent) and glass capillary. 
[Reproduced from J. W. Anderegg et al., J. Am. Chem. Soc, 77, 1, Am, Chem, Soc. (1951)] 

C. Correction for errors caused by the size of the collimator 
Except where the collimator system is a very fine pinhole, the intensity curve obtained with 
a long, narrow slit, after correction as indicated above, must be further corrected by reduc
tion to the profile that would be produced by an ideal fine pinhole X-ray beam. 
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a) Correction of the observed intensity curve. 
1) Correction for the effect of slit width: this is necessary when the colHmator is wide, 

and it is normal to carry this correction out before correcting for the effects of slit height. If 
the Fourier transforms of the intensity distribution IPB(S) of the primary X-ray beam in the 
direction ofjhc slit width, the diffraction Iu(s) free from the effect of the slit width, and the 
diffraction IWH(S) as affected by the slit width are 7PB(W), 7H(W) and 7WH(W) respectively, then 

/wh (s) = J^^ /pB (0 /H {s-t)dt, 

where s = InelX, and r is a variable of integration of no physical meaning. 
Hence 

/WH(W) = Jn{u)Jm{u) (15.1) 

Thus the diffraction Iw{s) without the effect of the slit width can be found by inverse trans
formation of the quotient /H(M) obtained by dividing the Fourier transform JWH(W) of the 
measured diffraction intensity curve /WH(^) by that of the intensity distribution of the prima
ry X-ray beam Jm{u). 

2) Correction for the slit height: if the slit is assumed to be extremely narrow and of 
infinite height, theJrue scattering intensity I{s) is calculated from the following equation"̂ '̂ ^ 
using the gradient lu (the differential coefficient of the intensity curve) of the measured in
tensity In. 

I{s) = {-\lKc)\l[iH'{{s'+v'f']l{s'+v'r]dv (15.2) 

where v is a variable of integration of no physical significance. This correction is not nec
essary in the Guinier plot method (Section 15.2.1, cf. Eq. 15.8). 

If the slit is assumed to be extremely narrow, but with a finite height, the equation takes 
the form '̂̂ ^ 

I{s) = c\-\l[iH'{{s^+v^y'^} I {s^+v^f'^]dv 
/ I C O N 

-2£^ [ / ; , ' { (5^ + v2)^^^}/(5^+V^)^^^]dV+/{(5^ + 2/22)>̂ 2}} 

where h is the height of the cross section of the direct beam in the plane of observation 
measured from the center. 

In a generalization of Guinier's approximation, Hossfeld represented the scattering 
functions by series of orthogonal Hermite functions, which allowed for a closed treatment 
of the geometric errors of the size of the collimator, and also of the distortion effect caused 
by non-monochromatic radiation. This method leads to simple recurrence formulae.^^ 

These corrections can be easily carried out with electronic computers. 
b) Use of modified theoretical scattering intensity curves. Whereas the above methods 
enable the measured intensity In to be corrected to the intensity that would be obtained with 
an ideal collimator, there is another method by which a theoretical curve is converted into 
the intensity curve that would be expected with any given collimator.^^ This method, how
ever, can only be applied to small-angle scattering from particles with certain shapes. 
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15.2 Analysis of Particle Size and Shape 
Some structural parameters, such as the radius of gyration, Rg, the molecular weight, Mr 
(using the scattering intensity at zero angle, 1(0)), the hydrated volume, the maximum intra-
particle distance from the distance distribution function, p{r), etc. can be computed directly 
from the small-angle scattering data. 

The methods of analysis can be classified into three:̂ ^ 
a) Analysis in reciprocal space. Small-angle scattering curves measured with point colli-
mation (slit error free) or those corrected for slit errors (desmeared curve) is used for the 
analysis. This is the most common method. Several special plots, 

1) log I(s) vs. s^ (Guinier plot) and its analogues, log {s I) vs. s^ and log (s^ •/) vs. s^ 
plots (Section 15.2.1), 

2) log / vs. s plot (curve fitting method. Section 15.2.2), and others are applied for in
terpretation. 
b) Analysis in experimental space. Smeared small-angle scattering curves I are used for 
the analysis, and this method does not require any slit error correction process. If the small-
angle scattering is measured with a long slit camera, such as a Kratky U-slit camera, in 
which the slit height can be approximated as infinitely high compared to the narrow slit 
width, and if we can derive theoretically the relationship between the smeared scattering 

functions, % and the observed (smeared) scattering intensity, / , we can interpret the ob

served (smeared) scattering curves, / without slit-error correction. For example: log / vs. 

s^ plot can be used instead of log (s I) vs. s^ plot, the scattering power Q=\s •7(s)ds instead 

of Q '=js^-I(s)ds and s ~ ̂  rule can be applied for / instead of 5""* rule, etc. 

c) Analysis in real space. Distance distribution functions, p{r) or p\ir) and maximum di
mensions, Dmax are mainly used for the analysis of the small-angle scattering curves ob
tained. 

15.2.1 The Guinier plot 

A. Dilute system 
The small-angle scattering intensities for highly dispersed, uniform particles (as in an 
aerosol), or for colloidal particles of uniform size in dilute solution {e.g. solutions of homo
geneous proteins) are given for various particle shapes by the scattering functions in Table 
5 of the Appendix. In most instances, however, the particle shape is unknown. As a first 
approximation, the radius of gyration is calculated by applying a Gaussian scattering func
tion, which utilizes the radius of gyration R^ with respect to the particle's center of gravity, 
andEq. 6.13: 

/ = /e Mn" exp( - s^Ril^) = 7(0) exp( - 4;rV/?gV3A') (15.4) 

where 

7(0) = 7e Mn^ and s = InelX == AKOIX 

log 7 = log 7(0) - 5'i?gV3 = log 7(0) - (4;r'/3A')e'/?g' 

A plot of log 7 against s^ or e^ is linear, and the radius of gyration 7?g may be found from the 
gradient (see Fig. 6.7). In the case of a graph of log 7 vs. e^ if the gradient is a (the value of 
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which must be appropriately converted if logio semilogarithmic graph paper has been used), 
then 

R,=aiK){-3alAy'^ (15.5) 

In practice, however, the curve departs radically from a Gaussian curve at large scattering 
angles. This may be due to the fact that the Gaussian curve is an approximation, or it may 
derive from experimental error, or the effects of electron density variations within the parti
cles. Accordingly, the gradient for the smallest possible scattering angles will give the 
most accurate value (see Fig. 15.3). 
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Fig. 15.3 Comparison between the scattering function, ^ , and the approximate (Gaussian) functions. 
(a) Spherical particle The log W vs. (sRf (or log / vs. e^) plot may be taken as practically linear for 0 < 
(sR) < 10. The slope at sR= 1.5 gives the diameter (about 5% below the actual diameter) of the 
sphere. ̂ °̂  
(a): [Reproduced from J. Turkevitch, H. H. Hubell, J. Am. Chem. Soc, 71, Am. Chem. Soc. (1951)] 
(b) a fixed cylindrical particle. 
(b) The error in the radius of the cylinder as derived from the gradient where sR^ 1.5 is about 5%, and 

increases to 15% at sR = 2.5. The departure from hnearity is increasingly marked for (sRf > 2. 

If the mass and density of the particles are known, it is possible to calculate the radius 
of gyration /̂ min for spherical particles. The ratio of the measured value to /?min, i-e. 
R/Rmin = / , may then be used as a criterion of the anisotropy in particle shape. Moreover, if 
the particle has a simple geometrical shape the radius of gyration can be calculated. Table 
15.1'"^ shows the radii of gyration of particles with simple shapes. In such cases, a number 
of possible particle shapes that correspond to the measured volume and radius of gyration 
can be found. The analysis may then be repeated for these shapes using the scattering func
tions given in Table 6 of the Appendix to refine the results {cf. Section 15.2.2). 
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Table 15.1 Radii of gyration of particles having simple shapes" 

Shape 

Sphere (radius R) 

Spherical shell (external radius R, internal radius cR) 

Ellipsoid of revolution (semiaxes a, a, wa) 

Cylinder (height 2H, radius R) 

Thin disc (radius R) 

Fiber (length 2H) 

Rectangular Prallelepiped (length 2a, width 2b, height 2c) 

Cube (edge length 2a) 

Radius of gyration Rg 

(3/5)^/? 

(3/5)mi-cy{i-c')Y^ 
a[(2+wy5f-
(/?V2+//V3)^ 
2-^R 

?>-H 

{{a^-\-b^+c^)l?>\ 

a 

[Reproduced with permission from C. H. MacGillavry, G. D. Rieck eds., International Tables for X-Ray 
Crystallography, VoLIE, 327. IUCr.(1962)] 

B. Effect of the concentration (See also Sections 6.2.5 and 15.2.3) 
It is said that, for example, for globular proteins concentration effects can only be neglected 
for concentrations below 1 mg/ml. Therefore, as a rule, small-angle scatterings of four or 
five solutions with different concentrations in the range between 5 and 30 mg/ml and that of 
solvent should be measured, and the results should be extrapolated to zero concentration. 

The procedure is as follows: after averaging the intensities separately for each concen
tration and for solvent, the blank scattering is subtracted from the scattering of each protein 
solution and the scattering curves are normalized to unit concentration, i.e. the observed in
tensities are divided by the corresponding protein concentrations, c. The interparticle inter
ference increases with increasing concentration, usually with the effect of decreasing the 
scattering intensity at small angles. 

This procedure can be done with the smeared and unsmeared scattering intensities.̂ '̂̂ ^^ 
Fig. 15.4 shows an example of smeared scattering curves. 

Two procedures are applied for the extrapolation to zero concentration, which are 
shown in Figs. 15.5 and 15.6 
a) Extrapolation to zero concentration. 

1) The upper thick line in Fig. 15.5 is the extrapolated curve: the extrapolation to zero 
concentration is carried out in the normal plot, lie vs. e at each measured scattering angle. 

2) The second procedure shown in Fig. 15.6 is a Zimm plot:̂ "̂ ^ this procedure is famil
iar in light scattering studies of high polymer solutions. 

3) A third possible way is to calculate the radius of gyration ^g form the Guinier plot 
for each concentration (Fig. 15.7) and to plot the Rg values against the concentration c, 
which are shown in Fig. 15.8. The value of ^g extrapolated to zero concentration ^g,c-o is 
65.6 A. The distance distribution function p(r) for the scattering curve extrapolated to zero 
concentration may be used as a reference to confirm the disappearance of the concentration 
effect (Fig. 15.9) (cf. Section 15.2.3). 
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Fig. 15.4 Slit-smeared scattering curves of hemocyanin {Astacus leptodactylus) for,thejndicated concentrations 
c with Cu Ka radiation., The curves are normalized to c = 1 by plotting lie; I slit-smeared scattering 
intensity.'^'^* 
[Reproduced with permission from I. Pilz et al.. Methods in Enzymology, 61, 208, Academic Press 
(1980)] 
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Fig. 15.5 Innermost portions of the scattering curves shown in Fig. 15.4. 
The curves are extrapolated to zero concentration (curve 1) by plotting the corresponding concentration 
at different scattering angles parallel to the abscissa in arbitrary units, as indicated.'^''^' 
[Reproduced with permission from I. Pilz et al.. Methods in Enzymology, 61, 209, Academic Press 
(1980)] 
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Fig. 15.6 Innermost portions of the scattering curves shown in Fig. 15.5 in a Zimm plot. 
The curves are extrapolated to zero concentration in the same way as described in Fig. 15.5.'^'^^ 
[Reproduced with permission from I. Pilz et al.. Methods in Enzymology, 61, 209, Academic Press 
(1980)] 
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Fig. 15.7 Guinier plots of the innermost portions of the scattering curves shown in Fig. 15.4. 
The values of the slit-smeared radii of gyration /?g obtained for the different 
concentrations are indicated.'^'^^ 
[Reproduced with permission from I. Pilz et al.. Methods in Enzymology, 61, 210, 
Academic Press (1980)] 
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20 30 
c [mg/ml] 

Fig. 15.̂  Slit-smeared radii of gyration Rg calculated from Fig. 15.7 plotted against the protein concentration c.'^'^* 
[Reproduced with permission from I. Pilz et al., Methods in Enzymology, 61, 211, Academic Press 
(1980)] 

Fig. 15.9 Distance distribution function p{r) for various concentrated solutions of the hemocyanin of Astacus lep-
todactylus}^'^^^ 
Curve ( ), c = 48 mg g ^ ^ curve ( ), c = 21.6 mg g~ ' ; curve ( ), c = 4.8 mg g"̂  \ curve 
( ), c extrapolated to zero; Dmax = maximum distance of the particle. 
[Reproduced with permission from I. Pilz et al.. Methods in Enzymology, 61, 181, Academic Press 
(1980)] 

15.2.2 Comparison of the measured scattering intensity curve with the 
theoretical curve (Curve fitting method) 

When theoretical scattering intensity curves have been derived for particles having relative
ly simple shapes, it is possible to determine the desired parameters by trial and error involv
ing appropriate variation of the parameters and direct comparison of the overall shapes of 
the theoretical and measured curves, or by looking for the theoretical profile that conforms 
best to the measured curve in the graph of log W vs. log e. 

Figure 6.6(b) shows log *F vs. log e graphs of theoretical scattering curves for ellipsoids 
of revolution with equal radii of gyration (axial ratio 1 : 1 : w). If any one of these curves is 
modified by moving the coordinates until it conforms to the measured curve, the shape of 
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the particles can be found from the w for the theoretical curve. The particle size can be de
termined from the radius of gyration found from the Guinier plot and the value of w. The 
differentiation between an oblate ellipsoid and a prolate ellipsoid is made at the tail of the 
curve (see Fig. 15.10).̂ ^ Table 15.2̂ ^̂  gives the numerical values required for the construc
tion of theoretical scattering curves for ellipsoids of revolution (c/ Fig. 6.6(b)). 

(a) Prolate (w > 1) 
Table 15.2 Scattering functions for ellipsoids of revolution''^' 

w 

sR ~ 

0.0 
0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 

(b) Oblate (H 

sR 

0.0 
0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 

1.5 

1.000 
0.920 
0.713 
0.461 
0.242 
0.0990 
0.0293 
0.00638 
0.00333 
0.00447 
0.00450 

'<!) 

2/3 

1.000 
0.920 
0.712 
0.457 
0.236 
0.0931 
0.0262 
0.00688 
0.00523 
0.00525 
0.00369 

2 

1.000 
0.920 
0.718 
0.477 
0.274 
0.138 
0.0616 
0.0240 
0.00789 
0.00294 
0.00270 

1/2 

1.000 
0.920 
0.714 
0.464 
0.250 
0.112 
0.0450 
0.0203 
0.0113 
0.00625 
0.00307 

3 

1.000 
0.921 
0.726 
0.505 
0.327 
0.206 
0.128 
0.0760 
0.0421 
0.0216 
0.0101 

1/3 

1.000 
0.920 
0.716 
0.472 
0.267 
0.136 
0.0714 
0.0428 
0.0274 
0.0166 
0.00934 

4 

1.000 
0.921 
0.730 
0.522 
0.359 
0.250 
0.176 
0.122 
0.0827 
0.0546 
0.0347 

1/4 

1.000 
0.920 
0.717 
0.475 
0.274 
0.148 
0.0846 
0.0555 
0.0385 
0.0259 
0.0170 

6 

1.000 
0.922 
0.735 
0.537 
0.389 
0.292 
0.225 
0.176 
0.138 
0.108 
0.0836 

1/6 

1.000 
0.920 
0.717 
0.477 
0.278 
0.154 
0.0916 
0.0627 
0.0453 
0.0320 
0.0225 

10 

1.000 
0.922 
0.737 
0.546 
0.407 
0.318 
0.259 
0.214 
0.180 
0.153 
0.131 

1/10 

1.000 
0.920 
0.718 
0.479 
0.284 
0.162 
0.102 
0.0738 
0.0562 
0.0426 
0.0328 

oo 

1.000 
0.920 
0.738 
0.551 
0.418 
0.334 
0.278 
0.239 
0.210 
0.187 
0.168 

0 

1.000 
0.920 
0.718 
0.479 
0.284 
0.166 
0.106 

[Reproduced from L. I. Mirkin, Handbook of X-Ray Analysis of Polycrystalline Materials, pp. 671, 672, 
Consultants Bureau (1964)] 

A. Globular particles 
As shown in Fig. 6.4, the scattering function ^{sR) for a sphere contains a large number of 
weak maxima. This clearly makes it possible to compare the scattering curves as a whole, 
and to determine the radius of the particles by measuring the positions of the maxima. The 
maxima of the scattering function ^{sR) are situated at s^a^xR = kK — 3/k7t, where ^ is a pos
itive integer greater than unity, and the corresponding maximum values are 9l{knY + 
"^Miknf. The minima are situated at t?in{s^,nR)=SrnmR, i.e. SmmR=(2j + l)/4 — 1/(2/ + l);^^ 
where 7 is a positive integer greater than zero, and have a minimum value of zero. It should 
also be possible to use the number of observed maxima as a criterion of sphericity. 
Particles of polystyrene latex are well known to be sufficiently uniform in shape and size to 
be used as a standard of particle size in electron microscopy. A correspondingly large num
ber of peaks have been measured in the small-angle scattering of this material. ̂ '̂̂ ^̂  
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B. Very long rod-like or very broad disc-shaped particles (cf. Section 6.2.2 B and C) 
In general, for particles of special shapes, such as rods of infinite length or plates of infinite 
breadth, it is possible to separate the integrations for specified dimensions such as length 
and thickness in the Fourier transform of QJj') (the convolution of the shape function). For 
example, the scattering functions of an unoriented assembly of M rectangular paral
lelepipeds with thickness T, breadth B, and length L, and having uniform electron density p, 
can be resolved into the functions ^ T , ^ B , *^L for the three fixed directions. 

I{s) = /e Mp^V^ < »FT •FB »FL > , (15.9) 

In Eq. 15.9, the sign< > represents the angle averaged with respect to azimuth. If the 
length L is very long, *FL should have a much greater angular variation than the other two 
functions, and *FL may therefore be averaged separately from the other two. Further, when 
B and T are very large in relation to L, it should also be possible to average ¥^B and *FT sep
arately. Since the respective averages will be 

<WB> ^ KISB, < »FT> == KIST, <WL> = nIsL (15.10) 

the scattering functions for long rod-like particles will be 

l{s) = <WL><WB'FT>= {7t/sL)lBT(s) (15.11) 

and for very broad disc-shaped particles 

/(s) = < »FL > < ^B»FT > = Iiis)(jilsB){KlsT) (15.12) 

or 

and 

(long rod-like particles) I{s)s = h-^is) (15.13) 

(very broad disc-shaped particles) I{s)s^ = h{s) (15.14) 

Thus if the scattering intensity profile I{s) for such a particle is multiplied by s (or e), the 
curve should correlate with the intensity /BT due only to the shape of the cross section of a 
rod, and multiplication by s^ (or e^) will give a curve that correlates with the intensity due 
only to the thickness of a broad disc. The respective shapes and sizes can then be found by 
comparison of /BT or /L with the theoretical intensity. It is possible, for example, to calcu
late the radius of gyration Rgs of the cross section from the gradient of the Guinier plot 
log /BT(= log (/ -£)) vs. e^ using hi^-^^^ (see Fig. 6.8) 

log/BT = log (/•£)= log (/.e)o-i<:i?gsV, and K^ljeiX^ (15.15) 

It is also possible to deduce the shape of the cross section from the plot of log hi against 
log e (see explanation below in connection with Fig. 15.10(c)). 
a) Small-angle scattering of y-globulin?^^ This is an example of small-angle scattering of 
a long protein molecule. The Guinier plot of the scattering intensity curve departs radically 
from linearity as shown by Fig. 15.10(a). Determination of the radius of gyration of the 
molecule as a whole from a tangent to the small-angle portion of the curve gave Rg — 70 A. 
Since it had previously been deduced from other types of measurements that the molecule 
was rod-like, log (/ • e) was plotted against e^ to determine the size of the cross section of 
the molecule (Fig. 15.10(b)). The disparity at very small angles is attributable to the finite 
length of the rod. The radius of gyration of the cross section asfound from the gradient of the 
tangent is Rg^= 15 A. If it is assumed that the molecule is cylindrical, then the height H is 
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given by 

H^ = 12(/?g2 - V ) = 12(70' - 15') 

It was deduced from the log (/ • e) vs. log £ plot (see Fig. 15.10(c)) that the cross section has 
an axial ratio of 1 : 3, and hence 

Rgs = {a^ + b^)IA {a and b are the semiaxes of the ellipse) 

The values obtained were a= 19 A, and b = 51 A. Calculation of the molecular weight 
from these values gives Mr= 1.57 X 10^ which agrees well with the value of 1.56 X 10̂  
obtained by the ultracentrifuge method. 

(0 .5X10-2)2 (1X10-2)2 (1X10-2)2 (2X10-2)2 

(a) (b) 

log e 

(c) 

Fig. 15.10 Analysis of small-angle scattering by an aqueous solution of /-globulin.^'^ 
(a) Guinier plot of log / vs. £^ (markedly non-linear). 
(b) Guinier plot of log (/ -e) V5. £ .̂ 
(c) log (/ •£) vs. log e (for cross-section axial ratio). 
[Reproduced from O. Kratky et ai, J. Polym. Sci., 16, 163, John Wiley 
& Sons, Inc. (1955)] 
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15.2.3 The distance distribution function 
As mentioned before (Section 6.2.3) the distance distribution, p{r) or pL(r) can be deter
mined by Eq. 6.51 and Eq. 6.53 from the small-angle scattering intensity curves measured 
and corrected for slit errors. 

p(r) = 7o(r) • r̂  

\ S' I(s) sin srds 

(6.53) 

(6.51a) 

A. The formation of dimer̂ ^̂ ^̂ ^ 
Figure 15.11 shows the distance distribution function of dimer models. The models are 
built from two uniform, prolate ellipsoids of revolution (w = b/a = 2, Le. axial ratio 2a : 2a 
: 2b = I : I : 2). In the figure the distance distribution of the monomer (sohd Hne), that of 
the dimer (broken hne) and also the difference of the two distance distribution functions 
(thick solid line) are shown. The difference between the parallel and linear dimers is obvi
ous. The two rectangular arrangements, T and L types, lie between the parallel and linear 
dimers. 

100 200 300 400 500 600 700 800 900 

[A] 
0 100 200 300 400 500 600 700 800 900 1000 

/•[A] 

Fig. 15.11 Distance distribution function p{r) from dimer models built from prolate ellipsoids.^^'^^' 
Solid line, monomers; broken line, dimers; thick solid line, difference between dimers and monomers, 
(a) Parallel arrangement, (b) linear arrangement, (c) T type, (d) L type. 
[Reproduced with permission from I. Pilz et al.. Methods in Enzymology, 61, 176, Academic Press 
(1980)] 
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B. The interparticle interferencê "̂ ^̂ ^ 
A rough approximation is the model consists of Â  identical hard spheres with radius R. The 
scattering intensity of this model is given by Guinier and Fournet* based on theories of 
Bom and Green^^^ 

I(s) = h<N>F\sR)-
1 

(15.16) 
l+(8vo/Vi)eF(25/?) 

where O^ (sR) = ^(sR) and Vo/Vi is the packing parameter, which is equal to 0.72 in the case 
of hexagonal and cubic closest packings, and £ is a constant approximately equal to unity. 
The approximation for small s values 

1 
I(s) = const'F\sR) 

l+(8vo/Vi) 
(15.17) 

and for low concentrations 

I(s) = const. • 0^ (sR)(l - 8vo/vi) (15.18) 

A linear approximation to zero concentration discussed above is based on Eq. 15.18, which 
is an approximation of Eq. 15.17. 

The scattering curves for several values of 8vo/Vi is already given in Fig. 6.16. The ap
parent radius of gyration decreases with increasing concentration (Figs. 15.12 and 15.13). 
The length of the linear range increases for particles of which scattering curves deviate 
from the linear part in upward direction whereas the length of Hnear range decreases for 
curves deviating from the linear part downward. Therefore, there is no method to detect the 
existence of interparticle interference directly from the scattering curve or from the Guinier 
plot. 

0.02 0.04 0.06 0.08 0.10 

Fig. 15.12 Interparticle interference effect. (Hard sphere model, R = 100 A) 
Scattering functions for different volume concentrations. 
Solid curve, Vo/Vi = 0; A, Vo/Vi.= 1/32; D , Vo/Vi = 1/16; O , Vo/Vi = 1/8. Dashed vertical line; termi
nation for indirect transformation (first data point at sR = 2.0) 
[Reproduced with permission from I. Pilz et al.. Methods in Enzymology, 61, 177, Academic Press 
(1980)] 
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Fig. 15.13 Interparticle Interference effect, hard sphere model as Fig. 15.12, 
Guinier plot: • , VQ/VI = 0, A , vo/vi = 1/32; D , vo/vi = 1/16; O , Vo/vi = 1/8. 
[Reproduced with permission from I. Pilz et al.. Methods in Enzymology, 61, 178, 
Academic Press (1980)] 

The distance distribution is affected considerably by interparticle interferences. It is 
lowered with increasing distance r, goes to a negative minimum in the region of the maxi
mum distance of the particle and the oscillations vanish at larger r values. This has been 
shown for the hard sphere model in Fig. 15.9. 

A. Acid denaturation of Taka-Amylase Â ^̂  
The structural change of Taka-Amylase A by acid denaturation has been studied by a 
stopped-flow small-angle X-ray scattering. Taka-Amylase A (EC 3.2.1.1, a-l,4-glucan-4-
glucano hydrolase) is monomeric, composed of a single polypeptide chain of 478 amino 
residues. The three-dimensional molecular structure, determined at a 3.0 A resolution by 
an X-ray crystal structure analysis is nearly ellipsoidal with approximate dimensions of 
35 X 45 X 80 A.̂ ^̂  It may be approximated as a prolate ellipsoid of revolution with axial 
lengths of 40 X 40 X 80 A (w = bla = 2). 

The aqueous solution of protein (20.2 mg ml~') was mixed with a 0.1 M glycine/ 
NaOH-HCI (1 M = 1 mol dm~^) buffer in a stopped-flow mixing device. The pH of the 
mixed solution was adjusted to 3.3. Nickel-filtered Cu Ka radiations were coUimated with 
a 0.3 X 10 mm slit, and reflected and focused by nickel-coated glass mirror through two 
limiting slits: one located immediately behind a mirror holder to collimate reflected X-rays, 
the other located just before a stopped-flow mixing device. The scattered X-rays were 
recorded on a 50 mm-long one-dimensional position sensitive proportional counter (delay-
line type). The flow gas (11 mm in thickness) used was a mixture of 90% argon and 10% 
methane. The width of the detector window was 10 mm. The detector length was 50 mm 
and divided into 256 channels on a multi-channel analyzer. The sample-to-detector dis
tance was 310.0 mm. The scattered X-rays were collected in the range of scattering from 
3.8 X 10~' to 7.7 X 10~' radŝ ^̂ ^ 

The scattering intensities, / (5), recorded on both sides of the primary beam were aver
aged at equivalent points after subtracting background intensities. The coincidences of in-
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tensities on both sides, Rsym were all good. The scattering intensity, I(s) was then obtained 
by a deconvolution (desmearing) for the beam-height effect by the method of Clatter.̂ ^^ 

The time courses of Rg and 7(0) at 0°C and 15°C are plotted in Fig. 15.14. Radii of gy
ration, Rg and zero-angle intensity, 7(0) were obtained from a Guinier plot. At 15°C, Rg and 
7(0) increased appreciably after about 800 s (indicated by an arrow in the figure, within the 
time during which Rg gradually increased and remained unchanged (Fig. 15.14(b)). This 
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Fig. 15.14 Time courses of radius of gyration, /?g(») and zero-angle scattering intensity, /(0)(") (Taka-Amylase A).̂ ^̂  
(a) at 0°C and (b) at 15°C. Error bar is drawn by 3o", where a is the standard deviation obtained from 
the least-squares method. [Reproduced with permission from T. Hozaki et ai. Bull. Chem. Soc. Jpn., 
59, 3748, Chem, Soc. Jpn. (1986)] 
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phenomenon was also observed at 10°C; however, the time at which the large increase ofRg 
and 1(0) observed was retarded to about 3,400 s. At 5°C, only the phenomenon of a gradual 
increase of Rg and an almost constant 7(0) was observed over the whole range of the time 
course. Neither R^ nor 7(0) changed at 0°C (Fig. 15.14(a)). 

These results show that the acid-denaturation of Taka-Amylase A can be explained by 
two steps of a structural change from the time course of Rg and 7(0). The arrow in Fig. 
15.14(b) indicates the time between the first and second steps of the acid denaturation ob
served. 

1) First step: The log 7 vs. log s plot of the scattering intensity for frame 1 and 13 at 
15°C is compared with the theoretical scattering functions of prolate ellipsoids (Fig. 15.15). 
This comparison was performed in a time range in which 7(0) was nearly constant, because 
the increase of 7(0) corresponds to that of molecular mass.̂ ^^ The structural parameters of 
the initial and final stages in the first step are summarized in Table 15.3. Those obtained 
for the initial stage, a = 20 A, Z? = 40 A (7?g = 22 A) are in good agreement with those ob
tained by the crystal structure analysis taking into the account the hydration in solution 
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Fig. 15.15 Log I(s) vs. log 5 plot of the observed scattering intensities (•) at 15°C (Taka-Amylase A).̂ "̂ ^ 
The top corresponds to the time frame 1 and bottom corresponds to the time frame 13 at 15°C. 
Superimposed are the theoretical scattering functions (solid lines) of the prolate ellipsoids with the ec
centricities, w of (1) w = 1.0, (2) w = 2.0 and (3) w = 3.0. [Reproduced with permission from T. 
Hozaki et al.. Bull. Chem. Soc. Jpn., 59, 3750 , Chem. Soc. Jpn. (1986)] 



436 15. Analysis of X-ray Small-angle Scattering 

and/or experimental errors. As seen in Fig. 15.15 the overall molecular structure changed 
with time; the eccentricity w of the ellipsoid increased from 2.0 to 2.4; however, the value 
of a did not show any change. This indicates that the Taka-Amylase A molecule elongates 
with time by acid denaturation. 

Table 15.3 Structural parameters of the initial stage (Time 1) and the final stage (Time 2) in the first step^^^ 

tVC] 

0 

5 

10 

15 

R,{k\ 

25.9 

25.5 

25.6 

25.0 

Time 1 [s] 

a{k] 

60 

23.7 

60 

23.3 

60 

23.4 

60 

22.8 

^[A] 

47.3 

46.6 

46.7 

45.6 

R,{k\ 

26.2 

30.2 

29.6 

29.0 

Time 2 [s] 

a{k\ 

4,320 

23.1 

4,320 

23.7 

3,420 

23.3 

810 

23.3 

^[A] 

48.5 

56.8 

53.7 

55.9 

[Reproduced with permission from T. Hozaki et al.. Bull. Chem. Soc. Jpn., 59, 3751 , Chem. Soc. Jpn. (1986)] 

2) Second step: The Guinier plot of the small-angle scattering profile at 15°C became 
biphasic with time (Fig. 15.16). This phenomenon suggests that the X-ray scatterer in solu
tion comprises two kinds of particles with different sizes. Applying the method of Jellinek, 
Solomon and Fankuchen^^^ as well as a distance distribution function, it was elucidated that 
the large particle further expanded with time while the small one remained unchanged. The 

7.0 (X 10-3) 

Fig. 15.16 Guinier plots of the small-angle scattering profiles at 15°C (Taka Amylase A).̂ ^̂  
Time frames 1,18, 24, and 29 are plotted. 
[Reproduced with permission from T. Hozaki et al. Bull. Chem. Soc. Jpn., 59, 3751 (1986)] 
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Rg of the small particle showed a good coincidence with that of the Taka-Amylase A 
monomer. These facts suggest that Taka-Amylase A molecules aggregates with each other 
and the X-ray scatterer in solution consists of large aggregate and small elongated mole
cules transformed from native Taka-Amylase A by a partial unfolding of the polypeptide 
chain. 

B. Structure of a cockroach lipophorin̂ ^̂ "̂ ^ 
Lipophorin is a diglyceride-carrying lipoprotein found in insects. Fig. 15.17 shows small-
angle X-ray scattering intensities of lipophorin in aqueous solution of sucrose at various 
concentrations, pj. Scattering intensities varied widely with sucrose concentration. An 
aqueous solution of 0% sucrose concentration showed a broad peak at 5 = 0.01 A"^ (chan
nel 35 in Fig. 15.17). This peak moved toward the smaller angle with increase of sucrose 
concentration, and the zero angle intensity, 7(0), also decreased. However, at sucrose con
centrations over 30% 7(0) showed increase with increase in sucrose concentration and the 
small-angle scattering curves changed to decrease monotonically. 

60 90 

Channel number 

Fig. 15.17 Changes in small-angle scattering intensities of cockroach lipophorin in aqueous solutions of sucrose 
of various concentrations (%).33'34) 
Abscissa is channel number of multichannel analyzer which correspond to scattering parameter, s. 
[Reproduced with permission from M. Sato, Protein, Nucleic Acid, Enzyme (Tokyo), 35, 2883, 
Kyoritsu Pub. (1990)] 

At 0% sucrose concentration the p(r) function (Section 6.2.3.B-D) gave two positive 
peaks at r = ca. 30 and 110 A and a small negative peak at r = ca. 70 A, which suggests 
that the distance distribution between regions of positive and negative constrast to the water 
may be clear (Fig. 15.18(a)). With increase of sucrose concentration the peak at r = ca. 30 
A became remarkably larger, but the other two peaks decreased into ripples. 

Since [7(0)]'̂ ^ = <Ap>\ Si(0) I and < zip > = pi - p2 (Section 6.2.2.D), the average 
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electron density of a lipophorin particle, pi could be determined by plotting values of 
[l{0)f^ against p2:pi = 0.355 e/A^ (Fig. 15.19(a)). Values of the contrast < Zip > at vari
ous sucrose concentrations were then calculated. The Rg^ vs. l / < Ap > plot was approxi
mately linear (Fig. 15.19(b)). Finally, obtained by the least-squares procedure were a = 
38.4 e/K b = 0.03 e^lk\ and R^ = 49.1 A. This result, Le. a > 0 and Z? = 0, suggests that 

50% 

(a) 

200 

J ^ - ^ 0 . 0 7 ( C / A 3 ) 

Fig. 15.18 Changes in distance distribution function, p{r) of lipophorin in aqueous solutions of sucrose of various 
concentrations {%)?^'^'^^ 
(a) P(r)'s determined from the scattering intensity distributions observed. 
(b) P(r)'s calculated from the electron density distribution assumed. Ap =(p2 — po), where po (%), is 

the electron density of the solvent at 0% sucrose concentration. 
[Reproduced with permission from M. Sato, Protein, Nucleic Acid, Enzyme (Tokyo), 35, 2883, 
Kyoritsu Pub. (1990)] 
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the center of gravity of regions which have different electron densities coincides approxi
mately with the center of the gravity of the particle shape (Vi) and that the higher region in 
electron density locates on the surface and the lower region occupies the inner side of the 
particle. 

It was concluded that a spherical lipophorin molecule has a three-layered inner struc-
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Fig. 15.19 Effects of contrast variation (cockroach lipophorin).̂ '̂̂ "^^ 
(a) p2 dependency of zero angle intensity, [/(O)]'̂ ^ vs. p2, 
(b) Contrast dependency of radii of gyration, R^ vs. \IAp 
[Reproduced with permission from M. Sato, Protein, Nucleic Acid, Enzyme (Tokyo), 35, 2883, 
Kyoritsu Pub. (1990)] 
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ture: inside the apoprotein layer there exists a lipid layer that may be divided into two lay
ers. That is: the innermost core portion is occupied by hydrocarbon molecules, n-penta-
cosane, 3-methylpentacosane, and 6,9-heptacosadiene, which are much less polar than the 
middle layer lipids (Fig. 15.20). 

Apo 1 

Apo II 

(b) 

20 40 60 80 100 

r[A] 

Fig. 15.20 Inner structure of cockroach lipophorin revealed by the contrast variation method (a) and its schematic 
representation (b).̂ '̂̂ '̂ 
Apo I and Apo II. apoproteins I and II, respectively; PL, phospholipid; DG, diacyl glyceride; HC, hy
drocarbon. 
[Reproduced with permission from M. Sato, Protein, Nucleic Acid, Enzyme (Tokyo), 35, 2883, 
Kyoritsu Pub. (1990)] 

15.2.4 Other analytical methods 

In addition to the analytical methods described in Sections 15.2.2 through 15.2.4, there are 
many other methods of small-angle scattering analysis for dilute or dense systems of col-
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loidal particles, such as Warren's total scattering intensity measurement method,̂ ^^ Porod's 
method, which utilizes absolute intensity measurements^^^ and the methods described by 
Debye,̂ '̂̂ ^^ Luzzati,̂ '̂̂ ^^ and others.̂ "̂̂ ^^ The reader is referred to other sourceŝ "̂ "̂̂ ^̂  for de
tails of these method. Reference should also be made to other books for the analysis of 
small-angle scattering for stacked lamellar micelles and for parallel assemblies of cylindri
cal micelles.̂ '̂ '̂ O''̂ -'̂ ^ 

15.3 Analysis of Small-angle Scattering for Solutions of Chain Macro-
molecules 

15.3.1 Persistence of polymer chain 
A. Direction persistence 
When chain macromolecules are distributed in a liquid in the form of tightly packed parti
cles, their small-angle scattering can be analyzed by the methods described in earlier sec
tions using the normal particle shape factors. Dependent upon the solvent or on the charac
teristics of the polymer chains themselves, the molecular chains may be dispersed in the 
solvent as loosely tangled "random coils," see Fig. 15.21.̂ ^^ Small-angle scattering from 

Fig. 15.21 A projection of a molecular chain model consists of 100 straight links onto the XZ plane.̂  
(cos a = 0.8, where a is the direction angle; j3, azimuth; x, length of a link) 

systems of this type cannot be analyzed by the simple application of methods such as those 
described in Section 15.2. Instead of the small-angle scattering intensity equation, which is 
calculated from the total volume at a constant density, we begin with the general equation 
(Eq. 2.23) for the intensity of the X-rays diffracted from molecules. If the scattering terms 
of the individual atoms are omitted, the determination of the scattering function ^{s). 
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which is represented by 

I(s)ocyf(s)='^J^< sin srjk 

srjk 
>, (15.19) 

where s =(4K sin 6)/X=47tO/X = InelX, corresponds to calculation of the sum of the phases 
of the groups of individual pairs of atoms r,̂  in the molecule. Expansion of ^{s) into a se
ries and omission of the terms below the mean square <r^jk> of Vjk gives 

^(5) =\-s^< rjk^ >/3 \ + s'< Tjk' > /5! - / < r / >/7! +.. . 

= l-5 ' /?g73 (15.20) 

Since R^ in this equation is the radius of gyration of the molecular chain, 2/?g = < r^ju > . 
From statistical theory, the relationship between Rg and the mean square of the end-to-end 
distance < ren/ > for an extremely long molecular chain is 

R. - < nJ >/6 (15.21) 

Further, since the overall length Lc of the molecular chain is very long, the characteristic 
value that determines the linearity of the molecule in solution, i.e. the persistence length p, 
can be defined for ren/ by 

hm<r,J>=27cLc (15,22) 

The small-angle scattering from high polymer solutions generally consists of four parts as 
shown schematically in Fig. 15.22.̂ ^^ The extremely small-angle portion(Dis related to the 
overall size of the molecules and forms a Gaussian curve. The large angle portion (3) is 

(D 

^ o 

(a) 

6 

(b) 

Fig. 15.22 Schematic representation of the small-angle scattering intensity distribution for solution of loosely tan
gled "random coil" polymer.^^^ 
(a) The plot of / vs. 6 generally consists of the four portions shown (see text for explanation). 
(b) The plot of 16^ vs. 6 illustrating the place of dp (see text). 
[Reproduced with permission from O. Kratky, Angew. Chem., 72, 475, Verlag Chemie (I960)] 
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caused by interference between the atoms in the locaUzed Hnear sections of the molecular 
chain, and the intensity is approximately proportional to 116. The portion © i s caused by 
interference intermediate between these, and the intensity is proportional to \I6^. In addi
tion, scattering due to the period of the monomer units, the solvent molecules, and other 
short-range interatomic interferences generally appears at very large scattering angles. 

In the plot of 10^ vs. 0 for this scattering curve, the portion © i s an almost horizontal 
straight line, and the portion®is a straight line passing through the origin, with a smooth 
transition between them. The Gaussian portion gives a curve that decreases from the high
est point in the center, as shown in Fig. 15.22(b). 

The point 6p at which the two linear portions intersect (the point of inflection) depends 
upon p. According to Porod, the intensity in portion © i s 6/(ps^), while that in portion © i s 
71/s. At the point of inflection between © a n d ® , therefore, we have 

6/(ps^)=n/s (15.23) 

Thus 

p = 6/{7rsp)=3m7e (15.24) 

where (Sp — AnQplX) and/? can be found from Qp from Eq. 15.24 

Wp = /?5^ = 6/;r=1.91 (15.25) 

The above results were obtained using only the < Vj^ > term in Eq. 15.20. Despite contin
ued efforts by Peterlin^ '̂̂ ^^ and Kratky, Porod et al.^^'^^^ to improve the approximation by 
adding the < r^/ > and higher terms, no simple conclusions have been reached as to which 
approximation will give accurate results. Peterlin,^^^ followed by Heine, Kratky, and 
Rappert,^^^ estimated the improvement of the approximation by numerical calculations. 
These results generally agreed with the results given by Porod's early theory, but differ in 
the following particulars. 

1) Except in the case of short molecular chains, the point of inflection between the 1/6^ 
portion and the I/O portion corresponds to Up = 2.3. 

2) Even for long molecules, the 16^ plot of the l/O^ portion is not horizontal as in Fig. 
15.22(b), but ascends slightly with increasing angle. 

It is therefore better, as far as the degree of approximation is concerned, to use the re
sult obtained from the numerical calculation 

Up =(p47iep)/X=^ 2.3 (15.26) 

rather than Eq. 15.25 to calculate p from the plot of s^Ivs. s. 

a) Small-angle scattering from an acetone solution of nitrocellulose.^'^^ The measure
ments were carried out with a U camera and a counter. Fig. 15.23 shows the plot ofx^I vs. 
X (instead of s^ I vs. s),^^^ where x is the displacement of the counter tube and e — X/RF. A 
persistence length of p = 55.0 A was found from the point of inflection Op, using Eq. 15.26. 
Eq. 15.25 gives/7 = 45.7 A.̂  

The original report gives p = 38.5 A, but this is an error for/? = 45.7 A. 
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RF = 253.8 mm 

X 1.35% Lc = 175A 
p = 44.6A 

5.0 X [mm] 

1000 500 200 100 [A] 

Fig. 15.23 Small-angle scattering intensity curve from a 4.45% acetone solution of nitrocellulose (DPn = 1,640).̂ ^^ 
[Reproduced with permission from S. Heine et al. Makromol. Chem., 44, 692, Hiithig & Wepf 
Verlag (1961)] 

B. Curvature persistence 
The above treatment only dealt with the persistence where the position of one bond with re
spect to an adjacent bond is locally trans or nearly so, i.e. where the molecular chain is 
nearly linear. In some cases, however, e.g. when the arrangement of successive bonds is lo
cally always gauche (there is no G' gauche in counter rotation), the molecular chain will 
be twisted into a helix. This is another type of persistence, which Kirste and Kratky call 
curvature persistence,^^^ while they identify the above-mentioned linear type as direction 
persistency. 
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Fig. 15.24 Small-angle scattering from a 2% solution of poly(methyl methacrylate).^^^ 
(a) Scattering intensities for the solution and for the solvent, showing the small difference at large an

gles. Accurate intensity measurements are very difficult in the region where the maximum ap
pears in the plot of 16^ vs. 6 

(b) Plot of 16^ vs. 6 which, in the region normally linear, has a maximum due to the helical parts of 
the molecule 

[Reproduced with permission from O. Kratky, Kolloid-Z Z. f. Polymere, 182, 20, 21, Dr. Dietrich Steinkopf 
Verlag (1962)] 
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a) Small-angle scattering of an atactic polymethyl methacrylate (PMMA) solution.^^^ 
Unlike the plots for solutions of ordinary chain polymers, the plot of s^I vs. s (or 0^1 vs. 6) 
the small-angle scattering from a 2% atactic PMMA solution has a maximum in the linearly 
ascending large angle portion as shown in Fig. 15.24.̂ ^^ This is caused by the contribution 
due to localized regions of helical structure. 

15.3.2 Scattering intensity from stiff chain molecules^ 
As stated above, the scattering function of a stiff chain (or worm-like) molecule can be ex
pressed for very small and very large scattering angles by the forms of the Debye's scatter
ing factor for random coil chain and by that for rigid rod molecule, respectively. 

Assume a linear continuous string (or chain) which has so-called stiffness but no elas
ticity. In this stiff chain an arbitrary partial chain segment with its two ends at contour 
lengths t and T from one end of a polymer chain is considered, and here its end-to-end dis
tance is denoted as r (instead of rend as in the previous section) (Fig. 15.25). A normalized 
distribution function of a scattering element at u from its center of distribution t is defined 
as g(u\v) : V is the unit vector to define the chain direction, which may be approximated to 
the tangent at a point t. The/(r , v, vO is defined as the normalized distribution function of 
the end-to-end vector r and the chain directions v and v' at both ends of a partial chain seg
ment contained between two points t and t\^^^ 

Fig. 15.25 Distribution of scattering elements around the central axis of a polymer chain. 

Then the distribution function of the relative coordinates R of the two scattering ele
ments found around the points t and T can be given as 

H(R) = ^•"jf(r,vy)g(u\v)g(u'\v')S(r-\-u-u'-R)drdudu'dvdv\ (15.27) 

where 6 is the three-dimensional delta function. Assuming that g(u\v) and g{u'\v^ are inde
pendent of r, and using the Fourier transform of H(R), the scattering function of this chain 
molecule can be written as 

^^^^ ^ 7(5) ^ F J"---loX ̂ (^)^^P[~^'(' • R)]dtdt'dR, (15.28) 

where /(O) is the scattering intensity at zero angle, T is the total contour length of polymer 
chain, e is the scattering angle, and 5 = I s I = (4;r/A)sin(e/2) = (4;r/A)sin G. Assuming that 
^(wlv) and g(ulv^ are independent of r, from these equations the Fourier transform of H(R) 
can be written in the form 

after R. Koyama '̂ 
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0(s) = fy(R)cxp[-i(sR)]dR, (15.29) 

=J0f(s,vy)0^{s,v)0g(sy)dvdv\ (15.30) 

where 0f(s, v, vO, 0g(s, v) and 0g(s, v') and the Fourier transforms of/(r, v, v^, ^(MIV) and 
g(u^v^ given by 

0f(s,vy) = \ f(r,vy)Qxp[-i(s' R)]6r, (15.31) 

0g(s,v) = j^(M I v)exp[-/(5 •M)]dM, (15.32) 

0,(s,vO = Jg(M' I vOexp[-/(5 • vO]dM'. (15.33) 

The particle scattering function P{e) of this polymer can be given by the equation 

^(£) = 7rfrj„X^('^>«''P[-'(*'^>]''^d;'(W. (15.34) 

When Eq. 15.28 is used we can write this P(e) in the form, 

P(^^ = Yl[[^('^'^"i''- (15.35) 

In this equation, 0(s), given by Eq. 15.29, can be calculated for particular chain models. 

A. Simple chain model 
As the simplest chain model the distribution of scattering elements around the axis of poly
mer chain is assumed independent of the chain configuration, namely ^(MIV) and g(ulv^) do 
not depend on the chain directions v and v^ The scattering function is given by 

P(£) = [\-^<u'>s'yo{e)+-'-. (1536) 

In particular, the distribution function g(u) can be approximated by a Gaussian function, 

P(e) = cxp(--^<u'>sAPo(£). (1537) 
2 

Po(£) is the particle scattering function of an optically ideal thin polymer which has no cross 
section. 

B. More constrained model 
a) Scattering element around the point t is distributed only on the plane perpendicular 
to the central axis of polymer chain. 

1) Limiting case of very large flexibility. The chain direction at the end of a chain 
segment is considered not to depend on its integral configuration: 

P(e)=cxpi^l-^<u'>s'yo(£). (15.38) 

These two equations, Eqs. 15.36 and 15.38, have the same form but different numerical 
constants, 1/2 and 1/3, in the cross section factors. 
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2) Case of zero Flexibility. The chain is completely nonflexible and rod-like, the 
end-to-end distance of chain segment is equal to its contour length, and the chain directions 
at both ends v and v' coincide with r. 

P(£) = expn--<u^>s^ jPoie). (15.39) 

This equation has the same form as Eq. 15.37. 
b) Long stiff chain molecules with arbitrary flexibility. 

The scattering function P{£) is given as 

P{e) = Qxp(l--<u^>sAPo{e) 

1 .^2 ._2 1 \f. , 16 Y _ „ - / 3 _ ^ 4] (15.40) 

and q = 5/(2^) = (4;r/A)sin(£/2)/(2^) = (4;r/A)sin 6/(2n), where JLI is a. parameter of the flexi
bility of the chain. 

2 c^ I 
^o(e) = -yJ^(L-x)exp 1-i^VW sin{q-xg(x)}^^ (15.41) 

qxg(x) 

^/W = -(2M)'<^'>jl---10'''fl--KY'|, (15.42) 
2 ' [ 2 V 5 

1 r 3 V̂ ^ 
x^gHx) = -{2jiiy<r^>\0''Hl--K\ , (15.43) 

/^ = < / > / < r 2 > 2 and L = 2^T. (15.44) 

L is a reduced contour length of polymer and here x = tIT. < r̂  > and < / > are the sec
ond and fourth moments of r, respectively. 

< r ' > = - i ? - — ( l - e x p [ - 2 A i / ] ) l (15.45) 
fi[ 2jii J 

^ . 1 [5 2 26 ^ 1 I f^ r ^ ^ 
<r^> = —r<-f- r l - e x p [ - 6 ^ r ] 

2 ( \ t 1 (15.46) 
+ ^ - ( l - e x p [ - 2 M ^ ] J - - e x p [ - 2 ; U f ] k 

Besides Koyama's theory introduced above, Yoon and Florŷ '̂ ^ presented another scattering 
function based on their theory. 

C. A stiff chain molecule expanded by intramolecular interaction^^^ 
The mean square end-to-end distance of a partial chain segment with contour length t is al
ready given as 

< r̂  > = (1 + 2ii^){2iit ~ 1 + e x p [ - 2^r]). (15.45) 
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For sufficiently long contour length this leads to 

Denoting by a(t) the expansion coefficient of partial chain segments this 
the expanded polymer chain should be written as 

< r̂  > - ta'ityin. 

Comparing Eq. 15.48 with Eq. 15.47, it can be supposed that each chain 
pie stiff chain which has the flexibility ju/a\t) and contour length r, since 
can be assumed as constant independently of the interaction. Therefore 
of < r̂  > and < / > in this expanded polymer chain can be assumed to 
the same equations in cases where there is no interaction, but replacing, JLL 

<r^> = 
a\t)( 2}xt 

2^' I ocHt) 
— 1 + exp 

-2 lilt 

a\t). 

(15.47) 

mean quantity for 

(15.48) 

segment is a sim-
its contour length 
the mean values 

be represented by 
by jila\t). 

(15.49) 

3A^' \a\t) 
lit 7^ _ 

5 d'it) 90 
1 - exp 

+ — 1-exp 
-lilt 

Va\t)\ a\t) 
exp 

-2 fit 

~oiHt)\ 

(15.50) 

For sufficiently large t Eq. 15.49 reproduces Eq. 15.48. 
Since a stiff chain segment having sufficiently long contour length can be treated as a 

Gaussian coil, a{t) for this chain can be determined by the excluded volume theory of ran
dom coil chains. From the perturbation theory of this chain it can be written 

a\t)=l + C{t)z' ( I z N l ) , (15.51) 

where z is the interaction parameter independent of t. The function C{t) depends not only 
on the length of the partial segment but also on its position along the polymer chain. For 
simplicity, averaging it over this position, it becomes 

ao=ŷ "̂  

9 [ 

ri+-x"^+(i-
L 8 

l - - x " ^ — • 
. 8 

-x) 'x 

X 

2x+-x' 
5 

x<^l. 

:i\-x)'' 
(15.52) 

(15.53) 

Further, to determine a(t) for higher interaction the following equation is assumed, which 
conforms to Eq. 15.51, 

(^(t)-a\t)=C(t)z. (15.54) 

Thus using the function a(t) determined by Eq. 15.54, two equations Eq. 15.49 and Eq. 
15.50 give an approximate chain configuration in the expanded state. 

Figure 15.26 shows (L/6)q^P(q) vs. q plots of X-ray solution scattering of poly(p-
chlorostyrene) ( < M > = 6 X 10 )̂ in propylbenzene, an endothermic 9 solvent and that in 
^butyl acetate an exothermic 0 solvent: both plots show an good coincidence with respec-
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Fig. 15.26 X-ray small-angle scattering of poly(p-chlorostyrene) (PPCS) solutions of two different 6 solvents.^^^ 
q=sl{2iX), M: parameter of the flexibility of the chain. 
Solid line —, theoretical curve obtained by Koyama's scattering theory. Rq/a = 2/i < M̂  > ''^. 
Black circles • , observed values for PPCS in r-butyl acetate (6 = 61.5°C, 2%). 
White circles O, observed values for PPCS in propylbenzene (6 = 43.TC, 2%). 
[Reproduced with permission from Y. Izumi et al.. Colloid. Polym. Sci., 256, 1, Dr. Dietrick Steinkopf 
Verlag(1978)] 

Fig. 15.27 X-ray small-angle scattering of polystyrene (PS) in two different solvents.^^^^' 
Solid lines —, theoretical curves obtained by Koyama's scattering theory. 
Black circles # , observed values for PS in toluene (30°C, extrapolated to zero concentration after cor

rected for the effect of cross section). 
White circles O, observed values of cyclohexane {6 — 35°C, 1.48%). 
[Reproduced with permission from Y. Taru et al.. Rep. Prog. Polym. Phys. Jpn., 15, 37, Assoc. Sci. 
Documents Information (1972)] 

tive theoretical curves.̂ ^^ The whole structure of poly(p-chlorostyrene) chain molecule in 
these two 6 solvents can be described with the PQ{£) (Eq. 15.41), whereas the difference in 
molecular shape is explained by the difference in radii of gyration of the cross section. 

Figure 15.27 depicts the similar plots of X-ray solution scattering of polystyrene 
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( < M > = 2 X 10 )̂ in cyclohexane, an endothermic 6 solvent and that in toluene, a good 
solvent, which are again compared with that of theoretical scattering curves. The coinci
dence between observed and calculated scattering curves is good.̂ "̂̂ ^̂  Fig. 15.28 shows 
similar plotting as that of Fig. 15.26 for poly(tetrahydrofurane) ( < M > = 9.7 X 10"̂ ) in i-
propanol, an endothermic 6 solvent and in propanol, an intermediate solvent. In these two 
cases the coincidence between the observed and theoretical curves is good in the case of 6 
solvent but not in intermediate solvent.̂ ^^ 

a. i.oh 
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Fig. 15.28 X-ray small-angle scattering of poly(tetrahydrofurane) (PTHF) in two different solvents. 
Solid lines, theoretical curves obtained by Koyama's scattering theory 
(a) observed values for PTHF in /-propanol; (b) observed values for PTHF in propanol. 
[Reproduced with permission from Y. Izumi et ah. Rep. Prog. Polym. Phys. Jpn., 15, pp.41, 45, 
Assoc. Sci, Documents Information (1972)] 

15.4 Analysis of the "Long-period Pattern" 

15.4.1 Long-period small-angle scattering patterns 
Figure 15.29 shows a schematic illustration of wide- and small-angle scattering diagrams of 
drawn poyethylene,^^^ their intensity distribution along the equator and meridian, and the 
corresponding fine structure and fine texture (cf. Fig. 6.1 (c)). 

Various types of long-period small-angle scattering patterns have been observed, as 
shown In Table 15.4 (pp.452, 453). These differ in the position, intensity, and shape of the 
diffraction elements from the X-ray diffraction patterns at the usual wider angles. The influ-
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Fig. 15.29 Schematic illustration of wide- and small-angle scattering diagrams and the corresponding of drawn 
polyethylene, intensity distribution of some patterns along the equator and the meridian. 
The corresponding crystal structures (lower left: atomic arrangement and net planes formed by the unit 
cells) and fine textures (lower right: atomic arrangement along the fiber axis, arrangement of polyeth
ylene chains along the longitudinal direction and long spacings (L) are also given. 
[Reproduced from L Fankuchen, H.Mark, / . Appl. Phys., 15, 364, Am. Inst. Phys.(1944)] 

ence of Z(S)*I S(S) P in the third term of Eq. 5.38 on the positions, shapes, and intensities of 
the diffractions will be discussed below. 

A. The magnitude of the long period and the order number at which it appears 
The form of the function Z(S) depends upon the degree of ordering in the arrangement of 
the particles within the specimen— "particle" here being taken in the broadest sense to in
clude regions of discontinuous density, for example the crystalhne regions. In the two ex
tremes of a perfectly regular crystal on the one hand, and a completely irregular amorphous 
substance on the other, Z(S) takes the form of the Laue function G(Li^ in Eq. 2.45) and the 
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Table 15.4 Long period X-ray small-angle scattering patterns 

Type of small-angle X-ray 
scattering patterns Corresponding fine texture 

I. Scattering in layer lines 

e.g. stacked lamellar crystals. 

For number, breadth, and fanning of maxima, see 
Section 15.3.1. 
(cf. Figs. 15.31, 15.35, 15.37, 15.38 and 15.39). 

II. Two-point layer line scattering 

e.g. stacked lamellar crystals inclined with respect to 
the fiber direction. 

Observed in the necking portions of drawn fibers or in 
films subjected to successive drawing in two different 
directions (cross stretching) (cf. text and Figs. 15.36 
and 15.47-15.49). 

III. Four-point layer Hne scattering 
when the points 
(a) lie on straight horizontal lines or on 
curved lines convex with respect to the 
equator 

Best regarded as the superposition of two of the two-
point layer line patterns of type II with a mirror sym
metry relation between them. Accordingly, the cor
responding texture may be regarded e.g. as an assem
bly of two types of stacked structures incUned to the 
left and to the right respectively (cf. Figs. 
15.47-15.49). 

(Continued on page 453) 

radial distribution function P(r) (Eq. 2.35) respectively. In the general, intermediate cases, 
Z(S) varies with the value of the lattice distortion factor g (cf. Section 13.4) as shown in 
Fig. 15.30.̂ "̂ ^ In cases such as that of collagen, a very large number of small-angle layer 
line diffractions appear in the meridional direction and g is extremely small, so that the long 
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Table 15.4 — (Continued) 

(b) lie on a curve concave with respect 
to the equator 

This is treated as elliptical scattering of type V in 
which four maxima have developed, and is explained 
as due to a cylindrically symmetrical structure corre
sponding to slight distortion of the spherical symme
try of type V (cf. Figs. 15.40). 

(c) lie on two oblique straight lines 

^ % ^ 

e.g. doubly oriented structures. 
This may be regarded as a superposition of the layer 
line scattering of type I (cf. Fig 15.49). 

IV. Scattering in a ring 
(a) 

Statistically spherically symmetrical assemblies of 
crystallites, e.g. spherulites (a) or unoriented assem
blies of stacked lamellar crystals (b) (cf. Fig. 15.35). 
Radial distribution functions can be obtained over a 
very wide range in the specimen as described in 
Section 15.3. 

V. Scattering in an ellipse Statistically cylindrically symmetrical assemblies of 
crystallites, e.g. deformed spherulites or stacked 
lamellar crystals with cylindrically symmetrical orien
tation. 

Often observed at intermediate stages of deformation 
of the specimen by drawing or compression. 

Cylindrical distribution functions can be obtained 
over a very wide range in the specimen, as described 
in Section 14.6, and can be used for the study of the 
fine texture (cf. Fig. 15.40 and Table 15.5). 

period L can be derived from Eq. 8.2 (which gives the identity period in the direction of the 
axis of rotation from the layer-Une spacing in the case of single crystals) by applying it to 
each of the layer-line diffractions. Since the angle is extremely small, however, 
tan e = sin e = e (e = 26, the scattering angle), and instead of Eq. 8.2 we can use 

L£ = nX (15.55) 

The values found for the long period from the diffractions of various orders agree with
in the limits of error, and it is usually found that the period is some multiple of an axial 
length of the unit cell period of the specimen. Diffractions as high as the fourth or fifth or
der can be observed under favorable conditions, for example with many synthetic fibers. 
On the other hand, where the value of g is high, as in Fig. 15.30(b) and (c), only the first- or 
at most second-order diffraction will be even vaguely discernible for long-period determi
nation. The positions of the intensity maxima are located by Eq. 5.30. Since the maxima 
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Fig. 15.30 The effect of the distortion factor, g, on the paracrystal lattice factor, Z{S) [Reproduced with permis
sion from P. H. Lindenmeyer, R. Hosemann, J. Appl. Phys., 34, 43, Am. Inst. Phys. (1963)] 

appear at approximately S = nIL for an average long period L, it is possible to find the aver
age long period L by application of Eq. 15.55. 

As shown for the case of polyethylene in Fig. 15.31,̂ ^^ there is a marked difference be
tween the L\ found from the first-order diffraction and the L2 found from the second-order 
diffraction. This is attributed to the fact that the lattice point function H{r) described in 
Section 5.3.1 (a superlattice with crystal lattices as single lattice points) is not symmetrical 
with respect to the maxima, as is the Gaussian function or the Cauchy function in Eqs. 13.3 
and 13.4''^ 

10 100 1000 
Heat treatment time [min] 

Fig. 15.31 Differences between the long period of a bulk polyethylene specimen heat-treated at 130°C as derived 
from first- and second-order diffractions.^^^ [Reproduced with permission from E. W. Fischer, G. F. 
Schmidt, J. Appl. Phys., 35, 71, Am. Inst. Phys. (1964)] 

B. Breadth of the long-period diffractions 
This is determined largely by the shape factor | S(S) p. As described in Section 13.6,1, the 
breadth of the long-period diffractions in the vertical direction (the meridional direction) 
decreases as the number of particles Â  contributing to the long period lattice increases, and 
increases with decreasing Â . The number of diffractions that can be observed accordingly 
also decreases with decreasing Â . 
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In the horizontal direction, as is clear from the example of the line lattice in Fig. 15.32, 
the long-period diffractions are narrow when the particles are large, whereas broad diffrac
tions in the form of layer lines appear when the particles are small. 

-AT + 
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•-.^ 
• ««fM«^ 
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"*• 

(a) (b) 

Fig. 15.32 The effect of the breadth of a line lattice on the diffraction pattern. 
(a) Great horizontal breadth gives rise to small horizontal spread in diffractions. 
(b) Small horizontal breadth gives rise to great horizontal spread in diffractions. 

Considering next the effects of particle shape, again for a line lattice, when the particles 
are inclined to the right as in Fig. 15.33, the diffractions appear on a straight line inclined to 
the left.̂ ^̂  Moreover, when the particles are curved or undulating, an intensity distribution 
develops in the horizontal direction, and the pattern exhibits the phenomenon known as fan
ning shown in Fig. 15.34).̂ ^^ 

cc= ^x 4 

Fig. 15.33 The effect of a non-perpendicular line lattice on the diffraction pattern. 
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Fig. 15.34 The effect, known as fanning, of an undulating line lattice (constant spacing in Z direction) on 
the diffraction pattern. 

C. Long-period diffraction patterns as actually observed 
The patterns obtained in practice are not so simple as the examples cited representatively 
above. The diffraction intensity is in fact proportional to < Ap(S) > ^Z(5)* I S(S) P, where 
Ap(S) is the particle structure factor. The examples were, for simplicity, based on the as
sumption that < Ap(S) > ^ = 1, but<Ap(5)>^ does vary, and positions and intensities of 
the maxima vary with it. Though the factors discussed are two-dimensional, the extension 
to three dimensions and their effect on the real diffraction pattern can to some extent be 
grasped by analogy with the relationship between the structural models proposed by 
Hosemann and Bonart and their optical diffraction pattemŝ '̂̂ '̂ ^ (see Fig. 15.35). 

Fig. 15.35 The effect of distortion in both X and Z directions (here g = 20%) upon the diffraction pattern: 
first-order visible only. 
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Table 15.4 (pp.452-453) shows a classification of long-period diffraction patterns as 
they have actually been observed. The main points to be considered in interpreting these 
small-angle scattering patterns, irrespective of the long period diffractions and central dif
fuse scattering, are the patterns obtained with X-rays incident from various directions and 
their correspondence with the wide-angle diffraction patterns (Fig. 15.36).̂ ^^ 

Fig. 15.36 X-ray diffraction patterns of rolled poly(ethylene terephthalate), with small-angle scattering on the left 
and wide-angle diffraction in the right. The directions of the incident X-rays as follows: 
THRU, Perpendicular to the rolled surface; EDGE, Parallel to the rolled surface and perpendicular to 
the machine direction; END, Parallel to both the rolled surface and the machine direction, cf. Fig. 8.37 
for the preparation of the specimen.^'^' [Reproduced from W. O. Statton, G. M. Goddazd, J. Appl. 
Phys. 28, 1112, Am. Inst. Phys. (1957)] 

a) Variation of the X-ray small-angle scattering patterns for a poly(vinyl alcohol) film 
with elongation}^^^^ Table 15.5 shows the variation of the small-angle scattering pattern of 
poly(vinyl alcohol) (PVA) film on drawing after heat treatment in air for 10 min at 160°C. 
As the draw ratio increases, the scattering pattern changes from a ring to an ellipse, and 
then to layer lines. The intensity gradually decreases until no small-angle scattering is ob
served apart from the central diffuse scattering; after heat treatment, however, small-angle 
scattering reappears. On the other hand, the wide-angle diffraction pattern initially shows 
spiral orientation, which changes to uniaxial orientation {b axis parallel to the fiber axis) 
with increasing draw ratio. 

Figure 15.37(a) shows the intensity distribution of the small-angle scattering for a draw 
ratio of 1.5 :1. The ellipse is broken in the meridional direction and intensity maxima ap
pear at angles of about 40° to the meridian. Figure 15.37(b) shows the cylindrical distribu
tion function Q(r, z) obtained for this type of scattering intensity distribution from Eq. 
14.21. The distribution function is elongated in the drawing direction (the z direction). 
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Table 15.5 The effects of increasing draw ratio on poly(vinyl alcohol) film 

Draw ratio [%] 0 20 50 200 300 
300 plus 

heat-treatment 

A. [A] 
meridional 

equatorial 

S'[deg] 

y/ [deg] 

Scattering 
pattern 

(schematic) 

134 
155 

128 

168 

134 

165 

7 

30 

- ^ ®- e S' -40* 

B-

weak 
scattering 

- 3 8 

0 

weak 
scattering 

L135 

< 2 

5 ' is the azimuthal angle of the intensity maximum from the meridian in the elliptical scattering. i/Ais the corre
sponding azimuthal angle, with respect to the equator, of the 100 and 200 diffraction maxima in the wide-angle 
fiber pattern: S = 90° — i// is thus the angle between the fiber axis and the a axis. 
[Reproduced with permission from N. Kasai, M. Kakudo, Repts. Progr. Polym. Phys. Jpn., 9, 293,Assoc. Sci. 
Documeents Intormation (1966)] 

(a) ^ 

Fig. 15.37 Analysis of the ellipsoidal small-angle scattering from poly(vinyl alcohol). 
(a) Intensity distribution (draw ratio 1.5 : 1). 
(b) Fourier transform of (a) (cylindrical Patterson function Q{r, z)). 
Near the center contour lines are omitted. 
[Reproduced with permission from N. Kasai, M. Kakudo, J. Polym. Sci., A2, 1958, John 
Wiley & Sons, Inc. (1964)] 

b) Fine texture in the necking portions of cold drawn polyethylene P~^^^ In the investiga
tion of the continuous variation of the structure and texture in the necking portions of a cold 
drawn specimen of an unoriented polyethylene rod molded from the melt, practically all the 
typical X-ray small-angle scattering patterns listed in Table 15.4 were observed. Wide-an
gle and small-angle scattering measurements were carried out simultaneously on the neck
ing portions of a flat specimen about 0.3 mm thick, which had been cut out in such a way as 
to include the central axis (Fig. 15.38), at the points shown in Fig. 15.39 (see also Fig. 
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Drawing 
direction Central Central 

Diameter 

-* ¥' -* \ 

Fig. 15.38 Preparation of the specimen for the investigation of the fine texture of cold-drawn polyethylene 
(Figs. 15.39-15.46). [Reproduced with permission from N. Kasai et ai, J. Chem. Soc. Jpn. 
Ind. Chem. Section, 64, 56, Chem. Soc. Jpn. (1961)] 

A Region 

B Region 

C Region 

—— r [mm] 

Fig. 15.39 Diagram locating the points for which wide-angle diffraction and small-angle scattering measurements 
were made. [Reproduced with permission from N. Kasai et al., J. Jpn. Chem. Soc. Ind. Chem. 
Section, 64, 56, Chem. Soc. Jpn. (1961)] 

15.40).̂ '*^ The changes in the wide- and small-angle diffraction patterns are shown in Figs. 
15.41 and 15.42, respectively. 

The wide-angle diffraction pattern first exhibits preferred orientation (spiral orienta
tion) at line 1 in Fig. 15.39. The c axis gradually begins to move into the fiber direction, 
while the a axis becomes perpendicular to the fiber direction. The small-angle scattering 
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Wide-angle 
diffraction 

Small-angle 
scattering 

Film for 
small-angle 
scattering 

X-rays 

No. I 
slit 

Specimen 

Film for 
wide-angle 
diffraction 

(a) 

X-rays 

Small-angle 
scattering 

Wide-angle 
diffraction 

Specimen 

(b) 

Fig. 15.40 Simultaneous wide-angle and small-angle X-ray pattern measurements. 
(a) Sketch of the measuring equipment. 
(b) Diagrammatic scheme of the simultaneously derived patterns. 
(a): [Reproduced with permission from N. Kasai et ai, J. Jpn. Chem. Soc, Ind. Chem. Section, 64, 

57, Chem. Soc. Jpn. (1961)] 
(b): [Reproduced with permission from N. Kakudo, /. Polym. ScL, A2, 1958, John Wiley & Sons, Inc. 

(1964)] 

pattern changes from ring scattering to anisotropic elliptical scattering. These changes ap
pear almost simultaneously with the changes in the external shape near the surface of the 
specimen, but their appearance is progressively delayed with increasing proximity to the 
center. 

The changes in the narrow band between line 1 and line 2 (within about 0.2 mm at the 
central axis and about 0.7 mm at the surface for a specimen about 3 mm in diameter) are 
extremely complex. At the central axis, the small-angle scattering ellipse fades in the 
meridional direction, and layer line scattering simultaneously appears superimposed outside 
the ellipse. The ellipse ultimately disappears, and only the layer line scattering remains. 

With increasing distance from the central axis, the meridian of the small-angle diffrac-
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Fig. 15.41 Schematic diagram of the variation in the wide-angle pattern for the necking portions 
of cold drawn polyethylene. 

Fig. 15.42 Schematic diagram of the variation in the small-angle pattern for the necking portions of cold drawn 
polyethylene. [Reproduced with permission from N. Kasai, M. Kakudo, J. Polym. ScL, A2, 1963, 
John Wiley & Sons, Inc. (1964)] 
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tion pattern becomes inclined in relation to the drawing direction of the specimen as a 
whole. The direction of the meridian roughly coincides with the tangent to the flow line 
(Fig. 15.39) at the measurement position in question, and shows changes along the flow 
line that correspond to the changes in external shape. In particular, a two-point layer line 
pattern with point symmetry appears on the flow lines. The inclination of the meridian of 
the wide-angle diffraction pattern changes in exactly the same way as that of the small-an
gle scattering pattern. On the other hand, while the pattern continues to show spiral orienta
tion, the spiral angle gradually decreases along the flow line, so that the orientation ap
proaches the uniaxial type (Table 15.6). The degree of orientation (represented here by the 
practical measure of paralleUsm 77, cf. Section 10.3.16^) and the crystallite size as estimat
ed from the breadth of the diffraction pattern are also included in Table 15.6, see also Fig. 
15.43.''^ 

300i 

200 

C "^ 
Flow line b 

z [mm] 

Fig. 15.43 Variation in the crystallite size in the necking portions, based on Eq. 13. 10 and the assumption that 
line broadening is due solely to crystallite size. 
[Reproduced with permission from N. Kasai, M. Kakudo, J. Polym. Set, A2, 1967, John Wiley & 
Sons, Inc. (1964)] 

Finally, beyond line 2, where the deformation is complete, the small-angle scattering 
becomes a four-point layer line pattern. The corresponding wide-angle diffraction pattern 
shows uniaxial orientation (the fiber axis is the c axis), and exhibits the highest degree of 
orientation. The amorphous halo is still partly present in the form of a ring, mainly concen
trated around 110 and 200 diffractions. 

The above study was followed by a detailed investigation of the changes in fine texture 
that accompanied the continuous changes in the wide-angle and small-angle diffraction pat
terns in the necking portions of the specimen. This latter study was based on the changes in 
the preferred orientation, degree of orientation, and size of the crystallites as found from the 
wide-angle diffraction patterns and on the interpretations of the individual small-angle scat
tering patterns (cf. Table 15.4). Follow-up studies were also made of the secondary 
changes in the fine texture due to aging,̂ ^^ heat treatment,^^^ 7-irradiation,^^^ etc. 

Since specimen-to-film distance was extremely short and there were differences in the positions of the dif
fraction patterns on the two sides of the film (which was coated with emulsion on both surfaces), the emul
sion was scraped off one side after exposure. For this reason, the accuracy of diffraction intensity was inad
equate and the determination of the degree of orientation was confined to the determination of 77. 
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Table 15.6 Analysis of the necked portion of cold-drawn polyethylene 

(a) On the central axis 

z 

[mm] 

1.66 
1.93 

2.19 

2.27 

2.47 

2.61 

2.85 

3.87 

Wide-angle diffraction 

Orientation 

Type of 
orientation 

Unoriented 

Spiral orientation 

{a axis perpendicular 
to central axis) 

(as above) 

Uniaxial orientation 
or spiral orientation 
with an extremely 
small spiral angles 

Spiral 
angle 

(p[deg] 

42.5 

35 

18.5 

< 1 5 

Extremely 
small 

(same) 

Degree of 
orientation 

/7[%] 

0 
0 

80 

80 

85 

86 

90 

93 

Crystallite 
size 

t[k] 

245 
230 

200 

165 

150 

110 

110 

90 

Smal 

Scattering 
pattern 

Circular 
(same) 

Ellipse 

Ellipse plus 
layer line 

Layer line 

Four-point 
layer line 
(same) 

(same) 

-angle scattering 

Long period 

DL[A] 

130 
130 

170 (m) 
130 (eq) 
170 (m) 
130 (^^) 

L[A\ 

(110) 

(140) 

125 
125 

125 

S' 

LdegJ 

± 4 2 
± 4 0 

± 4 0 

Remarks 

line 1 

line 2 

z 

[mm] 

1.66 

1.98 

2.15 

2.31 

2.35 
2.38 

2.41 

2.85 
3.87 

(b) On a flow line (flow line b) 

Wide-angle diffraction 

Orientation 

Type of 
orientation 

Unoriented 

Spiral orientation 

{a axis perpendicular 
to tangent to flow 
hne at measurement 
point) 

Uniaxial orientation 
or spiral orientation 

with an extremely 
small spiral angles 

Spiral 
angle 

(p[dQg] 

25.5 

23.5 

18.7 

13.5 
< 1 0 

Extremely 
small 
(same) 
(same) 

Degree of 
orientation 

nm 
0 

45 

47 

69 

83 
88 

89 

91 
93 

Crystallite 

^A] 

245 

220 

75 

70 

75 
70 

Small-angle scattering 

Scattering 

Circular 

Ellipse 

Ellipse plus 
two-point 
layer 

Two-point 
layer line 
(same) 
(same) 

Four-point 
layer line 
(same) 
(same) 

Long period 

DdM 

130 

167 (m) 
125 (eq) 
167 (m) 
140 (eq) 

/>lAj 

(120) 

115 

125 
120 

125 

123 
125 

S' 

LdegJ 

( - 4 0 ) 

- 4 0 

- 3 7 
- 3 7 

± 4 2 

± 3 8 
± 3 8 

Remarks 

line 1 

line 2 

DL replaces L for the long period with circular and elliptical scattering. Under DL, (m) and (eq) are the long-pe
riod values in the meridian and equatorial directions respectively in elliptical scattering. Further, the signs + 
and — with <5' indicate right inclination and left inclination respectively of the two-point layer line patterns (cf. 
Fig. 15.28). 
± denotes a four-point layer line pattern. 
[Reproduced with permission from N. Kasai, M. Kakudo, J. Polym. Sci., A2, 1961, 1962, John Wiley & Sons, 
Inc. (1964)] 
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Fig. 15.44 Analysis of a two-point layer line pattern with point symmetry (1) (See also (2) and (3) 
in Figs. 15.45 and 15.46). 
(a) Schematic representation of small-angle scattering pattern. 
(b) Intensity distribution of (a); central contour Hnes omitted. 
(c) Fourier transform of (b); central contour lines omitted. 
[Reproduced with permission from N. Kasai, M. Kakudo, /. Polym. ScL, A2, 1971, 
John Wiley & Sons, Inc. (1964)] 

Figure 15.44(a) shows a sketch of one of the two-point layer line patterns mentioned 
above and (b) shows its intensity distribution (intensities close to scattering angle zero are 
omitted).̂ "̂ ^ In this case the scattering pattern has point symmetry. Since the cylindrically 
symmetrical distribution function given earlier for PVA cannot be used, Fig. 15.44(c) was 
obtained by Fourier transformation in rectangular coordinates as described below.̂ ^^ 

Q(x,z) = (2/A)£°£/($,Ocos{2;r(^x+C^)}d^d 

The comparative lack of detail of Fig. 15.44(c) makes interpretation difficult. However, be
cause the long period appears to be in the meridional direction and there is a slight broaden
ing in the second quadrant, a model similar to that in Fig. 15.45̂ "̂ ^ was proposed. This fine 
texture model is also consistent with the changes in small-angle scattering that occur before 
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Fig. 15.45 Analysis of a two-point layer line pattern with point symmetry (2). 
The model of the fme texture is derived from Fig. 15.44(c) and supplementary information (see text). 
[Reproduced with permission from N. Kasai, M. Kakudo, J. Polym. Sci., A2, 1972, John Wiley & 
Sons, Inc. (1964)] 
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(a) 

Fig. 15.46 Analysis of a two-point layer line pattern with point symmetry (3). 
[Reproduced with permission from N. Kasai, M. Kakudo, /. Polym. Sci., A2, 1973, John Wiley 
& Sons, Inc. (1964)] 
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and after this pattern appears. This is consistent with the subsequently published relation
ship between the model shown in Fig. 15.33 and its optical diffraction pattern. If the fine 
texture is in fact as shown by the model in Fig. 15.45. X-rays incident from direction® 
will indicate a particle arrangement corresponding to Fig. 15.27 and should give rise to a 
small-angle scattering pattern as shown in Fig. 15.46(b).̂ "̂ ^ Such a small-angle scattering 
pattern was in fact obtained. However, since only a first-order scattering maximum was 
observed in the two-point layer line pattern with point symmetry, it may be concluded that 
appreciable distortion is present as in Hosemann's optical diffraction model.̂ ^^ 
c) Time-resolved small-angle X-ray scattering of polyethylene sheet during stretch.^^^ 
The polyethylene sheet of 2 mm thickness was placed in the doubly focusing camera (Fig. 
8.47) at the Photon Factory, Tsukuba, and stretched at a speed of 12 mm/min (32% 
Stretch/min) by a DC-driven stretching device. Both ends of the specimen were stretched 
at equal velocities in opposite directions so that the center of the X-ray beam could impinge 
on the same position of the specimen during the stretch. Eight 126 X 126 mm^ imaging 
plates (IP) were held in separate film cassettes and mounted on a remote control turn-table, 
which is a part of the oscillation camera of Enraf-Nonius (cf. Fig. 8.10). The exposure time 
for each IP was controlled by a mechanical shutter placed in front of the specimen. Each 
small-angle X-ray scattering pattern was recorded with a 1.0 s exposure time at 70-s inter
vals. 

The dynamic changes of small-angle X-ray scattering patterns during the stretch 
(Fig 15.47) can be classified into four phases: 

1). First from (a) to (b) a central diffuse isotropic (or ring) pattern changed to become 
elliptical. 

(a) (e) 

o 
(b) (f) 

(c) (g) 

(d) (h) 

Fig. 15.47 Time-resolved small-angle X-ray scattering patterns from polyethylene sheet recorded on IP during 
stretch (12 mm/min, 32% stretch/min, strech direction vertical). ' 
Exposure time for each pattern was 1 s. Intervals between exposures were 70 s. X-ray wavelength 
was 1.55 A. 
[Reproduced with permission from Y. Amemiya et al.. Topics in Current Chemistry, 147, 137, 
Springer Verlag (1988)] 
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2). Secondly, from (c) to (d) the elliptical pattern changed into a dipolar shape along 
the equator and the scattering intensity decreased. At the same time, a weak meridional 
scattering in layer line began to appear at 1/90-1/95 A~' . 

3). The third change, from (e) to (h), is the disappearance of the dipolar-shape diffuse 
scattering and the intensity increase of the meridional scattering. 

4). The meridional scattering in a layer line was finally split into two, and thus 
changed into a four-point scattering pattern (not shown in Fig. 15.47, but cf. Fig. 15.36 and 
see Table 15.6). 

These results agree well with those obtained by the static experiment from the necking 
portions of the cold drawn polyethylene specimen̂ "̂ ^ schematically shown in Fig. 15.41. 

15.4.2 Anisotropy in the small-angle scattering pattern and in orientation and 
particle distribution 

As shown in Tables 15.4 and 15.5, several types of anisotropic small-angle scattering pat
terns have been observed. Since the small-angle scattering corresponds to a structure or 
fine texture with very large dimensions, the anisotropy of the scattering pattern corresponds 
either 1) to the crystallite orientation distribution in crystalline specimens with extremely 
large unit cells such as proteins (just as does the anisotropy of the wide-angle diffraction 
pattern) or 2) to the anisotropy of the distribution of the crystallites or regions of discontin
uous density in the specimen. 

Case 1) can be treated in exactly the same way as ordinary oriented diffraction patterns. 
The relationship between an anisotropic scattering pattern and the corresponding fine tex
ture for case 2) was discussed in Section 15.4.1. There is no one-to-one correspondence be
tween the anisotropy of the small-angle scattering pattern and the orientation of crystallite 
or crystalline regions; however, some examples of the determination of crystallite orienta
tion from small-angle scattering patterns are given below. 

Figure 15.48(a) shows examples of the small-angle scattering observed for a number of 

(a) (b) 

Fig. 15.48 The small-angle scattering patterns from spirally oriented micelles.^ 
(a) Lamellar micelles; (b) Cylindrical micelles. 
[Reproduced from A. N. J. Heyn, J. Am. Chem. Soc, 72, 2284, 
Am. Chem. Soc. (1950)] 
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vegetable fibers,̂ '̂̂ ^^ which indicates an orientation in which the cellulose micelles are in
clined with respect to the fiber direction (spiral orientation). The spiral angle (p can be de
termined from the angle between the two intersecting diffuse scattering patterns. Fig. 
15.48(a) is that obtained for lamellar micelles. When the micelles are cylindrical, the scat
tering pattern has a continuous fan-like appearance as shown in Fig. 15.48(b). 

Figure. 15.49 shows the small-angle scattering pattern of a Nylon 6 specimen prepared 
by polycondensation of f-aminocaproic acid in the solid phase by heating single crystals 
under vacuum at a temperature about 30°C below the melting point.'̂ ^̂ ^ In this diagram, the 
two layer-line scattering patterns intersect at an angle of 110°, which is twice the angle of 
inclination of the b axis (the fiber axis) found from fiber photographs. The two results are 
thus in good agreement. 

Fig. 15.49 Small-angle scattering pattern of doubly oriented Nylon 6 obtained 
by polymerization in the solid phase. 
Mutually crossed two long periods are overlapped with central diffuse 
small-angle scattering in elliptical shape. 

Figure 15.50 shows the small-angle scattering pattern of tree-frog egg yolk.̂ ^^ 
Orientation is absent, and the distribution of the particles is therefore isotropic. The pres
ence of a fine structure in the circular scattering intensity maximum suggests that this is an 
isotropic assembly of extremely large particles. 

Fig. 15.50 Small-angle scattering pattern of tree-frog egg yolk. 
A ring pattern consist of small dots, suggesting an existence of higher order structure 
in the specimen, is associated with an isotropic central diffuse scattering. 
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15.5 Analysis of Crystallinity from Small-angle Scattering 

15.5.1 Analysis using the long-period pattern 
As stated in Section 15.4, the long period L(A) is thought to be associated with a periodic 
structure of alternating regions: —crystalline-amorphous-crystalline-amorphous—as 
shown in Fig. 15.51. If the crystallite size is ^(A) (as found, say, from the breadth of wide-
angle diffractions, cf. Section 13.3), the crystallinity can be estimated very approximately 
from the following formula 

^cr II LJ (15.56) 

If the paracrystal size L(A) found from Eq. 13.64 is substituted here, the value for crys
tallinity obtained should correspond to that described in Section 14.2.3. 

.Vcr ^ t/L 

Fig. 15.51 Schematic diagram illustrating the structure thought to be associated with the long period L. 

15.5.2 Analysis using the central diffuse scattering 
As stated in Section 6.2, the small-angle scattering intensity is proportional to the difference 
between the electron densities of the specimen particles and of the dispersion medium. 
Hermans and Weidinger^^^ have proposed a method of determining crystallinity by finding 
the total scattered energy in the central diffuse scattering region from absolute intensity 
measurements, and then applying Debye's small-angle scattering theory^^^ or, what is essen
tially the same, Porod's theory.̂ '̂̂ ^^ 

15.6 Analysis of Well-oriented Small- and Wide-angle Diffractions 
In principle there is not much difference from the crystal structure analysis of well-oriented 
high polymers (Chapter 11) except for the existence of long spacings and higher order 
structures. However, rather weak and broad diffractions are concentrated in the small-angle 
region, so there may be some difficulty in obtaining precise measurements of spacing, in
tensity, indexing, and others. 

If the diffuse small-angle scattering is associated with these diffractions it can be ana
lyzed in a manner similar to those methods described in Sections 15.2-15.5. The corre
sponding structure should be elucidated by considering the diffractions obtained through 
both small and wide angles and also diffuse small-angle scattering. 
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,93,94) 15.6.1 X-ray diffraction patterns from contracting muscle' 
X-ray diffraction patterns from contracting striated muscle of the bullfrog (Rana cates-
heiana) were measured and the corresponding structural changes examined. 

A freshly dissected sartorius muscle of the bullfrog was held vertically in a specimen 
chamber by clamping the pelvic bone at the bottom end and connecting the tibial end to a 
force transducer. Oxygenated Ringer solution (115 mM NaCl, 2.5 mM KCl, 1.8 mM 
CaCh, pH adjusted to 7.2 with NaHCOs) was continuously perfused through the specimen 
chamber kept at 6°C. The muscle was isometrically stimulated at a sarcomere length of 2.4 
jim for 1.3 s through a multi-electrode assembly in the chamber with trains of supramaxi
mal rectangular pulses (3 ms duration at 25 Hz). A mechanical shutter placed in front of 
the specimen was synchronously opened for 1.0 s when a steady tetanic tension had devel
oped to let the X-rays pass through only during the plateau phase of isometric tension. The 
plateau tension of the 10th contraction was 83% of the initial tension. To record the resting 
pattern before contraction, a 10-s exposure was repeated 10 times every 2 s by opening the 
shutter without stimuli to the muscle. 

A. Time-averaged measurement (Ordinary static measurements) 
X-ray diffraction patterns from resting, isometrically contracting and rigor states of the 
same frog muscle are given in Fig. 15.52, (a), (b) and (c), respectively. These patterns {cf. 
Fig. 15.53) consist of two sets of a series of layer line diffractions, corresponding to the he
lical structures of the thin and thick filaments {cf. Fig. 7.2 1). Very strong layer line series 
appearing in Fig. 15.52(a) like breastbones with a repeat of 429 A are due to the thick fila
ments, and the relatively weak layer lines indexed to 370-380 A repeat are due to the thin 
filaments. Since the thin and thick filaments have different periodicities from each other, 
each layer line series generally does not overlap. For convenience, the two sets of layer 
lines are considered separately, although separate indexing of the two sets is not always rea
sonable. 

The equatorial diffractions appear as distinct Bragg diffractions up to about the 3,0 diffrac
tion {d = ca. 120 A), and beyond this they become broad and seem to overlap, showing that 
the hexagonal lattice is in a paracrystalline state. In the resting state, the 1,0 diffraction is much 
stronger than the 1,1 diffraction (cf. Fig. 15.53) the intensity ratio (/(1,0)//(1,1)) being ca. 2.5. 

A particular feature of the layer lines with 429 A repeat is that the layer lines of 3n or
der have a strong intensity on the meridian, whereas all other layer lines have intensity off 
the meridian. They could be well indexed by the hexagonal lattice, indicating that the axial 
and azimuthal orientations of the thick filaments are well defined in the resting state. The 
429 A repeat of the entire thick filament was explained by the basic structure of the thick 
filament: three-stranded helices of myosin molecules, each with a pitch 3 X 429 A, 9 sub-
units per one turn in each helix (9/1 helix) with an axial separation of 143 A (Fig. 7.21(c)). 

Two series of helix crosses that extend diagonally from the origin and from the 54.6 A 
on the meridian are determined mainly by the F-actin helix in the thin filament. Each layer-
line diffraction corresponds to the pitch of a particular helix passing through the actin 
monomers; for example, the 590 A diffraction corresponds to the pitch of a left-handed ge
netic helix, the 510 A diffraction to that of a right-handed genetic helix and the first layer 
line to the half-pitch of each of two long-strand right-handed helices. Most of these layer 
lines are axially diffuse and accurate determination of the helical parameters is particularly 
difficult. 

When the muscle went into the rigor state, the layer lines due to the thick filaments 
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Fig. 15.52 X-ray diffraction photographs of a frog skeletal muscle.̂ " '̂ 
Recorded with imaging plate using synchrotron radiation. Exposure time 1.5 s. Fiber axis vertical. 
(a) Resting state, 
(b) isometrically contracting state. 
(c) rigor state. 
Short arrow indicates the 590 A layer line; the long arrow, the first layer line of thin filament. The 
patterns were taken using the same specimen. 
[Reproduced with permission from K. Wakabayashi, Y. Amemiya, Handbook on Synchrotron 
Radiation, 4, 629, Elsevier (1991)] 

were generally weakened whereas those due to the thin filaments were markedly intensified 
(Fig. 15.52(c) and Fig. 15.53). A large intensity change also occurred in the equatorial pat
tern: the 1,1 diffraction became much stronger than the 1,0 diffraction, the ratio (/(1,0)/ 
7(1,1)) being c^. 0.25. 
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Fig. 15.53 Schematic representation of layer-line diffractions of frog skeletal muscle (resting state).̂ "̂ ^ 
(Does not coincide exactly with Fig. 15.52(a)) 
[Reproduced with permission from K. Wakabayashi, Y. Amemiya, Handbook on 
Synchrotron Radiation, 4, 608, Elsevier (1991)] 

When a resting muscle contracts isometrically, the layer lines due to thick filaments are 
remarkably weakened, similar to the transition in the rigor state (Fig. 15.52(b)). The layer 
lines due to the thin filaments can be distinctly observed with more axial sharpness than in 
the other state (Fig. 15.54). A large equatorial intensity change also took place similar to 
that in the rigor state; the intensity of the 1,0 diffraction decreased and that of the 1,1 dif
fraction increased by a factor of ca. 2, the ratio (/(1,0)7/(1,1)) being 0.3. 

Figure 15.55(a) depicts a perspective of intensity distribution of the diffraction pattern 
shown as Fig. 15.52(b), in which a very strong and high level of diffuse small-angle scatter
ing is superimposed on the layer line diffractions. After removal of the peak values, the en
tire distribution of the diffuse scattering was derived (Fig. 15.55(b)). The Guinier plots 
made on the meridian and in the 45° direction between the equator and the meridian showed 
approximately straight lines except for the very small angle regions. The radii of gyration 
obtained from the slope of the linear parts was ca. 30 A, being similar to that of the SI par-
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Fig. 15.54 Comparisons of intensity contour map."̂ "̂ ' 
(a) Around the 27 A actin meridional diffraction 
(b) Around the 51 and 59 A actin layer lines 
[Reproduced with permission from K. Wakabayashi, Y. Amemiya, Handbook on 
Synchrotron Radiation, 4, 641, Elsevier (1991)] 

tide in solution^^^ which suggests that a large part of the diffuse small-angle scattering 
comes from the myosin heads^^^ {cf. Fig.7.21). 

In order to obtain clues as to the cause of the thin filament layer lines, the difference 
cylindrical Patterson function,*̂ ^̂  

AQ{r, z) = 2 £ ||J° iKRh (R)Jo (2KRr)dr^ cos(2;r/z / c) (15.57) 

was computed using the intensity data of 15 layer lines except for the equatorial diffrac
tions. In the difference cylindrical Patterson function, r and z are the radial and axial coor-
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(b) 

Fig. 15.55 A perspective of intensity distribution of the X-ray diffraction pattern from an isometrically 
contracting muscle of Fig. 15.52(b).̂ '̂ ^ 
(a) The original pattern, 
(b) the diffuse small-angle scattering after removal of the layer-line diffractions. 
[Reproduced with permission from K. Wakabayashi, Y. Amemiya, Handbook on 
Synchrotron Radiation, 4, 644, Elsevier (1991)] 
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dinates in real space, R and Z the same coordinates in reciprocal space, and Jo{2KRr) de
notes the zero order Bessel function (cf. Section 14.6). The AQ{r, z) is the autocorrelation 
function of Ap{r) in the cylindrical coordinates defined by 

Apip) = pip) - <p(x,y)>d(zl <p{x,y)> = \p{p)di I c, (15 58) 

where p{r) is the electron density of the thin filament, r the position vector and c the axial 
repeat.'̂ '̂ Fig. 15.56(b) shows a contour map of AQ{r, z) of the contracting state, in which 
the solid dots stand for the heads of vectors connecting centers of actin monomers along the 
59 A pitch genetic helix with a radius of 25 A. The positive contour lines extend along the 
curve passing through these dots. 

Precise examination of Fig. 15.56, referring the Eq. 15.58, suggests that during the con
traction 1) myosin heads are not bound physically to action, and 2) if binding take place, 
the coherent contribution of the bound portions of myosin heads would be small and their 
location would be randomly distributed along the actin filament since the myosin periodici
ty is incommensurate with the actin periodicity. 

It is assumed that the intensity increase of the layer lines during contraction, i.e., the in
crease in Ap{r) of the thin filament, is due to a structural change within the thin filament, 
which could be caused in a cooperative way along the whole filament by interaction with 
the myosin heads. By referring to three-dimensional reconstructions of the thin filament 
using electron micrographs, models of the thin filament in the resting and contracting states 
are shown in Fig. 15.57.̂ ^^ 

r [A] 
40 80 120 160 

/•[A] 
0 40 80 120 160 

AG/ 
,, 0 ] } • 

Contracting 

Fig. 15.56 Difference cylindrical Patterson functions of muscle in resting, isometrically contracting and rigor 
states.''^' [Reproduced with permission from K. Wakabayashi, Y. Amemiya, Handbook on 
Synchrotron Radiation, 4, 647, Elsevier (1991)] 
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Fig. 15.57 Structural models of thin filament.^^^ 
Surface (upper) and cross-section (lower). 
(a) A resting model, 
(b) an active model. 
Troponin molecules are not incorporated. A, Actin; TM, Tropomyosin. Separation between two do
mains in the actin monomer is 5 = 32 A in (a) and 5 = 40 A in (b); radii of small and large domains 
are 13 and 18 A in (a) and 11 and 17 A in (b), respectively. The axial separation of the two domains is 
ca. 11 A in (a) and (b). Tropomyosins locate at a radial and azimuthal positions of 35 A and 6 = 45° 
in (a) and at ca. 50 A and 0 = 70° in (b). 
[Reproduced with permission from K. Wakabayashi, Y. Amemiya, Handbook on Synchrotron 
Radiatim, 4, 651, Elsevier (1991)] 

B. Time-resolved measurements 
Time-resolved diffraction techniques, using the position-sensitive proportional counter 
(PSPC) or the imaging plate (IP), enabled us to investigate 1) the behaviors of intensity 
changes in the pattern in relation to the onset and decay of tension during isometric contrac
tion, and 2) the effects of length perturbations on the diffraction intensities when applied to 
an isometrically contracting muscle. 
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Fig. 15.58 Time courses of changes in the 1,0 and 1,1 equatorial diffractions when stimulated by two successive 
pulses at an interval of 80 ms at 13°C.̂ ^̂  
The first stimulus was given at t = 0 and the second at the time shown by vertical arrow with broken 
Hne. 
(a) Intensity changes of the 1,0 and 1,1 diffractions. Intensities are normalized at resting phase as 

1.0. 
(b) Intensity ratio (•) of the 1,0 and 1,1 diffractions, odenotes the tension. T l , T2 are the times to 

peak tensions at each twitch measured from each onset of stimulus. A 1 (19.2 ms) and A 2 (19.7 
ms) are the time lags between the peak tension and the maximum intensity changes. Time resolu
tion is 4 ms. 
[Reproduced with permission from H. Tanaka et al., Biophys. Chem., 25, 161, Elsevier (1986)] 

a) Use of one-dimensional PSPC. A block diagram of the data acquisition system using 
a PSPC and the principles of time-resolved X-ray diffraction data collection are given in 
Fig. 8.6̂ ^̂  

The two inner equatorial diffractions, 1,0 and 1,1, exhibit very large changes in intensi
ty during the isometric contraction (Fig. 15.58).̂ ^̂  This change has been interpreted as a 
lateral movement of myosin heads away from the thick filament backbones and towards the 
thin filaments at the trigonal positions in the hexagonal unit cell. 
b) Use of IP. The IP system has enormous potential for dynamic structural studies of 
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muscle contraction, because it does not have a counting rate limit. Two different devices 
that can rapidly move the IP have been constructed.̂ ^^"^^^^ One is for recording two-dimen
sional patterns with sub-second time resolution (Figs. 8.7 and Fig. 15.59)̂ "̂ ^ and the other is 
for one-dimensional patterns with a time resolution of a few tens of microseconds. 

\ a 

Fig. 15.59 Time-resolved two-dimensional X-ray diffraction patterns from a contracting muscle during slow 
stretch recorded by a rotating-drum IP system.'^^' 
Time resolutions is 50 ms. Data from ten contractions series were accumulated. 
(a) resting time 
(b) plateau phase of isometric contraction 
(c) during stretch 
(d) after stretch 
[Reproduced with permission from K. Wakabayashi, Y. Amemiya, Handbook on Synchrotron 
Radiation, 4, 670, North-Holland Pub. (1991)] 
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Appendix- Table 1 

Absorber 

I H 
2 He 
3 Li 
4 Be 
5 B 

6 C 
7 N 
8 0 
9 F 
10 Ne 
11 Na 
12 Mg 
13 Al 
14 Si 
15 P 

16 S 
17 CI 
18 Ar 
19 K 
20 Ca 

21 Sc 
22 Ti 
23 V 
24 Cr 
25 Mn 

26 Fe 
27 Co 
28 Ni 
29 Cu 
30 Zn 

31 Ga 
32 Ge 
33 As 
34 Se 
35 Br 

36 Kr 
37 Rb 
38 Sr 
39 Y 
40 Zr 

41 Nb 
42 Mo 
43 Tc 
44 Ru 
45 Rh 

46 Pd 
47 Ag 
48 Cd 
49 In 
50 Sn 

Mass absorption (Mass attenuation) coefficients, jUm 

Cr 
Ka 

2.2909 

0.412 
0.498 
1.30 
3.44 
7.59 

15.0 
24.7 
37.8 
51.5 
74.1 

94.9 
126 
155 
196 
230 
281 
316 
342 
421 
490 
516 
590 
74.7 
86.8 
97.5 

113 
124 
144 
153 
171 
183 
199 
219 
234 
260 
277 
303 
328 
358 
386 
416 
442 
474 
501 
536 
563 
602 
626 
663 
691 

K% 
2.0848 

0.405 
0.425 
1.01 
2.59 
5.69 

11.2 
18.6 
28.4 
38.9 
56.1 

72.1 
96.2 
118 
151 
177 
217 
244 
266 
328 
382 
403 
444 
479 
67.0 
75.3 

86.9 
96.0 
112 
118 
132 
142 
155 
170 
182 
202 
215 
236 
256 
279 
300 
325 
345 
370 
392 
420 
441 
472 
490 
519 
524 

Fe 
Ka 

1.9373 

0.400 
0.381 
0.839 
2.09 
4.55 

8.99 
14.9 
22.8 
31.3 
45.2 

58.2 
77.8 
95.9 
122 
144 
177 
200 
218 
270 
314 
332 
358 
399 
492 
61.6 

71.0 
78.5 
91.3 
96.8 
108 
116 
127 
139 
149 
165 
176 
193 
210 
229 
247 
267 
284 
305 
323 
346 
363 
389 
405 
428 
447 

K^i 
1.7565 

0.396 
0.335 
0.663 
1.58 
3.39 

6.68 
11.0 
17.0 
23.3 
33.8 

43.7 
58.5 
72.3 
92.7 
109 
135 
152 
167 
207 
242 
256 
277 
309 
385 
375 
54.3 
60.0 
69.8 
74.0 
82.7 

88.6 
96.9 
106 
114 
127 
135 
148 
161 
176 
191 
205 
219 
235 
249 
267 
281 
301 
313 
332 
347 

Cu 
Ka 

1.5418 

0.391 
0.292 
0.500 
1.11 
2.31 

4.51 
7.44 
11.5 
15.8 
22.9 

29.7 
40.0 
49.6 
63.7 
75.5 

93.3 
106 
116 
145 
170 
180 
200 
219 
247 
270 
302 
321 
48.8 
51.8 
57.9 

62.1 
67.9 
74.7 
80.0 
89.0 

95.2 
104 
113 
124 
139 
145 
154 
166 
176 
189 
199 
213 
222 
236 
247 

K^, 
1.3922 

0.388 
0.268 
0.412 
0.853 
1.73 

3.33 
5.48 
8.42 
11.6 
16.9 

22.0 
29.6 
36.8 
47.5 
56.4 

69.8 
79.5 
87.5 
109 
129 
137 
152 
166 
185 
207 
232 
248 
279 
39.2 
43.8 

47.0 
51.4 
56.5 
60.5 
67.4 

72.1 
79.0 
85.9 
94.0 
101 
110 
117 
126 
134 
144 
151 
163 
169 
180 
188 

Lcm^ g '] for selected radiations [A]^ 

Mo 
Ka 

0.7107 

0.373 
0.202 
0.198 
0.256 
0.368 

0.576 
0.845 
1.22 
1.63 
2.35 

3.03 
4.09 
5.11 
6.64 
7.97 

9.99 
11.5 
12.8 
16.2 
19.3 

20.8 
23.4 
26.0 
29.9 
33.1 

37.6 
41.0 
46.9 
49.1 
54.0 

57.0 
61.2 
66.1 
69.5 
75.6 

79.3 
85.1 
90.6 
97.0 
16.3 

17.7 
18.8 
20.4 
21.7 
23.3 

24.7 
26.5 
27.8 
29.5 
31.0 

/CP, 
0.6323 

0.370 
0.197 
0.187 
0.229 
0.309 

0.458 
0.645 
0.908 
1.19 
1.69 

2.17 
2.92 
3.64 
4.73 
5.67 

7.11 
8.20 
9.14 
11.6 
13.8 

14.9 
16.8 
18.7 
21.5 
23.8 

27.1 
29.6 
34.0 
35.7 
39.3 

41.5 
44.6 
48.2 
50.8 
55.5 

58.4 
63.0 
67.2 
72.1 
76.1 

81.0 
13.8 
14.9 
15.8 
17.0 

18.0 
19.4 
20.2 
21.6 
22.6 

Ag 
Ka 

0.5608 

0.367 
0.193 
0.179 
0.209 
0.267 

0.374 
0.503 
0.685 
0.879 
1.23 

1.56 
2.09 
2.59 
3.35 
4.01 

5.02 
5.79 
6.46 
8.19 
9.79 

10.6 
11.9 
13.3 
15.4 
17.0 

19.4 
21.2 
24.4 
25.6 
28.2 

29.8 
32.1 
34.8 
36.8 
40.3 

42.5 
45.9 
49.1 
52.9 
55.9 

59.8 
72.0 
66.0 
11.4 
12.3 

13.0 
14.0 
14.6 
15.6 
16.4 

/iTpi 
0.4970 

0.363 
0.189 
0.172 
0.195 
0.237 

0.315 
0.404 
0.329 
0.660 
0.906 

1.13 
1.50 
1.85 
2.38 
2.84 

3.55 
4.09 
4.56 
5.78 
6.92 

7.47 
8.43 
9.42 
10.9 
12.1 

13.8 
15.1 
17.4 
18.3 
20.2 

21.4 
23.1 
25.0 
26.5 
29.1 

30.7 
33.2 
35.6 
38.4 
40.7 

43.6 
52.5 
48.4 
50.6 
53.5 

55.5 
10.1 
10.6 
11.3 
11.8 



482 Appendix 

Appendix- Table 1 Mass absorption (Mass attenuation) coefficients, Ûm [cm^ g '] for selected radiations [A]̂  (Continued) 

Absorber 

51 Sb 
52 Te 
53 I 
54 Xe 
55 Cs 

56 Ba 
57 La 
58 Ce 
59 Pr 
60 Nd 

61 Pm 
62 Sm 
63 Eu 
64 Gd 
65 Tb 

66 Dy 
67 Ho 
68 Er 
69 Tm 
70 Yb 

71 Lu 
72 Hf 
73 Ta 
74 W 
75 Re 

76 Os 
77 Ir 
78 Pt 
79 Au 
80 Hg 

81 Tl 
82 Pb 
83 Bi 
84 Po 
85 At 

86 Rn 
87 Fr 
88 Ra 
89 Ac 
90 Th 

91 Pa 
92 U 

Cr 
Ka 
2.2909 

723 
740 
796 
721 
760 
570 
225 
238 
238 
251 
294 
279 
309 
298 
332 
325 
347 
352 
386 
387 
431 
425 
432 
457 
501 
499 
520 
541 
551 
541 
597 
643 
666 
691 
680 
734 
758 
743 
739 
768 
738 
766 

KP, 
2.0848 

570 
585 
631 
652 
686 
645 
744 
494 
188 
198 
232 
221 
244 
235 
263 
257 
272 
278 
305 
304 
339 
334 
339 
361 
394 
392 
411 
423 
434 
416 
487 
507 
524 
544 
533 
576 
597 
585 
618 
509 
582 
617 

Fe 
Ka 

1.9373 

471 
483 
522 
540 
569 
586 
618 
561 
448 
455 
194 
204 
203 
195 
219 
214 
228 
232 
253 
251 
280 
277 
283 
301 
327 
327 
340 
357 
361 
339 
403 
420 
434 
452 
444 
477 
493 
487 
530 
485 
482 
528 

/̂ Pi 
1.7565 

365 
374 
408 
422 
446 
461 
483 
510 
539 
492 
588 
163 
408 
153 
171 
168 
178 
182 
196 
196 
218 
216 
220 
234 
257 
255 
265 
261 
279 
260 
314 
327 
339 
354 
345 
373 
384 
380 
444 
389 
375 
400 

Cu 
Ka 

1.5418 

259 
267 
288 
299 
317 
325 
348 
368 
390 
404 
426 
434 
434 
403 
321 
362 
129 
132 
140 
142 
156 
155 
158 
168 
187 
184 
191 
188 
210 
188 
226 
235 
244 
254 
248 
267 
277 
273 
317 
306 
271 
288 

P̂, 1.3922 

198 
204 
220 
229 
243 
252 
266 
282 
299 
310 
328 
335 
352 
360 
376 
387 
402 
417 
108 
108 
121 
120 
122 
130 
143 
142 
148 
145 
155 
141 
175 
181 
189 
196 
186 
205 
213 
210 
285 
219 
208 
222 

Mo 
Ka 

0.7107 

32.7 
33.8 
36.7 
38.2 
40.7 

42.3 
44.9 
47.7 
50.7 
53.0 

56.3 
57.8 
60.9 
62.6 
65.8 

68.3 
71.3 
74.4 
77.9 
80.4 

84.0 
86.9 
90.4 
93.8 
97.4 

100 
104 
107 
112 
115 
118 
122 
126 
132 
117 
108 
87.0 
88.0 
90.8 
96.5 

101 
102 

/^P, 
0.6323 

23.9 
24.7 
26.8 
28.0 
29.8 

31.0 
32.9 
34.9 
37.2 
38.8 

41.3 
42.4 
44.7 
46.0 
48.3 

50.2 
52.4 
54.8 
57.4 
59.3 

61.9 
64.1 
66.7 
69.2 
71.9 

74.1 
77.0 
79.7 
82.9 
85.4 

87.9 
90.8 
94.1 
98.3 
102 
101 
104 
108 
110 
98.7 

119 
74.9 

Ag 
Ka 

0.5608 

17.3 
17.9 
19.4 
20.2 
21.5 

22.4 
23.8 
25.3 
26.9 
28.1 

29.9 
30.8 
32.4 
33.4 
35.1 

36.5 
38.1 
39.9 
41.8 
43.2 

45.1 
46.7 
48.7 
50.5 
52.5 

54.1 
56.3 
58.3 
60.7 
62.6 

64.5 
66.6 
69.1 
72.3 
75.1 

72.1 
77.0 
79.3 
82.4 
83.9 

87.8 
88.6 

P̂, 0.4970 

12.5 
12.9 
14.0 
14.6 
15.6 

16.2 
17.2 
18.3 
19.5 
20.4 

21.7 
22.3 
23.5 
24.2 
25.5 

26.5 
27.7 
29.0 
30.4 
31.4 

32.8 
34.0 
35.4 
36.8 
38.3 

39.5 
41.1 
42.6 
44.4 
45.8 

47.2 
48.8 
50.6 
53.0 
55.1 

54.5 
56.7 
58.4 
60.7 
61.9 

64.8 
65.5 

^[Reproduced with permission from, Source: International Tables for Crystallography, Vol. C, Mathematical, 
Physical and Chemical Tables, 2nd ed. (A.J.C. Wilson, E. Prince eds.), pp. 230-235, lUCr, D. Reidel Pub., 
Dordrecht (1999)] 
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V~^~ \ Element 

(sin0)/A[A ']\ 

0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.80 
0.90 
1.00 
1.10 
1.20 
1.30 
1.40 
1.50 
1.60 
1.70 
1.80 
1.90 
2.00 

Appendix-Table 2A Mean atomic . 

1 
H 

1.000 
0.947 
0.811 
0.641 
0.481 
0.350 
0.251 
0.180 
0.130 
0.095 
0.071 
0.053 
0.040 
0.031 
0.024 
0.015 
0.010 
0.007 
0.005 
0.003 
0.003 
0.002 
0.001 

2 
He 

2.000 
1.957 
1.837 
1.663 
1.460 
1.254 
1.060 
0.887 
0.738 
0.613 
0.509 
0.423 
0.353 
0.295 
0.248 
0.177 
0.129 
0.095 
0.072 
0.055 
0.042 
0.033 
0.026 
0.021 
0.017 
0.014 
0.011 
0.010 

3 
Li 

3.000 
2.708 
2.215 
1.904 
1.742 
1.626 
1.513 
1.393 
1.270 
1.149 
1.033 
0.924 
0.823 
0.732 
0.650 
0.512 
0.404 
0.320 
0.255 
0.205 
0.165 
0.134 
0.110 
0.091 
0.075 
0.063 
0.053 
0.044 

4 
Be 

4.000 
3.707 
3.065 
2.463 
2.060 
1.828 
1.692 
1.600 
1.520 
1.443 
1.362 
1.279 
1.195 
1.112 
1.030 
0.876 
0.740 
0.622 
0.522 
0.439 
0.369 
0.311 
0.263 
0.223 
0.190 
0.163 
0.139 
0.120 

scattering 

5 
B 

5.000 
4.724 
4.060 
3.316 
2.699 
2.263 
1.979 
1.799 
1.681 
1.596 
1.526 
1.463 
1.402 
1.339 
1.276 
1.147 
1.020 
0.900 
0.790 
0.690 
0.602 
0.524 
0.457 
0.398 
0.347 
0.304 
0.266 
0.233 

factors in 

6 
C 

6.000 
5.749 
5.107 
4.311 
3.560 
2.949 
2.494 
2.171 
1.948 
1.794 
1.685 
1.603 
1.537 
1.479 
1.426 
1.322 
1.219 
1.114 
1.012 
0.914 
0.822 
0.736 
0.659 
0.588 
0.525 
0.468 
0.418 
0.373 

electrons for free atoms ̂  

7 
N 

7.000 
6.776 
6.180 
5.385 
4.563 
3.825 
3.219 
2.747 
2.393 
2.132 
1.942 
1.802 
1.697 
1.616 
1.551 
1.445 
1.353 
1.265 
1.172 
1.090 
1.004 
0.921 
0.843 
0.769 
0.700 
0.636 
0.578 
0.525 

8 
0 

8.000 
7.798 
7.245 
6.472 
5.623 
4.808 
4.089 
3.489 
3.006 
2.629 
2.338 
2.115 
1.946 
1.816 
1.714 
1.568 
1.463 
1.377 
1.298 
1.221 
1.145 
1.070 
0.997 
0.926 
0.857 
0.792 
0.731 
0.674 

9 
F 

9.000 
8.815 
8.302 
7.560 
6.709 
5.851 
5.054 
4.353 
3.759 
3.270 
2.874 
2.559 
2.309 
2.112 
1.956 
1.735 
1.588 
1.482 
1.398 
1.324 
1.254 
1.186 
1.120 
1.055 
0.990 
0.928 
0.868 
0.810 

10 
Ne 

10.000 
9.830 
9.351 
8.643 
7.805 
6.928 
6.079 
5.302 
4.617 
4.029 
3.535 
3.126 
2.517 
2.517 
2.296 
1.971 
1.757 
1.609 
1.502 
1.418 
1.346 
1.280 
1.218 
1.158 
1.099 
1.041 
0.984 
0.929 

V~^~ \ Element 

(sin0)/A[A"']\ 

0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.80 
0.90 
1.00 
1.10 
1.20 
1.30 
1.40 
1.50 
1.60 
1.70 
1.80 
1.90 
2.00 

11 
Na 

11.000 
10.568 
9.760 
9.027 
8.335 
7.618 
6.881 
6.156 
5.471 
4.848 
4.293 
3.811 
3.398 
3.048 
2.754 
2.305 
1.997 
1.784 
1.634 
1.524 
1.438 
1.367 
1.304 
1.247 
1.191 
1.137 
1.084 
1.032 

12 
Mg 

12.000 
11.507 
10.472 
9.502 
8.735 
8.078 
7.446 
6.817 
6.194 
5.595 
5.034 
4.520 
4.059 
3.652 
3.297 
2.729 
2.317 
2.022 
1.812 
1.660 
1.546 
1.459 
1.387 
1.326 
1.270 
1.219 
1.169 
1.120 

13 
Al 

13.000 
12.439 
11.230 
10.059 
9.158 
8.465 
7.873 
7.316 
6.766 
6.222 
5.692 
5.186 
4.713 
4.277 
3.883 
3.221 
2.712 
2.330 
2.049 
1.841 
1.687 
1.571 
1.481 
1.408 
1.346 
1.292 
1.243 
1.195 

14 
Si 

14.000 
13.434 
12.134 
10.769 
9.673 
8.859 
8.231 
7.698 
7.202 
6.719 
6.240 
5.769 
5.312 
4.878 
4.470 
3.750 
3.164 
2.702 
2.346 
2.076 
1.872 
1.717 
1.598 
1.505 
1.430 
1.367 
1.313 
1.264 

15 
P 

15.000 
14.458 
13.138 
11.629 
10.327 
9.335 
8.600 
8.029 
7.547 
7.103 
6.674 
6.250 
5.829 
5.418 
5.020 
4.284 
3.649 
3.122 
2.698 
2.364 
2.104 
1.903 
1.747 
1.626 
1.530 
1.453 
1.389 
1.333 

16 
S 

16.000 
15.484 
14.177 
12.583 
11.109 
9.927 
9.039 
8.376 
7.856 
7.417 
7.017 
6.633 
6.254 
5.877 
5.505 
4.790 
4.138 
3.570 
3.092 
2.699 
2.384 
2.133 
1.935 
1.779 
1.655 
1.557 
1.477 
1.411 

17 
CI 

17.000 
16.511 
15.234 
13.597 
11.991 
10.633 
9.576 
8.782 
8.181 
7.706 
7.305 
6.941 
6.595 
6.254 
5.915 
5.245 
4.607 
4.023 
3.509 
3.070 
2.704 
2.405 
2.162 
1.967 
1.811 
1.686 
1.585 
1.502 

18 
Ar 

18.000 
17.536 
16.298 
14.647 
12.949 
11.441 
10.216 
9.272 
8.558 
8.011 
7.575 
7.207 
6.875 
6.560 
6.252 
5.639 
5.036 
4.460 
3.931 
3.462 
3.056 
2.713 
2.427 
2.192 
2.000 
1.844 
1.717 
1.614 

19 
K 

19.000 
18.204 
16.733 
15.243 
13.728 
12.268 
10.977 
9.908 
9.061 
8.403 
7.889 
7.474 
7.125 
6.814 
6.523 
5.961 
5.406 
4.859 
4.337 
3.855 
3.423 
3.045 
2.722 
2.450 
2.221 
2.033 
1.876 
1.748 

20 
Ca 

20.000 
19.091 
17.331 
15.723 
14.304 
12.961 
11.705 
10.590 
9.650 
8.885 
8.275 
7.788 
7.392 
7.057 
6.762 
6.228 
5.717 
5.209 
4.710 
4.233 
3.791 
3.391 
3.039 
2.733 
2.470 
2.250 
2.063 
1.908 
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V^~ \ Element 

(sin6»)/A[A ' ] \ 

0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.80 
0.90 
1.00 
1.10 
1.20 
1.30 
1.40 
1.50 
1.60 
1.70 
1.80 
1.90 
2.00 

21 
Sc 

21.000 
20.131 
18.356 
16.645 
15.135 
13.732 
12.423 
11.244 
10.226 
9.377 
8.687 
8.132 
7.682 
7.312 
6.996 
6.460 
5.975 
5.501 
5.030 
4.570 
4.131 
3.722 
3.352 
3.023 
2.733 
2.485 
2.271 
2.090 

Appendix 

22 
Ti 

22.000 
21.171 
19.410 
17.635 
16.044 
14.572 
13.198 
11.949 
10.852 
9.920 
9.148 
8.518 
8.007 
7.588 
7.240 
6.676 
6.200 
5.752 
5.310 
4.872 
4.445 
4.038 
3.660 
3.316 
3.006 
2.734 
2.496 
2.290 

-Table 2A Mean atomic scattering factors for free atoms 

23 
V 

23.000 
22.208 
20.474 
18.661 
17.003 
15.465 
14.026 
12.705 
11.530 
10.515 
9.660 
8.952 
8.373 
7.898 
7.506 
6.892 
6.406 
5.972 
5.553 
5.139 
4.730 
4.333 
3.956 
3.604 
3.281 
2.992 
2.733 
2.506 

24 
Cr 

24.000 
23.329 
21.789 
20.022 
18.260 
16.561 
14.965 
13.513 
12.227 
11.118 
10.180 
9.400 
8.756 
8.227 
7.791 
7.118 
6.606 
6.172 
5.768 
5.372 
4.982 
4.597 
4.226 
3.874 
3.545 
3.244 
2.971 
2.727 

25 
Mn 

25.000 
24.274 
22.611 
20.764 
19.012 
17.364 
15.806 
14.353 
13.031 
11.858 
10.840 
9.973 
9.245 
8.639 
8.137 
7.368 
6.808 
6.359 
5.962 
5.586 
5.215 
4.849 
4.490 
4.144 
3.814 
3.506 
3.221 
2.963 

26 
Fe 

26.000 
25.304 
23.678 
21.829 
20.046 
18.354 
16.744 
15.233 
13.845 
12.598 
11.502 
10.557 
9.753 
9.077 
8.512 
7.645 
7.023 
6.545 
6.143 
5.775 
5.420 
5.070 
4.725 
4.388 
4.062 
3.753 
3.463 
3.195 

27 
Co 

27.000 
26.331 
24.744 
22.900 
21.093 
19.364 
17.709 
16.145 
14.695 
13.379 
12.209 
11.188 
10.309 
9.561 
8.930 
7.955 
7.259 
6.738 
6.318 
5.950 
5.601 
5.270 
4.939 
4.611 
4.295 
3.989 
3.697 
3.424 

28 
Ni 

28.000 
27.356 
25.807 
23.973 
22.150 
20.390 
18.696 
17.084 
15.576 
14.196 
12.956 
11.862 
10.909 
10.090 
9.392 
8.301 
7.519 
6.944 
6.495 
6.118 
5.776 
5.451 
5.133 
4.819 
4.511 
4.211 
3.922 
3.647 

(Continued) 

29 
Cu 

29.000 
28.448 
27.084 
25.370 
23.540 
21.687 
19.869 
18.133 
16.514 
15.034 
13.707 
12.533 
11.507 
10.621 
9.861 
8.663 
7.799 
7.166 
6.681 
6.285 
5.939 
5.617 
5.308 
5.005 
4.705 
4.413 
4.128 
3.855 

30 
Zn 

30.000 
29.401 
27.927 
26.124 
24.283 
22.478 
20.720 
19.027 
17.421 
15.926 
14.559 
13.328 
12.235 
11.276 
10.442 
9.108 
8.132 
7.417 
6.879 
6.453 
6.096 
5.775 
5.473 
5.180 
4.892 
4.610 
4.332 
4.063 

V ^ \ Element 

(sin0)/A[A"']\ 

0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.80 
0.90 
1.00 
1.10 
1.20 
1.30 
1.40 
1.50 
1.60 
1.70 
1.80 
1.90 
2.00 

31 
Ga 

31.000 
30.308 
28.675 
26.783 
24.935 
23.174 
21.481 
19.847 
18.278 
16.794 
15.410 
14.142 
12.996 
11.974 
11.073 
9.604 
8.510 
7.702 
7.099 
6.633 
6.254 
5.926 
5.627 
5.342 
5.065 
4.792 
4.523 
4.260 

32 
Ge 

32.000 
31.276 
29.534 
27.504 
25.567 
23.791 
22.136 
20.560 
19.047 
17.598 
16.227 
14.947 
13.770 
12.702 
11.745 
10.151 
8.937 
8.028 
7.348 
6.830 
6.419 
6.076 
5.774 
5.493 
5.224 
4.961 
4.702 
4.447 

33 
As 

33.000 
32.274 
30.473 
28.307 
26.235 
24.386 
22.724 
21.185 
19.725 
18.326 
16.989 
15.721 
14.535 
13.440 
12.442 
10.741 
9.411 
8.396 
7.631 
7.050 
6.597 
6.231 
5.917 
5.636 
5.372 
5.117 
4.867 
4.621 

34 
Se 

34.000 
33.280 
31.449 
29.175 
26.962 
25.001 
23.288 
21.751 
20.328 
18.977 
17.682 
16.444 
15.269 
14.166 
13.145 
11.362 
9.928 
8.809 
7.952 
7.299 
6.795 
6.395 
6.063 
5.775 
5.511 
5.262 
5.020 
4.782 

35 
Br 

35.000 
34.291 
32.450 
30.095 
27.749 
25.658 
23.857 
22.288 
20.874 
19.558 
18.307 
17.107 
15.958 
14.865 
13.837 
12.001 
10.480 
9.262 
8.312 
7.580 
7.016 
6.574 
6.216 
5.913 
5.645 
5.398 
5.162 
4.932 

36 
Kr 

36.000 
35.304 
33.467 
31.055 
28.590 
26.364 
24.453 
22.820 
21.388 
20.087 
18.870 
17.709 
16.594 
15.524 
14.504 
12.645 
11.057 
9.752 
8.711 
7.898 
7.266 
6.773 
6.380 
6.056 
5.778 
5.528 
5.295 
5.071 

37 
Rb 

37.000 
35.948 
33.907 
31.681 
29.368 
27.148 
25.158 
23.432 
21.934 
20.605 
19.391 
18.252 
17.167 
16.125 
15.126 
13.272 
11.645 
10.270 
9.147 
8.252 
7.548 
6.996 
6.562 
6.210 
5.913 
5.656 
5.420 
5.200 

38 
Sr 

38.000 
36.802 
34.458 
32.171 
29.988 
27.863 
25.875 
24.090 
22.522 
21.141 
19.902 
18.764 
17.696 
16.678 
15.702 
13.872 
12.230 
10.806 
9.612 
8.640 
7.863 
7.249 
6.764 
6.376 
6.055 
5.785 
5.544 
5.323 

39 
Y 

39.000 
37.816 
35.364 
32.904 
30.631 
28.485 
26.483 
24.673 
23.071 
21.660 
20.404 
19.263 
18.204 
17.203 
16.246 
14.443 
12.798 
11.339 
10.088 
9.046 
8.200 
7.523 
6.985 
6.554 
6.205 
5.914 
5.662 
5.440 

40 
Zr 

40.000 
38.847 
36.356 
33.758 
31.363 
29.141 
27.092 
25.243 
23.606 
22.166 
20.892 
19.745 
18.693 
17.706 
16.767 
14.996 
13.361 
11.883 
10.588 
9.486 
8.574 
7.833 
7.238 
6.760 
6.375 
6.059 
5.790 
5.558 
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v^ 
\ Element 

(sin0)/AlA ' ] ^ 

0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.80 
0.90 
1.00 
1.10 
1.20 
1.30 
1.40 
1.50 
1.60 
1.70 
1.80 
1.90 
2.00 

41 
Nb 

41.000 
39.970 
37.606 
34.916 
32.305 
29.881 
27.692 
25.760 
24.077 
22.615 
21.336 
20.195 
19.156 
18.187 
17.268 
15.533 
13.915 
12.427 
11.098 
9.945 
8.972 
8.169 
7.516 
6.969 
6.564 
6.216 
5.927 
5.680 

Appendiji 

42 
Mo 

42.000 
41.003 
38.656 
35.907 
33.195 
30.665 
28.382 
26.368 
24.620 
23.109 
21.796 
20.638 
19.595 
18.635 
17.732 
16.036 
14.448 
12.968 
11.621 
10.430 
9.404 
8.542 
7.831 
7.251 
6.780 
6.397 
6.080 
5.813 

-Table 2A Mean atomic scattering factors for free atoms 

43 
Tc 

43.000 
41.945 
39.480 
36.658 
33.936 
31.409 
29.104 
27.042 
25.229 
23.651 
22.280 
21.080 
20.012 
19.042 
18.142 
16.477 
14.925 
13.466 
12.116 
10.900 
9.833 
8.919 
8.154 
7.521 
7.004 
6.582 
6.234 
5.946 

44 
Ru 

44.000 
43.061 
40.770 
37.959 
35.088 
32.356 
29.866 
27.662 
25.749 
24.106 
22.696 
21.476 
20.403 
19.438 
18.551 
16.922 
15.405 
13.968 
12.620 
11.385 
10.282 
9.323 
8.506 
7.823 
7.258 
6.794 
6.412 
6.097 

45 
Rh 

45.000 
44.088 
41.834 
39.015 
36.086 
33.267 
30.675 
28.370 
26.363 
24.640 
23.167 
21.900 
20.798 
19.820 
18.932 
17.326 
15.845 
14.440 
13.107 
11.866 
10.740 
9.743 
8.880 
8.148 
7.535 
7.028 
6.608 
6.262 

46 
Pd 

46.000 
45.232 
43.172 
40.357 
37.286 
34.283 
31.523 
29.077 
26.961 
25.153 
23.617 
22.307 
21.177 
20.186 
19.296 
17.711 
16.266 
14.893 
13.580 
12.342 
11.200 
10.173 
9.270 
8.492 
7.833 
7.282 
6.824 
6.443 

47 
Ag 

47.000 
46.139 
43.964 
41.157 
38.154 
35.192 
32.416 
29.910 
27.707 
25.805 
24.181 
22.795 
21.607 
20.575 
19.661 
18.069 
16.651 
15.316 
14.035 
12.813 
11.669 
10.623 
9.687 
8.869 
8.165 
7.569 
7.069 
6.651 

48 
Cd 

48.000 
47.085 
44.797 
41.923 
38.930 
36.007 
33.251 
30.725 
28.468 
26.492 
24.784 
23.320 
22.063 
20.978 
20.027 
18.405 
17.000 
15.698 
14.451 
13.253 
12.116 
11.060 
10.101 
9.249 
8.505 
7.867 
7.326 
6.871 

(Continued) 

49 
In 

49.000 
47.980 
45.534 
42.603 
39.639 
36.774 
34.059 
31.538 
29.247 
27.209 
25.425 
23.881 
22.552 
21.405 
20.408 
18.736 
17.329 
16.053 
14.840 
13.670 
12.548 
11.492 
10.518 
9.639 
8.860 
8.184 
7.603 
7.110 

50 
Sn 

50.000 
48.934 
46.361 
43.309 
40.302 
37.462 
34.794 
32.303 
30.011 
27.938 
26.096 
24.482 
23.081 
21.868 
20.815 
19.073 
17.646 
16.384 
15.201 
14.062 
12.962 
11.913 
10.933 
10.034 
9.227 
8.516 
7.897 
7.367 

V^ \ Element 

(sin0)/A[A^']\ 

0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.80 
0.90 
1.00 
1.10 
1.20 
1.30 
1.40 
1.50 
1.60 
1.70 
1.80 
1.90 
2.00 

51 
Sb 

51.000 
49.915 
47.250 
44.056 
40.955 
38.100 
35.465 
33.016 
30.745 
28.663 
26.784 
25.113 
23.646 
22.366 
21.253 
19.424 
17.958 
16.696 
15.537 
14.429 
13.355 
12.321 
11.341 
10.431 
9.602 
8.861 
8.208 
7.642 

52 
Te 

52.000 
50.906 
48.174 
44.848 
41.623 
38.709 
36.079 
33.663 
31.424 
29.352 
27.458 
25.748 
24.226 
22.885 
21.711 
19.783 
18.262 
16.986 
15.841 
14.759 
13.712 
12.698 
11.726 
10.811 
9.966 
9.201 
8.518 
7.921 

53 
I 

53.000 
51.911 
49.142 
45.702 
42.340 
39.333 
36.675 
34.279 
32.075 
30.030 
28.141 
26.412 
24.851 
23.459 
22.228 
20.193 
18.599 
17.293 
16.150 
15.090 
14.072 
13.082 
12.125 
11.214 
10.360 
9.576 
8.868 
8.239 

54 
Xe 

54.000 
52.917 
50.125 
46.588 
43.088 
39.967 
37.251 
34.850 
32.671 
30.656 
28.785 
27.054 
25.470 
24.038 
22.758 
20.618 
18.943 
17.591 
16.438 
15.390 
14.396 
13.432 
12.494 
11.592 
10.736 
9.940 
9.212 
8.556 

55 
Cs 

55.000 
53.527 
50.603 
47.291 
43.888 
40.713 
37.904 
35.440 
33.241 
31.236 
29.382 
27.661 
26.072 
24.619 
23.303 
21.072 
19.310 
17.900 
16.722 
15.676 
14.700 
13.759 
12.845 
11.956 
11.104 
10.303 
9.558 
8.881 

56 
Ba 

56.000 
54.345 
51.122 
47.839 
44.586 
41.456 
38.598 
36.063 
33.818 
31.798 
29.948 
28.238 
26.652 
25.189 
23.851 
21.547 
19.701 
18.224 
17.008 
15.953 
14.988 
14.067 
13.175 
12.305 
11.461 
10.661 
9.907 
9.213 

57 
La 

57.000 
55.351 
51.982 
48.523 
45.212 
42.078 
39.212 
36.659 
34.397 
32.370 
30.523 
28.817 
27.231 
25.759 
24.401 
22.031 
20.106 
18.561 
17.300 
16.227 
15.265 
14.362 
13.489 
12.636 
11.807 
11.009 
10.253 
9.550 

58 
Ce 

58.000 
56.385 
53.047 
49.579 
46.233 
43.042 
40.104 
37.474 
35.139 
33.051 
31.154 
29.409 
27.791 
26.289 
24.901 
22.469 
20.481 
18.881 
17.583 
16.491 
15.526 
14.633 
13.776 
12.939 
12.123 
11.333 
10.576 
9.868 

59 
Pr 

59.000 
57.439 
54.281 
50.957 
47.610 
44.323 
41.256 
38.496 
36.042 
33.849 
31.862 
30.040 
28.358 
26.803 
25.370 
22.867 
20.824 
19.182 
17.854 
16.745 
15.776 
14.888 
14.042 
13.218 
12.414 
11.631 
10.878 
10.166 

60 
Nd 

60.000 
58.468 
55.342 
52.022 
48.660 
45.336 
42.210 
39.379 
36.854 
34.596 
32.553 
30.683 
28.960 
27.367 
25.899 
23.325 
21.214 
19.513 
18.139 
17.003 
16.024 
15.138 
14.303 
13.493 
12.704 
11.932 
11.185 
10.473 
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\ Element 

(sin6>)/A[A-']\ 

0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.80 
0.90 
1.00 
1.10 
1.20 
1.30 
1.40 
1.50 
1.60 
1.70 
1.80 
1.90 
2.00 

61 
Pm 

61.000 
59.497 
56.403 
53.091 
49.720 
46.364 
43.186 
40.289 
37.694 
35.370 
33.269 
31.349 
29.581 
27.948 
26.442 
23.796 
21.616 
19.853 
18.430 
17.262 
16.266 
15.378 
14.551 
13.755 
12.980 
12.220 
11.481 
10.773 

Appendix 

62 
Sm 

62.000 
60.525 
57.463 
54.163 
50.786 
47.406 
44.180 
41.221 
38.559 
36.169 
34.008 
32.036 
30.222 
28.547 
27.002 
24.281 
22.030 
20.202 
18.728 
17.523 
16.507 
15.613 
14.790 
14.005 
13.243 
12.497 
11.767 
11.064 

-Table 2A Mean atomic scattering factors for free atoms 

63 
Eu 

63.000 
61.552 
58.521 
55.228 
51.847 
48.444 
45.176 
42.160 
39.433 
36.980 
34.761 
32.737 
30.877 
29.161 
27.576 
24.781 
22.459 
20.565 
19.035 
17.789 
16.747 
15.841 
15.020 
14.245 
13.494 
12.763 
12.044 
11.345 

64 
Gd 

64.000 
62.557 
59.427 
56.005 
52.588 
49.209 
45.965 
42.951 
40.207 
37.726 
35.479 
33.428 
31.543 
29.802 
28.192 
25.335 
22.940 
20.970 
19.372 
18.072 
16.995 
16.072 
15.247 
14.477 
13.741 
13.022 
12.317 
11.631 

65 
Tb 

65.000 
63.603 
60.634 
57.366 
53.985 
50.549 
47.208 
44.087 
41.241 
38.665 
36.329 
34.199 
32.243 
30.438 
28.772 
25.822 
23.353 
21.323 
19.675 
18.338 
17.234 
16.296 
15.465 
14.697 
13.968 
13.259 
12.564 
11.886 

66 
Dy 

66.000 
64.627 
61.689 
58.437 
55.059 
51.611 
48.240 
45.073 
42.171 
39.536 
37.143 
34.958 
32.953 
31.103 
29.394 
26.366 
23.821 
21.721 
20.011 
18.623 
17.483 
16.522 
15.680 
14.913 
14.190 
13.491 
12.808 
12.141 

67 
Ho 

67.000 
65.627 
62.591 
59.212 
55.803 
52.390 
49.059 
45.908 
42.996 
40.337 
37.914 
35.699 
33.664 
31.786 
30.049 
26.958 
24.343 
22.167 
20.385 
18.934 
17.746 
16.753 
15.895 
15.123 
14.406 
13.718 
13.047 
12.392 

68 
Er 

68.000 
66.673 
63.798 
60.578 
57.213 
53.750 
50.329 
47.081 
44.075 
41.327 
38.822 
36.531 
34.425 
32.483 
30.688 
27.497 
24.800 
22.556 
20.718 
19.221 
17.998 
16.980 
16.107 
15.329 
14.612 
13.929 
13.267 
12.621 

(Continued) 

69 
Tm 

69.000 
67.696 
64.852 
61.648 
58.292 
54.825 
51.384 
48.099 
45.046 
42.246 
39.686 
37.342 
35.187 
33.198 
31.359 
28.086 
25.311 
22.995 
21.089 
19.535 
18.266 
17.215 
16.321 
15.533 
14.815 
14.137 
13.483 
12.847 

70 
Yb 

70.000 
68.717 
65.904 
62.718 
59.371 
55.903 
52.444 
49.127 
46.029 
43.178 
40.565 
38.169 
35.964 
33.929 
32.045 
28.690 
25.837 
23.447 
21.474 
19.860 
18.542 
17.454 
16.536 
15.735 
15.013 
14.338 
13.691 
13.064 

\~^~ 
\ Element 

(sin0)/A[A"']\ 

0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.80 
0.90 
1.00 
1.10 
1.20 
1.30 
1.40 
1.50 
1.60 
1.70 
1.80 
1.90 
2.00 

71 
Lu 

71.000 
69.707 
66.789 
63.478 
60.103 
56.683 
53.282 
49.998 
46.906 
44.038 
41.398 
38.970 
36.733 
34.666 
32.752 
29.334 
26.413 
23.950 
21.902 
20.219 
18.842 
17.709 
16.759 
15.939 
15.208 
14.534 
13.894 
13.277 

72 
Hf 

72.000 
70.723 
67.757 
64.326 
60.870 
57.434 
54.054 
50.796 
47.717 
44.849 
42.197 
39.752 
37.494 
35.404 
33.465 
29.992 
27.008 
24.473 
22.352 
20.598 
19.159 
17.975 
16.988 
16.145 
15.403 
14.727 
14.091 
13.481 

73 
Ta 

73.000 
71.745 
68.758 
65.229 
61.675 
58.189 
54.799 
51.548 
48.479 
45.615 
42.962 
40.508 
38.238 
36.132 
34.175 
30.658 
27.618 
25.016 
22.823 
20.998 
19.494 
18.256 
17.228 
16.356 
15.598 
14.916 
14.282 
13.679 

74 
W 

74.000 
72.767 
69.778 
66.172 
62.519 
58.961 
55.536 
52.274 
49.205 
46.344 
43.691 
41.236 
38.960 
36.846 
34.878 
31.327 
28.238 
25.576 
23.313 
21.418 
19.847 
18.552 
17.478 
16.575 
15.796 
15.104 
14.469 
13.871 

75 
Re 

75.000 
73.788 
70.799 
67.126 
63.378 
59.742 
56.270 
52.986 
49.910 
47.048 
44.396 
41.940 
39.662 
37.544 
35.569 
31.993 
28.865 
26.148 
23.821 
21.856 
20.219 
18.864 
17.742 
16.801 
15.998 
15.293 
14.653 
14.057 

76 
Os 

76.000 
74.810 
71.832 
68.107 
64.269 
60.548 
57.013 
53.692 
50.596 
47.726 
45.072 
42.617 
40.340 
38.222 
36.244 
32.654 
29.495 
26.732 
24.345 
22.314 
20.610 
19.194 
18.019 
17.038 
16.206 
15.483 
14.835 
14.239 

77 
Ir 

77.000 
75.832 
72.872 
69.108 
65.189 
61.380 
57.773 
54.401 
51.274 
48.387 
45.726 
43.269 
40.994 
38.878 
36.901 
33.305 
30.125 
27.323 
24.882 
22.789 
21.019 
19.541 
18.312 
17.287 
16.422 
15.678 
15.018 
14.418 

78 
Pt 

78.000 
76.914 
74.086 
70.343 
66.317 
62.344 
58.582 
55.094 
51.897 
48.977 
46.308 
43.860 
41.601 
39.502 
37.539 
33.958 
30.766 
27.930 
25.437 
23.281 
21.445 
19.902 
18.616 
17.545 
16.644 
15.875 
15.202 
14.595 

79 
Au 

79.000 
77.936 
75.135 
71.380 
67.296 
63.241 
59.395 
55.835 
52.581 
49.622 
46.929 
44.469 
42.207 
40.110 
38.153 
34.581 
31.387 
28.530 
25.998 
23.789 
21.892 
20.287 
18.943 
17.821 
16.880 
16.081 
15.388 
14.770 

80 
Hg 

80.000 
78.899 
76.018 
72.198 
68.088 
64.029 
60.177 
56.600 
53.318 
50.326 
47.601 
45.113 
42.829 
40.718 
38.753 
35.176 
31.980 
29.112 
26.554 
24.303 
22.354 
20.692 
19.290 
18.116 
17.131 
16.298 
15.581 
14.949 
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V^~l \ Element 

(sin0)/A[A'']\ 

0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.80 
0.90 
1.00 
1.10 
1.20 
1.30 
1.40 
1.50 
1.60 
1.70 
1.80 
1.90 
2.00 

81 
TI 

81.000 
79.798 
76.773 
72.912 
68.830 
64.807 
60.970 
57.383 
54.072 
51.041 
48.276 
45.753 
43.442 
41.313 
39.337 
35.755 
32.561 
29.687 
27.109 
24.824 
22.827 
21.110 
19.652 
18.424 
17.394 
16.524 
15.780 
15.131 

Appendi?( 

82 
Pb 

82.000 
80.750 
77.607 
73.645 
69.530 
65.523 
61.712 
58.138 
54.820 
51.766 
48.969 
46.411 
44.069 
41.914 
39.921 
36.322 
33.127 
30.252 
27.662 
25.350 
23.313 
21.546 
20.034 
18.754 
17.674 
16.764 
15.989 
15.317 

-Table 2A Mean atomic scattering factors for free atoms 

83 
Bi 

83.000 
81.700 
78.438 
74.365 
70.203 
66.204 
62.425 
58.875 
55.563 
52.495 
49.669 
47.077 
44.700 
42.517 
40.501 
36.879 
33.680 
30.805 
28.208 
25.875 
23.804 
21.992 
20.429 
19.097 
17.969 
17.017 
16.207 
15.510 

84 
Po 

84.000 
82.669 
79.312 
75.117 
70.871 
66.852 
63.093 
59.575 
56.283 
53.215 
50.373 
47.752 
45.343 
43.127 
41.085 
37.430 
34.220 
31.344 
28.744 
26.397 
24.298 
22.446 
20.836 
19.453 
18.277 
17.281 
16.435 
15.711 

85 
At 

85.000 
83.654 
80.226 
75.908 
71.553 
67.481 
63.725 
60.236 
56.974 
53.921 
51.075 
48.435 
45.997 
43.750 
41.678 
37.980 
34.751 
31.872 
29.271 
26.915 
24.794 
22.909 
21.256 
19.826 
18.602 
17.562 
16.677 
15.922 

86 
Rn 

86.000 
84.649 
81.169 
76.737 
72.258 
68.109 
64.332 
60.862 
57.631 
54.604 
51.767 
49.119 
46.659 
44.384 
42.281 
38.533 
35.277 
32.389 
29.787 
27.426 
25.291 
23.379 
21.689 
20.215 
18.944 
17.859 
16.934 
16.143 

87 
Fr 

87.000 
85.286 
81.666 
77.430 
73.035 
68.841 
64.996 
61.489 
58.256 
55.242 
52.420 
49.777 
47.310 
45.017 
42.891 
39.095 
35.804 
32.900 
30.292 
27.926 
25.779 
23.845 
22.123 
20.608 
19.295 
18.165 
17.199 
16.377 

88 
Ra 

88.000 
86.104 
82.202 
77.990 
73.728 
69.576 
65.696 
62.140 
58.879 
55.862 
53.048 
50.413 
47.948 
45.646 
43.504 
39.664 
36.335 
33.408 
30.790 
28.418 
26.263 
24.312 
22.564 
21.014 
19.660 
18.488 
17.481 
16.623 

(Continued) 

89 
Ac 

89.000 
87.077 
82.985 
78.605 
74.326 
70.208 
66.345 
62.785 
59.517 
56.497 
53.684 
51.050 
48.580 
46.268 
44.110 
40.229 
36.863 
33.912 
31.283 
28.906 
26.744 
24.779 
23.008 
21.427 
20.036 
18.823 
17.776 
16.880 

90 
Th 

90.000 
88.085 
83.867 
79.294 
74.922 
70.798 
66.951 
63.405 
60.143 
57.127 
54.317 
51.684 
49.211 
46.889 
44.716 
40.795 
37.391 
34.413 
31.770 
29.387 
27.219 
25.244 
23.454 
21.846 
20.421 
19.170 
18.083 
17.149 

\ z 
\ Element 

(sin6')/A[A-']\ 

0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.80 
0.90 
1.00 
1.10 
1.20 
1.30 
1.40 
1.50 
1.60 
1.70 
1.80 
1.90 
2.00 

91 
Pa 

91.000 
89.144 
85.066 
80.563 
76.115 
71.829 
67.810 
64.121 
60.758 
57.679 
54.836 
52.191 
49.719 
47.405 
45.241 
41.333 
37.930 
34.946 
32.292 
29.897 
27.714 
25.720 
23.905 
22.266 
20.807 
19.518 
18.394 
17.423 

92 
U 

92.000 
90.180 
86.130 
81.595 
77.080 
72.712 
68.607 
64.838 
61.409 
58.283 
55.410 
52.748 
50.268 
47.950 
45.784 
41.869 
38.454 
35.458 
32.794 
30.391 
28.199 
26.192 
24.360 
22.699 
21.207 
19.886 
18.723 
17.713 

^[Reproduced with permission from International Tables for 
Crystallography, Vol. C, Mathematical, Physical and 
Chemical Tables, 2nd ed. (A. J. C. Wilson, E. Prince eds.), pp. 
549-558, lUCr, D. Reidel Pub., Dordrecht (1999)] 
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Appendix-Table 2B Coefficients for analytical approximation to the scattering factors of Table 2A 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 

H 
He 
Li 
Be 
B 
C 
N 
O 
F 
Ne 
Na 
Mg 
Al 
Si 
P 

s 
CI 
Ar 
K 
Ca 
Sc 
Ti 
V 
Cr 
Mn 
Fe 
Co 
Ni 
Cu 
Zn 
Ga 
Ge 
As 
Se 
Br 
Kr 
Rb 
Sr 
Y 
Zr 
Nb 
Mo 
Tc 
Ru 
Rh 
Pd 
Ag 
Cd 
In 
Sn 
Sb 
Te 
I 
Xe 
Cs 

ai 

0.489918 
0.873400 
1.12820 
1.59190 
2.05450 

2.31000 
12.2126 
3.04850 
3.53920 
3.95530 

4.76260 
5.42040 
6.42020 
6.29150 
6.43450 

6.90530 
11.4604 
7.48450 
8.21860 
8.62660 

9.18900 
9.75950 
10.2971 
10.6406 
11.2819 

11.7695 
12.2841 
12.8376 
13.3380 
14.0743 

15.2354 
16.0816 
16.6723 
17.0006 
17.1789 

17.3555 
17.1784 
17.5663 
17.7760 
17.8765 

17.6142 
3.70250 
19.1301 
19.2674 
19.2957 

19.3319 
19.2808 
19.2214 
19.1624 
19.1889 

19.6418 
19.9644 
20.1472 
20.2933 
20.3892 

bx 

20.6593 
9.10370 
3.95460 

43.6427 
23.2185 

20.8439 
0.005700 
13.2771 
10.2825 
8.40420 

3.28500 
2.82750 
3.03870 
2.43860 
1.90670 

1.46790 
0.010400 
0.907200 
12.7949 
10.4421 

9.02130 
7.85080 
6.86570 
6.10380 
5.34090 

4.76110 
4.27910 
3.87850 
3.58280 
3.26550 

3.06690 
2.85090 
2.63450 
2.40980 
2.17230 

1.93840 
1.78880 
1.55640 
1.40290 
1.27618 

1.18865 
0.277200 
0.864132 
0.808520 
0.751536 

0.698655 
0.644600 
0.594600 
0.547600 
5.83030 

5.30340 
4.81742 
4.34700 
3.92820 
3.56900 

<32 

0.262003 
0.630900 
0.750800 
1.12780 
1.33260 

1.02000 
3.13220 
2.28680 
2.64120 
3.11250 

3.17360 
2.17350 
1.90020 
3.03530 
4.17910 

5.20340 
7.19640 
6.77230 
7.43980 
7.38730 

7.36790 
7.35580 
7.35110 
7.35370 
7.35730 

7.35730 
7.34090 
7.29200 
7.16760 
7.03180 

6.70060 
6.37470 
6.07010 
5.81960 
5.23580 

6.72860 
9.64350 
9.81840 
10.2946 
10.9480 

12.0144 
17.2356 
11.0948 
12.9182 
14.3501 

15.5017 
16.6885 
17.6444 
18.5596 
19.1005 

19.0455 
19.0138 
18.9949 
19.0298 
19.1062 

b2 

7.74039 
3.35680 
1.05240 
1.86230 
1.02100 

10.2075 
9.89330 
5.70110 
4.29440 
3.42620 

8.84220 
79.2611 
0.742600 
32.3337 
27.1570 

22.2151 
1.16620 

14.8407 
0.774800 
0.659900 

0.572900 
0.500000 
0.438500 
0.392000 
0.343200 

0.307200 
0.278400 
0.256500 
0.247000 
0.233300 

0.241200 
0.251600 
0.264700 
0.272600 
16.5796 

16.5623 
17.3151 
14.0988 
12.8006 
11.9160 

11.7660 
1.09580 
8.14487 
8.43467 
8.21758 

7.98929 
7.47260 
6.90890 
6.37760 
0.503100 

0.460700 
0.420885 
0.381400 
0.344000 

«3 

0.196767 
0.311200 
0.617500 

b3 

49.5519 
22.9276 
85.3905 

0.539100 103.483 
1.09790 

1.58860 
2.01250 
1.54630 
1.51700 
1.45460 

1.26740 
1.22690 
1.59360 
1.98910 
1.78000 

1.43790 
6.25560 
0.653900 
1.05190 
1.58990 

1.64090 
1.69910 
2.07030 
3.32400 
3.01930 

3.52220 
4.00340 
4.44380 
5.61580 
5.16520 

4.35910 
3.70680 
3.43130 
3.97310 
5.63770 

5.54930 
5.13990 
5.42200 
5.72629 
5.41732 

4.04183 
12.8876 
4.64901 
4.86337 
4.73425 

5.29537 
4.80450 
4.46100 
4.29480 
4.45850 

5.03710 
6.14487 
7.51380 
8.97670 

0.310700 10.6620 

60.3498 

0.568700 
28.9975 
0.323900 
0.261500 
0.230600 

0.313600 
0.380800 
31.5472 
0.678500 
0.526000 

0.253600 
18.5194 
43.8983 
213.187 
85.7484 

136.108 
35.6338 
26.8938 
20.2626 
17.8674 

15.3535 
13.5359 
12.1763 
11.3966 
10.3163 

10.7805 
11.4468 
12.9479 
15.2372 
0.260900 

0.226100 
0.274800 
0.166400 
0.125599 
0.117622 

0.204785 
11.0040 
21.5707 
24.7997 
25.8749 

25.2052 
24.6605 
24.7008 
25.8499 
26.8909 

27.9074 
28.5284 
27.7660 
26.4659 
24.3879 

a4 

0.049879 
0.178000 

b. 

2.20159 
0.982100 

0.465300 168.261 
0.702900 
0.706800 

0.865000 
1.16630 
0.867000 
1.02430 
1.12510 

1.11280 
2.30730 
1.96460 
1.54100 
1.49080 

1.58630 
1.64550 
1.64420 

0.542000 
0.140300 

51.6512 
0.582600 
32.9089 
26.1476 
21.7184 

129.424 
7.19370 
85.0886 
81.6937 
68.1645 

56.1720 
47.7784 
33.3929 

0.865900 41.6841 
1.02110 

1.46800 
1.90210 
2.05710 
1.49220 
2.24410 

2.30450 
2.34880 
2.38000 
1.67350 
2.41000 

2.96230 
3.68300 
4.27790 
4.35430 
3.98510 

3.53750 
1.52920 
2.66940 
3.26588 
3.65721 

3.53346 
3.74290 
2.71263 
1.56756 
1.28918 

0.605844 
1.04630 
1.60290 
2.03960 
2.46630 

2.68270 
2.52390 
2.27350 
1.99000 
1.49530 

178.437 

51.3531 
116.105 
102.478 
98.7399 
83.7543 

76.8805 
71.1692 
66.3421 
64.8126 
58.7097 

61.4135 
54.7625 
47.7972 
43.8163 
41.4328 

39.3972 
164.934 
132.376 
104.354 
87.6627 

69.7957 
61.6584 
86.8472 
94.2928 
98.6062 

76.8986 
99.8156 
87.4825 
92.8029 
83.9571 

75.2825 
70.8403 
66.8776 
64.2658 

213.904 

c 

0.001305 
0.006400 
0.037700 
0.038500 
-0.19320 

0.215600 
-11.529 
0.250800 
0.277600 
0.351500 

0.676000 
0.858400 
1.11510 
1.14070 
1.11490 

0.866900 
-9.5574 
1.44450 
1.42280 
1.37510 

1.33290 
1.28070 
1.21990 
1.18320 
1.08960 

1.03690 
1.01180 
1.0341 
1.19100 
1.30410 

1.71890 
2.13130 
2.53100 
2.84090 
2.95570 

2.82500 
3.48730 
2.50640 
1.91213 
2.06929 

3.75591 
4.38750 
5.40428 
5.37874 
5.32800 

5.26593 
5.17900 
5.06940 
4.93910 
4.78210 

4.59090 
4.35200 
4.07120 
3.71180 
3.33520 
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56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 

Ba 
La 
Ce 
Pr 
Nd 
Pm 
Sm 
Eu 
Gd 
Tb 
Dy 
Ho 
Hr 
Tm 
Yb 
Lu 
Hf 
Ta 
W 
Re 
Os 
Ir 
Pt 
Au 
Hg 
Tl 
Pb 
Bi 
Po 
At 
Rn 
Fr 
Ra 
Ac 
Th 
Pa 
U 

Appendix-Table 2B Coefficients for analytical approximation to scattering factors (Continued) 

a\ 

20.3361 
20.5780 
21.1671 
22.0440 
22.6845 

23.3405 
24.0042 
24.6274 
25.0709 
25.8976 

26.5070 
26.9049 
27.6563 
28.1819 
28.6641 

28.9476 
29.1440 
29.2024 
29.0818 
28.7621 

28.1894 
27.3049 
27.0059 
16.8819 
20.6809 

27.5446 
31.0617 
33.3689 
34.6726 
35.3163 

35.5631 
35.9299 
35.7630 
35.6597 
35.5645 

35.8847 
36.0228 

^1 

3.21600 
2.94817 
2.81219 
2.77393 
2.66248 

2.56270 
2.47274 
2.38790 
2.25341 
2.24256 

2.18020 
2.07051 
2.07356 
2.02859 
1.98890 

1.90182 
1.83262 
1.77333 
1.72029 
1.67191 

1.62903 
1.59279 
1.51293 
0.461100 
0.545000 

0.655150 
0.690200 
0.704000 
0.700999 
0.685870 

0.663100 
0.646453 
0.616341 
0.589092 
0.563359 

0.547751 
0.529300 

a2 

19.2970 
19.5990 
19.7695 
19.6697 
19.6847 

19.6095 
19.4258 
19.0886 
19.0798 
18.2185 

17.6383 
17.2940 
16.4285 
15.8851 
15.4345 

15.2208 
15.1726 
15.2293 
15.4300 
15.7189 

16.1550 
16.7296 
17.7639 
18.5913 
19.0417 

19.1584 
13.0637 
12.9510 
15.4733 
19.0211 

21.2816 
23.0547 
22.9064 
23.1032 
23.4219 

23.2948 
23.4128 

b2 

0.275600 
0.244475 
0.226836 
0.222087 
0.210628 

0.202088 
0.196451 
0.194200 
0.181951 
0.196143 

0.202172 
0.197940 
0.223545 
0.238849 
0.257119 

9.98519 
9.59990 
9.37046 
9.22590 
9.09227 

8.97948 
8.86553 
8.81174 
8.62160 
8.44840 

8.70751 
2.35760 
2.92380 
3.55078 
3.97458 

4.06910 
4.17619 
3.87135 
3.65155 
3.46204 

3.41519 
3.32530 

a3 

10.8880 
11.3727 
11.8513 
12.3856 
12.7740 

13.1235 
13.4396 
13.7603 
13.8518 
14.3167 

14.5596 
14.5583 
14.9779 
15.1542 
15.3087 

15.1000 
14.7586 
14.5135 
14.4327 
14.5564 

14.9305 
15.6115 
15.7131 
25.5582 
21.6575 

15.5380 
18.4420 
16.5877 
13.1138 
9.49887 

8.00370 
12.1439 
12.4739 
12.5977 
12.7473 

14.1891 
14.9491 

b3 

20.2073 
18.7726 
17.6083 
16.7669 
15.8850 

15.1009 
14.3996 
13.7546 
12.9331 
12.6648 

12.1899 
11.4407 
11.3604 
10.9975 
10.6647 

0.261033 
0.275116 
0.295977 
0.321703 
0.350500 

0.382661 
0.417916 
0.424593 
1.48260 
1.57290 

1.96347 
8.61800 
8.79370 
9.55642 
11.3824 

14.0422 
23.1052 
19.9887 
18.5990 
17.8309 

16.9235 
16.0927 

«4 

2.69590 
3.28719 
3.33049 
2.82428 
2.85137 

2.87516 
2.89604 
2.92270 
3.54545 
2.95354 

2.96577 
3.63837 
2.98233 
2.98706 
2.98963 

3.71601 
4.30013 
4.76492 
5.11982 
5.44174 

5.67589 
5.83377 
5.78370 
5.86000 
5.96760 

5.52593 
5.96960 
6.46920 
7.02588 
7.42518 

7.44330 
2.11253 
3.21097 
4.08655 
4.80703 

4.17287 
4.18800 

b4 

167.202 
133.124 
127.113 
143.644 
137.903 

132.721 
128.007 
123.174 
101.398 
115.362 

111.874 
92.6566 
105.703 
102.961 
100.417 

84.3298 
72.0290 
63.3644 
57.0560 
52.0861 

48.1647 
45.0011 
38.6103 
36.3956 
38.3246 

45.8149 
47.2579 
48.0093 
47.0045 
45.4715 

44.2473 
150.645 
142.325 
117.020 
99.1722 

105.251 
100.613 

c 

2.77310 
2.14678 
1.86264 
2.05830 
1.98486 

2.02876 
2.20963 
2.57450 
2.41960 
3.58324 

4.29728 
4.56796 
5.92046 
6.75621 
7.56672 

7.97628 
8.58154 
9.24354 
9.88750 
10.4720 

11.0005 
11.4722 
11.6883 
12.0658 
12.6089 

13.1746 
13.4118 
13.5782 
13.6770 
13.7108 

13.6905 
13.7247 
13.6211 
13.5266 
13.4314 

13.4287 
13.3966 

^[Reproduced with permission from International Tables for Crystallography, Vol. C, Mathematical, Physical and 
Chemical Tables, 2nd ed. (A. J. C. Wilson, E. Prince eds.), pp. 572-574, For the range 2.0 < (sin0)/A < 6.0 A"'' 
see pp. 559, 575. lUCr., D. Reidel Pub., Dordrecht (1999)] 
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Element 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 

H 
He 
Li 
Be 
B 
C 
N 
O 
F 
Ne 
Na 
Mg 
Al 
Si 
P 
S 
CI 
Ar 
K 
Ca 
Sc 
Ti 
V 
Cr 
Mn 
Fe 
Co 
Ni 
Cu 
Zn 
Ga 
Ge 
As 
Se 
Br 
Kr 
Rb 
Sr 
Y 
Zr 
Nb 
Mo 
Tc 
Ru 
Rh 
Pd 
Ag 
Cd 
In 
Sn 
Sb 
Te 
I 
Xe 
Cs 

0.10 

0.343 
0.296 
1.033 
1.170 
1.147 

1.039 
1.08 
0.977 
0.880 
0.812 

1.503 
2.066 
2.264 
2.293 
2.206 

2.151 
2.065 
1.956 
2.500 
3.105 

3.136 
3.114 
3.067 
2.609 
2.949 

2.891 
2.832 
2.772 
2.348 
2.654 

2.791 
2.839 
2.793 
2.799 
2.771 

2.703 
3.225 
3.831 
3.999 
4.064 

3.672 
3.625 
3.987 
3.559 
3.499 

3.103 
3.362 
3.700 
3.852 
3.917 

3.871 
3.097 
3.903 
3.841 
4.320 

Append 

0.20 

0.769 
0.881 
1.418 
2.121 
2.531 

2.604 
2.858 
2.799 
2.691 
2.547 

2.891 
3.444 
4.047 
4.520 
4.732 

4.960 
5.074 
5.033 
5.301 
5.690 

5.801 
5.860 
5.858 
5.577 
5.791 

5.781 
5.764 
5.726 
5.455 
5.631 

5.939 
6.229 
6.365 
6.589 
6.748 

6.760 
7.062 
7.464 
7.700 
7.879 

7.684 
7.690 
7.984 
7.857 
7.863 

7.725 
7.785 
7.980 
8.297 
8.615 

8.811 
9.076 
9.287 
9.340 
9.615 

ix-Table 3 The incoherent scattering function for elements up to Z = 55^ 

0.30 

0.937 
1.362 
1.795 
2.471 
3.190 

3.643 
4.097 
4.293 
4.347 
4.269 

4.431 
4.771 
5.250 
5.808 
6.312 

6.795 
7.182 
7.377 
7.652 
7.981 

8.169 
8.312 
8.375 
8.206 
8.380 

8.432 
8.469 
8.461 
8.310 
8.388 

8.599 
8.912 
9.236 
9.601 
9.940 

10.157 
10.431 
10.746 
11.010 
11.236 

11.213 
11.260 
11.512 
11.531 
11.591 

11.441 
11.598 
11.812 
12.083 
12.415 

12.777 
13.171 
13.564 
13.892 
14.217 

0.40 

0.983 
1.657 
2.143 
2.744 
3.499 

4.184 
4.792 
5.257 
5.552 
5.644 

5.804 
6.064 
6.435 
6.903 
7.435 

8.002 
8.553 
8.998 
9.405 
9.790 

10.071 
10.304 
10.454 
10.415 
10.604 

10.733 
10.844 
10.894 
10.778 
10.901 

11.082 
11.338 
11.658 
12.033 
12.440 

12.828 
13.206 
13.576 
13.899 
14.176 

14.317 
14.444 
14.653 
14.782 
14.883 

14.824 
14.969 
15.185 
15.444 
15.746 

16.088 
16.466 
16.876 
17.307 
17.753 

0.50 

0.995 
1.817 
2.417 
3.005 
3.732 

4.478 
5.182 
5.828 
6.339 
6.640 

6.903 
7.181 
7.523 
7.937 
8.419 

8.960 
9.539 
10.106 
10.650 
11.157 

11.561 
11.901 
12.156 
12.264 
12.486 

12.687 
12.867 
12.980 
12.942 
13.094 

13.290 
13.536 
13.828 
14.168 
14.552 

14.969 
15.410 
15.860 
16.279 
16.658 

16.949 
17.196 
17.456 
17.685 
17.858 

17.943 
18.082 
18.263 
18.489 
18.760 

19.067 
19.407 
19.227 
20.175 
20.612 

(sin0)/A [A" 
0.60 

0.998 
1.902 
2.613 
3.237 
3.948 

4.690 
5.437 
6.175 
6.832 
7.320 

7.724 
8.086 
8.459 
8.867 
9.323 

9.829 
10.382 
10.967 
11.568 
12.163 

12.648 
13.140 
13.514 
13.770 
14.062 

14.343 
14.596 
14.780 
14.847 
15.020 

15.233 
15.486 
15.775 
16.098 
16.456 

16.849 
17.282 
17.745 
18.215 
18.672 

19.081 
19.455 
19.816 
20.150 
20.428 

26.653 
20.858 
21.064 
21.288 
21.541 

21.823 
22.134 
22.471 
22.833 
23.228 

0.70 

0.994 
1.947 
2.746 
3.429 
4.146 

4.878 
5.635 
6.411 
7.151 
7.774 

8.313 
8.784 
9.225 
9.667 
10.131 

10.626 
11.158 
11.726 
12.329 
12.953 

13.545 
14.093 
14.574 
14.960 
15.346 

15.716 
16.050 
16.317 
16.494 
16.709 

16.947 
17.215 
17.511 
17.835 
18.185 

18.562 
18.974 
19.420 
19.891 
20.373 

20.844 
21.300 
21.748 
22.172 
22.557 

22.904 
23.212 
23.501 
23.779 
24.059 

24.349 
25.655 
24.980 
25.324 
25.691 

"'] 
0.80 

0.999 
1.970 
2.834 
3.579 
4.320 

5.051 
5.809 
6.596 
7.376 
8.085 

8.729 
9.304 
9.830 
10.330 
10.827 

11.336 
11.867 
12.424 
13.014 
13.635 

14.256 
14.856 
15.413 
15.902 
16.376 

16.831 
17.249 
17.602 
17.885 
18.163 

18.445 
18.741 
19.056 
19.391 
19.747 

20.123 
20.526 
20.956 
21.416 
21.895 

22.386 
22.877 
23.370 
23.855 
24.318 

24.756 
25.162 
25.546 
25.906 
26.252 

26.590 
26.927 
27.269 
27.619 
27.981 

0.90 

1.000 
1.983 
2.891 
3.693 
4.469 

5.208 
5.968 
6.755 
7.552 
8.312 

9.028 
9.689 
10.296 
10.864 
11.411 

11.952 
12.499 
13.061 
13.645 
14.256 

14.885 
15.509 
16.111 
16.670 
17.211 

17.737 
18.229 
18.664 
19.043 
19.395 

19.734 
20.074 
20.420 
20.778 
21.149 

21.535 
21.940 
22.367 
22.820 
23.294 

23.787 
24.288 
24.797 
25.312 
25.819 

26.316 
26.792 
27.252 
27.691 
28.113 

28.518 
28.912 
29.298 
29.680 
30.064 

1.00 

1.000 
1.990 
2.928 
3.777 
4.590 

5.348 
6.113 
6.901 
7.703 
8.490 

9.252 
9.975 
10.652 
11.286 
11.888 

12.472 
13.050 
13.629 
14.220 
14.830 

15.460 
16.095 
16.721 
17.323 
17.910 

18.488 
19.039 
19.543 
20.002 
20.427 

20.831 
21.224 
21.612 
22.003 
22.399 

22.804 
23.221 
23.654 
24.110 
24.583 

25.077 
25.581 
26.093 
26.621 
27.148 

27.677 
28.195 
28.705 
29.203 
29.687 

30.157 
30.613 
31.056 
31.488 
31.914 

1.50 

1.000 
1.999 
2.989 
3.954 
4.895 

5.781 
6.630 
7.462 
8.288 
9.113 

9.939 
10.766 
11.592 
12.408 
13.209 

13.990 
14.750 
15.489 
16.212 
16.921 

17.630 
18.334 
19.032 
19.730 
20.411 

21.097 
21.777 
22.445 
23.107 
23.745 

24.370 
24.983 
25.583 
26.171 
26.747 

27.313 
27.871 
28.423 
28.970 
29.517 

30.067 
30.620 
31.173 
31.740 
32.309 

32.888 
33.465 
34.046 
34.634 
35.226 

35.822 
36.422 
37.024 
37.628 
38.232 

2.00 

1.000 
2.000 
2.998 
3.989 
4.973 

5.930 
6.860 
7.764 
8.648 
9.517 

10.376 
11.229 
12.083 
12.937 
13.790 

14.641 
15.487 
16.324 
17.152 
17.970 

18.782 
19.585 
20.379 
21.168 
21.938 

22.704 
23.462 
24.211 
24.957 
25.683 

26.400 
27.109 
27.810 
28.504 
29.190 

29.870 
30.543 
31.210 
31.870 
32.522 

33.167 
33.808 
34.447 
35.081 
35.715 

36.349 
36.983 
37.618 
38.255 
38.894 

39.536 
40.181 
40.827 
41.477 
42.129 

^[Reproduced with permission from International Tables for Crystallography, Vol. C, Mathematical, 
Physical and Chemical Tables, 2nd ed. (A.J.C. Wilson, E. Prince eds.), p. 652, lUCr., D. Reidel Pub., 
Dordrecht (1999)] 
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Appendix-Table 4 

Elements 

3 Li 
4 Be 
5 B 

6 C 
7 N 
8 O 
9 F 
10 Ne 

11 Na 
12 Mg 
13 Al 
14 Si 
15 P 

16 S 
17 CI 
18 Ar 
19 K 
20 Ca 

21 Sc 
22 Ti 
23 V 
24 Cr 
25 Mn 

26 Fe 
27 Co 
28 Ni 
29 Cu 
30 Zn 

31 Ga 
32 Ge 
33 As 
34 Se 
35 Br 

36 Kr 
37 Rb 
38 Sr 
39 Y 
40 Zr 

41 Nb 
42 Mo 
43 Tc 
44 Ru 
45 Rh 

46 Pd 
47 Ag 
48 Cd 
49 In 
50 Sn 

51 Sb 
52 Te 
53 I 
54 Xe 
55 Cs 

Real and imaginary dispersion corrections, A/'and 
factorŝ  for selected radiations [A] 

Cr 
2.289620 

A/' 

0.0023 
0.0083 
0.0190 

0.0364 
0.0606 
0.0928 
0.1324 
0.1793 

0.2295 
0.2778 
0.3260 
0.3647 
0.3898 

0.3899 
0.3508 
0.2609 
0.0914 
-0.1987 

-0.6935 
-1.6394 
-4.4818 
-2.1308 
-1.5980 

-1.2935 
-1.0738 
-0.9005 
-0.7338 
-0.6166 

-0.4989 
-0.3858 
-0.2871 
-0.1919 
-0.1095 

-0.0316 
0.0247 
0.1037 
0.1263 
0.1338 

0.1211 
0.0801 
-0.0025 
-0.1091 
-0.2630 

-0.4640 
-0.7387 
-1.1086 
-1.5975 
-2.2019 

-3.0637 
-4.2407 
-5.6353 
-8.1899 

-10.3310 

A/" 

0.0008 
0.0033 
0.0094 

0.0213 
0.0416 
0.0731 
0.1192 
0.1837 

0.2699 
0.3812 
0.5212 
0.6921 
0.8984 

1.1410 
1.4222 
1.7458 
2.1089 
2.5138 

2.9646 
3.4538 
0.4575 
0.5468 
0.6479 

0.7620 
0.8897 
1.0331 
1.1930 
1.3712 

1.5674 
1.7841 
2.0194 
2.2784 
2.5578 

2.8669 
3.1954 
3.6029 
3.9964 
4.4226 

4.8761 
5.3484 
5.8597 
6.4069 
6.9820 

7.5938 
8.2358 
8.9174 
9.6290 
10.3742 

11.1026 
11.8079 
12.6156 
11.7407 
12.8551 

Fe 
1.935970 

A/' 

0.0015 
0.0060 
0.0140 

0.0273 
0.0461 
0.0716 
0.1037 
0.1426 

0.1857 
0.2309 
0.2774 
0.3209 
0.3592 

0.3848 
0.3920 
0.3696 
0.3068 
0.1867 

-0.0120 
-0.3318 
-0.8645 
-1.9210 
-3.5716 

-2.0554 
-1.5743 
-1.2894 
-1.0699 
-0.9134 

-0.7701 
-0.6412 
-0.5260 
-0.4179 
-0.3244 

-0.2303 
-0.1516 
-0.0489 
0.0138 
0.0659 

0.1072 
0.1301 
0.1314 
0.1220 
0.0861 

0.0279 
-0.0700 
-0.2163 
-0.4165 
-0.6686 

-0.9868 
-1.4022 
1.9032 
-2.6313 
-3.5831 

A/" 

0.0006 
0.0023 
0.0065 

0.0148 
0.0293 
0.0518 
0.0851 
0.1318 

0.1957 
0.2765 
0.3807 
0.5081 
0.6628 

0.8457 
1.0596 
1.3087 
1.5888 
1.9032 

2.2557 
2.6425 
3.0644 
3.5251 
0.4798 

0.5649 
0.6602 
0.7671 
0.8864 
1.0193 

1.1663 
1.3291 
1.5069 
1.7027 
1.9140 

2.1472 
2.3960 
2.7060 
3.0054 
3.3301 

3.6768 
4.0388 
4.4331 
4.8540 
5.2985 

5.7719 
6.2709 
6.8017 
7.3594 
7.9473 

8.5620 
9.2067 
9.8852 
10.5776 
11.2902 

CuKa 
1.540520 
A/' 

0.0008 
0.0038 
0.0090 

0.0181 
0.0311 
0.0492 
0.0727 
0.1019 

0.1353 
0.1719 
0.2130 
0.2541 
0.2955 

0.3331 
0.3639 
0.3843 
0.3868 
0.3641 

0.3119 
0.2191 
0.0687 
-0.1635 
-0.5229 

-1.1336 
-2.3653 
-3.0029 
-1.9646 
-1.5491 

-1.2846 
-1.0885 
-0.9300 
-0.7943 
-0.6763 

-0.5657 
-0.4688 
-0.3528 
-0.2670 
-0.1862 

-0.1121 
-0.0483 
0.0057 
0.0552 
0.0927 

0.1215 
0.1306 
0.1185 
0.0822 
0.0259 

-0.0562 
-0.1759 
-0.3257 
-0.5179 
-0.7457 

A/" 

0.0003 
0.0014 
0.0039 

0.0091 
0.0180 
0.0322 
0.0534 
0.0833 

0.1239 
0.1771 
0.2455 
0.3302 
0.4335 

0.5567 
0.7018 
0.8717 
1.0657 
1.2855 

1.5331 
1.8069 
2.1097 
2.4439 
2.8052 

3.1974 
3.6143 
0.5091 
0.5888 
0.6778 

0.7763 
0.8855 
1.0051 
1.1372 
1.2805 

1.4385 
1.6079 
1.8200 
2.0244 
2.2449 

2.4826 
2.7339 
3.0049 
3.2960 
3.6045 

3.9337 
4.2820 
4.6533 
5.0449 
5.4591 

5.8946 
6.3531 
6.8362 
7.3500 
7.9052 

A/" (f' and/") for atomic scattering 

MoKa 
0.709260 

A/' 

-0.0003 
0.0005 
0.0013 

0.0033 
0.0061 
0.0106 
0.0171 
0.0259 

0.0362 
0.0486 
0.0645 
0.0817 
0.1023 

0.1246 
0.1484 
0.1743 
0.2009 
0.2262 

0.2519 
0.2776 
0.3005 
0.3209 
0.3368 

0.3463 
0.3494 
0.3393 
0.3201 
0.2879 

0.2307 
0.1547 
0.0499 
-0.0929 
-0.2901 

-0.5574 
-0.9393 
-1.5307 
-2.7962 
-2.9673 

-2.0727 
-1.6832 
-1.4390 
-1.2594 
-1.1178 

-0.9988 
-0.8971 
-0.8075 
-0.7276 
-0.6537 

-0.5866 
-0.5308 
-0.4742 
-0.4205 
-0.3680 

A/" 

0.0001 
0.0002 
0.0007 

0.0016 
0.0033 
0.0060 
0.0103 
0.0164 

0.0249 
0.0363 
0.0514 
0.0704 
0.0942 

0.1234 
0.1585 
0.2003 
0.2494 
0.3064 

0.3716 
0.4457 
0.5294 
0.6236 
0.7283 

0.8444 
0.9721 
1.1124 
1.2651 
1.4301 

1.6083 
1.8001 
2.0058 
2.2259 
2.4595 

2.7079 
2.9676 
3.2498 
3.5667 
0.5597 

0.6215 
0.6857 
0.7593 
0.8363 
0.9187 

1.0072 
1.1015 
1.2024 
1.3100 
1.4246 

1.5461 
1.6751 
1.8119 
1.9578 
2.1192 

Ag Ka 
0.559360 

A/' 

-0.0004 
0.0001 
0.0004 

0.0015 
0.0030 
0.0056 
0.0096 
0.0152 

0.0218 
0.0298 
0.0406 
0.0522 
0.0067 

0.0826 
0.0998 
0.1191 
0.1399 
0.1611 

0.1829 
0.2060 
0.2276 
0.2496 
0.2704 

0.2886 
0.3050 
0.3147 
0.3240 
0.3242 

0.3179 
0.3016 
0.2758 
0.2367 
0.1811 

0.1607 
0.0068 
-0.1172 
-0.2789 
-0.5364 

-0.8282 
-1.2703 
-2.0087 
-5.3630 
-2.5280 

-1.9556 
-1.6473 
-1.4396 
-1.2843 
-1.1587 

-1.0547 
-0.9710 
-0.8919 
-0.8200 
-0.7527 

A/" 

0.0000 
0.0001 
0.0004 

0.0009 
0.0019 
0.0036 
0.0061 
0.0098 

0.0150 
0.0220 
0.0313 
0.0431 
0.0580 

0.0763 
0.0984 
0.1249 
0.1562 
0.1926 

0.2348 
0.2830 
0.3376 
0.3992 
0.4681 

0.5448 
0.6296 
0.7232 
0.8257 
0.9375 

1.0589 
1.1903 
1.3314 
1.4831 
1.6452 

1.8192 
2.0025 
2.2025 
2.4099 
2.6141 

2.8404 
3.0978 
3.3490 
3.6506 
0.5964 

0.6546 
0.7167 
0.7832 
0.8542 
0.9299 

1.0104 
1.0960 
1.1868 
1.2838 
1.3916 
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Elements 

56 Ba 
57 La 
58 Ce 
59 Pr 
60 Nd 

61 Pm 
62 Sm 
63 Eu 
64 Gd 
65 Tb 

66 Dy 
67 Ho 
68 Er 
69 Tm 
70 Yb 

71 Lu 
72 Hf 
73 Ta 
74 W 
75 Re 

76 Os 
77 Ir 
78 Pt 
79 Au 
80 Hg 

81 Tl 
82 Pb 
83 Bi 
84 Po 
85 At 

86 Rn 
87 Fr 
88 Ra 
89 Ac 
90 Th 

91 Pa 
92 U 

Table 4 ^eal and imaginary dispersion corrections, A/'and A/" (/"' and / " ) for atomic scattering fac
tors^ for selected radiations [A] 

Cr 
2.289620 

A/' 

-11.0454 
-12.8190 

-9.3304 
-7.9841 
-7.1451 

-5.0783 
-6.0570 
-5.6630 
-5.3778 
-5.0951 

-4.8149 
-4.5587 
-4.4106 
-4.2698 
-4.1523 

-4.0630 
-4.0564 
-3.9860 
-3.9270 
-3.9052 

-3.9016 
-3.9049 
-3.9435 
-3.9908 
-4.1029 

-4.2233 
-4.4167 
-4.6533 
-4.9604 
-5.3399 

-5.7275 
-6.2180 
-6.7502 
-7.4161 
-8.2118 

-9.4459 
-9.9362 

A/" 

10.0919 
3.5648 
3.8433 
4.1304 
4.4278 

4.7422 
5.0744 
5.4178 
5.7756 
6.1667 

6.5527 
6.9619 
7.3910 
7.8385 
8.2969 

8.7649 
9.2832 
9.8171 

10.3696 
10.9346 

11.5251 
12.1453 
12.7910 
13.4551 
14.1373 

14.8643 
15.5987 
16.3448 
17.1410 
17.9390 

18.7720 
19.6009 
20.4389 
21.3053 
22.2248 

23.1548 
23.1239 

Fe 
1.935970 

A/' 

-4.6472 
-6.3557 
-8.0962 

-10.9279 
-10.5249 

-13.2062 
-9.3497 
-7.9854 
-7.1681 
-6.5583 

-6.0597 
-5.6628 
-5.3448 
-5.0823 
-4.8591 

-4.6707 
-4.4593 
-4.3912 
-4.2486 
-4.1390 

-4.0478 
-3.9606 
-3.8977 
-3.8356 
-3.8228 

-3.8103 
-3.8519 
-3.9228 
-4.0267 
-4.1781 

-4.3331 
-4.5387 
-4.7764 
-5.0617 
-5.3692 

-5.7337 
-6.1485 

A/" 

12.0003 
12.8927 
11.8734 
9.2394 
9.9814 

3.6278 
3.8839 
4.1498 
4.4280 
4.7292 

5.0280 
5.3451 
5.6776 
6.0249 
6.3813 

6.7484 
7.1518 
7.5686 
8.0005 
8.4435 

8.9067 
9.3923 
9.8985 

10.4202 
10.9650 

11.5300 
12.1106 
12.7017 
13.3329 
13.9709 

14.6313 
15.3016 
15.9778 
16.6687 
17.4018 

18.1406 
18.8728 

CuKa 
1.540520 

A/' 

-1.0456 
-1.4094 
-1.8482 
-2.4164 
-3.1807 

-4.0598 
-5.3236 
-8.9294 
-8.8380 
-9.1472 

-9.8046 
-14.9734 

-9.4367 
-8.0393 
-7.2108 

-6.6179 
-6.1794 
-5.7959 
-5.4734 
-5.2083 

-4.9801 
-4.7710 
-4.5932 
-4.4197 
-4.2923 

-4.1627 
-4.0753 
-4.0111 
-3.9670 
-3.9588 

-3.9487 
-3.9689 
-4.0088 
-4.0794 
-4.1491 

-4.2473 
-4.3638 

A/" 

8.4617 
9.0376 
9.6596 

10.2820 
10.9079 

11.5523 
12.2178 
11.1857 
11.9157 
9.1891 

9.8477 
3.7046 
3.9380 
4.1821 
4.4329 

4.6937 
4.9776 
5.2718 
5.5774 
5.8923 

6.2216 
6.5667 
6.9264 
7.2980 
7.6849 

8.0900 
8.5060 
8.9310 
9.3834 
9.8433 

10.3181 
10.8038 
11.2969 
11.7994 
12.3296 

12.8681 
13.4090 

UoKa 
0.709260 

A/' 

-0.3244 
-0.2871 
-0.2486 
-0.2180 
-0.1943 

-0.1753 
-0.1638 
-0.1578 
-0.1653 
-0.1723 

-0.1892 
-0.2175 
-0.2586 
-0.3139 
-0.3850 

-0.4720 
-0.5830 
-0.7052 
-0.8490 
-1.0185 

-1.2165 
-1.4442 
-1.7033 
-2.0133 
-2.3894 

-2.8358 
-3.3944 
-4.1077 
-5.1210 
-7.9122 

-8.0659 
-7.2224 
-6.7704 
-6.8494 
-7.2400 

-8.0334 
-9.6767 

A/" 

2.2819 
2.4523 
2.6331 
2.8214 
3.0179 

3.2249 
3.4418 
3.6682 
3.9035 
4.1537 

4.4098 
4.6783 
4.9576 
5.2483 
5.5486 

5.8584 
6.1852 
6.5277 
6.8722 
7.2310 

7.6030 
7.9887 
8.3905 
8.8022 
9.2266 

9.6688 
10.1111 
10.2566 
11.0496 
9.9777 

10.4580 
7.7847 
8.1435 
8.5178 
8.8979 

9.2807 
9.6646 

{Continued) 

AgKa 
0.559360 

A/' 

-0.6940 
-0.6411 
-0.5890 
-0.5424 
-0.5012 

-0.4626 
-0.4287 
-0.3977 
-0.3741 
-0.3496 

-0.3302 
-0.3168 
-0.3091 
-0.3084 
-0.3157 

-0.3299 
-0.3548 
-0.3831 
-0.4201 
-0.4693 

-0.5280 
-0.5977 
-0.6812 
-0.7638 
-0.8801 

-1.0117 
-1.1676 
-1.3494 
-1.5613 
-1.8039 

-2.0847 
-2.4129 
-2.8081 
-3.2784 
-3.8533 

-4.6067 
-5.7225 

A/" 

1.5004 
1.6148 
1.7358 
1.8624 
1.9950 

2.1347 
2.2815 
2.4351 
2.5954 
2.7654 

2.9404 
3.1241 
3.3158 
3.5155 
3.7229 

3.9377 
4.1643 
4.3992 
4.6430 
4.8944 

5.1558 
5.4269 
5.7081 
5.9978 
6.2989 

6.6090 
6.9287 
7.2566 
7.5986 
7.9509 

8.3112 
8.6839 
9.0614 
9.4502 
9.8403 

10.2413 
10.6428 

^[Reproduced with permission from International Tables for Crystallography, Vol. C, Mathematical, Physical and 
Chemical Tables, Second ed. (A.J.C. Wilson, E. Prince eds.), pp. 255-257, lUCr, D. Reidel Pub., Dordrecht, 
(1999)] 
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Appendix-Table 5 Conversion foraiulae for reciprocal lattice and real lattice parameters 

Crystal system 

Triclinic 

Monoclinic (b as unique axis) 

Orthorhombic 

Hexagonal (c as unique axis) 

Rhombohedral (hexagonal lattice) 
CTrifonaH 

(rhombohedral 
lattice) 

Tetragonal 

Cubic 

Conversion formula 

sina* sin^* siny* 
a*0 Z?*(/> c*0 

(/>̂  = 1- coŝ  a*- coŝ  j3*- coŝ  7*+2cos «* cos j3* cos 7* 

cos)8*cosr*-cos«* « cosa*cosr*-cosj8* 
cosa = ——^ , cosp = -̂—, 

sin p* sin 7* sin a* sin 7* 
coscc* cos3*-C0S7 * 

cos 7 = — 
sina*sinp* 

a=l/(«*sinj8*), b=l/b'^, c=l/(c*sinj3*), a = 7 = 90°, j8=180°-i8* 

a=l/a*, b=l/b*, c=l/c*, a = j3 = 7=90° 

a = /? = ^ 2 — , c = ~ , a = i3 = 90% 7 = 120° 
V3fl* c * 

As given above for the hexagonal system 

sina* cos^a*-cosa* 

fl*^l-3cos2a*+2cos^a*' sin^a* 

fl = Z7=l/a*, c=l/c*, a = j3 = 7=90° 

« = ̂  = c=l/«*, a = ^ = 7 = 9 0 ° 
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Shape of particle 

General form 

Sphere 

Ellipsoid of 
revolution 

stationary 

Cylinder of 
revolution 

Rod-like 
(radius 

negligible) 

Disc-like 
(length 

negUgible) 

stationary 

Layer of infinite 
extent 

Appendix-Table 6 Scattering functions {s 

Scattering function, *F 

exp{-s%^/3) 

2 \3(sinsR-sRcossR)] 

"1 I^W^ J 

(Approximation) 

exp(-0.221r/?-) 

exp(-5'/?V5) 

1 0\sa^ cos^ e + w^ sin^d) cose de 
Jo 

(Approximation) 

exp {-s^ia^/ 4)} (Equator) 

txp{-s\b^/5)} (Meridian) 

(KR^Hf\\--sR(l + -aA + --\ 

SiilsH) sin^ sH 

sH {sHf 

-^[\—^-J^{2sR)\ 
s^R^{ sR J 

2MsR) 

sR 

(Approximation) 

exp {- s\R^ 14)} (Equator) 

exp(- s\H V 3)} (Meridian) 

1 f s i n 5 r / 2 l ^ 

ST\ sTIl J 

^iTiS^lndX) 

Notes 

/?g is the radius of gyration with respect 
to the center of gravity, Eq. (2.51)^ 

R is the radius of the sphere. 
/3/2 is a Bessel function of order 3/2^' \ 

. , . V2/s inz 1 
J^nSz)^ \ cosz^ 

KzAz J 

Accuracy slightly poorer than that of the 
above 

w — bla\ 
b is the axis of rotation^' 

X-ray incidence normal to the b axis; 

Cylinder of radius R and length H, 
2 / ? " 

a = — 
H 

Si is an integral sine" \ 

Jo Z 

J\ is a first order Bessel function" 

z z^ z' 2 22l!2! 2^ 2! 3! 
H^oo and H can be neglected" 

X-ray incidence normal to H axis; 

Independent of the shape of the layer; T 
is the thickness^"* 

A. Guinier, Ann. Phys. (Paris), 12, 161 (1939). 
B. E. Warren, J. AppL Phys., 13, 364 (1942). 
O. Kratky, G. Porod, J. Colloid Sci., 4, 36 (1949). 
D. L. Dexter, Phys. Rev., 90, 1007 (1953). 
G. Fournet, Doctoral Thesis, Paris Univ., serie A, no. 3356 (1950). 
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Appendix-Fig. 1 Wooster chart.^ 
For standard camera of radius 28.65 mm. Reciprocal lattice points on equidistant parallel lines in a section 
through the reciprocal lattice lie on the same curve in the chart. The chart is drawn with a spacing d/cos v = 0.05 
for the reciprocal lattice coordinates {d is the spacing of the crystal planes, and v is the angle of inclination in the 
equi-inclination method). 
^[Reproduced with permission from M. J. Buerger, X-Ray Crystallography, p. 275, John Wiley & Sons, Inc. (1942)] 

Appendix-Fig. 2 Bemal chart for reading ^- and ^-coordinates for diffraction on a rotation or oscillation photograph. 
For standard cylindrical camera of radius 28.65 mm.^ 
^[Reproduced with permission from M. J. Buerger, X-Ray Crystallography, p. 148, John Wiley & Sons, Inc. (1942)] 
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Index 

absorption 8, 9, 273, 285 
— coefficent 9,481 

accessibility 401 
actin-myosin interaction 155 
Adams-Evans nomogram 217 
adsorption 401 
American Society for Testing and 

Materials (ASTM) 229 
2-aminoethanesulphonic acid 207 
amorphous 84 

— band 401 
— halo 396, 397, 398, 401 
— region 80, 147, 150,396 
— state 83 

amplitude 21 
analytical approximation to scattering fac

tor 489 
anisotropic 274 
anomalous dispersion 27, 339, 340 
anomalous scattering 334, 336 
area detector 166,180 
Argand diagram 332 
atactic 136 
atomic scattering factor 25, 26, 94, 

274,394,483,491 
attenuation 8 
Auger effect 8 
axial extinction rule 282, 283 
axis of symmetry 53 
azimuthal angle 252, 253 
a-helix 140, 141, 142 

B 

back-reflection method 169 
balanced filter 193, 194 
base-centered lattice 53 
Bemal chart 70, 280, 496 
biaxial orientation 247, 262, 263 
Bijvoet pair 330, 334 
biological damage 13 

block collimating camera 185 
body-centered lattice 53 
Bonse-Hart camera 186 
bounded projection 301 
Bragg diffraction 50, 61, 62, 63 
Bragg's law-*Bragg diffraction condition 

62 
Bravais lattice 56 
Bremsspektrum 3 
broadening 99, 359, 362, 363 
button method 325, 326 
/3-filter 193 
i3-(l-^3)-D-glucan 84,314 
/3-pleated sheet 140, 141, 143, 348 

Cambridge Structural Database 277 
— System (CSDS) 231 

Cauchy (Lorentz) function 274, 361, 
363, 374, 454 

C-centered lattice 282 
center of symmetry 53, 59, 281 
central diffuse scattering 457, 466 

small-angle scattering 111, 
239, 468 

characteristic function 121 
characteristic X-ray 4, 5 
charge-coupled device (CCD) 168, 

179, 183,330 
chemical effect of X-ray 12 
cholesteric 83 
coherent scattering 10, 16, 393 
collimating camera 183 
Compton scattering 8, 10, 17, 27, 393, 

394 
configuration 136, 137 
conformation 136, 139, 140, 142 
continuous helix 304 
continuous spectrum 4, 5 
contrast variation 111, 119, 120, 121, 

439 
convergent beam camera 174,175 
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convolution 90,91,96,97 
copolymer 232,234 
coordinate 51 
correlation coefficient 342, 343 
correlation function 121, 122, 131 
cross rotation function 341 
crystal 84,110 

— class 53, 55 
— imperfection 85 
— lattice distortion 387 
— mounting 328 
— plane 47 
— structure 2, 273 
— symmetry 52 
— system 45, 46 

crystalline 83, 151,396 
— band 401 
— diffraction 398, 401 
— part 147,151,241,359 
— region 80, 87, 147, 151, 241 359 

crystallinity 2, 135, 136, 228, 380, 382, 
384, 394, 395, 396, 397, 398, 399, 
401,402,469 

— index 399, 400 
crystallite 241,359 

— orientation 220, 239, 242 
— shape 366 
— size 366, 462 

crystallization 323,325 
crystallographic data 232, 329 
cubic 46 
curdlan 84,314 
curve fitting method 422, 427 
curved crystal monochromator 187, 

190 
curved PSPC 178 
curved total reflection mirror 187 
cyclic 142, 144 
cylinder 117,348 
cylindrical Patterson function 291, 

292,410,411,415,416 
cylindrical polar coordinate 411 

D 

Debye factor 95, 103 
Debye-Scherrer 78,79 

— camera 174 
— ring 79, 109 

Debye-Waller temperature factor 381 
defect lattice 85 
degree of orientation 135, 136, 220, 

228, 258 
density gradient tube method 200 
density heterogeneity 110 
detective quantum efficiency 168 
determination of phase 293, 353 
dialysis 324 
difference Fourier map 340 
difference Patterson map 339, 340, 473 
difference synthesis 275 
diffraction 15, 18 

— breadth 360 
— intensity for a paracrystal 96, 98, 

101 
— profile 368, 369 
— sphere 64, 65, 69 

diffuse scattering 109 
direct method 294 
discontinuous helix 305 
discrepancy index 289 
disc-shaped particle 118 
dislocation 86 
dispersion correction 27, 491 
distance distribution function 121, 122, 

123,126,431,433,427,438 
distance probability function 121, 123 
distortion 

— factor 454 
— of the first kind 88, 103, 104, 

105, 379 
— of the second kind 88, 386, 105 

DNA gel 79, 82 
double helix 142, 145 
double orientation 248 
double-bent crystal 190, 191 
draw ratio 457 
dynamical scattering 2 

data collection 329 
data processing 352 
dead time 163 
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E 

edge dislocation 86 
electron 

— crystallography 348 
— density distribution 344 
— density projection 300 
— diffraction pattern 351,352 
— micrograph 348,351 

Elliott camera 188 
ellipsoid of revolution 114, 129, 428 
elliptical 460, 466, 467 
energy dispersive diffractometer 178, 

191 
equatorial Weissenberg photograph 

295,312 
equi-inclination method 171,211 
equivalent point 52, 53, 55, 59 
escape peak 193 
Ewald sphere 64 
extended X-ray absorption fine structure 

(EXAFS) 9 
extinction 273,283 

Fankuchen cut 194 
fanning 228,456 
fast-rotation function 341 
fiber 

— axis 81 
— diagram 81,280,296 
— period 228, 277, 279, 280, 295, 

368, 369 
— structure 244 

filter 193 
fine structure 135, 136 
fine texture 135, 136, 151, 153, 219, 

458 
fixed-count method 176 
flat crystal monochromator 194 
flotation method 200 
flow chart 276, 278, 321 

molecular replacement method 
342 

fluorescence 12 
focusing camera 187 
folded chain 143, 147, 149 

fringed-micellar-grain model 
151 

form scattering 92 
four-circle diffractometer 178, 179, 

202 
Fourier synthesis 274, 289 
Fourier transform 89, 98, 99, 100, 108, 

351 
four-point diagram 245 
four-point scattering 452, 467 
Franks camera 187 
free interface diffusion 325 
fringed micelle 151, 152 

model 80,147,239 
frozen structure 85 

Gandolphi device 174, 220 
Gaussian 274, 361, 374, 423, 454 
Geiger-Muller (GM) counter 12, 179 
general extinction rule 282, 283 
general position 59 
gilde plane 54, 55, 57, 282 
globular particle 111, 122 
globular protein 146 
goniometer head 181, 182 
goodness of fit 275 
Goppel camera 169 
Guinier camera 175 
Guinier diffractometer 177 
Guinier plot 115, 116, 127, 421, 422, 

426, 428, 430, 436, 437 
Guinier-Preston zone 111 
Guinier's approximation 113, 114 

H 

half-breadth 364 
hanging drop method 325, 326 
Marker construction 333, 334, 337 
Harker method 290 
head-to-head 136 
head-to-tail 136 
heavy atom method 293 
helical molecule 141,143,144 
hehcal projection 310, 311 
helical structure 304, 311 
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helically wound ribbon 348 
hexagonal 46 

I 

ideal crystal 2, 84, 85 
identification 2, 229, 230, 231 
identity period 205 
image reconstruction 350 
imaginary dispersion correction 27 
Imaging plate (IP) 166, 167, 180, 181, 

330 
imperfection 87, 135, 228 
incoherent scattering 10, 17, 27 
index plane 51 
index of axis 51 
inoherent scattering 393 
inhomogeneity length 132 
instrumental broadening 359, 360, 361, 

375 
integral breadth 274, 364 
integrated intensity 285 
intensity data statistic 330 
intensity distribution 7 
intensity symmetry 282 
interparticle interference 432, 433 
interplanar spacing 48, 49, 50 
interstitial 85 
invariant 130, 131 
inversion axis 53 
ionization 11 
IR 401 
isomorphous difference Patterson function 

337,338 
isomorphous replacement method 294, 

331,336 
isotactic 136 
isotropic 274 

Jellinek-Solomon-Fankuchen method 
127 

Joint Committee for Powder Diffraction 
Standard (JCPDS) 229, 230 

K 

kinematical scattering 2 
kinking of polymer chain 87 
Kratky U-slit camera 185 
/T-absorption edge 339 
K-axis 179 

lamella 129, 130 
lamellar crystal 147, 148, 149 
lamellar particle 124, 125 
lattice 

— distortion 85, 88, 372, 383, 384 
— distortion of the first kind 85, 

397 
— of the second kind 88 
— distortion factor 382 
— imperfection 135,136 
— plane 48, 50 
— point 48 
— type 53, 282 

Laue 
— camera 169 
— class 282, 284 
— condition 40, 42, 49, 63 
— function 40, 41, 63, 99, 101, 105, 

279,370,371,451 
— index 49 

layering 325,326 
least-squares procedure 294 
line broadening 372 
line detector 165 
line profile 359 
linear absorption coefficient 191 
Uquid crystal 83 
log / (s) vs. log s plot 435 
long chain loop 149 
long period 464, 468 

pattern 228, 450, 452, 453, 
454, 456, 457, 469 

Lorentz and polarization factor 273, 
286 

Lorentz factor 285, 286, 398 
Lorentz and polarization (Lp) correction 

218, 286 
lyotropic 83 
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M 

mass absorption coefficient 9, 483 
meridional scattering 467 
mesophase 83 
microbeam camera 175 
microdialysis 325 
micro-focus X-ray tube 161 
minimap 343 
minimum function 290 
mirror symmetry 53 
mistake 87 
mixed crystal 85, 86, 104 
model building 343 
molecular replacement method 341, 

432 
monoclinic (1st setting) 46, 66 
monoclinic (2nd setting) 46 
mosaic structure 2 
multilayer optics 195 
multiple isomorphous replacement (MIR) 

333 
multiple reflection camera 186 
multiple translation function 341 
multiplicity 273, 285, 287 
multi-wire proportional chamber (MWPC) 

167,168,180, 183,330 
muscle 153, 155 

N 

natural radiation count 197 
needle-like crystal 366, 367 
nematic 83 
n-l plot 310,313 
non-crystalline solid state 83 
normal beam method 171 
nuclear magnetic resonance (NMR) 

35, 354, 401 
number of repeat units 297 
Nylon 12 207 
Nylon 6 207 

O 

oblate ( w < l ) 125,428 
occupancy 274 
opal 150 

organic precipitant 324 
organic solvent 323 
orientation 

— coefficient 259, 260 
— distribution function 263, 265 
— of molecular chain 407, 408, 410 

ORTEP drawing 348 
orthorhombic 46 
oscillation camera 170 
oscillation photograph 68, 69, 70, 203 
overlapping diffraction line 221 

paracrystal 83, 84, 105, 152, 387 
paracrystalline 88, 147, 470 
paracrystalline lattice 98 

distortion 103 
factor, Z(S) 101, 279, 454 
point 97 

parallel bundle of long cylinder 130 
parameter of the helix 307 
particle 451 

— size distribution 127 
path difference 23 
pattern decomposition method 275 
Patterson function, P (u, v, w) 91, 289, 

290, 291 
Patterson symmetry 291, 292 
Pearson VII function 274, 374 
Pendellosung fringe 2 
perfect crystal 2 
persistence 441, 442, 444 
pH 324 
phase determination 331 
phase difference 18, 20, 21, 23 
photoelectron 8, 197 
photographic effect 11 
Photon Factory 172, 466 
photoreaction center 153, 154 
photostimulated luminescence 11 
plane index 49 
plane of symmetry 53 
plastic crystal 83, 84, 85 
plate-like crystal 366, 367 
point detector 163 
point group 52, 55 
point-focusing monochromator 190 



502 Index 

polarization factor 393, 398, 420 
pole figure 252, 253, 257 
poly aery lomitril (PAN) 236 
poly(vinyl chloride) (PVC) 236 
poly dispersed system 127 
polymer blend 235, 236 
polymer single crystal 147 
position sensitive proportional counter 

(PSPC) 165, 166, 177,434 
powder camera 174 
powder diffraction 78, 235, 273 
powder diffractometer 175 
practical measure of parallelism 259, 

408, 462 
precession camera 172,173 
precession photograph 214 
preferred orientation 135, 136, 241, 

270, 273, 459 
preparation of the specimen 197 
primitive lattice 53 
profile-shape function 274, 374 
prolate (w > 1) 125, 428, 431, 433, 

435 
proportional counter 163 
Protein Data Bank (PDB) 231, 341 
protein precipitant 323 
pseudo-Voigt function 274, 374 
pulse-height analyzer 193 
(p,Kmdo) 178 
(p.X^^^O) 178 

Q function 
quasicrystal 

405 
83 

random coil 142, 150, 151, 441, 442 
random orientation 117, 118, 241 
ratemeter 176 
real lattice 66 
real space 23, 24, 63 
reciprocal lattice 63, 66, 67, 70, 242 

coordinate 280 
point 81 
point distribution 241, 242, 
244, 245, 246, 247, 269 

reciprocal space 23, 24, 63, 65 
recoil electron 8,10,197 
rectangular parallelepipied 112 
refinement of the structure 294, 343 
refractive index 11 
reliability factor (reliability index), R 

289 
restrained least-squares refinement 

343, 345, 346 
rhombohedral 46 
ribbon model 348, 350 
riboflavin synthase 153,154 
Richard box 343 
Rietveld method 2, 273 
rigid-body refinement 341, 342 
ring fiber structure 246 
ring orientation 246 
ring pattern consist of small dots 468 
rod-like particle 116, 117, 118 
rotating crystal camera 170 
rotating anode X-ray tube 161, 162 
rotation photograph 68, 69, 203, 280 
rotation search 341, 342 
rotational inversion symmetry 53 
rotational symmetry 53 

R 

radial distribution function 2, 402, 403, 
404, 405 

radial intensity distribution 394 
radial proj ection 310 
radial variation of the orientation in 

spherulite 255 
radius of gyration, Rg 114, 125, 126, 

228, 422, 423, 424, 428, 434, 435, 
439, 442 

Ramachandran plot 140 

salt 323 
salting in 324 
salting out 323 
saw-toothed line shape 366 
scale factor 273, 287, 288 
scaler and timer 176 
scanning type 175, 176 
scattering 25 

— by amorphous solid 35 
— by a single atom 25 
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— by a single electron 16, 25 
— by crystal 37 
— function 111, 114, 123, 423, 428, 

429, 496 
— power 130,131 

Scherrer formula 364 
scintillation 12, 163, 165 
screw axis 54, 55, 57, 57 
screw dislocation 86, 87 
sealed X-ray tube 160 
seeding 325,326 
self convolution 91, 93, 96, 104 
semiconductor detector 163, 164, 165 
shape factor 92, 104, 120 
shape function 92, 93 
short chain loop 149 
short range order 2, 31, 136 
simple fiber structure 243, 245 
simulated annealing 346 
single crystal diffractometer 178 
single crystal monochromator 194 
single crystal-like crystal 149 
single isomorphous replacement 332, 

333 
sitting drop method 2, 325, 326 
size and shape 135, 136, 228 
slit-smeared 425, 426, 427 
small-angle diffraction 228 
small-angle scattering 109, 111, 253, 

419 
camera 183,184 
(correction for error caused by 
collimator) 420 
of globular particle 113, 114 
of ellipsoids of revolution (with 
random orientation) 114 
of spherical particle 111, 114 
pattern 228, 467, 468 
theory 110 

smeared scattering intensity 422 
smectic 83 
solid ball and spoke model 348 
solid solution 85, 86 
solid state detector (SSD) 163, 164 
solubility of a protein in water 323 
solvent of crystalHzation 322 
space group 55,281 
space-filing model 348 

special position 59 
specific internal surface 131 
sphere 123, 125, 128 
spherical particle 111, 114 
sphemlite 150,453 
spiral fiber structure 244, 245 
spiral orientation 243, 245, 459, 462 
SPring 8 7 
S'mle 121 
stereoscopic drawing 349 
storage phosphor detector 166,167 
straight chain 142 
strip-chart recording method 176 
structure factor 63, 273, 281, 288 
structure of amorphous region 135, 

136, 150 
substitution type 85 
superposition method 290 
survey for heavy atom derivative 328 
switch-board model 149 
symbol of lattice 53 
symmetry element 52, 54 
synchrotron radiation 6,171 
syndiotactic 136 
systematic absence 72 

taurine 207 
television (TV) area detector 169 
temperature factor 95, 288, 385 
termination effect 404 
tetragonal 46 
thermal 

— factor 398 
— motion 85,104 
— parameter 274 
— vibration 85, 94, 383 

thermotropic 83 
310 helix 141 
Thomson scattering 8, 10, 15, 16, 17 
tilt method 350 
tilt photograph 169 
tilted orientation 247 
total reflection mirror 189 
translation search 341, 342 
transmission electron microscope (TEM) 

348 
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triclinic 46 
trigonal 46 
triple-helix 142 
true broadening 359 
truncation effect 404 
twinned orientation of unit cell 248 
twofold screw axis 281 
two-point layer line scattering 452, 

462, 464, 465 
type of orientation 135, 136, 228, 243, 

250, 254 
20-axis 179 

W 

wavelength 3, 18, 192 
weighted R 289 
Weissenberg camera 170,171 
Weissenberg photograph 75, 203, 205 

equator 206,211 
interpretation of 75 
layer line 211 

Wooster chart 497 

U 

uniaxial orientation 243, 245, 259, 462 
coefficient 263 
distribution function 267 

uniaxially oriented 80 
assembly of crystallite 410 

unit cell 38, 45, 46, 49, 52, 57 
unit cell parameter 208, 280, 330 

X-ray 
— camera 169 
— diffractometer 175, 176, 178 
— film 166 
— generator 159 
— refraction 11 
— scattering 10, 15, 16 
— small-angle scattering apparata 

183 
— tube 3,161,192 

vacancy 85, 86, 87 
vacancy interstitial 86 
vapor diffusion 325, 326 
vinyl chloride (VC) 234 
vinylidene chloride (VDC) 234 
vector diagram 333, 335 
void 110 
Voigt function 274, 374 

Zeppezauer method 325 
zero-angle scattering intensity 

434, 435 
Zimm plot 426 
zonal extinction rule 282, 283 

126, 




