Inverse Linear Programming

- S. Dempe¹ and S. Lohse²
- $¹$ Technical University Bergakademie Freiberg, Department of Mathematics and</sup> Computer Sciences, Akademiestr. 6, 09596 Freiberg, Germany. dempeOmath.tu-freiberg.de
- ² Technical University Bergakademie Freiberg, Department of Mathematics and Computer Sciences, Akademiestr. 6, 09596 Freiberg, Germany

Summary. Let $\Psi(b, c)$ be the solution set mapping of a linear parametric optimization problem with parameters b in the right hand side and c in the objective function. Then, given a point x^0 we search for parameter values \bar{b} and \bar{c} as well as for an optimal solution $\bar{x} \in \Psi(\bar{b}, \bar{c})$ such that $\|\bar{x} - x^0\|$ is minimal. This problem is formulated as a bilevel programming problem. Focus in the paper is on optimality conditions for this problem. We show that, under mild assumptions, these conditions can be checked in polynomial time.

1 Introduction

Let $\Psi(b, c) = \argmax\{c^{\top} x : Ax = b, x \ge 0\}$ denote the set of optimal solutions of a linear parametric optimization problem

$$
\max \left\{ c^{\top} x : Ax = b, x \ge 0 \right\}, \tag{1}
$$

where the parameters of the right hand side and in the objective function are elements of given sets

$$
\mathcal{B} = \{b : Bb = \tilde{b}\}, \quad \mathcal{C} = \{c : Cc = \tilde{c}\},
$$

respectively. Throughout this note, $A \in \mathbb{R}^{m \times n}$ is a matrix of full row rank $m, B \in \mathbb{R}^{p \times m}, C \in \mathbb{R}^{q \times n}, \tilde{b} \in \mathbb{R}^{p}$ and $\tilde{c} \in \mathbb{R}^{q}$. This data is fixed once and for all.

Let $x^0 \in \mathbb{R}^n$ also be fixed. Our task is to find values \bar{b} and \bar{c} for the parameters, such that $x^0 \in \Psi(\bar{b}, \bar{c})$ or, if this is not possible, x^0 is at least close to $\Psi(\bar{b},\bar{c})$. Thus we consider the following bilevel programming problem

$$
\min\left\{\|x-x^0\|:\ x\in\Psi(b,c),\ b\in\mathcal{B},\ c\in\mathcal{C}\right\}\,,\tag{2}
$$

which has a convex objective function $x \in \mathbb{R}^n \mapsto f(x) := \|x - x^0\|$, but not necessarily a convex feasible region. We consider in this note an arbitrary (semi) norm $||\cdot||$, not necessarily the Euclidean norm. In fact, we are specially thinking in a polyhedral norm like, for instance, the l_1 -norm.

Bilevel programming problems have been intensively investigated, see the monographs [2, 3] and the annotated bibliography [4]. Inverse linear programming problems have been investigated in the paper [1], where it is shown that the inverse problem to e.g. a shortest path problem can again be formulated as a shortest path problem and there is no need to solve a bilevel programming problem. However, the main assumption in [1] that there exist parameter values $\overline{b} \in \mathcal{B}$ and $\overline{c} \in \mathcal{C}$ such that $x^0 \in \Psi(\overline{b},\overline{c})$ seems to be rather restrictive. Hence, we will not use this assumption.

Throughout the paper the following system is supposed to be infeasible:

$$
A^{\top}y = c, \ \ Cc = \tilde{c}.\tag{3}
$$

Otherwise every solution of

$$
Ax = b, \ \ x \ge 0, \ \ Bb = \tilde{b},
$$

would be feasible for (2), which means that (2) reduces to

$$
\min \{ \|x - x^0\| : Ax = b, x \ge 0, Bb = \tilde{b} \},
$$

which is a convex optimization problem.

2 Reformulation as an MPEC

First we transform (2) via the Karush-Kuhn-Tucker conditions into a mathematical program with equilibrium constraints (MPEC) [5] and we get

$$
||x - x^{0}|| \longrightarrow \min_{x,b,c,y} \nAx = b \nx \ge 0 \nATy \ge c \nxT(ATy - c) = 0 \nBb = \tilde{b} \nCc = \tilde{c} .
$$
\n(4)

The next thing which should be clarified is the notion of a local optimal solution.

Definition 1. A point \bar{x} is a local optimal solution of problem (2) if there *exists a neighborhood U of* \overline{x} *such that* $\|x - x^0\| \geq \|\overline{x} - x^0\|$ *for all x,b,c with* $b \in \mathcal{B}$, $c \in \mathcal{C}$ *and* $x \in U \cap \Psi(b, c)$.

Fig. 1. Definition of a local optimal solution

Using the usual definition of a local optimal solution of problem (4) it can be easily seen that for each local optimal solution \bar{x} of problem (2) there are $\overline{b}, \overline{c}, \overline{y}$ such that $(\overline{x}, \overline{b}, \overline{c}, \overline{y})$ is a local optimal solution of problem (4), cf. [3]. The opposite implication is in general not true.

Theorem 1. Let $B = {\overline{b}}$, ${\overline{x}} = \Psi(\overline{b}, c)$ for all $c \in U \cap C$, where U is some *neighborhood of* \bar{c} . *Then,* $(\bar{x}, \bar{b}, \bar{c}, \bar{y})$ *is a local optimal solution of* (4) *for some dual variables* jj.

The proof of Theorem 1 is fairly easy and therefore it is omitted. Figure 1 can be used to illustrate the fact of the last theorem. The points \bar{x} satisfying the assumptions of Theorem 1 are the vertices of the feasible set of the lower level problem given by the dashed area in this figure.

3 Optimality via Tangent Cones

Now we consider a feasible point \bar{x} of problem (2) and we want to decide whether \bar{x} is local optimal or not. To formulate suitable optimality conditions certain subsets of the index set of active inequalities in the lower level problem need to be determined. Let

$$
I(\overline{x}) = \{i : \overline{x}_i = 0\}
$$

be the index set of active indices. Then every feasible solution x of (2) close enough to \bar{x} satisfies $x_i > 0$ for all $i \notin I(\bar{x})$. Complementarity slackness motivates us to define the following index sets, too:

22 S. Dempe and S. Lohse

- $I(c, y) = \{i: (A^{\top}y c)_i > 0\}$
- $\bullet\quad \mathcal{I}(\overline{x}) = \big\{ I(c,y):~ A^{\top}y \geq c,~ (A^{\top}y c)_i = 0~~ \forall i\notin I(\overline{x}), ~ Cc = \tilde{c} \big\}$ $l \in \mathcal{I}(\overline{x})$

Remark 1. If an index set *I* belongs to the family $\mathcal{I}(\bar{x})$ then $I^{0}(\bar{x}) \subseteq I \subseteq I$ $I(\overline{x})$.

An efficient calculation of the index set $I^0(\overline{x})$ is necessary for the evaluation of the optimality conditions below. By contrast, the knowledge of the family $\mathcal{I}(\overline{x})$ itself is not necessary.

Remark 2. We have $j \in I(\overline{x}) \setminus I^{0}(\overline{x})$ if and only if the system

$$
(ATy - c)i = 0 \quad \forall i \notin I(\overline{x})
$$

$$
(ATy - c)j = 0
$$

$$
(ATy - c)i \ge 0 \quad \forall i \in I(\overline{x}) \setminus \{j\}
$$

$$
Cc = \tilde{c}
$$

is feasible. Furthermore $I^0(\bar{x})$ is an element of $\mathcal{I}(\bar{x})$ if and only if the system

$$
(ATy - c)i = 0 \quad \forall i \notin I0(\overline{x})
$$

$$
(ATy - c)i \ge 0 \quad \forall i \in I0(\overline{x})
$$

$$
Cc = \tilde{c}
$$

is feasible.

Now we are able to transform (4) into a locally equivalent problem, which does not explicitly depend on *c* and *y.*

Lemma 1. \bar{x} *is a local optimal solution of* (2) *if and only if* \bar{x} *is a (global) optimal solution of all problems (Aj)*

$$
||x - x^{0}|| \longrightarrow \min_{x,b} Ax = b x \ge 0 x_{i} = 0 \quad \forall i \in I Bb = \tilde{b}
$$
 (A_I)

with $I \in \mathcal{I}(\overline{x})$ *.*

Proof. Let \bar{x} be a local optimal solution of (2) and assume that there is a set $I \in \mathcal{I}(\overline{x})$ with \overline{x} being not optimal for (A_I) . Then there exists a sequence ${x^k}_{k\in\mathbb{N}}$ of feasible solutions of (A_I) with lim $x^k = \overline{x}$ and $||x^k - x^0|| <$ $\|\bar{x} - x^0\|$ for all *k*. Consequently \bar{x} can not be a local optimal solution to (2) since $I \in \mathcal{I}(\overline{x})$ implies that all x^k are also feasible for (2). Conversely, let \overline{x} be an optimal solution of all problems (A_I) and assume that there is a sequence ${x^k}_{k \in \mathbb{N}}$ of feasible points of (2) with $\lim_{k \to \infty} x^k = \overline{x}$ and $||x^k - x^0|| < ||\overline{x} - x^0||$ condition $x_i^k > 0$ for all $i \notin I(\overline{x})$ and due to the feasibility of x^k for (2) there are sets $I \in \mathcal{I}(\overline{x})$ such that x^k is feasible for problem (A_I) . Because $\mathcal{I}(\overline{x})$ consists only of a finite number of sets, there is a subsequence $\{x^{k_j}\}_{j\in\mathbb{N}}$ $L(x)$ consists only of a finite number of sets, there is a subsequence x^3 *j* $y \in N$ where x^{\prime} are all feasible for a fixed problem (A_I) . So we contradict the optimality of \bar{x} for this problem (A_I) . \Box

Corollary 1. *We can also consider*

$$
||x - x^{0}|| \longrightarrow \min_{x, b, I} Ax = b x \ge 0 x_i = 0 \quad \forall i \in I Bb = \tilde{b} I \in \mathcal{I}(\overline{x})
$$
 (5)

to check if \bar{x} is a local optimal solution of (2). Here the index set I is a *minimization variable. Problem (5) combines all the problems* (A_I) *into one problem and means that we have to find a best one between all the optimal solutions of the problems* (A_I) *for* $I \in \mathcal{I}(\overline{x})$ *.*

In what follow we use the notation

 $T_I(\overline{x}) = \{d \mid \exists r : Ad = r, Br = 0, d_i \geq 0 \ \forall i \in I(\overline{x}) \setminus I, d_i = 0 \ \forall i \in I \}$.

This set corresponds to the tangent cone (relative to *x* only) to the feasible set of problem (A_I) at the point \bar{x} . The last lemma obviously implies the following necessary and sufficient optimality condition.

Lemma 2. \bar{x} is a local optimal solution of (5) if and only if $f'(\bar{x}, d) \geq 0$ for *all*

$$
d\in T(\overline{x}):=\bigcup_{I\in\mathcal{I}(\overline{x})}T_I(\overline{x})\ .
$$

Remark 3. T(\overline{x} *)* is the (not necessarily convex) tangent cone (relative x) of problem (5) at the point \bar{x} .

Corollary 2. The condition $I^{0}(\overline{x}) \in \mathcal{I}(\overline{x})$ implies $T_{I^{0}(\overline{x})}(\overline{x}) = T(\overline{x})$.

Remark 4. If f is differentiable at \bar{x} , then saying that $f'(\bar{x}, \cdot)$ is nonnegative over $T(\bar{x})$ is obviously equivalent to saying that

$$
f'(\overline{x}, d) \ge 0 \quad \forall d \in \operatorname{conv} T(\overline{x}), \tag{6}
$$

where the "conv" indicates the convex hull operator.

24 S. Dempe and S. Lohse

As shown in the next example, without differentiability assumption, (6) is sufficient for optimality but not necessary.

Fig. 2. Illustration of Example 1

Example 1. Let us consider a problem with the l_1 -norm restricted to the first two components of x as objective function and

$$
A = \begin{pmatrix} 2 & 1 & 1 & 0 \\ 2 & -1 & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 3 \\ 1 \end{pmatrix}, C = \begin{cases} 2e_1^{(4)} + te_2^{(4)} : t \in \mathbb{R} \end{cases},
$$

$$
x^0 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 2 \end{pmatrix}, x^1 = \begin{pmatrix} 2 \\ 1 \\ -2 \\ -2 \end{pmatrix} \text{ and } \overline{x} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}.
$$

We consider the point \bar{x} . The bold marked lines in Fig. 2 are the feasible set of our problem and the dashed lines are iso-distance-lines with the value 1. So we get the convexified tangent cone as

$$
conv T(\overline{x}) = \{d: 2d_1 + d_2 + d_3 = 0; 2d_1 - d_2 + d_4 = 0; d_3, d_4 \ge 0\}
$$

Finally $\overline{d} = (-1 \ 0 \ 2 \ 2)^{\top} \in \text{conv } T(\overline{x})$ is a direction of descent with $f'(\overline{x}, \overline{d}) =$ -1 although \bar{x} is obviously the global optimal solution. If we choose x^1 (instead of x^0) and the objective function $|x_1 - x_1^1| + |x_2 - x_2^1|$, condition (6) implies the optimality of \bar{x} .

Remark 5. Because it is a matter of illustration, we considered the problem with inequality constraints in the lower level. For that reason we used the l_1 -norm restricted to the first two components of x as objective function and not the l_1 -norm over the whole space \mathbb{R}^4 . By the way, in this case \bar{x} would not be a local optimal solution.

Fig. 3. Illustration of the proof of Theorem 2

4 A Formula for the Tangent Cone

For the verification of the optimality condition (6) an explicit formula for the tangent cone conv $T(\bar{x})$ is essential. For notational simplicity we suppose $I(\overline{x}) = \{1, \ldots, k\}$ and $I^{0}(\overline{x}) = \{l+1, \ldots, k\}$ with $l \leq k \leq n$. Consequently all feasible points of (2) sufficiently close to \bar{x} satisfy $x_i = 0$ for all $i \in I^0(\bar{x})$. We pay attention to this fact and consider the following relaxed problem:

26 S. Dempe and S. Lohse

$$
||x - x^{0}|| \longrightarrow \min_{x,b} Ax = b x_{i} \ge 0 \quad i = 1,...,l x_{i} = 0 \quad i = l + 1,...,k Bb = \tilde{b} .
$$
 (7)

In what follow we use the notation

$$
T_R(\overline{x}) = \{d \mid \exists r : Ad = r, \; Br = 0, \; d_i \geq 0 \; i = 1, \ldots, l, \; d_i = 0 \; i = l+1, \ldots, k\}.
$$

This set corresponds to the tangent cone (relative x) of (7) at the point \bar{x} . Since $I^0 \subseteq I$ for all $I \in \mathcal{I}(\overline{x})$, it follows immediately that

$$
conv T(\overline{x}) = cone T(\overline{x}) \subseteq T_R(\overline{x}). \qquad (8)
$$

The point \bar{x} is said to satisfy the full rank condition, if

$$
\text{span}(\{A_i: i \notin I(\overline{x}\}) = \mathbb{R}^m, \tag{FRC}
$$

where *Ai* denotes the *ith* column of the matrix *A,*

Example 2. All non-degenerate vertices of $Ax = b, x \ge 0$ satisfy (FRC).

This condition allows us now to establish equality between the cones above.

Theorem 2. Let (FRC) be satisfied at the point \overline{x} . Then equality holds in (8).

Proof. Let \overline{d} be an arbitrary element of $T_R(\overline{x})$, that means there is a \overline{r} with $A\overline{d} = \overline{r}$, $B\overline{r} = 0$, $\overline{d_i} \geq 0$ $i = 1, \ldots, l$, $\overline{d_i} = 0$ $i = l + 1, \ldots, k$. We consider the following linear systems

$$
Ad = \delta_{1,j}\overline{r}
$$

\n
$$
d_j = \overline{d}_j
$$

\n
$$
d_i = 0 \quad i = 1, ..., k, \ i \neq j
$$

\n(S_j)

for $j = 1, ..., l$, where $\delta_{1,j} = 1$ if $j = 1$ and $\delta_{1,j} = 0$ if $j \neq 1$. These systems are all feasible because of (FRC). Furthermore let d^1, \ldots, d^l be (arbitrary) solutions of the systems $(S_1), \ldots, (S_l)$ respectively. We define now the direction $\frac{1}{2}$, $\frac{1}{2}$ $d = \sum_{i} d^j$ and get $d_i = d_i$ for $i = 1, \ldots, k$ as well as $Ad = Ad = \overline{r}$. Because **j = i** we chose arbitrary vectors a^1, \ldots, a^n it is possible that $a \neq a$. But we can achieve equality with a translation of the solution d^1 by a specific vector of $\mathcal{N}(A) = \{z : Az = 0\}$. Therefore we define $\hat{d}^1 := d^1 + \overline{d} - d$, and because d^1 $A(A) = \{z : Az = 0\}$. Therefore we define $a^* := a^* + a - a$, and because a^* is reasible for (λ_1) and $a_i = a_i$ for $i = 1, \ldots, k$ as well as $Au = Au = r$ we get $a_i^2 = 0$ for all $i = 2,..., \kappa$ and $Aa^2 = A(a^2 + a - a) = r + r - r = r$. Hence

 d^1 is also a solution of (S_1) . Thus we have $d^1 + \sum_{j=2}^d d^j = d - d + \sum_{j=1}^d d^j = d$. As a result of the definition of the set $I^0(\overline{x})$ there are index sets $I_i \in \mathcal{I}(\overline{x})$ with $j \notin I_j$ for all $j \in \{1,\ldots,l\} = I(\overline{x}) \setminus I^0(\overline{x})$. So \hat{d}^1 is an element of the tangent cone of problem (A_I) and d^j are elements of the tangent cones of the problems (A_{I_i}) for $j = 2, ..., l$, see the definition of these cones. Finally \overline{d} is the sum of a finite number of elements of $T(\bar{x})$ and therefore $T_R(\bar{x}) \subseteq \text{cone } T(\bar{x})$. \Box

Fig. 4. Illustration of Example 3

By combining Lemma 2 and Remarks 2 and 4, one obtains:

Corollary 3. Let \bar{x} be a point of differentiability of f. Then, at most n *systems of linear equalities\inequalities are needed to be investigated in order* to compute the index set $I^{0}(\overline{x})$. Furthermore, verification of local optimality *of a feasible point of problem* (2) *is possible in polynomial time.*

Example 3. This example will show that (FRC) is not necessary for equality in (8).

$$
\begin{array}{rcl}\nx_2 & -x_4 & = 1 \\
2x_1 + 2x_2 - x_3 & + x_5 & = 3 \\
2x_2 - x_3 & + x_6 & = 1 \\
2x_1 & + x_3 & -x_7 & = 3 \\
x_3 & & & x_i \ge 0\n\end{array}
$$

 $\mathcal{B} = \{(1\ 3\ 1\ 3\ 3)^{\top}\}$ and $\mathcal{C} = \{c=-e^{(8)}_2+t(2e^{(8)}_1+3e^{(8)}_2-e^{(8)}_3)+s(3e^{(8)}_2$ $e_3^{(0)}$: $t,s \in \mathbb{R}$. Consider the point $\bar{x} = (1,1,1,0,0,0,0,0,0)$ ¹. Hence we get $I(\overline{x}) = \{4, 5, 6, 7\}, I^0 = \emptyset \text{ and } T_R(\overline{x}) = \{d : Ad = 0, d_i \geq 0 \quad \forall i \in I(\overline{x})\}.$ The feasible region of (5) consists of the four faces $x_4 = 0, x_5 = 0, x_6 = 0$ and $x_7 = 0$ ($t = s = 0$; $t = 1, s = 0$; $t = 0, s = 1$ respectively $t = -\frac{1}{3}, s = \frac{2}{3}$). Obviously we have $T_R(\bar{x}) = \text{cone } T(\bar{x})$. Now delete the second vector in C, that means $C = \{c = -e_0^{(8)} + t(2e_1^{(8)} + 3e_2^{(8)} - e_3^{(8)}) : t \in \mathbb{R}\}\.$ Then we also get $I^0 = \emptyset$. That is why the tangent cone of the relaxed problem is the same as above. But the convexified tangent cone conv $T(\bar{x})$ of (5) is a proper subset of this cone. Because the feasible set consists only of the two faces $x_4 = 0$ and $x_5 = 0$, the cone conv $T(\bar{x})$ is spanned by the four bold marked vertices where the apex of the cone is \bar{x} , see Fig. 4.

Acknowledgeraents. The authors sincerely thank the anonymous referee, whose comments led to an improvement of the note.

References

- 1. R.K. Ahuja and J.B. Orlin. Inverse optimization. Operations Research 49:771- 783, 2001.
- 2. J.F. Bard. Practical Bilevel Optimization: Algorithms and Applications. Kluwer Academic Publishers, Dordrecht, 1998.
- 3. S. Dempe. Foundations of Bilevel Programming. Kluwer Academic Publishers, Dordrecht, 2002.
- 4. S. Dempe. Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints. Optimization 52:333-359, 2003.
- 5. J. Outrata, M. Kocvara, and J. Zowe. Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Kluwer Academic Publishers, Dordrecht, 1998.