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Summary, The present paper studies the following constrained vector optimization 
problem: mine f(x), g(x) G -K, h(x) = 0, where f : W ^ R'^, g : W^ ^ W ave 
C^'^ functions, /i : R" -> R^ is C^ function, and C C R"" and /C C R^ are closed con
vex cones with nonempty interiors. Two type of solutions are important for the con
sideration, namely ly-minimizers (weakly efficient points) and i-minimizers (isolated 
minimizers). In terms of the second-order Dini directional derivative second-order 
necessary conditions a point x° to be a ly-minimizer and second-order sufficient 
conditions x^ to be an i-minimizer of order two are formulated and proved. The 
effectiveness of the obtained conditions is shown on examples. 

1 Introduction 

In this paper we deal with the constrained vector optimization problem 

m i n c / ( a ; ) , g{x) e-K, h{x) = 0, (1) 

where / : E^ -^ E ^ , p : R^ -^ E^ and /i : R^ -^ E^ are given functions, 
and C C R"^ and K C UP are closed convex cones with nonempty interiors. 
The inclusion g{x) € —K generalizes constraints of inequality type (in fact 
it is equivalent to {r], g{x)) < 0, rj € K'). This remark explains why the 
word inequality appears in the title of the paper. In the case when / and 
g are C^'^ functions and h is C^ function we derive second-order optimality 
conditions for a point x^ to be a solution of this problem. The paper is thought 
as a continuation of the investigation initiated by the authors in [8], [9] and 
[10], where either unconstrained problems or problems with only inequality 
constraints are studied. Recall tha t a function is said to be C^'^ if it is /c-times 
Frechet differentiable with locally Lipschitz k-th derivative. The C^'^ functions 
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are the locally Lipschitz functions. The C^'^ functions have been introduced in 
Hiriart-Urruty, Strodiot, Hien Nguen [16] and since then have found various 
application in optimization. In particular second-order conditions for C^'^ 
scalar problems are studied in [16, 6, 19, 28, 27]. Second-order optimality 
conditions in vector optimization are investigated in [1, 4, 18, 24, 26], and 
what concerns C^'^ vector optimization in [12, 13, 21, 22, 23]. The given in 
the present paper approach and results generalize that of [23]. 

The assumption that / and g are defined on the whole space W^ is taken for 
convenience. Since we deal only with local solutions of problem (1), evidently 
our results generalize straightforward for functions / and g being defined on 
an open subset of R^. Usually the solutions of (1) are called points of efii-
ciency. We prefer, like in the scalar optimization, to call them minimizers. In 
Section 2 we introduce different type of minimizers. Among them in our con
siderations an important role play the t(;-minimizers (weakly efficient points) 
and the z-minimizers (isolated minimizers). When we say first or second-order 
conditions we mean as usual conditions expressed in suitable first or second-
order derivatives of the given functions. Here we deal with the Dini directional 
derivatives. In Section 2 we define the second-order Dini derivative. In Section 
3 we recall after [10] second-order optimality conditions for problems with only 
inequality constraints. In Section 4 we prove second-order sufficient conditions 
for C^'^ problems with both inequality and equality constraints. Section 5 in
dicates necessary optimality conditions. Section 6 points out directions for 
further investigations. 

2 Preliminaries 

For the norm and the dual parity in the considered finite-dimensional spaces 
we write || • || and (•, •). Prom the context it should be clear to exactly what 
spaces these notations are applied. 

For the cone M C R'^ its positive polar cone is M' = {( e R^ \ (C, 0) > 
0 for all (j) £ M}. The cone M' is closed and convex, and M' ' := (M') ' = 
clcoM, see Rockafellar [25, Theorem 14.1, page 121]. 

If 0 G clconvM we set M'[0] = {C e M' | (C, 0) = 0}. Then M^c/)] is 
a closed convex cone and M'[0] C M'. Consequently its positive polar cone 
M[0] := {M'[(f)]y is a closed convex cone, M C M[^] and {M[^]y = M'[0]. 
In this paper we apply the notation M[(/)] iox M = K and (j) = —g{x^). 

Given a set A C M'^, then the distance from y G R'^ to A is d{y^A) = 
inf{||a—y|| | a G A}. The oriented distance from y to A is defined by D{y^ A) = 
d{y, A) - d(y, R^\A). The function D is introduced in Hiriart-Urruty [14, 15]. 
In the case of a convex set A, Ginchev, Hoffmann [11] show that D{yjA) = 
supy^ll^i ((^, y) — supag^(^, a)), which for A = —C and C a closed convex 
cone gives D{y, -C) = sup{(e, y)\^€ C\ U\\ = ! } • 

In terms of the distance function we have 
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K[-g{x^)] = {weW\ limsup \ d{-g{x^) + tw,K) = 0}, 

that is K[—g{x^)] is the contingent cone [3] of K at —p(x^). 
We call the solutions of problem (1) minimizers. The solutions are under

stood in a local sense. In any case a solution is a feasible point x^, that is a 
point satisfying the constraints g{x^) G —K^ h{x^) = 0. 

The feasible point x^ is said to be a ii;-minimizer (weakly efficient point) 
for (1) if there exists a neighbourhood C/ of x°, such that f{x) ^ f{x^) — intC 
for all feasible points x GU. The feasible point x^ is said to be an e-minimizer 
(efficient point) for (1) if there exists a neighbourhood U of x^, such that 
f(x) ^ f(xP) - (C \ {0}) for all feasible points x e U. We say that the 
feasible point x^ is a s-minimizer (strong minimizer) for (1) if there exists a 
neighbourhood U of x^, such that f{x) ^ f{x^) — C for all feasible points 
xeU\{x^}. 

As in [8] it can be proved that the feasible point x^ is a t(;-minimizer (s-
minimizer) for the vector problem (1) if and only if x^ is a minimizer (strong 
minimizer) for the scalar problem 

m i n D ( / ( a ; ) - / ( x « ) , - C ) , g{x) e-K, h{x) = 0, 

This observation motivates the following definition. We say that the feasible 
point x^ is an isolated minimizer (for short i-minimizer) of order k, k > O^iov 
(1) if there exists a neighbourhood U of x^ and a constant A> 0 such that 

D{f{x)-f{x^),-C)>A\\x-x^f for all feasible x £ U. (2) 

Since any two norms in a finite dimensional real space are equivalent, the 
notion of an z-minimizer is norm-independent. 

Obviously, each z-minimizer is a s-minimizer. Further each s-minimizer is 
an e-minimizer and each e-minimizer is a ly-minimizer (under the assumption 

The concept of an isolated minimizer for scalar problems is introduced 
in Auslender [2]. For vector problems it has been extended in Ginchev [7], 
Ginchev, Guerraggio, Rocca [8], and under the name of strict minimizers in 
Jimenez [17] and Jimenez, Novo [18]. We prefer the name isolated minimizer 
given originally by A. Auslender. 

In the sequel we establish optimality conditions for problem (1) in terms of 
the second-order Dini derivative (for short Dini derivative). For a given C^'^ 
function ^ iW^ ^R^ we define the second-order Dini derivative ^!^{x^) of ^ 
at x^ in direction u eW^ by 

^'^{x^) = Limsup 1 (^(x^ + tu) - ^(x°) -t^\x^)u) . 

If ^ is twice Frechet differentiable at x^ then the Dini derivative is a 
singleton and can be expressed in terms of the Hessian ^!^(x^) = ^"{x^){u^ u). 
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We deal often with the Dini derivative of the function ^ : W -^ R ^ + P , 
^{x) = {f(x), g{x)). Then we use the notation < ( a ; ° ) = (/(a;^), 9{x^))u' 
Let us turn attention that always ( / (x° ) , g{x^))u C fu{x^) x g'uix^), but in 
general these two sets do not coincide. The following lemma gives some useful 
properties of the differential quotient. 

L e m m a 1 ( [10] ) . Let ^ : R^ —> R^ 6e a C^'^ function and ^' he Lipschitz 
with constant L on the ball {x \ ||x — x^|| < r}, where x^ G R^ and r > 0. 
Then, for u^v £ W^ and 0 <t < r /max( | | i i | | , \\v\\) we have 

II 4 (^(^^ + tv) - ^ (^ ° ) - t^\x'^)v) - \ (#(x^ + tu) - ^{x^) - t^'{x^)u) II 

< L ( | H | + | | t ; | | ) | | t ; -^ | | . 

In particular, for v = 0 we get 

II I (^(x^ + tu) - <^(x«) - t^\x^)u) II < L \\uf. 

3 Inequality Constraints, Sufficient Conditions 

Here we consider the problem with only inequality constraints 

mine f{x), g{x) G -K. (3) 

After [10] we recall a result establishing second-order sufficient optimality 
conditions. In the next section it will be applied to treat the problem with 
both equality and inequality constraints. We put 

Aiix') = {(^, ,,) € C X K'[-g{x°)] \ {(0, 0)} | {^, / ' ( x " ) ) + {r,, g'{x°)) = O} 

= {(e, ri)eC'xK'\ {^,ri) ^ 0, (v, 9{x')) = 0, (^, / ' ( x " ) ) + (»?, g'{x'>)) = 0} 

using the subscript / to underline that Aj is a set associated to the problem 
with only inequality constraints. 

T h e o r e m 1 ( [10] ) . Consider problem (3) with f and g being C^'^ functions, 
and C and K closed convex cones with nonempty interiors. Let x^ be a feasible 
point Suppose that for each u £W^\ {0} one of the following two conditions 
is satisfied: 

S[ : ( / ' (x«)u, 5'(x»)u) i - ( C X K[-g{x'')\), 

S'l: {f'ix°)u, g'{x'>)u) e - ( C X K[-g{x°)] \ intC x intK[-g{x'^)]) 
andW{y\z°) e (f{x^),g{x<')y^ : 3(|°,»?' ') € A,{x^) : 

ie, y°) + (v", °̂> > 0. 
Then x^ is an i-minimizer of order two for problem (3). 
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Theorem 1 generalizes Theorem 4.2 from Liu, Neittaanmaki, Kfizek [23] 
in the following aspects. Theorem 1 in opposite to [23] concerns arbitrary and 
not only polyhedral cones C and K. In Theorem 1 the conclusion is tha t x^ 
is an z-minimizer of order two, while in [23] the weaker conclusion is proved 
tha t the reference point x^ is only an e-minimizer. 

4 Inequality and Equality Constraints, Sufficient 
Conditions 

In Theorem 2 we establish sufficient conditions for the general problem (1) 
with both inequality and equality constraints. If the functions / , p, /i are at 
least C^, we put 

^ ( ^ ' ) = {(^,^7,0 ^C'xK'xR^\ (e,77,C) ^ (0 ,0 ,0) , (77, ^(x«)) = 0, 

(C, f'{x'^)u) + (r/, g\x^)u) + (C, h'{x'^)u) = 0 f o r n G ker/i '(xO)}. 

T h e o r e m 2. Consider problem (1) with f^gG C^'^ and h € C^, and C and 
K closed convex cones with nonempty interiors. Let x^ he a feasible point 
and let the vectors / i i(x^), . . . , h'q{x^), which are the components ofh'{x^), 
be linearly independent. Let the vectors vP € W^, j = 1,... ^q, be determined 
by 

h'j,{x^)u^=0 for k^j, and h'^{x^)vP = I. (4) 

Suppose that for each u G ker/i'(x^) \ {0} one of the following two conditions 
is satisfied. 

§' : {f'{x^)u, 9'{x^)u) i -{C X K[-g{x^)\), 

S" : {f'{x°)u, 9'{x°)u) € - ( C x K[-g{x^)] \ intC x intK[-g{x^)]) 
and^{y\z<') e if{x'>),g{x<^)y: : 3 ( e ^ , ' ? " , ^ ) e A{x°) : 

{e, ?/°> + {V°, zO> + (C°, h"{x'>){u,u)} > 0 
with ^^ = (C?)?=i satisfying (5), where 

C," = -{i\ f'(x')ui) - (r?", g'{x'>)u^), j=l,...,q. (5) 

Then x^ is an i-minimizer of order two for problem (1). 

Before going on with the proof we transform our problem (1) to a prob
lem with only inequality constraints. Determine fZ^,... ,iZ^ G W^ by (1). For 
each j = 1 , . . . , g, equalities (1) constitute a system of linear equations with 
respect to the components of u^, which due to the linear independence of 
hi{x^)j . . . , hq{x^) has a solution. Moreover, the vectors u ^ , . . . ,^2^ solving 
this system are linearly independent and E^ is decomposed into a direct sum 
R^ = L e L', where L = kerh'(x^) and L' = lm{u^,..., u^}. Let t i \ . . . , u'^-^ 
hen — q linearly independent vectors in L = ker/i '(x^). We consider the system 
of equations: 
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n-q q 

i=\ 3=1 

Taking r i , . . . , Tn-^ as independent variables and cri , . . . , cr̂  as dependent vari
ables, we see that this system satisfies the requirements of the implicit function 
theorem at the point ri = • • • = Tn-g = 0, ai = • • • = cr̂  = 0 (at this point 
hk take values hk{x^) = 0 because x^ is feasible, and the Jacobian is the 
unit matrix and hence nondegenerate). The implicit function theorem gives 
that in a neighbourhood of x^ given by |ri| < f^ i = 1 , . . . ,n — ^, \aj\ < a, 
j = 1, • • • ,q, this system possesses a unique solution aj = (JJ{T\^ ... ,Tn-q), 
j = Ij... ^q. The functions aj — a^(ri,... ,Tn-q) are C^ and aj(0,...,0) = 0. 

Lemma 2. Consider problem (1) with h e C^, for which h[{x^), • • • , hq{x^), 
are linearly independent, and C and K are closed convex cones. Then x^ is 
a w-minimizer or i-minimizer of order k for (1) if and only if r^ = 0 is 
respectively a w-minimizer or i-minimizer of order k for the problem 

minc / ( r i , . . . , r n -g ) , p ( r i , . . . ,rn-g) G -K, (7) 

where 

/ ( n , . . .,Tn-q) = f{x^ -^-Y^TiU' + ^ C r ^ ( T i , . . .,Tn-q)u^) 
i=l j=l 
n-q q 

g{ri, . . . , Tn-q) = 9{X^ + ^ TiU' + ^ Crj-(Ti, . . . , Tn-q) U^) 

(8) 

Proof. From the implicit function theorem every feasible point x sufficiently 
close to x^ admits a representation 

n-q q 

X = X^ + ^ Ti-Zx' + ^ (j j .(r i , . . . , Tn-q) VP (9) 

i=l j = l 

with r = (TI, . . . ^Tn-q) close to T̂  = 0 and crj(ri,.. . ^Tn-q) the unique C^ 
solution of (6) with value cr̂  = 0 at r^ = 0. Therefore it is obvious that x^ is 
a tt;-minimizer for (1) if and only if r^ is a t(;-minimizer for (7). Suppose now 
that x^ is an i-minimizer of order k. Then for some neighbourhood U of x^ 
and some A > 0 inequality (2) has place. Replacing here x with (9) we get for 
all r being close to r^ and feasible for (7) the inequality 

Dihr) - J(r% -C) > A \\x(r) - x'^f • (10) 

Expressing x = X{T) by (9) and applying the Taylor formula for cr̂  (TI, . . . , Tn-q) 
and the forthcoming expressions for the derivatives we get 

n—q 

x{T)-X° = Y,nu'+0{\\T\\). 
i=l 
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With the account that by choice u^,... ,u^~^ are Unearly independent, we see 
that close to r^ = 0 there exist positive constants A' and A", such that 

A'\\T-A\<\\X{T)-X'>\\<A"\\T-A\. 

These inequahties, together with (10) show that x^ is an i-minimizer of order 
A; for (1) if and only if r^ = 0 is an z-minimizer of order k ioi (7). D 

Now we calculate the derivatives of ( j j (r i , . . . ,rn-^) at r^ = (0, . . . , 0). 
We have 

(Tjlo=CTj{0,...,0) = 0, 3 = 1 ,,.,q. (11) 

For the first-order derivatives differentiating (6) with respect to TI we get 

n—q 
dcTj 

h'^{x^ + ^ ry + ^ aiv?)(v^ + E ^ «') = 0 
i = l :/=i j = i 

dTi 

For T = T^ = 0 we get 

K{x'w^j:^£, 
j = i 

dri 
v P ) = ^ 

whence with account of u^ € ker/i'(x ) and (1) we obtain 

doj_ 
dTi 

= 0, j = l , . . . , ^ , z = l , . . . , n - ^ (12) 

Now we calculate the second-order derivatives: 

n—q 

i-l j=l j-1 * j=l * 

+/.ux° + Ery+E-i^^)EaSr"' = o-
i=l j = l j = l * * 

For r = r^ = 0 with account of u^ € ker/i'(a:^) and (1) we get 

«.»)(.'•, . n + E s I ^ 
3 = 1 

After all, substituting /;; with j , we obtain 

av. 
dTi'dTi> 

f ilf. 

h'!{x''){u\u' ) , j^l,...,q, i',i" = l,...,n-q. (U) 

Proof of Theorem 2. According to Lemma 2 to show that x^ is an i-
minimizer of order two for (1) we must show that r^ = 0 is an z-minimizer of 
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order two for the problem with only inequality constraints (7). For this purpose 
it is enough to check that the sufficient conditions of Theorem 1 applied to 
problem (7) are satisfied. Since p(r^) = g{x^) we see that x^ feasible for 
(1) implies r^ feasible for (7). Similarly K[-g{T^)] = K[-g{x% Theorem 1 
reformulated for problem (7) gives: 

Suppose that for each r £ W^~^ \ {0} one of the following two conditions 
holds: 

§' : (/'(T°)r, p'(r°)T) ^ -{C x i r [ -5(r°) ] ) , 

§" : ( / ' (r°)r , p'(T»)r) € - ( C x i^[-p(r")] \ intC x intK[-9{T')]) 

{e,y'') + {rf,^)>Q. 
Then r^ is an i-minimizer of order two for problem (7). Here 

{(^,7?) eC'xK'l (I,,,) # (0,0), {v,9{r°)) = 0, {^J'{T'>)) + {r,,9'{r')) = 0}. 

We prove the theorem by showing that conditions S' and S" imply respectively 
S' and S". To show that S' implies S' we get consecutively: 

d - d ^"^ ^ 

i = l J=l j = l * 

A /(o) = /'(a;0)«« = (/((a;0)t.\ . . . , / ; (x")w') , 

/'(O) ^ = E ^ /(O) ^' = / ' (^°) 2 ^ ' ^ ' - (14) 

Similarly 

— g{ri,.. .,Tn-g) = g'ix"" -\-Y,^iu' + E ^ i ^ ' ) ( ^ ' "̂  ^ " ^ ' ' '^ ' 

^ p ( 0 ) = ( s l ( x V , • • • , P ; ( a ; V ) . 

^'(0) ^ = E ^ ^(0) ^«=5'(^") E ^•^'-

Putting 
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n—q 

= ^Tiu' ekeih^x^) (15) 
n—q 

U 

we see that while r varies in E"̂  ^ \ {0} the vector u takes all values from 
'kBxh'{x^) \ {0}. Consequently condition S' is equivalent to S', that is to 

{f'{x^)u,g'{x^)u)i-{CxK[-g{x^)]) for t̂  G ker/i'(x^) \ {0} . (16) 

Next we show that S" implies S''. The above calculations show the equivalence 
of the first parts of S'' and S'', where only first order derivatives appear. Now 
we compare the second parts of S>" and S". For this purpose we must find first 
a relation between the Dini derivatives of {f(xP)j 9{x^))u ^^^ {fij^)i 9{^^))r' 
Initially we will consider the case of / , ^ € C^. Then 

(/(x°), g(x'>))'i = (/:(x0),5;'(x°)) = {f"{x')(u,u), 9"{x''){u,u)) 

is a singleton. Similarly f^g^C^ and 

(/(O), ^(0));' = ( /"(0)(r ,r) , p"(0)(r,r)) 

is a singleton. We have consecutively 

Q2 _ Q2 ^ - 9 9 
-^—^ / ( n , . . .,Tn-q) = -^—K f{x^ ^y^riU' + Vo-^t^^*) 
dTi>dTi» ^ dTi'dTin ^ ^ 

W 

^ ' /(O) = /"(a;°)(«'', ««") - E / i ; ' ( a ; ° )K ' , «*") /'(a:°)u^. (17) 

Therefore for it given by (4) we have 

r ( 0 ) ( r , r ) = f"{x'){u,u) -J2h'^{x'){u,u)f{x')u^. (18) 

Similarly 

P ' ' ( 0 ) (T ,T) = p"(x«)(^,t.) -J2h-{x'){u,u)g\x')u^. (19) 

Now we show that when the assumptions on / and g are relaxed from C^ 
to C^'^ still there exist formulas similar to (18) and (19). In fact the only 



38 I. Ginchev, A. Guerraggio, M. Rocca 

reason to consider in advance the case of f,g € C^ was to elaborate some 
heuristics. In the relaxed case we show the following result. Let f,g G C^'^ 
and h e C^ he such that h[{x^)j..., h'q(x^) are linearly independent. Suppose 
that (y^^Oje (7(0),ff(0))'; and 

f = lim i {htkT) - m - tk f'{0)T) , 
*= *•- ( 2 0 ) 

f« = lim ^ {g{tkT) - m - tk 9'{0)T) 

Let u = w(r) be determined by (4). We will prove that the following limits 
exist 

y" = lim - I (/(x° + tku) - fix") - tk / '(XO)M) , 

i (21) 
2° = lim ^ (^(a;0 + tfcu) - ff (a;°) - tk 9'{x°)u) , 

and satisfy (similarly to (18)-(19)) the relations 

(22) 
fO = ^ ' ' - ^ / i ; ' ( x » ) K t * ) 5 ' ( x V 

Fix T. Let now i be a positive real variable and put for brevity u = u + 
(l/*)El=i^.(*T)M^-.Then 

| ( / » - / ( 0 ) - t / ' ( 0 ) T ) 

= I (/(a;° + f«) - / ( x " ) - i / ' ( 0 ) u ) + i / ' ( a ; 0 ) ^ c r , ( i r ) S ^ 

The Taylor formula with regard to (4), (1) and (13) gives 

i<T;(T«)(tT,fr) + o(t2) = - l 

whence 

I ( / » - /(O) - tf (0)r) = I (/(x« + t̂ ) - /(x«) - t/(0)ii) 

A similar representation exists for / replaced by g. Prom these representations 
and (20) it follows that there exist the limits 

<^i{tr) = -a'!{r'>){tT,tr) + o{t^) = --t^ h'J{x'){u,n) + o{t'), 
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y» = l ip I {f{x° + tku) - fix'') - tk f'{x'>)u), 
k 

|0 = lim -^ {gix° + tku) - g{x°) - tk g'{x°)u), 

f=f-J2h'J{x'>)iu,u)f'{x°)u^, 

1' (23) 
^0 = |0 - ^ h'J{x'>){u,u) g'{x°)u^. 

j=i 

Applying now Lemma 1 we get 

| | ^ ( / ( x O + t f c U ) - / ( x O ) - i f e / ' ( x » 

-^{f(x'^tku)-f{x')-t,f{x')u) II 
^k 

< L {\\u\\ + Hull) 11̂  -u\\ = L {\\u\\ + Hull) 1 I I J2 ^j(tkT)u^II = ^(1) • 
^ j=i 

A similar estimation exists for / replaced by p. In consequence, these inequal
ities show that there exist the limits (21) and it holds y^ = y^^ z^ = z^. These 
equalities and formulas (10) imply (22). 

Now we prove the second part of §'' as a consequence of S". Take {y^, z^) G 
(/('T-^), p(T°))r with r G R^-^ \ {0} and let (20) be satisfied. Then the limits 
(21) exist and define (y°, z^) G (f{x^), ^(2^^))^) where u and r are related 
by (4). The latter gives u € keih'ix^) \ {0}. Since S" holds, therefore there 
exists (^^ rj\ C )̂ ^ ^(^°) such that (^ satisfies (5) and (e^ y^) + {v^, z^) + 
(C ,̂ h"{x^){u,u)) > 0. Substituting Ĉ  with (5) and applying (22) we get 

0<{e,y') + {v',z') + {C',h"{x'){u,u)) 

= {e, y' -J2h';{x'){u,u)f\x')u^) + (r7^ z' -Y,h';{x'){u,u)g\x')u^) 

To demonstrate that the second part of S" is satisfied it remains to show 
that (̂ ,̂77 )̂ G 4 ( T ^ ) . This follows from the following observations. We have 
(^0, rj^) ^ (0, 0), since otherwise (5) would give (^^77^ C )̂ = (0, 0, 0). It holds 
Iv^, 9{r^)) = iv^, 9{x^)) = 0. Finally, for r G M^"^ and u determined by (4) 
we have 

ie, f'{r'>)T) + (7?», g'{T'>)T) = ie, f{x°)u} + (v\ g'ix<')u) = 0 . D 

The next example shows that the optimality in particular vector optimiza
tion problems can be checked effectively on the base of Theorem 2 and known 
calculus rules. 
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Example 1. Consider problem (1), for which n = 3 ,m = 2 , p = l , g = 2, the 
cones are C = R^ and K = R+, and the functions / , g^ /i, are given by 

f{xi,X2,xs) = {-2x1 -2xl-\-xs, x\-[-xl -X2), 

g{xi,X2,X2,) = xi|a:i| + a:2|a;2| - x^, 

h{xi,X2,Xz) = {Xi +X2, X3). 

Then the point x^ = (0, 0, 0) is an z-minimizer of order 2, which can be 
estabhshed on the base of Theorem 2, as it is shown below. 

The problem is C^'^ and not C^ because of the function g. We have 

/ ( ^ ' ) = (0,0), g{x') = 0^ h{x') = {0,0). 

The point x^ is feasible and it holds C" = R^, K' = R+, K[-g{x^)] = R+, 

f{x)u = (-4X1111 — 4X21̂ 2 + ^^3, 2XiUi + 2X21̂ 2 - U3)y 

g'(x)u = 2ui\xi\ + 21̂ 212:21 - Us, 

f{x^)u = (tx3, -U2) , g\x^)u = -Us, 

/il(a;«) = (1 ,1 ,0 ) , /i^(x«) = (0, 0, 1). 

Obviously h'i{x^) and hi^ix^) are linearly independent, and 

keih'{x^) = {u £R^ \ ui i- U2 = 0, Us = 0} . 

(f(x^)u, g\x^)u) = (0, 0) € R2 X R for uG keih^x^), 

A{x^) = C' xK' xR^\ {(0, 0, 0)}. 

For each u £ ker/i'(x^) \ {0} condition S' is not satisfied. We prove that for 
such u condition S" holds. We have 

(/'(xO)u, g\x'')u) e -{C X K[-g{x^)] \ intC x mtK[-g{x'')]). 

The second-order derivatives at x^ are 

fuix') = r{x'){u,u) = {-4ul - Aul 2u\ + 2ul), 

p;'(x«) = 2t.ili.ll + 2U2\U2\, h"{x''){u,u) = (0, 0). 

Turn attention that (/(x^), g{x^)Yu = {fu{x^), 9u(x^)) is single-valued. The 
assumption u € keTh'{x^) \ {0} means ui -\- U2 = 0, us = 0. The vectors 
u^, v? satisfying (1) can be chosen as v} = (1/2, 1/2, 0), u^ = (0, 0, 1). 
According to (5) the vector C° = (Ci)C2) is expressed by ^^ = (^J, ^^) and 
Vo as C' = (0, -e? + ^5 + V')' Now for y^ - r{x'){u,u), z' = ^C(xO), 
^0 = (0, 1) G C", 77O = 0 G K'[-g{x^] and u € ker/i'(^°) \ {0} we get 

{e.y')^{v^z')^{C',h'\x'){u,u)) 

= -4^?(^? + ^2) + 2^2(^? + ^2) + ^^2ixi|wi| + 2u2|^2|) = 2{u'i + i^i) > 0, 

which shows that condition S'' holds. 

http://2t.ili.ll
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5 Necessary Conditions 

The following Theorem 3 gives second-order necessary conditions for the prob
lem (3) with only inequality constraints. 

Theorem 3 ( [10] ). Consider problem (3) with f and g being C^'^ functions, 
and C and K closed convex cones with nonempty interiors. Let x^ be a w-
minimizer for (3). Then for each u G W^ the following two conditions hold: 

n[ : {f'{x^)u, g'{x^)u) i -(intC x intK\-g{x^)\), 

N '̂ : ^/ (/ '(^°)^, 9'{x^)n) e -{C X K[-g{x^)] \ intC x intK[-g{x^)\) 
then^{y\z^) G {f{x^),g{x'))':, : 3(C«,r/0) G MX') : 

Here Ai{x^) has the same meaning as in Theorem 1. Theorem 3 generalizes 
Theorem 3.1 in Liu, Neittaanmaki, Kfifek [23], which states the same thesis 
under the stronger assumption that C and K are polyhedral cones and C is 
acute. 

The same elimination procedure as in Theorem 2 reduces problem (1) with 
both equality and inequality constraints to a problem with only inequality 
constraints to which we can apply Theorem 3. In such a way we obtain the 
following result: 

Theorem 4. Consider problem (1) with f,g G C^'^ and h E C*^, and 
C and K closed convex cones with nonempty interiors. Let the vectors 
h'-^{x^)^..., h'q{x^), which are the components of h'{x^), be linearly indepen
dent and let the vectors vP G R^ be determined by (1). Suppose that x^ is a 
w-minimizer for (1). Then for each u G ker/i'(x^) the following two conditions 
hold: 

N' : {f'{x^)u, g'{x^)u) ^ -{into x intK[-g{x^)]), 

N" : if (f(x^)u, g'{x^)u) G - ( C x K[-g{x^)] \ intC x intK[-g{x^)]) 
thenM{y\z^) G {f{x%g{x^)y:, : 3(^^7/0,C') G A{x^) : 

{e. y') + (r7^ z^) + (c^ h^^ix^xu^u)) > o 
and C° = (Cj )J=i satisfies (5). 

Here A{x^) has the same meaning as in Theorem 2. The next example 
shows that the finding of the solutions of particular vector optimization prob
lems can be effectively based on Theorem 4 and known calculus rules. 

Example 2. Consider problem (1), for which n = 3, m = 2 , p = 1, g = 2, the 
cones are C = R^ and K = R+, and the functions / , p, /i, are given by 

f{xi,X2,x^) = {-2x1 - 2x2 + ^3, xj-hxl -xs), 

g{xi,X2,X3) = Xi |x i | H-X2|X2| - X s , 

h(xi,X2,X3) = {xi + X2, Sxl 4- Sxl — 2x3). 

Then the point x^ = (0, 0, 0) is not a it;-minimizer, which can be established 
on the base of Theorem 4, as it is shown below. 
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Like in Example 1 we have f{x^) = (0,0), g{x^) = 0, h{x^) = (0,0), C = 
R^, K' = R+, K[-g{x^)] = R+, f{x^)u = {us,-us), g'{x^)u = 
-Us, h[{x^) = (1, 1, 0), h'^ix^) = (0, 0, - 2 ) . Obviously h[{x^) and h'2{x^) 
are linearly independent, and 

kerh'{x^) = {u £R^ \ ui -\- U2 = 0, us = 0}. 

(f{x^)u, g'{x^)u) = (0, 0) G R^ X R for ue keih\x^), 

A{x^) = C' xK' xR^X {(0, 0, 0)}. 

For each u G kerh^x^) condition N' is satisj&ed. We prove that for some 
u G ker^'(a;^) condition N" with Ĉ  distinguished by (5) does not hold. Observe 
that for any such u the statement in the first part of N" is true 

(/'(xO)«, g'{x'')u) 6 -{C X K[-gix'>)] \ intC x mtK[-g{x'')]). 

The second-order derivatives at x^ are 

/: '(^°) = f"ix°)iu,u) = (-4u? - 4ul 2u\ + 2u\), 

s;'(x") = 2wi|ui| + 2U2\U2\, h"{x°){u,u) = (0, 6w? + 6ul). 

Here (/(x"), i?(a;"));; = (fui^^), Oui^^)) is single-valued. The vectors v}, v? 
satisfying (1) can be chosen as u^ = (1/2, 1/2, 0), M^ = (0, 0, —1/2). Accord
ing to (5) the vector C" = (Ci- C") is expressed by ^^ = (|?, ^§) and rp as 
C° = (0, (1/2)1? - (1/2)^0 - (1/2)77°). Now for y" = f"[x°){u,u), z° = g'^ix''), 
^° e C", ??' € K'[g{x% {f,rj'>) ^ (0,0) and u € ker/i'(a;0) \ {0} we get 

{e,y") + {v',A + {C',h"ix'^)in,u)} 

= -4^?(«? + ul) + 2^§(w2 + ul) + »/°(2«i|«i| + 2«2|«2l) + 6C2°(W? + «i) 

= -^ i (« i + " i ) - ^2(wi + wi) + '?°(2ui|ui| + 2«2|«2| - 3wf - 3ui) 

<-(^? + 2̂° + '?°)(«? + «2)<0 , 

which shows that for any u € kerh'{x^)\{0} condition W with Ĉ  distinguished 
by (5) does not hold. Thus, in spite that condition N' is satisfied for any 
u G keih'{x^), there are u for which N" fails. According to Theorem 4 the 
point x^ is not a if;-minimizer. 

6 Final Comments 

A natural question is, whether it is possible to relax the smoothness assump
tions for the function h from C^ to C^'^. This problem is reasonable for the 
sake of the uniformity of the assumptions for all function data in the consid
ered constrained problem (1), Having in mind the formulations of Theorems 
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2 and 4 it is not difficult to predict the anticipated result for the case of /i be
ing only C^'^. It is clear by analogy, tha t the eventual proof should be based 
on an implicit function theorem for C^'^ functions. Implicit function theo
rems in nonsmooth analysis are investigated by many authors and in many 
settings. Some variant with application to C^'^ optimization gives Kummer 
[20]. However for our consideration the variant for directionally differentiable 
functions developed in Demyanov, Rubinov [5, Chapter VI, Section 1] seems 
to be more suitable. Still, there is a need for some adjustment. For instance, 
it is important to have calculation rules for the second-order Dini directional 
derivatives of the implicit function. Therefore, an a t tempt to move in this 
direction demands a development of new ideas and will overburden in some 
sense the present paper. For this reason we postpone the discussion on the 
possible relaxation of the smoothness assumptions for h. 
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