


Lecture Notes in Economics 
and Mathematical Systems 563 

Founding Editors: 

M. Beckmann 
H. P. Kunzi 

Managing Editors: 

Prof. Dr. G. Fandel 
FachbereichWirtschaftswissenschaften 
Femuniversitat Hagen 
Feithstr. 140/AVZII, 58084 Hagen, Germany 

Prof. Dr. W. Trockel 
Institut fur Mathematische Wirtschaftsforschung (IMW) 
Universitat Bielefeld 
Universitatsstr. 25, 33615 Bielefeld, Germany 

Editorial Board: 

A. Basile, A. Drexl, H. Dawid, K. Inderfurth, W. Kursten, U. Schittko 



Alberto Seeger (Ed.) 

Recent Advances 
in Optimization 

Spri nger 



Editor 

Prof. Alberto Seeger 
University of Avignon 
Department of Mathematics 
33, rue Louis Pasteur 
84000 Avignon, France 
E-mail: alberto.seeger@univavignon.fr 

ISSN 0075-8442 
ISBN-10 3-540-28257-2 Springer Berlin Heidelberg New York 
ISBN-13 978-3-540-28257-0 Springer Berlin Heidelberg New York 

This work is subject to copyright. AH rights are reserved, whether the whole or part 
of the material is concerned, specifically the rights of translation, reprinting, re-use of 
illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, 
and storage in data banks. Duplication of this publication or parts thereof is permitted 
only under the provisions of the German Copyright Law of September 9,1965, in its 
current version, and permission for use must always be obtained from Springer-Verlag. 
Violations are liable for prosecution under the German Copyright Law. 

Springer is a part of Springer Science+Business Media 

springeronline. com 

© Springer-Verlag Berlin Heidelberg 2006 
Printed in Germany 

The use of general descriptive names, registered names, trademarks, etc. in this 
publication does not imply, even in the absence of a specific statement, that such 
names are exempt from the relevant protective laws and regulations and therefore 
free for general use. 

Typesetting: Camera ready by author 
Cover design: Erich Kirchner, Heidelberg 

Printed on acid-free paper 42/3130Jo 5 4 3 2 10 

mailto:alberto.seeger@univavignon.fr


Preface 

This volume contains the Proceedings of the Twelfth French-German-Spanish 
Conference on Optimization held at the University of Avignon in 2004. We 
refer to this conference by using the acronym FGS-2004. 

During the period September 20-24, 2004, about 180 scientists from around the 
world met at Avignon (France) to discuss recent developments in optimization 
and related fields. The main topics discussed during this meeting were the 
following: 

1. smooth and nonsmooth continuous optimization problems, 
2. numerical methods for mathematical programming, 
3. optimal control and calculus of variations, 
4. differential inclusions and set-valued analysis, 
5. stochastic optimization, 
6. multicriteria optimization, 
7. game theory and equilibrium concepts, 
8. optimization models in finance and mathematical economics, 
9. optimization techniques for industrial applications. 

The Scientific Committee of the conference consisted of F. Bonnans (Rocquen-
court, France), J.-B. Hiriart-Urruty (Toulouse, France), F. Jarre (Diisseldorf, 
Germany), M.A. Lopez (Alicante, Spain), J.E. Martinez-Legaz (Barcelona, 
Spain), H. Maurer (Miinster, Germany), S. Pickenhain (Cottbus, Germany), 
A. Seeger (Avignon, France), and M. Thera (Limoges, France). 

The conference FGS-2004 is the 12th of the series of French-German meetings 
which started in Oberwolfach in 1980 and was continued in Confolant (1981), 
Luminy (1984), Irsee (1986), Varetz (1988), Lambrecht (1991), Dijon (1994), 
Trier (1996), Namur (1998), Montpellier (2000), and Cottbus (2002). 

Since 1998, this series of meetings has been organized under the participation 
of a third European country. In 2004, the guest country was Spain. The con­
ference promoted, in particular, the contacts between researchers of the three 
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involved countries and provide a forum for sharing recent results in theory 
and applications of optimization. 

The conference FGS-2004 was organized by the "Group of Nonlinear Analysis 
and Optimization" of the University of Avignon. As chairman of the Orga­
nizing Committee, I would like to acknowledge the following institutions for 
their financial or material support: 

• Region Provence-Alpes-Cote d'Azur 
• Universite d'Avignon et des Peiys de Vaucluse 
• Agroparc: Technopole Regional d'Avignon 
• Mairie d'Avignon 
• Institut National de Recherche en Informatique et en Automatique 

For the sake of convenience, the contributions appearing in this volume are 
splitted in four different groups: 

Part I. Optimization Theory and Algorithms, 
Part II. Optimal Control and Calculus of Variations, 
Part III. Game Theory, 
Part IV. Modeling and Numerical Testing. 

Each contribution has been examined by one or two referees. The evaluation 
process has been more complete and thorough for the contributions appear­
ing in Parts I, II, and III. The papers in Part IV are less demanding from 
a purely mathematical point-of-view (no theorems, propositions, etc). Their 
principal concern is either the modeling or the computer resolution of specific 
optimization problems arising in industry and applied sciences. 

I would like to thank all the contributors for their effort and the anony­
mous referees for their comments and suggestions. The help provided by Mrs 
Monique Lefebvre (Secretarial Office of FGS-2004) and the staff of Springer-
Verlag is also greatly appreciated. 

Avignon, September 2005 Alberto Seeger 
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Part I 

Optimization Theory and Algorithms 



On the Asymptotic Behavior of a System 
of Steepest Descent Equations Coupled 
by a Vanishing Mutua l Repulsion* 

F. Alvarez^** and A. Cabot^ 

^ Departamento de Ingenieria Matematica and Centre de Modelamiento 
Matematico, Universidad de Chile, Casilla 170/3, Correo 3, Santiago, Chile. 
falvarezOdim.uchile.cl 

^ Laboratoire LACO, Universite de Limoges, Limoges, Prance. 
alexcindre. cabotQunilim. f r 

Summary . We investigate the behavior at infinity of a special dissipative system, 
which consists of two steepest descent equations coupled by a non-autonomous con­
servative repulsion. The repulsion term is parametrized in time by an asymptotically 
vanishing factor. We show that under a simple slow parametrization assumption the 
limit points, if any, must satisfy an optimality condition involving the repulsion 
potential. Under some additional restrictive conditions, requiring in particular the 
equilibrium set to be one-dimensional, we obtain an asymptotic convergence result. 
Finally, some open problems are listed. 

1 Introduction 

Throughout this paper, H is a, real Hilbert space with scalar product and 
norm denoted by (•, •) and || • ||, respectively. Let (j): H -^Rhe a, C^ function 
and suppose that the set of critical points of (j) is nonempty, that is, 

S:={xeH\ V0(x) = 0} 7̂  0. 

A standard first-order method for finding a point in S consists in following 
the "Steepest Descent" trajectories: 

(SD) X -f V0(2;) = 0 , t > 0. 

The evolution equation SD defines a dissipative dynamical system in the sense 
that every solution x{t) satisfies •^(j){x{t)) = — ||V</)(a;(t))|p so that </)(a;(t)) 

* This work was partially supported by the French-Chilean research cooperation 
program ECOS/CONICYT C04E03. The research was partly realized while the 
second author was visiting the first one at the CMM, Chile. 

** The first author was supported by Fondecyt 1020610, Fondap en Matematicas 
Aplicadas and Programa Iniciativa Cientifica Milenio. 



4 F. Alvarez and A. Cabot 

decreases as long as V(f>{x{t)) ^ 0. Since the stationary solutions of SD are 
described by 5*, it is natural to expect the corresponding solution x(t) to 
approach the set 5 as t ^^ oo. Indeed, under additional hypotheses, it is pos­
sible to ensure convergence at infinity to a local minimizer of 0 (we refer the 
reader to [7, 8] for more details). However, we may be interested in addi­
tional information about S when 0 has multiple critical points. For instance, 
we would like to compare some of them to select the best ones according to 
some additional criteria. We could also be interested in some properties of 
5 such as unboundedness directions, symmetries, diameter estimates, etc. A 
possible strategy may be to "explore" the state space by solving a system of 
simultaneous SD equations. In order to reinforce the exploration aspect, and 
motivated by the second-order in time system treated in [11], we propose to 
introduce a perturbation term which models an asymptotically vanishing re­
pulsion. More precisely, in this paper we study the following non-autonomous 
coupled system: 

I ^ ^ V K ; \y + y4,(y)-eit)VVix-y)=0. 

Here the function V : H —^Ris of class C^ and satisfies the repulsion condition 

yxeH\{0}, {VV{x),x)<0, (1) 

while the parametrization map £ : M_|_ -^ M_j_ tends to zero as t —> oo: 

lim £(t) = 0. (2) 

This evolution problem will be referred to as the "Steepest Descent and Van­
ishing Repulsion" (SDVR) system. 

As a simple illustration of the type of behavior tha t SDVR may exhibit, 
suppose H = W^ and consider the case of a quadratic objective function 
(t){x) = ^{Ax,x) with A G W^^'^ being symmetric and positive semi-definite, 
together with the quadratic repulsion potential V{x) = — ̂ | | x | p . The corre­
sponding SDVR system is 

j x + Ax- e{t){x - y) = 0, 
\y + Ay-\-£{t){x-y)=0, 

whose solution is explicitly given by 

I y(t) = e - * ^ [ 2 ^ - £oz^e2/o ^(^)^^]. 

As £{t) vanishes when t -^ oo, if A is positive definite then limt^oo x(t) = 
Umt-^oo y{t) = 0, independently of the improper integral J^ £{t)dt. Sup­
pose now that ker A ^ {0} and take v G k e r ^ \ {0}. Remark that v 
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is a direction of unboundedness for S = kev A. Since e'^'^v = v, we get 
{x{t) — y{t),v) = e^-^0 (̂'̂ )̂ T(̂ XQ — yo,v). When {XQ —yo,v) 7̂  0, the asymptotic 
behavior along the direction given by v depends strongly on the improper 
integral J^ £{t)dt. In tha t case, if J^ e{T)dT = 00 then the repulsion forces 
x{t) and y{t) to diverge towards infinity following opposite directions. Notice 
that in this example infV = —00 and | |VF(x) | | -^ 00 as ||a;|| —̂  00. However, 
an analogous divergent behavior can occur for a repulsion potential V tha t is 
bounded from below and satisfies | |Vy(x ) | | —)• 0 as ||2;|| -^ 00. For instance, 
take H = 'R and (j) = 0 (so tha t S = M)^ and suppose tha t V 6 C^(M) is such 
that V{x) = \x\~^ for all \x\ > 1. If yo < —1 and â o > 1 then the system we 
have to solve is given by 

(x-e{t)/{x-y)^=0, 
\y-^€(t)/{x-y)^ = 0. 

Since j^{x — y) = 2e{t)/{x — 1/)'̂ , we have that x{t) — y{t) = {{XQ — yo)^ + 

6 JQ £{T)dTy^^y which diverges if and only if J^ e{t)dt = 00. 

From these examples we infer tha t the repulsion term ±£{t)W{x — y) is 
asymptotically effective as soon as £{t) vanishes sufficiently slow as t —> 00, 
and moreover, it is apparent that the adequate condition is 

/ £{t) dt = 00. (3) 

Such a "slow parametrization" condition has already been pointed out by 
many authors in various contexts (cf. [3, 4, 9, 11]). Since £{t) vanishes when 
t -^ 00, it is quite easy to prove the convergence of the gradients V(j){x) and 
V(j)(y) toward 0. The examples above show that under unboundedness of S 
we may observe divergence to infinity. Divergence can be prevented under 
coercivity of 0 and the natural question that arises is the convergence of the 
trajectory {x(t)^y(t)) as t ^ 00. This is a difficult problem due to the non 
convexity of the repulsive potential V (see [10] for positive results in a convex 
framework). In this direction, a one-dimensional convergence result has been 
obtained in [11] for a second-order in time version of SDVR. 

The paper is organized as follows. In section 2, we state some general 
convergence properties for the SDVR system and we show that the slow 
parametrization assumption (3) forces the limit points to satisfy an optimality 
condition involving W and the normal cone of S. This normal condition^ is 
new and allows to reformulate some results of [11] in a more elegant way. In 
section 3 we derive a sharp convergence result when the equilibrium set S 
is one-dimensional. In the last section, we precise our results when (j) is the 
square of a distance function. Due to the first-order (in time) structure of 
SDVR, our asymptotic selection results are sharper than in [11]. 

^ This optimality condition has been found independently by M.-O. Czarnecki (Uni­
versity Montpellier II). 
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Notations, We use the standard notations of convex analysis. In particular, 
given a convex set C C i / , we denote by dc{x) (resp. Pc{x)) the distance of 
the point x E H to the set C (resp. the best approximation to x from C). For 
every x G C, the set Nc{x) stands for the normal cone of C at x. Given any 
set D C H, the closed convex hull of D is denoted by c6{D). Given a,b E: H^ 
we define [a, 6] = {a-\-X{b-a) | AG [0,1]} and ]a,6[= {a + A(fe-a) | A G ] 0 , 1 [ } . 

2 General Asymptotic Results 

From now on, suppose that the functions 0 : i J - ^ R , F : i 7 — ) > M and 
e : IR+ -^ M+, which are assumed to be of class C^, satisfy the following set of 
hypotheses (H): 

(n-/ \ / ^ ~ ^ ^^^ ^ ^^^ bounded from below on H, with inf V = 0. 
^ ^^ ]^ii — V0 and W are Lipschitz continuous on bounded sets of H. 

{ i — The map £ is non-increasing, i.e. €{t) < 0 Vt G M-f.. 
ii — The map e is Lipschitz continuous on R+. 
in — lim e(t) = 0. 

Let us begin our study of SDVR by noticing that it can be rewritten as a 
single vectorial equation in H^ = H x H. Indeed, let us set X = {x,y) e H^, 
^(X) = (j){x) + (l){y) and U{X) = V{x - y). With such notations, SDVR is 
equivalent to 

X + V^(X) + £{t)VU{X) = 0, (4) 

where ^ and U are differentiable functions on H^ satisfying the analogue to 
(7^1), that is 

(njvec\ { i — ^ and U are bounded from below on i/^, with miU = 0. 
^ ^ \^ii — V^ and Vt/ are Lipschitz continuous on bounded sets of H^. 

Set 

E{t) = ^{X{t)) + s{t)U{X{t)) = ct>{x{t)) + cl>{y{t)) + e{t)V{x{t) - y{t)). 

By differentiating E with respect to time, we obtain 

E = -\\Xf + iU{X) = -\\xf - ||y||2 +iV{x-y)< 0. 

Thus E is non-increasing, defining a Lyapounov-like function for (4). This is 
a useful tool in the study of the asymptotic stability of equilibria. Lyapounov 
methods and other powerful tools (like the Lasalle invariance principle) have 
been developed to study such a question. We refer the reader to the abundant 
literature on this subject; see, for instance, [2, 13, 14]. In this specific case, 
some standard arguments relying on the non-increasing and bounded from 
below function E{t) permit to prove the next result, which we state without 
proof. 

Proposition 1. Assume that (Hl^^) and {H2) hold. Then, 
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(i) V Xo G H^, there exists a unique solution X : E+ —> iJ^ of (4), which is 
of class C^ and satisfies X{0) = XQ. Moreover, X G L^([0, CXD); iif^). 

{ii) Assuming additionally that {X{t)}t>o is bounded in H^ (which is the case 

for example if ^ is coercive, i.e. lim ^{X) = oo^, then lim X{t) = 0 
||X||—i>oo t—>oo 

and lim V ^ ( X ( t ) ) = 0. 
t—>'00 

{iii)If ^ is convex and {X{t)}t>o is hounded then lim ^{X{t)) = inf^. 
t—^'OO 

The natural question that arises is the convergence of the trajectory X{t) as 
t —> oo. When £ = 0, (4) reduces to the steepest descent dynamical system 
associated with ^ . In tha t case, there are different conditions ensuring the 
asymptotic convergence towards an equilibrium. For instance, it is well-known 
that under convexity of ^ , the trajectories weakly converge to a minimum of 
^ (cf. Bruck [8]). This last result can be generalized when e tends to zero fast 
enough; indeed, we have 

P r o p o s i t i o n 2. In addition to (Til^^) and (H2), assume that ^ is convex 
with argmin ^ 7̂  0. / / JQ e{t) dt < 00 then every solution X(t) of (4) weakly 
converges to a minimum of ^ as t ^^ 00. 

We omit the proof of this result because it is similar to that given in [1] for 
second-order in time systems, which has been revisited with slight variants in 
[4, 5, 9, 11]. Notice that under the conditions of Proposition 2, any minimizer 
of # is asymptotically attainable. As the following result shows, tha t is not 
the case when the parametrization £{t) satisfies (3). 

L e m m a 1. Assume that {Hi^^), {H2) o,nd (3) hold. Let X{t) be a solution to 
(4) and suppose that X{t) —^ XQQ strongly as t ^^ 00. Then, 
(i) (Convex case)^ If ^ is convex, then X^o G argmin ^ and 

-VU{Xcx>) G Nargmin ^{X00). (5) 

(ii) (General case) We have X^o G C := {X G i7^ | V ^ ( X ) = 0} and 

-VU{Xoo)e n C O ( M + V < ^ W ) , (6) 

where M{Xoo) denotes the set of neighborhoods of Xoo o,nd the set W^V^{W) 
is defined by R+V^{W) := {A V^(x ) | A G M+, a; G W}. 

Proof, (i) From Proposition l ( i i ) , limt_>oo V ^ ( X ( t ) ) = 0 and hence XQ© G 
argmin ^ . Let w G argmin ^ so that V^{w) = 0. By convexity, V ^ is mono­
tone and we have 

V ^ G ^ ^ (V^{v),v-w)>0. (7) 

^ This result has been obtained simultaneously by M.-O. Czarnecki (University 
Montpellier II). 



8 F. Alvarez and A. Cabot 

Taking the scalar product of (4) by X(-) — w and integrating on [0,^], we 
obtain 

'^\\X{t)-wf-^\\X{0)-wf+f\v^{Xis))+sis)VU{X{s)),Xis)-w)ds = 0. 
Jo 

Using (7), we get 

s{s)(VU{X{s)),X{s) -w)ds< i| |X(0) - wf - UX{t) - wf. 

Recalling that JQ £{t) dt = oo, we deduce that 

(Vt/(Xoo),Xoo -w)= Mm {VU{X{t)),X{t) -w}<0, 
t—*oo 

otherwise, we would have limt-^oo /Q ^{S)(^U{X{S)),X{S) —W) ds = oo, which 
is impossible. This being true for any w G argmin ^, we conclude that (5) 
holds. 
(ii) Again, XQ© G C due to Proposition 1 (ii). Next, let W G Af{Xoo) and 
V e H^. Suppose that for every w eW, {V^{w),v) < 0. Since X{t) -^ Xoo, 
there exists to > 0 such that for all t >to, X{t) G W, and consequently 

yt>to, {V^{X{t)),v)<0. (8) 

Integrating (4) on [to,i\ we obtain 

/ s{s){VU{X{s)),v)ds = {X{to) - X{t),v) - I {V^{X{s)),v)ds. 
Jto Jto 

Prom (8), we get Jle{s){VU{X{s)),v)ds > {X{to) - X{t),v), Wt > to. By 
(3), we deduce that 

{VU(Xoo),v) = lim {VU{X{t)),v) > 0. 
t—^oo 

This proves that, for every v G H^ and w G W^ if {V^{w),v) < 0 then 
(V[/(Xoo),f) > 0, which amounts to 

V̂ ; G {R+V^{W)y, {VU{Xoo),v) > 0, (9) 

where {R^V^{W)y stands for the polar cone of the conic hull of V^(VF). 
By (9), the vector -VU{Xoo) belongs to (]R+V^(T^))^^, the polar cone of 
(IR+V^(VF))^. Pinally the bipolar theorem (cf., for example, [6]) ensures that 
-VU{Xoo) e CO (R+V^(H^)), which completes the proof. D 

Remark 1. Condition (5) for the convex case expresses a necessary condition 
for XQO to be a local minimum of the function U on the set argmin #. In the 
general case, the set arising in (6) is closely related to the normal cone to C 
at XQO' However, Lemma l(i) cannot be viewed as a special case of Lemma 
i(ii). 
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3 Convergence for a One-Dimensional Equilibrium Set 

When (j) has non-isolated critical points, the general results of the previous 
section for the vectorial form (4) of SDVR do not ensure the asymptotic 
convergence of the solution [x{t)^y{t)) under the slow parametrization condi­
tion (3). If 0 and V are both convex then it is possible to prove the asymp­
totic convergence to a pair (a:oo)2/oo) that minimizes [x^y] i—̂  V{x — y) on 
argmin (j) x argmin 0 (see [10]). Although the repulsion condition (1) is not 
compatible with the convexity of V ^ the asymptotic selection principle given 
by Lemma 1 establishes that the "candidates" to be limit points must satisfy 
an analogous extremality condition depending on U{x,y) = V{x — y). In a 
one-dimensional scalar setting, a convergence theorem for a second-order in 
time system involving a repulsion term has been proved in [11]. Next, we show 
that this type of result is valid for SDVR. To our best knowledge, convergence 
in the general higher dimensional case is an open problem. 

From now on, we assume the following hypotheses on the function (f>: 

for every bounded sequence (xn) C H, 

lim ||V0(xn)|| = 0 =^ lim ds{xn) = 0, (10) 

n ^ o o n—>oo 

the map 4> is coercive and S = [a,b] for some a,b E H. (11) 

If a 7̂  6 then we suppose that for every x £ H^ 
if PA{X) ^ S then V0(a:) is orthogonal to Z\, (12) 

where A is the straight line A\=^ {a-V X{h — a) | A G M}. 

Remark 2. Condition (10) holds automatically when diuiH < oo, but (11) 
and (12) are stringent. Take 0 := fod[a,b] where / G C-̂ (IR+;M) and d[a,b] 
refers to the distance function to the segment [a, 6]. If the function / is such 
that f'ip) = 0 and f{x) > 0 for every a; > 0, then the function (j) satisfies 
(10), (11) and (12). Note that the function (f) is a, C^ function due to the 
assumption /'(O) = 0. 

On the repulsion potential V, we assume that there exists a scalar function 
7 : iJ ^ ' I^++ such that 

Vx G H, VV{x) = -j{x)x. (13) 

Theorem 1. Under hypotheses {H), let {x{t),y{t)) be a solution to SDVR. If 
(10)-(13) hold, then: 

(i) There exists (xoo.yoo) ^ [o^.W' ^^^^ ^^^^ \\mt^oo{x(t),y{t)) = (xoo^yoo)-
(ii) Suppose that a ^ b and let us denote by Fa (resp. Fb) the connected compo­

nent ofcl{A\S) such that a G Fa (resp. b G Fb). Assume thatx^Q = y^o = ^ 
and P^(x(0)) ^ P/^(y(0)). Then £ equals a or b and 

• i = a implies (PA{x{t)),PA{yit))) G F^ for every t > 0. 

• i = b implies (^P^(a:(t)),P^(y(t))^ G F^ for every t > 0. 
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(iii) Suppose that the slow parametrization condition (3) holds. If P^{x{0)) 
7̂  P^(y(0)) then (a^ocl/oo) ^ {^)^}^- When in addition a ^ h, if Xoo = 
2/oo = a (resp. 0:00 = 2/00 = b), then we have (P^(a;(t)),P/i(2/(t))) € F^ 
(resp. {PA{x{t)),PA{y{t))) e r^) for every t > 0. 

Proof, (i) Prom the coercivity of ^, we deduce the boundedness of the map 11—> 
{x{t),y{t)) and hence in view of Proposition 1 (ii), we have Umt_oo V0(x(t)) = 
lim -̂̂ oo V(/)(y(t)) = 0. From assumption (10), it ensues that 

lim ds(x(t)) = lim ds(y{t)) = 0. (14) 
t—>oo t—>oo 

If a = 6 the set 5 is reduced to the singleton {a} and the convergence of x{t) 
and y(t) toward a is immediate. Now assume that the segment line S is not 
trivial. Since S C Z\, we have for every x G H, ||a: — Pzi(^)|| = d^ix) < ds(x). 
Hence, in view of (14), we obtain 

lim \\x{t) - PA{xm\ = lim \\y{t) - PAivim = 0-
T—>00 t—>00 

As a consequence, the convergence of x{t) (resp. y{t)) as t —)> oo is equivalent 
to the convergence of P^(a:(t)) (resp. PA{y{t))i which amounts to the con­
vergence of {x(t),b — a) (resp. {y{t),b — a)) as t -^ oo. For every t > 0, set 
a{t) := {x{t),b- a) and P{t) := {y{t),b- a). From SDVR, we obtain 

a{t) + (V0(x(t)), 6 - a) - e{t) j{x{t) - y{t)) {a{t) - m) = 0. (15) 

m + (V0(2/(t)), 6 - a) + e{t) j{x{t) - y{t)) {a{t) - I3{t)) = 0. (16) 

We have that {{x,b — a) \ x e S} = [A,yu] for some X < fi. It is immediate to 
check that, for every x ^ H^ {x,b — a) G [A,^] is equivalent to PA{X) G 5*, so 
that we can reformulate assumption (12) as 

(x, b-a) e [A, fj] =^ (V0(a:), b-a)=0. (17) 

In particular, for every ^ > 0, we have that a(t) G [A,//] (resp. /3(t) G [A,)u]) 
implies (V0(a:(t)),6 — a) = 0 (resp. (V</>(y(t)),6 — a) = 0). Since the cj-limit 
sets of {x{t)}t>o and {2/(0}t>o are included in 5, it is clear that: 

lim inf a{t), lim sup a(t) 
t--*oo t—*oo 

C [A,/x] and lim inf/3{t), lim sup /3{t) 
t—»oo t—>oo 

c[A,/i] 

We are now going to prove the convergence of a{t) and ^(t) as t —> oo by 
distinguishing three cases: 

Case 1: For all t > 0, we have min{a(t),/5(^)} > fi or max{a(^),^(^)} < A. 
Without loss of generality, we can assume that for every t > 0, a{t) > fi 
and P{t) > fi. We deduce that liminft^oo < (̂0 ^ M ^^^ liminft^ooi^(^) > 
jj,. Since limsup^_^QQ a(t) < /x and lim sup^_^^ f3{t) < /x, we conclude that 
hmt-^oo oi{t) = limt_>oo P(t) = /x. 
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Case 2: There exist c G]A,yu[ and to > 0 such that either a(to) < c < (3{to) or 
/3(to) < c < a(to). Suppose a(to) < c < /3(to). Let us first prove that 

Vt>to, a{t) <c<f3{t). (18) 

Let us set to© := s\ip{t > to, Vi6 G [to,t], a(ti) < c < /3(u)}. Let us argue by 
contradiction and assume that too < oo. We then have: 

VtG[ to , too[a( t )<c</9( t ) . (19) 

From the continuity of the maps t \—> a{t) and t i—» /?(t), we have a (too) = c 
or /3{toc>) = c. Without any loss of generality, let us assume that a(too) = c. 
Using again the continuity of the map a, there exists ti G [to, too] such that 
Vt G [ti,too]5 Q (̂t) > A. Let us now use the differential equation (15) satisfied 
by a. Since a(t) G [A,c] for every t G [ti,too], we deduce from (17) that 
(V0(x(t)),6 — a) = 0. On the other hand, the sign of a — /? is negative on 
[ti, too], so that equation (15) yields Vt G [ti, too], Q;(t) < 0. As a consequence, 
we have c = a (too) ^ Q;(ti), which contradicts (19). Therefore, we conclude 
that too = +00, which ends the proof of (18). 

Case 2.a: First assume that a{t) > A for every t > to. From (17) and the fact 
that a(t) G [A,c], we deduce that (V<?i>(rr(t)),6 — a) = 0. This combined with 
(15) and the negative sign of a(t)—p(t) implies that d(t) < 0 for every t > to. 
As a consequence, limt^oo < (̂t) exists. 

Case 2.h: Now assume that there exists ti > to such that a(t i) < A. Let us 
first prove that 

Vt > ti , a(t) < A. (20) 

Let us argue by contradiction and assume that there exists t2 > ti such that 
a(t2) > A. Let 

ts := inf{t G [ti,t2], "iu G [t,t2], a{u) > A}. 

From the continuity of a, we have a{ts) = A. The definition of ts shows that 
a{t) > A for every t G [t3,t2]. In particular, we have a{t) G [A,c], which in 
view of (17) implies that (V(/)(a:(t)), 6 — a) = 0. This combined with (15) and 
the negative sign of a{t) — P{t) yields a{t) < 0 for every t G [t3,t2]. Hence, 
we infer that A < a(t2) < (^{ts) = A, a contradiction which ends the proof 
of (20). From (20), we deduce that limsup^_,Qoa(t) < A. Since on the other 
hand, liminft_oo Oi{t) > A, we conclude that Hmt_̂ oo ce(t) = A. 
The proof of the convergence of /3{t) follows the same lines and is left to the 
reader. 

Case 3: There exist c G] A, ii[ and to > 0 such that a(to) = /^(to) = c. It is clear 
that the constant map t G [to,oo[^-^ (c?^) satisfies the differential equations 
(15) and (16). From the uniqueness of the Cauchy problem at to, we deduce 
that a{t) = f3{t) = c for every t > to. 

We let the reader check that all cases are recovered by the previous three ones. 
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(ii) If case 2 holds, it is immediate tha t Unit-,oo (^{t) 7̂  ^i^^t^oo Pit), thus 
implying that limt_*oo^(^) / limt_^oo2/(^)- If case 3 occurs, we obtain by re­
versing the time that a (0) = ^(0) and hence PA{X{0)) = P^{y{0)). Therefore, 
if lim^^oo x{t) = Hmt_^oo 2/(0 — ^ ^^^ PA{X{^)) ¥" ̂ ^(2/(0))) case 1 necessary 
holds which means that 

vt > 0, iPA{xit)),PA{ym € r^ or Vi > 0, {PAixit)),PAiym e A'-

In the first eventuality, we have £ = a, while in the second one we obtain 
£ = b. 

(iii) First assume tha t XQQ = yoo- From (ii), we deduce tha t XQ© and 2/00 are 
extremal points of 5 = [a, 6]. Now assume that âo© 7̂  2/oo- Let us apply Lemma 
1 (ii) by taking into account the fact tha t W{x) = —7 (x) x and 7 (x) > 0 
for every x E H. Condition (6) yields 

^00-2/00 e P I co(M+V(/>(Wi)) and 2/00-^00 e f] co(E+V0(1^2)). 

Let us argue by contradiction and assume that XQ© ^]<^J^[ (resp. ©̂0 ^]^?^[)-
It is then clear tha t 

f l co(M+V(/>(T^i)) C A^ and f j co(R+V0(1^2)) C Z\^, 

where ^ 0 '-= A—A = R (b—a). Therefore XQ©—yoo ^ -^o"- Since x©©—y©© ^ ̂ 0 , 
we conclude that a:©© = i/©©, a contradiction. The rest of the statement is an 
immediate consequence of (ii). D 

4 Further Convergence Results 

Under the assumption of slow parametrization. Theorem 1 shows that , either 
the solutions x and y of SDVR converge to the opposite extremities of 6*, or 
they have the same limit. Since our aim is a global exploration of 5 , the second 
case clearly appears as the pathological one. Our purpose in this section is 
to find sufficient conditions on 0 and V ensuring the convergence toward the 
opposite extremities of </>. We will restrict the analysis to the functions of the 
form (j) := c?|. 

L e m m a 2. Under the hypotheses of Theorem 1, take (j){x) = ^\\x — pW^ for 
some S G 1R+ and p E H. Suppose moreover that the map 7 in (13) satifies 
lim infx-*o l{x) > 0- If (3) holds then for every straight line L going through 
the point p and satisfying PL{X{0)) ^ PiiyiP)), there exists T > 0 such that 
p e]PL{x{t)),PL{y{t))[ for all t > T, 

Proof. Set XQ = x{0) and yo = y{0). Let us denote by -u a director vector of 
L. The assumption P L ( ^ O ) 7̂  PL^VO) amounts to saying that {XQ^U) ^ {yo,u). 
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Without any loss of generality, one can assume that (XQ^U) > {yo^u). Taking 
into account the particular form of </> and V and adding (resp. subtracting) 
the first and second equation of SDVR, we find respectively 

x{t) 4- y{t) -h S{x{t) + y{t) -2p)=0 

x{t) - y(t) -f 5{x{t) - y{t)) - 2e{t) 7 (x{t) - y{t)) {x{t) - y{t)) = 0. 

Taking the scalar product of these equations by the vector u and setting 
a{t) := {x{t),u) (resp. l3{t) := {y{t),u)), we obtain: 

a{t) + P{t) + S{a{t) + p{t) - 2(p, ̂ )) = 0 (21) 

a{t) - p(t) + 5{a{t) - Pit)) - 2s{t) 7 {x{t) - y{t)) {a{t) - (3{t)) = 0. (22) 

It is clear in view of equation (22) that if the quantity a{t) — l3{t) takes 
the value 0 for some t > 0 then a{t) — (3(t) = 0 for every t > 0. Since by 
assumption a(0) — /3{0) > 0, we deduce that a{t) — j3{t) > 0 for every t > 0. 
Prom the assumption liminfa;_^o7(^) > 5̂ there exist 77 > 0 and m > 0 such 
that, for every \\x\\ < 77, we have 7(0:) > m. Since (/> admits p as a unique 
strong minimum, we clearly have limt->oo x{t) = limt_,oo y{t) = P and hence 
limt-^oo x{t) —y{t) = 0- We deduce the existence of to > 0 such that, for every 
t > to, we have ^{x(t) — y{t)) > m. This last inequality combined with (22) 
gives 

a{t) - P{t) + 5{a{t) - f3{t)) > 2ms{t){a{t) - p{t)). 

Multiplying by e*̂ *, we obtain 

I [e'\a{t) - m)] > 2m£(t) e"(a(i) - Pit)). 

(23) 

By integrating this differential equation between to and t, we find: 

a(t) - P{t) > (a(to) - ^(to)) e-'̂ ^*-* )̂ exp / 2m£{s) ds. 
Jto 

On the other hand, a simple integration of (21) on [to,t] yields 

a{t) + m - 2(p,u) = {a{to) + /?(io) - 2ip,u}) e-«(*-*«). (24) 

Relations (23) and (24) imply that 

a{t) -{p,u)> ^ ^ ^ (a(fo) + /?(to) - 2(p, u) + {a{to) - /3(io))e '̂*o 2"-(^)''») 

Pit) -(P,u}< ^ ^ ^ ( a ( i o ) + Pito) - 2{p,u) - (a(io) - ^(io))e^«o ''"^<^^''^) 

Since Ĵ  E{S) ds = oo, we obtain the existence of T > to such that P(t) < 
(p.u) < a{t) for every t > T. This means that p e]PL{x{t)),PL{y{t))[ for 
every t>T. D 



14 F. Alvarez and A. Cabot 

Remark 3. The assumption lim inf^-^o l{x) > 0 means that the repulsion term 
W{x) is not negligible with respect to x when x ^^ 0. Suppose tha t the 
function V is defined by V(x) := ^(| |a:|p), where 6 : R^. ^ R is a decreasing 
function of class C^. In this case, the condition lim inf^^o 7(^) > 0 is equivalent 
to (9'(0) < 0. 

In the next theorem, we assume that the function (j) equals (j) := d?yt, for 
some a^b ^ H. We show tha t the assumption lim inf^-^o yi^) > 0 implies that 
the trajectories x and y converge to opposite extremities of the segment line 
[a, h]. In this case, the repulsion term is strong enough to push the trajectories 
X and y away from one another. 

T h e o r e m 2. Consider a segment line [a, 6] C H, included in some straight 
line A and let us define the function (j) by (f) := ^ d?^ y\ for some S > 0. Under 
the hypotheses of Theorem 1, we suppose moreover that the map 7 in (13) 
satifies liminfx-^o7(3^) > ^, o-'^d that the slow parametrization condition (3) 
holds. Let (x^y) : R_|_ —> H^ be the unique trajectory of SDVR with initial 
conditions (xo,yo) G H^ satisfying PA{XO) 7̂  -Pd(2/o)- Then we have 

lim {x{t),y{t)) = (a, 6) or lim {x{t),y{t)) = (6, a) . 
t—>^oo c—^00 

Proof. When a = b, the function (j) admits the real a as a unique strong min­
imum and we obviously have limt^oo ^(^) = limt-^oo y{t) = CL- From now on, 
let us assume that a ^̂^ 6. In view of Remark 2, the function (l> '-= ^d?^^^ sat­
isfies hypotheses (10)-(12). Hence Theorem 1 applies and one of the following 
cases holds 

(i) \imt^oo{x(t),y{t)) = (a,6) or limt^00{x{t),y(t)) = (6,a). 
(ii) \imt^oo{x{t),y{t)) = {a,a) and Vt > 0, {P^{x{t)),P^{y{t))) G Fl 
(ill) \imt^^{x(t),y{t)) = (6,6) and \ft > 0, (P^(a:(0),Pz^(2/(t))) G F^ . 

Let us argue by contradiction and assume that case (i) does not hold. Without 
any loss of generality, we can assume tha t case (ii) holds. On the half-space Ea 
defined by Ea := {x € H, PA{X) ^ Fa}, the function </> coincides with the 
function xi—> | | | x — a |p . From Lemma 2 applied with p = a and the straight 
line Ay we obtain the existence of to > 0 such that a ^]P/^{x{t)), PA{y{t))[ ^or 
t > to. This shows tha t either P^(a:(t)) ^ Fa or PA{y(t)) ^ Fa, which gives a 
contradiction. D 

When the assumption lim infa;_^o 7(^) > 0 does not hold, it is possible to 
choose initial conditions so as to force the corresponding trajectories to con­
verge toward the same limit. The next proposition provides us with a counter­
example in the case i J = R. 

P r o p o s i t i o n 3 . Take any function 0 : R ^ M satisfying </)(x) = x'^/2 for 
every x G R+ . Assume that the functions V : H —^ W and € : R+ -^ R+ 
satisfy (Ti). Suppose that there exist M > 0 and S > 1 such that, 

V X G R , \V'{X)\ < M | X | ^ 
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Let {x,y) : M4. —> R^ be the unique trajectory of SDVR with initial conditions 
{xo,yo). Then there exist r > 0 and a function 6 : [0 , r [^ R4. such that, for 
every XQ > 0 and yo > 0 with \yo — xo\ < r, 

0{\yo - xo\) <xo-\-yo => V̂  > 0, x{t) > 0 and y{t) > 0. (25) 

For such initial conditions, we have limt— ĉ© x(t) = limt_>oo y{t) = 0-

Proof. Let us consider the function (̂  : M -^ E defined by ^{x) = x'^/2 
for every x G M and let {x,y) be the unique trajectory of SDVR associated 
with 0. If {x,y) is proved to satisfy the property (25), then (x,y) is also the 
solution of SDVR associated with any function (f) coinciding with (j) on 1R+. 
As a consequence, without loss of generality, we can assume that </> = 0. The 
SDVR system then reduces to: 

By adding the first and the second equation of SDVR, we obtain x{t)-{-y(t) + 
x{t) -\-y{t) = 0, which immediately yields 

x( t )+y( t ) = (xo + yo)e-^ (26) 

Without any loss of generality, one may assume that 2/0 < ^o- We then have 
y{t) < x(t) for every t > 0. From the assumption on V, we have for every 
t > 0, V'{x - y){t) > -M{x{t) - y{t)y. Let us subtract the first and the 
second equation of SDVR by taking into account the previous inequality 

x{t) - y{t) + x{t) - y{t) - 2Me{t){x{t) - y(t)Y < 0. 

We now multiply by e* and set u(t) = e^{x{t) — y{t)) to obtain 

u{t) < 2Me(t)e\x{t)-y{t)Y = 2Me{t)e-^^-^">^ u\t). 

Let us integrate the previous inequality on [0, t] to find 

^ ^ ^ ^ ' <2M I s(s)e-^^-^^'ds, fe{s) 
Jo S-1 \u^-\t) u^-i(O) 

Setting 
/•OO 

C = 2M{S-1) / s{s)e-^^-'^^'ds, 
Jo 

we deduce 

Setting r = C~^^^, we observe that if u{0) = XQ — yo < r then the second 
member of (27) is positive. Inequality (27) is then equivalent to 
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1 

<t) < ( ^ - ^ ^ - c ) " ' = (xo-yo) {l-C{xo-yo)'-'r^' 

Defining the function (9 : [0 , r [^R+ hy\/ze [0,r[, ^(^) = z{l-Cz^-'^)'^, 
the previous inequaUty can be rewritten as 

x{t)-y{t)< 0{xo-yo)e-\ (28) 

Note that the previous inequaUty remains true when XQ — yo, in which case 
x(t) = y{t) for every t > 0. By combining (26) and (28), we finally obtain 

y(t) > ^ ( ^ 0 + 2/0 - ^(^0 - 2/o)). It is then clear that 9{xo - yo) < XQ-\-yo 
implies y(t) > 0 for every t >0. Since x{t) > y{t), we also have x{t) > 0 for 
every t >0. D 

5 Open Questions and Further Remarks 

Below are listed some open questions and possible directions for future inves­
tigation. Assumptions of Theorem 1 are very stringent: the set S of equilibria 
of (f) is one-dimensional and the level curves of (j) are colinear to the direc­
tion of 5. We conjecture that the result of Theorem 1 remains true without 
assumption (12). More generally, the extension of Theorem 1 to the case of 
multidimensional equilibrium sets is open. The proof technique that we use 
in the paper cannot be immediately extended to these situations. 

From Theorem 1, the trajectories x and y of SDVR may possibly coincide 
at the limit when t —̂  +oo, even if the function V modelizes a repulsive 
potential. To avoid this eventuality, a natural idea consists in introducing 
a "singular" potential V defined on H \ {0} such that limx-^o ^(^) = +oo. 
This type of potential plays a central role in gravitational or electromagnetic 
theories. For example, when V{x) = l/| |x|| it corresponds to the electric 
potential between two particles having the same sign. For further details, 
we refer the reader to [12], where the author studies the dynamics of a pair 
of oscillators coupled by a singular potential. 

Another extension consists in studying the system oi N > 3 steepest de­
scent equations coupled by a mutual repulsion. For large values of AT, such a 
coupled system could help in finding a global description of the set of minima 
of (f> and also estimates of its size. 

For numerical purposes, it would be interesting to study a discretized 
version of SDVR by using a finite differencing scheme. These developments 
are out of the scope of this paper but certainly indicate a matter for future 
research. 
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Summary. Let lf'(6, c) be the solution set mapping of a linear parametric opti­
mization problem with parameters h in the right hand side and c in the objective 
function. Then, given a point x^ we search for parameter values 6 and c as well as 
for an optimal solution x G ̂ (h^c) such that ||x — x^\\ is minimal. This problem is 
formulated as a bilevel programming problem. Focus in the paper is on optimality 
conditions for this problem. We show that, under mild assumptions, these conditions 
can be checked in polynomial time. 

1 Introduction 

Let ^{h^ c) = argmax{c^x : Ax = 6, a: > 0} denote the set of optimal solutions 
of a linear parametric optimization problem 

max {c^x : Ax = 6,a; > O} , (1) 

where the parameters of the right hand side and in the objective function are 
elements of given sets 

B = {h:Bh = h} , C = {c:Cc = c} , 

respectively. Throughout this note, A G R"^^"^ is a matrix of full row rank 
m, J5 G W'^, C G R^^^, 6 G RP and c G R^. This da ta is fixed once and for 
all. 

Let x^ G R^ also be fixed. Our task is to find values h and c for the 
parameters, such tha t x^ G 1^(5, c) or, if this is not possible, x^ is at least 
close to l?'(6,c). Thus we consider the following bilevel programming problem 

m i n { | | a ; - a ; ° | | : xG?Z^(6,c), 6 G ^ , c G C} , (2) 

which has a convex objective function x G R^ i-^ f(x) := \\x — x^\\, but not 
necessarily a convex feasible region. We consider in this note an arbitrary 



20 S. Dempe and S. Lohse 

(semi)norm || | | , not necessarily the Euclidean norm. In fact, we are specially 
thinking in a polyhedral norm like, for instance, the /i-norm. 

Bilevel programming problems have been intensively investigated, see the 
monographs [2, 3] and the annotated bibliography [4]. Inverse linear program­
ming problems have been investigated in the paper [1], where it is shown that 
the inverse problem to e.g. a shortest path problem can again be formulated as 
a shortest path problem and there is no need to solve a bilevel programming 
problem. However, the main assumption in [1] that there exist parameter val­
ues b e B and c e C such that x^ G ^(5,c) seems to be rather restrictive. 
Hence, we will not use this assumption. 

Throughout the paper the following system is supposed to be infeasible: 

A^y = c, Cc = c. (3) 

Otherwise every solution of 

Ax = b, X > 0, Bb = 6, 

would be feasible for (2), which means that (2) reduces to 

min hx - x^W : Ax = b, x >0, Bb = b\ , 

which is a convex optimization problem. 

2 Reformulation as an MPEC 

First we transform (2) via the Karush-Kuhn-Tucker conditions into a mathe­
matical program with equilibrium constraints (MPEC) [5] and we get 

\\x — x^W —> m i n 

x,b,c,y 

Ax = b 

x>0 

A'^y > c (4) 

x'^{A~^y-c) = 0 

Bb = b 
Cc = c. 

The next thing which should be clarified is the notion of a local optimal 
solution. 

Definition 1. A point x is a local optimal solution of problem (2) if there 
exists a neighborhood U of x such that \\x — x^\\ > ||x —x^|| for all x^b^c 
with be B, ceC and x eUn ^{b, c). 
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Fig. 1. Definition of a local optimal solution 

Using the usual definition of a local optimal solution of problem (4) it can 
be easily seen that for each local optimal solution 5 of problem (2) there are - 
b, 'E, jj such that (Z, 6, 'E, g) is a local optimal solution of problem (4), cf. [3]. 
The opposite implication is in general not true. 

Theorem 1. Let B = (61, {Z) = ~ ( 6 ,  c) for all c E U nC, where U is  some 
neighborhood of 'E. Then, (Z, 6, 'E, jj) is a local optimal solution of (4) for some 
dual variables jj. 

The proof of Theorem 1 is fairly easy and therefore it is omitted. Figure 1 
can be used to illustrate the fact of the last theorem. The points Z satisfying 
the assumptions of Theorem 1 are the vertices of the feasible set of the lower 
level problem given by the dashed area in this figure. 

3 Optimality via Tangent Cones 

Now we consider a feasible point Z of problem (2) and we want to decide 
whether 3 is local optimal or not. To formulate suitable optimality conditions 
certain subsets of the index set of active inequalities in the lower level problem 
need to be determined. Let 

I(Z) = {i : Zi = 0) 

be the index set of active indices. Then every feasible solution x of (2) close 
enough to Z satisfies xi > 0 for all i $ I@). Complementarity slackness 
motivates us to define the following index sets, too: 
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• I{c,y) = {i: (A^y-c)i > 0} 
• I{x) = {/(c,y) : A^y > c, {A^y - c)i = 0 ^i ^ I{x), Cc = c] 

lexix) 

Remark i. If an index set / belongs to the family T{x) then I^{x) C / C 
I{x). 

An efficient calculation of the index set I^ (x) is necessary for the evaluation 
of the optimality conditions below. By contrast, the knowledge of the family 
X(x) itself is not necessary. 

Remark 2. We have j G I(x)\ I^{x) if and only if the system 

{A^y-c)i = 0 \/i^I{x) 

(A'y-c)j = 0 

(A^y -c)i>0 Vz G I{x) \ {j} 
Cc = c 

is feasible. Furthermore I^ {x) is an element of T{x) if and only if the system 

{A'^y-c)i = 0 yiil\x) 

{A'^y-c)i>Q yiel\x) 

Cc = c 

is feasible. 

Now we are able to transform (4) into a locally equivalent problem, which 
does not explicitly depend on c and y. 

Lemma 1.x is a local optimal solution of (2) if and only if x is a (global) 
optimal solution of all problems (Aj) 

\\x — x^W —> min 
x,b 

Ax = b 

X > 0 i^i) 

Xi = 0 Mi el 

Bb = b 

with I e X{x). 

Proof. Let x be a local optimal solution of (2) and assume that there is a set 
/ € 1{x) with X being not optimal for {Aj). Then there exists a sequence 
{x'̂ jfceN of feasible solutions of {Aj) with lim x^ = x and Hx'̂  ~ ^^\\ < 

k—*oo 

||x — x l̂l for all k. Consequently x can not be a local optimal solution to (2) 
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since / G 2'(x) implies tha t all x^ are also feasible for (2). Conversely, let x be 
an optimal solution of all problems (Aj) and assume that there is a sequence 
{^^}fc€N of feasible points of (2) with lim x^ = x and Wx'^ — x^\\ < | |^ - ^^|| 

fc—>oo 

for all k. For k sufficiently large the elements of this sequence satisfy the 
condition x^ > 0 for all i ^ I{x) and due to the feasibility of x^ for (2) 
there are sets / G X(x) such that x^ is feasible for problem (Aj). Because 
I{x) consists only of a finite number of sets, there is a subsequence {x^^ }jeN 
where x^^ are all feasible for a fixed problem (Aj). So we contradict the 
optimality of x for this problem {Aj). D 

Corol lary 1. We can also consider 

\\x-x^\\ — > m i n 

x,b,I 

Ax = b 

x>0 (5^ 

Xi = 0 Wiel 

Bb = b 
I e l{x) 

to check if X is a local optimal solution of (2). Here the index set I is a 
minimization variable. Problem (5) combines all the problems (Aj) into one 
problem and means that we have to find a best one between all the optimal 
solutions of the problems (Aj) for I G X{x). 

In what follow we use the notation 

Ti{x) = {d\ 3r : Ad = r, Br = 0, di >0 \/i £ I{x) \ / , d̂  = 0 Vi € / } . 

This set corresponds to the tangent cone (relative to x only) to the feasible 
set of problem (Aj) at the point x. The last lemma obviously implies the 
following necessary and sufficient optimality condition. 

L e m m a 2. x is a local optimal solution of (5) if and only if / ' ( x , d) > 0 for 
all 

deT{x):= [j Ti{x). 
leiix) 

Remark 3. T(x) is the (not necessarily convex) tangent cone (relative x) of 
problem (5) at the point x. 

Corol lary 2. The condition I^{x) G 2r(x) implies T/o(^)(x) = T{x). 

Remark 4-^^ f is differentiable at x, then saying that / ' ( x , •) is nonnegative 
over T{x) is obviously equivalent to saying tha t 

f{x,d)>0 We convT{x) , (6) 

where the "conv" indicates the convex hull operator. 
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As shown in the next example, without differentiability assumption, (6) is 
sufficient for optimality but not necessary. 

Fig. 2. Illustration of Example 1 

Example 1. Let us consider a problem with the 11-norm restricted to the first 
two components of x as objective function and 

x O =  (!J and Z =  (i) . 

We consider the point Z. The bold marked lines in Fig. 2 are the feasible set 
of our problem and the dashed lines are iso-distance-lines with the value 1. 
So we get the convexified tangent cone as 

Finally 2 = (-1 0 2 2)T E convT(Z) is a direction of descent with fr(z ,2)  = 
-1 although Z is obviously the global optimal solution. If we choose x1 
(instead of x0 ) and the objective function lxl - x!l+ 1x2 - xt1, condition (6) 
implies the optimality of Z. 
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Remark 5. Because it is a mat ter of illustration, we considered the problem 
with inequality constraints in the lower level. For tha t reason we used the 
/ i-norm restricted to the first two components of x as objective function and 
not the / i-norm over the whole space R^. By the way, in this case x would 
not be a local optimal solution. 

Fig. 3. Illustration of the proof of Theorem 2 

4 A Formula for the Tangent Cone 

For the verification of the optimality condition (6) an explicit formula for 
the tangent cone conv T(x) is essential. For notational simplicity we suppose 
I{x) = { 1 , . . . , A:} and I^{x) = {I-\- 1,... ,k} with I < k < n. Consequently 
all feasible points of (2) sufiiciently close to x satisfy Xi = 0 for all i € I^(x). 
We pay attention to this fact and consider the following relaxed problem: 
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IIX — x^ll — > m i n 
x,b 

Ax = b 

Xi>0 i=l,...J (7) 

Xi = 0 i = I -\-1,... ,k 

Bb = b. 
In what follow we use the notation 

TR{X) = {d\3r: Ad = r, Br = 0, di >0 i = 1,... ,1, di = 0 i = l + l,.,. ,k}. 

This set corresponds to the tangent cone (relative x) of (7) at the point x. 
Since I^ C I for all / € X(x), it follows immediately tha t 

c o n v r ( x ) = coneT(x) C TR{X) . (8) 

The point x is said to satisfy the full rank condition, if 

span({yli : i ^ I{x}) = R ^ , (FRC) 

where Ai denotes the ith column of the matrix A, 

Example 2. All non-degenerate vertices of Ax = 6, x > 0 satisfy (FRC). 

This condition allows us now to establish equality between the cones above. 

T h e o r e m 2. Let (FRC) be satisfied at the point x. Then equality holds in 
(8). 

Proof, Let d be an arbitrary element of TR^X)^ tha t means there is a f with 
Ad = r, Br = 0, cî  > 0 i = 1 , . . . , /, dj = 0 z = / + 1 , . . . , /c. We consider the 
following linear systems 

Ad = Si^jf 

dj = dj (Sj) 

di = 0 z = 1 , . . . , /c, i 7̂  j 

for j = 1 , . . . , /, where Sij = 1 ii j = 1 and Sij = 0 ii j ^ 1, These systems 
are all feasible because of (FRC). Furthermore let d^^.., ^S be (arbitrary) so­
lutions of the systems ( S i ) , . . . , (5/) respectively. We define now the direction 

/ , _ _ 
d= Yl d^ ^^^ S^^ di = di for i = 1 , . . . , /u as well as Ad = Ad = f. Because 

j = i 

we chose arbitrary vectors d^,... ,d^ it is possible tha t d ^ d. But we can 
achieve equality with a translation of the solution d^ by a specific vector of 
Af{A) = {z : Az = 0}, Therefore we define d^ := d^ -\- d — d^ and because d^ 
is feasible for (^i) and di = di for i = 1,... ,k as well as Ad = Ad = f we 
get d] = 0 for all z = 2 , . . . , A: and Ad} = A{d^ •i-'d-d) = f-\-f-f = f. Hence 
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d^ is also a solution of (AS'I). Thus we have d} + ^ d^ = d — d-\-J2 ^^ = d. As 
3=2 j=l 

a result of the definition of the set I^ (x) there are index sets Ij € l{x) with 
j ^ Ij for all j G { 1 , . . . , / } = I{x) \ I^{x). So d^ is an element of the tangent 
cone of problem (Aj^) and d^ are elements of the tangent cones of the prob­
lems {AJ.) for J* = 2 , . . . , /, see the definition of these cones. Finally d is the 
sum of a finite number of elements of T{x) and therefore TR(X) C coneT(x) . 
D 

Fig. 4. Illustration of Example 3 

By combining Lemma 2 and Remarks 2 and 4, one obtains: 

Corol lary 3 . Let x be a point of differentiability of f. Then, at most n 
systems of linear equalities\inequalities are needed to be investigated in order 
to compute the index set I^{x). Furthermore, verification of local optimality 
of a feasible point of problem (2) is possible in polynomial time. 
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Example 3. This example will show that (FRC) is not necessary for equality 
in (8). 

X2 — X4 = 1 

2a;i + 2^2 - xs -\- X5 =3 
2x2 - Xs + xe = 1 

2xi -\- X3 — X7 —3 
Xs + X8 = 3 

Xi >0 

B - { ( 1 3 1 3 3 ) ' ^ } and C = {c=-ef^-{-t{2ef^+3ef^ - ef^)-\-s{3ef^-
63 ) : t,s e M}. Consider the point x = ( 1 , 1 , 1 , 0 , 0 , 0 , 0 , 2 ) ^ . Hence we get 
I{x) = {4 ,5 ,6 ,7} , /o = 0 and TR{X) = {d : Ad = 0, di > 0 Vz € I{x)}. 
The feasible region of (5) consists of the four faces 0:4 = 0, X5 = 0, XQ = 0 and 
X7 = 0 {t = s = 0] t = l,s = 0; t = 0, 5 = 1 respectively t = —|, 5 = | ) . 
Obviously we have TR{X) = coneT{x), Now delete the second vector in C, 
tha t means C = {c= -e^^^ + t (2e f ^ + 3e^^^ -ef^) : t € R } . Then we also get 
/^ = 0. Tha t is why the tangent cone of the relaxed problem is the same as 
above. But the convexified tangent cone conv T{x) of (5) is a proper subset 
of this cone. Because the feasible set consists only of the two faces X4 = 0 
and x^ = 0, the cone conv T{x) is spanned by the four bold marked vertices 
where the apex of the cone is x, see Fig. 4. 
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Summary, The present paper studies the following constrained vector optimization 
problem: mine f(x), g(x) G -K, h(x) = 0, where f : W ^ R'^, g : W^ ^ W ave 
C^'^ functions, /i : R" -> R^ is C^ function, and C C R"" and /C C R^ are closed con­
vex cones with nonempty interiors. Two type of solutions are important for the con­
sideration, namely ly-minimizers (weakly efficient points) and i-minimizers (isolated 
minimizers). In terms of the second-order Dini directional derivative second-order 
necessary conditions a point x° to be a ly-minimizer and second-order sufficient 
conditions x^ to be an i-minimizer of order two are formulated and proved. The 
effectiveness of the obtained conditions is shown on examples. 

1 Introduction 

In this paper we deal with the constrained vector optimization problem 

m i n c / ( a ; ) , g{x) e-K, h{x) = 0, (1) 

where / : E^ -^ E ^ , p : R^ -^ E^ and /i : R^ -^ E^ are given functions, 
and C C R"^ and K C UP are closed convex cones with nonempty interiors. 
The inclusion g{x) € —K generalizes constraints of inequality type (in fact 
it is equivalent to {r], g{x)) < 0, rj € K'). This remark explains why the 
word inequality appears in the title of the paper. In the case when / and 
g are C^'^ functions and h is C^ function we derive second-order optimality 
conditions for a point x^ to be a solution of this problem. The paper is thought 
as a continuation of the investigation initiated by the authors in [8], [9] and 
[10], where either unconstrained problems or problems with only inequality 
constraints are studied. Recall tha t a function is said to be C^'^ if it is /c-times 
Frechet differentiable with locally Lipschitz k-th derivative. The C^'^ functions 
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are the locally Lipschitz functions. The C^'^ functions have been introduced in 
Hiriart-Urruty, Strodiot, Hien Nguen [16] and since then have found various 
application in optimization. In particular second-order conditions for C^'^ 
scalar problems are studied in [16, 6, 19, 28, 27]. Second-order optimality 
conditions in vector optimization are investigated in [1, 4, 18, 24, 26], and 
what concerns C^'^ vector optimization in [12, 13, 21, 22, 23]. The given in 
the present paper approach and results generalize that of [23]. 

The assumption that / and g are defined on the whole space W^ is taken for 
convenience. Since we deal only with local solutions of problem (1), evidently 
our results generalize straightforward for functions / and g being defined on 
an open subset of R^. Usually the solutions of (1) are called points of efii-
ciency. We prefer, like in the scalar optimization, to call them minimizers. In 
Section 2 we introduce different type of minimizers. Among them in our con­
siderations an important role play the t(;-minimizers (weakly efficient points) 
and the z-minimizers (isolated minimizers). When we say first or second-order 
conditions we mean as usual conditions expressed in suitable first or second-
order derivatives of the given functions. Here we deal with the Dini directional 
derivatives. In Section 2 we define the second-order Dini derivative. In Section 
3 we recall after [10] second-order optimality conditions for problems with only 
inequality constraints. In Section 4 we prove second-order sufficient conditions 
for C^'^ problems with both inequality and equality constraints. Section 5 in­
dicates necessary optimality conditions. Section 6 points out directions for 
further investigations. 

2 Preliminaries 

For the norm and the dual parity in the considered finite-dimensional spaces 
we write || • || and (•, •). Prom the context it should be clear to exactly what 
spaces these notations are applied. 

For the cone M C R'^ its positive polar cone is M' = {( e R^ \ (C, 0) > 
0 for all (j) £ M}. The cone M' is closed and convex, and M' ' := (M') ' = 
clcoM, see Rockafellar [25, Theorem 14.1, page 121]. 

If 0 G clconvM we set M'[0] = {C e M' | (C, 0) = 0}. Then M^c/)] is 
a closed convex cone and M'[0] C M'. Consequently its positive polar cone 
M[0] := {M'[(f)]y is a closed convex cone, M C M[^] and {M[^]y = M'[0]. 
In this paper we apply the notation M[(/)] iox M = K and (j) = —g{x^). 

Given a set A C M'^, then the distance from y G R'^ to A is d{y^A) = 
inf{||a—y|| | a G A}. The oriented distance from y to A is defined by D{y^ A) = 
d{y, A) - d(y, R^\A). The function D is introduced in Hiriart-Urruty [14, 15]. 
In the case of a convex set A, Ginchev, Hoffmann [11] show that D{yjA) = 
supy^ll^i ((^, y) — supag^(^, a)), which for A = —C and C a closed convex 
cone gives D{y, -C) = sup{(e, y)\^€ C\ U\\ = ! } • 

In terms of the distance function we have 
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K[-g{x^)] = {weW\ limsup \ d{-g{x^) + tw,K) = 0}, 

that is K[—g{x^)] is the contingent cone [3] of K at —p(x^). 
We call the solutions of problem (1) minimizers. The solutions are under­

stood in a local sense. In any case a solution is a feasible point x^, that is a 
point satisfying the constraints g{x^) G —K^ h{x^) = 0. 

The feasible point x^ is said to be a ii;-minimizer (weakly efficient point) 
for (1) if there exists a neighbourhood C/ of x°, such that f{x) ^ f{x^) — intC 
for all feasible points x GU. The feasible point x^ is said to be an e-minimizer 
(efficient point) for (1) if there exists a neighbourhood U of x^, such that 
f(x) ^ f(xP) - (C \ {0}) for all feasible points x e U. We say that the 
feasible point x^ is a s-minimizer (strong minimizer) for (1) if there exists a 
neighbourhood U of x^, such that f{x) ^ f{x^) — C for all feasible points 
xeU\{x^}. 

As in [8] it can be proved that the feasible point x^ is a t(;-minimizer (s-
minimizer) for the vector problem (1) if and only if x^ is a minimizer (strong 
minimizer) for the scalar problem 

m i n D ( / ( a ; ) - / ( x « ) , - C ) , g{x) e-K, h{x) = 0, 

This observation motivates the following definition. We say that the feasible 
point x^ is an isolated minimizer (for short i-minimizer) of order k, k > O^iov 
(1) if there exists a neighbourhood U of x^ and a constant A> 0 such that 

D{f{x)-f{x^),-C)>A\\x-x^f for all feasible x £ U. (2) 

Since any two norms in a finite dimensional real space are equivalent, the 
notion of an z-minimizer is norm-independent. 

Obviously, each z-minimizer is a s-minimizer. Further each s-minimizer is 
an e-minimizer and each e-minimizer is a ly-minimizer (under the assumption 

The concept of an isolated minimizer for scalar problems is introduced 
in Auslender [2]. For vector problems it has been extended in Ginchev [7], 
Ginchev, Guerraggio, Rocca [8], and under the name of strict minimizers in 
Jimenez [17] and Jimenez, Novo [18]. We prefer the name isolated minimizer 
given originally by A. Auslender. 

In the sequel we establish optimality conditions for problem (1) in terms of 
the second-order Dini derivative (for short Dini derivative). For a given C^'^ 
function ^ iW^ ^R^ we define the second-order Dini derivative ^!^{x^) of ^ 
at x^ in direction u eW^ by 

^'^{x^) = Limsup 1 (^(x^ + tu) - ^(x°) -t^\x^)u) . 

If ^ is twice Frechet differentiable at x^ then the Dini derivative is a 
singleton and can be expressed in terms of the Hessian ^!^(x^) = ^"{x^){u^ u). 
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We deal often with the Dini derivative of the function ^ : W -^ R ^ + P , 
^{x) = {f(x), g{x)). Then we use the notation < ( a ; ° ) = (/(a;^), 9{x^))u' 
Let us turn attention that always ( / (x° ) , g{x^))u C fu{x^) x g'uix^), but in 
general these two sets do not coincide. The following lemma gives some useful 
properties of the differential quotient. 

L e m m a 1 ( [10] ) . Let ^ : R^ —> R^ 6e a C^'^ function and ^' he Lipschitz 
with constant L on the ball {x \ ||x — x^|| < r}, where x^ G R^ and r > 0. 
Then, for u^v £ W^ and 0 <t < r /max( | | i i | | , \\v\\) we have 

II 4 (^(^^ + tv) - ^ (^ ° ) - t^\x'^)v) - \ (#(x^ + tu) - ^{x^) - t^'{x^)u) II 

< L ( | H | + | | t ; | | ) | | t ; -^ | | . 

In particular, for v = 0 we get 

II I (^(x^ + tu) - <^(x«) - t^\x^)u) II < L \\uf. 

3 Inequality Constraints, Sufficient Conditions 

Here we consider the problem with only inequality constraints 

mine f{x), g{x) G -K. (3) 

After [10] we recall a result establishing second-order sufficient optimality 
conditions. In the next section it will be applied to treat the problem with 
both equality and inequality constraints. We put 

Aiix') = {(^, ,,) € C X K'[-g{x°)] \ {(0, 0)} | {^, / ' ( x " ) ) + {r,, g'{x°)) = O} 

= {(e, ri)eC'xK'\ {^,ri) ^ 0, (v, 9{x')) = 0, (^, / ' ( x " ) ) + (»?, g'{x'>)) = 0} 

using the subscript / to underline that Aj is a set associated to the problem 
with only inequality constraints. 

T h e o r e m 1 ( [10] ) . Consider problem (3) with f and g being C^'^ functions, 
and C and K closed convex cones with nonempty interiors. Let x^ be a feasible 
point Suppose that for each u £W^\ {0} one of the following two conditions 
is satisfied: 

S[ : ( / ' (x«)u, 5'(x»)u) i - ( C X K[-g{x'')\), 

S'l: {f'ix°)u, g'{x'>)u) e - ( C X K[-g{x°)] \ intC x intK[-g{x'^)]) 
andW{y\z°) e (f{x^),g{x<')y^ : 3(|°,»?' ') € A,{x^) : 

ie, y°) + (v", °̂> > 0. 
Then x^ is an i-minimizer of order two for problem (3). 
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Theorem 1 generalizes Theorem 4.2 from Liu, Neittaanmaki, Kfizek [23] 
in the following aspects. Theorem 1 in opposite to [23] concerns arbitrary and 
not only polyhedral cones C and K. In Theorem 1 the conclusion is tha t x^ 
is an z-minimizer of order two, while in [23] the weaker conclusion is proved 
tha t the reference point x^ is only an e-minimizer. 

4 Inequality and Equality Constraints, Sufficient 
Conditions 

In Theorem 2 we establish sufficient conditions for the general problem (1) 
with both inequality and equality constraints. If the functions / , p, /i are at 
least C^, we put 

^ ( ^ ' ) = {(^,^7,0 ^C'xK'xR^\ (e,77,C) ^ (0 ,0 ,0) , (77, ^(x«)) = 0, 

(C, f'{x'^)u) + (r/, g\x^)u) + (C, h'{x'^)u) = 0 f o r n G ker/i '(xO)}. 

T h e o r e m 2. Consider problem (1) with f^gG C^'^ and h € C^, and C and 
K closed convex cones with nonempty interiors. Let x^ he a feasible point 
and let the vectors / i i(x^), . . . , h'q{x^), which are the components ofh'{x^), 
be linearly independent. Let the vectors vP € W^, j = 1,... ^q, be determined 
by 

h'j,{x^)u^=0 for k^j, and h'^{x^)vP = I. (4) 

Suppose that for each u G ker/i'(x^) \ {0} one of the following two conditions 
is satisfied. 

§' : {f'{x^)u, 9'{x^)u) i -{C X K[-g{x^)\), 

S" : {f'{x°)u, 9'{x°)u) € - ( C x K[-g{x^)] \ intC x intK[-g{x^)]) 
and^{y\z<') e if{x'>),g{x<^)y: : 3 ( e ^ , ' ? " , ^ ) e A{x°) : 

{e, ?/°> + {V°, zO> + (C°, h"{x'>){u,u)} > 0 
with ^^ = (C?)?=i satisfying (5), where 

C," = -{i\ f'(x')ui) - (r?", g'{x'>)u^), j=l,...,q. (5) 

Then x^ is an i-minimizer of order two for problem (1). 

Before going on with the proof we transform our problem (1) to a prob­
lem with only inequality constraints. Determine fZ^,... ,iZ^ G W^ by (1). For 
each j = 1 , . . . , g, equalities (1) constitute a system of linear equations with 
respect to the components of u^, which due to the linear independence of 
hi{x^)j . . . , hq{x^) has a solution. Moreover, the vectors u ^ , . . . ,^2^ solving 
this system are linearly independent and E^ is decomposed into a direct sum 
R^ = L e L', where L = kerh'(x^) and L' = lm{u^,..., u^}. Let t i \ . . . , u'^-^ 
hen — q linearly independent vectors in L = ker/i '(x^). We consider the system 
of equations: 
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n-q q 

i=\ 3=1 

Taking r i , . . . , Tn-^ as independent variables and cri , . . . , cr̂  as dependent vari­
ables, we see that this system satisfies the requirements of the implicit function 
theorem at the point ri = • • • = Tn-g = 0, ai = • • • = cr̂  = 0 (at this point 
hk take values hk{x^) = 0 because x^ is feasible, and the Jacobian is the 
unit matrix and hence nondegenerate). The implicit function theorem gives 
that in a neighbourhood of x^ given by |ri| < f^ i = 1 , . . . ,n — ^, \aj\ < a, 
j = 1, • • • ,q, this system possesses a unique solution aj = (JJ{T\^ ... ,Tn-q), 
j = Ij... ^q. The functions aj — a^(ri,... ,Tn-q) are C^ and aj(0,...,0) = 0. 

Lemma 2. Consider problem (1) with h e C^, for which h[{x^), • • • , hq{x^), 
are linearly independent, and C and K are closed convex cones. Then x^ is 
a w-minimizer or i-minimizer of order k for (1) if and only if r^ = 0 is 
respectively a w-minimizer or i-minimizer of order k for the problem 

minc / ( r i , . . . , r n -g ) , p ( r i , . . . ,rn-g) G -K, (7) 

where 

/ ( n , . . .,Tn-q) = f{x^ -^-Y^TiU' + ^ C r ^ ( T i , . . .,Tn-q)u^) 
i=l j=l 
n-q q 

g{ri, . . . , Tn-q) = 9{X^ + ^ TiU' + ^ Crj-(Ti, . . . , Tn-q) U^) 

(8) 

Proof. From the implicit function theorem every feasible point x sufficiently 
close to x^ admits a representation 

n-q q 

X = X^ + ^ Ti-Zx' + ^ (j j .(r i , . . . , Tn-q) VP (9) 

i=l j = l 

with r = (TI, . . . ^Tn-q) close to T̂  = 0 and crj(ri,.. . ^Tn-q) the unique C^ 
solution of (6) with value cr̂  = 0 at r^ = 0. Therefore it is obvious that x^ is 
a tt;-minimizer for (1) if and only if r^ is a t(;-minimizer for (7). Suppose now 
that x^ is an i-minimizer of order k. Then for some neighbourhood U of x^ 
and some A > 0 inequality (2) has place. Replacing here x with (9) we get for 
all r being close to r^ and feasible for (7) the inequality 

Dihr) - J(r% -C) > A \\x(r) - x'^f • (10) 

Expressing x = X{T) by (9) and applying the Taylor formula for cr̂  (TI, . . . , Tn-q) 
and the forthcoming expressions for the derivatives we get 

n—q 

x{T)-X° = Y,nu'+0{\\T\\). 
i=l 
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With the account that by choice u^,... ,u^~^ are Unearly independent, we see 
that close to r^ = 0 there exist positive constants A' and A", such that 

A'\\T-A\<\\X{T)-X'>\\<A"\\T-A\. 

These inequahties, together with (10) show that x^ is an i-minimizer of order 
A; for (1) if and only if r^ = 0 is an z-minimizer of order k ioi (7). D 

Now we calculate the derivatives of ( j j (r i , . . . ,rn-^) at r^ = (0, . . . , 0). 
We have 

(Tjlo=CTj{0,...,0) = 0, 3 = 1 ,,.,q. (11) 

For the first-order derivatives differentiating (6) with respect to TI we get 

n—q 
dcTj 

h'^{x^ + ^ ry + ^ aiv?)(v^ + E ^ «') = 0 
i = l :/=i j = i 

dTi 

For T = T^ = 0 we get 

K{x'w^j:^£, 
j = i 

dri 
v P ) = ^ 

whence with account of u^ € ker/i'(x ) and (1) we obtain 

doj_ 
dTi 

= 0, j = l , . . . , ^ , z = l , . . . , n - ^ (12) 

Now we calculate the second-order derivatives: 

n—q 

i-l j=l j-1 * j=l * 

+/.ux° + Ery+E-i^^)EaSr"' = o-
i=l j = l j = l * * 

For r = r^ = 0 with account of u^ € ker/i'(a:^) and (1) we get 

«.»)(.'•, . n + E s I ^ 
3 = 1 

After all, substituting /;; with j , we obtain 

av. 
dTi'dTi> 

f ilf. 

h'!{x''){u\u' ) , j^l,...,q, i',i" = l,...,n-q. (U) 

Proof of Theorem 2. According to Lemma 2 to show that x^ is an i-
minimizer of order two for (1) we must show that r^ = 0 is an z-minimizer of 
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order two for the problem with only inequality constraints (7). For this purpose 
it is enough to check that the sufficient conditions of Theorem 1 applied to 
problem (7) are satisfied. Since p(r^) = g{x^) we see that x^ feasible for 
(1) implies r^ feasible for (7). Similarly K[-g{T^)] = K[-g{x% Theorem 1 
reformulated for problem (7) gives: 

Suppose that for each r £ W^~^ \ {0} one of the following two conditions 
holds: 

§' : (/'(T°)r, p'(r°)T) ^ -{C x i r [ -5(r°) ] ) , 

§" : ( / ' (r°)r , p'(T»)r) € - ( C x i^[-p(r")] \ intC x intK[-9{T')]) 

{e,y'') + {rf,^)>Q. 
Then r^ is an i-minimizer of order two for problem (7). Here 

{(^,7?) eC'xK'l (I,,,) # (0,0), {v,9{r°)) = 0, {^J'{T'>)) + {r,,9'{r')) = 0}. 

We prove the theorem by showing that conditions S' and S" imply respectively 
S' and S". To show that S' implies S' we get consecutively: 

d - d ^"^ ^ 

i = l J=l j = l * 

A /(o) = /'(a;0)«« = (/((a;0)t.\ . . . , / ; (x")w') , 

/'(O) ^ = E ^ /(O) ^' = / ' (^°) 2 ^ ' ^ ' - (14) 

Similarly 

— g{ri,.. .,Tn-g) = g'ix"" -\-Y,^iu' + E ^ i ^ ' ) ( ^ ' "̂  ^ " ^ ' ' '^ ' 

^ p ( 0 ) = ( s l ( x V , • • • , P ; ( a ; V ) . 

^'(0) ^ = E ^ ^(0) ^«=5'(^") E ^•^'-

Putting 
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n—q 

= ^Tiu' ekeih^x^) (15) 
n—q 

U 

we see that while r varies in E"̂  ^ \ {0} the vector u takes all values from 
'kBxh'{x^) \ {0}. Consequently condition S' is equivalent to S', that is to 

{f'{x^)u,g'{x^)u)i-{CxK[-g{x^)]) for t̂  G ker/i'(x^) \ {0} . (16) 

Next we show that S" implies S''. The above calculations show the equivalence 
of the first parts of S'' and S'', where only first order derivatives appear. Now 
we compare the second parts of S>" and S". For this purpose we must find first 
a relation between the Dini derivatives of {f(xP)j 9{x^))u ^^^ {fij^)i 9{^^))r' 
Initially we will consider the case of / , ^ € C^. Then 

(/(x°), g(x'>))'i = (/:(x0),5;'(x°)) = {f"{x')(u,u), 9"{x''){u,u)) 

is a singleton. Similarly f^g^C^ and 

(/(O), ^(0));' = ( /"(0)(r ,r) , p"(0)(r,r)) 

is a singleton. We have consecutively 

Q2 _ Q2 ^ - 9 9 
-^—^ / ( n , . . .,Tn-q) = -^—K f{x^ ^y^riU' + Vo-^t^^*) 
dTi>dTi» ^ dTi'dTin ^ ^ 

W 

^ ' /(O) = /"(a;°)(«'', ««") - E / i ; ' ( a ; ° )K ' , «*") /'(a:°)u^. (17) 

Therefore for it given by (4) we have 

r ( 0 ) ( r , r ) = f"{x'){u,u) -J2h'^{x'){u,u)f{x')u^. (18) 

Similarly 

P ' ' ( 0 ) (T ,T) = p"(x«)(^,t.) -J2h-{x'){u,u)g\x')u^. (19) 

Now we show that when the assumptions on / and g are relaxed from C^ 
to C^'^ still there exist formulas similar to (18) and (19). In fact the only 
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reason to consider in advance the case of f,g € C^ was to elaborate some 
heuristics. In the relaxed case we show the following result. Let f,g G C^'^ 
and h e C^ he such that h[{x^)j..., h'q(x^) are linearly independent. Suppose 
that (y^^Oje (7(0),ff(0))'; and 

f = lim i {htkT) - m - tk f'{0)T) , 
*= *•- ( 2 0 ) 

f« = lim ^ {g{tkT) - m - tk 9'{0)T) 

Let u = w(r) be determined by (4). We will prove that the following limits 
exist 

y" = lim - I (/(x° + tku) - fix") - tk / '(XO)M) , 

i (21) 
2° = lim ^ (^(a;0 + tfcu) - ff (a;°) - tk 9'{x°)u) , 

and satisfy (similarly to (18)-(19)) the relations 

(22) 
fO = ^ ' ' - ^ / i ; ' ( x » ) K t * ) 5 ' ( x V 

Fix T. Let now i be a positive real variable and put for brevity u = u + 
(l/*)El=i^.(*T)M^-.Then 

| ( / » - / ( 0 ) - t / ' ( 0 ) T ) 

= I (/(a;° + f«) - / ( x " ) - i / ' ( 0 ) u ) + i / ' ( a ; 0 ) ^ c r , ( i r ) S ^ 

The Taylor formula with regard to (4), (1) and (13) gives 

i<T;(T«)(tT,fr) + o(t2) = - l 

whence 

I ( / » - /(O) - tf (0)r) = I (/(x« + t̂ ) - /(x«) - t/(0)ii) 

A similar representation exists for / replaced by g. Prom these representations 
and (20) it follows that there exist the limits 

<^i{tr) = -a'!{r'>){tT,tr) + o{t^) = --t^ h'J{x'){u,n) + o{t'), 
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y» = l ip I {f{x° + tku) - fix'') - tk f'{x'>)u), 
k 

|0 = lim -^ {gix° + tku) - g{x°) - tk g'{x°)u), 

f=f-J2h'J{x'>)iu,u)f'{x°)u^, 

1' (23) 
^0 = |0 - ^ h'J{x'>){u,u) g'{x°)u^. 

j=i 

Applying now Lemma 1 we get 

| | ^ ( / ( x O + t f c U ) - / ( x O ) - i f e / ' ( x » 

-^{f(x'^tku)-f{x')-t,f{x')u) II 
^k 

< L {\\u\\ + Hull) 11̂  -u\\ = L {\\u\\ + Hull) 1 I I J2 ^j(tkT)u^II = ^(1) • 
^ j=i 

A similar estimation exists for / replaced by p. In consequence, these inequal­
ities show that there exist the limits (21) and it holds y^ = y^^ z^ = z^. These 
equalities and formulas (10) imply (22). 

Now we prove the second part of §'' as a consequence of S". Take {y^, z^) G 
(/('T-^), p(T°))r with r G R^-^ \ {0} and let (20) be satisfied. Then the limits 
(21) exist and define (y°, z^) G (f{x^), ^(2^^))^) where u and r are related 
by (4). The latter gives u € keih'ix^) \ {0}. Since S" holds, therefore there 
exists (^^ rj\ C )̂ ^ ^(^°) such that (^ satisfies (5) and (e^ y^) + {v^, z^) + 
(C ,̂ h"{x^){u,u)) > 0. Substituting Ĉ  with (5) and applying (22) we get 

0<{e,y') + {v',z') + {C',h"{x'){u,u)) 

= {e, y' -J2h';{x'){u,u)f\x')u^) + (r7^ z' -Y,h';{x'){u,u)g\x')u^) 

To demonstrate that the second part of S" is satisfied it remains to show 
that (̂ ,̂77 )̂ G 4 ( T ^ ) . This follows from the following observations. We have 
(^0, rj^) ^ (0, 0), since otherwise (5) would give (^^77^ C )̂ = (0, 0, 0). It holds 
Iv^, 9{r^)) = iv^, 9{x^)) = 0. Finally, for r G M^"^ and u determined by (4) 
we have 

ie, f'{r'>)T) + (7?», g'{T'>)T) = ie, f{x°)u} + (v\ g'ix<')u) = 0 . D 

The next example shows that the optimality in particular vector optimiza­
tion problems can be checked effectively on the base of Theorem 2 and known 
calculus rules. 
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Example 1. Consider problem (1), for which n = 3 ,m = 2 , p = l , g = 2, the 
cones are C = R^ and K = R+, and the functions / , g^ /i, are given by 

f{xi,X2,xs) = {-2x1 -2xl-\-xs, x\-[-xl -X2), 

g{xi,X2,X2,) = xi|a:i| + a:2|a;2| - x^, 

h{xi,X2,Xz) = {Xi +X2, X3). 

Then the point x^ = (0, 0, 0) is an z-minimizer of order 2, which can be 
estabhshed on the base of Theorem 2, as it is shown below. 

The problem is C^'^ and not C^ because of the function g. We have 

/ ( ^ ' ) = (0,0), g{x') = 0^ h{x') = {0,0). 

The point x^ is feasible and it holds C" = R^, K' = R+, K[-g{x^)] = R+, 

f{x)u = (-4X1111 — 4X21̂ 2 + ^^3, 2XiUi + 2X21̂ 2 - U3)y 

g'(x)u = 2ui\xi\ + 21̂ 212:21 - Us, 

f{x^)u = (tx3, -U2) , g\x^)u = -Us, 

/il(a;«) = (1 ,1 ,0 ) , /i^(x«) = (0, 0, 1). 

Obviously h'i{x^) and hi^ix^) are linearly independent, and 

keih'{x^) = {u £R^ \ ui i- U2 = 0, Us = 0} . 

(f(x^)u, g\x^)u) = (0, 0) € R2 X R for uG keih^x^), 

A{x^) = C' xK' xR^\ {(0, 0, 0)}. 

For each u £ ker/i'(x^) \ {0} condition S' is not satisfied. We prove that for 
such u condition S" holds. We have 

(/'(xO)u, g\x'')u) e -{C X K[-g{x^)] \ intC x mtK[-g{x'')]). 

The second-order derivatives at x^ are 

fuix') = r{x'){u,u) = {-4ul - Aul 2u\ + 2ul), 

p;'(x«) = 2t.ili.ll + 2U2\U2\, h"{x''){u,u) = (0, 0). 

Turn attention that (/(x^), g{x^)Yu = {fu{x^), 9u(x^)) is single-valued. The 
assumption u € keTh'{x^) \ {0} means ui -\- U2 = 0, us = 0. The vectors 
u^, v? satisfying (1) can be chosen as v} = (1/2, 1/2, 0), u^ = (0, 0, 1). 
According to (5) the vector C° = (Ci)C2) is expressed by ^^ = (^J, ^^) and 
Vo as C' = (0, -e? + ^5 + V')' Now for y^ - r{x'){u,u), z' = ^C(xO), 
^0 = (0, 1) G C", 77O = 0 G K'[-g{x^] and u € ker/i'(^°) \ {0} we get 

{e.y')^{v^z')^{C',h'\x'){u,u)) 

= -4^?(^? + ^2) + 2^2(^? + ^2) + ^^2ixi|wi| + 2u2|^2|) = 2{u'i + i^i) > 0, 

which shows that condition S'' holds. 

http://2t.ili.ll
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5 Necessary Conditions 

The following Theorem 3 gives second-order necessary conditions for the prob­
lem (3) with only inequality constraints. 

Theorem 3 ( [10] ). Consider problem (3) with f and g being C^'^ functions, 
and C and K closed convex cones with nonempty interiors. Let x^ be a w-
minimizer for (3). Then for each u G W^ the following two conditions hold: 

n[ : {f'{x^)u, g'{x^)u) i -(intC x intK\-g{x^)\), 

N '̂ : ^/ (/ '(^°)^, 9'{x^)n) e -{C X K[-g{x^)] \ intC x intK[-g{x^)\) 
then^{y\z^) G {f{x^),g{x'))':, : 3(C«,r/0) G MX') : 

Here Ai{x^) has the same meaning as in Theorem 1. Theorem 3 generalizes 
Theorem 3.1 in Liu, Neittaanmaki, Kfifek [23], which states the same thesis 
under the stronger assumption that C and K are polyhedral cones and C is 
acute. 

The same elimination procedure as in Theorem 2 reduces problem (1) with 
both equality and inequality constraints to a problem with only inequality 
constraints to which we can apply Theorem 3. In such a way we obtain the 
following result: 

Theorem 4. Consider problem (1) with f,g G C^'^ and h E C*^, and 
C and K closed convex cones with nonempty interiors. Let the vectors 
h'-^{x^)^..., h'q{x^), which are the components of h'{x^), be linearly indepen­
dent and let the vectors vP G R^ be determined by (1). Suppose that x^ is a 
w-minimizer for (1). Then for each u G ker/i'(x^) the following two conditions 
hold: 

N' : {f'{x^)u, g'{x^)u) ^ -{into x intK[-g{x^)]), 

N" : if (f(x^)u, g'{x^)u) G - ( C x K[-g{x^)] \ intC x intK[-g{x^)]) 
thenM{y\z^) G {f{x%g{x^)y:, : 3(^^7/0,C') G A{x^) : 

{e. y') + (r7^ z^) + (c^ h^^ix^xu^u)) > o 
and C° = (Cj )J=i satisfies (5). 

Here A{x^) has the same meaning as in Theorem 2. The next example 
shows that the finding of the solutions of particular vector optimization prob­
lems can be effectively based on Theorem 4 and known calculus rules. 

Example 2. Consider problem (1), for which n = 3, m = 2 , p = 1, g = 2, the 
cones are C = R^ and K = R+, and the functions / , p, /i, are given by 

f{xi,X2,x^) = {-2x1 - 2x2 + ^3, xj-hxl -xs), 

g{xi,X2,X3) = Xi |x i | H-X2|X2| - X s , 

h(xi,X2,X3) = {xi + X2, Sxl 4- Sxl — 2x3). 

Then the point x^ = (0, 0, 0) is not a it;-minimizer, which can be established 
on the base of Theorem 4, as it is shown below. 
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Like in Example 1 we have f{x^) = (0,0), g{x^) = 0, h{x^) = (0,0), C = 
R^, K' = R+, K[-g{x^)] = R+, f{x^)u = {us,-us), g'{x^)u = 
-Us, h[{x^) = (1, 1, 0), h'^ix^) = (0, 0, - 2 ) . Obviously h[{x^) and h'2{x^) 
are linearly independent, and 

kerh'{x^) = {u £R^ \ ui -\- U2 = 0, us = 0}. 

(f{x^)u, g'{x^)u) = (0, 0) G R^ X R for ue keih\x^), 

A{x^) = C' xK' xR^X {(0, 0, 0)}. 

For each u G kerh^x^) condition N' is satisj&ed. We prove that for some 
u G ker^'(a;^) condition N" with Ĉ  distinguished by (5) does not hold. Observe 
that for any such u the statement in the first part of N" is true 

(/'(xO)«, g'{x'')u) 6 -{C X K[-gix'>)] \ intC x mtK[-g{x'')]). 

The second-order derivatives at x^ are 

/: '(^°) = f"ix°)iu,u) = (-4u? - 4ul 2u\ + 2u\), 

s;'(x") = 2wi|ui| + 2U2\U2\, h"{x°){u,u) = (0, 6w? + 6ul). 

Here (/(x"), i?(a;"));; = (fui^^), Oui^^)) is single-valued. The vectors v}, v? 
satisfying (1) can be chosen as u^ = (1/2, 1/2, 0), M^ = (0, 0, —1/2). Accord­
ing to (5) the vector C" = (Ci- C") is expressed by ^^ = (|?, ^§) and rp as 
C° = (0, (1/2)1? - (1/2)^0 - (1/2)77°). Now for y" = f"[x°){u,u), z° = g'^ix''), 
^° e C", ??' € K'[g{x% {f,rj'>) ^ (0,0) and u € ker/i'(a;0) \ {0} we get 

{e,y") + {v',A + {C',h"ix'^)in,u)} 

= -4^?(«? + ul) + 2^§(w2 + ul) + »/°(2«i|«i| + 2«2|«2l) + 6C2°(W? + «i) 

= -^ i (« i + " i ) - ^2(wi + wi) + '?°(2ui|ui| + 2«2|«2| - 3wf - 3ui) 

<-(^? + 2̂° + '?°)(«? + «2)<0 , 

which shows that for any u € kerh'{x^)\{0} condition W with Ĉ  distinguished 
by (5) does not hold. Thus, in spite that condition N' is satisfied for any 
u G keih'{x^), there are u for which N" fails. According to Theorem 4 the 
point x^ is not a if;-minimizer. 

6 Final Comments 

A natural question is, whether it is possible to relax the smoothness assump­
tions for the function h from C^ to C^'^. This problem is reasonable for the 
sake of the uniformity of the assumptions for all function data in the consid­
ered constrained problem (1), Having in mind the formulations of Theorems 
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2 and 4 it is not difficult to predict the anticipated result for the case of /i be­
ing only C^'^. It is clear by analogy, tha t the eventual proof should be based 
on an implicit function theorem for C^'^ functions. Implicit function theo­
rems in nonsmooth analysis are investigated by many authors and in many 
settings. Some variant with application to C^'^ optimization gives Kummer 
[20]. However for our consideration the variant for directionally differentiable 
functions developed in Demyanov, Rubinov [5, Chapter VI, Section 1] seems 
to be more suitable. Still, there is a need for some adjustment. For instance, 
it is important to have calculation rules for the second-order Dini directional 
derivatives of the implicit function. Therefore, an a t tempt to move in this 
direction demands a development of new ideas and will overburden in some 
sense the present paper. For this reason we postpone the discussion on the 
possible relaxation of the smoothness assumptions for h. 
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Summary . In this work, a notion of cone-subconvexlikeness of set-valued maps on 
linear spaces is given and several characterizations are obtained. An alternative the­
orem is also established for this kind of set-valued maps. Using the notion of vector 
closure introduced recently by Adan and Novo, we also provide, in this framework, 
an adaptation of the proper efficiency in the sense of Benson for set-valued maps. 
The previous results are then applied to obtain different optimality conditions for 
this Benson-vectorial proper efficiency by using scalarization and multiplier rules. 

1 Introduction 

In the last decades, there has been, an increasing interest in vector optimization 
problems with set-valued objectives or constraints. See, for instance, [7, 8, 10, 
12, 13, 14, 15, 16] and references therein. This kind of optimization problems 
with set-valued maps are closely related to stochastic programming, control 
theory and economic theory. 

In this work, we introduce a new concept of proper efficiency in the sense 
of Benson for an optimization problem with set-valued maps on real linear 
spaces, and we characterize this concept of proper efficiency. We introduce 
this Benson vectorial proper efficiency by using concepts and results given by 
Adan and Novo [1, 2, 3, 4, 5]. We extend the notion of cone-subconvexlikeness 
of set-valued maps on linear spsices and give several characterizations. We 
establish separation theorems and an alternative theorem for solid cones. We 
also analyze the behaviour of a cone-subconvexlike set-valued map via a pos­
itive linear operator. We prove scalarization theorems and characterize the 
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Benson-vectorial proper efficiency in optimization problems of set-valued maps 
with cone-subconvexlikeness. Lastly, using a new generalized Slater constraint 
qualification, we obtain a Lagrange multiplier rule of algebraic type for vector 
optimization problems with set-valued maps. 

2 Notations and Preliminaries 

Throughout this work, we will assume always, unless stated specifically oth­
erwise, that y is a real linear space partially ordered by a convex cone K CY 
and A is a nonempty subset of Y. Let cone(A), co(A), aff(A), span(i4) and 
L{A) = spa,n{A — A) denote the generated cone, convex hull, affine hull, linear 
hull and associated linear subspace of A, respectively. In this section, we recall 
some algebraic concepts and known results. 

The core (algebraic interior) and the intrinsic core (relative algebraic in­
terior) of A are defined, respectively, as follows: 

cor(A) = {y G A : Vt; G F, 3t > 0, Va G [0, t], y + a-y € A}, 
icr(A) = {yeA: Vt; G L(A), 3t > 0, Va G [0, t], y-\-av e A}, 

We say that A is sohd (relatively solid) if cor (A) ^ 0 (icr(A) 7«̂  0). It is 
clear that if cor(A) ^ 0 then cor(A) = icr(A) because L{A) = Y. 

It is well-known that for finite dimensional spaces there exist sets which 
are not solid but they are relatively solid, for example, any segment, ray or 
line in R^. At the end of this section we show an example in infinite dimension 
(see Example 1). 

The algebraic closure of a set A is defined by 

lin(A) = Au{yeY: 3a £ A, [a,y) C A}. 

Except for solid convex sets, this concept is not satisfactory as a substitute 
for topological closure. In order to solve this problem, Adan and Novo [4] have 
introduced a weaker closure of algebraic type, which was called vector closure. 
This vector closure coincides with the algebraic closure for convex sets, and 
coincides with the topological closure for solid convex sets. 

Definition 1. Let A be a nonempty subset ofY. The vector closure of A is 
the set vcl(A) = {yeY: Bi; G Y, Vt > 0, 3a G (0,t], y-\-av £ A}, 

It is clear that y G vcl(A) if and only if there exist v £ Y and a sequence 
An -^ 0"̂  such that y-^XnV G A for all n. The set A is called vectorially closed 
ifA = yc\{A). 

We say that a cone K is pointed if X D {—K) = {0}. It is well-known 
that for a convex cone K, whose relative algebraic interior is non-empty, the 
following conditions hold: 

(i) icY{K) U {0} is a convex cone, 
(w)icr(i^) + X = icr(/0, 
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(m) icr(icr(ii^)) = icr(icr(ir) U {0}) = icr(ii:). 

Denote by Y' the algebraic dual of Y and by A'^ the positive dual cone of 
A, that is, 

A+ = {(̂  € Y': (f{a) > 0, Va G A} 

and A+* = {ip £Y^: (p{a) > 0, \/a £ A\ {0}} is the strict positive dual of A. 
A'^ is a vectorially closed convex cone and 

[cone(^)]"^ = cone(A+) = [conv(A)]"^ = conv(A"^) = A'^. 

Other properties that will be used and appear in [4, 5] are the following: 

(i) A,BcY,AcB => Yc\{A) c VC1(J5), 

(ii) [vcl(cone(conv(A)))]+ = A'^ = vcl(A+). 

If y is a topological vector space, the interior and closure of a set A are 
denoted by int(yl) and cl(A), respectively. It is easy to check the following 
inclusions 

Ac\in{A) Cvcl(A) Ccl(A). 

To illustrate the notions above we give an example in infinite dimension. 

Example 1. Let Y be the vector space of all sequences of real numbers, let S 
be the subspace of Y of all convergent sequences: 

S = {a= {an) eY \ 31iman = a € R}, 

and let K be the subset of S of all sequences with nonnegative limit: 

K = {{an) e S : liman > 0}. 

It is clear that î T is a nonpointed convex cone with K fl {—K) = CQ, the 
linear space of the sequences converging to zero. Furthermore, the vector space 
generated by K is 5, i.e., L{K) ~ K — K = S, and it is easy to check that K 
is vectorially closed. Its intrinsic core is 

icT{K) = {aG K : liman > 0}. 

Indeed, let a € i^ such that a = liman > 0) and let us see that a G icr(jFir), 
i.e., that \/v e S = L{K), 3to > 0 such that a-\-tv e K, "it e (0,to]. As the 
sequence v = (vn) € S there exists lim Vn = jS. Then lim(anH-ti'n) = a-\-tf3 > 0 
for all t G (0,to] if we choose 

= / i if 
\ -a/p if 
, . .. /? > 0 

Now pick a 6 \cx{K). As \cx{K) C K we have lim an > 0. Suppose that 
lima„ = 0. Let v = (v„) defined by «„ = 1 for all n € N. Since —v € S and 
a € ici{K) there exists io > 0 such that a + t{-v) € K,^t & (0,io]- This 
implies that —to = lim(o„ + to{—Vn)) > 0, which is a contradiction. 
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The following cone separation theorem is due to Adan and Novo [5, The­
orem 2.2]. 

T h e o r e m 1. Let M, K he two vectorially closed and relatively solid convex 
cones in Y. Let K^ he solid. If M f) K = {0} then there exists a linear 
functional (p € y \ { 0 } such that \/k e K, m e M, ip{k) > 0 > (p{m) and 
furthermore VA; G K\{0}, (p{k) > 0. 

Throughout this work, we assume that , unless indicated otherwise, X is 
a set, y and Z are linear spaces, K C Y and D C Z are pointed relatively 
solid convex cones, and F: X —-̂  2^ and G: X —> 2^ are set-valued maps 
with domain X. The image of a subset Aof X under F is denoted by F{A) = 

Consider the following unconstrained (P) and constrained (CP) vector 
optimization problems with set-valued maps: 

(K-Mm Fix) 
^ ' \ subject to X G X , 

{CP) {^. 
Min F{x) 

ubject to xeX, G{x) D (-D) 7̂  0. 

The feasible set of (CP) is defined by 

n=:{xeX: G{x)n{-D)^(D}. (1) 

In [5], Adan and Novo have introduced the following concept of proper 
efficient point of a set 5 C 1^ in the framework of vector optimization problems 
in partially ordered real linear spaces. 

Def ini t ion 2. The set of Benson-vectorial (BeV) proper efficient points of 
S CY is defined hy 

BeV{S) = {y£S: vcl(cone(5 - y-h K)) D {-K) = {0}}. 

If we assume that y is a topological linear space, and in this definition we 
replace the vector closure by the topological closure, we obtain the usual 
Benson (Be) proper efficiency defined in [6]. Because of vcl(5') C cl(5) , it is 
clear tha t Be{S) C BeV{S), 

For a vector optimization problem with set-valued maps, we introduce the 
following concept of proper efficient solution. 

Defini t ion 3 . A point x G X is called a Benson-vectorial (BeV) proper effi­
cient solution of prohlem (P) if there exists 

yeF{x)r\BeV{F{X)). 

The pair (x, y) is called a Benson-vectorial proper minimizer of (P). 
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3 Cone-Subconvexlike Set-Valued Maps 

It is well-known that convexity plays an important role in optimization theory. 
In this section, we propose the following notion of cone-subconvexlikeness for 
set-valued maps on linear spaces. As we shall see presently, this concept is 
weaker than other concepts of cone-subconvexlikeness for set-valued maps. 

Let X be a set, let F : X —> 2^ be a set-valued map with dom(F) = X 
and let X C y be a relatively solid convex cone. 

Def ini t ion 4. F is said to be K-subconvexlike on X if3ko G icY{K) such that 
\/x,x' eX, V a G (0,1), V£:>0 , 

eko + aF{x) + (1 - a)F{x') C F(X) + K. 

P r o p o s i t i o n 1. The following statements are equivalent-
fa) F is K-subconvexlike on X. 
(b) yk € icT(K), "ix.x' e X, "ia € (0,1), 

k + aF{x) + (1 - a)F{x') C F{X) + ici{K). 

(c) Vx, x' eX,\/a£ (0,1), 3k € K such that Ve > 0 

ek + aF{x) + (1 - a)F{x') C F{X) + K. (2) 

(d) F{X) -\- icr(i^) is a convex set. 

Proof. The implications (b) =^ (a) =4- (c) are clear. Let us see (c) =^ (b). Let 
k € icr (K) , x,a;' G X , a G (0,1). Then, by assumption, 3k' G K such that 
Ve > 0 condition (2) holds (with k' instead oik). Ask e icr(iir) = icr(icr(i(^)), 
for —k' G L{K) = L(icr(i^) = span( i^ — K) there exists SQ > 0 such that 
ko^k^ €o{-k') G icT{K). So, 

k + aF{x) 4- (1 - a)F{x') = [sok' + aF{x) + (1 - a)F{x')] + ko 
C F{X) i-K+koC F{X) + icT(K) 

(the last inclusion is t rue because K + icr(i^) C icT(K)). 
(b) ^ (d) Let u,u' G F{X) + icr(K), a G (0,1). Then, u = y+ k,u' = y' + k' 
with y G F ( x ) , y' G F ( x ' ) , A;, k' G icr(X), x , x ' G X. Therefore 

au-\- (1 — a)u' = ak + (1 — a)k' -f- a y + (1 — a)y'. 

As icr(i^) is a convex set, ko = ak -\- {1 — a)k' G \ci:{K). So, 

au+{l- a)u' Gko-\- aF{x) + (1 - a)F{x') C i^(X) + icr(ii:). 

(d) =^ (6) Let k G icr(ii:), x , x ' G X , a G (0,1), y G F ( x ) , y' G F ( x ' ) , then 

A: + a y + (1 - a)y' = a (y + A:) + (1 - a ) (y ' + A:) G F ( X ) + icr(i^) 

because F{X) + icr(X) is a convex set by assumption, and y -{• k,y' -\- k G 
F{X) + ici{K). D 
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Remark 1. Of course, we may define that F is if-subconvexlike on X in the 
sense of Li ([12], given for a solid cone), if 3ko € icr(ir), \fXj x' ^ X^Ma € (0,1), 
Me > 0, 3x" e X such that 

eko + aF{x) + (1 - a)F{x') C F{x") + K. 

However, this notion is more restrictive than Definition 4 (see Example 2). 
When coi{K) 7̂  0, ii^-subconvexlikeness in the sense of Li becomes exactly 
Definition 2.2 in Li [12] (see also [14, Definition 1.2]). 

Example 2. Cons>\dex X = [-2,0], F : X —> 2^' defined by F{x) = 
[(-2,1),(0,2 + x)] and K = R+ x {0}. It follows that F{X) + icT{K) is a 
convex set so F is A^-subconvexlike on X. However, F is not iC-subconvexlike 
on X in the sense of Li. Indeed, given ko G icT(K) if a: = 0, x' = —2, <̂  = | 
and £ = 1 then W G X 

eko + aF{x) + (1 - a)F{x') (f. F{x") + K 

as can easily be checked. 

The previous proposition can be considered an extension of Lemmas 3.1 
and 3.2 in Li [13] which are valid in a topological linear space Y provided with 
a convex cone K whose interior is nonempty. 

In order to simplify the notations we introduce a new definition. 

Definition 5. A set-valued map F: X —> 2^ is said to be relatively solid 
K-subconvexlike on X if the following conditions hold: 

(i) F is K-subconvexlike on X, 
(ii) icr(F(X) + icr(iC)) 7̂  0. 

Remark 2. If Y is finite dimensional, condition (ii) is always true whenever F 
is J^-subconvexlike because F{X) + icx{K) is a convex set. 

Example 3. Let Y and K be the sets of Example 1. Let A be the convex cone 

A = {{an) G y : an't^.'in^ N} 

and C = A + icr(iir) = {{an) G Y : liminfan > 0}. We have that C is a 
convex set and icr(C) = 0. So F : A —> 2^, given by F{x) = x -\- K/\s K-
subconvexlike on A but is not relatively solid iiT-subconvexlike on A, However, 
if we consider F: K —> 2^ is relatively solid X-subconvexlike on K. 

In Theorem 3 we establish an alternative theorem for il'-subconvexlike 
set-valued maps with K solid. Previously, in Theorem 2 we establish a partial 
result of alternative type when K is only a relatively solid cone. 

Theorem 2. Let K C Y be a relatively solid convex cone. Assume that F : 
X —> 2^ is relatively solid K-subconvexlike on X. If there is no x G X such 
that 

F{x)n{-icT{K))^<D, (3) 

then 3ipeK+\ {0} such that (p{y) > 0 Vj/ € F{X). 



Benson Proper Efficiency in Set-Valued. Optimization 51 

Proof. The set F{X) -\- IQX{K) is convex by Proposition 1'. From (3) it follows 
tha t 0 ^ F{X) + icr(ii:). So, 0 i i c r (F(X) + icr(ii:)). Using the support 
theorem [9, Theorem 6.C], there exists (p £Y' \ {0} such that 

^{y + )̂ > 0 Vy e F{X), \/k e icr(ir) (4) 

(and if is strictly positive on i c r (F(X) + icY{K))). Wi th standard reasonings, 
from (4) it follows tha t ip{k) > 0 VA; G X , i.e., (̂  € iir+. If 3y € F{X) such 
tha t (p{y) < 0, choosing k G icr(i^) with (p{k) small enough we obtain that 
(p{y + /.) < 0, which contradicts (4). Hence, (p{y) > 0 for all y G F{X). D 

T h e o r e m 3 . Let K be a solid convex cone. If F is K-suhconvexlike on X, 
then exactly one of the following systems is consistent: 

(i) 3x£X such that F{x) 0 {-COT{K)) ^ 0. 
(ii) 3(feK-^\ {0} such that \/y G F{X), (p{y) > 0. 

Proof By [4, Proposition 6.(iii)], co r (F(X) + cor(i^)) = F{X) + cor(ii:), and 
consequently, condition (ii) in Definition 5 is satisfied. Therefore, by Theorem 
2, not (i) => (ii). If we assume that both (i) and (ii) are satisfied, then there 
exist X G X, y G F{x) D (-cor(i ir)) and ip G K^ \ {0} such tha t ip{y) > 0. 
But , since y G —coi{K) and (p G K'^ \ {0}, we deduce that (p{y) < 0 and by 
Theorem 2.2 in [12] this is a contradiction. D 

Remark 3. This theorem is slightly more general than Theorem 2.1 of Li [14] 
because the notion of if-subconvexlikeness of this author is more restrictive 
than our notion, even when cox{K) i^ 0 (see Remark 1). If we consider tha t 
y is a topological vector space then Theorem 3 collapses into Lemma 3.3 
in [13]. Indeed, when F is a topological vector space and \\^{K) ^ 0, then 
int(iir) = cor(iir) and the linear functional (p satisfying condition (ii) is con­
tinuous because we can apply Theorem 3.7 in [17] since the open set ixit{K) 
is contained in the set {y ^Y \ (p{y) > 0} [12, Lemma 2.2] as (p e K"^ \ {0}. 
Let us note tha t if cor(ii^) = 0 and icr(i^) ^ 0, then both (i) (with icT{K) 
instead of cor(i^)) and (ii) can be true. For instance, in R^, X = R+ x {0}, 
X = { (x ,0) : x€ (0,1]}, F{x,0) = (x,0) - K amd p{x,y) = y. 

L e m m a 1. Let Si be a relatively solid convex set ofY and S2 C Y. If Si C S2 
and vcl(5i) = vcl(5'2), then icr(5'i) = icr(52). 

Proof One has aff(5'i) = aff(5'2) because by assumption vcl(S'i) = vcl(52) 
and for any set S C Y^ aE{S) =- afT(vcl(5')). Hence, as Si C <S'2 we deduce 
tha t icr(5'i) C icr(5'2). On the other hand, ^2 C vcl(5'2) = v c ^ ^ i ) and as ,̂ 2 
and vcl(5i) have the same afiine hull, we get that icr(iS'2) C icr(vcl(iS'i)) = 
icr (5i ) . The last equality is t rue by Proposition 4(i) in [4]. Consequently, the 
conclusion follows. D 

P r o p o s i t i o n 2. Let S be a relative solid convex subset of Y and (p : Y ^^ Z 
a linear map. Then (^(icr(5)) = icT{(p{S)). 
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Proof. Firstly let us see that 

^(icr(5)) C icv{^{S)). (5) 

(as a consequence, ^{S) is relatively solid). It is obvious that (p{L{S)) = 
L{ip{S)), Take a G icT{S) and let us prove that (f{a) € icT{(p{S)). Given 
w € L{(p{S)), there exists v G L{S) satisfying (p{v) = w. As a G icr(6'), for 
V G L{S) there exists to > 0 such that a-\-tv £ S \ft ^ (0, to]. From here, 

ip{a) ^-tw = (p{a) + t(p{v) e (p{S) \ft e (0, to], 

and therefore, ip{a) G icr((/?(5')). Now, the reverse inclusion: icr{(p{S)) C 
(p{icT{S)). For this aim, let us see that (f{S) and (p{icT{S)) have the same 
vector closure. We have that 

^(vcl(5)) c yc\{<p{S)). (6) 

Indeed, choose b G vcl(/S'), then there exists v £ Y such that \/a' > 0 3a G 
(0,a'] such that b -{- av £ S. Hence, (p{b) + a(p{v) G <̂ (*S'). This means that 
(p{b) G vcl((/:)(5)). The following inclusions are clear taking into account (6): 

ip{S) C ^{YC\{S)) = (^(vcl(icr(5'))) C vcl((^(icr(5))) C vcl((^(^)). 

From this chain, we select the following: 

^(S) C Yc\{ip{icv(S))) C vcl(^(5)). 

Taking vector closure and using that vcl(vcl(5)) = vcl(B), if ^ is a relative 
solid convex set, by [4, Proposition 3(iii)] (as (^(icr(5)) = (/?(icr(icr(5'))) C 
icr((y?(icr(5'))), by condition (5) and as 5 is a relative solid, (/?(icr(5)) is a 
relative solid too) we have that: 

yc\{ip(S)) c vc\(cp(icr(S))) c Yc\((p(S)). 

Therefore, Yc[{(f{S)) = vcl((/?(icr(-S'))), and by Lemma 1, 

ici{(p{S)) = icv{(f{icT{S))) C (p{ici{S)). 

Using (5), we have the conclusion. D 

Next we analyze the postcomposition of a X-subconvexlike set-valued map 
with a positive linear map. 

Let C{Yj Z) be the set of all linear maps ip from Y to Z, and let CJ^{Y, Z) 

be the subset of positive linear maps, i.e., 

C+{Y,Z) = We C{Y,Z) : ip{K) C D). 

Proposition 3. Let F : X —> 2^ be K-subconvexlike on X. If(p£ C+iX^Z), 
then (p o F is D-subconvexlike on X. 
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Proof. By Proposition 1(c), Vx,x' e X.^ae (0,1), 3k e K such that Ve > 0 
we have 

ek + aF{x) + (1 - a)F{x') C F{X) + X, 

and therefore, 

e^{k)-^a{(foF){x)-i-{l-a){(foF){x') C ((^oF)(X) + (^(ii:) C {ipoF){X)-\-D. 

As (/?(/:;) € D, statement (c) of Proposition 1 is satisfied for cp o F and conse­
quently, (^ o F is D-subconvexlike on X. D 

Corollary 1. Let {F,G) : X —> 2^^^ be K x D-subconvexlike on X. 
(i) If^G K^ then (cp o F, G) is R+ x D-subconvexlike on X. 
(a) If ip G ̂ +{^1 ^) ^^^'^ F -\- ip oG is K-subconvexlike on X. 

Proof. It is enough to apply Proposition 3 to (F,G) and the positive linear 
function (y^z) 6 Y x Z ^-^ {(f{y),z) in part (i), and to the positive linear 
function (y^z) € Y x Z y-^ y + il){z) in part (ii). D 

4 Benson-Vectorial Proper Efficiency 

In this section we analyze different optimality conditions for Benson-vectorial 
proper efficiency, by using a pointed relatively solid convex cone and K-
subconvexlike set-valued maps. Firstly, we establish a necessary condition and 
a sufficient condition through scalarization. Then, we obtain optimality con­
ditions by using multiplier rules of algebraic type. 

Now X is a set, y is a linear space and K CY is a. pointed relatively solid 
convex cone. 

Let (p G C{YyR). We can associate to problem (P) the following scalar 
optimization problem with a set-valued map: 

(Min{^oF){x) 
^ '^^ \ subject to X € X 

Definition 6. If XQ e X, yo e F{xo) and 

^{yo)<<p{y) \fy£F{x), V X G X , 

then XQ is called a minimal solution of problem (SPip), and (xo^yo) is called 
a minimizer of problem {SP(p). 

Theorem 4. Let ip € K'^^. If {xo,yo) is a minimizer of (SP^p) then (cco,2/o) 
is a Benson-vectorial proper minimizer of (P). 

Proof. Assume that (xo, 2/o) is not a Benson-vectorial proper minimizer. Then 
there exists 



54 E. Hernandez, B. Jimenez and V. Novo 

y e vcl[cone(F(X) - yo-\- K)] fl {-K) with y j^ 0. 

Then y e —K and, since (p € K'^^y we have tha t 

<p{y) < 0. (7) 

On the other hand, as y G vcl[cone(F(X)—2/0+^)]) due to the definition of vcl, 
there exist v £Y and a sequence A^ —> 0"̂  such that y -\- XnV G cone(F(X) — 
yo + K) for all n. So, there exist sequences {a^} C R"*", {yn} C i^C^") and 
{/c^} C K such tha t y H- A^f = OiniVn — 2/o + ^n)- Since (̂  is linear, we deduce 

y^{y) + K^{v) = an{(p{yn) - ^(2/0) + ^{kn)). (8) 

By hypothesis (xo^yo) is a minimizer of {SP(p) and (̂  G K^^ so we have that 
^{y) ^ V (̂yo) for all y G i^(X) and (/?(/u )̂ > 0 for all n. From this and (8) it 
follows that for all n 

^{y) + K^{v) > 0. 

As An —>• 0"^, we get (^(y) > 0, which contradicts (7). Therefore {xo,yo) is a 
Benson-vectorial proper minimizer of (P) . D 

As a consequence of the previous result, if we consider a topological linear 
space Y and we replace the vector closure by the topological closure and the 
relative algebraic interior by the topological interior, the previous proof is 
valid too. Therefore, the result above is an extension of Theorem 4.1 in Li 
[13]. 

To establish sufficient conditions we need some convexity properties and 
the following lemma. 

L e m m a 2. Let S be a relatively solid convex set ofY. Then 

ici{S) C icr(cone(5')). (9) 

Proof. Firstly, let us prove that 

rt ^c^^ m c M / ^ ^ ^ / ^( '^) ifOGaff(S') 
L(cone(5)) = afr(^ U {0}) = | ^ [ ^ j ^ ^^^ .^ ^ ^ ^ ^ j ^ j ^ 

(10) 

where SQ is an arbitrary element of S and RSQ is the linear subspace generated 
by 50- Indeed, the statement is obvious when 0 G aff(5). Thus, assume that 
0 ^ aff(5'). The linear subspace L{S)-\-Rso is the smallest affine variety which 
contains 5 U {0} because: 

1) SC L{S) + 50 C L{S) + Rso and {0} C L{S) + RSQ. 

2) If V is an affine variety containing ^ U {0}, then aff(S') = L{S) -\-So CV 
and y is a linear subspace of Y. So, L{S) C V — SQ = V and RSQ C V since 
soe S cV, Therefore, L{S) 4- RSQ C V. 

Secondly, let us see equation (9). Let a G icr(5'), we have to prove tha t 
yueL{cone{S)), 
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3to > 0 such that a-\-tue cone{S) Mt € (0,to]. (11) 

Taking into account equation (10), it is enough to prove (11) in the following 
cases: (i) u G L{S)^ (ii) u = SQ and (iii) u = —SQ. 

(i) Let u G L{S). As a G icr(5), then there is to > 0 such that a-\-tu^ 
S C cone(6') Vt G (0,to], i.e., (11) is satisfied. 

(ii) Now, u = SQ. Then, as a, so ^ cone(AS') we have a-\-tso G cone(5) 
Vt > 0 since cone(AS') is a convex cone. 

(iii) Finally, u = —SQ. AS a G icr(iS') C S and so ^ *5' (so a — 5o G L{S)), 
there exists 7 > 0 such that 

51 := 50 + (1 + 7)(a - 5o) = a + ^{a - SQ) G S. 

The equation a-\-t{—so) = ps\ in the unknown (t, p) has solution (to, po) where 
to = 7/(1+7) > 0 andpo = 1/(1+7) > 0- Hence a4-to(-so) = Po^i G cone(5), 
and therefore [a^a-[- to(—5o)] C cone(5') (i.e., (11) is true). D 

Theorem 5. Assume that K is vectorially closed and cov{K'^) ^ 0. Let F be 
relatively solid K-subconvexlike on X. If (xo^yo) is a Benson-vectorial proper 
minimizer of (P) then there exists ip G K'^^ such that (xo,yo) 5̂ a minimizer 

Proof Since {xo,yo) is a Benson-vectorial proper minimizer then 

-vcl[cone(F(X) -yo-^K)]nK= {0}. (12) 

As vcl[cone(F(X) - t/o + icY(K))] C vcl[cone(F(X) - yo + ^ ) ] , then 

-vcl[cone(F(X) - yo + icT{K))] nK = {0}. (13) 

Let us see that vcl[cone(F(X) — yo + icr(K))] is a vectorially closed relatively 
solid convex cone. It is clear that vcl[cone(F(X) — yo + icr(i^))] is a cone. 
Because of F is relatively solid if-subconvexlike on X, icr[F(X) + icr(i<')] ^ 0 
and F{X) + icr(jFf) is a convex set, then icr[F(X) — yo + icr(X)] ^ 0 
[5, Proposition 2.1(ii)] and F{X) — yo + icr(i^) is convex too. Therefore, 
cone(F(X) — yo + icT{K)) is convex and applying Lemma 2 we obtain that 

icr[cone(F(X) - yo + ici(K))] 7̂  0. 

Applying Proposition 3(iii)-(iv) in [4], we obtain that vcl[cone(F(X) — yo + 
icT{K))] is vectorially closed and convex. On the other hand, by Proposition 
4(i) in [4], vcl[cone(F(X) — yo + icr(/f))] is a relatively solid set. Under these 
conditions we can apply the separation Theorem 1, so taking into account 
condition (13), there exists (p G K'^^ \ {0} such that 

(p(v) > 0 for all V G vcl[cone(F(X) - yo + icr(iC))]. 

Since F{X) - yo + ici(K) C vcl[cone(F(X) - yo + icr(ii:))] we have 
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^{y) - ^{yo) + ^{k) > 0 for all y G F{X) and k G icr(X). 

Due to (f e K'^^ and Xk G icY(K) for all A > 0, it follows that 

^{y)-^(yo)>0 for all y G F ( X ) . 

Therefore (xo.yo) is a minimizer of (SPcp). D 

From the theorems above we obtain the following corollary, which gives us 
a characterization of Benson-vectorial proper minimizers under X-subconvex-
likeness. 

Corol lary 2. Let K'^ be solid and K he vectorially closed. Let F he rela­
tively solid Ksuhconvexlike on X. Then (xQ^yo) is a Benson-vectorial proper 
minimizer of (P) if and only if (xo^yo) is a minimizer of (SP^p) for some 

Therefore if we consider a topological linear space Y and mt{K) ^ 0 then 
Theorem 5 and Corollary 2 can be considered extensions of Theorem 4.2 and 
Corollary 4.1 in Li [13]. 

Finally, we give a generalized Slater constraint qualification in order to 
obtain a Lagrange multiplier rule of algebraic type for constrained vector 
optimization problems with set-valued maps. 

Def ini t ion 7. We say that the optimization prohlem (CP) satisfies the gen­
eralized Slater constraint qualification if there exists x £ X such that G{x) fl 
- icr(Z)) ^ 0. 

T h e o r e m 6. Let cor{K^) ^ 0. Suppose that (F, G) is relatively solid K x D-
subconvexlike on X, F is relatively solid K-suhconvexlike on J? and aff(icr(D)) = 
aff(icr[G(X)+icr(D)]). If(CP) satisfies the generalized Slater constraint qual­
ification and {xo,yo) is a Benson-vectorial proper minimizer of (CP) then 
there exists T G CJ^{Z^Y) such that 0 G T(G{XQ)) and (xo,yo) ^̂  ^ Benson-
vectorial proper minimizer of the unconstrained prohlem 

K-Min{F-\-ToG){x) 
subject to X G X. 

Proof. Since F is relatively solid i^-subconvexlike on i7, we can apply Theo­
rem 5 to problem (CP), then there exists a linear functional cp G K"^^ such 
tha t {xo,yo) is a minimizer of the scalar problem 

Mm{(p[F{x)]: x£ / ?} , 

i.e. 

Ay)>^{yo) f o r a l l y G F ( / 2 ) . (14) 

Let i f : X —y 2 ^ ^ ^ be the set-valued map defined by 
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H{x) = [<p{F{x)) - >p{yo)] X G{x) = ^{F{x)) x G{x) - (¥^(yo),0). 

As a consequence of (14) we have 

E{X) n -icr(M+ X D) = 0. (15) 

Since {F,G) is K x D-subconvexlike on X then, by Corollary l(i), we have 
that H = {(f o {F — yo)JG) — ((po F — (p{yQ),G) is E+ x JD-subconvexlike on 
X. Prom here and by icr[(F, G)(X) + icv{K x D)] ^ 0, applying Proposition 
2 we obtain that 

icT[{ip o{F- yo),G){X) + icr(E+ x D)] ^ 0. 

Thus, H is relatively solid R+ x J9-subconvexlike on X. Together with (15), by 
Theorem 2 applied to ff, we obtain that there exists (r, ijj) € R+ x D'^\{(0,0)} 
such that 

r[(p{F{x) - 2/o)] + 'iPlGix)] > 0 for all x € X (16) 

and (see the proof of Theorem 2) 

(r ,^)(y' ,^0 > 0 for all (y',^') G ici[{ipo{F-yo),G){X)-^ici{R+xD)]. (17) 

We note that r > 0. Otherwise, if r = 0 then from condition (17) it results 

^(icr[G(X) + icr(D)])>0. (18) 

As a consequence of the generalized Slater constraint qualification, 0 G 
G{X) + icT{D) so icr(D) C G{X) + ici{D). On the other hand, by hypothesis, 
afr(icr(D)) = aff(icr[G(X) + icr(I))]), therefore 

icr(D) = icr(icr(D)) C icT[G{X) + icr(i^)] 

and by (18) we obtain that 

7p{icr(D)) > 0. (19) 

Again, because of the generalized Slater constraint qualification, there exists 
some x' £ X and z' € G{x') C) —icT{D) ^ 0 and, consequently, by (19), 
tp(z') < 0 and by (16), 'tp{z') > 0, which is a contradiction. Thus, r > 0. Since 
XQ € f2 and ip € D'^ then there exists z' € G{XQ) H —D such that ip{z') < 0. 
Taking x = XQ and yo ^ -^(^o) in (16) we have that il^{z') > 0, so XIJ{Z') = 0. 
Hence, 

0 € ^'[^^(^o)]. (20) 

As r 7̂  0 and ip € K'^^, we can choose k G K such that r(p{k) — 1. We define 
the operator T: Z —> Y by 

T{z) = il){z)k. (21) 
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It is clear tha t T{D) C K, i.e., T G C+{Z,Y). By (20), 0 € T{G{XQ)) and 
consequently 

yo€F{xo)cF{xo) + T{G{xo)). 

Now, from (16) and (21) we have that for all x G X 

rip[F{x)+T{G{x))] = rip[F{x)]-{-xlj[G{x)]rip{k) = r(p[F{x)]+ilj[G{x)] > Myo) 

If we divide this inequality by r > 0 we obtain that (XQ, 2/o) is a minimizer of 
the scalar problem 

K -Mm{[ipo{F-{-ToG)]{x): x G X}. 

According to Theorem 4, (xo^yo) is a Benson-vectorial proper minimizer of 
the unconstrained optimization problem 

K - Min{(F + T o G)(x) : x G X}, D 

Remark 4- It is easy to check tha t the condition aff(icr(£))) = aff(icr(G(X) + 
icr(D)) is weaker than cor(D) ^ 0. Indeed if COY{D) ^ 0 then 

aff(cor(Z))) = afr[cor(G(X) + cor(L)))] = Z. 

T h e o r e m 7. Consider problem {CP). Assume COT{K'^) ^ 0. Let {F,G) be 
a K X D-subconvexlike set-valued map on X. If there exists a positive linear 
operator T G £-j-(Z, F ) and a pair (xo,2/o) with XQ E f2 and yo G F{xo) such 
that: 

(i) (xo^yo) is a Benson-vectorial proper minimizer of the problem 

K - Min {F-\-To G){x) subject to x eX, 

(ii) 0 G T(G{XQ)) and 

(Hi) icr[(F + r o G')(X) + icr(ir)] ^ 0. 
Then (xo,2/o) ^̂  « Benson-vectorial proper minimizer of problem {CP). 

Proof Since (F, G) \s K x Z^-subconvexhke on X by Corollary 1 (ii) F-^ToG 
is i^-subconvexlike on X. Moreover, by assumption (iii), F + T o G is relatively 
solid JFT-subconvexlike on X, So, applying Theorem 5 there exists if G K^^ 
such that for all x G X 

Vp(F(x) + T(G(x)) )><^(yo) 

Hence, 
if{F{x)) + v?(r(G(x))) > (^(yo) for all x G X (22) 

Therefore, if x G i?, there exists z G G{x) such that z G —D. On the other 
hand, as T G £ + ( Z , y ) , r(2;) G - i ^ and ip G J^+% we obtain ip{T{z)) < 0. 
Prom this, according to (22) and taking z G G{x)^ for each y G -F(x) we obtain 

^{y)>^{y)^^{nz))>^{yQ). 

Hence, for all y G F{Q)^ one has ip{y) > (p{yo). As t/o ^ -^(^^o) C F{Q)^ 
applying Theorem 4, (xo,2/o) is a Benson-vectorial proper minimizer of the 
problem (CP) . D 
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Once again our results extend Theorems 5.1 and 5.2 in Li [13] which are 
given in the framework of topological linear spaces with solid cones. 
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Summary. We discuss some ideas for improvement, extension and appUcation of 
proximal point methods and the auxihary problem principle to variational inequal­
ities in Hilbert spaces. These methods are closely related and will be joined in a 
general framework, which admits a consecutive approximation of the problem data 
including applications of finite element techniques and the ^-enlargement of mono­
tone operators. With the use of a "reserve of monotonicity" of the operator in the 
variational inequality, the concepts of weak- and elliptic proximal regularization are 
developed. Considering Bregman-function-based proximal methods, we analyze their 
convergence under a relaxed error tolerance criterion in the subproblems. Moreover, 
the case of variational inequalities with non-paramonotone operators is investigated, 
and an extension of the auxiliary problem principle with the use of Bregman func­
tions is studied. To emphasize the basic ideas, we renounce all the proofs and some­
times precise descriptions of the convergence results and approximation techniques. 
Those can be found in the referred papers. 

1 Introduction 

Let (y, II • II) be a Hilbert space with the topological dual V and the duality 
pairing (•, •) between V and V. 

The variational inequality 

{VI) find u* eK and q* G Q{u*) : 

(jr(u*) + g* , tx_u*) > 0 WUGK (1) 

is considered, assuming that i i ' C T̂  is a a convex closed set, Q : ^ —)̂  2^ is a 
maximal monotone operator and J^ : K -^ V is a, weakly continuous operator 
with certain monotonicity properties. 

Sometimes, in order to use notions and facts originating from convex op­
timization, we turn to the problem 

(CP) mm{J(u) :ueK}, 
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where J is a proper convex, lower semicontinuous functional. It presents a 
particular case of VI (1) with J^ := 0 and Q := dJ. 

In the sequel, {K^} is a family of convex closed sets approximating K, 
K^ C F , and {O!^} is a family of operators approximating Q. Usually, it is 
supposed that Q^ is maximal monotone, or tha t 

Qg means the e-enlargement of Q. 
In proximal-like methods and in the auxiliary problem principle (APP) , 

we use a regularizing functional h of Bregman type with zone^ 6', or its gen­
eralization defined by (7). 

The following general scheme for solving VI (1) is considered: at step /u + 1 , 
having a current iterate u^ {v} G i^ fl 5 is arbitrarily chosen) the point u^'^^ 
is calculated by solving the problem 

( P | ) find ^^+^ € i^^ n 5 , ^^ G S^(^i^+^) : 

+Xfc(V/i(n^+^) - V/i(^^)) , u - u^^^) (2) 

> -5k\\u-u^-^^\\ \/u£K^nS. 

Here, S denotes the closure of S and {Sk} and {xk} are non-negative 
sequences with 

lim 4 = 0, 0 < Xfc < X < oo. 

The choice of the family of monotone operators {C^}, C^ : K —^ V, depends 
on the particular method under consideration. 

Special cases of scheme (2) are: 

• classical proximal point method (PPM): 
J^ :=0 (i.e. J^ is included in Q), C^ := 0, h(u) := ^\\u\\^, S := V; 

• generalized (Bregman-function-based) proximal method (GPM): 
T := 0; L^ := 0, h - Bregman function; 

• A P P : 
Q := 0; Q^ := 0, /i G C^{y) - strongly convex, S := V, 
The A P P supposes additionally that the operators T — 1^ fulfills a kind 
of co-coercivity condition on K (see, e.g., assumption F2 in Section 5). 

To give a hint at the nature of £^ , let us consider the following variant of 
the A P P : 

find v!"^^ G X C R^ : 

{T(u^) + £^(^^+^) - C^iu^) + Xk(u^^^ - u^),u- ti^+i) > 0 Mu^K, 

^ I.e., h satisfies the conditions B1-B7 in Section 7.1 below, if y is a finite-
dimensional space. In case V is infinite-dimensional, see [3], [25]. 
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which arises from scheme (2) if 

V := R^, Q^ = Q:= 0, K^=K, S := M ,̂ h{u) := i | |uf , 4 = 0. 

In this case, depending on the choice of £^, we obtain: 

• C^ = 0 - gradient projection type method; 
l^ : u\-^ {VT{u^) — Xkl)'^ - Newton method; 
'.^ : u^-^ VT{u^)u - regularized Newton method; 

C^ '. u\-^ {D — Xkl)u, with D > 0 - projection methods. 

Also SOR, quasi-Newton methods etc. can be embedded in APP scheme (see 
[36], [33]). 

Remark 1. The alternative J* := 0 or Q^ = 0 is not exhaustive for real nu­
merical methods. For instance, Lions-Mercier splitting method (cf. [12], [32]) 

for Problem (1) with ii" = ^ is a particular case of scheme (2) with .F 7̂  0, 
Q^ = Q ^ 0 and Xfc = X > 0. 

Proceeding from the general framework (2) and the convergence results 
in [22, 25, 26, 27, 28], we revise here some ideas originally developed for 
the improvement of certain proximal-like methods and applications to some 
classes of problems. On this way, these ideas can be extended to a wide class 
of proximal methods as well as to the APP. For instance, using a Bregman 
function h with a zone S d K m the APP, new methods with unconstrained 
auxiliary problems and good chances for decomposition can be constructed. 

The paper is structured as follows. In Section 2 properties and applications 
of weak regularization are discussed. Sections 3 and 6 deal with conditions on 
data approximation in the subproblems. These conditions admit, in particular, 
the use of finite element techniques for space approximation and the use of e-
enlargements for operator approximations. Section 4 is devoted to multi-step 
regularization techniques, which we suggest especially for handling ill-posed 
infinite-dimensional and semi-infinite problems. The combination of the PPM 
and the APP is studied in Section 5. In Section 7 we analyze convergence of 
Bregman-function -based proximal methods in the case of non-paramonotone 
operators Q as well as the use of a weakened error tolerance criterion. Also 
an extension of the APP with Bregman functions is considered. The final 
Section 8 contains the description of the elliptic proximal regularization on 
the example of a parabolic variational inequality. 

2 Weak Regularization 

In the classical PPM as well as in the APP the regularizing functional h is 
supposed to be strongly convex in V. 
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The following example (cf. [18]), as well as numerical experiments in [35] 
for ill-posed control problems, in [38] for Bingham fluids and in [42] for Sig-
norini and contact problems in elasticity, show that, under a certain reserve 
of monotonicity of the operator Q, the use of a functional h with weaker con­
vexity properties can yield an essential acceleration of the numerical process. 

Note that in this example Q is neither strongly monotone nor even strictly 
monotone. 

Example i. Let H := {(x,y) : - f < x,y < f } , V := H^{Q). VI (1) is 
considered with 

K \=V, T :=0, Q\u^ -Au - / , 

/ is given by f{x,y) := 2 sin x sin 2/. Obviously this is equivalent to the Neu­
mann problem 

-Au = 2sma;sm2/, TTWO = 0, 
on 

whose solution set is 

U* := {sinxsiny + d: deR}. 

Applying the exact PPM with u^ := 0, Xfe = 1, we obtain the sequence 
{u^} C H^{f2), where u^'^^ is the unique solution of the boundary value 
problem 

-2Au-\-u = 2smxsmy - Au^ -\-u^, ^ | a i ? = 0. (3) 

It is not difficult to verify (by means of an immediate substitution) that 

u^ = ak sin X sin y, 

where (1 — ak) = 1(1 — a^-i) , ai = 0. With u* = sin x sin y € U* one gets 

u — u = I - I sm X sm y. 

But, replacing in this method the classical regularizing functional 

h:u^ -||tx|||^i(^) by h:u^ -^WAI^^Q). 

a sequence {v^} C H'^{Q)^ v^ := v} = 0, is generated, where v^^^ is the 
unique solution of the problem 

-Av + v =^2^uixs\ny^v^, T^lai? = 0. (4) 
on 

Here v^ = 6̂  sin a; sin y, holds, with (1 — 6 )̂ = | ( 1 "" ^k-i)i W '•= <̂ i = 0. 
Hence, 
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1 \ fc-i 

V = [- \ smxsiny. 

To compare numerically these solutions: 

0.053, -n T-nr ~ 0.0028, etc. 

Moreover, under identical finite element approximations in problems (3) and 
(4), the conditioning of the discretized problems for (4) is, at least, not worse. 

Remark 2. For the first acquaintance, one can think of weak regularization as 
the use of a regularizing functional 

h\u^ -\\u\\]j, 

where i^ D T̂  is a Hilbert space and || • \\H is weaker than || • | |y. However, 
such functional h is not strongly convex in F , and the standard assumptions 
on VI (1), guaranteeing solvability of the regularized problems in the classical 
PPM, are insufiicient in this case. 

This insufficiency becomes clear by means of the following example. 

Example 2. Let V := ^^(0,1) and ^p e C[0,1] \ if ^(0,1) be a given function 
with 1 < (p{x) <2\fxe [0,1]. Define the convex closed set 

K := {u e H^{0,1) : max u{x) — min u{x) < 1} 
0<x<l 0<a;<l 

and the convex continuous functional 

J:u\-^ ma.x^{0,u-\-(p}dx, 
Jo 

and consider CP 
mm{J{u) : u € K}, 

which is equivalent to VI (1) with .F := 0, Q := dJ. 
Here, the operator Q is maximal monotone, and the solution set U* is 

non-empty {u* = —2 G U*). Applying the classical PPM, unique solvability 
of the subproblems and weak convergence (in i/^(0,1)) of the iterates to some 
u* € U* are guaranteed. But, using 

the regularized problem reads as follows 

m i n { J H + ^\\u - a||i.(o,i) : u^K}, (5) 
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Now, we show that this problem, given for instance with X'-—"^ ^^<i ^ '-— 10? 
is not solvable. Indeed, it is easy to see that the problem 

min{ J(u) + \\u - 10||i2(o,i) : u € Kc}, (6) 

where 
Kc := {u e C[0,1] : max u{x) — min u{x) < 1}, 

0<x<l 0<x<l 

has a unique solution 

uc = \{lO-<p)^H\0,l). 

Due to the compactness of the embedding of H^{0,1) into C[0,1], it holds 

inf { J W + ||t^-10||i2(o,i): ueK} 

= min {J{u) + 11̂^ - 10||i2(o,i) : u e Kc}. 

Assuming that problem (5) is solvable, let u be its solution. From the last 
equation, we obtain that u is also a solution of problem (6). Hence u = uc 
has to be, but this is impossible, because u G -^"^(0,1) and uc ^ -^^^(0,1). 

The natural requirement for the use of weak regularization is to guarantee 
solvability of weakly regularized problems and the same quality of convergence 
as in related methods where a strongly convex (in V) functional h is applied. 

In Example 1 we face the situation that, although h : u i-̂  |II^IIL2(/?) ^^ 
not strongly convex (in V) and the operator Q is even not strictly monotone 
(in y ) , the sum QH- V/i is strongly monotone. This suffices, and weak regular­
ization with similar properties can be realized for a series of elliptic Vis with 
semi-coercive operators (Signorini- and contact problems for elastic bodies, 
etc). 

To be more precise, conditions on the functional h in methods with weak 
regularization can be described as follows. Throughout the paper, we assume 
that B : V -^ V is a, linear, continuous, symmetric and monotone operator. 
Moreover, we suppose that for all k either 

holds and Q — ^̂  is monotone, OT Q^ — B is monotone, i.e. the operator B is 
a reserve of monotonicity of Q or Q^^ respectively. 

Then, we will say that a convex functional h provides weak regularization, 
if the functional 

T] : ui-^ -{Bu,u)-\-h{u) (7) 

is strongly convex and of Bregman type (with zone S). 
This description includes also regularization on a subspace of V ([22, Sec­

tion 2]). 
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For the GPMs, considered in [24, 25, 28], the assumption on strong con­
vexity of T] can be replaced by the weaker assumption B8 from Section 7.1 
below (function D in B8 has to be taken with rj in place of h). 

In case S := V the standard assumptions on h include also that V/i is 
Lipschitz continuous. Considering S ^ V^ this assumption contradicts to the 
definition of Bregman functions, and it can be avoided by means of additional 
requirements on Q or .F 4- Q. 

Remark 3. It should be noted that, as against from the classical proximal 
mapping, even in the case of problem (CP) and /i : it i—> |||tfc||//^, the "weak" 
proximal mapping 

a ^ argniin{J(ti) -¥^\\u- a\\]j} 

is (in general) not non-expansive in F , and moreover, does not possess the 
Feyer property. The last property is basic in the convergence analysis of PPMs 
with h(u) \— lll^^lly. Therefore, in [17, 22, 23] essentially different techniques 
for the convergence analysis are used. 

3 Conditions on Set and Operator Approximation 

In the literature, if regularization methods include an approximation of the 
set K^ usually it is supposed that {X^} converges to K "sufficiently" fast in 
the Hausdorff or Mosco sense, for example: 

disti:f(X^K) < cvPfc, X^ — < 00. 
/Cfe 

However, this type of assumptions is not very realistic when dealing with 
Vis in mathematical physics. Indeed, constructing {iC^}, K^ = î z\fc, by 
means of the finite element method (FEM) on a sequence of triangulations 
with parameter Z\fc —> 0, as well as by related finite difference methods (FDM), 
we meet the following typical situation: 

(i) for arbitrary v e K and v^ := argmin^^^^fc ||z; — z||, the relation 

lim \\v -v''\\=0 ( approx. K by K^) 
fc—>oo 

takes place without any estimate for the rate of convergence; 
(ii) for an important class of variational inequalities, the solutions possess 

a better regularity than arbitrary elements from K. Then, for v e U* 
(solution set) it holds 

lit; - v^W < c{v)Al\ A > 0 ( approx. t/* by K^)-, 



68 A. Kaplan and R. Tichatschke 

(iii)for an arbitrary bounded sequence {w^}, w^ G K^, the estimate 

min \\v - w^W < cA^^, /?2 > 0 ( approx. K^ by K) 
VEK 

is valid (of course, c = 0 fits the case K^ C K, but this inclusion is not 
guaranteed, in general). 

Thus, because of the weak property (i), the FEM does not provide the required 
qualities of Hausdorff or Mosco approximations of K. Considering (i)-(iii) as 
conditions, together with 

y ^ — < GO, where ^k '-= in^xf^f^Z^f^}, 

we deal with quite different requirements on the type of approximation. 
In [23], for VI (1) with ^ = 0, we study the inexact PPM with weak 

regularization. This method is a partial case of scheme (2), when C^ = 0, 5 := 
V and /i is a quadratic regularizing functional. Conditions on approximation 
of K are generalizations of the properties (i)-(iii) above. 

If, in particular, Q is Lipschitz continuous, Q'^ = Q^ the approximation of 
K possesses the properties (i)-(iii) and 

V ^ < o o , y ^ < o o , (8) 

then convergence results in [23] permit one to state immediately weak con­
vergence of the iterates to a solution u* of the problem. Thus, the same type 
of convergence as for the exact PPM is guaranteed. 

It is also worth mentioning that, in a series of Vis in mathematical physics, 
the operator Q can be split up into the sum 

2 = 0 1 + Q2, 

where Qi is Lipschitz-continuous and monotone, and Q2 is a monotone oper­
ator of a special structure, like: 

• Q2{u) = d (/^ \\/u\df2) - the Bingham problem 
(flow of a viscous plastic fluid in a cylindrical pipe of cross section i7); 

• Q2{u) — d (^Jp g\ut\dr) - the Signorini problem 
(unilateral contact of an elastic body and a rigid support: F - contact part 
of the boundary, Ut - tangential component of the displacement vector u^ 
and g > 0 - given function). 

If solutions of these problems are of class H"^ (see regularity results for the 
Bingham problem in [13] and for the Signorini problem in [14]), then the 
properties (i)-(iii) of finite element approximations can be satisfied. Using 
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where (r^ - smoothing parameter) 

Ql{u) := grad (j ^ I v ^ i f T T ^ ' ' ^ 

respectively, 

Ql{u) := grad (^j^g^u^ + rldF^ , (9) 

convergence of the above mentioned method under (8) and r^ > 0, ^ ^^ < oo 
can be also easily concluded from [23]. 

An approximation of Q with the use of the e-enlargement concept will be 
discussed below in Section 6. 

4 Multi-Step Regularization (MSR) 

The main approximation techniques in mathematical physics are finite element 
- and finite difference methods on a sequence of triangulations/grids. For 
their success it is very important to obtain on coarse grids a relative good 
approximation of the sought solution. Then, continuing on finer grids (i.e. 
dealing with discretized problems of larger dimension), the required exactness 
of the solution can be achieved with reasonable numerical expense. 

However, this approach meets complications in the case of ill-posed prob­
lems: 

• convergence of regularization methods is slow; if discretization is improved 
(in a standard manner) after each proximal step, we get in a short time 
a large-scale problem while the current iterate can be still far from the 
sought solution; 

• attempts to obtain on coarse grids a better approximation of the sought 
solution by means of a priori given numbers of proximal steps in each fixed 
discretized problem are not encouraging. Indeed, doing many proximal 
steps in the discretized problem, we are moving to its solution (if it exists). 
But, the original problem is ill-posed, hence, this solution can be far from 
what we are looking for. 

The approach of multi-step regularization (cf. [17, 22] for proximal meth­
ods with quadratic functional h possessing property (7)) is developed to reduce 
these complications. 

Multi-step-regularization: Considering VI (1) with .F := 0, at the k-ih 
outer step, we deal with the approximated problem 

find z e i ^^ q^ e Q^{z) : {q^^u- z) > 0 \f u ^ K^. (10) 

Starting with iterate u^'^ := u^ G K^~^ ^ obtained at the end of the {k — l)-st 
outer step, we make inner iterations (5 = 1,2,...) 
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find u"'' e K", q'''' € Q'=(«*^'^) : (11) 

{q'''" + Xfc (V/i(«'='*) - V/i(«*^''-i)) ,u - «*='') > -Jfcllu - u''''\\ \/u€K''. 

Here {xfc} is as before, 5k > 0 V fc and y] ^ < <io) with given do. Inner 
iterations terminate as soon as 

\\Vh(u^^')-Vh{u^^'-')\\<Ok, (12) 

with a given sequence {Ok}- Then, we put s := s{k)y u^"^^ := u^^^(^)^ refine 
the approximation replacing K^, Q^ by K^^^^ Q^'^^ and set A; := A; + 1. 

Of course, up to now, this description is not better than saying "we do cer­
tain number of proximal steps in each problem (10)". The success of multi-step 
regularization depends mainly on the appropriate choice of the parameters Ok. 

To design such a choice, let us consider the case that Q^ = Q is Lipschitz-
continuous, 

K C Br, K^ C Br {Br '.= {u £ V : \\u\\ < r}), 

and the approximation of K by K^ meets the conditions (i)—(iii) from Section 
3 together with 

X ^ V W x f c <oo, ^k :=max{zlfSzAf"}. 

Then, \i h \ u^^ lll'^lly is used, the parameter Ok has to satisfy 

( ' 4 M g - ( ^ f c - 4 ) 2 ' ) + 4 < 0 , (13) 
4r 

where 
/ />sup | |Q(^) | | y , . (14) 

ueK 
For convergence results in the general case of an unbounded set K, a multi­
valued operator Q and a weak regularization, see [22], Theorems 3.11, 3.15 
and Remark 3.14. 

Remark 4- However, from (13) and (14) it is clear that the use of multi-step 
regularization requires some additional information about the problem. The 
calculation of fx can be very difficult (if possible at all). In the general situation 
with an unbounded set K and a multi-valued operator Q, we have also to know 
the radius of the ball Br such that U* H Br/4 7̂  0. Relation (14) has to be 
replaced by 

II > sup sup \\y\\v'' 
ueKnBryeQ{u) 
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To justify rule (13), it provides the strong Feyer property for the inner 
iterates u^'^, ...,u^'^^^^~^ w.r.t. some equivalent norm ||| • ||| of the space V, 
i.e. for each u* e U* and each k it holds 

\\\u''-'-u*\\\<\\\u''''-'-u*\\\, l = l,...,s{k)-l. 

If, for instance, weak regularization with h : u \-^ III-P'^IIH is applied, where 
P is an orthoprojector on a closed subspace of F , then ||| • ||| is defined by 

\\\u\f:=\\Buf + \\Pu\\%. 

Moreover, the rules for improving an approximation on the outer steps 
and the parameters Sk do not depend on the number of inner iterations. 

In [19] the convergence of MSR-methods is investigated for two elliptic 
variational inequalities in elasticity theory: the two body contact problem 
(without friction) and the Signorini problem. In both cases the approximation 
of K is performed by the FEM and the approximation of the multi-valued 
operator Q in the Signorini problem is like (9). 

In [1] a comparison of MSR-methods and diagonal processes (with improv­
ing the discretization after each proximal step) is given for convex semi-infinite 
optimization problems in finance and engineering, whereas in [35] numerical 
experiments for the optimal control of elliptic systems are described. 

5 Extension of the APP 

The APP is usually studied for Vis with single-valued operators. Formally it 
corresponds to (1), (2) with S :=V, J^ := J^-^ Q and Q^ = 0. 

For variational inequalities with multi-valued operators, the known results 
for the APP, even in case £^ = 0, require strong monotonicity of the operator 
and a very special rule for the choice of {xk} (cf. [8]): 

I]Xfc^ = oo, ^ x ^ 2 < o o . 

This is like step-size rules in subgradient methods and is not very efficient. 
In our extension of the APP, described by (2), we take 

• q^ e Q^{u^'^'^) (at the sought iterate), 
• J^{u^) (at the previous iterate). 

The idea to use an additive part of the operator at the sought iterate is 
not new in the APP. Already in the first paper on the APP, considering a 
problem 

min{Ji(w) +J2('a) : u^K}, (15) 

where Ji is a convex, Gateaux-differentiable functional and J2 is a proper con­
vex, lower semicontinuous functional, Cohen [7] (Algorithm 2.1) constructed 
auxiliary optimization problems, which are equivalent to (2) with 
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T:=VJu Q^ = dJ2, K^^K, h:u^^\\u\\l, J^ = 0 

and C^ a symmetric monotone operator. 
In implicit form, combinations of the APP and proximal-like methods can 

be found in [43] (corresponds to (2) with V \=W,Q!' = Q, C^ = C, Xk = X, 
K^ = K) and [36] {V := W, K^ C K, Sk = 0). Both schemes do not allow 
that Q is a multi-valued, non-symmetric operator. Also h is supposed to be 
strongly convex. 

Such an approach is of special interest for constructing decomposition 
methods. To avoid needless formalization, let us turn to the optimization 
problem (15). Suppose that 

mm{J2{u) : UGK} (16) 

splits up into independent problems on the sets Ki, ...^Kg, K — nf^^Ki is the 
Cartesian product. Then the auxiliary problems with C^ = 0 can be rewritten 
as 

mm{{VJi(v!'),u- u^) + J2{u) + yl l^/ - u^f : UGK}, 

and obviously, they can be decomposed in the same manner as (16). For VI 
(1) and scheme (2) such decomposition is described in [20]. 

Another important fact concerns VI (1) with a symmetric operator Q: 
using symmetric Q^ and £^, the exact problems (2) are convex optimization 
problems (even if .7̂  is not symmetric, and hence VI (1) cannot be transformed 
into an optimization problem). 

These properties are lost if we consider proximal methods and T is not of 
a special structure. 

In [21, 26], the convergence of scheme (2)(with 5 := \^) is considered under 
conditions on Q, which are typical for PPMs. The conditions on the approxi­
mation of K by K^ and Q by Q^ are very similar to those mentioned above, 
i.e. again based on properties (i)-(iii) of the FEM. The choice of the regulariz­
ing functional h fulfils the requirements to methods with weak regularization, 
i.e. the standard assumption (for the APP) on the strong convexity of h is 
relaxed taking into account a reserve of monotonicity of the operator Q. 

Let ^ be a convex set, K D K U ( u ^ ^ i f ^ ) . Typically, the operators 
C^ in the APP can be described by C^ = £j,|^^^fc, using an appropriate 
family {Cy} of monotone operators Cy : V ^>' V parameterized hy y E K. 
The operators Cy are also supposed to be Lipschitz-continuous on K with a 
common Lipschitz constant. 

Then, the assumptions concerning the operator T are formulated in our 
papers [21, 26] as follows: 

F l .7̂  : y —> F ' is single-valued and weakly continuous on K, and the func­
tional u I—> {T{u),u) is weakly lower semicontinuous on K; 
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F2 there exists 7 > 0 such that, iov all u € U*^ v € K, the inequality 

{T{v) - !F{u) - Cy(y) -\- Cy{u),v - u) 

+ (jr(tz) + q\z{v) -u)> 7||jr(^) - C,(y) - T{u) + C,{u)\\\l, (17) 

is valid. Here q* € Q{u) satisfies 

{q*,v-u) > 0 ^ v£K, 

and z{v) := argminj,^^: H'̂  - vW-

Obviously, assumption F2 is weaker than the rather usual requirement (for 
the APP) that the operators J^ — Cy, y £ K, are co-coercive with modulus 7. 

Example 3. Let V := E \ Q{u) := w -h 4, K \= [-1,1], K := [-2, 2], Cy = 0 
and 

- . . {u^2iiu<-l 

Here we meet the situation that F2 is fulfilled (with 7 = 1 ) , although the op­
erator T is not co-coercive and even not pseudo-monotone (in Karamardian's 
sense). It is also worth to mention that in this example .F+ Q is not monotone 
onK. 

Under the assumptions traced above, the main convergence result in [26] 
(Theorem 3.1) establishes weak convergence of the iterates (2) to a solution 
u" e U* if 

- <Xk <X (with some c > 0), ^ ipk < 00, ^ Sk < 00. 

In the particular case J^ := 0, C^ = 0, the values 7 in (17) may be arbi­
trary large, and we recover the convergence results for the PPM with weak 
regularization mentioned in Section 3. 

6 The Use of e-Enlargements 

Recently, a series of proximal-like methods has been suggested, in which the 
operator in the VI is approximated by its e-enlargement, with e ^^ 0 within 
the iteration process (cf. [4, 5, 30, 37, 39]). 

The e-enlargement 7^ of a monotone operator T : V ^>^ V is defined as 

Te{u) = {VGV' : {w-v,z-u) > -e, V z G F, weT{z)}. 

For its properties, in case T is maximal monotone, we refer to [4]. 
However, the treatment of the subproblems in these methods meets serious 

difficulties, because the verification of the inclusion q G %{u) for a maximal 
monotone operator T, as well as the calculation of an element q e %{u) with 
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certain properties, may be very complicated. Moreover, for an operator T with 
separable structure, 7^ is usually not separable. For instance, the operator 

T'.U^ d{\Ui\ + K l ) = ^nx(KI) X du,{\U2\) 

is evidently separable, but calculating 

T,(l, l) = {ue [-1,1] X [-1,1] : ui^U2>2- e}, 

we see that 7^ is not separable. 
This prevents, for instance, from the use of the €-enlargement in decom­

position methods. 
If the operator T has a reserve of monotonicity like 

{T(U) — T{V),U — V) > {B{u — v),u — v) 

^u,ve D{T), V T{U) e T{u), r{v) e T(y), 

one cannot guarantee that 

{T{U) — T{V),U — V)> P{B{U — V),U — V) — ae (18) 

V n € D(Te), V € D(T), V r(u) e %{u), T{V) € T{v), 

is valid with some a and /̂  = 1, moreover, the existence of appropriate p > 0 
and a is not clear at all. However, in order to use weak regularization, we 
need a relation like (18) for the operators Q^. 

Now we describe some simple ideas to construct Q'̂ , Q C Q^ C Qe^ ? which 

inherits separability of Q and all continuity properties of the e-enlargement; 
- its treatment is simpler than that of Q^^; 

possesses an e- reserve of monotonicity in the sense of relation (18). 

Suppose that a continuous operator Q : V ^^ V is chosen such that both 
Q— Q and Q — B are monotone. Then, defining 

Q ' : = Q + ( e - Q k , (19) 

we get Q C Q^ C Qe^, and the continuity properties of Q^ depend mainly on 
those of (Q — Q)ek' Inequality (18) is valid with 

T:=Q, e:=efc, % := Q\ a = /3=l. 

Of course, the use of Q := B is possible and leads to the same conclusions. But, 
as we explain in [25], the choice Q ^ B may be preferable for the treatment 
of Q^ 

In the above mentioned Signorini- and Bingham problems, the multi­
valued part of the operator is of special structure: it is the subdifferential 
of a convex positive homogeneous functional. For these and other variational 
inequalities with a similar property, the following result (cf. [25], Lemmata 
A.l and A.2) is helpful to handle Q^. 
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Lemma 1. Let j be a convex, positive homogeneous, lower semicontinuous 
functional and T := dj. Then, for each e > 0, 

Z{u) = {ye r (0 ) : {y,u) > -€-^j{u)} 

holds, and 
Te{u) = dej{u) y u e domj 

(d^ denotes the esubdifferential). 

Examples on the use of this lemma, including the special case of the Bing­
ham problem, are given in [25], too. 

6.1 Application of €-Enlargement in Signorini Problems 

The operator of the plane Signorini problem is Q : ti i—> Au — I + dj{u)^ where 

{AU,V) := / amnpq^mn{u)epq{v)dQ ^ U,V e [H'^{Q)f 

j{u) := [ g\ut\dn (20) 

In this description the summation is taken (by Einstein's summation con­
vention) over terms with repeating indices (m, n,p,q = 1,2); 

o i? C R^ is a bounded domain, Fc is part of the boundary of i?; 
o p € Loo{rc) is a given non-negative function; 

(i?) are given functions with symmetry property 

^mnpq ^ (^nmpq ^^ (^pqmm 

and there exists a constant CQ > 0 such that for all symmetric matrices 
[<^m,njm,n=l,2 

(^mnpq\^)^mn^pq ^ (^O^'mn^^mn ^•^' ^U J/; \^^) 

o emn — k {^^ + §r^) ^^^ components of the strain tensor; 
o ut is the tangential component of displacement u. 

The Signorini problem can be described in the form of VI (1) where 

V := [H^W)f; T:=0 and K := V. 

Due to (21), we can choose the operator B as 

{Bu,v) := Co / emn{u)emn{v)df2 "i u,v eV. 
JQ 
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Then, according to the second Korn inequality (see [14, Section 2.2]), the 
functional 

realizes weak regularization. 
To construct the operators Q^ := Q + (Q — Q)^^, one can take Q = B. 

Then we have to deal with the 6-enlargement of the operator 

Q-Q: u^{A-B)u-l + dj{u). 

But taking Q : u\-^ Au — l^ then the both operators Q — Q = dj and Q — B are 
monotone, and the functional j satisfies Lemma 1. In this case the treatment 
of (Q — Q)g is much simpler than taking Q = B. 

In Section 3 an approximation of the operator dj by the single-valued 
operator Vj^ was mentioned, where jk{u) := J^gy/uf+^dF. 

Because 

jk{u) -Tk j gdr < j(u) < jk{u) V ^ € y, 

one gets 

with Ck = Tfc Jp gdr. 

6.2 Application of e-Enlargement in Decomposition 

Assume now, that V := T4 x ^2? where Vi, V2 are closed subspaces with norms 
induced by || • ||, and their duals V{ and V2. Let 

Q{v):={Qi{vi),Q2{v2)), S i : F , - ^ 2 ^ ' , 2 = 1,2. 

If Q is maximal monotone in V, then Qi and Q2 are maximal monotone in 
Vi and V2, respectively. Considering their e-enlargements Qî g and Q2,e in Vi 
and V2, respectively, we obtain 

QC(Qi,„Q2,e)CQ(2e), 

and the operator Q^ := (Qi,e, Q2,e) (in distinction from Q )̂ has the same 
separable structure as Q. 

Of course, the "recipes" considered above to construct Q^ are compatible 
in a straightforward manner. For instance, if Q has a separable structure and 
Q — B is monotone, then one can construct a separable Q^ such that it inherits 
the continuity properties of Q^^ and fulfils (18). 
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7 Bregman-Function-Based Methods 

There are numerous publications dedicated to Bregman-function-based proxi­
mal methods in finite dimensional spaces. In a Hilbert space, the exact method 
was studied in [3], whereas in [21, 25] we prove convergence of inexact ver­
sions, including successive approximations of K^ the use of e-enlargements of 
Q and weak regularization as described in Sections 2 and 6. 

But conditions on the approximation of K require K^ D K. This inclusion 
emerges when dealing with convex semi-infinite problems, but it is not valid, 
for instance, if K^ is obtained by applying usual discretization techniques to 
elliptic variational inequalities. In order to use our convergence analysis in this 
case, an approximation of K has to be inserted into the algorithm for solving 
the subproblems. 

In the sequel we assume that S :p K. This includes the main case S C K, 
but some additional assumptions on the operator Q are needed^ - even for 
the exact G P M with strongly convex h. 

If Q is not symmetric, the paramonotonicity and pseudo-monotonicity (in 
the sense of Brezis-Lions) of Q are supposed (see [3, 24, 25]). In case V := R" ,̂ 
Solodov/Svaiter [40] have shown tha t the pseudo-monotonicity requirement 
can be omitted, but their arguments are finite-dimensional in essence. 

Paramonotonicity of a (monotone) operator Q means that the relation 

{z -z',v- v') = 0 with z e Q{v), z' € Q(v') 

implies z e Q{v'), z' £ Q{v). 
This condition is rather restrictive, in particular, a maximal monotone op­

erator associated with a Lagrangian of a smooth convex programming problem 
is paramonotone only if all constraints are not active ([15, 28]). 

7.1 B r e g m a n - F u n c t i o n - B a s e d P r o x i m a l M e t h o d 

In this part , we consider the application of the GPM to variational inequalities 
with non-paramonotone operators of particular type. 

Wi th this goal, let us recall the conditions defining Bregman functions in 

B l 6* C R"^ is a convex, open set; 
B 2 /i is continuous and strictly convex in 5 ; 
B 3 /i is continuously differentiable on S; 
B 4 Given any z e S and a scalar a , the set {v e S : D[z^ v) < a) is bounded, 

where the distance function D is defined by 

D{z,v) := h{z) - h(v) - {Vh{v),z- v); 

^ An exclusion is the proximal-like method in [9], where, however, a very unusual 
strategy for the choice of {xfc} in the PPM is used, forcing in particular that 
Xfc-^0. 
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B 5 If {v^} C S converges to v, then D{v,v^) —> 0; 
B 6 If {z^} C 5 , {v^} cS,v^ -^ V, {z^} is bounded and D(z^^;^) -^ 0, then 

z^ -> V. 

Prom [40] it is known that condition B6 is a corollary of B1-B3. 
A special assumption is required in order to guarantee the solvability of 

the regularized problem in 5 , for instance, the so-called zone coerciveness 
condition 

B7 \/peR'^,3veS : \/h{v) = p. 

Finally, we introduce one more assumption 

B8\/ zeS, 3 a{z) > 0, c{z) : D{z,v) > a{z)\\z - v\\ - c{z) ^ v e S, 

which is certainly weaker than the strong convexity of h and implies B4. B8 
means geometrically that D{z,') lies above the translated and scaled second 
order cone given by the function 

V \-^ Ci{z)\\v — z\\ — c{z). 

As it will be explained later on, B8 permits one, in particular, to weaken the 
error tolerance criteria in Bregman-function-based proximal methods. At the 
same time, this condition is very mild: among the known Bregman functions 
only 

m 

h'.uv-^ ^^{ui - u1), K G (0,1), 

does not satisfy B8. Moreover, B8 is evident if 5 is a bounded set. 
In [28] we study the convergence of G P M for two classes of variational 

inequalities. The first one arises from problem 

min{ / (x ) : Pi(x) < 0, z = l , . . . , m } , 

where / , ^ i , . . . ,pm are supposed to be convex and continuous on a Hilbert 
space X. We assume that the set X* xA* of the saddle points of the Lagrangian 

m 

L(x, A) := f{x) + Y^Xi9i{x) 
i=i 

on X X R!p is non-empty. The inclusion (x*,A*) e X* x A* is equivalent to 
the variational inequality 

find {x\X*)eXxR'^, q{x\X*) eda:L{x\X*) : 

{q{x*, X*),x - X*) -{- {-g(x*), X - X*) > 0 V (x, A) G X x R!^, (22) 

where dx denotes the partial subdifferential with respect to x and (•, •) stands 
for the duality pairing between X and X^ as well as for the inner product in 



Some Results About Proximal-Like Methods 79 

The multi-valued operator 

Q : (x, A) •-> (da:L{x, A), -g{x)) 

is monotone on X x M!̂ , but as it was mentioned, it is not paramonotone 
except for "an exotic case". 

To solve VI (22) we consider the following method. Let be 

• {X^} a subsequence of closed subspaces of X approximating X; 
• h : R!p -^ R a separable Bregman function with zone S := W^_^. satisfying 

B1-B8; 
• {Xfc}) {^k}j {^k} non-negative sequences satisfying 

r 

0 < Xfc < Xfc < oo, V — < oo, V — < oo; (23) 
^-^ Xk ^-^ Xk 

• I: X —> X' the canonical isometry operator; 
• dx,tL{x, A) := dj{x) + XII^i \id^gi{x). 

Method: Starting with (a; ,̂ A )̂ € X xS, at the (A;+ l)-st step the current 
iterate (x'', A*) 6 X''~^ x 5 is used to solve 

find {x''+\X''+^) GX^XS, qe da,,,,L{x''+\\''+^) : 

{q + Xk{Ix''+'-Xx''),x-x''+'} 

+ (-5(x'=+') + Xfc(V/i(A'=+i) - VMA*)), A - A'=+i) 

>-5k{\\x- x^+i llx + IIA - A'=+i IIR™) V(X, \)eX''x S. (24) 

Conditions B1-B3 and B7, B8 provide the existence of {x^'^^^ X^'^^) satis­
fying (24) and the inclusion Â "̂ ^ € S, Obviously, (24) can be considered as a 
particular case of scheme (2) with T := 0, Ck '-= 0, the Bregman function 

(x, A) Ĥ  ;;II3 l̂lx + ^W i^ place of h, 

and K^ := X^ x R!^, Q^ : (x. A) ^ (aa:,e,iv(x. A), -g{x)). In [28], Theorem 
3.2, weak convergence of the iterates (24) to some (x*, A*) G X* x A* is proved 
under (23) and the following conditions; 

A l for each (a;*. A*) e X* x A* and each i: X* = 0 ^ 9i{x*) < 0; 
A2 limfc_oo 11̂  - -Pxfc(^)l|x = 0 "ix £ X (Px^ - orthoprojector onto X^); 
A 3 V X * G X * , 3ci(x*), {(pk}: 

llo;* - Px^(^*)||x < ci{x*)ipk V /c, V ^ < oo. 

The strict complementarity assumption Al is the only additional condition 
on the operator Q, whereas A2 and A3 are well matched with the properties 
(i)-(iii) of a finite element approximation. 

The convergence analysis uses essentially the following modification of 
Proposition 4 in lusem/Kallio [16] (which was proved for a VI with single-
valued, monotone and continuous operator): 
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Lemma 2. Suppose that VI (22) satisfies Al and (x, A) G X x R!p fulfills 

0 e dxL(x,X), gi{x)Xi = Oj z = l , . . . , m . 

Moreover, let 
J(A) C J(A*) for some X* G A\ 

where J(A) := {z : Â  = 0}. Then (x,X) e X* x A*. 

The second class of Vis considered in [28] is the complementarity problem 

hnd u* eW^, qeQ{u*): {q,u-u'')>Q WueR"]^. (25) 

Here Q : W^ -^ 2 "̂̂  is a monotone, upper semicontinuous operator with non­
empty, convex and compact image Q{u) for u G W^- Thus, the sum QH-A/k"^, 
where A/R^ denotes the normality operator for R!p, is maximal monotone (see, 
for instance, [11]). 

We take in this case 

Q^:=Qe, or Q ^ = ( Q + ArM^)., 

and a separable Bregman function h with zone S := W^^^ satisfying B1-B8. 
The GPM 

findw^+^G5, q^ eQ^iu^-^^): 

{q^ + Xk {^h{u^+') - Vh(u'')) ,u- ^^+^) > -6k\\u - n^+^H \/u £ S (26) 

is studied under the same conditions on {xfc}) {̂ fc} ^̂ nd {6k} as above. 
Convergence of the iterates (26) to some u £U* \s proved in [28] assuming 

a modified strict complementarity condition: 

u£U* : Ui = 0 => ri{u) > 0, (27) 

where Ti{u) := inmq^Q(^u^ qi. If Q is single-valued, (27) coincides with the 
standard notion of strict complementarity. 

The convergence results from [28] can be trivially extended to method 
(24), where the operator dx^ek^ is replaced by Q^ with dxL C Q^ C dx^ek^i 
as well as to method (26) with Q^ satisfying Q C Q^ C Qe^ • All recipes from 
Section 6 can be used to construct Q^. 

7.2 Extended A P P with Bregman Functions 

To our knowledge, Bregman functions h with zone S ^ V have not been used 
in connection with the APP. In different variants of the APP, the operator 
V/i is supposed to be Lipschitz continuous on K or on some set K D K. This 
excludes the use of Bregman-like functions with zone S "^ K, and in particular 
with S C K. Exactly, Bregman functions with zone S C K provide a full 
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"interior point effect", i.e. with a certain precaution the auxiliary problems 
can be treated as unconstrained ones. 

Now, we consider scheme (2) allowing 

S C K, in particular K := KinK2, S := intiCi 

as special cases. The convergence of the extended APP in form (2), where h 
is a Bregman function with a zone 6*, was proved in [27] under the following 
special assumptions: 

o F : = R ^ , SnKnD{Q)^il}, U* f) S j^ H)', 
o h is strongly convex with modulus «; 
o K'' = K, QcQ^cQe. ;_ 
o T -\- Q is paramonotone in S f) K, and 

v^ € D{Q) nK n S, v^ -^ V, q{v^) e Q{v^) implies that {q{v^)} is a 
bounded sequence; 

o the operators T — C)^ satisfy the co-coercivity condition F2 in Section 5 
(with k = K)', 

o the operators C^ are Lipschitz-continuous with a common constant; 
° 4 ^ <Xfc < X < 00, X)inax{0,Xfc -Xfc+i} < oo, JD f̂c < oo, X ) 4 < 00 

(7 is the modulus of co-coercivity in F2). 

The other conditions are quite traditional for the exact PPM and concern the 
operator Q and the set K only. 

Basing on the proof of Lemma 3.2 in [26], the convergence analysis in 
[27] can be easily adapted to method (2) with weak regularization, when h is 
defined by (7). 

7.3 Weakened Error Tolerance Criteria in Proximal Methods 

The criterion for the approximate calculation of the iterates used in the general 
scheme (2) is not suitable for a straightforward application, but it permits one 
to apply the convergence results obtained in [22, 23, 27] to related algorithms 
with more practicable criteria. 

In [10] Eckstein has analyzed different accuracy conditions for iterates in 
Bregman-function-based proximal methods. 

For VI (1) with V := R^ and T := 0, the inclusion 

0 € Xk^Q{u''^^) 4- Vh{u^+^) - Vh{u^) + e^+^ (28) 

is studied, where h is a Bregman function with zone S = intK and 0 < Xfc < 
X < 00. Convergence u'^ -^ u e U* has been established under standard 
assumptions on Q (paramonotonicity, etc.; see A1-A3 in [10, Section 3]) and 
the conditions 

00 00 

^ | | e ' ' | | < o o , ^{e^^*'=><oo. (29) 
fc=l fc=l 



82 A. Kaplan and R. Tichatschke 

Eckstein explains that the relations (28), (29) are easier to check than in other 
inexact schemes. 

At the same time, using an element q € Q{u^^^)'> which transforms (28) 
into an equality, we obviously get 

{q + Xk {Vh{u^^^) - Vh(u^)) ^u-u^^')>-Xk\\e^-^'\\\\u-u^^'\\ V ̂  G K. 

But this corresponds to scheme (2) with Q^ = Q and Sk := Xfclk^^^ll- ^^^ ^^ 
the additional assumption B8 on Bregman function, our convergence analysis 
in [29] ensures convergence of the iterates (28) exclusively under 

ê ll <oo. 

Remark 5. Let us recall that B8 does not cause any complication for the choice 
of an appropriate Bregman function. Moreover, in [29] the validity of condi­
tion B8 is proved for entropy-like and logarithmic-quadratic distance functions 
which are not of Bregman type. We also show there that the GPM in form 
(28) with these distance functions converges under the weaker error criterion 
^lle'^ll < oo, than in former papers [2, 41]. Recently, a new concept of a 
relative error criterion has been introduced in [6, 40]. The corresponding al­
gorithms include a correction of the inexact proximal iteration by means of 
an extragradient-like step. 

8 Elliptic Proximal Regularization 

Starting with papers of Lions [31] and Olejnik [34], elliptic regularization 
is a useful tool for the theoretical and numerical treatment of parabolic and 
degenerate elliptic boundary value problems. The main idea is that the original 
problem is approximated by a family of non-degenerated elliptic problems. 
This was done exclusively by means of the Browder-Tikhonov regularization 
concept. On this way the regularization parameter tends to zero causing a 
certain instability of the real numerical process. 

In [23], we have introduced elliptic regularization by following the scheme 
of proximal methods. Now, this approach will be considered for a parabolic 
variational inequality. 

Let i? C W^ be an open set with a sufficiently smooth boundary and 

Z := L^{0,T;H^in)), H := L\0,T;L\n)), 

where L^{0, T; W) denotes the space of measurable on ]0, T[ functions v : t h^ 
v(t) eW with 

\ 1/2 

\V\\L2(O,T,W) = [ I \\v{t)\\'^dt] <oo; (£\\vmwdt] 
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Z' := L2(0 , r ; i f -^ (^) ) denotes the dual space of Z, and H is identified with 
its dual. 

Introducing the linear and unbounded (in Z) operator A := ^ with the 
domain 

D{A) := | „ e Z : ^ € Z' , v{0) = o | , 

one can consider D{A) as a Hilbert space endowed with the graph-norm 

\\v\\DiA)'-={\\vf+\\Av\\%.f\ 

Then 
D{A) CZCHCZ' C D{Ay, 

and each space is dense in the next one. 
Take now V := D{A) and let A : H^{f2) -> H-^{Q) be an elliptic (with 

constant a) operator. Let the operator A : F -^ V be a linear, bounded and 
monotone operator defined by 

{Av){t) := Av{t) a.e. on [0,T], 

with D{A) = V. Given f EV and a convex, closed set K C D{A)^ we consider 
the VI 

find u£K : {Au, v - u)-^ {Au, v-u)>{f,v-u) "i v e K. (30) 

The operator A is closed and yl > 0 on F . Therefore, A is maximal mono­
tone, and because D{A) = V = D{A), the sum A-\-Ais maximal monotone, 
too. Further we suppose that VI (30) is solvable. 

We make use of the regularizing operator A*J~^Ay where A* = —4r with 

D{A*) = ^veZ:^eZ'MT) = o^ 

is the conjugate operator of A, and J : v -^ —^x^ is the duality mapping 
between Z and Z' {Ax denotes the Laplacian w.r.t. space variables x). 

Basing on the principle of proximal regularization, the following iteration 
process for VI (30) is studied in [23]: 

find tx^+^ G K : 

{Au^+^ + yl^^+i + XkA^'J-'^Aiu^^^ - u^),v- n^+^) 

>{f,v-u''^'^) \/veK (31) 

(0 < Xfc < X < oo). 

It corresponds to scheme (2) with 

J" := 0, C^ = 0, K^ = K, Sk = 0, 
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Q^ = Q:v^ Av-\-Av- f, 

h : V h^ -{Av,J~^Av). 

The operator 
v^{A + A-\- XkA*J-'^A)v - f 

is elliptic in i?x]0, T[ (i.e. with respect to space and time variables), and 

{A{u-v),u-v) + {A*J~'^A{u-v),u-v) > min{a, 1}||^^ - i;|p 

holds for u,v €V. 
The last inequality allows to conclude tha t the choice of h satisfies the 

principle of weak regularization. The weak convergence (in V̂ ) of the iterates 
(31) to a solution of VI (30) follows immediately from the convergence analysis 
in [23]. 

If ^ is a degenerate elliptic operator, a similar result can be attained by 
using 

h: V ^ -{Av,J~^Av) + -{-AxV.v}. 
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Summary. We consider a general system of equilibrium type problems which can 
be viewed as an extension of Lagrangean primal-dual equilibrium problems. We 
propose to solve the system by an inexact proximal point method, which converges 
to a solution under monotonicity cissumptions. In order to make the method im­
plement able, we suggest to make use of a dual descent algorithm and utilize gap 
functions for ensuring satisfactory accuracy of certain auxiliary problems. Some ex­
amples of applications are also given. 

1 Introduction 

Let i? be a nonempty, closed and convex set in a real /-dimensional space R^ 
and let !Ẑ  : i? X i? —> jR be an equilibrium bifunction, i.e., ^{z, z) = 0 for each 
z £ Q. Then one can define the general equilibrium problem (EP for short) 
which is to find an element z* ^ Q such that 

^{z\z)>{) yzen. (1) 

E P is known to represent a very common and suitable format for various 
problems arising in Mathematical Physics, Economics, Operations Research 
and many other fields; moreover, it is closely related with other well-known 
general problems in Nonlinear Analysis, such as fixed point, saddle point, 
variational inequality, complementarity, and optimization problems; see e.g. 
[1, 3, 6] and references therein. For instance, if we set 

nz',z) = {T{z'),z-z'), 

where T : n-* Rf is a given mapping, then E P (1) reduces to the variational 
inequality problem. 

Recently, a system of extended primal-dual variational inequalities was 
considered in [12, 13] and it was shown that various economic equilibrium 
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problems, transportation equilibrium problems and some classes of inverse op­
timization problems can be reduced to such a system. In [12, 13], several dual 
type algorithms were suggested for solving this system under strong mono-
tonicity assumptions on the cost mappings. At the same time, an inverse EP, 
which is close to a system of primal-dual variational inequalities, was also con­
sidered in [11]. In this paper, we shall consider a new general problem, which 
involves the problems discussed in [11]-[13]. Namely, the system of extended 
primal-dual equilibrium problems (SEP for short) is the problem of finding a 
pair {x*^y*) e X xY such that 

^{x*,x) + {y\H{x)-H{x*)) > 0 Vx G X, 
r{y\y)-{H{xn,y-y*) > 0 Vy G F; (2) 

where X and Y are nonempty convex subsets of R^ and R^, respectively; 
^ : X xX -^ R and F : R^ x R^ -> R are equihbrium bifunctions, such that 
^{x, •) and r (y , •) are convex for all a; € X and y e R^\ and H : X -^ R^ is 
a mapping with convex components Hi : X ^i' R for i = 1^... ,m. It is clear 
that the particular case of SEP (2) with 

ny'',y) = {b,y-y*), Y = R']^ 

is nothing but an analogue of the Karush-Kuhn-Tucker optimality conditions 
for the following constrained EP: Find x* e K such that 

^{x\x)>0 "ixeK 

where K = {x e X \ H{x) < b}. Next, if we set 

^{x',x) = {F{x'),x-x') and r{y\y) = {G{y'),y - y') 

in (2), where F : X ^ R^ and G : R^ -> R"^ are given mappings, then SEP 
(2) reduces to the system of extended primal-dual variational inequalities from 
[12, 13]. At the same time, SEP (2) falls into the format of EP (1) if we set 
z== (x,y), z' = {x',y'), l = n-{-m, 

nz\z) = ^(x\x) + {y',H{x) - H(x')) + F{y',y) - {H{x'),y - y'), (3) 

Q^XxY. (4) 

Clearly, SEP (2) allows one to model and investigate very broad classes of 
problems, since just EP gives the most general formulation for different types 
of equilibria. Moreover, the systems in [12, 13] were considered under strong 
monotonicity assumptions on either F or G, whereas many problems arising 
in applications can provide only monotonicity properties. Motivated by these 
facts, we intend to consider SEP (2) under monotonicity alone and suggest an 
inexact version of the proximal point method for this system. We also present 
an approach to make this method implementable for SEP (2). It is based upon 
an application of a dual descent algorithm and utilization of gap functions for 
ensuring satisfactory accuracy of certain auxiliary problems. In addition, we 
describe several examples of equilibrium type problems which can be solved 
by the method suggested. 
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2 Proximal Point Method 

In this section, we describe an appHcation of the proximal point method for 
SEP (2) and present its convergence result. First we recall some definitions of 
monotonicity properties for mappings and bifunctions; see e.g. [3, 10, 17]. 

Let y be a nonempty convex subset of a finite-dimensional space E. A 
mapping Q :V -^ E is said to be 

(i) monotone, if, for all u,u' G V, we have {Q{u) — Q(u'),u — u') > 0; 

(ii) strongly monotone with modulus a > 0, if, for all n, zi' € F , we have 

{Q{u) - Q{u'),u -u')>a \\u - u'f ; 

(iii) CO-coercive with modulus /3 > 0, if, for all ti, tx' € F , we have 

{Q{u)-Q{u'),u-u')>l3\\Q{u)-Q{u')t. 

We recall tha t a mapping Q \ V ^^ E \s said to be locally Lipschitz 
continuous if it is Lipschitz continuous on each bounded subset of V, Similarly, 
we say that a mapping Q :V —^ E is locally co-coercive if it is co-coercive on 
each bounded subset of V. 

Next, an equilibrium bifunction h :V xV ^^ Ris said to be 

(i) monotone, if, for all u,u' € V, we have h{u,u') + h(v!,u) < 0; 

(ii) strongly monotone with modulus a > 0, if, for all tx, ix' G F , we have 

h{u,u')-\-h{u',u) <—a\\u — u'\\ . 

In the case where h{u,v) = {Q{u),v — u), the bifunction h is monotone 
(strongly monotone with modulus a) if and only if so is Q. 

We now introduce the blanket assumptions of this paper: 

( A l ) X is a nonempty, convex and closed subset of R^, F is a nonempty, 
convex and closed subset of K^. 
( A 2 ) ^ : X X X —^ R is a. continuous and monotone equilibrium bifunction, 
such tha t ^ ( x , •) is convex for each x e X. 
(A3) H \ X -^ R^ is a continuous mapping on an open set X containing X, 
such tha t each component Hi : X -^ R is convex for i = 1 , . . . , m. 
(A4) r : R"^ X R^ -^ Ris a monotone and continuous equilibrium bifunction, 
such tha t r{y,') is convex for each y G R^. 

So, we do not impose the strong monotonicity assumptions on the cost 
bifunctions # and F, We first construct a convergent iterative sequence by 
the inexact proximal point method (PPM for short) which was suggested for 
EPs in [14] and can be written as follows. 

( P P M ) Choose a point z^ = {x^,y^) e X xY, a number ^ > 0, and a 
non-negative sequence {sk} such tha t 
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oo 
^ £ f c < 0 0 . (5) 
fc=0 

For each number k = 1 ,2, . . . , we have a point z^~^ = {x^~^,y^~^)^ and we 
compute a point z^ = (x^,y^) £ X xY such that 

p'-w''\\<Sk, (6) 

where w^ = {u^,v^) € X xY is a, solution of the following auxiliary SEP: 

(^{u^,x)-\-e{u^-x^-\x-u'')-\-{v'',H{x)-H{u^))>0 Vx G X, . . 

The kth i teration has been completed. 

Thus, each iterate z^ is an approximation of the exact solution w^ of the 
auxiliary SEP (7) with the accuracy Ck- The convergence result for P P M can 
be formulated as follows. 

T h e o r e m 1. Let (Al)-(A4) hold and let SEP (2) be solvable. Then PPM 
generates an iteration sequence {z^} which is well-defined and converges to a 
solution of SEP (2). 

Proof By definition, SEP (2) is equivalent to E P (1), where ^ and i? are 
defined in (3) and (4), respectively. Next, the auxiliary SEP (7) can be equiv­
alent ly rewritten as follows: Find w^ £ Q such tha t 

W{w^,z)-\-e{w^ -z^-^,z-w^)>{) \fzeQ. (8) 

Due to (A2)-(A4), ^ : Q x Q ^^ R \s a. continuous equilibrium bifunction, 
moreover, ^{z'^•) is convex for each z' £ Q. Next, for all z^z' € i?, we have 

^{z\z)^^{z,z') 

= ^{x\x) + (y ' ,H{x) - H{x')) + r{y\y) - {H{x'),y - y') 

+ ^ ( x , x ' ) + (y,H{x') -H{x)) + r{y,2/0 - {H{x),y'-y) 

= [^{x', x) + <^(x, x')] + [r(y\ y) + r ( y , y')] 

+ (y' - y, H{x) - H{x')) - {H{x') - H{x),y - y') 

= mx'.x) + # (x , x')] + [ r (y ' , y) + r{y, y')] < 0, 

since ^ and F are monotone. It means that ^ is also monotone and tha t 
the cost bifunction in (8) is strongly monotone. Hence, E P (8) has a unique 
solution (cf. [10, Prop. 2.1.16]). We see that all the assumptions of Theorem 
2.1 in [14] are satisfied, therefore, {z^} converges to a point z* = (x*,2/*) G i7, 
which is a solution of E P (1), (3), (4), or equivalently, of SEP (2). D 

Remark 1. In [14], the convergence result for the general P P M was established 
under more general conditions. Namely, if each auxiliary E P (8) is solvable, 

file:///fzeQ
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and the solution set of E P (1) coincides with that of the dual E P : Find z* ^ Q 
such tha t 

then P P M generates a sequence which is convergent to a solution of the ini­
tial E P (1). The latter condition is satisfied under generalized monotonicity 
assumptions on ^ . We now use the monotonicity assumptions for ^ and F 
for the sake of simplicity of exposition. Note tha t various versions of P P M 
for generalized monotone variational inequalities were investigated in [2, 4]. 
Also, in [8], a splitting type method, which contains P P M as a particular 
case, was presented for monotone variational inequalities. At the same time, 
its convergence result remains valid under the more general assumption that 
the solution set of the initial and the dual problems coincide. 

Thus, together with the convergence property, we have shown that SEP 
(7) has always a unique solution. However, the main problem for every P P M is 
to indicate a way for its implementation. In fact, finding even an approximate 
solution to the auxiliary problem (7) is not a trivial task. We will present an 
approach to make this method implementable, which is based upon application 
of a dual descent algorithm and of gap functions for ensuring satisfactory 
accuracy of solution of auxiliary problems. 

3 Dual Auxiliary Procedure 

In this section, we describe a dual auxiliary procedure for finding a solution of 
SEP (7); or equivalently, E P (8), (3), (4). First we define an auxiliary mapping 
Fk'.R^-^BT ^ follows: 

Fk{y) = -H{u), 

where u = Xk{y) G X is determined as the unique solution to the auxiliary 
E P : 

^ ( u , x ) - h O { u - x ^ - \ x - u ) + (y,H{x) - H{u)) > 0 Vx € X 

Under (A1)-(A3), the mapping Fk is well-defined and single-valued since the 
cost bifunction in the above E P is strongly monotone and continuous (cf. [10, 
Prop. 2.1.16]. Some monotonicity and continuity properties of the so defined 
mapping Fk are given in the next lemma. 

L e m m a 1. Let (A1)-(A3) hold. Then, 
(i) the mapping Xk : R^ —> R^ has nonempty values on R^ and 

{y - y',Fk{y) - Fk{y')) > 6 \\Xk{y) - Xk{y')f ^y,y' e i?™; (9) 

(ii) the mapping Fk : R^ —» R^ is locally Lipschitz continuous and locally 
CO-coercive. 
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Proof. By assumption, Xk is well-defined and single-valued. Fix arbitrary 
points y,y' € i?+ and set x = Xfc(y), x' = Xk{y')> Then, by definition, 
we have 

^{x,x') + e{x - x^-^,x' - x) + {y,H{x') - H{x)) > 0, 

^(x' ,x) + e{x' - x ^ - \ x - x') -h (y',if(x) - H{x')) > 0. 

Adding these inequalities gives 

{y - y\ H(x') - H{x)) > - [^(x, x') + ^{x', x)] ^0\\x- x'f 

>0\\x-x'f 

since 0 is monotone, i.e. (9) holds and assertion (i) is true. Moreover, it also 
follows that Xk maps bounded sets into bounded sets. In fact, letting y' = 0 
in the above inequality gives 

n 

e \\x - x'f < {y,H{x') - H{x)) < Y,Vi{9\x'W - x), 

where g^{x') denotes a subgradient of Hi at x\ If we choose points y to be in 
a bounded set Y, then we have 

e\\x-x'f <C\\x' -x\\, where C < oo, 

i.e. 9 \\x — x'W < C and the image set X^iX) is also bounded, hence, so is 
Ffc(y). The mapping H : X ^>^ K^ is then Lipschitz continuous on Xk{Y) 
with some modulus LH^ i.e. 

\\H(x') - H{x)\\ < LH\\X - x'W Wx,x' e Xk{Y). 

Applying this inequality in (9) gives 

{y - y', Fk{y) - Fk{y')) > 0 \\X^{y) - Xk{y')t > {e/L%) \\Fk{y) - Fk{y')f . 

Therefore, Fk is Lipschitz continuous and co-coercive on Y. It means that 
assertion (ii) is also true. D 

The system (7) represents an extension of the saddle point optimality 
conditions for a nonlinearly constrained equilibrium problem. Such conditions 
are presented e.g. in [14]. Prom this observation it follows that we can define 
the following Lagrangean dual EP for SEP (7): Find a point v eY such that 

r{v,y)-{-0{v-y^-\y-v) + (Fk{v),y-v)>0 \/y £Y. (10) 

The relationships between EP (10) and SEP (7), which somewhat justify the 
above definition, can be stated as follows. 



Proximal Point Method 93 

P r o p o s i t i o n 1. Let(Al)-(A4) hold. Then, 
(i) Ifivf'.v^) is a solution to SEP (7), then v^ solves EP (10); 
(a) If V solves EP (10) and u = Xk{v), then (u^^v^) = {u,v) is a solution to 
SEP (1). 

The proof follows directly from the definitions of both the problems and the 
mapping X^. Thus, we can solve E P (10) instead of SEP (7). Note that it has 
always a unique solution since the cost mapping in (10) is strongly monotone 
due to Lemma 1 (ii) and the bifunction F is monotone. Thus, we can suggest 
various iterative algorithms to find a solution of E P (10). 

In order to maintain the basic assumptions of this paper, we will apply 
the splitting type algorithm, which, starting from the initial point v^'^ € Y 
(e.g. we can set v^'^ = y^~^), for each A; = 0 , 1 , . . . , computes the next i terate 
yk,s-\-\ ^ Y as the unique solution of the problem 

+ j n ( ^ M + i ^ 2 / ) > 0 V 2 / € y , ^ ^ 

where A > 0 is a given number. 

T h e o r e m 2. Let (A1)-(A4) hold. Then, for each k, there exists a number 
A^ > 0 such that the sequence {v^'^}, defined in (11), where A G (0,A^), 
converges to a unique solution of EP (10) in a linear rate. 

Although there are several ways to prove convergence of splitting type 
methods (see e.g. [5, 16, 20]), they are either too complicated or require addi­
tional assumptions. For this reason, we give here another proof which is based 
on properties similar to those of the classical projection method for variational 
inequalities; see e.g. [19]. 

Fix a number A > 0 and determine an extension of the proximal mapping 
for EPs as follows: v is the value of the mapping P at a point w G R^ if it is 
a solution to the problem 

veY, {v -w,v -v)-\- Xr{v,v)>0 ^veY. 

If (Al) and (A4) hold, then this E P has always a unique solution, i.e. the 
mapping P : R^ -> R'^ is well-defined and single-valued. 

L e m m a 2. Let (Al) and (A4) hold. Then P is co-coercive with modulus 1 
and nonexpansive. 

Proof Choose w,w' € K^ and set v = P{w), v' = P(w'). Thus, 

{v -w,v' -v)^ Xr{v, v') > 0, 

{v' -w',v- v') + Xr{v', v) > 0. 

Adding these inequalities and using the monotonicity of P , we obtain 
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- 11̂  - v'f + {w' -w,v' -v)> 0, 

i.e., P is co-coercive with modulus 1. Moreover, \\w' — w\\ > \\v — v'\\^ i.e., P 
is nonexpansive. D 

Suppose that Q .Y ^^ R^ is a continuous mapping. Let us consider the 
problem of finding a point y* £Y such that 

{Q{v'),V-vl + ny\y)>G Vj/ey. (12) 

We denote by F* the solutions set of this EP. 

Lemma 3. Let (Al) and (A4) hold. Then, y* G F* iffy* = P[y* - AQ(y*)]. 

Proof. If y* = P [y* - AQ(y*)], we have 

(2/* - [y* - AQ(y*)] ,^ - y*) + Xr{y\v) > 0 V^ G F, 

i.e. y* solves EP (12). Conversely, let y* G F*, but y* 7̂  y = P [y* - AQ(y*)]. 
Then, by definition, 

{y - [y* - AQ(y*)] ,2/' - y) + Ar(j/,j/*) > 0. 

Since F is monotone, r{y,y*) < —r{y*,y). It follows that 

MQiyl,y- Vl + ><ny*,y) < - \\y* - yf < 0, 

i.e. y* ^ y*, a contradiction. D 

The properties above allow us to derive the following convergence result. 
For the sake of clarity, we repeat all the assumptions here. 

Proposition 2. Suppose Y is a nonempty, convex and closed subset of R^, 
Q : Y ^>^ R^ is strongly monotone with modulus r and locally Lipschitz 
continuous, F : Y xY -^ R is a monotone continuous equilibrium bifunction 
such that F{y^-) is convex for each y £Y. Then there exists a number A' > 0 
such that any sequence {v^}, defined by the rule 

t;*+i = P[v' - XQ{v')] fork = 0,1,,.., (13) 

where A G (0, A'), converges to a unique solution of EP (12) in a linear rate. 

Proof. Using Lemmas 2 and 3, we have 

||t;»+i -v-\\ = \\PK - AQK)1 - P K - XQ{v')]\\ 

<\\[v'-v*]-\[Q{v^)-Q{v*)\\\, 

where v* denotes the unique solution to EP (12). Fix L as the Lipschitz 
constant for Q on the sei Y = Y f^ {v \ \\v - v*\\ < \\v^ - v*\\}. Clearly, 
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v^ G Y. Suppose that v^ G Y. Then, taking into account the assumptions of 
this proposition, we obtain 

+A2||QK)-gK)f 
<{1-2XT-}-X'^L^)\\V' -v*f 

= (1 - A(2r - AL^)) llt;̂  - V* f = i,^ \\v^ - v*f , 

where i/ G (0,1) if A' = 2r/L'^, and the result follows. D 

We are now ready to prove Theorem 2. 

Proof of Theorem 2. First we observe that the assumptions of Proposition 2 
are satisfied for Y, J", and the mapping Q, defined by 

Q{y) = Fk{y) + e{y-y''-'). 

Namely, due to Lemma 1, Q is then strongly monotone with modulus r = 0 
and locally Lipschitz continuous. Next, EP (10) then coincides with (12), and 
the process (11) corresponds to (13). Prom Proposition 2 it follows that the 
assertion of the theorem is true. D 

The splitting method above can be in principle replaced with the more 
usual projection method applied to the equivalent variational inequality for­
mulation of EP (10). However, this approach requires additional differentia­
bility conditions on F, more precisely, the mapping G : Y -^ K^y defined 
by 

dy' 

has to be Lipschitz continuous for convergence. 
Since SEP (7) is only an auxiliary problem, it has to be solved in a finite 

number of iterations within the estimate (6). For this reason, we make use of 
the gap function approach for ensuring the prescribed accuracy. In [14], the 
standard regularized gap function approach was used. Now we utilize a some­
what different approach suggested in [9], which is called nonlinear smoothing 
and based on transformation of the initial problem. 

Given a point z' = {x\y') £ O = X x F , we define the function 

fXk{z^) = ma,x(pk{z',z) = ipk{z',w{z')), (14) 

where z= (x,y), 

^fc(z',z) = -n^'.z) + 0.5^ {\z' - J'-^f - \\z - 0'=-i| | ') , 

and ^ is defined in (3). Since the function (pk{z', •) is clearly continuous and 
strongly concave, the solution w{z') of the inner problem in (14) is unique and 
always exists. The introduction of such a function is based on the following 
equivalence result, which can be derived directly from [10, Theorem 2.1.2]. 

^(2/) = ^-, \y'=y^ 
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Lemma 4. Let (A1)-(A4) hold. Then SEP (7) (or equivalently, EP (8)) is 
equivalent to the problem: Find w^ = (u^^v^) € i? such that 

^{w'^.z) + 0.519 (11̂  - z^'-^f - \\w^ - z^-'^f) > 0 ^zef2. (15) 

Thus, /ifc can be viewed as the primal gap function for EP (15), which is 
equivalent to EP (8). We obtain its basic properties directly from the defini­
tion. 

Lemma 5. Let (Al)'(A4) hold. Then, 
(i) iJik[z') > 0 for every z' G i7; 
(ii) z' e Q and iik{z') = 0 <=^ z'solves EP (8) <̂ =̂  z' = w{z'); 
(Hi) fJLk is continuous on Q. 

Besides, we need the following error bound. 

Lemma 6. Let (Al)-(A4) hold. Then, 

lJik{z') > 0.5(9 \\z' - w^f \/z' e n, (16) 

where w^ denotes the unique solution to EP (8) (or (15)). 

Proof. Take an arbitrary point z' £ Q and a number a £ (0,1). Then, for 
z^ = az' + (1 — a)t^'^, we have 

!Z^(^^z^) + 0.5(9 (11^" - z^-^'f - \\w^ - z^-'^f) > 0, 

hence 

^{w\z') + 0.5^ {\\z' - z^-^f ~ \\w^ - z^-^f) > 0.5(1 - a)e\\z' - w 

Taking the limit a ^^ 0 gives 

^{w\z') + 0.5(9 (11 '̂ - z^-'^f - \\w^ - z'^-'^f) > 0.5e\\z' - w^f. 

It was shown in Theorem 1 that ^ is monotone, i.e. ^{w^^z') < —^{z',w^). 
Combining both the above inequalities, we obtain 

fJ^k(z') > -^z'.w^) + 0.5(9 (\\z' - z^-^f - \\w^ - z^-^f) 

>0.50\\z^-w''\\\ 

i.e. (16) holds. D 

We are now ready to describe the PPM with the dual auxiliary procedure, 
which converges to a solution of SEP (2) without any additional assumptions. 

(DAPM) Choose a point z^ = {x^,y^) e X xY, a number ^ > 0, and a 
non-negative sequence {Sk} such that 
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oo 

X^4<oo. (17) 
fe=0 

At the kth. iteration, /. = 1, 2 , . . . , we have a point z^~^ = {x^~^,y^~^) G 
X X y , set t; '̂̂  = y^~^ and construct an iteration sequence {t;^'*} as follows: 
the next iterate v^'* € Y solves the problem 

where Â  > 0, until 
i^kiz'^n < si (18) 

where z'^'^ — [vl^'^.v^'^)^ u^'^ = Xk{v^'^)> Then set x^ = it^'*, y^ = v^'^. The 
kth iteration has been completed. 

Thus, DAPM has a two-level structure. The upper level carries out the 
PPM process and the lower level corresponds to the dual process (11). We 
will call each lower level step (i.e. increasing s) an inner iteration. 

Theorem 3. Let (A1)-(A4) hold and SEP (2) he solvable. If DAPM generates 
a sequence {z^} with z^ = (x^^y^), then there exists a sequence {A^} with 
Â  > A' > 0 for k = 0 , 1 , . . . , such that, for every Xk G (0, A^), the following 
assertions hold: 
(i) for each k, the number of inner iterations is finite; 
(a) {z^} converges to a point z* = (x*,y*) which solves SEP (2). 

Proof. For each fixed /c, there exists a number Aĵ  > 0 such that, for every 
Xk € (0,A^), the sequence {v^'^} converges to the unique solution v of EP 
(10) because of Theorem 2. On account of Proposition 1 (ii) and Lemma 1, 
the sequence {(u^'^^v^'^)} then converges to the unique solution w^ of EP 
(8). Applying Lemmas 4 and 5, we conclude that fJ>k{z^'^) -^ 0 as s -^ +oo, 
and assertion (i) is true. We have to show that conditions (5) and (6) hold. 
From (18) and (16) it follows that 

0.50\\z'-w'\\'<Mz')<6l (19) 

where w^ = {u^,v^) is the unique solution to EP (8) (or SEP (7)). Hence, if 
we set 

the so defined sequence {sk} will satisfy (5) due to (17). So, condition (6) 
holds and assertion (ii) follows now from Theorem 1. Next, by (17) and (19), 
limfc_^oo'̂ ^ = z*' From the proof of Proposition 2 we obtain Â  = 2rfc/I/|, 
where r^ is the modulus of strong monotonicity of the mapping Qk, defined 
by 

Qk{y) = Fk{y) + e{y-y''-'), 
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and Lk is the Lipschitz constant for Qk on the set 

Yk = Yn{v\\\v-v''\\<\\y''-'-v''\\}. 

Prom the definitions we see that Tk > 0 and that \\y^~^ — v^\\ -^ 0 3iS k ^^ oo, 
i.e. Lk < L < H-oo. Therefore, there exists a positive lower bound A' for the 
sequence {Aĵ }, i.e. the theorem is true. D 

If the constraint mapping H : X -^ K^ is Lipschitz continuous with 
constant L/f, then we can specify the value of A'. In fact, from the proofs of 
Lemma 1 (ii) and Theorem 3 we see that 

y > 20/{e + Ll/ef = le^Kf + L\f. 

However, Theorem 3 shows that DAPM does not require this condition for 
convergence. 

Thus, DAPM essentiaUy exploits the specific structure of the system (2) 
and it seems simpler than possible variants of PPM involving the primal-dual 
methods. Note that the basic assumptions of this paper do not include strong 
(strict) monotonicity or differentiability of any function, hence the approach 
suggested can be applied for rather broad classes of problems. 

4 Examples of Applications 

In this section, we give several examples of problems which can be formulated 
as SEP (2). Hence, they can be solved by the method described. 

4.1 Saddle Point Problems 

Let us consider the problem of finding a pair of points (x*, ?/*) G X x F such 
that 

M{x\y)<M{x*,y*)<M{x,y*) Vx G X,Vy € r , (20) 

where the sets X and Y satisfy (Al), 

M{x,y) = fix) - ip{y) -{- {y,H{x)), 

f : X -^ R and (p : Y -^ R are convex continuous functions, and i7 : X —> 
R'^ satisfies (A3). If we set (p = 0 and Y = R^, then (20) is nothing but 
the well-known Lagrangean saddle point optimality condition for the convex 
optimization problem: 

minimize f{x) over the set {x £ X \ Hi{x) < 0 z = 1 , . . . ,m}. 

Next, the other particular case of problem (20) with afiine H and quadratic 
/ and (p is known as the extended linear-quadratic program and it is inten­
sively investigated in connection with its numerous applications in multistage 
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stochastic programming and discrete-time optimal control; see e.g. [18] and 
references therein. At the same time, (20) can be equivalently rewritten as 
follows: 

r fix) - fix*) + {y\H{x) - H{x*)) > 0 Vx G X, 

i.e. it is a particular case of SEP (2), with 

^{x',x) = f{x)-f{x') and r{y',y) = <p{y) - ip{y'). 

Therefore, all the assumptions (A1)-(A4) hold and we can apply the corre­
sponding variants of DAPM for finding a solution. 

4.2 Spatial Price Equilibrium Models 

There are many various formulations of spatial price equilibrium models which 
describe movements of goods among spatially distributed markets. We give 
one of the most popular models presented in [7]. 

The model is determined on a transportation network with the set of 
nodes N and the set of arcs A. For each node i, yi denotes the price of a 
homogeneous commodity and Ei{y) denotes the excess demand at this node 
where y = {yi)i£N' For each arc a £ A^ fa denotes the flow and Ca{f) denotes 
the transportation cost for shipping the commodity for this arc, where / = 
{fa)aeA' Next, we denote by W the set of all origin-destination pairs in the 
net, then P^ denotes the set of paths joining pair w and P = UIDEVK ^^ 
denotes the set of all the paths. For each path p e P, Xp denotes the flow and 
Cp{x) denotes the transportation cost for this path, where x = {xp)p^p. Set 
C{x) = {Cp{x))pep and c(/) = (caif))aeA then, clearly, 

f = Dx and C{x) = D^c{f), (21) 

where D is the arc-path incidence matrix, i.e. D = (dap), 

, _ / 1 if path p i 
"^"^"10 oth 

involves arc a, 
otherwise. 

A flow-price pattern {f*,y*) is said to be an equilibrium if it satisfies the 
following conditions: 

E E ^ ; - E J^x;-Eiiy')>0, y*>0, 

w-{k,i)ew pePw w={i,j)ew pePw 
Vi 

and 
vX - Vj + Cpix*) > 0, x;> 0, 

[y*-y*-Cp{x')]=0 ^p€P^, ^w={i,j)eW. ^^^> 
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Conditions (22) represent equilibrium between input-output flows and prices 
at each market, whereas conditions (23) represent equiUbrium between ex­
port flows and profits of shipping for each pair of origin-destination markets. 
Since these conditions are obviously complementarity problems, they can be 
equivalently rewritten as follows: Find x* >0 and y* > 0 such that 

i€N lw={k,i)€W pePw w={i,j)€W pePw 

E E [vi - y*i + '̂ p(̂ *)] (̂ P - 4 ) > 0 Vxp > 0 p e P„, u- e W. 

This system is a particular case of SEP (2), moreover, the assumptions (Al) 
and (A3) are satisfied. If the negative excess demand —E and the transporta­
tion cost C are monotone continuous mappings, then (A2) and (A4) also hold. 
At the same time, due to (21), C{x) may not be strictly (strongly) monotone 
even if so is c(/) . Thus, the above system of equilibrium problems can be also 
solved by the proximal approach. 

4.3 General Economic Equilibrium Models 

There are many different economic equilibrium models which are formulated 
as systems of variational inequalities or equilibrium problems. Some of them 
were presented in [12, 13]. We describe here another economic equilibrium 
model, which is an extension of the known Cassel-Wald model; see e.g. [15] 
and, also, [12]. 

The model describes an economic system which deals in I commodities, n 
technologies of production, and m pure factors of production. In what follows, 
Cfc denotes the price of the kth. commodity, hi denotes the total inventory of the 
iih. factor, and aij denotes the inventory of the iih. factor which is required for 
the unit level of the jih. technology, so that c = ( c i , . . . , c/)^, 6 = (&i,..., 6m)^) 
A = {aij)mxn' Next, Xj denotes the activity level of the jih technology, Zk 
denotes the output of the kth commodity, so that x = (x i , . . . ,Xn)^ and 
z = ( ^1 , . . . ,z/)^. We suppose that the relation between x and z is given 
by the single-valued output mapping F : R^ —» R\.y i.e. z = F{x)\ prices 
are dependent of outputs, i.e. c = c(z), and that inventories are dependent 
of shadow prices of factors y = {vi,- -- yVm)^^ namely, b € B{y)^ where B : 
R^ —> 2^+ . Thus, a set of resources may correspond to a single price vector 
of pure factors and the mapping B is multivalued in general. 

We say that the pair {x*, y*) € R^ x R^ represents an equilibrium solution 
in the model if the following inequalities are satisfied: 

{c[F{x*)],F{x*)-F{x)) + {y\Ax-Ax*)>0 \/x e R^, (24) 
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3b*eB{y*), (b*-Ax\y-y*)>0 "iyeK^. (25) 

If we set 
^{x', x) = (c [F(xO], F{x') - F(x)), (26) 

r{y',y)= sup {h,y-y'),X = Rl,Y = R^, /27) 

then SEP (2) coincides with (24), (25). Note that (25) is equivalent to the 
multivalued complementarity problem: 

y* > 0, 36* € J5(y*), 6* - Ax* > 0 and (6* - Ax*,y*) = 0, 

which represents the usual equilibrium conditions between shadow prices and 
inventories limitations for all pure factors. Next, if F is differentiable, then 
(24) can be in principle replaced with the following complementarity problem: 

X* > 0, y l V - c(x*) > 0, ( A V - c(x*), X*) = 0, 

where c(x*) = [VF(x*)]^c[F(x*)], V F is the Jacobian of F, This problem 
also represent the usual equilibrium conditions between activity levels and cost 
differences for all technologies. Next, in the general case, the assumptions (Al) 
and (A3) are clearly satisfied. Suppose that c and F are continuous mappings, 
—c is monotone, and F has concave components. Then (A2) holds for the 
bifunction ^ given in (26). Note that strict (strong) monotonicity of —c does 
not imply the same property for ^ in general. 

Also, we can obtain the monotonicity of F in (27) from the same property 
of B. Again, it means that DAPM can be applied to find an equilibrium pair 
in this model. 

Acknowledgements. The author is grateful to referees for their comments 
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Summary . The paper considers a general multistage stochastic decision problem 
which contains Markovian decision processes and multistage stochastic program­
ming problems as special cases. The objective functions, the constraint sets and the 
probability measures are approximated. Making use of the Bellman Principle, (semi) 
convergence statements for the optimal value functions and the optimal decisions 
at each stage are derived. The considerations rely on stability assertions for para­
metric programming problems which are extended and adapted to the multistage 
case. Furthermore, new sufficient conditions for the convergence of objective func­
tions which are integrals with respect to decision-dependent probability measures 
are presented. The paper generalizes results by Langen(1981) with respect to the 
convergence notions, the integrability conditions and the continuity assumptions. 

1 Introduction 

Many decision processes go in several steps: The decision maker, who wants 
to minimize a certain cost functional, chooses an action, obtains further infor­
mation, reacts to this new aspects, again obtains new information, and so on, 
up to a finite horizon m. Costs arise at each step or at the end of the decision 
process only and they can depend on all states and actions observed so far. 
Often it is assumed tha t the information which becomes available between the 
actions can be modelled as random variable, which will be called state and 
whose distribution is known in advance. Normally, these random variables are 
not independent and, moreover, their distributions are influenced by foregoing 
actions. 

Markovian decision processes and multistage stochastic programming prob­
lems are well-investigated models for decision processes of tha t kind. Despite 
several differences they have a similar structure (see e.g. [3]). One important 
common feature is tha t the decision maker tries to optimize the expected cost 
functional. 

In the following we will assume that the random total costs, given 
a sequence of decisions (x i ,X2 , . . • ,Xm) and a sequence of random states 

http://AMaenzQaspecta.com
http://Silvia.VogelQtu-ilmenau.de
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{Si,..., iSm+i), have the following form: 

m 

F{Si, . . . ,Sm+l,Xi, . . . ,Xm) '= }^Ck{Si, . . . ,Sk+l,Xi, . , . ,Xk), 
fc=l 

i.e. we have a sum of stage costs. The terminal costs can be included in 
Cm('S'i,... , 5 m + i , a ; i , . . . ,Xm). The aim then consists in finding a sequence 
( i ? i , . . . j'drn) of non-anticipative deterministic decision functions tha t yields 
minimal expected total costs where the expectation is taken with respect to 
the common distribution of i ^ i , . . . , Sm+i- Usually there are also constraints 
for the decisions. 

Under some natural assumptions on the set of admissible decisions, which 
will be specified in the next section, the Bellman Principle is applicable, which 
enables the decision maker to determine the optimal sequence of decision 
functions (at least theoretically) in a 'backward procedure'. According to the 
Bellman Principle, at stage k, one has to solve an optimization problem of the 
following form 

"^i^_ Lck{Sk,Sk+l,Xk-l,Xk) 
XkeDk{sk,Xk-i) 

+ ^k+l{'Sk,Sk+l,Xk-l,Xk)dPk+l\sk,Xk(^k-\-l) 

where Sk means a realization of the random variable Sk- ^k = ( ^ i , . . . , 5^) 
describes the so-called state-history and Xk-i = {xi,... ,Xk-i) the deci­
sion history, which are known when the decision Xk has to be chosen. 
^fc+i(sfc, 5fc-|-i,^fc_i, Xfc) denotes the minimal expected future costs. Pk+i\sk,xk 
is the probability distribution of ^fc+i, given 5^ and Xk- Here Dk{'Sk,Xk-i) 
describes the set of admissible decisions, which will also be called 'constraint 
set'. 

Unfortunately, there is often a lack of information about the t rue proba­
bility measures and they have to be approximated. Furthermore, the optimal 
'future costs' are usually determined with a certain approximation error only. 
Hence there is a need for stability statements tha t clarify under what condi­
tions the optimal values and optimal decision functions of the approximate 
problems come close to the corresponding quantities for the true problem. 

Stability for multistage problems has been dealt with in an L^-setting for 
stochastic programming problems with linear or linear-quadratic objective 
functions ([4], [19]) or via a stage-wise approach, which mainly relies on back­
ward recursion (cf. [10] for Markovian decision processes and [6] for multistage 
stochastic programming problems). 

We shall also use the stage-wise approach and derive qualitative stability 
results. A general model will be considered, which includes Markovian decision 
processes and multistage stochastic programming as well. In contrast to most 
stochastic programming models, we will allow for probability measures tha t 
depend on foregoing decisions. Approximations of the state space as considered 
by Langen [10], however, will not be considered, because approximations of 
this kind could be widely covered by an appropriate choice of the probability 



On Stability of Multistage Stochastic Decision Problems 105 

measures. Apart from this exception, we shall give weak sufficient stability 
conditions which generalize the results by Langen [10] with respect to the 
convergence notions, the integrability conditions and continuity assumptions. 
Allowing for discontinuous integrands opens e.g. the possibility to deal with 
probabilistic objective functions and/or constraints. 

The considerations rely on qualitative stability results for one-stage stochas­
tic programs where the probability measure does not depend on the decision 
([8], [9]) and extend them to the multistage case and decision-dependent prob­
ability measures. 

The paper is organized as follows. In Section 2 we provide the mathe­
matical model. Section 3 deals with general parameter-dependent one-stage 
optimization problems. In Section 4 the special form of the objective functions 
as parameter-dependent integrals is taken into account. Section 5 combines 
the results to the multistage setting. 

2 Mathematical Model 

We base the considerations on the following model: A stage consists of an ob­
servation of a state and an action which follows that observation. This agree­
ment is in accordance with the point of view in Markovian decision models. 
In multistage stochastic programming problems a stage usually starts with an 
action, thus our model has to be specialized to apply to this case. In order 
to investigate a model which is as general as possible, we decided to consider 
stage costs Cfe which may depend also on Sfc+i, c.f. [15]. 

In what follows, m denotes the number of stages, the so-called horizon, 
and by Nm we mean the set { 1 , . . . , m}. 

We base our considerations on the investigations in [5] and [15]. The states 
or observations Sk at stage k are assumed to be elements of a standard Borel 
space S, i.e. a non-empty Borel subset of a complete, separable, metric space, 
provided with the system of Borel subsets (to simplify presentation, here and 
in the following, we omit an additional symbol for the system of Borel subsets). 
The actions or decisions Xk are taken from a standard Borel space A. The 
sets of possible actions can be constrained by certain conditions which can 
depend on the history so far. These conditions are described by means of 
multifunctions Dk- In order to explain these multifunctions we will use the 
following abbreviations: Let HIi,fc := S'̂ , k e Nm+i, and H[2,fc := A'^, k e Nm-

Now Dk : Mi.fc X El2,fe_i ->' 2^, k £ Nm\ {1}, and Di : EIi,i -^ 2^ are 
multifunctions which determine for histories ('Sk^Xk-i) and si the constraint 
sets or sets of admissible actions Dk{'Sk,'Xk-i) and Di(5i), respectively. We 
assume that all multifunctions Dk are closed-valued. 

The probability measures Pk+i\.,. : ^i,k x ^2,k -^ V{S), k G Nm\ {!}, 
describe how the state history s^ G Mî fc and the decision history Xk € El2,fc 
influence the probability distribution of the observation in stage k + 1. V(S) 
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means the set of all probability measures on the cr-field of Borel sets ;^(S) of 
S. Pi G V{S) is the distribution of the first state. 

The aim now consists in finding an optimal strategy (or policy, plan), 
i.e. a sequence of decision rules which tells the decision maker at each stage 
how to decide, given the foregoing observations and actions. Thus we define 
a strategy as a sequence 'd = {Sk)k=i,...,m of decision functions Si : lli,i ^^ A 
and Sk : Mi,k xEl2,fc-i -^ A. A sequence {sk)k€Nm+i ^^ observation histories 
and a strategy i9 then define recursively a sequence of actions {xk{'Sk,'^))keNm 
and decision histories {xk{'Sk,'^))keNm ^^^ 

^ i (s i , i^ ) = ^i(5i , i?) := Si(si), 

Xk{sk,'^) :=<Jfe(5fc,Xfc_i(5fc_i,i?)), Xk{sk,'^) := {xk-i{sk-i,^),Xk{sk,'^))-

Thus probability measures Pfc+i|sfc,i? on B{S) can be defined by 

We assume that J^, /c = 1 , . . . ,77i, are Borel-measurable functions of their 
arguments. In order to guarantee this property for an optimal strategy we 
suppose that the cost functions Cfc : Hi,fc+i xM2,fc —> MU{4-oo} are measurable 
with respect to the product sigma field of all arguments and that the graphs 
of the constraint multifunctions are measurable. Furthermore, we suppose 
that for each B G B{S) the functions (sfc,Xfc) —>• Pk-\-i\sk,xk{^) ^^^ Borel-
measurable. 

Then we can base our considerations on the measurable space [i?^, ̂ ] with 

m + l 

OT = S'^+\ ^ = 0 B{S) and Sk{u;) = Sk for u; = 5^+1 e i?. 
i=l 

Using the abbreviation Si := {Si,..., ^j), a probability measure P^ on [i?T, ^] 
is defined by P^{Si € B) := Pi{B), and 

P^iSk e B\Sk-i = Sk-i) := Pk\s,.,A^), B e B{S), k>2. 

We will call a strategy 'd = {Sk)k=i,...,m admissible^ ii Si(si) € Di{si) for 
all si € suppPi, and, for k € Nm \ {1}) 

Sk(sk,Xk-i(sk-i,i^)) e Dk(sk,Xk-i(sk-i,i^)) for all 5^ G suppPfei^^,^,^ 

where supp denotes the support of a probability measure. The set of admissible 
strategies will be denoted by 0. 

We exclude induced constraints, i.e. we assume that Dfc(sfc,Xfc_i(5fc_i,^)) 
is nonempty for all admissible i?, all A: G Nm \ {l}? and all 5fc G suppPfc|s^_^ ,̂ . 

Now, for a given strategy t?, the random total costs can be written in the 
form 
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m 

F^icj) := ^Cfc(5fc+i(u;),Xfc(:SfcM,^)). 
fc=i 

The task for the decision maker consists in finding a strategy i^* G 0 such 
that 

minE^F^ = E^*F^* 

where E-̂  denotes the expectation with respect to P^. We assume that there 
is at least one strategy ^ such that E-^F^ < oo. 

Given a history {sm,Xm-i) € Mi^rn x ^2,m-iy an optimal decision xj^ can 
be obtained by 

/- _ J§ ^mi^mj 5)^m-l)^j"-fTn+l|sm,aCm-i,a:(^) 

Furthermore, for fc = m — 1 , . . . , 1, x^ is obtained by 

xEDk{sk,Xk-i) 

= Js(^k{Sk,S,Xk-l,xl)-{-^k+l{Sk^S,Xk-l,xl)dPk+i\sk,Xk-uxl{s) 
=: ^k{sk,Xk-i). 

In order to avoid permanent distinction between the cases k = I and A; > 1, 
here and in the following we assume that dependence on a parameter Xk-i 
fork=l is ignored. 

The above equations open the possibility to carry over results from one-
stage optimization problems to the multi-stage case. Note that with the agree­
ment ^rn-\-i{sm+i,Xm) '-= 0 V(syn+i,Xm) € Mi^rn+1 X E.2,m there is a Uniform 
structure for A; = m , . . . , 1. 

It should be mentioned that Markovian decision processes as investi­
gated by Langen [10] fit into this framework with the following agreements: 
Ck{sk+i,Xk) = P{si,xi,S2) • . . . • P{sk-iyXk-i,Sk) ' r{sk,Xk) where P de­
notes the bounded discount factor and r the reward function. Furthermore, 
Dk{sk,Xk-i) = D{sk) and Pk+i\sk,xki^) = q{sk,Xk,B) for a transition func­
tion q. 

The well-investigated two-stage stochastic programming problems are ob­
tained viam=: 2, Ci(5i,52,Xi,) =Ci{xi), C2{si,S2yS3,Xi,X2) = C2{xi, S2, X2), 
P2\si,xi = h, î 3|?2,x2 arbitrary, Di{si) = A , r>2(5i,xi, 52) = D2{xi,S2). 

Now we assume that each of the determining components {Dk)keNmi 
(Pfc+i|-,.)fcG7Vm+i) and (ck)keNm ^^ our original model is approximated by a 
sequence in a suitable sense. Consequently, we have to investigate approximate 
models 

In the following, the original model will be indicated by the superscript '(^^': 

{DM^°^) Pr)fc6A^„, (PiY>eN^^., {cf\^N^. 
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For all problems {DM^^^), n G iVo := { 0 , 1 , . . . , } , we impose the same 
assumptions as for the original problem. Hence we can proceed as indicated 
above and solve an optimization problem at each stage. 

We will use the following abbreviations for n £ NQ: 

^^^liism+i^Xm) '-= 0, and, for k G Nm, 
(n) /— — \ = Cj^\sk+l,Xk) +^^i^^i{Sk+l,Xk), 

= inf _ fk'\sk,Xk-i,Xk). 

Furthermore, we introduce - for the original and the approximate problems -
the so-called solution sets for each stage k € AT ,̂ which contain the optimal 
decisions: 

Wl^\sk,xk-i) := {xk e D^j^\sk,Xk-i) : f]^\'Sk,Xk-i,Xk) = ^^j^\sk,Xk-i)} 

Our aim consists in deriving conditions which ensure that the approximate 
problems yield strategies î "̂̂ ^ such that lim E^(n)F^(n) = E^*F^*. 

n—*oo 

Sufficient for this equahty are, for instance, the following two conditions 
(where Hi^k and Dk are suitable sets which will be specified in Section 5): 

(a) for each k 6 {2, . . . , m } , all 'Sk € ^ i , ^ , all Xj^_i € Dk-i, all se­

quences (4 ' ' \ 4 - \ )n€ iV -^ ( 4 ° \ 4 - i ) ' o^^ has Jim^^^' '^(5^' ' \4-\) = 
^ ( 0 ) , (0) (0) ^ 

^k \^k '^fc-1^ 
(b)for Pi-almost all 5, lim ^^{'\s) = ^^i\s). 

n—*oo 

Furthermore, it will be shown that the conditions which guarantee these 
equations also yield KAim sup WJ^""^ {sf^, ^ - i ) C WJf^ {sf^, x^j^l^) for all 5^ € 

i/i,fe and all 4 - i ^ ^fc-i, and /f-limsupl^i^''^(s) C wi^\s) for Pi-almost 
n—>oo 

all s. 
Moreover, we will provide conditions under which even 'pointwise' conver­

gence with respect to the state histories (together with continuous convergence 
with respect to the decisions) yields the desired statement. 

The so-called outer Kuratowski-Painleve-Limes iiT—lim sup is defined in 

the following section. Aiming at approximating the whole solution set of the 
original problem would require rather strong conditions and is in fact more 
than one really needs. 

3 Stability of Parametric One-Stage Problems 

We consider the optimization problem which occurs at a fixed stage k. In 
comparison to one-stage problems, in the multistage-stage setting there is 
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mainly one new aspect tha t has to be coped with, namely dependance on the 
parameter 'history', which can occur in the constraint sets, the integrands 
and the probability measures. Because for stability investigations the states 
and the actions have to be handled in a different way, we will distinguish 
the s tate and the decision history in the functions and multifunctions under 
consideration. 

We shall investigate optimization problems of the following form 

(P(»)(5,x)) min f^"\s,x,x), 

with n e NQ. Here 5 denotes an element of a s tandard Borel space Hi and x 
denotes an element of a s tandard Borel space EI2. The optimal value functions 
will be denoted by ^^^^ and the solution set multifunctions by W^'^^. 

The optimization problems which occur at stage k € Nm in the 'backward 
procedure' have form (P('^^(s,x)). 5 may be regarded as 's tate history' and 
X as 'decision history', which is available when the new decision has to be 
chosen. ^^'^\'s^x) means the optimal 'rest costs' and W^'^^'s^x) denotes the 
set of optimal decisions given the history (?, x) . As the optimal value function 
at stage k is a. main part of the objective function for stage A; — 1, we aim at 
deriving stability assertions for the optimal value functions which are known 
to be desirable for the objective functions. Continuous convergence of the ob­
jective functions of a sequence of optimizations problems has proved to be an 
appropriate convergence notion for stability considerations. If the constraint 
sets remain fixed, the continuous convergence condition can be weakened. In 
one-stage problems often epi-convergence is imposed. However, the sum of two 
epi-convergent sequences is in general not epi-convergent. Hence we adapt a 
condition which was considered by Langen (for maximization problems) and 
in [10] called upper-semi-continuous convergence. We shall call this kind of 
convergence lower semicontinuous pointwise convergence. For the constraint 
sets and the solution sets we need the concept of Kuratowski-Painleve con­
vergence. 

In [1] and [13] nowadays classical stability results for parametric opti­
mization problems are compiled. Here we have to deal with three kinds of 
parameters. Firstly, the upper (approximation) index ^'^^ can be interpreted 
as parameter. Therefore semicontinuous behavior in [1], [13] appears here in 
the form of semi-approximations. Furthermore, there are the parameters 5 
and X. They play a different role in stability considerations, see below. Hence 
we have to modify the classical results to apply to our special parametric 
sequences. 

We start recalling the definition of Kuratowski-Painleve-convergence: 

Defini t ion 1. Let {Mn)neN ^^ ^ sequence of nonempty sets in A. Then 
the Limes superior (in the Kuratowski-Painleve sense) or 'outer limit' K— 
lim sup Mn and the Limes inferior (in the Kuratowski-Painleve sense) or Hn-

n—*oo 
ner limit' X—liminfM^ are defined by 



K-liminfM„ := U € A I ̂ ^ " ^ " ^ V ^ ""^ ^ ' 3no G N Vn > no 
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r^ 1. n^ r A I 3(a;n)nGN —̂  X such that \ 
i r - h r n s u p M „ : = | x e A | ^ ^ ^ ^ - ^ ^ > n : . „ e M . } ' 

If both limits coincide, the Kuratowski-Painleve -Limes K— lim exists: 
n—>oo 

K- lim Mn := X - l im sup Mn = J^-liminf Mn. 
n-yoo n-^oo n-^oo 

We have to extend these notions to multifunctions {C^'^\ n € NQ} which map 
into the Borel sets of A and are defined on the cross product of s tandard Borel 
spaces Ml X EI2. KIi and EI2 may be different from Mi and M2, respectively. We 
introduce the new notions, because we do not need semicontinuous behavior 
with respect to all history parameters. Semicontinuous behavior with respect 
to the actions is assumed in the stability statements for the optimization 
problems and cannot be dispensed with. Semicontinuity assumptions with 
respect to the states are convenient for the derivation of sufficient conditions 
in Section 4. They can, however, often be replaced with pointwise convergence, 
compare, e.g. Theorem 4. Semicontinuous behavior with respect to si is never 
needed. Thus an element of Mi can be understood as a whole state history 
for the stage under consideration or the first state only. Then the elements of 
M2 are in the first case the action histories and in the second case the state 
histories except si and the complete action histories. Thus we always have 
Ml X M2 = Ml X M2. 

In the following Gi denotes a Borel subset of Mj, i = 1,2. 

Def ini t ion 2. Let {C^'^\ n G No} be a family of multifunctions C^^^ : Mi x 
M2 —>• 2^. The sequence {C^'^^)neN ^̂  said to be 

(i) an inner semi-approximation to C^^^ on G2 given Gi (abbreviated C^'^^ ^7Q > 

Vs G Gi Vj/ 6 G2 V(2/„)„eN -> V • K- l imsupC(" ) ( s , j / „ ) C C^''\s,y), 

n—>oo 

(a) an outer semi-approximation to C^^^ on G2 given Gi (abbreviated C^'^^ G^G^ 

C^'^^Jif 
V5 eGi^ye G2 ^{yn)neN ^ y : i^- l iminfC(")(5,yn) D C^^'Hs^v)-

n—»'Oo 

(Hi) convergent in the Kuratowski-Painleve sense to C^^^ on G2 given Gi (ab­
breviated c ( ^ ) ^ ^ c ( o ) ; if 

G2IG1 Cr2|Gl 
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Now we introduce the convergence notions for sequences of functions we 
shall deal with. A denotes a standard Borel space. In the following A will 
usually be interpreted as IHI2 x A. 

Definition 3. Let {f^'^\ n € NQ} be a family of functions /(^) : Mi x A -> 1 
and C a Borel subset of A. The sequence (/^"^)n€Ar ^̂  said to be a 

(i) lower semicontinuous approximation to f^^^ on C given Gi (abbreviated 

Vs € Gi Vy € C V(2/„)„eN -^ y : liminf/(")(s,j/„) > f^'>Hs,y), 

n—*oo 

(ii) upper semicontinuous approximation to f^^^ on C given G\ (abbreviated 
fM ^ , _m 
•' c\Gi ^ ' 

(Hi) continuously convergent to f^^^ on C given Gi (abbreviated f^"""^ ^ ^ f^^">) 

(iv) lower semicontinuously pointwise convergent to f^^^ on C given Gi (ab­
breviated f^""^ ^ f^^"^) if 

f^^'^T^ /^'^ «^^ V5 € Gi Vy G C : lim f^'^Xs.y) = f^^'Hs.y). 
0|(jri n-^oo 

In order to employ results from parametric programming in our setting, 
the following lemmas are helpful. Ai denotes an auxiliary metric space. 

Recall that a multifunction (7 : HI2 x Ai ^^ 2^ is closed at a point (2/0, AQ), 
if for all pairs of sequences {yn,^n)neN and {xn)neN with the properties 
{Vn, An) -^ (2/0, Ao), Xn € C{ynj K) and Xn -^ XQ the property XQ G C{yo, AQ) 
follows. A multifunction C : HI2 x Ai —> 2^ is lower semicontinuous (l.s.c.) 
in the sense of Berge at a point (yojAo), if for each open set Q satisfying 
Q n C{yQ^ Ao) 7̂  0 there exists a neighborhood t/(2/o, AQ) of (yo, AQ) such that 
for all (y, A) G C/(2/0j AQ) the set C{y^ A) n Q is non-empty. 

Lemma 1. Let a family A := {An, n e NQ} of elements of Ai with An -^ XQ 
and a multifunction C : Hi x IHI2 x yl -^ 2^ be given. Suppose that C^'^\s, y) := 
C{s,y,Xn)y n G No, An G ^ . Furthermore, assume that for all s e Gi the 
multifunction C{sJ',Xo) is closed-valued. Then 

(i) C(^) ^ 0 ^ C(0) <^^ V5 G Ci, C(s, •,.) is closed on G2 x {AQ}, 

G2 X {Ao}. 
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Lemma 2. Let a family A := {An, n € NQ] of elements of Ai with Xn -^ AQ, 
a function /:IHIi x A x y l ^ R and a Borel subset C C A he given. Suppose 
that f^^\s,y) := /(5,2/,An), n € NQ, A^ € A. Furthermore, assume that for 
all s G Gi the function /(5,-,Ao) is Is.c. Then, f^'^^cjoT^ /^°^ <=^ Vs G 
Gi, / (5 , •, •) is l.s.c. on C X {AQ}. 

Combining these assertions, corresponding statements can be derived for 
continuous convergence and lower semicontinuous pointwise convergence. The 
proofs of the lemmas are straightforward and will be omitted. Note that the 
closed-valuedness and lower semicontinuity, respectively, are needed for the 
'=^'-direction of the proofs only. 

In order to formulate the stability results for our setting, we use the follow­
ing assumptions. Let C(Gi,G2) := {(y,x) : x e D^^^(5,y), s £ Gi, y e G2}' 

(Al) For all 5 G Gi, the function f^^\s,',-) is u.s.c. on C{Gi,G2) and 

/ '">c(G.,G.) |a. ' / '° ' -
(A2) For all s £ Gi and y e G2, there exists x^^\s,y) € W^^\s,y) such that 

/(«)(5, , .) is U.S.C. at (y,^^)) and f^n).—^^^^—-^ /(o). 

Now, for instance, the following statements can be proved making use of results 
in [1, Chapter 4] and [13]. 

Theorem 1. (i) Let (Al) or (A2) hold and assume that D^'^^-^0^ D^^K 

Then ^(0)(5^.) is u.s.c. on G2 and ^^""^ Q ^ ^^^^' 

(ii) Let /^^^(?, •,•) he l.s.c. on C{Gi^G2) for all s G Gi and assume that 
f^""^ CiGi,G2)\Gi' /^^^ ^ ^ " " ^ ^ j ^ ^^^^' Furthermore, suppose that for all 
's £ Gi and all y £ G2 there is a compact set K such that for all sequences 
{yn)neN —̂  y there is an no with D^'^^s^yn) C K Vn > no. Then, ^^^^(5, •) 
is Is.c. on G2 and ^^""^-Q^ ^^^^. 

(Hi) Let #(^^ G2\Gx ^^^^' Furthermore, assume that, for all's G Gi, f^^\'s, •, •) 

is Is.c. onclG,,G2), ^^ciGrkw^ f^'^^ « ^ ^ ^ ^ " ^ ^ ^ ^^'^' ^^^^^ 

G2|Crl 

If the constraint set does not vary with n, the continuity and continuous 
convergence conditions can be weakened. 

Theorem 2. Suppose that for all 5 G Gi and all y £ G2 there is a non­
empty compact set D{s^y) with D^'^^'s^y) = D{'s,y) "^n £ NQ. Furthermore, 
assume that for all 1 £ Gi the function /^^^(s, •, •) is l.s.c. on C(Gi, G2); and 
f^"^ C(G'Z)\G^' /<"^- Then $(°)(s, •) is l.s.c. on G2, ^ ^ " ' ^ ^(°> and, for 
all's £ Gi and ally £ G2, the inclusion i^—limsupVK^"^^(5,y) C W^^^(s^y) 

n—•00 

holds. 
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Proof. Taking Theorem l(ii) into account, we still have to show that for all 5 G 
Gi and all y € G2 lim sup ^(^H^, y) < ^^^\'s,y) and K-lim sup H^̂ )̂ (5, y) C 

n-->oo n—>oo 

W^^\l,y) hold. Let 5 € d and y € G2 be fixed. f^^\s,yr) being l.s.c. 
and 0(1, y) being compact, there is an x G D(s,x) such that ^(^^(s,y) = 
/(^) (5,5, x). Consequently, 

limsup0(''^(s,|/) < limsup/(^)(5,y,x) < f^^Hs,y,x) = ^^^^(s,y). 
n—*oo n—*oo 

Now, assume that there is a sequence {xnk)keN with Xn̂  € ^^^" '̂=^(5,̂ ) and 
r̂ifc -^ XQ ^ W^^\s,y). Xrtk ^ W^'^^^s.y) implies XQ G Di's.y). Otherwise 

there is an a; G W^^\'s,y), consequently, /(^)(5,y,x) < f^^\s,y,Xo). Thus, 
because of lim ^(*^)(5,y) = ^^^^(5,^), we have 

lim / ("" ' (S .y .xnj = f^''\s,y,x) < f^''\s,y,xo) 
k—^oo 

in contradiction to lim inf/̂ "̂ ^ (?, y, Xn) ^ /̂ ^^ (5, y, a;o). • 
n—*oo 

Combining and specializing the above results, e.g. Theorem 2.8 in [10] can be 
derived (if approximations of the state space are not taken into account). 

For multifunctions D^'^\ which are described by inequality constraints, 
sufficient conditions are available (see e.g. [1,17]). Semicontinuous convergence 
of the constraint functions plays a central role in these statements too. 

4 Sufficient Conditions for Continuous Convergence and 
Epi- Convergence 

In this section we investigate lower semicontinuous convergence for functions 
which are integrals. The results can then be employed to obtain sufficient 
conditions for either continuous convergence or (together with assertions on 
pointwise convergence) for lower semicontinuous pointwise convergence and 
hence also for epi-convergence. Corollary 3.4 in [10] and further results that 
rely on Corollary 3.4 give sufficient conditions assuming weak convergence of 
the probability measures, continuous convergence or upper-semi-continuous 
convergence of the integrands and uniform (with respect to the decision and 
the history) boundedness of the integrands. We will - among other gener­
alizations - particularly weaken the uniform boundedness condition and the 
convergence condition with respect to the states. 

For in = n and in = 0, we shall investigate functions /( '̂̂ ^ : Mi x EI2 x A -^ 
R of the following form: 

f^'"\s,x,x) = J <p('-\s,s,x,x)dPi^l{s) 



114 Alexander Manz and Silvia Vogel 

where P-^'^^^^, n e NQ, are probability measures on B{S) and (/?(*̂ ) : Mi x § x 
EI2 X A -^ R, n e No, are integrands which are supposed to be measurable 
with respect to the product-cr-algebra of the arguments and integrable with 
respect to the probability measures under consideration. The 'parameter ' in 
has been introduced in order to reduce the eflFort for the notation and the 
proof of the results, because usually the same considerations lead either (for 
i^ = n) to semi-approximation properties of {f^'^^)neN or (for in = 0) to 
semicontinuity of /^^^. 

Sufficient conditions for semicontinuous convergence of sequences of func­
tions which are integrals with respect to a probability measure tha t does not 
depend on the decision are given in [9]. We will extend the results of [9] to the 
parameter-dependent case. Two approaches are suggested: The first one (so-
called direct approach, which was suggested by P. Lachout), assumes weak 
convergence of the probability measures, a lower semi-approximation prop­
erty for the integrands and lower equi-integrability defined below. It can be 
employed to generalize Theorem 3.3 in [10]. The second approach (so called 
pointwise approach [18] or scalarization [7]) reduces convergence considera­
tions for sequences of functions to convergence of sequences of real values. 
It is especially favorable in a random setting, but works in our case as well. 
It may be regarded as a bridge to results of asymptotic statistics and limit 
theorems of probability theory. Furthermore, it does not assume that the in­
tegrands 'behave semicontinuously' with respect to the s tate history. 

The direct approach uses the following definition [9]: 

Def ini t ion 4. Let a sequence {(p^'^'^)neN of Borel-measurable functions (p^'^^ : 
S -^ R and a sequence {P^'^^)neN of probability measures on B{S) be given. 
The family {{(f^'^\P^'^^),n G N} is called lower equi-integrable, if there exists 
a k EN such that 

lim inf / ^ (« ) ( s )x{# („ ) ( , )<_^ j ( iP (» ) (* )=0 . (1) 

Let Gi C Ml and G2 C M2 be given. 

T h e o r e m 3 . Assume that for all s € d , x^^^ € G2, x^^^ G D^^\s,x^^^) 
and all sequences {x^'^\x^'^^)neN -^ {x^^\x^^^) the following assumptions are 
satisfied for in = n and in = 0: 

/') p{in) V) p ( 0 ) 

(ii) liminf(^(^-)(5,s(^),x(^),a;(^)) > ^^^\s,s,x^^\x^^'^) for P]°_\o) ^(o)-almost 

all s and all sequences {s^'^^)n£N —^ s, 

(Hi) the functions (^^^^(5, ',x^'^\x^'^^) are P-_(^) ^^^^-integrable for all n G No 

and the family {((^(*-)(5, • ,x( ' ' \a;(^)) , Pi '^d) ^in)),n G N} is lower equi-

integrable. 
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Then, for all 5 € Gi, the function / ^ ^ H ^ J ' ) * ) ^̂  -̂"S.c. on C (Gi ,G2) and 

Proof We follow the proof of Theorem 3.1 in [9]. Although Theorem 3.1 is 
formulated for functions which are defined on R^ x W^ only, it holds for 
functions which are defined on cross-products of metric spaces. Let P^ := 
P^;l)^,^r.)', Po := 4' i(°), ,(o); en := 0 and ^n{x,x,s) := ^(^-)(5, 5,x,a:). Then 
application of Theorem 3.1 to the case ifi — 0 yields the lower semicontinuity 
result for f^^\ and application to z^ = n the assertion concerning f^'^K D 

The pointwise approach can also be applied to parameter-dependent prob­
ability measures. The following result is in the spirit of Theorem 3.2 (i) in 
[9]. We need the following auxiliary quantities: for s G Gi C H i , a family 
{{x^^\x^'^^),n £ No}y £ > 0 and in = 0 and in = n, respectively, we define 

s 

where Ue{x^^\x^^^) denotes a closed ball of radius e and center (x^^\x^^^). 

T h e o r e m 4. Let, for given sets Gi C Mi and G2 C M2, the following assump­
tions be satisfied for each's G Gi, each {x^^\x^^^) G C{Gi,G2), all sequences 
(x(^),a:(^))n€Ar ^ (x^o),^^^)), i^ = n and in = 0; 

(i) (^(^^(s, 5, •, •) is Is.c, at {x^^\x^^^) for P!I2(^Q^ ^^.^-almost all s. 

(ii) There is an e > 0 such that Z^^\s,x^^\x^^\x^^\x^^^) > - 0 0 and 

Zi'-^(5,x(0),x(0),x(^),a;(^)), Zi^\5,x(0),x(0),x(0),a:(0)) exist for eachO< 
€ < € and each n G N. 

(iii)yee (0,6), 

\imMZi'-\sM'\x^'\x^-\x^^^) > Z^'\s,x^'\x^'\x^^^ 

Then, for all 5 G G i , the function /^^^(s, •,•) is l.s.c. on C{Gi,G2) and 

fin) I , f{0) 

Proof Let 5 G Gi and {x^^\x^^'^) G C{Gi,G2) be fixed. According to the 
monotone convergence lemma we have 

e 
e>0 

Furthermore, for each 0 < £ < £ and each {x^'^\x^'^'^)neN -^ (x^^^x^^^), the 
relation 

l iminf / (^ - ) (5 ,^ (^ \x(^) ) 
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> l iminf / inf <p^'-\s,s,y,y)dPl% ^,^,{s) 

holds. D 

Assumption (iii) can be supplemented by several sufficient conditions. If 
the probability measure does not depend on the decision, considerations in [9] 
can be employed. In the general case, e.g. one of the following approaches may 
be used: if there exists a dominating measure for all probability measures, (iii) 
is implied by suitable semicontinuity assumptions (with respect to the actions) 
of the Radon-Nikodym-derivatives. Furthermore, laws of large numbers for tri­
angular arrays are often helpful. Eventually, there is the possibility to proceed 
via weak convergence of probability measures. Then, however, semicontinuity 
with respect to the states is needed. 

The above theorems generalize Langen's Theorems 3.3 and 3.5. The bound-
edness condition is weakened considerably. Moreover, the semicontinuity as­
sumption with respect to the states can either be omitted or at least restricted 
to almost all state histories. Thus probabilities among the objective and/or 
constraint functions can be taken into account. For the treatment of proba­
bilities see e.g. [9]. 

5 Stability of Multistage Problems 

We come back to the m-stage problem. We can combine Theorem 1 or The­
orem 2 with Theorem 3 or Theorem 4 in order to derive stability statements 
for the multistage case. We will, for example, demonstrate how Theorem 4 
together with Theorem 1 can be employed (making use of Theorem 2 the 
continuity and approximation assumptions with respect to foregoing actions 
could be further weakened). 

In order to make clear in what points semicontinuous behavior with respect 
to the states is really needed, we introduce the following sets: 

Let O* be the set of all optimal strategies î * = {SDkeNm ^^^ ^^^ origi­
nal problem with SK'SkyXk-i) = xl('Sk,Xk-i)' Each 'd* induces a probability 
measure P^* on E. 

Consider a standard Borel space Hi{0*) C S'^^^ with P^*{Hi{e*)) = 1 
V^* € e*, and define 

= {sk : (5fe,Sfc+i,.-.,5m+i) ^ Hi{0*)}, /(;= l , . . . , m , 

= {xi e Di^'^si) : 5 iGi f i , i } , 

= {{xk-i,xk): Xk-i e Dk-i,xk e Dl^\sk,xk-i),sk e î i,fc}, 
A; = 2 , . . . ,m. 

Eventually, let, for k € Nm and in = 0 and i^ = n, respectively, 
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v(^n) / - - (0) (0) (n) (n)x 

: = / sup i^i'"'(sfc,s,y,y)MP^;:',„, <„,(.). 

T h e o r e m 5. Let the following assumptions he satisfied for each k G Nm, cdl 

Sfc ^ Hi^k, cill ^k ^ Dk, all sequences {xj^^)neN -^xl.,in = T^ (^"^d 2„ = 0; 

(i) J i m ^ | c i ' " ' ( 5 f c , s W , 4 " > ) - 4 ° ) ( 5 f c , s ( 0 ) , 4 ° ' ) | = 0/orP,^j |_^_(o,-aZmo5f 

(iii) 3 compact K 3no Vn > no stxc/i that D)^ {sk^^k-i) ^ -^^ 

(iv) There is an s > 0 such that -̂ '̂  ^(5fc,^^_j,a:^ , x^_ j , x^ ) < oo and 

^fce(^fc'^fc-i'^fc '^fc-i'^fc ) ^x'^st for each e G (0,£") and each n e N 
and V 0 < 6: < £, 

Then, for k = 2 , . . . , m , the function ^^ (5^,-) is continuous on Dk-i, 

Wj (5) for Pi-almost all s. 

Proof. We proceed by backward induction. Because of ^^'^li. 1(5^+1,^171) = 0 

for all (5m+i,^m) ^ EIi,fc+i xEl2,A; and all n G AT, we have ipm = (^ - Apply­

ing Theorem 4 to clt^ and -c!t\ Gi = Hi,m, G2 = Dm-i and C ( G i , G2) = 

Dm, we obtain the continuity of fm Csmr) on Dm and fm jnif—^ /m • 

This, together with the assumptions (ii) and (iii) gives, by Theorem 1, 

in case i^ = 0 the continuity of ^ ^ ^ ( 5 ^ , - ) on Dm-i and, for in = n, 

^m^n 177 ' ^ m \ and w}a\ ^Tir > W^K For the stage k we can 
^m — l\*^l,m •L-'m, —1 | - " l , m . 

proceed in the same way. The continuity assumptions for (p^. ^ are satisfied 

because of (i) and the continuity of ^ ^ ^ . j . Integrability is assumed in (iv). D 

A c k n o w l e d g e m e n t s . The authors are grateful to the referees for helpful 
remarks and suggestions. 
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Summary. In this paper one generalizes various types of constrained extremum, 
keeping the Lagrange or Kuhn-Tucker multipliers rule. The context which supports 
this development is the nonholonomic optimization theory which requires a holo-
nomic or nonholonomic objective function subject to nonholonomic or holonomic 
constraints. We refined such a problem using two new ideas: the replacement of the 
point or velocity constraints by a curve selector, and the geometrical interpretation 
of the Lagrange and Kuhn-Tucker parameters. The classical optimization theory is 
recovered as a particular case of extremum constrained by a curve selector. 

1 Extremum Constrained by a Curve Selector 

This section contains an improved version of curve selector theory, developed 
for the first time in [15]. Let JD C R"̂  be an open set and / : D ^ R be 
a real function. In order to establish that XQ e D is a free extremum point, 
or an extremum point constrained by holonomic/nonholonomic equalities or 
inequalities, it is enough to consider the values of the function / on some 
parametrized curves passing through XQ [8]-[11]. More precisely, if a : / -^ 
Dj a{to) = Xo, is such a curve, then we must take into consideration the 
values f(a{t)) for t in a neighborhood of to. Recently [14], these results were 
refined, in the sense that it is sufficient to consider the values f{a{t)) for 
t ^ [̂ 0) ̂ 0 + ^) • III tbis context we discovered the notions of curve selector and 
of extremum constrained by a curve selector, that permit a unification of all 
types of extremum and even a generalization. 

For each x £ D, we shall denote by Fx a family of parametrized curves 
passing through the point x at a given moment. This family of curves will be 
specified from case to case. 

Definition 1. Let V{rx) he the power set of Fx. Any function 

T.D^ UxenViFx), r{x) C A 

http://udristeQmathem.pub.ro
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is called curve selector on D. The elements ofT{x) are called admissible curves 
at the point x. 

Definition 2. Let f : D -^ R be a given function and T be a curve selector 
on D. If f{a{t)) > f{xo), Vt G [to, to + e), Va € T{xo), XQ = a{to), then 
XQ ^ D is called minimum point of f constrained by the selector T. 

Let us suppose that Fx is either the set of regular C^ curves at x or the set 
of C^ curves having x either as a regular point or as singular point of order 
2. Under this hypothesis, in [15] was shown that a free extremum problem 
or a constrained extremum problem (with equalities or inequalities) can be 
considered as an extremum problem constrained by a curve selector. 

Let 
n 

oj°'{x) = Y~^a;^(x)(ix^, a = l ,p, p < n 

be C^ Pfaff forms. These Pfaff forms can be used to create equality constraints 
(Pfaff equations) or inequality constraints (for example, Pfaff inequalities) on 
velocities. 

In [1]-[15] was studied the following type of extremum. 

Definition 3. The point XQ £ D is called minimum point of a function f 
constrained by the Pfaff system uj^ = 0, a = l^p, if for each integral curve 
a '. I ^^ D of this system, with a(to) = XQ, it follows 

f{a{to)) < f{a{t)), \ft e {to -e,to-\- e), 

The Pfaff system (cj") generates the partial selectors 

T^{x) = {a € Fxla is an integral curve of the Pfaff equation u^{x) = 0}, 

which produce the general selector (associated to the Pfaff system) 

r{x) = nl^,T<^{x). 

Theorem 1, XQ E: D is a minimum point of a function f : D ^^W constrained 
by the selector T if and only if XQ £ D is a minimum point for f constrained 
by the Pfaff system (JJ^{X) = 0, a = l ,p. 

Also, we remark that we can replace the selector T with those determined 
by the partial selectors 

r"(xo) = {a€ r ,Ja;^(a(t)) = 0, Vt G [to.to 4- e), a{to) = XQ}. 

The primitive of each Pfaff form UJ^ (X) defines the partial selectors 

T^{xo) = {ae rxo\Jl{oj{a(u)),a'{u))du > 0, Vt € [to,to + s)} , 

where a(to) = XQ. From this point of view, the selector associated to all Pfaff 
forms is 

r(xo) = n^=ir"(a:o). 
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Definition 4. The point XQ G D is called a minimum point of a function 
f : D -^ R constrained by uj^ > 0, a = l^p if XQ is a minimum point of f 
constrained by the selector T. 

This type of extremum was studied in [6], [10]. 

Remark 1. In the case of classical constraints, the system of C^ functions 
'̂̂  : D —> R, a = l,p, induces two types of constraints: point constraints 

defined by g°'{x) = 0 or g^{x) > 0 and velocity constraints defined by the 
subspace dg^{x) = 0, a = l ,p of the tangent space TxD. The points described 
by these constraints split in two types: interior points {g^{x) > 0, a = l,p) 
and boundary points (p"(x) > 0, a = l ,p and 3a with g^{x) = 0), with the 
usual topological significance. 

The constraints on points and on velocities, which are correlated by the 
functions p^, induce a selector of curves, one contribution coming from the 
quality of a point to be interior or boundary point. 

In the case of extremum points with Pfaff constraints, it appears only the 
velocity constraints defined by the subspace Yl7=i^i(^)^^^ = 0, a = l ,p of 
the tangent space Tx{D). Here each point is considered like boundary point, 
and it is susceptible of being extremum point. 

These remarks permit to introduce a more general type of extremum in 
which the constraints on points and the constraints on velocities are not nec­
essarily correlated, but the Lagrange multipliers rule still survives. 

2 Extremum with Point and/or Velocity Constraints 

Let uj{x) = Yllzr^i^jip^)^^^ ^^ ^ ^^ Pfaff form on D. Let S and hS be two 
arbitrary disjoint subsets in D. The points of S will be called ^^ interior points^^ 
and the points of bS will be called ^^ boundary points^\ In this context, we say 
that the set M = SUbS represents the constraints of inequality type. The pair 
(a;, M) determines an inequality curve selector. 

I FxQ if xo G 5 

r{xQ) =l^a£ rxo\Jl{oj{a{u)),a'{u))du > 0, Vt € [to,to + £)} if XQ € 65 

[Oifxo eD\M. 

li T C D is an arbitrary subset, then the pair (uj^T) defines an equality 
curve selector 

r(x) = (^''^ AoK^(o^W),c»^'(0> = 0, vtG [to,to + s]} ifxo € r 
° \ 0 , if2;o ^ T. 

In this sense, we say that the set T represents the constraints of equality type. 



122 C. Udri§te, O. Dogaru, M. Ferrara, and I. T^vy 

Remark 2, . Any equality selector can be expressed by inequality selectors. 
More precisely, for an arbitrary subset T C -D, let us consider the inequality 
selectors T+ and T_ defined by (cj, 5 U bS) respectively {—UJ, S U 65), where 
5 = 0 and 65 = T. Then To{x) = r+(x) n r _ ( x ) , Vx G D. Also, the inequality 
selector To can be deactivated considering T = D, 

Having in mind the previous idea, we can introduce inequality selectors T" 
defined by the pairs (a;", 5a U bSa), a = l,p and equality selectors TQ defined 
by the pairs {rf^Ti)^ i = 1,m. Then we built 

N = n^=i(5a U bSa), bS={xe N\3a = l ^ , x G 65a}, 

S = N\bS, T = nZiTi, M = NnT. 

In case of absence of equality constraints, we have M = N and in case of 
absence of inequality constraint we have M = T . 

If (jj means the Pfaff form system (cv^) and rj means the Pfaff form system 
(ry*), then the triple (a;, 77, M) defines the curve selector 

r{x) = (n^=ir»(x)) n {nz^n{x)), Vx € z?. 

Definition 5. Let / : D —> R 6e a real function. We say that XQ ^ M is 
a minimum point of f constrained by {(J^rjj M) if XQ is a minimum point 
constrained by the selector T. We say that uj and rj represents the velocity 
constraints, and M represents the point constraints. The triple (oj^rj^M) is 
called system of point/velocity constraints or system of constraints. 

Convenient selection of the objects u},r},M leads to all the types of extremum 
mentioned in the previous paragraph. 

• Case of free extremum: Sa = D^ bSa = 0, a;" = arbitrary (without equation 
constraints). 

• Case of classical equality constraints: Ti = {x G D\g^{x) = 0}, 77* = dg^ 
(without inequation constraints). 

• Case of classical inequality constraints: Sa = {x £ D\g^{x) > 0}, 65a = 
{x G D\g"'{x) = 0}, uj^ = dg^ (without equation constraints). 

• Case of Pfaff equality constraints: Ti = D^ rf = uj^ (without inequation 
constraints). 

• Case of Pfaff inequality constraints: Sa = 9^ bSa = D (without equation 
constraints). 

The previous remark shows that any type of extremum can be considered as 
extremum constrained by inequation constraints. 

Definition 6. Let (a;, 77, M) be a system of point/velocity constraints. Let XQ G 
M and B{XQ) = {a\xo G 65a} C { 1 , . . . ,p}. The system (a;, r]) is called regular 
at XQ if rank{oj°'{xo),rj'^{xo)) = m 4- cardB{xo), where a G B{xo),i = l ,m. 
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Theorem 2. Let f : D —^ R be a C^ function and XQ £ M such that the 
system {uj^rj) is regular at XQ. Suppose XQ is a minimum point of f constrained 
by (uj^rj^M). Then there exist Aa > 0, a = l ,p and jii £ R, i = l ,m, such 
that 

p m 
df(xo) = ^XaUj''{xo) 4- ^Mt^'(a;o). 

a=l i=l 

Moreover, if Xa > 0, then XQ G bSa' 

Proof Let v € R^, v ^ 0, such that (a;^(xo),t;) > 0,Va € B(xo) and 
{r]^{xo),v) = 0, Vi = l ,m. Let 

J(xo) = {ae B{xo)\{u;''{xo),v) = 0}. 

Prom the regularity condition, it follows the existence of an integral curve of 
the Pfaff system u;̂  = 0,r/* = 0, a G J{xo) and z = l ,m with a{to) = XQ and 
< '̂(̂ o) = y- Hence, 

1. a € J(xo), implies J^ {uj°'{a{u)),a^{u))du = 0, 

2. a G B{xo) \ J{xo) implies /^*^{u;^(a(^)),a'(tfc))d'?x > 0, Vt G [to,to + £), 
3. z = l~m implies {r]'{a{t)), a'(t)) = 0, Vt. 

Consequently a G T(xo). Since XQ is a minimum point of / constrained 
by the selector T, it follows f{a{to)) < f{a{t)), \/t G [to,to + e). Hence 
(grad/(xo),i') > 0. Finally, we obtain 

m 

aeB{xo) i—1 

with Ao > 0. For a ^ 5(xo), we consider Aa = 0. D 

The multipliers A and jji from the Theorem 2.3 are unique. 
The regularity in Definition 3 can be replace by a more general condition. 

Definition 7. We say that (a;, rj, M) satisfies the Kuhn-Tucker regularity con­
dition at XQ £ M if from XQ G bSnT it follows that for any vector v ^ 0 with 
{uj°'{xo),v) > 0, Va G B{xo) = {a\xo G bSa} and (rj'^{xo)yV) = 0,\/i= l ,m, it 
exists a parametrized curve a GTQ, a{to) — XQ such that a'{to) == v. 

Theorem 3. Let f : D ^^ R be a C^ function. If the constraints triple 
(uj^Tj^M) satisfies the Kuhn-Tucker regularity condition at XQ E: M and XQ 
is a minimum point of f constrained by (ojyTjyM), then there exist Aa > 0 and 
fjLi ER such that 

dfi^o) ^Y^Kf^'^ixo) + ^fii'n\xo). 
a=l i = l 

Moreover, if Xa > 0 implies XQ G bSa -
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The proof is contained in the proof of Theorem 2. The Kuhn-Tucker mul-
tiphers A and /a from the Theorem 3 are not unique; see Example 2 in next 
section. 

Suppose now that Fx represents the family of all parametrized C^ curves 
which passes through x and which are regular at x. 

T h e o r e m 4. Let us consider the constraints (uj,r],M) with oo^rj of class C^. 
Let f : D ^^ R be of class C^ and XQ £ M. Suppose that 
i) there exist Xa > 0, a = 1, p and //^ € R such that 

p m 

a = l i = l 

and, if Xa > 0, then XQ G hSa; 
a) the restriction of the quadratic form 

a=l ij=l ^ ^ 

to the velocity subspace 

n 

^a;^^(xo)cZx^' = 0, a G J\xo) = {a e B{xo)\Xa > 0} 

n (1) 
2_^'n]{xo)dx^ = 0, i = l , m 

k 3 = 1 

is positive definite. 
Then, XQ is a minimum point of f constrained by {LO^TJ^M). 

Proof Let a € T(xo) with a (to) = XQ. Hence 

/ {uj''{a{u)),a\u))du > 0, Va G [to,to + £), Va G B{xo) 

and 
(77*(a(t),a'(t)) = 0, VtG [to,to + £), Vi = T7?^. (2) 

Case 1, If there exists a G J ' (xo) , with (a;^(xo),a'(to)) > 0, then, taking 
account the relations in i) and (2), it follows 

p 

df{xo){a\to)) = ^ Aa(u;"(xo),a'(a;o)) > 0. 
o = l 
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Using the Taylor formulas 

f{x) - f{xo) = df{xo){x - xo) + 0{\\x - xoll), 

a{t) - a{to) = a'{to){t - to) + p{t) - {t - to), 

with lim p{t) = 0, we obtain 

t—'•to 

f{a{t)) - f{a{to)) = (< - to)df{xo)ia'ito)) + (t - to)dfixo)m)) 

+ 0{\\ait) - a{to)\\) = (t - to)df{xo){a'{to)) + 0{t - to) > 0, Vi e [to, to + s). 
Case 2. Suppose (w''(xo), a'(to)) = 0, Vo € J'{XQ). Hence a'(to) belong to the 
subspace (6). The composed function 

ip{t) = f{a{t)) -Y^Xa f {u-(a{u)),a\u))du 
a=l -^^o 

has the derivative 

i=l a = l i = l 

and hence 

= (df(xo) -Y^Xa^'^ixoma'ito)) ^^ 0. 

a=l 

a = l 1,7 = 1 ^ ^ a = l t = l 

a = l 

Also 

Then 

a = l i , j i=l ^ ^ 

+Ete(-o)-EA<.-?(-o))^(to). 
i = l \ a = l / 
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Taking into account the relation of i), it follows that the coefficient of ^ (to) 
n 

is 2_, l^kVi i^o)' On the other hand, from (2) we obtain 
k=l 

lb 
X ^ ^ i ^ ( ^ W ) - 7 r = 0> ^ ^ [^0,̂ 0 + £), A; = l , m . 

Taking again the derivative, and making t = to, we obtain 

f;,j«.,„,fgi(,, = -it(g-i)(-)^«.)^('.). 
Finally, 

a = l ^ '̂  

- 2^^M 
fc=i \ 

Hence 

igM^ î-+-̂ j(-o)--(to)-̂ ^^^^ 

^( t ) - (^(to) = - ^ ' ' ( t o ) ( t - to)^ + 0{{t - t^f) 

or f{a{t)) > / ( x o ) , Vt € (to - £, to + e). D 

T h e o r e m 5. Let f : D ^^ R be a C"^ function and {itj,rj,M) a system of 
restrictions on D with uj,rj of class C^. Let XQ £ M be a point at which it 
is satisfied the regularity condition upon rank or, more generally, the Kuhn-
Tucker regularity condition. Suppose XQ is a minimum point of f constrained 
by {cj^rjyM). Then the restriction of the quadratic form Q in the Theorem, 2. 
6 to the subspace (6) is positive semidefinite. 

Proof. From Theorem 2 or Theorem 3 it follows that the condition i) of Theo­
rem 2 is satisfied. By absurdum, we suppose the existence of a nonzero vector 
V in the subspace (*) such that i7(t;, v) < 0. From the regularity condition, it 
follows the existence of a parametrized curve a eT{xo) such tha t a (to) = XQ 
and a '( to) = v. Considering the function (p from the previous proof, and fol­
lowing the same computation, we find f{a{t)) < f{xo)^ Vt G (—to — £, to + e), 
which contradicts the hypothesis tha t XQ is a minimum point constrained by 
(uj,rj,M). D 

In a classical extremum problem with constraints defined by equations 
and inequations, the point constraints and the velocity constraints are corre­
lated. On the other hand, the previous Theorems shows that the finding of 
constrained extremum points is based essentially only on velocity constraints. 
This permits ourselves tha t in case of a classical extremum problem to re­
nounce to the point constraints, replacing the initial problem with a family of 
extremum problems having the same velocity constraints. 
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3 Illustrating Examples 

Many equilibrium problems from economics and important applied problems 
from diverse engineering fields can be profitably formulated via curve selector 
theory. That is why, here we give details using significant examples. 

Example 1. The Pfaff form uj = dx — zdy verifies the rank regularity condition 
in the Definition 3, and implicitly the Kuhn-Tucker regularity conditions. 
Let us find effectively the admissible curves asked by these last regularity 
conditions. Let v = {vi,V2,V3) € R^ \ {(0,0,0)}, with {uj,v) > 0, i.e., vi -
zoV2 > 0. Then for the curve a : R -^ R^, a{t) = {x(t),y(t),z(t)), x{t) = 
xo 4- vit + zot'^, y{t) = yo-\- V2t + t^, z{t) = ZQ, we have 

{uj{a{t)),a\t))=vi-zoV2>0, 

I {(jj{a{t)),a\t))dt = {vi - zoV2)t > 0, \ft > 0, 

i.e., a G T{xo,yo,zo). 
The semispaces defined by the condition {u)jv) > 0 in the tangent space 

to R^j at the point (XQ, yo? '̂ ô), are of the form E xR^ where £̂  is a semiplane 
of the plane (i;i,'y2)-

Let us apply the Theorem 2 to the objective function f{x^y^z) = (x^ + 
2/̂  + z'^)/2 constrained by (a;,M), where M = 5 U 65 is an arbitrary point 
constraint set. The system df = Xuj \s x = X^ y = — Az, z = 0. It follows that 
the set of susceptible points for extremum is a part of the axis Ox defined by 
(A, 0,0) with A > 0. For A = 0 one obtains the free extremum (0,0,0) which 
is also a global minimum point. For A ̂  0 the quadratic form mentioned at 
the step (ii) of the Theorem 2 can be written 

i? = dx^ + dy^ + dz^ + Xdydz, 

and on the subspace uj{xoyyo,Zo) = 0, i.e., dx = 0, it becomes 

QQ = dy^ + Xdydz + dz^. 

For A € [0,2), the quadratic form i?o is positive definite and hence the point 
(A, 0,0) is a minimum point if and only if it belongs to bS. For A > 2, the 
quadratic form i?o is not definite. According the Theorem 5 the point (A, 0,0) 
cannot be extremum point. What happens for A = 2? 

Example 2. Let / : R^ —> R, / (x , y, z) = x-\-y-{-z and the inequality constraints 
(u;^ 5i VJhSi), (u;2, S'2 U hS2), where 

uj^ = —2xdx — 2ydy — 2zdz^ J^ = —2xdx — 2ydy + dz^ 

and S\\^hS\^ ^2066*2 are arbitrary point constraints. For any point P{x,y,z) 
with z ^ —1/2, we have rank {u^^uJ^) = 2. In such points. Theorem 2 is 
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applicable. Let us show that at points P (XQ, 2/0? ~ l /2) it is satisfied the Kuhn-
Tucker regularity condition, and consequently Theorem 3 is applicable. Let 
g^{x,y,z) = -x^ - y^ - z^ + Ci with Ci = a;g + yg + 1/4 and g^{x,y,z) = 
-x'^ - y^ ^- z -\- C2 with C2 = a;o + 2/0 + V^- It is obvious that u^ = dg^, 
u? = dg^, g\P) = 0, g'^{P) = 0, Li)^(P) = UJ^{P). Also, we remark that the 
set {{x,y,z) € R^\g^{x,y,z) > 0} is contained {{x,y,z) € R^\g'^{x,y,z) > 0}. 
Let t; G R^ \ {(0,0,0)} such that {u;\P),v) = {LJ'^{P),V) > 0. We can find 
a parametrized C^ curve a : / -> R^ such that a(0) = 0, a'{0) = v and 
g^{a{t)) > 0, Vt € / . It follows g'^{a{t)) > 0, Vt G / and hence 

/ {oj\u),a'{u))du > 0, / {u;'^{u),a\u))du > 0, Vt G / , 
Jo Jo 

So, a e T{P). Let M = (5i U bSi) n (^2 U 652), 65 = M n {bSi U 652) 
and 5 = M \bS. From Theorems 2 and 3, we decide that the minimum 
constrained points of / are between the points of M which verify the relation 
df{x) = Xi(jj^{x) + A2Ct;̂ (x), with Ai > 0, A2 > 0. Consequently 

1 4- 2x(Ai + A2) = 0, 1 + 2y(Ai + A2) = 0, 1 + 2A12; - A2 = 0 

for Ai, A2 G [0,00). Let P(x^y^z) be a solution of this system with P G M. 
Let Q be the quadratic form of Theorem 2. In our case i? = 2(Ai + \2)dx'^ + 
2(Ai + \2)dy'^ + 2\idz'^. Let us denote by V the subspace described in the 
Theorem 2 which represents the velocity constraints. 
Case 1. Suppose Ai + A2 7̂  1. It follows Ai + A2 > 0 and Ai > 0, since, in the 
contrary situation, the system do not have solutions. We obtain 

1 1 Ao - 1 

2(Ai4-A2)' 2(Ai + A2)' 2Ai 

The quadratic form 0{P) is positive definite. The point P is a minimum point 
if andonly if P G 6 5 I . 
Case 2. Suppose Ai + A2 = 1. If Ai = 0, we find P ( - 1 / 2 , - 1 / 2 , A) with 
A G M and A2 = 1. In this case the subspace V is defined by the equation 
dz = dx-{-dy. The quadratic formi i? |y is positive definite, so P is a minimum 
point, if and only if P G 652- If Ai > 0, we obtain P ( -1/2 , - 1 / 2 , -1 /2 ) . In 
this case the quadratic form i? is positive definite, and consequently P is a 
minimum point if and only if P G 65i. The previous theorems show that we 
have not other minimum points. 

Since UJ^JUJ'^ are exact Pfaff forms, the classic case with inequality con­
straints can be considered as a particular case in which the point constraints 
and the velocity constraints are correlated. Let g^{x^y^z) = —x'^ — y^ — z^t 
g'^{x^y^z) = —x^ — y^ -\- z. From the previous results it appears that 
P(—1/2, —1/2, A), A G E is a minimum point constrained by g^(x^y, z) > Ci, 
g\x, y, z) > C2 if and only if g^{P) > Ci and g^(P) > C2. 

Example 3. Let f{x,y,z) = 7? -\- y^ — z subject to the constraints (u;,M), 
where u; = xdy — zdzy and the set M = 5U65 is arbitrary. One observes that, 
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at points of the form Q(0,2/o,0), the rank regularity condition of Definition 
3 is not satisfied. Let us show that in these points, Kuhn-Tucker regularity 
condition is not even satisfied. Let i; = (t;i, t;2) 'î s) be a nonzero vector satisfy­
ing {cj{Q)^v) > 0. Since uj{Q) = 0, the vector v is arbitrary. Let us show that 
there exists v such that any C^ parametrized curve a tangent to t; at Q is not 
an admissible curve. Since a(0) = Q, a'(0) = v, we can write x = vit-\-1^a{t), 
y =r 2/0 + V2t + t^^if)') z — vst + t^c(t), where a, 6, c are continuous functions 
in a neighborhood of the origin. It follows 

ft f2 
I{t) = J {uj{a{u)), a\u))du = -(viV2 - vl) + t' Ht): 

with (f){t) -^ 0 as t ^ 0. If (i;i'y2 - v^) < 0, then I{t) < 0, Vt € {s.e), 
Applying the Lagrange multipliers rule, we obtain the system 

X = 0, 2y - Ay = 0, -l-\- Xz = 0. 

For A 7̂  0, we have the solutions P(0,0,1/A). The quadratic form of Theorem 
2 is 

i? = 2dx^ + 2dy'^ + Xdx^ - Xdxdy. 

The restriction of i? to the subspace of velocity constraints is 2dx'^ H- 2dy'^ — 
Xdxdy^ having the determinant 4 — A^/4. Hence, for any A G (0,4), the point 
P(0,0,1/A) is a minimum point if and only if P G bS. Prom Theorem 5 
it follows that P G M, with A G (—oo,0) U (4, oo), cannot be a minimum 
point. For A = 4, Theorem 2 cannot be applied. By a direct evaluation we 
shall show that P(0,0,1/4) cannot be a minimum point. For that we use the 
integral curve a defined by x{t) = z{t)z'{t)^ y{t) = t, z{t) = 1/4 + 2t^ + 
at^j a(0) = P . Hence a G T(P), i.e., it is an admissible curve. We obtain 
f(a{t)) - / ( P ) = at^/2 4- t^^{t), with 0(t) -> 0 as ^ -> 0. For a < 0, we 
have f{a{t)) < f{P), Vt G [0,£:), i.e., P cannot be a minimum point for / 
constrained by (ct;,M). Since the Kuhn-Tucker regularity conditions are not 
satisfied at points Q(0,yo)0)) the previous theorems are not applicable. Let 
us show that these points cannot be minimum points. For that we use the 
integral curve 

a : x{t) = a^t, y{t) = yo-{-t, z(t) = at, a(0) = Q. 

It follows 
f{a{t)) - f{Q) = t\a^ + 1) + t(2yo - a). 

For 2yo < a, we find f(a{t)) < f(Q), Wt G [0,£:), i.e., Q is not a minimum 
point of / constrained by (uj,M). Consequently, the only points that can be 
minimum points are those mentioned above. 
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4 Totally Geodesic Submanifold Described by Lagrange 
or Kuhn-Tucker Parameters 

Let f : D -^ R he a C^ function and (a;,M) be a system of inequality 
constraints, where the system oj is reduced to a PfafF form. The system 

in the unknown (x, A), describes the constrained critical points in the problem, 
that is, the catastrophe set. Generally, via the implicit function theorem, the 
solution is a curve C \ x = x{X)^ A G ( 0 , O O ) , Let us show that C is a decreasing 
curve in a neighborhood of a point XQ, if the matrix of elements 

is positive definite (Riemannian metric around the point XQ). For that we take 
the derivative along C, and we obtain 

/ d'^f X.duJi dcjj X.duJi ^^jw A dx^ _^ ^f ( 
Va?^^^^ ~ 2^'d^^ ^^^""^ ~ 2 W " ^^^""V ^ " Aa^^^ '̂ 

(here, and throughout this section, it is used the Einstein convention of sum­
mation) , where the matrix of elements 

a. .(x) - -^^(x) - - ( ^ + ^)(x) - - ( ^ - ^)(x) 
''''^'''- dxidxi^""' 2^dxi^ dxi'^""' 2^dxi dx^'^''' 

is not symmetric but still positive definite around the point XQ. 

Using the reparametrization -r- = — —, i.e., A = e~^, u € (—00,00), and 
dX X 

the inverse (a*^(x)) of the matrix {aij{x))^ the previous system can be written 
as 

du "" ^''hx^^''^' 
Consequently, the curve C : x = x{u), n G ( - o o , o o ) i s a "minus gradient like 
line" around the minimum point XQ. In other words, the parameter A indicates 
a rate of decreasing. 

Taking again the derivative along a solution, the first ODEs system 

(^^ix) - e--^-^(x)\ ^ - -^(x) 
Xdx^dxi^ ' ^ dxi^""') du ~ dxi^""' 

is prolonged to the second order ODEs system 

dxidxi^""' ^ dxi^""' du'^^ydx^dxidx"^''' ^ dxodx'^^'^n du du 
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~ [dxidxJ^'''^^ dxi^'"') du-

ydxidxidx"^''^ ~^""a^l^^'^V ^ ^̂ ''' 
are the Christoffel symbols produced by the tensor gij^ it follows tha t the 
curve C : X = x{u)^ n G ( — o o , o o ) i s a reparametrized geodesic of the Otsuki 
connection [16] (g^^aij.G^j)^ around the point XQ. 

T h e o r e m 6. Suppose gij(x) is a Riemannian metric around the point XQ. 
One has: 

i) If f is a C^ function with the constrained minimum point XQ, then the curve 
C : X = x{u), u G (—00,00) is a minus gradient line. 
a) If f is a C^ function with the constrained minimum point XQ, then the 
curve C : X = x(n) , u € (—00,00) is a reparametrized geodesic of the Otsuki 
connection (g^^aij, Gf^-). 

Let / : Z) —̂  R be a C^ function and (u;, M) be a system of p inequality 
constraints. The system 

^ ( ^ ) = Aau;f(a;),i= l , . . . , n ; a = l , . . . ,p 

in the unknown (a:, A), describes the constrained critical points in the problem. 
Generally, via the implicit function theorem, the solution is a p-dimensional 
submanifold N : x — x{\), X — (Ai,... , Ap), Xa G (0,00). 

Let us show tha t this is a totally geodesic submanifold with respect to an 
Otsuki connection. For that , taking the derivative with respect to Â , we find 

^ V /„x X 9^ir..^\ 9X^ b 

ex^ax^^^-''^d^^^^)axr''^^'^-
Automatically, it appear a Riemannian metric similar to gij (x) and a matr ix 
similar to {aij{x)). The transvection with —A = (—Ai,..., — Ap) shows tha t 
this vector gives a descent direction. 

Taking again the derivative with respect to Ac, we find 

dx^dxJ ' ' " ax^' ' 7 dXbdXc 

d^f d^u^f^ \ dx^ dx^ du^dx^ du\ dx^ 

dx^dxWx^^^^ ^ dx^ ^^^J dXb dXc "̂  dx^ dXb ^ dx3 dXc 

Having in mind the previous explanations, we find 
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T h e o r e m 7. i) If f is a C^ function with the constrained minimum point XQ, 
then the vector —A = (—Ai,,.., —Ap) gives a descent direction. 
a) If f is a C^ function with the constrained minimum point XQ, then the 
submanifold N : x = x{X), A = (Ai,...,Ap), Xa € (0,oo) is a reparametrized 
totally geodesic submanifold of the Otsuki connection (g^^ciijjG^j) (cf [16]). 

Open problem. Study the singularity set (consisting of singular critical points 
of the catastrophe submanifold), and its projection in the set of parameters 
{bifurcation set). 
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A Note on Error Estimates for some Interior 
Penalty Methods * 
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Summary . We consider the interior penalty methods based on the logarithmic 
and inverse barriers. Under the Mangasarian-Fromovitz constraint qualification and 
appropriate growth conditions on the objective function, we derive computable es­
timates for the distance from the subproblem solution to the solution of the original 
problem. Some of those estimates are shown to be sharp. 

1 Introduction and Preliminaries 

We consider the optimization problem 

minimize f{x) . . 
subject toxeD = {xGR'' \ G(x) < 0} , ^ ^ 

where the set 
D^ = {x € R^ I G(x) < 0} 

is assumed to be nonempty. Under the stated assumption, one of the classical 
schemes [3] for solving problem (1) is the interior penalty (or barrier) method. 
It consists in replacing (1) by a sequence of (in some sense, unconstrained) 
subproblems of the form 

minimize (pa{x) , . 
subject toxe D^, ^ ^ 

where cr > 0 is the penalty (barrier) parameter, and 
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m 

^ , : D^ ^ M, if^ix) = fix) ^aY,b{-Gi{x)). 
t = i 

with b : E++ -^ M++ being the barrier function. The most popular are the 
logarithmic barrier 

b(t) = -\nt, (3) 

and the inverse barrier 
b{t) = l / t . (4) 

For basic convergence results of this type of methods, we refer the reader to 
[3, 10, 11]. Here, we only mention that to ensure convergence, the barrier 
parameter a must be driven to zero. 

For each cr > 0, let x^ be a solution of (2). Let x be a solution of (1), and 
suppose that x̂ ^ ^^ 5 as cr —)̂  04-. We note that our analysis can easily treat the 
case when there is a given sequence {ak} C M+ such that ak —> 0+, and the 
corresponding sequence {x^} = {x^k} is convergent to x. The modifications 
to cover this case are straightforward. We assume that the objective function 
/ : R"̂  —> M and the constraint mapping G : R"̂  —> R"̂  are differentiable, and 
the derivatives of / and G are continuous at x. For some results, the problem 
data will further be assumed twice differentiable. 

In this paper, we are interested in estimates of the distance from x^ to x 
via some computable quantity, that is, in error bounds of the form 

\\x„-x\\=0{r{x„,a)), (5) 

where r : R"̂  x R+ -^ R4. is some (easily) computable function such that, at 
least, r{XcT, cr) -^ 0 as cr ^^ 0+ and Xa- —> x. Moreover, it is desirable that the 
bound (5) should be sharp, i.e., not improvable under the given assumptions. 
In some cases, it is possible to eliminate the dependence on x^ in the right-
hand side of (5), and then (5) can be considered as a convergence rate estimate. 
But in any case, computable error bounds are very useful. In particular, they 
provide reliable stopping tests for the related algorithms. 

Denote the set of Lagrange multipliers associated with x by 

M = M{x) = j / z G R^ -^{x, ^) = 0, )U > 0, (/i, G{x)) = 0 1 , 

where 
L{x, 11) = f{x) + (/z, G(x)), X G R^, /x G R^, 

is the Lagrangian of problem (1). Recall that the linear independence con­
straint qualification (LICQ) for problem (1) at x consists of saying that C^(x), 
z G ^ , are linearly independent, where A = A{x) = {i = 1, . . . , m | Gi{x) = 
0} is the set of constraints active at x. Under LICQ, Ai is necessarily a sin­
gleton. The weaker Mangasarian-Fromovitz constraint qualification (MFCQ) 
for problem (1) at x consists of saying that there exists ^ G R"̂  such that 
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G^(x)^ < 0. If this condition holds, then M is necessarily a nonempty poly­
hedral and compact set. We say that strict complementarity holds at x if there 
exists some ft e M such that p,A > 0. 

Our goal is to obtain computable error bounds under assumptions that 
do not use strict complementarity and do not invoke any CQ-type conditions 
stronger than MFCQ (so that, in particular, M need not be a singleton). 

We note that under appropriate assumptions, it can be possible to es­
timate the distance from an arbitrary x G W^ to x, independently of any 
specific algorithmic framework, i.e., regardless of how x was produced or 
chosen (sometimes these estimates are of a primal-dual nature; see below). 
We refer the reader to [12] for a survey of algorithm-independent error 
bounds and their applications. On the other hand, algorithm-based error 
bounds can sometimes be established under weaker or different assump­
tions than their algorithm-independent counterparts (e.g., [7], available at 
http://www.preprint.impa.br/Shadows/SERIE_A/2004/303.html). 

As an algorithm-independent error bound relevant in our context, we men­
tion the following result, based on [6, Lemma 2] and [4, Theorem 2]. Suppose 
that with some fi £ My the following second-order sufficient optimality con­
dition holds: 

f)2T 

where 
C = C{x) = {? € E" I G'Am < 0, (fix), 0 < 0} (6) 

is the critical cone of problem (1) at x. Then for (x, //) G M"̂  x W^ close 
enough to (x, /i), it holds that 

| x - x | | = 0{r{x, ^)), 

where 

r(x, /i) — (x, /x), min{ju, -G{x)}] 

with the minimum taken componentwise. Note that the quantity r{x, fi) is 
the natural residual of the Karush-Kuhn- Tucker system 

— (x,/i) = 0, / i > 0 , G(x )<0 , (/x, G(x)) = 0, 

which characterizes stationary points of problem (1) and the associated mul­
tipliers. This result does not rely on any CQ. Note, however, that if we are in 
some algorithmic framework, then for this result to be applicable, the given 
primal-dual sequence generated by the method has to converge to the spe­
cific (x, ft) which satisfies the above condition. In our results, no assumptions 
about convergence of the dual part of the sequence are necessary, as long as 
the needed growth conditions (related to sufficient optimality conditions, see 
below) are satisfied. We refer the reader to [8] for other algorithm-independent 

http://www.preprint.impa.br/Shadows/SERIE_A/2004/303.html
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error bounds under assumptions which subsume some CQ-type conditions, as 
well as for a detailed discussion and comparisons of error bounds and regu­
larity conditions for KKT systems. 

The results presented in this paper are strongly inspired by [14] and [5], 
where the log-barrier method has been analyzed. The analysis in these works 
is based on the following assumptions: MFCQ, the strict complementarity 
condition, and the second-order sufficient optimality condition in the following 
strong form: 

^ ( x , / . ) [ ^ , e ] > 0 V / . € A ^ , V ^ € C \ { 0 } . (7) 

In [14], the case of violation of strict complementarity (but with the other 
two assumptions satisfied) is discussed as well. The assertions to be stated 
below are weaker than those in [14] and [5], but our assumptions are different. 
We also assume MFCQ, but never strict complementarity. When we assume 
second-order sufficiency (actually, we assume a certain quadratic growth con­
dition, but in the given setting it is equivalent to second-order sufficiency), it 
is in a form significantly weaker than (7), see the discussion below. On the 
other hand, for some results we assume convexity of the objective function 
and/or of the constraints. 

Our analysis relies on the so-called growth conditions, which we discuss 
next. We say that the linear growth condition is satisfied at x if there exist 
7 > 0 and a neighborhood U oi x such that 

f{x)>f{x)^^\\x-x\\ \/xeDnU. (8) 

As is well known (see, e.g., [2, Lemma 3.24]), the linear growth is guaranteed 
by the first-order sufficient condition (FOSC) 

C={0} . (9) 

Moreover, the two conditions are equivalent provided MFCQ holds at x. 
We say that the quadratic growth condition is satisfied at x if there exist 

7 > 0 and a neighborhood U oi x such that 

f{x)>f{x)-^^\\x-xf \fxeDr\U. (10) 

Obviously, quadratic growth is a weaker property than linear growth. If 
Af f̂  0, then the following second-order sufficient condition (SOSC) becomes 
relevant: 

y^eC\{0}3fieM such that ^ ( ^ , M)[^, i] > 0. (11) 

According to [2, Theorem 3.70], the latter condition is sufficient for the 
quadratic growth, and equivalent to it if MFCQ holds at x. 

file:///fxeDr/U


Error Estimates for some Interior Penalty Methods 137 

We emphasize that if M is not a singleton, the second order sufficient 
optimality condition (11) is significantly weaker than (7). 

The approach we use in this paper is quite similar to the one employed 
in sensitivity theory for deriving Lipschitz and Holder stability of optimal 
solutions (see [2]). However, the context of barrier methods possesses a special 
feature which can (and should) be taken into account: the perturbed solutions 
remain feasible for the original problem. 

We start with considering the case of log-barrier in Section 2. For this 
barrier, it is possible to obtain convergence rate estimates where the right-
hand side in (5) does not depend on x^. This is not the case for the inverse 
barrier, considered in Section 3, where the right-hand side in (5) involves X(y. 
Nevertheless, it still gives a computable estimate. 

2 Error Estimates for the Log-Barrier Method 

Throughout this section, ^^ is defined with the logarithmic barrier (3). 
For each a > 0, denote 

Al, = -(7(1/Gi(x,), . . . , l/Gm{x^)) > 0. (12) 

By direct computation, 
(/x ,̂ G{x^)) = -ma, (13) 

and by the first-order necessary optimality conditions for problem (2) at a:̂ , 

— {x„,f,„) = <p',{x„) = 0. (14) 

We start with the case when (1) is a convex minimization problem. The 
following result is well-known (as we were informed by a referee, it probably 
first appeared in [1]). We include its short proof, for the sake of completeness. 

Proposition 1. Let f and Gi, i = 1, ..., m, he convex. For a > 0, let x^ 
be a solution of problem (2) with the barrier function defined in (3). Then it 
holds that 

f{x^) < inf f{x) + m<j. (15) 

Proof. Associated to (1) is its Wolfe c?wa/problem (e.g., see [9]) 

maximize L{x, fi) 

subject to (x, fx)eA = {(x, ^) G M" x M^ | | | ( x , /̂ ) = 0, // > 0}. 

By weak duality [9, Theorem 8.1.3], it holds that 

sup L(x, ^) < inf f{x). (16) 
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Observe that, by (12) and (14), {x^, fJ'a) ^ ^ - By (13), we obtain that 

L{xcr, MCT) = fixcr) -ma. 

The assertion now follows from (16). D 

Note that in the above, solvability of problem (1) is not needed. But in 
our setting, estimate (15) gives 

f{x,)<f{x) + 0{a). (17) 

By (17), using the feasibility of Xa^ in the original problem (1) and relation 
(8) (in the case of linear growth) or (10) (in the case of quadratic growth), 
we can immediately obtain convergence rate estimates, stated in Theorem 1 
below. We note that estimate (19) of this theorem was obtained in [10, 11] 
assuming strong convexity of the Lagrangian for some fixed multiplier, which 
is stronger than the quadratic growth condition. Overall, we do not have a 
direct reference for Theorem 1, but we have no doubt that it is known. 

Theorem 1. Let f and Gi, i = 1, . . . , m, be convex. For each cr > 0, let Xa 
he a solution of problem (2) with the barrier function defined in (3), and let 
Xa —^ X as a —^ 0+. Then the following assertions are valid: 

(i) If the linear growth condition is satisfied at x, then 

\\x„-x\\=0{a). (18) 

(ii)If the quadratic growth condition is satisfied at x, then 

\\x,-x\\=0{a'/^). (19) 

The estimates obtained in Theorem 1 can be regarded as pure convergence 
rate estimates. Moreover, these estimates are sharp, even under LICQ, as 
demonstrated by the following simple examples. 

Example 1. Let n = m = 1, f{x) = x, G{x) = —x (linear functions). Clearly, 
X = 0 is the unique solution of problem (1), and moreover, LICQ and FOSC 
(9) (hence, the linear growth condition) are satisfied at x. It can be directly 
verified that for each cr > 0, the unique solution of subproblem (2) with the 
barrier function defined in (3) is given hy x^ = o- and the estimate (18) is 
sharp. Moreover, f{xa) = x̂ - = cr, and the estimate (17) is sharp as well. 

Example 2. Let n = m= 1, f{x) = a;^/2, G(x) = —x (convex functions). Note 
that the constraint in this example is the same as in Example 1. Evidently, x = 
0 is the unique solution of problem (1), and moreover, LICQ and SOSC (11) 
(hence, the quadratic growth condition, but not the linear growth condition!) 
are satisfied at x. Note that the strict complementarity condition does not hold 
in this example. It can be directly verified that for each cr > 0, the unique 
solution of subproblem (2) with the barrier function defined in (3) is given by 
Xa = cy^l'^ and the estimate (19) is sharp. Moreover, f[xa) — x^^/2 = cr/2, 
and the estimate (17) is sharp as well. 
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In Proposition 1 and Theorem 1 we do not assume that MFCQ holds at 
X, but MFCQ is implicitly subsumed in these results. As is well known, in the 
case of convex constraints, the condition D^ ^^ (called the Slater CQ [9]) is 
equivalent to MFCQ. 

In order to proceed with the estimates for the nonconvex case, we need 
to assume explicitly that MFCQ holds at x. In this case, it can be seen that 
the values fXa are bounded for all cr > 0 small enough. Indeed, suppose that 
there exists a sequence {ak} —> 0+ such that WjJ'akW ~^ oo. For each k, set 
fi^ = Â o-fc/llA*c7fc||- Then the sequence {p,^} has an accumulation point ft e 
R^\{0}. According to (12), for each z G {1, . . . , m}\yl, it evidently holds that 
(11% = a/{-Gi{xak)) -^ 0. Therefore, for such z, {jl^)i = (M^)t/||MaJ| -> 0 
as cr ^^ 04-, where we have also taken into account that ||AA(J |̂| -^ GO, by the 
assumption. Hence, /i^ = 0 for alH G {1, . . . , m} \ A. From (14), it follows 
that 

^ / ' ( x , J + (G'(x,J)V = 0, 

and by passing onto the limit along an appropriate subsequence, we obtain 

{G'^{x)fflA = 0, ilA> 0, flA 7̂  0, 

which contradicts (the dual form of) MFCQ. 
Another useful observation is that each accumulation point of //̂ ^ (as cr -^ 

0+) belongs to M', this follows from (12), (14). 
We first consider the simpler case when the linear growth condition holds. 

Theorem 2. Assume that the linear growth condition and MFCQ hold at x. 
For each a > 0, let x<j he a solution of problem (2) with the harrier function 
defined in (3), and let x^ -^ x as a -^ 0+. Then estimates (17) and (18) are 
valid. 

Proof. Using (13) and (14), and the above-mentioned fact that ii<j is bounded 
as cr -^ 0+, we obtain 

fi^a) - f{x) = L{X^, fX^) - f(x) - {fla, G{x^)) 

< -(-^{Xa, IJLa), Xa - x \ + mO" + o( | |x^ - ^| |) 

= ma + o{\\xa-x\\). (20) 

Estimate (18) follows from (8) and (20), while estimate (17) follows directly 
from (18) and (20). D 

The estimates obtained in Theorem 2 are sharp, even under LICQ, as is 
demonstrated by Example 1. Moreover, Theorem 2 actually extends assertion 
(i) of Theorem 1 to the nonconvex case. 

The case when the weaker quadratic growth condition is assumed instead 
of the linear growth condition, is more complex. We consider this csise next. 
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Theorem 3. Assume that the quadratic growth condition and MFCQ hold at 
X. For each cr > 0, let x^ he a solution of problem (2) with the barrier function 
defined in (3), and let x^ ^^ x as a ^^ 0+. Then it holds that 

fix.) < fix) + o l a \ T \ l°(/^-)«l + l ) ) . (21) 

\\x,-x\\ = ola'f'\T\Hf^M + A (22) 

In particular, 
f{x,)<f{x)^0{a\\na\), (23) 

\\xa-x\\ = 0{a'/^\\na\'/^). (24) 

Proof. For each cr > 0, consider the set 

D^ = {xeR'' \ Gi{x) < -(J, z = 1, . . . , m}. 

From MFCQ and Robinson's stability theorem [13], it follows that there exists 
Xa- G D(j such that 

\\xa-x\\ = 0{a). (25) 

Note that necessarily Xa^ 6 D^ for each a > 0. Using optimality of Xa- in 
problem (2), and (25), we obtain 

m 
fiXcr) = (^a{Xa) + 0" ^ l n ( - G ^ ( x ^ ) ) 

i = l 
m 

< (pa{x^) -^ cr^\n{-Gi{xa)) 
i=l 

m 

= f{x,) ^ aY,{H-Gi{x,)) - ln(-G,(x,))) 

m 

< fix) + a^ ln (G , (x^ ) /G , (x^ ) ) + Oia) 

< fix) + aY,H-Giix.)/a) + Oia) 
ieA 
m 

= / ( x ) - < T ^ l n ( | i , ) i + 0(<T), 
ieA 

which implies estimate (21). Estimate (22) now follows from (10) and (21). 
The last two estimates in the assertion of the theorem are direct consequences 
of the first two, taking into account that for z € A and all a > 0 sufficiently 
small, it holds that fif^ = —a/Gi{X(^) > cr, and hence, |ln(/i<y)t| < | lna | . D 
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Let us discuss the estimates obtained in Theorem 3. Clearly, estimates 
(21) and (22) are shaper than estimates (23) and (24), respectively. But the 
latter can be regarded as pure convergence rate estimates and are easier to 
use. Also, note tha t the right-hand side of (24) is o(cr^) for any v G (0, 1/2). 
Nevertheless, estimate (24) is somewhat weaker than (19), of course. 

Est imate (22) cannot be regarded as a computable error bound of the form 
(5), because it contains the set A which depends on unknown x. On the other 
hand, (22) implies (5) with 

/ „ . Xl /2 

r(x, ,<7) = a i / M ^ | l n ( M a ) i | + l j , (26) 

which is computable. Of course, such bound is in general weaker than (22), 
because {lJia)i ^^ 0 as cr —>• 0 + for each i G {1, . . . , m} \ A\ the latter follows 
from the above-mentioned fact tha t each accumulation point of û̂  as cr —> 0 + 
belongs to M. On the other hand, error bound (5) with r(-, •) defined in (26) 
may be sharper than (24) (e.g., when A = {1, . . . , m}) . 

In the rest of this section, we are concerned with the possibilities to im­
prove the estimates in Theorem 3 under some additional assumptions. Recall 
tha t this can be done for convex optimization problems: in this case, "ideal" 
estimates (17) and (19) hold, according to Proposition 1 and the assertion (w) 
of Theorem 1. 

Assume tha t / and G are twice differentiable, and their second derivatives 
are continuous at x. Then, by direct computation, we obtain that for each 
(7 > 0, it holds that 

§ ( x . , M . ) [ ^ , e l + < x E ^ ^ | ^ = V ' : : ( ^ . ) [ ^ , ^ ] > 0 V ^ e R " , (27) 

where the second-order necessary optimality conditions for problem (2) at X(j 
are taken into account. 

We start with an auxiliary estimate, which involves x, 

P r o p o s i t i o n 2. Assume that MFCQ holds at x. For each a > 0, let x^ be a 
solution of problem (2) with the barrier function defined in (3), and let x^ -^ x 
as a —^ 0 + . Then it holds that 

fix.) < f{x) + f ^ ^^^^rri""^,,;^^' + ̂ ^ + ̂ (11̂ - - ^f)- (28) 

Proof Using (13), (14), and (27), and the above-mentioned fact tha t fia is 
bounded as cr —> 0-f, we obtain 
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f{Xa) - f{x) = L{Xa, fJ>a) " / ( ^ ) " (MCT, G{Xa)) 

= L{xa, IJ>CT) - L(x, fia) + (M^, G{X)) + ma 

4-mcr + o(||Xĉ  -^11^) 

= - -^ . ( . . )K - X, X. - .] + - g (a,(,^))2 
H-m(7 + o(||a;^ - ^iP) 

Thus, the crucial question is the behavior of (G^(Xfj), â^̂  — x)/Gi{xa) for 
z G A. If all these quantities are bounded as cr —> 0+, then (28) implies 
"ideal" estimate (17), and hence (19) under the quadratic growth condition. 
Clearly, this question is concerned with geometry of the feasible set and of 
the trajectory cr ̂ ^ x̂ .̂ In particular, it can be shown that if there exist z G A 
and a sequence {cr^} -^ 0+ such that {G[(X(jf^)^ X(j^ — x)/Gi{X(^,^) —>> oo as 
A; ^ oo, then 

Gii^^J = o{\\x^, - xf), (G'iix,,), x^, -x) = 0{\\x„, - xf). 

It turns out that the ideal estimates hold when the constraints are convex. 

Theorem 4. Assume that the quadratic growth condition and MFCQ hold at 
X. For each a > 0, let x^ be a solution of problem (2) with the barrier function 
defined in (3), and let x^ -^ x as a ^>- 0+. Let, in addition, Gi, i G A, be 
convex. Then the estimates (17) and (19) are valid. 

Proof. According to the first-order convexity criterion for differentiable func­
tions, for each cr > 0 it holds that 

-Gi{x^) = Gi{x) - Gi(x^) > -{G[{x^), xa -x) \/ie A. 

Thus for 2 G ^ , quantities {G'^(Xa)^ Xa — x)jGi{xa) are bounded (above by 
one), and the needed estimates follow from Proposition 2. D 

Theorem 4 extends assertion (zi) of Theorem 1 to the case where the 
objective function need not be convex. 

3 Error Estimates for the Inverse-Barrier Method 

Throughout this section, ^^ is defined with the inverse barrier (4). The de­
velopment is similar to that of Section 2, except that we obtain (computable) 
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estimates in terms of a and x̂ ,̂ rather than convergence rates depending on 
(J only. 

For each a > 0, denote 

11, = <T(1 / (GI (X, ) )2 , . . . , l/{Gm{x,)f) > 0. (29) 

By direct computation, 
m 

(^,,G(x,)) = (7^1 /C, (x , ) , (30) 
i = l 

and by the first-order necessary optimality conditions for problem (2) at x̂ ,̂ 
we also have condition (14) (but with /z^ defined in (29)). 

If (1) is a convex minimization problem, we have the following. 

Proposition 3. Let f and Gi, i = 1, ... ^ m, be convex. For a > 0, let Xa-
be a solution of problem (2) with the barrier function defined in (4)- Then it 
holds that 

m 
fix,) < ini fix) - a^l/Gi{x,). 

xeD 
i=l 

Proof. The assertion follows from observing that (Xfj^fia) is a feasible point 
for the Wolfe dual of (1), and using the weak duality relation. D 

In our setting, it therefore holds that 

fix,) < fix) + o L f^i-l/Giix,))] . (31) 

Recall that in the convex case, MFCQ is equivalent to our standing assumption 
that D^ ^ 0. By the same argument as in Section 2 (but using (29) instead 
of (12)), it can be shown that the values ^^ are bounded for all cr > 0 small 
enough, and that each accumulation point of //̂ ^ (as cr -^ 0+) belongs to M. 
Then (30) imphes that 

m 

aJ2(-l/Gi{x^)) -^ 0 as a -> 0+, 
i = l 

which shows that the estimate (31) is meaningful. 
Prom Proposition 3, we immediately obtain the following result. 

Theorem 5. Let f and Gi, i = 1, . . . , m, be convex. For each a > 0, let Xa 
be a solution of problem (2) with the barrier function defined in (4), and let 

(J —> 0+. Then the following assertions are valid: 

(i) If the linear growth condition is satisfied at x, then 

\\x, -x\\ = 0 la f^i-l/Giix,))j . (32) 
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(a) If the quadratic growth condition is satisfied at x, then 

\\x„ -x\\ = 0 f CTV2 £ ( _ i / G . ( a , , ) ) i / 2 j . (33) 

Examples 1 and 2 can be used in order to demonstrate that the estimates 
obtained in Theorem 5 are sharp; we omit the details. 

We proceed with the estimates for the nonconvex case, explicitly assuming 
that MFCQ holds at x. 

Theorem 6. Assume that the linear growth condition and MFCQ hold at x. 
For each a > 0, let x^- be a solution of problem (2) with the barrier function 
defined in (4), and let Xf^ -^ x as a ^y 0+. Then estimates (31) and (32) are 
valid. 

Proof. The proof is similar to that of Theorem 2, but using (30) instead of 
(13). D 

We note that a counterpart of Theorem 3 does not hold for the inverse 
barrier. 

Assume now that / and G are twice differentiable, and their second deriva­
tives are continuous at x. By direct computation, we obtain that for each 
cr > 0, it holds that 

§ ( x . , M.)[̂ , i] - 2^E ^ ^ 1 ^ = ̂ li^M, ]̂ > 0 Ve e M", (34) 

where the second-order necessary optimality conditions for problem (2) at Xa-
are taken into account. 

Following the lines of the proofs of Proposition 2 and Theorem 4, we obtain 
the next two results. 

Proposition 4. Assume that MFCQ holds at x. For each a > 0, let x̂ - be a 
solution of problem (2) with the barrier function defined in (4), and let x^ -^ x 
as cr -^ 0+. Then it holds that 

Theorem 7. Assume that the quadratic growth condition and MFCQ hold at 
X. For each cr > 0, let x^ be a solution of problem (2) with the barrier function 
defined in (4), and let a;̂  —>• x as cr -^ 0+. Let, in addition, Gi, i £ A, be 
convex. Then the estimates (31) and (33) are valid. 
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4 Concluding Remarks 

We presented computable error bound estimates and convergence rate re­
sults for some interior penalty methods. Our assumptions are essentially the 
Mangasarian-Fromovitz constraint qualification and the linear or quadratic 
growth condition (in this setting, the latter are equivalent to the first-order 
or second-order sufiicient optimality conditions, respectively). 

Some of the estimates are shown to be sharp. But at this time, it is an 
open question whether the estimates for the log-barrier method given under 
the Mangasarian-Fromovitz constraint qualification and the quadratic growth 
condition (Theorem 3) are sharp. 
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Summary . In this paper, the problem to control a finite string to the zero state in 
finite time from a given initial state by controlling the state at the two boundary 
points is considered. The corresponding optimal control problem where the objective 
function is the L^-norm of the controls is solved in the sense that the controls that 
are successful and minimize at the same time the objective function are determined 
as functions of the initial state. 

1 Introduction 

We consider a string of finite length that is governed by the wave equation. 
The string is controlled through the boundary values at both ends of the string 
(two-point Dirichlet control). The boundary control of the wave equation has 
been studied by many authors and results about exact controllability are well-
known. The method of moments is an important tool to analyze this system 
(see e.g. [1, 7, 8, 10, 12] and the references therein). Also the controllability of 
the discretized problems and the relation between the optimal controls for the 
continuous and the discrete case have been the subject of recent investigations, 
see [14]. A related problem of one-point time optimal control has been solved 
in [11], where the control functions are assumed to have a second derivative 
whose norm is constrained. In [13], exact controllability is studied for a string 
with elastic fixing at one end. 

In this paper, our main interest is to study the structure of the optimal 
controls and to give an explicit representation of the optimal controls in terms 
of the given initial data. This yields valuable test examples for numerical 
algorithms. 

Prom a given initial s tate where the position and the integral of the velocity 
are given by a Lebesgue-integrable function the system is controlled to the 
zero state in a given finite time. 

To guarantee tha t this control problem is solvable for all initial states, the 
control time has to be greater than or equal to the time that a wave needs 
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to travel from one end of the string to the other (the characteristic time). In 
Theorem 1 we give an exact controUabihty result where the initial states tha t 
can be steered to zero with boundary controls from the spaces L^ (p G [1, oo]) 
are characterized: These are the initial states where the initial position and 
the integral of the initial velocity are functions in the spaces L^ on the space 
interval. 

The requirements tha t the target state is reached in the given terminal 
time do not determine a unique solution. So we can choose from the set of 
successful controls a point tha t minimizes our objective function which is the 
L^-norm of the controls. In general, this optimization problem does not have 
a unique solution. In Theorem 2 the solutions are given explicitly in terms of 
the initial data . 

In [2], [4] and [6], we have studied the related problem to steer the system 
from the zero state to a given terminal state in such a way that the U^-
norm (p € [2, oo]) of the control functions is minimized. In these papers, the 
method of moments and Fourier-series have been used in the proofs. In the 
present paper we use the method of characteristics for our proofs. Note that 
in contrast to the L^-case, for p € (1, oo) the corresponding optimal controls 
are uniquely determined. 

This paper has the following structure: We define the optimal control prob­
lem and some important auxiliary variables, for example the characteristic 
time and the defect. Then the problem is transformed and reformulated in 
terms of the Riemann invariants. For this purpose, we use the d'Alembert 
solution of the wave equation. After the introduction of auxiliary functions as 
variables in the optimization problem, the exact controllability result Theo­
rem 1 can be proved. Then the objective function is also writ ten in terms of 
the auxiliary functions, which allows to reformulate the optimization problem 
such that it decouples to t ime-parametric finite dimensional problems tha t 
can be solved explicitly. (These auxiliary problems also do not have a unique 
solution.) This allows to solve the optimal control problem. In Theorem 2, the 
solutions of the L^-optimal control problem are given in terms of the initial 
state. Finally we present some examples. 

2 The Problem 

Let L^(0, T) denote the space of Lebesgue-integrable functions on the interval 
( 0 , r ) , and let 

11(^1,^2)||l,(0,T)= / \ui{t)\^\u2(t)\dL 
Jo 

Let the length L > 0, the time T > 0 and the wave velocity c > 0 be given 

'o Let 2/0 ^ -'̂ ^(O, L) and yi be given such that the function x i-^ JQ yi{s) ds is 
i n L i ( 0 , L ) . 
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We consider the problem 

V : minimize ||(tti, 'ti2)||i,(o,T) subject to Ui^U2 € L^(0,T) and (1) 

y{x,Q) = yo{x), yt{x,0) = yi{x), x e (0,L) (2) 

y(0,t) = ui{t), y{L,t) = U2{t), t G (0 , r ) (3) 

ytt{x,t) = c'^ya:x{x,t), {x,t) e (0,L) X (0 , r ) (4) 

y{x,T) = 0, yt{x,T) = 0, x G (0,L). (5) 

3 Definition of the Characteristic Time 

Define the characteristic time to = L/c that a characteristic curve needs to 
travel from one end of the string to the other. In the sequel we assume that 

T>to. 

For the solution of the problem, we need to know how often the characteristic 
time to fits into the time interval [0,T]. Define the natural number 

k = max{j € W : i to < T} (6) 

and the defect 
A = T-kto>0. (7) 

The definition of A implies the equation T = k to -j- A. 

4 Transformation of the Problem 

In order to come closer to a solution of Problem P , we transform it to a form 
that we can solve. For this purpose, we write the solution of the wave equation 
in the form 

y(x, t) = [a{x + ct) + p{x - ct)]/2 (8) 

which means that we describe our solution in terms of the Riemann invariants 
or in other words, as the sum of travelling waves. For an introduction to linear 
hyperbolic systems see [9]. 

The end conditions (5) yield the equations 

a{x + cT) + P(x - cT) = 0, a'{x + cT) - (3'{x - cT) = 0, x G (0, L) (9) 

where the derivatives are in the sense of distributions. This is equivalent to 

a{x) = -p{x - 2cT), a'{x) = p\x - 2cT), x G {cT, cT + L). (10) 

Differentiation of the first equation in (10) yields 
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a\x) = -P'{x - 2cT), X e {cT, cT 4- L) 

hence we have a'(x) = —a'{x) and thus 

a\x) = 0, X € {cT, cT + L); (3\x) = 0, x G {-cT, -cT + L). (11) 

So the first equation in (10) impHes that there exists a real constant r such 
that 

a{x) = r, xe {cT, cT-¥ L); 0{x) =-r, x £ (-cT, -cT + L). (12) 

We have shown that if (8) satisfies the end conditions (5), then (12) holds. 
The reverse statement is obviously true. 

The initial conditions (2) yield the equations 

yo{x) = (1/2) [a{x) + P{x)], yi{x) = (c/2) [a\x) - P\x)i x G (0,L). (13) 

Hence we have 

yo{x)-h{l/c) I yi{s) ds = a{x) - ku x£{0,L) (14) 
Jo 

yo{x) - (1/c) / yi{s)ds = /3{x) + ki, xe (0,L) (15) 

for a real constant ki that we can choose as zero, which implies 

a{x) = yo{x) + (1/c) / ^1(5)^5, x e (0,L), (16) 

Jo 
p(x) = yo(x) - (1/c) / yi{s)ds, x e (0,L). (17) 

Jo 
We have shown that if (8) satisfies the initial conditions (2), then (16), (17) 
hold. The converse also holds: If a, p satisfy (16), (17), the initial conditions 
(2) are valid for y given by (8). 

5 Exact Controllability 

The considerations in the last section imply the following exact controllability 
result: 

Theorem 1. LetT > L/c andp € [l,oo] be given. The initial boundary-value 
problem (2)-(4) has a travelling waves solution in the sense (8) that satisfies 
the end conditions (5) with Ui, U2 G L^{Q^T), if and only if the initial states 
yO) yi satisfy the following conditions: yo G i / (0 ,L) and Yi G L^(0,L), where 
Yi{x) = J^yi{s)ds, that is yi G W-^^^{^,L). 

This implies that Problem V is solvable if and only if yo and Yi are in 
L\0,L). 
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Proof of one direction. Assume that yo and Yi € L^(0, L). Define 

ui{t) = y{0,t) = [a{ct) + P{-ct)]/2 

U2{t) = y{L, t) = [a{L + ct) + l3{L - ct)]/2 

where the functions a € L P ( 0 , L + ct), P G L'P{—CT^L) are chosen such that 
(12) and (16), (17) hold, for example with r = 0 and a{x) = 0 for x € (L, cT) 
and f5{x) = 0 for x G {L — cT, 0). Then the solution y given by (8) satisfies 
the initial conditions (2) and the end conditions (5). Moreover, ui and U2 are 
in L^(0,T). The proof of the converse is given in the next section. D 

Remark 1: For the case p € [2,oo], Theorem 1 is already proved in [6] us­
ing Fourier series. Note however, that in [6] the initial state is the zero state 
which is controlled in the time T to the target state (yoj2/i)-

6 Definition of Auxiliary Functions and Completion 
of the Proof of Theorem 1 

For j G {0,1,..., k) and t G (0, to) define the functions 

a,(t) = a{ct 4- jL), Pj{t) = p{-ct - {j - 1)L) (18) 

and for t G (0, Z\) define 

ak+i(t) = aid + (A; + 1)L), pk+i{t) = P{-ct - kL). (19) 

The functions a^, pj are useful as decision variables in the transformed 
optimization problem. We will state the constraints in terms of the functions 
a^, Pji Since 

[cT, cT + L] = [kL H- cA, (k + 1)L + cA] 

= [kL + cA, (k + 1)L] U [{k + 1)L, {k + 1)L + cA] 

and 

[-cT, -cT 4- L] = [-fcL - cA, -{k - l)L - cA] 

= [-kL - cA, -kL] U [-kL, -{k - 1)L - cA] 

the constraints (12) are equivalent to the conditions 

Mt) = r,te {A,to), ak+i{t) = r,te (0,Z\), (20) 

Pk{t) = -r,te {A,to), Pk+i{t) = -r,te (0,Zl). (21) 

This means that the functions afc+i, Pk+i -̂re constant on {0,A) and the 
functions ak, Pk are constant on (A, to) with the same absolute values but 
with opposite signs. 

Conditions (16) and (17) are respectively equivalent to 
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pet 

Mt) = yo{ct) 4- (1/c) / yi{s)ds, t e (0,to), (22) 
^0 

>L-ct 
po{t) = yo{L - ct) - (1/c) / vi{s)ds, t e (0,to), (23) 

Jo 

so the values of the functions QQ, 0O â re prescribed by the initial conditions. 
We can represent the control fimctions ui, W2 in terms of aj, (5j in the 

following way. Define the intervals 

I] = \jto,jto + A\, j e {0,l,2,...,k}, (24) 

n = [jto + A,{j + l)to], j & {0,1,2,...,k - I}. (25) 

Then for t e Ij OT t e If we have 

ui{t) = [aj{t - jto) + /3j+i{t - jto) ] /2, (26) 

U2{t) = [aj+i{t - jto) + I3j{t - jto) ] 12. (27) 

Now we complete the proof of Theorem 1. Assume that controls u\^U2 ^ 
LP{OjT) are given such that the travelling waves solution (8) satisfies the 
initial conditions (2) and the end conditions (5). The end conditions (20), 
(21) imply that the functions ô fc+i, pk+i are in 1/^(0, Z\). Then (26) and the 
fact that ui is in L^(0,T) imply that a^ is also in i / ( 0 , Z\). Equation (27) 
and the fact that U2 € L^{0,T) imply that pk is also in i / (0 , Zl). Analogous 
arguments show that a^- i , pk-i are in 1/^(0, A) and repeating the argument 
shows that ao, Po is in L^(0,z3i). 

The end conditions (20), (21) imply that the functions ak, Pk are in 
LP{A,to). Then (26) and ui e 1^(0,T) imply that ak-i is also in LP(A,to). 
Equation (27) and the fact that U2 G L^(0,T) imply that Pk-i is also in 
I/P(Z^,to). Repeating the argument implies that ao, PQ are in L^(Zl,to). 

Thus we have shown that ao, Po are in L^(0,to). Equations (22), (23) 
imply that yo is in 1/^(0, L) and that Yi is in 1/^(0, L). 

7 Reformulation of the Optimization Problem in terms 
of a , , f3j 

We start by transforming our objective function 

J(UUU2)= f \ui(t)\-h\U2{t)\dt. (28) 

Jo 

We have 
k pjto + A k-1 /.(j + l)to 

J{UUU2) = Y, / \ul{t)\-^\U2{t)\dt+Y. / \ui{t)\-^\U2{t)\dt 
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k «^ fc-1 

pA fc /•to ^-1 
= / y^\ui{t + jto)\-{-\u2{t-\-jto)\dt+ yZ\Mt + Jto)\ + \U2{t-\-jto)\dt 

•to '^-i r 
^ | a , ( ^ ) + /?,+i(t) | + ^\aj+i(t) + /?,(t) | 

dt 

dt 

=' F{o^j\io,A), Pj\{o,A)J ^ { 1 , . . . , ^ } ; o^j\{A,to)^ Pj\{A,to)J ^ {1,...,A; - 1}). 
(29) 

Now we write down our optimization problem in terms of the unknown 
functions a^, pj. If we have determined a solution pair a^, Pj, we obtain 
the corresponding controls n i , U2 from (26), (27). In this sense Problem V is 
equivalent to the problem: 

minimize the objective function F given in (29) (30) 

over the functions 

o^j\io,A)^ Pj\io,A) eL^{0,A), j € {l,. . . ,A;}, 

(^j\{A,to)^ Pj\iA,to) ^L\A,to), j € { ! , . . . , A ; - 1 } 

where ao, Po are given in (22), (23) and ak\(A,to)i Pk\{A,to)^ <^fe+i|(o,zl), 
Pk+i\(o,A) are given by (20), (21). 

7.1 Def ini t ion of a Time—Parametric Opt imiza t ion P r o b l e m 

For t G (0,^o) and a natural number m consider the optimization problem 

m - l 

H{t,m) : m i n ^ - | a , ( t ) + /?,+i(t) | + - | a , . , i ( t ) + /?,(t) | (31) 
j=o 

where the numbers ao( t ) , Po{t) and ar^(t) , Prn{t) are given and the decision 
variables are a i (^ ) , . . . , am- i (0 ) Pi{^)v"iPm-i{t)' If m = 1 there are no decision 
variables. The objective function of H(t^ m) is the integrand of the function F 
given in (29) at a single point t € (0, to), so the idea of i f (t, m) is to minimize 
the integrand of Problem (30) at a single point in time. 

We obtain solutions of Problem (30) by solving the optimization problems 
H{t^k-\-l) for t G (0, A) and i f ( t ,k) for t G (/A,to) almost everywhere, tha t is 
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we minimize the integrand in the objective function J pointwise a.e.. Consider 
solutions aj (t), jSj (t) of these optimization problems as functions of t. If these 
functions are Lebesgue integrable, they are condidates for a solution of the 
optimization problem (30) and thus yield solutions of the optimal control 
problem V. In fact, the solutions aj{t)^ Pj(t) ^^^ coupled by the real parameter 
r from (20), (21). So we reduce the original infinite-dimensional problem to 
the problem to find the value of the real number r for which the objective 
function evaluated at the corresponding solutions aj{t), Pj(t) has minimal 
value. 

7.2 Solution of a Time-Parametric Optimization Problem 

Consider problem H{t^m) for a fixed time t € (0,to). Since t is fixed, we call 
the decision variables ai,...,Q;^_i, /3i,...,/?rn-i înd omit the parameter t. We 
introduce new variables: 

Ij = <^j + Pj+i 1 ^j = < î+i + Pj foi" J even, 
7i = Oij^i + Pj , Sj = aj + pj+i for j odd. 

We have 
m — l f .^ 

IS even, E /_-,y joiQ-am if mis 

. / '^ ^^ [ao^Pm ifmij 
If am = r = —pm as in (20), (21), this yields for all m the equation 

m—1 

^(- l ) -^7^- = a o - r = ci. 
3=0 

^ } ^^^'-{Po^ocm if 

If am = r = —pm as in (20), (21), this yields for all m the equation 

m—1 

j=0 
Similarly, 

m — l 
m is even 
m is odd. 

We also have 
m—l m—l 

Y^ \aj{t) + Pj+i{t)\ + |a,-+i(t) + /?,-(t)| = Yl l̂ il + l̂ -̂l-
3=0 j=0 

This means that we can decouple problem H{t,m) into two problems 

m — l m — l 

Pi : min ^ hj\ s.t. ^ ( - l ) ^ 7 i = ci, (32) 
3=0 j=0 

m — l m — l 

P2: m i n ^ l J ^ I s.t. ^ ( - l ) ^ ( 5 j = C 2 . (33) 
j=0 j=0 
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L e m m a 1. The optimal value of Pi is |c i | . If Ci = 0, the solution of Pi is 
uniquely determined. If Ci ^ 0, the solution of Pi is not uniquely determined. 
In fact, (70, . . . ,7m-1) is a solution of Pi if and only if 

jj = {-lyXjCi, j G { 0 , . . . , m - l } , 

m —1 
where for j € {0, ...,771 — 1} we have Xj > 0 and ^ Â  = 1. The corresponding 

i=o 
assertions for P2 also hold. 

Proof. The point with the components 7-, as defined in the Lemma satisfies the 
equahty constraint of P i and has the objective value |ci | . Thus the objective 
value is less than or equal to |ci | . Now take an arbitrary point tha t satisfies 
the equality constraint of P i . Then the triangle inequality implies 

m — l m —1 m — 1 

j=0 j=0 j=0 

Hence the optimal value of P i is greater than or equal to \ci\ and we have 
proved the assertion. Assume that Ci 7̂  0. Let an arbitrary solution of Pi with 
the components rjo, r)i^...^r}m-i be given. Then we have 

m —1 

3=0 

Define Xj = \r]j\/\ci\. Then Xj > 0, X]^o^ Â  = 1, and r^j = |ci|AjSign(r7j). 
The equation 

m—1 m—l m—l 

E ( - l ) ' ^ ^ - = E >^j\c^\{-lysign{vJ) = |ci | E A,(-l)^sign(r?,) = ci 

holds. Thus 
7 7 1 - 1 

Yl '^i(-l)^sign(?7^) = sign(ci). 
3=0 

This equation can only hold if for all j € {0,.. . , m — 1} we have 
(-l)^sign(r7j) = sign(ci), 

which implies sign(r7j) = (—l)'^sign(ci). Thus we have rjj = {—lyXjCi, and 
the assertion follows. D 

7.3 So lut ion of t h e Opt imal Contro l P r o b l e m 

Consider the functions aj{t), Pj{t) defined as the solutions of H{t, k -\- 1) for 
t G (0, zA) and of H{t,k) for t G {A, to) almost everywhere. Lemma 1 gives 
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values aj{t) + /?j+i(t) and aj+i(t) + Pj{t) for the solution of problem H{t, m) 
explicitly. The general solution given in Lemma 1 yields solutions of the form 

7,(i) = {-iyXj{t)[ao{t) - r] for t e {0,A), j € {0, ...,k} 

-ij{t) = (- l)V,(i)[ao(t) - r] for t € {A,to), j e {0, ...,k- 1} 

6j{t) = (-l)V,(f)[/3o(t) + r] for t 6 (0, A), j € {0,..., k} 

5j{t) = i-iyujj{t)[poit) + r] for t € (Zi, to), 3 € {0,..., k - 1}. 

Here Xj and i/j are functions defined almost everywhere on (0, A) such that 

k k 

Xj{t) > 0, uj{t) > 0, J2Xj{t) = 1 = J2^j{t), 
j=0 j=0 

and such that the functions \j{ao — r) and '̂j(/?o + ^) are in 1/̂ (0, Z\) for all 
j € {0,...,A:}. Moreover JULJ and u;̂  are functions defined almost everywhere on 
{A, to) such that 

k-l fc-l 

/i,W > 0, cvjit) > 0, ^fXjit) = 1 = X^u;,(t), 

and such that the functions fijido — r) and (JJJ{PO + r) are in L^{A^ to) for all 
J 6 { 0 , . . . , f t - 1 } . 

Equations (26), (27) and the definition of 7^, Sj imply that the control 
values corresponding to these functions are given as 

ui (t + jto) = jj (t)/2 if j is even, (34) 

ui{t-\-jto) = Sj{t)/2 if j is odd, (35) 

U2{t + jto) = ^j{t)/'^ if j is even, (36) 
U2(t + jh) = jj{t)/2 if j is odd. (37) 

Now both for Ui and U2 we have to consider four different cases, depending 
on whether t is in the interval (O^A) or the interval (A^to) and on whether 
j is even of j is odd. The general solutions given in Lemma 1 correspond to 
optimal controls of the form 

ui{t + jto) = Xj{t)[ao{t) - r]/2 if j is even and t e (0, A), (38) 

ui(t + jto) = lJ'j(t)[ao{t) - r]/2 if j is even and t G (A, to), (39) 

Mt-^jto) = -i^j{t)[Po{t) 4- r]/2 if i is odd and t G (0,zA), (40) 

Mt-^jto) = -oJj{t)[f3o(t) + r]/2 if i is odd and t G (/A, to), (41) 

^2(^ + jto) = i'j{t)[Po{t) + r]/2 if j is even and t G (0, Zi), (42) 

Mt + i^o) = u;j{t)[po{t) + r]/2 if j is even and t G {A, to), (43) 

^̂ 2(t + jto) = Xj{t)[-ao{t) + r]/2 if j is odd and t G (0, Z\), (44) 

^^2(t+ ito) = /j,j{t)[-ao{t) + r]/2 if j is odd and t G (A,to). (45) 
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If T = kto, that is if ^ = 0 the intervals (0, A) vanish. 
It only remains to determine the value of the real number r. For this 

purpose, the control given above is inserted in the objective function J(ni,^2) 
and r is chosen such that J{ui,U2) is minimized. 

8 Main Result 

In this section we state the main result of this paper, which provides an 
explicit solution to the optimization problem "P, that is to say, to the L^-
norm optimal two-point Dirichlet boundary control of the wave equation to 
the zero position. 

Theorem 2. Assume that T is greater than or equal to to = L/c. Consider 
the Problem V defined in (l)-(5). Choose a real number r that minimizes 

1 /*° 
2 70 

\ao{t)-r\^\Po{t)^r\dt (46) 

where ao is given by (22) and J3Q is given by (23). 
Then a solution of Problem V is given by controls Ui, U2 defined in (38)-

(45) and, conversely, every solution has this form. 
The minimal value of Problem V is given by the integral (46) with an 

optimal choice of r. Problem V admits a unique solution if and only if the 
minimal value of Problem V is zero. 

Proof. We have presented controls iti, 1̂2 € L^(0,T) such that the generated 
state satisfies the end conditions and the corresponding value of the objective 
function is 

1 r̂ ^ 
J(ui,U2) = mm- I | a o ( t ) - r | + |/?o(t) + r|(it. 

^ ^ Jo 
Let i;i, -̂ 2 ^ -^^(0,T) be control functions for which the generated state satis­
fies the end conditions. Then there exists a real number r = r^ such that (12) 
holds. Suppose that the corresponding functions 7^, 6j (as in (34), (37)) do not 
solve the problem H(t,k + 1) almost everywhere on (0,A) (with afc+i = ro, 
Pk+i = ~^o) ^^ do not solve the problem H{t, k) almost everywhere on (Z\, ^o) 
(with ak = ro, pk = —^o)- For t G (0,zA), let hi{t) denote the optimal value 
of H(t,k-\- 1). Lemma 1 implies that hi{t) = [\ao(t) - ro\ + |/?o(0 + ^o|]/2. 
For t € (A, to) let h2(t) denote the optimal value of if (t, k). Lemma 1 implies 
that h2(t) = [\ao{t) - ro\ + \Po{t) + ro|]/2. Then we have 

J{vuV2)> / hi{t)dt-\- / h2{t)dt 
Jo J A 

= \J'\Mi)-ro\ + mt)-^ro\dt 

> J(ui,U2). 
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Hence viy V2 cannot be a solution of V. This yields the assertion that the 
optimal controls are of the form as stated in the theorem, that is they solve the 
problem if (t, k-\-l) almost everywhere on (0, A) (with ak+i = r, /Sk+i = —r) 
and solve the problem H{t,k) almost everywhere on {A,to) (with ak = r, 
Pk = —'̂ )) where r is chosen as to minimize (46). D 

1.5 2 
Time interval (O.T) 

Fig. 1. The optimal control ui = U2 in Example 2 

9 Examples 

In general the value of r for which the integral (46) attains its minimal value 
is not uniquely determined. 

Example 1. Assume that yo = CQ is constant and yi = 0, that is the string 
is initially at rest. Then (22) implies that ao('^) = CQ and (23) implies that 
Po (i) = Co, hence we have ao (t) = f3o {t) = CQ , and the number r from Theorem 
2 minimizes 

I 
to 

|co - r| + |co + r\dt = to{\co - r| + |co + r\). 

The value r = 0, minimizes the integral, since with r = 0 the integrand equals 
21 Co I and the triangle inequality implies that for all real numbers 5 we have 

2|co| = |co - 5 4- Co + s|4- < |co - s| 4- |co 4- s\. 

So the optimal value of Problem V is |co|to. In this case, (38)-(45) imply that 
for all j G {0,..., /?}, t G (0, A) optimal controls are given by 
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Space intewal (0,L) Time intewd (0,T) 

Fig. 2. The optimal state y in Example 2 

and for all j E (0, .. . , k - I) ,  t E ( A ,  to) optimal controls are given by 

If co > 0, the optimal value is taco. With r E [-co, co], the integral (46) has 
the value 

i l e a - r + ~ + r d t = t o c o ,  

thus also for all r E [-co, co] the controls given by (38)-(45) are optimal. Only 
in the trivial case co = 0 where the initial state is already zero, the choice 
r = 0 represents the unique solution. 

Example 2. Assume that yo($) = 0 and yl(x) = s in(x~/L) .  Then (22) and 
(23) imply respectively 

Since a. (t) = [(2L)/(c~)]  + Po (t), for all real numbers s # 0 we have 
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\Mt) - - I + mt) + - I = 2\-+0o{t)\ = I - + -+Mt) + Po{t)\ 
CTT CTT CTT CTT CTT 

o r 2/v 
= I s+/3o{t)+s+po{t)\ < I 5+/?o(i)|+|s+/?o(*)| = \ao{t)-s\+\poit)+s\ 

CTT CTT 

Hence with the value r = L/{CK) the integral from Theorem 2 attains its 
minimal value, namely 

— + /?o(t)|c?t 
CTT 

1 r*° 

and optimal controls are given by (38)-(45) with r = L/(c7r). Note that since 

ao(t) - r = /?o(^) + r we have ui = 1̂ 2-
Now let L = 1, c = 1 and T = 3.25, hence A: = 3. Figure 1 shows the 

corresponding optimal control u\ = U2 with r = I/TT and Figure 2 shows the 
state y generated by ui and U2. 
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Summary . Among optimal control problems, singular arcs problems are interesting 
and difficult to solve with indirect methods, as they involve a multi-valued control 
and differential inclusions. Multiple shooting is an efficient way to solve this kind of 
problems, but typically requires some a priori knowledge of the control structure. 
We limit here ourselves to the case where the Hamiltonian is linear with respect 
to the control it, and primarily use a quadratic (u^) perturbation of the criterion. 
The aim of this continuation approach is to obtain an approximate solution that 
can provide reliable information concerning the singular structure. We choose to 
use a PL (simplicial) continuation method, which can be more easily adapted to 
the multi-valued case. We will first present some convergence results regarding the 
continuation, and then study the numerical resolution of two example problems. All 
numerical experiments were conducted with the Simplicial package we developed. 

1 Introduction 

In indirect methods, applying the Pontryagin's Maximum Principle to a prob­
lem with singular arcs leads to a Boundary Value Problem with a differential 
inclusion. We denote this BVP with the following notations, tha t will be used 
throughout this paper. Let us denote x the state, p the costate, u the control, 
and (f the state-costate dynamics. liy = {x,p) € R"^ (n is thus twice the state 
dimension) and F denotes the set valued map of optimal controls, then one 
has 

(BVP) I ^(*^ ^ ^^y^^^^ = ^(^^*)' ^^y^*^^^ •̂̂ - ^ ' ° ' *̂ ] 
^ ^ \^ Boundary Conditions 

First, we want to obtain some information regarding the structure of the 
solutions, ie the number and approximate location of singular arcs. We use 
for this a perturbation of the original problems by a quadratic (u^) term, as 
done for instance in [10]. We will show some convergence properties of this 
continuation scheme, tha t are mainly derived from the results in [4] by J.P. 
Aubin and A. Cellina, and [12] by A.F. Filippov. This continuation method 
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involves following the zero path of a multi-valued homotopy, which is why we 
chose a simplicial method rather than a differential continuation method (ex­
tensive information about continuation methods can be found in E. AUgower 
and K. Georg [2, 3], and M.J. Todd [20, 21]). Then we will study the practical 
path following method, and some of the numerical difficulties we encountered, 
which led us to introduce a discretized formulation of the Boundary Value 
Problem. Finally, we use the information from these two continuation ap­
proaches to solve the optimal control problems with a variant of the multiple 
shooting method. We will study in this paper two examples (from [11] and 
[10]) in parallel, whose similar behaviour indicates that our approach is not 
too problem-dependant. 

1.1 First Example 

The first example we consider is a fishing problem described in [11]. The state 
{x{t) G R) represents the fish population, the control {u{t) G R) is the fishing 
activity, and the objective is to maximize the fishing product over a fixed time 
interval: 

^ M a x JQ^ (E- ^ ) U{t) Umax dt 

x{t)=^rx{t){l-^)-u{t)Umax 

0 < u{t) < 1 Vt € [0,10] 
I x(0) = 70.10^ x(10) free 

with E=l,c= 17.5 .10^, r = 0.71, k = 80.5 .10^ and Umax = 20 .10^. 

First we transform this problem into the corresponding minimization prob­
lem with the objective Min J^ ( ^ ^ —E) u{t) Umax dt (note that the numerical 
values of the problem are such that we always have ^ ^ — £? < 0, which cor­
responds to a positive fishing product). Applying the Maximum Principle of 
Pontryagin then gives the following hamiltonian system for the state x and 
costate p: 

(x{t) = rx{t){l-^)-u{t)Umax 

\p(t) = # ) Ummax -P{t) r (1 - ^ ) . 

In terms of the switching function i/j 

t e [0,10]^ m = ^ - E -p{t), 

the Hamiltonian minimization gives the optimal control 

tt*(t) = 0 if'il;{t)>0 

^*( t )€[0 , l ] z / ^ ( t ) = 0. 

Over a singular arc, the relations ip = 0 and ^ = 0 give the expression of 
the singular control (t is omitted for clarity) 



PL Continuation Methods for Singular Arcs Problems 165 

^ k r c c 2px 2px^ 

More precisely, the control actually vanishes in the equation ^ = 0, so it 
is necessary to use the second derivative of the switching function. On a side 
note, these relations also lead to i; = p = 0, so the state, costate, and therefore 
also the control are constant over a singular arc for this problem, which is of 
course not a general property. Another remark is the important difference of 
magnitude between the state and costate (about 10^), which requires the use 
of a proper scaling. 

1.2 Second Example 

The second example is the quadratic regulator problem studied by Y. Chen 
and J. Huang [10]: 

Mm\Sl{xl{t)^xl{t))dt 
Xl{t) =X2(t) 

{P2) { X2{t) = U(t) 
- 1 <u{t) < 1 VtG [0,5] 

[ x{0) = (0,1) x{b) free 

We have the state and costate dynamics 

Xl{t) = X2(t) 
X2{t) = u(t) 
Pl{t) = -Xi{t) 
P2{t)=-Pl(t)-X2it) 

and the following switching function and optimal control: 

m=P2{t), 

( u'it) = - sign p2(t) if ^(t) j^ 0 
\u*lt) e [-1,1] ii^{t) = 0. 

In that case again, the control disappears from the equation -0 = 0, but the 
relation ^ = 0 still gives the singular control ulinguiari^) ~ ^ i (0-

2 Continuation Method: A Quadratic Perturbation 

Solving these problems directly by single shooting is not possible due to the 
presence of singular arcs, so we use a continuation method. Like the approach 
in [10], we try to regularize these problems with a quadratic {u^{t)) pertur­
bation, and consider the following objectives: 
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Min / (-—- E){u{t) - {1 - X)u\t))Umax dt, A € [ 0 , 1 ] , 
Jo At) 

Min ^ / (xlit) + xl{t)) + {1-X)u^{t) dt, AG [0,1]. 
2 Jo 

For problem (-Pi), as mentioned before the term -^ — E is always nega­
tive, so the minus sign before (1 — X)u^{t)Umax actually results in "adding" a 
quadratic term, as for problem (^2)- We then obtain two families of bound­
ary value problems parametrized by A, denoted by (BVPi)x and {BVP2)x 
respectively. The original problems correspond to A = 1. For A = 0, the prob­
lems are much more regular, and can be solved directly by single shooting 
without any difficulties. The principle of the continuation method is to start 
from the solution at A = 0 to a t ta in A = 1, where we have the solution of 
the original problem. The first idea is to try to solve a sequence of problems 
{BVP)\^, with a sequence (Afc) ranging from 0 to 1. However, finding a suit­
able sequence (Afc) is often problematic in practice, and here the low regularity 
of the homotopy (for A = 1 especially) led us to rather consider a full pa th 
following method. More precisely, if we note S\ the shooting function related 
to the parametrized problems, we will follow the zero pa th of the homotopy 
h : {ZjX) i-^ S\{z), from A = 0 to A = 1. There are two main families of path 
following methods: Predictor-Corrector methods, which are fast but require 
tha t the zero pa th be C^, and the slower but more robust Piecewise Linear 
methods. In the present case, we have to deal for A = 1 with a multi-valued 
homotopy, which is why we use a simplicial method, whose general principle 
will be described below. 

Remark. Prom now on, we will use the subscripts 1 and 2 for notations specific 
to Problems 1 and 2, and keep unsubscripted notations for the general case. 

2.1 H a m i l t o n i a n M i n i m i z a t i o n Proper t i e s 

We begin with some results concerning the Hamiltonian minimization, tha t 
were presented in [14]. We first recall a s tandard result (in the following we 
keep the notation y = (x ,p) , with y of dimension n) : 

T h e o r e m 1. Assume that U C R"^ is a convex compact set with nonempty 
interior, and that the Hamiltonian function H : [a, 6] x R"^ x U -^ H is 
continuous and convex with respect to the control u. We note r(t^x^p) the set 
of solutions of miuueu H{t^x^p^u). Then F has nonempty compact convex 
values. 

L e m m a 1. A compact-valued map G is upper-semicontinuous (in the sense 
of Berge [5, p.114]) if and only if for all sequence (xk) that converges to x, 
{G{xk)) converges to G{x) according to 

Ve > 0, 3^0 > 0 such that VA; > /CQ, G{xk) C G{x) + eJ5(0,1), 

with -B(0,1) standing for the closed unit ball of center 0 and radius 1. 
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Proof. See [17, p.66]. D 

Recall tha t a function / : R ^ x R is said to be inf-compact (in the sense 
of [19]) if for all_(y,a) € R"^ x R, the set {u e W^ : f{u) - {u\y) < a} is 
compact. Here R denotes the extended-real line and ( 1 ) stands for the usual 
inner product in R"^. 

L e m m a 2. Let (fk)keN ^^ proper convex lower-semicontinuous functions de­
fined over R"^. Assume the following assumptions: 

('^) {fk)ke'N converges pointwisely to f, 
(a) int{domf) ^ 0, 
(Hi) f is inf-compact. 

Then, 
lim inf fk(u) = inf f(u) 

and, Ve > 0, there is ko GN such that 

argminuen^ fk(u) C argminuen^ f{u) + e J5(0,1) \/k > ko. 

Proof See [19], page 1.3.54. D 

T h e o r e m 2. Consider the same hypotheses as in Theorem 1. Then, F has 
the following convergence property: if {tkjXk,Pk) is a sequence that converges 
to {t^x,p), then 

(i) infueK^ H{tk,Xk,Pk,u) -> infuen^ H{t,x,p,u) as k -^ +oo, 
(ii) Ve > 0, 3ko > 0 s.t. VA; > ko, r{tk,Xk,Pk) C r{t,x,p) + e B(0 ,1 ) . 

Proof. Let (tk^Xk^Pk) be a sequence tha t converges to {t,x,p). We note 
fk{u) = H(tk,Xk,Pk,u) + 6(u/U) and f{u) = H{t,x,p,u) + S{u/U) (where 
5(u/U) = 0 if li G t/, and +oo if n ^ U). For both example problems, it is 
clear from the expression of the Hamiltonian (see below) tha t the {fk) are 
convex and lower-semicontinuous. Let us check the assumptions of Lemma 2: 
(i) If u ^ Uy then fk{u) = f(u) = +oo Vk; ii u £ U, then fk(u) = 
H{tk,Xk,Pk,u), and as H is continuous we have H{tk,Xk,Pk,u) —> H{t,x,p,u)., 
so fk{u) -4 f{u). 
(ii) One has int(dom / ) = int(C/) ^ 0. 
(iii) liv e'RT' and a G R , then {u \H{t,x,p,u) + 6{u/U) - {u\v) < a) = 
U r\ {u \H(t,x,p,u) — {u\v) < a}. This set is compact because it is a closed 
subset of the compact set UIV^. This shows the inf-compacity of / . 
Now Lemma 2 proves the theorem. D 

Corol lary 1. Consider the same hypotheses as in Theorem 1. Then, F is 
upper-semicontinuous (in short, use). 

Proof. Theorem 1, Lemma 1 and Theorem 2 give this result. D 

Remark. If H is strictly convex, then we have the well-known property (see 
e.g. [13, Theorem 6.1, p.75] and [6]) tha t u* is a continuous function (as F is 
then a continuous function). 
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Back to the two examples, we have Ui = [0,1], U2 = [—1,1], and the 
Hamiltonians are (t is omitted for clarity): 

Hi{t,X,p,u) = ( E){U- (1 - X)u^)Umax -^ P{rX (1 - - ) -uUmax), 
X rv 

H2{t,x,p,u) = - ( a ^ i + x | + (l - X)u^) + P1X2-\-P2U. 

Both Hi and H2 are continuous, and convex with respect to u (for Problem 1 
we can numerically check a posteriori that -^ — E < 0 Vt G [0,10]). So for 
both problems (Pi) and {P2)) Theorem 1 and Corollary 1 apply, thus A and 
r2 are upper-semicontinuous, and non empty compact convex valued. These 
properties will be useful for the following convergence results concerning the 
continuation. We can also note that for A < 1, both Hamiltonians are strictly 
convex, thus the optimal control are continuous functions. 

2.2 Convergence Properties 

The following results were presented in [8], and are primarily derived from 
the books by J.P. Aubin and A. Cellina [4], and by A.F. Filippov [12], whose 
notations we will keep. In particular, 

CO K = closed convex hull of K, 
M^ = {m:d{m,M) <S}. 

Definition 1 ([12]). A function y is called a 6-solution of y{t) G F{t,y{t)), 
with F : [a, b] x R"̂  -^ R'^ an upper-semicontinuous set-valued map, if over 
an interval [a,b], y is absolutely continuous and 

y{t)eFs{t,y{t)) = [cdF{t',y')]' 

where F{t^,y^) = IJset'^zey' F{s,z). 

Lemma 3. Let {y^) be a sequence in ACn{[o,^b]) such that: 
(i) \/t G [a,b], {yk{t)}k is relatively compact, 
(ii) 3 / such that \yk(t)\ < I almost everywhere in [a,6], 

Then, there exists a subsequence still noted (yk) that converges uniformly to 
an absolutely continuous function y : [a, 6] —^ IV^, and for which the sequence 
{yjz) converges weakly-* to y in Z/^([a,6]). 

Proof. The proof follows the principle of the demonstration of Theorem 4, pp. 
14-15 in [4], The sequence {y^) is equicontinuous as 

f" 

\yk{t')-yk{t")\= I yk{t)dt <l\t'-t"\. 
Jt' 

The Arzela-Ascoli theorem implies the existence of a subsequence, still noted 
{yk)i that converges uniformly to y in Cn{[a^b]). Moreover, yfc ^ -'5(0,c) C 
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^^( [^ .^D^ with L^([a ,6]) being the dual of Lj,([a,fe]). Thus the Alaoglu the­
orem implies tha t this closed ball is weak-* compact. As I'Ji([a, b]) is separable 
this closed ball is metrizable for the weak-* topology (cf [7]). Then there exists 
a subsequence, still noted (t/fe), tha t converges weakly-* to z in L^{[a, b]). We 
now have to prove that y is absolutely continuous and tha t y = z. First, yk is 
absolutely continuous, thus 

yk{t')-yk{t")= f yk{s)ds, (1) 
Jt' 

The sequence (yk) converges uniformly to y, so the left hand side converges 
to y{f) — y{t"). As (yfc) converges weakly-* to z, for all components i we have 

<l,yk,i>L^,L-°= ykA^)ds -^<l,Zi>L\L°^= Zi{s)ds 
J a J a 

(where 1 is the constant map equal to 1). So the right hand side of (1) con-

verges to /^, z{s)ds. We have then 

f" 

y{t')-y{t")= f z{s)ds 
Jt' 

with z in L^([a ,6] ) , thus in L^([a, 6]). This means tha t y is absolutely con­
tinuous and that y{t) = z{t) almost everywhere. D 

T h e o r e m 3 . Let (yk) be a sequence in ACn([a, 6]) that converges to y and 
verifies yk{t) ^ K for all k and t, with K compact. Then y is absolutely 
continuous and yk{t) GcoK for all t, 

Proof. The proof is based on Filippov's Lemma 13, p . 64 of [12]. D 

T h e o r e m 4. Let F be a nonempty compact convex valued map, defined on an 
open setQ^ R ^ + ^ Let(yk) be a sequence of 6k-solutions defined on [a, 6] that 
converges uniformly to y : [a, b] -^ R"^ when Sk —> 0, and such that the graph 
ofy is in Q. Then y is a solution of the differential inclusion y{t) G F(t,y(t)). 

Proof See Filippov's Lemma 1, p . 76 of [12] D 

L e m m a 4. Let (f : i? x [0,1] —» R^, with Q an open subset of R^ , be a 
set-valued map verifying 

(i) (̂  is uppersemicontinuous with nonempty compact convex values, 
(ii) cpx = (p{', A) is a is piecewise — C^ function for 0 < A < 1. 

Let us assume that the solutions of y\{t) = (p\(y(t)) remain in a fixed com­
pact K and are defined on an interval [0 , t / ] . Then y\ is a S-solution of the 
differential inclusion y(t) G (p{y(t)j 1), and 5 tends to 0 when A -^ 1. 
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Proof, ip is use at (y*, 1) for all (y*, 1) G K^ thus for e = J, there exists 77 such 
tha t for all \y-y*\ < Vy* < 5̂ 1-̂  ~ 1| < Vy* < ^y we have ^xiy. A) G (p{y*,iy. 
Thus X C Uj/*eK B{y*^riy*) and as X is compact, we have K C U^^^ B{yi,r)i). 
For e = Syyi,3r]i \y - yi\ < rji < S and |A - 1| < r;̂  < S, ifx{y) e (p{yi, 1) ' . 
For all y G X , there exists ŷ  such that y G B{yi,r]i) and thus 

Then for all A such tha t |A — 1| < 77 and for all y G X , we have (px{y) G 

T h e o r e m 5. Let us assume that the solutions of {BVP)\ remain in a fixed 
compact of [0,tf] x K, K C Q, with Q an open subset oflV^. Then from any 
sequence (yx^) of solutions of {BVP)xk, ^^c/i that A^ ^^ 1 as k —^ +00 , we 
can extract a subsequence (yk) verifying: 

(i) (yk) converges uniformly to y solution of (BVP)i, 
(a) (yk) converges weakly-* to y in L ^ ( [ 0 , t / ] ) . 

Proof, (p is use, thus (p{Kj [1 — e, 1]) is compact. There exists I such that 
|yA(^)| < / for A G [1 — e, 1]. The yx are absolutely continuous, and Lemma 
3 says that we can extract a subsequence (y^) tha t converges uniformly to y, 
and such that (y^) converges weakly-* to y in L ^ ( [ 0 , t / ] ) . As per Lemma 4, 
(yk) is a Jfc-solution. (^(y, 1) is non empty compact convex valued, so Theorem 
3 says tha t y is a solution of the differential inclusion y{t) G (p{y(t)j 1). Initial 
and terminal conditions can be written as ho{y{0)) = 0 and hf{y{tf)) = 0 
with ho and hf continuous. The uniform convergence of (y^) implies tha t y 
verifies the boundary conditions, thus y is a solution of {BVP)i. D 

Corol lary 2. Under the hypotheses of Theorem 5, assume that x = f{t,x,u) 
provides a control of the form u = 5'(t, x) + -R(t, x)Xj with R and S continuous 
and R linear. Consider the subsequence yk = (xk^Pk) from Theorem 5, and 
let Uk = S{t,Xk) + R{t,Xk)xk' Then (uk) converges weakly-* in L ^ ( [ 0 , t / ] ) . 

Proof See [9], proof of Proposition 3.2, pp. 551-552. D 

Back to our families of problems {BVPi)x and {BVP2)x) we have the 
state-costate dynamics 

V ? W ^"W - (1 - A)U {t))Umax -P{t) r (1 ^ ) / 

<P2iy{t),u{t),X) = 

fx2{t)\ 
u{t) 
Xl{t) 

We consider the set valued dynamic ^{y{t), A) = <fi{yit),r{y{t)), A). Prom the 
expression of ipi and ip2, and the fact tha t Fi and Jij are use with nonempty 
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compact convex values, we obtain that ^ i and ^2 are also use with nonempty 
compact convex values. Now we make the assumption tha t the solutions of 
{BVPi)x and {BVP2)\ remain in some fixed compact sets, which has been 
validated by the numerical experiments. Then Theorem 5 applies and gives 
the convergence result for the continuation approach. 

Moreover, we have the following expression of the control: 

/ "^(^) = ut:^'' ^ ^ W (1 - ^ ) - *^(*)) f*''̂  Problem 1 
\ ux{t) = ^2A(^) ^^^ Problem 2. 

Thus Corollary 2 applies and gives the convergence for the control. 

2.3 P L Cont inuat ion - Simplic ial M e t h o d 

We will here recall very briefly the principle of a PL continuation method. 
Extensive documentation about pa th following methods can be found in E. 
AUgower and K. Georg [2, 3], as well as Todd [20, 21], to mention only a few. 
The idea of a continuation is to solve a difficult problem by starting from 
the known solution of a somewhat related, but easier problem. By related we 
mean here tha t there must exist an application h, called a homotopy, with the 
right properties connecting the two problems. For the following definitions we 
consider tha t his a. function, the multi-valued case will be treated afterwards. 

PL continuation methods actually follow the zero pa th of the homotopy h 
by building a piecewise linear approximation of /i, hence their name. Towards 
this end, the search space is subdivided into cells, most often in a particular 
way called a triangulation in simplices. This is why PL continuation methods 
are often referred to as simplicial methods. The main advantage of this ap­
proach is tha t it puts extremely low requirements on the homotopy h: as no 
derivatives are used, continuity is in particular sufficient, and should not even 
be necessary in all cases. 

First, we recall some useful definitions. 

Def ini t ion 2. A simplex is the convex hull o / n + 1 affinely independent points 
(called the vertices) in R^ , while a k-face of a simplex is the convex hull of k 
vertices of the simplex (note: k is typically omitted for n-faces, which are just 
called faces). 

Def ini t ion 3 . A triangulation is a countable family T of simplices of R'^ 
verifying: 
• The intersection of two simplices of T is either a face or empty, 
• T is locally finite (a compact subset of H"' meets finitely many simplices). 

Defini t ion 4. We call labeling a map I that associates a value to the vertices Vi 
of a simplex. We label here the simplices by the homotopy h: l(v'^) = h(z^y A*), 
where v^ = {z'^,X^). Affine interpolation on the vertices thus gives a PL ap­
proximation hx of h. 
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Def ini t ion 5. A face [v\^ ••jt'n] of a simplex is said completely labeled iff it 
contains a solution v^ of the equation hriv) = e for all sufficiently small e > 0 
(where e = (e,.. , e^)). 

/ 
/ 

/ 

\A 

A 

\A y 
/ 

/ 
/ 

y 

finniM^^^ 
/WWWWWWWWI 

ZX /M/M A V 
Fig. 1. Illustration of some well known triangulations of R x [0,1] ([0,1[ for Jz] 
Preudenthal's uniform Ki, and Todd's refining J A and J3 

L e m m a 5. Each simplex possesses either zero or exactly two completely la­
beled faces (being called a transverse simplex in the latter case). 

Proof See [2], Chapter 12.4. D 

The constructive proof of this property, which gives the other completely 
labeled face of a simplex that already has a known one, is often referred to as 
PL step, linear programming step, or lexicographic minimization. Then there 
exists a unique transverse simplex tha t shares this second completely labeled 
face, tha t can be determined via the pivoting rules of the triangulation. 

A simplicial algorithm thus basically follows a sequence of transverse sim-
plices, from a given first transverse simplex with a completely labeled face at 
A = 0, to a final simplex with a completely labeled face at A = 1 (or 1 — e for 
some refining triangulations that never reach 1, such as J3), which contains 
an approximate solution oi h(z,l) = 0. 

For a multi-valued homotopy h, we have the following convergence prop­
erty. 

T h e o r e m 6. We consider a PL continuation algorithm using a selection of h 
for labeling and a refining triangulation oflV^ x [0,1[ (such as J3 for instance). 
We make two assumptions regarding the path following: 

(i) all the faces generated by the algorithm remain in K x [0,1], with K 
compact. 

(a) the algorithm does not go back to X = 0. 
Then, if h is use with compact convex values, the algorithm generates a se­
quence (zi^Xi) such that Xi -^ 1, and there exists a subsequence still noted 
{zij Xi) converging to (z^l) such that 0 G h{z,l). 

Proof The proof comes from [1], chapter 4, page 56. D 

For the two examples under consideration, the two assumptions concerning 
the pa th following are numerically verified for both problems. However, the 
assumption of the homotopy convexity only holds for Problem 1, but not for 
Problem 2 a priori. 
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2.4 P a t h Fol lowing - Singular Structure D e t e c t i o n 

In order to initialize the continuation, we need to solve both problems for 
A = 0, which is easily done by single shooting from an extremely simple initial 
point {x{0) = —0.1 and x{0) = (0,0) respectively). The objective shown is the 
original, unperturbed criterion, and the results are summarized on Table 1. For 
both examples, the pa th following goes smoothly at first, and the switching 
function and control evolution as A increases is quite interesting, as shown on 
Figures 2 and 3. 

Table 1. Solutions for A = 0 

A |5o(;2;*)| objective iter time 

Problem 1 0 -4.0935 10"^ 3.6295 10"^^ 69374046 39 < Is 
Problem 2 0 (1.2733,2.2715) 3.3596 lO"^"^ 0.4388 134 < Is 

CONTROL EVOLUTION SWITCHING FUNCTION EVOLUTION 

Fig. 2. Problem 1: Control and Switching function for A = 0,0.5,0.75,0.9,0.95 

We can see that for both problems, the switching function tp comes closer 
to 0 over some time intervals, which strongly suggests the presence of singular 
arcs at the solution for A = 1. For the first problem, the control structure 
seems to be regular-singular-regular, with the singular arc boundaries near 
[2,7.5], and for the second problem regular-singular, the singular arc begin­
ning around 1.5. Meanwhile, we can see tha t outside the suspected singular 
arcs the control tends to a bang-bang structure coherent with the necessary 
conditions, more precisely + 1 before and after the arc for the first problem, 
and —1 before the arc for the second problem. An interesting fact is tha t the 
control keeps on taking intermediate values over the time intervals where I/J 
tends to 0, which confirms the assumption of a singular arc. On these two ex­
amples, the continuation based on the quadratic perturbation gives a strong 
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CONTROL EVOLUTION SWITCHING FUNCTION EVOLUTION 

2 3 
TIME 

Fig. 3. Problem 2: Control and Switching function for A = 0,0.5,0.75,0.9 

indication about the control structure, with an approximate location of the 
singular arcs. So as far as the detection of the singular structure is concerned, 
this approach seems rather effective. 

2.5 Numerical Difficulties - Different Control Structures 

However, as A tends to 1, the path following encounters some difficulties: 
above a certain point, the PL approximation of the shooting function be­
comes increasingly inaccurate. We can also note that from this point on, 
the objective value does not improve any longer (here again, the objective 
values displayed correspond to the original non-perturbed problems, thus 
Max J^^ {E - c/x(t)) u{t) C/max dt and Min i J^ {xl{t) + xl{t)) dt). Fig.4 
shows the evolution of the homotopy norm and the criterion value along the 
zero path. 

Difficulties are often expected at the end of continuation strategies, and 
for simplicial methods there exists for instance some refining triangulations 
(such as J3 or J4) whose meshsize decreases progressively, in order to ensure 
an accurate path following near the convergence. Yet in our case, using this 
kind of techniques only delays this degradation a little, and does not prevent 
it from appearing eventually. The instability threshold is problem dependant: 
it appears at best (via refining triangulations) beyond A = 0.975 for Problem 
1 and A = 0.95 for Problem 2. 

The reason behind this phenomenon can be found if one looks at the 
control structures corresponding to the vertices of the completely labeled faces 
(which are supposed to contain a zero of the PL approximation of the shooting 
function). Depending on the vertices, we find two different control structures: 
the interval on which the switching function is close to 0, that we call a pseudo 
singular arc, is not stable. At some point, the switching function leaves the 
proximity of 0 and increases in absolute value, either with positive or negative 
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HOMOTOPY NORM ALONG ZERO PATH CRITERION ALONG ZERO PATH 
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Fig. 4. Homotopy norm and objective value along zero paths, for Problem 1 and 2 

sign. Depending on the sign of the switching function at the exit of the pseudo 
singular arc, we obtain two different control structures, either with "crossing" 
or "turning back". What happens is tha t these two structures keep appearing 
among the vertices of the labeled faces, however small a meshsize we use, which 
is why refining triangulations are useless. We also note that this instability of 
the switching function near zero becomes worse as A tends to 1: the length 
of the pseudo singular arc decreases as the exit occurs earlier and earlier, as 
illustrated on Fig.5. 

At the convergence for A = 1, all tha t is left from the pseudo singular arc 
is a contact point, once again with two possible control structures depending 
on the sign of the switching function after it reaches 0. For both problems, 
the control and switching functions (but also the state and cost ate) are iden­
tical for the two structures before the contact point. After tha t point, which 
corresponds to the beginning of the supposed singular arc, the switching func­
tion goes either positive or negative, with the two corresponding bang-bang 
controls. More precisely, if the switching function crosses 0 and changes sign, 
there is a control switch, while it remains the same if the switching function 
turns back with the same sign after the contact point. Anyway, in both cases 
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SWITCHING FUNCTION EVOLUTION SWITCHING FUNCTION EVOLUTION 

Fig. 5. Switching function evolution for Problem 1 and 2 (A = 0.99,0.995,0.9999, 
and A = 0.95,0.975,0.9999 respectively) 

we have lost the singular structure at the convergence. Figures 6 and 7 show 
these two distinct control structures for each problem. 
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Fig. 6. Problem 1: Control structures according to switch exit sign 

The existence of these two very close (with respect to the shooting function 
unknown z) and yet completely different control structures corresponds to a 
discontinuity of the shooting function at the solution, which is illustrated 
on Fig.8 for both Problem 1 (first graph) and Problem 2 (second and third 
graphs). 

We use here a basic Runge Kutta 4th order method with 1000 integration 
steps. We tried various other fixed step integration methods, such as Euler, 
Midpoint, Runge Kutta 2 or 3, and increased the number of steps to 10000. 
We also used variable step integrators, namely Runge Kutta Fehlberg 4-5, 
Dormand Prince 8-5-3, and Gragg Bulirsch Stoer extrapolation method (see 
[15]), with similar results. 



PL Continuation Methods for Singular Arcs Problems 177 

1 

0.8 

0.6 

0.4 

0.2 

3 0 

-0.2 

-0.4 

-0.6 

-0.8 

CONTROL EVOLUTION 

CROSSING 1 
• - • TURNING BACK | 

) 1 2 
TIME 

3 4 5 

2 

1.5 

1 

0.5 

> 

0 

-0.5 

-1 

-1.5, 

SWITCHING FUNCTION 

1 CROSSING 
1 - - . TURNING BACK 

) 1 2 3 
TIME 

\ f 
\ f 

\ t 

t \ 
0 \ 

9 \ 
# 1 

# 1 

4 5 

Fig. 7. Problem 2: Control structures according to switch exit sign 

For Problem 1, the path following always converges to the correct z* and 
locates this discontinuity precisely, which is not surprising as Theorem 6 ap­
plies. This is not the case for Problem 2, and the experiments indeed show 
that the path following can converge to different solutions, depending on the 
integration used. We also note that the convergence is more difficult to at­
tain for Problem 2, as we often had to use the less accurate triangulation J4 
instead of J3. 

3 Continuation: Discretized BVP Formulation 

We now try to circumvent the previously encountered difficulties by discretiz-
ing the equations of the Boundary Value Problem. We use here a basic Euler 
scheme for the state and costate, and consider a piecewise constant control. 
The values of the state and costate at the interior discretization nodes become 
additional unknowns of the shooting function, while we have the following 
matching conditions at these nodes: 

(xi+i - {xi + hp{ti,Xi,pi,u*)) 

where the optimal control u* is obtained from {xi,pi) by the usual necessary 
conditions. The idea is, that even if the control obtained on the singular 
arc is irrelevant, we hope to have a good approximation of the state and 
costate values. This formulation corresponds to a particular case of multiple 
shooting, with a 1-step Euler integration between two successive discretization 
nodes. Thanks to this integration choice, the discretized version of the shooting 
function is compact convex valued. This allows us to hope a good behaviour 
of the path following, according to Theorem 6. 

Here are the discretized shooting function unknown and value layouts: 

Unknown z IIVP unknown Sit to\{x^,p^)\{x^,p^)\... 
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20 - 

Fig. 8. Shooting functions discontinuity at X = 1 for Problem 1 and 2 

- IVP unknown at to (same as in single shooting method) 
- values of (xi ,pi) at interior times ti 

Value So ( z )  IMatch,,,d(tl) I Matchc,,d(t2)1 ... IConditions at t f  I 
- matching conditions at interior times 
- terminal and transversality conditions at t f  (same as single shooting) 

Remark. A major drawback of this formulation is that the full state and costate 
are discretized. This drastically limits the number of discretization nodes, else 
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the high dimension of the unknown leads to prohibitive execution times. As 
a side effect, this also puts some restrictions on the use of small meshsizes or 
refining triangulations, for the same computational cost reasons. 

Then we apply the same continuation with the quadratic perturbation as 
before. Once again, solving both problems for A = 0 is done immediately 
by single shooting, and we follow the zero path until A = 1. The instability 
observed with the single shooting method does not occur. Here on Fig.9 are 
the solutions obtained with 50 discretization nodes for Problem 1 and 20 
for Problem 2 (whose state and costate are in R^ instead of R). This time 

Fig. 9. Discretized BVP solutions at A = 1 for Problem 1 and 2 

both switching functions clearly show the presence of a singular arc, located 
near [2,7] and [1.5,5] respectively. We note that the switching function for 
Problem 1 is much closer to zero than the best solution we could obtain with 
the previous approach. But now, an annoying fact is the presence of some 
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oscillations located within the bounds of the singular arcs. Trying to get rid 
of these oscillations by conventional means, such as smaller meshsizes and/or 
refining triangulations, or increasing the number of discretization nodes, turns 
out to be ineffective, especially for Problem 2. 

These difficulties might come from the expression of the control, which 
is still given by the necessary conditions. On a time interval [tt,^i+i] located 
within a singular arc, let us assume that the continuation has found the correct 
values of the state and costate {xi,pi) and {xi^i^pi+i). The switching function 
il^iU) should be near zero as we are supposed to be on a singular arc, but 
numerically it will not be exactly zero, mostly due to the rough discretization 
scheme used. The necessary conditions then give a bang-bang control Ui tha t 
is different from the actual singular control u*, so the matching conditions on 
the state and costate at t^+i may not be satisfied. So on singular arcs, the 
algorithm may deviate to values of (x,p) tha t try to verify these incorrect 
matching conditions given by wrong control values. 

If we look closer at the value of SD at the solution, we indeed notice that 
non-zero components are found only for discretization times corresponding 
to singular arcs. Moreover, for Problem 2 matching errors only occur for a;2, 
whose derivative is the only one in which the control appears. Other compo­
nents Xi,Pi,P2) whose derivatives do not depend on ix, always have correct 
matching conditions, even on the singular arc. For Problem 1, both deriva­
tives of X and p involve the control, so it is not surprising that bo th matching 
conditions are non-zero on the singular arc. We also note that the sign of non­
zero matching conditions changes accordingly to the sign of the switching 
function. This is coherent with the fact tha t it also corresponds to the switch­
ings of the incorrect bang-bang control, and therefore possibly the changes of 
sign of Ui — u*. All this confirms tha t these oscillations observed on singular 
arcs are related to the wrong control value given by the necessary conditions. 
Fig. 10 shows these matching conditions, with the switching function. 

4 Numerical Resolution 

Now we have gathered some knowledge concerning the singular structure of 
the problems, and we try to solve them more precisely. Based on the solutions 
of the continuation with the continuous and discretized formulations, we will 
assume tha t we have the following control structures: regular-singular-singular 
for Problem 1, and regular-singular for Problem 2. 

We use a variant of the classical multiple shooting method, tha t we call 
"structured shooting". It shares the same principle as the well known code 
BNDSCO from H.J. Oberle (see [18]), slightly simplified and adapted to the 
singular case instead of the state constraints. The control structure is here 
described by a fixed number of interior switching times, tha t correspond to 
the junction between a regular and a singular arc. This times {ti)iz=:i.,nsruitch 
are part of the unknowns and must satisfy some switching conditions. Each 
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Fig. 10. Matching conditions at A = 1 for Problems 1 and 2 

control arc is integrated separately, and matching conditions must be verified 
at the switching times. The switching condition indicates a change of struc­
ture, that is the beginning or end of a singular arc where ^ = 0, and thus 
can be defined for instance as ilP'{ti^Xi^pi) = 0. Matching conditions basically 
consist in state and costate continuity at the switching times. 

Summary: structured shooting function unknown and value layout: 

U n k n o w n z | IVP unknown at to|(a;^,p^)|(a:^,p^)|...|Z\i|Z\2 

- IVP unknown at to (same as in single shooting method) 
- values of (x^p*) at interior switching times ti 
- switching times intervals zi^, such that U = U-i -\- Ai , Vi G [l..nswitch] 

V a l u e Sstruct{z) |iS't(;ztc/icond(^i)P^Q^c^cond(^i)I"-[Conditions at tf 

switching and matching conditions at interior times 
terminal and transversality conditions at tf (same as single shooting) 
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Struc tured s h o o t i n g init ial ization: 
Based upon the solutions obtained with the two continuations, we have two 
switchings times for Problem 1, and one switching time for Problem 2. The 
structured shooting unknowns, and the initialization sets corresponding to 
the continuous and discretized continuations are summarized below on Table 
2 and 3 (for the single shooting we use a solution for A = 0.95, before instability 
occurs). 

Table 2. 

Continuation 

BVPo.95 
BVPD 

Problem 1: 

p(0) h: 

-0.429 2.5 
-0.453 2.55 

control structure regular-singular-regular 

\t2 

; 7 
; 7.06 

(4.996 10^ 
(4.839 10^ 

{x\p') (x^p^) 

-0.600) (4.825 10^ 
-0.637) (4.741 10^ 

-0.587) 
-0.621) 

Table 3. Problem 2: 

Continuation 

BVPo.95 
BVPD 

(pi(0),P2(0)) 

(0.974,1.512) 
(1.167,2.024) 

control structure regu] 

ti 

1.5 
1.429 

(0.398, 
(0.578,-

{x^ 

-0.309 , 
-0.429 , 

lar-sin^ 

,P') 

0.401 
0.586, 

jular 

,0.00358) 
,0.000505) 

Now we try to solve directly Sstructi^) — 0 with these initializations. For 
both problems, convergence is immediate for the two initializations. Fig. 11 
shows the solutions obtained, with the expected singular arcs. The solutions 
are the same for the two initialization sets, see Table 4 and 5. 

Table 4. Solution comparison for Problem 1 for the two initialization sets. 

Initialization z" ^i;^2 \Sstruct{z')\ objective iter time 

BVPo.9h -0.46225 2.3704 ; 6.9888 1.1 10"^^ 106905998 110 < Is 
BVPD -0.46225 2.3704 ; 6.9888 3.1 10"^^ 106905998 88 < Is 

Table 5. Solution comparison for Problem 2 for the two initialization sets. 

Initialization z* t\ \Sstruct(z*)\ objective iter time 

ByPo.95 (0.9422,1.4419) 1.4138 2.4 lO"^"^ 0.37699 93 < Is 
BVPD (0.9422,1.4419) 1.4138 9.2 10~^^ 0.37699 116 < Is 
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Fig. 11 . Solutions obtained by Structured Shooting for Problems 1 and 2 

Remark. It should be noted that the resolution can be quite sensitive with 
respect to the initial point. For Problem 1, a deviation of 0.1 of the costate 
values can be enough to prevent the convergence. 

As a conclusion, we give here a comparison of the solutions obtained by 
the two continuation approaches (single shooting at A = 0.95 and discretized 
BVP) with the reference solution from structured shooting, see Fig. 12 and 13. 

We can see that both continuation solutions are rather close to the refer­
ence solution for the state, costate and switching function. For Problem 1 the 
discretized solution is quite good, with very little oscillations, while the con­
tinuous solution at A = 0.95 is less accurate for p and ip. For Problem 2, the 
oscillations are much more important on the discretized solution, wherecis the 
continuous solution at A = 0.95 is very close to the reference. Concerning the 
control, the continuous formulation gives an acceptable approximation of the 
singular control, the differences being localized around the switching times, 
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which is not surprising. 

N o t e s and N u m e r i c a l precis ions: 
• There is no pa th following for structured shooting: we solve Sstructi^) = 0 
directly, which is possible because we have a quite good initial guess. 
• For non-discretized formulations (single and structured shooting), a basic 
fixed step Runge Ku t t a 4th order integration was used, with 1000 discretiza­
tion steps for both problems. As said before, we obtained similar results with 
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other integration methods, either with fixed or variable step. 
• Tests were run on a P C workstation (2.8GHz Pentium 4), using a build of 
the Simplicial package compiled with ifc (Intel Fortran Compiler). 
• All numerical experiments were made using the Simplicial package we wrote, 
which implements a PL continuation for optimal control problems via indirect 
methods (www.enseeiht.fr/lima/apo/simplicial/, see also [16]) 

5 Conclusions and Perspectives 

Starting with no a priori knowledge about the control structure, the two for­
mulations (single shooting and discretized BVP) of the continuation allowed us 
to detect the singular arcs accurately. Wi th this information and the approx­
imate solutions obtained, we were able to solve the problems with a variant 
of multiple shooting. 

Concerning the oscillations encountered with the discretized formulation, 
one could think of using the expression of the singular control when the switch­
ing function is close to 0, instead of the incorrect bang-bang control given by 
the hamiltonian minimization. However, the solutions obtained depend heav­
ily on the practical implementation of this "close to 0" condition, which can 
artificially force a singular arc... 

Another interesting idea is to discretize the control, in the same fashion 
as direct shooting (or "semi-direct") methods. This consists in integrating the 
state and costate with an Euler scheme and a piecewise constant control, 
whose value on the discretization nodes are part of the unknowns. Some con­
ditions would be enforced on these values, such as satisfying the Hamiltonian 
minimization in the regular case and the singular control expression in the 
singular case. 

Finally, it would be interesting to t ry to adapt the methods we used here for 
singular arcs to the case of state constraints, which also lead to low regularity 
problems. 
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Summary . A nonlinear elliptic control problem with pointwise control-state con­
straints is considered. Existence of regular Lagrange multipliers, first-order neces­
sary and and second-order sufficient optimality conditions are derived. The theory 
is verified by numerical examples. 

1 Introduction 

In this paper, we consider the following semilinear elliptic optimal control 
problem with distributed control and pointwise mixed control-state con­
straints 

(p) < 

Jiy, ""•):=- (y- Vdf dx+^ u^ix) dx 

(1) 

minimize 
Q n 

subject to —Ay(x) + d{y{x)) = u{x) in i? 

duVix) + y{x) = 0 on r 

and ya{x) < Xu{x) + y(x) < yh(x) a.e. in i?, (2) 

where Q C E ^ , N = {2 ,3}, is a bounded domain with C^'^-boundary F and u 
denotes the outward unit normal The function d : R —̂  R is twice continuously 
differentiable and monotonic increasing. Furthermore, the second derivative 
d" is assumed to be locally Lipschitz-continuous. Moreover, /̂  > 0 and A 7̂  0 
are real numbers, and the bounds y^ and 2/6 are fixed functions in L'^{Q) with 
ya{x) < yb{x) a.e. in i?. 

This paper is a contribution to the theory of distributed optimal control 
problems with pointwise state-constraints. The associated numerical analysis 
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is known to be quite complicated, since the Lagrange multipliers for the state-
constraints are in general regular Borel measures. We refer, for instance, to 
Casas [4] for first-order necessary optimafity conditions, Casas, Troltzsch and 
Unger [7] for second-order sufficient conditions and to Bergounioux, Ito and 
Kunisch [1] or Bergounioux and Kunisch [3] for associated numerical methods. 

The analysis is often simpler for problems with mixed pointwise control-
state constraints, since Lagrange multipliers are more regular there. For the 
elliptic case with quadratic objective and linear equation, this has been shown 
in the recent paper [10]. However, the corresponding proofs are quite technical. 

Here, we consider a particular class of constraints, where the analysis can 
be developed by a simple trick: Locally, the problem (P) is converted to one 
with pointwise box-constraints, where the analysis is easy to perform. We will 
show that problem (P) has regular Lagrange multipliers in L°°(i?). In view 
of this, we are able to derive first- and second-oder optimality conditions for 
(P). Moreover, we report on associated numerical tests. 

It should be underlined that we investigate the problem for a fixed pa­
rameter A 7̂  0. Though A is used as a small regularization parameter in the 
numerical tests, we do not study here the complicated question of convergence 
of optimal solutions and multipliers as A —)• 0. The problem (P) is interesting 
in itself for A fixed. 

Remark 1. The theory below also works for —Ay{x) + y(x) + d{y{x)) = u{x) 
in i?, dt^y{x) = 0 on F instead of (1). This is the case studied in the numerical 
tests in Section 5. 

2 Standard Results 

In this section, we recall some well-known results on (P). We consider y in 
the state space Y = H^{f2)r\ C{Q) and the control u in L'^{Q). Moreover, we 
introduce the control-to-state operator G : LP'{Q) —> Y that assigns y to u. 
The following result is well known, [4]: 

Theorem 1. Under the assumptions on d and Q stated in Section 1, the state 
equation (1) admits for all u G LJ^i^Q) exactly one solution y = G{u) G Y, 
and the estimate 

\\y\\m{Q) + \\y\\c{Q) < Coo ll̂ l̂U ĉr?) (3) 

holds true with a constant CQO that only depends on Q. 

Due to dim i? < 3, we obtain the following results for the derivatives of G 
(c£.[6]): 

Lemma 1. Under the assumptions on d, G is twice continuously Frechet dif-
ferentiable from L'^{Q) to Y. Its first derivative, denoted by w = G'{u)h, 
h € L'^{Q), is given by the solution of the linearized equation 
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—Aw-\-d\y)w = h in Q 

d^w + w = 0 on r 

with y = G(u). Moreover, the second derivative z = G"{u)[ui,U2] solves the 
equation 

-Az^d'{y)z = -d"{y)yiy2 in Q 

dyZ 4- 2; = 0 on r 

with y as defined above, and yi = G'{u)Ui, i = 1,2. 

The next theorem states the existence of an optimal solution for (P). 

Theorem 2. / / the admissible set is not empty, then (P) admits at least one 
global solution. 

Proof. The proof is more or less standard. In all what follows, we denote the 
global solution by (y,iZ), where y = G{u) and u is said to be an optimal 
control. By /̂  > 0, we find a bounded minimizing sequence {un} C L'^{Q) 
and we can assume without loss of generality u^ -^ u^ n —^ 00. By Theorem 
1, the associated sequence {y^} is bounded in H^{Q)^ hence we are justified 
to assume yn -^ y in L'^{Q). Together with the boundedness in C(i?) that 
follows from (3), this yields d{yn) —> d{y) in L'^{Q)^ y = G{u). The optimality 
of n is a standard conclusion. D 

We should mention that our theory does not rely on this existence result. 
It is also applicable to any local solution u. 

Remark 2. Obviously, all admissible controls must be bounded and measur­
able, since ya^yh ^ L'^{f^) and y G C[Q) imply u € L^{Q) because of the 
constraint (2). 

3 First-Order Conditions - Regular Multipliers 

We start by introducing the reduced objective functional by 

J{y,u) = J{G{u),u)=:f{u). 

Thus, (P) is equivalent to mimimizing f{u) subject to 

ya{x) < Xu{x) + {G(u)){x) < yb{x) a.e. in H. (6) 

Since J is of tracking type, it is twice continuously differentiable. Together 
with the differentiability of G (cf. Lemma 1), this yields the following lemma. 

Lemma 2. Under the assumptions of Lemma 1, f is twice continuously 
Frechet differentiable from L^{f2) to R. Its first derivative is given by 
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f{u)h= {K,u-{-q, /I)L2(/2), (7) 

where q solves the adjoint equation 

-Aq-\-d\y)q = y-yd in Q 

^uQ -\- q = 0 on r, 

with y — G(u). For the second derivative, we obtain 

f'{u)[ui,U2] = (yi, y2)L^n)-\-f^{ui^ U2)L^f2) " / d" {y) yi y2 q dx, (g) 
Q 

where y and q are as defined above, and yi = G'{u)ui, i = 1,2. 

Proof. Although the arguments are standard, we recall the main ideas for 
convenience of the reader. From f{u) = J{G{u),u) = 1/2 \\G{u) — yd\\'L2m) "̂  
'^/2|klli2(x2). weget 

f{u)h= {y-ya, 'W)L'^{Q) + «:(w,/i)L2(r2), 

where y = G{u) and w — G'(u)h denotes the weak solution of the linearized 
equation (4) with the right hand side h. Now, choosing q as test function in 
the weak formulation of (4), we obtain 

/ Vit; • Vg dx -\- d^{y)wqdx -h wqds = hq dx. 

n Q r n 

On the other hand, we insert w in the weak formulation of equation (8): 

/ V^ • Vw dx -\- I d'{y) qw dx -\- qwds = {y — yd) ^ d x . 

Q Q r Q 

Subtracting one equation from the other finally yields {y — yd-, '^)L2(X?) = 
(/i, q)L^(f2)' Applying again the chain rule, we arrive at 

f'{u)[ui,U2] = {G'{u)ui, G'{U)U2)L^Q) + {G{u) - yd, G'\u)[ui,U2])L^n) 

A similar discussion as above, where z = G"{u)[ui,U2] denotes the weak 
solution of (5), then gives {y-yd, ^)L2(r?) = -{d"{y) yi 2/2 , q)L^{n)' • 

Remark 3. Notice that, for a given right hand side in L'^{Q)^ equation (8) 
admits a solution q mY ^ since the difPerential operator in (8) has the same 
form as the one in (4). 
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Next, we substitute Xu-{- G{u) = v and consider the associated nonlinear 
equation 

Xu+G{u) = v (10) 

for a given i; in a neighborhood oiv = X u+G{u). This substitution will be used 
for the transformation of (P) into a purely control-constrained problem. By 
the implicit function theorem, we show under a suitable regularity assumption 
that (10) admits a unique solution in a neighborhood of the optimal solution 
u for all given v G L'^{f2) in a neighborhood of i;. To this aim, we introduce an 
auxiliary operator T : L'^{f2) x L'^{n) -^ 1^(0) by T{u,v) = Xu-^ G{u) - v. 
Associated with T is a mapping K : v ^-^ u that is implicitly defined by 
T{K(y)^v) = 0. To apply the implicit function theorem, we need that 

-;r-{u,v)u = Xu-\- G'{u)u. 
OU 

is invertible, where v = Xu -{• G{u). Due to Lemma 1, G'{u) is continuous 
from L^(i?) to H^{n)nC{f2). Let us consider G'{u) with range in L^(i7) and 
denote this operator by G. Because of the compact embedding of H^{Q) in 
LP'{Q)^ G is compact, and hence G represents a Fredholm operator that has 
only countably many eigenvalues accumulating at 0. Here and in the following, 
/ : LP'{Q) —> LP'{Q) denotes the identity. 

We rely on the following REGULARITY ASSUMPTION: 

(R) The prescribed A / 0 is not an eigenvalue of —G, i.e. the equation Xu-]-
G'{u)u = 0 admits only the trivial solution. 

Note that this is fulfilled for all A > 0. From the theory of Fredholm operators, 
it is known that the equation 

dT 
— (u,v)u = Xu-\- G'{u)u = / 

is uniquely solvable for given / G L'^{Q)^ provided that (R) is satisfied. Thus, 
^{u^v) is continuously invertible by the Banach theorem, and hence the 
implicit function theorem gives the existence of open balls B^^(u), Bp^{v) in 
L'^{Q) such that for all v G Bp^{v)y there is exactly one u € Br^{u) with 
T(u^ v) = 0. Therefore, by the definition of T, equation (10) has exactly one 
solution u e Bri {u) for all v G Bp^ {v). Notice that K is of class C^ since T is 
twice continuously Frechet differentiable in LP'{Q) with respect to u, 

Lemma 3. The first- and second-order derivatives of K : L'^{Q) —^ L'^[Q) 
are given by 

K'{v)=(\I + G'{K{v))y\ (11) 

K"{v)\vuV2\ = -[XI + G'{K{v))y^G"{K(v))[K'iv)vuK'{v)v2]. (12) 



192 C. Meyer, F. Troltzsch 

Proof. As K is implicitly defined by T{K{v),v) = 0, the equation XK{v) + 
G{K{v)) = V holds true for all i; in a neighborhood of v. Differentiating on 
both sides yields 

A K'{v) + G\K{v))K\v) = I, (13) 

which implies (11). Next, we apply both sides of (13) to Vi and differentiate 
in the direction t>2. One obtains 

XK'\v)[vuV2] + G''{K{v))[K'{v)vi,K'{v)v2] + G'{K{v))K'\v)[vi,V2] = 0. 

Resolving for K''{v)[vijV2] immediately gives (12). D 

Wi th these results at hand, we can convert (P) , at least locally around u, 
into an optimization problem in the variable v by substituting Xu-\-G{u) = v. 
For the objective functional, we obtain 

J{y,u) = f{u) = f{K{v)) =: F{v), 

where F is defined at least on Bp^{v). Local optimality of u implies the exis­
tence of an open ball Br^ {u) in L'^{Q) such that f{u) < f{u) for all u G Br^ (u) 
with ya{x) < Xu{x) + y{x) < yb{x). This yields 

F{v) < F{v) (14) 

for all V G L'^{Q) satisfying ya{x) < v{x) < yb(x) a.e. in i? and ||f —1^1^2(1?) < 
P2 with a sufficiently small P2 > 0. This p2 is taken so small so that p2 < pi 
and u = K(y) G Br^iu). Thus, v is the optimal solution of 

(PV) minimize F(y) subject to t; G Vad-, v G Bp^{v), 

with an admissible set defined by 

Vad '= {v € L^(i7) I ya{x) < v{x) < yb{x) a.e. in i?} . 

Now, we are able to derive the following standard result. 

L e m m a 4. Assume that (R) is fulfilled. Then the variational inequality 

F'{v){v-v) > 0 (15) 

holds true for all v G Vad' 

Proof. Since Vad is convex, we have for arbitrary v G Vad tha t Vt = v-\-t(v—v) G 
Vad V^ G [0,1]. Moreover, we find \\vt — v\\L^{f2) < P2 if ^ is sufficiently small. 
Thus, (14) yields [F{v -\-t{v - v)) - F{v)]/t > 0. Since / and K are Frechet 
differentiable, the same holds for F. Thus, passing to the limit t I 0 implies 
(15). D 
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By the Riesz theorem, the functional F'{v) G L'^{f2)* can be identified 
with a function from L^(i7). Let us denote this function by /x, i.e. 

F\v)v = J n{x)v{x)dx. (15) 

Furthermore, we define nonnegative functions fXa, fJ'b ̂  L?'{Q) by 

/X6(x) = /i(x)_ = -{-^i{x) + |/x(x)|). 
(17) 

Then, ii(x) = fj^ai^) — /J^bi^) and identifying F'{v) with )U implies 

i^'(i;) + //6-yUa = 0. (18) 

We show that the functions iia^l-^b^ that have been defined by (17), are La­
grange multipliers for the control-state constraints (2). To see this, let us first 
set up the optimality system that should be satisfied at (y,ifc). We derive it in 
a formal way by the following Lagrange function C \YxL'^{Q) x H^{Q) x 
L 2 ( I 2 ) 2 _ > E : 

C{y,u,p,uj) = J{y,u) — I Vy -Vpdx — d{y)pdx— ypds-\- updx 

a Q r Q 

+ / {iJ,b{Xu-\-y-yb)-\-Ha{ya->^u-y))dx 

n 
(19) 

with u) := {iiaifJib)' Note that the last integral is well defined because of 
fj^ayf^b ^ ^^(i?). The optimality system consists of dC/dy = 0, dC/du = 0 and 
the complementary slackness conditions. We show that this is the expected 
optimality system for {y^u) following from the variational inequality (15) for 
V. Straightforward computations give that dC/dy{y,u,p^uj)y = 0 for all y G 
H^{Q) is equivalent to the adjoint equation 

-Ap + d\y)p ^y-yd-^fJ'b-f^a in 12 

d^p-}-pz=0 onR ^ ^ 

Analogously, dC/du{y,u,p,uj)u -• 0 for all u € L'^{Q) corresponds to 

KU-\-p-\- X{llb - iJia) =0. (21) 

In the following, we will show that (20) and (21), together with the comple­
mentary slackness condition 

(Ma, Va- Xu-y)L2(Q) = {lib, Xu + y-yb)L^a) = 0 , (22) 

indeed follow from the variational inequality (15). 
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T h e o r e m 3. If u is locally optimal with associated state y, then there exist 
nonnegative Lagrange multipliers /da € L^{Q) and jib € L^{Q) and an asso­
ciated adjoint statep £ H^{Q)r\C{Q) such that the adjoint equation (20), the 
condition (21), and the complementary slackness conditions (22) are satisfied. 

Proof. We show tha t /la^l^'h defined by (17) do this. Moreover, we verify 
/Xail^h € L^{Q). To this end, we first have to transfer all expressions in 
terms of v to such in terms of (y^u). 

(i) Adjoint equation and condition (21): We start with equation (18) where 
we express F' in terms of / and u. We recall F{v) = f{K(y)). By the chain 
rule, it holds F'{v)v = f'{K{v))K'{v)v. Hence, (18) is equivalent to 

f'{K{v))K\v)v + {/i, - f,a , v)LHf2) = 0 ^ve L\0). 

By substituting u — K'(v)v and u = I^{v)i one obtains 

f{u)u + {fit - Ma , K^{v)~'^u)L2(^f2) = 0. 

Moreover, we insert expression (11) for K'{v) and arrive at 

f'{u)u + (^t - Ma , ( A / + G'{u))u) = 0. (23) 

Lemma 2, equation (7), shows that the first derivative of / is given by 

f'(u)u= {KU-hqi,u)L2i^f2), (24) 

where q = qi represents the solution of (8), with y = y in the right hand side. 
Due to Remark 3, we have qi € F because of y € y C L^(i7). For the second 
term in (23), we find 

( / ^6 -Ma , {XI-\-G'{u))uj^ = A ( / / 6 - / / a , ^^)L2(X?) + (/i6 " Ma , ^)L2(r2), 

(25) 

with w = G'(u)u^ i.e., w is the solution of the linearized equation (4) with 
y := y and h \— u. Arguing as in the proof of Lemma 2, we find 

{lit - /la , ^)L2(f2) = {q2 , ^)L2(r?), (26) 

where ^2 solves the adjoint equation 

^ q2 + d'{y) q2 = /lb- /la in i7 

duq2 + ^2 = 0 on r . 
(27) 

Again, this equation has the same structure as (4). From {/it — /la) ^ L'^{Q)^ 
we deduce q2eY (cf. Remark 3). Inserting (26), (25) and (24) in (23) yields 
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(/CfZ + ^1 + ^2 + Xiflb - tJ^a) , U)L^(^Q) = 0. (28) 

It is clear that p = qi-\-q2 solves the adjoint equation (20). Therefore, since v 
and hence u are arbitrary, (28) is equivalent with (21). Moreover, (21) implies 

fJ'b- fJ'a = -J{KU-^P) (29) 

with p e Y C C{Q) and u G L^{Q) due to Remark 2. Thus, since )Ua(x) • 
lihipc) = 0 by definition (17), it follows that ^Jia^^J'h ^ I/°°(i7), because the 
right-hand side of (29) is bounded and measurable. 

(ii) Complementary slackness conditions: The variational inequality (15) and 
equation (16) give 

F'{v){v -v)= [{fia - fJ^b){v -v)dx>0 

a 

for all V € Vad and thus 

(fla - /̂ 6 , y)L^{Q) = min (fla " /̂ 6 , V)L^{Q) = {fJ'a , 2/a)L2(r?) " (M6 J yb)L^{n)i 

since fiaix) • /J^ti^) — 0 and /j^aix), fibix) > 0 by definition (17). Therefore, if 
Ma(^) > 0, we have v{x) = ya{x)y while fibix) > 0 implies v(x) = yb{x). This 
immediately yields 

(Ma, ya - t̂ )L2(/?) + (M6 , i) - yb)mn) = 0. (30) 

However, because of /ia(x), /^^(x) > 0 and i; G Vad? both addends on the right 
side of (30) are nonpositive and thus we arrive at 

(Ma , Va - v)L^n) = {fIb,V- yb)L^{Q) = 0. 

Together with v = Xu-{- G{u) = \u + y^ this implies (22). D 

4 Second-Order Sufficient Conditions 

As in case of first-oder conditions in Section 3, the proof of second-order suffi­
cient conditions for (P) is based on the results for the auxiliary problem (PV), 
which is an optimization problem with simple box-constraints. For problems of 
such type, the theory of second-order conditions is well-known. To formulate 
these conditions for (PV), we introduce the strongly active set as follows: 

Definition 1. Let r > 0 be given. Then the strongly active set Ar is defined 
by Ar := {x e ^\ iia{x) + yU6(x) > r } . 
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Notice that, according to (17), jjia and fih cannot be jointly positive. More­
over, the corresponding r-critical cone with respect to v is defined in a stan­
dard way by 

Cr:= {v£ L^(n) 
v{x) = 0 , a.e. in Ar 
v{x) > 0 , where v(x) = Vai^) and x ^ A^- } , (31) 
v{x) <0 , where v{x) = yb{x) and x ^ Ar 

with V = X u-\-y as defined above. With these definitions at hand, one can prove 
by standard arguments the following theorem covering the local optimality of 
V, cf. eg. [5]. 

Theorem 4. Suppose that v is feasible for (PV) and satisfies the variational 
inequality (15). Assume further that the coercivity condition 

F"{vW>d\\v\\mn) ^veCr (32) 

is satisfied with some 6 > 0. Then there exist s > 0 and a > 0 such that 

F{v)>F{v) + a\\v-v\\l,^^^ (33) 

for all V E Kd with \\v - i;||L°°(r?) < ^• 

Due to (33), (15) and (32) yield local optimality of v for (PV) and hence, 
(32) is a second-order sufficient optimality condition. It remains to transfer 
this condition to the original terms y and u. For this reason, we need the 
following lemma on F"{v). 

Lemma 5. Assume that (R) is fulfilled. Then F is twice continuously Frechet 
differentiable at v and its second derivative is given by 

F"{vy = C'ly^^){y,u,p,n){y,uf. (34) 

Proof. Thanks to F{v) = f{K(v)) and (R), it is clear that F is twice contin­
uously Frechet differentiable in a neighborhood of v. The chain rule implies 

F"{v)[vuV2] = f"{K{v))[K'{v)vuK'{v)v2] + f'{K{v))K"{v)[vi,V2]- (35) 

We substitue v = v and thus K(v) = u. Moreover, we set i;i = i;2 = t;, and 
K'(v)vi = K'{v)v2 = K'{v)v = u. Hence, (35) is equivalent to 

F"{v)v'^ = f'(u)u^ + f'{u)K"{vy. 

In view of (23), we have for the second addend 

nu)K"{vy = -(/.6-/^a, {\i+G'(u))K"{vy)^^^^^. 
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Together with the expression for K"{v) in (12), we arrive at 

F"[vy = f"{u)u^ + {fxt - Ma , G"{u)[K'{v)v,K'{v)v])^,^^^ 

= f"{uW + (M6 - Ma , G"(u)«2)^,(^). (36) 

Since z = G"{u)u^ solves equation (5), similar arguments as in the proof of 
Lemma 2 give 

(/i6 - /ia , ^)L2(:f?) = -{d"{y)y^ , q2)L^{Q), 

where 2̂ is the solution of (27) and y = G'{u)u, i.e. y represents the solution of 
the linearized equation (4). Thus, together with (9) for the second derivative 
of / (see Lemma 2), (36) is transformed into 

F"{vy = ||2/||i.(„) + K ||u||ia(^) - I d"{y) y' (q^ + q^) dx, 

Q 

where qi again denotes the solution of (8) with y — y in the right side. As in 
the proof of Theorem 3, we have p = q\-\- q2 and hence we obtain 

F'^vW = \\y\\l^a)+^\HlHa) - jd"{y)y-'pdx 

^ J{y,u){y^'^)iy^'^f - j d"{y)y^pdx = C'ly^^^{y,u,p,^j){y,uf, 
Q 

according to the definition of £ in (19). D 

Based on (31), we define the r-critical cone for the original problem (P), 
denoted by Cr as follows: 

Definition 2. (Critical cone) Let Cr he defined as in (31). The critical cone 
associated to (P) is given by 

Cr '.= {{y,u)eY xL'^{Q) \y = G'{u)u and Xu + yeCr}. 

Now, we are able to state second-order sufficient conditions for (P). 

f Let 6 > ^ exist such that 

esse) < 
I C"{y,u,p,uj){y,uf >S\\U\\\2(^Q) for all {y,u) € C^. 

We show that (SSC) is indeed sufficient for local optimality of u. 

Theorem 5. Let (y, u) satisfy the first-order necessary optimality conditions for Problem (P) and assume that condition (SSC) is fulfilled with some S > 0, 
r > 0. Then there exist £ > 0 and a > 0 such that 

J{y, u) > J{y, u) + (J 11̂  - ii||i2(r?) (37) 

for all {y,u) eY x L'^{Q) with y = G{u), ya{x) < Xu{x)-{- y(x) < yb{x), and 
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Proof. First, we choose an arbitraLry pair {r}^h) G Cr and define v := Xh-\-rj. 
Notice that rj = G'{u)h holds according to the definition of Cr- Due to Lemma 
5, one obtains 

F"{vy = L'(^,^){y,u,p,ti){v,h)' > 6\\h\\l.^n), (38) 

where we used condition (SSC) for the last estimate. Due to h — (A / H-
G'{u))~^v^ (38) is equivalent to 

1 
- ^ II \ T ^nKn-.\\\ lpllL2(r?) 

2 II..II2 
>5\\\I + G'{u)\\-ctLHO))MLHn) 

^^MUn), (39) 

with J > 0. Because of (?7,/i) G C -̂, clearly v G Cr holds true. Moreover, 
thanks to (R), every v ^ Cr can be expressed by some {rj,h) G C^, and hence 
(39) holds true for all i; G C^. In this way, F ' ' satisfies a coercivity condition 
and thus. Theorem 4 yields 

F{v)>F{v) + a\\v-v\\l.^n) (40) 

for all V G Vad with ||t; — V\\L°°{Q) ^ -̂ In particular, we may take 

V ~ Xu-^ G{u), 

where u is taken arbitrary with ya{x) < Xu{x) + G{u){x) < yb{x) and \\u — 
^\\L°°{n) ^ ^ such that \\v — v\\L°°{n) ^ ^ ^md ||i; — i'||L2(i7) < Pi- Notice that, 
because of (R), to every v G Vad with Ht' — t̂ ||L2(i7) < Pi a function u exists 
with u = K{v) and ||t̂ —'ii||L2(r?) ^ ^i- On the other hand, the continuity of the 
mapping XI-{-G from L°^{Q) to L'^i^Q) ensures that ||ti—'u||£,00(12) '^ ^ implies 
11̂ ; — t;||£,oo < r . Ifwe take e sufficiently small, then it follows that r < e and 
11̂  - '^\\L'^{Q) < C ||I; - V\\LOO(^Q) < pi. Hence, for all u with \\u - U\\L^(^Q) < e, 
there exists a v with Xu-\- G(u) -= v and with \\v — v\\L°°(a) < i. Then, with 
F(v) = f{u) and F{v) = f{u), (40) gives 

f{u) > f{u) + a ||Au + G{u) - (An + G{u))\\l.^^^ (41) 

for all u with Xu-\- G{u) G Vad and ||n — n||L°o(/2) ^ -̂ This already implies 
the local optimality of u. It remains to show the quadratic growth condition 
(37). A Taylor expansion for the last term in (41) yields 

Xu^-G{u) - {Xu-{-G{u)) = X{u - u) -\- G\u){u - u) -\- rf{u,u - u), 

and, since G is continuously Frechet differentiable from LP'^Q) to Y (see 
Lemma 1), the remainder term SEitisfies 
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\\r?\\mn) 
\\u-u\\L^(^f2) 

Therefore, we obtain 

0, as \\u -u\\L2(^f2) -^ 0-

199 

(42) 

\\Xu+G{u)-{Xu^G{u))\\L2in) 

= \\{XI-^G\u)){u-u) + r?U2^n) 

>\\{XI-\-G\u)){u-u)h.^a)-\\r?\\mf2) 

1 
> 

^PllL2(r?) 

>c\\u-u\\L2(^Qy 

\\y'-u\\L^n) 

Since {XI -\-G'{u)) is continuously invertible because of (R), (42) yields c > 0 
if ||u — 'ii||i;,2(^) is sufficiently small. Thus (41) implies 

f{u) > f{u) + ac \\u- u||jr^2(^) = f{u) + a\\u - u\\L2^ay 

Remark 4- Clearly, due to (37), ii is a strict optimal solution. 

n 

5 Numerical Tests 

For our numerical tests, we consider an optimal control problem tha t differs 
slightly from (P), as already mentioned in Remark 1. Instead of (1), the state 
equation is now given by 

-Ay{x) + y{x) -f d{y{x)) = u{x) in Q 

di^y{x) = 0 on r . 
(43) 

One can easily verify that the theory presented above is also valid with the 
new state equation (43). 

We investigated two examples with different 
nonlinearities d{y). In both cases, the desired state 
was given by 

yd{xi,X2) = 8 sin(7rxi) sin(7rx2) - 4 

and the bounds were fixed at ya{x 1^X2) = —1 and 
yb{xi,X2) = 1. The Tikhonov regularization pa­
rameter was set to /̂  = 0.5 • 10~^. Moreover, to 
approximate a purely state constrained problem, 
we fixed A = 0.5 • 10~^. In the first example, the 
nonlinearity was defined by 

Fig. 1. Desired state yd-

d{y) = y\ (44) 
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Fig. 2. Control uh in the first example.
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Fig. 3. State yh in the first example.
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0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1
0

2

4

6

x
1

x
2

µ
a,h

Fig. 5. Lagrange multi-
plier µa,h.

0

0.5

1

0

0.5

1
0

1

2

3

4

5

6

7

x
1

x
2

µ
b,h

Fig. 6. Lagrange multi-
plier µb,h.

200 C. Meyer, F. Troltzsch 

whereas we took 

d{y) J>v (45) 

in the second one. Thus, the assumptions on d mentioned in Section 1, are 
fulfilled in both cases. 

The optimization problems were solved numerically by a SQP method 
tha t is described in detail for instance in [8] or [9]. To solve the arising linear 
quadratic problems, a primal-dual active set strategy was applied, see for 
instance [1] or [3]. We used a conforming finite element method with linear 
ansatz functions to solve the state equation and the adjoint equation. For 
all computations, uniform meshes were used. The number of intervals in one 
dimension, denoted by N, is related to the mesh-size, i.e. the diameter of the 
triangles, hy h = \ / 2 N ~ . The following figures show the numerical solution 
for the first example. This computation was performed with a mesh size N=50. 
Here and in the following, the numierical solutions are denoted by the subscript 
h. 
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As one can see in the Figures 5 and 6, the Lagrange multiphers tend to 
be irregular on the boundaries of the active sets. This might indicate that 
the Lagrange multipliers associ^ited with the state constraints for A = 0 
should be measures. This verifies the known theory, see for instance Casas 
[4] or Bergounioux and Kunisch [2]. However, in view of (21) with p = 
&{u)*{G{u) — yd-\- lJ')y the equation for /j, = iJ>a — t^b ^^ given by 

A/i + G ' (^ )> - G'{uy{yd - G{u)) - KU 

with a compact operator G'(uY : LP'{Q) —> LP'{Q). This equation is ill-posed 
for A = 0. Therefore, as A = 0.5 • 10~^ is chosen quite small, we are faced 
with the characteristic difficulties of ill-posed problems. In view of this, the 
computed Lagrange multipliers are certainly overlaid by rounding errors that 
are difficult to quantify. 

To describe the convergence behaviour of the algorithm, the values of the 
discrete objective functional Jh =• 1/2 \\yh —VdWi^m) + f^f^ W'^hWi^m) ^^^ ^̂ ~̂ 
played in the following Tables 1-3 for each step of the SQP-iteration, denoted 
by itsQp. As a further convergence indicator, the error in the semilinear state 
equation is approximated by 

6-1/ — 
\\Gh\yh)-Uh\\LHn) 

Wyhh^io) 

where Gh denotes the discrete control-to-state operator Gh : Uh ^-^ Vh- Thus, 
Cy quantifies the relative error of the discrete analogon of — Ay -\- cy -\- d{y) — u, 
i.e. the error in the semilinear state equation. Similarly the error in the adjoint 
equation is measured by 

^ lb/i||L2(f?) 

where (G}^(y^)~^) is associated with —Ap-{- cp-\- d'{y)p. Furthermore, the 
error in the necessary condition (21) is approximated by 

The difference between two consecutive iterates, quantified by 

3 V Wn'-r'^hna) Wy'C^'^hHa) llPr^' L2(r2) 

was used for the termination condition of the SQP method. More precisely, 
the iteration stopped ii 6 < 10"^. The following table shows the convergence 
behavior in the first example for a mesh size of N=50. In addition to the values 
of Jh and the error approximations described above, the number of active set 
iterations denoted by it AS is shown in the last column. 
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itsQP 

^ 
1 
2 
3 

1 Jh 
3.1099e+00 
1.3793e+00 
1.3757e+00 
1.3757e+00 

Table 1. 

^opt 

l.OOOOe+00 
4.1930e-20 
3.5225e-20 
3.3836e-20 

Example 1 with N=50 

3.5361e-03 
3.4860e-04 
3.7393e-04 
3.6347e-04 

9.1101e-04 
3.7443e-01 
4.4817e-05 
2.1590e-ll 

6 

-
5.7686e+02 
2.5864e-01 
3.3737e-04 

#i tAS 

13 
6 
1 

We observe that e^ is much smaller than Cy. A possible explanation for this 
fact could be that the adjoint equation represents a linear P D E in contrast to 
the semilinear state equation. 

Table 2 illustrates the convergence behaviour in the first example for 
N=100. As one can see, the error in the approximation of the PDEs is re­
duced significantly. However, the value of the discrete objective functional is 
not decreased noticeably. 

Table 2. E^xample 1 with N=100 

itsQP 

0 
1 
2 
3 

1 Jh 
3.1112e+00 
1.3800e+00 
1.3757e+00 
1.3757e+00 

Gopt 

l.OOOOe+00 
4.0038e-20 
3.3583e-20 
3.3876e-20 

Cy 

8.9151e-04 
8.8727e-05 
9.5252e-05 
9.2619e-05 

Cp 

2.3143e-04 
9.3948e-02 
1.2688e-05 
6.4219e-12 

5 

-
5.6869e+02 
2.6991e-01 
3.3493e-04 

#i tAS 

-
23 
8 
1 

Figures 7-11 show the numerical solution of the second example for N==50. 
Again, the Lagrange multipliers cire comparatively irregular on the borders of 
the active sets. 
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Fig. 9. Adjoint state p/^. Fig. 10. Lagrange multi- Fig. 11 . Lagrange multi­
plier fia,h' plier Mb,/i-

The convergence behavior of the algorithm in this example is illustrated 
in Table 3. The nonlinearity d{y) = e^^ of this example is much steeper 
than d{y) = y^. Therefore, the number of SQP-iterations is larger than for 

diy) = y^-

itsQP 

~~0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

[ Jh 
3.1099e+00 
3.2742e+00 
1.3780e+00 
1.5610e+00 
1.4711e+00 
1.5523e+00 
1.5102e+00 
1.5449e-f-00 
1.5203e+00 
1.5392e+00 
1.5248e+00 
1.5357e+00 
1.5275e4-00 
1.5337e+00 
1.5291e+00 
1.5325e+00 

Table 3. 

Gopt 

l.OOOOe+00 
1.9729e-20 
3.6935e-20 
8.9187e-20 
7.3050e-20 
8.6599e-20 
8.5926e-20 
8.2400e-20 
8.3514e-20 
8.9509e-20 
8.7443e-20 
9.0720e-20 
8.2449e-20 
8.5332e-20 
8.6704e-20 
8.4110e-20 

Example 2 \ 

By 

2.9450e-03 
1.9334e-02 
2.9660e-02 
8.8222e-02 
5.4490e-02 
8.5751e-02 
6.9141e-02 
8.2864e-02 
7.2910e-02 
8.0637e-02 
7.4701e-02 
7.9241e-02 
7.5798e-02 
7.8403e-02 
7.6457e-02 
7.7909e-02 

vith N=50 

Cp 

3.4595e-03 
3.7889e+00 
9.8747e-02 
8.0814e-02 
6.1055e-03 
1.2353e-02 
1.2245e-03 
1.7494e-03 
6.1815e-04 
4.7578e-04 
2.4842e-04 
1.6924e-04 
9.1957e-05 
5.9436e-05 
3.2479e-05 
1.9987e-05 

6 

-
1.2591e+03 
1.1220e+00 
5.8821e-01 
2.0554e-01 
1.8589e-01 
8.9151e-02 
7.2685e-02 
5.2567e-02 
3.9750e-02 
3.1121e-02 
2.3635e-02 
1.8277e-02 
1.3928e-02 
1.0600e-02 
8.0250e-03 

#i tAS 

-
1 

13 
14 
10 
10 
7 
8 
5 
5 
5 
4 
5 
3 
3 
3 
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Summary. The aim of this paper is to extend and generahze the known necessary 
optimaUty conditions to non-smooth as well as higher-order setting concerning the 
optimization problem (which is called an abstract control problem) 

Minimize fo(x,u) with respect to 
fiix,u) <0, . . . , / fc(a; ,u) <0,F{x,u) = 0, {x,u) e D x U, 

where D is an open set of a Banach space X, U is a, nonempty set, and the data 
fulfill a certain convexity condition which can often be verified in the context of 
ordinary optimal control problems. 

1 Introduction 

We consider abstract control problems of the form 

J Minimize fo{x,u) with respect to {rT>\ 
\fi{x,u) <0,...Jk{x,u)<0,F{x,u) = 0, {x,u)eDxU, ^^^^ 

where D is an open set of a Banach space X, [/ is a nonempty set (called 
control set), /o)--)/fc • ^ ~^ ^y înd F is a mapping of the product set 
DxU into another Banach space Y (the equation F(x,n) = 0 is called control 
system). Optimization problems of this form are also called mixed problems 
and were considered for the first time by Pshenichnyi [17] and Pshenichnyi and 
Nenakhov [13, 18]. These problems were also dealt with in the first chapter 
of the book by loflFe and Tihomirov [10] where also further references can be 
found. Due to the hidden convexity properties of optimal control problems, 
the results concerning abstract control problems can successfully be applied 
to develop the well-known necessary conditions for optimality, such as the 

Dedicated to the 70th birthday of Professor V. M. Tihomirov 
The research was supported by the Hungarian Research Fund (DTKA) Grant 
T038072. 

http://klte.hu
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Pontryagin maximum principle. The detailed description of this approach can 
be found also in [10]. 

A pair (x, u) is called admissible (feasible) for (CV) if 

{x,u) e D xU, fi{x,u) < 0, . . . , fk{x^u) < 0, and F{x,u) = 0. 

An admissible pair (x*,u*) is said to be a (strong) local minimum of the 
problem (CV) if there exists a neighborhood F C Z) of a:* such that 

fo{XjU) > fo{x^,u^) for all admissible pairs (x^u) with x £V. 

Assuming certain smoothness and convexity assumptions, first-order nec­
essary conditions can be derived for the optimality of a pair (a;*,u*). We 
restate here Theorem 1.1.3 of the book [10] for the reader's convenience. Re­
call that the Lagrangian function C : D x U x E'̂ "̂ ^ x y* —̂  E of problem 
(CV) is defined by 

k 

C{x,u,Xo,...,Xk,y*) ::= ^\ifi{x,u) + {y* o F){x,u). (1) 
i=0 

As usual, Y* stands for the topological dual space of Y. 

Theorem 1. Let fo, fi,..., fk : D x U -^ R, F : D x U ^ Y, and (x^.u^) G 
D X U. Assume that 

(i) For every u e U, the mapping x i-> [fo(x,u),..., fk{x,u),F{XjU)) is 
continuously Frechet differentiable at the point x*; 

(a) The range of the continuous linear operator Fx{x^jU^) : X —^ Y has 
finite codimension in Y; 

(Hi) For every x £ D, the mapping u i-> [fo{x,u),.,. y fk{XyU),F{x,u)) 
satisfies the following convexity assumption: for every ^1,1^2 ^ U and 
a G [0,1], there exists an element u £ U such that 

fi{x,u) < afi(x,ui) -{- {I - a)fi(x,U2) {i e {0,...,A;}), 

F{x,u) = aF{x,ui) 4- (1 - a)F{x,U2). 

If (a;*,n*) £ D x U is a local minimum of the problem (CV), then there exist 
Lagrange multipliers AQ, . . . , Â  > 0 and y* G y*, not all zero, such that 

Ai/i(x*,ifc*) = 0, . . . , Xkfk{x^,u^) = 0, (2) 

Xofox{x*,u^)-\- \- Xkfkx{x*,u^)-¥y* o [Fx{x^,u^)] = 0, (3) 

and the minimum principle 

minC{x^,u, AQ, . . . , Afc,y*) = £(a:*, zx*, AQ, . . . , A^,y*) (4) 
uEU 

holds. 
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Here and in the sequel, the subscript x denotes derivative/diflFerentiation 
with respect to the x variable. Obviously, (3) can also be written as 

Cx{x^,u^,Xo,..., Afc,2/*) = 0. 

Adopting the setting of Theorem 1, the idea behind our approach is as 
follows. First, for all fixed m G N and u = (ui,... ,Um) € t/"^, a new problem 
(denoted by {%iCV) below) is constructed which will be an ordinary program­
ming problem. Due to the convexity assumption (iii) of Theorem 1, it will turn 
out that the local optimality of the point (x^^u^) in (CV) yields the local opti-
mality of (x*, 0 , . . . ,0) G D x E ^ in (TuCV). Applying the standard Lagrange 
principle to the problem (T^CP), the existence of multipliers AQ, . . . , Â  > 0 
and y* € F*, not all zero, can be obtained that satisfy (2), (3) and 

min £(a;*,^i,Ao,...,Afc,y*) = £(x*,n*, AQ, . . . , Afc,y*) (5) 
ue{ui,...,Um} 

In the final step, applying a compactness argument and using the finite codi-
mensionality of the range of the Frechet derivative Fx{x^,u^)^ one can derive 
the existence of multipliers that also satisfy (4) instead of (5). 

In our main result, involving the notion of strict prederivative introduced 
by loffe in [8] for F , Clarke's subgradient for /o, . . . , / fc, and applying the 
nonsmooth implicit function theorem of [14] and the Lagrange principle de­
veloped in [15], we generalize the above result to the case of not necessarily 
smooth functions /o, • • •, /fc and F and we obtain first as well as higher-order 
necessary conditions for optimality. 

2 Strict Prederivatives and a Lagrange Principle 

In what follows, L{X, Y) denotes the space of continuous linear operators from 
X toY. This space is equipped with its usual operator norm. For the analysis 
of locally Lipschitz operators, lofl'e [8] introduced the following notion: 

A set .4 C L(Xy Y) is called a strict (Frechet) prederivative iox F \ D ^^Y 
at X* if, for all e > 0, there exists J > 0 such that 

F{xi) - F{x2) e A{xi -X2) + 1̂1x1 -X2\\BY (xi,a;2 € 6Bx H-a;*). 

Here Bx and By denote the closed unit balls of X and F , respectively, and 
A{x) := {Ax : A e A}. Later we shall also use the notation y* oA:= {y* oA : 
AeA}. 

Generally, (and unfortunately) there is no natural candidate for a strict 
prederivative. However, it can be proved that F is strictly Frechet differen-
tiable at x* if and only if ^ = {JP'(X*)} is a strict prederivative of F at x*. 
In the case when X and Y are finite dimensional spaces, then Clarke's gen­
eralized Jacobian dF{x^) ([4]) is a strict prederivative of F at x* ([8]). If F is 
locally Lipschitz at x*, then one can easily check that the set of all continuous 
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linear operators with norm less than or equal to L (where L is the Lipschitz 
modulus of F around x*) is a strict prederivative of F at x*. Conversely, the 
existence of a (norm-)bounded strict prederivative obviously implies that the 
function F is locally Lipschitz at x*. 

A sequence ^ = {xn,tn)neN in X x E_i. such that Xn -^ x^^ tn —^ 0+, 
will be termed an approximation of x^ in the sequel. Given an approximation 
^ = (x^, ^n)n€N of X*, a normed-space valued function (p defined on D is said 
to be differentiahle with respect to ^ if the limit 

D^(p{x^) :=•- hm 
n—>'Oo tn 

exists, which is called the derivative of (p with respect to ^. In order to derive 
the the standard first-order and second-order necessary conditions from our 
results below, one has to take approximations of the form ^ = (a^*,̂ n)n€N 
and ^ = (x* + Vtndjtn)„^^^ respectively. For approximations of the form 
^ = (a^*,̂ n)nGN) One obviously has the differentiability of any (p with re­
spect to ^ and D^(p{x^) = 0, hence all the conditions and statements in­
volving such a particular ^ are trivially satisfied in the sequel. For approxi­
mations of the form ^ = (x* 4- Vtnd^tn)^^^^ the differentiability of (p with 
respect to ^ holds if cp is first-order smooth, (p'{x*)d = 0 and the second-
order directional derivative of (p in direction d exists. Thus, in this setting, all 
conditions and statements involving ^ reduce to second-order regularity and 
necessary conditions. More generally, the use of approximations of the form 

^ = (x*+ VU^di-^ -̂ Vtn~^dk~.i,tn)^^^, where di,.,.,dk-i G X are fixed 
vectors, leads to necessary conditions of order k. 

In relation to the notions of strict prederivative and derivative with respect 
to approximations and also applying the approach of Dubovitskii and Milyutin 
[5, 6, 7], the following nonsmooth Lagrange Principle has been stated in [15]: 

Theorem 2. Let /o, / i , •. •, A : D -^ R, F . D -^ Y, and x^ G D. Assume 
that 

(i) foi fii " ' ifk o.f^^ locally Lipschitz at x*; 
(a) There exists a compact convex set A (Z L{X, Y) which is a strict pred­

erivative of F at X*; 
(Hi) Each A £ A has a closed range. 

If x^ £ D is a local minimum of the problem 

J Minimize /o(x) with respect to 

\fi{x),...Jk{x)<^, F(x) = 0, xeD ^^^ 

Then, for all approximations ^ ~ {xn,tn)neN of x^ such that /o , . . . , / fe ,F 
are differentiahle with respect to ^, there are multipliers AQ^AI,. .. ,Xk > 0 and 
y* G y*, not all zero, such that 
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Ai/i(a;») = 0, . . . , Afc/fc(x.) = 0, (6) 

0 e Xodfoix,) + ••• + Xkdfkix^) + y''oA, (7) 

XoDiMx,) + ••• + XkD^fkix.) + y*(Z?{F(a;.)) > 0. (8) 

Here df denotes Clarke's subgradient ([4]): 

df{x,) := {x* e X*\{x*,v} < r{x„v) \/v e X}. 

In the case when ^ is the trivial approximation (x*,tn)n€N) the notation 
df{x^) could also stand for the so-called Michel-Penot subgradient (cf. [12]). 

The above result incorporates and generalizes most of the multiplier rules 
obtained in the papers [1, 2, 3, 9, 11, 16, 19]. 

3 Main Result 

Our main result is contained in the following theorem which offers a gener­
alization of Theorem 1.1.3 in [10]. It takes the same convexity assumptions 
as condition (iii) of Theorem 1 but all the other regularity assumptions are 
considerably weaker than those of Theorem 1. This result also incorporates 
the notion of approximation, therefore higher-order necessary conditions of 
optimality also easily follow from it. 

Theorem 3. Let foji,... Jk : D xU -^R, F : D xU ^ Y, and {x^,u^) € 
D X U. Assume that 

(i) For every u G U, the mapping x \-^ (^fo{x,u),..., fk{x^u),F{x,u)) is 
locally Lipschitz at x^; 

(a) The partial subgradients dxfo{x*,u^), •.. ,^x/i(^*5^*) C X* are norm-
compact sets of linear Junctionals; 

(iii) There is compact convex set A C L(X, Y) which is a strict prederivative 
of the map x i-̂  F{x, u^) at x^; 

(iv) The range of each A £ A has finite codimension in Y; 
(v) For every x G D, the mapping u \-^ ( /o(x,n), . . . ,/fc(a:,n),F(x,u)) 

satisfies the following convexity assumption: for every Ui^U2 € U and 
a € [0,1], there exists an element u £ U such that 

fi{x,u) < afi{x,ui) -{• {I - a)fi{x,U2) {i e {0,.. . ,/c}), 

F{x,u) = aF{x,ui) + (1 - a)F{x,U2). 

If the pair (x*,'U*) is a local minimum of the problem (CV), then, for all 
approximations ^ of x^ such that x ^-^ (/o(x, t i*) , . . . , /A;(X,iz*), F(x, î *)) is a 
differentiable map with respect to ^, there exist multipliers Ao,. . . , Â  > 0 and 
y* G Y*, not all zero, such that 

Ai/i(x*,'ii*) = 0, . . . , Afc/fcCx*,̂ *̂) = 0, (9) 
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0 G Xodxfo{x^,u^)-\- \- Xkdxfk{x*,u^)-{-y* o A, (10) 

XoDJo{x,,u^) + . •. + XkD^fk{x,,u^) + y*{D^F{x^,u^)) > 0, (11) 

and, with the notation (1), the minimum principle 

min£(a;*,tt,Ao,...,Afc,2/*) = £(x*,ifc*, Ao,. . . , Afc,y*) (12) 
UEU 

holds. 

Proof, For convenience, we split the proof of the theorem in five steps. 

Step 1. We construct a family of optimization problems, each one satisfy­
ing the regularity assumptions of Theorem 2. Let m G N and be 
arbitrarily fixed elements of U and denote the m-tuple (wi,...,Wrn) by u. 
Given a function ^p defined on JD x C7, introduce the transformed fimction 
^(ni,...,n^)^ = %x^ defined on J9 x W^ as follows: 

%j,Lp{x,ai,..,,am) 

:= (1 - a i am)<^(x,u^) -^ anp{x,ui) + ----V am^{x,Um)' 

Now, given u = ( t t i , . . . ,tx^) G V^^ we consider the following optimization 
problem 

f Minimize %ifo{Xj a i , . . . , a m ) with respect to 

X G D , a i , . . . , a ^ > 0 , 

T u / i ( x , a i , . . . , a ^ ) < 0 (z G { 1 , . . . , A;}), 

TuF(x ,a i , . . . , a„ i ) = 0, 

which is called the 7^ transformation of the original problem {CV). The ad­
vantage of dealing with {%xCV) is that it does not contain a control variable, 
i.e., it is an ordinary optimization problem with (m + k) scalar inequalities 
and a Banach space valued equality constraint. 

Step 2. We claim that, for all fixed u = (u\^... ^Um) G 17"̂ , the point 
(x*,0, . . . ,0) e U X W^ is a local minimum of the transformed problem 
(TuCV). Assume, on the contrary, that (x*, 0 , . . . , 0) is not a local minimum of 
(T^CP). Then there exist sequences Xn -^ x^ and (ain,..., c^mn) —^ (Oj • • • j 0) 
such that, for all n G N, ain > 0, . . . , amn ^ 0, and 

%ifo{XniCtln, • • ',Oimn) < %ifo{x^,0, . . . , 0) = fo{x*,U^)y 

%ifi{Xn,OCin,.^.,(ynin) < 0, (z G {l,.,.,k}), 

iu-T yXnj Oilm • • • 5 ^mn) ^^ 0 . 

For large n, we have that 1—ain amn ^ 0, therefore, the left hand sides 
of the above inequalities and equation are convex combinations of (^(x^, w*), 
V (̂̂ n, ui), • • •, <^{xn, Um), where V? G {/o,..., /fc, F } . Thus, by assumption (v) 
of the theorem, there exits Vn ^ U such that 
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), (ie{o,...,k}), 

r [Xm '^n) ^^ J-n^ [p^ri') (^Ini • • • > ^mn)' 

Hence 

i.e., {xn-tVn) is an admissible solution of {CV). If n is large enough, then the 
local optimality of (x*,it*) yields that foiXn^Vn) > f{x^,u^), which contra­
dicts 

fo{Xn,Vn) < TufoiXn, ^ i n , . • . , Oimn) < %ifo{X:,,0, . . . , 0) = / o ( x * , U^) 

and proves our claim. 

Step 3. Now we check that the data of {T^CV) satisfy the assumptions of 
Theorem 2. Observe that the functions Tufo," - ,Txifk are locally Lipschitz 
at the point (x*,0, . . . ,0) € D x R^. It is also not difficult to see that the 
operators T^A : X xW^ -^Y defined by 

m 

%,A{x,ti,. ..,tm) := A{x) + Y^ [F{x^,Uj) - F{x^,u^))tj, 
3 = 1 

where A £ A, form a compact convex strict prederivative for T^F at the point 
(x*, 0 , . . . , 0). The range of A is finite codimensional, therefore (by Banach's 
open mapping theorem) it is closed. Thus the range oiT^A will also be closed 
(since it is of the form A{X) + S, where S' is a finite dimensional subspace of 
Y). If ^ = {xnytn)neN is an approximation of the point x* such that the map 
X 1-̂  (/o(a:, I t*) , . . . , /fc(x, u^),F{Xj n*)) is differentiate with respect to ^, then 
the sequence rj = %i^ — {{xm 0 , . . . , 0), tn)n€N is obviously an approximation 
of (x*, 0 , . . . , 0) € i:̂  X R^ and 

DrjTufi = D^fi{x,,u,) {i G {0 , . . . , k}), Drj%,F = D^F{x,,u,). 

Step 4' We now write down the optimality conditions for (TuCV). The La­
grange functional of the problem (T^CP) is defined by 

%iC{x, a i , . . . , am] Mi5 • • • J fJ^rn, AQ, Ai , . . . , Afc,y*) 
m k 

:= - ^ fijaj + ^ Xi%ifi{x, a i , . . . , am) + y* {%iF{x, a i , . . . , am)). 
j=l i = 0 

Applying Theorem 2, we get that there exist multipliers )Ui,. . . , / i^ > 0, 
Ao, Ai , . . . , Afc > 0 and y* € y*, not all zero, such that 

A^Tu/^(x„0,... ,0) = Xifi{x,,u,) = 0 (z G {1 , . . . ,k} ) , (13) 

0 € ^ A A / i ( a : * , i / * ) + y* o ^ , (14) 
i=0 
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k 

i=0 

for all j £ {1,..., m}, and 

k 

^XiD^fi{x,,u,)-^y*{D^F{x,,u,)) > 0. (16) 
i=0 

Due to (15), if Ao,. . . , Afc and y* were zero, then /^ i , . . . ,firn would also be 
zero, a contradiction. Therefore, AQ, . . . , Â  and y* cannot be simultaneously 
zero. By the homogeneity, we can assume that 

|Ao| + --- + |Afc| + | | j /* | | = l. (17) 

In view of the nonnegativity of the multipliers )Ui,..., /i^^, it follows from (15) 
that, for all u € { n i , . . . , Um}^ 

£(a;*,w,Ao,...,Afc,y*) > >C(a;*,'u*, AQ, . . . , A^,?/*) (18) 

Therefore, from what we have proved, it follows that, for arbitrary finite subset 
V = {u i , . . . ,Um} C C/, there exist multipliers Ao,. . . , Â  > 0 and y* € Y* 
such that (13), (14), (16), (17), and (18) hold for ueV. 

Step 5. We now come back to the original problem (CP), and show that the 
multipliers can be chosen so that they satisfy (13), (14), (16), (17) and (18) 
for all It G U. Define the set 

A C dxh(x^,u^) X ••• X dxfk{x^,u^) x ^ x R^+^ x Y* 

by 

k k 

. l : = { ( x S , . . . , 4 , A A o , . . . , A f c , y * ) | ^ A , < + 2 / * o A = 0 ,^ |A, |+ | |2 /* | | = l } . 

Utilizing the norm-compactness of the subgradients dxfi{x^^u^) and A^ and 
that the image spaces of the elements of A are of finite codimension, we can 
establish the norm (sequential) compactness of A in X^'^^ x I/(X, Y) x E^+^ x 
Y\ Let 

((^On5 • • • J ^ fcn ' ^n j Aonj • • • >'̂ fcn? 2/n)}^ei^ (1^) 

be an arbitrary sequence in A. Since dxfo{X:t:,u^)^... ,dxfk{x*yU^), and A 
are norm-compact sets and |Aon| + • • • + |Afcn| ^ 1? we may assume that the 
sequence 

Aon,. .- ,Afcn))„^f^ (20) 

strongly converges to an element 

(XQO, • • •) f̂c0 5 ^0) AoO) • • • 5 Afco)-
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Since y^ belongs to the closed unit ball By*, hence we may also assume that 
y* converges to an element yj i^ ^^^ weak* topology. Thus, 

iVn^Aox) = {yl, Anx) + (y;, {AQ - An)x) 
k 

= - X I ^iriix'ln^x) + {y^, {AQ - An)x), 

whence, taking the limit n —> oo, we get that 

k 

(yo^Aox) = -Y^Xio{x*o,x). (21) 

Finally we show that y^ tends to yo ^l^o strongly. The operator AQ being of 
finite codimension, there exist elements y i , . . . , ŷ  € Y such that 

(x,ti,...,U) ^ Aox-hUyi + \-tey£ 

is surjective bounded linear operator from X x R^ to Y, By the open mapping 
theorem, there exists r > 0 such that the image of the ball 

{(x, t i , ...,U)eXx E^l max(||x||, | t i | , . . . , M < r} 

contains the closed unit ball By of Y. Now, 

\\yn-yo\\= sup |(y;-yo*,2/)| 
yeBy 

< sup \{y^-y;^,Aox-\-tiyi-\--"-\-teye)\ 
\\x\\,\ti\,...,\U\<r 

e 

< sup | ( y ; - y S , ^ o ^ ) | + r V K y ; - y 5 , y i ) | 

< sup |(y;,(Ao - An)x) + (y;, Anx) - {yo,Aox)\ 
\\x\\<r 

e 

k 

< sup \{ylAAQ-An)x)\ + y^{Xin{x*^,x)-XiQ{x'lQ,x)) 

i 

'^rY^Wn-yl.yi)\ 

k i 

< r ( P o - K\\ + E l l ^ -<« - ^«^*o|| + E l<2/" - 2'o>2/i)l) 
i=0 i = l 

Hence, using the norm-convergence of the sequence (20) and the weak* con­
vergence of y*, it follows that ||y* - yo|| -^ 0 if n —̂  oo. Taking the Hmit 
n -^ GO in 
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|Ao„| + --- + |Afc„| + | | j / : | | = l ( n e N ) , 

it follows that 
|Aoo| + -'-+|Afco|+||2/SII = l. 

This equation together with (21) yields that 

{XQQ, ... ,XIQ, AQ,Xoo,...,Xko^Vo) ^ ̂ •> 

i.e., the sequence (19) has a strong limit in yl, proving the sequential com­
pactness of A. 

Having clarified this technical point, consider now, for fixed u e U^ the 
set A{u) the set of those elements ( x j , . . . , x^, A, AQ, . . . , Afe, y*) of A that also 
satisfy (13), (16) and (18). Then A{u) is a closed subset of yl, furthermore, 
as we have proved, the system {il(iA)|it G U} is centered, i.e., for each finite 
system {t t i , . . . , w^} C C/, we have that 

f]A{ui)^il}. 

Therefore, Hnec/ ^(^) T̂  ^' whence it follows that there exist elements XQ G 
dxfo{x*yU^), '", xl G dj;fk{x*,u^), A e A, and multipliers AQ, . . . , Afc > 0, 
y* € y* such that (16), (17), (18) for all u£U hold, furthermore, 

k 

Y^ XiX* + y* o ^ = 0. 
i=0 

The latter equation clearly implies (14). The proof of the theorem is now 
complete. D 

Remark 1. The validity of the first step does not require conditions (i)-(iv) of 
Theorem 3, it applies only the convexity condition (v). Thus, the transformed 
problem {%xCV) could also be investigated using other multiplier rules known 
from the literature. This may lead to other variants of Theorem 3. The as­
sumption on the norm-compactness of 5a;/o(^*5'^*), . . . , dxfk{x*,u^) seems 
to be too strong. It is not clear if these conditions could be weakened. It is 
also of interest to clarify that what kind of other (possibly nonconvex) sub-
differentials could be used? When applying the result of Theorem 3 to control 
problems, the natural candidates for strict prederivatives concerning the con­
trol equation (differential equation) and other equality constraints have to be 
obtained and described. 

Remark 2. The particular case of Theorem 3 when condition (ii), (iii), and 
(iv) are replaced by 

(ii') The mapping x \-^ (/o(a;,i/*),..., fk{x,u^)) is strictly differentiable at x^ 
in the sense of Gateaux: 
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(iii') The mapping x i-^ F(x^u^) is strictly differentiable at x* in the sense of 
Prechet; 

(iv') The range of the linear operator Fx{x^^u^) . X -^Y \s of finite codimen-
sion in y , 

respectively, results (under weaker regularity assumptions) the conclusions of 
Theorem 1 and the inequality (11). For the proof, observe tha t condition (ii') 
implies tha t , for a lH € { 0 , . . . , k) the Clarke's subgradient dxfi{x^^u^) equals 
{/ix(^*)'^*)}j whence condition (ii) of Theorem 3 follows. Furthermore, due to 
(iii'), the set A = {i^x(^*) "î *)} is a compact convex strict prederivative for F at 
(x*, ^/*), whence condition (iii) of Theorem 3 is also satisfied. In the case when 
f is a first-order approximation, i.e., when ^ is of the form (a:*,tn)n€N then 
the differentiability of x i-^ (/o(x, t t * ) , . . . , fk{Xj u^),F{x, u^)) with respect to 
^ automatically holds and the left hand side of (11) vanishes, i.e., then the 
statement of Theorem 3 is equivalent to tha t of Theorem 1. If one takes an 
approximation of the form (x* + ^/Uid, tn)neN^ where d is a fixed vector of X , 
then one requires second-order differentiability assumptions of the da ta and 
one can deduce a second-order necessary condition from (11). 

A c k n o w l e d g m e n t s . The author is indebted to the anonymous referee for the 
unusually detailed report and the valuable suggestions and comments. 
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Summary . In this paper we formulate and use the duality concept of Klotzler 
(1977) for infinite horizon optimal control problems. The main idea is choosing 
weighted Sobolev and weighted Lp spaces as the state and control spaces, respec­
tively. Different criteria of optimality are known for specific problems, e.g. the over­
taking criterion of von Weizsacker (1965), the catching up criterion of Gale (1967) 
and the sporadically catching up criterion of Halkin (1974). Corresponding to these 
criteria we develop the duality theory and prove sufficient conditions for local opti­
mality. Here we use some remarkable properties of weighted spaces. An example is 
presented where the solution is obtained in the framework of these weighted spaces, 
but which does not belong to standard Sobolev spaces. 

1 Introduction 

It is well known that in problems of economic growth we have to deal with 
infinite horizon optimal control problems. The range of applications of such 
type of problems is large, starting with famous Ramsey accumulation model 
up to diverse problems in continuum mechanics. Numerous advertising mod­
els and renewable resources models go back to control problems with infinite 
horizon as well [8, 16]. Applications of infinite horizon problems in continuum 
mechanics were studied by Leizarowitz and Mizel [12], and Zaslavski [19]. 
The usual maximum principle cannot easily be adjusted to the case of infinite 
horizon problems as it was first demonstrated in an example of Halkin [9]. 
Since the usual transversality condition does not hold anymore, some authors 
have investigated particular situations where ad-hoc transversality conditions 
are necessary for optimality. Such transversality conditions were obtained by 
Aseev and Kryazhimskiy [1], Michel [14] and Smirnov [17]. The simplest way 
to solve optimal control problems with infinite horizon is to find a solution on 
a finite interval and t ry to extend the solution onto the whole half-axis. But 
there is no guarantee for the extended solution to be optimal on an infinite in­
terval. For tha t reason the proof of optimality is very important and is usually 
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based on sufficient conditions. A lot of work has been done in the last decades 
to prove necessary conditions for problems in the calculus of variations, see 
e.g. [4, 5], and optimal control, see e.g. [6]. Results concerning sufficiency con­
ditions were derived via Fenchel-Rockafellar duality by Rockafellar [15], Aubin 
and Clarke [2], Magill [13], and Benveniste and Scheinkman [3]. In our paper 
we use the duality concept of Klotzler [10] and a special choice of state and 
control spaces to obtain sufficiency conditions. Considering the exponential 
factor e~^* as a density function we propose to choose weighted Sobolev and 
weighted Lp-spaces as state and control spaces, respectively, defined in the 
second section. Here we include a brief review of important aspects concern­
ing differences between Lebesgue and improper Riemann integrals, which can 
influence optimality on an infinite interval. According to [8] and [6], there 
are several optimality criteria for considered class of problems and they are 
introduced in section 3. The fourth section is devoted to the development of 
the duality theory taking some properties of weighted spaces into account. 
A localized problem and the corresponding dual problem are formulated in 
section 5. The last section includes sufficiency conditions, which are proved 
via linear approach in the dual problem. An example illustrating existence of 
optimal solution with respect to weighted spaces-while no solution in usual 
Sobolev spaces exists- is presented as well. 

2 Problem Formulation 

We deal with problems of the following type: Minimize the functional 
POO 

J{x,u)= / f{t,x{t),u{t))u{t)dt (1) 
Jo 

with respect to all 

{x,u) e W^;:^(0,oc) X L ; , , ( 0 , O O ) (2) 

fulfilling the 

State equation x{t) = g{t,x{t),u{t)) a.e. on (0,oo), (3) 
Control restriction u{t) G U a.e. on (0,oo), (4) 
Initial condition x{0) = XQ. (5) 

Here U is a, nonempty compact set in W. The spaces Wp'll'(0,oo) and 
Lpj,(0,oo) will be defined below. 

2.1 Weighted Sobolev Spaces 

We consider weighted Sobolev spaces Wpi^(n) as subspaces of weighted 
Z/p j^(i7) spaces of those absolutely continuous functions x for which both x 
and its derivative x lie in Lp^(i7), see [11]. 
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Let Q = [0,00) and let M'^ = M{f2;R'^) denote the space of Lebesgue 
measurable functions defined on .f? with values in R'̂ . The function z/ : J? —> 
R+\{0} is a density function ii 1/ £ M and 

/ i'(t)dt < 00. 

Let 1/ G C(i7), 0 < u{t) < 00 be given, then we define the space L'^^^{Q) by 

Ll,{n) = {x € M^\ \\x\\l := I \x{tWiy(t) dt< 00}, (when p>2) 

Q 

^Zoui^) = {x e M'^\ ||x||oo :=esssup|ic(t)|i/(t) < 00 } (whenp= 00) 
teo 

and the weighted Sobolev space by 

wl'j^^n) = {x e Â »|X e Ll,{n),x e Ll,{n)} (p = oo). 

Here x is the distributional derivative of x in the sense of [18, p.49]. This 
space, equipped with the norm 

l - I I ' v . , .,„ = f{\x{t)\ + \x{t)\Y<t)dt., 

is a Banach space. For later use we also define the space 

^ r . " - i ( ^ ) = {Q^ ^ " ' " I IIQIloo := max fesssup \^iM\ < 00 1 . 
' I I *'̂  V ten Hi) ) ) 

For X e I/p,^(i^) and y e I/^^^i_,(i7) the scalar product < x,y > in L^{f2) 
defines a continuous bilinear form, since 

00 

0 

<ML^,^in)\\y\\Li^,_^in) 

holds true. For the special case p = 2 one has [LJ^^(j?)]* = L'2 y{0) due to 
the Riesz representation theorem. Therefore, we obtain the following relation 
between the scalar products in L2 jy{0) and 1/2(^7): For x G ^^^^(i?) and 
y € L^ ^-i{Q) there exists y G L2 w(i7) such that 

(^' y)Li^Q) = < ^, y >L^(r?) (6) 

y = y/jy-
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Equation (6) is essentially used to formulate the duality theory in the sense 
of Klotzler in the following sections. 

Remark It is well known, see [7], that the inclusion L^ j,(i?) C L'^^^{Q) holds 
true for all p > ^, i.e. there is a C G M+ such that 

IWlLJ_„<^lkllLj,,- (7) 

Note that here and in the proofs of other sections we abbreviate Lpj^(O) by 
Lpj^ in the indices. 

Now some aspects concerning the integral in (1) should be mentioned. We 
assume that the function / in (1) is continuously differentiable and allow 
both Lebesgue and improper Riemann integrals to appear in (1). The main 
difference between the Lebesgue and improper Riemann integrals is that one 
of them may not exist while the other one is convergent. In the case 

I \f{t,x{t),u{t))\iy{t)dt <oo, (8) 

both Lebesgue and Riemann improper integrals exist and coincide [7] and we 
have 

oo T 

f{t,x{t),u{t))iy{t)dt= lim j f{t,x{t),u{t))du{t)dt (9) 

0 0 

= lim JT{x{t),u{t)). 
T^-oo 

But it can happen, that the integral in (8), i.e. Lebesgue integral, does not 
exist and at the same time the Riemann integral is conditionally convergent. 

3 Global Optimality Criteria 

In the case of infinite horizon optimal control problems the standard optimal­
ity notion should be newly defined. Namely, there are several new optimality 
criteria [8], which are also suitable in the case of a divergent integral in (1). 
We introduce global optimality criteria for the case when the integral in (1) 
is understood in the Lebesgue sense. 

Definition 1. Suppose that the integral in (1) exists. Furthermore, denote the 
problem (l)-(5) by (Poo)- Let (x*,tx*) be an admissible pair of {Poo)- For any 
other arbitrary admissible pair (x, u) and for T >0, let 

A{T)= f f{t,x(t),u{t))iy{t)dt- f f{t,x*{t),u*{t))iy{t)dt. 
Jo Jo 

Then the pair {x*^u*) is called optimal for (Poo) ^^ the sense of 
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1. criterion LI, if for any admissible pair (x,u) we have lim A{T) > 0; 
T—>oo 

2. criterion L2, if for any admissible pair (XyU) there exists a moment r 
such that for all T > r we have A(T) > 0 (overtaking criterion of von 
Weizsacker (1965)). 

Optimality in the sense of LI coincides with usual optimality, while L2-
optimality is stronger than the first one. The definition of local optimality 
will be introduced later. 

Remark. In the case of Riemann improper integral in (1) there are some other 
optimality criteria which are defined in [8]. 

4 Duality Theory 

Before formulating the duality theory for infinite horizon optimal control prob­
lems, we prove: 

Lemma 1. Let (x*,ii*) be an admissible pair of (Poo) ^^^ S '. Q x W^ —> R 
be a function of the form 

S{t, 0 = a{t) + y{tf{^ - x*{t)) + l/2(e - x*{t)fQ{t){^ - x%t)), (10) 

with a e Wl(n), y € W^'J^^.^(f2), and Q € VK^^^^7(^) symmetric. Assume 
also that p > q. Then, for any x G Wp'^{f2) with x{0) = XQ, one has: 

^\\m^SiT,x{T)) = 0, (11) 

oo 

Jj^S{t,x(t))dt=-S{0,xo), (12) 
0 

Proof Observe that 

CXD OO OO 

S:= f\S{t,x{t))\dt< j \a{t)\dt+ f\y{tf{x{t)-x*{t))\dt 

0 0 0 
OO 

i j \ix{t) - x*{t)fQ{t)ix{t) - x^t))\dt. 
+ 2 

0 

Applying Holder's inequality we obtain 

1/9 / cx) \ 1/P 

S < Hallux + J \y(t)\' u'-^{t)dt U \x{t) - x*{t)f v{t)dt 
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oo \ l / P / oo \ 1/9 

+\ IMt)-x*(t))ri^rnt .(I\Q{t){x{t)-x%t))\'v'-^(t)dt 

This yields 

S<Mwl^\\y\\L- , \\x-x*\\j^„ +\\\x-x*\\^^ | |Q(x-a;*)| |^„ 

< IHIiv '+ IMIi" l k - x * | | i „ +C | | a ; - x* | | ^ „ ||Q||^„x„ < oo. 

The last estimate is true because of 

oo 

WQix - x*)iii„ = [ \Q{t){x - x'mi" i^'-^mt 
0 

OO 
Q 

< 2^ / L a x e s s s u p J % ^ ^ \(x - x*)(t)\'u{t)dt 

0 

<2«IIQIIl.x„ •||(a;-x*)||i„ 

<f2C||g||^nx„ -iKx-x*)!!,™ y . 

oo 

To estimate ||(â  — a:*)||^n we applied (7). The convergence of J |S'(t, x(t))| ĉ t 

yields (11), since 

T / T - l T ^ 

lim S{t,x{t))dt= lim I / S'(t,x(t))d^ + / S{t,x(t))dt 

0 \ 0 T - l 
T 

= lim [ S(t,x(t))dt-\- lim S'(r,x(r)), 
T—J'oo J r— •̂oo 

0 

where r is an element in [T — 1, T]. Condition (12) can now easily be derived 
applying (11). D 

We introduce the Hamiltonian as 

n{t,^,rj) = snpH{t,^,v,ri), (13) 
veu 

where 

H{t, e, V, 7]) = -f{t, ^, ^) + — < ry, g{t, ^, v) > 

represents the Pontrjagin function. Furthermore, we define the set 
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Y = { S -.Six Q — symmetric 

v(t,o ^^x 

> . 

Using the dual problem formalism described in [10] we construct a problem 
(Doo) and prove: 

Theorem 1. Let a problem (Poo) ^̂  given. Then for the problem 

(Doo) maximize goo{S) := —S{0,xo) withrespectto S eY, 

the weak duality relation 

inf(Poo) > sup(Doo) (14) 

holds. 

Proof. Let (x,ti) be admissible for (Poo) and S be admissible for (Do©), i-e. 
S £Y. Then we have 

/»oo 

J{x,u)= / f(t,x(t),u{t))v(t)dt 
Jo 

/•CO 

= / (-H{t,x(t),u{t),d^S(t,x(t))))u(t)dt 
Jo 

= j ^ (^-H{tMt)Mt),diS{t,xm - ^̂ ^̂ '̂̂ ^̂ ^̂ ^ 
Ht) 

u{t)dt 

dtS{t,x{t)) , d(S{t,x{t)). 
x{t) v(t)dt 

+ / {dtSit,x{t)) + diS{t,x{t))x{t))dt 
Jo 

+ / {dtS{t,x(t)) + d^S(t,x{t))x{t))dt. 
Jo 

This shows that 
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J(x,u)> / —S{t,x{t))dt= lim / —S{t,x{t))dt 
Jo at T-^OOJQ at 

= lim S(T,x{T)) - S{0,x{0)) = -S{0,xo), 
T—>oo 

completing the proof in this way. D 

Remark. As we can see, the proper decision variable in the dual problem (i^oo) 
is (a,y, Q), but we use 5 G y for simplicity. 

The next two corollaries provide sufficiency conditions for global optimality 
in the sense of criterion LI and criterion L2, respectively. 

Corollary 1. An admissible pair (x*,it*) is a global minimizer of (Poo) in the 
sense of criterion LI, if there exists an admissible S* for (Doo), such that the 
following conditions are fulfilled for almost all t > 0: 

(M) n(t,x''{t),d^S*{t,x*{t))) = H{t,x*{t),u*{t),d^S*{t,x*{t))), 

(HJ) ^dtS^ {t, X* {t)) + n{t, X* (t), d^s{t, X* (t))) = 0. 

Proof This follows immediately from Theorem 1. D 

Remark. The boundary condition 

{B) lim S*{T,x*{T)) = 0 (15) 
T—^oo 

is automatically satisfied due to Lemma 1. 

Corollary 2. An admissible pair (x*,u*) is a global minimizer of {PQO) in the 
sense of criterion L2, if there exists a family {{S^)}T>T C Y, for a sufficiently 
large r, such that the following conditions are fulfilled for almost all t € (0, T): 

(MT) n{t,x*{t),diiS*j.)(t,^*it))) = Hit,x*(t),u*{t),d^{S^){t,x*{t))), 

(HJT) j;^dt{s^){t,x*{t)) + nit,x*it),d^{s^){t,x*{t))) = o, 

{BT) M^ 5 J ( T , 0 = Sl^iT, x*{T)). (16) 

Proof: According to criterion L2, we obtain the following inequalities for all 
T>T and S^ e Y: 
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T 

'-H{t,x{t),u{t),d^S^{t,x{t))) - ^^^rMt)) ) ^(^)^^ 

JT{X,U)= f f{t,x{t),u{t))u{t)dt 
Jo 

^ Jo \ - - - ' - — " - — - ' - — (̂t) 

>-£ (nit,x{t)AST{t,x{t))) + ^i^T^m^j ^it)dt (17) 

+ / {dtS^{t,x{t)) + d^S*T{t,x{t))x{t))dt 
Jo 

+ 5^(r,x(r))-5^(o,x(o)) 
> inf SUT,a-SUO,xo). 

All inequalities in (17) become equalities if the conditions ( M T ) , (HJT) and 
(BT) are satisfied for the pair (x*,it*). This means that for all T > r the 
strong duality relation for problems with finite horizon, see [10], 

JTix',u*) = inf {S^{T,0 - S^{0,xo)} (18) 

holds. Having in mind the definition of criterion L2, we can easily see that the 
pair is the optimal solution of the problem (Poo) in the sense of criterion L2. 
D 
Remark. It follows from (16) that the transversality condition yriT) = 0 has 
to be satisfied for all T > r. 

5 Formulation of the Local Problem and Local 
Optimality Criteria 

In this section we discuss local optimality. Evidently every function from 
Wp'^ is absolutely continuous. For that reason the imbedding of the weighted 
Sobolev space into the space of continuous functions allows us to formulate 
the notion of strong local optimality as follows. 

Definition 2. An admissible pair (x*,tA*) o/(Poo) is strong local optimal in 
the sense of criterion LI, if there is a function 6 : E+ —̂  M+ such that 
J{x*^u*) < J{x,u) for any admissible pair (x,u) o/(Poo) satisfying \(x(t) — 
x*{t))u{t)\ <6(t) for allt>Q. 

In this paper we concentrate only on LI strong local optimality while definition 
of L2 strong local optimality will be omitted. The problem (Poo) can now be 
localized by writing (2) in the form 
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[x,u]€ w^':}{n) X L;jn), x{t) e JCsA^Ht)), 
where 

ICsA^*{t)) := {I € R"| |($ - x*{t)Ht)\ < 6{t) }. 

The locahzed version of problem (Poo) will be denoted by (Poo.ioc)- Now we 
define the set 

Hoc = < 5 € y 
on{it,0\teQ,^elCsAx*{t))} 

Using this notation we now formulate an equivalent version of Theorem 1 for 
the localized case. 

Theorem 2. Let us consider the problem (Poo.ioc)* Then, for problem 

(i^oo,ioc) maximize goo{S) := —S{0,xo) withrespectto S G Yioc, 

the weak duality relation m/(Poo,loc) ^ sup{Doo,\oc) holds. 

Remark. The corresponding versions of Corollaries 1 and 2 hold true for 
(Poo,ioc) if'S' is local admissible in the dual problem, i.e. admissible in (-Doo,ioc)-

6 Sufficiency Conditions for Local Optimality 

6.1 Auxiliary Result 

It is important to ascertain that the adjoint variable belongs to the desirable 
space W '^i_,(i?). For this aim we prove 

Lemma 2. Consider an admissible pair (x*,u*) of (Poo)' Assume that, for 
some constant C G IR4-, we have: 

\d^git,x*{t),u*m < C{\\ X* U.jo) +lk1U;, . («)) , 

d^f{t,x*{t),u*{t)) € Ll,{Q); oj{t,Q) 6 L^,,i-,(r2), 
t 

t-^^(t)= f u;{t,s)d^f{s,x*{s),u*{s))i^{s)ds isinLl^^-,{n). 

0 

Here a;(t, 5) denotes the Green matrix defined for t > s as a solution of the 
system 

^ 5 5 ^ ^ = - % ( i , x * ( i ) , u * ( t ) M f , s ) , ^is,s) = I. (19) 

Then the solution y of the adjoint equation 

m = -v{tfd^g{t,x*{t),u*{t)) + dif{t,x*it),u*{t))u{t) (20) 

is an element of the weighted Sobolev space W 'j^i-q(i^). 
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Proof. The solution of (20) can be written as 

y(t) = u;(t,0)y(0) + <?(t), 

where a;(t, 5) is a solution of the system (19). Noticing 

we estimate first the function y itself 

00 

llj/llin ^ = /"M*,0)2/(0)+ <?(<)!Vi-*(i)di 

0 
00 00 

<2« /"|w(<,0)2/(0)|«i/'-«(t)di + 2« j \${t)\'' v^-'>{t)dt 

0 0 

+ 2'Pill , 2« IK*, 0)2/(0)||«„ +2'||c?||l„ 

and then its distributional derivative 
00 

IÎ IIL" , = j\-y{tfdig{t,x*{t)X{t)) + d^f{t,x'{t),u'{t)y{t)\\'-'>dt 
0 

00 

< {2CY (11 X* lU.̂  +||u'|U. J Yl2'(*)l''^''"'(*)^* 
0 

00 

20 j \d^f{Ux*{t),u*{t))v{t)\''u^-'>{t)dt 

00 

0 

2C7||2/||̂ „ ^ ) +2'||0^/r 

(4C') |Kf,0)j/(0)||i„ +||<?^||^^ )+2'11^4/11 

Under the assumptions of this lemma, both ||2/||L^ and ||2/||L^ are 

finite and we conclude y G l^^'^i-q('^)- D 

6.2 The Main Result on Sufficiency Conditions 

We now present the main result of this paper and prove sufficiency condi­
tions for local optimality. We have developed the duality theory via quadratic 
approach in the dual problem, but we now formulate the following theorem 
applying the linear approach. To derive analogous sufficiency conditions by 
means of the quadratic approach we need some a priori assumptions which 
guarantee that Q € ^^^^-1 {^) holds. This will be a task of further studies. 
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Theorem 3. Let the assumptions of Lemma 2 be satisfied for an admissible 
pair {x*,u*) o/(Poo,ioc)- Suppose thaty solves (20) and fulfills the conditions 

dtH{t,x*{t),u'{t),y{t))<(i, (21) 

H{t,x*{t),y{t)) = H{t,x%t),u*{t),y{t)), (22) 
d^^H{t, x*(t), y(t)) is negative — definite, (23) 

almost everywhere on Q. Then the pair (x*,ifc*) is a strong local minimizer of 
{PooyXoc) ^^ the sense of criterion LI. 

Proof. In order to verify whether an S defined in (10) is admissible for the prob­
lem (i^oo,ioc) we define the defect of the Hamilton-Jacobi differential equation 
as 

A{t,o = -l^dtS{t,i) + H{t,i,d^s{t,i)) 

= ^ im + y{tf{^ - ^^m - yitfxHt)) + Hit, e, d^Sit,0). 

Choosing a{t) from the Hamilton-Jacobi differential equation 

A{t,x%t)) = 0 (24) 

we obtain 

d(t) = {y{tfx' it) - H{t, X* (i), y{t)))v{t). (25) 

Substitution of (25) into the expression for A{t,£) yields 

A{t,0 = ^f(tf(i - ^*W) + n{t,^,diS{t,0) - H{t,x*{t),y{t)). 

It can easily be seen that S belongs to l̂ oc if a:*(̂ ) maximizes A{t, £) in a J(t)-
neighborhood of x*(t) for all t > 0. For that reason we consider a parametric 
optimization problem 

(Pt) maximize A{t,^) with respect to { € /C<5,i/(a:*(t)). 

The first order necessary condition 

d^A{t,x*{t)) = ±^^y{t) + d^H{t,x'{tly{t)) = 0 (26) 

together with the second order sufficiency condition represented by (23) guar­
antee that x*(t) solves the problem {Pt) for all t > 0. Due to condition (21), 
d^'H{t,x*{t),y{t)) consists of only one point and the canonical equation (26) 
can be rewritten in form (20). Since the conditions of Lemma 2 are satisfied 
we obtain y € ^J;^i-g(^) . It means that S has the form (10) with Q{t) = 0 
and Lemma 1 can be applied to get the condition (15) of the generalized max­
imum principle for the criterion LI satisfied. The maximum condition stated 
in (22) and two other conditions of Corollary 1 are satisfied, what allows us 
to deduce that the pair {x*,u*) is a strong local minimizer of (Pc»,ioc) in the 
sense of criterion LI. D 
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6.3 An Example 

We consider the Production-Inventory Model [16] 

mm I J{x,u) = je-^' ( ^ ( ^ - ^ ) ' + | ( ^ - ^ ) ' ) ^^ [ (2^) 

x(t) =^ u{t) - VQ, a;(0)=xo, (28) 

where / i > 0 , c > 0 , p > 0 , x , ' U denote the inventory holding cost coefficient, 
the production cost coefficient, the constant discount rate, the inventory goal 
level and the production goal level, respectively. The state equation expresses 
that the inventory x at time t is increased by the production rate u{t) and 
decreased by the constant sales rate i;o-

We find the Pontrj agin function 

H{t,i,v,r^) = -^{i-xf-l{v-uf + ^^{v-vo) (29) 

and verify the condition (21) of Theorem 3 

dlH{t,^,v,r,) = - c < 0 = ^ dl^H{t,x*it),u*{t),y{t)) < 0, 

which is evidently satisfied. Furthermore, obtaining the control from maximum 
condition (22) 

n * ( t ) = m a x | ^ + ^ e ^ * , o | , 

we assume u to be large enough that the production rate always gives a 
nonnegative value: 

^ * ( t ) = t i + ^ e ^ * . (30) 

Substitution of u* into (29) yields the Hamilton function 

n{t,^,v) = -!^{i - xf + ^^e'Pt+rje»\u - vo). 

Relation (20) together with the state equation define the canonical system 

^ V ' 

= 0 

a:-(t) = u+ ^eP' - vo, x*(0) = Xo, 

which can be rewritten as follows 
y(t) = h(x*(t)-x)e-f'^ 

(31) 
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By differentiating the first equation and replacing the expression for y{t) by 
h{x*{t) — x)e~^*y one gets 

y{t) = h (x*(t)e-^* - p(x*{t) - x)e-^*) 

= hU^ ^ e ^ * - vo) e-^' - py{t). 

The equation for the adjoint variable becomes 

y{t) + py(t) --y = h{u - vo)e-f'K 
c 

By using the notation 

-p + x/p2 + 4h/c , -p-y/p^ + ih/c 
h = , k2 = , 

one can write y{t) = Cie^^^ + C2ê *̂ + (VQ — u)ce~^^. Then we obtain the state 
function from the first equation of (31): 

x\t) = \ {cihe-^^' + C2/C2e-̂ ^*} - K - u)^ + x. 
n a 

The initial condition from (28) yields 

(xo — x)h — ciki — c(u — v)p 
C2 = ] . 

In order to satisfy y € W '̂̂ î-g it is necessary to set lim y{t) = 0. This can 

occur only if ci = 0 holds true, otherwise y{t) tends to infinity. The complete 
solution of (31) is stated below: 

y{t) = C2e''^'-V{vo-u)ce-P\ 

x^it) = i {C2k2e-^^'] -{vo-u)^+ X. 

Using (30) we derive the control function 

c 

We now investigate the question concerning the spaces the solution belongs 
to. The function x*{t) does not belong to any usual Sobolev space Wp, since 
the constant \{vo —u)cp\'P is not integrable over the infinite interval. The same 
holds true for the control function u* as it includes a constant as well. We try 
to figure out whether these functions belong to some weighted Sobolev space 
Wp^J) and weighted Lpj^ space, respectively. Moreover, we will show that for 
all u) and p satisfying 
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(32) 
(Jj 

P 

we have x* e W^^^, y G VI^J;^i-., and u* € L^^^, where u{t) = e"'^*, cc; > 0. 
For tha t purpose we estimate as follows 

oo 

• ' I IL" = f\Uc2k2e-'''' + {u-vo)c) + -""'dt 

< 2 ^ 

oo 

J h 
g(-pfci-a;)t^^_^2P 

00 

I {u - VQ)C 

+ x e-^'^dt < 00. 

The first integral on the right-hand-side converges due to the positivity of 
k\^ and it allows us to say x* G L'^w Almost the same estimate for ||ir*||^n 

* IIP implies x* G W3'^ . We repeat the whole procedure for ||t^*||£,r and obtain 

CX) 

C 

C 
fe^-P^'-'^^'dt+{2voY fe-'^'dt < 00. 

0 0 

By (32), one derives u* G Lpj^. Setting q = - ^ and 1 — q = — ^ j , one gets 

00 

II2/III" , = / he"'' + (« - vo)ce-^'\^'e^*dt 

0 

0 0 0 0 

- P P t ^ t 1. 
e p-i at < 00. 

Repeating the same procedure for HyĤ n̂ we prove y G W '^i_q. The in-

elusion y G ^^ '^ i -g is necessary in order to justify the application of The­
orem 3. Now it remains to verify (23), but this can be easily done because 
dhH{t,x*{t),y(t)) = —h < 0. As a consequence, all the conditions of Theo­
rem 3 are satisfied and we can conclude that the pair (x*,-u*) is a strong local 
minimizer of the problem (27)-(28) in the sense of the criterion LI . 
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On Nonconvex Relaxation Propert ies of 
Multidimensional Control Problems 
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Cottbus University of Technology, Department of Mathematics, Karl-Marx-Str. 17, 
P. O. B. 10 13 44, D-03013 Cottbus, Germany. wagnerOmath.tu-cottbus.de 

Summary. We provide two examples concerning the relaxation properties of a 
model problem in multidimensional control: J^ f{Jx(t))dt —> inf!, Q C R"^, x € 
Wo'°°(n,W), Jx(t) e K C R'^'^ a. e. where n > 2, m > 2, Jx{t) is the Jacobian of 
X, and K is a convex body. The first example justifies the use of quasiconvex functions 
with infinite values in the relaxation process. In the second one, we examinate the 
relaxation properties of a restricted quasiconvex envelope function /* introduced by 
Dacorogna/Marcellini. 

1 Introduction 

1.1 T h e M o d e l P r o b l e m 

In the present paper, we investigate the relaxation properties of the following 
optimization problem: 

F{x) = J^f{Jx{t))dt - ^ inf!, x^ H^o^'^(r?,E^), 

Jx{t) = (^(t)) G i r C R " ^ a.e. on ^ . 
(^) ^ ^dx, 

In what follows, let us assume tha t n > l , ? 7 7 < > 2 , i ? C R"^ is the closure of a 
bounded Lipschitz domain (in strong sense), K C R^"^ is a convex body with 
0 € int (iiT) and f : K -^ R is a continuous function. 

1.2 Out l ine and A i m of t h e P a p e r 

We consider (P) as a model problem within the class of so-called Dieudonne-
Rashevsky type problems. These are multidimensional control problems in­
volving a system of first-order partial diflFerential equations 

Jx{t) = G{t,x{t),u{t)) 

http://wagnerOmath.tu-cottbus.de
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together with general boundary conditions, phase and control restrictions (see 
[6, 17, 18, 19, 20, 26]). Problems of this type arise in the description of torsion 
of prismatic bars in the elastic case (St.-Venant's torsion and warping torsion 
[21, pp. 8-20]) as well as in the elastic-plastic case ([24, p. 531 f.], [25]). An­
other instance are optimization problems for convex bodies under geometrical 
restrictions, e. g. maximization of the surface for given width and diameter. 
These lead again to Dieudonne-Rashevsky type problems for support functions 
in spherical coordinates ([1], [2, p. 149 f.]). In general, variational problems 
with "convexity constraints" ([5, 15, 16]) allow a reformulation as Dieudonne-
Rashevsky type problems by use of the fact that the convexity of a Lipschitz 
function x G W^''^{f2,R) can be characterized by the variational inequality 
(\/x{s) - Va:(t), 5 - t) > 0 for a. e. s,t G int(i7). 

In our model problem (P), the differential equations and control restric­
tions are reduced to Jx{t) = u(t)y u(t) G K a. e. on i7. Thus we can formally 
omit the control variables u while the control restrictions turn into restrictions 
for the Jacobians: Jx{t) £ K a. e. on i?. In order to guarantee the existence 
of (global) minimizers, we must study - as in the multidimensional calculus 
of variations - the relaxation of the problem (P). So we have to look for a 
function / ^ : K —> R with the following properties: 

(a)/#(i;) < f{v) \/v e K what implies F*{x) = J^ f*{Jx{t))dt < 
J^ f{Jx{t))dt = F(x) for all admissible functions x of (P). 

(b) For all sequences of admissible functions {x^} with x^ -—^ L°°(r2,R'̂ )̂  ^^^ 
jr,N JL^ L-(r2,R-) j ^ ^ it holds: F#(x) < liminfiv^oo F*{x^), 

(c) The minimal value of (P) (which is finite under the assumptions above) 
coincides with the minimal value of the problem (P)^ given by 

f F*{x) = J^ f*{Jx{t))dt —^ inf!, X € W^''^{f2,R''), 
(P)# I 

( Jx(t) £ K a. e. on i?. 

If a function f^ : K -^ R has the properties (a)-(c) then from a given 
minimizing sequence {x^} of (P) one can extract a subsequence {x^ } con­
verging together with their derivatives weakly* (in the sense of L°°(i?,R^) 
resp. L°°(i?,R*^^)) to a global minimizer x of (P)^ . In multidimensional cal­
culus of variations, the relaxation / ^ is well-known; for n = 1 one gets (with 
some appropriate assumptions) the convex envelope /^ and forn > 2 the qua-
siconvex envelope /^^ of / (see [7, p. 228 ff.. Theorem 2.1]). For multidimen­
sional control problems, however, only the scalar case n = 1 was investigated 
(cf. [10, p. 327, Corollary 2.17., together with p. 334, Proposition 3.4. and 
p. 335 f.. Proposition 3.6.] ). In [18, 19, 20], first-order necessary conditions for 
problems (P) were proved in the case where the integrand / may be replaced 
by its convex envelope /^, but for every n > 2 one can easily find problems 
(P) where the minimal value is changed when / is replaced by /^ (see [17, 
pp. 2 0 - 2 3 , Example 2]). With this observation in mind, we conjecture that 
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- analogously to the vectorial case in the calculus of variations - the function 
/ ^ is rather quasiconvex than convex. 

In order to closer determine the properties of the function / ^ in the case 
n > 2, we present in this paper two examples. Our first example shows that it 
will not suffice, in general, to take some finite extension of / | ^ to the whole 
space R"̂ "̂  and then to form the quasiconvex envelope of this extension. One 
has rather to extend / with +cx) to R'^'^\K^ and so one is forced to investigate 
quasiconvex functions with values in R = RU {+00}. An appealing idea is 
then to define / ^ by adding a restriction to the representation formula for 
the quasiconvex envelope 

r{v) = inf { 1 ^ ^ f{v + Jx{t))dt I X G W^^^{f2,R^), 

V + Jx{t) e R"""^ a. e. on /? } (1) 

(see [7, p. 201, Theorem 1.1., (4)] ), and to take the infimum in (1) only over 
functions x with v-{- Jx{t) G K a. e. on i?. The corresponding envelope func­
tion /* was introduced in [8] (already in [13] in a special case) (see Definition 
6 below). In our second example, however, we present a situation where this 
envelope /* is missing the relaxation property (b). In a forthcoming paper 
the author will show that it is not /* but its lower semicontinuous envelope 
which satisfies all relaxation properties (a)-(c). 

The paper is organized as follows. Section 2 is devoted to convexity and 
quasiconvexity. In particular, we introduce quasiconvex functions taking va­
lues in R and the envelope /*. The announced examples will follow then in 
Sections 3 and 4. 

1.3 Nota t ion 

Throughout the paper, we assume that the effective domain of a function 
/ : ̂ nm _^ g is always nonempty, i.e., dom f = {v e R"""^ \ f{v) < +00} ^ 0. 

Definition 1. Given a convex body K C R"̂ "̂  with 0 G 'uit{K), we say that 
a function f : R'̂ "* —> R = RU{4-oo} belongs to the function class TK tf 
/ | ^ e C°{K,R) and / | ^ _ ^ ^ = +00. 

Further notations: WQ'^{n,R^) - the space of Lipschitz n-vector functions 
with boundary values zero on i7, L°°(i7,R"^"^) - the space of measurable, 
essentially bounded nm-vector functions, C^(X,R) - the space of continuous 
functions on K. / | ^ will denote the restriction of / to A\ the abbreviation 
"a. e." is always related to the m-dimensional Lebesgue measure. 
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2 Quasiconvex Functions 

2.1 Genera l ized N o t i o n s of Convex i ty 

Def in i t ion 2. A function f : W^^ —> R is said to be convex if Jensen's in­
equality is fulfilled for every v', v" € R'^"^; 

fi^v' + AV) < A7K) + >^'f(v") W , A'' > 0, y + A" = 1. (2) 

A function f : R^"^ —^Ris said to be rank one convex if Jensen's inequality 
(2) is fulfilled in any rank one direction, i.e. for all v'^v" G R"^^ (considered 
as {n^m)-matrices) with rank('i;' — v") < 1. 

For functions / : R'^'^ —> R, we have the impHcation / convex =^ f rank 
one convex for all n > 1, m > 1 ([7, p . 102, Theorem 1.1., (i)]); if n = 1 or 
m — 1 then both notions are equivalent ([7, p . 102, Theorem 1.1., (ii)]). 

Defini t ion 3 . Let f : R^"^ —̂  R 6e a function bounded from below. The convex 
envelope f^ : R"^^ —> R is defined by 

f'iv) = sup {g{v) I g : R"""" -> R convex, g < f on R'^'^} . 

The rank one convex envelope f^^ : R"''^ -^ R is defined by 

f'^^'iv) = sup {g{v) I g : R"""" -^ R rank one convex, g < f on R"""^) . 

For any function / : R^^ —> R bounded from below, the inequalities 
f'iv) < f^^v) < f{v) hold for all v G R^^ . 

Def ini t ion 4. i) (cf. [7, p. 99, Definition ii]). A finite-valued function f : 
-^nm _^ ]^ 5̂ ^^^^ j-Q ^g quasiconvex if f is Borel measurable, integrable on 
every compact subset o/R^"^ and satisfies Morrey's integral inequality for all 

f{v)<^J^f{v^Jx{t))dt \fxeW^^^{f2,R^); (3) 

or equivalently 

f{v) = î f{ j ^ /^ /(^ + M^))^^ I ^ ^ < '"(^,M"), 

V + Jx{t) e R"""^ a. e. on O} . (4) 

Here i? C R"^ is the closure of a bounded Lipschitz domain (in strong sense). 
ii) Let f : R"^^ —> R 6e a function bounded from below. The quasiconvex 
envelope /^^ : R ^ ^ -^ R is defined by 

/^^(t;) = sup{g{v) I g : R ^ ^ -^ R quasiconvex, g < f on R ' ^ ^ } . 
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For functions / : E"^^ -^ R one has the impHcations: / convex => f 
quasiconvex =^ f rank one convex for all n > 1, m > 1 ; if n = 1 or 
m = 1 then all these notions are equivalent (see [7, p. 102, Theorem 1.1., (ii)] 
for details). We will give the extension of Definition 4 (i) to functions with 
values in R in Definition 5 below. For any function / : R"^^ -^ R bounded 
from below, the different envelopes satisfy the inequalities f^{v) < P^{v) < 
r^'iv) < f{v) for all V G R^^. 

Theorem 1. i)([7, p. 201, Theorem LI., (1)]) Given a function f : R^^ -> 
R bounded from below. Then for all v € R"̂ "̂ , the convex envelope f^ admits 
the representation 

r{v) = i n f { ^ ^ ^ j Xsfivs) I ^ A , = 1, ^ A,t;, = w, 0 < A, < 1, 
S 8 

Vs eR'^'^, 1 < s < n m + l } . 

ii) Given f G TK «^C? a k-dimensional face ^ of K, 0 < k < nm. Then for 
all V €i ^, f^ admits the representation 

r{v) = i n f { ^ ^ ^ ^ ' Xsfivs) I ^ A, = 1, ^XsVs = v,0<Xs<l, 
s s 

Vs^^, 1 < 5 < A: + l } . 

In particular, f^{v) = f{v) for all v G ext(iir) and f^{v) = -foo for all v G 
]^nm \^x. f^ is lower semicontinuous on the whole space R^'^ and continuous 
on int{K). 
Hi) Consider a lower semicontinuous function f : R^"^ -^ R bounded from 
below (in particular, for f G TK these assumptions are satisfied). Then in the 
definition of f^, the supremum can be restricted to affine functions: 

r{v) = sup{g{v) I p : R^^ ^ R affine, g < / o n R ^ ^ } . 

Proof, (ii) is an immediate consequence of (i). (iii) follows from [12, p. 163, 
Conclusion 1]. D 

2.2 Quasiconvex Functions which are Allowed to Take the Value 
+ 00. 

Definition 5. A function f : R"^^ —> R with the following properties is called 
quasiconvex: 

a) %i- dom/ C R^^ is a Borel set, 
6̂  / L f is Borel measurable and integrable on every compact subset of 

dom/, 
c) f satisfies Morrey 's integral inequality (3) for all v G R"^^. 
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Within every equivalence class Jx € L°° ( i7 ,R^^) we find some Borel 
measurable representative u (by [4, p . 406, Theorem 5], there exists a re­
presentative of second Baire class which is Borel measurable by [4, p . 403, 
Theorem 4]). Then from conditions (a) and (b) it results tha t the compositions 
f{v-\-u{')) and Xdom/(^ + ^( ' ) ) ^^^ Borel measurable and essentially bounded 
and thus integrable functions. Note that it is not allowed to change the values 
of the integrand / even on a Lebesgue null set of W^'^. 

We make use of the convention that the integral / ^ (+oo) dt takes the 
values zero or H-oo if A is either a m-dimensional Lebesgue null set or has 
positive measure. 

If a finite, measurable, locally bounded function / : W^'^ -^ R satisfies 
Morrey's integral inequality then / is rank one convex and by [7, p. 29, The­
orem 2.3., 2] continuous on the whole space R"^" .̂ Conversely, any finite, con­
tinuous function / is measurable and locally bounded. Consequently, when 
defining quasiconvexity for finite functions / : R*̂ "̂  —> R we can assume a 
priori tha t / is continuous. 

Large parts of the theory of quasiconvexity were formulated and proved 
under the assumption tha t the functions take its values only in R. Allowing 
the value +oo, we have to check the validity of all corresponding assertions 
from new. 

T h e o r e m 2. Given a convex body K C R"^^ with 0 € int(i^) and a function 
f : R"̂ "̂  —» R with d o m / = K. Let / | ^ he bounded and measurable. Then it 
follows: 

i) For all v G R^"^ \ K, Morrey's integral inequality holds in the form 
+ 00 < +00. 

ii) f satisfies Morrey's integral inequality in v £ K iff 

f{v) = i n f { ^ ^ f{v + Jx{t))dt I X e < ' - ( ^ , R - ) , 

V + Jx{t) e K a. e. on Q] . (5) 

Hi) Let ^ C K be a k-dimensional face of K, 0 < k < nm. f satisfies Morrey's 
integral inequality in v £ ^ iff 

f{v) = i n f l p ^ f(v + Jx{t))dt I X e < ' - ( l ? , R - ) , 

V + Jx{t) e^ a. e. on i?} . 

Proof (i) Given v^Ksmdxe W Q ' ^ ( / 2 , R^) . Let us assume tha t v-{-Jx{t) G 

K a. e. on i?. Then from Gauss' Theorem ([11, p. 133, Theorem 1, (ii)]) it 

follows that Vij = Yn~\ !n{^^3 + lf^(^))^^- ^ ^ *̂ ® other hand, the matr ix 

^ ^ K + gw)^^),, 
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must belong to c\co{K) = K by convexity of the integral (see [3, Chap. IV-
6, p . 204, CoroUaire]), and we get a contradiction. So we have v + Jx{t) € 
^nm \^ j ^ £QJ, ^ t of a set of positive measure and / ^ f{v + Jx{t))dt = H-oo 
since conditions (a), (b) from Definition 5 are fulfilled. Consequently, Morrey's 
integral inequality holds in the form 4-oo < 4-oo. 

(ii) li V e K and v + Jx{t) G R'^'^ \ K for all t of a set of positive measure 
then we have again / ^ f(v + Jx(t))dt = H-oo. The corresponding functions 
can be neglected when the infimum in (4) is formed. 

(iii) From Par t (ii) we know tha t / satisfies Morrey's integral inequality in 
V £ ^ C K if[ (5) holds. For ^ = K our assertion is true; so let ^ C K. 
Then there exists a finite sequence ^ = ^o C ^ i ^ . . . C ^ s = ^ of faces 
of K such tha t there are no faces ^i with ^ i ^ # i ^ ^i+i? 0 < i < s — 1. 
Then Dim(^o) < Dim(^ i ) < . . . < Dim(^s) = nm, and by [22, p. 63] every 
face ^i is an exposed face of its successor ^ i + i . Assume now v £ ^ and 
V -\- Jx(t) € K a. e. on f2. Then it follows: v € ^ s - i = ^s ^ Hg-i where 
Hs-i = {v G W^'^ I {as-ijv) = bs-i} is a supporting hyperplane of ^s = K. 
This means {as-i-,v H- Jx{t)) > bg-i resp. {as-i,Jx{t)) > 0 for a. e. ^ € i7. 
Applying Gauss ' theorem, we get {as-i,Jx{t)) = 0 as well as v-\-Jx{t) G ^s-i 
for a. e. t G i?. Again the face ^$-2 = ^s-i H Hs-2 is exposed with respect to 
^s-i where Hs-2 = { f G R'^'^ | (as-2jv) = bs-2} is a supporting hyperplane 
of ^s-i' In general, the face ^i-i = ^iO Hi-i is exposed with respect to ^ j , 
1 < i < s — 1, and repeating the same conclusions as above one arrives at 
V + Jx{t) G ^0 = ^ for a. e. t G i?. D 

2.3 T h e R e s t r i c t e d Quas iconvex Enve lope / * . 

Def in i t ion 6. Given a convex body K C R^'^ with 0 G \xi\,{K) and a function 
f eTK- Then we define the function / * : R^^ -^R by 

r{v) = i n f { - ^ / f{v + Jx{t))dt I X G W^^^{f2,R-) 

V -\- Jx{t) e K a. e. on i?} . 

The function / * was introduced in [13, p. 356], in the special case that K 
is a closed ball centered in the origin, and later in [8, p. 27, Theorem 7.2], 
with respect to an arbitrary convex body K. In both cases, it was assumed 
tha t f\j^ G Co{K,R). In [8] it is shown tha t at least for all v G in t (X) , / * 
is continuous and Morrey's integral inequality holds. Note tha t / * is defined 
as the pointwise infimum of the uncountable family {/x | a; G VFo^'°°(i?,R"^)} 
where ^ : R ' ' ^ ^ M is defined by 

Uv) = ^^jj[Jx{t) + v)dt. 

T h e o r e m 3 . Given a function f G TK CL'nd a k-dimensional face ^ of K, 
0 < k < nm. Then / * can be represented as follows: 
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i) For all v e^, 

r{v) = inf{ j ^ / ^ / ( ^ + Mt))dt I X e < ' - ( r 2 , E - ) 

V + Jx{t) € ^ a. e. on i?} . (6) 

ii) In particular, f*{v) = f{v) for all v € ext{K). 
Hi) For all v € R"""̂  \ K, one has f*{v) = +00. 

Proof. Part (i) is an immediate consequence of Theorem 2 (iii). Now, let 
V G ext{K). From part (i) we know that only the null function x = 0 is 
feasible when building the infimum for f*{v). So, it follows that f*{v) = f{v). 
Finally, from the proof of Theorem 2 (ii) we know that for v € W^'^ \ K the 
infimum in Definition 6 is taken over an empty set. So its value is +00. D 

Theorem 4. For f G J^K, one has: 

i) Ifg: R^^ ^W is quasiconvex and g < f on R^^, then g < f* on R"^^. 
ii) f'iv) < f*{v) < f{v) \fve R^^ . 

Proof (i) Choose a quasiconvex function g with g{v) < f{v) \/v G R^"^ 
but f*{vo) < g{vo) for some VQ G K. Then there exists a function x G 
Wo'°°(i?,R^) with vo + Jx{t) eK foTa.e.tef2 and 

f*(vo) ^-^J^ / K + Jx{t))dt < g{vo). (7) 

This leads to a contradiction since from quasiconvexity of g, with the function 
X from above it follows 

g{vo) ^mj^ 9ivo + Jx{t)) dt < -^ J f{vo + Jx{t))dt. 

(ii) By Theorem 1 (iii), /^ can be expressed as the pointwise supremum of the 
affine functions g < f only. These are quasiconvex functions, and for arbitrary 
V G R^^ and x G Wo'°°(i7,R^) it holds: 

g{v) <j^Jj{v + Jx{t))dt <j^J^ riv + Mt))dt =^ 

r{v) = sup {g{v) \g<f,g affine} < r ^ / / ' ( ^ + Jx{t))dt, 

and /^ satisfies Morrey's integral inequality. As a lower semicontinuous func­
tion with dom/^ — K, f^ fulfills also conditions a) and b) from Definition 5. 
Then the inequality f^{v) < f*{v) follows from Part (i), and f*{v) < f{v) will 
follow since x = 0 is always feasible when forming the infimum in Definition 
6a,tveK. D 
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3 First Example: Finite or Infinite Extension of / to 

In the following example, we consider functions of variables v = (^ ^) € E^^^. 
We will treat the four-dimensional variables as (2,2)-matrices but use the 

novm\v\ = {a'^-\-b^-^c'^-^(py^\ 
We define now a convex body K C R^^^ and a function / € TK in such 

a way tha t for any finite, continuous extension / : E^^^ —» E of / | ^ to the 

whole space E^^^ there exists some point v e K with f^{v) < P^{v) < f^{v). 
(Thus it is impossible to extend / ^ | ^ to a finite, convex function on E^^^, 
see [23, p . 505, Theorem 1]). However, from Theorem 1 (ii) and the proof 
of Theorem 4 (ii) we know that / ^ is a lower semicontinuous, quasiconvex 
function. Consequently, none of the functions /^^ is the greatest quasiconvex 
function below / (the idea for the construction of K can be traced back to 
[14, p . 698 f.]). 

Def ini t ion 7. Given the points vi = ( ^ ^) and 1̂2 = ( Q ~O) ^^^ ^^^ convex 

setC = { ( ^ ^ ) € E2x2|62 + c2 + d2 < 1}. We define Ki = co({ ' i ; i} U C ) , 

K2 = co{{v2}U C) CE2X2, K=^KiU K2 and f iR'^'"'^ ^R by 

fW — i , , _ .•^., ,- 1D)2X2 
2 1)2 ifvGK, 

4-00 ifveR^'''^\K 

L e m m a 1, i) K is a closed convex set, with 0 G int{K), which can be repre­
sented as 

i r = { ( ^ ^ ) e R 2 x 2 | - l < a < l , {b+\a\f + c'' + <f<{l-\a\f}. 

ii) ext{K) ^{v,,V2}U (ext(C) \ {(O-^) }) . 

Proof, (i) Denote by Ci and C2 the closed convex cones with vertices at vi 
resp. V2 generated by Ki and K2. Thus î T = Ci fl C2 is a closed convex 
set. The representation formula results from the fact tha t every intersection 
of K with a hyperplane a = const, can be constructed by application of a 
homothety with centre in vi or V2 to C. For the same reason, K contains 
some open neighborhood { (^ ^) G E 2 X 2 | - e < a < £, b'^ -}- C'^ -i- d'^ < e} oi 0. 

(ii) The extremal rays of the cones Ci resp. C2 are precisely the rays vi VQ 
resp. V2 VQ with VQ G ext(C) . Obviously, ext(K) contains the points vi und V2 
while (o~o) = I '̂ 1 + I ^2 ^ ext{K). Since in every remaining point of ext(C) 
precisely two extremal rays of Ki and K2 intersect, these points belongs to 
ext{K). Obviously, no other points of K are extremal points. D 

T h e o r e m 5. The function f from Definition 7 has the following properties: 

i) f\j^ belongs to W^'°^{K,R) and is infinitely differentiable on in t ( i^) . 
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a) For all points (^^) e ext(C) with b ^ (-1), we have /""(^d) = 1 ^ut 

Hi) For any finite, continuous extension f : R^^^ —>> R ^f fix ^^ holds 

P^'il'o) < 0- Consequently, f%v) < 7^ (̂̂ ;) < /^(v) for all points 

V € ext{K) with sufficiently small distance to (o~o)' 

Proof, (i) / | ^ is the restriction of a polynomial to K. 

(ii) By Lemma 1 (ii), the points (^^) € ext(C) with h ^ (—1) belong to 
ext(ir), and we know from Theorem 1 (ii) that / ^ (^^ ) = / ( ^ ^ ) = 1. It is 
/^( 0 0 ) — ^ since / > 0; conversely, from Theorem 1 it follows: 

(iii) Let / : R^^^ -^ R be some finite, continuous extension of / | ^ to the whole 

space. Since rank (vi — V2) = rank( (~o~o )̂ ~ (o~o)) ~ rank(~Q Q) = 1, it 
follows: 

r̂ (o"o) < '2rM + hrM < i/( î) + |/fe) 
= U{vi) + y{v2) = 0 (8) 

and /^ (I -^ ) < /^^ ( 0 "0 ) < r ^ ( 0 "0 ) • The finite quasiconvex function /^^ 
is continuous in the point ( Q ~o ) ' ^^ there exists a neighborhood [/ of ( ^ ~Q ) 
with /^(i;) < /^^(i;) < ^ for all veU. However, by part (ii) we have at the 
same time f^{v) = 1 for all i; G t/ fl ext(ir). D 

4 Second Example: Calculation of / * on the 
Four-Dimensional Cube K = [—1,1]^ 

Let i(" = [—1,1]̂  C R^^^. We start with the classification of the faces of K and 
then calculate the representation of /* for arbitrary / € J^K on the boundary 
dK. Then we are in position to give an example of a function / G TK where 
/* is different from the relaxation / ^ defined in Section L 

4.1 Classification of the Faces of K 

The four-dimensional cube K admits 

• 8 three-dimensional facets (cubes): 

Wi = {veR^^^\v={ 1 ^ ) } , W2 = {v&R^>'^\v={-l * ) } , 

W3 = {V€R^><^\V={ I 1 ) } , W4 = { t ' e K 2 x 2 | ^ = ( ^ - 1 ) } , 
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• 24 two-dimensional faces (squares): 

Qi = 

Q2 = 

Qs = 

Q4 = 

Q6 = 

Qe = 

Ql3 = 

Ql4 = 

Qu = 

Q l 6 = 

Q21 = 

Q22 = 

• 32 one-dimensional faces (edges) 

Si = 

52 = 

53 = 

54 = 

59 = 

*^10 = 

'S'13 = 

5*14 = 

Sis = 

'S'16 = 

521 — 

522 = 

«^25 = 

*^26 = 

S29 = 

'S'30 = 

veR^x'\v^{_l S) 

v£R^''^\v={ I \) 

veR'x'\v={ l_\) 

veR'x'\v={ I J) 

^ € E 2 X 2 | ^ ^ ( a 1^ 

t ; G R 2 x 2 | ^ ^ ( a _ i ^ 

t ; € R 2 x 2 | ^ ^ ( a 6) 

^ ; € R 2 X 2 | ^ ^ ( i _ 6 ) 

V e 

V e 

V G 

V e 

V e 

V € 

V e 

V G 

V e 

V e 

V e 

.2x2 V = [ ^ ^ ) 

V = [_^ d) 

2x2 I ^ ^ ^ 1 _ 1 ) 

V = [ ^ ^) 

V — (^ 1 - 1 ) 

,^ = ( i d) 

2X2 I ^ _ ( - 1 1) 

2 X 2 | ^ ^ ( " ^ _ | ) 

2 X 2 | ^ ^ ( - 1 6 ) 

t;GM2x2| ^ ^ ( - J _ J ) 

t ; € M 2 x 2 | ^ ^ ( a 1^ 

t ; G E 2 x 2 | ^ ^ ^ a ^ i j 

v€R^''^\v={ p l ) 
t ;€R2x2 | ^;= ( izl) 

.2x2 

.2x2 

.2x2 

i 2 x 2 

Qr 

Qs 

Q9 

Qio 

Qn 

Q12 

Qn 

Q18 

Ql9 

Q20 

Q23 

Q24 

S5 

Se 

S7 

Ss 

Sn 

Si2 

Sij 

S18 

^^20 

'̂ '23 

S24 

S27 

S28 

S31 

S32 

V e R^^^ I V = 

V e R^x^ I V = 

V e R2><2 I V = 

V e R2X21 V = 

V G R^x2 I y ^ 

V e R2X2 I y = 

V € R2X2 I ^ = 

V £ R 2 X 2 I ^ ^ 

V G R2X2 I y = 

V € R 2 X 2 I ^ ^ 

t; G R2X2 I y = 

i; G R 2 X 2 I ^ ^ 

V G R2X2I ^ 

V G :2X2 I ^; = 

t; G R ^ X 2 | ^ ^ 

^ G R2X2 I y = 

V G R2X2 I y = 

V G R2X2 I ^ = 

V G R 2 X 2 I ^ ^ 

^ ; G R 2 X 2 | ^ 

t; G R2X2 I ^ = 

V G R2X2 I ;̂ = 

^ G R2X2 I y = 

V G R ^ X 2 | ^ ^ 

t ; G R 2 x 2 | y = 

V G R2X2 I y = 

and 16 zero-dimensional faces (every of them 

- 1 - i \ 
c 1 / 

- 1 - 1 \ 
c —1 / 

- 1 b\ 
- 1 1 / 
- 1 b\ 
- 1 - 1 / 

a 1 \ 
- 1 1) 

a 1 \ 
- 1 -1) 

a —1\ 
- 1 1 / 

a —1 \ 
- 1 -1) 

consisting of one extremal point), 

V G :x2 

V G R2X2I y 

c d / 

d>' 

n 
-1 6>) 
c - 1 / 
a - 1 \ 
1 d) 
a -1\ 

-1 d) 
a - 1 \ 
c 1 / 
a - 1 \ 
c -1) 
a b\ 

-1 1) 
a b\ 

-1 - l y 

1 - l N 
1 dy 
i - i x 

- 1 dJ 

c ly 

c -iJ 
1 6N 

- 1 l y 

) 
- 1 - 1 

1 d 

- 1 dy 
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4.2 Calculation of / * on dK 

Theorem 6. Consider K = [-1,1]^ C M^^^ and a function f e^K- Then, 

i) For all VQ € ext{K), we have f*{vo) = f{vo)' 
a) Consider the subsets Gi = {Si,..., 5*32} and ^2,3 = {Qzy • • • > Qe? QQ? • • • > 

Q20} of one- or two-dimensional faces of K. If^GQiU ^2,3 then it holds 
for all vo e ri(^); f*(vo) = f{vo). 

Hi) Consider the subsets ^2,1 = {QiyQ2yQ7yQs} and G2,2 = {Q2I5 • • • 5 Q24} 
of two-dimensional faces of K. If ^ G G2 1 ^ G22 then it holds for all 
t;o€ri(<Z^);/*W=(/y>o). 

iv) Consider the subsets Gs,! = {W3, W4}, G3,2 = {^1, ^ 2 } , Gz,3 = {W7, WQ} 
and Gs,4 = {1^5,^6} of three-dimensional facets of K. Then we have 

for ^ G ^3,1 and fo = (̂ o do) ^ ri(^). Analogously, if ^ e ^3,2 and 

Vo = (2 dO ^ ^K^) ^^e^ ^̂  holds: 

For VQ G ri(^), # G ^3,3 U ^3,4, the corresponding representations hold. 

Proof (i) This is a consequence of Theorem 3 (ii). 

(ii) Consider a face ^ G ^2,3 U Gi and a point VQ G ri(^). By Theorem 3 (i) 
we have 

r (vo) = i n f { ^ _£ /(«o + Mt))dt I X e < ' ~ ( f 2 , R 2 ) , 

Vo + Jx(t) G ^ a. e. on i? } . 

On the other hand, for any function x G VFo'°°(i7,R^) with vo + Jx(t) G ^ 
for a. e. t G i7, it follows that 

with certain indices j , A; G { 1 , 2 }. Since the Lipschitz functions xi and X2 
vanish on df2, we conclude that xi{t) = X2{t) = 0. Consequently, when form­
ing f*{vo), only the function x = 0 is feasible, and we have f*{vo) = f{vo)' 
(iii) Choose a face ^ G ^2,1 U ^2,2? for example ^ = Qi, together with a point 
^0 ~ (c d ) ^ ^KQi)- ^ ^ argue from Theorem 3 (i) that only the values of / 
on Qi are involved in the construction of f*{vo), and we have xi{t) = 0 as in 
the previous step: 

1 /" 8T f)T 

nvo) = i n f { — y ^ / ( l , l , c o + Qf^(t),<k + gf^imt \ x e W^'°°in,R), 

doc dx 
- 1 - Co < ^-{t) < 1 - Co, - 1 - do < ^7-(*) < 1 - 4 a. e. on 12 } . (9) 

Oil 012 
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From Theorem 4 (ii) we know that f^{vo) < f*{yo), and by Theorem 1 (ii) 
we find for any £ > 0 points (̂ ^ ] J , {^ ] J , {^ ] J G Qi (without loss of 
generality, they can be chosen diflPerent from VQ and in general position) as 
well as numbers Ai, A2, A3 ^ (0,1) with 

r{V0) < Ai / ( l , l ,Ci ,di) + A2/(l,l,C2,ci2) + A3/(l,l,C3,ci3)< T K ) + ^, 

Ai(ci - Co) + A2(c2 - Co) + A3(c3 - Co) = 0, 

Xi{di - do) + A2(ĉ 2 - do) + A3(d3 - do) = 0, 

Ai 4- A2 + A3 = 1. 

Consider now a tetrahedron C CR^ with vertices 

1 
c i -

di-

C 3 -

d3-

-CQ 

-do 

-Co 

c i -

di-

C 3 -

-do ds-

- C 2 

-̂ 2] 
- C i 

-di\ 

Pl = 

For its lateral faces it holds 

Fi=P^PiP^ C { 

- ( d i - d s ) 
C1-C2 
0 

-{dz-dr) 
C3-C1 

0 

P2 = 

PA = 

C2—Co C2—C3 

d2—do d2—ds 

0 
0 
1 

- ( d 2 - d 3 ) 
C2-C3 
0 

Mil 
M12 I m i , /ii2 e R } + P4, 

j I M21, M22 € E } + P4 , 

I M31 , M32 € M } + P4 , 

A îi ( c i - c o ) + M12 (cii-rfo) 

/ M21 

F2 = PlP2P4 C { ^22 
\M21 (C2-Co)+M22 id2-do) 

/ M31 

P s = P2 P s P4 C { ^32 
VM31 (C3-CO) + M32 {ds-do) 

and the areas of their projections F{ = OPsPi, F^ = 0 P1P2 and F^ = 0 P2 P3 
onto the base G = P1P2 P3 satisfy the relation 

| F i ' | : | F ^ | : | F ^ | = Ai :A2:A3. 

Consider now the family 7i of all homothetic copies of C with bases in i?. 
By Vitali's covering theorem (see [9, p. 231 f., Corollary 10.6]), there exists 
an at most countable covering of int(i?) with mutually disjoint bases Gi, 
G2, ... C int(r2) of tetrahedrons from H while |int(i7) \ U^̂ î Gi\ = 0 holds. 
Identifying over every base Gi the lateral surface of the tetrahedron Ci with 
the graph of a function x and extending this function by x{t) = 0 on the 
null set i? \ Ui^i ^15 ^^ arrive at a function x which is admissible in the 
construction of f^ivo)- Inserting this function into (9), we arrive at 

1 /• Qx 

r{vo)<r{vo)<r^J /(l , l ,co + ^ ( i ) , d o + 
dx 

{t))dt 

= \if{l,l,ci,di) + X2f{l,l,C2,d2) + X3f{l,l,C3,d3) < r{vo) + e, 
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and we find that f*{vo) — f^{vo) = ( / L ) ('̂ o)- For an arbitrary face # G 
^2,1 U ^2,2) one proceeds in a completely analogous manner. 

(iv) Choose a facet ^ € U^^i ^3,5, for example ^ = Wi, together with a point 
vo £ Ti{Wi). Then for any function x € Wo'°°(i7,]R2) with VQ + Jx(t) G Wi 
a. e. on i? it follows Xi{t) = 0 as above. Consequently, f*{vo) admits the 
representation 

1 r dx dx 
rivo) = i n f{—y^ / ( l , 6o , co + Qf^it),ck + Qfjt))dt \ x € < ' ° ° ( f2 ,K) , 

dx dx T 
(1, 60, ô + ^ W , *"*"atl(^)) ^ ^ ^ a .e .onr2} , 

and the construction of f*{vo) will only depend on the values of / on a two-
dimensional convex subset of Wu namely Win{v£ R2X2 | ̂  = (̂  Ĵ)) }. Now, 
the proof can be completed as in Part (iii). D 

4.3 A Function / € :FK with / * 7̂  / ^ . 

Definition 8. Given the four-dimensional cube K = [—1,1]̂  C E^^^, we 
define f : R^x^ -^R by 

f( \ - j a + 6 + c + ( l - c / 2 ) ifv 
J^^^-\ +00 ifv 

Theorem 7. Using the notations of Theorem, 6, the envelope /* of the func­
tion f from Definition 8 has the following shape: 

nv) = < 

a + 6 + cH- (1 -c?^) ifv G ext(ii^) or v e ri(^), 

a + 6 + c if V e int(i^) or v G r i (^) , 
^ G ^2,1 U 6̂ 2,2 U 6;3,1 U ^3,2 U 03,3, 

+00 Z / Z ; G R 2 X 2 \ X . 

Proof. Step 1. Calculation of f*{v) on the faces of K. By Theorem 6 (i)-
(ii), /* and / coincide on ext(i^) as well as on the relative interior of faces 
^ G 01 U 02,3- For V G ri(W5) we have c = 1, and with Theorem 6 (iv) we 
find 

/ ('^) = (/ |w^5n{t;€R2x2|rf=const.}) (^)-

We must form the convex envelope with respect to the variables a and b only, 
so we arrive at /*(t>) = a + 6 + c + (l — d^) again. For v G ri(W6) one argues 
in the same way. Let now v G ri(^) with ^ G 02,i- Then by Theorem 6 (iii), 
one has to form the convex envelope of / with respect to the variables c and 
dy and it holds 

{c+{i-(f)y = c+{i-<fy = c. 
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For ^ G Gs,! U^3,2, the same conclusion holds by Theorem 6 (iv). Looking for 
a point V € ri(^), ^ € G2,2y one has to form again the convex envelope with 
respect to a and b while [l - (P) = 0 since d = ±1. By Theorem 6 (iv), the 
same result holds for ^ € ^3,3. 

Step 2. Calculation of f*{v) on mt{K) and R̂ ^̂ ^ \ K. We take VQ G int(i^). 
Applying Gauss theorem, we have 

rM = inf{p^ X(«o + I^W + 60 + ̂ ( t ) + CO + g ( t ) + ( 
^ X 

{do + - ^ ( 0 ) ^ ))c^ticit2 I X G 1 < ' ^ ( / 2 , R 2 ) , I; + Jx{t) G X a. e. on /? }, 

that is to say, 

/*(^o) = ao + 60 + Co + i n ^ l j ^ ^ (1 - (̂ 0 + ^ W )')citid^2 I 

X G Tyo'°°(l2,R2), t; + Jx{t) e K a, e. on t e n} . (10) 

If we can find a function X2 G Wo^'^(i?,R) with 

- l - c o < ^ ( 0 < l - c o and ^{t) e {-1 - do, 1 - do} 

for almost all t G i?, then the infimum in (10) will be taken on with zero (let 
xi{t) = 0). Consider now a pyramid C C R^ with base G = Pi P2 ^3 A C i? 
and apex P5 where the segments Pi P3 and P2 P4 are parallel to the ti- resp. ^2-
axis. In the triangle Pi P3 P5 let 

tan <(P5 Pi P3) = 1 - Co , tan <(Pi P3 P5) = - 1 - co, 

and in the triangle P2 P4 P5 let 

tan<(P5 P2 P4) = 1 - 6̂0 , tan<(P2 P4 P5) = - 1 - do. 

Starting from C, we can construct a function X2 with the desired property by 
the same procedure as in the proof of Theorem 6 (iii). Thus f*{v) admits the 
claimed representation on int(iir). By Theorem 3 (iii ), we have f*{v) = +00 
for all V G R^^^ \K. D 

Obviuosly, the function /* | ̂  is upper semicontinuous. /* is not rank one 
convex since, for example, f*(v) = f{v) = a + 6 + c + ( l — d^) is strongly 
concave along the edge ^i G Qi (Theorem 7 (i)), while 

Si = {\-{l_\)} + {l-X)-{\l)}\0<X<l} 

is a rank one direction. 
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Theorem 8, There are a sequence of functions {x^} in Wo''^(i7,R2) ^^^ 
a function x € W^^^{n,R^) with ^ ^ _Jl,L-(r^,R^) ^. j^ iv ^L-(r2,R^) j ^ . 
Jx(t), Jx^{t) eKfora.e.teOyNeN and 

[ f%Jx{t))dt >\immi f f*{Jx^{t)dt. 

Proof We consider two pyramids C , C" C R^ with base G' = P[P!^P^P'^ 
C Q and apex P^ resp. G" = P!^ P!^ P^ P^ C /? and apex P^, where the 
segments P[ P^ and P^' P^ are parallel to the ^i-axis, and the segments Pj P4 
and P2' P4' are parallel to the t2-axis. We define the following angles: in the 
triangle P[ P^ P^ let 

tan <(P^ Pi' P^) = 1, tan <{Pi P^ P^) = - 1 ; 

in the triangle P^ P^ P^ let 

tan <(P^P^P^) = 1, tan<(P^PiP^) = - 1 ; 

in the triangle P{' P^ P^ let 

tan <{P^ Pi' P^) = 1, tan <{P'{ P^ P^) = - 1 ; 

and in the triangle P^ P^ P^ let 

tan<{P^ P'i P'l) = 1 , tan<(P^' P'i P'^) = - i . 

As in the proof of Theorem 6 (iii), we construct from G' and G" functions 
x\^X2 € WQ (•^5^)- ^^^ ^'^ vector function x = [xx^x^)^ it holds: Jx(t) G 
5i U ^2 U 55 U ^6 U 5'i3 U 514 U S'17 U Sx^ for a. e. ^ € fl. Further, let us define 
the functions 

with x^ ^ i~(fi.R^) ^ as well as Jx^ ^ L'-{n,R-) j ^ ^^^ J ^ N ( ^ ) g ^^^j^^ 

for a. e. t e /? V JV € N. Prom Theorem 7 we conclude 

ri^^m)-^(in'^m.'^m.i-Qmy....o.n dti ' ' at2 ' ' ati X c/t2 

f*{jx{t))dt = ^\n\ / 4 
and 

/•(..»(,)) = |lW+f(,) + f(,).,.o„« 

/ f*{Jx^{t))dt = 0 VATG 

We have found that 

/ f*{Jx{t))dt > liminf / f*{Jx^{t))dt, 

and the envelope /* of the function / from Definition 8 is not identical with 
its relaxation / ^ . D 
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Existence and Structure of Solutions 
of Autonomous Discrete Time Optimal Control 
Problems 

Alexander J. Zaslavski^ 

Department of Mathematics, Technion, Haifa, Israel 
a jzas lQtechunix . technion .ac . i l 

Summary . In this paper we consider autonomous discrete time optimal control 
problems. We discuss the reduction to finite cost and the representation formula, 
the existence of optimal solutions on infinite horizon and their structure, and the 
structure of optimal solutions on finite intervals. 

1 Introduction 

The study of optimal control problems defined on infinite intervals has re­
cently been a rapidly growing area of research. See, for example, [4, 5, 10, 11, 
20, 30-32, 37, 38] and the references mentioned therein. These problems arise 
in engineering [1, 37, 38], in models of economic growth [13, 18, 19, 23, 24], 
in infinite discrete models of solid-state physics related to dislocations in one-
dimensional crystals [3, 27] and in the theory of thermodynamical equilibrium 
for materials [7, 15]. In this paper we consider discrete time autonomous op­
timal control problems. Sections 2 and 3 are devoted to discrete time control 
systems on compact metric spaces. In Section 2 we present two fundamen­
tal tools in the theory of optimal control on infinite horizon: the reduction 
to finite cost and the representation formula established in [14]. In Section 3 
we present a number of results obtained in [28, 29] which establish the ex­
istence of optimal solutions on infinite horizon and describe their structure. 
The turnpike theorem for infinite dimensional control system with a convex 
cost function obtained in [34] is discussed in Section 4. A finite dimensional 
extention of this result for nonconvex cost functions obtained in [35] is pre­
sented in Section 5. In Section 6 we discuss the existence of optimal solutions 
on infinite horizon for noncovex control systems on complete metric spaces 
which are not necessarily compact. The main result of Section 6 was obtained 
in [36]. In Section 7-10 we establish a turnpike result for a class of problems 
in metric spaces which are not necessarily compact. 
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2 Autonomous Discrete-Time Control Systems 
on Compact Metric Spaces 

In this section we consider the infinite horizon problem of minimizing the 
expression X)i=o ^(^*' ^^+1) ^^ ^ grows to infinity where {xi }^Q is a sequence 
in a compact metric space K and t; is a continuous function on K x K. This 
provides a convenient setting for the study of various optimization problems 
[3, 14-17, 27, 30-32]. 

Let K he a. compact metric space, R^ the Euclidean n-dimensional space, 
C{K X K) the space of all continuous functions v\ K x K -^ B} with the 
topology of the uniform convergence (||i;|| = sup{|t;(a;,y)|: x,y e K}). Let 
C{K) be the space of all continuous functions v: K —^ B} with the topology 
of uniform convergence (\\v\\ = sup{|z;(a;)|: x G K})^ and B{K x K) the set of 
all bounded lower semicontinuous functions v: K x K ^^ R}, 

Consider any v G B{K x K). We are interested in the limit behavior 
as TV ^^ CO of the expression XIi=o ^(^ij^i+i) where {xi}^Q is an infinite 
sequence in K which we call a program (or a configuration), and which oc­
casionally will be denoted by a bold face letter x (similarly {yOSo ^^ ^^ 
denoted by y, etc.) A finite sequence {xi]^^^ C i^ (AT = 0,1,...) will be also 
called a program. 

The following notion known as the overtaking optimality criterion was 
introduced in the economic literature [2, 12, 26]. A program {xi}^Q is a (v)-
overtaking optimal program if for every program {zi}'^Q satisfying ZQ = XQ 
the following inequality holds: 

A T - l 

p 
N-^oo 

limsup ^[v{xi,Xi+i) -v{zi,Zi+i)] < 0. 
i=0 

A program {xi}go ^̂  ('y)-weakly optimal [6] if for every program {^i}^o 
satisfying ZQ = XQ the following inequality holds: 

N-l 

\imMy2[v(xi,Xi+i) -v{zi,Zi^i)] < 0. 
i=0 

A sequence {a:^i}£_oo C X is called a (t>)-minimal energy configuration [3] 
if for each pair of integers ni,n2 > ni and each sequence {yi}^!^! ^ ^ 
satisfying yi = Xi, i = 711,712 the following inequality holds: 

n2 —1 n2 —1 

^ v{xi,Xi^i) < Y^ v{yi,yi+i). 
t = n i i = n i 

Of special interest is the minimal long-run average cost growth rate 

A T - l 

li{v) = inf < liminf AT"̂  V^ v{zi,Zi+i) : {zi}'^^ is a program [. 
i=0 
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A program {zi}'^Q is called a (r;)-good program [12] if the sequence 

N-l 

{Y,[v{zi,Zi+i)-Kv)]} (1) 
i=0 

is bounded. It was proved in [14] that for every program {^t}^o ^^^ sequence 
(1) is either bounded or diverges to infinity and that for every initial value z 
there is a (t;)-good program {zi}^Q satisfying ZQ = z, 

In [28, 29] we investigated the structure of (t;)-good programs and estab­
lished for a generic v € C(K x K)^ and for every given x E K the existence 
of (t;)-weakly optimal program {xi}'^Q satisfying XQ = x. 

Let V £ B{K X K). We define 

a{v) = sviip{v{x,y): x,y e K}, b{v) = m{{v{x,y): x,y 6 K}. 

The following two results established in [14] are very useful in the study 
of infinite horizon control problems. We refer to the property described in 
Theorem 1 as the reduction to finite cost, and to the property described in 
Theorem 2 as the representation formula. 

Theorem 1. (i) For every program {zi}'^Q 

N-l 

J2 H^u^i+i) - f^(v)] > Hv) - a{v) VAT = 1,2,...; 

(a) For every program {zi)^Q the sequence (1) is either bounded or it diverges 
to infinity; 
(Hi) For every initial value ZQ there is a program {zi}^!^ which satisfies 

N 

\Y,HzuZi+i)-li(y)]\<A\a[v)-h(v)\ VAT =1 ,2 , . . . . 
i=0 

Theorem 2. Let v G C{K x K) and define 

TT'"(X) = inf < lim înf ^ [v{zi,Zi+i) - fj,{v)]: zG K,zo = x\ . 

Then we can represent v{x,y) in the form 

v{x,y) = O'^ix^y) + fi{v) + 7r^(x) - 7r̂ (2/) for x,y e K (2) 

where 0'"{x^y) is defined by (2), and where TT ,̂ 0'" are continuous functions, 
6^ is nonnegative and E(x) = {y £ K\ 0'"{x,y) = 0} is nonempty for every 

xeK. 
In [14] these theorems were established when K was a compact subset of 

R^, but their proofs remain in force also when K is any compact metric space. 
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3 Existence and Structure of Optimal Solutions for 
Discrete-Time Control Systems on Compact Spaces 

Let K he 3. compact metric space. For a program x we denote by u;(x) the 
set of all points z £ K such that some subsequence {xi^}^_^ converge to z, 
and denote by i7(x) the set of all points {zi,Z2) € K x K such that some 
subsequence {(xi^jX^^+i)}^^ converge to {z\^Z2). Denote by d the metric on 
K and define the metric di on K x K hy 

di{{xi,x2),{yi,y2)) = d{xi,yi) •\- d{x2,y2) (̂ 1,̂ 2,̂ 1,2/2 € K). 

We denote d{x,B) = inf{d(x,y): y £ B} iov x G K,B C K and 

di{{xi,X2),A) = inf{c?i((xi,X2), (2/1,2/2)): (2/1,2/2) € A} 

for (a;i,a;2) e K x K and A C K x K. Denote by dist{A,B) the Hausdorff 
metric for two sets AcK and B C K and denote by Card(yl) the cardinality 
of a set A. 

We call a sequence {xi]^_^ C K almost periodic if for every e > 0 there 
exists an integer m > 1 such that the relation d{xi,Xi^rnj) ^ ^ holds for 
any integer i and any integer j . We call a program {xi}^Q asymptotically 
almost periodic if for every e > 0 there exist integers A; > 1, m > 1 such tha t 
d(xiy Xi^rnj) ^ e for any integer i > k and any integer j > 1. 

In [28, 29] we proved the existence of a set F C C{K x K) which is a 
countable intersection of open everywhere dense sets in C{K x K) and for 
which the following results are valid. 

T h e o r e m 3. (i) For every u G F there are closed sets H(u) C K x K, 
HQ(U) C K such that for every {u)-good program x we have i7(x) = H{u), 
a;(x) = Ho{u). 
(a) Let u E F. Then every {u)-good program x is asymptotically almost peri­
odic. 
(Hi) Let u £ Fj6 > 0. Then there is a neighborhood W{u) of u in C{K x K) 
such that for every w € W{u) and for every {w)-good program x we have 
dist{H{u),n{x)) <S. 

T h e o r e m 4. Let u e F, and let {xi}'^Q be a program such that 

e''{xi,Xi+i) = 0 Vi = 0 , l , . . . 

Then {xi}^Q is a {u)-weakly optimal program. Moreover, there exists a strictly 
increasing sequence of natural numbers {ik}^=i such that for every program 
{yi}iZo satisfying z/o = XQ the inequality 

f 
fe-->oo 

liminf V [tz(2/j,2/j+i) - u{xj,Xj+i)] > 0 
K—•OO 

i=0 
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holds, and if for some program { y ^ S o satisfying yo = XQ, 

ik-l 

i \immfy2[u{yj,yj+i) - u{xj,Xj+i)] = 0, 

3=0 

thene''(yj,yj+i) = 0, Vj = 0 , 1 , . . . . 

For every u £ C{KxK), every number Ẑ  > 0, and every integer AT > 1 we 
denote by A{u, AT, A) the set of all sequences {2/i}iLo ^ ^ such that for every 
sequence {ZIJ^LQ C K satisfying ZQ = yo^z^ = yN the following inequality 
holds: 

N-l 

'^[u(yi,yi+i)-u{zi,Zi+i)] < A. 
i=0 

Recall the representation formula (2) and define L: C{K x K) —^ B} x 
C{K) X C{K X K) by L{v) = (A^(^;),7^^6>^), v € C{K x K). 

The second assertions of Theorems 5 and 6 establish a turnpike property 
for every ueF [16, 17, 21, 22, 25]. 

T h e o r e m 5. (i) L is continuous at every point of F. 
(a) Let u £ F and S > 0. Then there are a neighborhood W{u) of u in 
C{K X K) and positive numbers Qi,Q2 such that for every w € W{u), for 
every integer N > 1, for every integer M > 0 and every program {yij^^o ^ 
A{Wj Nj M) the following relation holds: 

Card{i G { 0 , . . . ,iV - 1}: di{{yuyi+i),H{u)) >(^} < Qi + MQ2. 

T h e o r e m 6. (i) Let u £ F, e > 0. Then there exist a neighborhood W{u) ofu 
in C(K X K) and S > 0 such that for every w € W{u) and for every program 
{xi}'^Q satisfying 0'^{xi,Xi^i) = 0, i = 0 , 1 , . . . and d{xo,Ho{u)) < (5, the 
relation di{{xijXi^i)jH{u)) < e holds for z = 0 , 1 , . . . 
(a) Let u E F, 6 > 0. Then there exist a neighborhood W(u) of u in 
C{K X K) and an integer N > 1 such that for every w £ W{u) and for 
every program {xi}'^Q satisfying 0'^{xi,Xi^i) = 0, z = 0 , 1 , . . . , the inequality 
di{{xi,Xi^i),H{u)) < e holds for every i > N. 

Corol lary 1. Let u £ F, {xi}^_^ be a program such that 0'^{xi,Xi^i) = 0, 
i = 0, dil , Then (x^, x^+i) £ H{u), z = 0, z b l , . . . 

Corol lary 2. Let u £ F, e > 0, Then there exists a neighborhood W{u) of u 
in C{K X K) such that for every w £ W{u) and for every program {xi}'^_^ 
satisfying 0'^{xijXi^i) = 0, i = 0 , d z l , . . . the relation di{(xijXi^i)jH{u)) < e 
holds for every integer i. 

T h e o r e m 7. Let u £ F. Then every sequence {2/i}^_oo 'which satisfies 
0^(yi,yi^i) = 0, i = 0 , ± l , . . . is almost periodic. Moreover, for every e > 0 
there exist a neighborhood W(u) of u in C{K x K) and an integer m > 1 
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such that for every w G W{u) and for every program {y^iS-oo satisfying 
^^{yiiVi+i) = 0, i = 0 , ± 1 , . . . , the relation d^yi^yi^jm) < e holds for any 
integers i and j . 

T h e o r e m 8. (i) Let u e F and let {xi}'^Q be a (u)-good program. Then there 
exists a program {yO^S-oo ^^^^ ^^^^ ^^{yiiVi+i) = 0, i = 0, ± 1 , . . . , and 
\\mi^ood{xi,yi) = 0. 
(ii) Let u £ F and let {xi}i2._^ be a (u)-minimal energy configuration. 
Then there exist programs {yi}£-oo^ {^i lS-oo ^'^^^ ^^^^ ^^(yi^Vi+i) — 0? 
e'^{zi,ZiJ^i) = 0, z = 0 , ± 1 , . . . , Mmi^oo d{xi,yi) = 0, \\mi^-ood{xi,Zi) = 0. 

We define 

Co{K xK) = {ve C{K X K): ii{v) = mm{v{x,x): x £ K}} . 

It is easy to see tha t Co{K x ii^) is a closed subspace of C{K x K). The space 
Co {K X K) also has the topology of uniform convergence. In [29] we reinforced 
the previous theorems for u € CQ{K X K) and proved the existence of a set 
FQ C Fr\CQ[KxK) which is a countable intersection of open everywhere dense 
subsets of CQ{K X K) such tha t Theorem 9 holds for FQ. This result shows that 
for every u £ FQ and every x e K there is a (li)-overtaking optimal program 
{^i}So satisfying XQ = x. It also establishes the strong turnpike theorem for 
UGFQ. 

T h e o r e m 9. (i) Card(Ho{u)) = 1 forueFo. 
(ii) Let u E FQ, S > 0. Then there exists a neighborhood W{u) of u in C{K x 
K) such that for every w € W{u), and for every {w)-good program x the 
relation dist{Q(x.)^ {HQ(U) X HQ{U))) < 6 holds. 

(Hi) Let u G FQ, {a^i}^o ^^ ^ program for which 9'^{xi, x^+i) = 0, i = 0 , 1 , 
Then {xi}^Q is a (u)-overtaking optimal program and, moreover, if {yi}iZo 
is a program such that yo = XQ and 

N-l 

liminf V'['a(y,;,2/t+i) - u{xi,Xi^.i)] = 0, 
N—^oo '—^ 

thenO'^{yi,yi^i) = 0, z = 0 , l , . . . 
(iv) Let u £ FQ, e > 0. Then there exist a neighborhood W{u) of u in C{K x 
K), an integer Q > 1 and CQ G (0,e) such that for every w G W{u), for 
every integer N > 2Q and every program {yi}iLo ^ ^ ( " ^ J ^I ^O) ^he following 
relation holds: d{yi,Ho{u)) < e, i = Q,.. .N — Q and if d{yojHo{u)) < eo, 
then d{yi,Ho{u)) < e, i = 0,.. .N — Q. 

4 Turnpike Result for Convex Infinite Dimensional 
Discrete-Time Control Systems 

In this section we discuss the structure of "approximate" solutions for an 
infinite dimensional discrete-time optimal control problem determined by a 
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convex function v : K x K —^ R^, where K is a convex closed bounded subset 
of a Banach space. In [34] we showed that for a generic function v there exists 
yy £ K such that each "approximate" optimal solution {xi}f^Q C K is a 
contained in a small neighborhood of /̂v for alH G {AT,..., n — AT}, where N 
is a constant which depends on the neighborhood and does not depend on n. 
This result is a generalization of the main result of [33] which was established 
for convex uniformly continuous functions. 

Let {Xy II • II) be a Banach space and let iC C X be a nonempty closed 
convex bounded set. Denote by A the set of all bounded convex functions 
V : K X K -^ R^ which are continuous at a point (x, x) for any x G K. Denote 
by Ai the set of all lower semicontinuous functions v E A, hy Ac the set of all 
continuous functions v e A and by Au the set of all functions v £ A which 
satisfy the following uniform continuity assumption: 

Ve > 0 there exists S > 0 such that for each a î, 0:2,2/i, 2/2 ^ ^ satisfying 
\\xi — ViW < S, i = 1,2 the relation \v{xi,X2) — 1̂ (2/1,2/2)! ^ € holds. 

We equip the space A with the metric 

p{u,v) = sup{\v(x,y) -u{x,y)\ : x,y e K}, u,v £ A. 

Evidently the metric space (A, p) is complete and Ai, Ac and Au are closed 
subsets of (•4,p). We equip the sets Ai, Ac and Au with the metric p. 

In [33, 34] we investigated the structure of "approximate" solutions of the 
optimization problem 

n - l 

minimize Y~^'i;(xi,Xi+i) subject to {xi}'^^^ C K, XQ — y, Xn = z (3) 

iox V £ A, y,z £ K and n > 1. In [33] we showed that for a generic function 
V € Au the following property holds: 

there is y^ £ K such that for all large enough n and each y,z £ 
K an "approximate" solution {xi}^_o of (3) is contained in a small 
neighborhood oi y^ for alH G {N,... ,n — N} where AT is a constant 
which depends on the neighborhood and does not depend on n. 

This phenomenon which is called the turnpike property (TP) is well known in 
mathematical economics. The term was first coined by Samuelson [25] in 1958 
where he showed that an efficient expanding economy would spend most of the 
time in the vicinity of a balanced equilibrium path (also called a von Neumann 
path). This property was further investigated in in mathematical economics 
(see [10, 11, 16-19, 21-24]) for optimal trajectories of models of economic 
dynamics. A related weak version of the turnpike property was considered in 
Section 3 with a nonconvex function v : K x K ^^ R^ and a compact metric 
space K. 
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When we say tha t a certain property holds for a generic element of a 
complete metric space Y we mean that the set of points which have this 
property contains a Gs everywhere dense subset of Y. Such an approach, 
when a certain property is investigated for the whole space Y and not just 
for a single point in Y, has already been successfully applied in many areas of 
Analysis. In [34] we generalized the main result of [33] and showed tha t the 
turnpike property holds for a generic function v E A. 

In almost all studies of discrete time control systems the turnpike prop­
erty was considered for a single cost function v and a space of states K which 
was a compact convex set in a finite dimensional space. In these studies the 
compactness of K playes an important role. Specifically for the optimization 
problems considered in this section if a function v has the turnpike prop­
erty then its "turnpike" yy is a unique solution of the following optimization 
problem 

minimize v{x^x) subject to x E K. 

The existence of a solution of this problem is guaranteed only if K satisfies 
some compactness assumptions. To obtain the uniqueness of the solution we 
need additional assumptions on v such as its strict convexity. 

Here, instead of considering the turnpike property for a single cost function 
v^ we investigate it for spaces of all such functions equipped with some natural 
metric, and show that this property holds for most of these functions. In [33] 
we established the turnpike property without compactness assumption on the 
space of states for a generic convex uniform continuous cost function. In [34] we 
established the turnpike property for a generic convex cost function without 
this assumption. 

For each v e A, integers m i , m 2 > mi and yi,y2 E K we define 

m2 —1 

a(v,mum2) = inf{ ^ v(zi,Zi+i) : {^i}2:mi ^ ^ } ' 

7712 — 1 

(j(t;,mi,m2,2/i,2/2) = inf{ ^ v(zi,Zi+i) : {^i}^'^^ C K, Zm^ = 2/i,^m2 = 2/2}, 
1=7711 

and the minimal growth rate 

N-l 

li{v) = inf{liminf AT-i V v{zi,Zi^i) : {zi}Zo C K}. 
AT—>oo •^—' 

i=0 

In [34, Prop. 2.1] we showed tha t fi{v) = inf{v{z,z) : z G K] for any v e A. 
In the same work we constructed a set T {Ti^Tc^Tu, respectively) which is 
a countable intersection of open everywhere dense subsets of A {Ai,Ac,Au, 
respectively) and such that Ti C AiO T, Ted Ac^ T, .F^ C A H T, We 
also established the following two theorems. 
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T h e o r e m 10. Let v €: T. Then there exists a unique i/y E K such that 
v{yv,yv) = fJiiv) and the following assertion holds: 

For each e > 0 there exist a neighborhood U of v in A and S > 0 such 
that for each u ElA and each y E K satisfying u{y^y) < IJL{U) + 6 the relation 

\\y -yv\\ < e holds. 

T h e o r e m 11 . Letv € T ande > 0. Then there exist 6 € (0,€), a neighborhood 
U of V in A and an integer N > 1 such that for each u £ U, each integer 
n > 2N and each sequence {a:i}^_o C K satisfying 

n-l 

^Y^u{xi,Xi^i) < a{u,0,n,xo,Xn) -\-S, 
i=0 

there exist TI G { 0 , . . . , N} and r2 € {n — A/^,..., n} such that 

\\xt -yv\\ < e, t = r i , . . . , r 2 . 

Moreover, if\\xo — yv\\ ^ ^} then TI = 0, and if \\yv — ^n | | ^ ^} then T2 = n, 

5 Turnpike Result for Nonconvex Control Systems on 
Compact Metric Spaces 

Let {K^ d) be a compact metric space, C{K x K) the space of all continuous 
functions v\ K x K —^ E} with the topology of the uniform convergence. Let 
C{K) be the space of all continuous functions v: K —^ R^ with the topology 
of uniform convergence. 

In this section we continue to discuss the structure of "approximate" solu­
tions of the optimization problem. (3) for v € C{K x K), y^z £ K and n > 1. 
Recall tha t a sequence {zi}^Q C K is called (i;)-good if the sequence (1) is 
bounded. Assume tha t v G C{K x K) and there exists Xy e K such tha t each 
(t')-good sequence {xi}'^i C K converges to Xy. In [35] we showed that the 
following turnpike property holds: 

for all large enough n and each y,z € K an "approximate" solu­
tion {xi}'i^Q of (3) is contained in a small neighborhood of Xy for 
all z G {AT,.. . , n — N} where AT is a constant which depends on the 
neighborhood and does not depend on n. 

Namely, in [35] we proved the following result. 

T h e o r e m 12. Let v € C{K x K). Assume that there exists Xy £ K such that 
each (v)'good sequence {xi}^^ C K converges to Xy. Let e £ (0,1). Then 
there exists S G (0,e), a neighborhood U of v in C{K x K) and an integer 
N > 1 such that for each u £ U, each integer n > 2N and each sequence 
{ X J J L Q C K satisfying 
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n - l 

^^u(xi,Xi+i) < (j(ii,0,n,xo,Xn) -i- S 
i=0 

there exist Ti G {0 , . . . , N} and T2 € {n — AT,..., n} such that 

\\xt -Xv\\ < e, t = r i , . . . , r 2 . 

Moreover, if \\XQ — Xy\\ < 6, then ri = 0 and if \\xn — Xy\\ < 6, then T2 = n. 

6 Minimal Solutions for Discrete-Time Control Systems 
in Metric Spaces 

In this section we study the structure of minimal solutions for an autonomous 
discrete-time control system in a metric space X determined by a continuous 
function v : X y. X —^ E}. K sequence {xi}^_^ C X is called (t')-minimal 
if for each pair of integers 7722 > mi and each sequence {yi}^^ satisfying 
Vj = Xjy j = miy7712 the inequality 

m2 —1 m2—1 

^ v{xi,Xi^i) < ^ v{yi,yi+i) 

is valid. In [36] we considered a space of functions v : X x X —^ R^ equipped 
with a natural complete metric and showed that for a generic function v there 
exists a (t;)-minimal sequence. 

Let (Xjd) be a complete metric space. We equip the set X x X with 
the metric di (defined in a similar way as in Section 3). Clearly the metric 
space {X xXjdi) is complete. Denote by A the set of all continuous functions 
V : X X X ^i^ R^ which satisfy the following two assumptions: 

(i) (uniform boundedness) sup{|i;(a;,2/)| : x,y G X} < 00; 

(ii) (uniform continuity) Ve > 0, 3J > 0 such that \v{xi,X2) —v(yi,y2)\ < e 
for each Xi,yi e X^ i = 1,2 which satisfy d{xi, y )̂ < J, z = 1,2. 

Define p : A x A ^ R^ by p{v,w) = sup{\v{x,y) - w{x,y)\ : x^y e X}. 
Clearly the metric space {A, p) is complete. 

In this section we consider the optimization problem 

fc2-l 

minimize ^ v{xi,XiJ^i) subject to {xj^^^^ C X, Xk^ = y, Xk^ = z (4) 
i=ki 

where v G A, y^z € X and k2 > ki are integers. 
Note that the problem (4) was considered in Sections 2 and 3 with a 

compact metric space X and in Section 4 when X was a bounded closed 
convex subset of a Banach space and the function v was convex. 
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If the space of states X is compact then the problem (4) has a solution for 
each V e A, y,z ^ X and each pair of integers k2 > ki. For the noncompact 
space X the existence of solutions of the problem (4) is not guaranteed. 

For each v e A, each natural number m and each yi,y2 G X we set 

llt'll = sup{|t;(x,y)| : x.yeX}, 

N-l 

li{v) = inf{liminfiV~^ V v{xi,Xi+i) : { X J ^ Q ^ ^}^ 
i=0 

m—1 

(j{v,m) = i n f { ^ v(xi,Xi^i) : {xi}^o ^ X}, 
i=0 

w—1 

aperiv,rn) = i n f { ^ v{xi,Xi+i) : { X J J I Q C X, XQ = x ^ } , 
i=0 

m—1 

cr(i;,m,yi,2/2) = i n f { ^ 'i;(a;i,Xi+i) : {xi}^o C X, â o = 2/i, x ^ = 2/2}. 

Let V e A. A sequence {a î}°=_oo C X is called ('i;)-minimal if for each 
pair of integers 7712 > mi 

m2 —1 

If the space of states X is compact then a (f )-minimal sequence can be 
constructed as a limit of a sequence of optimal solutions on finite intervals. For 
the noncompact space X the problem is more difficult and less understood. 
The difficulty is that for any problem of type (4) the existence of its solution 
is not guaranteed and that a (t;)-minimal sequence is an exact solution of 
a countable number of optimization problems of type (4). In [36] we showed 
that for a generic function v taken from the space A there exists a (i;)-minimal 
sequence. 

A sequence {xi}^Q C X is called (f )-good if there exists a number M > 0 
such that for each natural number m 

m —1 

y ^ v{xi,Xi+i) < (j{v,m,xo,Xm)-\- M. 
i=0 

It is not difficult to see that the following proposition holds. 

Proposition 1. Let v e A and {zi}^Q C X be a {v)-good sequence. Then for 
each X £ X there is a {v)-good sequence {xi}^^ C X such that XQ = x. 

For each {xi}'^Q C X denote by oj{{xi}'^Q) the set of all y € X for which 
there exists a subsequence {xi^}^i such that limfc_,oo ^̂ î  = y. In [36] we 
proved the following result. 
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T h e o r e m 13. There exists a set T d A which is a countable intersection of 
open everywhere dense subsets of A such that for each v ^ T there exists a 
nonempty compact set Q{v) C X which satisfies the following two conditions: 

(i) there is a (v)-minimal sequence {̂ ^̂  /^S-oo ^ ^{'^)) 

(a) for each {v)-good sequence {yi}iZo ^ -^ there exists a (v)-minimal se­
quence {xi}9Z_^ C n{v)nuo{{yi}^o). 

7 Turnpike Result for Control Systems on Metric Spaces 

Let {X, p) be a metric space. Denote by A the set of all bounded functions 
V \ X X X -^ R^, Set A — X X X. We equip the set A with the metric 

d{u,v) = sup{\v(x,y) -u{x,y)\ : x,y £ K}, u,v G A. 

Evidenly {A, d) is a complete metric space. Denote by Ai the set of all lower 
semicontinuous functions v £ A^ hy Ac the set of all continuous functions 
V £ A and by Au the set of all uniformly continuous functions v £ A. Clearly 
Ai^Ac and Au are closed subsets of the complete metric space {A^d). 

Let V £ A. Define a minimal growth rate ii{v) as in Section 6. Clearly 

li(v) < m.i{v{x^x) : x € X}. 

Denote by .4* the set of all t̂  G .4 such that ii{v) = mi{v{x^x) : x G X}. 
Clearly A^ is a closed subset of (.A, d). Set 

Clearly A* 7̂  0. For example, if v{x^y) = c for all (x, y) G X x X where c is 
a constant, then v G A^c 

The following proposition will be proved in Section 8. 

P r o p o s i t i o n 2. Let v £ A^. Then for each x G X there is a sequence 
{^i}i^o C X such that XQ = x and 

l imsup AT ^ ^ v(xi,Xi^i) = fi{v). 

t=o 

For each i; G A set \\v\\ = sup{| 'y(x,y)| : x,y e X}. For x G X and B C X 
set p{x,B) = inf{p(x,y) : y e B}. Denote by J^ the set of all v £ A^ which 
have the following property: 

(P) for each e > 0 there exist S > 0 and a neighborhood V of i; in .4 such that 
for each u eV and each sequence {xi}'^Q C X which satisfies 

l imsupiV ^2 '^(^i)^i+i) ^ A*(̂ ) + <̂j (5) 
i=0 
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one has limsup^_oQ N~^Ca,Td{i € {0 , . . . , AT — 1} : p{xi,Xi+i) > e} < e. 

If i; € v4* has the property (P) then all good programs spend most of time 
in a small neighborhood of the diagonal A. 

We show that most elements of ^* (in the sense of Baire's categories) have 
the property (P). Moreover, we show that the complement of the set of all 
functions which have the property (P) is not only of the first category, but 
also cr-porous. 

Before we continue we recall the concept of porosity [8, 9], Let (Y^p) be a 
complete metric space. We denote by B{y, r) the closed ball of center y ^ Y 
and radius r > 0. A subset ^ C y is called porous in (Y, d) if there exist 
a e (0,1) and ro > 0 such that for each r G (0, ro] and each y ^Y there exists 
z G Y iov which B(z^ar) C B(y,r) \E. A subset of the space Y is called 
cr-porous in (Y, p) if it is a countable union of porous subsets in (Y,p). 

Since porous sets are nowhere dense, all cr-porous sets are of the first 
category. If Y is a finite-dimensional Euclidean space, then cr-porous sets are 
of Lebesgue measure 0. In fact, the class of cr-porous sets in such a space is 
much smaller than the class of sets which have measure 0 and are of the first 
category. 

In this paper we will establish the following result. 

Theorem 14. The set A^XT (A^i \ T, A^c \ ^} A^u \ ^, respectively) is a 
CT'porous subset of A* (A*i, A^c^A^u} respectively). 

8 Proof of Proposition 2 

Let X £ X. For each natural number n there is Zn G X such that 

t^(^n,^n)<M^) + 2-^ . (6) 

Define a sequence {xn}'^=o C X as follows: 

xo,xi =x, Xn = Zk, n = 2^,...,2^+^ - 1, A; = 1,2,... (7) 

We show that 
N-l 

limsupiV"^ 2 ^ v{xi,Xi^i) = ii{v). 

Clearly 

limsup A/" ^ V^ v{xi^Xi^i) > IJL{V). 

Let AT > 9 be a natural number. There is a natural number k — k{N) such 
that 2^ <N < 2^+1. Set p = N - 2K Then by (7) and (6) 

N-l 

^ v{xi,Xi+i) = v{x,x) + v{x, zi) + v(zi, zi) 
i=0 
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fc-i 

3=2 

fc-1 

< 3||z;|| + J2 [^'<^3^^3) + 211̂ 11] + [(p + l)v{zu,zu) + 2||t;||] 

fc-1 
<Y^2h{zj,Zj)^{p-\-l)v{zk,Zk) + 2\\v\\(k-^l) 

3=2 

fc-1 

< ^2^(Mi;) + 2-^) + (p+ 1)[M )̂ + 2-^] + 2\\v\\{k^l) 
3=2 

fc-1 

= l,{v) [;^ 2̂ ' + (p + 1)] + A; + 2||z;||(A; + 1) 
3=2 

< fx{v) [2^ - 1 - 3 + (p + 1)] + (A: + 1)(2| |^ | | + 1) 

< M ^ ) ( A ^ - 3 ) + ( log2iV+l) (2 | | t ; | | + l ) . 

This relation implies tha t 

N-l 

limsupA/" ^ y] v(xi,Xi^i) 

i=0 

< l imsup[A^-VM(A^ - 3) + {2\\v\\ + l)(log2 N + 1)N-^] = fj,{v). 
N-^oo 

Proposition 2 is proved. D 

9 An Auxiliary Result for Theorem 14 

Let i; G A , 7 € (0,1]. Define 

^7(^'2/). = ^(^'2/) + 7 n i i n { l , p ( x , y ) } , x,y e X. (8) 

Clearly 

if V G A^i (w4*cj ^*n respectively), then v^ G w4*/ (v4*c5 ^*u respectively). 

L e m m a 1. Let S > 0, u e A* satisfy d{UjVj) < S, and let {xi}'^Q C X 
satisfy 

N-l 

limsupA/""^ y u{xijXi^i) < ii{u) + 6. (10) 

Then, for each e G (0,1], 

limsupiV-^(7arc?{iG { 0 , . . . , A r - l } :p(a;i,x^+i) > e} < (3J ) (7e ) "^ 
7V-*oo 
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Proof. Let e € (0,1]. Due to d{u^v^) < J, one has 

N - l N-\ 

|limsupiV~^ y j u{xi^Xi^i) — limsupiV"-^ YJ v^{xi^Xi^i)\ < J, (11) 

\yi{u)-iJi{v^)\<6. (12) 

In view of (9)-(12), 

N-l 

limsup AT"-̂  y j '̂ 7(̂ 13^14-1) ^ ^(^7) + 3J = //(t;) 4- 3J. (13) 

It follows from (13), (8) and the definition of ^{v) that 

N-l 

)u('u) + 3J > limsupA/' ^^2 [^(^ij^i+i) + 7"^in{l,p(xi,a;i+i)}] 
i=0 

N-l 

> limsupA^ My^ v(xi,Xi+i) -{- jeCai.id{i € {0, . . . ,iV - 1} : p{xi,Xi+i) > e}] 

> limsupA/""SeCard{2 G {0 , . . . , AT - 1} : p(x^,x^+i) > e} 
AT-^oo 

N-l 

+ liminf./V ^ 7 t;(x^,Xi+i 
N->oo 

i = 0 

> limsup7eA/'~-^Card{z G {0, . . . ,iV - 1} : p(xt,Xi+i) > e} H- /^('y). 
AT-^00 

This inequality implies that 

limsupAr-^Card{z€ { 0 , . . . , A r - l } : p{xi,Xi+i) > e} < {3S){'ye)-'^. 
N-^00 

Lemma 1 is proved. D 

10 Proof of Theorem 14 

For each natural number n denote by T^i the set of all v G A^. which have the 
following property: 

(PI) there exist 5 > 0 and a neighborhood V of f in v4* such that for each 
u EV and each sequence {xi}^Q C X which satisfies (5), one has 

limsupA/""^Card{2 € {0 , . . . , AT - 1} : p(xi,Xi^i) > n~^} < 1/n. 
N-^00 
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It is not difficult to see that T — n ^ i ^ n - In order to prove Theorem 14 it is 
sufficient to show that for each integer n > 1, Ai,\Tn ( Ai,i\Tn'> Ai.cX^nt 
A^u \^n) respectively) is a porous subset of ^4* (w4*/, A^^ A*u) respectively). 

Let n be a natural number. Set 

a = ( 3 2 n 2 ) - i . (14) 

Assume that v £ A*, r G (0,1]. Pu t 

7 = 6arn^ < r / 4 (15) 

and define 
v^{x,y) = v{x,y)-\-jmm{l,p{x,y)}, x,y e X. (16) 

Clearly v^ £ A^, K'^^) = M(^ ) ) ^tnd ii v £ A^i (A^c^ A^u respectively), then 
Vy e A^i (A^C, A U respectively). By (15)-(16), 

d{v,Vj) < 7 < r / 4 . (17) 

Assume that 
ue A*, d{u,Vj) < 2ar , (18) 

N-l 

{^iJiSo ^ ^ ) limsupA'^"^ ^ u{xi,Xi+i) < fi{u) + 2ar. (19) 
^^^ i=o 

In view of (17)-(18) and (14), 

d(u,v)<r. (20) 

It follows from (18)-(19), Lemma 1 (with S = 2a r , e = 1/n) and (15) tha t 

l imsupAr~^Card{i G {0, . . . , A / " - 1} : p{xi,Xi+i) > 1/n} 
N-*oo 

< ( 6a r ) (7 /n )~^ = 6ar7~"^n < 1/n. 

We have shown tha t each u £ A^ satisfying d{u^v^) < ar belongs to Tn ŝ nd 
satisfies (20). This completes the proof of Theorem 14. D 
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Summary. We investigate possibilities to deal with optimal control problems that 
have special integer restrictions on the time dependent control functions, namely 
to take only the values of 0 or 1 on given time intervals. A heuristic penalty term 
homotopy and a Branch and Bound approach are presented, both in the context of 
the direct multiple shooting method for optimal control. A tutorial example from 
population dynamics is introduced as a benchmark problem for optimal control with 
0 — 1 controls and used to compare the numerical results of the different approaches. 

1 Introduction 

Optimal control problems have long been under investigation and it is well 
known that for certain systems, in particular linear ones, bang-bang controls 
are optimal. On the other hand it is not clear what to do if the feasible set of 
a control is a priori restricted to two (or more) discrete values only and the 
optimal switching structure cannot be guessed due to the complexity of the 
model under consideration. 

Optimal control problems with the mentioned restriction to 0-1 values in 
the controls arise whenever a yes-no decision has to be made, as is e.g. the 
case for certain types of valves or pumps in engineering, certain investments 
in economics, discrete stages in transport or application of laws in given time 
periods. Such problems are typically nonlinear and already difficult to solve 
without combinatorial apects. 

Although some mixed integer dynamic optimisation problems, namely the 
optimisation of New York subway trains tha t are equipped with discrete accel­
eration stages, were solved in the early eighties [3], the so-called indirect meth­
ods used there do not seem appropriate for generic large-scale optimal control 

Work supported by the Deutsche Forschungsgemeinschaft (DFG) within the grad­
uate program Complex Processes: Modeling, Simulation and Optimization. 
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problems with underlying nonlinear differential algebraic equation (DAE) sys­
tems. Therefore efforts have to be undertaken to bring together methodology 
of and new results for indirect methods in this context (see e.g. [24]) and the 
so-called direct methods, particularly the direct multiple shooting method [4] 
and direct collocation [23, 29]. 

Several authors have been working on optimal control problems with dis­
crete valued control functions: [7] investigate a water distribution network in 
Berlin with such on/off pumps, using a problem specific nonlinear continuous 
reformulation of the control functions; [28] treat powertrain control of heavy 
duty trucks with a tailored heuristics in the context of direct multiple shoot­
ing that fits into the model predictive control context; [15, 22] use a switching 
time approach related to the one described in Section 3.3 to deal with prob­
lems where only a finite set of controls, e.g. velocities of submarine vessels, is 
feasible; [8] focus on problems in robotics, applying a combination of Branch 
and Bound and direct collocation [26]. 

Other publications in the field of mixed integer dynamic optimisation deal 
with time independent integer variables (e.g. [20]) or state dependent (au­
tonomous) switches (e.g. [6]) that are both not the topic of this paper. 

The paper is organised as follows. In Section 2 a short introduction to nu­
merical methods for optimal control is given, in particular to the direct mul­
tiple shooting method [4]. In Section 3 extensions to treat additional integer 
restrictions are presented. An optimal control problem with a 0-1 restriction 
in the controls is presented in Section 4 and is used as a benchmark problem 
further on. Numerical results are given and compared in Section 5. Section 6 
concludes. 

2 Numerical Methods for Optimal Control 

The optimal control problems we refer to in this section and that are later on 
to be extended, are of the form 

min I^L{x{t),z{t)Mt),p)dt + E{x{T),z{T),p) 

s.t. x{t) = f{t,xit),z{t),u{t),p), t G [to,T] 
0 = git,x{t),z{t),u{t),p), i e [ t o ,T ] 
0<cit,x(t),zit),u{t),p), te[to,T] (1) 

0<ri{x{to),z{to),x{ti),ziti),...,x{T),ziT),p) 
0 = re{x{to),z{to),x{ti),z{ti),...,x{T),ziT),p) 

The system state is described by the dififerential and algebraic state vectors 
x{t) € R"'" and z{t) £ R"' . The system behaviour is controlled by the control 
vectors u{t) e R"" and the global design parameter vector p G R"". The ob­
jective functional is of generalised Bolza type, containing Lagrange and Mayer 
terms. The dififerential and algebraic right hand side functions / respectively 
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g describe the dynamical system behavior, while the vector valued functions 
Ti, Te are additional interior point constraints for given time points U (see 
Section 2.1) and c contains path constraints. The Jacobian dg/dz € R"̂ ^̂ "̂ ^ 
is assumed to be invertible, resulting in an index 1 DAE. 

There are several approaches to treat optimal control problems of this 
form. For an overview and comparison between indirect and direct methods, 
sequential and simultaneous approaches (in particular single shooting, multi­
ple shooting and collocation) we refer to [1]. We investigate extensions in the 
context of the direct multiple shooting method, therefore we will give a brief 
introduction in Section 2.1. 

2.1 Direct Multiple Shooting 

The direct multiple shooting method [4, 17] is used to transform the infinite 
dimensional optimisation problem (1) into a finite dimensional one that can 
be treated efficiently with tailored nonlinear optimisation methods, e.g. se­
quential quadratic programming (SQP). This transformation is performed by 
a piecewise parameterisation of the control functions, a relaxation of the path 
constraints to grid points and a discretisation of the state variables. To this 
end the time horizon [to, T] is divided into a number of m subintervals [t̂ , t^+i] 
with IQ <ti < " ' <tm = T^ the so-called multiple shooting intervals. 

Parameterisation of the controls. For each interval the function space 
that the optimal control function u{t) can be chosen from is reduced to a finite 
dimensional one. Then a piecewise approximation u of the control functions u 
on this grid is defined by 

u{t) := (pi{t,qi), t£[ti,ti+i], i = 0 , . . . , m - l (2) 

using "local" control parameters qi. The functions (fi are typically vectors of 
constant, linear or cubic functions. 

State discretisation. The basic concept of the multiple shooting method is 
to solve the DAE-constraints independently on each of the multiple shooting 
intervals. On interval i the initial value for the DAE solution is given by the 
so-called node values sf, 5 | for differential and algebraic states. The algebraic 
equations are relaxed (see [2], [16]). They enter as conditions in U into the 
NLP. Continuity of the state trajectory at the multiple shooting grid points 

Si+i = Xi(ti+i) (3) 

is also incorporated by constraints into the nonlinear program (NLP). Here 
Xi{t) denotes the differential part of the DAE solution on interval [ti,ti+i] 
with initial values sf, 5f. These equations are required to be satisfied only at 
the solution of the problem, not necessarily during the SQP iterations. 

Resulting NLP. The local variables qi, the global parameters p, that may 
include the time horizon length h = T — to^ and the node values sf^sf are 
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the degrees of freedom of the parameterised optimal control problem. If we 
write them in one vector ^ = (c?i,p, sf, sf), rewrite the objective function as 
F(^), subsume all equality constraints with the continuity conditions (3) into 
a function G{^) and all inequality constraints into a function H{^)^ then the 
resulting NLP can be written as 

m m F ( 0 s.t. 0 = G(O, 0 < H{0 (4) 

This NLP can be solved with tailored iterative methods, exploiting the struc­
ture of the problem. For more details, see [4, 16, 17]. An efficient implemen­
tation of the described method is the software package MUSCOD-II [9]. 

3 Treatment of Binary Control Functions 

We are interested in an extension of problem (1), where some or all of the 
control functions have the additional restriction to have values in {0,1}. If 
we denote these control functions by w{t) we can formulate an optimal con­
trol problem with binary valued control functions. We want to minimise the 
functional 

^[x,z,w,u,p]:= I L{x{t),z{t),w{t)Mt).P)dt + E{x{T),z{T),p) (5) 
Jto 

subject to a system of DAEs, path and interior point constraints and addi­
tional restrictions 

t £ ; ( t ) € { 0 , i r - , te[to,T] (6) 

that turn the problem into a combinatorial one. 
For some applications restriction (6) is still too general. A certain limi­

tation on the number of switchings must be taken into consideration, as an 
infinite switching from one value to the other is not applicable in practice. 
This might be achieved by an upper limit on the number of switches or a 
penalisation. In the direct multiple shooting approach a fixed finite control 
parameterisation inhibts infinite switching automatically. 

Another possible limitation occurs when switching can only take place at 
time points from a prefixed given set. This limitation is motivated by machines 
that can only switch in discrete time steps and by laws or investments that 
can only be applied resp. made at certain times, e.g. on the first of a month 
or year. Thus we replace restriction (6) by the more general restriction 

w(t)en{^), t£[to,T] (7) 

where i?(^) is defined as 

f2{^) := {w{t) e {0, l}""^, with discontinuities only at times U £ ^} 
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with either 
?̂  = { r i ,T2 , . . . , r n J (8) 

being a finite set of possible switching times or with 

^=[h,T\ (9) 

corresponding to (6). If we write /2(lZ )̂, we mean the relaxed function space 
where {0,1}*^^ is replaced by [0,1]^^. Summing up, the optimal control prob­
lems under consideration can be formulated in the following way: 

x,z 

(10) 

min f^^L{x{t),z{t),w{t),uit),p)dt + E{x{T),z{T),p) 

s.t. x{t) = f{t,x{t),z{t),w{t),uit),p), t e [to,T] 

0 < c{t,x{t),z{t),w{t),u{t),p), t € [to,r] 

^<n{x{to),z{tQ),x{h),z{h),...,x{T),z{T),p) 
0 = re{x{to),z{to),x{ti),z{ti),..,,x{T),z{T),p) 

w{t)en{^), te[to,T] 

In the following we will choose the control parameterisation intervals [t̂ , t^+i] 
such that they coincide with the intervals [TJ, r^+i]. More precisely, we choose 
m = rir and t̂  = r^, z = 1 , . . . , m. Furthermore we will use a control parame­
terisation (2) that is constant on these intervals. 

We want to investigate possibilities to solve problem (10). In Section 3.1 
we have a look at relaxations of the integer constraints and in Section 3.2 we 
describe a Branch and Bound algorithm for mixed integer dynamic optimi­
sation problems. In Section 3.3 a reformulation based on optimisation of the 
continuous switching times is given and discussed. 

3.1 Heuristics Based on Relaxation 

A first approach to solve problem (10) consists of relaxing the integer require­
ment w{t) € ^{^) to w{t) € ^{^) and to solve a relaxed problem of form 
(1) first. The obtained solution w{t) can then be investigated - in the best 
case it is an integer feasible bang-bang solution and we have found an optimal 
solution for the integer problem. In case the relaxed solution is not integer, 
one of the following rounding strategies can be applied: 

• Rounding strategy 1 
The values Wj^i{t) of the control functions j = 1 , . . . , rity on the intervals 
[ti,ti+i] are fixed to 

w,A(t) = <: "-jAt)>^'^ i = 0 , . . . , m - l f l i f%, l 
'^ '^^^^"\0 else 
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• Rounding strategy 2 
The values of Wj^i{t) are summed up over the intervals, more precisely 

,,(t) = {y\ '̂̂ =0̂ '̂"̂ ^̂  ~ ̂ =̂0"̂ '̂"̂ ^̂  - \ i = 0,...,m-l 
I U 61SC 

• Rounding strategy 3 
As 2, but with a different threshold: 

' '*^*^~\0 else ' z - U , . . . , m i 

In case the relaxed solution is not integer and the gap between the objective 
values of relaxed and rounded problems is important, we propose the following 
approach to drive the values of the control function to its borders. 

• Penalty term homotopy 
We consider an optimal control problem P^,k e No defined by 

min ^[x, z, w, u,p] + ^^=1 4 /tT(l " M^)) M^) dt 
x,z,w,u,p ''0 
s.t. x{t) = f{t,x{t),z{t),w{t)Mt).P). t e [^o,T] 

0 = g{t,x{t),z{t)Mt).^{t).P). t ^ KT] 
0 < c{t,x{t),z{t),w{t),u{t),p), te[to,T] 

0<ri{x{to),z{to),x{ti),z{ti),...,x{T),z(T),p) 
0 = re(x{to),z{to),x{ti),z{ti),...,x{T),z(T),p) 

(11) 

w{t) £ {2{^), te[to,T] 

with penalty parameters e^ > 0 for z = 1 , . . . ,ntf;. P^ is similar to the 
relaxed version of problem (10), but additionally penalises all measurable 
violations of the integer requirements with a concave quadratic penalty 
term. The proposed penalty term homotopy consists of solving a series 
of continuous optimal control problems {P^}jk G No with relaxed w{t). 
Problem P^+i is initialised with the solution of P^ and ê  = 0 so that 
P^ is the relaxed version of problem (10). The penalty parameters e^ are 
raised monotonically until all Wi{t) are 0 or 1. 

Remark 1. The algorithm may of course get stuck if the solution is driven 
towards an infeasible solution. This can e.g. be observed by a technique con­
trolling the changes in the optimisation variables from one problem to the 
next. In such a situation several remedies are possible, e.g. a complete restart 
with different initial data, bau:ktracking with a different choice of e^, another 
penalisation to get away from the current point or a transformation of the 
problem with an approach as described in Section 3.3. 

Remark 2. A good choice for the e^ is crucial for the behaviour of the method. 
A too fast increase in the penalty parameters results in less accuracy and is 
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getting closer to simple rounding, while a slow increase leads to an augmen­
tation in the number of QPs that have to be solved. In Section 5.1 problem 
specific parameters are given. A general formula is topic of current research. 

Remark 3. Another possibility to penalise the nonintegrality is proposed by 
[25]. They introduce additional inequalities, prohibiting nonintegral domains 
of the optimisation space. 

3.2 Branch and Bound 

Mixed integer dynamic optimisation problems can be solved with methods 
used in mixed integer nonlinear optimisation (MINLP), see [10]. This can be 
accomplished by parameterising problem (10) in a way as described in Section 
2. Instead of a NLP (4) the result would be a MINLP of the form 

min F(^,u;) 

s.t. 0 = G(^,u) 
0 < H{C,oj) (12) 
LJi e {0,1}, i = l , . . . , n ^ 

that can be solved with methods as Branch and Bound or Outer Approxima­
tion. In the following we assume that the objective function and the feasible 
set are convex. In our study we apply a Branch and Bound algorithm that is 
performing a tree search in the space of the binary variables. We first solve a 
relaxed problem with cj G [0,1]"̂ "̂  and decide on which of the variables with 
non-integral value we shall branch, say ui. Two new subproblems are then cre­
ated with oji fixed to 0 and 1, respectively. These new subproblems are added 
to a list and the father problem is removed from it. This procedure is repeated 
for all problems of the list until none is left. There are three exceptions to this 
rule, when a node is not branched on, but abandoned directly: 

1. The relaxed solution is an integer solution. Then we have found a feasible 
solution of the MINLP and can compare the objective value with the 
current upper bound (and update it, if possible). 

2. The problem is infeasible. Then all problems on the subtree will be infea-
sible, too. 

3. The objective value is higher than the current upper bound. As it is a 
lower bound on the objective values of all problems on the subtree, they 
can be abandoned from the tree search. 

A more detailed description of nonlinear Branch and Bound methods and a 
survey about branching rules can e.g. be found in [11]. We used depth-first 
search and most violation branching in our implementation. 

Remark 4- On each node of the search tree a NLP resulting from an optimal 
control problem has to be solved, which is very costly. A more efficient way 
of integrating the Branch and Bound scheme and SQP is proposed by [5] and 
[18]. 
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Remark 5. If the functions are non-convex, the nodes cannot be fathomed any 
more as feasible or better solutions may be cut off. A heuristics to overcome 
this is proposed in [18]. An approach using underestimations of the dynamical 
system is described in [21]. 

3.3 Switching Time Approach 

Another possibility to solve problem (10) is motivated by the idea to optimise 
the switching structure and to take the values of the controls fixed on given 
intervals, as is done for bang-bang arcs in indirect methods. Of course this is 
only valid for feasible sets 0{^) where ^ is given by (9). Instead of (7) we 
have, assimaing for the sake of notational simplicity a one-dimensional control, 
a fixed w{t\ t, ngw) given by 

wit-in \-{^ i f t e [ i i , t i+ i ] , ieven 

with to = to < ti < • • • < tng^+i = T. The number risw and the locations tj 
of the switching times are then to be optimised and we obtain 

min C L{x{t), z{t), w{t; t, ns^),u{t),p)dt + E{x{T),z{T),p) 
x,z,u,p,t,nBw 
s.t. x{t) = /(t,x(t),2;(t),iD(t;t,nsw),ix(t),p), t e [to,T] 

0 = g{t,x{t),z{t),w{t\t,nsy,),u{t),p), t £ [to,r] 
0 < c{t,x{t),z{t),w{t\i,ns^),u{t),p), t € [to,r] (^4) 

^ < ri{x{to),z{to),x{ti),z{ti),... ,x{T),z{T),p) 
0 = re(x{to),z{to),x{ti),z{ti),,.. ,x{T),z{T),p) 

with fixed w{t]t, ngw) and ii and ngw as above. 
If we allow that switching times fall together, tj = t^+i, this formulation 

can be extended in a straightforward way to n^ binary control functions and 
every solution {p,w{t)yu{t)jx{t),z{t)) of system (10) with a finite number of 
switches in w{t) has an equivalent solution (p, rigw) t, u{t),x{t),z{t)) of system 
(14) and vice versa. 

For fixed ngw we then have an optimal control problem that fits into the 
definition of problem (1) and can be solved with standard methods, where 
the interval lengths tj^i — tj take the role of parameters that have to be 
determined. Special care has to be taken to treat the case where interval 
lengths diminish during the optimisation procedure, causing the problem to 
become singular. [12, 13, 19] propose an algorithm to eliminate such non-
optimal bang-bang intervals. 

Some authors propose to iterate on rigw until there is no further decrease in 
the objective function of the corresponding optimal solution [22, 12, 13]. But 
it should be stressed that this can only be applied to more complex systems, 
if good initial values for the location of the switching points are available, as 
they are essential for the convergence behaviour of the underlying method. In 
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Section 5.3 we will see how this approach may drift off to an arbitrary local 
optimum even in the case of a one-dimensional control, only few switching 
events and reasonable initialisations. 

points are available, as they are essential for the convergence behaviour of 
the underlying method. In Section 5.3 we will see how this approach may drift 
off to an arbitrary local optimum even in case of a one-dimensional control, 
only few switching events and reasonable initialisations. 

4 A Fish Population Optimal Control Problem 

In this section we introduce a fish population control model as a benchmark 
problem for optimal control with binary control functions. This model has 
some oscillations that we want to bring close to a steady state. Such an opti­
misation objective might also be the topic of other applications, e.g. in control 
of pattern self-aggregation [14]. 

In Section 4.1 the standard textbook ordinary differential equation (ODE) 
model of Lotka-Volterra type is brought back to memory. This ODE model is 
then extended in 4.2 to a control problem by introducing a fishing allowance. 
In Section 4.3 we have a look at some details of this model, e.g. at the opti­
mal relaxed solutions obtained either by a direct approach or by Pontryagins 
maximum principle. 

4.1 ODE Model 

Lotka-Volterra systems have already been under investigation for a long time 
and are very well studied, see e.g. [27] for an overview. In a two-species 
predator-prey model there are two differential states, namely the biomass 
of the prey xo{t) that is assumed to grow exponentially and the biomass of 
the predator species xi (t) that is assumed to decrease exponentially. A second 
coupling term standing for the probability of a contact between the two species 
gives a decrease in the biomass of prey and an increase in that of the predator 
due to eating. The system is assumed to be in a given state x{to) = XQ > 0 at 
time to. All parameters typically in use in such models are assumed to be 1 
for the sake of notational simplicity. 

Xo{t) = Xo{t) - Xo{t)Xi{t) 
Xi{t) = ~Xi{t) -\-Xo{t)Xi{t) 

Xi{to) = Xio 

The plots in Figure 1 show the periodic oscillating nature of this model for a 
given initial state x = (0.5,0.7)-^. 
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Biomass of Prey Biomass of Predotor 

Fig. 1. Simulation of the ODE (15) for a time horizon [to,T] = [0,12]. 

4.2 Optimal Control Problem 

As D'Ancona and Volterra [30] observed due to an unexpected decrease in 
the fishing quota after World War I - everybody expected an increase as 
fishing was almost completely abandoned in the war years - that there is an 
interconnection between the evolution of the biomasses of a system of type 
(15) and fishing. A very simple way to model an additional fishing aspect is 
the following model: 

Xo{t) = Xo{t) - Xo{t)Xi{t) - CoXo{t) W{t) 
Xi{t) = -Xi(t) + Xo{t)Xi{t) - CiXi(t) W{t) 

Xi{to) = Xio , w{t) € [0,1] 
(16) 

Here w{t) is a function describing the percentage of the fleet that is actu­
ally fishing at time t. The parameters CQ and ci indicate how many fish would 
be caught by the entire fieet, we choose arbitrarily CQ = 0.4 and Ci =0.2 . The 
plots in Figure 2 show that amplitude and phase offset have changed, but that 
the periodic oscillating nature is kept for w{t) = 1. 

One might be interested in bringing such a system close to a steady state to 
avoid the high fiuctuations shown in Figure 2 that cause economical problems. 
One way to achieve this is to vary the fishing quota for a certain time span 
T—to. Adding an objective functional that punishes deviation from the steady 
state X = (1,1)^ for w{t) = 0 resp. x = (1 + ci, 1 — CQ)^ for w{t) = 1 ̂  

mm 
X 

in / (xoit) - if + {xi{t) - 1)2 dt 

to 

leads us to the following optimal control problem 

^ for the sake of notational simplicity we will stick to the first case, wanting a steady 
state for a system left alone after time T 
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Biomass of Prey Biomass of Predator 

Fig. 2. Simulation of the ODE (16) with fishing for a time horizon [to,r] = [0,12]. 

min / {xo{t) - 1)2 + {xi{t) - 1)2 dt 
x,w to 
S.t. Xo{t) = Xo{t) ~ Xo{t)Xi{t) 

Xi{t) = -Xi{t) + Xo{t)Xi{t) 

Xi{to) = Xio , w{t) e [0,1] 

CoXo{t) W{t) 
CiXi{t) W(t) (17) 

This optimal control problem can e.g. be solved by indirect methods or with 
the direct multiple shooting method. Having a look at the optimal control 
function w(t) (see Figure 3) one notices that the percentage of the fleet that 
is fishing at a given time t is varying strongly on the singular arc, which would 
be practically very hard to achieve in the fishing example. From an economic 
point of view it would be easier to operate either the entire fleet or to do no 
flshing at all and use the manforce for different things in the meantime (on 
fixed time intervals corresponding to weeks). This could be achieved by laws 
that prohibit fishing for a certain time span. This would lead us to a model 
of the form 

min / {xo{t) - 1)2 -h {xi{t) - 1)2 dt 
^'-^ to 

s.t. Xo{t) = XQ{t) - Xo{t)xi{t) - CoXo{t) W{t) 
Xl{t) = -Xi{t) + Xo{t)Xi{t) - CiXi(t) W{t) (18) 

Xi{to) = Xio , w{t) € n{^) 

where the control function is restricted to take values of either 0 or 1 and 
change its value only at given time points, see definition (7) of Q{^). In our 
case we assume a hime horizon [to,T] = [0,12] and n̂ - = 60 equidistant time 
points, e.g. the start of a working week or a month, to be feasible switch­
ing points. Therefore all calculations in this paper are done using a control 
parameterisation of m = 60 intervals. 
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4.3 Relaxed Solutions 

The relaxed fishing problem (17) can be solved efficiently with the standard 
direct multiple shooting method. It is also possible to apply indirect methods, 
which is typically much harder for higher dimensional optimal control prob­
lems with a complex switching structure. Here we give some details to deliver 
a more comprising understanding of the system under investigation. We write 
Xi for Xi{t), w for w{t) and Xi for Xi{t), The Hamiltonian in normalized form 
H and the adjoint equations of (17) are given by 

H := -L(x)-\-X'^f{x,w) 

= -{Xo - if - {Xi - 1)2 

H-Ao(xo - XQXI - CQXOW) + Ai(-Xi + XQXI - CiXiw) 

Xo := -Hxo = 2(xo - 1) - Ao(l - xi - CQW) - AiXi 

Al := -Hxi = 2(xi - 1) + Aoa:o - Ai(-1 + XQ - ciw) 

The switching function S{xj A) is given by S{Xj A) := H^ = —CiAi^i —C2A2X2. 
It can be shown, e.g. with the methods presented in [19], that the optimal 
relaxed control (neglecting 1̂  = {Ti,r2,. . . ,r6o}) has the form 

{ 0 iovt€[toJi] 

1 foTteliuh] (19) 
Wsing{x) for t € [t2,T] 

The singular control is of order one since the second total time deriva­
tive S'^{x^X,u) of the switching function 5(x,A) contains the control ex­
plicitly. Then along a singular arc the equations S{x,X) = 0,S^{x,X) = 
^*S'(x,A) = 0 and S^{x,XyU) = 0 hold from which one can compute the 
singular control in feedback form (the adjoint variables A can be eliminated), 

'Wising = ( C^xl - cf xf + C^xlxi - CIXQXI + 2CQXQX\C\ - 2CIXIXICQ 

— ACQXQCIXI + 2CQXOCIXI + iCiXiCoXQ — 2CiXiCoXo 
XQX\CQ ~r XQX-^C-J^ "T" XQX-^C-^ ZXQXIC-^CQ -r XQX\C\CQ 

- XQXICOCI - XQXICICQ - XQXICI H- 2XQXICQCI + XQXICQCI ) (20) 

/ ( c^xl + 2clxlc\xi - 2clxoclxi + 2C\XICIXQ 
+ c\x\ - CIXQCIXI 4- CIXQCIXI - CIXICQXQ + CIXICQXO ) 

for the singular arc [t2,T]. The parameters ti and 2̂ can be determined to 
ii = 2.43670 and £2 = ti + 1.50526 by solving a boundary value problem. 
The computed initial values of the adjoint states are Ao(0) = 5.83903 and 
Ai(0) = 1.53101. The resulting optimal control w{t) is shown in Figure 3, to­
gether with the optimal parameterised control obtained by appyling the direct 
multiple shooting method. Figure 4 shows the corresponding state trajecto­
ries. The minimum deviations obtained by these controls are ^ = 1.34408 for 
the indirect method and <P = 1.34466 for the parameterised approximation 
(that takes into account 1̂  = {TI, T2,...,reo})-
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Fig. 3 . Optimal controls for the relaxed problem. Left: indirect approach. Right: 
direct multiple shooting with 60 intervals. 

Biomass of Prey Biomass of Predator 

Fig. 4. Optimal states for the relaxed problem, obtained with the indirect method. 

5 Numerical Results 

In this section we want to show and discuss results obtained from the appli­
cation of the methods described in Section 3 to the optimal control problem 
presented in Section 4. In 5.1 we will show how certain heuristics perform, 
while 5.2 gives results for the global Branch and Bound approach. In 5.3 we 
discuss a possible extension to a continuous optimisation of the switching 
points. 

In all problems that had to be solved, the control was initialised with 
w{t) = 0 yt E [^OJ^] ŝ -nd the initial multiple shooting node values were ob­
tained by integration with this fixed control. As a measurement for computa­
tional effort we consider the number of QPs to be solved (more precise would 
be SQP iterations as there is additional effort such as solving the ODE and 
linearising). 
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5.1 Heuristics 

Heuristic solutions for problem (18) can be obtained in a number of ways. 
In this discussion we will focus on the rounding heuristics and the penalty 
term homotopy described in Section 3.1. Table 1 shows how many quadratic 
programs (QPs) had to be solved and what objective values were obtained. 
w{t) = 0 and w{t) — 1 correspond to the cases where the control is fixed 
to one value for the whole time horizon, thus no fishing at all or fishing all 
the time. The plots in Figures 1 and 2 show the respective states for these 
controls. They both do not require any QP to be solved, as an integration of 
the system with fixed controls sufiices to obtain the solution. The rounding 
heuristics require a relaxed solution w(t) of problem (17), which takes 23 
iterations. The penalty parameters for the penalty homotopy (see 3.1) are 

Heuristics | 

w{t) = 0 
w{t) = 1 
Rounding 1 | 
Rounding 2 | 
Rounding 3 | 
Penalty homotopy | 

| # QPs 

0 
0 

23 
23 
23 
89 

Objective value 

6.06187 
9.40231 
1.51101 
1.45149 
1.34996 
1.34898 

Table 1. Number of QPs to be solved and obtained objective value for several 
heuristics to get a feasible solution. 

chosen exponentially increasing as 

^i — ^init * Cjnc 

for A; > 1 and ê  = 0 to get the relaxed parameterised solution as starting 
point for the homotopy. A choice of einit = 10""^ and einc = 2.1 showed good 
results. A faster increase in the penalty parameters is getting closer to simple 
rounding, while a slower increase leads to an augmentation in the number of 
QPs to be solved. All problems of the homotopy were solved to an accuracy 
of 10~^, while all other problems in this paper were solved up to 10~^. 

Table 1 shows that the proposed homotopy delivers a solution with an 
objective value of 1.34898 closer to the objective value 1.34466 of the pa­
rameterised relaxed model (17) than the rounding heuristics. As the optimal 
solution of (17) is a lower bound on the optimal integer solution of (18), the 
difference gives an indication about how good our heuristic solution is. As the 
relative gap of about 0.3% is known at runtime, one can decide whether the 
obtained solution suffices, otherwise one has to turn to global methods, where 
it can be used as an upper bound. This will be the topic of the next section. 
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5.2 B r a n c h and B o u n d 

Before applying a Branch and Bound approach to problem (18) we have to 
investigate whether the optimal control problem is convex. The feasible set 
is the hypercube in W^'^ and thus convex. We do not show analytically tha t 
the objective function is convex as well, but refer to Figure 5 tha t shows 
the behaviour of the objective function in the vicinity of the optimal relaxed 
solution - on 59 stages w{t) is fixed and on one stage the value is changing. In 

Singular control 

Objective value for variation of w(t) on stage 05 
Objective value for variation of w(t) on stage 13 
Objective value for variation of w(t) on stage 21 
Objective value for variation of w(t) on stage 29 

0.4 0.6 

Value of w(t) 

Fig. 5. The objective function in the vicinity of the optimal solution: for four selected 
stages the control on this stage is changing its value while the other 59 values are 
fixed. The trajectories give an indication for the convexity of the objective function 
over the feasible set. 

the following, we do assume tha t the objective function is indeed convex for 
the given data. Thus we can apply a Branch and Bound approach as presented 
in Section 3.2. Figure 6 shows the optimal controls obtained by the Branch 
and Bound approach and, for comparison, a rounded control. The optimal 
solution on iẐ  = {TI , r 2 , . . . , reo} is 

^u\ = / ^ ^ ^ [n^n+i] and i G /off 

with 

t e [Ti.Ti+i] and i e h 

/on = { 1 3 , 1 4 , . . . , 20,22,25,28} 

/ o f f = { l , 2 , . . . , 6 0 } \ / o n 

Figure 7 shows the state trajectories of the biomasses tha t correspond to 
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Fig. 6. Left: global optimal control obtained by Branch and Bound. Right: optimal 
control obtained by rounding strategy 2. 

the optimal integer solution obtained by Branch and Bound. Note the non-
differentiabilities in the states caused by the switching of the control function. 

Biomass of Prey Biomass of Predator 

Fig, 7. State trajectories corresponding to the optimal integer solution. 

The behaviour of the Branch and Bound method depends very strongly 
on the availability of an upper bound. Table 2 gives performance data for 
different heuristics to get such an a priori upper bound. The first integer so­
lution and therefore upper bound is found after branching on 33 variables, if 
no nodes are fathomed. The objective value of this feasible solution is 1.36614 
- thus it is clear, that no heuristics will help to reduce the size of the Branch 
and Bound tree that delivers an upper bound above this value and it explains 
why two rounding heuristics perform as bad as the Branch and Bound with­
out any upper bounding heuristics at all. Rounding strategy 3 gives a result 
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Start heuristics | 

None 1 
Rounding 1 | 
Rounding 2 | 
Rounding 3 | 
Penalty homotopy| 

| # Nodes 

1634 
1634 
1634 
906 
757 

# Q P s 
15720 
15720 
15720 
9210 
7769 

Opt. in iter 

1064 
1064 
1064 
336 

1 

First upper bound 

oo 
1.51101 
1.45149 
1.34996 
1.34898 

Table 2, Number of nodes in the Branch and Bound tree, overall number of QPs 
to be solved, the node iteration when the optimal solution is found and the start 
upper bound for several heuristics to produce an upper bound. 

close to the optimal solution, differing only on intervals 22,23 and 27,28. The 
solution obtained by the penalty homotopy turns out to be the global solu­
tion, although further 756 nodes have to be visited and 7680 SQP iterations 
are needed to verify this in our Branch and Bound implementation. 

5.3 Switching Time Approach 

Although we have the additional iZ^-restriction on w{t) € 0{^) resp. w{t) € 
i7(!Z )̂, it is interesting to investigate how much we could improve an obtained 
solution by giving additional degrees of freedom. Table 3 lists results obtained 

Method 1 

iST"after Rounding 2 
ST after B&B 
ST after Penalty homotopy | 
ST after Rounding 3 
ST after Rounding 1 
ST after Initialisation by hand| 

P^sw 

["8" 
8 
8 
8 
2 

1 ^ 

# Q P s 
35 

7852 
171 
35 
38 

142 

Objective value 

1.34541 
1.34604 
1.34604 
1.34616 
1,38273 
1.38273 

Table 3. Switching time optimisation results. 

by a switching time (ST) approach, rigw and initial values for £ i , . . . , f̂ sw ^̂ ® 
obtained by a transformation of a solution w{t) of problem (18). To get this, 
methods investigated in 5.1 or 5.2 are used. After the transformation the 
controls w(t) and i<;(t;t,nsw) are identical. With this start initialisation the 
switching times t are optimised, rigw is kept constant. Initialisation by hand 
is a solution set up arbitrarily in the following way: 

= 8, to = 0.0,^1 = 2.8,^2 

4 = 8.0,4 = 8.2,^7 

4.0,^3 = 7.0,^4 = 7.4, 

10.0,4 = 10.2,4 = 12.0 

Figure 8 shows this initialisation and the control obtained by an optimi­
sation of t, Figure 9 shows the corresponding states. Although rigw is chosen 
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such that eight switches are allowed, the optimisation procedure reduced three 
intervals to size zero and ends in the local solution also found by optimisa­
tion after initialisation with rounding strategy 1 (with ngw = 2). This makes 
clear that it is not enough to simply increase ngw without suppyling good 
initial values for a switching time approach. Another interesting point is that 
initialisation with rounding strategy 2 gives the best solution 

(21) 

risy, = 8,to = 0.00000, ti = 2.44093,^2 = 4.07798, 
4 = 4.29155, £4 = 4.50443,4 = 4.90853 
te = 5.12223, t7 = 6.15604,4 = 6.28131,4 = 12.0 

although it has a higher objective value than other initialisations. This is 
also due to the many local minima in the switching time formulation. Table 
4 gives a final comparing overview over all obtained solutions in this study. 

Fishing allowance 

10 

Fishing allowance 

-1 1 1 1 1 1 r-

H — I — H — H — } • 

10 

Fig. 8. Control initialisation set up by hand and resulting control after optimisation 
of switching points. Three intervals shrink to length zero. 

Remark 6. We do know from the maximum principle that a bang-bang control 
exists with the same objective function value as the solution including the 
singular arc, thus solution (21) is still suboptimal, rigw needs to be increased 
(probably to infinity). Here we are content with the feasible integer solution 
(21), being closer than 10~^ to the relaxed parameterised solution. 

6 Conclusion 

We have presented a benchmark problem for optimal control with 0 — 1 con­
trols that can be extended in a straightforward way to several species, other 
parameters or discretisations. Several heuristics and a global approach, namely 
a Branch and Bound strategy, have been described and applied successfully. 
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Fig. 9. State trajectories corresponding to control of Figure 8. 

Method 1 
Relaxed indirect | 
Relaxed parameterised | 
ST after Rounding 2 
ST after B&B 
ST after Penalty homotopy | 
ST after Rounding 3 
B&B 
Penalty homotopy | 
Rounding 3 | 
ST after Rounding 1 
ST after Initialisation by hand| 
Rounding 2 | 
Rounding 1 | 
w{t) = 0 
w{t) = 1 1 

| # Q P s 
r 28 

23 
35 

7852 
171 
35 

7769 
89 
23 
38 

142 
23 
23 
0 
0 

Objective value 

r.34408 
1.34466 
1.34541 
1.34604 
1.34604 
1.34616 
1.34898 
1.34898 
1.34996 
1.38273 
1.38273 
1.45149 
1.51101 
6.06187 
9.40231 

Table 4. Overview: number of QPs to be solved and obtained objective value for 
different approaches. Parameterisation was done with 60 multiple shooting intervals. 

Numerical results have been given that show the potential of a penalty term 
homotopy. In the special problem considered in this study it delivered the 
global (under a convexity assumption) optimal solution for a fixed time grid. 
Furthermore we showed how these methods may be used to initialise param­
eters in a switching time approach to deal with problems without fixed time 
grid. 

The methods described in this paper, several heuristics and Branch and 
Bound, are implemented in a software package based on the direct multiple 
shooting method and advanced algorithms also implemented in MUSCOD-II 
and may be applied to larger-scale optimal control problems with 0 — 1 controls 
in the future. 
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Future research will focus on a globalisation of the penalty term homotopy 
and further applications in cell biology and chemical engineering. 

A c k n o w l e d g e m e n t s . We thank the anonymous referee for helpful remarks 
and suggestions. 
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Summary. Several characterizations of convexity for totally balanced games are 
presented. As a preliminary result, it is first shown that the core of any subgame 
of a nonnegative totally balanced game can be easily obtained from the maximum 
average value (MAV) function of the game. This result is then used to get a charac­
terization of convex games in terms of MAV functions. It is also proved that a game 
is convex if and only if all of its marginal games are totally balanced. 

1 Introduction 

This paper contains some characterizations of convexity for totally balanced 
games. Totally balancedness was defined by Shapley and Shubik [8] as the 
property of having all subgames with nonempty core. These authors proved 
tha t totally balanced games coincide with market games generated by ex­
change economies whose traders have continuous concave utility functions. 
Another characterization of totally balanced games, namely, as flow games, 
was provided by Kalai and Zemel [3]. A flow game arises from a directed net­
work each of whose arcs has a given capacity and belongs to a unique player; 
the worth of a coalition is the maximum flow tha t can be sent from the source 
to the sink by using only the arcs owned by its members. The totally balanced 
character of flow games is a consequence of the max flow-min cut theorem of 
Ford and Fulkerson [2], according to which the maximum source to sink flow 
equals the minimum capacity of a cut (i.e., of a set of arcs such that , when 
removed from the network, nothing can be sent from the source to the sink). 
Nonnegative totally balanced games are also known to be equivalent to lin­
ear production games in the sense of Owen [6]. Indeed, to any nonnegative 
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game one can associate the linear production game in which the resources are 
the players, each of which owns only one unit of himself, the goods are the 
nonempty coalitions, each of which can be sold at a price equal to its worth, 
and to produce one unit of a given coalition one requires one unit of each of 
its members. One can easily show that the linear production game so defined 
is precisely the totally balanced cover of the initial game (i.e., its smallest 
totally balanced majorant). Note that this linear production representation of 
a nonnegative totally balanced game needs n resources (n being the number 
of players) and 2^ — 1 goods. An alternative linear production representation, 
requiring just one good and at most 2"̂  — 1 resources, can be deduced from 
the observation, due to Kalai and Zemel [3], that the class of totally balanced 
games is the span of the additive games by the minimum operation. 

Section 2 deals with nonnegative totally balanced games. For these games, 
a duality theory has been proposed by Martinez-Legaz [5], relating them to 
a special class of convex functions. To each nontrivial nonnegative game, one 
associates its maximum average value (MAV) function, which is convex and 
contains all the information on the game provided that it is totally balanced. 
Since totally balanced games have all subgames with nonempty core, the nat­
ural question arises how to compute these cores from the MAV function of 
the game. A simple answer to this question is given in Section 3, where it 
is shown that the computation of the core of a subgame reduces to minimiz­
ing the MAV function of the game subject to a simple linear constraint. In 
sections 4 and 5 we consider a very special class of totally balanced games, 
namely, that of convex games. Both sections have in common that they ana­
lyze convexity from the point of view of totally balancedness. In Section 4, this 
analysis is made by means of MAV functions: We characterize convex games in 
terms of the optimal solutions to the optimization problems that arise in the 
computation of the cores of the subgames. Section 5 analyzes convex games 
by means of their marginal games; the main result in this section establishes 
that convex games are precisely those games all of whose marginal games are 
totally balanced. 

We shall use some basic notions of convex analysis (in particular, the con­
cept of subdifferential), for which we refer to the classical book by Rockafellar 
[7]. 

2 The MAV Function of a TU Game 

A TU game is a pair F = {N^v)^ where AT is a finite set of players, and 
V : 2^ —> M is a function, called the characteristic function of the game, 
defined on the power set of N and satisfying the condition v{9) = 0. In 
this section we will only consider nontrivial nonnegative games, i.e., those 
whose characteristic function satisfies v (S) > 0 for all S € 2^ and is not 
identically zero. As is well known, there is no loss of generality in assuming 
that a totally balanced game is nonnegative, since one can replace the original 
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game by another strategically equivalent 0-normalized game, which is totally 
balanced and nonnegative. For such games, the following duality theory has 
been developed by Martinez-Legaz [5]. One defines /i : R ^ \ {0} —> R++ U 
{+00} , the maximum average value (MAV) function of T, by 

a 0 
(with the conventions — = +00 for any a > 0 and 7: = 0)j where 
'^ (* )̂ = ^ '^i' This function admits the following economic interpretation: if 

ies 
the components of w represent the salaries demanded by the players and v {S) 
is the total amount of output produced to an employer by a set S of players 
when they use his resources, then IJL{W) is the maximum amount of output 
per unit of money spent tha t the employer can obtain by hiring a coalition. 
In order to make this paper self-contained, we restate here the main results 
(Theorem 2.1 and Corollary 2.2) in Martinez-Legaz [5]: 

T h e o r e m 1. The MAV function fi : M+\{0} —> R++ U {+00} of any non-
trivial nonnegative TU game F = (N, v) is a positively homogeneous of degree 
— 1 continuous convex function, finite valued on M+-|-, such that, at each point 
where the gradient exists, all of its nonzero components are the same. Con­
versely, if 11 : R ^ \ { 0 } —> 1^++ U {+00} satisfies these conditions then there 
exists a unique nontrivial totally balanced nonnegative TU game F = (iV, v) 
having ji as its MAV function; its characteristic function v is given by 

v{S)= min M H ^ ( ^ ) V 5 c i V (1) 
weR^\{o} 

(with the convention (+00) • 0 = + 0 0 j . 

Corol lary 1. Let F = (AT, v) be a nontrivial nonnegative TU game with MAV 
function fj, and let v : 2 ^ —> R be defined by 

v{S)= min fx{w)w{S) "^ S C N. (2) 
weR^\{o} 

Then F = (N^v) is the totally balanced cover of F, i.e., v is the smallest 
majorant of v that defines a totally balanced game. 

Corol lary 2. The MAV function of any nontrivial nonnegative TU game co­
incides with that of its totally balanced cover. 

Proof. According to Theorem 1, for any nontrivial nonnegative n-person TU 
game there is a unique totally balanced game with the same MAV function; 
by Corollary 1, this totally balanced game is precisely the totally balanced 
cover of the initial game. D 
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To illustrate Corollary 1, consider the game {N,v) with N = {1,2 ,3} and 
V defined by 

ro i f |5 |<i , 
' ' ^ ' ^ ^ - \ l i f | 5 | > 2 . 

One can easily check tha t the MAV function /x of this game is given by 

lii{wi,W2,W3) = —r-f • • • r- (3) 

Thus, according to (2), the characteristic function of the totally balanced cover 
(AT, v) of (AT, v) is given by 

min^ ^^3^\{Qy li{wi,W2,ws)wi = 0 if 5 = {i}, 

v{S)= '^ min^ ^^3^\{Qy fi{wi,W2,W3){wi -\- Wj) = 1 ii S = {ij}, with i ^ j , 

min^eM^\{o} M ( ' ^ I > ^ 2 , ' I ^ 3 ) ( ^ I + ^̂ 2 + wz) = 3/2 ii S = N. 

Indeed, the minima in this formula are attained, e.g., at the points {wi,W2jWz) 
given hy Wi = 0 and Wj = 1 for j ^ i in the first case, and at (1,1,1) in the 
other two cases. Notice also that , by Corollary 2, the MAV function of (AT, {;) 
is jj,. 

3 Computing the Core of a Subgame 

From Theorem 1, it follows tha t the characteristic function of a nontrivial 
nonnegative totally balanced game F can be recovered from its MAV function 
by means of (1). It turns out tha t , in this case, jji contains all the information 
on the game. Therefore, it is in principle possible to compute the cores of the 
subgames of F (which are nonempty as F is totally balanced) directly from 
/i. A way for doing it is suggested by the following theorem. 

T h e o r e m 2. Let F = (N^v) be a nontrivial nonnegative totally balanced TU 
game with MAV function fi and let T C N be such that v{T) > 0. For any 
X G R^̂ X {0} , the following statements are equivalent: 

(1) The point x belongs to the core of the subgame FT = (T,V\2T). 

(2) There exists w G R ^ \ { 0 } such that x = WT '-= {^i)i^T ^^^ A*(^) — 5̂ 

for every w G R ^ \ { 0 } satisfying these conditions, ——- 5̂ an optimal 
x{T) 

solution of 
,_ . minimize /J>(w) 
^ '^^ subject tow{T) = l. 

on 

(3) There exists w G R ^ \ {0} such that x = WT, A^(^) = 1 and is an 
x[I) 

optimal solution of (VT)-
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Proof. To prove the impHcation (1) => (2), let x be a core element of FT and 
take any w £ R^\ {0} such that WT = x and v (S) < w (S) for all 5* ^ T 
(this condition can be achieved by giving sufficiently high values to Wi for 
i ^ T). Since we also have v {S) < w (S) for all 5 C T (as WT = X is in the 
core of TV)) it follows that IJL{W) < 1. But we actually have /J,{w) = 1, as a 
consequence of 

, _ . . v{T) v{T) 

Let w G R^\ {0} be any point satisfying x = WT and iJ,{w) = 1. By WT = x, 
the point w/x{T) is a feasible solution to problem (VT)- TO show tha t it is 
optimal, it suffices to observe that , for each feasible w G R + \ {0} , one has 

f^M > ^ © = v{T) = x{T) = ix{w)x{T) r=^( ^ 
w{T) ^ ' ^ ' r-v / V / ^\x{T) 

Implication (2) => (3) is obvious. Let us now prove (3) => (1). Given w as 
in (3) and any S CT, we have 

V (S) < fjL(w)w (S) = w{S) = x (S). 

Take w e R!^\ {0} such that n{w)w{T) = v{T) (the existence of w follows 
from Corollary 1). From the optimality oiw/x{T), we deduce tha t 

x{T) = fi{w)x{T) = M ( ^ ) < M ( ^ ) = K^)w{T) = v{T); 

hence x{T) < v{T). Since the opposite inequality also holds, we conclude that 
X belongs to the core of / V • D 

As a particular case of Theorem 2, the next result characterizes the core 
of the game itself. 

Corol lary 3 . Let F he as in Theorem 2 with v (AT) > 0. For any x € E + \ {0} , 
the following statements are equivalent: 

(1) X belongs to the core of F. 
(2) fj,{x) = 1 and ^ ^ ^ is an optimal solution of (VN)-

Theorem 2 shows that each point belonging to the core of a subgame FT 
induces an optimal solution of the associated optimization problem (VT)- In 
the opposite direction, we have 

Corol lary 4. Let F and T he as in Theorem 2. For any w G R + \ { 0 } , the 
following statements are equivalent: 

(1) w is an optimal solution of (VT)-
(2) w{T) = 1 and IX(W)WT helongs to the core of FT-
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Proof. Let x = II{W)WT' If (1) holds then w := IJL{W)W satisfies (3) of The­
orem 2, hence (2) follows from the implication (3) => (1) in that theorem. 
Conversely, if (2) holds then w := IJL{W)W satisfies x — WT and iJi{w) = 1; 
hence, by (1) =^ (2) in Theorem 2, we obtain (1). D 

The preceding results allow us to interpret Problem {VT) in economic 
terms as a mathematical formulation of the following question: Given the total 
amount w (T) = 1 of the salaries received by the members of T, which amount 
of output ii{w) per unit of money spent the employer will obtain in the worst 
case (i.e., under the least favorable distribution of those salaries)? In other 
words, which is the guaranteed return per unit of money spent to the employer 
of an investment of which one money unit is assigned to paying salaries to 
the members of T? By Corollary 4, an optimal solution w of {VT) satisfies 
li{w) = fx{w)w (T) = fi{w)wT (T) = V (T), so that the optimal value of (VT) 
(i.e., the guaranteed return considered above) is precisely v (T). Following (2) 
of Corollary 4, the optimal solution w gives us the weights according to which 
the payoff IJ^{W) = v (T) should be distributed among the members of T. 

In view of Theorem 2 and Corollary 4, to compute the core of a (nontrivial) 
subgame FT one can apply the following method: find all optimal solutions 
w to the problem ( P T ) ; the elements in the core of FT are just those of the 
form fi{w)wT' Indeed, by Corollary 4, each fx{w)wT belongs to the core of FT. 
Conversely, each element x in the core of FT can be obtained in this way. To 
see this, take w as in (3) of Theorem 2. Then w/x{T) is an optimal solution 
of (VT) and, as fJ^{w) = 1, one has 

X = WT = fi{w)WT = M ( ^72^ ) 
x{Ty 

One can illustrate this method by computing the core of the unanimity 
game F^ = (AT, v^) associated to a nonempty coalition P C iV, whose char­
acteristic function is given by 

P.^. / 1 if 5 D P 

^ (^) = \ 0 o t otherwise. 

As shown in Martinez-Legaz [5], the MAV function fi^ of F^ is simply 

fj'^iw) = —T-^. Therefore, the minimizers of ^JL^ (w) under the constraint 

w{N) — 1 are those liJ G R+\ {0} such that W(P) = 1 and W;v\p = 0. Since 
these points satisfy fJ>^{w) = 1, it follows that they are the core elements of 

As a second example, consider the game F = {N,v) with N = {1,2,3} 
and V defined by 

ifS={i} 
v{S)={l if5 = {z,j}, withi^j, 
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As shown above, the MAV function /x of this game is as in (3). To find the 
core elements of F one therefore has to look for the minimizers of (3) under 
the constraints wi-\-W2-\-w^ = 1^ Wi>i() (i = 1,2,3). Since, by the first con­
straint, the right hand side of (3) is equal to i_niax{w tuo -w }' ^^^^ ̂ ^ equivalent 
to minimizing max {wi^W2^'W:i} under the same constraints. This problem has 
a unique optimal solution, namely, the point ( | , ^ , ^ ) . As IJi'{\^\^\) = §, it 
turns out that the core of /" is {(I? ^) | ) } • 

To summarize, our results show that the computation of the core of any 
subgame of a nonnegative totally balanced game reduces to the minimization 
of a convex function (of nonnegative variables) under one linear constraint. 
Although this can be regarded as an easy problem, one should keep in mind 
that to use this method requires first computing the MAV function of the 
game, which is, in general, a hard task. So we do not claim that our method 
has any advantage upon the standard one consisting in solving the inequality 
system that defines the core (except when the MAV function is known or easy 
to compute); however, it allows one to express easily the core of a nontrivial 
nonnegative totally balanced game directly in terms of its MAV function. The 
importance of this fact lies in that the MAV function provides an alternative 
representation of the game, but such representation would not be of much use 
if one could not express standard concepts, like the core, in terms of it in an 
easy way. 

4 Characterizing Convex Games in Terms of Their MAV 
Functions 

A very important class of totally balanced games is that of convex games. One 
says that F = (AT, v) is convex if for every two coalitions S and T one has 

V (S) + v{T) < v{S U T) + v{S n T). 

The term "convex" is due to the property of "increasing returns" enjoyed by 
these games. Indeed, it is well-known that F is convex if and only if it satisfies 

v{SU {i}) -v{S)<v{T[J {z}) - ^ ( r ) 

for each i G N and every coalitions 5, T such that S C T C N\ {i}. An 
example of convex games is provided by unanimity games (see Section 3). 

In this section we give a necessary and sufficient condition for a nonnega­
tive totally balanced game to be convex, in terms of its MAV function. This 
condition will be based upon the following characterization of convex games, 
due to Einy and Shitovitz [1, Props. 3.8 and 4.2]: 

Proposition 1. Let F be a totally balanced TU game. The following state­
ments are equivalent: 
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(1) r is convex. 
(2) For every S,T C N with S CT and every core element x of Fs there is a 

core element w of FT such that ws = x. 

Theorem 3. Let F be as in Theorem 2. The following statements are equiv­
alent: 

(1)F is convex. 
(2) For every S,T C N with S CT and v (5) > 0 and every optimal solution 

^ of (Vs) there is an optimal solution w of {VT) cind A > 0 such that 
Ws = Xws and w/w{S) is an optimal solution of (Vs)-

Proof. Let us first recall that a totally balanced game is nonnegative if and 
only if it is monotonic (see Martinez-Legaz [5, Prop. 2.3]). Hence, if S,T and 
N are as in (2) then v (T) > 0. 

(1) = ^ (2). li S C T C N, v{S) > 0 and w is an optimal solution of 
(Vs) then, by Corollary 4, w (S) = 1 and fi{w)ws belongs to the core of 
Fs. According to Proposition 1, there exists a core element w' of FT such 
that Wg = ii{w)ws' By Theorem 2, there exists w" € R^ \{0} such that 
w'r^ — w\ lJi{w") = 1 and w"/w'{T) is an optimal solution of {VT)- Then, for 
W := w"/w'{T) and A := // {w) /w'{T), one has 

_ ^ w'^ ^ (w'r^)s ^ w's ^ li{w)ws ^ 
^ w'{T) w'iT) w'{T) w'iT) ^ ' 

Moreover w/w{S) is an optimal solution of {Vs)y since it is a feasible point 
and has the same objective function value as the optimal solution w : 

= w's (S) = fi (w) Ws (S) = /i (w) w (S) = jji (it;). 

(2) ==> (1). We shall prove that condition (2) above implies condition 
(2) of Proposition 1. Let S C T C N and x be a core element of Fs. If 
v{S) = 0, from the monotonicity of v it follows that x = 0 and v vanishes at 
each subcoalition of 5'. Therefore one can easily check that, taking any core 
element y = (yi)ieT\5 ^^ ^T\SJ ^^^ vector w = {wi)^^rp defined by 

Wi-.^Oifie S, Wi := Vi + "^^^"""^^^^^ if i e T \ 5 , 

belongs to the core of FT and satisfies ws = ^ = x. \i v (S) > 0 then, 
by Theorem 2, there exists w G R^ \{0} such that x = ws, A*(̂ ) = 1 and 
w/x (S) is an optimal solution of (Vs)- According to condition (2), there are an 
optimal solution w of (VT) and A > 0 such that Ws = Xws/x (S) and W/W (S) 
is an optimal solution of (P5); by ws = x, one has A = ws (S) = w (S), so 
that 
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= W{S)_ W{S) 

Let w := . Since both = ^ and ^ ^ are optimal solutions of (Vs), we 
have 

On the other hand, 

_ '^ _ = 
w'{T) w(T) 

is an optimal solution of (VT)- Therefore, by Theorem 2, it; := wip belongs to 
the core of /V; moreover, it satisfies 

, , , , x{S) = 
ws = {wj^)s = 'i^s = ^ T ^ ^ - s = x. D 

5 Characterizing Convex Games in Terms of Their 
Marginals 

Since totally balancedness is not a sufficient condition for a game F = (AT, v) 
to be convex, a natural question to ask is which additional conditions imposed 
on a totally balanced game ensure its convexity. The answer is given by the 
following theorem, which says that the required conditions are the totally 
balancedness of the marginal games as well. By the marginal game relative 
to coalition T C iV, we mean the game T^ = (Ar\T, v'rp) whose characteristic 
function is defined by vip (S) = v{T U 5) - v{T). 

Theorem 4. Let F = (iV, v) be a TU game. The following statements are 
equivalent: 

(1) F is convex. 
(2) F^ is convex for every T C N. 
(3) Flp is totally balanced for every T C N. 
(4) Flp is superadditive for every T C N. 

Proof To prove (1) = ^ (2), let T C AT and ^ i , 5*2 C N\T. Since F is convex, 
we have 

VriSi) + V'T{S2) = v{T U Si) + v{T U ^2) - 2v(T) < 
< v{TU SiU S2) -i- v{TU (Sin S2)) - 2v{T) = 
= v!r(Si[JS2)-hv!r(SinS2), 
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which shows tha t i;^ is convex. Implications (2) ==4> (3) =^ (4) follow from 
the well-known facts tha t all convex games are totally balanced and that the 
latter are superadditive. So, it only remains to prove (4) => (1); to this aim, 
it suffices to observe tha t , for each 5'i, 5*2 C AT, one has 

^ ( ^ i ) + ^(^2) = v's,nsASi\S2) + v's,ns^S2\Si) + 2v{Si n ^2) < 
< ^s^ns, ii^i U 52) \ (Si n S2)) + 2v{Si n S2) = 
= t ; ( 5 i U 5 2 ) + ^ ( 5 i n 5 2 ) , 

where the inequality follows from the superadditivity of Vg^^g^. D 

The equivalence between statements (1) and (4) of the preceding theo­
rem was implicitly used in Martinez-Legaz [4] to prove Proposition 20 on a 
characterization of convex games in terms of indirect functions. Based on the 
equivalence (1) <==^ (2), we will next present an alternative characterization of 
convex games, similar to tha t of totally balanced games in terms of balanced 
sets of coalitions (cf., e.g., Shapley and Shubik [8]). To this aim, we need to 
introduce the following notion: 

Defini t ion 1. A collection B of subsets of P C N is marginally P—balanced 

if f] S ^ B and there exist positive weights {'ys}s£B ^^^^ ^^^^ /^^ ^^^^ 
seB 

i£P\( f] s] one has E 75 = 1-
\SeB J seB 

S3i 

Corol lary 5. A TU game F = (AT, v) is convex if and only if 

v{p) >^7sv{s) - (E^^ - M M n ^) 
SeB \seB I \seB J 

for every P C N and every marginally P-balanced collection B with weights 

{isJseB-

Proof. The "only if" part follows from the totally balancedness of vl^, with 
T = HseB^, and the fact that the marginal P-balancedness of B is equivalent 
to the balancedness of {S\T}g^j^ as a collection of subsets of P\Tj associating 
to each S\T the weight 75-. To prove the converse, given S^T C N with 
5 ^ r and T ^ 5, let P = 5 U r . Then {5 , T} is marginally P-balanced with 
7 s = 7 T = 1- Thus, the assumed inequality reduces to 

v{S U T) > t; (5) 4- v{T) - v{S D T) . D 

The interest of Corollary 5 lies in tha t it allows for an easy comparison 
between convex games and totally balanced games. Notice tha t the condition 
stated in Corollary 5 reduces to tha t of totally balancedness when restricted to 
collections B having an empty intersection. Moreover, it admits the following 
interpretation. If a fraction 75 of coalition S forms (in the sense, e.g., tha t 
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coalition S works during 75 units of time), thus yielding an output 75V (5) , 
the total output that P can obtain is at least the sum of all these outputs 
minus that paid, by their extra effort, to the subcoalition consisting of those 
players who contributed YlseB'^S (greater than 1) units of themselves (i.e., 
those players who worked during more than one unit of time). This payment is 
the output they would be able to obtain by themselves with this extra effort. 
Note that, as B is marginally P-balanced, the other players contribute exactly 
one unit of themselves. 
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Summary . A new way is presented to define for minimum cost spanning tree (mcst) 
games the irreducible core, which is introduced by Bird in 1976. The Bird core corre­
spondence turns out to have interesting monotonicity and additivity properties and 
each stable cost monotonic allocation rule for mcst-problems is a selection of the Bird 
core correspondence. Using the additivity property an axiomatic characterization of 
the Bird core correspondence is obtained. 

1 Introduction 

One of the classical problems in Operations Research is the problem of finding 
a minimum cost spanning tree (mcst) in a connected network. For algorithms 
solving this problem see [16] and [20]. Glaus and Kleitman [8] discuss the 
problem of allocating costs among users in a minimum cost spanning tree. 
This inspired independently [3] and [13] to construct and use a cooperative 
game to tackle this cost allocation problem. 

In the seminal paper of Bird [3] a method is indicated how to find a 
core element of the minimum cost spanning tree game (mcst game) when 
a minimum cost spanning tree is given. Further he has introduced, using a 
fixed mcst, the irreducible core of an mcst game, which is a subset of the 
core of the game, and which we will call in this paper the Bird core. The 
Bird core is central in this paper. First, we will give a new "tree free" way 
to introduce the Bird core by constructing for each mcst-problem a related 

http://nordeQuvt.nl
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problem, where the weight function is a non-Archimedean semimetric. The 
Bird core correspondence turns out to be a crucial correspondence if one 
is interested in stable cost monotonic allocation rules for mcst-problems. In 
fact, the Bird core is the "largest" among the correspondences which are cost 
monotonic and stable. 

The question of the existence of cost allocation rules which are cost mono­
tonic is central in applied economic frameworks where connection costs may 
increase or decrease in time. In the paper of Dutta and Kar [10], cost mono­
tonic allocation rules have been studied, where cost monotonicity means that 
an agent i does not pay more if the cost of a link involving i goes down, 
nothing else changing in the network. 

Actually, our concept of cost monotonicity is stronger than the concept of 
cost monotonicity introduced in [10], because we simply impose that if some 
connection costs go down, then no agents will pay more (as in the strong cost 
monotonicity property used by [2]). Moreover, we introduce a related concept 
of cost monotonicity for multisolutions in mcst situations which generalize our 
concept of cost monotonicity for mcst solutions. 

The Bird core has also an interesting additivity property i.e. the Bird core 
correspondence is additive on each Kruskal cone in the space of mcst-problems 
with a fixed number of users. The additivity on Kruskal cones can be used to 
find an axiomatic characterization of the Bird core correspondence. 

The outline of the paper is as follows. Section 2 settles notions and nota­
tions. In Section 3 the non-Archimedean semimetric is introduced and used to 
define in a canonical (tree independent) way the reduced game and the Bird 
core. The relations between stable cost monotonic rules and the Bird core are 
discussed in Section 4. An axiomatic characterization of the Bird core is given 
in Section 5. Section 6 concludes. 

2 Preliminaries and Notations 

An (undirected) graph is a pair < V,E >, where y is a set of vertices or 
nodes and E is a set of edges e of the form {i,j} with i,j € V, i ^ j . 
The complete graph on a set V of vertices is the graph < V^Ey >, where 
Ey = {{hj}\hj ^ y 2ind i ^ j}. A path between i and j in a graph <VjE> 
is a sequence of nodes (io,n, • •. ,̂ fc), where i = io and j = ik, k > 1, and 
such that {isyis-\-i} ^ E for each 5 € {0 , . . . , /s - 1}. A cycle in < F, E > is a 
path with all distinct edges from i to i for some i e V. A path (io, ̂ i, • • •, f̂c) 
is without cycles if there do not exist a,6 G { 0 , 1 , . . . ,/c}, a ^ 6, such that 
^a = %' 

Two nodes i^j G V are connected m < V^ E > \ii = j ox if there exists a 
path between i and j m <V^E >, A connected component oiV m <V^E > 
is a maximal subset of V with the property that any two nodes in this subset 
are connected in < V^E >. Given a path P = (̂ 05 Hj • • • ? f̂c) between i and 
j in a graph < V,E >, k > 1, we say that i> G F is a node in P ii v = im 
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for some m £ {0 , . . . , A;}; we say that an edge {r,t} G ^ is on the path P 
or, equivalently, that i is connected to j via the edge {r, t} in the path P , if 
there exists m G {0 , . . . , A; — 1} such that r = im and t = im+i or t = im and 
r = im+i-

Now, we consider minimum cost spanning tree (mcst) situations. In an 
mcst situation a set AT = { 1 , . . . , n} of agents is involved willing to be con­
nected as cheap as possible to a source (i.e. a supplier of a service) denoted 
by 0. In the sequel we use the notation AT' for AT U {0}. An mcst situation can 
be represented by a tuple < N', EN' ^W >, where < AT', EN' > is the complete 
graph on the set AT' of nodes or vertices, and w : EN' —^ M+ is a map which 
assigns to each edge e € E^' a nonnegative number w{e) representing the 
weight or cost of edge e. We call w a weight function. If w{e) G {0,1} for 
every e € E^f, the weight function w is called a simple weight function, and 
we refer then to < AT', EjsfyW > as a simple mcst situation. Since in our paper 
the graph of possible edges is always the complete graph, we simply denote 
an mcst situation with the set of users AT, source 0, and weight function w 
by < N'yW >. Often we identify an mcst situation < N',w > with the corre­
sponding weight function w. We denote by W ^ the set of all mcst situations 
< N\w > {oT w) with node set N'. For each S C N one can consider the 
mcst subsituation < S',w\s' >» where S' = S U {0} and w\s' - Es' —> M+ is 
the restriction of the weight function w to Es' Q Ejsf, i.e. w^s'i^) = w{e) for 
each e G Es'. 

Let < AT', ii; > be an mcst situation. Two nodes i and j are called {w, N')-
connected ii i = j or if there exists a path (ioy-yik) from i to j , with 
w{{is,is-\-i}) = 0 for every s G {0 , . . . , /u — 1}. A (w, N')-component of A/"' is 
a maximal subset of N' with the property that any two nodes in this subset 
are (t/;, Ar')-connected. We denote by Ci{w) the (ly, Ar')-component to which 
i belongs and by C{w) the set of all the (li;, Ar')-components of AT'. Clearly, 
the collection of {w, Ar')-components forms a partition of N\ 

We define the set ^Ej^f of linear orders on E^' as the set of all bijections 
a : { 1 , . . . , |£^iv'|} ~^ ^N') where \Ej^t\ is the cardinality of the set Ei^>. For 
each mcst situation < N'^w > there exists at least one linear order a G ̂ Ej^f 
such that w{a{l)) < w{a{2)) < . . . < w{a{\EN'\))' We denote by w"" the 
column vector {w{a{l)),w{a{2)), ... ,w{a{\EN'\))) . 

For any a G ^EJ^, we define the set 

K"" = {we R+^' I w{a{l)) < w(a{2)) <...< w{a{\EN'\))}, 

which we call the Kruskal cone with respect to a. One can easily see that 

Uaei^s -^^ ~ M^^'. For each a G ̂ EJ^, the cone K^ is a simplicial cone 

with generators e '̂'̂  G K^, A; G {1 ,2 , . . . , I^'AT'I}, where 

e< '̂̂ (cr(l)) = e^'^((j(2)) = . . . = e^^^{a{k - 1)) = 0 
and (1) 

e '̂̂ ((7(A;)) = e^^^{a{k + 1)) = . . . = e^^^{a{\EN>\)) = 1. 
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[Note that e '̂̂ (cr(A;)) = 1 for all A; € {1 ,2 , . . . , |£^iv'|}]- This implies that each 
w € K^ can be written in a unique way as non-negative linear combination 
of these generators. To be more concrete, for w G K^ we have 

w = ^(a(l))e^'i + Y^ (^(^(^)) - ^(^(^ - 1))) "̂'̂ - (2) 
k=2 

Clearly, we can also write W ^ = (JO-ESE ^^ "> ^^ ^^ identify an mcst situa­

tion < N'^w > with w. 
Any mcst situation w G W^ gives rise to two problems: the construction 

of a network F C Epj> of minimal cost connecting all users to the source, and 
a cost sharing problem of distributing this cost in a fair way among users. 
The cost of a network F is w{F) = Yleer'^i^)' ^ network F is a, spanning 
network on *S" C N' if for every e G i^ we have e G Es' and for every 
i € S there is a path in F from i to the source. Given a spanning network 
F on AT' we define the set of edges of F with nodes in S' C N' as the set 
^S' = {{hj}\{ij} e F and ij G S'}, 

For any mcst situation w e W^ it is possible to determine at least one 
spanning tree on AT', i.e. a spanning network without cycles on AT', of mini­
mum cost; each spanning tree of minimum cost is called an mcst for N' in w 
or, shorter, an mcst for w. Two famous algorithms for the determination of 
minimum cost spanning trees are the algorithm of Prim ([20]) and the algo­
rithm of Kruskal ([16]). The cost of a minimum cost spanning network F on 
N' in a simple mcst situation w equals |C(w;)| — 1 (see Lemma 2 in [19]). 

Now, let us introduce some basic game theoretical notations. A cooperative 
cost game is a pair (N^c) where N = { 1 , . . . ,n} is a finite {player-)set and 
the characteristic function c : 2^ —> R assigns to each subset 5 G 2^ , called a 
coalition, a real number c(5), called the cost of coalition Sy where 2^ stands 
for the power set of the player set AT, and c(0) = 0. The core of a game (AT, c) 
is the set of payoff vectors for which no coalition has an incentive to leave the 
grand coalition AT, i.e. 

C{c) = {xe R^l Y^Xi< c{S) V5 G 2^ \ {0}; ^ x, = c{N)}. 
ies ieN 

Note that the core of a game can be empty. A game (AT, c) is called a concave 
game if the marginal contribution of any player to any coalition is more than 
his marginal contribution to a larger coalition, i.e. if it holds that 

c{S U {i}) - c{S) > c{T U {%}) - c{T) (3) 

for alH G AT and all 5 C T C AT \ {%}. 
An order r of AT is a bijection r : { l , . . . , | A r | } - ^ A r . This order is denoted 

by T(1) , . . . , T{n)y where r(i) = j means that with respect to r , player j is in 
the z-th position. We denote by Ejsi the set of possible orders on the set N. 
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Let (AT, c) be a cooperative cost game. For r G Z'AT , the marginal vector 
m'^{c) is defined by 

mi{c) = c{[i,T]) - c{{i,r)) for all i e N, 

where [i,r] = {j € N : T~^{j) < T~^{i)} is the set of predecessors of i with 
respect to r including i, and (i ,r) = {j e N : T~^{j) < T~^{i)} is the set of 
predecessors of i with respect to r excluding i. In a coherent way with respect 
to previous notations, we will indicate the set [z,r] U {0} and (z,r) U {0} as 
[2,r]' and (i,T)', respectively. For instance, for each k € { l , . . . , | iV|} and for 
each / e {2, . . . , | iV|}, the set [T(fc),r]' = {0 , r ( l ) , . . . ,r(A;)} and ( r ( / ) , r ) ' = 
{0 , r ( l ) , . . . , r ( / — 1)}, which will be denoted shorter as [r(A;)]' and (r(/))', 
respectively. 

Let < N\w > he an mcst situation. The minimum cost spanning tree 
game {N,c^) (or simply c^), corresponding to < N^,w >, is defined by 

Cw{S) = mm{w{r)\r is a spanning network on S'} 

for every S € 2^\{0}, with the convention that c^(0) = 0. 
We denote by MCST^ the class of all mcst games corresponding to mcst 

situations in W ^ . For each a G ̂ EJ^, ? we denote by Q^ the set {c^j \ w G K^} 
which is a cone. We can express MCST^ as the union of all cones G*̂ , i.e. 
MCST^ = (JaeUE , ^ ' ' ' ^^^ ^^ ^^^^^ ^̂ ®̂ *^ P^^^* ^^* *^^* MCSr^ itself 
is not a cone if |Ar| > 2. 

The core C(c^ )̂ of an mcst game c^ G MCST^ is nonempty ([14], [3]) and, 
given an mcst F (with no cycles) for N' in mcst situation w^ one can easily 
find an element in the core looking at the Bird allocation in w corresponding 
to r", i.e. the cost allocation where each player i E. N pays the edge in F which 
connects him with his immediate predecessor in < N'^F >. 

We call a map F : W^ —^ R^ assigning to every mcst situation w a 
unique cost allocation in M^ a solution. A solution F is efficient if for each 

where F is a, minimum cost spanning network on AT' for w. 

3 The Non-Archimedean Semimetric Corresponding to 
an MCST Situation 

Let w € W ^ . For each path P = {ioyiiy -- yik) firom i to j in the graph 
< N^,EN' > we denote the set of its edges by E{P)^ that is E{P) = 
{{^Oihj^lhih}^" -ylik-iyik}}' Moreover, we call maxeg£;(p) w;(e) the top 
of the path P and denote it by t{P), We denote by Vfj the set of all paths 
without cycles from i to j in the graph < N'^E^f >. 
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Now we define the key concept of this section, namely the reduced weight 
function. 

Definition 1. Let w G W^ . The reduced weight function id is given by 

'i^ihj) = min max w(e) = min t(P) (4) 
^ ^ Pev(^/eeE{P) ^ ^ pevr/ 

for each i,j € N', i ^ j . 

Now, extending w by putting w{i^i) = ^ for each i £ N',we obtain a nonneg-
ative function on the set of all pairs of elements in N', The obtained reduced 
weight function w is a. semimetric on N' with the sharp triangle inequality, 
i.e. a non-Archimedean iJ^K-)semimetric. In formula, for each i^j^k G N' 

y^iijj) ^ 0 and w{iji) = 0 (non-negativity); 
w{ij) = w{j,i) (symmetry); 
w{i,k) < ma.x{w{i,j),w{j,k)} (sharp triangle inequality). 

The proof is left to the reader. If ti; > 0, then -iD is a non-Archimedean metric 
on the set N'. 

For the reduced weight function w we have a special property related to 
triangles (the isoscele triangle property), as the next proposition shows. 

Proposition 1. Let w be the reduced weight function corresponding to w E 
W ^ and ijjjk G AT' such that w{i,j) < iv{i,k) and w{i^j) < w(k,j). Then 
w{i,k) = w{j,k). 

Proof By the sharp triangle inequality w{i^k) < max{t()(i,^'),'U)(j, A;)} = 
w{j,k) and w{j^k) < max{'u)(j,i),ti;(2. A;)} = w(i,k). So w{i^k) = w{j,k). 
D 

This property for NA-semimetrics will be useful in proving that there are 
many minimum cost spanning trees for {N',w)^ as we see in Theorem 1. 

In the sequel we simply refer to w as the mcst situation which assigns to 
each edge {i,j} G EN' the reduced weight value as defined in equality (4). 
Further, we will denote by W ^ C W ^ the set of all NA-semimetric mcst 
situations which assign to each edge {i^j} G E^f the distance w{i,j) provided 
by a NA-semimetric w on N'. 

Example 1. Consider the mcst situation < N',w > with N' = {0,1,2,3} 
and w as depicted in Figure 1. Note that w G K^, with cr(l) = {1,2}, 
(7(2) = {1,0}, (7(3) = {1,3}, (7(4) = {3,0}, (7(5) = {2,0}, a{6) = {2,3}. 
The corresponding mcst situation w is depicted in Figure 2. 

One main result in this section. Proposition 2, concerns an interesting relation 
which can be established between the mcst situation w and a minimal mcst 
situation w^ as defined by Bird [3], where F is an mcst for iV' in w. Recall 
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16 

Fig. 1. An mcst situation with three agents. 

10 

Fig. 2. The mcst situation w corresponding to w. 

that given an mcst situation w G W ^ and an mcst F for N' mw, the minimal 
mcst situation w^ is defined (cf. Bird, 1976) by 

w^{{iJ}) = m^xw{e) = t{Pfj), 
eePf, 

(5) 

where P/^ € Vfj is the unique path in F from i to j . 

Proposition 2. Let w G W^ and i,j e AT'. Let F be an mcst for N' in w 
and Pfj he the unique path in F from i to j . Then 

t{Pf^)= rain t{P). (6) 

Proof. Let P* € argmiup^piy' t{P) and let e* be an edge on P* such that 

t(P*) = t/;(e*). Let e = {m,n} be an edge on Pf^ with w{e) = t{Pfj). We 
have to prove that w{e) = w{e*). If so, then it follows immediately that 
miiip^^N/ t{P) = w{e*) = w{e) = t{P^^). If e* = e then of course w(e*) = 
w{e). Otherwise, first note that by definition of e* 

w{e) > w{e*). (7) 

Let Sm be the set of all nodes r e N' such that n is not on the path from r 
to m in < iV', P >; let Sn be the set of nodes r £ N' such that m is not on 
the path from r to n in < AT', P >, i.e. 
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Sm = {reN'\niP^,] and Sn = {r e N'\mi P^,}. 

Note that {SniSm} is a partition of N' and nodes in Â ^ are connected in 
< iV ' , r > to nodes in Sm via edge {m^n}. Moreover, by the definition of a 
path without cycles, i, j must belong to different sets of the partition {Sn-, Sm)-
So without loss of generality we suppose that i e Sm and j e Sn- Consider 
the set of edges £?+ = {{t,v}\t e Sm,v e 5^}. Then, 

td;({m, n}) = w{e) < w(e), for each e G E"^. (8) 

In order to prove inequality (8), suppose on the contrary that w;({m, n}) > 
w{e) for some e G E'^. Then the graph F'^ = (F \ {e}) U {e} would be a 
spanning network in AT' cheaper than T, which yields a contradiction. By 
the definition of a path, for each P G Vfj there exists at least one edge 
e G E'^ such that e is on the path P. By inequality (8), it follows that 
t{P) > w{e) > w{e). This implies that w(e*) = minp^p^' t(P) > w{e). 
Together with inequality (7) we have finally w{e*) = w{e), D 

As a direct consequence of Proposition 2 we have that the mcst situation 
w coincides, for each mcst F for w, with the minimal mcst situation w^ 
introduced by [3]. So w^ = w^ for each pair of mcst F,F', a fact which is 
already known (cf. [1, 11, 12]), but with a complicated proof. Let w G W^ 
and let F be an mcst for w. Let r G Ei^. We say that F and r fit (or, also, 
that r fits with F) if EF^^^U^ Er^2)Y^ • • -5 -^h-riivni' ^̂ ® spanning networks on 
sets of nodes [r(l)]', [T{2)]\ . . . , [rdATI)]', respectively. 

Example 2. In Figure 3 is depicted an mcst, denoted by F, for the mcst sit­
uation w of Figure 2. Consider TI,T2 G Z'iv such that T I (1 ) = 1, TI(2) = 2, 
ri(3) = 3 and r2(l) = 1, T2(2) = 3, r2(3) = 2. Note that both n and r2 fit 
with r* but none of the other four elements of EN fits with F. 

® 
Fig. 3. An mcst F for the mcst situation w of Figure 2. 

Remark 1. Let K; G W ^ , let F be an mcst for w and let r G î jv be an order 
such that F and r fit. Then, 
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J2 w{e) = U[r{r)]) (9) 

for each r € { 1 , . . . , |Ar|}. So Eff.y is an mcst for the most situation 

< lr{r)y,w\[r{r)y > 

Remark 2. Let w G W^ , let F be an mcst for w and let r G I!N be an 
order such that F and r fit. The marginal vector m^ic^) of the mcst game 
Cyj coincides with the Bird allocation in w corresponding to F and therefore 
^^(ciy) € C(c^), as is proved in [14]. 

Remark 3. For each a € ^EJ^, there exists a tree F which is an mcst for every 
w G K^\ further, there exists a r G SN such that F and r fit. 

The considerations in Remarks 1-3 together with the next lemma prelude to 
Theorem 1. 

Lemma 1. Let w G VV^ , let F be an mcst for w and let r G IJN be such 
that F and r fit. Let r G {1, • . . , \N\ — 1} and let r' G E^ he such that 
T'{r) = T{r + 1), T^(r + 1) = T{r) and T'{i) = r(z) for each i G { 1 , . . . , |iV|} \ 
{r, r + 1 } (i.e. r' is obtained from r by a neighbor switch ofr{r) and T{r-\-l)). 
Then there is an mcst F' for w such that r' and F' fit. 

Proof. If T{r) is not the immediate predecessor of r ( r + 1) in F then take 
F' = F and then r ' and F' fit. If r{r) is the immediate predecessor of r ( r +1) 
in r , then let k G [T{r — 1)]' be the immediate predecessor of T{r) in F. First, 
note that 

w{{k, T{r -f 1)}) > w{{k, r{r)}) (10) 

and 
w{{k,r{r + 1)}) > w{{r{r),T{r + 1)}) (11) 

because F is an mcst for w. Consider two cases: 

Case 1: w{{k,T{r)}) < w({T{r),T{r + 1)}). Take F' = {F \ {{T{r),T{r + 
1)}}) U {{k^T{r H- 1)}}. By inequality (10) and the isoscele triangle property 
w{{k,r{r + 1)}) = w{{T{r),T{r + 1)}) and then F' is an mcst in w and F' 
and r ' fit. 

Case 2: w{{r{r),T{r 4- 1)}) < w{{k,T{r)}). Take T' = {r \ {{k,T{r)}}) U 
{{k, r(r4-l)}}. By inequality (11) and the isoscele triangle property w{{k, T{r)}) 
= w{{k, r{r + 1)}) and then JT' is an mcst in w and i~" and T' fit. D 

Theorem 1, Let w £ W^'.Then 

i) for each r G E^ there exists an mcst F such that F and r fit. 
a) Let Cw be the mcst game corresponding to w. Then m'^{c^) G C{cyj) for all 

T G EN and Cyj is a concave game. 
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Proof, i) Let F be an mcst for w. Then there is at least one f € E^ such that 
r and f fit. Further each r can be obtained from f by a suitable sequence of 
neighbor switches and so, by applying Lemma 1 repeatedly, we complete the 
proof of assertion i). 

ii) Let r be an mcst in N' for w and let r € EN such that F and r fit. By 
Remark 2, it follows that m7'(C'u}) coincides with the Bird allocation corre­
sponding to F. Hence, again by Remark 2, rri^{c^) € C{cyj). Finally, by the 
Ichiishi theorem (Ichiishi (1981)) telling that a game is concave iff all marginal 
vectors are in the core of the game, it follows that Cyj is a concave game. D 

Let w € W ^ . We call the core of the mcst game Cyj the Bird core of the 
mcst game Cyj and denote it by BC{w). By Theorem 1 it directly follows that 
the Bird core BC{w) of the mcst game Cyj is the convex hull of all the Bird 
allocations corresponding to the minimum cost spanning trees for w. Note 
also that 13C{w) C C(c^), since Cyj{S) < Cyj{S) for each 5 € 2^ \ {0} and 
c^{N) = cUN){cL[n]). 

Example 3. Consider the mcst situation w of Figure 1 and the corresponding 
reduced mcst situation w of Figure 2. Then 

^W 

^w 

{1} 
8 
8 

{2} 
12 
8 

{3} 
12 
10 

{1,2} 

13 
13 

{2,3} 

24 
18 

{1,3} 

18 
18 

{1,2,3} 

23 
23 

There are six minimum cost spanning trees for w. Three of them lead to the 
Bird allocation (8,5,10) and the other three to the Bird allocation (5,8,10). 
Further, rri'icii,) = (8,5,10) for r € {(1,2,3), (1,3,2), (3,1,2)} and rri'icii,) = 
(5,8,10) for T G {(2,1,3), (2,3,1), (3,2,1)}. The Bird core BC{w) is the convex 
hull of the marginal vectors of the game Cyj^ that is BC{w) = conv{(8,5,10), 
(5,8,10)} cC(c^) . 

4 Monotonicity Properties 

In [23] a class of solutions for mcst situations which are cost monotonic is 
introduced: the class of Obligation rules. Roughly speaking, we define a cost 
monotonic solution for mcst situations as a solution such that, if the costs of 
some edges increase, then no agent will pay less. More precisely: 

Definition 2. A solution F : W ^ -^ R^ is a cost monotonic solution if for 
all mcst situations w^w' G W ^ such that w{e) < w'{e) for each e G E^i, it 
holds that F(w) < F{w'). 

In this section we introduce a related concept of cost monotonicity for multiso-
lutions on mcst situations. We call a correspondence G : W^ -^ M^ assigning 
to every mcst situation w a set of cost allocations in M^ a multisolution. 
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Definition 3. A multisolution M : W^ -^ R^ is a cost monotonic multiso-
lution if for all mcst situations w,w' G W^ such that w{e) < w\e) for each 
e G Eisff, it holds that 

M{w) C campr~{M{w')) and M{w') C compr^{M{w)), 

where compr~{B) = {x £ R^|36 G B s.t. xi <bi\/i £ N} and campr^{B) = 
{x G R^|36 G B s.t. hi <Xi'ii£ N}, for each B C R^. 

Before discussing properties of the Bird core as multisolution for mcst situ­
ations, we introduce the following propositions dealing with mcst situations 
originated by NA-semimetrics. 

Proposition 3. Let w G \V^ and let F be an mcst for w and r G UN be 
such that r and r fit. Then 

^TU)M = ^ min w(k,T{j)), 

for each j e {2 , . . . , |iV|}. 

Proof Let j G {2 , . . . , \N\}. Note that by Remark 1 

Ku)M = u[rU)])-uiT{j)))= Yl ^(^)- E (̂̂ )- (12) 

Since F and r fit, we have ^[rO)]' \^(^(j))' = {{^(j)) ^}}) ^^^ some s G (r(j)) ' . 
Because Ef^-sy is an mcst for "W ĵfrO)]' > we have 5 G argminfce(rO))' "^({^j ^U)})' 
So 

From (12) and (13) follows the proposition. D 

Proposition 4. Let w^w' £ W^ be NA-semimetric mcst situations such that 
w{e) < w'{e) for each e G Ejs!'. Then it holds that 

'm^{cw) ^ rri^ic^') for each r G UN-

Proof Let r G UN- By Theorem 1 there exist two mcst's F and F' for tt; and 
If;', respectively, such that they both fit with r. First note that 

^lii){^w) = W{0,T{1)) < W\0,T{1)) = m;(i)(c^/). 

Further 
'^lij)M = minfee(TO))'^(^,T(j)) 

<mmke{r(j)yw'{k,T{j)) 

for each j G {2, . . . , |Ar |}, where the first and the second equality follow by 
Proposition 3 and the inequality follows from w{e) < w'{e) for each e G E^'. 
D 
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Theorem 2. The correspondence EC is a cost monotonic multisolution. 

Proof. Let w,w' e W^' be such that w{e) < w'{e) for each e G E^', By 
Theorem 1 and properties of concave games, BC{w) is a convex set whose 
extreme points are the marginal vectors of the game ĉ o, i.e. each element 
of BC{w) is a convex combination of marginal vectors of the game ĉ y. Let 
X e BC{w). There exist numbers a'^, with r € UN^ 0 < a'̂  < 1, YITEUN ^^ — ^ 
and 

x= Y. o^^ rn^Ci,). (14) 
reUN 

Hence 
^ = J2reUN ^'" ^""(c^) 

< E r G 2 : . ^ ' ^ ' ( ^ - - 0 (15) 

where the inequality follows by Proposition 4 and the fact that w{e) < w\e) 
for each e € EN' and the second equality by Theorem 1, implying that 
BC{w) C compr~{BC(w')). Using a similar argument the other way around 
in relations (15), it follows that BC{w') C compr'^{BC{w))^ which concludes 
the proof. D 

To connect the cost monotonicity of the Bird core with cost monotonicity of 
Obligation rules, we need Proposition 5. 

Proposition 5. Let F : W^ -^ R^ he a cost monotonic and efficient solu­
tion. Then 

i) F{w) = F{w) for every w € W ^ ; 
a) If F is also stable (i.e. F(w') € C{cy^>) for every w' € W ^ ) , then F{w) G 

BC{w) for every w G W^ . 

Proof. Let w G W^ . First note that by Definition 1, 

w{e) < w{e) for each e G E^'- (16) 

Let r be an mcst for w. Consider first i). By inequality (16) and cost mono­
tonicity of Fy F{w) < F{w). On the other hand F is an mcst for w too and 
by efficiency of F 

ieN ieN 

So, F{w) = F{w). Consider now ii). By inequality (16), 

Cw{S) < c^{S) for all S C N, 

and by Definition 1 
Cyj{N) = cUN) = w{r). 

Then, by stability of F , F{id) G C(c^) = BC{w) C C(c^) and by result (i) 
F{w) G BC{w) too. D 
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Remark 4- Proposition 5 can be extended to multisolutions which are cost 
monotonic and efficient (Property 1 in next section) multisolutions. Prom this 
follows that BC is the "largest" cost monotonic stable multisolution. 

Remark 5. As previously said, in [23] we have introduced the class of Obliga­
tion rules and proved that they are both cost monotonic and stable solutions 
for mcst situations. So, by Proposition 5 it follows that for each w G W ^ , 
the set T{w) = {<l>{w) \ (/> is an Obligation rule} is a subset of the Bird core 
BC{w) and T{w) = T{id). 

5 An Axiomatic Characterization of the Bird Core 

In order to introduce an axiomatic characterization of the Bird core, we need 
to prove the following fact for NA-semimetric mcst situations. 

Lemma 2. Let w,w' € W^ and let a € ^EJ^, ^e such that w,w' G K^. Let 
a, a ' > 0. Then aw, a'w', aw + a'w' € K^ for some a € ^EJ^, • 

Proof. By relation (4), for each edge e G Ej^>, there is an edge e G Ejsc such 
that w{e) = w{e): given that e = {i, j } , e is such that w[e) = minp^^iv' t{P). 
Note that for each Wi in the same cone K'^ as w we have Wi{e) — w{e). This 
implies that for all pairs of edges ei, 62 € E^' 

w{ei) < id{e2) ^ w{ei) < w{e2) <^ wi{ei) < wi{e2). 

So, for each a € ^£;^, we have: 

WGK^ <:^w' £ K^. 

Using this fact, respectively, for aw, a'w' and aw + a'w' G K^ in the role of 
Wi, we obtain 

Hj e K^ <=^ aw, a'w', aw-\-a'w' G K^, 

for each a G ̂ E^, • D 

Proposition 6. Let w,w' G W ^ and let a G ̂ EJ^, be such that w,w' G K'^. 
Let a, a' > 0. Then 

i) aw + a'w' = aw + a'w'; 

[The NA-semimetric mcst situations w,w',aw + a'w' are obtained via reduc­
tion of the weight functions w,w',aw + a'w', respectively.] 

Proof i) Note that 
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aw + a'w'{{ij}) — imxip^^N' maxee£;(p) {oLw{e) + a'w'{e)) 

= aminp^pAT' maxee£;(p) w{e) 

+ a'minp^^N' maxee£;(p) w'{e) 

= aid({ij})-i-a'w'{{ij}), 

where the second equahty follows from the fact that w,w^ and aw H- a'w^ all 
belong to K""; 

ii) Note that, by Lemma 2, aw^a'w^aw-\-a'w' G i^^ for some a G ^EJ^,-

For each 5 ' € 2 ^ \ { 0 } , there is, according to Remark 3, a common mcst Fs 
for aw^ a'w' and aw + a'lt;'. Hence 

ac^(S') + Q;'C^,(5) = ^ee r^ ^^(^) + I^eefs <^'^'(e) 

= Eeer s (^^ + a't^'(e)) 

where the third equality follows by (z). D 

Some interesting properties for mult isolations on mcst situations are the fol­
lowing. 

Property 1. The multisolution G is efficient (EFF) if for each w G VV^ and 
for each x G G{w) 

^Xi = w{r), 

where r* is a minimum cost spanning network for w on N'. 

Property 2. The multisolution G has the positive (POS) property if for each 
w G W^ and for each x G G{w) 

Xi>0 

for each i £ N. 

Property 3. The multisolution G has the Upper Bounded Contribution (UBC) 
property if for each w G W^ and every (it;, iV')-component C 7̂  {0} 

E Xi < min w({i,Qi\) 
iec\{o} ^^ ^ 

for each x G G{w). 

Property 4- The multisolution G has the Cone-wise Positive Linearity (CPL) 
property if for each a G ̂ E^, 5 for each pair of mcst situations w^w £ K^ and 
for each pair a, a > 0, we have 

G{aw + aw) = aG(w) + aG(w). 

[Here we denote by aG{w) + aG{w) the set {ax + ax\x G G{w),x G G{w}.] 
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Proposition 7. The Bird core BC satisfies the properties EFF, POS, UBC 
and CPL. 

Proof. Let w £ W^' and let a € UE^, be such that w e K"". Since BC{w) = 
C{cyj)y the following considerations hold: 

i) For each allocation x G BC{w)^ YlieN^i ~ '^i^) ^^^ some mcst F by the 
efficiency property of the core of the game Cw. So BC has the EFF property. 

ii) For each allocation x G BC{w), Xi > 0 for each i € N since the Bird core 
is the convex hull of all Bird allocations in the mcst t̂;, which are vectors in 
R^. So BC has the POS property. 

iii) For each (ii;, AT')-component C ^ {0} and each x G BC(w) 

^ Xi <c^{C\{0})= mm w{{i,0}) 

by coalitional rationality of the core of the game Cy). So BC has the UBC 
property. 

iv) Let a G EE^, , let w, w' G W^ ' be such that w, w' G K"^ and let a, a' > 0. 
Since the core is additive on the class of concave games (see [9]), we have 

BC{aw + a'w') = C{c^^^^,^,) = aC{c^) + a'C{c^,) = aBC{w) + a'BC{w'), 

Hence BC has the CPL property. D 

Inspired by the axiomatic characterization of the P-value ([4]) we provide the 
following theorem. 

Theorem 3. The Bird core BC is the largest multisolution which satisfies 
EFF, POS, UBC and CPL, i.e. for each multisolution F which satisfies EFF, 
POS, UBC and CPL, we have F{w) C BC{w), for each w G W^'. 

Proof. We already know by Proposition 7 that the Bird core BC satisfies 
the four properties EFF, POS, UBC and CPL. Let ^ : W^' ^ R^ be a 
multisolution satisfying EFF, POS, UBC and CPL. Let w G W^' and a G 
^E^f be such that w G K^. We have to prove that ^{w) C BC{w). First, note 
that by the CPL property of ^ 

[w{a{l))^(e''^^) 4- Yl {w{a{k)) - w{a{k - l)))lZ^(e^'^)j = ^{w). (17) 
fc=2 

Let X G XIJ{W). According to (17) there exists x̂ *̂ ' G ^{e^'^) for each k G 
{ 1 , . . . , |-£?N' 1} such that 

\EN'\ 

X = w{a{l))x^'^'' -^ Y, {w{a{k))-w{a{k-l)))x^'''\ 
fc=2 
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By the UBC property, for each k € {1,,.. ,\EN'\} and for each (e'^^^.N')-
component C ^ {0} we have 

r 0 if 0 G C 

iGC\{0} *^^\^'^ [ l i f O ^ C 

implying that 

!:<"= E E 4"<\C{e'"')\-l = e'''\r), 
ieN C6C(e«^''=)i€C\{0} 

where i"" is a minimum spanning network on AT' for the simple mcst situ­
ation e '̂'̂ . By the EFF property, we have Yli^j^ xf' = e^'^{r), and then 
inequalities in relation (18) are equalities, that is 

r 0 if 0 G C 

iec\{0} [ 1 if 0 ^ a 

Now, consider the game c-^-r corresponding to the simple mcst situation e^^^, 
Note that for each 5 G 2^ \ {0}, 

c^^{S) = \{C : C is a (e^'^,iV') - component, C H S' ^̂  0,0 ^ C}| , 

which is the number of (e^'^, Ar')-components not connected to 0 in e^'^ with 
at least one node in the player set S. By (19) and the POS property, it follows 
that X!jg5 xf ' < c^^{S) and together with the EFF property we have 
x̂ *̂ ' G C(ĉ -̂fc-) = BC{e^'^). Moreover, from Proposition 6 it follows 

X = [w{a{l))x^''^' + E (^(^(^)) - ^ ( ^ ( ^ - 1)))^''^' j ^ ^(c^) = ^ ^ H -
fc=2 

Keeping into account relation (17), we have ^{w) C BC{w). D 

6 Final Remarks 

This paper deals mainly with the Bird core of an mcst situation and its mono-
tonicity and additivity properties. 

Given an mcst w e W^ and an mcst F for N' in w^ the Bird core 
has been introduced (cf. Bird, 1976) as the core of the mcst game (AT, Cy,r) 
corresponding to the mcst situation w^ defined as in relation (5). 

From a combinatorial perspective, Proposition 2 allows for a relevant re­
duction in the number of operations needed to obtain the minimal mcst sit­
uation corresponding to an mcst w. In fact, by means of relation (4) it is 
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not necessary anymore to solve the mcst problem in w finding an optimal 
spanning tree F and then computing w^ as defined by relation (5). 

The attention to monotonicity properties of solutions for cost and reward 
sharing situations is growing in the literature. 

In [21] attention is paid to population monotonic allocation schemes 
(pmas), in [7] and [24] to bi-monotonic allocation schemes (bi-mas) and in 
[5] to type monotonic allocation schemes. For mcst-situations, the existence 
of population monotonic allocation schemes has been established in [19]. For 
special directed mcst-situations also pmas-es exist as is shown in [17]. 

As we already said in the introduction, the problem of finding cost mono­
tonic allocation rules has been tackled in [10], paying attention only to the 
agents who are directly involved in the cost increasing. In [23] so called Obli­
gation rules for mcst-situations turn out to be cost monotonic (with respect 
to all the agents) and induce also pmas-es. A special Obligation rule is the 
P-value discussed in [4] (see also [12], [11], [2], [18]). 

In the axiomatic characterization of Section 5, we use very intuitive axioms 
(UBC, EFF, POS and GPL) to characterize the Bird core. Let w € W^ ' . From 
the game theoretical point of view, the UBC property together with the EFF 
property selects a subset of the imputation set of the mcst game Cyj, i.e. the 
set of imputations which also satisfy the intermediate stability conditions for 
coalitions of players that are (it;,iV')-connected. Note that for such coalitions 
checking for the intermediate stability of an allocation is very easy (just look 
at the minimum distance from the source). The POS property guarantees that 
no players should be subsidized from others according to some allocations: all 
the players must pay at least zero of the total cost. One can easily check that 
EFF, POS and UBC properties are satisfied by many allocation rules for mcst 
situations, like the Bird rule (Bird 1976), Obligation rules ([23]), Construct & 
Charge rules ([18]) but not from classical game theoretical solutions, like the 
Shapley value, for example. For a deeper game theoretical view of the CPL 
property, we refer to [19], where CPL formed the base for a decomposition 
theorem showing that every mcst game can be written as nonnegative com­
bination of mcst games corresponding to simple mcst situations. The CPL 
property for solutions has been also used to axiomatically characterize the 
P-value in [4]. 

For further considerations on the additivity properties of solutions see also 
[6], [22]. 
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Summary . We introduce here a family of mixed coalitional values. They extend 
the binomial semivalues to games endowed with a coalition structure, satisfy the 
property of symmetry in the quotient game and the quotient game property, gen­
eralize the symmetric coalitional Banzhaf value introduced by Alonso and Fiestras 
and link and merge the Shapley value and the binomial semivalues. A computational 
procedure in terms of the multilinear extension of the original game is also provided 
and an application to political science is sketched. 

1 Introduction 

The parallel axiomatic characterization stated by Feltkamp [8] shows that the 
only difference between the Shapley value [19] and the Banzhaf value (cf.[13]), 
as allocation rules for all cooperative games, is that the first satisfies efficiency 
while the second satisfies the total power property. 

In the framework of cooperative games with a coalition structure, other 
essential differences also arise between the Owen value [14] and the modified 
Banzhaf value or Owen-Banzhaf value [16]. The Owen-Banzhaf value fails to 
satisfy the property of symmetry in the quotient game and the quotient game 
property, which are fulfilled by the Owen value. 

Alonso and Fiestras [1] suggested a modification of the Owen-Banzhaf 
value that satisfies these two properties and can therefore be compared with 
the Owen value in terms analogous to Feltkamp's. Our aim here is to introduce 
the notion of coalitional binomial semivalue as a wide generalization of the 
Alonso-Fiestras value (essentially: p G [0,1] instead oi p = 1/2) in order to 
get a symmetric coalitional binomial semivalue that still satisfies the property 
of symmetry in the quotient game and the quotient game property, so that it 
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differs from the Owen value just in satisfying a total power property instead 
of efficiency. 

The organization of the paper is as follows. In Section 2, a minimum of pre­
liminaries is provided. Section 3 is devoted to define and study the symmetric 
coalitional binomial semivalue, and it includes an axiomatic characterization 
that parallels Owen's [14] for the Owen value. In Section 4 we present a com­
putation procedure for the symmetric coalitional binomial semivalue. Finally, 
Section 5 contains a remark on simple games and a detailed example. 

2 Preliminaries 

2.1 Gaines and Semivalues 

Let N he a. finite set of players and 2^ be the set of its coalitions (subsets 
of AT). A cooperative game on AT is a function i; : 2^ ^^ R, that assigns 
a real number v{S) to each coalition S C N with t;(0) = 0. A game v is 
monotonic if v{S) < v{T) whenever S CT C N. A player ^ € iV is a dummy 
in V if v{S U {i}) = v{S) + v{{i}) for all S C N\{i}, and null if, moreover, 
v{{i}) = 0. Two players i,j € N are symmetric in v if v{SU{i}) = v(SU{j}) 
fOT8illSCN\{iJ}. 

Endowed with the natural operations for real-valued functions, the set 
of all cooperative games on A/̂  is a vector space QN- For every nonempty 
coalition T C N, the unanimity game UT is defined by UT{S) = 1 \S.T C. S 
and UT{S) = 0 otherwise. Finally, every permutation 9 of N induces a linear 
automorphism of QN given by {Ov){S) = v{6~^S) for all S C N and all v. 

By a value on GN we will mean a map / : QN -^ R^, that assigns to every 
game v a vector f[v] with components fi[v] for all i £ N. 

Following Weber's [22] axiomatic description, V' • GN —^ R^ is a semivalue 
iff it satisfies the following properties: 

(i) linearity: ip[v -\- v'] = 'ip[v]-i- iplv'] (additivity) and il^[Xv] = Xil^[v] for all 
v,v' e GN and A G M; 

(ii) anonymity: il;Qi[9v] = ipi[v] for all 0 on N, i £ N^ and v € GN] 
(iii) positivity: if v is monotonic, then I/JIV] > 0; 
(iv) dummy player property: if z G iV is a dummy in game v, then il^i[v] = 

vi{i}). 
There is an interesting characterization of semivalues, by means of weight­

ing coefficients, due to Dubey, Neyman and Weber [7]. Set n = \N\. Then: (a) 
n - l 

for every weighting vector {pk}^ZQ such that Z^ Pfc(^^^) = 1 and Pk >0 for 
fc=o 

all k, the expression 

il;^[v] = ^ Ps[v{S U {i}) - v{S)] for a lH G iV and all v EGN, 
SCN\{i} 
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where s = \S\, defines a semivalue ^; (b) conversely, every semivalue can 
be obtained in this way; (c) the correspondence given by {pfc}^=o ~̂̂  V' is 
bijective. 

Well known examples of semivalues are the Shapley value (p [19], for which 
Pfc = l/n^"^^), and the Banzhaf value /3 (cf.[13]), for which pk = 2^"^. The 
Shapley value (f is the only efficient semivalue, in the sense that the equality 
X] ^iM = v{N) holds for every v £ GN-

ieN 
Notice that these two classical values are defined for each N. The same 

happens with the binomial semivalues, introduced by Puente [18] as follows. 
Let p e [0,1] and pk = p^(l - p)^-^- i for A; = 0 , 1 , . . . , n - 1. Then {pk}lZo 
is a weighting vector and defines a semivalue that will be denoted as x/j^ 
and called the p-binomial semivalue. Using the convention that 0^ = 1, the 
definition makes sense also for p = 0 and p = 1, where we respectively get the 
dictatorial index xfj^ and the marginal index -0^, introduced by Owen [15] and 
such that ipf[v] = v{{i}) and ip}[v] = v{N) - v(N\{i}) for alH G AT and all 
V € GN- Of course, p = 1/2 gives V̂ /̂̂  = /? —the Banzhaf value. 

In fact, semivalues are defined on cardinalities rather than on specific 
player sets: this means that a weighting vector {pk}^Zo defines a semivalue 
"tp on all N such that n = \N\. When necessary, we shall write i/j^'^^ for a 
semivalue on cardinality n and p)^^ for its weighting coefficients. A semivalue 
ipin) induces semivalues t/̂ *̂̂  for all cardinalities t < n^ recurrently defined by 
the Pascal triangle (inverse) formula given by Dragan [6]: 

pi*'=pr'+pi*:/' for o<k<t. 
A series i/; = {i/j^'^^'^^i of semivalues, one for each cardinality, is a multi-
semi value if it satisfies Dragan's recurrence formula. Thus, the Shapley and 
Banzhaf values and all binomial semivalues are multisemivalues. 

2.2 Games with Coalition Structure 

Let us consider a finite set, say, N — {1 ,2 , . . . , n} . We will denote by P{N) 
the set of all partitions of N. Each P G P{N) is called a coalition structure 
or system of unions on N. The so-called trivial coalition structures are P^ = 
{{1}, { 2 } , . . . , {n}} and P^ = {N}. A cooperative game with a coalition 
structure is a pair [v;P], where v G GN and P G P{N) for a given N. We 
denote by Gff the set of all cooperative games with a coalition structure and 
player set N. 

If [v]P] G GN and P = {Pi, P2j • • • 5 Pm}, the quotient game v^ is the co­
operative game played by the unions, or, rather, by the set M = {1 ,2 , . . . , m} 
of their representatives, as follows: 

vP{R) = v{[j Pr) for all P C M . 
reR 
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Unions Pr^Ps ^^^ said to be symmetric in [v\ P\ if r, s are symmetric players 
p m V . 

By a coalitional value on Q^ we will mean a map g : Q^ —> R^, which 
assigns to every pair [v\P] a vector p[f; P] with components gi[v\ P] for each 
i € AT. 

The Owen value [14] is the coalitional value ^ defined by 

RCM\{k}TQPk\{i} ^'^ \ r ) \ t ) 

for alH G AT and [f; P] G 5 ^ , where P^ G P is the union such that i e Pk 
and Q = |J P̂ .̂ It was axiomatically characterized by Owen [14] as the only 

reR 
coalitional value that satisfies the following properties: the natural extensions 
to this framework of 

• efficiency 
• additivity 
• the dummy player property 

and also 

• sym,m,etry within unions: ii i,j G Pfc are symmetric in v then 

^i[v;P] = ^j[v;P] 

• symmetry in the quotient game: if P^,Ps G P are symmetric in [v;P] 
then 

^<f4t;;P]=^<?,[z,;P]. 
iePr jePs 

The Owen value is a coalitional value of the Shapley value (p in the sense 
that ^[v; P'^] = (p[v] for all v e GN- Besides, ^[v; P^] = (p[v]. Finally, as ^ is 
defined for any AT, the following property makes sense and is also satisfied: 

• quotient game property: for all [v;P] G G^y 

Y^ ^i[v; P] = < f̂c[̂ ;̂ P^ ] for all P^ G P . 
iePk 

The Owen value can be viewed as a two-step allocation rule. First, each 
union Pk receives its payoff in the quotient game according to the Shapley 
value; then, each Pk splits this amount among its players by applying the 
Shapley value to a game played in Pk as follows: the worth of each subcoalition 
T of Pk is the Shapley value that T would get in a "pseudoquotient game" 
played by T and the remaining unions on the assumption that Pk\T leaves 
the game, i.e. the quotient game after replacing Pk with T. This is the way 
to bargain within the union: each subcoalition T claims the payoff it would 
obtain when dealing with the other unions in absence of its partners in Pk. 
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The Owen-Banzhaf value ^ [16] follows a similar scheme. The resulting 
formula parallels tha t of the Owen value given above with the sole change 
of coefficient l /mpfc( '^~^)(^Y^) ^^ 2 ^ - ^ 2 ^ - P ^ This value, which is a coali­
tional value of the Banzhaf value /?, does not satisfy efficiency, but neither 
symmetry in the quotient game nor the quotient game property. The bargain­
ing interpretation is the same as in the case of the Owen value by replacing 
everywhere the Shapley value with the Banzhaf value. 

Alonso and Fiestras [1] introduced a modification of the Owen-Banzhaf 
value. In this case, the coefficient of each marginal contribution is replaced 
with 2^~"^/pfc (^'"7^) • This symmetric coalitional Banzhaf value 77 satisfies the 
same properties as the Owen value, with the sole exception of efficiency — 
replaced by a total power property—, as well as the quotient game property, 
and it is a coalitional value of the Banzhaf value. 

E x a m p l e (Alonso and Fiestras [1]). Let us take n = 5 and consider the una­
nimity game UN and the coalition structure P = {Pi , P2} where Pi = {1,2,3} 
and P2 = {4,5}. Notice that the quotient game is u^ = UM^ where 
M = {1,2} . It is not difficult to obtain the following values: 

0[UN] = (1 /16 ,1 /16 ,1 /16 ,1 /16 ,1 /16) , 

0[u^] = (1/2,1/2), 

B[UN;P] = (1/8,1/8,1/8,1/4,1/4). 

As Pi and P2 are symmetric in [UN;P], it follows tha t the Owen-Banzhaf value 
B fails to satisfy the property of symmetry in the quotient game. Neither the 
quotient game property is fulfilled by B in this instance. Instead 

i7[2.^;P] = ( 1 / 6 , 1 / 6 , 1 / 6 , 1 / 4 , 1 / 4 ) 

so tha t both properties are satisfied by the Alonso-Fiestras value U (here and 
elsewhere). 

3 The Symmetric Coalitional Binomial Semivalue 

In this section we define and study a "coalitional version" of each p-binomial 
semivalue for games with coalition structure. This includes, besides the explicit 
formula, an axiomatic characterization and an interpretation in terms of a 
two-step bargaining process, among unions, first, and among players within 
each union later. We recall that t/̂ ^ denotes, for each p G [0,1], the p-binomial 
semivalue acting on a fixed QN^ and also the following notion (cf. Puente [18]). 

De f in i t i on 1. Let p £ [0,1]. A value f on Gr^ satisfies the p-binomial total 
power property if 

E / « M = E E P'{i-Pr-'-'[v(SU{i})-v(S)] forallveGN-
i£N ieN SCN\{i} 
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The Owen (resp., Owen-Banzhaf) value is a natural extension of the Shap-
ley (resp., Banzhaf) value to games with a coalition structure. We generalize 
this idea. 

Definition 2. Given a value f on Q^, CL coalitional value of f is a coalitional 
value g on G^ such that g[v; P'^] = f[v] for all v G GN-

Let p be a coalitional value of the p-binomial semivalue ip^ defined for all 
AT, and assume that g satisfies the quotient game property. Then, for a given 
AT and any [v',P] eG^^ 

Y,gi[v;p] = E Ediiv.p] = Egkiv^'-.p-] = E ^n^n = 
i€N keM iePk keM keM 

k£M RCM\{k} 

This motivates the next definition, that is an adaptation of the p-binomial 
total power property to games with a coalition structure. 

Definition 3. Let p E [0,1]. A coalitional value g on Gff satisfies the coali­
tional p-binomial total power property if, for all [v\ P] G Gff) 

J29i[v;P]=Yl E P'"(l-P^-'-M^'''(i?U{fc})-t;^(i^)]. 
ieN keM RCM\{k} 

The next statement defines and axiomatically characterizes, for each p G 
[0,1], the symmetric coalitional p-binomial semivalue, which will be denoted 
as i?^. We need a previous lemma. 

Lemma 1. Let 0 j^ S C N, s = \S\ and i e N. Then ipf[us] = p^~^ ifieS, 
and i^^lus] = 0 otherwise. 

Proof, Let i £ S. By the definition of the weighting coefficients of i/j^ we have 

i^fius] = rr)p'"Hi -pr-'+r7')p^(i -PT-^-'+• • •+CZDP^-' = 
=p'-^[p+{i-p)]''-'=p'-K 

l£ i ^ S, the dummy player property yields V̂f [its] = 0. D 

Theorem 1. Let p € [0,1]. For any N there is a unique coalitional value 
on Gff that satisfies additivity, the dummy player property, symmetry within 
unions, symmetry in the quotient game, and the coalitional p-binomial total 
power property. Given [v;P] G Gff, this value allocates to each player ieN 
the real number 

mv;P]= E E P'~ii-pr-''-'—(^[v{Q^Tu{i})-v{Q^T)], 
RCM\{k} TCPk\{i} Pk\ t ) 
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where Pk G P is the union such that i E Pk dnd Q = [J Pr- Moreover, f2^ is 
r€R 

a coalitional value of the p-binomial semivalue ijj^ and satisfies the quotient 
game property. 

Proof, (a) (Existence) It suffices to show that the coalitional value i?^ given 
by the above formula satisfies the five properties enumerated in the statement. 

1. Additivity. It merely follows from the expression of f2f[v; P]. 
2. Dummy player property. Let z € iV be a dummy player in game v and P 

be any coalition structure. Assume i e Pk- Then v{Q U T U {i}) — v{Q U T) = 
v{{i}) for all R and T. As, moreover, 

E fil-Pr-'-' = l and Y. ^ : 7 ^ = 1' 
RCM\{k} TCPk\{i}^'^^ t J 

we conclude that f2^[v]P] = v{{i}). 
3. Symmetry within unions. Let i^j G Pk € P be symmetric players in 

game v. For each R C M\{k} and T C Pk\{iJ}, let A{R,T,h) = v{QuTU 
{h}) — v{Q U T) for h = i^j. Then, by the symmetric position of i,j in v, 

f{R, T) = A{R, T, i) - A{R, T, j) = 0 and 

g{R,T) = A{R,Tu{j},i) - A(R,TU{i}J) = 0, 

so that f2f[v] P] — f2'j[v] P] is equal to 

RCM\{k} TCPk\{iJ} 

f{R,T) ^ g{R,T) 

P^rV^) Pk{%\') 
0. 

4. Coalitional p-binomial total power property. Let [v;P] G Q'^. Fixing 
k e My ioT every R C M\{k} we consider the game VR £ Qp^ defined by 

vji{T) = v{Q U T) - v{Q) for all T C Pk. 

The Shapley value gives, for each i £ Pk, 

^ ^ M = E —7^HQ^TU{z})-v{QuT)]. 

Using the efficiency of (/?, we get 

E ^ ^ M = MPk) = v{Q U Pk) - v{Q) = v^'iR U {k}) - v'^iR). 
iePk 

Hence 

iePk RCM\{k} 
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and, finally, 

Y,^\[v\p\ = Y. E pii-pr-'"-M«''(-Ru{fc})-^;^(i?)]. 
ieN keM RCM\{k} 

5. Symmetry in the quotient game. It readily follows from the relationship 

iePk 

stated in the previous point, and the anonymity (whence symmetry) of the 
p-binomial semivalue i/j^. 

(b) (Uniqueness) Let p be a coalitional value on Q^ satisfying the five 
properties. Using additivity and the fact tha t the unanimity games form a 
basis of QN , it suffices to show that g is completely determined by its action 
on any pair of the form [Xus; P], where XeR.^^SCN and P G P{N). By 
the dummy player property, gi [Xus ',P] = Oifi^S. This leaves us with players 
ie S,Let S' = {keM : SOPk i- 0} and, for every k G 5", S'^ = SnPk. It is 
easy to see that (Xus)^ = Xus'. From the coalitional p-binomial total power 
property, and applying Lemma 1, we have 

ieN keM kes' 

Now, from symmetry in the quotient game, if A; G iS" then 

J2 9i[^us;P] = J2 9i[^^s',P] = X/-' 
ies'j^ iePk 

and, finally, using symmetry within unions, 

gi\Xus\ P\ = — ; — for any i £ Sj,. 
^k 

As S = UkeS' '̂ fc' ^^^^ concludes the proof tha t g is univocally determined. 
(c) i?^ is a coalitional value of the p-binomial semivalue xp^. Indeed, for 

P = P^ the explicit formula of i?^ reduces to 

^fk;n= E p'(i-i'r-'-'K^u{i})-«(i?)] = vfH. 
RCN\{i} 

Finally, the quotient game property: as we have seen when showing the sym­
metry in the quotient game in part (a) of this proof, and using the preceding 
property for G^^, 

iePk 
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Remark 1. (a) The symmetric coalitional p-binomial semivalue is a natu­
ral (and wide) generalization of Alonso and Fiestras' symmetric coalitional 
Banzhaf value, since 

(b) i?^ relates not only to the p-binomial semivalue V'̂  (of which it is a 
coalitional value) but also to the Shapley value (/?, as Q'^[v\ P^] = ^[v] for any 

(c) From Theorem 1 it follows that the only axiomatic difference between 
the Owen value # and the symmetric coalitional p-binomial semivalue i?^ is 
tha t the former satisfies efficiency whereas the latter satisfies the coalitional p-
binomial total power property, in a way that parallels the distinction between 
the Shapley value ^ and the p-binomial semivalue ^^ . 

(d) The symmetric coalitional p-binomial semivalue represents a two-step 
bargaining procedure where, first, the unions are allocated in the quotient 
game the payoff given by the p-binomial semivalue ^^ and, then, this payoff 
is efficiently shared within each union according to the Shapley value (p, 

4 A Computation Procedure 

The multilinear extension (cf.[12]) of a game v ^ QN \s> the real-valued func­
tion defined on R ^ by 

/(Xi,X2,...,Xn) = Yl W^iW.0^ - ̂ o)'^^^)' 
scNies j^s 

As is well known, both the Shapley and Banzhaf values of any game v 
can be easily obtained from its multilinear extension (cf.[12, 13]). The latter 
procedure extends well to any p-binomial semivalue (cf.[18]). 

In the context of games with a coalition structure, the multilinear extension 
technique has been also applied to computing the Owen value ^ (cf.[17]), 
as well as the Owen-Banzhaf value B (cf.[4]) and the symmetric coalitional 
Banzhaf value 77 (cf.[2]). In this section we present a method to compute the 
symmetric coalitional p-binomial semivalue O^ by means of the multilinear 
extension of the game. 

T h e o r e m 2. Let p € [0,1] and [v]P] G Gff be a cooperative game with a 
coalition structure. Then the following steps lead to the symmetric coalitional 
p-binomial semivalue of any player i £ Pk in [v]P]. 

1. Obtain the multilinear extension f{x\^X2^ - •. ^Xn) of game v. 
2. For every r ^ k and all h £ Pr, replace the variable Xh with y^. This 

yields a new function of Xj for j G Pk and yr for r G M\{k}. 
3. In this function, reduce to 1 all higher exponents, i. e. replace with y^ each 

y^ such that q> 1. This gives a new multilinear function that we denote 
as gk{{xj)j^P^, {yr)reM\{k})' 



332 F. Carreras and M.A. Puente 

4. In the function obtained in step 3, substitute each yr by p. This provides 
a new function Oik{{xj)j^p^) defined by 

(^k{{Xj)jePk) = 9k{{Xj).^p^,{p)reM\{k})' 

5. Finally, the symmetric coalitional p-binomial semivalue of player i G Pk 
in [v; P] is given by 

f2nv;P]=^l^'^{z,z,...,z)dz. 

Proof By the second and third steps, we get a multiUnear function where all 
terms corresponding to coalitions S such that SdPr j^ 9 and {N\S) DP^ "^ ^ 
for some r G M\{k} vanish. Indeed, in step 2, the terms corresponding to 
these coalitions include expressions of the form cy^^ (1 — yrY^, with Q'l, 2̂ ^ N? 
and in step 3 these terms turn on c(iir — yr) thus getting zero. Hence, the 
only coalitions S for which the corresponding term of the (initial) multilinear 
extension may not vanish after steps 2 and 3 are those of the form S = QUT, 
where T C P^ and Q = UrenPr for some R C M\{k}. The function arising 
from step 3 is therefore 

9k{{Xj)jePk, {yr)reM\{k}) = 

E E n^i n i^-^j)Uyr n a-yrMQur). 
TCPk RCM\{k} jeT jePk\T reR r^RU{k} 

Substituting each yr by p (step 4) gives 

«fc((̂ i).€Pj = E E n^i n {i-xj)p^(i-pr-^-'v{QuT). 
TCPk RCM\{k} j€T jePk\T 

By differentiating function Oik{{xj)j£Pk) with respect to xi 

-^((^iWj= E E 
* TCPk\{i} RCM\{k} 

Hxj n {l-Xj)p^{l-pr-'-'[v{QuTU{i})-v{QuT)]. 
jeT j€Pk\{TU{i}) 

Finally, by step 5, 
^ dak I {z,z,...,z)dz = 

0 ^Xi 

^ ^p'-{l-p)"'-'-^[v{QuTu{i})-viQ\JT)]f z^l-zy-'^-Uz 
Pt\{i} RCM\{k} •'0 

E E P̂ (̂  - Pr-'~' ^'^^" r ^̂ ' t«(Q u r u {i}) - v{Q u r)i 
Pk' 

TCPk\{ 

TCPk\{i} RCM\{k} ^^ 

completing the proof. D 
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5 A Remark and an Example 

Simple games form an especially interesting class of cooperative games. Not 
only as a test bed for many cooperative concepts, but also for the variety 
of their interpretations, often far from game theory. In particular, they have 
been intensively applied to describe and analyze collective decision-making 
mechanisms —^weighted majority games have played a crucial role here—, 
and the notion of voting power has been closely attached to them. 

A cooperative game v on N is simple if it is monotonic and v{S) = 0 or 
1 for every S C N. A coalition S C N is winning in v if v{S) = 1 (otherwise 
it is called losing), and W{v) denotes the set of winning coalitions in v. Due 
to monotonicity, the set W'^{v) of all minimal winning coalitions determines 
W{v) and hence the game. A simple game i; is a weighted majority game if 
there are nonnegative weights wi,W2,>.. ,Wn allocated to the players and a 
positive quota q such that 

v{S) = l iff ^Wi>q. 
ies 

We then write v = [q;wi,W2y" •,Wn]-
Let SGN denote the set of all simple games on a given player set N. 

A power index on SQN is a function / : SGN -^ ^^ - AH properties 
stated for values in this paper —with the sole exception of additivity and 
linearity— make sense for power indices. As SQN is a lattice under the 
standard composition laws given by (v V v'){S) = inax{v{S)jV'{S)} and 
{v A v'){S) = inin{v{S)jV\S)}, we will say that a power index / satisfies 
the transfer property if 

f[v V v'] = f[v] + f[v'] - f[v A v'] for all VjV E SGN-

Very recently, Carreras, Freixas and Puente [5] gave an axiomatic characteriza­
tion and a combinatorial description in terms of weighting coefficients for (the 
restrictions of) semivalues as power indices, which parallel the corresponding 
ones for semivalues on general cooperative games. 

Let SQ^^ be the set of all simple games with a coalition structure on N, A 
coalitional power index on SQ^j^ is a function g : SQ^j^ -^ R^. All properties 
stated for coalitional values in this paper —excluding again additivity and 
linearity—, as well as the natural extension of the transfer property, make 
sense for coalitional power indices. Vazquez, van den Nouweland and Garcia-
Jurado [21] carried out an axiomatic characterization of the (restricted) Owen 
value as a coalitional power index by means of efficiency, the transfer property, 
the dummy player property, symmetry within unions and symmetry in the 
quotient game. 

In a similar way, we have found a "parallel" axiomatic characterization 
of the symmetric coalitional binomial semivalues as power indices (that is, 
restricted to «S^5/) *^^^ ^^ state without proof because it is very similar to 
that of Theorem 1. 
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Corol lary 1. Let p € [0,1]. For any N there is a unique coalitional power 
index on «S^5^ that satisfies the coalitional p-binomial total power property, 
the transfer property, the dummy player property, symmetry within unions 
and symmetry in the quotient game. It is the restriction of the symmetric 
coalitional p-binomial semivalue Q^ to SQ^^. 

Besides, this index satisfies the quotient game property and reduces to the 
(restricted) p-binomial semivalue -0^ when P = P^ and to the Shapley-Shubik 
power index if when P = P^. 

In the following example, we shall apply some values and coalitional val­
ues (mainly ip^ and i?^) to the analysis of an interesting political structure: 
the current Catalonia Parliament. All values have been computed using the 
multilinear extension technique. 

In the papers by Straffin [20], Laruelle [9] and Laruelle and Valenciano [10], 
the Banzhaf value p is suggested as a power measure more suitable than the 
Shapley value. The natural generalization to semivalues has been argued by 
Laruelle and Valenciano [11], Carreras and Freixas [3], and Carreras, Preixas 
and Puente [5]. By considering here binomial semivalues, we look at the 
Banzhaf value in perspective, as will be shown by the results of our anal­
ysis. 

Therefore, our study of alliances will be based on the bargaining process 
corresponding to the symmetric coalitional binomial semivalues i?^: first, a 
power notion is shared among unions in the quotient game by means of the 
Banzhaf value or a binomial semivalue; then, the power so got by each union is 
shared among its members by using the Shapley value. This will reflect tha t 
both bargaining steps are of different nature. Notice that , once an alliance 
is formed —and, especially, if it supports a coalition government—, cabinet 
ministries, parliamentary and institutional positions, budgets, and other po­
litical responsibilities have to be distributed efficiently among the parties of 
the coalition, hence in a way as closely as possible to the one suggested by 
the Shapley value. At this point, the quotient game property and symmetry 
in the quotient game become very relevant properties. In fact, they are con­
nected because if a coalitional value satisfies the quotient game property (as 
is the case for all i?^) and it is a coalitional value of the Banzhaf value (or a 
p-binomial semivalue) then symmetry in the quotient game follows from the 
anonymity of P (or of ip^). 

Which is the reason for letting p range from 0 to 1? Notice that a reasonable 
regularity assumption on players' behavior is tha t the probability to form 
coalitions follows a monotonic (increasing or decreasing) behavior. Then, it 
is not difficult to see that the only semivalues such tha t Pk+i = ^Pk for l̂U 
k (maybe the simplest form of monotonicity) are precisely the p-binomial 
semivalues, in which case A = j ^ for any p € [0,1]. For example, p = O.l 
means that the players are very reticent to form coalitions, whereas p = 0.8 
means that great coalitions are likelier. The neutral case p = 0.5 corresponds 
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to the Banzhaf value. Table 1 shows, for n = 5, the weighting coefficients of 
ipP for several values of p. 

Table 1. Weighting coefficients of some p-binomial semivalues i/j^ for n = 5 

Po = {l-p)' 
Pi =p(l-pf 

P2 =/(l-p)^ 

P3 =P^{1-P) 

PA = / 

p = 0.1 

0.6561 

0.0729 

0.0081 

0.0009 

0.0001 

p = 0.4 

0.1296 

0.0864 

0.0576 

0.0384 

0.0256 

p = 0.5 

(Banzhaf) 

0.0625 

0.0625 

0.0625 

0.0625 

0.0625 

p = 0.8 

0.0016 

0.0064 

0.0256 

0.1024 

0.4096 

As we will see, almost all allocations ^ f [f] and coalitional allocations i7f [v; P] 
will show factors p ( l — p) . Furthermore, the maximum or the minimum of 
all these allocations for each player will be at tained in case p = 0.5, tha t 
respectively correspond to the Banzhaf value P = ip^^^ or to the Alonso-
Fiestras coalitional value 11 = i?^/^. These properties would not have been 
discovered if only the case p = 0.5 were considered. 

E x a m p l e {The Catalonia Parliament, Legislature 2003-2007). Five parties 
elected members to the Catalonia Parliament (135 seats) in the elections held 
on 16 November 2003, giving rise to a seat distribution that can be represented 
by the weighted majority game v = [68; 46,42, 23,15,9]. 

Let us briefly describe ideologically the agents in this game: 

1: CiU (Convergencia i Unio), Catalan nationalist middle-of-the-road coali­
tion of two federated parties. 

2: PSC (Parti t dels Socialistes de Catalunya), moderate left-wing socialist 
party, federated to the Part ido Socialista Obrero Espafiol. 

3: ERC (Esquerra Republicana de Catalunya), radical Catalan nationalist 
left-wing party. 

4: P P C (Parti t Popular de Catalunya), conservative party, Catalan delega­
tion of the Part ido Popular. 

5: ICV (Iniciativa per Catalunya-Verds), coalition of Catalan eurocommunist 
parties, federated to Izquierda Unida, and ecologist groups ("Verds"). 

Notice tha t 

W^'iv) = {{1 ,2} ,{1 ,3} ,{1 ,4 ,5} ,{2 ,3 ,4} ,{2 ,3 ,5}} , 

SO that players 2 and 3 on one hand, and 4 and 5 on the other, are symmetric 
in V. 

We show in Table 2 the evaluation of v given by several binomial semivalues 
ipP. The total power is TP[V] = Yl ipf[v], 
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Table 2. Initial power distribution in the Catalonia Parliament 2003-2007 

ipf[v] p = 0.1 p = OA p = 0.5 p = 0.8 

1. CiU p ( l - p ) ( 2 + 2 p - 2 / ) 0.1962 0.5952 0.6250 0.3712 

2. PSC p ( l - p ) ( l + 2 p - 2 / ) 0.1062 0.3552 0.3750 0.2112 

3. E R C p ( l - p ) ( l + 2 p - 2 / ) 0.1062 0.3552 0.3750 0.2112 

4. P P C p ( l - p ) ( 2 j 9 - 2 p 2 ) 0.0162 0.1152 0.1250 0.0512 

5. ICV p{l - p){2p - 2p^) 0.0162 0.1152 0.1250 0.0512 

TP[V] p{l-p)(4-\-10p-10p^) 0.4410 1.5360 1.6250 0.8960 

It is easy to see tha t the allocations found for p and 1 — p would coincide 
because the game is decisive (proper and strong). Notice that the proportions 
between the allocations to the players decrease as p approaches 0.5 from any 
of the extreme possibilities (0 or 1). Also notice that the maximum allocation 
(power) for any player and the maximum total power are got for p = 0.5 
(Banzhaf value). 

Next we are interested in the study and comparison of the politically most 
plausible coalition structures. In each case, we have computed the coalitional 
value i?^ for all p € [0,1] and also 77 (for p = 1/2) and the coalitional p-
binomial total power TP[V;P]= Y1 ' ^ ? b ; P]- The results are as follows: 

ieN 

• The left-wing majority alliance P S C + E R C + I C V . The corresponding coali­
tion structure is P = {{2,3 ,5} , {1}, {4}}, and the coalitional values are: 

77[i;;P] = (0 ,5 /12 ,5 /12 ,0 ,2 /12) , 

TP[v',P] = l. 

Notice tha t f2f[v] P] > il;^[v] for all p G [0,1] and i = 2 ,3 ,5 , and also that 
p = 0.5 gives the maximum of f2P[v; P] for PSC and ERC but , at the same 
time, the minimum of f2^[v', P] for ICV. 
Incidentally, in this case B[v;P] = ( 0 , 3 / 8 , 3 / 8 , 0 , 1 / 8 ) , so tha t B fails to 
satisfy the quotient game property and the sharing of the dictatorial power 
is by no means convincing because of its inefficiency. 

• The catalanist majority alliance CiU+ERC. The corresponding coalition 
structure is P = {{1,3}, {2}, {4}, {5}}, and the coalitional values are: 

77[i;;P] = (5 /8 ,0 ,3 /8 ,0 ,0 ) , 

QP[v;P]=(^ 

TP[v;P] = l. 

r2>;P]==ri±^,0,1^4^,0,0 
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In this case ni[v;P] = pi[v] but Of[v;P] > ^f[v] for all p G [0,1] and 
i = 1,3 (unless p = 0.5, where the equality holds). Here p = 0.5 gives the 
maximum of {2^[v] P] for CiU and the minimum for ERC. 

A most convenient way to analyze these evaluations of the coalitional be­
havior will consist of considering different values of p , and we will take 0.1, 
0.4, 0.5 (this gives 77) and 0.8. Tables 3-6 show all these particular allocations 
but we prefer the following order: p = 0.5, p = 0.4, p = 0.8 and p = 0.1. 

Table 3. Evaluation according to ip^ and i?^ for p = 0.5 

scenario value CiU PSC ERC PPC ICV 

initial (no alliance) f3 0.6250 0.3750 0.3750 0.1250 0.1250 

PSC+ERC+ICV B 0 0.3750 0.3750 0 0.1250 

PSC+ERC+ICV n 0 0.4167 0.4167 0 0.1667 

CiU+ERC 5 = 77 0.6250 0 0.3750 0 0 

The important point arises when considering the majority formation. Ac­
cording to the Owen-Banzhaf value B^ forming a winning coalition does not 
change the power of its members with regard to the initial distribution, al­
though it serves to reduce the outside parties to a null position. Instead, 
from the viewpoint of the symmetric coalitional Banzhaf value 77, coalition 
P S C + E R C + I C V clearly increases the power of each one of its members, and 
hence it suggests to ERC the convenience to choose this coalition (which also 
satisfies its partners, PSC and ICV) instead of C iU+ERC. 

Therefore, we have to point out here that after a short period of negoti­
ations, precisely concerning these two options, alliance P S C + E R C + I C V was 
actually formed and got the regional government of Catalonia, ending 23 years 
of CiU governments headed by Jordi Pujol (under absolute majority of this 
party or with the parliamentary support of P P C ) . The actual sharing of po­
sitions gave the presidency of the government to Pasqual Maragall (PSC) but 
the presidency of the Parliament and the "Conseller en cap" position (a sort of 
vice-presidency of the government) to Ernest Benach and Josep Lluis Carod 
Rovira (both ERC), respectively. The remaining cabinet positions ("consel-
leries") were distributed in the proportion 8:5:2 among the three parties. 

Table 4. Evaluation according to ip^ and i?^ for p = 0.4 

scenario CiU PSC ERC PPC ICV 

initial (no alliance) 0.5952 0.3552 0.3552 0.1152 0.1152 

PSC+ERC+ICV 0 0.4133 0.4133 0 0.1733 

CiU+ERC 0.6200 0 0.3800 0 0 

We recall tha t the allocations on this (decisive) game for a given p are the 
same as for 1 — p, so that our comments on Table 4 (p = 0.4) are the same as 
they would be for p = 0.6, and the analogue holds for Tables 5 and 6. 
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By comparing the results given in Table 3 with those of Table 4, where 
it is assumed that players are not indifferent to join a coalition of any size 
but, rather, they prefer not too big coalitions (as p = 0.4), here we find that, 
not only in the case of PSC+ERC+ICV but also in the case of CiU+ERC, 
every party entering such a coalition clearly increases its power. However, from 
ERC's viewpoint, coalition PSC+ERC+ICV gives again the best fraction of 
coalitional power. 

Table 5. Evaluation according to ip^ and !?^ for p = 0.8 

scenario CiU PSC ERG PPG IGV 

initial (no alliance) 0.3712 0.2112 0.2112 0.0512 0.0512 

PSG+ERG+IGV 0 0.3867 0.3867 0 0.2267 

GiU+ERG 0.5800 0 0.4200 0 0 

It is worthy of mention that almost all (initial or coalitional) power alloca­
tions given in Table 5 are lower than in the previous cases. The only exceptions 
are for ICV in PSC+ERC+ICV and ERC in CiU+ERC. The new feature here 
is that, in these circumstances (p = 0.8), ERC would clearly prefer CiU+ERC 
instead of PSC+ERC+ICV. 

Table 6. Evaluation according to ip^ and Q^ for p = 0.1 

scenario GiU PSG ERG PPG IGV 

initial (no alliance) 0.1962 0.1062 0.1062 0.0162 0.0162 

PSG+ERG+IGV 0 0.3633 0.3633 0 0.2733 

GiU+ERG 0.5450 0 0.4550 0 0 

Finally, Table 6 exhibits the same trends as Table 5 but they are even 
strengthened. Again, ERC would prefer CiU+ERC, and notice that the in­
crease of its power in agreeing to form this coalition would be greater than in 
the previous case. 

It is not difficult to see that ERC would prefer option PSC+ERC+ICV in­
stead of CiU+ERC if, and only if, p e {^^j^, Ho^)> would remain indifferent 
if p = ^ ^ and would prefer CiU+ERC if p ^ [ ^ ^ , ^ ± ^ ] . 

As a conclusion of our analysis, we find that the evaluation of games and 
games with a coalition structure by means of binomial semivalues and sym­
metric coalitional binomial semivalues provides a new approach to the study 
of the coalitional bargaining. Some general properties sketched only on the 
basis of this instance should deserve further attention. 

References 

1. J.M. Alonso and M.G. Fiestras. Modification of the Banzhaf value for games 
with a coalition structure. Annals Oper. Res., 109: 213-227, 2002. 



A Parametric Family of Mixed Coalitional Values 339 

2. J.M. Alonso, F. Carreras, and M.G. Fiestras. The multilinear extension and the 
symmetric coalition Banzhaf value. Working Paper MA2-IR-02-00031, Dep. of 
Applied Mathematics II, Polytechnic Univ. of Catalonia, Spain, 2002. Forth­
coming in Theory and Decision. 

3. F. Carreras and J. Freixas. Semivalue versatility and applications. Annals Oper. 
Res., 109: 343-358, 2002. 

4. F. Carreras and A. Magafia. The multilinear extension and the modified 
Banzhaf-Coleman index. Mathematical Social Sciences, 28: 215-222, 1994. 

5. F. Carreras, J. Freixas, and M.A. Puente. Semivalues as power indices. European 
J. Oper. Res., 149: 676-687, 2003. 

6. I. Dragan. Some recursive definitions of the Shapley value and other linear values 
of cooperative TU games. Working paper 328, Univ. of Texas at Arlington, 1997. 

7. P. Dubey, A. Neyman, and R.J. Weber. Value theory without efficiency. Math. 
Oper. Res., 6: 122-128, 1981. 

8. V. Feltkamp. Alternative axiomatic characterizations of the Shapley and 
Banzhaf values. Int. J. Game Theory 24: 179-186, 1995. 

9. A. Laruelle. On the choice of a power index. IVIE Discussion Paper WP-AD99-
10, Inst. Valenciano de Investigaciones Economicas, Valencia, Spain, 1999. 

10. A. Laruelle and F. Valenciano. Shapley-Shubik and Banzhaf indices revisited. 
Math. Oper. Res., 26: 89-104, 2001. 

11. A. Laruelle and F. Valenciano. Semivalues and voting power. Discussion Paper 
13, Dep. of Applied Economics IV, Basque Country Univ., Spain, 2001. 

12. G. Owen. Multilinear extensions of games. Management Science 18: 64-79, 1972. 
13. G. Owen. Multilinear extensions and the Banzhaf value. Naval Res. Logistics 

Quarterly 22: 741-750, 1975. 
14. G. Owen. Values of games with a priori unions. In: Mathematical Economics 

and Game Theory (R. Henn and O. Moeschlin, eds.). Springer, 76-88, 1977. 
15. G. Owen. Characterization of the Banzhaf-Coleman index. SIAM J. Appl. 

Math., 35: 315-327, 1978, 
16. G. Owen. Modification of the Banzhaf-Coleman index for games with a priori 

unions. In: Power, Voting and Voting Power (M.J. Holler, ed.), 232-238, 1982. 
17. G. Owen and E. Winter. Multilinear extensions and the coalitional value. Games 

and Economic Behavior 4: 582-587, 1992. 
18. M.A. Puente. Aportaciones a la representabilidad de juegos simples y al calculo 

de soluciones de esta clase de juegos (in Spanish). Ph.D. Thesis. Polytechnic 
University of Catalonia, Spain, 2000. 

19. L.S. Shapley. A value for n-person games. In: Contributions to the Theory of 
Games II (H.W. Kuhn and A.W. Tucker, eds.), Princeton Univ. Press, 307-317, 
1953. 

20. P.D. Straffin. The Shapley-Shubik and Banzhaf power indices. In: The Shapley 
Value: Essays in Honor of Lloyd S. Shapley (A.E. Roth, ed.), Cambridge Univ. 
Press, 71-81, 1988. 

21. M. Vazquez, A. van den Nouweland, and I. Garcia-Jurado. Owen's coalitional 
value and aircraft landing fees. Mathematical Social Sciences 34: 273-286, 1997. 

22. R.J. Weber. Probabilistic values for games. In: The Shapley Value: Essays in 
Honor of Lloyd S. Shapley (A.E. Roth, ed.), Cambridge Univ. Press, 101-119, 
1988. 



Part IV 

Industrial Applications and Numerical Testing 



Complementarity Problems in Restructured 
Natural Gas Markets 

Steven Gabriel^ and Yves Smeers^ 

^ Assistant Professor, Department of Civil and Environmental Engineering, 
Applied Mathematics and Scientific Computation Program, University of 
Maryland, College Park, Maryland 20742 U.S.A. sgabrielQumd. edu 

^ Tractebel Professor of Energy Economics, Department of Mathematical 
Engineering and Center for Operations Research and Econometrics, Universite 
catholique de Louvain, Louvain-la-Neuve, Belgium. smeersQcore.ucl.ac.be 

Summary . The restructuring of the gas industry did not so far generate the same 
modeling activity as in electricity. While the literature of activity in electricity mar­
ket models is now abundant, it is still rather scant on the gas side. This paper surveys 
some of the existing models and attempts to take advantage of the wealth of knowl­
edge available in electricity in order to develop relevant models of restructured gas 
markets. The presentation is in three parts. The first one gives a blueprint of the 
market architectures inherited from the European and North American gas legis­
lation. It also introduces a prototype optimization model and its interpretation in 
terms of perfect competition between agents operating on the restructured market. 
The second part extends the model to the case where marketers have market power. 
The third part considers more complex issues related to regulation of access to the 
network and existence of market power with different types of agents. Equilibrium 
models are commonly formulated as complementarity problems and the same math­
ematical programming framework is adopted here. Many models are single stage; 
there are generally easy to formulate and well known computationally. But many 
phenomena require two stage models that are much more intricate and on which 
much less is known. The paper is thus also aimed at pinpointing possible avenues 
for mathematical programming research. 

1 Introduction 

Natural gas markets in Europe and North America have recently witnessed 
significant changes brought about by government regulation and other market 
forces. An example of a regulatory measure is the U.S. Federal Energy Regula­
tory Commission (FERC) order 636, requiring open access service to qualified 
shippers (www.ferc.gov). In essence, this order transformed gas pipelines from 
buyers, transporters, and sellers of gas to open access transporters paving the 
way for new entities such as marketers to become more significant players that 

http://smeersQcore.ucl.ac.be
http://www.ferc.gov
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might exert market power. In the European Union, similar legal measures for 
dividing the gas sellers and network operators have also been considered [13] 
as part of the restructuring and deregulation of the natural gas markets. 

The EU currently imports 45 % of its natural gas [32] and this share 
is expected to rise given limited resources in the EU [5]). Four countries, 
Russia, Norway, Algeria, and the Netherlands accounted for some 87.7% of 
all EU gas imports in 2001 ([8] from Energie Bulletin 4145 p.5). Given the 
declining resources of the United Kingdom, the Netherlands will be the only 
major internal supplier in the coming years [5]. The potential for market power 
among the few producers is apparent and natural gas supply security has been 
addressed in the so-called "Green Paper" [12] and the European Commission 
(EC) directive 2004/67/EC. The increase in natural gas demand is driven 
in part by environmental concerns such as the Kyoto Protocol [42] and the 
fact that natural gas has a lower carbon content than oil or coal [33]. Other 
reasons for increased importance of natural gas such as the long-term supply 
situation, or cost-effectiveness are important factors as well. 

From a modeling perspective, the traditional system optimization ap­
proach for the restructured natural gas markets in Europe and North America 
will not be the best choice. First, and in contrast with electricity, the gas mar­
ket, whether in North America or in Europe has never been an integrated sys­
tem amenable to a full optimization problem given the potentially divergent 
interests of the main players. Second, given the realities of the new market­
place, such models will fail to capture the important (potential) oligopolistic 
behavior of market players (e.g., producers in Europe, marketers in Europe 
or North America). 

In general, the introduction of competition in the network industries (e.g. 
electricity, telecommunication, natural gas) stems from the following idea: 
one should keep (or allow to be kept), a single company for those activities 
considered as a natural monopoly, i.e., not competitive by default. One should 
allow entry in other activities to permit competition. 

One way to model this mixture of regulated and non-regulated behav­
ior, with the latter being either perfect or imperfect competition, is to depict 
all the market players solving separate optimization problems. The Karush-
Kuhn-Tucker (KKT) conditions [2] for these optimization problems taken to­
gether with market-clearing conditions constitute a market equilibrium prob­
lem typically expressed as a nonlinear complementarity problem (NCP) [30]. 
Complementarity problems or the related variational inequality problems (VI) 
have been studied in a variety of engineering and economic settings for a num­
ber of years [4]. However, only recently have there been NCP/VI (hereafter 
called "complementarity") models of the natural gas market with full market 
detail. Some previous examples of imperfect competition models for natural 
gas markets in Europe concentrating on specific market segments include the 
early works of [31] and [11] who considered Nash-Cournot producers and a 
Stackelberg production market, respectively. These works concentrating on 
the production side were extended for example, in [29] and [6], who con-
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sidered stochastic aspects and a duopoly of producers, respectively. These 
models all departed from traditional system optimization approaches such as 
maximizing total surplus [40] but lacked sufficient market detail on all the 
players as might be found in large-scale, detailed system optimization mar­
ket models such as: the Natural Gas Transmission and Distribution Model of 
the U.S. Department's National Energy Modeling System and its predecessors 
([1, 15, 18, 38, 39]), the Gas Systems Analysis Model for the North American 
market ([19, 20]), to name just a few. 

Two recent models, have combined both sufficient market detail with the 
complementarity approach for the new markets in Europe and North America. 
The first model, GASTALE ([3, 14]) based in part on the work by [25, 26]. 
considers Nash-Cournot producers with conjectured supply functions for the 
European market. In addition it also includes perfectly competitive trans­
portation and storage sectors combined with multiple consumption sectors 
and seasons. Gabriel et al. [21, 22, 23] have developed a model of the North 
American natural gas market in which marketers compete non-cooperatively 
against each other as Nash-Cournot players with the transporation, produc­
tion, storage, and peak gas sectors taken to be perfectly competitive. Also, 
multiple seasons and consumption sectors are modeled. 

Given the recent restructuring in natural gas markets and their impor­
tance to the energy sector, an analysis of appropriate modeling formulations 
is needed. This is the main goal of this paper. In Section 2 we briefly describe 
the functions of the various market players and provide a simple illustrative 
example to clarify. We also recall some mathematical programming paradigms 
that are used in the rest of the paper. In Section 3 we describe as a start­
ing point, perfectly competitive behavior for these players and analyze the 
resulting KKT conditions for each of the players' optimization problems. Sec­
tion 4 contrasts this behavior with imperfect competition among some of the 
players, analyzing the key differences. Both the perfect competition model of 
Section 3 and the imperfect competition models of Section 4 are relatively 
easy mathematical programming problems. Section 5 introduces more diffi­
cult considerations. It introduces transmission problems that it treats both 
in an average cost and Ramsey-Boiteux context. The first model guarantees 
neither the existence nor the uniqueness of an equilibrium. The second model 
is a non-convex optimization problem. More complex situations of imperfect 
competition are treated in Section 6, where one envisions situations where dif­
ferent classes of agents operating in the gas market may have market power. 
This leads to two-stage equilibrium problems that may not have pure strategy 
solutions. Many of these models have not been treated yet in the literature. 
The paper is thus a survey of work to be done as well. This is the message 
developed in the conclusion. 
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2 Natural Gas Market Players 

The supply chain for natural gas begins with producers tha t extract gas from 
either onshore or offshore reservoirs. The producers can be assumed to poten­
tially exert market power (as is the case in Europe) or behave in a manner 
consistent with perfect competition (as in North America). The next step 
is to transport the gas from production sites to either storage facilities, the 
citygate, or directly to the consumption sectors (e.g., residential, commercial, 
industrial, and power generation). Pipeline companies own and operate these 
transportat ion routes and are subject to regulated rates (e.g., by F E R C in 
the U.S. and by National Regulatory authorities (NRA) in the EU). Storage 
operators take advantage of seasonal arbitrage by buying and injecting gas 
into storage in the low demand season (non-winter) and then selling it to con­
sumers in the high demand season (winter). Storage operators can be taken 
to be regulated or oligopolistic depending on the local regulations. The EU 
Directive 2003/55/EC has much weaker regulatory requirements on storage 
than on transport . It only imposes access to storage on negotiated terms but 
does not impose any price regulation. Owners of storage facilities are thus 
only subject to general competition law and possibly to any additional reg­
ulatory obligation imposed by the Member States where their facilities are 
located. Marketers (also known as shippers) are responsible for contracting 
with pipeline companies to procure the gas and sell it to end-users. The mar­
keters are generally less subject to national regulation and can reasonably be 
modeled as players with market power given their important position and the 
new deregulated marketplace for natural gas. Specifically, in the EU, Directive 
2003/55/EC does not impose any regulation to marketers which are thus only 
subject to general competition law and possibly to the regulation that indi­
vidual Member States may find necessary. Additonally, one can also consider 
peak demand players who supply extra gas in times of high demand. This 
supply may be in the form of liquefied natural gas (LNG) or propane/air mix­
tures. Perfect or imperfect competition could be appropriate for these players 
as well. 

It should be noted that these players each can be modeled as solving an 
optimization problem in which an abstraction of their operations is assumed. 
For example, production rates are constrained by the number of available rigs, 
pressure in the reservoirs, and so on. A full consideration of all engineering 
aspects for these and the other players would no doubt lead to intractable, 
non-convex problems, thus making the computation of a complementarity-
based equilibrium very difficult at best. For these reasons, an abstraction of 
their operations is generally taken. Also, it is important to note tha t in some 
cases, one parent company may have control over several levels of the natural 
gas supply chain described above. However, regulations are in effect to try to 
balance out the field between independent players and ones which are par t of 
a larger company operating on several levels of the supply chain [24]. In the 
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European Union, this control of concentration is left to general competition 
law. 

2.1 A n I l lustrat ive E x a m p l e 

To clarify how the natural gas market can be modeled, consider the following 
example, simplified from Gabriel et al. [21] and depicted in Figure 1. 

Production Transmission Consumption 

/=2 ^ 
^ ^ J = 2 

^^^""^7=2 

Producers /= 1,2 

Consumers J = 1,2 

Seasons . = 1 (summer: low demand) 

. = 2 (winter: high demand) 

Fig. 1. A simplified example 

There are two producers separated from the market by a pipeline (we ne­
glect the distribution system). Storage facilities are located at the end of the 
pipeline close to the market. There are two market segments, residential and 
industrial. The problem refers to a single-year horizon decomposed into two 
seasons. Demand is low in the first season and high in the second. Gas is 
stored in the low season and extracted in the high season. In order to sim­
plify notation, we assume tha t both seasons have the same number of days. We 
also neglect all losses whether from transmission or storage operations. Lastly, 
depending on the case at hand, it is useful to consider domestic pipelines (en­
tirely located in a country), crossborder pipelines (e.g. crossing an European 
border) or long distance transportat ion pipelines (e.g. bringing Russian gas 
to European borders through Ukraine). Each of these raises new questions 
which are not treated here. Instead we assume a single pipeline for clarity. 

2.1 .1 . P r o d u c t i o n 

The description of the production of natural gas is reduced to a function 
giving the cost of extracting the quantity of gas,(^^i, ^^2) for seasons 1 and 2, 
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respectively, for producer H. 

Cost = E s ^ Q . ( f e ) 
qn > 0 , t e > 0 (1) 
(EC for Extraction Cost) 

All engineering complexity associated with extracting the gas from the 
reservoir is thus bypassed. Stylized descriptions of this type are frequently 
adopted in economics where these functions are used to construct analytical 
models. In contrast, computable models rely on formulations that allow for 
more detailed engineering descriptions of the gas production process [19, 20]. 
Even though we use a stylized representation of the cost function, such as 
found in economic models, we keep in mind that one should be able to replace 
it by a process model of gas production at least as long as one remains within 
descriptions commonly amenable to optimization models (e.g. [4]). 

2.1.2. Transportation 

Pipeline transportation is also represented in a very simplified form that ne­
glects all technological characteristics arising from the pressure and flow re­
lationship or representation of compressors; see [10] for details. We simply 
assume that thepipeline has a maximum capacity f^ based on the flow fs-
The owner of the pipeline incurs both short and long-run transportation costs. 
The costs for the pipeline owner is represented as follows 

Cost = E , T a ( / , ) 
fs-fs>0 fs>0 s = l ,2 (2) 
(TC for Transportation Cost) 

2.1.3. Storage 

Storage is also modeled in the simplest possible form for ease of presentation. 
Because we neglect losses, the amount recovered in the high demand season 
is equal to the amount injected in the low demand season. Injection and 
withdrawal operations respectively cause injection and withdrawal costs and 
there is also a maximum injection rate. Because there are only two periods, this 
maximal injection rate also limits the amount that can be stored. Additional 
constraints on volumetric rates could also be included but are left out from 
this simple example. The maximal injection rate thus also plays the role of 
a storage volumetric constraint related to working gas in the reservoir. The 
associated costs are as follows 

Cost = IC{i) + WC{w) 
i-w>0 
i-i>0,w>0 ^^ 
{IC: injection cost; WC: withdrawal cost) 

where i,w are the injection and withdrawal amounts, respectively, with i the 
injection capacity. 
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2.1.4. Demand 

In general, the demand for each sector will be a function of the price in that 
sector, which itself is a (decision) variable to be endogenously determined. For 
illustrative purposes, we assume a fixed demand in each season. We let 

djs be the demand of consumer j in season s. (4) 

2.1.5. From Transaction Costs to Marketer's Costs 

The supply of natural gas involves procuring gas from the producers, securing 
transportation and storage services and selling the gas to the final consumers. 
These activities imply transaction costs for an integrated company such as 
the one described by a single optimization model. Because these activities 
will take on a different interpretation later, it is convenient to single them 
out in preparation for the rest of the paper. We therefore define the following 
variables that will later be bundled into a marketer activity. Specifically the 
marketing department of the integrated company 

procures gas from producer i in season s mqes 
procures transmission services in season s mfs /p,x 
procures storage services (injection and withdrawal) mi and mw ^ ^ 
sells gas to customer j in season s mdjs 

with the first letter m denoting that it is a marketing variable. For the sake 
of simplification we shall only refer to the transactions costs due to the selling 
of the gas (variable mdjs) and not consider the other marketing variables in 
the following. We let m,njs be the unit cost of selling gas to consumer j in 
season s. 

2.1.6. A System Optimization Model 

As a point of comparison, it is natural to first state the overall natural gas 
problem in standard production management terms or as a system optimiza­
tion problem. Specifically, there are costs to produce, transport and store the 
gas before delivering it to the final consumers. There are also transaction costs 
of coordinating these activities. As indicated above, we limit our description 
to the sole transaction costs incurred because of the marketing of gas (sales 
activity). The most efficient approach in optimization terms is to minimize 
the sum of all these costs given as 
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min Ze E . ECUQis) + E . TC^ifs) + IC{i) 

+ wc{w) + J2j J2s '^'^js' '^djs 
s.t. Y.f>qis- fs>^ 5 = 1,2 

h - i > Y^j mdji 
f2-^w> Y.J mdj2 /gx 
i^-w>0 ^ ̂  
7- />o 
i-i>0 
mdjs > djs 5 = 1,2; j = 1,2 
qesJs,'iyW>0 

Problem (6) is a very siraplified representation of a natural gas market 
operated by a single integrated company. The primary usefulness is to serve 
as a basis of comparison for more complicated models to be presented be­
low. Indeed, our goal is to progressively transform this small problem with 
the view of encompassing some of the concerns typically faced by market 
analysts, regulators, and economists. We assume throughout the paper tha t 
all cost functions are convex and differentiable. This approximation is com­
monly made in economic models. Differentiability can be relaxed at the cost 
of more complex formulations that we prefer to avoid in this paper. Adding 
an assumption of quadratic function would also make our complementarity 
problems linear complementarity problems (LCP). 

This type of approach has been extensively used in the discussion of the re­
structuring of the electricity industry. Many arguments have been developped 
on the basis of electric power models, comparatively as simple as problem (6) 
and were eventually transformed into full size computable models for looking 
at policy and strategic questions. We adopt the same philosophy: starting from 
a simple optimization model, we progressively introduce economic questions 
that reflect some of the aspects of the restructuring of the natural gas sector. 
While there has been considerable modeling activity along these lines in the 
electricity sector, this has not taken place yet in the gas sector. 

The approach is also interesting from an optimization point of view. Some 
of the models emerging from the process are standard complementarity prob­
lems which are now well understood. Other models are optimization problems 
subject to equilibrium constraints. These problems are much more recent even 
though their literature is already abundant . Also, other models are equilibrium 
problems subject to equilibrium constraints, a particular case of Generalized 
Nash Equilibrium problems. These are quite recent models tha t tu rn out to 
be quite difficult to analyze and computationally challenging to solve. At this 
stage, such models have received little attention in the literature. Last, but 
possibly not least, the simplified mathematical programming problems formu­
lated here, can easily be made more challenging by adding all the technological 
complexities neglected in this presentation. 
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Classes of M a t h e m a t i c a l P r o g r a m m i n g P r o b l e m s 

Before proceeding with building up a more complicated model of (6), we re­
call the K K T conditions, complementarity problems, and other mathematical 
programs tha t are relevant. A detailed discussion of the properties of these 
various mathematical programs as well as applications thereof can be found 
in [4]. We use throughout the notation 0 < o .L 6 > 0 which expresses the set 
of relations 

a>0 6 > 0 ab = 0. 

1. Karush-Kuhn-Tucker Conditions for a Convex Optimization Problem: 
Consider a s tandard nonlinear programming problem of the form 

min / (x) 
s.t. gi{x) <0 i = I,... ,m 

hj{x) = 0 j = l , . . . , p 

where f^Qi : R^ ^^ R, are convex functions and hj : R^ —^ R are affine 
functions. The K K T conditions are then sufficient for optimality ([4]). 
These conditions are to find a decision vector x G R^^ an inequality La­
grange multiplier vector u E R^, and an equality Lagrange multiplier 
vector V E R^ such that 

V / (x) + Ei ^i'^Qi (^) + E,- ^j V/i,- {x) = 0 
9i {x) <OyUi^ 0,Qi (x)Ui = 0 Mi 
hj (x) = 0, Vj unconstrained Vj 

These K K T conditions are a special case of a nonlinear complementarity 
problem with both equations and inequalities, called a mixed complemen­
tarity problem (MCP) and given as follows. 

2. Mixed Complementarity Problems: Find x G R^^, y G R^"^ such that 

0 < F{x,y) J - x > 0 
Q = G{x,y) 

where F : R^^ x R^^ -^ R''^ G \ E^i x i^^^ ^ ^^ns ^^d in general. (These 
problems are monotone in the context of this paper.) 

More generally, one may want to optimize a certain function n{x,y,z) 
of three sets of variables x G R^^, y G R^^, z G R^^. The z vector rep­
resents the "first stage" variables whereas x and y represent the "second 
stage" variables. A typical constraint set consists of two sets of restric­
tions. First, there are regular constraints on the upper level variables of 
the form z £ S. Secondly, the second stage variables must satisfy some 
mixed complementarity problem for fixed values of the first stage variables 
z. This problem is given as follows. 
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3. Mathematical Programming Problem Subject to Equilibrium Constraints 
(MPEG): 

maiXx^y^zn{x,y,z) 
s.t. 0<F{x,y;z) ±0; > 0 

0 = G{x,y',z) 
zeS 

which is in general a non-convex problem and computationally challeng­
ing. A well-known example of an MPEG is the bilevel programming prob­
lem in which the lower level constraints are the optimality conditions for 
a second-stage problem. 

MPEG problems can be generalized to equilibrium problems with equilib­
rium constraints (EPEG). A specific example of an EPEG is as follows: 
Let K agents have first stage decision variables Zk,k = 1, • • ,K. Each 
of these agents seeks to maximize an objective function n^{x^y^Zk^z*_^) 
where z*_j^ represents the optimal but fixed values for the other players. 
This objective function is optimized subject to the constraint that Zk € Sk 
and equilibrium constraints such as specified in the MPEG problem. The 
full problem is thus to find z^, A; = 1, • • • , if, x, y as follows. 

4. Equilibrium Problems subject to Equilibrium Constraints: 

zl solves maxa;,2,,zfc n^{x,y,Zk,z*_^) 
s.t. 0<F(x,y;2;fc,2;lfc) J _ x > 0 

Q = G{x,y\Zk,z*_j^) 
Zk ^ Sk 

This problem, like the MPEG, is computationally difiicult given that it is 
in general a non-convex problem and existence of a solution (here a pure 
strategy equilibrium) is not guaranteed even under standard compactness 
assumptions on the feasible region. The solution of an EPEG problem, if 
it exists, is a subgame perfect equilibrium [17]. 

3 A Perfect Competition Model 

3.1 Demand Functions 

Market models commonly assume that demand reacts to prices. Short-term 
(real time) demand of electricity is the exception where demand is commonly 
assumed to be insensitive to price. This reaction is represented by a demand 
function, which, for concreteness, we assume to be afiine and downward slop­
ing. We let 

djsiPjs) ^ridpjsidjs) (7) 

be, respectively, the demand and inverse demand functions of consumer j , in 
season s. Using the inverse demand function, one introduces the willingness 
to pay function given as 
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WPjs{djs)= f'^PjsiOd^' (8) 

We assume, in order to simplify the discussion, that the prices will automati­
cally turn out positive. 

3.2 Basic Assumptions 

Perfect competition assumes that all agents are price-takers. This means that 
agents optimize their profit or utility subject to prices that they take as given. 
This assumption does not imply that these prices are exogenous to the sys­
tem, but simply that these agents see them as such. An expanded version of 
problem (6) more amenable to an interpretation in terms of an equilibrium 
is given in problem (9) in which all variables are taken to be nonnegative. In 
preparation for its interpretation in terms of an equilibrium model, this version 
also assumes that the marketing/sales activity of the integrated company has 
been split in several marketing/sales activities k each under the responsabil-
ity of a different independent marketer k^ with its own activity variable and 
cost. Problem (9) differs from problem (6) in two respects. First it explicitly 
introduces the demand functions (7) via the willingness to pay function (8). 
Second it reformulates the constraints by introducing new variables that are 
ecisier to interpret in terms of unbundled gas activities. Specifically this latter 
difference between the two formulations allows for an explicit representation 
of all the transactions of the marketers and the introduction of a possibly dif­
ferent unit marketing cost mn^ of each marketer k in the objective function. 
It also separates the production, transportation and storage activities. 

maxE,- E . WPjsidjs) - Ee E . ECUqis) - Zs TCsUs) .^ ,. 
- IC{i) - WC{w) - Zk mn'iZj Es md),) ^ '̂̂ ^ 

s.t. 
^^s - Efc '^qh ^ 0 {"^Vis) wellhead price (9.2) 

Zl^ ^^fs ~ '^f^ ^ 0 (^Ps) border price (9.3) 
mfi — mi^ — E j md^i > 0 (cpf) citygate price (9.4) 

m/2 + mw^ — E j md^2 ^ 0 (^92) citygate price (9.5) 
Efe Tud^g ~ djs > 0 (pjs) price paid by consumer (9.6) 

fs - Efc 'mfs ^ 0 i^s) transmission price (9.7) 
mi^ — mw^ > 0 {fj,'^) value of gas in storage for 

marketer k (9.8) 
i — Efc ^^^ — 0 i'^P) injection charge (9.9) 

w — Efe "n^w^ > 0 (wp) withdrawal charge (9.10) 
fs — fs ^ ^ (Ps) transmission congestion (9-11) 

i — i >0 (A) storage congestion charge (9.12) 

Dual variables are written to the right of each constraint together with their 
interpretation. The dual variables of constraints (9.2) to (9.5) are respectively, 
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the wellhead prices (wp), border prices (bp), and citygate prices in summer 
and in winter (eg). The other dual variables can also be usefully interpreted. 
Specifically pjs is the price paid by consumer j in season s; r^ is the transmis­
sion charge in season 5, ip and wp respectively the injection and withdrawal 
charges into and from storage; ps is the congestion charge of the pipeline, A 
the congestion charge of storage facilities, and /j,^ is the implicit price of gas 
in storage for marketer k. Note that except for the introduction of the pos­
sibly different transaction costs of the marketing activity and the addition of 
different marketing variables, this model is equivalent to problem (6). As we 
argue next, because of the new variables, it is amenable to an interpretation 
in terms of the behavior of the agents in the market. Note also tha t balance 
inequalities are written under the "free disposal assumption" i.e., they hold as 
equalities when the commodity/service price is positive. 

3.3 KKT Cond i t ions , C o m p l e m e n t a r i t y Formulat ions and A g e n t 
Behav ior 

We now proceed to establish the K K T conditions of problem (9) and interpret 
them in terms of agent behavior in perfect competition. This interpretation 
paves the way to the introduction and formulation of different assumptions of 
imperfect competition. 

3 . 3 . 1 . P r o d u c e r s ' Behav ior 

The relation 
dECisiqe) . ^ ^ .^^. 

0 < — wpis A- Qis > 0. (10) 

expresses tha t each producer maximizes its profit at the prevailing price in 
the season. If producer £ is active in season 5 {q^s > 0), then the wellhead 
price is equal to the marginal cost. 

3.3 .2 . P i p e l i n e Operator Behavior 

The conditions 

0 < ^ ^ j ^ -rs + Ps±fs>0 (i^x 

0<fs-fs±Ps>0 

state tha t the pipeline operator maximizes the profit accruing from the use 
of the pipeline at the prevailing price. If the pipeline is used (/^ > 0), this 
price is equal to the sum of a marginal t ransportat ion cost and a congestion 

dTC (f) 
cost {TS = — S f + Ps)' '^^^ congestion cost ps is only different from zero 

when the pipeline is full (/^ = fg). 

3 .3 .3 . S torage Operator Behav ior 

The conditions describing the behavior of the storage operator can be stated 
as follows. 
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^ ^ dwh{w) . . ^ (12) 
0 < f) —wp±w>0 ^ ^ 
0<{i-i)±X>0 

These define storage operation charges and can be interpreted as follows. 
There is a charge A on injection facilities only when there are congested, i.e. 
A > 0 implies i = i. li the injection facilities are used (i > 0) the injection 
charge is equal to the sum of the marginal injection cost and the congestion 

charge: ip = —JT^ + ^' The withdrawal charge is equal to the marginal 

withdrawal cost when w > 0: wp = ^ . 

3.3.4. Consumer Behavior 

The condition 

0 < - ^ ^ ^ + P , » ± d i . > 0 (13) 

expresses that the marginal willingness to pay for gas is equal to the price 
when there is consumption, that is, djs > 0 implies Q^J^ = pjs. 

3.3.5. Marketers' Behavior 

The appearance of marketers is a key element of the restructuring of the 
gas industry. Marketers emerge from the optimization models as agents that 
take on former coordination activities that involved procuring the commodity 
and transportation and storage services as well as marketing the gas. They 
compete against each other, and as a result put competitive pressure on other 
agents that are not in a monopoly position (e.g. producers in the EU). Each 
of the marketer's tasks is described in complementarity form as follows. 

3.3.6. Procuring the Gas 

0 < wpe, - bp^, J. mql > 0. (14) 

When mq^g > 0, the border price charged to marketer k is equal to the 
wellhead price. 

3.3.7. Shipping the Gas 

0 < 6 r f - c p . ' + r , ± m / , ^ > 0 . (15) 

When mfg > 0, the citygate price of marketer k is equal to the sum of the 
border price charged to marketer k and the transmission price. 

3.3.8. Procuring Storage Services 

0<ip-{-cg^-fi^ ± mi^ > 0 

0< /i^ -\-wp-cg^ ± mw^ > 0, (16) 
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Note that relation (9.8), mi^ > mw^y must hold with equality. Indeed, suppose 
mi^ > mw^ > 0, then û̂  = 0 by (9.8). This also implies ip = cg^ = 0 (by the 
first complementarity condition of (16)). i > Xlfc' ^ ' ^ > ^^^ > ^^ (12) would 
then imply ^ ^ = 0, ... which means that the cost of the whole supply chain 
vanishes to zero in season 1. We exclude this case for economic reasonableness. 

The difference of citygate prices between seasons 2 and 1 (c^2 — ^9i) ^^^ 
marketer k is equal to what it has to pay for storage services {ip + wp) when 
it uses these services {mi^ = mw^ > 0). This is an intertemporal arbitrage 
condition. 

3.3.9. Marketing the Gas 

0 <cg^ -\- mn^ - Pjsidjs) -L md^^ > 0. (17) 

When md'jg > 0, the price offered to consumer j in season s is equal to the 
sum of the citygate price of marketer k and the marketing cost mn^. 

4 Imperfect Competition: Market Power of the 
Marketers 

4.1 Background and Definition of the Agents 

The above discussion is rather straightforward both in mathematical and eco­
nomic terms. It is well known that KKT conditions of convex problems can be 
expressed as complementarity conditions and that they can be interpreted in 
economic terms under our assumptions of convexity (see Section 2.1.6). But 
this economic interpretation is very specific. It only refers to perfect compe­
tition, that is to conditions where all agents are price takers. The interest of 
the KKT conditions in this model stems from the fact that we would like to 
modify each of these complementarity conditions in order to better represent 
the reality of the market. Indeed, European producers do not necessarily be­
have as price-taking agents. Transmission may be regulated both in the US 
and Europe resulting in their charging their average cost. Marketers may have 
a dominant position in their home market in Europe or in some large frac­
tion of the market in the US and hence not behave according to the perfect 
competition paradigm. Similarly storage owners could be regulated or be in a 
position to exert market power. In short, one would like to construct a model 
that resembles the above KKT model at least in terms of its structure, but 
differs from it in specific market aspects. We begin by briefly motivating this 
approach. 

4.1.1. Unbundling of the Transportation and Merchant Activities 

It is commonly assumed, but by no means proved in theory or practice, that 
the transportation infrastructure is a natural monopoly. This implies that 
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one should not expect competition or, at least much competition to develop, 
in transportation. We take the extreme view (which is true in Spain and 
Prance but not in Germany) that there is a single transportation company 
operating the infrastructure. Transportation, because it is a monopoly should 
be regulated both in terms of the conditions of access and its pricing. In other 
words one cannot expect that competition will naturally lead to relation (11). 
One would thus need to impose some pricing regulation on the transportation 
activity. 

4.1.2. Unbundling of Storage and Merchant Activity 

Storage is essential for gas operation. Storage can only be developed at certain 
sites and the incumbent European companies currently already operate most 
sites. It would seem natural to also unbundle storage from the marketing 
operations. This can be done in two ways: one is to make storage competitive, 
that is either to transfer ownership to other agents or to auction its capacity; 
an alternative is to regulate the access to storage. For the sake of brevity we 
shall not elaborate here on the regulation of the storage activity or on the 
market power that storage owners can exert. For the sake of simplicity we 
retain the perfect competition assumption model in (16). 

4.1.3. Making Marketing Competitive 

In contrast with storage and transportation, there is no restriction on having 
several marketers operating in a given territory. Specifically all former gas 
companies can have a marketing activity. Because they know the producers of 
gas and the main characteristics of the gas consumers, this implies that they 
can compete with each other in different geographic segments of the market. 
Needless to say, the incumbent in some European country is likely to know 
more about the demand sector of his country than about other countries, at 
least in a first stage. But this is not sufficient to refrain from entering other 
markets or from trying to team up with smaller agents operating in other 
markets. This justifies unbundling the marketing activities and allowing for 
different marketers in every market. 

In short, we thus assume in the following that there is a single pipeline 
company and a single storage company. The transportation activity is regu­
lated. We do not make any special assumption on storage that remains ruled 
by (12), that is, at marginal cost pricing. We suppose that there are several 
marketers that buy and resell gas and procure transportation and storage 
services, possibly exerting market power. 

4.2 Price Discrimination and Arbitrage 

Even though there may be several marketers in a single market, it is unlikely 
that it will immediately become perfectly competitive. This implies that one 
looks for a Nash equilibrium with respect to some strategic variables. It is 
common and easy to use quantities as strategic variables (a la Cournot). We 
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shall later use a similar Cournot assumption for representing producers. This 
will lead to a much more difficult E P E C problem. According to this assump­
tion, each marketer optimizes its profit, assuming the quantitative actions of 
the others given. In order to illustrate the principle, consider for a moment 
the simpler problem of marketer k buying gas in season s at citygate prices 
CQg respectively. These marketers incur marketing costs mn'^. In perfect com­
petition they will sell the gas to segment j at the price pjs satisfying 

Pjsidjs) = cg^s + ^ ^ ' ' ) A; = 1,2. (18) 

Both marketers will sell to segment j if the quantities cg\-{-mn^ and cgl^-mv?' 
are equal. If not, only the marketer with the smallest cg^ + mn^ will remain 
in tha t market segment. 

The situation is different with a Nash-Cournot assumption. We adopt the 
standard notation to let —k designate marketers other than k. Under this 
assumption and with this notation, marketer k solves the problem 

maxpjs(m(ig + mdj^)md^ - {cg'^ + mn'^)md^. (19) 

Assuming a positive sale {mdg > 0), one sees that the pricing condition (18) 
is replaced by 

Pjsidjs) + ^ ^ ^ ^ = ""ds + rnn\ A; = 1, 2. (20) 

The only difference between the perfect and Nash-Cournot competition is thus 

the replacement oipjs{djs) by Pjsidjs) + mdg Ju.'^^ • 

Applying this reasoning to the previously derived K K T conditions, the 
Nash-Cournot behavior of the marketers can be inserted into the above model 
by simply replacing relation (17) by 

0 < cgl + mn" - Pj,(dj,) - m d % ^ ^ ± md% > 0. (21) 

In this relation the gas price collected by the marketer from customer j in 
time segment s is replaced by the marginal revenue from the same client in 
tha t period. The rest of the K K T conditions remain unchanged. 

This model is amenable to some variations. One can assume tha t all mar­
keters behave a la Cournot. Alternatively, one can suppose that the incumbent 
marketer retains a dominant position and that the entering marketers behave 
competitively, tha t is tha t they are price-takers. One would then have a mix 
of relations (17) for the entrants and (21) for the incumbent. This could be 
justified for instance if an entrant believes that it is too small to t ry to exert 
market power in this new market. The entrant therefore prefers to leave the 
task of maintaining a relatively high gas price to the incumbent and simply 
behaves as a price-taker. 
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The possibility of having this mix of behaviors introduces alternative possi­
ble formulations. One may simply combine the competitive relations describ­
ing the Cournot (21) and competitive (17) behaviors. This is the situation 
where the incumbent naively considers the actions of the entrant as given. 
Alternatively, one could assume that the incumbent takes the actions of the 
entrant into account when planning its strategy. It then chooses its marketing 
action taking into account the reaction of the entrant. This latter interpreta­
tion complicates the problem as shown below. 

Price discrimination does not occur in perfect competition but is a stan­
dard outcome of market power. In order to analyze this phenomenon, consider 
again the perfect competition model and suppose that marketer k supplies 
both consumers 1 and 2 in season s {md^s > 0 ,m4s > 0) . Relation (17) 
becomes 

Pis=P2s = mn^ + cg^. (22) 

One sees that the prices paid by the two customers in season s are identi­
cal. Consider now the Cournot model and make the similar assimaption that 
marketer k supplies both consumers in season s. Relation (21) becomes 

Pisidis) + rnd^^jff^{dis) - mn^ - cg^ = 0 and 

P2s{d2s) + m4,-^^{d2s) - mn'' - cg^ = 0. 
(23) 

This time one cannot conclude that pis = P2s- The prices to the two con­
sumers could be different and therefore price discrimination could occur. An 
interesting question is whether price discrimination can persist in an open 
market. This is where new agents, namely arbitrageurs, intervene. 

Arbitrageurs are new agents that take advantage of price differences exist­
ing in a market. They buy where the price is lower and sell where it is higher 
if the difference exceeds their transaction costs. Suppose, in order to simplify 
the problem, different consumer prices as results from the Cournot pricing of 
the marketers, zero transportation costs between the customers and negligible 
transaction costs are present. The following modeling of arbitrageurs has been 
introduced by [37] for the electricity sector and is presented here for natural 
gas. Suppose an arbitrageur that buys a quantity a from a first consumer 
paying a lower price and sells this amount to a second consumer with a higher 
price. The arbitrageur can make a profit and will expand this trading until 
the prices of both consumers are equal. This can be formalized by imposing 
that an arbitrageur solves the following problem 

ma.x\pis(dis + a*) — P2s(^2s - o^l^s (^s unconstrained) (24) 
as 

where â  represents the amount that is arbitraged. It is important to note 
that the a* in puidu + a*) and P2s(<̂ 2s ~ 0,1) is not a decision variable to the 
arbitrageur (based on the perfect competition assumption). The arbitrageur 
is supposed to be a price taker. He/she trades as long as pi^ ^ p2s but does 
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not take the impact of his/her t rade on the price into account. This is the 
usual assumption of a competitive agent: it implies tha t the market settles at 
a value as for which 

Pis{dis + a*) -P2s{d2s - a*) = 0. (25) 

This effect can be readily inserted in the model (10) to (17) by adding both the 
variables as and the constraints (25), 5 = 1,2 to the set of complementarity 
conditions. 

Price discrimination can also take place between seasons. Suppose that 
the marketer uses storage services. In perfect competition (17) implies tha t 
the difference between the prices charged to a given consumer is equal to 
the difference between the citygate prices in these seasons (see the discussion 
of storage operations in section 3.3.5). This difference is itself equal to the 
sum of the marginal injection and withdrawal costs, to which one also adds 
a congestion cost in case the storage capacity is full. This is expressed in the 
following relation 

P32 — cg2 — mn'^ = 0 ^ ^ 

which imply 

Pji -Pj2 = cg^-cg^-

Taking the Cournot assumption where the prices charged to a consumer in 
the two seasons have been replaced by the marginal revenues accruing from 
these consumers, one obtains 

Pjiidji) + md^^-r^idji) - cgl - mn^ = 0 

Pj2{dj2) + rnd^2-§^(dj2) - cg^ - mn^ = 0. 

This does not imply that pj2 — Pji = cg2 — cg^. The price difference between 
the two seasons is not necessarily equal to the difference between the citygate 
prices and hence to the sum of the marginal injection and withdrawals charges 
and a possible congestion cost. In other words, there may be price discrim­
ination. This price discrimination between seasons has been pointed out for 
the case of reservoir management in electricity in [7]. It also appears here in 
natural gas. The implication of the market power here is a non-optimal use of 
the storage compared to the perfect competition case. Arbitrageurs can again 
intervene to reduce the price discrimination between seasons. An arbitrageur 
here is an agent who buys a quantity in the first, low-price period and releases 
it in the higher price period. The arbitrageur does not buy gas from the pro­
ducers (it would be an other marketer in tha t case); he/she simply takes a 
position between the two periods. Needless to say the arbitrageur incurs the 
storage costs, in this case the sum of the marginal injection and withdrawal 
costs and the possible congestion charge in case storage facilities are full. The 
arbitrageur therefore solves the following problem 
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• ,^ , , .J ,, (dIC{i + a*) dWC{w + a*) , \ 
max \Pj2{dj2 + a ) -pji{dji -a)- I ^ + ^ + A I 

(28) 
where he/she takes A. , ^ and A as given. Solving the problem will imply 
that the prices between two seasons will satisfy the relation 

*x dIC(i + a*) dWC{w^a*) , 
P32{dj2 + a*) - p . i K i - a*) = ^^ ^ + ^ ^ + A. (29) 

Again this effect can be readily inserted in the model (10)-(17) by adding both 
the variables a and relation (29) to the set of complementarity conditions at 
least if one assumes that one has an analytic expression of both A- and 

^ . One also needs to replace i>ihei>i-\-a. We saw before that 
the Cournot marketer could anticipate the actions of the spatial arbitrageurs 
expressed in relation (25) (clairvoyant marketer) or take them as given (myopic 
marketer). The same distinction can be made here with respect to the behavior 
of marketers vis a vis the seasonal arbitrageurs (relation (29)). The case of 
the naive arbitrageur is straightforward to model: one simply replaces relation 
(21)-(22) by the pair 

0 < c^^ + mvJ' - pis{djs + a) - md)^^^ L md), > 0 .^^. 

Pis{d\s + a) - P2s{d2s - a) = 0. 

In contrast with the naive Cournot marketer, the clairvoyant marketer foresees 
the action of the arbitrageur and takes them into account in its sales. Metzler 
et al. [37] have shown that both assumptions lead to the same outcome in 
electricity markets. It is conjectured that the same result holds here. The 
reader is referred to [37] for an in-depth discussion of this question. 

5 Regulated Transportation 

5.1 Background 

It was argued before that there will likely remain a single transportation com­
pany in each EU Member State after restructuring has taken place. This trans­
portation company therefore has a dominant position in the transportation 
market and hence needs to be regulated. Germany is the only proponent of an 
alternative approach and argued for a long time that transportation of natural 
gas is a competitive activity. And indeed some competition developed. But 
Directive 2003/55/EC applies to all Member States and Germany will need 
to comply with the common approach which is to regulate gas transportation. 
It remains to be seen how it will meet the regulation requirement. Regulation 
should facilitate the proper access to transportation infrastructure. The exact 
meaning of "proper" has been extensively discussed in the literature on access 
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pricing in network industries (mainly in telecommunication). We note that 
our formulation (11) implements a marginal cost pricing of transportation 
services and a congestion charge when the capacity of the pipeline is satu­
rated. This congestion cost is charged to all marketers. Marginal cost pricing 
has been vigorously discussed in the context of access to the electric power 
network where it gave rise to the famous disputes between proponents of the 
flowgate and nodal models and to the discussion of zonal/nodal pricing in the 
United States. It also gives rise to various issues of market power in the trans­
portation of electricity. We shall not discuss these questions here because in 
contrast with electricity, congestion in natural gas transport does not seem yet 
to be a major issue. Besides marginal cost pricing we consider two other ap­
proaches to transportation pricing, namely average cost and Ramsey-Boiteux 
pricing. Average cost pricing is the most widely accepted tariff structure in 
practice even though it has little economic virtue. By contrast, Ramsey Boi-
teux pricing is a sophisticated way to allocate costs. Its application to utilities 
was made famous by Boiteux's seminal contribution to electricity pricing. It 
has been extensively discussed in the context of access to telecommunication 
infrastructure. Its application to natural gas is due to [9]. We model these 
approaches without any attempt to summarize the extensive discussions that 
they generated. 

5.2 Average Cost Pricing 

Average cost pricing is the preferred access pricing method in practice. It 
consists of setting a price that allows the network owner to cover its cost in­
cluding a proper rate of return on capital. To illustrate the principle, consider 
the simple situation depicted in Figure 2 with two marketers. One assumes 
that the charge is set at regular time intervals by the regulator on the basis 
of the transportation cost and on some historical or prospective view of the 
flow in the pipeline. 

producers marketer 1 consumers 

transport <5 
marketer 2 

Fig. 2. two marketers and a transporter 

Let tc and F be respectively the variable and the fixed cost of the network 
(see Figure 3). Assume two marketers who respectively ship / i and /2 through 
the network. A plausible average cost access tariff is given by the unit rate r^ 
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F 
Ts = 

/ 1 + / 2 
-\-tc (31) 

Total cost A 

Fig. 3. Cost function of the transportation activity 

One can again think of two possible implementations of this tariff. In a first 
"naive" implementation, the marketers do not foresee that increasing the 
amount of demanded transmission service will decrease the unit rate Tg. In 
another interpretation, they anticipate this change. Replacing (11) by (31) 
and keeping the rest of the KKT conditions unchanged models the naive in­
terpretation. 

5.3 Infeasible Problems and Multiple Equilibria 

All models covered up to this point can be converted into convex optimization 
problems, at least under standard conditions on the cost function (convexity), 
the demand curve (downward sloping) and for the Cournot model, revenue 
function (concavity). They are thus guaranteed to have a convex set of solu­
tions. In contrast the introduction of average cost pricing prevents this con­
version into a convex optimization problem. The complementarity problem 
becomes nonlinear and ceases to be monotone as a result of the decreasing 
unit rate TS (31) replacing (11). This may make the model infeasible or intro­
duce multiple equilibria. This is illustrated in Figure 4 for the cost function of 
the transportation activity shown in Figure 3. The example assumes a single 
consumer, no storage, zero marginal gas production cost and a marketer who 
needs to pay for transportation priced at average cost. The figure illustrates 
two situations that correspond to different levels of the fixed charge F. Curve 
(1) corresponds to the case of relatively low value of F\ the average cost curve 
intersects with the demand curve at two points so that here are two equilibria. 



364 S. Gabriel and Y. Smeers 

When the fixed charges of the pipehne are too high (curve (2)), the transporter 
cannot find a demand level that pays for the cost of the network. This lack of 
equilibrium may seem unrealistic if the fixed charges are limited to the sole 
cost of the network. This phenomenon proved dramatically relevant before the 
restructuring of the US gas sector in the 1980's when the fixed charges to be 
recovered by the marketers (at that time the pipelines companies) included 
the take or pay commitments of long-term contracts. 

p;^ 
average cost curve with high fixed cost: 
no equilibrium 

average cost curve with low fixed cost: 
multiple equilibria 

Fig. 4. Non existing and multiple equilibria 

5.4 Ramsey-Boiteux Problem Statement 

Economists working on access pricing in the telecommunication area have 
extensively promoted the application of Ramsey-Boiteux pricing for access to 
the infrastructure. Cremer et al.[9] converted this approach to transportation 
of natural gas. We first introduce the method in a simplified context and then 
discuss the problem that it raises in the more realistic context (even though 
extremely simplified) of our example. 

Consider the simplified case where there is no storage, a single marketer, 
one gas producer and two customers as shown in Figure 4. 

EC(q) transportation 
Fixed cost of pipeline:F 

Piidf) 

Fig. 5. One producer, one marketer, no storage 
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Assume the charge to recover through access prices amounts to a single fixed 
cost of the pipeline {tc = 0 in Figure 3). One wants to find access charges for 
the two customers that maximize economic welfare and allow one to cover the 
revenue requirement of the pipeline. 

Supposing that the whole economy is in perfect competition except for the 
transportat ion of natural gas. We note q the production quantity and use r^ 
to denote the transport charge to consumer j in the example, r^ is then given 
by 

r'=pM)--9^i'l) (32) 

where ^ ^ ^ is the price charged by the producer for its gas in perfect competi­
tion. The transport charge is equal to the difference between the price paid by 
the consumer and the marginal extraction cost of gas. Relation (32) implies 
tha t q can be writ ten as a function of dj and r^: let q{d,T) be this function. 
The resulting welfare maximization problem in simplified form is stated as 

max /o ' ' ^p , (6 )d f i + Jo'P2{i2)di2 - EC{q) 
s.t. T1 di+T^d2>F (33) 

0 < 9 < / . 

Note that the K K T conditions of (33) are similar but not identical to (32). 
(33) is indeed the regulator's problem while (32) represents the equilibrium 
conditions in a perfectly competitive market. 

This formulation assumes that there exists a benevolent regulator tha t 
tries to maximize the overall welfare while simultaneously covering the fixed 
charge of the network. The formulation assumes that the marketer procures 
the gas at marginal cost which corresponds to a perfectly competitive produc­
tion market. Alternative assumptions are possible. A perfectly competitive gas 
production is a quite reasonable in North America, but not in Europe. What ­
ever the assumption of competition on the production side, Ramsey-Boiteux 
introduces access charges tha t are specific to the consumer segment. The con­
sumer which values gas more pays more. This is price discrimination but it 
is accepted in this context because of the objective pursued, namely an effi­
cient pricing of the infrastructure. In U.S. parlance, the discrimination is not 
undue. We do not discuss this legal and economic issue here. 

Consider the formulation given in (33) and the transmission charges r^ 
and r^. The (perfect competition) equilibrium conditions of the rest of the 
gas market can be written as 

vAdj) = hp^ri (34) 

where hp = dE/dq is the border price in the one producer case. This is a 
square system, which means that the production and demand are entirely 
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determined by 6p,r^ and r^. The Regulator is only responsible for choosing 
r^ and r^ while the market will select bp on the basis of q. The Regulator 
therefore optimizes a criterion that effectively depends on dj and q by playing 
on the r^. Assume a quadratic cost function EC, then bp is affine. Because 
we also assumed affine demand functions, the dependence of all variables d 
on r^ and r^ is affine. The maximization problem of the Regulator is thus 
convex. Economists have elaborated at length on the analytic solution of this 
problem. 

The same reasoning could have been made if marketers behaved a la 
Cournot. The relationship (32) would have been replaced by Cournot equilib­
rium equations, that is, by replacing the price by the marginal revenue. These 
resulting expressions would have been affine. The problem of the Regulator 
would have been different from an economic point of view, but its mathemat­
ical structure would have remained unchanged. In both cases, Ramsey pricing 
is amenable to an analytic solution. Things become much more complex when 
one turns to a more detailed physical model where the square system of equa­
tion (34) is replaced by a complementarity problem. 

5.5 Applying Ramsey-Boiteux to the Example 

The above reasoning can be considered in the more general case of our ex­
ample. Assume as before that the transport charges (TJS) differentiated by 
customer and season are known. All the other variables of the market are 
determined by the equilibrium conditions that describe the behavior of all 
agents except the transporter. Specifically one defines a restricted equilibrium 
subproblem RESP(r) consisting of the following complementarity conditions 

- Producer's behavior (10) 
- Storage operation behavior (12) 
- Consumer behavior (13) 
- Marketers behavior (14) to (17) 
- All balance inequalities (9.2) to (9.10) holding as equalities. 

One notes that the pipeline operator equations (11) that involved the trans­
port charges r^ are not part of the subproblem. They have been replaced in 
RESP(r) by exogenous assumptions on the r. The result is a well defined 
restricted equilibrium subproblem RESP(r) parametrized by the TJS-

RESP(r) is a complementarity problem, which in this case is equivalent 
to an optimization problem. It has a convex set of solutions which reduces 
to a single point when the marginal cost of the producers and the demand 
functions are affine and non-constant. It is thus possible to define the Ramsey 
pricing problem using the same philosophy as before: the Regulator selects the 
Tjs in order to maximize a function that depends on the djs and qcs- While the 
objective function is concave in these variables, it is no longer concave in the 
Tjs. The relation between the former and the latter is indeed piecewise affine 
in this case because it is the solution of a linear complementarity problem that 
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is parametrized in r. This problem is a mathematical programming problem 
subject to equilibrium constraints (MPEC) as discussed above (see [4]). Note 
that the formulation can encompass different variants of the restricted equilib­
rium subproblem. Specifically, there is no difficulty accommodating Cournot 
marketers instead of perfectly competitive marketers. The variants on arbi­
trageurs that we discussed in this problem can also be included. 

6 Cournot Producers 

6.1 A First Model (see [36]) 

Both the former "gas companies" and the gas producers had market power in 
the pre-restructuring European market. In contrast gas producers can be seen 
as largely competitive in the US. The study of market power in the European 
gas sector through complementarity problems began in Norway and combined 
both economic analysis and computational methods. Specifically, [36] modeled 
the European gas market under three assumptions of competition, namely 
perfect competition, monopoly, and the now standard Cournot assumption. 
By comparing the results obtained to observation, they concluded that the 
Cournot model was a realistic representation of the European market of the 
time. Mathiesen [34, 35] also showed how complementarity problems could be 
used to solve equilibrium models. We begin our discussion of the market power 
of the producers by casting this early work in our example that we simplify 
somewhat further. Consider a hypothetical gas company (that is, a company 
that bundles merchant, transmission and storage activities) operating in the 
pre-restructured period. It is regulated at cost and can only charge the sum 
of the procurement cost and a fixed mark-up that represents its average costs 
and some previously agreed upon margin. We let ac^^ be this mark-up when 
the company procures gas at producer £'s location and sells it to market j . 
Neglect storage operation and assume a single season. Let pj be the price in 
market j . A producer ^ selling to the consumer market 2 receives a netback 
"Pj — ac^^ as shown in Figure 6. 

producer / ( J k - ~ _-«P -^^AJ) consumerj 
1 ""\^'^~ ~- jar <3<̂  i -"' "" y^ \ 

2 ac^^ 

Fig. 6. No storage, fixed gas company margin 
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The behavior of the Cournot producer 1 can then be described by the following 
optimization problem 

max pi{mdl + mdi^)mdi H- P2{rnd2 4- mc/̂ )̂771^2 
md\,md2 

-ac^^mdl - ac^'^mdl - ECi{md\ + mdl) V^^) 
s.t. md\ > 0, mdl > 0 

where the optimization is carried out on the variables md\ and mdl, keeping 
the sales mdi^ and md^^ fixed. Mathiesen [36] formulated and solved this 
problem on a bipartite transportation network with European producers £ 
being the left-hand nodes and European markets being the right hand nodes. 
The ac gave the transportation costs. Different extensions of Mathiesen et 
al.'s work were made that ultimately led to the GASTALE model mentioned 
in the introduction ([3]). Golombeck et al. [25] examined the impact of the 
introduction of the first European Gas Directive by assuming that it would 
lead to arbitrage between gas prices inside the border of the European Union. 
In other words, arbitrageurs would trade gas between the different border 
points so as to eliminate the price diflFerences that would not be justified 
by transporting costs. Golombeck et al. [26] also examined the impact of 
abolishing export monopolies in the exporting countries. In all these studies, 
the marketing company was represented by an exogenously given overall cost 
and margin that we noted ac. In contrast, GASTALE introduced market power 
both at the producer and marketer side. The representation of the latter was 
simplified with respect to Gabriel et al. [21] in order to make the example 
more tractable. It does so by implementing an oligopolistic version of the 
economic notion of double marginalization [27, 28]. See [41] for a discussion 
for the monopoly case. 

6.2 Double Marginalization and the GASTALE Model 

The structure of the European gas market suggests that both the producers 
and the marketers have market power. The question is whether this duality 
of market power can be accommodated in computational models. GASTALE 
extends Golombeck's model to account for this phenomena [3]. 

Mathiesen et al.'s original model briefiy recalled above assumes that the 
marketers simply add a mark-up to the price that they get from the producers. 
In other words the margin between the price paid by the consumer and the 
marginal cost of the producers is shared by the producers and the marketers 
but the part of the latter is fixed. This is the case when one assumes that all 
transportation and storage costs are exogenously given and the profit of the 
marketer is regulated. The price charged by a marketer to a consumer is thus 
equal to the price at the wellhead plus the sum of the price of transportation 
and storage including some regulated margins. [3] consider an extension of this 
view where the marketers behave competitively or a la Cournot. Specifically 
these authors assume a given number of identical marketers in each market 
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that equally share the demand in that market. All segments are served and 
hence each marketer sells an equal quantity to each segment. Using this prop­
erty, Boots et al. can relate the prices charged to the different segments of the 
final demand to the price charged by the producer to the marketers. Their 
model is a mix of computational and analytical modeling. The derivation of 
the demand curve seen by the producers is analytical and relies on the as­
sumption of symmetry of the marketers. The exertion of market power by 
the producers is computational and directly related to the previous work of 
[36] and [25]. An interesting objective is to remove the analytical part of this 
model to make it purely computational. This is necessary if we want to do 
away with the assumption of symmetric marketers. We shall see that Boots 
et al.'s approach can in principle be extended by assuming non-identical mar­
keters that behave a la Cournot but at the price of additional computational 
difficulties. We consider two cases depending on whether the producers behave 
a la Cournot or a la Bertrand. 

6.3 Bertrand Producers and Competitive or Cournot Marketers 

Following the standard reasoning of double marginalization we assume that 
the marketers take the border price bp^ as given and that they can buy un­
limited quantities at that price. Natural gas is normally considered as an 
homogeneous product after pretreatment at the well or at the beach (the 
"border" in bp). This suggests representing the competition of the producers 
a la Bertrand. The producer £ that sells to a marketer k at the lowest price 
gets all the demand in that market. If several producers sell to a marketer 
they do it at the same price and equally share the demand of that market. 
This complies with our noting bp^ as the price paid by marketer k "at the 
border" in season s. Given the bp^, one can define a restricted equilibrium 
subproblem RESP(6p) that represents the behavior of the rest of the market 
by assembling the complementarity conditions that describe 

- The pipeline operator behavior (11) 
- The storage operator behavior (12) 
- The consumer behavior (13) 
- The marketer behavior (14) to (17) 
- All balance inequalities (9.2) to (9.10) holding as equalities. 

Only the relation (10) describing the behavior of the producers is left out. It 
is replaced by taking the bpg as parameters. Because of the integrability of the 
demand functions, RESP(6p) is a complementarity problem that is equivalent 
to an optimization problem. Introduce the notation 

e 

to denote the total demand of gas by marketer k in season s. This value can 
be derived from the solution of RESP(6p). It is unique for each vector bpg if 
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one assumes affine demand functions as we did throughout the paper (affine 
demand functions are a sufficient but non necessary condition for this result). 
Then, let mq^ibp) be the demand of gas of marketer k in season 5, as a function 
of the prices 6^^ found as part of the solution of RESP(6p). Inserting this 
solution in the profit function of the producers, it is possible to define a new 
Nash equilibrium problem whereby the producers select the border prices hp^^ 
at which they sell gas to the marketers in order to maximize their profit. The 
resulting problem is an equilibrium problem subject to equilibrium constraints 
but of a type that to the best of our knowledge has not been mentioned let 
alone studied in the literature. The first-stage competition is of the Bertrand 
type while the second stage is Cournot. The natural question is whether this 
model would be relevant in practice. We already indicated tha t production 
is competitive in the US so that this model would thus add very little. In 
contrast there is much talk of the emergence of "gas to gas competition" 
in the oligopolistic European gas market. A Bertrand competition, where, 
producers compete in price would thus be worth exploring. The interest of 
the problem is that , in contrast with all the other models discussed in this 
paper, Bertrand competition for homogeneous products cannot be modeled 
through complementarity formulations. 

We do not explore this problem any further and turn instead to the more 
s tandard formulation where producres have limited possibilities for exerting 
market power through prices but do so through quantities. This leads to a full 
two-stage Cournot model. 

6.4 Cournot P r o d u c e r s and C o m p e t i t i v e or Cournot Marketers 

In order to adapt the above formulation to arrive at a problem where both 
stages are Cournot, consider the case where marketers are not given a cer­
tain border price 6pJ but an import quantity mq^^. In other words producers 
behave strategically by restricting their sales to marketers. It is easy to see 
that one can restate the restricted equilibrium subproblem to accommodate 
this new situation where quantities are the strategic variables. Consider the 
restricted equilibrium subproblems RESP(mg) consisting of 

- The pipeline operator behavior (11) 
- The storage operator behavior (12) 
- The consumer behavior (13) 
- The marketer behavior (14) to (17) 
- All balance inequalities (9.2) to (9.10) holding as equalities. 

Again the relation (10) describing the behavior of the producer is left out and 
is replaced by an assignment of mq^g, 

This subproblem is again a complementarity problem, which is equivalent 
to an optimization problem. It has a convex set of solutions which is unique 
when the marginal cost of the producers are affine and non-constant. Let hp^ 
be the price of the gas found in relation (15). This price, hp^ is the marginal 
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value of the gas sold to marketer k in season 5, that comes out as a solution 
of that suproblem. It is thus the price at which marketer k is willing to pay 
for the gas,when offered the quantities rnqj^g. We can thus define the map­
ping bp^{mqs). This allows one to define a new Nash equilibrium problem for 
the producers whereby they select the quantities mg^^ that they sell to the 
marketers. This is stated in 

^^^J2 E ^P^s{^QLrnqtes)mql - ^Q,(^mgtj] (36) 
s k k 

'^Qis ^ 0' '^Q-Cs fixed. 

There is one such intertemporal problem for each producer. The collection 
of these problems for the different producers and the search of a set of mq^^ 
that simultaneously solves all of them is an equilibrium problem subject to 
equilibrium constraints (EPEC). Again, there is no real difficulty accommo­
dating perfectly competitive marketers instead of Cournot marketers or any 
mix of assumptions that we have seen. The difficulty is indeed to solve such 
a problem. 

7 Conclusions 

This paper surveys some work as well as points out work that remains to be 
done. It considers essential problems brought about by the restructuring of the 
gas industry in Europe and North America for which one has relatively little 
knowledge and understanding. We can improve our insight of this market 
by modeling it on the basis of standard economic assumptions. Models of 
industrial organization raising questions of direct relevance to the gas market 
flourish in industrial economics. As it is often the case, their results differ 
drastically depending on their assumptions. This is confirmed by numerical 
experiments. As one says "the devil is in the details". The problem is that 
the devil has considerable potential in the important area of natural gas. It 
is important to add to the insight provided by economists by also exploring 
these questions experimentally, in this case computationally. Because of the 
novelty of the market, there are currently little data in Europe to validate 
these models. In contrast the restructured US gas market has accumulated 
several years of experience. This validation process is especially interesting 
since many of the models arising from industrial economic concepts also turn 
out to be quite difficult in mathematical programming terms. 
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Summary. This paper deals with a hard nonlinear biobjective optimization prob­
lem: finding the optimal location and design for a new franchised facility within a 
region where facilities (both of the franchise and not) already exist and compete for 
the market. The franchisor and the new franchisee both want to maximise their own 
profit in the market, but these two objectives are in conflict. Customers patronize all 
the facilities, old and new, proportionally to their attraction to them. Both resulting 
objective functions are neither convex nor concave. An interval branch and bound 
method is proposed to obtain an outer approximation of the whole set of efficient 
solutions. Computational experiments highlight the different kinds of information 
provided by this method and by a variation of the lexicographic method. 

1 Introduction 

Multiobjective optimization problems are ubiquitous. Many real-life problems 
require taking several conflicting points of view into account. In fact, although 
the origins of the multiobjective optimization literature are linked to utility 
theory, game theory, linear production theory and economics (see [20]), we 
now can find applications in many and diverse fields, such as portfolio op­
timization [10], jury selection [42], airline operations [11], radiation therapy 
[33], manpower planning [43] or reservoir management [1], among others. In 
[49], White mentions more that 500 applications between 1955 and 1986. Clas­
sical references on multiobjective optimization are the books [4, 5, 45, 50, 51]. 
Other more recent books are [17, 35]. 

This paper has been supported by the Ministry of Science and Technology of Spain 
under the research project BEC2002-01026, in part financed by the European 
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In this paper we restrict ourselves to the biobjective case, tha t is, to the 
problem 

n i i n { / i ( y ) , / 2 ( y ) } ..s 
s.t. yeSCR"" ^^ 

where / i , / 2 : M"̂  —> M are two real-valued functions. Let us denote by 
/ ( y ) = (/i(2/), f2{y)) the vector of objective functions, and hy Z = f{S) C R^ 
the image of the feasible region. Some widely known definitions to explain the 
concept of solution of (1) are the following. 

Def in i t ion 1. A feasible vector y* £ S is said to be efficient iff there does not 
exist another feasible vector y £ S such that fi{y) < fi{y*) for all i = 1,2, 
and fj{y) < fj{y*) for at least one index j . The set SE of all the efficient 
points is called the efficient set. 

Efficiency is defined in the decision space. The corresponding definition in 
the criterion space is as follows. 

Defini t ion 2. An objective vector z* = f{y^) £ Z is said to be nondominated 
(or also efficient j iff y* is efficient. The set of all nondominated vectors will 
be denoted by ZN • 

Ideally, solving (1) means obtaining the whole efficient set, although in 
practice we will be satisfied if we obtain some representative (in some sense) 
efficient points. There is a great and rich variety of methods with that aim, as 
can be seen in the references mentioned above (weighting method, constraint 
method, lexicographic m e t h o d , . . . ) . However, most of the literature on multi-
objective optimization deals with either discrete problems or with continuous 
multiobjective linear problems, whereas the interest in this paper is in non­
linear multiobjective optimization. Although less studied, we can also find in 
the literature many references dealing with this last topic (see [35] and the 
references therein). 

In particular, here we consider a competitive facility location problem. 
Competitive location deals with the problem of locating facilities to provide a 
service (or goods) to the customers (or consumers) of a given geographical area 
where other competing facilities offering the same service are already present 
(or will enter to the market in the near future). Many competitive location 
models are available in the literature, see for instance the survey papers [8, 
9, 19, 29, 38, 41, 48] and the references therein. However, the literature on 
multiobjective competitive location models is rather scarce. In fact, to our 
knowledge, [21, 47] seem to be the only references in this field. This is in 
part due to the fact tha t single objective competitive location problems are 
difficult to solve, and considering more than one objective makes the problem 
near intractable. 

We study the case of a franchise which wants to enlarge its presence in a 
given geographical region by opening one new facility. Both the franchisor (the 
owner of the franchise) and the franchisee (the actual owner of the new facility 
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to be opened) have the same objective: maximize their own profit. However, 
the maximization of the profit obtained by the franchisor is in conflict with 
the maximization of the profit obtained by the franchisee. This suggests to 
use a biobjective model to obtain the efiicient solutions for this problem, so 
that later on the franchisor and the franchisee can agree in both location and 
design for the new facility, taking the corresponding economical implications 
of their selection into account. 

Wi th the aim of obtaining a close view of the complete efiicient set SE of 
the resulting continuous nonlinear biobjective problem, we introduce in this 
paper a new method, an interval branch-and-bound algorithm, which is able 
to obtain a superset of SE (a non-interval branch-and-bound method with 
the same aim was proposed in [24] for solving another biobjective location 
problem). This superset of SE maps into a superset of the nondominated set 
Zjsf, which may be made as tight as required (up to the precision provided 
by the inclusion functions used) by reducing the tolerances employed in the 
termination rules (see Section 3.6). To the extent of our knowledge, this is the 
first general method proposed in the literature with tha t purpose. The reason 
for this lack of methods is tha t even obtaining a single efiicient point can be 
a difiicult task. Tha t is why some authors have proposed to present to the 
decision-maker a 'representative set' of efficient points which suitably repre­
sent the whole efficient set, either by modifying the definition of efficiency [3] 
or by selecting a finite set of efficient points with the criteria of coverage, uni­
formity and cardinality as quality measures [2, 40]. Notice that the approach 
in this paper is completely different. Instead of offering a (small) subset of the 
efficient set to the decision-maker, we offer a superset which tightly contains 
it. By drawing in the image space that superset the decision-maker can easily 
see the trade-off between the two objectives, i.e., how one objective improves 
as the other gets worse. Something similar can be done in the decision space, 
by drawing the superset in a color scale depending on the objective value of 
one of the objectives. 

The interval B&B method deals with the multiple objectives directly. It 
s tarts with an initial box containing the feasible set. The box considered is 
either sent to the solution list, it is removed from further consideration by 
a 'discarding test ' , or it is split into several subboxes which are considered 
later. This process is repeated by choosing a new box until no box remains 
to be considered. We also briefiy describe (and slightly modify) an interval 
lexicographical-like method recently proposed in [47], and show the possibil­
ities offered by both methods for obtaining different information about the 
biobjective problem. 

The paper is organized as follows. In the following section we present 
our biobjective competitive continuous location problem. In Section 3 we in­
troduce the new interval branch-and-bound method for obtaining the whole 
efficient set. In the next section, the lexicographical-like method is presented, 
as well as a slight modification of it. Some computational studies are reported 
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in Section 5. The paper ends with conclusions and pointing Hnes for future 
research. 

2 The Biobjective Model 

A franchise wants to locate a new single facility in a given area of the plane, 
where there already exist m facilities offering the same good or product. The 
first A; (A; > 1) of those m {m > k) facilities are part of the franchise. The 
demand, supposed to be inelastic (which means that the goods are essential 
for the customers, that is, they will satisfy their full demand), is concentrated 
at n demand points, whose locations pi and buying power wi are known. The 
location fj and quality of the existing facilities is also known. 

In the spirit of Huff [26], and later generalized in [36] and [28], we consider 
that the patronising behaviour of customers is probabilistic, that is, demand 
points split their buying power among all the facilities proportionally to the 
attraction they feel for them. The attraction (or utility) function of a customer 
towards a given facility depends on the distance between the customer and 
the facility, as well as on other characteristics of the facility which determine 
its quality. The location and the quality of the new facility are the variables 
of the problem. 

The following notation will be used throughout this paper: 

X location of the new facility, x = (a^i, 0:2). 
a quality of the new facility (a > 0). 
n number of demand points. 
Pi demand points, pi = {pii,Pi2) {i = 1 , . . . , n). 
Wi demand (or buying power) at pi. 
m number of existing facilities. 
fj existing facilities (j = 1 , . . . , m). 
k number of existing facilities that are part of one's own chain (the 

first k of the m facilities are assumed in this category, 0 < A; < m). 
dij distance between demand point pi and facility fj. 
dix distance between demand point pi and the new facility x. 
aij quality of facility fj as perceived by demand point pi. 
gi{') a non-negative non-decreasing function. 

attraction that demand point pi feels for facility fj. ai 

9i{dij) 
7t weight for the quality of x as perceived by demand point pi. 
———r- attraction that demand point pi feels for the new facility x. 
9i\dix) 

These particular attraction functions generalize the proposals in [7, 26, 
28, 36]. We may assume that gi{dij) > 0 Vz, j . Some particular cases already 
proposed in the literature for the gi functions are gi{dix) = ê *̂ *̂  (see [25]) 
or gi(dix) = (dix)^^ (see [6]), with Aj > 0 a given parameter. 
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2.1 First Object ive : M a x i m i z a t i o n of t h e Market Share C a p tu red 
by t h e Franchisor 

From the previous assumptions, the total market share a t t racted by the fran­
chise is 

k 

~ ^ 2 ^ n.(d. 
3-

^ 9i{dia:) jr[9i{dij) 
M{x^a) = / ^Wj 

9i{dix) j^^9i{dij) 

We assume tha t the operating costs for the franchisor due to the new 
facility are fixed, tha t is, they are independent from the final location and 
quality chosen. This is usually the case, since the operating costs for the 
franchisor are mainly due to the advertising of the franchise's t rademark. In 
the same way, we also disregard the operating costs of the existing facilities 
tha t are part of the franchise. 

In this way, the profit obtained by the franchisor is an increasing function 
of the market share captured by the franchise. Thus, maximizing the profit 
obtained by the franchisor is equivalent to maximizing the market share cap­
tured by the franchise. This will be the first objective of our problem. 

2.2 Second Object ive : M a x i m i z a t i o n of t h e Profit Obta ined by t h e 
Franchisee 

The second objective of our problem is the maximization of the profit ob­
tained by the franchisee, to be understood as the difference between the rev­
enues obtained from the market share captured by the new facility minus its 
operational costs (see [16]). The market share captured by the new facility 
(franchisee) is given by 

,{x,a) = ^ i ^ t 
9i{dix) 

nJd... 9i{dix) JT[9i{dij) 

and the profit is given by the following expression, 

7r(x,a) = F ( m ( x , a ) ) - G ( x , a ) 

where F ( ) is a strictly increasing function which determines the expected 
sales (i.e., income generated) for a given market share m{x^a) and G{x^a) is 
a function which gives the operating cost of a facility located at x with quality 
a . 

The function F will sometimes be linear (in problems without economies 
of scale), F ( m ( x , a ) ) = c • m{x^a)^ where c is the income per unit of good 
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sold. Of course, other functions can be more suitable depending on the real 
problem considered. 

As for the function G(a:,a), it should increase as x approaches to one of 
the demand points, since it is rather likely that around those locations the 
operational cost of the facility will be higher (due to the value of land and 
premises, which will make the cost of buying or renting the location higher). 
On the other hand, G should be a nondecreasing and convex function in the 
variable a, since the more quality we require of the facility, the higher the 
costs will be, at an increasing rate. In our computational studies we have 
considered G to be separable, of the form G{x,a) = Gi(x) + C2(a), where 
Gi{x) = Er=i^^(^^^)' with ^i{dia:) = Wi/{{dia:)'^'^ + 0a) , 0io,0ti > 0 and 
6^2(0;) = e^ "1 _ e^i^ with ao > 0 and a i given values (other possible 
expressions for G{x, a) can be found in [16]). 

2.3 The Problem 

The problem to be solved is then 

C max M(xj a) 
max 7r{x,a) 
s.t. di:,>df^'ii (2) 

OL G [Q^min J <^maxj 

xeRc"^^ 

where the parameters d^^^ > 0 and amin > 0 are given thresholds, which 
guarantee that the new facility is not located over a demand point and that 
it has a minimum level of quality, respectively. The parameter amax is the 
maximum value that the quality of a facility may take in practice. By R we 
denote the region of the plane where the new facility can be located. To carry 
out the interval methods proposed in the next two sections we just need to 
be able to write R through a set of analytical constraints. 

To clarify the biobjective nature of (2), consider Figure 1. Dotted circles 
with numbers 1 to 5 denote the forbidden regions around the existing demand 
points (supposed to be at the center of the forbidden regions, and all with 
demand 1), the cross x denotes the location of an existing facility owned by 
the chain and the solid circle point • the location of a competitor's facility. 
The franchisor would like the new facility to be located close to demand point 
5 (he/she already captures the market of demand points 1 to 4, and in this 
way he/she can win a part of the market of demand point 5), whereas the 
franchisee would like the facility to be located close to the existing chain-
owned facility (in this way, he/she can capture nearly half of the market of 
demand points 1 to 4, which is much more than he/she can get by locating 
close to demand point 5). In a grey scale we can see the efficient set for this 
problem (the lighter the better for the franchisor, and darker the better for 
the franchisee). 
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Fig. 1. Conflicting objectives. 

In order to have problem (2) writ ten in the form of problem (1), in what 
follows we will use the following notation: y = ( x , a ) , fi{y) = —M(x ,a ) , 
f2{y) = —7r(x,a) and S will denote the feasible set of problem (2). 

3 An Interval Branch-and-Bound Method for Obtaining 
the Whole Efficient Set 

Problem (2) is very hard to solve: its objective functions are neither concave 
nor convex, thus, the optimization of one of them alone leads to a global 
optimization problem. Furthermore, we are interested in obtaining its whole 
efl&cient set. To cope with it, we need to use global optimization techniques. 
Among these, only a branch-and-bound scheme seems to be appropriate for 
our purposes, although the computation of bounds is a difficult task, too. 
In this paper we have used such a method, which makes use of the Interval 
Analysis (see the books [23, 30, 39], which are excellent introductions to the 
topic). 

To our knowledge, and with only two exceptions [27, 47], all the publi­
cations on interval methods for optimization deal with single objective prob­
lems. In [27] it is simply proposed to use the classical interval B&B global 
optimization methods for solving the single objective problems to which the 
multiobjective problem is reduced when using the weighting method or the 
minimax method. A more sophisticated use of interval techniques is the mod­
ification of the classical lexicographic method proposed in [47] and shortly 
described (and slightly modified) in Section 4. 

The purpose of this section is to present a new interval B&B method able 
to obtain a superset of the complete efiicient set with values within a given 
precision. The method deals with the multiple objectives directly, tha t is, it 
does not convert the problem into a single objective optimization problem or 
a family of such kind of problems, as most of the multiobjective optimization 
methods do. We briefly summarize the fundamental concepts of interval anal­
ysis which are needed for this paper. For more details, the interested reader 
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is referred to [23, 30, 39]. Other applications of interval analysis to location 
problems can be found in [12, 14, 15, 16, 34, 47]. 

3.1 Interval Ana lys i s 

Following the notation suggested by Kearfott et al. [31] as standard, boldface 
will denote intervals, lower case will be used for scalar quantities or vectors 
(vectors are then distinguished from components by use of subscripts), and 
upper case for matrices. Brackets '[•]' will delimit intervals, while parentheses 
'(•) ' are used for vectors and matrices. Underlines will denote lower bounds 
of intervals and overlines indicate upper bounds of intervals. For example, we 
may have the interval vector x = ( x i , . . . , x ^ ) ^ , where Xi = [xi, x7]. The width 
of an interval Xi is denoted by wid(xi) = cci — xj^ and its relative width by 
^^^relat(^*) ~ wid(x i ) /min{ |x i | : Xi G Xi} if 0 ^ x^ and wid{xi) otherwise. 
The width of an interval vector x = ( x i , . . . ,x^)-'^ is to be understood as 
wid(x) = max{wid(xi) : z = 1 , . . . , n } . The set of intervals will be denoted by 
IR, and the set of n-dimensional interval vectors, also called boxes, by IR"^. 

The interval arithmetic operations are defined by 

X * 2/ = {x * y : x G X, y € 2/} for X, y G IR, (3) 

where the symbol * stands for + , —, • and / , and where x/y is only defined if 
0 0 2/. Definition (3) is equivalent to simple constructive rules (see [23, 30, 39]). 
The algebraic properties of (3) are different from those of real arithmetic 
operations, but the main properties from the operational point of view still 
hold, as for instance the inclusion isotonicity, 

X Cy^z Ct =^ x^zCy^t {if y^t is defined) for x , y,z,t e IR. 

Inclusion isotonicity is implicitly used in the construction of inclusion func­
tions, which are the main interval arithmetic tool applied to optimization 
methods. 

Defini t ion 3 . A function f : IR'^ -^ IR is said to be an inclusion function of 
f :W ^ R provided {f{y) : y e y} C f{y) for all boxes y C IR"" within the 
domain of f. 

Observe that if / is an inclusion function for / then we can directly obtain 
lower bounds and upper bounds of / over any box y within the domain of / 
just by taking f{y) and / ( y ) , respectively. 

For a function h predeclared in some programming language (like sin, exp, 
etc.), it is not too difficult to obtain a predeclared inclusion function h. For 
a general function / ( y ) , y G R" ,̂ several methods can be employed to obtain 
inclusion functions. The easiest method to obtain an inclusion function is the 
natural interval extension, which is obtained by replacing each occurrence of 
the variable y with a box, y , including it; each occurrence of a predeclared 
function h by its corresponding inclusion function h; and the real arithmetic 
operators by the corresponding interval operators. 
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3.2 T h e P r o t o t y p e M e t h o d 

The prototype interval B&B algorithm for solving (1) is described in pseudo­
code form in Algorithm 1. In that algorithm, PQ denotes an initial box con­
taining the feasible set 5 , £ w is the working list and £ 5 the solution list. 

A l g o r i t h m 1 The prototype interval B&B algorithm 

while ( £ w 7̂  0 ) do 
Select an interval y from £vv Selection Rule 
Divide y into subintervals y^ , . . . , y^ Division Rule 
if {y^ cannot be discarded) Discarding Tests 

if (y^ satisfies the termination criterion) Termination Rule 
Store y^ in Cs 

else 
Store 2/i in £ w 

return Cs 

At the end of the algorithm, the boxes in the solution list £ 5 contain 
the whole efficient set SE- Different methods can be derived depending on the 
actual selection, division and termination rules and discarding tests employed. 
We describe below the details of each of these rules we used. 

3.3 Se lec t ion R u l e s 

Several rules for the selection of the next box to be processed can be used. In 
particular, we have worked with the following ones: 

Rule 1: Select the box y € £vv with minimum lower bound fAy). In the 
criterion space, this implies tha t ZN will be generated from left-top to 
right-bottom. 

Rule 2: Select the box y G Cy\; with minimum lower bound f Ay). In the 
criterion space, this implies tha t ZN will be generated from right-bottom 
to left-top. 

Rule 3: We first rescale the objective functions so tha t their objective val­
ues are of approximately the same magnitude. Ideally, the normalization 
process is done with the help of the ideal and nadir objective vectors. 

Def ini t ion 4. The ideal objective vector of problem (1) is a vector z" G 
R^ whose components z* are obtained by minimizing each of the objective 
functions individually subject to the original constraints of problem (1). 

Def ini t ion 5. The nadir objective vector of problem (1) is a vector z'^^^ € 
M^ giving the upper bounds of ZN . 
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Once the ideal and nadir objective vectors are known, we replace fi{y) by 

fijy) - < 
^nad _ -.* ' 

whose range is within [0,1]. However, since in practice those vectors are 
not known in advance, we propose the following normalization: 

where 
z* = min{/.(2/) : y € £w U Cs), 

i r ^ = m a x { / . ( 2 / ) : y G £ w U £ 5 } . 
The new selection rule that we propose is to select the box y € £w with 
minimum lower bound \n^{y) + (1 - A)n2(y), with A € [0,1] a given 
value. Depending on the actual value of A we explore first a given area of 
ZM ' Notice that this rule generalizes the previous ones (we can obtain the 
first rule by setting A = 1 and the second one when A = 0, see Figure 2). 

Fig. 2. Selection rules. 

Rule 4: We may alternate between different A-values in the previous rule from 
iteration to iteration. In this way, all the parts of the criterion space 
are generated in a more or less uniform way. In particular, to consider p 
different values, at iteration k we may set A = ~ i^^—~' 

3.4 Division Rules 

The most widely used division rule in interval B&B methods is the bisection 
of the box perpendicular to a direction of maximum width. We have used this 
same rule here. 
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3.5 D i s c a r d i n g Tes ts 

The tests for verifying that a box contains no efficient point form the most 
important part of Algorithm 1. We next briefly discuss the ones we have used 
here. 

Feas ib i l i ty T e s t : Let us suppose that S is given hy S = {y : hi(y) < 0,/ = 
l , . . . , r } . We say tha t a box y certainly satisfies the constraint hi{y) < 0 
if hi{y) < 0 and tha t y does certainly not satisfy it if hi{y) > 0. A box 
y Q Vo ^^ said certainly feasible if it certainly satisfies all the constraints, 
certainly infeasible if it does certainly not satisfy at least one of the constraints, 
and undetermined otherwise. A box y C J/Q is said certainly strictly feasible 
if hi{y) < OJ = l , . . . , r . The 'feasibility test ' [39] discards boxes that are 
certainly infeasible. It also provides information about the feasibility of a box. 
Notice that to apply this test we just need an inclusion function hi for each 
of the functions hi defining the constraints. To avoid unnecessary feasibility 
checks, we store with each box y a Boolean vector stating whether the box 
certainly (strictly) satisfies a constraint or not; when the box is split, the 
subboxes inherit this vector and in this way it is only necessary to do the 
checking for the constraints not certainly (strictly) satisfied by y. 

Mult i -ob jec t ive cut-off tes t : Every time a box y is chosen from the list 
£vy;, and provided that its midpoint c (as a point interval) is certainly feasi­
ble, we compute / ( c ) = ( / i ( c ) , / 2 ( c ) ) and update (if possible, i.e., if / ( c ) is 
not dominated by any point in CPES) the list CPES of 'provisional' efficient 
solution points available so far. The multiobjective cut-off test is the natural 
generalization to the multiobjective case of the classical 'cut-off test ' (also 
called 'midpoint test ' [39]), and discards boxes whose points are not efficient, 
i.e., a box y is removed if / ( y ) > z* for some z* G CpES- Also, a new box 
y must only be entered into £vv if fiv) ^ ^* holds for all z* G CPES- A 
similar idea has already been suggested in [3, 24, 44] for other non-interval 
B&B methods. 

3.6 Terminat ion R u l e s 

As termination rule, we sent a box y to Cs whenever 

(widrelat / i(2/) < ^\ ^nd widj.eiat/2(2/) < ^2) or wid(y) < €3. 

4 An Interval Lexicographical-Like Method 

The lexicographic method (see [18]) is used to obtain efficient solutions when 
the decision-maker has clear preferences on the objectives and can arrange 
the objective functions according to their absolute importance. In tha t case, 
the decision-maker does not want the whole efficient set, but just a small par t 
of it which reflects his/her preferences. 
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Although the classical method has good properties (any lexicographic so­
lution is efficient) it presents several drawbacks. In particular, it is very likely 
that the less important objective is not taken into consideration at all and it 
does not allow a small increment of the first objective to be traded off with 
a decrement of the second objective. Recently, in [47], a modification of that 
method has been proposed which solves those drawbacks. The new method is 
called J-lexicographic method, and works as follows. 

(^-lexicographic method 

1. The decision maker arranges the objective functions according to their 
absolute importance, / i , / 2 . 

2. The region R] of J-optimality of problem 

(Pi) min/i(y) s.t. yeS 

is calculated, where 

Rl = {y€S:h{y)-r,<Sfn, 

(J > 0 is a given value and /^ denotes the optimal value of (Pi). 
3. The second objective function is optimized subject to the original con­

straints and to a new one to guarantee the J-optimality of / i , that is, we 
solve the problem 

(Pf) min/2(2/) s.t. yGRl 

Any solution to this second problem is a S-lexicographic solution^ to be 
presented to the decision-maker as a solution of (1). 

As we can see, instead of solving problem (Pi) till optimality, as the clas­
sical lexicographic method does, now its region of J-optimality is obtained. 
In this way, a relative increment of S% in the first objective is allowed to be 
traded off with a decrement of the second objective. The theoretical properties 
of the new method are rather appealing. In particular, any efficient solution 
can be obtained by the J-lexicographic method (see [47]). 

On the other hand, from the locational point of view, for a decision-maker 
it is better to have a small region within which to choose the final location 
for the facility (taking other aspects not included in the formulation of the 
problem into account) than just a single efficient point. In order to be able 
to offer to the decision-maker such a small region, we propose that instead of 
solving (P2) till optimality, we obtain its region of ^-optimality, 

Rl^s) = {y^Rl- hiv) - fm < er^m, 

where / I (^) denotes the optimal value of (P^) and ^ > 0 is a given value. 

Definition 6. A feasible vector y* ^ S is said to be (J, ^)-efficient iff there 
exists an efficient vector y such that fi{y*) — fi{y) < ^fi{y) (^"^d f2{y*) — 
h{y) < 0f2{y). 
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Notice that the points in R^r^) are not necessarily efficient, but they are 
(J, ^)-efficient. For any fixed J, as used in the J-lexicographic method, closeness 
of a (J, ̂ )-efiicient point to an efficient point is determined by the parameter 
0 alone. Thus, the smaller the 0, the better. 

In [47] the authors present an interval B&B method to carry out the S-
lexicographic method. The same method can be used to obtain R^r^y The 
only changes to be done are: 

1. In the 'cut-off test due to the second objective function', now we can 
discard a box y provided that f_Ay) > /2(1 + ^) (where /2 is the best 
upper bound on the optimal value of (P2) known by the algorithm), and 

2. In the second call of the main procedure, we have to pass the parameter 
6 instead of 0, as the size for the region of ^-optimality for problem (P2 )• 

5 Computational Experiments 

All the computational results presented in this paper have been obtained 
on a PC with an Intel Pentium IV 2.33GHz processor and with 1 Gbyte 
RAM running under the Linux operating system. For the implementation we 
have used the interval arithmetic in the PROBIL/BIAS library [32] and the 
automatic differentiation of the C+H- toolbox library described in [22]. 

5.1 Usefulness of the Selection Rules 

The first part of the computational experiments studies the efficiency of the 
selection rules presented in Subsection 3.3. To do it, we have generated dif­
ferent types of problems, varying the number of demand points (n =20, 40 
or 60), the number of existing facilities (m =2, 3, 4 or 5) and the number 
among these belonging to the chain {k = 1 , . . . , ?TI — 1). For every type of 
setting 5 problems were generated, by randomly choosing the parameters of 
the problems uniformly within the following intervals: 

• u;i€[l ,10], 
• 7 i € [0.75,1.25], 
• aij e [0.5,5], 
• (t>iO = 00 = 2,0ii e [0.5,2], the parameters for ^i{dix) = ^* M~p7^+^ 

and Gi {x) = J2^^^ ^i(d^a,), 
• an G f7.9l.ai G f4,4.5l, the oarameters for Go(a) = e^"^""^ - e"^^ ao € [7,9],ai € [4,4.5], the parameters for ^2(0^) = e ^ — ^ i 

c e [1,2], the parameter for F(m(x,a)) = c • m(x,a) , 
61,62 G [1,2], parameters for dix = y/bi{xi - p a ) ^ + ^2(2^2-Pi2)^ (see 
fl3lV 
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The searching space for every problem was 

xe [0,10]^ ae [0.5,5]. 

The tolerances used for the interval B&B method were ei = €2 = 63 = 0.05. 

Table 1. Efficiency of the selection rules 

\(n^m,k) 
20,2,1 
20,3,1 
20,3,2 
20,4,1 
20,4,2 
20,4,3 

Average 
40,2,1 
40,3,1 
40,3,2 
40,4,1 
40,4,2 
40,4,3 
40,5,1 
40,5,2 
40,5,3 
40,5,4 

Average 
60,2,1 
60,3,1 
60,3,2 
60,4,1 
60,4,2 
60,4,3 
60,5,1 
60,5,2 
60,5,3 
60,5,4 

Average 
Glob.Av 

CPU Time 
Rl R2 R3 R4 

1053.2 90.7% 89.3% 143.1% 
803.0 97.9% 110.4% 96.0% 

1486.0 109.4% 113.4% 102.7% 
1248.2 103.7% 111.0% 101.7% 
849.6 113.4% 128.0% 117.4% 
749.0 112.6% 132.6% 120.5% 

1031.5 104.5% 112.8% 112.7% 
301.5 107.3% 123.9% 106.6% 
492.9 107.8% 123.1% 104.3% 
489.9 97.7% 123.1% 102.7% 
280.3 90.1% 122.1% 93.4% 
524.3 100.0% 119.7% 104.7% 

1287.0 109.1% 131.5% 114.6% 
981.9 89.2% 112.9% 93.1% 
703.1 93.4% 110.0% 96.0% 
321.1 94.2% 117.7% 93.7% 
691.5 141.4% 166.5% 168.6% 
607.3 104.2% 126.1% 110.0% 
104.8 99.0% 114.0% 105.0% 
339.5 108.3% 120.1% 103.4% 
223.3 103.2% 135.7% 102.9% 
190.1 87.4% 106.9% 88.3% 
833.8 107.1% 125.2% 109.9% 
888.0 111.1% 138.9% 111.0% 
660.7 85.3% 119.1% 92.6% 
304.0 80.2% 108.6% 87.8% 
360.7 88.9% 111.9% 94.1% 
610.7 123.3% 133.5% 129.3% 
451.6 102.5% 125.1% 105.6% 
645.3 103.9% 120.9% 109.8% 

Max list length 
Rl R2 R3 R4 

4964 199.5% 318.7% 388.7% 
6531 177.3% 257.3% 228.6% 
7572 195.2% 293.5% 242.8% 

10955 151.9% 219.6% 203.7% 
11113 212.8% 239.6% 243.0% 
8439 203.1% 266.7% 260.2% 
8262 189.0% 258.3% 249.9% 
4124 211.4% 317.6% 254.9% 
5320 210.6% 288.7% 240.3% 
4999 220.8% 315.9% 264.2% 

10411 151.5% 182.2% 161.1% 
9347 172.8% 222.6% 194.0% 

10341 229.9% 309.5% 282.0% 
20612 134.8% 172.5% 144.7% 

9836 154.5% 191.7% 182.8% 
9197 182.1% 205.8% 187.2% 

10042 306.4% 313.7% 372.9% 
9423 188.0% 234.4% 215.5% 
3424 135.5% 163.8% 164.3% 
9183 143.5% 174.1% 149.8% 
4592 196.8% 272.0% 216.9% 
9503 117.6% 142.1% 128.1% 
7412 184.8% 250.4% 224.4% 
4697 246.2% 401.8% 311.7% 

17794 130.2% 179.2% 143.3% 
14020 132.2% 148.3% 140.6% 
14112 137.1% 159.0% 151.9% 

7695 282.9% 292.1% 314.2% 
9243 158.1% 197.6% 177.0% 
9086 176.5% 225.0% 207.6% 

All the problems were solved four times by the interval B&B method: using 
each selection rule in turn. The results are shown in Table 1. The columns 'Ri' 
refer to the results obtained when using selection rule 'i'. In rule 3, we have 
set A = 0.5. In the fourth selection rule, we have used p = 10 different values 
of A. The values in the table are averages over the five problem instances in 
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each setting {n^m^k). We give first results about CPU time. In column Rl 
we give CPU times in seconds observed when using Rl , while for the other 
selection rules we give their relative times as compared to Rl . Next, we give 
the maximum number of boxes stored in memory at any time by the algorithm, 
following the same structure as for the CPU time. 

CPU times obtained by rules Rl and R2 are very similar, and they both 
are slightly better than for rule R4. R3 is significatively the worst rule. As 
for the maximum number of boxes stored in memory at any time by the 
algorithm, we see clearly that Rl is the best rule: it uses half the space of 
R4, and the difference is even larger with R3, which is the worst rule. R2 also 
needs 176.5% more space than Rl . The explanation for this last fact seems to 
be that the width of the range of /2 at the solution boxes is usually greater 
than the corresponding range of / i (see Table 2), thus the multi-objective 
cut-off test will more easily discard boxes when using Rl than when using R2 
(or any other rule). 

This clearly shows that rule Rl is the best for handling our competitive 
location problems. In the rest of the experiments in this paper, we have always 
used rule Rl . 

5.2 Branch and Bound vs. Lexicographic Method 

Let us now try to compare the information obtained by the interval branch-
and-bound method introduced in Section 3 and the modification of the 6-
lexicographic method described in Section 4. Observe first that these methods 
are not directly comparable, since they do very different things: whereas the 
former obtains the 'whole' efficient set, the latter just gives a 'small part' of it. 
That is why we highlight the different kind of information that they provide. 

Figure 3 shows the solution boxes (projected in the location space) and 
their image in criterion space obtained by each algorithm in one of the in­
stances. As we can see, the nondominated set in criterion space can have a 
disconnected shape. Accordingly, the efficient set may also be disconnected. 
This clearly illustrates the difficulty of finding the complete efficient set to this 
kind of location problems. Notice also that (most of) the region -RL^N offered 
by the modified J-lexicographic method is included in the solution set offered 
by the interval B&B method (which, we recall, contains the complete efficient 
set); in fact, in all our instances, it was a proper subset of it. This confirms 
that by choosing an appropriate 0 the points in R^(§) are either efficient or lie 
very near efficient points. 

In our computational study we have used the same problems as in previous 
subsection. The tolerances used for the interval B&B method were ei = 62 = 
€3 = 0.05, and for the modified (^-lexicographic method S = 0.1 and 9 = 0.01. 
The results are summarized in Table 2. As before, the given values are averages 
over the five problems in each setting {n,m,k). For each algorithm ('Lexic' 
refers the the modified (5-lexicographic method and 'B&B' to the interval 
B&B method) we give the CPU time (in seconds), the area covered by the 
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Fig. 3 . Solution of an instance by the methods. The dotted circles correspond to 
the forbidden areas surrounding the demand points; the crosses X and the solid 
points • represent the locations of the existing facilities. The top-left figure is the 
projection on the location space of the efficient set (in a grey scale) obtained by the 
interval B&B; the bottom-left figure is the projection on the location space of the 
solution boxes (in black) offered by the modified ^-lexicographic method (they are 
pointed with an arrow); in the right picture, we have the corresponding images in 
the solution space. 
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Table 2. Study of the information provided by the modified 5-lexicographic method 
and the interval B&B method. 

{n,m,k) 
20,2,1 
20,3,1 
20,3,2 
20,4,1 
20,4,2 
20,4,3 

Average 
40,2,1 
40,3,1 
40,3,2 
40,4,1 
40,4,2 
40,4,3 
40,5,1 
40,5,2 
40,5,3 
40,5,4 

Average 
60,2,1 
60,3,1 
60,3,2 
60,4,1 
60,4,2 
60,4,3 
60,5,1 
60,5,2 
60,5,3 
60,5,4 

Average 
Glob.Av 

CPU time 
Lexic B&B 

5.18 1053.2 
6.36 803.0 
4.90 1486.0 
8.05 1248.2 
5.14 
6.49 

849.6 
749.0 

6.02 1031.5 
21.48 
20.13 
18.81 
34.09 
20.45 

301.5 
492.9 
489.9 
280.3 
524.3 

14.43 1287.0 
30.47 
26.34 
22.04 
14.22 
22.25 
30.11 
44.81 
20.31 
57.84 
31.75 
20.72 
51.69 
48.85 
45.36 
25.78 
37.72 
24.45 

981.9 
703.1 
321.1 
691.5 
607.3 
104.8 
339.5 
223.3 
190.1 
833.8 
888.0 
660.7 
304.0 
360.7 
610.7 
451.6 
645.3 

size of solution boxes 
x-space a-space 

Lexic B&B Lexic B&B 
0.18 
0.04 
0.06 
0.09 
0.03 
0.10 
0.08 
0.77 
0.73 
0.32 
0.59 
0.16 
0.10 
0.03 
0.29 
0.17 
0.03 
0.32 
1.15 
0.73 
0.08 
1.00 
0.24 
0.20 
0.27 
0.38 
0.19 
0.06 
0.43 
0.31 

1.20 
0.71 
1.33 
0.92 
0.65 
0.85 
0.94 
1.13 
1.18 
1.83 
0.98 
1.02 
1.86 
1.01 
1.06 
1.38 
2.32 
1.38 
1.15 
0.71 
1.59 
0.84 
1.82 
1.68 
0.99 
0.60 
1.19 
2.36 
1.29 
1.24 

0.16 
0.15 
0.15 
0.15 
0.06 
0.13 
0.13 
0.75 
0.66 
0.41 
0.52 
0.30 
0.35 
0.27 
0.25 
0.65 
0.26 
0.44 
0.61 
0.33 
0.15 
0.45 
0.43 
0.21 
0.56 
0.61 
0.69 
0.26 
0.43 
0.37 

3.59 
2.86 
3.48 
3.64 
3.70 
3.48 
3.46 
1.07 
1.24 
1.20 
0.87 
2.03 
1.78 
2.38 
1.78 
0.77 
1.45 
1.46 
0.40 
0.41 
0.38 
0.46 
1.11 
1.17 
1.50 
1.20 
0.88 
0.85 
0.84 
1.68 

width of range at 

/ i 

Lexic B&B Lexic 
1.00 
0.94 
0.62 
1.45 
0.71 
0.72 
0.91 
4.88 
6.84 
1.57 
6.16 
1.43 
1.16 
4.06 
2.66 
4.66 
0.81 
3.42 

17.99 
18.62 
13.79 
20.71 
21.37 
10.54 
17.17 
12.51 
19.79 
13.66 
16.93 
16.19 
12.15 
30.52 
23.09 
17.78 
18.87 
18.15 

10.80 10.71 
8.20 
1.46 
9.82 
4.74 
1.39 
8.09 
8.05 
5.67 
1.92 
6.01 
3.84 

9.35 
20.87 
10.52 
24.67 
12.83 
25.98 
19.15 
15.72 
11.21 
16.10 
17.13 

0.88 
1.10 
1.41 
2.60 
1.26 
1.64 
1.48 
1.77 
2.91 
1.18 
2.12 
1.15 
1.45 
1.87 
1.26 
1.39 
1.14 
1.63 
5.90 
3.27 
1.92 
2.93 
1.82 
2.01 
1.90 
2.32 
2.07 
1.57 
2.57 
1.96 

^yecsv] 
/ 2 

B&B 
39.89 
21.50 
35.88 
28.07 
28.33 
27.18 
30.14 
14.05 
13.87 
27.88 
9.17 
18.92 
26.86 
18.78 
20.58 
12.23 
33.74 
19.61 
18.57 
7.21 

22.43 
8.06 
22.31 
37.31 
14.20 
12.81 
18.81 j 
37.28 
19.90 
22.15 

solution boxes when they are projected to the location space (i.e., the area of 
^yeCsP'^^3x{y))', the width of the interval containing the possible values of a 
(obtained by projecting the solution boxes to the a-space, i.e., the width of 
^yeCsP'^^Jaiy))', and the width of the range of / i and /2 at the solution set 
offered by each algorithm. 

As was to be expected, Lexic is much faster than B&B. However, notice 
that CPU-time increases with n for Lexic, while the converse holds for B&B. 
For Lexic, and for a fixed pair (n, m), the CPU time decreases as k increases; 
this is so, because usually the region of ^-optimality R\ becomes smaller as k 
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increases, as we can see from the columns giving the size of the solution boxes 
and the width of the range. Notice also tha t for Lexic, for a fixed n, the CPU 
times for the problems with k = m — 1 are very similar. 

As for the area covered by the solution boxes, notice tha t it increases with 
n both in a:-space and in a-space for Lexic. However, the area in x-space is 
more or less constant for B&B, whereas in a-space it decreases as n increases. 
Notice also tha t with B&B, for fixed (n, m) , the x-space area usually increases 
with k. In all cases, we can see that the area covered by the solution boxes, 
both in x-space and a-space, is much smaller (from 3 to 10 times) for Lexic 
than for B&B, which clearly shows that Lexic only finds a small par t of the 
efficient set. 

Something similar can be said about the width of the ranges of both func­
tions at the solution boxes offered by the algorithms. Again, the range for 
Lexic is from 3 to 20 times smaller than for B&B for / i , and the difference is 
even higher for /2 . Wi th Lexic the ranges increase with n; for a fixed (n,m) 
the ranges decrease as k increases; and for a fixed n the ranges foik = m — l 
are similar. Wi th B&B, the range of / i is more or less constant for all the 
settings, whereas the range of /2 seems to decrease; and for a fixed (n, m) the 
ranges of / i usually decrease as k increases, while the converse holds for,/2. 
This means tha t the greater the presence of the chain in the area, the more 
variable can be the profit obtained by the franchisee in the efficient set. 

5.3 Economica l Ana lys i s of t h e M o d e l 

In this subsection, we try to obtain supplementary sensitivity information 
when modifying some of the parameters in the model or when adding some 
additional constraints to it. This may be viewed as an exploratory analysis 
of some of the economical implications of the model proposed. The aim is to 
get a deeper knowledge of the interactions between the different elements of 
the model tha t can adjust it to real applications. We use here some of the 
instances of the previous subsection. 

First, we have studied the variation in the range of one of the objectives 
in a region of J-optimality of the other objective for four different values of 
S. The results are given in Table 3. Each pair of columns refers to one of the 
instances. In the columns called f2{Fi\) we give the exact range of /2 at R\. 
The lower bound of this interval is just the solution of (Pf) provided by the 
J-lexicographic method; the upper bound has been estimated by solving the 
problem 

max /2 (x ) s.t. X ^ R \ 

To solve that problem we need to obtain the whole region of (^-optimality; for 
this, we have used the main procedure of the J-lexicographic method without 
the 'cut-off test due to the second objective function' [47]. Analogously, fi(R^) 
gives the range of / i at the region of J-optimality i^ | of problem 

min/2(a;) s.t. x £ S 
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Table 3. Study of the variation in the range of one of the objectives in a region of 
(5-optiniaUty of the other objective. 

(20^3) WM) (eojA) 
6 f2{Rl) fijR's) f2{Rl) MR's) f2{Rl) hJR's) 

0.01 [ 13.7, 40.0] [166.7,168.6] [ 35.1, 42.2] [358.5,361.7] [ 82.6, 94.7] [537.3,540.6] 
0.05 [ 11.8, 43.3] [165.4,169.7] [ 31.5, 47.6] [356.9,362.9] [ 78.3,116.0] [534.8,541.9] 
0.10 [ 10.2, 46.7] [164.3,171.3] [ 28.6, 92.8] [355.4,363.5] [ 73.4,127.1] [532.5,543.7] 
0.15 [ 8.5, 52.7] [163.6,171.7] [ 25.9,101.3] [354.3,363.7] [ 66.2,137.7] [530.6,545.4] 

As should be, the ranges increase with S: e.g. R] C R], when S < S' . 
However, notice that the f2{Rs) ranges increase much more than the fi(Rl) 
ranges. Also, the width of the f2{Rs) ranges are much bigger than the width 
of the fi{R^) ranges. This indicates tha t there are efficient points offering 
similar values for the first objective but quite different for the second. Thus, 
in a negotiation between the franchisor and the franchisee to decide the final 
location, the franchisor has a much more comfortable situation. 

Table 4. Sensitivity of the objectives to the size of the forbidden regions 

(20 ,4 ,3) (40,5 ,4) (60 ,5 ,4) 

/ / 2 ( / r ^ ) / i ( / 2 ~ ' ) / 2 ( / r ' ) / i ( / 2 ~ ' ) / 2 ( / r ' ) / i ( /2~M 
_ ^ r = 0 

[0%,25%] [32.0,43.1] [167.4,170.6] [44.7,61.8] [402.0,415.0] [86.8,117.8] [539.5,543.8] 
[25%, 50%) [42.8,44.6] [170.5,171.6] [61.5,70.3] [414.8,421.8] [117.1,130.7] [543.6,547.4] 
[50%, 75%] [44.3,46.8] [171.6,171.8] [70.0,77.9] [421.6,427.4] [129.9,142.4] [547.2,549.1] 

[75%, 100%) [46.5,47.3] [171.8,171.9] [77.7,79.6] [427.1,428.8] [141.5,152.0] [549.0,550.3] 
r = 1 

[0%,25%j [32.0,43.1] [167.4,170.6] [44.7,61.8] [402.0,415.0] [86.8,116.9] [540.2,544.2] 
[25%, 50%) [42.8,44.6] [170.5,171.6] [61.5,70.3] [414.8,421.8] [116.1,129.2] [544.0,547.6] 
[50%, 75%] [44.3,46.8] [171.6,171.8] [70.0,77.9] [421.6,427.4] [128.4,140.2] [547.4,549.1] 

[75%, 100%) [46.5,47.3] [171.8,171.9] [77.7,79.6] [427.1,428.8] [139.4,149.6] [549.0,550.3] 
r = 2 

[0%,25%] [40.2,43.7] [167.7,169.3] [42.2,62.1] [401.5,415.7] [86.3,119.1] [538.7,547.4] 
[25%, 50%] [43.4,44.6] [169.2,170.6] [61.1,70.8] [415.1,423.0] [117.3,128.0] [547.0,548.8] 
[50%, 75%] [44.3,46.5] [170.4,171.1] [69.9,78.1] [422.2,428.2] [l26.7,130.3] [548.6,549.3] 

[75%, 100%] [46.2,46.9] [171.1,171.4] [77.7,79.3] [427.6,428.8] [129.4,130.7] [548.9,550.4] 

In our second analysis we investigated how the addition of circular forbid­
den regions around the existing franchise-owned facilities affects both objec­
tives, depending on the radii of the forbidden regions. The addition of this 
kind of constraints is a common technique in franchise systems to avoid tha t 
the existing facilities loose too much of their market share [47]. We have used 
the same instances as in the previous study. Table 4 gives a summary of the 
results obtained for three different radii r of the circular forbidden regions. 

The columns / 2 ( / i ) give the range for the values of /2 on those efficient 
points at which / i takes values within / = [a%,6%] of its efficiency range 
fii^E)' The columns / i ( / ^ ^ ) give similar figures, but interchanging both 
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functions. For any given r, once we have obtained the whole efficient set of 
the constrained problem with the interval B&B method this information can 
be obtained easily for any choice of / = [a%,b%]. Thus, each pair of 4-row 
subcolumns of Table 4 is obtained after a single B&B run, and shows only 
part of the full information provided by the run. In fact using the / i ( / ^ ^ ) 
and /2(/i~^) ranges given allows to reconstruct a coarser approximation of 
the efficient set, as shown in Figure 4. 

Fig. 4. Approximate efficient set for the instance (40,5,4), when r = 2 

As we can see from Table 4, in the chosen instances, the influence of the 
forbidden regions around the existing chain-owned facilities is quite small. In 
these instances the efficient set in the unconstrained problems lies far from 
the existing chain-owned facilities; thus, the addition of the constraints does 
not affect the solution much. When the constraints do have some influence 
(specially for the case r = 2), it mainly reduces the range of /i(/2~^)-

Our last experiment dealt with the sensitivity of both objectives when the 
franchisee has a limited budget, tha t is, we now have an additional constraint 
of the form (j(a:,a) < B, where B is the available budget. We have again 
used the same instances as before and the results are presented in Table 5. 
Now, 'Reduction oi B = 6%' refers to the reduction (in percentage) in the 
budget B as compared to the original budget needed for locating and running 
the facility in the unconstrained case (which corresponds to the case r = 0 of 
the previous table). The meaning of the columns is the same as in Table 4. 
As before this information can be obtained easily once we have obtained the 
whole efficient set of the constrained problem with the interval B&;B method. 

100% 0%

0%

25%

50%

75%

75% 50% 25%
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Table 5. Sensitivity of the objectives to the limited budget 
(20,4 ,3) (40 ,5 ,4) (60 ,5 ,4) 

/ /2(/r') fiif^') /2(/r') /i(/2-') /2(/r') hu^') 
Reduction of B = 10% 

[0%,25%] [14.5,43.3] [167.4,171.7] [42.3,62.3] [401.6,414.0] [86.8,120.5] [537.6,544.3] 
[25%, 50%] [43.0,44.6] [171.6,171.7] [61.9,68.4] [413.6,422.9] [119.8,135.1] [544.1,547.6] 
[50%, 75%] [44.3,46.8] - [68.1,77.8] [422.6,427.3] [134.2,143.7] [547.5,549.1] 

[75%, 100%] [46.6,47.3] [171.6,171.8] [77.6,78.3] [427.0,427.9] [142.9,149.2] [549.0,550.3] 
Reduction of B = 20% 

[0%,25%] [14.3,43.3] [167.4,171.1] [41.6,58.4] [404.7,411.1] [86.8,122.6] [534.6,544.4] 
[25%, 50%] [43.0,44.6] - [57.8,63.8] [410.8,421.0] [121.9,131.4] [544.1,548.2] 
[50%, 75%] [44.3,46.8] - [63.5,68.3] [420.7,425.5] [130.7,136.6] [548.1,549.1] 

[75%, 100%] [46.6,47.3] [171.0,171.8] [67.7,75.2] [425.2,426.5] [135.8,141.6] [549.0,550.3] 
Reduction of J3 = 30% 

[0%,25%] [16.9,44.1] [167.6,170.4] [39.0,53.9] [402.3,407.5] [84.9,115.7] [530.7,543.9] 
[25%, 50%] [44.0,44.6] - [53.3,59.6] [407.1,418.6] [114.8,123.2] [543.5,547.0] 
[50%, 75%] [44.5,46.8] - [59.2,61.4] [418.2,423.0] [122.5,125.6] [546.8,548.3] 

[75%, 100%] [46.7,47.3] [170.4,171.1] [60.7,69.9] [422.6,424.6] [124.9,128.3] [548.1,549.2] 
Reduction of B = 40% 

[0%,25%] [18.7,22.4] [167.4,169.5] [33.4,47.2] [398.6,403.4] [79.5,104.1] [532.7,543.4] 
[25%, 50%] [22.0,44.6] - [46.5,53.2] [402.8,415.7] [103.2,109.5] [543.0,545.0] 
[50%, 75%] [44.5,45.7] - [52.7,54.3] [415.3,419.2] [108.7,110.6] [544.8,545.5] 

[75%, 100%] [45.4,47.2] [169.5,170.4] [53.8,61.7] [418.7,421.7] [110.0,110.7] [545.3,546.3] 
Reduction of B = 50% 

[0%,25%] [19.5,22.5] [166.3,168.4] [21.9,39.5] [395.0,405.6] [70.2,89.9] [533.3,541.0] 
[25%, 50%] [22.1,43.6] - [38.6,43.7] [397.6,412.4] [88.9,92.4] [540.6,542.1] 
[50%, 75%] [43.5,44.6] - [43.0,44.0] [412.0,415.1] [91.6,93.5] [541.9,542.2] 

[75%, 100%] [44.3,46.0] [168.4,169.5] [43.3,50.9] [414.6,416.3] [92.8, 93.6] [542.0,542.4] 

The influence of the budget constraint is now clearly noticeable. For exam­
ple, in the (20,4,3) problem, the two first quarter ranges for /i(/2~^) £̂ re quite 
different when we the budget cut increases from B = 30% to 40%. See also in 
the problem (41,50,5) the ranges fi{f2^) for / = [50%, 75%] and [75%, 100%] 
when we change from B = 10% to 20% or the changes in the fi{f^^) ranges 
in the (60,5,4) example. 

Observe also from Table 5 that some of the /2(/i~^) ranges for the (20,4,3) 
problem are empty (they are represented by a ' - ' ) . This is because in that 
problem the efficient set is disconnected (similar to figure 3): there are no 
efficient points at which /2 take values within interval / . 

6 Conclusions and Future Research 

We have shown how to tackle a particular biobjective location problem with 
difficult nonlinear objective functions. Interval-analysis based B&B methods 
designed for standard single objective global optimization were adapted to 
obtain good approximations of either some efficient points, or of the whole ef­
ficient set. Clearly the presented interval B&B method and the J-lexicographic 
method may be applied to any biobjective problem, not only to the particular 
one presented here. 

It should be stressed that our interval B&B method is a practical method 
able to obtain a superset containing the complete efficient set of any (nonlin-
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ear) biobjective problem. In the particular 3-dimensional setting used here the 
computational burden remained very acceptable. How the method will behave 
in higher dimension remains to be investigated. It is to be expected that the 
efficient set will grow in size, however, with a corresponding growth in compu­
tation time and memory usage. This also holds for multiple objective settings. 
Therefore the tests used in our prototype B & B method should be improved, 
and more sophisticated pruning tests are currently under investigation. 

The analysis in our last section gives an indication of the wealth of infor­
mation obtained by the methods. For the particular application in competitive 
location used here this kind of analysis should be very useful, e.g. in a nego­
tiation between the franchisor and the franchisee, in which the former might 
want to convince the latter through some payment to compensate for a lesser 
income in order for the whole chain to have a larger profit. Having the com­
plete efficient set, and its corresponding two-dimensional graph in the criterion 
space, may help to reach an agreement, since each can know by how much 
one of them improves while the other loses. Further exploitation of this type 
of information is currently under study. 
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Summary . In this paper we describe how robot trajectory planning, using cubic 
splines to generate the trajectory, can be formulated as standard semi-infinite pro­
gramming (SIP) problems and efficiently solved by a discretization method. These 
formulated problems were coded in the publicly available SIPAMPL environment 
and to allow the codification of these problems a cubic splines dynamic library for 
AMPL was developed. The discretization method used to solve the formulated prob­
lems is implemented in the NSIPS solver and numerical results with four particular 
problems are shown. 

1 Introduction 

In the last decades many engineering problems have been formulated as semi-
infinite programming problems (cf. [9]), and robot trajectory planning ([7, 8, 
10, 11, 12, 14]) is not an exception. 

In robot trajectory planning two major approaches can be considered. In 
the first one, the robot trajectory is known a priori and the optimization con­
sists of computing the best reparametrization of the trajectory, by minimiz­
ing the total travel t ime (or energy consumption), while some robot physical 
limitations are taken into consideration (maximum velocity, acceleration and 
torque of the links). The reparametrization is obtained by using B-Splines that 
depend on a set of control points. The second approach consists of finding the 
robot trajectory, where only a set of via points are known. These points are 
interpolated by the trajectory of the robot and since B-Splines are not inter­
polation functions the use of cubic splines (C-Splines) is more appropriate. 
The optimization consists in minimizing the total travel time when passing 
through the given trajectory points, subject to the robot physical limitations. 

Some recent available tools [16, 18] have provided an easy and fast way of 
coding and solving SIP problems, by taking advantage of available modeling 
software (AMPL [9]). The SIPAMPL package relies on the AMPL modeling 
software, which provides the most used mathematical functions (exp, sin, cos, 
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etc) for coding mathematical problems as well as automatic differentiation. 
To allow the codification of the reparametrization optimal trajectory planning 
problems, an external B-Spline dynamic library was built for AMPL [15]. 

In this paper we will describe how robot trajectory planning problems (us­
ing C-Splines to generate the trajectory) formulated as semi-infinite program­
ming problems can be coded in AMPL and efficiently solved by a discretization 
method. This formulation follows the ideas in [7, 10, 11]. 

The B-Splines library publicly available in SIPAMPL is now extended to 
include the C-Splines. The new library is now called Splines and includes both 
the B and C-Splines. 

We start in Section 2 with a brief introduction on the trajectory definition. 
Section 3 will be devoted to presenting the robotics problems formulated as 
SIP problems. Section 4 presents the C-Splines and Section 5 shows the coded 
problems for which we present some numerical results (in Section 6). Some 
conclusions are presented in the last section. 

2 Trajectory Definition 

For a brief review of robotics mechanics and control we refer to [2]. 
A robot can be schematically represented as a sequence of rigid links (arms) 

connected by joints. In the most schematic form, a link can be represented as a 
rigid body of length d and mass m, thus di^ rrii represent the length and mass 
of the zth robot link. Some mechanical devices provide the joint torque which 
move the links. The number of joints which can be independently actuated 
defines the manipulator degrees of freedom (d.o.f.). Often, all joints can be 
independently controlled, so that the manipulator d.o.f. coincide with the 
number of joints. Each degree of freedom is associated to an independent 
variable Oi,i = 1,2,...,/, where / is the number of d.o.f.. 

Let us define the manipulator joint space as the space where joint variables 
6i can span 

Evidently, vector 9 completely defines the manipulator position in the carte­
sian space. Since the robot position (d.o.f. values) varies, we can define the 
path as a curve 

9{T)^[er{T),92{T),...A{r)f, r€[0,Tf], (1) 

parametrized by r , where r / is the total travel time. 
Possible constraints applied to the parametric curve are: 

• given initial and final velocities, 

- ( 0 ) = . , and ^ ( r / ) = ^/ 
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• given initial and j&nal accelerations, 

— {0) = ai and —(rf) = af. 

3 Optimal Cubic Polynomial Joint Trajectories 

The problem can be formulated as follows. Let us suppose that the designed 
trajectory has to cross n assigned via (or knot) points in the cartesian space. 
These points can be converted into joint space via points by solving an inverse 
kinematics problem, see [3], thus obtaining 

9{To),e{ri),.--,0{Tn), 

where the generic 0{Ti) is defined according to (1). The optimization consists 
of finding the minimal total displacements time that fits the joint trajectory 
by using cubic splines constrained to velocity, acceleration, jerk and torque 
bounds. Let to < ti < - • - < tn he a time sequence where ti represents the 
time instant associated to the manipulator position 0{ri). Let hi = ^i — to, 
^2 = h — hy "') hn = tn — tn-i be the time displacements. Introduce a 
different cubic spline segment Qij for each time displacement hj and for each 
joint variable Oi. Identify by Qi{t), t € [to,tn] the overall trajectory of joint z, 
obtained by concatenating Qij for ji = 1,2,..., n. 

We will use the notation Q\t) = - ^ ^ for the derivative. 
We are thus led to consider the optimization problem: 

M ^ n. ^ 
(2) 

mm 
3 = 1 

s.t \Qm<Ci,i 

\Qnt)\<Ci,2 
\QT{t)\<c,,s 

hj > 0 , j = l , . . . ,n 

VtG[to,M 

where C^ î, Ci,2j Q,3 and Ci are the bounds for the velocity, acceleration, jerk 
and torque, respectively, on joint i. 

The optimization (2) falls into the category of what is usually called a 
generalized semi-infinite programming problem (cf. [15]). Notice that t ranges 
over [to, tn], an interval that depends implicitly on the decision variables hj's. 

The expression for the ith. joint torque is 
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Fi{t) = JiUiQ'lit) + BiUiQ'iit) + - \Y,^ij{Q{t))Q';{t) 
Ui 

I I 

.i=i 

j=i k=i 

where J^, n^, Bi, Iij{')^ ^ijki') s-nd di{') have the usual meaning (cf. [15]). 
In [10], an optimization of cubic polynomial joint trajectory is proposed, 

based on this formulation with bound constraints on velocity, acceleration and 
jerk. Initial and final velocities and accelerations were given. The optimization 
problem was solved with a Nelder and Mead [19] polyhedron search applied to 
the objective function and a technique that converts an infeasible vertex into 
a feasible one by a simple procedure that consists of multiplying the infeasible 
vertex by a suitable scalar. In a later paper, De Luca et al. [11] proposed 
an approach to solve a similar problem where the bound constraints were on 
velocity and torque and only the initial and final accelerations are imposed. De 
Luca et al. applied the algorithm from Gonzaga et al. [6] to the generalized SIP 
problem. Since the implemented algorithm needs first derivatives, De Luca et 
al. developed a sensitivity approach to the C-Splines. Guarino Lo Bianco and 
Piazzi [7] proposed an approach based on the generalized SIP problem with 
bound constraints on linear and angular velocities, and torque. The proposed 
genetic algorithm is applied to a penalty function computed by means of 
interval analysis. 

By using the linear transformation t = r X]fc=i f̂c + 0̂̂  the generalized SIP 
problem (2) can be reformulated in the form 

min >^ h, 

s.t. 

3 = 1 

(3) 

Filr^hk + toj 

hj > 0, j = l,. . . ,n 

V r € [0,1]. 
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This new problem fits into the category of what is usually called a stan­
dard SIP problem. Notice that r ranges over the fixed interval [0,1]. For SIP 
problems of this type one can apply the tools presented recently in [16, 18]. 

4 Cubic Splines 

In this section, we assume that we are dealing with only one joint of the robot, 
i.e., Q{t) is the function used to interpolate the trajectory at the 0{T) knots 
and (5j(t), j = 1 , . . . , n , are the cubic spline segments in [tj-i^tj], 

Given a finite number of da ta points, ^o = ^{^o)y ^i = ^{'^i)^ • • • ? ^n = 
0{rn)i a C-Spline is formed by n cubic polynomials {Qj{t), i = j , . . . ,n) tha t 
interpolate the given da ta points. The set of the Qj{t), j = l , . . . , n will 
provide a cubic interpolation at the given trajectory knots. Since Qj{t) are 
cubic polynomials, the second derivative with respect to t can be expressed as 

Qjit) = r^Mj_^ + rrr^Mj, j = i,...,n 

where Mj is the second derivative of 9{T) at TJ. Integrating Q'Ut) twice and 
imposing the conditions Qj(tj-i) = 9j-i and Qj{tj) = Oj results in the fol­
lowing interpolating functions: 

hj 6 

OA hiM, 

(tj-t) 

where hj = tj —tj-\. 
The C-Spline is completely defined if the M j , j = 0 , . . . ,n , are known. 

Problems to generate trajectories need to specify the first and second deriva­
tives at the extreme of the spline (initial and final velocities, and acceler­
ations). Imposing the continuity of the first derivative, Q'j{tj) = Ql+i(^j) , 
j = l , . . . , n — 1, results in a tridiagonal system from where the Mf, j = 
1 , . . . , n — 1, can be obtained. A natural C-Spline would be completely speci­
fied by considering MQ = a^, M^ = a / and therefore imposing the initial and 
final conditions on the velocities (^ ' (TQ) = Vi and ^ '(r^) = Vf) would not be 
possible. 

Two more degrees of freedom are necessary and the goal is achieved by 
considering two extra knots where the 0 values are not specified. Consider, 
without loss of generality, tha t t i and tn-i are the extra knots. Solving 

Q'l{to)=Vi, Q'n{tn) = Vf 
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for the two unknowns Oi and 6n-i results in 

C/l - C/o + m^i H ^ 1 ^— 

Un-l = f^n - Vftln H r \ . 

Replacing 9i and On-\ in the natural C-Spline tridiagonal system results 
in the new tridiagonal system 

/ Ml \ 
M2 

Mn-2 
\Mn-lj 

= B 

where the matrix A and the vector B are given respectively by: 

3hl +2h2+^ /12 

h 2 - ^ 2{h2 + hs) 

2{hj + / i j+i) hj^x j = 3 , . . . , n - 3 

hn-2 2{hn-2 +hn-\) hn-1 

3^n + 2 /1 . -1 + 7 ^ ; ^ y 

/fifO: ^{t2-^t)-^{^^^){0o^h,v, + !^)-h,Mo 

^ (̂ n - ^n-2 - .// .n + ^ ) - 6 ( ;^^^^^) 

When formulating an optimization problem involving cubic splines we may 
need to impose limits on the velocity, acceleration, jerk and torque, and there­
fore the derivatives of the C-Splines are requested. When solving the formu­
lated problem the first and second derivatives (with respect to the t and 
hj variables) of the constraints involving the C-Spline may be requested by 
AMPL. The C-Splines dynamic library, built for AMPL, only provides the 
first derivatives with respect to the t and hj variables and these formulae can 
be consulted in [17]. 

file:///Mn-lj
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5 Robotics Problems Coded in AMPL 

A library for AMPL to allow the codification of mathematical problems that 
use C-Splines is available and will be described in the following subsections. 
The C-Splines library can be used to code the optimal trajectory planning 
(SIP) problems that appear in robotics. 

In this section a brief introduction to AMPL is given. We also describe the 
C-Splines library for AMPL and give an example on how this library is used 
for coding the robotics problems. 

5.1 (SIP)AMPL 

AMPL [9] is a modelling language that allows the codification of mathemat­
ical programming problems. AMPL is a descriptive language and does not 
allow the direct programming of functions (no recursion is allowed) and the 
automatic differentiation is used only to obtain the derivatives of the objective 
function and constraints. 

The SIPAMPL package contains a database of more than one hundred 
and sixty SIP problems coded in (SIP)AMPL format and a set of interface 
routines to connect AMPL to any SIP solver (in particular to the NSIPS [18] 
solver). See [17] for the internet address where SIPAMPL is publicly available, 
and [16] for details concerning the (SIP)AMPL format. 

5.2 The Splines Library 

Some problems in mathematical programming resort to function approxima­
tion by splines [1]. The codification of such problems in AMPL can be very 
tedious if one needs to use several splines and their derivatives. 

AMPL has the ability to load a dynamic library and we made an extension 
to a previous B-Splines library [15] to include the C-Splines. The Splines 
library and installation procedure are available from the internet along with 
the SIPAMPL package. 

The library provides three functions, bspl ine and dbspline refer to the B-
Splines functions (see [15]). cspl ine provides the C-Spline and its derivatives 
to AMPL. The function syntax is: 

cspl ine (t, c/, n, /ii, /12, • • •, /̂ n, ^i, 6>2, •. •, ^n-i , Vi,Vf,ai,af) 

where t is the time instant where the cubic spline is to be computed and hi, 
. . . , hn are the time displacements, all defined as AMPL variables. 9i, . . . , 
On-i are the assigned knots, d is the derivative order (0 for the C-Spline, 1 
for the first, 2 for the second and 3 for the third derivative with respect to 
t), n is the number of subintervals, vi, Vf are the first and a ,̂ o/ the second 
derivatives at the boundaries (initial and final velocities, and accelerations). 
The latter arguments are defined as AMPL parameters. 
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cspl ine returns to AMPL the C-Spline (or the d order derivative) value 
at t and, if requested by the solver, the first derivatives of the C-Spline with 
respect to t, and hj variables. When an external function is required the 
function AMPL command must be used, before using the function itself. 

5.3 A Robotics Example 

Consider the following cubic splines trajectory planning problem. The total 
travel time is to be minimized while the velocity is to be bounded by constants 
(only one simple constraint is imposed, since the purpose is to illustrate how 
C-Splines can be used in AMPL, and not how to solve a real robotics problem) 

mm 
3 = 1 

s.t. -2<Q' [r^hj < 2 

hj > 0, Vr € [0,1]. 

The trajectory knots are 0, 0.5, 0.75, 1, 0.75, 1.5, Vi = Vf = 0, ô  = 13.880794 
and af = -0.415203. 

A possible codification of this problem in (SIP)AMPL format is the fol­
lowing: 

#declareusedexternalfuntioE 
functioncspline; 

#numberofcoefficients 

paramn:=7; 

#numberofknot s(nk=n-1) 

paramnk:=6; 
#knotsvector 

paramknots{l,.nk}; 

L 

#initialguessfortimedisplacements 

parainhinit{l. .n}; 

#timedisplacements 
varh{j inl..n}:=hinit[j]; 
#Infinitevariable 

vartau:=0; 
#initialandfinalvelocities, 

#accelerations 

paramvi:=0; 
paramvf:=0; 

paramai:=13.880794; 

paramaf:=-0.415203; 

and 

#definenewvariableforC-spline 

varg=cspline (tau* (s\iin{j inl. .n}(h[j])), 
l,n,{jinl..n}h[j],{jinl..nk}knots[j], 
vi,vf,ai,af); 

minimizeobj: 

(sum{jinl..n}(h[j])); 
subj ecttotcons: 

-2<=g<=2; 

subjecttobounds{jinl..n}: 

h[j]>=0.01; 

subj ecttotbounds: 
0<=tau<=l; 

data; 
#knots 

paramknots:= 

10 
20.5 
30.75 

41 
50.75 
61.5; 

#initialguess 

paramhinit:= 

11 
21 
30.5 
40.5 

50.5 

60.5 
70.5; 

#auxiliaryfilesforNSIPS 

optionnsips^auxfilesrc; 

#selectdiscretizationmethod 
#2Lndinitialgridspace 

optionnsips.options 
'method=disc_hettdisc_h=0.01 

#selectNSIPS 

optionsolvernsips; 
#solveproblem 

solve; 

#printthesolution 
printf"Solutionfound\n"; 
displayh; 

displayobj; 
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5.4 Coded SIP Problems 

The constraints /i^ > 0, j = 1 , , . . ,n, in (3) were replaced by hj > 0.01, 
j = 1 , . . . , n in all problems, to avoid the proximity of zero. 

The problem described in [10] was coded in the lin2.mod file. It describes 
an Unimate PUMA 560 type robot with 6 revolute joints were no torque limits 
are imposed. The problem is a minimum time trajectory planning with bound 
constraints on velocity, acceleration and jerk. The robot starts and ends in 
rest position {vi = Vf = ai = af = 0). The initial time intervals are h = 
[3.607,3.607,2.878,4.275,5.612,2.915,5.879,1.336,1.336], giving a total time 
of 31.445 seconds (to = 0, t^ = 31.445) and the remaining data is presented 
in Table 1. 

Table 1. Data for the lin2 problem 

knot 

1 
2 
3 
4 
5 
6 
7 
8 
Bounds 
Velocity 
{degrees/sec) 
Acceleration 
{degrees/sec^) 
Jerk 
{degrees/sec^) 

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 

10 
60 
75 

130 
110 
100 
-10 
-50 

posit 
15 
25 
30 

-45 
-55 
-70 
-10 
10 

iion in 
45 

180 
200 
120 
15 

-10 
100 
50 

degrees 
5 

20 
60 

110 
20 
60 

-100 
-30 

10 6 
30 40 

-40 80 
-60 70 
10 -10 
50 10 

-40 30 
10 20 

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 
100 

45 

60 
' 

95 

40 

60 

100 

75 

55 

150 

70 

70 

130 110 

90 80 

75 70 

The two problems reported in [11] were also coded, delucal .mod is a light 
robot with 2 joints and deluca2 .mod is a planar motion of an IBM 7535 robot 
with 2 joints. The robot parameters are reported in Table 2, where k and Ji 
{i = 1,2) are the length and moment of inertia, with respect to the axis of the 
driving joint for link i, m2 is the mass of Hnk 2, while rrip and Jp are the mass 
and centroidal inertia of the payload. d2 is the distance between the axis of 
the second link joint and the center of mass of the second link. The dynamic 
equation can be consulted in the model files delucal .mod or deluca2.mod in 
[17] or in [11]. 

These problems contain velocity and torque bound constraints. The veloc­
ity limit was 2 r ad/sec for both joints and 7 Nm and 2 Nm are the torque 
limits in joint 1 and joint 2, respectively. The cubic splines used by De Luca 



408 A.I.F. Vaz and E.M.G.P. Fernandes 

Table 2. Robot parameters for the delucal-2 problems 

li I2 d2 m2 TUp Ji J2 Jp 

(m) (m) (m) (kg) (kg) {kg m^) {kg m^) (kg w?] 
delucal 0.5 0.5 0.25 1 0 0.084 0.084 0 
deluca2 0.4 0.25 0.125 15 6 1.6 0.34 0.01 

et al. in [11] only consider initial and final zero velocities and we have com­
puted the initial and final accelerations tha t result from the solution presented 
by the authors. The initial and final velocities, and accelerations used in the 
coded problems are reported in Table 3. 

Table 3. Initial and final velocities, and accelerations for the delucal-2 problems 

Problem Joint Vi {r ad/sec) Vf {r ad/sec) ai {rad/sec^) af {rad/sec^) 
delucal 

deluca2 

1 
2 
1 
2 

0 
0 
0 
0 

0 
0 
0 
0 

13.880794 
-11.067942 
2.5207742 
2.5207742 

-0.415203 
-4.186542 
-2.1966904 
-2.1966904 

The initial time intervals, in seconds, considered were h = [1,1,0.5,0.5, 
0.5,0.5,0.5] and h = [0.3,0.3,0.3,0.3,0.3,0.3,0.3] for d e l u c a l and de luca2 , 
respectively. Since De Luca et al. did not use the acceleration constraints, in 
order to get the necessary extra freedom, we have repeated the first and the 
last time intervals. The via points in joint space are reported in Table 4. 

Table 4. Via points for the delucal-2 problems 

Problem Joint Position in radians (knots) 
1 2 3 4 5 6 

delucal 1 0 
2 0 

deluca2 1 and 2 0.1 

0.5 0.75 
-0.5 -1 
0.2 0.25 

1 1.25 
-1.5 -1 
0.3 0.35 

1.5 
0.5 
0.4 

Another coded problem ( lob ianco l .mod) refers to a robot with 2 joints. 
The robot arm is considered in initial and final rest position {vi = Vf = 
ai — af — Q). The problem considers torque, linear and angular velocity 
limits of 260 Nm^ 50 ATm, 0.7 m/sec and 1.5 rad/sec^ respectively. The robot 
parameters are /i = l.O(m), I2 = 0.5(m), m i = 15.0{kg) and 1712 = 7.0{kg), 
where li and m^, i = 1,2, are the link lengths and masses, respectively. 

Since Guarino Lo Bianco and Piazzi [7] proposed a genetic algorithm to 
solve the problem an initial guess was not provided. We used h = [0.5,0.5,0.5, 
0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5] as initial guess which gives a total time travel 
of 5.5 sec. 
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The dynamic equations, linear and angular velocity equations can be con­
sulted in the coded problem (lobiancol.mod in [17]) and the trajectory via 
points are presented in Table 5. 

Table 5. Via points for the lobiancol problem 

Knot Joint 1 (rad) Joint 2 (rad) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0.0000 
0.1253 
0.2517 
0.3789 
0.5054 
0.5837 
0.6119 
0.4263 
0.3903 
0.3526 

-1.5708 
-1.6804 
-1.7594 
-1.8074 
-1.8235 
-1.7087 
-1.4581 
-1.1040 
-1.1124 
-1.1152 

6 Numerical Experiments 

We have used the recent publicly available NSIPS [18] solver connected with 
the SIPAMPL [16] interface that provides the Sphnes hbrary. The NSIPS 
solver software package can be obtained freely from the same internet address 
as SIPAMPL. The discretization method is the only one that supports simple 
bounds on the finite variables (hj > 0, j = 1 , . . . , n, in (3)). The discretization 
method consists of replacing the infinite set T by a sequence of finite grids 
To C Ti C • • C Tfc C T. Finite nonlinear subproblems are solved (using the 
NPSOL software package [4]) in each grid with a selected number of points. 

All plots were obtained with the MATLAB [13] p lo t function together 
with the SIPAMPL interface to MATLAB [16, 17]. 

The numerical results were obtained in a computer with a Pentium III 
450Mhz processor, 128MB of RAM, Linux operating system (Red Hat 5.2) 
and with AMPL Student Version number 19991027 (Linux 2.0.18). 

The solution found for the problem described in subsection 5.3 was 
0.281396, 0.0650184, 0.128647, 0.178947, 0.226906, 0.621131 and 0.01 in a 
total travel time of 1.51205. The trajectory and velocity are plotted in Fig.l. 

Table 6 presents the user time in seconds for all the solved problems. 
The time solution vector for all the problems are shown in Tables 7 and 

8. In these tables, "NSIPS" is the solution obtained with the NSIPS solver 
and "Prev." is the solution obtained by the authors where the problem was 
proposed. In Table 8, the "Extra knot" entry means that the considered knot 
was not present in the authors proposed problem, since the extra degree of 
freedom in the C-Spline was not used. The discretization method computes a 
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Fig. 1. Results for position and velocity of the example problem 

Table 6. User time, in seconds, for solved problems 

Problem 
l in2 
delucal 
deluca2 
lobiancol 

Time (sec) 
6,59 
6.57 

17.71 
3.11 

solution in the finest grid and if the grid is not fine enough some infeasibility in 
the infinite constraints can occur. If a finer grid is required then the dimension 
of the first grid or the number of grid refinements should be changed from 
their default values in the solver. For problem d e l u c a 2 the solution we found 
is different from the one reported by De Luca et al. While in the solution 
found by De Luca et al. the velocity constraints are inactive and the torque 
are active, in our solution the velocity constraints are active and the torque 
inactive. 

Except for the lobic incol problem, an improvement in the total trajectory 
time was obtained for all the considered problems. 

Figure 2 shows the position, velocity, acceleration and jerk in the solution 
found for the first joint in l i n 2 problem. Figures 3-5 show the position, linear 
and angular velocities and torque for problem l o b i a n c o l . 
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Table 7. Solutions of l i n2 and lobiancol problems 

l in2 lobicLncol 
NSIPS Prev. NSIPS Prev. 

hi 1.125150 1.131000 0.010000 0.020000 
/i2 2.039520 2.004000 0.348599 0.364290 
h3 1.635940 2.068000 0.156699 0.184190 
/i4 2.158020 2.016000 0.150559 0.183860 
/i5 2.046600 2.714000 0.154683 0.184230 
he 2.510830 1.973000 0.138140 0.167350 
/i7 3.781200 3.807000 0.191483 0.223100 
hs 1.831450 1.971000 0.391619 0.365390 
hg 0.803105 0.767000 0.106903 0.099450 
hio 0.022616 0.238180 
/Ml 0.385888 0.020050 
Total 17.931800 18.45100 2.057190 2.050090 

Table 8. Solutions of delucal and deluca2 problems 

delucal deluca2 
NSIPS Prev. NSIPS Prev. 

hi 0.010000 0.370000 0.010000 0.290000 
/i2 0.348255 Extra knot 0.134696 Extra knot 
hs 0.260631 0.250000 0.053838 0.070000 
/i4 0.361528 0.340000 0.050615 0.070000 
/i5 0.351404 0.430000 0.051988 0.080000 
he 0.010000 Extra knot 0.066819 Extra knot 
hj 1.061350 1.070000 0.010000 0.200000 
Total 2.403170 2.460000 0.377956 0.710000 

7 Conclusions 

Previous works on trajectory planning have solved the optimization problem 
under the generalized SIP formulation shown in equation (2) and new algo­
ri thms for addressing this problem were proposed. In this paper we present a 
reformulation of the generalized SIP into a s tandard SIP and applied publicly 
available tools for coding and solving this type of problems. 

To allow the codification of the robotics problems a C-Splines dynamic 
library for AMPL was developed. The robotics problems herein presented are 
coded and freely available via the web in the SIPAMPL [17] database (see 
subsection 5.4). 

We have shown that the formulated robot trajectory planning problems 
can be easily solved with the new available tools for semi-infinite programming 
problems. 
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Summary . MPCC can be solved with specific MPCC codes or in its nonlinear 
equivalent formulation (NLP) using NLP solvers. Two NLP solvers - NPSOL and 
the line search filter SQP - are used to solve a collection of test problems in AMPL. 
Both are based on SQP (Sequential Quadratic Programming) philosophy but the 
second one uses a line search filter scheme. 

1 Introduction 

There has been an enormous amount of interest in developing algorithms to 
solve Mathematical Programs with Complementarity Constraints (MPCC). 
A series of problems tha t arise from realistic applications in engineering and 
economics is the main reason for such interest. 

In recent years, the advances in computer technology have increased the 
capability of a modeler to solve large scale problems with complementarity 
constraints. On the one hand, the appearance of modelling systems allows to 
directly express complementarity conditions as part of their syntax and to 
pass on the complementarity model to the solver. On the other, the ability 
of a modeler to generate realistic large scale models enables the solvers to be 
tested on much larger and more difficult classes of models, producing in this 
way new enhancements and improvements in the solver. 

However, solving M P C C is a harder task because it can be shown that 
constraint qualifications typically assumed to prove convergence of s tandard 
NLP algorithms fail for MPCC. As a result, applying specific M P C C solvers is 
problematic. To circumvent these problems, various reformulations of M P C C 
have been proposed. One of these approaches involves the possibility of solving 
M P C C by transforming it to a well-behaved nonlinear program. This endeavor 
is important because it allows to extend the body of analytical and computa­
tional expertise of nonlinear programming to this new class of problems. 
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In this work it is analyzed the possibihty of solving MPCC in its NLP 
reformulation using certain SQP algorithms. Two NLP solvers based on SQP 
philosophy are used to solve a set of problems - NPSOL and the line search 
filter SQP. The last one is a promising recent algorithm developed by our 
research group still in improvement phase. Another goal of this study is testing 
this new algorithm for MPCC problems in their NLP reformulation. This 
study is included in a MSc project. 

The organization of this paper is as follows. Section 2 introduces the Math­
ematical Programs with Complementarity Constraints. The next section de­
fines an equivalent nonlinear program. In Section 4, the NLP solvers (NPSOL 
and line search filter SQP) are presented as well as their main characteris­
tics. Numerical results obtained with a collection of AMPL test problems are 
presented in Section 5. Finally, the main conclusions are shown. 

2 Mathematical Programs with Complementarity 
Constraints 

A Mathematical Program with Complementarity Constraints is an optimiza­
tion problem with equality and inequality constraints. In fact, it is a nonlinear 
optimization problem where the constraints have the same form as the first-
order optimality conditions for a constrained optimization problem. 

A Mathematical Program with Complementarity Constraint (MPCC) is 
defined as: 

min f{z) 
s.t. CE{Z) = 0 , . 

ci{z) > 0 ^̂ ^ 
0>Zi±Z2<0 

where z = {zo,Zi,Z2), ZQ G M^ is the control variable and Zi,Z2 € W are 
the state variables; CE and cj are the sets of equality and inequality con­
straints, respectively. The presence of complementarity constraints is the most 
prominent feature of a MPCC that distinguishes it from a standard nonlinear 
optimization problem. 

To solve this kind of problems one might be tempted to use a standard 
nonlinear programming algorithm. Unfortunately, the feasible set of MPCC 
is ill-posed since the constraints qualifications which are commonly assumed 
to prove convergence of standard nonlinear programming algorithms do not 
hold at any feasible point of the complementarity constraints [16]. 

A number of special purpose algorithms have been developed for MPCCs, 
such as branch-and-bound, implicit nonsmooth approaches, piecewise sequen­
tial programming [4, 14]. Nevertheless, most of the algorithms for solving 
MPCC need strong assumptions to ensure convergence. Hence, the research 
on the development of effective algorithms remains vigourous. 



Solving MPCCs with Nonlinear Solvers 417 

This kind of problems gained lot of popularity in the last decade, because 
the concept of complementarity is synonymous of equilibrium and many real 
applications can be modelled by MPCC. 

In Economics, complementarity is used to express Walsarian and Nash 
equilibrium, spatial price equilibria, invariant capital stock, game-theoretic 
models and Stackelberg lender-follower games, used in oligopolistic market 
analysis [3, 5]. More complex general equilibrium models are used for various 
aspects of policy design and analysis, including carbon abatement and trade 
form. Other applications use game theory, where new examples are becoming 
popular due to deregularization of electricity markets. 

Engineering applications of MPCC include contact and structural mecha­
nics, structural design, obstacle and free boundary problems, elastohydrody-
namic lubrification and traffic equilibrium. Recently, MPCC has been used in 
optimal control problems for multiple robot systems [9, 15]. In optimization, 
this kind of problems involves the formulation of the Karush-Kuhn-Tucker 
conditions. 

3 Nonlinear Programs 

An extensive theory of first and second order optimality conditions for MPCC 
has been developed. However, the numerical analysis of large-scale MPCCs is 
still an area of investigation. Some recent papers have suggested reformulating 
the MPCC problem as a standard NLP. The idea behind this approach is to 
take advantage of certain NLP algorithms features in order to obtain rapid 
local convergence. 

Notice that (1) can be written in the equivalent NLP form: 

min f(z) 
s.t. CE{Z) = 0 

ci{z) > 0 
1̂ > 0 ^"^^ 
Z2>0 

Z'[Z2 < 0 

For the success of NLP solvers, Leyffer suggested to replace the usual com­
plementarity condition z'iZ2 = 0 by the relaxed equivalent condition z[z2 < 0. 
Without this relaxation, several methods cannot converge quadratically near 
a strongly stationary point. 

Unfortunately, the complementarity constraint implies that the KKT con­
ditions are rarely satisfied by MPCC since it can be shown that there always 
exists a nonlinear abnormal multiplier [17]. Boundedness of the set of KKT 
multiplier vectors is equivalent to the Mangasarian Fromovitz constraint qual­
ification condition arising in nonlinear programming. 

Recall that, for a point z* and active set A{z*) = EU {i e I \ Ci{z) = 0}, 
Mangasarian Fromovitz Constraint Qualification (MFCQ) holds if there exists 
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a vector w GW^ such that: 

Vci{z*fw > 0, for all i e A{z*) D I 

Vci{z*fw = 0, for allieE 

Vci{z*),i G E are linearly independent 

In MPCC formulation all the feasible points are nonregular in the sense 
that they do not satisfy MFCQ, which is the usual condition for global con­
vergence of a NLP algorithm. Nonregularity implies that the multiplier set is 
unbounded, that the normal vectors to active constraints are linearly depen­
dent, and that the linearization of the NLP formulation can be inconsistent, 
arbitrarily close to a stationary point - all arguments against the use of the 
NLP technique for solving MPCCs. 

Recent investigation brings good news: studies concluded that new well-
established nonlinear programming solvers with minor modifications present 
exciting computational results. 

4 NLP Solvers 

Upon the success of SQP methods for nonlinear programming, the SQP ap­
proach has been extended to solve MPCC as well. In this work, it is presented 
two NLP solvers using SQP algorithms - NPSOL and the line search filter 
SQP. 

4.1 NPSOL 

NPSOL was created by Gill, Murray, Saunders and Wright [10]. NPSOL is a 
Fortran Package designed to solve the nonlinear programming problem: the 
minimization of a smooth nonlinear function subject to a set of constraints 
on the variables. The functions should be smooth but not necessarily con­
vex. NPSOL employs a SQP algorithm and is specially effective for nonlinear 
problems whose functions and gradients are expensive to evaluate. The inner 
QP subproblem is solved by a LSSOL subroutine. An augmented Lagrangian 
merit function using a line search scheme promotes convergence from arbitrary 
starting points. The Hessian matrix of the Lagrangian function is updated 
with a BFGS quasi-Newton approximation. 

4.2 Line Search Filter SQP 

The line search filter SQP is a new algorithm for solving NLP problems, 
developed by Antunes and Monteiro [2] and still in improvement phase. It is 
based on a SQP algorithm with a filter scheme whose goal is to avoid the need 
of a merit function. This function requires difficult decisions in order to choose 
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the penalty parameters and handle other difficulties like nondifferentiability. 
We now proceed to briefly explain the filter scheme. For simplicity, consider 
the NLP problem written in the form: 

min f(x) 
s.t. c(x) 5 0 

where c : Bn + Bm is a function incorporating all the constraints, possibly 
simple bound constraints. 

Problem (1) can be reinterpreted as a problem which consists in minimizing 
simultaneously the objective function f (x) and the term 

representing the sum of the constraints violation. A filter is a list of pairs 
(f(i), h(i)) such that any pair dominates any other (dominance concept from 
multicriteria optimization [13]). A pair (f (4, h(i)) obtained on iteration i is 
said to dominate another pair (f (j) , h(j)) if and only if both f 5 f (j) and 
h(i) < h(j). 

The line search filter SQP is based on a Fletcher and Leyffer idea [6] pre- 
sented in 2000. While these authors used a trust region (TR) approach, the 
line search filter SQP uses a line search strategy to promote global conver- 
gence. The inner QP subproblem is solved using LSSOL subroutine from the 
NPSOL. For more details see [I, 21. 

4.3 NPSOL us Line Search Filter SQP 

Fig. 1. Scheme of NPSOL Fig. 2. Scheme of the line search filter 
SQP 
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As seen in Figures 1 and 2 for both codes the inner QP subproblem of 
the SQP algorithm is solved by LSSOL which is a subroutine of the NPSOL. 
The line search strategy is used also by the two solvers to promote global 
convergence. The only difference between these codes is the process to obtain 
the scalar a from the line search - NPSOL uses a merit function and the line 
search filter SQP consults the filter. 

5 Numerical Examples 

5.1 MacMPEC 

In order to perform some computational experiments using these solvers, a 
library was used: MacMPEC [11], that is a collection of MPCC models written 
in the AMPL language [8]. It is a recent library compiled by Sven Leyffer that 
contains an extensive collection of MPCC problems. Not all the problems 
in MacMPEC are included in this study. Due to memory limit, it wasn't 
possible to solve large problems. The numerical tests were done on a Pentium 
IV 2600Mhz processor with 512Mb Ram in a WindowsXP operating system. 
More details about the problems and solvers results can be found in Appendix. 

5.2 Numerical Results 

For all the problems the usual complementarity condition in MPCC formu­
lation (1) was replaced by the equivalent nonlinear condition with relaxation 
(1). All starting points are standard and fixed by default of AMPL. For both 
solvers, the stop criterium tolerance was e = 1.0^ — 06 or 1000 iterations. 

For some problems, the solvers couldn't confirm optimality, because the 
iteration limit was reached - Table 1 shows, for each solver, the number of the 
problems where this happened. 

Table 1. Failures of NLP solvers 

Solver iter, limit 
NPSOL 4 

Line search filter SQP 10 

Note that the tested problems set contains some problems that are known 
not to have strongly stationary limit points. For instance, ex9.2.2, and 
scholtes4 have solutions which are not strongly stationary. Problem gauvin 
has a global minimum at a point where the lower-level problems fails a con­
straint violation, so the formulation as MPCC is not appropriate [12]. Both 
SQP codes are very robust solving MPCC problems in their NLP formulation. 



Solving MPCCs with Nonlinear Solvers 421 

Figure 3 shows the comparison of the CPU time, in seconds. The NPSOL 
is significantly faster than the line search filter SQP but note that the last one 
is still in improvement phase. 

Fig. 3. Percentage of problems with 
lower CPU time 

BNpsol 
n FilterSQP 

1 
^60% 

with 

^ ^ 60%^^^^^^^H • 

Fig. 4. Percentage of problen 
fewer iterations 

DNpsol 
D FilterSQP 

W 
IS with 

Figures 4 and 5 show the comparison in terms of iterations. Wi th respect 
to the number of iterations the line search filter SQP takes advantage when 
compared with NPSOL - it needs less number of iterations in 60% of problems. 
It presents also fewer number of iterations used in a general way to solve 
problems. 

Fig. 5. Number of iterations 

Figures 6 and 7 report the ranking of the number of function and gradient 
evaluations - in 60% of problems the line search filter SQP shows a best 
behaviour with respect to function and gradient evaluations. 
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6 Conclusions 

A set of MPCC problems were reformulated as NLP problems using the re­
laxed complementarity condition. Two NLP solvers were tested with these 
problems and the results confirm their surprising robustness. Using NLP 
solvers based on SQP algorithms provide an ability to solve a great num­
ber of complex problems. The line search filter SQP presents better results 
than NPSOL with respect to the number of iterations and to the number 
of function and gradient evaluations. In terms of the CPU time, NPSOL is 
faster but recall that it is a commercial software already optimized, whereas 
the line search filter SQP is still in a development phase. The performance of 
the line search filter SQP, when compared with the NPSOL, is encouraging 
and this new code should continue to be improved in the future. The research 
on this area is very important for the modelers, hence it can be a technique 
for answering important economic and engineering questions. 

Appendix - Detailed Numerical Results 

Problem 

bar-truss-3 
bardl 
bard2 
bards 

bardlm 
bardSm 
bilevell 
bilevel2 
bilevelS 

bilin 
dempe 

design-cent-1 
design-cent-2 
design-cent-4 

desilva 
d f l 

ex9.1.1 
6x9.1.2 
ex9.1.3 
ex9.1.4 
ex9.1.5 
6x9.1.6 
6x9.1.7 
6x9.1.8 
6x9.1.9 

6x9.1.10 
6x9.2.1 
6x9.2.2 
6x9.2.3 
6x9.2.4 
6x9.2.5 
6x9.2.6 
6x9.2.7 
6X9.2.8 
6x9.2.9 

flp2 
flp4-l 
flp4-2 
flp4.3 

gauvin 
gnashlO 
gnash 11 
gnash 12 
gnash 13 

CPU time 
Npsol 
0.031 

0 
0 
1 
0 
0 
0 

0.015 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0.015 
0 
0 
0 
0 
0 

0.015 
0 
0 
0 
0 
0 

0.05 
0.016 
0.056 

0 
0.015 

0 
0 
0 

Number 
Filter SQP Npsol 

0.015 
0.031 

0 
0 
0 

0.015 
0 
0 

0.031 
0.031 
0,015 
0.234 

0 
0 
0 
0 
0 

0.015 
0.015 

0 
0 
0 
0 
0 
0 
0 
0 

0.047 
0 
0 
0 
0 
0 
0 
0 
0 

0.093 
0.156 
1.313 

0 
0 
0 
0 
0 

7 
6 
5 
1 
6 
1 
3 
5 

13 
1 

50 
29 
11 
6 
2 
2 
3 
2 
5 
1 
1 
1 
1 
1 
2 
1 
1 

25 
1 
5 
5 
1 
1 
1 
1 
5 
1 
1 
1 
3 

10 
10 
9 

10 

of iterations 
Filter SQP 

9 
3 
2 
2 
3 

5 2 
2 
4 

9 3 
104 

2 
1000 

19 

2 
4 
3 
5 
8 

10 
6 
6 
6 

Function Evaluations 
Npsol 

25 
8 
6 
2 
8 
2 
7 
8 

13 
2 

173 
61 
14 
7 
4 
4 
4 
3 
6 
5 
2 
1 
2 
4 
3 
4 
1 

39 
4 
7 
9 
1 
1 
1 
1 
7 
2 
2 
2 
6 
13 
13 
11 
13 

Filter SQP 
10 
4 
3 
3 
4 

2 1 2 
3 
5 

6 7 3 
6 8 5 
2 2 

19806 
4 
3 

2 7 
3 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 

19 
4 

26 
9 

17 
7 
7 
7 

Gradient Evaluations 
Npsol 

25 
8 
6 
2 
8 
2 
7 
8 

13 
2 

173 
61 
14 
7 
4 
4 
4 
3 
6 
5 
2 
1 
2 
4 
3 
4 
1 

39 
4 
7 
9 
1 
1 
1 
1 
7 
2 
2 
2 
6 

13 
13 
11 
13 

Filter SQP 
2 4 
4 
3 
3 
4 

56 
3 
5 

94 
105 

3 
1001 

2 
3 

20 
3 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
5 
4 
6 
9 
11 
7 
7 
7 
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Best Best 

Fig. 6. Ranking of function evalua- Fig. 7. Ranking of gradient evalua- 
tions 

Problem CPU time Number of iterations Function Evaluations Gradient  evaluation^ 
Npsol Filter SQP Npsol Filter SQP Npsol Filter SQP Npsol Filter SQP 

gnash14 0 0 10 T 13 8 13 s 
gnash15 0 
gnash16 0 
gnash17 0 
gnash18 0 
gnash19 0 
hskonacn 0 
hs044-i 0 

incid-sotl-8 0.593 
nsid-setlc-8 0.562 
incid-sst2-8 23.156 
ncid-sot2c-8 22.375 

j r l  0 
jr2 0 

k t h l  0 
kth2 0 
kth3 0 

liswstl-050 0.14 
nashl  0 

outrots31 0 
outrata32 0 
outrata33 0 
outrats34 0 
portfl-i-1 0.078 
portfl-i-2 0.046 
portfl-i-3 0.109 
portfl-i-4 0.062 
portfl-i-6 0.062 

qpec-100-1 0.0424 
qpsc-100-2 0.609 
qpee-100-3 0.984 
qpsc-100-4 0.89 

qpscl  0.031 
qpsc2 0.015 
ralphl  0 
ralph2 0 

ralphmod 3.375 
scholtss1 0 
acholtes2 0 
scholtes3 0 
aoholtas4 0 
ssholtss5 0 

a l l  0 
rtsckalhargl 0 

tap-09 0.062 
tap-15 71.641 

water-net 0.062 
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Summgiry. A new algorithm based on filter SQP with line search to solve nonlinear 
constrained optimization problems is presented. The filter replaces the merit function 
avoiding the penalty parameter estimation. This new concept works like an oracle 
estimating the trial approximation of the iterative SQP algorithm. A collection of 
AMPL test problems is solved by this new code as well as NPSOL and LOQO 
solvers. A comparative analysis is made - the filter SQP with line search presents 
good performance. 

1 Introduction 

In Fletcher and Leyffer [6] a new technique for globalizing methods for Non­
linear Programming (NLP) is presented. This concept is referred as a NLP 
filter and it is motivated by the aim of dispensing with the penalty function, 
avoiding related difficulties like nondifferentiability or the penalty parame­
ter choice. Numerical experiments with this new technique in a sequential 
quadratic programming (SQP) trust region algorithm are reported in [6] and 
seem very promising. 

In this work the same filter SQP idea is used to promote global convergence 
but in a line search context instead of the trust region approach. 

This paper is divided in 4 sections. The next section presents the mathe­
matical formulation of the NLP problem to solve. Section 3 introduces the 
concept of a filter and shows how it can be used in a line search based SQP 
algorithm. An algorithmic refinement tha t is needed to ensure the robustness 
of the basic algorithm is presented and the termination criterion is described. 
The flowchart of the algorithm is also presented. Finally, Section 4 presents 
numerical results obtained with a collection of AMPL test problems as well as 
the corresponding comparison with NPSOL and LOQO results and the main 
conclusions. 

http://asanchesOipg.pt
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2 NLP Problem 

The purpose of this work is the development of an algorithm for finding a 
local solution of an NLP problem of the following form 

fix) 
Ibx < X < ubx (1) 
Ibc < c{x) < uhc 

where / : IR^ ^^ IR is a nonlinear objective function, x G IR'̂ , and 
Ihxi ubx ^ ^^ ^^^ ^li6 lower and the upper bounds of the variable x, res­
pectively, and c : IR^ -^ IR^ is a set of m general constraints whose lower 
and upper bounds are Ibc and ubc, respectively. The set of all constraints de­
fines the feasible region. Note that equality constraints are included in the 
above formulation by setting the lower bound equal to the upper bound for 
the relevant constraint. Likewise it is possible to include one-sided constraints 
by setting the lower bound to —oo or the upper bound to oo, depending on 
which bound is required. 

There are several methods to solve problem (1): Sequential Quadratic Pro­
gramming, reduced-gradient methods, sequential or exact penalty techniques, 
interior-point methods and more recently the filter method. 

3 NLP Filter 

3.1 Sta te of Art 

Since its first appearance in a 1997 paper by Fletcher and Leyffer [6], the filter 
technique has been mostly applied to SLP (sequential linear programming) 
and SQP type methods [6, 5, 7]. Global convergence to first-order critical 
points was proved for SLP by Fletcher, Leyffer and Toint [5] in 1998 and for 
SQP by Fletcher, Gould, Leyffer, Toint and Wachter [8] in 1999. The filter 
idea has proven to be very successful numerically in the SLP/SQP framework 
[4]. In the context of composite SQP for equality constrained optimization, Ul-
brich and Ulbrich [12] have also proposed, based on filter idea, a nonmonotone 
trust region algorithm. Recently, Audet and Dennis [1] presented a pattern 
search filter method for derivative-free nonlinear programming. More recently, 
the filter approach has been adapted to interior-point methods in a number 
of ways. Benson, Shanno and Vanderbei [2] proposed several heuristics based 
on the idea of filter methods, for which improved efficiency is reported com­
pared to their previous merit function approach. Ulbrich, Ulbrich and Vicente 
[13] consider a trust region filter method that bases the acceptance of trial 
steps on the norm of the optimality conditions. Wachter and Biegler [14] pre­
sented a primal-dual interior-point algorithm with a filter line search method 
for nonlinear programming. Gonzaga, Karas and Vanti in [11] presented an 
algorithm based on filter method with inexact restoration strategy (IR) and 
proved its global convergence to stationary points. 
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3.2 Filter 

Penalty functions combine the two competing aims in NLP - minimization 
of objective function and satisfaction of the constraints - into a single mi­
nimization problem. In filter strategies these are seen as separate objectives. 
Conceptually, these two can be written as 

where 

with ct 

min f{x) and min h{c{x)) 

h{c{x)):=\\c-^{x)l:=J2cti^) 
3 = 1 

J max{0, Cj) and the constraints defined in (1) are handled with the 
form c{x) < 0. 

The filter is a list of pairs {f^^\h^^^) where /(^) = /(a:^^)) and /i(^)=/i(c(x(^))) 
such that no pair dominates any other. A pair {f^^\h^^^) obtained on ite­
ration k is said to dominate another pair {f^^\h^^^) if and only if h^^^ < h^^^ 
and /(^^ < f^^\ indicating that the point x^^^ is at least as good as x^^^ for 
both measures. The filter can be represented graphically in the (/, h) plane 
as illustrated in Figure 1. 

m h-

h(c(x)) 

Fig. 1. Example of a filter 

The key idea is to use the filter as a criterion for accepting or rejecting a 
step - it works like an oracle defining a tabu region, ie, a points prohibited 
region. A new step is accepted, which means it doesn't belong to the tabu 
region, if it reduces either the objective function or the constraints violation 
function. 

3.3 Globalization Techniques 

The term "globalization technique" is used to distinguish the method used for 
selecting the new estimate of the solution from the method for computing the 
search direction. In almost all algorithms, the formula for the search direction 
is derived from the Taylor series, which is a "local" approximation to the 
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function. The method for choosing the new estimate of the solution is designed 
to guarantee global convergence, defined as convergence from any starting 
point. 

If the underlying optimization method produces good search directions, 
then the globalization technique will act merely as a safety net protecting 
against the occasional bad step. For a method that produces less effective 
search directions, the globalization technique can be a major contributor to 
the practical success of the method. The two major types of globalization 
techniques are the trust region method, used by Fletcher and Leyffer in [6] 
with a filter scheme and the line search method used in this work. 

3.4 Algorithm 

At iteration /c, a quadratic approximation to (1) in x^^^ is performed by mi­
nimizing the quadratic approximation of the objective function / subject to 
linear approximation of the constraints. The corresponding QP subproblem is 

min 
s.t Iba: < x^^^ + d(̂ ) < uh:, (2) 

/6c< A(^)^d('̂ ) + c(^) <uhc 

where VF̂ ^̂  = V^L(a:^'^\ A^̂ )̂ is the Hessian of the Lagrangian function 
L(a;,A) = f{x) + A^c(x), g^^"^ — Vf{x^'^^) is the gradient of the objective 
function and A^^^ = Vc{x^^^)'^ is the Jacobian matrix of general constraints 
c{x^^^). The solution of this QP subproblem, which is also an iterative proce­
dure, is the search direction S^K The next trial point x^̂ "̂ ^̂ , an approximation 
to the problem solution, is obtained by 

( fc+i )=a ;W+adW (3) 

where a € IR is the steplength. This new point x^^'^^^ is accepted by the filter 
if the corresponding pair (/(^+i),/i(^+i)) is not dominated by any pair in the 
filter. Otherwise the point is rejected and a is divided by 2 until the point is 
accepted or a is smaller than the tolerance level. 

The condition that a new point is not dominated by any entry in the filter 
allows for the possibility of an oscillating sequence of points with accumulation 
points in the (/, h) space. A standard way to avoid this is to require a sufiicient 
reduction. The aim is to produce an envelope below the filter that prevents 
points arbitrarily close to the filter from being accepted. This idea is illustrated 
in Figure 2 where the envelope is shown by the dashed line. 

A new iterate x̂ "̂*"̂ ^ is said to be acceptable to the filter if its (/, h) pair 
satisfies either 

h < ph^^^ or / < /(^) - 7/1 (4) 

for all pairs {f^^\ h^^^) in the filter, where p and 7 are preset parameters such 
that 0 < 7 < /? < 1, with P close to 1 and 7 close to zero [7] 
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fix) 

U-

h(c(x)) 

Fig. 2. Envelope created by sufficient reduction conditions 

QP 

I d' 
\x = j^-*- a(f\ 

Fig. 3. Filter SQP flowchart 

In Fig. 3 we present the corresponding flowchart of the filter SQP algo­
ri thm. The algorithm terminates when a Kuhn-Tucker point x* is found. The 
solver computes the normalized Kuhn-Tucker residual defined by 

||p* + i/* + A*A*||2 

max{^max,1.0} 

where g* = V/(a:*), ^ * = Vc(x*), u and A are the Lagrange multipliers of the 
variables and constraints, respectively, and the maximum length is calculated 
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by 
Mmax = max{||p*||2 , |i/t|, ||a*||2 |A*|} . 

The solver terminates if the normahzed Kuhn-Tucker residual r is less than e 
where e is a user provided tolerance level. 

ALGORITHM: Filter SQP line search 
Given x^^\ X^^\ set k = 0 
REPEAT 

Solve QP (26) for a step d^^\ set a = 1 and set Accept = FALSE 
REPEAT 

set x(^+i) = x(^) + a d(^) 
IF (/('^+i),/i(^+i)) is acceptable to the filter THEN 

Accept x(^+i) and add (/(^+i),/i(^+i)) to the filter 
Remove points dominated by {f^^'^^\h^^'^^^) from the filter 
set Accept = TRUE 

ELSE 
Reject x^''-^^^ 
Set a = a/2 

ENDIF 
UNTIL Accept = TRUE or a < TolAlpha 
set k = k-\-1 

UNTIL Convergence 

4 Computational Experiments and Conclusions 

This section presents some initial numerical experiments performed on a Pen­
tium III with 128MB RAM. The filter algorithm was implemented in C Lan­
guage for Windows operating system. 

The QP subproblem (26) is solved using the LSSOL routine from NPSOL 
solver [10]. NPSOL is a set of Fortran subroutines based on SQP algorithm 
with an augmented Lagrangian merit function with Quasi-Newton approxima­
tion to the Hessian of the Lagrangian. The comparison between NPSOL and 
the new algorithm based on filter method is a fair comparison because both 
packages use the same philosophy (SQP with line search strategy) and the 
same subroutine to solve the QP subproblem (LSSOL). The search direction 
d calculated by the QP subroutine is used to update the next approximation 
to the solution of the problem using a line search globalization method. The 
only difference is that NPSOL obtains the scalar a in (3) using an augmented 
Lagrangian merit function and our algorithm consults an oracle - the filter -
to verify the acceptance of the new point x^^'^^\ 

We have also used LOQO, an infeasible primal-dual interior-point algo­
rithm, and compared its results with those of this new method, based on a 
SQP approach. 
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Table 1. Numerical results for Filter SQP, NPSOL and LOQO codes 

Filter SQP NPSOL LOQO 
Problem n m # f # g Iter # f # g Iter # f # g Iter 

hsOOl 
hs003 
hs004 
hs005 
hs007 
hs008 
hsOlO 
hsOll 
hs012 
hs014 
hsOlS 
hs016 
hs017 
hs018 
hs019 
hs020 
hs021 
hs022 
hs023 
hs024 
hs026 
hs027 
hs028 
hsOSO 
hs031 
hs032 
hs033 
hs034 
hs035 
hs036 
hs038 
hs039 
hs040 
hs042 
hs043 
hs044 
hs046 
hs047 
hs048 
hs049 
hs050 
hs051 
hs052 
hs053 
hs054 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
4 
5 
5 
5 
5 
5 
5 
5 
5 
6 

1 
1 
2 
2 
1 
2 
1 
1 
1 
2 
3 
4 
4 
4 
4 
4 
3 
2 
5 
3 
1 
1 
1 
4 
4 
2 
3 
5 
1 
4 
2 
2 
3 
2 
3 
6 
2 
3 
2 
2 
3 
3 
3 
3 
1 

34 
2 
3 
19 
9 
3 
12 
6 
7 
6 
5 
6 
11 
8 
6 
7 
2 
3 
8 
3 
16 
10 
2 
3 
7 
3 
6 
8 
2 
3 
68 
122 
8 
5 
7 
10 
23 
26 
2 
17 
10 
2 
2 
2 
2 

25 
2 
3 
13 
9 
3 
12 
6 
7 
6 
5 
6 
10 
8 
6 
7 
2 
3 
8 
3 
16 
9 
2 
3 
7 
3 
6 
8 
2 
3 
39 
46 
8 
5 
7 
7 
19 
21 
2 
17 
10 
2 
2 
2 
2 

24 
1 
2 
12 
8 
2 
11 
5 
6 
5 
4 
5 
9 
7 
5 
6 
1 
2 
7 
2 
15 
8 
1 
2 
6 
2 
5 
7 
1 
2 
38 
45 
7 
4 
6 
6 
18 
20 
1 
16 
9 
1 
1 
1 
1 

21 
8 
2 
9 
15 
9 
17 
12 
9 
8 
5 
5 
15 
23 
8 
5 
4 
7 
7 
6 
56 
28 
6 
4 
12 
3 
11 
8 
7 
2 
33 
15 
9 
10 
17 
6 
53 
57 
9 
43 
19 
7 
6 
7 
7 

21 
8 
2 
9 
15 
9 
17 
12 
9 
8 
5 
5 
15 
23 
8 
5 
4 
7 
7 
6 
65 
28 
6 
4 
12 
3 
11 
8 
7 
2 
33 
15 
9 
10 
17 
6 
53 
57 
9 
43 
19 
7 
6 
7 
7 

18 
3 
1 
7 
11 
6 
13 
8 
8 
6 
3 
4 
12 
13 
6 
4 
2 
5 
6 
2 
44 
20 
4 
2 
8 
2 
5 
7 
5 
1 
26 
12 
6 
6 
11 
4 
50 
34 
5 
40 
15 
4 
3 
4 
5 

68 
21 
15 
19 
27 
17 
29 
25 
19 
21 
61 
35 
58 
29 
33 
47 
23 
17 
35 
25 
29 
33 
17 
17 
33 
46 
21 
27 
19 
35 
99 
29 
17 
17 
21 
31 
44 
44 
19 
47 
31 
15 
15 
21 
23 

68 
21 
15 
19 
27 
17 
29 
25 
19 
21 
61 
35 
58 
29 
33 
47 
23 
17 
35 
25 
29 
33 
17 
17 
33 
46 
21 
27 
19 
35 
99 
29 
17 
17 
21 
31 
44 
44 
19 
47 
31 
15 
15 
21 
23 

33 
11 
8 
10 
14 
9 
15 
13 
10 
11 
31 
18 
29 
15 
17 
24 
12 
9 
18 
13 
15 
17 
9 
9 
17 
23 
11 
14 
10 
16 
44 
15 
9 
9 
11 
16 
22 
21 
10 
24 
16 
8 
8 
11 
12 

The code is interfaced to the modelling language AMPL [9] and a set 
of a hundred AMPL problems is tested to compare the new algorithm with 
NPSOL and LOQO. After eliminating the problems for which the solvers 
obtained different local minima, 88 problems remained. The percentage of 
fails were almost the same for the three codes, for that reason the robustness 
is similar. 

The tolerances used in the algorithm were set to 7 = l.OE — 05, p = 1 — 7, 
e=1.0E-Q6 and TolAlfa = l.OE - 06. 

Tables 1 and 2 report the numerical results of the three codes tested - Filter 
SQP, NPSOL and LOQO. The tables show the problem name, its dimension 
(n number of variables and m number of constraints), # / and #g are the 
number of function and gradient evaluations, respectively, and iter is the 
iterations count. Table 3 presents the cumulative results for the three solvers. 

Without further examination the results of the filter SQP seem very en­
couraging, but measuring and comparing software is a very difficult task. 
Dolan and More in [3] present a tool for the evaluation and performance of 
optimization codes. The performance profile for a solver is the (cumulative) 
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Table 2. Numerical results for Filter SQP, NPSOL and LOQO codes (cont) 

Problem 

hs057 
hs060 
hs062 
hs066 
hs073 
hs076 
hs079 
hsOSO 
hs083 
hs084 
hs085 
hs086 
hs087 
hs095 
hs097 
hslOO 
hsl04 
hslOS 
hsll2 
hsll3 
hsll6 
hsll8 
hsll9 
bqpgabim 
braess 
chemeq 
deconvc 
eigminb 
expquad 
hagerl 

n 

2 
3 
3 
3 
4 
4 
5 
5 
5 
5 
5 
5 
6 
6 
6 
7 
8 
8 
10 
10 
13 
15 
16 
50 
5 
126 
52 
101 
120 
20 

hydrothermal 58 
integreq 
liarwhd 
liswetlO 
minsurf 
nondquar 
optcntrl 
polakl 
polakS 
polake 
tfl2 
weapon 
zigzag 

52 
36 
103 
64 
100 
32 
2 
12 
5 
3 

100 
64 

m 

3 
1 
1 
5 
3 
3 
3 
3 
3 
3 
48 
1 
4 
4 
4 
4 
6 
8 
3 
8 
28 
8 
1 
4 
3 
16 
1 
2 
2 
2 
11 
2 
1 
1 
4 
1 
5 
2 
10 
4 
101 
2 
11 

Filter S Q P 

# f # g 

25 
6 
7 
10 
3 
2 
9 
7 
5 
6 
22 
4 
6 
5 
7 
24 
25 
17 
12 
14 
10 
2 
8 
2 
2 
20 
22 
6 
2 
2 
5 
4 
20 
2 
13 
19 
4 
8 
9 
11 
2 
10 
8 

6 
6 
6 
9 
3 
2 
8 
7 
5 
5 
22 
4 
6 
3 
7 
8 
24 
13 
12 
7 
9 
2 
8 
2 
2 
20 
17 
6 
2 
2 
5 
4 
20 
2 
5 
19 
4 
8 
9 
10 
2 
10 
8 

Iter 

5 
5 
5 
8 
2 
1 
7 
6 
4 
4 
21 
3 
5 
2 
6 
7 
23 
12 
11 
6 
8 
1 
7 
1 
1 
19 
16 
5 
1 
1 
4 
3 
19 
1 
4 
18 
3 
7 
8 
9 
1 
9 
7 

N P S O L 

# f 

21 
11 
16 
8 
5 
8 
12 
10 
7 
3 
18 
7 
15 
2 
6 
29 
20 
69 
36 
18 
20 
30 
16 
98 
4 
112 
132 
6 
3 
10 
11 
11 
27 
3 
27 
317 
5 
15 
29 
41 
32 
64 
65 

# g 

21 
11 
16 
8 
5 
8 
12 
10 
7 
3 
18 
7 
15 
2 
6 
29 
20 
69 
36 
18 
20 
30 
16 
98 
4 
112 
132 
6 
3 
10 
11 
11 
27 
3 
27 
317 
5 
15 
29 
41 
32 
64 
65 

Iter 

19 
8 
9 
7 
4 
7 
10 
8 
5 
2 
17 
5 
12 
1 
3 
14 
18 
50 
16 
13 
10 
14 
13 
51 
2 
61 
84 
5 
2 
7 
10 
7 
26 
2 
15 
310 
4 
13 
23 
18 
20 
54 
37 

Table 3. Cumulative result 

#f #g iter 

L O Q O 

# f 

31 
17 
25 
29 
39 
21 
17 
17 
25 
64 
61 
25 
47 
32 
36 
22 
27 
35 
35 
31 
194 
29 
57 
27 
23 
151 
63 
19 
19 
19 
113 
15 
55 
37 
23 
45 
67 
27 
47 
53 
29 
45 
85 

S 

# g 

31 
17 
25 
29 
39 
21 
17 
17 
25 
64 
61 
25 
47 
32 
36 
22 
27 
35 
35 
31 
194 
29 
57 
27 
23 
151 
63 
19 
19 
19 
113 
15 
55 
37 
23 
45 
67 
27 
47 
53 
29 
45 
85 

Iter 

16 
9 
13 
15 
19 
11 
9 
9 
13 
21 
29 
13 
24 
16 
18 
11 
14 
18 
17 
16 
74 
15 
29 
14 
12 
53 
32 
10 
10 
10 
57 
8 
27 
19 
17 
23 
34 
14 
24 
27 
15 
23 
43 

Filter SQP 966 764 673 
NPSOL 2078 2078 1514 
LOQO 3252 3252 1592 

distribution function for a performance metric. Performance profiles provide a 
means of visualizing the expected performance difference among solvers, while 
avoiding arbitrary parameter choices and need to discard solver failures from 
the performance. This comparison is very interesting when the test set has a 
large number of problems. So, for a solver 5, it is plotted 

logs 
/ # i t e r (g ,p ) \ 
\bestiter(p)y 

, Vp G problem set. (5) 

where #iter(s,p) is the number of iterations that solver s tooks on problem p 
and bestiter(p) is the smallest number of iteration any solver tooks. Graphi-
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cally it is interpreted as the probability distribution that a given solver is at 
worse X times slower than the best. 

Performance Profiles (function evaluations) Performance Profiles (gradient evaluations) 

1 1 

1 » " 

i 

SQP Filter 1 
— Npsol 1 
• - Logo 1 

2" times slower than best 2" times slower than best 

Fig. 4. Function evaluations perfor- Fig. 5. Gradient evaluations perfor­
mance profiles mance profiles 

Performance Profiles (# iterations) 

2 3 
2" times slower than best 

Fig. 6. Number of iterations perfor­
mance profiles 

This tool is used to compare Filter SQP, NPSOL and LOQO. The perfor­
mance metrics are the function evaluations, gradient evaluations and iteration 
counts. The graphics of performance profiles are presented in Figures 4, 5 and 
6 and a log scale is used. 

An easy interpretation of these graphics is tha t for any given measure a 
solver is the best when its graphic is tending faster to 1. Prom these figures 
it is clear tha t Filter SQP has the highest probability of being the optimal 
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solver for all measures. This comparison permits an estimation of the behavior 
of the filter method in a SQP algorithm since this method only replaces the 
merit function scheme based on an augmented Lagrangian function at the 
SQP algorithm of the NPSOL. 

The main conclusion of this work is tha t the initial computational results 
are very much encouraging. The next phase is to study some details related 
to the algorithm convergence and to test larger dimension problems. This 
new algorithm - a simple code based on an easy idea - compares favourably 
with NPSOL and LOQO for all performance measures and presents similar 
robustness. 
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Summary . This paper describes the optimization of an activated sludge system 
which comprises an aeration tank and a secondary settler. This system is by far the 
most widely used biological process in wastewater treatment plants. The optimiza­
tion process is represented eis a smooth nonlinear problem with highly nonlinear 
equality constraints, some linear equality constraints, one inequality constraint and 
simple bounds, in which the objective is to minimize the total cost associated with 
the installation and operation of the biological process. We use the software LOQO 
to solve the problem. Several computational results show that the quality of the 
effluent, especially in terms of carbonaceous matter, influences directly the cost and 
the main contribution to the total cost is the air flow, due to the acquirement of the 
electromechanical equipment and spent energy. 

1 Introduction 

The optimization of natural processes is becoming nowadays more and more 
important . In the case of wastewater t reatment plants (WWTPs) , besides 
the simulation, which is quite common, see for example [9], it seems crucial to 
reduce, as much as possible, the costs associated with the design and operation 
of such plants, because they are so high that can threaten the very survival 
of many industries. 

Besides the densely populated and industrial regions, it is also very im­
portant to treat the domestic eflfluents in small country regions. In particular, 
there is a small region in the north of Portugal, Tras-os-Montes, tha t produces 
high quality wines and has significant efiluent variations in terms of amount 
of pollution and flow, during the vintage season. 

A typical W W T P is schematically represented in Figure 1. The first three 
unit processes define the primary treatment which is a physical process and 
aims to eliminate the gross solids and grease, so avoiding the blocking up of 
the secondary treatment. Although the dimensioning of such units is usually 

file:///iminho
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Screen 
Grit & w a b x  

chunbs Rimrrytank Biological tank 

Waste sludge 

Fig. 1. Schematic representation of a typical WWTP (Adapted from [lo]). 

empirical and based on the wastewater to be treated, its cost does not depend 
too much on the characteristics of the wastewater. This is the reason why this 
process is not included in the optimization procedure. 

The next two units d e h e  the secondary treatment of the wastewater. It 
is the most important treatment in the plant because it eliminates the solu- 
ble pollutants. This is a biological process which, in the case herein studied, 
comprises an aeration tank and a clarifier and aims to separate the biological 
sludge from the treated water. There are other biological treatments but this 
is, by far, the most widely used. 

Finally, the last unit is used to treat the biological sludge that is wasted 
by the secondary settler. 

There are many other possible WWTP layouts, but most of them have 
the above described treatments. When the wastewater is very polluted and 
the secondary treatment does not provide the demanded quality, a tertiary 
treatment, usually a chemical process, can be included. 

This paper is part of an ongoing research project in which we are engaged 
to optimize the design and the operation of the whole plant in terms of mini- 
mum total cost (investment and operation costs). The work herein presented 
focus solely on the secondary treatment, in particular on an activated sludge 
system that is represented in Figure 2. This system consists of an aeration 
tank and a secondary settler. The influent enters the aeration tank where the 
biological reactions take place, in order to remove the dissolved carbonaceous 
matter and nitrogen. The sludge that leaves this tank enters in the secondary 
settler where suspended solids are removed. After this treatment, the treated 
final effluent leaves the settling tank and the thickened sludge is recycled to 
the aeration tank and part of it is wasted. 
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For the case presented in this paper, the predominant costs related to 
the installation of a plant are concerned with the civil construction of the 
tanks and the acquirement of electromechanical equipment. The predominant 
operation costs are due to the power required to the aeration of the activated 
sludge. The mathematical models used to describe the aeration tank and the 
settling tank are the ASMl model [5] and the ATV model 121, respectively. 

This paper is organized as follows. In Section 2, we present the developed 
mathematical formulation of the problem. Section 3 contains details of the 
implementation of the resulting optimization problem and Sections 4 and 5 
contain a brief discussion of the results and the conclusions. 

Secondary 1 recycle dr;- 
Activated Sludge System 

Fig. 2. Schematic representation of the activated sludge system (Adapted from the 
GPS-X simulator [6]). 

2 The Mathematical Model 

The mathematical model can be subdivided in seven types of equations, as it 
will be described. The system under study consists of an aeration tank, where 
the biological reactions take place, and a secondary settler for the sedimenta- 
tion of the sludge and clarification of the effluent. 

To describe the aeration tank we chose the activated sludge model n.1, 
described by Henze et al. [5], which considers both the elimination of the car- 
bonaceous matter and the removal of the nitrogen compounds. This model is 
widely accepted by the scientific community, as it produces good predictive 
values by simulations. This means that all state variables keep their biolog- 
ical interpretation. The tank is considered a completely stirred tank reactor 
(CSTR) in steady state. 
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For the settling tank the ATV design procedure [2] is used, which is a very 
simple model but describes the settling process very well, besides considering 
also peak flow events. 

2.1 M a s s Ba lances around t h e Aerat ion Tank 

The first step in this unit process is to do mass balances around it, using the 
Peterson matr ix of the ASMl model [5]. 

The generic equation for a mass balance around a certain system is 

In - Out + Reaction = Accumulation. 

In mathematical language, for a CSTR 

where Q is the flow tha t enters the tank, Va is the aeration tank volume, ^ and 
^in are the concentrations of the component around which the mass balances 
are being made inside the reactor and on entry, respectively. It is convenient 
to refer tha t in a CSTR the concentration of a compound is the same at any 
point inside the reactor and at the effluent of tha t reactor. The reaction term 
for the compound in question, r^, is obtained by the sum of the product of 
the stoichiometric coefficients, u^j, with the expression of the process reaction 
rate, pj, of the ASMl Peterson matrix [5] 

j 

In steady state, the accumulation term given by -^ is zero, because the 
concentration is constant in time. A W W T P in labor for a sufficiently long 
period of time without significant variations can be considered at steady state. 
As our purpose is to make cost predictions in a long term basis it is reasonable 
to do so. 

The ASMl model involves 8 processes incorporating 13 different compo­
nents. The mass balances for the inert materials, Sj and X / , are not considered 
because they are transport-only components. All the symbols used in these 
formulae and throughout the paper are listed in the Appendix - Notation. 
The processes rates are the following: 

Aerobic growth of heterotrophs, pi 

Anoxic growth of heterotrophs, p2 

P2 = i^H [T^) ( K ^ ^ ) ( ^ ^ a ^ ) V,XBH; 
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Aerobic growth of autotrophs, ps 

Decay of heterotrophs, p4 

Decay of autotrophs, ps 

P5 = ^A-^BA; 

Ammonification of soluble organic nitrogen, pQ 

Pe = ka^ND^BHi 

Hydrolysis of entrapped organics, pj 

Hydrolysis of entrapped organic nitrogen, ps PS = P7^ 

The unit adopted for concentration is g COD/rn? and the equations ob­
tained from the ASMl model with mass balances are as follows: 

Soluble substrate {Ss) 

-^p, - -Lp2 + P7 + : ^ ( % . - Ss) = 0; (1) 

Slowly biodegradable substrate {Xs) 

(1 - /P)P4 + (1 - /p)P5 -Pi+^ (^s.„ - Xs) = 0; (2) 

Heterotrophic active biomass (XBH) 

Pi-^P2-P4-\-^ {XBH,^ - XBH) = 0; (3) 

Autotrophic active biomass (XBA) 

P3-P5+^{XBA,„-XBA) = 0; (4) 

Particulate products arising from biomass decay (Xp) 

fpP4 + fpP5 + ^ {Xp,^ - Xp) = 0; (5) 

Nitrate and nitrite nitrogen (S^o) 
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NH^ + NHs nitrogen (SNH) 

ixBpi -^XBP2- MXB + ^ j P3 + P6 + ^ {^NHir. " ^NH) = 0; (7) 

Soluble biodegradable organic nitrogen (S^D) 

•PQ + P8 + ^ {SNDir. - SND) = 0; (8) 

Particulate biodegradable organic nitrogen (X^D) 

{ixs - fp'^Xp)P4 4- {ixs - /p^Xp) P5 - P8 + 7^ i^NDir. " ^ND) = 0; (9) 

Alkalinity (Saik) 

- I T ^ i + (,14 X 2.86yH " I T j ^^ - ( , i r + n ^ j ^^ + n ^ « 

+ : ^ ( 5 a « , „ - 5 a , f c ) = 0 ; (10) 

Oxygen (5o) 

^L« (^o,,.. - So) - ^^^Pi - ^'\^^P^ + f (^o.„ - 5o) = 0. (11) 

For oxygen mass transfer, the aeration by diffusion is considered: 

where 
^ 1777,SPpPo, 

^̂ '̂ ^ Henry02 ' 

p = 999.96(2.29 x IQ-^T) - (5.44 x IQ-^T^), Henry02 = 708 r + 25700. 

2.2 Composite Variables 

In a real system, some state variables are, most of the time, not available 
from direct measurements. Thus, readily measured composite variables are 
used instead. They are defined as follows. 

Particulate COD 

X = Xi + Xs + XBH + XBA + Xp; (13) 
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Soluble COD 
S = Si-^Ss; (14) 

COD = X + S; (15) 

VSS=^] (16) 
tcv 

Total COD 

Volatile suspended solids 

Total suspended solids 
TSS = VSS^ISS; (17) 

Biochemical oxygen demand 

BOD = fBOD {Ss + X5 + XBH + XBA) ; (18) 

Total nitrogen of Kjeldahl 

TKN = SNH-^SND-^XND+ixs i^BH + ^BA)+^Xp (Xp + Xi); (19) 

Total nitrogen 
N = TKN + SNO- (20) 

2.3 Quality Constraints 

Quality constraints are usually derived from environmental law restrictions. 
The most used are related with limits in the chemical oxygen demand (COD), 
total nitrogen (AT), and total solids (TSS) at the effluent. In mathematical 
terms, these constraints are defined as: 

CODef < CODiau, (21) 

Nef < Nia^ (22) 

TSSef < TSSiaw' (23) 

2.4 Constraints of the Secondary Settler 

Traditionally the secondary settler is underestimated when compared with the 
aeration tank. However, it plays a crucial role in the activated sludge system. 

When the wastewater leaves the aeration tank, where the biological treat­
ment took place, the treated water should be separated from the biological 
sludge, otherwise, the COD would be higher than it is at the entry of the 
system. The most common way of achieving this purpose is by sedimentation 
in tanks. 

A good settler tank has to accomplish three different functions. As a thick­
ener, it aims to produce a continuous underflow of thickened sludge to return 
to the aeration tank; as a clarifier, it produces a good quality final effluent 
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and as a storage tank it allows the conservation of the sludge in peak flow 
events. None of these functions could fail. If that happens the effluent will be 
of poor quality and the overall behavior of the system can be compromised. 

The behavior of a settling tank depends on its design and operation, 
namely the hydraulic features, as the flow rate, the physical features, as inlet 
and sludge collection arrangements, site conditions, as temperature and wind, 
and sludge characteristics. The factors that most influence the size of the tank 
are the wastewater flow and the characteristics of the sludge. As the former is 
known, the optimization of the sedimentation area and depth must rely on the 
sludge characteristics, which in turn are related with the performance of the 
aeration tank. So, the operation of the biological reactor influences directly 
the performance of the settling tank and for that reason, one should never be 
considered without the other. 

The ATV design procedure contemplates the peak wet weather flow 
(PWWF) events, in which the sludge mass transferred from the biological re- 
actor is AXV,, where AX is the change in the sludge concentration within the 
aeration tank. A reduction of 30% on the sludge concentration for a PWWF 
event is considered. A higher reduction of the sludge concentration into the 
biological reactor may compromise the entire process. 

Seconday Settler 

Fig. 3. Typical solids concentration-depth profile adopted by the ATV design pro- 
cedure (Adapted from [2]). 
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A way of turning around this problem is to allocate a certain depth (/13 
from Figure 3) to support the fluctuation of solids during these events. Thus, 
the sludge storage depth depends on the mass that needs to be stored during 
a PWWF and is given by 

'^ = ^ ^ ^ " 48017- (2^) 

When this zone is considered, a reduction in the sedimentation area is allowed. 
The transferred sludge causes the biological sludge concentration in the re­

actor at PWWF to decline, which allows a higher overflow rate and therefore 
a smaller surface area. However, the greater the decrease in reactor concen­
tration is, the greater is the mass of sludge to be stored in the settler tank, 
so the deeper the tank needs to be. The ATV procedure allows a trade-off 
between surface area and depth and one may select the area/depth combina­
tion that suites the particular site under consideration. As the work herein 
presented aims to reduce costs, both the surface area and depth are considered 
as variables and the combination goals for the minimum cost. 

The compaction zone, 1̂4, where the sludge is thickened in order to achieve 
the convenient concentration to return to the biological reactor, depends only 
on the characteristics of the sludge, and is given by 

/.4 = X , ^ (25) 

where Xp is the sludge concentration in the biological reactor during a PWWF 
event. 

The clear water zone, /ii, and the separation zone, /i2) ctre set empirically, 
in our case to 0.5m. The depth of the settling tank, /i, is the sum of these four 
zones, and should not be less than 2m. 

The sedimentation area is still related to the peak flow, Qp, by the expres­
sion 

% < 2400 {XpDSVI)-'"^'' (m/h). (26) 

2.5 Flow and Mass Balances around the System 

The system behavior, in terms of concentration and flows, may be predicted 
by balances. In order to achieve a consistent system, these balances must be 
done around the entire system and not only around each unitary process. 
They were done to the suspended matter, dissolved matter and flows. 

In the case of the suspended matter, the mass balances concern the organic 
{X) and inorganic (Xu) solids : 

V X 
(1 + r) QinfXin = QinfXinf-\-(l + r) Q^rifX- ^ (Xr - Xef)-QinfXef 

(27) 
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Qinf0.2TSSinf = J ^ ^ {Xu. - Xn^,) + QinfXu., • (28) 

The balances of the dissolved matter are done for each one of the dissolved 
components; 

(1 + r) QinfSs,^ = QinfSs,r.f + rQinfSs^ (29) 

(1 + r) QinfSo.r. = QinfSo,r.f + rQinfSo^ (30) 

(1 + r) QinfSNOin = Qinf^NOinf + rQinfSNOr (31) 

(1 + r) QinfSNHin = QinfSNHinf + fQiufS^Hr (32) 

(1 + r) QinfSNDin = Qinf^NDir^f + rQinfSNDr (33) 

(1 + r) QinfSalkin = QinfSalkir^f + rQinfSalkr' (34) 

Besides the mass balances, flow balances are also necessary: 

Q = Qinf-\-Qr (35) 

Q = Qef-^Qr-^Qw (36) 

2.6 Simple Bounds 

All variables must be nonnegative, although more restricted bounds are im­
posed to some of them due to operational consistencies, namely: 

0 < KLa < 300 0.05 < HRT < 2 
800 <TSS < 6000 0.5 < r < 2 

2500 < TSSr < 10000 6 < Saik < 8 
6 < Saik,^ < 8 So>2 

2.7 System Variables Definition 

To complete the model, some definitions are added: 

Sludge retention time 

(37) 

Hydraulic retention time 

Recycle rate 

SRT--
VgX 

HRT= ^ ; 

r = 

TSSr 

Qr . 

TSS 
.̂ ^̂  _ TSS 

(38) 

(39) 

(40) 

r= r^ac " " ^ c o i (41) 
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Recycle rate in a PWWF event 

_ 0.7TSS 
''" TSS„.,,^-0.7TSS' ^'' 

Recycle flow rate during a PWWF event 

Qr^ = rpQp; (43) 

Maximum overflow rate 

^ < 2. (44) 

A fixed value for the relation between volatile and total suspended solids was 
considered 

2.8 The Objective Cost Function 

The cost function represents the total cost and includes both investment and 
operation costs. In this paper, for the sake of simplicity, no pumps were con­
sidered, which means that all the flows in the system move by the effect of 
gravity. 

The operation cost is usually on annual basis, so it has to be updated to 
a present value with the updating term F: 

where i is the discount rate and n is the life span of the WWTP. We use 
2 = 0.05 and n = 20 years. The total cost is given by the sum of the investment 
{IC) and operation {OC) costs: 

TC = IC-\- OC. 

To obtain a cost function based on Portuguese real data, a study was 
carried out with a WWTP building company. The basic structure of the model 
is C = aZ^ [7], where a and b are the parameters to be estimated and Z is the 
characteristic of the unit process that most influences the cost. This model 
is nonlinear in the parameters, but it can be easily linearized. The obtained 
linear model is 

InC = Ina + 6 InZ 

and the parameters Ina and b are estimated by the least squares technique. 
The real data collected from the Portuguese company are presented in 

Tables 1 and 2. The investment cost function obtained for the aeration tank 
is 
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Table 1. Real data obtained for the aeration tank 

Va 
(m^) (m 
400 
600 
1000 
1300 

Gs HP {KW,h) 
^/day STP) (annual basis) 
437 
597 
943 
1283 

27720 
129600 
95040 
162000 

Cost{euro) 
Civil construction Electromechanical 

87158 
159796 
189952 
366146 

8416 
10029 
12199 
17056 

Table 2. Real data obtained for the secondary settler 

As h Vs Cost 
(m^) (m) (m^) (euro) 
51.8 
71.4 
100 

3.55 
3.9 
4.55 

184 
278 
455 

39355 
61348 
103741 

ICa = USSV^-^'^ + 7737G^-^^ 

The collected data come from a set of WWTPs in design, thus operation 
data are not available. However, from the company experience, the mainte­
nance expenses for the civil construction are around 1% of the investment costs 
during the first 10 years and around 2% otherwise. For the electromechanical 
components, the maintenance expenses are negligible, but all the materials are 
usually replaced after 10 years. The energy cost is directly related with the 
air flow. The second value in Table 1 was not used in our estimation because 
in this plant the planned air flow was in excess for some reason. The power 
cost (Pc) in Portugal is 0.08 euro/KW.h. With this information and with the 
updating term F (46), the operation cost of the aeration tank is then 

OCa = [o.Oir 4- 0.02r (l + i)"^°] (148.6V;^-^^) + (l + i)"^%737G^-^2 

+ ub.irPcGs. 

The term (1 + i)~ is used to bring to present a future value, in this case, 10 
years from now. 

The settling tank was considered to operate only by gravity. Thus, with 
the data from Table 2 and adopting the same mathematical procedure, the 
correspondent investment cost function is 

ICs = 955.5A^-^^ 

and for the operation cost function, that only concerns the maintenance for 
the civil construction, 
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OCs = [o.Oir + 0.02r (l + i)"^^] ( I 4 8 . 6 ( A , h)^-^'^^ . 

The total cost function is given by the sum of all the functions previously 
presented: 

TC = 174.2K1-^^4-12487G^-^2_^114.8GS+955.5A0-^^+41.3 [AS (1 + /13 + ^4)]^-°^ 
(47) 

3 Numerical Resolution 

The problem of the optimal design and operation of the activated sludge sys­
tem consists of finding the volume of the aeration tank, the air flow needed 
for the aeration tank, the sedimentation area, the secondary settler depth, 
the recycle rate, the efliiuent flow and concentration of total suspended solids, 
carbonaceous matter and total nitrogen in the treated water, to name a few, 
in such a way that, verifying the aeration tank balances (1-12) and system 
balances (27-36), satisfy the composite variables constraints (13-20), the sec­
ondary settler constraints (24-26), the system variables constraints (38-45), 
the quality constraints (21-23) and the bounds (37), and minimize the cost 
function (47). This problem has 57 parameters, 82 variables and 64 con­
straints, where 28 are nonlinear equalities, 1 is a nonlinear inequality and 
35 are linear equalities. Seventy one variables are bounded below and eleven 
are bounded below and above. Table 3 lists all the variables involved, as well 
as the initial values supplied to the solver. 

In Tables 4 to 7, we summarize the data parameter chosen to obtain the 
results of Section 4. These values are as the default values presented in the 
GPS-X simulator [6], and are usually found in the real activated sludge based 
plants for domestic efliuents. The remaining parameters are defined as func­
tions of the already listed parameters. 

This problem was coded in the AMPL [3] and the results were obtained 
running the solver LOQO V6.06 (http://www.princeton.edu/~rvdb/loqo/), 
an infeasible primal-dual interior point method [8]. In the stopping rule, we 
considered primal and dual infeasibilities < 10~^ and 2 digits of agreement 
between the primal and dual objective functions. All the other adjustable 
LOQO parameters were left as default. 

4 Discussion 

Several experiments were done for different values of the required COD at 
the effluent, considering 15 g/m^ as the N concentration limit and 35 g/m^ 
as the TSS concentration limit, at the effluent. The COD limits vary from 
45, that is the lowest value with which convergence was obtained, till 140. 
The value imposed by the Portuguese environmental law is 125. The problem 

http://www.princeton.edu/~rvdb/loqo/


448 I. A. C. P. Espirito-Santo et al. 

Table 3. ' 

Variable init. val^ 

\Qr 
iQef 
\Qrp 
\r 
\Va 

U. 
/13 

/i4 
\rp 

\Xi 

\Xi^ 
l^^ef 
\Ss-
\Ss 
\So 
l^Oin 
l^NOin 
\SNO 

\HRT 

4000 
100 
2000 
1900 
0 
1 
1000 
1000 
0 
0 
0 
727 
950 
0 
0 
10 
2 
0 
0 
10"® 
3.5 

V^ariables of the problem and their initial values 

Variable init. val. 
^BHi^ 
XBH 

XsHr 
XsH^f 

XSir, 
Xs 
XSr 

^Sef 
XBAir, 
XBA 

XsAr 
XBA^f 

^NHir^ 

SNH 

Xp.r. 
Xp 

Xp^ 

^Pef 
^NDin 
SND 

N 

0 
350 
711 
0 
0 
350 
807 
0 
0 
10"^ 
2 X 10"^ 
0 
0 
7.5 
0 
90 
175 
0 
0 
0.5 
106 

Variable init. val. 

XNDir. 
XND 

XNDr 
XND^f 
KLa 

Gs 
y^in 

X 
Xr 

Xef 

bin 

s 
Salkin 
Salk 
CODin 
COD 
CODr 
CODef 
VSSin 

vss 

0 
20 
0 
0 
100 
10000 
0 
1000 
4440 
0 
0 
50 
0 
7 
0 
1600 
0 
0 
0 
1050 

Variable init. val.l 
VSSr 
VSSef 
1 Uk^in 

TSS 
TSSr 
TSSef 
Xii 

^Ilef 
Xji^ 

BODin 
BOD 
BODr 
BODef 
TKNin 
TKN 

TKNr 
TKNef 
Nin 

Nr 

Nef 

0 1 
0 
0 
1800 
5000 
10 
0 
0 
0 
0 
500 
0 
0 
0 
106 
0 
0 
0 
0 
0 

Table 4. Stoichiometric parameters 

Parameter Value Parameter Value 
YA 

YH 

fp 

0.24 
0.666 
0.08 

ixp 
0.086 
0.06 

does not converge for smaller values of CODiaw because there is a minimum 
under which it is not possible to treat the effluent more, due to the inert 

Table 5. Kinetic parameters 

Parameter Value Parameter Value 

Mif 
Ks 

KoH 

KNO 

bn 
Vg 

'Hh 

6 
20 
0.2 
0.5 

0.62 
0.8 
0.4 

kh 

Kx 
IJ'A 

KNH 

bA 

KoA 

Ka 

3 
0.03 
0.8 
1 

0.04 
0.4 

0.08 
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Table 6. Operational parameters 

Parameter Value Parameter Value 
T 

P02 
DSVI 
SRT 

e 

20 
0.21 
150 
20 

1.024 

a 
V 

Qp 

P 

0.8 
0.07 
150 
0.95 

Table 7. Characteristics of the influent to the system 

Parameter Value Parameter Value 
^inf 

Sl,inf 

XBH,inf 
XBA,inf 
Xp,inf 
So,inf 

SNOyinf 

^alk,inf 

Ss,inf 

2000 
30 
0 
0 
0 
0 
0 
7 

52.73 

Xjyinf 

Xs,inf 
SNH,inf 

SND,inf 
XND,inf 
Xji^inf 

y^inf 

^inf 

73.65 
123 
11.7 
0.63 
1.251 
59.6 
196.7 
82.73 

contribution (Sj), which is not possible to eliminate with a biological process, 
from the total COD. 

The solution values of the most important variables, such as the total 
suspended solids and total nitrogen at the effluent, the aeration tank volume, 
the sedimentation area and depth of the secondary settler, the demanded 
air flow, the recycle rate, the eflluent flow and the total cost are reported 
in Table 8, for different values of the imposed COD limit (CODiaw)- The 
number of iterations used by LOQO to converge to the solution, according to 
the previously defined stopping rule, is shown in the last column of the table. 

For an easier interpretation of the results, two graphics were constructed. 
Figure 4 maps the total cost and the value of the quality index (QI) [1], which 
defines the amount of pollution at the final effluent, as function of the imposed 
COD limit. Figure 5 compares the contributions of investment/operation costs 
and aeration tank/secondary settler costs. 

As it can be observed from Table 8 and Figure 4, the total cost decreases 
and the quality of the effluent deteriorates as the imposed COD at the ef­
fluent increases. In terms of total cost, the reduction is more pronounced for 
COD limits between 45 and 85. For CODiaw = 85 and over the observed cost 
reduction is very small. For example, when CODiaw = 85 the attained min­
imum cost is 1.4 millions of euros whereas for CODiaw = 125 the minimum 
cost decreases to 1.3 millions of euros. This is due to the operational limits 
and from a certain point on the project cost can no longer decrease. 
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Table 8. Results for some of the variables for Nuw = 15 and TSSuw = 35 
CODi 

45 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 
100 
105 
110 
115 
120 
125 
130 
135 
140 

TSS.j 

{g/m^) 
0.40 
0.16 
1.8 
1.8 
0.93 
0.50 
0.32 
0.15 
1.6 
4.9 
8.3 
11.7 
15.1 
18.4 
21.8 
25.2 
28.7 
32.3 
35.0 
35.0 

^ e / 

{g/m^) 
5.9 
9.0 
10.2 
11.0 
11.7 
12.2 
12.4 
12.7 
13.1 
13.2 
13.3 
13.6 
13.9 
14.1 
14.2 
14.3 
14.4 
14.4 
14.5 
14.5 

Va 
m 3 

1346 
1483 
1525 
1498 
1462 
1454 
1444 
1431 
1408 
1373 
1338 
1303 
1268 
1233 
1197 
1162 
1136 
1117 
1099 
1099 

As 
m 2 

337 
332 
330 
341 
351 
351 
351 
351 
351 
351 
351 
351 
351 
351 
351 
351 
347 
340 
334 
334 

h 
(m) 

3.5 
3.7 
3.7 
3.7 
3.6 
3.6 
3.6 
3.6 
3.6 
3.5 
3.5 
3.4 
3.4 
3.3 
3.3 
3.2 
3.2 
3.1 
3.1 
3.1 

o ^S 
(m^/d STP) 

14521 
8735 
6320 
4796 
3629 
2641 
1755 
933 
503 
503 
503 
503 
503 
503 
503 
503 
503 
503 
503 
503 

r 

1.8 
1.8 
1.8 
1.9 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
1.9 
1.8 
1.8 

Qef 
(m^/d) 

1933 
1929 
1931 
1931 
1931 
1930 
1932 
1929 
1930 
1930 
1935 
1932 
1933 
1934 
1942 
1941 
1941 
1946 
1948 
1946 

Total cost 
10^ euros 

772 
5.3 
4.4 
3.8 
3.2 
2.8 
2.3 
1.8 
1.4 
1.4 
1.4 
1.4 
1.4 
1.4 
1.3 
1.3 
1.3 
1.3 
1.3 
1.3 

L O Q O 
iterations 

86 
72 
75 
75 
89 
92 
100 
113 
84 
71 
52 
54 
55 
61 
67 
59 
110 
209 
266 
271 

1300 

1200 

1100 

1000 

900 

I 
•£ 800 
t 

600 

500 

400 

300 

...-•—•—^ ^ — ^ — , , .̂. 

Ql 

...... TC 

45 50 55 60 65 70 75 85 90 95 100 105 110 115 120 125 130 135 140 

C O D limit 

Fig. 4. Total cost {TC) and quality index (QI) versus COD limit at the effluent. 

Regarding the quality index, it deteriorates more stressfuUy until a COD 
limit of 60. For higher values the deterioration of the effluent grows almost 
linearly. 

Another important observation is that although the COD limit is always 
achieved, TSS only reaches its limit when the COD limit is 135 and over, 
and the N limit is never attained. Nevertheless, as the imposed COD limit 
increases, the TSS and N at the effluent get larger. This means that for the 
considered interval, the carbonaceous matter dominates the process, being the 
parameter that determines the cost, 
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Fig. 5. Contributions of investment/operation costs and aeration tank/secondary 
settler costs. 

For COD limit values between 90 and 120, the sedimentation area is main­
tained at 351 rn? while the depth decreases because, as mentioned in Subsec­
tion 2.4, this model allows a trade-off between the sedimentation area and the 
settler depth. However, the five cases displayed with A^ = 351 and /i = 3.6 are 
acceptable because the TSS concentrations are kept very small. For higher 
imposed COD limits, both sedimentation area and depth decrease. 

The aeration tank volume and the air flow generally decrease as the im­
posed COD limit increases. From the dramatic reduction of the air flow ver­
ified for the COD limit interval [45,85], we may conclude that the air flow is 
the main contribution to the total cost. 

As to the recycle rate, it reaches 2 (its maximum value) at a CODiaw = 65, 
and this happens for two reasons. First, to get the minimum of TSS at the 
effluent, the sludge goes to the underflow. Second, to achieve the demanded 
quality it is necessary to keep as much biomass as possible inside the aeration 
tank. 

Now, looking into the costs with more detail, from Figure 5 we can see 
that the investment costs overlap the operation costs, for a life span of 20 
years. However, for a more demanding system this difference is smaller. For 
example, with a CODiaw = 45, the operation costs equal the investment costs. 
Regarding the two involved unit processes, we may conclude that the cost 
associated with the aeration tank is much higher than that of the secondary 
settler, in particular for CODiaw values smaller than 85. In both cases, the 
relations between costs are maintained almost constant for CODiaw values of 
85 and higher. 
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5 Conclusions 

In this paper we present the mathematical formulation of a nonlinear problem 
that considers the optimal design and operation, in terms of minimum instal­
lation and operation cost, of an activated sludge system in WWTP's, based on 
Portuguese real data and effluent quality law limits. The optimization process 
was carried out running LOQO. 

Prom our numerical experience we may conclude that the quality of the 
effluent influences directly the cost of the treatment plant project, especially 
in terms of carbonaceous matter (COD). With the environmental law invigo­
rating in Portugal, only the COD limit influences the cost of the design. With 
the compelling observance of Portuguese environmental law, neither TSS nor 
N reach their legal limits, 35 and 15 respectively, when the CODef = 125. 

The main contribution to the total cost is the air flow because it influ­
ences the design in the project (electromechanical material) and during the 
operation (consumption of energy by the aeration). 

Our next task is to add an anoxic preliminary treatment for phosphorous 
removal in series with the aeration tank, that may be described by the model 
ASM2d [4], and to reoptimize the process. 

Acknowledgements. The authors acknowledge the company Factor Ambi-
ente (Braga, Portugal) for the data provided. We are also grateful to the 
referee comments that greatly improved the final version of the paper. 

Appendix - Notation 

^A^decay coefficient for autotrophic biomass, day~^ 
bH=dec8iy coefficient for heterotrophic biomass, day~^ 
50D=biochemical oxygen demand, g O^jvr? 
50i:)c/=ultimate BOD, g O^jm^ 
COZ)=chemical oxygen demand, g CODjrr? 
jD6'y/=Diluted sludge volume index 
fBOD=BOD/BODu ratio 
/p=fraction of biomass leading to particulate products 
G5=air flow rate, m^/day at STP 
if enry02—Henry constant 
if J?T=hydraulic retention time, day 
z=discount rate 
icv=X : VSS ratio, g COD/g VSS 
IXB ^nitrogen content of active biomass, g N/g COD 
zxp—nitrogen content of endogenous/inert biomass, g N/g COD 
/C=investment cost, 2003 euros 
ISS=moxgQiiic suspended solids, g/rri^ 
A;a=ammonification rate, m^ /g COD/day 
/c/i—maximum specific hydrolysis rate, day~^ 
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KLa=oveTal mass transfer coefficient, day~^ 
i^ivif=ammonia half-saturation coefficient for autotrophic biomass growth, 

g N/m^ 
•^Aro=nitrate half saturation coefficient for denitrifying heterotrophic 

biomass, g N/m^ 
KoA—oxygen half-saturation coefficient for autotrophs growth,^ O^jrir? 
KoH—oxygen half-saturation coefficient for heterotrophs growth, g 02/m^ 
X^^readily biodegradable substrate half-saturation coefficient for het­

erotrophic biomass, g COD/m^ 
Kx =half-saturation coefficient for hydrolysis of slowly biodegradable sub­

strate, g COD/g COD 
n=life span of the treatment plant, years 
Ar=total nitrogen, g N/m^ 
OC^operation costs, 2003euros 
P02—P^^^i^l pressure of oxygen uncorrected 
PWWF=Peak wet weather flow 
(5=flow, m^/day 
QI=quality index, Kg of pollution/day 
r=recycle rate 
S'-soluble COD, g COD/w? 
5a/fc^a-lkahnity, molar units 
S'/^soluble inert organic matter, g COD/m^ 
5iVD=soluble biodegradable organic nitrogen, g N/m^ 
SisfH=^ee and ionized ammonia, g N/vn? 
S^o—^^^^^^e and nitrite nitrogen, g N/m^ 
^o^dissolved oxygen, g {—COD)/m^ 
Sosat—^^^^^^^^^ oxygen concentration, g/m^ 
iS^^readily biodegradable soluble substrate, g CODjvn? 
5i?T=sludge retention time, day 
5'TP=standard temperature and pressure 
TC==total costs, 2003e'uros 
Va=aeration tank volume, w? 
T^iS^^volatile Suspended Solids, glvn? 
T—temperature, C 
TKN^total nitrogen of Kjeldahl, g N/m^ 
TSS=total Suspended Solids, g/m^ 
^^particulate COD, g COD/w? 
XBA—active autotrophic biomass, g COD/m^ 
^Bif ==active heterotrophic biomass, g COD/rn? 
X/=particulate inert organic matter, g COD jw? 
X//—inert inorganic suspended solids, p/m^ 
^ND^particulate biodegradable organic nitrogen, g Njvr? 
Xp= particulate products arising from biomass decay, g COD/rn? 
X5=slowly biodegradable substrate, g COD/m^ 
YA^^y'ield for autotrophic biomass, g COD/g N 
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Xff^yield for heterotrophic biomass, g COD/g COD 
a^wastewater /c lean water coefficient 
/?=salts and ions correction factor 
?7=standard oxygen transfer efficiency 
77p=correction factor for fj^n under anoxic conditions 
77^—correction factor for hydrolysis under anoxic conditions 
/x̂ === maximum specific growth rate for autotrophic biomass, day~^ 
)Lij:f ==maximum specific growth rate for heterotrophic biomass, day~^ 
p=density of water, Kg/w? 
^^ tempera tu re correction factor 

subscripts 
a=aera t ion tank 
e/=:effluent 
m=en te ry of the aeration tank 
m/= inf luen t 
p=dur ing a P W W F event 
r=recycle 
s^se t thng tank 
tu^sludge waste 
no index=:inside the aeration tank=exi t of the aeration tank 
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