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Summary. Several characterizations of convexity for totally balanced games are 
presented. As a preliminary result, it is first shown that the core of any subgame 
of a nonnegative totally balanced game can be easily obtained from the maximum 
average value (MAV) function of the game. This result is then used to get a charac­
terization of convex games in terms of MAV functions. It is also proved that a game 
is convex if and only if all of its marginal games are totally balanced. 

1 Introduction 

This paper contains some characterizations of convexity for totally balanced 
games. Totally balancedness was defined by Shapley and Shubik [8] as the 
property of having all subgames with nonempty core. These authors proved 
tha t totally balanced games coincide with market games generated by ex­
change economies whose traders have continuous concave utility functions. 
Another characterization of totally balanced games, namely, as flow games, 
was provided by Kalai and Zemel [3]. A flow game arises from a directed net­
work each of whose arcs has a given capacity and belongs to a unique player; 
the worth of a coalition is the maximum flow tha t can be sent from the source 
to the sink by using only the arcs owned by its members. The totally balanced 
character of flow games is a consequence of the max flow-min cut theorem of 
Ford and Fulkerson [2], according to which the maximum source to sink flow 
equals the minimum capacity of a cut (i.e., of a set of arcs such that , when 
removed from the network, nothing can be sent from the source to the sink). 
Nonnegative totally balanced games are also known to be equivalent to lin­
ear production games in the sense of Owen [6]. Indeed, to any nonnegative 
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game one can associate the linear production game in which the resources are 
the players, each of which owns only one unit of himself, the goods are the 
nonempty coalitions, each of which can be sold at a price equal to its worth, 
and to produce one unit of a given coalition one requires one unit of each of 
its members. One can easily show that the linear production game so defined 
is precisely the totally balanced cover of the initial game (i.e., its smallest 
totally balanced majorant). Note that this linear production representation of 
a nonnegative totally balanced game needs n resources (n being the number 
of players) and 2^ — 1 goods. An alternative linear production representation, 
requiring just one good and at most 2"̂  — 1 resources, can be deduced from 
the observation, due to Kalai and Zemel [3], that the class of totally balanced 
games is the span of the additive games by the minimum operation. 

Section 2 deals with nonnegative totally balanced games. For these games, 
a duality theory has been proposed by Martinez-Legaz [5], relating them to 
a special class of convex functions. To each nontrivial nonnegative game, one 
associates its maximum average value (MAV) function, which is convex and 
contains all the information on the game provided that it is totally balanced. 
Since totally balanced games have all subgames with nonempty core, the nat­
ural question arises how to compute these cores from the MAV function of 
the game. A simple answer to this question is given in Section 3, where it 
is shown that the computation of the core of a subgame reduces to minimiz­
ing the MAV function of the game subject to a simple linear constraint. In 
sections 4 and 5 we consider a very special class of totally balanced games, 
namely, that of convex games. Both sections have in common that they ana­
lyze convexity from the point of view of totally balancedness. In Section 4, this 
analysis is made by means of MAV functions: We characterize convex games in 
terms of the optimal solutions to the optimization problems that arise in the 
computation of the cores of the subgames. Section 5 analyzes convex games 
by means of their marginal games; the main result in this section establishes 
that convex games are precisely those games all of whose marginal games are 
totally balanced. 

We shall use some basic notions of convex analysis (in particular, the con­
cept of subdifferential), for which we refer to the classical book by Rockafellar 
[7]. 

2 The MAV Function of a TU Game 

A TU game is a pair F = {N^v)^ where AT is a finite set of players, and 
V : 2^ —> M is a function, called the characteristic function of the game, 
defined on the power set of N and satisfying the condition v{9) = 0. In 
this section we will only consider nontrivial nonnegative games, i.e., those 
whose characteristic function satisfies v (S) > 0 for all S € 2^ and is not 
identically zero. As is well known, there is no loss of generality in assuming 
that a totally balanced game is nonnegative, since one can replace the original 
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game by another strategically equivalent 0-normalized game, which is totally 
balanced and nonnegative. For such games, the following duality theory has 
been developed by Martinez-Legaz [5]. One defines /i : R ^ \ {0} —> R++ U 
{+00} , the maximum average value (MAV) function of T, by 

a 0 
(with the conventions — = +00 for any a > 0 and 7: = 0)j where 
'^ (* )̂ = ^ '^i' This function admits the following economic interpretation: if 

ies 
the components of w represent the salaries demanded by the players and v {S) 
is the total amount of output produced to an employer by a set S of players 
when they use his resources, then IJL{W) is the maximum amount of output 
per unit of money spent tha t the employer can obtain by hiring a coalition. 
In order to make this paper self-contained, we restate here the main results 
(Theorem 2.1 and Corollary 2.2) in Martinez-Legaz [5]: 

T h e o r e m 1. The MAV function fi : M+\{0} —> R++ U {+00} of any non-
trivial nonnegative TU game F = (N, v) is a positively homogeneous of degree 
— 1 continuous convex function, finite valued on M+-|-, such that, at each point 
where the gradient exists, all of its nonzero components are the same. Con­
versely, if 11 : R ^ \ { 0 } —> 1^++ U {+00} satisfies these conditions then there 
exists a unique nontrivial totally balanced nonnegative TU game F = (iV, v) 
having ji as its MAV function; its characteristic function v is given by 

v{S)= min M H ^ ( ^ ) V 5 c i V (1) 
weR^\{o} 

(with the convention (+00) • 0 = + 0 0 j . 

Corol lary 1. Let F = (AT, v) be a nontrivial nonnegative TU game with MAV 
function fj, and let v : 2 ^ —> R be defined by 

v{S)= min fx{w)w{S) "^ S C N. (2) 
weR^\{o} 

Then F = (N^v) is the totally balanced cover of F, i.e., v is the smallest 
majorant of v that defines a totally balanced game. 

Corol lary 2. The MAV function of any nontrivial nonnegative TU game co­
incides with that of its totally balanced cover. 

Proof. According to Theorem 1, for any nontrivial nonnegative n-person TU 
game there is a unique totally balanced game with the same MAV function; 
by Corollary 1, this totally balanced game is precisely the totally balanced 
cover of the initial game. D 
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To illustrate Corollary 1, consider the game {N,v) with N = {1,2 ,3} and 
V defined by 

ro i f |5 |<i , 
' ' ^ ' ^ ^ - \ l i f | 5 | > 2 . 

One can easily check tha t the MAV function /x of this game is given by 

lii{wi,W2,W3) = —r-f • • • r- (3) 

Thus, according to (2), the characteristic function of the totally balanced cover 
(AT, v) of (AT, v) is given by 

min^ ^^3^\{Qy li{wi,W2,ws)wi = 0 if 5 = {i}, 

v{S)= '^ min^ ^^3^\{Qy fi{wi,W2,W3){wi -\- Wj) = 1 ii S = {ij}, with i ^ j , 

min^eM^\{o} M ( ' ^ I > ^ 2 , ' I ^ 3 ) ( ^ I + ^̂ 2 + wz) = 3/2 ii S = N. 

Indeed, the minima in this formula are attained, e.g., at the points {wi,W2jWz) 
given hy Wi = 0 and Wj = 1 for j ^ i in the first case, and at (1,1,1) in the 
other two cases. Notice also that , by Corollary 2, the MAV function of (AT, {;) 
is jj,. 

3 Computing the Core of a Subgame 

From Theorem 1, it follows tha t the characteristic function of a nontrivial 
nonnegative totally balanced game F can be recovered from its MAV function 
by means of (1). It turns out tha t , in this case, jji contains all the information 
on the game. Therefore, it is in principle possible to compute the cores of the 
subgames of F (which are nonempty as F is totally balanced) directly from 
/i. A way for doing it is suggested by the following theorem. 

T h e o r e m 2. Let F = (N^v) be a nontrivial nonnegative totally balanced TU 
game with MAV function fi and let T C N be such that v{T) > 0. For any 
X G R^̂ X {0} , the following statements are equivalent: 

(1) The point x belongs to the core of the subgame FT = (T,V\2T). 

(2) There exists w G R ^ \ { 0 } such that x = WT '-= {^i)i^T ^^^ A*(^) — 5̂ 

for every w G R ^ \ { 0 } satisfying these conditions, ——- 5̂ an optimal 
x{T) 

solution of 
,_ . minimize /J>(w) 
^ '^^ subject tow{T) = l. 

on 

(3) There exists w G R ^ \ {0} such that x = WT, A^(^) = 1 and is an 
x[I) 

optimal solution of (VT)-
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Proof. To prove the impHcation (1) => (2), let x be a core element of FT and 
take any w £ R^\ {0} such that WT = x and v (S) < w (S) for all 5* ^ T 
(this condition can be achieved by giving sufficiently high values to Wi for 
i ^ T). Since we also have v {S) < w (S) for all 5 C T (as WT = X is in the 
core of TV)) it follows that IJL{W) < 1. But we actually have /J,{w) = 1, as a 
consequence of 

, _ . . v{T) v{T) 

Let w G R^\ {0} be any point satisfying x = WT and iJ,{w) = 1. By WT = x, 
the point w/x{T) is a feasible solution to problem (VT)- TO show tha t it is 
optimal, it suffices to observe that , for each feasible w G R + \ {0} , one has 

f^M > ^ © = v{T) = x{T) = ix{w)x{T) r=^( ^ 
w{T) ^ ' ^ ' r-v / V / ^\x{T) 

Implication (2) => (3) is obvious. Let us now prove (3) => (1). Given w as 
in (3) and any S CT, we have 

V (S) < fjL(w)w (S) = w{S) = x (S). 

Take w e R!^\ {0} such that n{w)w{T) = v{T) (the existence of w follows 
from Corollary 1). From the optimality oiw/x{T), we deduce tha t 

x{T) = fi{w)x{T) = M ( ^ ) < M ( ^ ) = K^)w{T) = v{T); 

hence x{T) < v{T). Since the opposite inequality also holds, we conclude that 
X belongs to the core of / V • D 

As a particular case of Theorem 2, the next result characterizes the core 
of the game itself. 

Corol lary 3 . Let F he as in Theorem 2 with v (AT) > 0. For any x € E + \ {0} , 
the following statements are equivalent: 

(1) X belongs to the core of F. 
(2) fj,{x) = 1 and ^ ^ ^ is an optimal solution of (VN)-

Theorem 2 shows that each point belonging to the core of a subgame FT 
induces an optimal solution of the associated optimization problem (VT)- In 
the opposite direction, we have 

Corol lary 4. Let F and T he as in Theorem 2. For any w G R + \ { 0 } , the 
following statements are equivalent: 

(1) w is an optimal solution of (VT)-
(2) w{T) = 1 and IX(W)WT helongs to the core of FT-



298 J. E. Martinez-Legaz 

Proof. Let x = II{W)WT' If (1) holds then w := IJL{W)W satisfies (3) of The­
orem 2, hence (2) follows from the implication (3) => (1) in that theorem. 
Conversely, if (2) holds then w := IJL{W)W satisfies x — WT and iJi{w) = 1; 
hence, by (1) =^ (2) in Theorem 2, we obtain (1). D 

The preceding results allow us to interpret Problem {VT) in economic 
terms as a mathematical formulation of the following question: Given the total 
amount w (T) = 1 of the salaries received by the members of T, which amount 
of output ii{w) per unit of money spent the employer will obtain in the worst 
case (i.e., under the least favorable distribution of those salaries)? In other 
words, which is the guaranteed return per unit of money spent to the employer 
of an investment of which one money unit is assigned to paying salaries to 
the members of T? By Corollary 4, an optimal solution w of {VT) satisfies 
li{w) = fx{w)w (T) = fi{w)wT (T) = V (T), so that the optimal value of (VT) 
(i.e., the guaranteed return considered above) is precisely v (T). Following (2) 
of Corollary 4, the optimal solution w gives us the weights according to which 
the payoff IJ^{W) = v (T) should be distributed among the members of T. 

In view of Theorem 2 and Corollary 4, to compute the core of a (nontrivial) 
subgame FT one can apply the following method: find all optimal solutions 
w to the problem ( P T ) ; the elements in the core of FT are just those of the 
form fi{w)wT' Indeed, by Corollary 4, each fx{w)wT belongs to the core of FT. 
Conversely, each element x in the core of FT can be obtained in this way. To 
see this, take w as in (3) of Theorem 2. Then w/x{T) is an optimal solution 
of (VT) and, as fJ^{w) = 1, one has 

X = WT = fi{w)WT = M ( ^72^ ) 
x{Ty 

One can illustrate this method by computing the core of the unanimity 
game F^ = (AT, v^) associated to a nonempty coalition P C iV, whose char­
acteristic function is given by 

P.^. / 1 if 5 D P 

^ (^) = \ 0 o t otherwise. 

As shown in Martinez-Legaz [5], the MAV function fi^ of F^ is simply 

fj'^iw) = —T-^. Therefore, the minimizers of ^JL^ (w) under the constraint 

w{N) — 1 are those liJ G R+\ {0} such that W(P) = 1 and W;v\p = 0. Since 
these points satisfy fJ>^{w) = 1, it follows that they are the core elements of 

As a second example, consider the game F = {N,v) with N = {1,2,3} 
and V defined by 

ifS={i} 
v{S)={l if5 = {z,j}, withi^j, 
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As shown above, the MAV function /x of this game is as in (3). To find the 
core elements of F one therefore has to look for the minimizers of (3) under 
the constraints wi-\-W2-\-w^ = 1^ Wi>i() (i = 1,2,3). Since, by the first con­
straint, the right hand side of (3) is equal to i_niax{w tuo -w }' ^^^^ ̂ ^ equivalent 
to minimizing max {wi^W2^'W:i} under the same constraints. This problem has 
a unique optimal solution, namely, the point ( | , ^ , ^ ) . As IJi'{\^\^\) = §, it 
turns out that the core of /" is {(I? ^) | ) } • 

To summarize, our results show that the computation of the core of any 
subgame of a nonnegative totally balanced game reduces to the minimization 
of a convex function (of nonnegative variables) under one linear constraint. 
Although this can be regarded as an easy problem, one should keep in mind 
that to use this method requires first computing the MAV function of the 
game, which is, in general, a hard task. So we do not claim that our method 
has any advantage upon the standard one consisting in solving the inequality 
system that defines the core (except when the MAV function is known or easy 
to compute); however, it allows one to express easily the core of a nontrivial 
nonnegative totally balanced game directly in terms of its MAV function. The 
importance of this fact lies in that the MAV function provides an alternative 
representation of the game, but such representation would not be of much use 
if one could not express standard concepts, like the core, in terms of it in an 
easy way. 

4 Characterizing Convex Games in Terms of Their MAV 
Functions 

A very important class of totally balanced games is that of convex games. One 
says that F = (AT, v) is convex if for every two coalitions S and T one has 

V (S) + v{T) < v{S U T) + v{S n T). 

The term "convex" is due to the property of "increasing returns" enjoyed by 
these games. Indeed, it is well-known that F is convex if and only if it satisfies 

v{SU {i}) -v{S)<v{T[J {z}) - ^ ( r ) 

for each i G N and every coalitions 5, T such that S C T C N\ {i}. An 
example of convex games is provided by unanimity games (see Section 3). 

In this section we give a necessary and sufficient condition for a nonnega­
tive totally balanced game to be convex, in terms of its MAV function. This 
condition will be based upon the following characterization of convex games, 
due to Einy and Shitovitz [1, Props. 3.8 and 4.2]: 

Proposition 1. Let F be a totally balanced TU game. The following state­
ments are equivalent: 
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(1) r is convex. 
(2) For every S,T C N with S CT and every core element x of Fs there is a 

core element w of FT such that ws = x. 

Theorem 3. Let F be as in Theorem 2. The following statements are equiv­
alent: 

(1)F is convex. 
(2) For every S,T C N with S CT and v (5) > 0 and every optimal solution 

^ of (Vs) there is an optimal solution w of {VT) cind A > 0 such that 
Ws = Xws and w/w{S) is an optimal solution of (Vs)-

Proof. Let us first recall that a totally balanced game is nonnegative if and 
only if it is monotonic (see Martinez-Legaz [5, Prop. 2.3]). Hence, if S,T and 
N are as in (2) then v (T) > 0. 

(1) = ^ (2). li S C T C N, v{S) > 0 and w is an optimal solution of 
(Vs) then, by Corollary 4, w (S) = 1 and fi{w)ws belongs to the core of 
Fs. According to Proposition 1, there exists a core element w' of FT such 
that Wg = ii{w)ws' By Theorem 2, there exists w" € R^ \{0} such that 
w'r^ — w\ lJi{w") = 1 and w"/w'{T) is an optimal solution of {VT)- Then, for 
W := w"/w'{T) and A := // {w) /w'{T), one has 

_ ^ w'^ ^ (w'r^)s ^ w's ^ li{w)ws ^ 
^ w'{T) w'iT) w'{T) w'iT) ^ ' 

Moreover w/w{S) is an optimal solution of {Vs)y since it is a feasible point 
and has the same objective function value as the optimal solution w : 

= w's (S) = fi (w) Ws (S) = /i (w) w (S) = jji (it;). 

(2) ==> (1). We shall prove that condition (2) above implies condition 
(2) of Proposition 1. Let S C T C N and x be a core element of Fs. If 
v{S) = 0, from the monotonicity of v it follows that x = 0 and v vanishes at 
each subcoalition of 5'. Therefore one can easily check that, taking any core 
element y = (yi)ieT\5 ^^ ^T\SJ ^^^ vector w = {wi)^^rp defined by 

Wi-.^Oifie S, Wi := Vi + "^^^"""^^^^^ if i e T \ 5 , 

belongs to the core of FT and satisfies ws = ^ = x. \i v (S) > 0 then, 
by Theorem 2, there exists w G R^ \{0} such that x = ws, A*(̂ ) = 1 and 
w/x (S) is an optimal solution of (Vs)- According to condition (2), there are an 
optimal solution w of (VT) and A > 0 such that Ws = Xws/x (S) and W/W (S) 
is an optimal solution of (P5); by ws = x, one has A = ws (S) = w (S), so 
that 
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= W{S)_ W{S) 

Let w := . Since both = ^ and ^ ^ are optimal solutions of (Vs), we 
have 

On the other hand, 

_ '^ _ = 
w'{T) w(T) 

is an optimal solution of (VT)- Therefore, by Theorem 2, it; := wip belongs to 
the core of /V; moreover, it satisfies 

, , , , x{S) = 
ws = {wj^)s = 'i^s = ^ T ^ ^ - s = x. D 

5 Characterizing Convex Games in Terms of Their 
Marginals 

Since totally balancedness is not a sufficient condition for a game F = (AT, v) 
to be convex, a natural question to ask is which additional conditions imposed 
on a totally balanced game ensure its convexity. The answer is given by the 
following theorem, which says that the required conditions are the totally 
balancedness of the marginal games as well. By the marginal game relative 
to coalition T C iV, we mean the game T^ = (Ar\T, v'rp) whose characteristic 
function is defined by vip (S) = v{T U 5) - v{T). 

Theorem 4. Let F = (iV, v) be a TU game. The following statements are 
equivalent: 

(1) F is convex. 
(2) F^ is convex for every T C N. 
(3) Flp is totally balanced for every T C N. 
(4) Flp is superadditive for every T C N. 

Proof To prove (1) = ^ (2), let T C AT and ^ i , 5*2 C N\T. Since F is convex, 
we have 

VriSi) + V'T{S2) = v{T U Si) + v{T U ^2) - 2v(T) < 
< v{TU SiU S2) -i- v{TU (Sin S2)) - 2v{T) = 
= v!r(Si[JS2)-hv!r(SinS2), 



302 J. E. Martinez-Legaz 

which shows tha t i;^ is convex. Implications (2) ==4> (3) =^ (4) follow from 
the well-known facts tha t all convex games are totally balanced and that the 
latter are superadditive. So, it only remains to prove (4) => (1); to this aim, 
it suffices to observe tha t , for each 5'i, 5*2 C AT, one has 

^ ( ^ i ) + ^(^2) = v's,nsASi\S2) + v's,ns^S2\Si) + 2v{Si n ^2) < 
< ^s^ns, ii^i U 52) \ (Si n S2)) + 2v{Si n S2) = 
= t ; ( 5 i U 5 2 ) + ^ ( 5 i n 5 2 ) , 

where the inequality follows from the superadditivity of Vg^^g^. D 

The equivalence between statements (1) and (4) of the preceding theo­
rem was implicitly used in Martinez-Legaz [4] to prove Proposition 20 on a 
characterization of convex games in terms of indirect functions. Based on the 
equivalence (1) <==^ (2), we will next present an alternative characterization of 
convex games, similar to tha t of totally balanced games in terms of balanced 
sets of coalitions (cf., e.g., Shapley and Shubik [8]). To this aim, we need to 
introduce the following notion: 

Defini t ion 1. A collection B of subsets of P C N is marginally P—balanced 

if f] S ^ B and there exist positive weights {'ys}s£B ^^^^ ^^^^ /^^ ^^^^ 
seB 

i£P\( f] s] one has E 75 = 1-
\SeB J seB 

S3i 

Corol lary 5. A TU game F = (AT, v) is convex if and only if 

v{p) >^7sv{s) - (E^^ - M M n ^) 
SeB \seB I \seB J 

for every P C N and every marginally P-balanced collection B with weights 

{isJseB-

Proof. The "only if" part follows from the totally balancedness of vl^, with 
T = HseB^, and the fact that the marginal P-balancedness of B is equivalent 
to the balancedness of {S\T}g^j^ as a collection of subsets of P\Tj associating 
to each S\T the weight 75-. To prove the converse, given S^T C N with 
5 ^ r and T ^ 5, let P = 5 U r . Then {5 , T} is marginally P-balanced with 
7 s = 7 T = 1- Thus, the assumed inequality reduces to 

v{S U T) > t; (5) 4- v{T) - v{S D T) . D 

The interest of Corollary 5 lies in tha t it allows for an easy comparison 
between convex games and totally balanced games. Notice tha t the condition 
stated in Corollary 5 reduces to tha t of totally balancedness when restricted to 
collections B having an empty intersection. Moreover, it admits the following 
interpretation. If a fraction 75 of coalition S forms (in the sense, e.g., tha t 
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coalition S works during 75 units of time), thus yielding an output 75V (5) , 
the total output that P can obtain is at least the sum of all these outputs 
minus that paid, by their extra effort, to the subcoalition consisting of those 
players who contributed YlseB'^S (greater than 1) units of themselves (i.e., 
those players who worked during more than one unit of time). This payment is 
the output they would be able to obtain by themselves with this extra effort. 
Note that, as B is marginally P-balanced, the other players contribute exactly 
one unit of themselves. 
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