Second-Order Conditions in $C^{1,1}$ Vector Optimization with Inequality and Equality **Constraints**

Ivan Ginchev¹, Angelo Guerraggio², and Matteo Rocca³

- 1 Technical University of Varna, Department of Mathematics, Studentska Str. 1
- 9010 Varna, Bulgaria. ginchevQmsS. tu-varna. acad. bg
- 2 University of Insubria, Department of Economics, Via Ravasi 2 21100 Varese, Italy. aguerraggioQeco.uninsubria.it
- $^3\,$ University of Insubria, Department of Economics, Via Ravasi 2 21100 Varese, Italy. **mroccaQeco.uninsubria.it**

Summary, The present paper studies the following constrained vector optimization problem: $\min_C f(x)$, $g(x) \in -K$, $h(x) = 0$, where $f : \mathbb{R}^n \to \mathbb{R}^m$, $g : \mathbb{R}^n \to \mathbb{R}^p$ are $C^{1,1}$ functions, $h : \mathbb{R}^n \to \mathbb{R}^q$ is C^2 function, and $C \subset \mathbb{R}^m$ and $K \subset \mathbb{R}^p$ are closed convex cones with nonempty interiors. Two type of solutions are important for the consideration, namely w -minimizers (weakly efficient points) and i -minimizers (isolated minimizers). In terms of the second-order Dini directional derivative second-order necessary conditions a point x^0 to be a w-minimizer and second-order sufficient conditions *x^* to be an i-minimizer of order two are formulated and proved. The effectiveness of the obtained conditions is shown on examples.

1 Introduction

In this paper we deal with the constrained vector optimization problem

$$
\min_C f(x), \quad g(x) \in -K, \quad h(x) = 0,
$$
\n⁽¹⁾

where $f : \mathbb{R}^n \to \mathbb{R}^m$, $g : \mathbb{R}^n \to \mathbb{R}^p$ and $h : \mathbb{R}^n \to \mathbb{R}^q$ are given functions, and $C \subset \mathbb{R}^m$ and $K \subset \mathbb{R}^p$ are closed convex cones with nonempty interiors. The inclusion $g(x) \in -K$ generalizes constraints of inequality type (in fact it is equivalent to $\langle \eta, g(x) \rangle \leq 0, \eta \in K'$. This remark explains why the word *inequality* appears in the title of the paper. In the case when f and *g* are $C^{1,\overline{1}}$ functions and *h* is C^2 function we derive second-order optimality conditions for a point x^0 to be a solution of this problem. The paper is thought as a continuation of the investigation initiated by the authors in [8], [9] and [10], where either unconstrained problems or problems with only inequality constraints are studied. Recall that a function is said to be $C^{k,1}$ if it is k-times Fréchet differentiable with locally Lipschitz k -th derivative. The $C^{0,1}$ functions are the locally Lipschitz functions. The $C^{1,1}$ functions have been introduced in Hiriart-Urruty, Strodiot, Hien Nguen [16] and since then have found various application in optimization. In particular second-order conditions for $C^{1,1}$ scalar problems are studied in [16, 6, 19, 28, 27]. Second-order optimality conditions in vector optimization are investigated in [1, 4, 18, 24, 26], and what concerns $C^{1,1}$ vector optimization in [12, 13, 21, 22, 23]. The given in the present paper approach and results generalize that of [23].

The assumption that f and g are defined on the whole space \mathbb{R}^n is taken for convenience. Since we deal only with local solutions of problem (1), evidently our results generalize straightforward for functions f and q being defined on an open subset of \mathbb{R}^n . Usually the solutions of (1) are called points of efficiency. We prefer, like in the scalar optimization, to call them minimizers. In Section 2 we introduce different type of minimizers. Among them in our considerations an important role play the w -minimizers (weakly efficient points) and the i -minimizers (isolated minimizers). When we say first or second-order conditions we mean as usual conditions expressed in suitable first or secondorder derivatives of the given functions. Here we deal with the Dini directional derivatives. In Section 2 we define the second-order Dini derivative. In Section 3 we recall after [10] second-order optimality conditions for problems with only inequality constraints. In Section 4 we prove second-order sufficient conditions for $C^{1,1}$ problems with both inequality and equality constraints. Section 5 indicates necessary optimality conditions. Section 6 points out directions for further investigations.

2 Preliminaries

For the norm and the dual parity in the considered finite-dimensional spaces we write $\|\cdot\|$ and $\langle \cdot, \cdot \rangle$. From the context it should be clear to exactly what spaces these notations are applied.

For the cone $M \subset \mathbb{R}^k$ its positive polar cone is $M' = \{ \zeta \in \mathbb{R}^k \mid \langle \zeta, \phi \rangle \geq 0 \}$ 0 for all $\phi \in M$. The cone M' is closed and convex, and $M'' := (M')' =$ $\text{cloc }M$, see Rockafellar [25, Theorem 14.1, page 121].

If $\phi \in \text{clconv}M$ we set $M'[\phi] = {\{\zeta \in M' \mid \langle \zeta, \phi \rangle = 0\}}$. Then $M'[\phi]$ is a closed convex cone and $M'[\phi] \subset M'$. Consequently its positive polar cone $M[\phi] := (M'[\phi])'$ is a closed convex cone, $M \subset M[\phi]$ and $(M[\phi])' = M'[\phi]$. In this paper we apply the notation $M[\phi]$ for $M = K$ and $\phi = -g(x^0)$.

Given a set $A \subset \mathbb{R}^k$, then the distance from $y \in \mathbb{R}^k$ to A is $d(y, A) =$ $\inf\{\|a-y\| \mid a \in A\}$. The oriented distance from y to A is defined by $D(y, A) =$ $d(y, A) - d(y, \mathbb{R}^k \setminus A)$. The function *D* is introduced in Hiriart-Urruty [14, 15]. In the case of a convex set A, Ginchev, Hoffmann [11] show that $D(y, A) =$ $\sup_{\|\xi\|=1} (\langle \xi, y\rangle - \sup_{a\in A} \langle \xi, a\rangle),$ which for $A = -C$ and C a closed convex cone gives $D(y, -C) = \sup\{ \langle \xi, y \rangle \mid \xi \in C', ||\xi|| = 1 \}$.

In terms of the distance function we have

Optimality Conditions in $C^{1,1}$ Vector Optimization 31

$$
K[-g(x^{0})] = \{w \in \mathbb{R}^{p} \mid \limsup_{t \to 0^{+}} \frac{1}{t} d(-g(x^{0}) + tw, K) = 0\},\
$$

that is $K[-g(x^0)]$ is the contingent cone [3] of *K* at $-g(x^0)$.

We call the solutions of problem (1) minimizers. The solutions are understood in a local sense. In any case a solution is a feasible point x^0 , that is a point satisfying the constraints $g(x^0) \in -K$, $h(x^0) = 0$.

The feasible point x^0 is said to be a *w*-minimizer (weakly efficient point) for (1) if there exists a neighbourhood U of x^0 , such that $f(x) \notin f(x^0) - \text{intC}$ for all feasible points $x \in U$. The feasible point x^0 is said to be an e-minimizer (efficient point) for (1) if there exists a neighbourhood U of x^0 , such that $f(x) \notin f(x^0) - (C \setminus \{0\})$ for all feasible points $x \in U$. We say that the feasible point x^0 is a s-minimizer (strong minimizer) for (1) if there exists a neighbourhood U of x^0 , such that $f(x) \notin f(x^0) - C$ for all feasible points $x \in U \setminus \{x^0\}.$

As in $[8]$ it can be proved that the feasible point x^0 is a w-minimizer (sminimizer) for the vector problem (1) if and only if x^0 is a minimizer (strong minimizer) for the scalar problem

$$
\min D(f(x) - f(x^0), -C), \quad g(x) \in -K, \quad h(x) = 0.
$$

This observation motivates the following definition. We say that the feasible point x^0 is an isolated minimizer (for short *i-minimizer*) of order $k, k > 0$, for (1) if there exists a neighbourhood U of x^0 and a constant $A > 0$ such that

$$
D(f(x) - f(x0), -C) \ge A ||x - x0||k for all feasible $x \in U$. (2)
$$

Since any two norms in a finite dimensional real space are equivalent, the notion of an *i*-minimizer is norm-independent.

Obviously, each i -minimizer is a s -minimizer. Further each s -minimizer is an e-minimizer and each e-minimizer is a w -minimizer (under the assumption $C \neq \mathbb{R}^m$).

The concept of an isolated minimizer for scalar problems is introduced in Auslender [2]. For vector problems it has been extended in Ginchev [7], Ginchev, Guerraggio, Rocca [8], and under the name of strict minimizers in Jimenez [17] and Jimenez, Novo [18]. We prefer the name *isolated minimizer* given originally by A. Auslender.

In the sequel we establish optimality conditions for problem (1) in terms of the second-order Dini derivative (for short *Dini derivative*). For a given $C^{1,1}$ function $\Phi : \mathbb{R}^n \to \mathbb{R}^k$ we define the second-order Dini derivative $\Phi''_n(x^0)$ of Φ at x^0 in direction $u \in \mathbb{R}^n$ by

$$
\Phi''_u(x^0) = \text{Limsup}_{t \to 0^+} \frac{2}{t^2} \left(\Phi(x^0 + tu) - \Phi(x^0) - t \Phi'(x^0)u \right) .
$$

If Φ is twice Frechet differentiable at x^0 then the Dini derivative is a singleton and can be expressed in terms of the Hessian $\Phi''_n(x^0) = \Phi''(x^0)(u, u)$.

We deal often with the Dini derivative of the function $\Phi : \mathbb{R}^n \to \mathbb{R}^{m+p}$. $\Phi(x) = (f(x), g(x))$. Then we use the notation $\Phi''_u(x^0) = (f(x^0), g(x^0))''_u$. Let us turn attention that always $(f(x^0), g(x^0))''_u \subset f''_u(x^0) \times g''_u(x^0)$, but in general these two sets do not coincide. The following lemma gives some useful properties of the differential quotient.

Lemma 1 (**[10]**). Let $\Phi : \mathbb{R}^n \to \mathbb{R}^k$ be a $C^{1,1}$ function and Φ' be Lipschitz with constant L on the ball $\{x \mid ||x - x^0|| \leq r\}$, where $x^0 \in \mathbb{R}^n$ and $r > 0$. *Then, for* $u, v \in \mathbb{R}^m$ and $0 < t < r/\max(\|u\|, \|v\|)$ we have

$$
\begin{aligned} \|\frac{2}{t^2} \left(\varPhi(x^0 + tv) - \varPhi(x^0) - t\varPhi'(x^0)v \right) - \frac{2}{t^2} \left(\varPhi(x^0 + tu) - \varPhi(x^0) - t\varPhi'(x^0)u \right) \| \\ &\leq L \left(\|u\| + \|v\| \right) \|v - u\| \, . \end{aligned}
$$

In particular, for $v = 0$ *we get*

$$
\|\frac{2}{t^2} \left(\Phi(x^0 + tu) - \Phi(x^0) - t \Phi'(x^0)u \right) \| \le L \|u\|^2.
$$

3 Inequality Constraints, Sufficient Conditions

Here we consider the problem with only inequality constraints

$$
\min_C f(x), \quad g(x) \in -K. \tag{3}
$$

After [10] we recall a result establishing second-order sufficient optimality conditions. In the next section it will be applied to treat the problem with both equality and inequality constraints. We put

$$
\Delta_I(x^0) = \{ (\xi, \eta) \in C' \times K'[-g(x^0)] \setminus \{ (0, 0) \} \mid \langle \xi, f'(x^0) \rangle + \langle \eta, g'(x^0) \rangle = 0 \}
$$

= \{ (\xi, \eta) \in C' \times K' \mid (\xi, \eta) \neq 0, \langle \eta, g(x^0) \rangle = 0, \langle \xi, f'(x^0) \rangle + \langle \eta, g'(x^0) \rangle = 0 \}

using the subscript I to underline that Δ_I is a set associated to the problem with only inequality constraints.

Theorem 1 ($[10]$ **).** Consider problem (3) with f and g being $C^{1,1}$ functions, and C and K closed convex cones with nonempty interiors. Let x^0 be a feasible *point. Suppose that for each* $u \in \mathbb{R}^n \setminus \{0\}$ one of the following two conditions *is satisfied:*

$$
S_i': \qquad (f'(x^0)u, g'(x^0)u) \notin -(C \times K[-g(x^0)]),
$$

$$
\mathbb{S}'_i : \quad (f'(x^0)u, g'(x^0)u) \in -(C \times K[-g(x^0)] \setminus intC \times intK[-g(x^0)]\nand \forall (y^0, z^0) \in (f(x^0), g(x^0))''_u : \exists (\xi^0, \eta^0) \in \Delta_I(x^0) : \langle \xi^0, y^0 \rangle + \langle \eta^0, z^0 \rangle > 0.
$$

Then x^0 *is an i-minimizer of order two for problem (3).*

Theorem 1 generalizes Theorem 4.2 from Liu, Neittaanmaki, Kfizek [23] in the following aspects. Theorem 1 in opposite to [23] concerns arbitrary and not only polyhedral cones *C* and *K.* In Theorem 1 the conclusion is that *x^* is an i -minimizer of order two, while in [23] the weaker conclusion is proved that the reference point x^0 is only an e-minimizer.

4 Inequality and Equality Constraints, Sufficient Conditions

In Theorem 2 we establish sufficient conditions for the general problem (1) with both inequality and equality constraints. If the functions f, g, h are at least C^1 , we put

$$
\Delta(x^0) = \{ (\xi, \eta, \zeta) \in C' \times K' \times \mathbb{R}^q \mid (\xi, \eta, \zeta) \neq (0, 0, 0), \langle \eta, g(x^0) \rangle = 0, \langle \xi, f'(x^0)u \rangle + \langle \eta, g'(x^0)u \rangle + \langle \zeta, h'(x^0)u \rangle = 0 \text{ for } u \in \text{ker}h'(x^0) \}.
$$

Theorem 2. Consider problem (1) with $f, g \in C^{1,1}$ and $h \in C^2$, and C and *K closed convex cones with nonempty interiors. Let x^ he a feasible point* and let the vectors $h'_1(x^0), \ldots, h'_n(x^0)$, which are the components of $h'(x^0)$, *be linearly independent. Let the vectors* $\bar{u}^j \in \mathbb{R}^n$, $j = 1, \ldots, q$, be determined *by*

$$
h'_{k}(x^{0})\bar{u}^{j} = 0 \quad \text{for} \quad k \neq j, \quad \text{and} \quad h'_{j}(x^{0})\bar{u}^{j} = 1. \tag{4}
$$

Suppose that for each $u \in \text{ker}h'(x^0) \setminus \{0\}$ one of the following two conditions *is satisfied.*

S':
$$
(f'(x^0)u, g'(x^0)u) \notin -(C \times K[-g(x^0)]),
$$

\nS": $(f'(x^0)u, g'(x^0)u) \in -(C \times K[-g(x^0)] \setminus intC \times intK[-g(x^0)])$
\nand $\forall (y^0, z^0) \in (f(x^0), g(x^0))''_u : \exists (\xi^0, \eta^0, \zeta^0) \in \Delta(x^0) :$
\n $\langle \xi^0, y^0 \rangle + \langle \eta^0, z^0 \rangle + \langle \zeta^0, h''(x^0)(u, u) \rangle > 0$
\nwith $\zeta^0 = (\zeta_j^0)_{j=1}^q$ satisfying (5), where

$$
\zeta_j^0 = -\langle \xi^0, f'(x^0)\bar{u}^j \rangle - \langle \eta^0, g'(x^0)\bar{u}^j \rangle, \quad j = 1, \ldots, q. \tag{5}
$$

Then x^0 *is an i-minimizer of order two for problem (1).*

Before going on with the proof we transform our problem (1) to a problem with only inequality constraints. Determine $\bar{u}^1,\ldots, \bar{u}^q \in \mathbb{R}^n$ by (1). For each $j = 1, \ldots, q$, equalities (1) constitute a system of linear equations with respect to the components of \bar{u}^j , which due to the linear independence of $h'_{1}(x^{0}), \ldots, h'_{q}(x^{0})$ has a solution. Moreover, the vectors $\bar{u}^{1}, \ldots, \bar{u}^{q}$ solving this system are linearly independent and \mathbb{R}^n is decomposed into a direct sum $\mathbb{R}^n = L \oplus L'$, where $L = \text{ker } h'(x^0)$ and $L' = \text{lin}\{\bar{u}^1, \ldots, \bar{u}^q\}$. Let u^1, \ldots, u^{n-q} be $n-q$ linearly independent vectors in $L = \text{ker } h'(x^0)$. We consider the system of equations:

$$
h_k(x^0 + \sum_{i=1}^{n-q} \tau_i u^i + \sum_{j=1}^q \sigma_j \bar{u}^j) = 0, \quad k = 1, \ldots, q.
$$
 (6)

Taking τ_1,\ldots,τ_{n-q} as independent variables and σ_1,\ldots,σ_q as dependent variables, we see that this system satisfies the requirements of the implicit function theorem at the point $\tau_1 = \cdots = \tau_{n-q} = 0$, $\sigma_1 = \cdots = \sigma_q = 0$ (at this point h_k take values $h_k(x^0) = 0$ because x^0 is feasible, and the Jacobian is the unit matrix and hence nondegenerate). The implicit function theorem gives that in a neighbourhood of x^0 given by $|\tau_i| < \bar{\tau}$, $i = 1, \ldots, n - q$, $|\sigma_i| < \bar{\sigma}$, $j = 1, \dots, q$, this system possesses a unique solution $\sigma_j = \sigma_j(\tau_1, \dots, \tau_{n-q}),$ $j = 1, \ldots, q$. The functions $\sigma_j = \sigma_j(\tau_1, \ldots, \tau_{n-q})$ are C^2 and $\sigma_j(0, \ldots, 0) = 0$.

Lemma 2. Consider problem (1) with $h \in C^1$, for which $h'_1(x^0), \cdots, h'_q(x^0),$ $\emph{are linearly independent, and C and K are closed convex cones. Then x^0 is p^0 and x^0 is a constant.}$ *a* w-minimizer or *i*-minimizer of order k for (1) if and only if $\tau^0 = 0$ is *respectively a w-minimizer or i-minimizer of order k for the problem*

$$
\min_{C} \bar{f}(\tau_1,\ldots,\tau_{n-q}), \quad \bar{g}(\tau_1,\ldots,\tau_{n-q}) \in -K, \tag{7}
$$

where

$$
\bar{f}(\tau_1, \ldots, \tau_{n-q}) = f(x^0 + \sum_{i=1}^{n-q} \tau_i u^i + \sum_{j=1}^q \sigma_j(\tau_1, \ldots, \tau_{n-q}) \, \bar{u}^j),
$$
\n
$$
\bar{g}(\tau_1, \ldots, \tau_{n-q}) = g(x^0 + \sum_{i=1}^{n-q} \tau_i u^i + \sum_{j=1}^q \sigma_j(\tau_1, \ldots, \tau_{n-q}) \, \bar{u}^j).
$$
\n
$$
(8)
$$

Proof. From the implicit function theorem every feasible point *x* sufficiently close to *x^* admits a representation

$$
x = x^{0} + \sum_{i=1}^{n-q} \tau_{i} u^{i} + \sum_{j=1}^{q} \sigma_{j}(\tau_{1}, \ldots, \tau_{n-q}) \, \bar{u}^{j}
$$
(9)

with $\tau = (\tau_1, \ldots, \tau_{n-q})$ close to $\tau^0 = 0$ and $\sigma_j(\tau_1, \ldots, \tau_{n-q})$ the unique C^1 solution of (6) with value $\sigma^0 = 0$ at $\tau^0 = 0$. Therefore it is obvious that x^0 is a w-minimizer for (1) if and only if τ^0 is a w-minimizer for (7). Suppose now that x^0 is an *i*-minimizer of order *k*. Then for some neighbourhood U of x^0 and some $A > 0$ inequality (2) has place. Replacing here x with (9) we get for all τ being close to τ^0 and feasible for (7) the inequality

$$
D(\bar{f}(\tau) - \bar{f}(\tau^0), -C) \ge A \|x(\tau) - x^0\|^k. \tag{10}
$$

Expressing $x = x(\tau)$ by (9) and applying the Taylor formula for $\sigma_j(\tau_1, \ldots, \tau_{n-q})$ and the forthcoming expressions for the derivatives we get

$$
x(\tau) - x^0 = \sum_{i=1}^{n-q} \tau_i u^i + o(\|\tau\|).
$$

With the account that by choice u^1, \ldots, u^{n-q} are linearly independent, we see that close to $\tau^0 = 0$ there exist positive constants A' and A", such that

$$
A' \|\tau - \tau^0\| \le \|x(\tau) - x^0\| \le A'' \|\tau - \tau^0\|.
$$

These inequalities, together with (10) show that x^0 is an *i*-minimizer of order k for (1) if and only if $\tau^0 = 0$ is an *i*-minimizer of order k for (7). \Box

Now we calculate the derivatives of $\sigma_j(\tau_1, \ldots, \tau_{n-q})$ at $\tau^0 = (0, \ldots, 0)$. We have

$$
\sigma_j\big|_{\tau^0} = \sigma_j(0, \ldots, 0) = 0, \quad j = 1 \ldots, q. \tag{11}
$$

For the first-order derivatives differentiating (6) with respect to τ_i we get

$$
h'_{k}(x^{0} + \sum_{i=1}^{n-q} \tau_{i}u^{i} + \sum_{j=1}^{q} \sigma_{j}\bar{u}^{j})(u^{i} + \sum_{j=1}^{q} \frac{\partial \sigma_{j}}{\partial \tau_{i}}\bar{u}^{j}) = 0.
$$

For $\tau = \tau^0 = 0$ we get

$$
h'_k(x^0)(u^i+\sum_{j=1}^q\frac{\partial\sigma_j}{\partial\tau_i}\bigg|_{\tau^0}\bar u^j)=0\,,
$$

whence with account of $u^i \in \text{ker}h'(x^0)$ and (1) we obtain

$$
\left. \frac{\partial \sigma_j}{\partial \tau_i} \right|_{\tau^0} = 0, \quad j = 1, \dots, q, \quad i = 1, \dots, n - q. \tag{12}
$$

Now we calculate the second-order derivatives:

$$
h''_k(x^0 + \sum_{i=1}^{n-q} \tau_i u^i + \sum_{j=1}^q \sigma_j \bar{u}^j)(u^{i'} + \sum_{j=1}^q \frac{\partial \sigma_j}{\partial \tau_{i'}} \bar{u}^j, u^{i''} + \sum_{j=1}^q \frac{\partial \sigma_j}{\partial \tau_{i''}} \bar{u}^j)
$$

$$
+ h'_k(x^0 + \sum_{i=1}^{n-q} \tau_i u^i + \sum_{j=1}^q \sigma_j \bar{u}^j) \sum_{j=1}^q \frac{\partial^2 \sigma_j}{\partial \tau_{i'} \partial \tau_{i''}} \bar{u}^j = 0.
$$

For $\tau = \tau^0 = 0$ with account of $u^i \in \text{ker}h'(x^0)$ and (1) we get

$$
h''_k(x^0)(u^{i'}, u^{i''}) + \sum_{j=1}^q \frac{\partial^2 \sigma_j}{\partial \tau_{i'} \partial \tau_{i''}} \bigg|_{\tau^0} h'_k(x^0) \,\bar{u}^j = 0.
$$

After all, substituting k with j , we obtain

$$
\left. \frac{\partial^2 \sigma_j}{\partial \tau_{i'} \partial \tau_{i''}} \right|_{\tau^0} = -h''_j(x^0)(u^{i'}, u^{i''}), \quad j = 1, \dots, q, \quad i', i'' = 1, \dots, n-q. \tag{13}
$$

Proof of Theorem 2. According to Lemma 2 to show that *x^* is an *i*minimizer of order two for (1) we must show that $\tau^0 = 0$ is an *i*-minimizer of

order two for the problem with only inequality constraints (7). For this purpose it is enough to check that the sufficient conditions of Theorem 1 applied to problem (7) are satisfied. Since $\bar{g}(\tau^0) = g(x^0)$ we see that x^0 feasible for (1) implies τ^0 feasible for (7). Similarly $K[-\bar{g}(\tau^0)] = K[-g(x^0)]$. Theorem 1 reformulated for problem (7) gives:

Suppose that for each $\tau \in \mathbb{R}^{n-q} \setminus \{0\}$ one of the following two conditions *holds:*

$$
\bar{S}' : \qquad \qquad (\bar{f}'(\tau^0)\tau, \, \bar{g}'(\tau^0)\tau) \notin -(C \times K[-\bar{g}(\tau^0)])\,,
$$

$$
\bar{\mathbb{S}}'' : \quad (\bar{f}'(\tau^0)\tau, \bar{g}'(\tau^0)\tau) \in -(C \times K[-\bar{g}(\tau^0)] \setminus intC \times intK[-\bar{g}(\tau^0)])
$$
\n
$$
and \ \forall (\bar{y}^0, \bar{z}^0) \in (\bar{f}(\tau^0), \bar{g}(\tau^0))''_T : \exists (\xi^0, \eta^0) \in \bar{\Delta}(0) :
$$
\n
$$
\langle \xi^0, \bar{y}^0 \rangle + \langle \eta^0, \bar{z}^0 \rangle > 0.
$$

Then τ^0 is an i-minimizer of order two for problem (7). Here

 $\bar{\Delta}(\tau^0) =$

$$
\{(\xi,\eta)\in C'\times K'\mid (\xi,\eta)\neq (0,0),\, \langle \eta,\bar{g}(\tau^0)\rangle=0,\, \langle \xi,\bar{f}'(\tau^0)\rangle+\langle \eta,\bar{g}'(\tau^0)\rangle=0\}.
$$

We prove the theorem by showing that conditions S' and S'' imply respectively \overline{S}' and \overline{S}'' . To show that S' implies \overline{S}' we get consecutively:

$$
\frac{\partial}{\partial \tau_i} \bar{f}(\tau_1, \dots, \tau_{n-q}) = \frac{\partial}{\partial \tau_i} f(x^0 + \sum_{i=1}^{n-q} \tau_i u^i + \sum_{j=1}^q \sigma_j(\tau_1, \dots, \tau_{n-q}) \bar{u}^j)
$$

$$
= f'(x^0 + \sum_{i=1}^{n-q} \tau_i u^i + \sum_{j=1}^q \sigma_j \bar{u}^j) (u^i + \sum_{j=1}^q \frac{\partial \sigma_j}{\partial \tau_i} \bar{u}^j),
$$

$$
\frac{\partial}{\partial \tau_i} \bar{f}(0) = f'(x^0) u^i = (f'_1(x^0) u^i, \dots, f'_m(x^0) u^i),
$$

$$
\bar{f}'(0) \tau = \sum_{i=1}^{n-q} \frac{\partial}{\partial \tau_i} \bar{f}(0) \tau_i = f'(x^0) \sum_{i=1}^{n-q} \tau_i u^i.
$$
(14)

Similarly

$$
\frac{\partial}{\partial \tau_i} \bar{g}(\tau_1, \dots, \tau_{n-q}) = g'(x^0 + \sum_{i=1}^{n-q} \tau_i u^i + \sum_{j=1}^q \sigma_j \bar{u}^j)(u^i + \sum_{j=1}^q \frac{\partial \sigma_j}{\partial \tau_i} \bar{u}^j),
$$

$$
\frac{\partial}{\partial \tau_i} \bar{g}(0) = (g'_1(x^0)u^i, \dots, g'_p(x^0)u^i),
$$

$$
\bar{g}'(0) \tau = \sum_{i=1}^{n-q} \frac{\partial}{\partial \tau_i} \bar{g}(0) \tau_i = g'(x^0) \sum_{i=1}^{n-q} \tau_i u^i.
$$

Putting

Optimality Conditions in $C^{1,1}$ Vector Optimization 37

$$
u = \sum_{i=1}^{n-q} \tau_i u^i \in \text{ker} h'(x^0)
$$
 (15)

we see that while τ varies in $\mathbb{R}^{n-q} \setminus \{0\}$ the vector *u* takes all values from $\text{ker } h'(x^0) \setminus \{0\}$. Consequently condition \bar{S}' is equivalent to S', that is to

$$
(f'(x^{0})u, g'(x^{0})u) \notin -(C \times K[-g(x^{0})]) \text{ for } u \in \text{ker}h'(x^{0}) \setminus \{0\}. \tag{16}
$$

Next we show that \mathbb{S}'' implies $\bar{\mathbb{S}}''$. The above calculations show the equivalence of the first parts of \mathbb{S}'' and $\bar{\mathbb{S}}''$, where only first order derivatives appear. Now we compare the second parts of S" and \bar{S} ". For this purpose we must find first a relation between the Dini derivatives of $(f(x^0), g(x^0))_u^{\prime\prime}$ and $(f(\tau^0), \bar{g}(\tau^0))_{\tau}^{\prime\prime}$. Initially we will consider the case of $f, g \in C^2$. Then

$$
(f(x^{0}), g(x^{0}))''_{u} = (f''_{u}(x^{0}), g''_{u}(x^{0})) = (f''(x^{0})(u, u), g''(x^{0})(u, u))
$$

is a singleton. Similarly \bar{f} , $\bar{g} \in C^2$ and

$$
(\bar{f}(0),\,\bar{g}(0))''_{\tau}=(\bar{f}''(0)(\tau,\tau),\,\bar{g}''(0)(\tau,\tau))
$$

is a singleton. We have consecutively

$$
\frac{\partial^2}{\partial \tau_{i'} \partial \tau_{i''}} \bar{f}(\tau_1, \dots, \tau_{n-q}) = \frac{\partial^2}{\partial \tau_{i'} \partial \tau_{i''}} f(x^0 + \sum_{i=1}^{n-q} \tau_i u^i + \sum_{j=1}^q \sigma_j \bar{u}^j)
$$

\n
$$
= f''(x^0 + \sum_{i=1}^{n-q} \tau_i u^i + \sum_{j=1}^q \sigma_j \bar{u}^j)(u^{i'} + \sum_{j=1}^q \frac{\partial \sigma_j}{\partial \tau_{i'}} \bar{u}^j, u^{i''} + \sum_{j=1}^q \frac{\partial \sigma_j}{\partial \tau_{i''}} \bar{u}^j)
$$

\n
$$
+ f'(x^0 + \sum_{i=1}^{n-q} \tau_i u^i + \sum_{j=1}^q \sigma_j \bar{u}^j) \sum_{j=1}^q \frac{\partial^2 \sigma_j}{\partial \tau_{i'} \partial \tau_{i''}} \bar{u}^j,
$$

\n
$$
\frac{\partial^2}{\partial \tau_{i'} \partial \tau_{i''}} \bar{f}(0) = f''(x^0)(u^{i'}, u^{i''}) - \sum_{j=1}^q h''_j(x^0)(u^{i'}, u^{i''}) f'(x^0) \bar{u}^j.
$$
 (17)

Therefore for u given by (4) we have

$$
\bar{f}''(0)(\tau,\tau) = f''(x^0)(u,u) - \sum_{j=1}^q h''_j(x^0)(u,u) f'(x^0)\bar{u}^j.
$$
 (18)

Similarly

$$
\bar{g}''(0)(\tau,\tau) = g''(x^0)(u,u) - \sum_{j=1}^q h''_j(x^0)(u,u) g'(x^0)\bar{u}^j.
$$
 (19)

Now we show that when the assumptions on f and g are relaxed from C^2 to $C^{1,1}$ still there exist formulas similar to (18) and (19). In fact the only

reason to consider in advance the case of $f, g \in C^2$ was to elaborate some heuristics. In the relaxed case we show the following result. Let $f, g \in C^{1,1}$ and $h \in C^2$ be such that $h'_1(x^0), \ldots, h'_q(x^0)$ are linearly independent. Suppose that $(\bar{y}^0, \bar{z}^0) \in (f(0),\bar{g}(0))_{\tau}''$ and

$$
\bar{y}^{0} = \lim_{k} \frac{2}{t_{\hat{k}}^{2}} \left(\bar{f}(t_{k}\tau) - \bar{f}(0) - t_{k} \, \bar{f}'(0)\tau \right),
$$

\n
$$
\bar{z}^{0} = \lim_{k} \frac{2}{t_{\hat{k}}^{2}} \left(\bar{g}(t_{k}\tau) - \bar{g}(0) - t_{k} \, \bar{g}'(0)\tau \right).
$$
\n(20)

Let $u = u(\tau)$ be determined by (4). We will prove that the following limits exist \sim

$$
y^{0} = \lim_{k} \frac{2}{t_{k}^{2}} \left(f(x^{0} + t_{k}u) - f(x^{0}) - t_{k} f'(x^{0})u \right),
$$

\n
$$
z^{0} = \lim_{k} \frac{2}{t_{k}^{2}} \left(\bar{g}(x^{0} + t_{k}u) - g(x^{0}) - t_{k} g'(x^{0})u \right),
$$
\n(21)

and satisfy (similarly to (18) – (19)) the relations

$$
\bar{y}^0 = y^0 - \sum_{j=1}^q h''_j(x^0)(u, u) f'(x^0) \bar{u}^j,
$$

\n
$$
\bar{z}^0 = z^0 - \sum_{j=1}^q h''_j(x^0)(u, u) g'(x^0) \bar{u}^j.
$$
\n(22)

Fix τ . Let now t be a positive real variable and put for brevity $\hat{u} = u +$ $(1/t)\sum_{j=1}^q\sigma_j(t\tau)\bar{u}^j$. Then

$$
\frac{2}{t^2} \left(\bar{f}(t\tau) - \bar{f}(0) - t \, \bar{f}'(0)\tau \right)
$$
\n
$$
= \frac{2}{t^2} \left(f(x^0 + t\hat{u}) - f(x^0) - t \, f'(0)\hat{u} \right) + \frac{2}{t^2} \, f'(x^0) \sum_{j=1}^q \sigma_j(t\tau) \, \bar{u}^j.
$$

The Taylor formula with regard to (4), (1) and (13) gives

$$
\sigma_j(t\tau) = \frac{1}{2}\sigma_j''(\tau^0)(t\tau, t\tau) + o(t^2) = -\frac{1}{2}t^2 h_j''(x^0)(u, u) + o(t^2),
$$

whence

$$
\frac{2}{t^2} \left(\bar{f}(t\tau) - \bar{f}(0) - t \, \bar{f}'(0)\tau \right) = \frac{2}{t^2} \left(f(x^0 + t\hat{u}) - f(x^0) - t \, f'(0)\hat{u} \right) \n- \sum_{j=1}^q h''_j(x^0)(u, u) \, f'(x^0)\bar{u}^j.
$$

A similar representation exists for f replaced by g. From these representations and (20) it follows that there exist the limits

Optimality Conditions in $C^{1,1}$ Vector Optimization 39

$$
\hat{y}^0 = \lim_{k} \frac{2}{t_k^2} \left(f(x^0 + t_k \hat{u}) - f(x^0) - t_k f'(x^0) \hat{u} \right),
$$

$$
\hat{z}^0 = \lim_{k} \frac{2}{t_k^2} \left(g(x^0 + t_k \hat{u}) - g(x^0) - t_k g'(x^0) \hat{u} \right),
$$

and

$$
\bar{y}^0 = \hat{y}^0 - \sum_{j=1}^q h''_j(x^0)(u, u) f'(x^0) \bar{u}^j,
$$

$$
\bar{z}^0 = \hat{z}^0 - \sum_{j=1}^q h''_j(x^0)(u, u) g'(x^0) \bar{u}^j.
$$
 (23)

Applying now Lemma 1 we get

$$
\|\frac{2}{t_k^2} \left(f(x^0 + t_k \hat{u}) - f(x^0) - t_k f'(x^0) \hat{u} \right)
$$

$$
-\frac{2}{t_k^2} \left(f(x^0 + t_k u) - f(x^0) - t_k f'(x^0) u \right) \|
$$

$$
\leq L \left(\|\hat{u}\| + \|u\| \right) \|\hat{u} - u\| = L \left(\|\hat{u}\| + \|u\| \right) \frac{1}{t_k} \|\sum_{j=1}^q \sigma_j (t_k \tau) \bar{u}^j \| = o(1) .
$$

A similar estimation exists for f replaced by g . In consequence, these inequalities show that there exist the limits (21) and it holds $y^0 = \hat{y}^0$, $z^0 = \hat{z}^0$. These equalities and formulas (10) imply (22).

Now we prove the second part of S $''$ as a consequence of S $''$. Take $(\bar y^0,\,\bar z^0)\in\mathbb Z^d$ $(f(\tau^0), \bar{g}(\tau^0))_{\tau}^{\prime\prime}$ with $\tau \in \mathbb{R}^{n-q} \setminus \{0\}$ and let (20) be satisfied. Then the limits (21) exist and define $(y^0, z^0) \in (f(x^0), g(x^0))''_u$, where u and τ are related by (4). The latter gives $u \in \text{ker}h'(x^0) \setminus \{0\}$. Since S'' holds, therefore there exists $(\xi^0, \eta^0, \zeta^0) \in \Delta(x^0)$ such that ζ^0 satisfies (5) and $\langle \xi^0, y^0 \rangle + \langle \eta^0, z^0 \rangle +$ $\langle \zeta^0, h''(x^0)(u,u) \rangle > 0$. Substituting ζ^0 with (5) and applying (22) we get

$$
0 < \langle \xi^0, y^0 \rangle + \langle \eta^0, z^0 \rangle + \langle \zeta^0, h''(x^0)(u, u) \rangle
$$
\n
$$
= \langle \xi^0, y^0 - \sum_{j=1}^q h''_j(x^0)(u, u) f'(x^0) \bar{u}^j \rangle + \langle \eta^0, z^0 - \sum_{j=1}^q h''_j(x^0)(u, u) g'(x^0) \bar{u}^j \rangle
$$
\n
$$
= \langle \xi^0, \bar{y}^0 \rangle + \langle \eta^0, \bar{z}^0 \rangle.
$$

To demonstrate that the second part of \bar{S}'' is satisfied it remains to show that $(\xi^0, \eta^0) \in \bar{\Delta}(\tau^0)$. This follows from the following observations. We have $(\xi^0, \eta^0) \neq (0, 0)$, since otherwise (5) would give $(\xi^0, \eta^0, \zeta^0) = (0, 0, 0)$. It holds $\langle \eta^0, \bar{g}(\tau^0) \rangle = \langle \eta^0, g(x^0) \rangle = 0.$ Finally, for $\tau \in \mathbb{R}^{n-q}$ and *u* determined by (4) we have

$$
\langle \xi^0, \bar{f}'(\tau^0) \tau \rangle + \langle \eta^0, \bar{g}'(\tau^0) \tau \rangle = \langle \xi^0, f'(x^0) u \rangle + \langle \eta^0, g'(x^0) u \rangle = 0. \square
$$

The next example shows that the optimality in particular vector optimization problems can be checked effectively on the base of Theorem 2 and known calculus rules.

Example 1. Consider problem (1), for which $n = 3, m = 2, p = 1, q = 2$, the cones are $C = \mathbb{R}^2_+$ and $K = \mathbb{R}_+$, and the functions f, g, h, are given by

$$
f(x_1, x_2, x_3) = (-2x_1^2 - 2x_2^2 + x_3, x_1^2 + x_2^2 - x_3),
$$

\n
$$
g(x_1, x_2, x_3) = x_1|x_1| + x_2|x_2| - x_3,
$$

\n
$$
h(x_1, x_2, x_3) = (x_1 + x_2, x_3).
$$

Then the point $x^0 = (0, 0, 0)$ is an *i*-minimizer of order 2, which can be established on the base of Theorem 2, as it is shown below.

The problem is $C^{1,1}$ and not C^2 because of the function g. We have

$$
f(x^0) = (0,0), \quad g(x^0) = 0, \quad h(x^0) = (0,0).
$$

The point x^0 is feasible and it holds $C' = \mathbb{R}^2_+$, $K' = \mathbb{R}_+$, $K[-g(x^0)] = \mathbb{R}_+$,

$$
f'(x)u = (-4x_1u_1 - 4x_2u_2 + u_3, 2x_1u_1 + 2x_2u_2 - u_3),
$$

\n
$$
g'(x)u = 2u_1|x_1| + 2u_2|x_2| - u_3,
$$

\n
$$
f'(x^0)u = (u_3, -u_3), g'(x^0)u = -u_3,
$$

\n
$$
h'_1(x^0) = (1, 1, 0), h'_2(x^0) = (0, 0, 1).
$$

Obviously $h'_1(x^0)$ and $h'_2(x^0)$ are linearly independent, and

$$
\ker h'(x^0) = \{ u \in \mathbb{R}^3 \mid u_1 + u_2 = 0, u_3 = 0 \}.
$$

$$
(f'(x^0)u, g'(x^0)u) = (0, 0) \in \mathbb{R}^2 \times \mathbb{R} \text{ for } u \in \ker h'(x^0),
$$

$$
\Delta(x^0) = C' \times K' \times \mathbb{R}^2 \setminus \{ (0, 0, 0) \}.
$$

For each $u \in \text{ker}h'(x^0) \setminus \{0\}$ condition S' is not satisfied. We prove that for such *u* condition S" holds. We have

$$
(f'(x0)u, g'(x0)u) \in -(C \times K[-g(x0)] \setminus intC \times intK[-g(x0)]).
$$

The second-order derivatives at x^0 are

$$
f''_u(x^0) = f''(x^0)(u, u) = (-4u_1^2 - 4u_2^2, 2u_1^2 + 2u_2^2),
$$

$$
g''_u(x^0) = 2u_1|u_1| + 2u_2|u_2|, \quad h''(x^0)(u, u) = (0, 0).
$$

Turn attention that $(f(x^0), g(x^0))''_u = (f''_u(x^0), g''_u(x^0))$ is single-valued. The assumption $u \in \text{ker } h'(x^0) \setminus \{0\}$ means $u_1 + u_2 = 0, u_3 = 0$. The vectors \bar{u}^1 , \bar{u}^2 satisfying (1) can be chosen as $\bar{u}^1 = (1/2, 1/2, 0), \bar{u}^2 = (0, 0, 1).$ According to (5) the vector $\zeta^0 = (\zeta_1^0, \zeta_2^0)$ is expressed by $\xi^0 = (\zeta_1^0, \zeta_2^0)$ and η_0 as $\zeta^0 = (0, -\xi_1^0 + \xi_2^0 + \eta^0)$. Now for $y^0 = f''(x^0)(u, u)$, $z^0 = g''_u(x^0)$, $\xi^0 = (0, \, 1) \in C', \, \eta^0 = 0 \in K'[-g(x^0] \, \, \text{and} \, \, u \in \text{ker}h'(x^0) \setminus \{0\}$ we get

$$
\langle \xi^0,\,y^0\rangle + \langle \eta^0,\,z^0\rangle + \langle \zeta^0,\,h''(x^0)(u,u)\rangle
$$

 $= -4\xi_1^0(u_1^2 + u_2^2) + 2\xi_2^0(u_1^2 + u_2^2) + \eta^0(2u_1|u_1| + 2u_2|u_2|) = 2(u_1^2 + u_2^2) > 0,$ which shows that condition S'' holds.

5 Necessary Conditions

The following Theorem 3 gives second-order necessary conditions for the problem (3) with only inequality constraints.

Theorem 3 ($\begin{bmatrix} 10 \end{bmatrix}$ **).** Consider problem (3) with f and g being $C^{1,1}$ functions, *and C and K closed convex cones with nonempty interiors. Let x^ be a wminimizer for (3). Then for each* $u \in \mathbb{R}^n$ the following two conditions hold:

$$
\mathbb{N}'_i: \qquad \qquad (f'(x^0)u, g'(x^0)u) \notin -(intC \times intK[-g(x^0)]),
$$

$$
\mathbb{N}''_i: \ \ \, if\ (f'(x^0)u,\,g'(x^0)u) \in -(C \times K[-g(x^0)] \setminus intC \times intK[-g(x^0)])\\ \ \ then\ \forall\, (y^0,z^0) \in (f(x^0),g(x^0))''_u: \exists\, (\xi^0,\eta^0) \in \Delta_I(x^0): \\ \langle \xi^0,\, y^0 \rangle + \langle \eta^0,\, z^0 \rangle \geq 0\, .
$$

Here $\Delta_I(x^0)$ has the same meaning as in Theorem 1. Theorem 3 generalizes Theorem 3.1 in Liu, Neittaanmäki, Křířek [23], which states the same thesis under the stronger assumption that *C* and *K* are polyhedral cones and *C* is acute.

The same elimination procedure as in Theorem 2 reduces problem (1) with both equality and inequality constraints to a problem with only inequality constraints to which we can apply Theorem 3. In such a way we obtain the following result:

Theorem 4. Consider problem (1) with $f, g \in C^{1,1}$ and $h \in C^2$, and *C and K closed convex cones with nonempty interiors. Let the vectors* $h'_1(x^0), \ldots, h'_q(x^0)$, which are the components of $h'(x^0)$, be linearly indepen*dent and let the vectors* $\bar{u}^j \in \mathbb{R}^n$ *be determined by (1). Suppose that* x^0 *is a w*-minimizer for (1). Then for each $u \in \text{ker}h'(x^0)$ the following two conditions *hold:*

$$
N': \qquad (f'(x^0)u, g'(x^0)u) \notin -(intC \times intK[-g(x^0)]),
$$

\n
$$
N'': \quad if (f'(x^0)u, g'(x^0)u) \in -(C \times K[-g(x^0)] \setminus intC \times intK[-g(x^0)])
$$

\nthen $\forall (y^0, z^0) \in (f(x^0), g(x^0))''_u : \exists (\xi^0, \eta^0, \zeta^0) \in \Delta(x^0) :$
\n $\langle \xi^0, y^0 \rangle + \langle \eta^0, z^0 \rangle + \langle \zeta^0, h''(x^0)(u, u) \rangle \ge 0$
\nand $\zeta^0 = (\zeta_i^0)_{i=1}^q$ satisfies (5).

Here $\Delta(x^0)$ has the same meaning as in Theorem 2. The next example shows that the finding of the solutions of particular vector optimization problems can be effectively based on Theorem 4 and known calculus rules.

Example 2. Consider problem (1), for which $n = 3$, $m = 2$, $p = 1$, $q = 2$, the cones are $C = \mathbb{R}^2_+$ and $K = \mathbb{R}_+$, and the functions f, g, h, are given by

$$
f(x_1, x_2, x_3) = (-2x_1^2 - 2x_2^2 + x_3, x_1^2 + x_2^2 - x_3),
$$

\n
$$
g(x_1, x_2, x_3) = x_1|x_1| + x_2|x_2| - x_3,
$$

\n
$$
h(x_1, x_2, x_3) = (x_1 + x_2, 3x_1^2 + 3x_2^2 - 2x_3).
$$

Then the point $x^0 = (0, 0, 0)$ is not a *w*-minimizer, which can be established on the base of Theorem 4, as it is shown below.

Like in Example 1 we have $f(x^0) = (0,0), g(x^0) = 0, h(x^0) = (0,0), C' =$ $\mathbb{R}^2_+,$ $K' = \mathbb{R}_+,$ $K[-g(x^0)] = \mathbb{R}_+,$ $f'(x^0)u = (u_3, -u_3),$ $g'(x^0)u =$ $-u_3, h'_1(x^0) = (1, 1, 0), h'_2(x^0) = (0, 0, -2)$. Obviously $h'_1(x^0)$ and $h'_2(x^0)$ are linearly independent, and

$$
\ker h'(x^0) = \{u \in \mathbb{R}^3 \mid u_1 + u_2 = 0, u_3 = 0\}.
$$

$$
(f'(x^0)u, g'(x^0)u) = (0, 0) \in \mathbb{R}^2 \times \mathbb{R} \text{ for } u \in \ker h'(x^0),
$$

$$
\Delta(x^0) = C' \times K' \times \mathbb{R}^2 \setminus \{(0, 0, 0)\}.
$$

For each $u \in \text{ker}h'(x^0)$ condition N' is satisfied. We prove that for some $u \in \text{ker}h'(x^0)$ condition N" with ζ^0 distinguished by (5) does not hold. Observe that for any such *u* the statement in the first part of *N"* is true

$$
(f'(x0)u, g'(x0)u) \in -(C \times K[-g(x0)] \setminus intC \times intK[-g(x0)]).
$$

The second-order derivatives at x^0 are

$$
f''_u(x^0) = f''(x^0)(u, u) = (-4u_1^2 - 4u_2^2, 2u_1^2 + 2u_2^2),
$$

$$
g''_u(x^0) = 2u_1|u_1| + 2u_2|u_2|, \quad h''(x^0)(u, u) = (0, 6u_1^2 + 6u_2^2).
$$

Here $(f(x^0), g(x^0))''_u = (f''_u(x^0), g''_u(x^0))$ is single-valued. The vectors \bar{u}^1 , \bar{u}^2 satisfying (1) can be chosen as $\bar{u}^{\scriptscriptstyle L} = (1/2, \, 1/2, \, 0), \, \bar{u}^{\scriptscriptstyle 2} = (0, \, 0, \, -1/2).$ According to (5) the vector $\zeta^0 = (\zeta_1^0, \zeta_2^0)$ is expressed by $\xi^0 = (\xi_1^0, \xi_2^0)$ and η^0 as $\zeta^0 = (0, (1/2)\xi_1^0 - (1/2)\xi_2^0 - (1/2)\eta^0)$. Now for $y^0 = f''(x^0)(u,u)$, $z^0 = g''_u(x^0)$, $\xi^0 \in C', \, \eta' \in K'[g(x^0)], \, (\xi^0, \eta^0) \neq (0,0) \, \, \text{and} \, \, u \in \text{ker}h'(x^0) \setminus \{0\}$ we get

$$
\langle \xi^0, y^0 \rangle + \langle \eta^0, z^0 \rangle + \langle \zeta^0, h''(x^0)(u, u) \rangle
$$

= $-4\xi_1^0(u_1^2 + u_2^2) + 2\xi_2^0(u_1^2 + u_2^2) + \eta^0(2u_1|u_1| + 2u_2|u_2|) + 6\zeta_2^0(u_1^2 + u_2^2)$
= $-\xi_1^0(u_1^2 + u_2^2) - \xi_2^0(u_1^2 + u_2^2) + \eta^0(2u_1|u_1| + 2u_2|u_2| - 3u_1^2 - 3u_2^2)$
 $\le -(\xi_1^0 + \xi_2^0 + \eta^0)(u_1^2 + u_2^2) < 0,$

which shows that for any $u \in \text{ker}h'(x^0)\setminus\{0\}$ condition \mathbb{N}'' with ζ^0 distinguished by (5) does not hold. Thus, in spite that condition \mathbb{N}' is satisfied for any $u \in \text{ker } h'(x^0)$, there are *u* for which N" fails. According to Theorem 4 the point x^0 is not a *w*-minimizer.

6 Final Comments

A natural question is, whether it is possible to relax the smoothness assumptions for the function h from C^2 to $C^{1,1}$. This problem is reasonable for the sake of the uniformity of the assumptions for all function data in the considered constrained problem (1), Having in mind the formulations of Theorems

2 and 4 it is not difficult to predict the anticipated result for the case of h being only $C^{1,1}$. It is clear by analogy, that the eventual proof should be based on an implicit function theorem for $C^{1,1}$ functions. Implicit function theorems in nonsmooth analysis are investigated by many authors and in many settings. Some variant with application to $C^{1,1}$ optimization gives Kummer [20]. However for our consideration the variant for directionally differentiable functions developed in Demyanov, Rubinov [5, Chapter VI, Section 1] seems to be more suitable. Still, there is a need for some adjustment. For instance, it is important to have calculation rules for the second-order Dini directional derivatives of the implicit function. Therefore, an attempt to move in this direction demands a development of new ideas and will overburden in some sense the present paper. For this reason we postpone the discussion on the possible relaxation of the smoothness assumptions for *h.*

References

- 1. B. Aghezzaf. Second-order necessary conditions of the Kuhn-Tucker type in multiobjective programming problems. Control Cybernet. 28(2):213-224, 1999.
- 2. A. Auslender. Stability in mathematical programming with nondifferentiable data. SIAM J. Control Optim., 22: 239-254, 1984.
- 3. J.-P. Aubin and H. Prankowska. Set-Valued Analysis. Birkhauser, Boston, 1990.
- 4. S. Bolintineanu and M. El Maghri. Second-order efficiency conditions and sensitivity of efficient points. J. Optim. Theory AppL, 98(3):569-592, 1998.
- 5. V. F. Demyanov and A. M. Rubinov. Constructive Nonsmooth Analysis. Peter Lang, Frankfurt am Main, 1995.
- 6. P. G. Georgiev and N. Zlateva. Second-order subdifferentials of $C^{1,1}$ functions and optimality conditions. Set-Valued Anal. 4(2): 101-117, 1996.
- 7. I. Ginchev. Higher order optimality conditions in nonsmooth vector optimization. In: A. Cambini, B. K. Dass, L. Martein (Eds.), "Generalized Convexity, Generalized Monotonicity, Optimality Conditions and Duality in Scalar and Vector Optimization", J. Stat. Manag. Syst. 5(1-3): 321-339, 2002.
- 8. I. Ginchev, A. Guerraggio, and M. Rocca. First-order conditions for $C^{0,1}$ constrained vector optimization. In: F. Giannessi, A. Maugeri (eds.). Variational analysis and applications, Proc. Erice, June 20- July 1, 2003, Kluwer Acad. Publ. & Springer, Dordrecht-Berlin, 2005, to appear.
- 9. I. Ginchev, A. Guerraggio, and M. Rocca. From scalar to vector optimization. Appl. Math., to appear.
- 10. I. Ginchev, A. Guerraggio, and M. Rocca. Second-order conditions in $C^{1,1}$ constrained vector optimization. In: J.-B Hiriart-Urruty, C. Lemarechal, B. Mordukhovich, Jie Sun, Roger J.-B. Wets (eds.). Variational Analysis, Optimization, and their Applications, Math. Program., Series B, to appear.
- 11. I. Ginchev and A. Hoffmann. Approximation of set-valued functions by singlevalued one. Discuss. Math. Differ. Incl. Control Optim., 22: 33-66, 2002.
- 12. A. Guerraggio and D. T. Luc. Optimality conditions for $C^{1,1}$ vector optimization problems. J. Optim. Theory Appl., 109(3):615-629, 2001.
- 13. A. Guerraggio and D. T. Luc. Optimality conditions for $C^{1,1}$ constrained multiobjective problems. J. Optim. Theory Appl., 116(1):117-129, 2003.
- 44 I. Ginchev, A. Guerraggio, M. Rocca
- 14. J.-B. Hiriart-Urruty. New concepts in nondifferentiable programming. Analyse non convexe, Bull. Soc. Math. France 60:57-85, 1979.
- 15. J.-B. Hiriart-Urruty. Tangent cones, generalized gradients and mathematical programming in Banach spaces. Math. Oper. Res. 4:79-97, 1979.
- 16. J.-B. Hiriart-Urruty, J.-J Strodiot, and V. Hien Nguen: Generalized Hessian matrix and second order optimality conditions for problems with $C^{1,1}$ data. Appl. Math. Optim. 11:169-180, 1984.
- 17. B. Jimenez. Strict efficiency in vector optimization. J. Math. Anal. Appl. 265: 264-284, 2002.
- 18. B. Jimenez and V. Novo. First and second order conditions for strict minimality in nonsmooth vector optimization. J. Math. Anal. Appl. 284:496-510, 2003.
- 19. D. Klatte and K. Tammer. On the second order sufficient conditions to perturbed $C^{1,1}$ optimization problems. Optimization 19:169-179, 1988.
- 20. B. Kummer. An implicit function theorem for $C^{0,1}$ equations and parametric $C^{1,1}$ optimization. J. Math. Anal. Appl. 158:35-46, 1991.
- 21. L. Liu. The second-order conditions of nondominated solutions for $C^{1,1}$ generalized multiobjective mathematical programming. J. Syst. Sci. Math. Sci. 4(2):128-138, 1991.
- 22. L. Liu and M. Kfifek. The second-order optimality conditions for nonlinear mathematical programming with $C^{1,1}$ data. Appl. Math. 42:311-320, 1997.
- 23. L. Liu, P. Neittaanmaki, and M. Kfifek. Second-order optimality conditions for nondominated solutions of multiobjective programming with $C^{1,1}$ data. Appl. Math. 45:381-397, 2000.
- 24. C. Malivert. First and second order optimality conditions in vector optimization. Ann. Sci. Math. Quebec 14:65-79, 1990.
- 25. R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, 1970.
- 26. S. Wang. Second-order necessary and sufficient conditions in multiobjective programming. Numer. Funct. Anal. Opim. 12:237-252, 1991.
- 27. X. Q. Yang. Second-order conditions in $C^{1,1}$ optimization with applications. Numer. Funct. Anal. Optim. 14:621-632, 1993.
- 28. X. Q. Yang and V. Jeyakumar. Generalized second-order directional derivatives and optimization with $C^{1,1}$ functions. Optimization 26:165-185, 1992.