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Summary. Let lf'(6, c) be the solution set mapping of a linear parametric opti
mization problem with parameters h in the right hand side and c in the objective 
function. Then, given a point x^ we search for parameter values 6 and c as well as 
for an optimal solution x G ̂ (h^c) such that ||x — x^\\ is minimal. This problem is 
formulated as a bilevel programming problem. Focus in the paper is on optimality 
conditions for this problem. We show that, under mild assumptions, these conditions 
can be checked in polynomial time. 

1 Introduction 

Let ^{h^ c) = argmax{c^x : Ax = 6, a: > 0} denote the set of optimal solutions 
of a linear parametric optimization problem 

max {c^x : Ax = 6,a; > O} , (1) 

where the parameters of the right hand side and in the objective function are 
elements of given sets 

B = {h:Bh = h} , C = {c:Cc = c} , 

respectively. Throughout this note, A G R"^^"^ is a matrix of full row rank 
m, J5 G W'^, C G R^^^, 6 G RP and c G R^. This da ta is fixed once and for 
all. 

Let x^ G R^ also be fixed. Our task is to find values h and c for the 
parameters, such tha t x^ G 1^(5, c) or, if this is not possible, x^ is at least 
close to l?'(6,c). Thus we consider the following bilevel programming problem 

m i n { | | a ; - a ; ° | | : xG?Z^(6,c), 6 G ^ , c G C} , (2) 

which has a convex objective function x G R^ i-^ f(x) := \\x — x^\\, but not 
necessarily a convex feasible region. We consider in this note an arbitrary 
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(semi)norm || | | , not necessarily the Euclidean norm. In fact, we are specially 
thinking in a polyhedral norm like, for instance, the /i-norm. 

Bilevel programming problems have been intensively investigated, see the 
monographs [2, 3] and the annotated bibliography [4]. Inverse linear program
ming problems have been investigated in the paper [1], where it is shown that 
the inverse problem to e.g. a shortest path problem can again be formulated as 
a shortest path problem and there is no need to solve a bilevel programming 
problem. However, the main assumption in [1] that there exist parameter val
ues b e B and c e C such that x^ G ^(5,c) seems to be rather restrictive. 
Hence, we will not use this assumption. 

Throughout the paper the following system is supposed to be infeasible: 

A^y = c, Cc = c. (3) 

Otherwise every solution of 

Ax = b, X > 0, Bb = 6, 

would be feasible for (2), which means that (2) reduces to 

min hx - x^W : Ax = b, x >0, Bb = b\ , 

which is a convex optimization problem. 

2 Reformulation as an MPEC 

First we transform (2) via the Karush-Kuhn-Tucker conditions into a mathe
matical program with equilibrium constraints (MPEC) [5] and we get 

\\x — x^W —> m i n 

x,b,c,y 

Ax = b 

x>0 

A'^y > c (4) 

x'^{A~^y-c) = 0 

Bb = b 
Cc = c. 

The next thing which should be clarified is the notion of a local optimal 
solution. 

Definition 1. A point x is a local optimal solution of problem (2) if there 
exists a neighborhood U of x such that \\x — x^\\ > ||x —x^|| for all x^b^c 
with be B, ceC and x eUn ^{b, c). 
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Fig. 1. Definition of a local optimal solution 

Using the usual definition of a local optimal solution of problem (4) it can 
be easily seen that for each local optimal solution 5 of problem (2) there are - 
b, 'E, jj such that (Z, 6, 'E, g) is a local optimal solution of problem (4), cf. [3]. 
The opposite implication is in general not true. 

Theorem 1. Let B = (61, {Z) = ~ ( 6 ,  c) for all c E U nC, where U is  some 
neighborhood of 'E. Then, (Z, 6, 'E, jj) is a local optimal solution of (4) for some 
dual variables jj. 

The proof of Theorem 1 is fairly easy and therefore it is omitted. Figure 1 
can be used to illustrate the fact of the last theorem. The points Z satisfying 
the assumptions of Theorem 1 are the vertices of the feasible set of the lower 
level problem given by the dashed area in this figure. 

3 Optimality via Tangent Cones 

Now we consider a feasible point Z of problem (2) and we want to decide 
whether 3 is local optimal or not. To formulate suitable optimality conditions 
certain subsets of the index set of active inequalities in the lower level problem 
need to be determined. Let 

I(Z) = {i : Zi = 0) 

be the index set of active indices. Then every feasible solution x of (2) close 
enough to Z satisfies xi > 0 for all i $ I@). Complementarity slackness 
motivates us to define the following index sets, too: 
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• I{c,y) = {i: (A^y-c)i > 0} 
• I{x) = {/(c,y) : A^y > c, {A^y - c)i = 0 ^i ^ I{x), Cc = c] 

lexix) 

Remark i. If an index set / belongs to the family T{x) then I^{x) C / C 
I{x). 

An efficient calculation of the index set I^ (x) is necessary for the evaluation 
of the optimality conditions below. By contrast, the knowledge of the family 
X(x) itself is not necessary. 

Remark 2. We have j G I(x)\ I^{x) if and only if the system 

{A^y-c)i = 0 \/i^I{x) 

(A'y-c)j = 0 

(A^y -c)i>0 Vz G I{x) \ {j} 
Cc = c 

is feasible. Furthermore I^ {x) is an element of T{x) if and only if the system 

{A'^y-c)i = 0 yiil\x) 

{A'^y-c)i>Q yiel\x) 

Cc = c 

is feasible. 

Now we are able to transform (4) into a locally equivalent problem, which 
does not explicitly depend on c and y. 

Lemma 1.x is a local optimal solution of (2) if and only if x is a (global) 
optimal solution of all problems (Aj) 

\\x — x^W —> min 
x,b 

Ax = b 

X > 0 i^i) 

Xi = 0 Mi el 

Bb = b 

with I e X{x). 

Proof. Let x be a local optimal solution of (2) and assume that there is a set 
/ € 1{x) with X being not optimal for {Aj). Then there exists a sequence 
{x'̂ jfceN of feasible solutions of {Aj) with lim x^ = x and Hx'̂  ~ ^^\\ < 

k—*oo 

||x — x l̂l for all k. Consequently x can not be a local optimal solution to (2) 
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since / G 2'(x) implies tha t all x^ are also feasible for (2). Conversely, let x be 
an optimal solution of all problems (Aj) and assume that there is a sequence 
{^^}fc€N of feasible points of (2) with lim x^ = x and Wx'^ — x^\\ < | |^ - ^^|| 

fc—>oo 

for all k. For k sufficiently large the elements of this sequence satisfy the 
condition x^ > 0 for all i ^ I{x) and due to the feasibility of x^ for (2) 
there are sets / G X(x) such that x^ is feasible for problem (Aj). Because 
I{x) consists only of a finite number of sets, there is a subsequence {x^^ }jeN 
where x^^ are all feasible for a fixed problem (Aj). So we contradict the 
optimality of x for this problem {Aj). D 

Corol lary 1. We can also consider 

\\x-x^\\ — > m i n 

x,b,I 

Ax = b 

x>0 (5^ 

Xi = 0 Wiel 

Bb = b 
I e l{x) 

to check if X is a local optimal solution of (2). Here the index set I is a 
minimization variable. Problem (5) combines all the problems (Aj) into one 
problem and means that we have to find a best one between all the optimal 
solutions of the problems (Aj) for I G X{x). 

In what follow we use the notation 

Ti{x) = {d\ 3r : Ad = r, Br = 0, di >0 \/i £ I{x) \ / , d̂  = 0 Vi € / } . 

This set corresponds to the tangent cone (relative to x only) to the feasible 
set of problem (Aj) at the point x. The last lemma obviously implies the 
following necessary and sufficient optimality condition. 

L e m m a 2. x is a local optimal solution of (5) if and only if / ' ( x , d) > 0 for 
all 

deT{x):= [j Ti{x). 
leiix) 

Remark 3. T(x) is the (not necessarily convex) tangent cone (relative x) of 
problem (5) at the point x. 

Corol lary 2. The condition I^{x) G 2r(x) implies T/o(^)(x) = T{x). 

Remark 4-^^ f is differentiable at x, then saying that / ' ( x , •) is nonnegative 
over T{x) is obviously equivalent to saying tha t 

f{x,d)>0 We convT{x) , (6) 

where the "conv" indicates the convex hull operator. 
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As shown in the next example, without differentiability assumption, (6) is 
sufficient for optimality but not necessary. 

Fig. 2. Illustration of Example 1 

Example 1. Let us consider a problem with the 11-norm restricted to the first 
two components of x as objective function and 

x O =  (!J and Z =  (i) . 

We consider the point Z. The bold marked lines in Fig. 2 are the feasible set 
of our problem and the dashed lines are iso-distance-lines with the value 1. 
So we get the convexified tangent cone as 

Finally 2 = (-1 0 2 2)T E convT(Z) is a direction of descent with fr(z ,2)  = 
-1 although Z is obviously the global optimal solution. If we choose x1 
(instead of x0 ) and the objective function lxl - x!l+ 1x2 - xt1, condition (6) 
implies the optimality of Z. 
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Remark 5. Because it is a mat ter of illustration, we considered the problem 
with inequality constraints in the lower level. For tha t reason we used the 
/ i-norm restricted to the first two components of x as objective function and 
not the / i-norm over the whole space R^. By the way, in this case x would 
not be a local optimal solution. 

Fig. 3. Illustration of the proof of Theorem 2 

4 A Formula for the Tangent Cone 

For the verification of the optimality condition (6) an explicit formula for 
the tangent cone conv T(x) is essential. For notational simplicity we suppose 
I{x) = { 1 , . . . , A:} and I^{x) = {I-\- 1,... ,k} with I < k < n. Consequently 
all feasible points of (2) sufiiciently close to x satisfy Xi = 0 for all i € I^(x). 
We pay attention to this fact and consider the following relaxed problem: 
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IIX — x^ll — > m i n 
x,b 

Ax = b 

Xi>0 i=l,...J (7) 

Xi = 0 i = I -\-1,... ,k 

Bb = b. 
In what follow we use the notation 

TR{X) = {d\3r: Ad = r, Br = 0, di >0 i = 1,... ,1, di = 0 i = l + l,.,. ,k}. 

This set corresponds to the tangent cone (relative x) of (7) at the point x. 
Since I^ C I for all / € X(x), it follows immediately tha t 

c o n v r ( x ) = coneT(x) C TR{X) . (8) 

The point x is said to satisfy the full rank condition, if 

span({yli : i ^ I{x}) = R ^ , (FRC) 

where Ai denotes the ith column of the matrix A, 

Example 2. All non-degenerate vertices of Ax = 6, x > 0 satisfy (FRC). 

This condition allows us now to establish equality between the cones above. 

T h e o r e m 2. Let (FRC) be satisfied at the point x. Then equality holds in 
(8). 

Proof, Let d be an arbitrary element of TR^X)^ tha t means there is a f with 
Ad = r, Br = 0, cî  > 0 i = 1 , . . . , /, dj = 0 z = / + 1 , . . . , /c. We consider the 
following linear systems 

Ad = Si^jf 

dj = dj (Sj) 

di = 0 z = 1 , . . . , /c, i 7̂  j 

for j = 1 , . . . , /, where Sij = 1 ii j = 1 and Sij = 0 ii j ^ 1, These systems 
are all feasible because of (FRC). Furthermore let d^^.., ^S be (arbitrary) so
lutions of the systems ( S i ) , . . . , (5/) respectively. We define now the direction 

/ , _ _ 
d= Yl d^ ^^^ S^^ di = di for i = 1 , . . . , /u as well as Ad = Ad = f. Because 

j = i 

we chose arbitrary vectors d^,... ,d^ it is possible tha t d ^ d. But we can 
achieve equality with a translation of the solution d^ by a specific vector of 
Af{A) = {z : Az = 0}, Therefore we define d^ := d^ -\- d — d^ and because d^ 
is feasible for (^i) and di = di for i = 1,... ,k as well as Ad = Ad = f we 
get d] = 0 for all z = 2 , . . . , A: and Ad} = A{d^ •i-'d-d) = f-\-f-f = f. Hence 
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d^ is also a solution of (AS'I). Thus we have d} + ^ d^ = d — d-\-J2 ^^ = d. As 
3=2 j=l 

a result of the definition of the set I^ (x) there are index sets Ij € l{x) with 
j ^ Ij for all j G { 1 , . . . , / } = I{x) \ I^{x). So d^ is an element of the tangent 
cone of problem (Aj^) and d^ are elements of the tangent cones of the prob
lems {AJ.) for J* = 2 , . . . , /, see the definition of these cones. Finally d is the 
sum of a finite number of elements of T{x) and therefore TR(X) C coneT(x) . 
D 

Fig. 4. Illustration of Example 3 

By combining Lemma 2 and Remarks 2 and 4, one obtains: 

Corol lary 3 . Let x be a point of differentiability of f. Then, at most n 
systems of linear equalities\inequalities are needed to be investigated in order 
to compute the index set I^{x). Furthermore, verification of local optimality 
of a feasible point of problem (2) is possible in polynomial time. 
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Example 3. This example will show that (FRC) is not necessary for equality 
in (8). 

X2 — X4 = 1 

2a;i + 2^2 - xs -\- X5 =3 
2x2 - Xs + xe = 1 

2xi -\- X3 — X7 —3 
Xs + X8 = 3 

Xi >0 

B - { ( 1 3 1 3 3 ) ' ^ } and C = {c=-ef^-{-t{2ef^+3ef^ - ef^)-\-s{3ef^-
63 ) : t,s e M}. Consider the point x = ( 1 , 1 , 1 , 0 , 0 , 0 , 0 , 2 ) ^ . Hence we get 
I{x) = {4 ,5 ,6 ,7} , /o = 0 and TR{X) = {d : Ad = 0, di > 0 Vz € I{x)}. 
The feasible region of (5) consists of the four faces 0:4 = 0, X5 = 0, XQ = 0 and 
X7 = 0 {t = s = 0] t = l,s = 0; t = 0, 5 = 1 respectively t = —|, 5 = | ) . 
Obviously we have TR{X) = coneT{x), Now delete the second vector in C, 
tha t means C = {c= -e^^^ + t (2e f ^ + 3e^^^ -ef^) : t € R } . Then we also get 
/^ = 0. Tha t is why the tangent cone of the relaxed problem is the same as 
above. But the convexified tangent cone conv T{x) of (5) is a proper subset 
of this cone. Because the feasible set consists only of the two faces X4 = 0 
and x^ = 0, the cone conv T{x) is spanned by the four bold marked vertices 
where the apex of the cone is x, see Fig. 4. 
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