
9 Modeling Goals and Reasoning with Them

Colette Rolland and Camille Salinesi

Abstract. The concept of goal has been used in many domains such as manage-
ment sciences and strategic planning, artificial intelligence and human computer
interaction. Recently, goal-driven approaches have been developed and tried out to
support requirements engineering activities such as requirements elicitation, speci-
fication, validation, modification, structuring and negotiation. This chapter first
review various research efforts undertaken in this line of research and presents the
state-of-the-art in using goals to engineer requirements. It then presents a particu-
lar goal model, the goal/strategy map, and shows that maps can help with facing
the challenge of new emerging multi-purposes systems, i.e. systems imposing
variability in requirements elaboration and customization in the requirements en-
gineering process.

Keywords: Goal, Goal modeling, Goal specification, Reasoning with goals, Elici-
tation, Variability, User, Scenario.

9.1 Introduction

Goals have long been recognized to be an essential component involved in the
Requirements Engineering (RE) process. In their seminal paper, Ross and Scho-
man stated “requirements definition must say why a system is needed, based on
current and foreseen conditions, which may be internal operations or external
market. It must say what a system features will serve and satisfy this context. And
it must say how the system is to be constructed” [77]. Typically, the current sys-
tem is analyzed; problems are pointed out and opportunities are identified; high
level strategic goals are elicited and refined to address such problems and meet
such opportunities; requirements are then elaborated to meet these goals. Goals are
thus the driving force of the requirements engineering process.

Goal-driven approaches have proved to be an effective way to elicit require-
ments [64, 76] and also to support a systematic exploration of design choices [41,
74, 90] to check requirements completeness [91], to ensure requirements pre-
traceability [26, 66] and to help in the detection of threats [31] such as conflicts
[68] and obstacles [41, 64] and their resolution. The leading role played by goals
in the RE process led to a whole stream of research on goal modeling, goal speci-
fication/formulation and goal-based reasoning for the multiple aforementioned
purposes.

This chapter aims first to provide a state-of-the-art review in the three key top-
ics of goal modeling, goal specification and reasoning with goals. Thereafter, we
will discuss a particular goal model, the goal/strategy map [73] and show how
comprehensive guidelines, drawn from our research and our practical experience,

190 Rolland and Salinesi

help to model and specify maps and to reason with them. A special emphasis will
be put to demonstrate how goal/strategy maps are well suited to deal with new
challenges raised by the emerging conditions of systems development leading to
variability in requirements capture and customization in the requirements process.
Variability is imposed by the multi-purpose nature of software systems of today.
These systems must meet the purpose of several organizations and must be adapt-
able to different usage situations sets of customers. In contrast, earlier software
systems were concerned with the purpose of a single organization and of a single
set of customers. Variability is defined in software development as the ability of a
software system to be changed, customized or configured to a specific context
[87]. Therefore, it can be seen that variability affects both goal models, which
must make variability explicit, and the process of goal-based reasoning that must
help selecting the right variant for the project at hand.

The rest of this chapter is organized in two main sections. Section 2 is an over-
view of the state-of-the-art in using goals to engineer requirements. Section 3 pre-
sents the goal/strategy map model and its contribution to deal with variability re-
quirements.

9.2 State-of-the-Art Review

According to Axel van Lamsweerde [40], RE is “concerned with the identification
of goals to be achieved by the envisioned system, the operationalization of such
goals into services and constraints, and the assignment of responsibilities of result-
ing requirements to agents as humans, devices, and software”. In this view which
is largely shared by the RE community, goals drive the RE process which focuses
on goal centric activities such as goal elicitation, goal modeling, goal operationali-
zation and mapping goals onto software objects, events and operations. This sec-
tion provides an overview of research efforts undertaken in this line. It is organ-
ized in three parts. The first one provides the “big picture”, the second overviews
contributions of goal modeling approaches and the third one discusses their weak-
nesses.

9.2.1 The Big Picture

This section presents a motivation for goal-driven RE, briefly defines what a goal
is and introduces the roles of goals in the RE process and the difficulties encoun-
tered in their use.

9.2.2 Motivation for Goal-Based RE Approaches

Goal-driven RE approaches have emerged as a means to overcome the major
drawback of traditional approaches, that is, to lead to systems technically good but

9 Modeling Goals and Reasoning with Them 191

unable to respond to the needs of users in an appropriate manner. Indeed, several
field studies show that a requirement misunderstanding is a major cause of system
failure. For example, a survey of 800 projects undertaken by 350 US companies
revealed that one third of the projects were never completed and one half suc-
ceeded only partially; poor requirements were identified as the main source of
problems [81]. Similarly, a survey over 3800 organizations in 17 European coun-
tries shows that most of the perceived problems are related to requirements speci-
fication (>50%), and requirements management (50%) [23]. More recently, a 2003
survey of the Meta Group [54] shows even more pessimistic figures attributing 60
to 70% of system failures to poor requirements capture, validation and manage-
ment. If we want better quality systems to be produced, i.e. systems that meet the
requirements of their users, RE needs to explore the objectives of different stake-
holders and the activities carried out by them to meet these objectives in order to
derive purposeful system requirements. Goal-driven approaches aim at meeting
this objective.

The framework of Fig. 9.1 shows that goal-based RE approaches are motivated
by establishing an intentional relationship between the usage world and the sys-
tem world [34]. The usage world describes the tasks, procedures, interactions etc.
performed by agents and how systems are used to do work. It can be looked upon
as containing the objectives that are to be met in the organization and achieved by
the activities carried out by agents. The subject world contains knowledge of the
real world domain about which the proposed system has to provide information.
Requirements arise from both of these worlds. However, the subject world im-
poses domain-requirements, which are facts of nature and reflect domain laws,
whereas the usage world generates user-defined requirements, which arise from
people in the organization and reflect their goals, intentions and wishes.

Subject

World

System

World

Usage

World
Intentional relationship

Representation relationship

System
Environment

Fig. 9.1 Relationships between the worlds of usage, subject and system

The system world is the world of system specifications in which the require-
ments arising from the other two worlds must be addressed. These three worlds
are interrelated as shown in Fig. 9.1. User-defined requirements are captured by

192 Rolland and Salinesi

the intentional relationship. Domain-imposed requirements are captured by the
representation relationship. Understanding the intentional relationship is essential
to comprehend the reason why a system should be constructed. The usage world
provides the rationale for building a system. The purpose of developing a system
is to be found outside the system itself, in the enterprise, or in other words, in the
context in which the system will function. The relationship between the usage
world and the system world addresses the issue of the system purpose and relates
the system to the goals and objectives of the organization. This relationship ex-
plains why the system is developed. Modeling this establishes the conceptual link
between the envisaged system and its changing environment.

Goal-driven approaches have been developed to address the semiotic, social
link between the usage and the system world with the hope to construct systems
that meet the needs of the organization and fulfill their purpose.

9.2.2.1 What Are Goals?
According to Axel van Lamsweerde [43] “a goal corresponds to an objective the
system should achieve through the cooperation of agents in the software to be and
in the environment”. Goals refer to intended or optative [32] properties of envi-
sioned system or of its environment. They are expressions of intent and thus de-
clarative with a prescriptive nature, by opposition to descriptive statements [32]
which describe real facts. For instance, Transport passengers fast is a goal
whereas If doors are closed, they are not open is a descriptive statement. Goals
can be formulated at different levels of abstraction ranging from high-level, e.g.
strategic results that an enterprise wants to achieve, down to low-level, e.g. techni-
cal concerns on precise situations that a system component should help to reach.
Transport passengers safely is an example of a high level goal whereas Keep
doors closed when moving is a goal of a lower level of abstraction.

Goals cover different types of concerns, functional and quality (also called non
functional). Functional goals refer to services that will be provided by the system
or its environment whereas quality goals refer to qualities of the system behavior
in its environment. Provide cash is a functional goal whereas Serve customer
quickly is a quality goal.

Unlike requirements, goals are usually achieved by the cooperation of multiple
agents. The goal Transport passengers safely requires, for example, the coopera-
tion of multiple agents such as the train transportation system, the software sys-
tem, the tracking system and the passengers. A goal under the responsibility of a
single agent in the software becomes a requirement. One important decision in the
RE process is therefore to decide which goals will be automated and which ones
will not. Whereas the actual situations met in the system environment (e.g. physi-
cal laws, regulations, norms and behaviors, etc) are usually not controlled by the
system, it is possible to control the satisfaction of requirements by implementing
them into the system. Maintain doors closed while moving is a goal leading to a
requirement for the system that will ensure its satisfaction whereas Get in when
doors open is an assumption [15] about agents out of the system control. Such a
statement cannot be used as a requirement.

9 Modeling Goals and Reasoning with Them 193

9.2.2.2 Roles of Goals
As a driving force of the requirements engineering process, goals play a number of
roles which are introduced in the following.

Requirements elicitation: goal modeling proved to be an effective way to elicit
requirements [4, 15, 20, 35, 43, 64, 76]. The pros of goal-based requirements
elicitation being that the rationale for developing a system must be found out-
side the system itself, in the enterprise [49] in which the system shall function.
Exploration of design choices: RE assumes that the envisioned system might
function and interact with its environment in many alternative ways. Alterna-
tive goal refinement proved helpful in the systematic exploration of system
choices [30, 43, 64, 74].
Requirements completeness is a major RE issue. Yue [91] was probably the
first to argue that goals provide a criterion for requirements completeness: the
requirements specification is complete if the requirements are sufficient to
achieve the goal they refine.
Requirements traceability: goals provide a means to ensure requirements pre-
traceability [26, 60, 66]. They establish a conceptual link between the system
and its environment, thus facilitating the propagation of organizational changes
into the system functionality. This link provides the rationale for requirements
[11, 56, 64, 77, 80] and facilitates the explanation and justification of require-
ments to the stakeholders.
Requirements negotiation: Stakeholders provide useful and realistic viewpoints
about the system to be. Negotiation techniques have been developed to help
choosing the prevalent one [9, 29]. Prioritization techniques aim at providing
means to compare the different viewpoints on the basis of costs and value [36,
55]. Chapters 7 and 4 respectively provide a more detailed survey of require-
ments negotiation and prioritization methods.

Conflicts detection and resolution: Multiple viewpoints are inherently associ-
ated to conflicts [59] and goals have been recognized to help in the detection of
conflicts and their resolution [41, 68, 70, 78].

9.2.3 Contributions of Goal Modeling Approaches

For goals to play the aforementioned roles, a whole stream of research led to con-
tributions on goal modeling, goal formulation and goal-based reasoning that we
review in turn.

9.2.3.1 Modeling Goals
Goal modeling is central to RE Goal-driven approaches; its benefit are to support
heuristic, qualitative or formal reasoning schemes during the RE process. Goals
are modeled by intrinsic features such as types and by links with other goals or
other elements in the requirements model. We consider them in turn.

194 Rolland and Salinesi

Goal Taxonomies: Goals can be of different types. Several classification schemes
have been proposed in the literature. Functional versus non-functional is the first
one. Functional goals underlie services that the system is expected to deliver
whereas non-functional goals refer to expected system qualities such as security,
safety, performance, usability, flexibility, customizability, interoperability, and so
forth. A rich taxonomy for non-functional goals can be found in [12]. Another dis-
tinction often made in the literature is between soft goals, whose satisfaction can-
not be established in a clear-cut sense [57], and hard goals whose satisfaction can
be established through verification techniques [7, 11, 16]. Soft goals are especially
useful for comparing alternative goal refinements and choosing one that contrib-
utes the “best” to them.

Another classification axis is based on types of temporal behavior prescribed by
the goal. In [15], achieving (respectively cease) goals generates system behaviors;
maintaining (respectively avoid) goals restricts behaviors; optimizing goals com-
pares behaviors to favor those, which better ensure some soft target property. In a
similar way, [82] proposes a classification according to desired system states (e.g.,
positive, negative, alternative, feedback, or exception-repair) and to goal level
(e.g., policy level, functional level, domain level). In [6] Antòn makes a distinc-
tion between objective goals that refer to objects in the system, and adverbial
goals, that refer to ways of achieving objective goals. Goal types and taxonomies
are used to formulate a goal [2, 22, 57, 76] and to define heuristics for goal acqui-
sition, goal refinement, requirements derivation, and semi-formal consis-
tency/completeness checking [2, 5, 12, 15, 82].

Goal Links: Many different types of relationships among goals have been intro-
duced in the literature. They can be classified in two categories to relate goals: (1)
to each other and (2) with other elements of requirements models. We consider
them in turn in the next sub-sections. Chapter 5 of this book deals with similar ex-
pressions.

a) Goal Links Among Goals: The most common form of a goal model is an
AND/OR graph. AND/OR relationships [11, 15, 50, 58, 76] inspired from
AND/OR graphs in Artificial Intelligence are used to capture goal decomposition
into more operational goals and alternative goals, respectively. In the former, all
the sub-goals must be satisfied for the parent goal to be achieved, whereas in the
latter if one of the alternative goals is achieved, then the parent goal is satisfied.
For example, in a book lending system, the goal Satisfy borrower request is
ANDed (has an AND relationship) with Satisfy Bibliography request, Satisfy book
request and Provide long borrowing period. These three goals are sub-goals of the
former that will be satisfied if its sub-goals are themselves satisfied. Maintain as
many copies as needed and Maintain regular availability are alternatives to satisfy
the goal Satisfy customer request. The former is ORed (has an OR relationship)
with the latter and will be satisfied if one of the two alternative goals is satisfied.

In [12, 57, 58], the inter-goal relationship is extended to support the capture of
negative/positive influence between goals. A sub-goal is said to contribute par-
tially to its parent goal. This leads to the notion of goal satisfycing instead of goal

9 Modeling Goals and Reasoning with Them 195

satisfaction. For example, Ensure confidentiality of accounts and Ensure security
of accounts are ANDed to Secure accounts. Both contribute positively to satisfy-
cing the parent goal Secure accounts. By opposition to goal satisfaction, which
can be verified quantitatively, using some criterion [69], goal satisfycing cannot
be established in a clear-cut sense. Goal satisfaction expressed in AND/OR graphs
of hard goals is referred to as the quantitative framework whereas goal satisfycing
expressed with soft goals is part of the so-called qualitative framework. The “mo-
tivates” and “hinders” relationships among goals in [11] are similar in the sense
that they capture positive/negative influences among goals.

In [76], goal-scenario pairs (called requirement chunks, RC) can be assembled
together through composition, alternative and refinement relationships. The first
two lead to AND and OR structures of RCs whereas the last leads to the organiza-
tion of the collection of RCs as a hierarchy of chunks of different granularity.
AND relationships among RCs link complementary chunks in the sense that every
one requires the others to define a completely functioning system. RCs linked
through OR relationships represent alternative ways of fulfilling the same goal.
RCs linked through a refinement relationship are at different levels of abstraction.
The goal Fill the ATM with cash is an example of ANDed goal to Withdraw cash
from the ATM whereas Withdraw cash from the ATM with two invalid code cap-
ture is ORed to it. Finally Check the card validity is linked to the goal Withdraw
cash from the ATM by a refinement relationship.

Conflict relationships are another kind of relationship among goals. These rela-
tionships have been introduced [11][15][59][21] to capture the fact that one goal
might prevent the other from being satisfied. For example, in the book lending
system considered above, Provide long borrowing period which is a sub-goal of
Satisfy borrower request in the AND/OR graph has a conflict relationship with the
alternative goal Maintain regular availability of the parent goal Satisfy customer
request in the same goal graph.

b) Goal Links with Other Elements of Requirements Models: In addition to in-
ter-goal relationships, goals are also related to other elements of requirements
models. In his keynote talk [37], Lamsweerde introduced the magic RE triangle as
composed of goal, scenario and agent. Obviously goals have privileged relation-
ships with the two other concepts of scenario and agent. Many authors suggest
combining goals and scenarios [2, 13, 28, 35, 38, 46, 62, 85]. This is understand-
able because scenarios and goals complement each other. Goals are declarative
whereas scenarios are procedural. Intentions are made explicit by goals whereas
they are implicit in scenarios. Goals are abstract whereas scenarios are concrete.
Combining goals and scenarios can be therefore, seen as a way to mitigate limita-
tions that each concept has when used in isolation. Potts [62] for example, says
that it is “unwise to apply goal based requirements methods in isolation” and sug-
gests complementing them with scenarios. This combination has been used
mainly, to make goals concrete: scenarios can be interpreted as containing infor-
mation on how goals can be achieved. In [14, 33, 46, 61], a goal is considered as a
contextual property of a use case [33] i.e. a property that relates the scenario to its
organizational context. Therefore, goals play a documenting role only. [13] goes

196 Rolland and Salinesi

beyond this view and suggests to use goals to structure use cases by connecting
every action in a scenario to a goal assigned to an actor. In this sense a scenario is
discovered each time a goal is. Clearly, all these views suggest a unidirectional re-
lationship between goals and scenarios. [76] further extends this view by suggest-
ing a “bi-directional relationship between goals and scenarios”. In the forward di-
rection from goal to scenario, the scenario represents a possible behavior of the
system to achieve the goal, and therefore, scenarios help make the goal concrete
and detect unrealistic goals. In the backward direction, from scenario to goal, the
relationship is used to discover new goals using mining techniques. As the sce-
nario represents a concrete, realistic behavior of the system to be, the goals in-
ferred from it should themselves be realistic ones.

As mentioned before, goal satisfaction requires cooperation among agents. Re-
lationships with agents have been emphasized in [89, 90] where a goal is the ob-
ject of the dependency between two agents. Such type of link is introduced in
other models as well [15, 42, 47] to capture who is responsible of a goal. Aside
from the golden relationships with scenarios and agents, goals might have links
with other concepts of requirements models. For example, as a logical termination
of the AND/OR decomposition, goals link to operations which operationalize
them [2, 15, 35, 38]. Relationships between goals and system objects have been
studied in [45] and are for instance, inherently part of the KAOS model [15, 42].
In [11] goals are related to a number of concepts such as problem, opportunity and
threat with the aim to better understand the context of a goal. Finally the interest-
ing idea of obstacle introduced by [62] leads to obstructions and resolution rela-
tionships among goals and obstacles [41, 85].

9.2.3.2 Formulating Goals: Goal formulation is necessary to document the goal
model and to support some form of reasoning. Goal formulation can be informal,
semi-formal or formal. Goal statements are often texts in natural language [7, 13]
and may be supplemented as suggested by [92] with an informal specification to
make precise what the goal name designates.

The motivation for semi-formal or formal goal expressions is to support some
form of automatic analysis. Typical semi-formal formulations use some goal tax-
onomy and associate the goal name to a predefined type [2, 15]. This helps clarify-
ing the meaning of the goal. For instance, in [57] a non-functional goal can be
specified. Accuracy[account.balance] is an example of such a goal formulation.
Similarly, in Elektra [22], goals for change are pre-fixed by one of the seven types
of change: Maintain, Cease, Improve, Add, Introduce, Extend, Adopt and Replace.
Graphical notations [12][57][43] can be used in addition to a textual formulation.
L’Ecritoire [76] proposes to formulate each goal as a clause with a main verb and
several parameters, where each parameter plays a different role with respect to the
verb. For example in the goal statement Withdraw verb (cash)target (from ATM)means,
Withdraw is the main verb, cash is the parameter target of the goal, and from ATM
is a parameter describing the means by which the goal is achieved. The linguistic
approach of Fillmore's Case grammar [24], and its extension [19] was used to de-
fine goal parameters [65]. Each type of parameter corresponds to a case and plays
a different role with respect to the verb, e.g. target entities affected by the goal,

9 Modeling Goals and Reasoning with Them 197

means and manner to achieve the goal, beneficiary agent of the goal achievement,
destination of a communication goal, source entities needed for goal achievement
etc.

Formal specifications of goals like in Kaos [15][43] require a higher effort but
yield more powerful reasoning. Achieve [BookRequestSatisfied]: (bor: Bor-
rower, b: Book, lib: Library) Requesting (bor, b) b.subject lib.coverageArea

 (bc:BookCopy) (Copy(bc, b) Borrowing(bor, bc)) is an example of such
formal specification.

9.2.3.3 Reasoning with Goals: The ultimate purpose of goal modeling is to
support some form of goal reasoning for RE sub-processes such as requirements
elicitation, consistency and completeness checking, obstacle discovery, conflict
resolution and so forth. We consider some of these in the following.

a) Eliciting Goals by Reuse: Although goals can sometimes be spontaneously
expressed by stakeholders and therefore available to requirements engineers at
early phases of the requirements process, most goals are implicit. Therefore, elicit-
ing goals is not always an easy task, and reasoning techniques can be usefully em-
ployed for better performance. Reuse techniques are some of these. Chap. 2 is de-
voted to elicitation problems. For example, Massonet [53] proposes to retrieve
goals that have semantically and structurally similar specifications in a repository
of reusable specification components, and then transpose the specifications found
according to the matching that emerged from the retrieval process. An attempt to
retrieve cases from a repository of process cases was developed in [44]. The soft-
ware tool captures traces of RE processes using the NATURE contextual model
[44] and develops a case-based technique to retrieve process cases similar to the
situation at hand.

b) Eliciting Goals from Scenarios: A goal inductive elicitation technique based
on the analysis of conceptualized scenarios is proposed in [76]. Scenarios can be
conceptualized owing to powerful analysis and transformation linguistic tech-
niques based on a Case Grammar inspired by Fillmore’s Case Grammar [19, 24].
The pay-off of the scenario conceptualization process is the ability to perform
powerful induction on conceptualized scenarios. In [38], a similar approach is de-
veloped that takes scenarios as examples and counter examples of the intended
system behavior and generates goals that cover positive scenarios and exclude the
negative ones. [5] takes similar position to derive goals from use-case specifica-
tions.

c) Eliciting Goals by Refinement: Many approaches suggest formulating goals at
different levels of abstraction. By essence, goal centric approaches aim to help in
the move from strategic concerns and high level goals to technical concerns and
low abstraction level goals. Therefore, it is natural for approaches to identify dif-
ferent levels of goal abstraction where high level goals represent business objec-
tives and are refined in system goals [2, 3] or system constraints [41]. Inspired by

198 Rolland and Salinesi

cognitive engineering, some Goal-driven RE approaches deal with means-end hi-
erarchy abstractions, where each hierarchical level represents a different model of
the same system. The information at any level acts as a goal (the end) with respect
to the model at the next lower level (the means) [48, 67, 88]. In [76] the refine-
ment strategy helps discovering goals at a lower level of abstraction. This is a way
to support goal decomposition. Another obvious technique to perform refinement
is to decompose it by asking the HOW question [39]. Other decomposition based
goal elicitation heuristics have been developed in [50] and [47].

d) Obstacle Driven Elaboration: Goal models seem to be powerful instruments
to perform hazard reasoning. Several RE approaches have already been developed
to deal with obstacles and conflicts [4, 31, 41]. Both concepts relate to the goals
that users have in mind when they use the facilities offered by software systems.
An obstacle is defined as a phenomenon that occurs in the system and/or its envi-
ronment and obstructs the achievement of the goal [4, 41]. A conflict is when the
achievement of two different goals obstructs each other [21, 68]. A similar princi-
ple is used to build misuse case descriptions. A misuse case is as a use case de-
scribed from the point of view of a hostile actor. The goal of this actor is to use the
system functions for a different purpose than the one initially intended [1, 79].

e) Conflict Resolution: Reasoning with goals can also help to resolve conflicts
among stakeholders. A conflict is when the achievement of two different goals ob-
structs each other. [59, 68, 78] explain how conflicts arise from multiple view-
points and concerns. Various forms of conflict have also been studied in [17].
Ivankina [31], and Sutcliffe [83, 84], generalize the notions of obstacle, conflict
and other system menace into the notion of threat because they all correspond to
the partial or total hindering of one or several system goals.

9.2.4 Weaknesses of Goal-Driven Approaches

Despite their contributions to the performance of a number of RE activities, sev-
eral authors [39][2][28] also acknowledge the fact that dealing with goals is not an
easy task. This sub-section discusses weaknesses of goal driven approaches.

Mitigating goal abstractness: Our own experience in several domains such as
air traffic control, electricity supply, human resource management, tool set de-
velopment is that it is difficult for domain experts to deal with the abstract con-
cept of a goal [75]. Scenario authoring is one of the rare ways used in goal
driven approaches to make a goal more concrete. More mechanisms are needed
to mitigate the abstract nature of a goal.
Finding the right goal: It is often assumed that systems are constructed with
some goals in mind [18]. However, practical experiences show that goals are
not given and therefore, the question of where they originate from [2] acquires
importance. In addition, enterprise goals, which initiate the goal discovery
process, do not reflect the actual situation, but an idealized one. Therefore, pro-

9 Modeling Goals and Reasoning with Them 199

ceeding from spurious goals may lead to ineffective requirements [63]. Thus,
finding the right goal is rarely an easy task and more support is needed.
Removing goal fuzziness: The initial goal statement is usually rather imprecise
and sketchy and can be interpreted in many ways. The exact meaning of the
goal gets clearer and clearer as the elicitation process proceeds. However, ex-
perience shows [72] that it is best to make a precise, formal statement of the
goal as early as possible in the RE process and that the informal goal statement
must be brought into a form that is conducive to performing goal analysis. Goal
driven approaches must better support goal formulation avoiding nevertheless
the burden of formal languages.
Supporting goal operationalization: Additionally, it has been shown that the
application of goal reduction methods to discover the components goals of a
goal, is not as straight-forward as literature suggests [15][7]. Our own experi-
ence in the F3 [11] and ELEKTRA [75] projects confirms this. It is thus evident
that help is needed to achieve meaningful goal modeling.
Guiding alternative goals discovery: Finding alternative goals to a parent goal
is crucial for the envisionment of the future system and therefore, crucial to RE.
However, experience shows that the process is manual, adhoc and unsatisfac-
tory. This is similar to observations made in the discovery of use case variants
[13]. Providing automated support is needed to facilitate the discovery of a
large number of alternative designs as an exhaustive generation of alternatives
is very difficult to practice manually.

9.3 Goal/Strategy Maps

In this section, we discuss the case of particular type of goal model, the
goal/strategy map. We first justify the move from traditional AND/OR goal mod-
els to goal/strategy maps as a response to the challenge posed by new multi-
purpose emerging systems and by the need to swerve from goal modeling to
model goal achievement through strategies to fulfill goals. We introduce the con-
cept of map, illustrate it with an ERP system example and discuss how the model
meets the aforementioned challenge. Thereby we consider the customization proc-
ess implied by multi-purpose systems and discuss the way it can be handled with
maps.

9.3.1 Facing the Multi-Purpose System Challenge with Maps

9.3.1.1 Motivations for Maps
Goal modeling approaches have been conceived with the traditional software sys-
tem life cycle in mind: high strategic goals are captured to elicit software require-
ments and build the software functionality that fulfils these requirements. How-
ever, in recent years, development “from scratch” became the exception and a new

200 Rolland and Salinesi

context in which software systems are developed has emerged. Whereas earlier, a
system met the purpose of a single organization and of a single set of customers, a
system of today must be conceived in a larger perspective, to meet the purpose of
several organizations and to be adaptable to different usage situations/customer
sets. The former is typical of an ERP-like development situation whereas the latter
is the concern of product-line development [86], [10] and adaptable software [30].
In the software community, this leads to the notion of software variability, which
is defined as the ability of a software system to be changed, customized or config-
ured to a specific context [87]. Whereas the software community studies variabil-
ity as a design problem and concentrates on implementation issues [8], [10], [86],
we believe like Halmans [27] that capturing variability at the goal level is essential
to meet the multi-purpose nature of new software systems.

Our position is that variability implies a move from systems with a mono-
facetted purpose to those with a multi-facetted purpose. Whereas the former con-
centrates on goal discovery, the multi-facetted nature of a purpose extends it to
consider the many different ways of goal achievement. For example, for the goal
Purchase Material, earlier it would be enough to know that an organization
achieves this goal by forecasting material need. Thus, Purchase material was
mono-facetted: it had exactly one strategy for its achievement. However, in the
new context, it is necessary to introduce other strategies as well, say the Reorder
Point strategy for purchasing material. Purchase Material now is multi-facetted, it
has many strategies for goal achievement. These two strategies, among others, are
made available, for example, in the SAP Materials Management module[72].

The foregoing points to the need to balance goal-orientation with the introduc-
tion of strategies for goal achievement. This is the essence of goal/strategy maps.

A goal/strategy map, or map for short, is a graph, with intentions as nodes and
strategies as edges. An edge entering a node identifies a strategy that can be used
for achieving the intention of the node. The map therefore, shows which intentions
can be achieved by which strategies once a preceding intention has been achieved.
Evidently, the map is capable of expressing goals and their achievements in a de-
clarative manner.

9.3.1.2 The Map Representation Formalism
In this section we introduce the key concepts of a map and their relationships and
bring out their relevance to model multi-facetted purposes. A map provides a rep-
resentation of a multi-facetted purpose based on a non-deterministic ordering of
intentions and strategies. The key concepts of the map and their inter-relationships
are shown in the map meta-model of Fig. 9.2, which is drawn using UML nota-
tions.

As shown in Fig. 9.2, a map is composed of several sections. A section is an
aggregation of two kinds of intentions, source and target, linked together by a
strategy.
An intention is a goal, ‘an optative’ statement [32] that expresses what is
wanted i.e. a state that is expected to be reached or maintained. Make Room
Booking is an intention to make a reservation for rooms in a hotel. The

9 Modeling Goals and Reasoning with Them 201

achievement of this intention leaves the system in the state, Booking made.
Each map has two special intentions, Start and Stop, associated with the initial
and final states respectively.
A strategy is an approach, a manner, a means to achieve an intention. Let us as-
sume that bookings can be made on the Internet. This is a means of achieving
the Make Room Booking intention, and is a strategy. by visiting a travel agency
is another strategy to achieve the same intention.
A section is an aggregation of the source intention, the target intention, and a
strategy. As shown in Fig. 9.2 it is a triplet <Isource, Itarget, Ssource-target>. A section
expresses the strategy Ssource-target using which, starting from Isource, Itarget can be
achieved. The triplet <Start, Make Room Booking, on the Internet> is a section;
similarly <Start, Make Room Booking, by visiting a travel agency> constitutes
another section.

Map

Section

Target
Intention

Source
Intention

Strategy

Intention

Thread
Bundle

Path

Refined by

0..1

1

1 11

* ** 1..*

Fig. 9.2 The map meta-model

A section is the basic construct of a map which itself can be seen as an assem-
bly of sections. When a map is used to model a multi-facetted purpose, each of its
sections represents a facet. The set of sections models the purpose in its totality
and we will see below that the relationships between sections and between a sec-
tion and a map lead to the representation of the multi-facetted perspective. A facet
highlights a consistent and cohesive characteristic of the system that stakeholders
want to be implemented in the software system through some functionality. A
facet in our terms is close to the notion of feature, which can be defined as a
“prominent or distinctive user-visible aspect, quality or characteristic of a software
system or systems”. We believe that a facet is a useful abstraction to express vari-
ability in intentional terms. A map is drawn as a directed graph from Start to Stop.
Intentions are represented as nodes of the graph and strategies as edges between
these. The graph is directed because the strategy shows the flow from the source
to the target intention (see Fig. 9.5).

202 Rolland and Salinesi

Three kinds of relationships can be defined between sections, namely the
thread, path and bundle. These relationships generate multi-thread and multi-
path topologies in a map.
Thread relationship: It is possible for a target intention to be achieved from a
source intention in many different ways. Each of these ways is expressed as a
section in the map. Such a map topology is called a multi-thread and the sec-
tions participating in the multi-thread are said to be in a thread relationship with
one another. Assume that Accept Payment is another intention in our example
and that it can be achieved in two different ways, By electronic transfer or By
credit card. This leads to a thread relationship between the two sections shown
in Fig. 9.3.

It is clear that a thread relationship between two sections regarded as facets
represents directly the variability associated to a multi-facetted purpose. Multi-
faceting is captured in the different strategies to achieve the common target inten-
tion.

Make Room
Booking

Accept
Payment

By electronic
transfert strategy

By Credit Card

The two sections are in a thread

relationship with one another

because they represent two different

ways of achieving Accept Payment

from Make Room Booking.

Fig. 9.3 An example of thread relationship

Path relationship: This establishes a precedence/succession relationship be-
tween sections. For a section to succeed another, its source intention must be
the target intention of the preceding one. For example the two sections <Start,
Make Room Booking, By the Internet Strategy>, <Make Room Booking, Accept
Payment, By credit card> form a path.

Start

Make Room

Booking

Accept

Payment

By electronic

transfert strategyBy Internet strategy

Stop

By visiting a

travel agency

By credit

card strategy

Normally

By customer

retractation

Path 1: <Start, Make Room Booking,

Internet strategy>,<Make Room

Booking, Accept Payment, Electronic

Transfer strategy>, <Make payment,

Stop, Normally>

Path 2: <Start, Make Room Booking,

Internet strategy>,<Make Room Booking,

Accept Payment, Credit Card strategy>,

<Accept payment, Stop, Normally>

Start

Make Room

Booking

Accept

Payment

By electronic

transfert strategyBy Internet strategy

Stop

By visiting a

travel agency

By credit

card strategy

Normally

By customer

retractation

Path 1: <Start, Make Room Booking,

Internet strategy>,<Make Room

Booking, Accept Payment, Electronic

Transfer strategy>, <Make payment,

Stop, Normally>

Path 2: <Start, Make Room Booking,

Internet strategy>,<Make Room Booking,

Accept Payment, Credit Card strategy>,

<Accept payment, Stop, Normally>

Fig. 9.4 The multi-path of the map Make Confirmed Booking

From the point of view of modeling facets, the path introduces a composite
facet whereas the section based facet is atomic. Given the thread and the path rela-
tionships, an intention can be achieved by several combinations of sections. Such
a topology is called a multi-path. In general, a map from its Start to its Stop inten-

9 Modeling Goals and Reasoning with Them 203

tions is a multi-path and may contain multi-threads. Let us assume in our example
that it is possible to Stop either because a customer retracts from making the book-
ing (By customer retraction) or after payment (Normally). Fig. 9.4 shows the en-
tire map with the purpose to Make Confirmed Booking. This map contains 6 paths
from Start to Stop out of which two are highlighted in the Figure.

Clearly, the multi-path topology is yet another way of representing the multi-
facetted perspective. Multi-faceting in this case is obtained by combining various
sections together to achieve a given intention of the map. Consider for instance the
intention Accept payment in Fig. 9.4; there are four paths from Start to achieve it;
each of them is a different way to get the intention achieved and in this sense, par-
ticipates to the multi-faceting. Each path is a composite facet composed of two
atomic facets. This can be extended to the full map which can be seen as com-
posed of a number of paths from Start to Stop. This time these paths introduce
multi-faceting but to achieve the intention of the map which in our example, is
Make Confirmed Booking.

Bundle relationship: Several sections having the same pair <Isource, Itarget> which
are mutually exclusive are in a bundle relationship. The group of these sections
constitutes a bundle. Notice that the difference between a thread and bundle re-
lationship is the exclusive OR of sections in the latter versus an OR in the for-
mer.
Refinement relationship: The map meta model also shows that a section of a
map can be refined as another map through the refinement relationship. The en-
tire refined map then represents the section. Refinement is an abstraction
mechanism by which a complex assembly of sections at level i+1 is viewed as a
unique section at level i. As a result of refinement, a section at level i is repre-
sented by multiple paths & multiple threads at level i+1.

From the point of view of multi-faceting, refinement allows to look to the
multi-facetted nature of a facet. It introduces levels in the representation of the
multi-facetted purpose which is thus completely modeled through a hierarchy of
maps. To sum up:

The purpose of the system is captured in a hierarchy of maps. The intention as-
sociated to the root map is the highest level statement about the purpose. Using
the refinement mechanism, each section of the root map can be refined as a
map and the recursive application of this mechanism results in a map hierarchy.
At successive levels of the hierarchy the purpose stated initially as the intention
of the root map is further refined.
At any given level of the hierarchy, the multi-facetted dimension is based on
multi-thread and multi-path topologies. Multi-thread introduces local faceting
in the sense that it allows to represent the different ways for achieving an inten-
tion directly. Multi-path introduces global faceting by representing different
combinations of intentions and strategies to achieve a given map intention. Any
path from Start to Stop represents one way of achieving the map intention,
therefore the purpose represented in this map.

204 Rolland and Salinesi

9.3.1.3 Illustrating Map with the SAP R3 Material Management Map
In this section we show the use of the Map to capture the multi-facetted purpose of
a system and take the SAP R/3 Materials Management (MM) module to illustrate
this. This module provides automated support for the day-to-day operations of any
type of business that entails the consumption of materials. It consists of five key
components starting from materials planning (MM-MRP Materials Requirements
Planning), through purchasing (MM-PUR Purchasing), managing inventory (MM-
IM Inventory Management), managing warehousing (MM-WM Warehouse Man-
agement), to invoice verification (MM-IV Invoice Verification). It also includes
two support components, MM-IS Information System and MM-EDI Electronic
Data Interchange.

In its totality, the MM module can be seen to meet the purpose, Satisfy Material
Need Efficiently. This is the intention of the root map shown in Fig. 9.5. The map
shows that to meet this purpose two intentions have to be achieved, namely Pur-
chase Material and Monitor Stock. These reflect the conventional view of materi-
als management as “procuring raw material and ensuring effectiveness of the lo-
gistics pipeline through which materials flow” [72]. Evidently, there is an ordering
between these two intentions: stock cannot be monitored unless it has been pro-
cured. This is shown in the Figure by the section <Purchase Material, Monitor
Stock, Out-In strategy >.

.

Stop

Planning
strategy

Start

Purchase
Material

Monitor
Stock

Out-In

strategy
Bill for

expenses

strategy

Reminder

strategy

Quality

inspection

strategy

Inventory

balance

strategy

Valuation

strategy

In-In strategy

Reservation

strategy

Manual

strategy

Financial

control

strategy

Fig. 9.5 The material management map. Intermittent lines represent bundles.

The map of Fig. 9.5 has 25 paths from Start to Stop, 5 following the Bill for ex-
penses strategy, 10 following the Planning Strategy, and 10 following the Manual
strategy. Thus, the map is able to present a global perspective of the diverse ways
of achievement of the main purpose. When a more detailed view is needed, then it
becomes necessary to focus more specifically on the multi-facetted nature of each
intention found in the “global” map. The detailed view of the intentions contained
in Fig. 9.5 is brought out in turn below.

9 Modeling Goals and Reasoning with Them 205

The Multiple Facets of Purchase Material: The multi-facetted nature of Pur-
chase Material is shown in Fig. 9.5 by including three strategies for its achieve-
ment (a) Planning strategy, (b) Manual strategy and (c) Reminder strategy. The
three facets are <Start, Purchase Material, Planning strategy>, <Start, Purchase
Material, Manual strategy> and <Purchase Material, Purchase Material, Re-
minder strategy>. Subsumed in the first facet are two mutually exclusive facets,
one that allows purchase to be made when stock falls to the reorder point and the
other for purchasing as per the planned material need. These two are captured in a
bundle consisting of two strategies not shown in the figure, namely the Reorder
point strategy and Forecast based strategy. The second facet, <Start, Purchase
Material, Manual strategy>, allows the buyer to manually enter a purchase requi-
sition leading to the generation of the purchase order. The third facet is used to
remind the vendor to deliver material when the delivery is not made in due time.
The bundled strategies correspond to the SAP functions of MM-MRP Forecast
Based Planning and Reorder Point Planning respectively whereas the manual
strategy is part of the MM-PUR component. It can be seen that the component
structure of SAP does not directly reflect the alternative functionality of achieving
the same goal.

The Multiple Facets of Monitor Stock: Monitor Stock is the second key inten-
tion of the material management map. The intention represents the management
goal of ensuring proper posting of procured material and effectiveness of material
logistics while maintaining financial propriety. This suggests that Monitor Stock
has three classes of facets (a) the procurement/posting class, (b) the logistics class,
and (c) the financial class. The facets in each class are as follows:

a) Procurement/Posting Facets
Procurement of material can be done either against a purchase order or without a
formal purchase order, directly from the market. In the latter case, material is im-
mediately ready for posting, whereas in the former case, posting is done after de-
livery is made against the purchase order. Thus, we have two facets of this class:

Posting of material delivery against a purchase order
Posting of material procured through direct purchase

These correspond in the map of Fig. 9.5 to the Out-in strategy and Bill for ex-
penses strategy, respectively. In SAP, the facet represented by the section <Pur-
chase Material, Monitor Stock, Out-In strategy> is covered by functions of the
MM-IM and MM-WM components whereas <Start, Monitor Stock, Bill for ex-
penses strategy> is a function of MM-IV, the Invoice Verification component.

The facet <Purchase Material, Monitor Stock, Out-In strategy> is, in fact, a
compound one. It represents the variety of ways in which compliance of delivered
material with the purchase order can be ensured and material posting made. There-
fore, its refinement reveals a complex assembly of facets that can be represented
through a map at a lower level. This refinement is shown in Fig. 9.6. Since <Pur-
chase Material, Monitor Stock, Out-In strategy> does not permit stock posting
unless material delivery complies with the purchase order, its refinement contains

206 Rolland and Salinesi

an ordering of the two intentions, Accept Delivery and Enter Goods in Stock. The
former has four facets, one for the case where delivery is strictly according to the
purchase order and three facets that allow delivery to be accepted within specified
tolerances from that in the purchase order. The four facets are as follows:

The delivery complies with the purchase order
Reconciliation against the purchase order has to be done
Reconciliation between the different units used by the supplier and the receiver
has to be done
Reconciliation of under/over delivery has to be done

These correspond in Fig. 9.6 to the four multi-threads identified by the strate-
gies Okay strategy, Reconciliation by PO recovery, Reconciliation of unit differ-
ence, and Reconciliation of under/over delivery. The nature of the three Recon-
ciliation facets is such that one or more can be simultaneously used. Therefore,
these strategies do not form a bundle but are each represented as a thread.

Reconciliation by
PO recovery

Reconciliation of
unit difference

Out-In storage
based
strategy

Out-In direct
consumption
strategy

Accept
delivery

Start

Enter Goods
in stock

Completeness
strategy

Stop

Reconciliation

of under/over

delivery

Rejection

strategy

Okay

strategy

Fig. 9.6 Refinement of <Purchase Material, Monitor Stock, Out-In strategy>

Now consider the intention Enter Goods in Stock. This displays two facets for
entering goods in stock (a) when delivery is made directly to the consumption lo-
cation and (b) when delivered goods are stored in a warehouse. As shown in Fig.
9.6, these two ways of achieving Enter Goods in Stock correspond to the two
strategies, Out-In direct consumption and Out-In storage based strategy. The tar-
get intention, Monitor Stock, of the facet under refinement is achieved in the map
when the intention Stop is achieved. Evidently, this happens when either the mate-
rial delivered is rejected and no stock entry is made or when, after entering the ac-
cepted delivery in stock, all subsequent housekeeping is done to take into account
the consequences of entering goods in stock. These two facets of Stop are repre-
sented in Fig. 9.6 by Rejection strategy and Completeness strategy respectively.

b) Material Logistics Facets
Facets in this class enter the picture only after initial posting of stock has been
made by the class of procurement/posting facets of Monitor Stock. The interesting
question now is about the movement of stock and how this movement is kept track
of. That is, Monitor Stock has to be repeatedly achieved after each movement

9 Modeling Goals and Reasoning with Them 207

to/from warehouses, to consumption points or for quality inspection. This gives us
the three facets:

Control of material movement to/from warehouses
On-time transfer of material to consumption points
Quality control of the material transferred

These correspond in the map of Fig. 9.5 to the In-In, Reservation, and Quality
inspection strategies. These strategies have Monitor Stock as both their initial as
well as their target intentions. This represents the repeated achievement of Moni-
tor Stock. Of the three foregoing facets, the first, represented by the section
<Monitor Stock, Monitor Stock, In-In strategy> needs further explanation. In fact,
subsumed in this facet are two mutually exclusive facets of Monitor Stock. These
correspond to the cases when the stock to be moved spends a long time in transit
or when immediate transfer is possible. As before, the section <Monitor Stock,
Monitor Stock, In-In strategy> is represented as a bundle of two sections having
strategies One-step transfer and Two-step transfer. The former corresponds to
immediate transfer and the latter to delayed transfer. In SAP, this bundled section
is covered partly by MM-IM and MM-WM and has a relationship with Financial
Accounting, Assets Management, and Controlling.

c) Financial Propriety Facets
The third class of facets of Monitor Stock deals with financial propriety. Not only
must it be ensured that stock on hand is physically verified but also it should be fi-
nancially valued. Thus, we have two facets in this class

Physical stock taking of the material
Valuing the stock for balance sheets

These are represented in the map of Fig. 9.5 by the Inventory balance and
Valuation strategies respectively. As for the material logistics class of facets, these
are also concerned with the repeated achievement of Monitor Stock. Therefore,
both the source and target intentions of these strategies is Monitor Stock. The facet
corresponding to the <Monitor Stock, Monitor Stock, Inventory balance strategy>
section subsumes three different ways of physical stock taking: by periodic inven-
tory verification, by continuous verification and by verifying a sample of the total
inventory. Any of these three can be mutually exclusively deployed. Therefore, we
represent it as a bundle of the three strategies, periodic, continuous and sampling
strategies. This bundle is handled by the MM-IM component in SAP.

The facet represented in Fig. 9.5 by the section <Monitor Stock, Monitor Stock,
Valuation strategy> can itself be treated as a bundle of mutually exclusive facets
represented by strategies such as LIFO and FIFO. In SAP, only LIFO valuation is
available as a function in MM-IM.

Completing Satisfy Material Need Effectively: The complete fulfillment of Sat-
isfy Material Need Effectively requires that the financial aspects of material pro-
curement are properly handled. Thus completion, corresponding to the achieve-
ment of Stop of Fig. 9.5 is done by the Financial control strategy allowing the

208 Rolland and Salinesi

flow from Monitor Stock to Stop. In SAP, this takes the form of the Invoice Veri-
fication component, MM-IV. When a multi-facetted product like the SAP MM is
to be adopted, then the task of the adoption process is to select the facets of the
MM map that are of relevance. This leads us to the issue of the process dimension
which we consider in the next section.

9.3.2 Matching Maps to Support Multi-Purpose System Customization

The multi-purpose view of emerging systems that leads to the representation of
variability in product models has a counterpart on the process dimension which
implies a change of the traditional RE process. Whereas the latter corresponds
merely to a move from an As-Is to a To-Be model (Fig. 9.7a), the former leads to
producing the To-Be model by a model-match centered process. As shown in Fig.
9.7b the organizational goals are expressed in the As-Wished model. The Might-Be
model reflects the functional capability of the multi-purpose system (e.g. an ERP)
and the To-Be model needs to be defined as the best match between the As-Wished
and the Might-Be. This process leads to customizing the Might-Be model to tailor
it to the organizational requirements expressed in the As-Wished model.

As-Is

BM

As-Is

SFM

To-Be

SFM

To-Be

BM
Propagation

(a)

As-Wished
BM

Might-Be
SFM

To-Be
SFM

To-Be
BM

Matching
Process

(b)

Fig. 9.7 Multi-purpose system customization process (BM stands for Business Models,
SFM stands for System Functionality Models)

We believe that maps can help in facing the challenge raised by the customiz-
ing activity required in the RE process of multi-purpose systems in two ways: (a)
by offering a uniform representation of the involved models, namely the As-Is, As-
Wished, Might-Be and To-Be and (b) by providing a formalism to model the
matching process in a multi-purpose dimension. Our position is that the multi-
facetted perspective on product modeling has implications on process modeling as
well. First, there cannot be a mismatch between the process modeling paradigm
and the product modeling paradigm. Instead, the former must be aligned to the lat-
ter. Thus, the process modeling paradigm should be Goal-driven. Secondly, it is
unlikely that product variability can be discovered with a monolithic way of work-
ing. This implies that the process model should provide many different strategies
to achieve the same process goal. The foregoing points to the desirability of the
process to be looked upon as a multi-facetted purpose process. This multi-facet
aspect implies a process model that has the capability to integrate in it the many
strategies found in different methodologies for achieving the same process goal.

9 Modeling Goals and Reasoning with Them 209

For example, to Elicit a Goal, different methodologies follow different strategies,
top-down, bottom-up, what-if, participative etc. These get integrated in one multi-
facetted purpose process model.

Start

Construct

As-Is, As-Wished

& Might-Be maps

Construct

Matched maps

Stop

Abstraction

Might-Be driven

As-Wished driven

As-Is driven

Feed back

To-Be driven

Verification

Start

Construct

As-Is, As-Wished

& Might-Be maps

Construct

Matched maps

Stop

Abstraction

Might-Be driven

As-Wished driven

As-Is driven

Feed back

To-Be driven

Verification

Fig. 9.8 Process model for ERP customization.

This position was confirmed by our experience in different projects where we
observed that people have specific expectations and requirements about these
process models. First, they are facing an issue and have a goal in mind and would
like process models to let them easily situate both and to suggest different alterna-
tive paths to achieve the goal and solve the issue. Second, they want freedom and
flexibility in their ways of working; one single imposed way-of-working is not ac-
ceptable. They expect to learn about the different ways by which each of their
goals can be achieved and each issue can be solved. Third, they want advice on
how to choose between the different alternative solutions that shall be proposed to
solve a given issue. The first two points lead to a multi-purpose driven process
model and the third point raises the requirement of a model able to offer guidance
in process enactment. Maps can be used to model a methodological process and to
capture process goals as map nodes and strategies to achieve those as edges. For
maps to provide guidance we introduced guidelines that can be associated to sec-
tions in a process map to guide the selection of process goals as well as to guide
strategy selection, situation identification and section achievement.

Fig. 9.8 shows a process model that was developed for an ERP customization
project. As the figure shows the process model is represented as a map. The root
purpose of this map is Elicit ERP Installation Requirements. Achieving the pur-
pose leads to the Matched-map which expresses the requirements that the ERP in-
stallation shall be met. Many of the intentions/strategies of the Matched Map are
obtained from the Might-Be map (the ERP map) and match the As-Wished organ-
izational requirements. Others may not be available in the ERP map and will re-
quire in-house development. In such a case, the Matched Map makes them ex-

210 Rolland and Salinesi

plicit. Again, all the intentions and strategies of the ERP map may not be included
in the Matched Map. This corresponds to the ERP functionality that is not match-
ing the requirements in the As-Wished map. Thus, the Matched Map is the input to
the installation process. The multi-facetted nature of the process is shown by the
sub-purposes embedded in the map, namely the two main intentions Construct As-
Is, As-Wished, Might-Be maps and Construct Matched Map and the various strate-
gies to achieve them.

There are three ways of achieving it by three different strategic drives, As-
Wished, Might-Be and As-Is drives. Each drive considers the intentions and strate-
gies of its corresponding map from Start to Stop in order to decide if these (a)
match the requirements exactly and so must be included in the Matched map, (b)
need adaptation before their inclusion in the Matched map, or (c) are irrelevant.

These three strategies have the same initial and target intentions showing that
the target intention can be achieved in a non-deterministic way. This reflects the
possibility that different organizations may interleave these strategies in different
combinations thereby following different processes to Construct Matched Map.
Findings from our experience are summed up as follows:

1. If the context is that of a well-defined business requirements to which the sys-
tem should fit, and in-house development is not a problem, then the As-Wished
driven matching strategy can be used.

2. If on the contrary, the system is less likely to change than the business (e.g. be-
cause customizing the system has become too expensive [72], or if the system
customization is an opportunity to change the business (e.g. because it allows to
generalize its associated best practice in the business) then the matching proc-
ess should be driven by the system. This is what the Might-Be driven strategy
proposes.

3. If it is particularly important to preserve the functionality provided by the exist-
ing system in the To-Be system functionality model, then an As-Is driven
matching is required. We encountered such functional non regression require-
ments when we studied the introduction of software components for selling
electricity in the PPC company at the occasion of European electricity market
deregulation [71].

Construct As-Is, Might-Be, As-Wished maps is also multi-facetted. It can be
achieved in two ways, by the Abstraction strategy or the Feedback strategy. The
latter has Construct Matched Map as its source intention and allows an incre-
mental achievement of Construct As-Is, Might-Be, As-Wished maps. This extends
to As-Is and ERP maps the view of Anthony Finkelstein and colleagues [25] that
starting with complete requirements specification is not always needed in software
package requirements engineering. Finally, the Stop intention achieves completion
of Elicit ERP Installation Requirements through the To-Be driven verification
strategy that verifies the accuracy of the Matched Map.

9 Modeling Goals and Reasoning with Them 211

9.4 Conclusion

Goal-driven requirements engineering are intended to provide the rationale of the
system to be. Beyond this objective, we have seen that there are some other advan-
tages:

Goals bridge the gap between organizational strategies and system require-
ments thus providing a conceptual link between the system and its organiza-
tional context
Goal decomposition graphs provide the pre-traceability between high level stra-
tegic concerns and low level technical constraints; therefore facilitating the
propagation of business changes onto system features
ORed goals introduce explicitly design choices that can be discussed, negoti-
ated and decided upon
AND links among goals support the refinement of high level goals onto lower
level goals till operationalizable goals are found and associated to system re-
quirements
Powerful goal elicitation techniques facilitate the discovery of goal and re-
quirements;
Relationships between goals and concepts such as objects, events, operations
etc. traditionally used in conceptual design facilitates the mapping of goal
graphs onto design specification

We have also discussed the fact that goal driven RE approaches suffer from a
number of weaknesses partly due to the nature of the concept of a goal and partly
to the lack of modeling and support of the goal driven RE process. The belief of
the authors is that goal-driven approaches are now facing the challenge of forth-
coming multi-purpose systems, i.e. systems that incorporate variability in the
functionality they provide and will be able to self adapt to the situation at hand.
The goal/strategy maps have been introduced and discussed as an example of goal
model that has been conceived to meet the aforementioned challenge.

References

1. Alexander I (2002) Initial industrial experience of misuse cases in trade-off analysis. In:
Proceedings of IEEE Joint International Requirements Engineering Conference, 9-13
September, Essen, pp.61 68

2. Antòn AI, Potts C (1998) The use of goals to surface requirements for evolving systems.
In: Proceedings of International Conference on Software Engineering (ICSE’98),
Kyoto, Japan, pp.157 166

3. Antòn AI, Earp JB, Potts C, Alspaugh TA (2001) The role of policy and stakeholder pri-
vacy values in requirements engineering. In: Proceedings of IEEE 5th International
Symposium on Requirements Engineering (RE'01), Toronto, Canada, pp.138 145

4. Antòn AI, Potts C, Takahanshi K (1994) Inquiry based requirements analysis. IEEE
Software 11(2): 21 32

212 Rolland and Salinesi

5. Antòn AI, Carter R, Dagnino A, Dempster J, Siege DF (2001) Deriving goals from a use-
case based requirements specification. Requirements Engineering Journal, 6: 63 73

6. Antòn AI, McCracken WM, Potts C (1994) Goal decomposition and scenario analysis in
business process reengineering. CAISE'94, LNCS 811, Springer-Verlag, pp.94 104

7. Antòn AI (1996) Goal based requirements analysis. In: Proceedings of 2nd International
Conference on Requirements Engineering ICRE’96, pp.136 144

8. Bachmann F, Bass L (2001) Managing variability in software architecture. ACM
SIGSOFT Symposium on Software Reusability (SSR'01), pp.126 132

9. Boehm B, Bose P, Horowitz E, Ming-June L (1994) Software requirements as negotiated
win conditions. In: Proceedings of 1st International Conference on Requirements Engi-
neering, USA, pp.74 83

10. Bosch J, Florijn G, Greefhorst D, Kuusela J, Obbink JH, Pohl K (2001) Variability is-
sues in software product lines. In: Proceedings of 4th International Workshop on Prod-
uct Family Engineering (PEE-4), Bilbao, Spain, pp.22 37

11. Bubenko J, Rolland C, Loucopoulos P, de Antònellis V (1994) Facilitating ‘fuzzy to
formal’ requirements modelling. In: Proceedings of IEEE 1st Conference on Require-
ments Engineering, ICRE’94 pp.154 158

12. Chung KL, Nixon BA, Yu E, Mylopoulos J (1999) Non- functional requirements in
software engineering. The Kluwer international series in software engineering. 1st edi-
tion, Kluwer Academic Publishers

13. Cockburn A (1995) Structuring use cases with goals. Technical report. Human and
Technology, HaT.Technical Report.1995.01, Accessed on 3rd December 2004.
http://alistair.cockburn.us/crystal/articles/sucwg/structuringucswithgoals.htm.

14. Dano B, Briand H, Barbier F (1997) A use case driven requirements engineering proc-
ess. Journal of Requirements Engineering, Springer-Verlag, 2(2): 79 91

15. Dardenne A, Lamsweerde A, Fickas S (1993) Goal-directed requirements acquisition.
Science of Computer Programming, Elsevier.20: 3 50

16. Darimont R, Lamsweerde A. (1996) Formal refinement patterns for goal-driven re-
quirements elaboration. In: Proceedings of 4th ACM SIGSOFT Symposium on the
Foundations of Software Engineering, San Francisco, pp.179 190

17. Darimont R, Lamsweerde A, Letier E (1998) Managing conflicts in goal-driven re-
quirements engineering. IEEE Transactions on Software Engineering, 24(11): 908 926

18. Davis AM (1993) Software requirements objects, functions and states. Prentice Hall,
UK

19. Dik SC (1989) The theory of functional grammar. Part 1: The structure of the clause.
Functional Grammar Series, Fories Publications Dordrecht, Holland

20. Dubois E, Yu E, Pettot M (1998) From early to late formal requirements: a process-
control case study. In: Proceedings of 9th International Workshop on software Specifi-
cation and design. IEEE CS Press, pp. 34 42

21. Easterbrook SM, Finkelstein ACW, Kramer J, Nuseibeh BA (1994) Coordinating con-
flicting view points by managing inconsistency. Workshop on Conflict Management in
Design, International Conference on Artificial Intelligence in Design, Lausanne, Swit-
zerland, pp. 15 18.

22. ELEKTRA consortium (1997) Electrical enterprise knowledge for transforming appli-
cations. ELEKTRA Project Reports No 22927

23. European Software Institute (1996) European user survey analysis. Report USV_EUR
2.1, ESPITI Project

9 Modeling Goals and Reasoning with Them 213

24. Fillmore C (1968) The case for case. In: Universals in linguistic theory, Bach E, Harms
RT (Eds.), Holt, Rinehart & Winston New York, pp.1 90

25. Finkelstein A, Spanoudakis G, Ryan M (1996) Software package requirements and pro-
curement. In: Proceedings of 8th International workshop on Software Specification and
Design, IEEE Computer Society Press, Washington, DC, pp.141 145

26. Gotel OCZ, Finkelstein ACW (1994) Modelling the contribution structure underlying
requirements. In: Proceedings of 1st International Workshop on Requirements Engi-
neering: Foundations of Software Quality, Utrecht, The Netherlands, pp. 71 81

27. Halmans J, Pohl K, (2003) Communicating the variability of a software product family
to customers. Journal of Software and System Modeling, 2(1): 15 36

28. Haumer P, Pohl K, Weidenhaupt K (1998) Requirements elicitation and validation with
real world scenes. IEEE Transactions on Software Engineering, Special Issue on Sce-
nario Management, Jarke M, Kurki-Suonio R (Eds.), 24(12): 11036 1054

29. Hoh P (2002) Multi-criteria preference analysis for systematic requirements negotia-
tion. In: Proceedings of 26th Annual International Computer Software and Applications
Conference, Oxford, England pp.887

30. Hui B, Liaskos S, Mylopoulos J (2003) Requirements analysis for customizable soft-
ware: A goals-skills-preferences framework. In: Proceedings of IEEE Conference on
Requirements Engineering, Monterey Bay, USA, pp.117 126

31. Ivankina E, Salinesi C (2004) An approach to guide requirement elicitation by analyz-
ing the causes and consequences of Threats. In: Proceedings of14th European - Japa-
nese Conference on Information Modelling and Knowledge Bases, Skövde, Sweden

32. Jackson M (1995) Software requirements & specifications – a lexicon of practice. Prin-
ciples and Prejudices, ACM Press, Addison-Wesley

33. Jacobson I (1995) The use case construct in object-oriented software engineering. In
Scenario-Based Design: Envisioning Work and Technology in System Development,
J.M. Carroll (Ed.), pp.309 336.

34. Jarke M, Pohl K (1993) Establishing visions in context: Towards a model of require-
ments processes. In: Proceedings of 12th International Conference on Information Sys-
tems, Orlando (ICIS), Orlando, pp.23 34

35. Kaindl H (2000) A design process based on a model combining scenarios with goals
and functions. IEEE Transactions on Systems, Man and Cybernetic, 30(5): 537 551

36. Karlsson J, Olsson S, Ryan K (1997) Improved practical support for large-scale re-
quirements prioritizing. Journal of Requirements Engineering, 2(1): 51 60

37. Lamsweerde A. (2004) Goal-oriented requirements engineering: A roundtrip from re-
search to practice. In: Proceedings of 12th IEEE International Symposium on Require-
ments Engineering, Kyoto, Japan

38. Lamsweerde A, Willemet L (1998) Inferring declarative requirements specifications
from operational scenarios. IEEE Transactions on Software Engineering, Special Issue
on Scenario Management 24(12): 1089 1114

39. Lamsweerde A, Darimont R, Massonet P (1995) Goal-directed elaboration of require-
ments for meeting schedulers: Problems and lessons learnt. In: Proceedings of the 2nd
IEEE International Symposium on Requirements Engineering (RE’95), pp.194 203

40. Lamsweerde A (2000) Requirements engineering in the year 2000: A research perspec-
tive. In: Proceedings of 22nd International Conference on Software Engineering,
(ICSE’2000): Limerick, Ireland, Invited Paper, ACM Press, pp. 5–19

214 Rolland and Salinesi

41. Lamsweerde A, Letier E (2000) Handling obstacles in goal-oriented requirements engi-
neering. IEEE Transactions on Software Engineering, Special Issue on Exception Han-
dling, 26(10): 978 1005

42. Lamsweerde A, Dardenne B, Delcourt F (1991) The KAOS project: Knowledge acqui-
sition in automated specification of software. In: Proceedings of AAAI Spring Sympo-
sium Series, Stanford University, pp.59 62

43. Lamsweerde A (2001) Goal-oriented requirements engineering: A guided tour. In Pro-
ceedings of International Joint Conference on Requirements Engineering, Toronto,
IEEE, pp.249 263

44. Le TL (1999) Guidage des processus d’ingénierie des besoins par un approche de
réutilisation de cas, Master Thesis, CRI, Université Paris-1, Panthéon Sorbonne

45. Lee SP (1997) Issues in requirements engineering of object-oriented information sys-
tem: A review. Malaysian Journal of computer Science, 10(2)

46. Leite JCS, Rossi G, Balaguer F, Maiorana A, Kaplan G, Hadad G, Oliveros A (1997)
Enhancing a requirements baseline with scenarios. In: Proceedings of 3rd IEEE Interna-
tional Symposium on Requirements Engineering, Antapolis, Maryland, pp.44 53.

47. Letier E (2001) Reasoning about agents in goal-oriented requirements engineering. Ph.
D. Thesis, University of Louvain

48. Leveson NG (2000) Intent specifications: an approach to building human-centred speci-
fications. IEEE Transactions on Software Engineering 26: 15 35

49. Loucopoulos P (1994) The f3 (from fuzzy to formal) view on requirements engineering.
Ingénierie des systèmes d’information, 2(6): 639 655

50. Loucopoulos P, Kavakli V, Prekas N (1997) Using the EKD approach, the modelling
component. ELEKTRA project internal report, UMIST, Manchester, UK

51. Maiden N, Ncube C (1998) Acquiring COTS software selection requirements. IEEE
Software, 15(2): 46 56

52. Maiden N, Kuim H, Ncube C (2002) Rethinking process guidance for software compo-
nent selection. In: Proceedings of 1st Int. Conf. of Component Based Eng, pp.151 164

53. Massonet P, Lamsweerde A, (1997) Analogical reuse of requirements frameworks. In:
Proceedings of 3rd International Symposium on Requirements Engineering, Annapolis,
pp.26 37.

54. META Group (2003) Research on requirements realization and relevance, Meta Group
report

55. Moisiadis F (2002) The fundamentals of prioritising requirements systems engineering.
Systems Engineering, Test & Evaluation Conference, Sydney, Australia, October

56. Mostow J (1985) Towards better models of the design process. AI Magazine, 6: 44 57
57. Mylopoulos J, Chung KL, Nixon BA (1992) Representing and using non- functional re-

quirements: a process-oriented approach. IEEE Transactions on Software Engineering,
Special Issue on Knowledge Representation and Reasoning in Software Development,
18(6): 483 497

58. Mylopoulos J, Chung KL, Yu E (1999) From object-oriented to goal-oriented require-
ments analysis. Communications of the ACM, 42(1): 31 37

59. Nuseibeh B, Kramer J, Finkelstein A (1994) A framework for expressing the relation-
ships between multiple views in requirements specification. IEEE Transactions on
Software Engineering, 20: 760 773

60. Pohl K (1996) Process centred requirements engineering, J. Wiley and Sons.

9 Modeling Goals and Reasoning with Them 215

61. Pohl K, Haumer P (1997) Modelling contextual information about scenarios. In: Pro-
ceedings of the 3rd International Workshop on Requirements Engineering: Foundations
of Software Quality REFSQ’97, Barcelona, Spain, pp.187 204

62. Potts C (1995) Using schematic scenarios to understand user needs. In: Proceedings of
ACM Symposium on Designing interactive Systems: Processes, Practices and Tech-
niques, University of Michigan, USA, pp.247 256

63. Potts C (1997) Fitness for use: The system quality that matters most. In: Proceedings of
International Workshop on Requirements Engineering: Foundations of Software Qual-
ity REFSQ’97, Barcelona, pp.15 28

64. Potts C, Takahashi K, Antòn AI (1994) Inquiry-based requirements analysis. IEEE
Software 11(2): 21 32

65. Prat N (1997) Goal formalisation and classification for requirements engineering. In:
Proceedings of 3rd International Workshop on Requirements Engineering: Foundations
of Software Quality REFSQ’97, Barcelona, Spain, pp.145 156

66. Ramesh B, Powers T, Stubbs C, Edwards M (1995) Implementing requirements trace-
ability: a case study. In: Proceedings of the 2nd Symposium on Requirements Engineer-
ing (RE’95), UK, pp.89 95

67. Rasmussen J (1990) Mental models and the control of action in complex environments.
In: Mental Models and Human--Computer Interaction, Ackermann D, Tauber MJ (Eds.)
North Holland: Elsevier, pp.41 69

68. Robinson WN, Volcov S (1996) Conflict oriented requirements restructuring, Georgia
State University, Atlanta, GA, Technical Paper CIS-96-15, October 8,

69. Robinson WN, (1989) Integrating multiple specifications using domain goals. In: Pro-
ceedings of 5th International Workshop on Software Specification and Design, IEEE,
pp.219 225

70. Robinson WN, Volkov S (1998) Supporting the negotiation life-cycle. Communications
of the ACM, 41(5): 95 102

71. Rolland C (2000) Intention driven component reuse. In: Information Systems Engineer-
ing, Brinkkemper S, Lindencrona, E, Solvberg A (Eds.) Springer, pp.197 208

72. Rolland C, Prakash N (2000) Bridging the gap between organizational needs and ERP
functionality. Requirements Engineering Journal, 4(1): 180 193

73. Rolland C, Salinesi C, Etien A (2004): Eliciting gaps in requirements change. Require-
ments Engineering Journal, 9(1): 1 15

74. Rolland C, Grosz G, Kla R (1999) Experience with goal-scenario coupling. In Proceed-
ings of 4th IEEE International Symposium on Requirements Engineering, Limerik, Ire-
land, pp.74 81

75. Rolland C, Nurcan S, Grosz G (1997) Guiding the participative design process. In Pro-
ceedings of Association for Information Systems Americas Conference, Indianapolis,
Indiana, pp.922 924

76. Rolland C, Souveyet C, Salinesi C (1998) Guiding goal modelling using scenarios.
IEEE Transactions on Software Engineering, Special Issue on Scenario Management,
24(12): 98 27

77. Ross DT, Schoman KE (1977) Structured analysis for requirements definition. IEEE
Transactions on Software Engineering, 3(1): 6 15

78. Easterbrook SM (1994) Resolving requirements conflicts with computer-supported ne-
gotiation. In Requirements Engineering: Social and Technical Issues, Jirotka M,
Goguen J (Eds.) London: Academic Press, pp.41 65

216 Rolland and Salinesi

79. Sindre G, Opdahl L (2001) Templates for misuse case description. In Proceedings of
7th International Workshop on Requirements Engineering, Foundation for Software
Quality (REFSQ'2001): Interlaken, Switzerland

80. Sommerville I, Sawyer P (1997) Requirements engineering. Worldwide Series in Com-
puter Science, Wiley

81. Standish Group (1995) Chaos, Standish Group Internal Report,
www.standishgroup.com/chaos.html

82. Sutcliffe A, Maiden N (1993) Bridging the requirements gap: Policies, goals and do-
mains. In: Proceedings of 7th International Workshop on Software Specification and
Design, IEEE Computer Society Press, pp.52 55

83. Sutcliffe A, Minocha S (1999) Analyzing socio-technical system requirements. CREWS
project Report 98-37, Accessed on 5th December 2004, http://sunsite.informatik.rwth-
aachen.de/CREWS/reports.htm

84. Sutcliffe AG, Galliers J, Minocha S (1999) Human errors and system requirements. In:
Proceedings of 4th IEEE International Symposium on Requirements Engineering, Lim-
erick, Ireland, pp.23-30

85. Sutcliffe AG, Maiden N, Minocha S, Darrel M (1998) Supporting scenario-based re-
quirements engineering. IEEE Transactions Software Engineering, 24(12): 1072 1088

86. Svahnberg M, Gurp J, Bosch J (2001) On the notion of variability in software product
lines. In: Proceedings of the Working IEEE/IFIP Conference on Software Architecture
(WICSA 2001) pp.45 55

87. Van Gurp J (2000) Variability in software systems: The key to software reuse. Licenti-
ate Thesis, University of Groningen, Sweden

88. Vicente KJ, Rasmussen J (1992) Ecological interface design: Theoretical foundations.
IEEE Transactions on Systems, Man and Cybernetics, 22(4): 589 606

89. Yu E (1997) Towards modeling and reasoning support for early-phase requirements en-
gineering. In: Proceedings of 3rd IEEE International Symposium on Requirements En-
gineering -RE97, pp.226 235

90. Yu E (1994) Modeling strategic relationships for process reengineering. Ph.D. Thesis,
Department Computer Science, University of Toronto, Canada

91. Yue K (1987) What does it mean to say that a specification is complete? In: Proceed-
ings of 4th International Workshop on Software Specification and Design, Monterey,
CA, USA, pp.34 41

92. Zave P, Jackson M (1997) Four dark corners of requirements engineering. ACM Trans-
actions on Software Engineering and Methodology, 6(1): 1 30

Author Biography

Colette Rolland is Professor of Computer Science and head of CRI at University
of Paris 1 - Panthéon Sorbonne. Her research interests lie in the areas of informa-
tion modeling, object-oriented analysis and design, requirements engineering,
CASE and CAME tools, change management and enterprise knowledge develop-
ment. She has supervised 62 PhD theses and was author/co-author of 5 textbooks
and of over 170 invited and refereed papers. She also has extensive experience in
leading research projects funded by French institutions (CNRS, INRIA, Ministry
of Research and Technology) as well as by ESPRIT programs, including

9 Modeling Goals and Reasoning with Them 217

NATURE (N° 6353) - ESPRIT 3, ELEKTRA (N° 22927), and CREWS (N°
21903) - FRAMEWORK 4.

Dr. Camille Salinesi is a senior lecturer of Computer Science at the University of
Paris 1 Panthéon - Sorbonne. His research works deal with Requirements Engi-
neering, Systems Engineering, and Process Engineering. He has published more
than 40 refereed papers and organized several conferences (OOIS’98, REP’99,
REFSQ’01’02’03, RE’05) in these domains. His recent works showed significant
results on the topics of the use of Use Cases, Goals, and Scenarios in Require-
ments Engineering and about Information System evolution and ERP implementa-
tion. Dr Salinesi was involved in several fundamental research projects such as
ESPRIT NATURE and CREWS, and was consultant for several national and in-
ternational companies. Camille Salinesi is a member of the INCOSE and belongs
to the RE group of the French association of Systems Engineering.

