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Summary . A new way is presented to define for minimum cost spanning tree (mcst) 
games the irreducible core, which is introduced by Bird in 1976. The Bird core corre
spondence turns out to have interesting monotonicity and additivity properties and 
each stable cost monotonic allocation rule for mcst-problems is a selection of the Bird 
core correspondence. Using the additivity property an axiomatic characterization of 
the Bird core correspondence is obtained. 

1 Introduction 

One of the classical problems in Operations Research is the problem of finding 
a minimum cost spanning tree (mcst) in a connected network. For algorithms 
solving this problem see [16] and [20]. Glaus and Kleitman [8] discuss the 
problem of allocating costs among users in a minimum cost spanning tree. 
This inspired independently [3] and [13] to construct and use a cooperative 
game to tackle this cost allocation problem. 

In the seminal paper of Bird [3] a method is indicated how to find a 
core element of the minimum cost spanning tree game (mcst game) when 
a minimum cost spanning tree is given. Further he has introduced, using a 
fixed mcst, the irreducible core of an mcst game, which is a subset of the 
core of the game, and which we will call in this paper the Bird core. The 
Bird core is central in this paper. First, we will give a new "tree free" way 
to introduce the Bird core by constructing for each mcst-problem a related 
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problem, where the weight function is a non-Archimedean semimetric. The 
Bird core correspondence turns out to be a crucial correspondence if one 
is interested in stable cost monotonic allocation rules for mcst-problems. In 
fact, the Bird core is the "largest" among the correspondences which are cost 
monotonic and stable. 

The question of the existence of cost allocation rules which are cost mono
tonic is central in applied economic frameworks where connection costs may 
increase or decrease in time. In the paper of Dutta and Kar [10], cost mono
tonic allocation rules have been studied, where cost monotonicity means that 
an agent i does not pay more if the cost of a link involving i goes down, 
nothing else changing in the network. 

Actually, our concept of cost monotonicity is stronger than the concept of 
cost monotonicity introduced in [10], because we simply impose that if some 
connection costs go down, then no agents will pay more (as in the strong cost 
monotonicity property used by [2]). Moreover, we introduce a related concept 
of cost monotonicity for multisolutions in mcst situations which generalize our 
concept of cost monotonicity for mcst solutions. 

The Bird core has also an interesting additivity property i.e. the Bird core 
correspondence is additive on each Kruskal cone in the space of mcst-problems 
with a fixed number of users. The additivity on Kruskal cones can be used to 
find an axiomatic characterization of the Bird core correspondence. 

The outline of the paper is as follows. Section 2 settles notions and nota
tions. In Section 3 the non-Archimedean semimetric is introduced and used to 
define in a canonical (tree independent) way the reduced game and the Bird 
core. The relations between stable cost monotonic rules and the Bird core are 
discussed in Section 4. An axiomatic characterization of the Bird core is given 
in Section 5. Section 6 concludes. 

2 Preliminaries and Notations 

An (undirected) graph is a pair < V,E >, where y is a set of vertices or 
nodes and E is a set of edges e of the form {i,j} with i,j € V, i ^ j . 
The complete graph on a set V of vertices is the graph < V^Ey >, where 
Ey = {{hj}\hj ^ y 2ind i ^ j}. A path between i and j in a graph <VjE> 
is a sequence of nodes (io,n, • •. ,̂ fc), where i = io and j = ik, k > 1, and 
such that {isyis-\-i} ^ E for each 5 € {0 , . . . , /s - 1}. A cycle in < F, E > is a 
path with all distinct edges from i to i for some i e V. A path (io, ̂ i, • • •, f̂c) 
is without cycles if there do not exist a,6 G { 0 , 1 , . . . ,/c}, a ^ 6, such that 
^a = %' 

Two nodes i^j G V are connected m < V^ E > \ii = j ox if there exists a 
path between i and j m <V^E >, A connected component oiV m <V^E > 
is a maximal subset of V with the property that any two nodes in this subset 
are connected in < V^E >. Given a path P = (̂ 05 Hj • • • ? f̂c) between i and 
j in a graph < V,E >, k > 1, we say that i> G F is a node in P ii v = im 
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for some m £ {0 , . . . , A;}; we say that an edge {r,t} G ^ is on the path P 
or, equivalently, that i is connected to j via the edge {r, t} in the path P , if 
there exists m G {0 , . . . , A; — 1} such that r = im and t = im+i or t = im and 
r = im+i-

Now, we consider minimum cost spanning tree (mcst) situations. In an 
mcst situation a set AT = { 1 , . . . , n} of agents is involved willing to be con
nected as cheap as possible to a source (i.e. a supplier of a service) denoted 
by 0. In the sequel we use the notation AT' for AT U {0}. An mcst situation can 
be represented by a tuple < N', EN' ^W >, where < AT', EN' > is the complete 
graph on the set AT' of nodes or vertices, and w : EN' —^ M+ is a map which 
assigns to each edge e € E^' a nonnegative number w{e) representing the 
weight or cost of edge e. We call w a weight function. If w{e) G {0,1} for 
every e € E^f, the weight function w is called a simple weight function, and 
we refer then to < AT', EjsfyW > as a simple mcst situation. Since in our paper 
the graph of possible edges is always the complete graph, we simply denote 
an mcst situation with the set of users AT, source 0, and weight function w 
by < N'yW >. Often we identify an mcst situation < N',w > with the corre
sponding weight function w. We denote by W ^ the set of all mcst situations 
< N\w > {oT w) with node set N'. For each S C N one can consider the 
mcst subsituation < S',w\s' >» where S' = S U {0} and w\s' - Es' —> M+ is 
the restriction of the weight function w to Es' Q Ejsf, i.e. w^s'i^) = w{e) for 
each e G Es'. 

Let < AT', ii; > be an mcst situation. Two nodes i and j are called {w, N')-
connected ii i = j or if there exists a path (ioy-yik) from i to j , with 
w{{is,is-\-i}) = 0 for every s G {0 , . . . , /u — 1}. A (w, N')-component of A/"' is 
a maximal subset of N' with the property that any two nodes in this subset 
are (t/;, Ar')-connected. We denote by Ci{w) the (ly, Ar')-component to which 
i belongs and by C{w) the set of all the (li;, Ar')-components of AT'. Clearly, 
the collection of {w, Ar')-components forms a partition of N\ 

We define the set ^Ej^f of linear orders on E^' as the set of all bijections 
a : { 1 , . . . , |£^iv'|} ~^ ^N') where \Ej^t\ is the cardinality of the set Ei^>. For 
each mcst situation < N'^w > there exists at least one linear order a G ̂ Ej^f 
such that w{a{l)) < w{a{2)) < . . . < w{a{\EN'\))' We denote by w"" the 
column vector {w{a{l)),w{a{2)), ... ,w{a{\EN'\))) . 

For any a G ^EJ^, we define the set 

K"" = {we R+^' I w{a{l)) < w(a{2)) <...< w{a{\EN'\))}, 

which we call the Kruskal cone with respect to a. One can easily see that 

Uaei^s -^^ ~ M^^'. For each a G ̂ EJ^, the cone K^ is a simplicial cone 

with generators e '̂'̂  G K^, A; G {1 ,2 , . . . , I^'AT'I}, where 

e< '̂̂ (cr(l)) = e^'^((j(2)) = . . . = e^^^{a{k - 1)) = 0 
and (1) 

e '̂̂ ((7(A;)) = e^^^{a{k + 1)) = . . . = e^^^{a{\EN>\)) = 1. 
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[Note that e '̂̂ (cr(A;)) = 1 for all A; € {1 ,2 , . . . , |£^iv'|}]- This implies that each 
w € K^ can be written in a unique way as non-negative linear combination 
of these generators. To be more concrete, for w G K^ we have 

w = ^(a(l))e^'i + Y^ (^(^(^)) - ^(^(^ - 1))) "̂'̂ - (2) 
k=2 

Clearly, we can also write W ^ = (JO-ESE ^^ "> ^^ ^^ identify an mcst situa

tion < N'^w > with w. 
Any mcst situation w G W^ gives rise to two problems: the construction 

of a network F C Epj> of minimal cost connecting all users to the source, and 
a cost sharing problem of distributing this cost in a fair way among users. 
The cost of a network F is w{F) = Yleer'^i^)' ^ network F is a, spanning 
network on *S" C N' if for every e G i^ we have e G Es' and for every 
i € S there is a path in F from i to the source. Given a spanning network 
F on AT' we define the set of edges of F with nodes in S' C N' as the set 
^S' = {{hj}\{ij} e F and ij G S'}, 

For any mcst situation w e W^ it is possible to determine at least one 
spanning tree on AT', i.e. a spanning network without cycles on AT', of mini
mum cost; each spanning tree of minimum cost is called an mcst for N' in w 
or, shorter, an mcst for w. Two famous algorithms for the determination of 
minimum cost spanning trees are the algorithm of Prim ([20]) and the algo
rithm of Kruskal ([16]). The cost of a minimum cost spanning network F on 
N' in a simple mcst situation w equals |C(w;)| — 1 (see Lemma 2 in [19]). 

Now, let us introduce some basic game theoretical notations. A cooperative 
cost game is a pair (N^c) where N = { 1 , . . . ,n} is a finite {player-)set and 
the characteristic function c : 2^ —> R assigns to each subset 5 G 2^ , called a 
coalition, a real number c(5), called the cost of coalition Sy where 2^ stands 
for the power set of the player set AT, and c(0) = 0. The core of a game (AT, c) 
is the set of payoff vectors for which no coalition has an incentive to leave the 
grand coalition AT, i.e. 

C{c) = {xe R^l Y^Xi< c{S) V5 G 2^ \ {0}; ^ x, = c{N)}. 
ies ieN 

Note that the core of a game can be empty. A game (AT, c) is called a concave 
game if the marginal contribution of any player to any coalition is more than 
his marginal contribution to a larger coalition, i.e. if it holds that 

c{S U {i}) - c{S) > c{T U {%}) - c{T) (3) 

for alH G AT and all 5 C T C AT \ {%}. 
An order r of AT is a bijection r : { l , . . . , | A r | } - ^ A r . This order is denoted 

by T(1) , . . . , T{n)y where r(i) = j means that with respect to r , player j is in 
the z-th position. We denote by Ejsi the set of possible orders on the set N. 
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Let (AT, c) be a cooperative cost game. For r G Z'AT , the marginal vector 
m'^{c) is defined by 

mi{c) = c{[i,T]) - c{{i,r)) for all i e N, 

where [i,r] = {j € N : T~^{j) < T~^{i)} is the set of predecessors of i with 
respect to r including i, and (i ,r) = {j e N : T~^{j) < T~^{i)} is the set of 
predecessors of i with respect to r excluding i. In a coherent way with respect 
to previous notations, we will indicate the set [z,r] U {0} and (z,r) U {0} as 
[2,r]' and (i,T)', respectively. For instance, for each k € { l , . . . , | iV|} and for 
each / e {2, . . . , | iV|}, the set [T(fc),r]' = {0 , r ( l ) , . . . ,r(A;)} and ( r ( / ) , r ) ' = 
{0 , r ( l ) , . . . , r ( / — 1)}, which will be denoted shorter as [r(A;)]' and (r(/))', 
respectively. 

Let < N\w > he an mcst situation. The minimum cost spanning tree 
game {N,c^) (or simply c^), corresponding to < N^,w >, is defined by 

Cw{S) = mm{w{r)\r is a spanning network on S'} 

for every S € 2^\{0}, with the convention that c^(0) = 0. 
We denote by MCST^ the class of all mcst games corresponding to mcst 

situations in W ^ . For each a G ̂ EJ^, ? we denote by Q^ the set {c^j \ w G K^} 
which is a cone. We can express MCST^ as the union of all cones G*̂ , i.e. 
MCST^ = (JaeUE , ^ ' ' ' ^^^ ^^ ^^^^^ ^̂ ®̂ *^ P^^^* ^^* *^^* MCSr^ itself 
is not a cone if |Ar| > 2. 

The core C(c^ )̂ of an mcst game c^ G MCST^ is nonempty ([14], [3]) and, 
given an mcst F (with no cycles) for N' in mcst situation w^ one can easily 
find an element in the core looking at the Bird allocation in w corresponding 
to r", i.e. the cost allocation where each player i E. N pays the edge in F which 
connects him with his immediate predecessor in < N'^F >. 

We call a map F : W^ —^ R^ assigning to every mcst situation w a 
unique cost allocation in M^ a solution. A solution F is efficient if for each 

where F is a, minimum cost spanning network on AT' for w. 

3 The Non-Archimedean Semimetric Corresponding to 
an MCST Situation 

Let w € W ^ . For each path P = {ioyiiy -- yik) firom i to j in the graph 
< N^,EN' > we denote the set of its edges by E{P)^ that is E{P) = 
{{^Oihj^lhih}^" -ylik-iyik}}' Moreover, we call maxeg£;(p) w;(e) the top 
of the path P and denote it by t{P), We denote by Vfj the set of all paths 
without cycles from i to j in the graph < N'^E^f >. 
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Now we define the key concept of this section, namely the reduced weight 
function. 

Definition 1. Let w G W^ . The reduced weight function id is given by 

'i^ihj) = min max w(e) = min t(P) (4) 
^ ^ Pev(^/eeE{P) ^ ^ pevr/ 

for each i,j € N', i ^ j . 

Now, extending w by putting w{i^i) = ^ for each i £ N',we obtain a nonneg-
ative function on the set of all pairs of elements in N', The obtained reduced 
weight function w is a. semimetric on N' with the sharp triangle inequality, 
i.e. a non-Archimedean iJ^K-)semimetric. In formula, for each i^j^k G N' 

y^iijj) ^ 0 and w{iji) = 0 (non-negativity); 
w{ij) = w{j,i) (symmetry); 
w{i,k) < ma.x{w{i,j),w{j,k)} (sharp triangle inequality). 

The proof is left to the reader. If ti; > 0, then -iD is a non-Archimedean metric 
on the set N'. 

For the reduced weight function w we have a special property related to 
triangles (the isoscele triangle property), as the next proposition shows. 

Proposition 1. Let w be the reduced weight function corresponding to w E 
W ^ and ijjjk G AT' such that w{i,j) < iv{i,k) and w{i^j) < w(k,j). Then 
w{i,k) = w{j,k). 

Proof By the sharp triangle inequality w{i^k) < max{t()(i,^'),'U)(j, A;)} = 
w{j,k) and w{j^k) < max{'u)(j,i),ti;(2. A;)} = w(i,k). So w{i^k) = w{j,k). 
D 

This property for NA-semimetrics will be useful in proving that there are 
many minimum cost spanning trees for {N',w)^ as we see in Theorem 1. 

In the sequel we simply refer to w as the mcst situation which assigns to 
each edge {i,j} G EN' the reduced weight value as defined in equality (4). 
Further, we will denote by W ^ C W ^ the set of all NA-semimetric mcst 
situations which assign to each edge {i^j} G E^f the distance w{i,j) provided 
by a NA-semimetric w on N'. 

Example 1. Consider the mcst situation < N',w > with N' = {0,1,2,3} 
and w as depicted in Figure 1. Note that w G K^, with cr(l) = {1,2}, 
(7(2) = {1,0}, (7(3) = {1,3}, (7(4) = {3,0}, (7(5) = {2,0}, a{6) = {2,3}. 
The corresponding mcst situation w is depicted in Figure 2. 

One main result in this section. Proposition 2, concerns an interesting relation 
which can be established between the mcst situation w and a minimal mcst 
situation w^ as defined by Bird [3], where F is an mcst for iV' in w. Recall 
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16 

Fig. 1. An mcst situation with three agents. 

10 

Fig. 2. The mcst situation w corresponding to w. 

that given an mcst situation w G W ^ and an mcst F for N' mw, the minimal 
mcst situation w^ is defined (cf. Bird, 1976) by 

w^{{iJ}) = m^xw{e) = t{Pfj), 
eePf, 

(5) 

where P/^ € Vfj is the unique path in F from i to j . 

Proposition 2. Let w G W^ and i,j e AT'. Let F be an mcst for N' in w 
and Pfj he the unique path in F from i to j . Then 

t{Pf^)= rain t{P). (6) 

Proof. Let P* € argmiup^piy' t{P) and let e* be an edge on P* such that 

t(P*) = t/;(e*). Let e = {m,n} be an edge on Pf^ with w{e) = t{Pfj). We 
have to prove that w{e) = w{e*). If so, then it follows immediately that 
miiip^^N/ t{P) = w{e*) = w{e) = t{P^^). If e* = e then of course w(e*) = 
w{e). Otherwise, first note that by definition of e* 

w{e) > w{e*). (7) 

Let Sm be the set of all nodes r e N' such that n is not on the path from r 
to m in < iV', P >; let Sn be the set of nodes r £ N' such that m is not on 
the path from r to n in < AT', P >, i.e. 
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Sm = {reN'\niP^,] and Sn = {r e N'\mi P^,}. 

Note that {SniSm} is a partition of N' and nodes in Â ^ are connected in 
< iV ' , r > to nodes in Sm via edge {m^n}. Moreover, by the definition of a 
path without cycles, i, j must belong to different sets of the partition {Sn-, Sm)-
So without loss of generality we suppose that i e Sm and j e Sn- Consider 
the set of edges £?+ = {{t,v}\t e Sm,v e 5^}. Then, 

td;({m, n}) = w{e) < w(e), for each e G E"^. (8) 

In order to prove inequality (8), suppose on the contrary that w;({m, n}) > 
w{e) for some e G E'^. Then the graph F'^ = (F \ {e}) U {e} would be a 
spanning network in AT' cheaper than T, which yields a contradiction. By 
the definition of a path, for each P G Vfj there exists at least one edge 
e G E'^ such that e is on the path P. By inequality (8), it follows that 
t{P) > w{e) > w{e). This implies that w(e*) = minp^p^' t(P) > w{e). 
Together with inequality (7) we have finally w{e*) = w{e), D 

As a direct consequence of Proposition 2 we have that the mcst situation 
w coincides, for each mcst F for w, with the minimal mcst situation w^ 
introduced by [3]. So w^ = w^ for each pair of mcst F,F', a fact which is 
already known (cf. [1, 11, 12]), but with a complicated proof. Let w G W^ 
and let F be an mcst for w. Let r G Ei^. We say that F and r fit (or, also, 
that r fits with F) if EF^^^U^ Er^2)Y^ • • -5 -^h-riivni' ^̂ ® spanning networks on 
sets of nodes [r(l)]', [T{2)]\ . . . , [rdATI)]', respectively. 

Example 2. In Figure 3 is depicted an mcst, denoted by F, for the mcst sit
uation w of Figure 2. Consider TI,T2 G Z'iv such that T I (1 ) = 1, TI(2) = 2, 
ri(3) = 3 and r2(l) = 1, T2(2) = 3, r2(3) = 2. Note that both n and r2 fit 
with r* but none of the other four elements of EN fits with F. 

® 
Fig. 3. An mcst F for the mcst situation w of Figure 2. 

Remark 1. Let K; G W ^ , let F be an mcst for w and let r G î jv be an order 
such that F and r fit. Then, 
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J2 w{e) = U[r{r)]) (9) 

for each r € { 1 , . . . , |Ar|}. So Eff.y is an mcst for the most situation 

< lr{r)y,w\[r{r)y > 

Remark 2. Let w G W^ , let F be an mcst for w and let r G I!N be an 
order such that F and r fit. The marginal vector m^ic^) of the mcst game 
Cyj coincides with the Bird allocation in w corresponding to F and therefore 
^^(ciy) € C(c^), as is proved in [14]. 

Remark 3. For each a € ^EJ^, there exists a tree F which is an mcst for every 
w G K^\ further, there exists a r G SN such that F and r fit. 

The considerations in Remarks 1-3 together with the next lemma prelude to 
Theorem 1. 

Lemma 1. Let w G VV^ , let F be an mcst for w and let r G IJN be such 
that F and r fit. Let r G {1, • . . , \N\ — 1} and let r' G E^ he such that 
T'{r) = T{r + 1), T^(r + 1) = T{r) and T'{i) = r(z) for each i G { 1 , . . . , |iV|} \ 
{r, r + 1 } (i.e. r' is obtained from r by a neighbor switch ofr{r) and T{r-\-l)). 
Then there is an mcst F' for w such that r' and F' fit. 

Proof. If T{r) is not the immediate predecessor of r ( r + 1) in F then take 
F' = F and then r ' and F' fit. If r{r) is the immediate predecessor of r ( r +1) 
in r , then let k G [T{r — 1)]' be the immediate predecessor of T{r) in F. First, 
note that 

w{{k, T{r -f 1)}) > w{{k, r{r)}) (10) 

and 
w{{k,r{r + 1)}) > w{{r{r),T{r + 1)}) (11) 

because F is an mcst for w. Consider two cases: 

Case 1: w{{k,T{r)}) < w({T{r),T{r + 1)}). Take F' = {F \ {{T{r),T{r + 
1)}}) U {{k^T{r H- 1)}}. By inequality (10) and the isoscele triangle property 
w{{k,r{r + 1)}) = w{{T{r),T{r + 1)}) and then F' is an mcst in w and F' 
and r ' fit. 

Case 2: w{{r{r),T{r 4- 1)}) < w{{k,T{r)}). Take T' = {r \ {{k,T{r)}}) U 
{{k, r(r4-l)}}. By inequality (11) and the isoscele triangle property w{{k, T{r)}) 
= w{{k, r{r + 1)}) and then JT' is an mcst in w and i~" and T' fit. D 

Theorem 1, Let w £ W^'.Then 

i) for each r G E^ there exists an mcst F such that F and r fit. 
a) Let Cw be the mcst game corresponding to w. Then m'^{c^) G C{cyj) for all 

T G EN and Cyj is a concave game. 
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Proof, i) Let F be an mcst for w. Then there is at least one f € E^ such that 
r and f fit. Further each r can be obtained from f by a suitable sequence of 
neighbor switches and so, by applying Lemma 1 repeatedly, we complete the 
proof of assertion i). 

ii) Let r be an mcst in N' for w and let r € EN such that F and r fit. By 
Remark 2, it follows that m7'(C'u}) coincides with the Bird allocation corre
sponding to F. Hence, again by Remark 2, rri^{c^) € C{cyj). Finally, by the 
Ichiishi theorem (Ichiishi (1981)) telling that a game is concave iff all marginal 
vectors are in the core of the game, it follows that Cyj is a concave game. D 

Let w € W ^ . We call the core of the mcst game Cyj the Bird core of the 
mcst game Cyj and denote it by BC{w). By Theorem 1 it directly follows that 
the Bird core BC{w) of the mcst game Cyj is the convex hull of all the Bird 
allocations corresponding to the minimum cost spanning trees for w. Note 
also that 13C{w) C C(c^), since Cyj{S) < Cyj{S) for each 5 € 2^ \ {0} and 
c^{N) = cUN){cL[n]). 

Example 3. Consider the mcst situation w of Figure 1 and the corresponding 
reduced mcst situation w of Figure 2. Then 

^W 

^w 

{1} 
8 
8 

{2} 
12 
8 

{3} 
12 
10 

{1,2} 

13 
13 

{2,3} 

24 
18 

{1,3} 

18 
18 

{1,2,3} 

23 
23 

There are six minimum cost spanning trees for w. Three of them lead to the 
Bird allocation (8,5,10) and the other three to the Bird allocation (5,8,10). 
Further, rri'icii,) = (8,5,10) for r € {(1,2,3), (1,3,2), (3,1,2)} and rri'icii,) = 
(5,8,10) for T G {(2,1,3), (2,3,1), (3,2,1)}. The Bird core BC{w) is the convex 
hull of the marginal vectors of the game Cyj^ that is BC{w) = conv{(8,5,10), 
(5,8,10)} cC(c^) . 

4 Monotonicity Properties 

In [23] a class of solutions for mcst situations which are cost monotonic is 
introduced: the class of Obligation rules. Roughly speaking, we define a cost 
monotonic solution for mcst situations as a solution such that, if the costs of 
some edges increase, then no agent will pay less. More precisely: 

Definition 2. A solution F : W ^ -^ R^ is a cost monotonic solution if for 
all mcst situations w^w' G W ^ such that w{e) < w'{e) for each e G E^i, it 
holds that F(w) < F{w'). 

In this section we introduce a related concept of cost monotonicity for multiso-
lutions on mcst situations. We call a correspondence G : W^ -^ M^ assigning 
to every mcst situation w a set of cost allocations in M^ a multisolution. 
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Definition 3. A multisolution M : W^ -^ R^ is a cost monotonic multiso-
lution if for all mcst situations w,w' G W^ such that w{e) < w\e) for each 
e G Eisff, it holds that 

M{w) C campr~{M{w')) and M{w') C compr^{M{w)), 

where compr~{B) = {x £ R^|36 G B s.t. xi <bi\/i £ N} and campr^{B) = 
{x G R^|36 G B s.t. hi <Xi'ii£ N}, for each B C R^. 

Before discussing properties of the Bird core as multisolution for mcst situ
ations, we introduce the following propositions dealing with mcst situations 
originated by NA-semimetrics. 

Proposition 3. Let w G \V^ and let F be an mcst for w and r G UN be 
such that r and r fit. Then 

^TU)M = ^ min w(k,T{j)), 

for each j e {2 , . . . , |iV|}. 

Proof Let j G {2 , . . . , \N\}. Note that by Remark 1 

Ku)M = u[rU)])-uiT{j)))= Yl ^(^)- E (̂̂ )- (12) 

Since F and r fit, we have ^[rO)]' \^(^(j))' = {{^(j)) ^}}) ^^^ some s G (r(j)) ' . 
Because Ef^-sy is an mcst for "W ĵfrO)]' > we have 5 G argminfce(rO))' "^({^j ^U)})' 
So 

From (12) and (13) follows the proposition. D 

Proposition 4. Let w^w' £ W^ be NA-semimetric mcst situations such that 
w{e) < w'{e) for each e G Ejs!'. Then it holds that 

'm^{cw) ^ rri^ic^') for each r G UN-

Proof Let r G UN- By Theorem 1 there exist two mcst's F and F' for tt; and 
If;', respectively, such that they both fit with r. First note that 

^lii){^w) = W{0,T{1)) < W\0,T{1)) = m;(i)(c^/). 

Further 
'^lij)M = minfee(TO))'^(^,T(j)) 

<mmke{r(j)yw'{k,T{j)) 

for each j G {2, . . . , |Ar |}, where the first and the second equality follow by 
Proposition 3 and the inequality follows from w{e) < w'{e) for each e G E^'. 
D 
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Theorem 2. The correspondence EC is a cost monotonic multisolution. 

Proof. Let w,w' e W^' be such that w{e) < w'{e) for each e G E^', By 
Theorem 1 and properties of concave games, BC{w) is a convex set whose 
extreme points are the marginal vectors of the game ĉ o, i.e. each element 
of BC{w) is a convex combination of marginal vectors of the game ĉ y. Let 
X e BC{w). There exist numbers a'^, with r € UN^ 0 < a'̂  < 1, YITEUN ^^ — ^ 
and 

x= Y. o^^ rn^Ci,). (14) 
reUN 

Hence 
^ = J2reUN ^'" ^""(c^) 

< E r G 2 : . ^ ' ^ ' ( ^ - - 0 (15) 

where the inequality follows by Proposition 4 and the fact that w{e) < w\e) 
for each e € EN' and the second equality by Theorem 1, implying that 
BC{w) C compr~{BC(w')). Using a similar argument the other way around 
in relations (15), it follows that BC{w') C compr'^{BC{w))^ which concludes 
the proof. D 

To connect the cost monotonicity of the Bird core with cost monotonicity of 
Obligation rules, we need Proposition 5. 

Proposition 5. Let F : W^ -^ R^ he a cost monotonic and efficient solu
tion. Then 

i) F{w) = F{w) for every w € W ^ ; 
a) If F is also stable (i.e. F(w') € C{cy^>) for every w' € W ^ ) , then F{w) G 

BC{w) for every w G W^ . 

Proof. Let w G W^ . First note that by Definition 1, 

w{e) < w{e) for each e G E^'- (16) 

Let r be an mcst for w. Consider first i). By inequality (16) and cost mono
tonicity of Fy F{w) < F{w). On the other hand F is an mcst for w too and 
by efficiency of F 

ieN ieN 

So, F{w) = F{w). Consider now ii). By inequality (16), 

Cw{S) < c^{S) for all S C N, 

and by Definition 1 
Cyj{N) = cUN) = w{r). 

Then, by stability of F , F{id) G C(c^) = BC{w) C C(c^) and by result (i) 
F{w) G BC{w) too. D 
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Remark 4- Proposition 5 can be extended to multisolutions which are cost 
monotonic and efficient (Property 1 in next section) multisolutions. Prom this 
follows that BC is the "largest" cost monotonic stable multisolution. 

Remark 5. As previously said, in [23] we have introduced the class of Obliga
tion rules and proved that they are both cost monotonic and stable solutions 
for mcst situations. So, by Proposition 5 it follows that for each w G W ^ , 
the set T{w) = {<l>{w) \ (/> is an Obligation rule} is a subset of the Bird core 
BC{w) and T{w) = T{id). 

5 An Axiomatic Characterization of the Bird Core 

In order to introduce an axiomatic characterization of the Bird core, we need 
to prove the following fact for NA-semimetric mcst situations. 

Lemma 2. Let w,w' € W^ and let a € ^EJ^, ^e such that w,w' G K^. Let 
a, a ' > 0. Then aw, a'w', aw + a'w' € K^ for some a € ^EJ^, • 

Proof. By relation (4), for each edge e G Ej^>, there is an edge e G Ejsc such 
that w{e) = w{e): given that e = {i, j } , e is such that w[e) = minp^^iv' t{P). 
Note that for each Wi in the same cone K'^ as w we have Wi{e) — w{e). This 
implies that for all pairs of edges ei, 62 € E^' 

w{ei) < id{e2) ^ w{ei) < w{e2) <^ wi{ei) < wi{e2). 

So, for each a € ^£;^, we have: 

WGK^ <:^w' £ K^. 

Using this fact, respectively, for aw, a'w' and aw + a'w' G K^ in the role of 
Wi, we obtain 

Hj e K^ <=^ aw, a'w', aw-\-a'w' G K^, 

for each a G ̂ E^, • D 

Proposition 6. Let w,w' G W ^ and let a G ̂ EJ^, be such that w,w' G K'^. 
Let a, a' > 0. Then 

i) aw + a'w' = aw + a'w'; 

[The NA-semimetric mcst situations w,w',aw + a'w' are obtained via reduc
tion of the weight functions w,w',aw + a'w', respectively.] 

Proof i) Note that 
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aw + a'w'{{ij}) — imxip^^N' maxee£;(p) {oLw{e) + a'w'{e)) 

= aminp^pAT' maxee£;(p) w{e) 

+ a'minp^^N' maxee£;(p) w'{e) 

= aid({ij})-i-a'w'{{ij}), 

where the second equahty follows from the fact that w,w^ and aw H- a'w^ all 
belong to K""; 

ii) Note that, by Lemma 2, aw^a'w^aw-\-a'w' G i^^ for some a G ^EJ^,-

For each 5 ' € 2 ^ \ { 0 } , there is, according to Remark 3, a common mcst Fs 
for aw^ a'w' and aw + a'lt;'. Hence 

ac^(S') + Q;'C^,(5) = ^ee r^ ^^(^) + I^eefs <^'^'(e) 

= Eeer s (^^ + a't^'(e)) 

where the third equality follows by (z). D 

Some interesting properties for mult isolations on mcst situations are the fol
lowing. 

Property 1. The multisolution G is efficient (EFF) if for each w G VV^ and 
for each x G G{w) 

^Xi = w{r), 

where r* is a minimum cost spanning network for w on N'. 

Property 2. The multisolution G has the positive (POS) property if for each 
w G W^ and for each x G G{w) 

Xi>0 

for each i £ N. 

Property 3. The multisolution G has the Upper Bounded Contribution (UBC) 
property if for each w G W^ and every (it;, iV')-component C 7̂  {0} 

E Xi < min w({i,Qi\) 
iec\{o} ^^ ^ 

for each x G G{w). 

Property 4- The multisolution G has the Cone-wise Positive Linearity (CPL) 
property if for each a G ̂ E^, 5 for each pair of mcst situations w^w £ K^ and 
for each pair a, a > 0, we have 

G{aw + aw) = aG(w) + aG(w). 

[Here we denote by aG{w) + aG{w) the set {ax + ax\x G G{w),x G G{w}.] 
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Proposition 7. The Bird core BC satisfies the properties EFF, POS, UBC 
and CPL. 

Proof. Let w £ W^' and let a € UE^, be such that w e K"". Since BC{w) = 
C{cyj)y the following considerations hold: 

i) For each allocation x G BC{w)^ YlieN^i ~ '^i^) ^^^ some mcst F by the 
efficiency property of the core of the game Cw. So BC has the EFF property. 

ii) For each allocation x G BC{w), Xi > 0 for each i € N since the Bird core 
is the convex hull of all Bird allocations in the mcst t̂;, which are vectors in 
R^. So BC has the POS property. 

iii) For each (ii;, AT')-component C ^ {0} and each x G BC(w) 

^ Xi <c^{C\{0})= mm w{{i,0}) 

by coalitional rationality of the core of the game Cy). So BC has the UBC 
property. 

iv) Let a G EE^, , let w, w' G W^ ' be such that w, w' G K"^ and let a, a' > 0. 
Since the core is additive on the class of concave games (see [9]), we have 

BC{aw + a'w') = C{c^^^^,^,) = aC{c^) + a'C{c^,) = aBC{w) + a'BC{w'), 

Hence BC has the CPL property. D 

Inspired by the axiomatic characterization of the P-value ([4]) we provide the 
following theorem. 

Theorem 3. The Bird core BC is the largest multisolution which satisfies 
EFF, POS, UBC and CPL, i.e. for each multisolution F which satisfies EFF, 
POS, UBC and CPL, we have F{w) C BC{w), for each w G W^'. 

Proof. We already know by Proposition 7 that the Bird core BC satisfies 
the four properties EFF, POS, UBC and CPL. Let ^ : W^' ^ R^ be a 
multisolution satisfying EFF, POS, UBC and CPL. Let w G W^' and a G 
^E^f be such that w G K^. We have to prove that ^{w) C BC{w). First, note 
that by the CPL property of ^ 

[w{a{l))^(e''^^) 4- Yl {w{a{k)) - w{a{k - l)))lZ^(e^'^)j = ^{w). (17) 
fc=2 

Let X G XIJ{W). According to (17) there exists x̂ *̂ ' G ^{e^'^) for each k G 
{ 1 , . . . , |-£?N' 1} such that 

\EN'\ 

X = w{a{l))x^'^'' -^ Y, {w{a{k))-w{a{k-l)))x^'''\ 
fc=2 
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By the UBC property, for each k € {1,,.. ,\EN'\} and for each (e'^^^.N')-
component C ^ {0} we have 

r 0 if 0 G C 

iGC\{0} *^^\^'^ [ l i f O ^ C 

implying that 

!:<"= E E 4"<\C{e'"')\-l = e'''\r), 
ieN C6C(e«^''=)i€C\{0} 

where i"" is a minimum spanning network on AT' for the simple mcst situ
ation e '̂'̂ . By the EFF property, we have Yli^j^ xf' = e^'^{r), and then 
inequalities in relation (18) are equalities, that is 

r 0 if 0 G C 

iec\{0} [ 1 if 0 ^ a 

Now, consider the game c-^-r corresponding to the simple mcst situation e^^^, 
Note that for each 5 G 2^ \ {0}, 

c^^{S) = \{C : C is a (e^'^,iV') - component, C H S' ^̂  0,0 ^ C}| , 

which is the number of (e^'^, Ar')-components not connected to 0 in e^'^ with 
at least one node in the player set S. By (19) and the POS property, it follows 
that X!jg5 xf ' < c^^{S) and together with the EFF property we have 
x̂ *̂ ' G C(ĉ -̂fc-) = BC{e^'^). Moreover, from Proposition 6 it follows 

X = [w{a{l))x^''^' + E (^(^(^)) - ^ ( ^ ( ^ - 1)))^''^' j ^ ^(c^) = ^ ^ H -
fc=2 

Keeping into account relation (17), we have ^{w) C BC{w). D 

6 Final Remarks 

This paper deals mainly with the Bird core of an mcst situation and its mono-
tonicity and additivity properties. 

Given an mcst w e W^ and an mcst F for N' in w^ the Bird core 
has been introduced (cf. Bird, 1976) as the core of the mcst game (AT, Cy,r) 
corresponding to the mcst situation w^ defined as in relation (5). 

From a combinatorial perspective, Proposition 2 allows for a relevant re
duction in the number of operations needed to obtain the minimal mcst sit
uation corresponding to an mcst w. In fact, by means of relation (4) it is 
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not necessary anymore to solve the mcst problem in w finding an optimal 
spanning tree F and then computing w^ as defined by relation (5). 

The attention to monotonicity properties of solutions for cost and reward 
sharing situations is growing in the literature. 

In [21] attention is paid to population monotonic allocation schemes 
(pmas), in [7] and [24] to bi-monotonic allocation schemes (bi-mas) and in 
[5] to type monotonic allocation schemes. For mcst-situations, the existence 
of population monotonic allocation schemes has been established in [19]. For 
special directed mcst-situations also pmas-es exist as is shown in [17]. 

As we already said in the introduction, the problem of finding cost mono
tonic allocation rules has been tackled in [10], paying attention only to the 
agents who are directly involved in the cost increasing. In [23] so called Obli
gation rules for mcst-situations turn out to be cost monotonic (with respect 
to all the agents) and induce also pmas-es. A special Obligation rule is the 
P-value discussed in [4] (see also [12], [11], [2], [18]). 

In the axiomatic characterization of Section 5, we use very intuitive axioms 
(UBC, EFF, POS and GPL) to characterize the Bird core. Let w € W^ ' . From 
the game theoretical point of view, the UBC property together with the EFF 
property selects a subset of the imputation set of the mcst game Cyj, i.e. the 
set of imputations which also satisfy the intermediate stability conditions for 
coalitions of players that are (it;,iV')-connected. Note that for such coalitions 
checking for the intermediate stability of an allocation is very easy (just look 
at the minimum distance from the source). The POS property guarantees that 
no players should be subsidized from others according to some allocations: all 
the players must pay at least zero of the total cost. One can easily check that 
EFF, POS and UBC properties are satisfied by many allocation rules for mcst 
situations, like the Bird rule (Bird 1976), Obligation rules ([23]), Construct & 
Charge rules ([18]) but not from classical game theoretical solutions, like the 
Shapley value, for example. For a deeper game theoretical view of the CPL 
property, we refer to [19], where CPL formed the base for a decomposition 
theorem showing that every mcst game can be written as nonnegative com
bination of mcst games corresponding to simple mcst situations. The CPL 
property for solutions has been also used to axiomatically characterize the 
P-value in [4]. 

For further considerations on the additivity properties of solutions see also 
[6], [22]. 
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