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Summary . A nonlinear elliptic control problem with pointwise control-state con
straints is considered. Existence of regular Lagrange multipliers, first-order neces
sary and and second-order sufficient optimality conditions are derived. The theory 
is verified by numerical examples. 

1 Introduction 

In this paper, we consider the following semilinear elliptic optimal control 
problem with distributed control and pointwise mixed control-state con
straints 

(p) < 

Jiy, ""•):=- (y- Vdf dx+^ u^ix) dx 

(1) 

minimize 
Q n 

subject to —Ay(x) + d{y{x)) = u{x) in i? 

duVix) + y{x) = 0 on r 

and ya{x) < Xu{x) + y(x) < yh(x) a.e. in i?, (2) 

where Q C E ^ , N = {2 ,3}, is a bounded domain with C^'^-boundary F and u 
denotes the outward unit normal The function d : R —̂  R is twice continuously 
differentiable and monotonic increasing. Furthermore, the second derivative 
d" is assumed to be locally Lipschitz-continuous. Moreover, /̂  > 0 and A 7̂  0 
are real numbers, and the bounds y^ and 2/6 are fixed functions in L'^{Q) with 
ya{x) < yb{x) a.e. in i?. 

This paper is a contribution to the theory of distributed optimal control 
problems with pointwise state-constraints. The associated numerical analysis 
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is known to be quite complicated, since the Lagrange multipliers for the state-
constraints are in general regular Borel measures. We refer, for instance, to 
Casas [4] for first-order necessary optimafity conditions, Casas, Troltzsch and 
Unger [7] for second-order sufficient conditions and to Bergounioux, Ito and 
Kunisch [1] or Bergounioux and Kunisch [3] for associated numerical methods. 

The analysis is often simpler for problems with mixed pointwise control-
state constraints, since Lagrange multipliers are more regular there. For the 
elliptic case with quadratic objective and linear equation, this has been shown 
in the recent paper [10]. However, the corresponding proofs are quite technical. 

Here, we consider a particular class of constraints, where the analysis can 
be developed by a simple trick: Locally, the problem (P) is converted to one 
with pointwise box-constraints, where the analysis is easy to perform. We will 
show that problem (P) has regular Lagrange multipliers in L°°(i?). In view 
of this, we are able to derive first- and second-oder optimality conditions for 
(P). Moreover, we report on associated numerical tests. 

It should be underlined that we investigate the problem for a fixed pa
rameter A 7̂  0. Though A is used as a small regularization parameter in the 
numerical tests, we do not study here the complicated question of convergence 
of optimal solutions and multipliers as A —)• 0. The problem (P) is interesting 
in itself for A fixed. 

Remark 1. The theory below also works for —Ay{x) + y(x) + d{y{x)) = u{x) 
in i?, dt^y{x) = 0 on F instead of (1). This is the case studied in the numerical 
tests in Section 5. 

2 Standard Results 

In this section, we recall some well-known results on (P). We consider y in 
the state space Y = H^{f2)r\ C{Q) and the control u in L'^{Q). Moreover, we 
introduce the control-to-state operator G : LP'{Q) —> Y that assigns y to u. 
The following result is well known, [4]: 

Theorem 1. Under the assumptions on d and Q stated in Section 1, the state 
equation (1) admits for all u G LJ^i^Q) exactly one solution y = G{u) G Y, 
and the estimate 

\\y\\m{Q) + \\y\\c{Q) < Coo ll̂ l̂U ĉr?) (3) 

holds true with a constant CQO that only depends on Q. 

Due to dim i? < 3, we obtain the following results for the derivatives of G 
(c£.[6]): 

Lemma 1. Under the assumptions on d, G is twice continuously Frechet dif-
ferentiable from L'^{Q) to Y. Its first derivative, denoted by w = G'{u)h, 
h € L'^{Q), is given by the solution of the linearized equation 
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—Aw-\-d\y)w = h in Q 

d^w + w = 0 on r 

with y = G(u). Moreover, the second derivative z = G"{u)[ui,U2] solves the 
equation 

-Az^d'{y)z = -d"{y)yiy2 in Q 

dyZ 4- 2; = 0 on r 

with y as defined above, and yi = G'{u)Ui, i = 1,2. 

The next theorem states the existence of an optimal solution for (P). 

Theorem 2. / / the admissible set is not empty, then (P) admits at least one 
global solution. 

Proof. The proof is more or less standard. In all what follows, we denote the 
global solution by (y,iZ), where y = G{u) and u is said to be an optimal 
control. By /̂  > 0, we find a bounded minimizing sequence {un} C L'^{Q) 
and we can assume without loss of generality u^ -^ u^ n —^ 00. By Theorem 
1, the associated sequence {y^} is bounded in H^{Q)^ hence we are justified 
to assume yn -^ y in L'^{Q). Together with the boundedness in C(i?) that 
follows from (3), this yields d{yn) —> d{y) in L'^{Q)^ y = G{u). The optimality 
of n is a standard conclusion. D 

We should mention that our theory does not rely on this existence result. 
It is also applicable to any local solution u. 

Remark 2. Obviously, all admissible controls must be bounded and measur
able, since ya^yh ^ L'^{f^) and y G C[Q) imply u € L^{Q) because of the 
constraint (2). 

3 First-Order Conditions - Regular Multipliers 

We start by introducing the reduced objective functional by 

J{y,u) = J{G{u),u)=:f{u). 

Thus, (P) is equivalent to mimimizing f{u) subject to 

ya{x) < Xu{x) + {G(u)){x) < yb{x) a.e. in H. (6) 

Since J is of tracking type, it is twice continuously differentiable. Together 
with the differentiability of G (cf. Lemma 1), this yields the following lemma. 

Lemma 2. Under the assumptions of Lemma 1, f is twice continuously 
Frechet differentiable from L^{f2) to R. Its first derivative is given by 
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f{u)h= {K,u-{-q, /I)L2(/2), (7) 

where q solves the adjoint equation 

-Aq-\-d\y)q = y-yd in Q 

^uQ -\- q = 0 on r, 

with y — G(u). For the second derivative, we obtain 

f'{u)[ui,U2] = (yi, y2)L^n)-\-f^{ui^ U2)L^f2) " / d" {y) yi y2 q dx, (g) 
Q 

where y and q are as defined above, and yi = G'{u)ui, i = 1,2. 

Proof. Although the arguments are standard, we recall the main ideas for 
convenience of the reader. From f{u) = J{G{u),u) = 1/2 \\G{u) — yd\\'L2m) "̂  
'^/2|klli2(x2). weget 

f{u)h= {y-ya, 'W)L'^{Q) + «:(w,/i)L2(r2), 

where y = G{u) and w — G'(u)h denotes the weak solution of the linearized 
equation (4) with the right hand side h. Now, choosing q as test function in 
the weak formulation of (4), we obtain 

/ Vit; • Vg dx -\- d^{y)wqdx -h wqds = hq dx. 

n Q r n 

On the other hand, we insert w in the weak formulation of equation (8): 

/ V^ • Vw dx -\- I d'{y) qw dx -\- qwds = {y — yd) ^ d x . 

Q Q r Q 

Subtracting one equation from the other finally yields {y — yd-, '^)L2(X?) = 
(/i, q)L^(f2)' Applying again the chain rule, we arrive at 

f'{u)[ui,U2] = {G'{u)ui, G'{U)U2)L^Q) + {G{u) - yd, G'\u)[ui,U2])L^n) 

A similar discussion as above, where z = G"{u)[ui,U2] denotes the weak 
solution of (5), then gives {y-yd, ^)L2(r?) = -{d"{y) yi 2/2 , q)L^{n)' • 

Remark 3. Notice that, for a given right hand side in L'^{Q)^ equation (8) 
admits a solution q mY ^ since the difPerential operator in (8) has the same 
form as the one in (4). 
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Next, we substitute Xu-{- G{u) = v and consider the associated nonlinear 
equation 

Xu+G{u) = v (10) 

for a given i; in a neighborhood oiv = X u+G{u). This substitution will be used 
for the transformation of (P) into a purely control-constrained problem. By 
the implicit function theorem, we show under a suitable regularity assumption 
that (10) admits a unique solution in a neighborhood of the optimal solution 
u for all given v G L'^{f2) in a neighborhood of i;. To this aim, we introduce an 
auxiliary operator T : L'^{f2) x L'^{n) -^ 1^(0) by T{u,v) = Xu-^ G{u) - v. 
Associated with T is a mapping K : v ^-^ u that is implicitly defined by 
T{K(y)^v) = 0. To apply the implicit function theorem, we need that 

-;r-{u,v)u = Xu-\- G'{u)u. 
OU 

is invertible, where v = Xu -{• G{u). Due to Lemma 1, G'{u) is continuous 
from L^(i?) to H^{n)nC{f2). Let us consider G'{u) with range in L^(i7) and 
denote this operator by G. Because of the compact embedding of H^{Q) in 
LP'{Q)^ G is compact, and hence G represents a Fredholm operator that has 
only countably many eigenvalues accumulating at 0. Here and in the following, 
/ : LP'{Q) —> LP'{Q) denotes the identity. 

We rely on the following REGULARITY ASSUMPTION: 

(R) The prescribed A / 0 is not an eigenvalue of —G, i.e. the equation Xu-]-
G'{u)u = 0 admits only the trivial solution. 

Note that this is fulfilled for all A > 0. From the theory of Fredholm operators, 
it is known that the equation 

dT 
— (u,v)u = Xu-\- G'{u)u = / 

is uniquely solvable for given / G L'^{Q)^ provided that (R) is satisfied. Thus, 
^{u^v) is continuously invertible by the Banach theorem, and hence the 
implicit function theorem gives the existence of open balls B^^(u), Bp^{v) in 
L'^{Q) such that for all v G Bp^{v)y there is exactly one u € Br^{u) with 
T(u^ v) = 0. Therefore, by the definition of T, equation (10) has exactly one 
solution u e Bri {u) for all v G Bp^ {v). Notice that K is of class C^ since T is 
twice continuously Frechet differentiable in LP'{Q) with respect to u, 

Lemma 3. The first- and second-order derivatives of K : L'^{Q) —^ L'^[Q) 
are given by 

K'{v)=(\I + G'{K{v))y\ (11) 

K"{v)\vuV2\ = -[XI + G'{K{v))y^G"{K(v))[K'iv)vuK'{v)v2]. (12) 
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Proof. As K is implicitly defined by T{K{v),v) = 0, the equation XK{v) + 
G{K{v)) = V holds true for all i; in a neighborhood of v. Differentiating on 
both sides yields 

A K'{v) + G\K{v))K\v) = I, (13) 

which implies (11). Next, we apply both sides of (13) to Vi and differentiate 
in the direction t>2. One obtains 

XK'\v)[vuV2] + G''{K{v))[K'{v)vi,K'{v)v2] + G'{K{v))K'\v)[vi,V2] = 0. 

Resolving for K''{v)[vijV2] immediately gives (12). D 

Wi th these results at hand, we can convert (P) , at least locally around u, 
into an optimization problem in the variable v by substituting Xu-\-G{u) = v. 
For the objective functional, we obtain 

J{y,u) = f{u) = f{K{v)) =: F{v), 

where F is defined at least on Bp^{v). Local optimality of u implies the exis
tence of an open ball Br^ {u) in L'^{Q) such that f{u) < f{u) for all u G Br^ (u) 
with ya{x) < Xu{x) + y{x) < yb{x). This yields 

F{v) < F{v) (14) 

for all V G L'^{Q) satisfying ya{x) < v{x) < yb(x) a.e. in i? and ||f —1^1^2(1?) < 
P2 with a sufficiently small P2 > 0. This p2 is taken so small so that p2 < pi 
and u = K(y) G Br^iu). Thus, v is the optimal solution of 

(PV) minimize F(y) subject to t; G Vad-, v G Bp^{v), 

with an admissible set defined by 

Vad '= {v € L^(i7) I ya{x) < v{x) < yb{x) a.e. in i?} . 

Now, we are able to derive the following standard result. 

L e m m a 4. Assume that (R) is fulfilled. Then the variational inequality 

F'{v){v-v) > 0 (15) 

holds true for all v G Vad' 

Proof. Since Vad is convex, we have for arbitrary v G Vad tha t Vt = v-\-t(v—v) G 
Vad V^ G [0,1]. Moreover, we find \\vt — v\\L^{f2) < P2 if ^ is sufficiently small. 
Thus, (14) yields [F{v -\-t{v - v)) - F{v)]/t > 0. Since / and K are Frechet 
differentiable, the same holds for F. Thus, passing to the limit t I 0 implies 
(15). D 
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By the Riesz theorem, the functional F'{v) G L'^{f2)* can be identified 
with a function from L^(i7). Let us denote this function by /x, i.e. 

F\v)v = J n{x)v{x)dx. (15) 

Furthermore, we define nonnegative functions fXa, fJ'b ̂  L?'{Q) by 

/X6(x) = /i(x)_ = -{-^i{x) + |/x(x)|). 
(17) 

Then, ii(x) = fj^ai^) — /J^bi^) and identifying F'{v) with )U implies 

i^'(i;) + //6-yUa = 0. (18) 

We show that the functions iia^l-^b^ that have been defined by (17), are La
grange multipliers for the control-state constraints (2). To see this, let us first 
set up the optimality system that should be satisfied at (y,ifc). We derive it in 
a formal way by the following Lagrange function C \YxL'^{Q) x H^{Q) x 
L 2 ( I 2 ) 2 _ > E : 

C{y,u,p,uj) = J{y,u) — I Vy -Vpdx — d{y)pdx— ypds-\- updx 

a Q r Q 

+ / {iJ,b{Xu-\-y-yb)-\-Ha{ya->^u-y))dx 

n 
(19) 

with u) := {iiaifJib)' Note that the last integral is well defined because of 
fj^ayf^b ^ ^^(i?). The optimality system consists of dC/dy = 0, dC/du = 0 and 
the complementary slackness conditions. We show that this is the expected 
optimality system for {y^u) following from the variational inequality (15) for 
V. Straightforward computations give that dC/dy{y,u,p^uj)y = 0 for all y G 
H^{Q) is equivalent to the adjoint equation 

-Ap + d\y)p ^y-yd-^fJ'b-f^a in 12 

d^p-}-pz=0 onR ^ ^ 

Analogously, dC/du{y,u,p,uj)u -• 0 for all u € L'^{Q) corresponds to 

KU-\-p-\- X{llb - iJia) =0. (21) 

In the following, we will show that (20) and (21), together with the comple
mentary slackness condition 

(Ma, Va- Xu-y)L2(Q) = {lib, Xu + y-yb)L^a) = 0 , (22) 

indeed follow from the variational inequality (15). 
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T h e o r e m 3. If u is locally optimal with associated state y, then there exist 
nonnegative Lagrange multipliers /da € L^{Q) and jib € L^{Q) and an asso
ciated adjoint statep £ H^{Q)r\C{Q) such that the adjoint equation (20), the 
condition (21), and the complementary slackness conditions (22) are satisfied. 

Proof. We show tha t /la^l^'h defined by (17) do this. Moreover, we verify 
/Xail^h € L^{Q). To this end, we first have to transfer all expressions in 
terms of v to such in terms of (y^u). 

(i) Adjoint equation and condition (21): We start with equation (18) where 
we express F' in terms of / and u. We recall F{v) = f{K(y)). By the chain 
rule, it holds F'{v)v = f'{K{v))K'{v)v. Hence, (18) is equivalent to 

f'{K{v))K\v)v + {/i, - f,a , v)LHf2) = 0 ^ve L\0). 

By substituting u — K'(v)v and u = I^{v)i one obtains 

f{u)u + {fit - Ma , K^{v)~'^u)L2(^f2) = 0. 

Moreover, we insert expression (11) for K'{v) and arrive at 

f'{u)u + (^t - Ma , ( A / + G'{u))u) = 0. (23) 

Lemma 2, equation (7), shows that the first derivative of / is given by 

f'(u)u= {KU-hqi,u)L2i^f2), (24) 

where q = qi represents the solution of (8), with y = y in the right hand side. 
Due to Remark 3, we have qi € F because of y € y C L^(i7). For the second 
term in (23), we find 

( / ^6 -Ma , {XI-\-G'{u))uj^ = A ( / / 6 - / / a , ^^)L2(X?) + (/i6 " Ma , ^)L2(r2), 

(25) 

with w = G'(u)u^ i.e., w is the solution of the linearized equation (4) with 
y := y and h \— u. Arguing as in the proof of Lemma 2, we find 

{lit - /la , ^)L2(f2) = {q2 , ^)L2(r?), (26) 

where ^2 solves the adjoint equation 

^ q2 + d'{y) q2 = /lb- /la in i7 

duq2 + ^2 = 0 on r . 
(27) 

Again, this equation has the same structure as (4). From {/it — /la) ^ L'^{Q)^ 
we deduce q2eY (cf. Remark 3). Inserting (26), (25) and (24) in (23) yields 
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(/CfZ + ^1 + ^2 + Xiflb - tJ^a) , U)L^(^Q) = 0. (28) 

It is clear that p = qi-\-q2 solves the adjoint equation (20). Therefore, since v 
and hence u are arbitrary, (28) is equivalent with (21). Moreover, (21) implies 

fJ'b- fJ'a = -J{KU-^P) (29) 

with p e Y C C{Q) and u G L^{Q) due to Remark 2. Thus, since )Ua(x) • 
lihipc) = 0 by definition (17), it follows that ^Jia^^J'h ^ I/°°(i7), because the 
right-hand side of (29) is bounded and measurable. 

(ii) Complementary slackness conditions: The variational inequality (15) and 
equation (16) give 

F'{v){v -v)= [{fia - fJ^b){v -v)dx>0 

a 

for all V € Vad and thus 

(fla - /̂ 6 , y)L^{Q) = min (fla " /̂ 6 , V)L^{Q) = {fJ'a , 2/a)L2(r?) " (M6 J yb)L^{n)i 

since fiaix) • /J^ti^) — 0 and /j^aix), fibix) > 0 by definition (17). Therefore, if 
Ma(^) > 0, we have v{x) = ya{x)y while fibix) > 0 implies v(x) = yb{x). This 
immediately yields 

(Ma, ya - t̂ )L2(/?) + (M6 , i) - yb)mn) = 0. (30) 

However, because of /ia(x), /^^(x) > 0 and i; G Vad? both addends on the right 
side of (30) are nonpositive and thus we arrive at 

(Ma , Va - v)L^n) = {fIb,V- yb)L^{Q) = 0. 

Together with v = Xu-{- G{u) = \u + y^ this implies (22). D 

4 Second-Order Sufficient Conditions 

As in case of first-oder conditions in Section 3, the proof of second-order suffi
cient conditions for (P) is based on the results for the auxiliary problem (PV), 
which is an optimization problem with simple box-constraints. For problems of 
such type, the theory of second-order conditions is well-known. To formulate 
these conditions for (PV), we introduce the strongly active set as follows: 

Definition 1. Let r > 0 be given. Then the strongly active set Ar is defined 
by Ar := {x e ^\ iia{x) + yU6(x) > r } . 
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Notice that, according to (17), jjia and fih cannot be jointly positive. More
over, the corresponding r-critical cone with respect to v is defined in a stan
dard way by 

Cr:= {v£ L^(n) 
v{x) = 0 , a.e. in Ar 
v{x) > 0 , where v(x) = Vai^) and x ^ A^- } , (31) 
v{x) <0 , where v{x) = yb{x) and x ^ Ar 

with V = X u-\-y as defined above. With these definitions at hand, one can prove 
by standard arguments the following theorem covering the local optimality of 
V, cf. eg. [5]. 

Theorem 4. Suppose that v is feasible for (PV) and satisfies the variational 
inequality (15). Assume further that the coercivity condition 

F"{vW>d\\v\\mn) ^veCr (32) 

is satisfied with some 6 > 0. Then there exist s > 0 and a > 0 such that 

F{v)>F{v) + a\\v-v\\l,^^^ (33) 

for all V E Kd with \\v - i;||L°°(r?) < ^• 

Due to (33), (15) and (32) yield local optimality of v for (PV) and hence, 
(32) is a second-order sufficient optimality condition. It remains to transfer 
this condition to the original terms y and u. For this reason, we need the 
following lemma on F"{v). 

Lemma 5. Assume that (R) is fulfilled. Then F is twice continuously Frechet 
differentiable at v and its second derivative is given by 

F"{vy = C'ly^^){y,u,p,n){y,uf. (34) 

Proof. Thanks to F{v) = f{K(v)) and (R), it is clear that F is twice contin
uously Frechet differentiable in a neighborhood of v. The chain rule implies 

F"{v)[vuV2] = f"{K{v))[K'{v)vuK'{v)v2] + f'{K{v))K"{v)[vi,V2]- (35) 

We substitue v = v and thus K(v) = u. Moreover, we set i;i = i;2 = t;, and 
K'(v)vi = K'{v)v2 = K'{v)v = u. Hence, (35) is equivalent to 

F"{v)v'^ = f'(u)u^ + f'{u)K"{vy. 

In view of (23), we have for the second addend 

nu)K"{vy = -(/.6-/^a, {\i+G'(u))K"{vy)^^^^^. 
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Together with the expression for K"{v) in (12), we arrive at 

F"[vy = f"{u)u^ + {fxt - Ma , G"{u)[K'{v)v,K'{v)v])^,^^^ 

= f"{uW + (M6 - Ma , G"(u)«2)^,(^). (36) 

Since z = G"{u)u^ solves equation (5), similar arguments as in the proof of 
Lemma 2 give 

(/i6 - /ia , ^)L2(:f?) = -{d"{y)y^ , q2)L^{Q), 

where 2̂ is the solution of (27) and y = G'{u)u, i.e. y represents the solution of 
the linearized equation (4). Thus, together with (9) for the second derivative 
of / (see Lemma 2), (36) is transformed into 

F"{vy = ||2/||i.(„) + K ||u||ia(^) - I d"{y) y' (q^ + q^) dx, 

Q 

where qi again denotes the solution of (8) with y — y in the right side. As in 
the proof of Theorem 3, we have p = q\-\- q2 and hence we obtain 

F'^vW = \\y\\l^a)+^\HlHa) - jd"{y)y-'pdx 

^ J{y,u){y^'^)iy^'^f - j d"{y)y^pdx = C'ly^^^{y,u,p,^j){y,uf, 
Q 

according to the definition of £ in (19). D 

Based on (31), we define the r-critical cone for the original problem (P), 
denoted by Cr as follows: 

Definition 2. (Critical cone) Let Cr he defined as in (31). The critical cone 
associated to (P) is given by 

Cr '.= {{y,u)eY xL'^{Q) \y = G'{u)u and Xu + yeCr}. 

Now, we are able to state second-order sufficient conditions for (P). 

f Let 6 > ^ exist such that 

esse) < 
I C"{y,u,p,uj){y,uf >S\\U\\\2(^Q) for all {y,u) € C^. 

We show that (SSC) is indeed sufficient for local optimality of u. 

Theorem 5. Let (y, u) satisfy the first-order necessary optimality conditions for Problem (P) and assume that condition (SSC) is fulfilled with some S > 0, 
r > 0. Then there exist £ > 0 and a > 0 such that 

J{y, u) > J{y, u) + (J 11̂  - ii||i2(r?) (37) 

for all {y,u) eY x L'^{Q) with y = G{u), ya{x) < Xu{x)-{- y(x) < yb{x), and 



198 C. Meyer, F. Troltzsch 

Proof. First, we choose an arbitraLry pair {r}^h) G Cr and define v := Xh-\-rj. 
Notice that rj = G'{u)h holds according to the definition of Cr- Due to Lemma 
5, one obtains 

F"{vy = L'(^,^){y,u,p,ti){v,h)' > 6\\h\\l.^n), (38) 

where we used condition (SSC) for the last estimate. Due to h — (A / H-
G'{u))~^v^ (38) is equivalent to 

1 
- ^ II \ T ^nKn-.\\\ lpllL2(r?) 

2 II..II2 
>5\\\I + G'{u)\\-ctLHO))MLHn) 

^^MUn), (39) 

with J > 0. Because of (?7,/i) G C -̂, clearly v G Cr holds true. Moreover, 
thanks to (R), every v ^ Cr can be expressed by some {rj,h) G C^, and hence 
(39) holds true for all i; G C^. In this way, F ' ' satisfies a coercivity condition 
and thus. Theorem 4 yields 

F{v)>F{v) + a\\v-v\\l.^n) (40) 

for all V G Vad with ||t; — V\\L°°{Q) ^ -̂ In particular, we may take 

V ~ Xu-^ G{u), 

where u is taken arbitrary with ya{x) < Xu{x) + G{u){x) < yb{x) and \\u — 
^\\L°°{n) ^ ^ such that \\v — v\\L°°{n) ^ ^ ^md ||i; — i'||L2(i7) < Pi- Notice that, 
because of (R), to every v G Vad with Ht' — t̂ ||L2(i7) < Pi a function u exists 
with u = K{v) and ||t̂ —'ii||L2(r?) ^ ^i- On the other hand, the continuity of the 
mapping XI-{-G from L°^{Q) to L'^i^Q) ensures that ||ti—'u||£,00(12) '^ ^ implies 
11̂ ; — t;||£,oo < r . Ifwe take e sufficiently small, then it follows that r < e and 
11̂  - '^\\L'^{Q) < C ||I; - V\\LOO(^Q) < pi. Hence, for all u with \\u - U\\L^(^Q) < e, 
there exists a v with Xu-\- G(u) -= v and with \\v — v\\L°°(a) < i. Then, with 
F(v) = f{u) and F{v) = f{u), (40) gives 

f{u) > f{u) + a ||Au + G{u) - (An + G{u))\\l.^^^ (41) 

for all u with Xu-\- G{u) G Vad and ||n — n||L°o(/2) ^ -̂ This already implies 
the local optimality of u. It remains to show the quadratic growth condition 
(37). A Taylor expansion for the last term in (41) yields 

Xu^-G{u) - {Xu-{-G{u)) = X{u - u) -\- G\u){u - u) -\- rf{u,u - u), 

and, since G is continuously Frechet differentiable from LP'^Q) to Y (see 
Lemma 1), the remainder term SEitisfies 
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\\r?\\mn) 
\\u-u\\L^(^f2) 

Therefore, we obtain 

0, as \\u -u\\L2(^f2) -^ 0-
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(42) 

\\Xu+G{u)-{Xu^G{u))\\L2in) 

= \\{XI-^G\u)){u-u) + r?U2^n) 

>\\{XI-\-G\u)){u-u)h.^a)-\\r?\\mf2) 

1 
> 

^PllL2(r?) 

>c\\u-u\\L2(^Qy 

\\y'-u\\L^n) 

Since {XI -\-G'{u)) is continuously invertible because of (R), (42) yields c > 0 
if ||u — 'ii||i;,2(^) is sufficiently small. Thus (41) implies 

f{u) > f{u) + ac \\u- u||jr^2(^) = f{u) + a\\u - u\\L2^ay 

Remark 4- Clearly, due to (37), ii is a strict optimal solution. 

n 

5 Numerical Tests 

For our numerical tests, we consider an optimal control problem tha t differs 
slightly from (P), as already mentioned in Remark 1. Instead of (1), the state 
equation is now given by 

-Ay{x) + y{x) -f d{y{x)) = u{x) in Q 

di^y{x) = 0 on r . 
(43) 

One can easily verify that the theory presented above is also valid with the 
new state equation (43). 

We investigated two examples with different 
nonlinearities d{y). In both cases, the desired state 
was given by 

yd{xi,X2) = 8 sin(7rxi) sin(7rx2) - 4 

and the bounds were fixed at ya{x 1^X2) = —1 and 
yb{xi,X2) = 1. The Tikhonov regularization pa
rameter was set to /̂  = 0.5 • 10~^. Moreover, to 
approximate a purely state constrained problem, 
we fixed A = 0.5 • 10~^. In the first example, the 
nonlinearity was defined by 

Fig. 1. Desired state yd-

d{y) = y\ (44) 
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Fig. 2. Control uh in the first example.
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Fig. 3. State yh in the first example.
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whereas we took 

d{y) J>v (45) 

in the second one. Thus, the assumptions on d mentioned in Section 1, are 
fulfilled in both cases. 

The optimization problems were solved numerically by a SQP method 
tha t is described in detail for instance in [8] or [9]. To solve the arising linear 
quadratic problems, a primal-dual active set strategy was applied, see for 
instance [1] or [3]. We used a conforming finite element method with linear 
ansatz functions to solve the state equation and the adjoint equation. For 
all computations, uniform meshes were used. The number of intervals in one 
dimension, denoted by N, is related to the mesh-size, i.e. the diameter of the 
triangles, hy h = \ / 2 N ~ . The following figures show the numerical solution 
for the first example. This computation was performed with a mesh size N=50. 
Here and in the following, the numierical solutions are denoted by the subscript 
h. 
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As one can see in the Figures 5 and 6, the Lagrange multiphers tend to 
be irregular on the boundaries of the active sets. This might indicate that 
the Lagrange multipliers associ^ited with the state constraints for A = 0 
should be measures. This verifies the known theory, see for instance Casas 
[4] or Bergounioux and Kunisch [2]. However, in view of (21) with p = 
&{u)*{G{u) — yd-\- lJ')y the equation for /j, = iJ>a — t^b ^^ given by 

A/i + G ' (^ )> - G'{uy{yd - G{u)) - KU 

with a compact operator G'(uY : LP'{Q) —> LP'{Q). This equation is ill-posed 
for A = 0. Therefore, as A = 0.5 • 10~^ is chosen quite small, we are faced 
with the characteristic difficulties of ill-posed problems. In view of this, the 
computed Lagrange multipliers are certainly overlaid by rounding errors that 
are difficult to quantify. 

To describe the convergence behaviour of the algorithm, the values of the 
discrete objective functional Jh =• 1/2 \\yh —VdWi^m) + f^f^ W'^hWi^m) ^^^ ^̂ ~̂ 
played in the following Tables 1-3 for each step of the SQP-iteration, denoted 
by itsQp. As a further convergence indicator, the error in the semilinear state 
equation is approximated by 

6-1/ — 
\\Gh\yh)-Uh\\LHn) 

Wyhh^io) 

where Gh denotes the discrete control-to-state operator Gh : Uh ^-^ Vh- Thus, 
Cy quantifies the relative error of the discrete analogon of — Ay -\- cy -\- d{y) — u, 
i.e. the error in the semilinear state equation. Similarly the error in the adjoint 
equation is measured by 

^ lb/i||L2(f?) 

where (G}^(y^)~^) is associated with —Ap-{- cp-\- d'{y)p. Furthermore, the 
error in the necessary condition (21) is approximated by 

The difference between two consecutive iterates, quantified by 

3 V Wn'-r'^hna) Wy'C^'^hHa) llPr^' L2(r2) 

was used for the termination condition of the SQP method. More precisely, 
the iteration stopped ii 6 < 10"^. The following table shows the convergence 
behavior in the first example for a mesh size of N=50. In addition to the values 
of Jh and the error approximations described above, the number of active set 
iterations denoted by it AS is shown in the last column. 
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itsQP 

^ 
1 
2 
3 

1 Jh 
3.1099e+00 
1.3793e+00 
1.3757e+00 
1.3757e+00 

Table 1. 

^opt 

l.OOOOe+00 
4.1930e-20 
3.5225e-20 
3.3836e-20 

Example 1 with N=50 

3.5361e-03 
3.4860e-04 
3.7393e-04 
3.6347e-04 

9.1101e-04 
3.7443e-01 
4.4817e-05 
2.1590e-ll 

6 

-
5.7686e+02 
2.5864e-01 
3.3737e-04 

#i tAS 

13 
6 
1 

We observe that e^ is much smaller than Cy. A possible explanation for this 
fact could be that the adjoint equation represents a linear P D E in contrast to 
the semilinear state equation. 

Table 2 illustrates the convergence behaviour in the first example for 
N=100. As one can see, the error in the approximation of the PDEs is re
duced significantly. However, the value of the discrete objective functional is 
not decreased noticeably. 

Table 2. E^xample 1 with N=100 

itsQP 

0 
1 
2 
3 

1 Jh 
3.1112e+00 
1.3800e+00 
1.3757e+00 
1.3757e+00 

Gopt 

l.OOOOe+00 
4.0038e-20 
3.3583e-20 
3.3876e-20 

Cy 

8.9151e-04 
8.8727e-05 
9.5252e-05 
9.2619e-05 

Cp 

2.3143e-04 
9.3948e-02 
1.2688e-05 
6.4219e-12 

5 

-
5.6869e+02 
2.6991e-01 
3.3493e-04 

#i tAS 

-
23 
8 
1 

Figures 7-11 show the numerical solution of the second example for N==50. 
Again, the Lagrange multipliers cire comparatively irregular on the borders of 
the active sets. 
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Fig. 9. Adjoint state p/^. Fig. 10. Lagrange multi- Fig. 11 . Lagrange multi
plier fia,h' plier Mb,/i-

The convergence behavior of the algorithm in this example is illustrated 
in Table 3. The nonlinearity d{y) = e^^ of this example is much steeper 
than d{y) = y^. Therefore, the number of SQP-iterations is larger than for 

diy) = y^-

itsQP 

~~0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

[ Jh 
3.1099e+00 
3.2742e+00 
1.3780e+00 
1.5610e+00 
1.4711e+00 
1.5523e+00 
1.5102e+00 
1.5449e-f-00 
1.5203e+00 
1.5392e+00 
1.5248e+00 
1.5357e+00 
1.5275e4-00 
1.5337e+00 
1.5291e+00 
1.5325e+00 

Table 3. 

Gopt 

l.OOOOe+00 
1.9729e-20 
3.6935e-20 
8.9187e-20 
7.3050e-20 
8.6599e-20 
8.5926e-20 
8.2400e-20 
8.3514e-20 
8.9509e-20 
8.7443e-20 
9.0720e-20 
8.2449e-20 
8.5332e-20 
8.6704e-20 
8.4110e-20 

Example 2 \ 

By 

2.9450e-03 
1.9334e-02 
2.9660e-02 
8.8222e-02 
5.4490e-02 
8.5751e-02 
6.9141e-02 
8.2864e-02 
7.2910e-02 
8.0637e-02 
7.4701e-02 
7.9241e-02 
7.5798e-02 
7.8403e-02 
7.6457e-02 
7.7909e-02 

vith N=50 

Cp 

3.4595e-03 
3.7889e+00 
9.8747e-02 
8.0814e-02 
6.1055e-03 
1.2353e-02 
1.2245e-03 
1.7494e-03 
6.1815e-04 
4.7578e-04 
2.4842e-04 
1.6924e-04 
9.1957e-05 
5.9436e-05 
3.2479e-05 
1.9987e-05 

6 

-
1.2591e+03 
1.1220e+00 
5.8821e-01 
2.0554e-01 
1.8589e-01 
8.9151e-02 
7.2685e-02 
5.2567e-02 
3.9750e-02 
3.1121e-02 
2.3635e-02 
1.8277e-02 
1.3928e-02 
1.0600e-02 
8.0250e-03 

#i tAS 

-
1 

13 
14 
10 
10 
7 
8 
5 
5 
5 
4 
5 
3 
3 
3 
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