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Summary . Among optimal control problems, singular arcs problems are interesting 
and difficult to solve with indirect methods, as they involve a multi-valued control 
and differential inclusions. Multiple shooting is an efficient way to solve this kind of 
problems, but typically requires some a priori knowledge of the control structure. 
We limit here ourselves to the case where the Hamiltonian is linear with respect 
to the control it, and primarily use a quadratic (u^) perturbation of the criterion. 
The aim of this continuation approach is to obtain an approximate solution that 
can provide reliable information concerning the singular structure. We choose to 
use a PL (simplicial) continuation method, which can be more easily adapted to 
the multi-valued case. We will first present some convergence results regarding the 
continuation, and then study the numerical resolution of two example problems. All 
numerical experiments were conducted with the Simplicial package we developed. 

1 Introduction 

In indirect methods, applying the Pontryagin's Maximum Principle to a prob
lem with singular arcs leads to a Boundary Value Problem with a differential 
inclusion. We denote this BVP with the following notations, tha t will be used 
throughout this paper. Let us denote x the state, p the costate, u the control, 
and (f the state-costate dynamics. liy = {x,p) € R"^ (n is thus twice the state 
dimension) and F denotes the set valued map of optimal controls, then one 
has 

(BVP) I ^(*^ ^ ^^y^^^^ = ^(^^*)' ^^y^*^^^ •̂̂ - ^ ' ° ' *̂ ] 
^ ^ \^ Boundary Conditions 

First, we want to obtain some information regarding the structure of the 
solutions, ie the number and approximate location of singular arcs. We use 
for this a perturbation of the original problems by a quadratic (u^) term, as 
done for instance in [10]. We will show some convergence properties of this 
continuation scheme, tha t are mainly derived from the results in [4] by J.P. 
Aubin and A. Cellina, and [12] by A.F. Filippov. This continuation method 
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involves following the zero path of a multi-valued homotopy, which is why we 
chose a simplicial method rather than a differential continuation method (ex
tensive information about continuation methods can be found in E. AUgower 
and K. Georg [2, 3], and M.J. Todd [20, 21]). Then we will study the practical 
path following method, and some of the numerical difficulties we encountered, 
which led us to introduce a discretized formulation of the Boundary Value 
Problem. Finally, we use the information from these two continuation ap
proaches to solve the optimal control problems with a variant of the multiple 
shooting method. We will study in this paper two examples (from [11] and 
[10]) in parallel, whose similar behaviour indicates that our approach is not 
too problem-dependant. 

1.1 First Example 

The first example we consider is a fishing problem described in [11]. The state 
{x{t) G R) represents the fish population, the control {u{t) G R) is the fishing 
activity, and the objective is to maximize the fishing product over a fixed time 
interval: 

^ M a x JQ^ (E- ^ ) U{t) Umax dt 

x{t)=^rx{t){l-^)-u{t)Umax 

0 < u{t) < 1 Vt € [0,10] 
I x(0) = 70.10^ x(10) free 

with E=l,c= 17.5 .10^, r = 0.71, k = 80.5 .10^ and Umax = 20 .10^. 

First we transform this problem into the corresponding minimization prob
lem with the objective Min J^ ( ^ ^ —E) u{t) Umax dt (note that the numerical 
values of the problem are such that we always have ^ ^ — £? < 0, which cor
responds to a positive fishing product). Applying the Maximum Principle of 
Pontryagin then gives the following hamiltonian system for the state x and 
costate p: 

(x{t) = rx{t){l-^)-u{t)Umax 

\p(t) = # ) Ummax -P{t) r (1 - ^ ) . 

In terms of the switching function i/j 

t e [0,10]^ m = ^ - E -p{t), 

the Hamiltonian minimization gives the optimal control 

tt*(t) = 0 if'il;{t)>0 

^*( t )€[0 , l ] z / ^ ( t ) = 0. 

Over a singular arc, the relations ip = 0 and ^ = 0 give the expression of 
the singular control (t is omitted for clarity) 
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^ k r c c 2px 2px^ 

More precisely, the control actually vanishes in the equation ^ = 0, so it 
is necessary to use the second derivative of the switching function. On a side 
note, these relations also lead to i; = p = 0, so the state, costate, and therefore 
also the control are constant over a singular arc for this problem, which is of 
course not a general property. Another remark is the important difference of 
magnitude between the state and costate (about 10^), which requires the use 
of a proper scaling. 

1.2 Second Example 

The second example is the quadratic regulator problem studied by Y. Chen 
and J. Huang [10]: 

Mm\Sl{xl{t)^xl{t))dt 
Xl{t) =X2(t) 

{P2) { X2{t) = U(t) 
- 1 <u{t) < 1 VtG [0,5] 

[ x{0) = (0,1) x{b) free 

We have the state and costate dynamics 

Xl{t) = X2(t) 
X2{t) = u(t) 
Pl{t) = -Xi{t) 
P2{t)=-Pl(t)-X2it) 

and the following switching function and optimal control: 

m=P2{t), 

( u'it) = - sign p2(t) if ^(t) j^ 0 
\u*lt) e [-1,1] ii^{t) = 0. 

In that case again, the control disappears from the equation -0 = 0, but the 
relation ^ = 0 still gives the singular control ulinguiari^) ~ ^ i (0-

2 Continuation Method: A Quadratic Perturbation 

Solving these problems directly by single shooting is not possible due to the 
presence of singular arcs, so we use a continuation method. Like the approach 
in [10], we try to regularize these problems with a quadratic {u^{t)) pertur
bation, and consider the following objectives: 
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Min / (-—- E){u{t) - {1 - X)u\t))Umax dt, A € [ 0 , 1 ] , 
Jo At) 

Min ^ / (xlit) + xl{t)) + {1-X)u^{t) dt, AG [0,1]. 
2 Jo 

For problem (-Pi), as mentioned before the term -^ — E is always nega
tive, so the minus sign before (1 — X)u^{t)Umax actually results in "adding" a 
quadratic term, as for problem (^2)- We then obtain two families of bound
ary value problems parametrized by A, denoted by (BVPi)x and {BVP2)x 
respectively. The original problems correspond to A = 1. For A = 0, the prob
lems are much more regular, and can be solved directly by single shooting 
without any difficulties. The principle of the continuation method is to start 
from the solution at A = 0 to a t ta in A = 1, where we have the solution of 
the original problem. The first idea is to try to solve a sequence of problems 
{BVP)\^, with a sequence (Afc) ranging from 0 to 1. However, finding a suit
able sequence (Afc) is often problematic in practice, and here the low regularity 
of the homotopy (for A = 1 especially) led us to rather consider a full pa th 
following method. More precisely, if we note S\ the shooting function related 
to the parametrized problems, we will follow the zero pa th of the homotopy 
h : {ZjX) i-^ S\{z), from A = 0 to A = 1. There are two main families of path 
following methods: Predictor-Corrector methods, which are fast but require 
tha t the zero pa th be C^, and the slower but more robust Piecewise Linear 
methods. In the present case, we have to deal for A = 1 with a multi-valued 
homotopy, which is why we use a simplicial method, whose general principle 
will be described below. 

Remark. Prom now on, we will use the subscripts 1 and 2 for notations specific 
to Problems 1 and 2, and keep unsubscripted notations for the general case. 

2.1 H a m i l t o n i a n M i n i m i z a t i o n Proper t i e s 

We begin with some results concerning the Hamiltonian minimization, tha t 
were presented in [14]. We first recall a s tandard result (in the following we 
keep the notation y = (x ,p) , with y of dimension n) : 

T h e o r e m 1. Assume that U C R"^ is a convex compact set with nonempty 
interior, and that the Hamiltonian function H : [a, 6] x R"^ x U -^ H is 
continuous and convex with respect to the control u. We note r(t^x^p) the set 
of solutions of miuueu H{t^x^p^u). Then F has nonempty compact convex 
values. 

L e m m a 1. A compact-valued map G is upper-semicontinuous (in the sense 
of Berge [5, p.114]) if and only if for all sequence (xk) that converges to x, 
{G{xk)) converges to G{x) according to 

Ve > 0, 3^0 > 0 such that VA; > /CQ, G{xk) C G{x) + eJ5(0,1), 

with -B(0,1) standing for the closed unit ball of center 0 and radius 1. 
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Proof. See [17, p.66]. D 

Recall tha t a function / : R ^ x R is said to be inf-compact (in the sense 
of [19]) if for all_(y,a) € R"^ x R, the set {u e W^ : f{u) - {u\y) < a} is 
compact. Here R denotes the extended-real line and ( 1 ) stands for the usual 
inner product in R"^. 

L e m m a 2. Let (fk)keN ^^ proper convex lower-semicontinuous functions de
fined over R"^. Assume the following assumptions: 

('^) {fk)ke'N converges pointwisely to f, 
(a) int{domf) ^ 0, 
(Hi) f is inf-compact. 

Then, 
lim inf fk(u) = inf f(u) 

and, Ve > 0, there is ko GN such that 

argminuen^ fk(u) C argminuen^ f{u) + e J5(0,1) \/k > ko. 

Proof See [19], page 1.3.54. D 

T h e o r e m 2. Consider the same hypotheses as in Theorem 1. Then, F has 
the following convergence property: if {tkjXk,Pk) is a sequence that converges 
to {t^x,p), then 

(i) infueK^ H{tk,Xk,Pk,u) -> infuen^ H{t,x,p,u) as k -^ +oo, 
(ii) Ve > 0, 3ko > 0 s.t. VA; > ko, r{tk,Xk,Pk) C r{t,x,p) + e B(0 ,1 ) . 

Proof. Let (tk^Xk^Pk) be a sequence tha t converges to {t,x,p). We note 
fk{u) = H(tk,Xk,Pk,u) + 6(u/U) and f{u) = H{t,x,p,u) + S{u/U) (where 
5(u/U) = 0 if li G t/, and +oo if n ^ U). For both example problems, it is 
clear from the expression of the Hamiltonian (see below) tha t the {fk) are 
convex and lower-semicontinuous. Let us check the assumptions of Lemma 2: 
(i) If u ^ Uy then fk{u) = f(u) = +oo Vk; ii u £ U, then fk(u) = 
H{tk,Xk,Pk,u), and as H is continuous we have H{tk,Xk,Pk,u) —> H{t,x,p,u)., 
so fk{u) -4 f{u). 
(ii) One has int(dom / ) = int(C/) ^ 0. 
(iii) liv e'RT' and a G R , then {u \H{t,x,p,u) + 6{u/U) - {u\v) < a) = 
U r\ {u \H(t,x,p,u) — {u\v) < a}. This set is compact because it is a closed 
subset of the compact set UIV^. This shows the inf-compacity of / . 
Now Lemma 2 proves the theorem. D 

Corol lary 1. Consider the same hypotheses as in Theorem 1. Then, F is 
upper-semicontinuous (in short, use). 

Proof. Theorem 1, Lemma 1 and Theorem 2 give this result. D 

Remark. If H is strictly convex, then we have the well-known property (see 
e.g. [13, Theorem 6.1, p.75] and [6]) tha t u* is a continuous function (as F is 
then a continuous function). 
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Back to the two examples, we have Ui = [0,1], U2 = [—1,1], and the 
Hamiltonians are (t is omitted for clarity): 

Hi{t,X,p,u) = ( E){U- (1 - X)u^)Umax -^ P{rX (1 - - ) -uUmax), 
X rv 

H2{t,x,p,u) = - ( a ^ i + x | + (l - X)u^) + P1X2-\-P2U. 

Both Hi and H2 are continuous, and convex with respect to u (for Problem 1 
we can numerically check a posteriori that -^ — E < 0 Vt G [0,10]). So for 
both problems (Pi) and {P2)) Theorem 1 and Corollary 1 apply, thus A and 
r2 are upper-semicontinuous, and non empty compact convex valued. These 
properties will be useful for the following convergence results concerning the 
continuation. We can also note that for A < 1, both Hamiltonians are strictly 
convex, thus the optimal control are continuous functions. 

2.2 Convergence Properties 

The following results were presented in [8], and are primarily derived from 
the books by J.P. Aubin and A. Cellina [4], and by A.F. Filippov [12], whose 
notations we will keep. In particular, 

CO K = closed convex hull of K, 
M^ = {m:d{m,M) <S}. 

Definition 1 ([12]). A function y is called a 6-solution of y{t) G F{t,y{t)), 
with F : [a, b] x R"̂  -^ R'^ an upper-semicontinuous set-valued map, if over 
an interval [a,b], y is absolutely continuous and 

y{t)eFs{t,y{t)) = [cdF{t',y')]' 

where F{t^,y^) = IJset'^zey' F{s,z). 

Lemma 3. Let {y^) be a sequence in ACn{[o,^b]) such that: 
(i) \/t G [a,b], {yk{t)}k is relatively compact, 
(ii) 3 / such that \yk(t)\ < I almost everywhere in [a,6], 

Then, there exists a subsequence still noted (yk) that converges uniformly to 
an absolutely continuous function y : [a, 6] —^ IV^, and for which the sequence 
{yjz) converges weakly-* to y in Z/^([a,6]). 

Proof. The proof follows the principle of the demonstration of Theorem 4, pp. 
14-15 in [4], The sequence {y^) is equicontinuous as 

f" 

\yk{t')-yk{t")\= I yk{t)dt <l\t'-t"\. 
Jt' 

The Arzela-Ascoli theorem implies the existence of a subsequence, still noted 
{yk)i that converges uniformly to y in Cn{[a^b]). Moreover, yfc ^ -'5(0,c) C 
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^^( [^ .^D^ with L^([a ,6]) being the dual of Lj,([a,fe]). Thus the Alaoglu the
orem implies tha t this closed ball is weak-* compact. As I'Ji([a, b]) is separable 
this closed ball is metrizable for the weak-* topology (cf [7]). Then there exists 
a subsequence, still noted (t/fe), tha t converges weakly-* to z in L^{[a, b]). We 
now have to prove that y is absolutely continuous and tha t y = z. First, yk is 
absolutely continuous, thus 

yk{t')-yk{t")= f yk{s)ds, (1) 
Jt' 

The sequence (yk) converges uniformly to y, so the left hand side converges 
to y{f) — y{t"). As (yfc) converges weakly-* to z, for all components i we have 

<l,yk,i>L^,L-°= ykA^)ds -^<l,Zi>L\L°^= Zi{s)ds 
J a J a 

(where 1 is the constant map equal to 1). So the right hand side of (1) con-

verges to /^, z{s)ds. We have then 

f" 

y{t')-y{t")= f z{s)ds 
Jt' 

with z in L^([a ,6] ) , thus in L^([a, 6]). This means tha t y is absolutely con
tinuous and that y{t) = z{t) almost everywhere. D 

T h e o r e m 3 . Let (yk) be a sequence in ACn([a, 6]) that converges to y and 
verifies yk{t) ^ K for all k and t, with K compact. Then y is absolutely 
continuous and yk{t) GcoK for all t, 

Proof. The proof is based on Filippov's Lemma 13, p . 64 of [12]. D 

T h e o r e m 4. Let F be a nonempty compact convex valued map, defined on an 
open setQ^ R ^ + ^ Let(yk) be a sequence of 6k-solutions defined on [a, 6] that 
converges uniformly to y : [a, b] -^ R"^ when Sk —> 0, and such that the graph 
ofy is in Q. Then y is a solution of the differential inclusion y{t) G F(t,y(t)). 

Proof See Filippov's Lemma 1, p . 76 of [12] D 

L e m m a 4. Let (f : i? x [0,1] —» R^, with Q an open subset of R^ , be a 
set-valued map verifying 

(i) (̂  is uppersemicontinuous with nonempty compact convex values, 
(ii) cpx = (p{', A) is a is piecewise — C^ function for 0 < A < 1. 

Let us assume that the solutions of y\{t) = (p\(y(t)) remain in a fixed com
pact K and are defined on an interval [0 , t / ] . Then y\ is a S-solution of the 
differential inclusion y(t) G (p{y(t)j 1), and 5 tends to 0 when A -^ 1. 
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Proof, ip is use at (y*, 1) for all (y*, 1) G K^ thus for e = J, there exists 77 such 
tha t for all \y-y*\ < Vy* < 5̂ 1-̂  ~ 1| < Vy* < ^y we have ^xiy. A) G (p{y*,iy. 
Thus X C Uj/*eK B{y*^riy*) and as X is compact, we have K C U^^^ B{yi,r)i). 
For e = Syyi,3r]i \y - yi\ < rji < S and |A - 1| < r;̂  < S, ifx{y) e (p{yi, 1) ' . 
For all y G X , there exists ŷ  such that y G B{yi,r]i) and thus 

Then for all A such tha t |A — 1| < 77 and for all y G X , we have (px{y) G 

T h e o r e m 5. Let us assume that the solutions of {BVP)\ remain in a fixed 
compact of [0,tf] x K, K C Q, with Q an open subset oflV^. Then from any 
sequence (yx^) of solutions of {BVP)xk, ^^c/i that A^ ^^ 1 as k —^ +00 , we 
can extract a subsequence (yk) verifying: 

(i) (yk) converges uniformly to y solution of (BVP)i, 
(a) (yk) converges weakly-* to y in L ^ ( [ 0 , t / ] ) . 

Proof, (p is use, thus (p{Kj [1 — e, 1]) is compact. There exists I such that 
|yA(^)| < / for A G [1 — e, 1]. The yx are absolutely continuous, and Lemma 
3 says that we can extract a subsequence (y^) tha t converges uniformly to y, 
and such that (y^) converges weakly-* to y in L ^ ( [ 0 , t / ] ) . As per Lemma 4, 
(yk) is a Jfc-solution. (^(y, 1) is non empty compact convex valued, so Theorem 
3 says tha t y is a solution of the differential inclusion y{t) G (p{y(t)j 1). Initial 
and terminal conditions can be written as ho{y{0)) = 0 and hf{y{tf)) = 0 
with ho and hf continuous. The uniform convergence of (y^) implies tha t y 
verifies the boundary conditions, thus y is a solution of {BVP)i. D 

Corol lary 2. Under the hypotheses of Theorem 5, assume that x = f{t,x,u) 
provides a control of the form u = 5'(t, x) + -R(t, x)Xj with R and S continuous 
and R linear. Consider the subsequence yk = (xk^Pk) from Theorem 5, and 
let Uk = S{t,Xk) + R{t,Xk)xk' Then (uk) converges weakly-* in L ^ ( [ 0 , t / ] ) . 

Proof See [9], proof of Proposition 3.2, pp. 551-552. D 

Back to our families of problems {BVPi)x and {BVP2)x) we have the 
state-costate dynamics 

V ? W ^"W - (1 - A)U {t))Umax -P{t) r (1 ^ ) / 

<P2iy{t),u{t),X) = 

fx2{t)\ 
u{t) 
Xl{t) 

We consider the set valued dynamic ^{y{t), A) = <fi{yit),r{y{t)), A). Prom the 
expression of ipi and ip2, and the fact tha t Fi and Jij are use with nonempty 
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compact convex values, we obtain that ^ i and ^2 are also use with nonempty 
compact convex values. Now we make the assumption tha t the solutions of 
{BVPi)x and {BVP2)\ remain in some fixed compact sets, which has been 
validated by the numerical experiments. Then Theorem 5 applies and gives 
the convergence result for the continuation approach. 

Moreover, we have the following expression of the control: 

/ "^(^) = ut:^'' ^ ^ W (1 - ^ ) - *^(*)) f*''̂  Problem 1 
\ ux{t) = ^2A(^) ^^^ Problem 2. 

Thus Corollary 2 applies and gives the convergence for the control. 

2.3 P L Cont inuat ion - Simplic ial M e t h o d 

We will here recall very briefly the principle of a PL continuation method. 
Extensive documentation about pa th following methods can be found in E. 
AUgower and K. Georg [2, 3], as well as Todd [20, 21], to mention only a few. 
The idea of a continuation is to solve a difficult problem by starting from 
the known solution of a somewhat related, but easier problem. By related we 
mean here tha t there must exist an application h, called a homotopy, with the 
right properties connecting the two problems. For the following definitions we 
consider tha t his a. function, the multi-valued case will be treated afterwards. 

PL continuation methods actually follow the zero pa th of the homotopy h 
by building a piecewise linear approximation of /i, hence their name. Towards 
this end, the search space is subdivided into cells, most often in a particular 
way called a triangulation in simplices. This is why PL continuation methods 
are often referred to as simplicial methods. The main advantage of this ap
proach is tha t it puts extremely low requirements on the homotopy h: as no 
derivatives are used, continuity is in particular sufficient, and should not even 
be necessary in all cases. 

First, we recall some useful definitions. 

Def ini t ion 2. A simplex is the convex hull o / n + 1 affinely independent points 
(called the vertices) in R^ , while a k-face of a simplex is the convex hull of k 
vertices of the simplex (note: k is typically omitted for n-faces, which are just 
called faces). 

Def ini t ion 3 . A triangulation is a countable family T of simplices of R'^ 
verifying: 
• The intersection of two simplices of T is either a face or empty, 
• T is locally finite (a compact subset of H"' meets finitely many simplices). 

Defini t ion 4. We call labeling a map I that associates a value to the vertices Vi 
of a simplex. We label here the simplices by the homotopy h: l(v'^) = h(z^y A*), 
where v^ = {z'^,X^). Affine interpolation on the vertices thus gives a PL ap
proximation hx of h. 
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Def ini t ion 5. A face [v\^ ••jt'n] of a simplex is said completely labeled iff it 
contains a solution v^ of the equation hriv) = e for all sufficiently small e > 0 
(where e = (e,.. , e^)). 

/ 
/ 

/ 

\A 

A 

\A y 
/ 

/ 
/ 

y 

finniM^^^ 
/WWWWWWWWI 

ZX /M/M A V 
Fig. 1. Illustration of some well known triangulations of R x [0,1] ([0,1[ for Jz] 
Preudenthal's uniform Ki, and Todd's refining J A and J3 

L e m m a 5. Each simplex possesses either zero or exactly two completely la
beled faces (being called a transverse simplex in the latter case). 

Proof See [2], Chapter 12.4. D 

The constructive proof of this property, which gives the other completely 
labeled face of a simplex that already has a known one, is often referred to as 
PL step, linear programming step, or lexicographic minimization. Then there 
exists a unique transverse simplex tha t shares this second completely labeled 
face, tha t can be determined via the pivoting rules of the triangulation. 

A simplicial algorithm thus basically follows a sequence of transverse sim-
plices, from a given first transverse simplex with a completely labeled face at 
A = 0, to a final simplex with a completely labeled face at A = 1 (or 1 — e for 
some refining triangulations that never reach 1, such as J3), which contains 
an approximate solution oi h(z,l) = 0. 

For a multi-valued homotopy h, we have the following convergence prop
erty. 

T h e o r e m 6. We consider a PL continuation algorithm using a selection of h 
for labeling and a refining triangulation oflV^ x [0,1[ (such as J3 for instance). 
We make two assumptions regarding the path following: 

(i) all the faces generated by the algorithm remain in K x [0,1], with K 
compact. 

(a) the algorithm does not go back to X = 0. 
Then, if h is use with compact convex values, the algorithm generates a se
quence (zi^Xi) such that Xi -^ 1, and there exists a subsequence still noted 
{zij Xi) converging to (z^l) such that 0 G h{z,l). 

Proof The proof comes from [1], chapter 4, page 56. D 

For the two examples under consideration, the two assumptions concerning 
the pa th following are numerically verified for both problems. However, the 
assumption of the homotopy convexity only holds for Problem 1, but not for 
Problem 2 a priori. 
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2.4 P a t h Fol lowing - Singular Structure D e t e c t i o n 

In order to initialize the continuation, we need to solve both problems for 
A = 0, which is easily done by single shooting from an extremely simple initial 
point {x{0) = —0.1 and x{0) = (0,0) respectively). The objective shown is the 
original, unperturbed criterion, and the results are summarized on Table 1. For 
both examples, the pa th following goes smoothly at first, and the switching 
function and control evolution as A increases is quite interesting, as shown on 
Figures 2 and 3. 

Table 1. Solutions for A = 0 

A |5o(;2;*)| objective iter time 

Problem 1 0 -4.0935 10"^ 3.6295 10"^^ 69374046 39 < Is 
Problem 2 0 (1.2733,2.2715) 3.3596 lO"^"^ 0.4388 134 < Is 

CONTROL EVOLUTION SWITCHING FUNCTION EVOLUTION 

Fig. 2. Problem 1: Control and Switching function for A = 0,0.5,0.75,0.9,0.95 

We can see that for both problems, the switching function tp comes closer 
to 0 over some time intervals, which strongly suggests the presence of singular 
arcs at the solution for A = 1. For the first problem, the control structure 
seems to be regular-singular-regular, with the singular arc boundaries near 
[2,7.5], and for the second problem regular-singular, the singular arc begin
ning around 1.5. Meanwhile, we can see tha t outside the suspected singular 
arcs the control tends to a bang-bang structure coherent with the necessary 
conditions, more precisely + 1 before and after the arc for the first problem, 
and —1 before the arc for the second problem. An interesting fact is tha t the 
control keeps on taking intermediate values over the time intervals where I/J 
tends to 0, which confirms the assumption of a singular arc. On these two ex
amples, the continuation based on the quadratic perturbation gives a strong 
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CONTROL EVOLUTION SWITCHING FUNCTION EVOLUTION 

2 3 
TIME 

Fig. 3. Problem 2: Control and Switching function for A = 0,0.5,0.75,0.9 

indication about the control structure, with an approximate location of the 
singular arcs. So as far as the detection of the singular structure is concerned, 
this approach seems rather effective. 

2.5 Numerical Difficulties - Different Control Structures 

However, as A tends to 1, the path following encounters some difficulties: 
above a certain point, the PL approximation of the shooting function be
comes increasingly inaccurate. We can also note that from this point on, 
the objective value does not improve any longer (here again, the objective 
values displayed correspond to the original non-perturbed problems, thus 
Max J^^ {E - c/x(t)) u{t) C/max dt and Min i J^ {xl{t) + xl{t)) dt). Fig.4 
shows the evolution of the homotopy norm and the criterion value along the 
zero path. 

Difficulties are often expected at the end of continuation strategies, and 
for simplicial methods there exists for instance some refining triangulations 
(such as J3 or J4) whose meshsize decreases progressively, in order to ensure 
an accurate path following near the convergence. Yet in our case, using this 
kind of techniques only delays this degradation a little, and does not prevent 
it from appearing eventually. The instability threshold is problem dependant: 
it appears at best (via refining triangulations) beyond A = 0.975 for Problem 
1 and A = 0.95 for Problem 2. 

The reason behind this phenomenon can be found if one looks at the 
control structures corresponding to the vertices of the completely labeled faces 
(which are supposed to contain a zero of the PL approximation of the shooting 
function). Depending on the vertices, we find two different control structures: 
the interval on which the switching function is close to 0, that we call a pseudo 
singular arc, is not stable. At some point, the switching function leaves the 
proximity of 0 and increases in absolute value, either with positive or negative 
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Fig. 4. Homotopy norm and objective value along zero paths, for Problem 1 and 2 

sign. Depending on the sign of the switching function at the exit of the pseudo 
singular arc, we obtain two different control structures, either with "crossing" 
or "turning back". What happens is tha t these two structures keep appearing 
among the vertices of the labeled faces, however small a meshsize we use, which 
is why refining triangulations are useless. We also note that this instability of 
the switching function near zero becomes worse as A tends to 1: the length 
of the pseudo singular arc decreases as the exit occurs earlier and earlier, as 
illustrated on Fig.5. 

At the convergence for A = 1, all tha t is left from the pseudo singular arc 
is a contact point, once again with two possible control structures depending 
on the sign of the switching function after it reaches 0. For both problems, 
the control and switching functions (but also the state and cost ate) are iden
tical for the two structures before the contact point. After tha t point, which 
corresponds to the beginning of the supposed singular arc, the switching func
tion goes either positive or negative, with the two corresponding bang-bang 
controls. More precisely, if the switching function crosses 0 and changes sign, 
there is a control switch, while it remains the same if the switching function 
turns back with the same sign after the contact point. Anyway, in both cases 
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Fig. 5. Switching function evolution for Problem 1 and 2 (A = 0.99,0.995,0.9999, 
and A = 0.95,0.975,0.9999 respectively) 

we have lost the singular structure at the convergence. Figures 6 and 7 show 
these two distinct control structures for each problem. 
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Fig. 6. Problem 1: Control structures according to switch exit sign 

The existence of these two very close (with respect to the shooting function 
unknown z) and yet completely different control structures corresponds to a 
discontinuity of the shooting function at the solution, which is illustrated 
on Fig.8 for both Problem 1 (first graph) and Problem 2 (second and third 
graphs). 

We use here a basic Runge Kutta 4th order method with 1000 integration 
steps. We tried various other fixed step integration methods, such as Euler, 
Midpoint, Runge Kutta 2 or 3, and increased the number of steps to 10000. 
We also used variable step integrators, namely Runge Kutta Fehlberg 4-5, 
Dormand Prince 8-5-3, and Gragg Bulirsch Stoer extrapolation method (see 
[15]), with similar results. 
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Fig. 7. Problem 2: Control structures according to switch exit sign 

For Problem 1, the path following always converges to the correct z* and 
locates this discontinuity precisely, which is not surprising as Theorem 6 ap
plies. This is not the case for Problem 2, and the experiments indeed show 
that the path following can converge to different solutions, depending on the 
integration used. We also note that the convergence is more difficult to at
tain for Problem 2, as we often had to use the less accurate triangulation J4 
instead of J3. 

3 Continuation: Discretized BVP Formulation 

We now try to circumvent the previously encountered difficulties by discretiz-
ing the equations of the Boundary Value Problem. We use here a basic Euler 
scheme for the state and costate, and consider a piecewise constant control. 
The values of the state and costate at the interior discretization nodes become 
additional unknowns of the shooting function, while we have the following 
matching conditions at these nodes: 

(xi+i - {xi + hp{ti,Xi,pi,u*)) 

where the optimal control u* is obtained from {xi,pi) by the usual necessary 
conditions. The idea is, that even if the control obtained on the singular 
arc is irrelevant, we hope to have a good approximation of the state and 
costate values. This formulation corresponds to a particular case of multiple 
shooting, with a 1-step Euler integration between two successive discretization 
nodes. Thanks to this integration choice, the discretized version of the shooting 
function is compact convex valued. This allows us to hope a good behaviour 
of the path following, according to Theorem 6. 

Here are the discretized shooting function unknown and value layouts: 

Unknown z IIVP unknown Sit to\{x^,p^)\{x^,p^)\... 
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Fig. 8. Shooting functions discontinuity at X = 1 for Problem 1 and 2 
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the high dimension of the unknown leads to prohibitive execution times. As 
a side effect, this also puts some restrictions on the use of small meshsizes or 
refining triangulations, for the same computational cost reasons. 

Then we apply the same continuation with the quadratic perturbation as 
before. Once again, solving both problems for A = 0 is done immediately 
by single shooting, and we follow the zero path until A = 1. The instability 
observed with the single shooting method does not occur. Here on Fig.9 are 
the solutions obtained with 50 discretization nodes for Problem 1 and 20 
for Problem 2 (whose state and costate are in R^ instead of R). This time 

Fig. 9. Discretized BVP solutions at A = 1 for Problem 1 and 2 

both switching functions clearly show the presence of a singular arc, located 
near [2,7] and [1.5,5] respectively. We note that the switching function for 
Problem 1 is much closer to zero than the best solution we could obtain with 
the previous approach. But now, an annoying fact is the presence of some 
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oscillations located within the bounds of the singular arcs. Trying to get rid 
of these oscillations by conventional means, such as smaller meshsizes and/or 
refining triangulations, or increasing the number of discretization nodes, turns 
out to be ineffective, especially for Problem 2. 

These difficulties might come from the expression of the control, which 
is still given by the necessary conditions. On a time interval [tt,^i+i] located 
within a singular arc, let us assume that the continuation has found the correct 
values of the state and costate {xi,pi) and {xi^i^pi+i). The switching function 
il^iU) should be near zero as we are supposed to be on a singular arc, but 
numerically it will not be exactly zero, mostly due to the rough discretization 
scheme used. The necessary conditions then give a bang-bang control Ui tha t 
is different from the actual singular control u*, so the matching conditions on 
the state and costate at t^+i may not be satisfied. So on singular arcs, the 
algorithm may deviate to values of (x,p) tha t try to verify these incorrect 
matching conditions given by wrong control values. 

If we look closer at the value of SD at the solution, we indeed notice that 
non-zero components are found only for discretization times corresponding 
to singular arcs. Moreover, for Problem 2 matching errors only occur for a;2, 
whose derivative is the only one in which the control appears. Other compo
nents Xi,Pi,P2) whose derivatives do not depend on ix, always have correct 
matching conditions, even on the singular arc. For Problem 1, both deriva
tives of X and p involve the control, so it is not surprising that bo th matching 
conditions are non-zero on the singular arc. We also note that the sign of non
zero matching conditions changes accordingly to the sign of the switching 
function. This is coherent with the fact tha t it also corresponds to the switch
ings of the incorrect bang-bang control, and therefore possibly the changes of 
sign of Ui — u*. All this confirms tha t these oscillations observed on singular 
arcs are related to the wrong control value given by the necessary conditions. 
Fig. 10 shows these matching conditions, with the switching function. 

4 Numerical Resolution 

Now we have gathered some knowledge concerning the singular structure of 
the problems, and we try to solve them more precisely. Based on the solutions 
of the continuation with the continuous and discretized formulations, we will 
assume tha t we have the following control structures: regular-singular-singular 
for Problem 1, and regular-singular for Problem 2. 

We use a variant of the classical multiple shooting method, tha t we call 
"structured shooting". It shares the same principle as the well known code 
BNDSCO from H.J. Oberle (see [18]), slightly simplified and adapted to the 
singular case instead of the state constraints. The control structure is here 
described by a fixed number of interior switching times, tha t correspond to 
the junction between a regular and a singular arc. This times {ti)iz=:i.,nsruitch 
are part of the unknowns and must satisfy some switching conditions. Each 
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Fig. 10. Matching conditions at A = 1 for Problems 1 and 2 

control arc is integrated separately, and matching conditions must be verified 
at the switching times. The switching condition indicates a change of struc
ture, that is the beginning or end of a singular arc where ^ = 0, and thus 
can be defined for instance as ilP'{ti^Xi^pi) = 0. Matching conditions basically 
consist in state and costate continuity at the switching times. 

Summary: structured shooting function unknown and value layout: 

U n k n o w n z | IVP unknown at to|(a;^,p^)|(a:^,p^)|...|Z\i|Z\2 

- IVP unknown at to (same as in single shooting method) 
- values of (x^p*) at interior switching times ti 
- switching times intervals zi^, such that U = U-i -\- Ai , Vi G [l..nswitch] 

V a l u e Sstruct{z) |iS't(;ztc/icond(^i)P^Q^c^cond(^i)I"-[Conditions at tf 

switching and matching conditions at interior times 
terminal and transversality conditions at tf (same as single shooting) 
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Struc tured s h o o t i n g init ial ization: 
Based upon the solutions obtained with the two continuations, we have two 
switchings times for Problem 1, and one switching time for Problem 2. The 
structured shooting unknowns, and the initialization sets corresponding to 
the continuous and discretized continuations are summarized below on Table 
2 and 3 (for the single shooting we use a solution for A = 0.95, before instability 
occurs). 

Table 2. 

Continuation 

BVPo.95 
BVPD 

Problem 1: 

p(0) h: 

-0.429 2.5 
-0.453 2.55 

control structure regular-singular-regular 

\t2 

; 7 
; 7.06 

(4.996 10^ 
(4.839 10^ 

{x\p') (x^p^) 

-0.600) (4.825 10^ 
-0.637) (4.741 10^ 

-0.587) 
-0.621) 

Table 3. Problem 2: 

Continuation 

BVPo.95 
BVPD 

(pi(0),P2(0)) 

(0.974,1.512) 
(1.167,2.024) 

control structure regu] 

ti 

1.5 
1.429 

(0.398, 
(0.578,-

{x^ 

-0.309 , 
-0.429 , 

lar-sin^ 

,P') 

0.401 
0.586, 

jular 

,0.00358) 
,0.000505) 

Now we try to solve directly Sstructi^) — 0 with these initializations. For 
both problems, convergence is immediate for the two initializations. Fig. 11 
shows the solutions obtained, with the expected singular arcs. The solutions 
are the same for the two initialization sets, see Table 4 and 5. 

Table 4. Solution comparison for Problem 1 for the two initialization sets. 

Initialization z" ^i;^2 \Sstruct{z')\ objective iter time 

BVPo.9h -0.46225 2.3704 ; 6.9888 1.1 10"^^ 106905998 110 < Is 
BVPD -0.46225 2.3704 ; 6.9888 3.1 10"^^ 106905998 88 < Is 

Table 5. Solution comparison for Problem 2 for the two initialization sets. 

Initialization z* t\ \Sstruct(z*)\ objective iter time 

ByPo.95 (0.9422,1.4419) 1.4138 2.4 lO"^"^ 0.37699 93 < Is 
BVPD (0.9422,1.4419) 1.4138 9.2 10~^^ 0.37699 116 < Is 
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Fig. 11 . Solutions obtained by Structured Shooting for Problems 1 and 2 

Remark. It should be noted that the resolution can be quite sensitive with 
respect to the initial point. For Problem 1, a deviation of 0.1 of the costate 
values can be enough to prevent the convergence. 

As a conclusion, we give here a comparison of the solutions obtained by 
the two continuation approaches (single shooting at A = 0.95 and discretized 
BVP) with the reference solution from structured shooting, see Fig. 12 and 13. 

We can see that both continuation solutions are rather close to the refer
ence solution for the state, costate and switching function. For Problem 1 the 
discretized solution is quite good, with very little oscillations, while the con
tinuous solution at A = 0.95 is less accurate for p and ip. For Problem 2, the 
oscillations are much more important on the discretized solution, wherecis the 
continuous solution at A = 0.95 is very close to the reference. Concerning the 
control, the continuous formulation gives an acceptable approximation of the 
singular control, the differences being localized around the switching times, 
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which is not surprising. 

N o t e s and N u m e r i c a l precis ions: 
• There is no pa th following for structured shooting: we solve Sstructi^) = 0 
directly, which is possible because we have a quite good initial guess. 
• For non-discretized formulations (single and structured shooting), a basic 
fixed step Runge Ku t t a 4th order integration was used, with 1000 discretiza
tion steps for both problems. As said before, we obtained similar results with 
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other integration methods, either with fixed or variable step. 
• Tests were run on a P C workstation (2.8GHz Pentium 4), using a build of 
the Simplicial package compiled with ifc (Intel Fortran Compiler). 
• All numerical experiments were made using the Simplicial package we wrote, 
which implements a PL continuation for optimal control problems via indirect 
methods (www.enseeiht.fr/lima/apo/simplicial/, see also [16]) 

5 Conclusions and Perspectives 

Starting with no a priori knowledge about the control structure, the two for
mulations (single shooting and discretized BVP) of the continuation allowed us 
to detect the singular arcs accurately. Wi th this information and the approx
imate solutions obtained, we were able to solve the problems with a variant 
of multiple shooting. 

Concerning the oscillations encountered with the discretized formulation, 
one could think of using the expression of the singular control when the switch
ing function is close to 0, instead of the incorrect bang-bang control given by 
the hamiltonian minimization. However, the solutions obtained depend heav
ily on the practical implementation of this "close to 0" condition, which can 
artificially force a singular arc... 

Another interesting idea is to discretize the control, in the same fashion 
as direct shooting (or "semi-direct") methods. This consists in integrating the 
state and costate with an Euler scheme and a piecewise constant control, 
whose value on the discretization nodes are part of the unknowns. Some con
ditions would be enforced on these values, such as satisfying the Hamiltonian 
minimization in the regular case and the singular control expression in the 
singular case. 

Finally, it would be interesting to t ry to adapt the methods we used here for 
singular arcs to the case of state constraints, which also lead to low regularity 
problems. 
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