
8 Quality Assurance in Requirements Engineering

Christian Denger and Thomas Olsson

Abstract: This chapter presents a survey of the state of the art for quality assur-
ance for requirements. The meaning of quality in the requirements context is dis-
cussed, as is the influence of the quality assurance during requirements on other
parts of the development. Different quality assurance approaches are categorized
as either constructive (e.g., standards, guidelines, elicitation techniques) or ana-
lytical (e.g., inspections) and discussed with respect to their impact on the re-
quirements quality. Based on the approaches, future challenges are discussed. The
main future challenges lie in investigating the return on investment of quality as-
surance in the requirements context and to provide more empirical results which
approach that effectively prevent or detect which problems.

Keywords: Quality assurance, Requirements, Quality characteristics, Inspections,
Analytical approaches, Constructive approaches.

8.1 The Importance of Early Quality Assurance

Continuously increasing complexity, ever-increasing market pressure, and cus-
tomers’ demands for higher quality require a combination of carefully selected
validation and verification techniques to deliver a software product on time, within
budget and with the desired quality. Requirements engineering is the initial part of
a software development process, and all later steps of the development are influ-
enced by the requirements, making the quality of the requirements an important
factor for the overall quality of the developed system.

Independent of the domain, quality assurance (QA) is an important but elusive
part of software development. Traditionally, QA techniques have mainly focused
on the later development phases such as the implementation phase and the related
testing activities. However, QA can and should start earlier. This chapter ad-
dresses exactly this aspect by discussing QA activities that can be applied in the
requirements engineering phase.

Why it is important to detect defects as early as possible? An issue that origi-
nates in the requirements runs the risk of affecting not only other requirements but
also later phases and can cause follow-up defects in architecture, design, coding
and testing, see Fig. 8.1.

164 Denger and Olsson

Design Code TestRequi. Maintenance
Impact

Origin
Design Code TestRequi. Maintenance

Opportunistic QA

Design Code TestRequi. Maintenance
Impact

Origin
Design Code TestRequi. Maintenance

Origin
Design Code TestRequi. Maintenance

Opportunistic QA

 Fig. 8.1 Impact of requirements issues

If the quality assurance is only performed in the test and maintenance phase,
one is dependent on the ability of the requirements engineers, designers and pro-
grammers to produce good working products, suitable for the rest of the develop-
ment. That is, you rely on their ability not to make any crucial mistakes. However,
this would reflect an ideal case that in almost all cases cannot be achieved (it is
natural that humans make errors). Having no intermediate QA, i.e. a quality gate
for the intermediate work products, it is most likely that the design and implemen-
tation are based on the wrong requirements. This, in consequence, leads to high
rework effort as not only the code but most often the overall system architecture
and design have to be revised due to requirements defects. Nevertheless, it seems
to be quite common to do QA only by means of testing (and maintenance ap-
proaches), which, therefore, is an opportunistic approach.

Many studies show that late, opportunistic QA leads to a stressful and costly
test and maintenance phases. Issues should be resolved in the phase of their origin
to avoid costly testing and rework. Testing and rework can account for up to
40 50 % of the development effort [10]. In addition, removing defects early in the
development process is more cost effective than addressing the defects during test-
ing or maintenance [7]. Correcting a defect late in the process gets more expensive
as development effort has already been spent and more artifacts are affected. A re-
quirements issue can become up to 100 times more expensive if it is detected in
operation, compared to detecting it in the requirements phase [10].

Based on these data, the knowledge that requirements deficiencies are the
prime source of project failures [21], and that over 40% of problems in the soft-
ware development cycle result from low quality requirements [47], QA techniques
for requirements are one of the most promising and cost effective techniques to
ensure successful development and to prevent avoidable rework in later phases.
Independently of whether high quality is required or not, QA in the requirements
phase pays of. But it does, of course, become even more important if high quality
is a key success factor.

The remainder of the chapter discusses quality of and quality assurance for re-
quirements. Techniques to assure the specified quality aspects are discussed and a
framework on how to integrate the different QA techniques is presented (Sect.
8.2). The subsequent sections deal with concrete QA approaches. A general intro-
duction to constructive apaches is described in Sect. 8.3, together with examples
of constructive approaches. The analytical approaches, such as inspections and
early test case creation, are presented in Sect. 8.4. In Sect. 8.3 and Sect. 8.4 the is-
sue of traceability and how it can be used to facilitate QA is elaborated. The final

8 Quality Assurance in Requirements Engineering 165

sections, Sect. 8.7 and Sect. 8.8, summarize the important future work and con-
clude the chapter, respectively.

8.2 Requirements and Quality Assurance

Quality is hard to define as it is a complex concept, dependent on organizational
viewpoints and context characteristics [32]. For example, do fewer defects per
lines of code equal high quality? What if one of these defects causes the loss of
life? Quality has a very different meaning in different situations. In a word proces-
sor, different quality criteria are important than in an electronic control unit of a
car or an airplane.

With requirements, this becomes even more difficult, as the notion of quality
often depends on the opinions of various stakeholders. For example, if you have
not understood the stakeholders’ needs correctly, you are bound to end up with a
system that is not considered to be of good quality as it might not support the user
in fulfilling certain tasks. This section introduces how quality and quality assur-
ance can be defined for requirements and presents aspects of defining a quality
strategy for early QA.

First of all, it is important to define what is meant by a defect in the require-
ments phase. In this chapter, the term issue is used as an umbrella term for all mat-
ters that should be resolved in the requirements context. The terms defects, errors,
faults or problems are other words used with a similar meaning. However, in the
case of requirements, it is sometimes unclear whether an issue really is a defect.
For example, if two stakeholders disagree on one aspect of a requirement, this is
an issue that should be resolved, but would usually not be referred to as a defect in
the traditional sense. If it is not resolved, at least one stakeholder will reject the
system in acceptance test. However, contradicting requirements are closer to the
conventional interpretation of a defect. Therefore, the matters mentioned in the
examples are summarized as requirements issues that need to be resolved through
the QA activities on the requirements.

8.2.1 Quality of Requirements

The quality of requirements is dependent on various stakeholders and their per-
spective. Several different views need to be considered in order to define what
quality means in a certain context [32]. The first view on quality is the transcen-
dental view. Therein, quality is considered as something that we always strive for
as an ideal but we will never be able to implement this ideal. The goal of this
viewpoint is to express the complexity of the concept quality in general. Second,
the user view evaluates the quality of a software product with respect to its fitness
of purpose to fulfill certain user tasks. The third view, the manufacturing view, fo-
cuses on the product view during production and after delivery. It is focused on
the adherence of standards and evaluates whether the product was build right the

166 Denger and Olsson

first time. The fourth view is the product view. The focus for this view is on inter-
nal quality aspects of the product that can be measured. It is assumed that ensuring
certain internal quality aspects has an impact on the external quality and the qual-
ity in use of the product. Finally, the value-based view relates quality to cost. It
considers quality as something the customer is willing to pay for [32].

Mapping these views on the quality of requirements reveals relevant stake-
holders and needed QA for the requirements. The requirements should, for exam-
ple, describe what the user requires of the final system (user-view). Furthermore,
they should be described in a way that allows the developers to produce the soft-
ware effectively and efficiently (product-view). The requirements engineers have
to follow certain standards when specifying the requirements to ensure the quality
of the requirements right from the start (manufacturing view). Finally, the custom-
ers have to decide on the value of each requirement and whether the implementa-
tion cost is motivated (value-based view).

All these aspect have to be considered when discussing the quality of require-
ments. The inherently human based nature of requirements engineering and the
necessity to consider not only technical but also social aspects when eliciting, ne-
gotiating and specifying requirements makes the definition of quality characteris-
tics for requirements even harder. Standards are a starting point for defining the
quality of requirements and requirements specifications [24, 25]. Further, there ex-
ist a number of processes, guidelines, and best practices on how to perform good
requirements engineering [8, 11, 14, 41, 46, 50]. The advocates of these ap-
proaches argue that, for example, adhering to the process facilitates requirement
engineering and minimizes later quality problems. In order to specify an initial set
of quality criteria, the IEEE standard for requirements specification [24] is used as
a starting point (see Table 8.1). The standard is extended to provide a more com-
plete picture of relevant quality aspects of requirements (e.g. [16]), especially to
address customer and user needs (value-based and user view on requirements
quality). Moreover, we extended the definition of the quality attributes beyond the
quality of a requirements specification. In accordance to the different views on
quality in general, the definitions of the quality attributes were adapted (see also
[13]). In consequence, the quality aspects consider technical and human related
aspects, which both are relevant for the overall quality of the requirements.

The information in brackets behind the attribute name specifies whether the at-
tribute is originally defined in the IEEE standard or whether the attribute is part of
the extension (IEEE/new). The second information specifies which view on the
requirements’ quality is addressed with the attribute.

Table 8.1 Quality attributes for requirements (1 of 2)

Quality Attribute Definition
Correctness (IEEE, user-
view)

The requirements that are implemented have to reflect the
expected (intended) behavior of the users and customers.
That is, everything stated as a requirement is something
that shall be met by the final system to fulfill a certain pur-
pose (suitability).

8 Quality Assurance in Requirements Engineering 167

Table 8.1 (cont.) Quality attributes for requirements (2 of 2)

Quality Attribute Definition
Unambiguity (IEEE,
product-view)

The requirements should only have one possible interpreta-
tion. Note that one requirement might be unambiguous to a
certain group of stakeholder but has a different meaning in
another. It is important to involve all stakeholders in the
requirements engineering process to gain a common under-
standing (see Chaps. 2 and 3)

Completeness (IEEE,
product-view)

All important elements that are relevant to fulfill the differ-
ent user’s tasks should be considered. This includes rele-
vant functional and non-functional requirements and inter-
faces to other systems, the definition of responses to all
potential inputs to the system, all references to figures and
tables in the specification, and a definition of all relevant
terms and measures.

Consistency (IEEE, prod-
uct, manufacturing view)

The stated requirements should be consistent with all other
requirements, and other important constraints such as
hardware restrictions, budget restrictions, etc.

Ranked for Importance /
Stability (IEEE, product,
value-based, user view)

Each requirement specifies its importance and/or its stabil-
ity. Stability expresses the likelihood that the requirement
changes, while importance specifies how essential the re-
quirement is for the success of the project (from a value-
based and a user point of view). See also Chap. 5

Verifiability (IEEE, prod-
uct view)

All requirements should be verifiable. That is, there exists
a process for a machine or a human to check (in a cost ef-
fective way) whether the requirement is fulfilled or not.

Modifiable (IEEE, prod-
uct view)

All requirements should be modifiable, that is the structure
of the requirements and the requirements specification al-
low the integration of changes in an easy, consistent and
complete way.

Traceable (IEEE, manu-
facturing view)

All requirements should be traceable, that is, it should be
possible to reference the requirement in an easy way.
Moreover, it is possible to identify the origin of a require-
ment (see also Chap. 4)

Comprehensibility (New,
manufacturing, user,
value-based view)

The requirements are specified and phrased in a way that is
understood by all involved stakeholders.

Feasibility (New, value-
based, product view)

All requirements can be implemented with the available
technology, human resources and budget. Moreover, all re-
quirements contribute to the monetary success of the sys-
tem, that is, they are worth to include in the system.

Right Level of Detail
(New, user, manufactur-
ing, value-based view)

The information given in the requirements is suitable to
gain the right understanding of the system and to start im-
plementation. There are no unnecessary implementation or
design details specified in the requirements.

The IEEE Standard was extended to give a more complete way of describing
the quality of requirements:

168 Denger and Olsson

Comprehensibility is essential, as there are many different stakeholders in-
volved in the requirements engineering process. It is important that the re-
quirements can be easily understood by all of these stakeholders and that they
all have a common understanding of the requirements.
Feasibility is especially important to consider as a requirement and is only of
value if it can be transformed into a design and an implementations with rea-
sonable effort and cost.
Finally, the requirements should be specified on an adequate level of detail,
that is, concrete enough to allow that design and implementation can be started
,but that is on the other hand abstract enough to allow discussion between all
involved stakeholders (which have in many cases technical and non-technical
backgrounds).

Note that there are relationships among the attributes. For example, ambiguous
requirements are also difficult to understand. Further, if the requirements are not
traceable, the verifiability, modifiability and the comprehensibility can be af-
fected. Even though the classification is not orthogonal, each attribute refers to a
special aspect of requirements’ quality that should be considered. A more detailed
analysis is needed regarding how the different quality attributes impact each other
and how this information can be used to balance QA activities on the requirements
(see Sect. 8.5).

8.2.2 Requirements Quality Strategy

Developing software without any defects is impossible (see, for example [32],
specifically the transcendental view of quality). It is, however, possible to achieve
an optimal compromise between the desired quality and available resources, con-
sidering the specific context factors and quality need of a company or a project.
Many factors influence the importance of different quality attributes in a specific
context. For example, in certain domains, it is more important to be the first on the
market than to have high quality products in the sense of few defects. There is a
lot of software being tremendously successful, from a commercial point of view,
which is anything but of high quality. On the other hand, the cost of a single defect
can be fatal and incredibly expensive, for example the Ariane 5 disaster [33].
Thoroughness and budget for quality assurance need to be related to the cost of er-
roneous implementation, leading to financial or human costs.

During the requirements engineering phase, it is important to define a quality
strategy that addresses those quality issues that can easily be verified and validated
in the requirements phase. Other quality aspects that cannot be efficiently ad-
dressed during the requirements phase should be left for later phases.

A quality strategy defines how, when and where different QA approaches, in
combination with other approaches in the software development process, are used
to assure high quality. This includes the planning of resources (which approach is
applied when and how much effort should be spent) and the definition of an opti-
mized combination of the different QA approaches with the aim of achieving the

8 Quality Assurance in Requirements Engineering 169

desired quality at the desired cost. The definition of such a strategy is not a trivial
task. It requires detailed knowledge about the context of the company and the pro-
ject, the required level of assurance of the different quality attributes (i.e. to which
degree we can be sure the requirement are fulfilled) and which QA approaches are
applicable. Figure 8.2 summarizes the elements impacting a quality strategy. At
the top of the picture are context related elements, at the bottom technically ori-
ented elements. There are five context elements relevant for QA strategies:

Available
Resources
Available
Resources

Requirements Engineering
Quality Assurance

Requirements EngineeringRequirements Engineering

Quality AssuranceQuality Assurance

Time
Schedules

Time
Schedules

Organizational
Aspects

Organizational
Aspects

High Quality
Requirements
High Quality

Requirements

Basic QA

Strategies

Basic QABasic QA

StrategiesStrategies
Coverage

Criteria

CoverageCoverage

CriteriaCriteria
Quality Assurance

Techniques

Quality AssuranceQuality Assurance

TechniquesTechniques
Basic QA

Strategies

Basic QABasic QA

StrategiesStrategies
Coverage

Criteria

CoverageCoverage

CriteriaCriteria
Quality Assurance

Techniques

Quality AssuranceQuality Assurance

TechniquesTechniques

RisksRisks

Fig. 8.2 Elements important to define a quality assurance strategy for requirements

1. The quality of requirements specifies the quality criteria for good requirements,
as described in the previous section. These criteria can vary from company to
company and from project to project. They impact the strategy in that they
specify what should be achieved with the quality strategy. It is important to de-
fine optimal and minimal sets of quality characteristics of requirements [32].

2. The available resources describe the available effort, budget, hardware, and
personnel to perform QA during the requirements activities. In addition, the
availability of additional experts has to be considered, as for certain quality as-
surance approaches, certain stakeholders beyond the requirements engineering
processes might be essential (e.g. lead architect during requirements reviews).
The available resources have also a direct impact on the applicable QA ap-
proaches. For example, if only a small effort is available to perform require-
ments reviews it is not possible to fulfill a full Fagan inspection with many par-
ticipants but only a peer review or desk-checking approach [49].

3. Risks related to certain requirements, especially risks of not realizing a re-
quirement or implementing a requirement in the wrong way, are an additional
factor influencing the quality strategy. Risk is defined as not being able to live
up to the quality goals and is an important factor for deciding on which part of
the requirements which QA approach should focus. For example, not meeting a
requirement important to protect human lives bears a high risk and should
therefore be checked extra carefully. Moreover, risks can be used to plan the

170 Denger and Olsson

limited quality assurance resources. For example, with the help of risk analysis,
it is possible to identify the most critical requirements in the sense of loss of
lives or loss of money. The QA approaches should then be focused exactly on
these aspects (see also Chap. 5 for related approaches).

4. The overall time schedule is related to the available resources and defines the
time available for QA in general and within the requirements phase in particu-
lar. Time resources are especially important as they relate the requirements QA
activities with other development activities.

5. Finally, the organizational aspects, such as development process, e.g., plan-
driven or agile development, or product domain, (e.g., desktop software or air-
plane control system) influence the decision on which QA approaches to use.
Moreover, it is important to take the various stakeholders into account. De-
pendent on the domain, different sets of stakeholders are varying importance
(see also Chaps. 2 and 3). These aspects impact the quality strategy in that cer-
tain QA approaches might not be applicable due to the organizational con-
straints. For example, in an agile process, requirements reviews are almost im-
possible to perform as in the most agile processes requirements are not
documented in a way that would allow an inspection (e.g. user stories in ex-
treme-programming often are not longer than one sentence that specifies a gen-
eral feature [5]).

The context elements are important to consider as they define in which way the
QA approaches can be applied and which restrictions and constraints must be ad-
hered to. Beside the context in which the quality strategy is embedded, it is also
important to consider technical aspects of quality assurance:

1. The basic strategies represent those strategies in place in a company or a pro-
ject that define how to perform QA in the requirements phase. In that sense
they represent the current state of the practice in a certain context. Due to the
lack of sophisticated quality strategies, ad-hoc approaches are most frequently
applied. For example, the simplest but also the least systematic strategy is to
state that everything in the requirements specification should be verified or that
all quality issues should be tackled in later development phases. Experience
based strategies give hints on what to address in the requirements based on the
experience of earlier projects. Such basic strategies should be considered when
creating a more sophisticated quality strategy. They provide valuable input on
where to start from and what has paid of in the past.

2. The coverage criteria define which aspects of the requirements should be cov-
ered by the QA approach. One example of a coverage criterion is that all re-
quirements are covered by at least one test case. An aspect related to coverage
that should be considered is the depth of the QA approach [35]. Depth defines
the level of detail to which the requirements are verified or validated or, in
other words, the quality level to be achieved. The greater the depth, the more
resources are required for QA and the more sophisticated QA approaches are
required.

3. The most important element of a requirements quality strategy is the potential
quality assurance approaches and methods that can be used to ensure the dif-

8 Quality Assurance in Requirements Engineering 171

ferent quality characteristics of the requirements. As discussed, the context
elements and the technical elements impact the applicability of QA approaches.
The QA approaches are the technical core element of the quality strategy as
they represent the means of achieving good requirements quality.

Quality Assurance

Constructive
Techniques

Analytic
Techniques

Dynamic Techniques
(Validation, e.g Testing)

Static Techniques
(Verification, e.g Inspections)

Elicitation Techniques

Prototyping

Specification Techniques
(standards, processes)

Fig. 8.3 Excerpt of quality assurance approaches

The framework presented in this section supports the definition of a good qual-
ity assurance strategy. It specifies which elements are important to consider when
talking about quality assurance in the requirements engineering phase. It is impor-
tant that all these elements are considered in the specific context of a specific
company and have to be instantiated accordingly. To instantiate the framework
into a concrete quality assurance strategy, it is essential to stress the continuous
collection of data. Such a measurement approach should address the question
which requirements issues are the most expensive ones and which quality assur-
ance techniques work best in the specific context. The most essential element in
the framework is the QA techniques (QA approaches) that can be applied. This is
the element that should be considered first, i.e. before defining a detailed QA
strategy, it is important to investigate potential approaches to verify the quality at-
tributes of the requirements.

8.2.3 Quality Assurance Approaches for Requirements

In this report the quality assurance approaches are divided into one of two classes:
constructive and analytical approaches. Figure 8.3 provides some examples of QA
approaches of the different classes.

Constructive approaches ensure that mistakes are minimized during the crea-
tion of a work product (e.g. the requirements specification). That is, they prevent

172 Denger and Olsson

issues from being introduced. Examples of constructive approaches in the re-
quirements phase are style guidelines on how to specify requirements, templates
for the requirements specification, elicitation approaches and prototyping.

Analytical approaches are performed on the completed artifact or a self con-
tained part of it with the aim to detect issues. Analytical quality assurance ap-
proaches can be further divided into static quality assurance approaches, dynamic
quality assurance approaches (including formal methods) [36]. The difference be-
tween the two classes is that dynamic approaches require an executable version of
the system. Testing approaches are examples of dynamic quality assurance. Static
quality assurance approaches can be performed without executing code. Inspec-
tions and formal verifications are an examples of static approaches. There is in
most cases no executable code available during the requirements engineering
phase. Hence, usually only static approaches are applicable.

It is important to distinguish between QA in the requirements analysis phase
and in the requirements validation phase [46]. QA in the analysis phase means that
requirements issues are prevented from being introduced (i.e. during elicitation)
with the help of constructive approaches omissions and ambiguous requirements
are addressed. The validation process of requirements is based on a requirements
document and tries to resolve issues within this document. Here, the analytical ap-
proaches are applied.

8.3 Constructive Approaches

Constructive approaches ensure quality during the creation of the requirements. In
that sense, constructive approaches are preventive, as they aim to minimize mis-
takes from being made. These approaches are called constructive as they are ap-
plied while developing the requirements. Different ways constructing require-
ments and eliciting them from the various stakeholders are discussed in Chap. 2
and Chap. 3 of the book. How these approaches contribute to higher quality of the
requirements in this section.

Requirements engineering is largely a human-based activity. Even if formal
methods are used, at some point you will be interacting with customers and other
stakeholders. As we humans are fallible, we are bound to make mistakes. There-
fore, even if constructive methods are applied according to all the rules, there will
still be a need to check the results, that is, apply analytical approaches. In this sec-
tion, the impact of constructive approaches is presented. In Sect. 8.4, the analytical
approaches are presented.

8.3.1 Elicitation Techniques

The elicitation step is important to the overall quality of the requirements and the
acceptance of the final system [35, 46]. During the elicitation step, requirements
are captured from various sources, such as the customer, the users, earlier projects,

8 Quality Assurance in Requirements Engineering 173

market studies etc. In this process, various stakeholders such as the customers, the
technical staff (developers), and end users work together to derive an appropriate
set of requirements. Requirements engineers can apply different techniques to
support the various stakeholders in discovering the requirements, e.g. interviews,
questionnaires, workshops and focus groups (see Chap. 2 for more details).

By means of elicitation techniques, the following quality attributes can be en-
sured:

Comprehensibility: by developing a common terminology and ensuring that the
different stakeholders speak the same language, comprehensibility is improved.
Completeness: if the elicitation is performed correctly, all the (relevant) stake-
holders, and their individual stakes, should be identified. Here, elicitation ac-
tivities contribute to higher quality in that they support the requirements engi-
neers in the identification processes.
Verifiability and feasibility: again, by involving the relevant stakeholders, qual-
ity can be assured. By involving the testers the attribute verifiability is im-
proved, and by involving the developers feasibility is improved.
Correctness: the elicitation process should be driven by the business concerns
[46]. Suitability, as part of correctness, is supported by this, as it is then more
likely that the developed software will bring a real financial benefit in the con-
text of use.

8.3.2 Specification Techniques

The main objective of the specification step is to document the requirement in
such a way that they can be used as a basis for development (see Chap. 3). Usu-
ally, the output of the specification activity is a requirements document that cap-
tures the relevant aspect of the system to be built (i.e. functional, non-functional
aspects, restrictions, etc.). In the section it is outlined how certain specification
techniques, best practices and standards can help to ensure the quality of the re-
quirements.

Standards, such as IEEE 830-1998 and IEEE 1233-1998 [24, 25], describe
which elements a “good” requirements specification should have and which qual-
ity attributes the requirements should fulfill. Templates also provide elements that
should be specified when documenting the requirements. Examples include tem-
plates on how to specify use cases or how to structure the requirements document.

With respect to the quality characteristics defined in Sect. 8.2.1, standards and
templates contribute to better requirements in the following way:

Completeness: in the case that the requirement engineers adhere to the recom-
mendations in the standards and apply the pre-defined templates it can be en-
sured that all relevant aspects of a requirements document are considered, i.e.
completeness of the document.
Understandability and modifiability: the structure provided by templates and
standards ensures that requirements document look similar over different pro-
jects in a company. Standardization of requirements documents prevents ambi-

174 Denger and Olsson

guities within the documents and improves the understandability as well as the
modifiability, as elements that need to be changed can be found more easily.

In addition to standards and templates, there is a huge collection of best prac-
tices showing how different steps in the requirements engineering process should
be performed in order to gain high quality output of each of these steps only to
mention some of them: [8, 11, 14, 17, 25, 35, 41, 46, 50].

Specifying functional requirements using, for example, use cases and related
scenarios ensures also the comprehensibility of the requirements right from the
start, as use cases and scenarios are easy to understand for technical and non-
technical stakeholders. This also supports the attribute right level of detail. In ad-
dition, use cases seem to be valuable source for the definition of acceptance and
system test cases (see Sect. 8.4.2). Therefore, specifying the requirements in a
structured, scenario-oriented way improves their verifiability.

Basically, it would be possible to address almost all of the quality attributes in a
constructive way if certain processes and standards are rigorously followed and
applied. However, practice shows, that such rigorous approaches are not always
reasonable or feasible (e.g. due to time restrictions, budget restrictions, regula-
tions, etc.).

8.3.3 Prototyping

Another constructive approach that can be used to support elicitation is prototyp-
ing. A prototype is an executable version of the system under development,
though restricted in one way or another. For example, a user interface prototype
implements parts of the user interface, the structure and navigation, but will not
have all the functionality, while a performance prototype focuses on memory and
CPU load and might have no user interface at all.

The goal of a prototype is for the stakeholders to be able to try the system and
make improvement suggestions [46]. By doing this, they get a better feeling of
whether the system represents what they required, and thus it helps to identify
missing requirements and detect misconceptions. The most important value of a
prototype is that it crosses the gap between the description and implementation
[17]. Further, a quite common issue with the requirements is that the customer
does often not exactly know what they want.

In general, developing a prototype requires a careful study of the requirements
[46]. A prototype typically target the following quality attributes:

Inconsistencies and incompleteness: the process of developing a prototype will,
in it self, reveals inconsistencies and incompleteness of the requirements and
thus improves their quality.
Correctness: correctness is improved by letting the different stakeholders work
with and evaluate a concrete object rather than the abstract requirements.
Feasibility: by trying out different solutions, already in the requirements phase,
feasibility is improved. A lot of time and money can be saved if dead-ends are
detected at an early stage.

8 Quality Assurance in Requirements Engineering 175

To underline the benefits of prototyping in the context of QA, an experiment
showed that prototyping can significantly reduce requirements and design errors,
especially for the user interfaces [9].

8.4 Analytical Approaches

The analytical quality assurance approaches assess the requirements specification
to check whether the requirements specified in there fulfill the quality criteria
specified. The main challenge of the analytical approaches is that there are no ref-
erence documents against which the requirements can be checked, i.e. there is no
documented source of truth against to compare. This emphasizes that QA of re-
quirements has to involve all relevant stakeholders of the requirements. In the fol-
lowing, two analytical approaches requirements inspections and test case creation
(as a part of acceptance testing) are presented in more detail.

8.4.1 Requirements Inspections

Inspections are a valuable means to ensure the quality of a software product right
after its creation. There are many experimental and industrial results that show the
value of inspection in general and requirements inspection in particular [2, 3, 4, 9,
17, 19, 20, 34, 37, 40, 43, 44, 48, 49]. Inspections in general aim at minimizing the
issues of a certain product being propagated to later phases, as the issues are ad-
dressed in the same phase in which they are introduced. Considering the costs of
an requirement issue (see Sect. 8.1), requirements inspections are one of the most
cost effective QA approaches, as they prevent issues from being propagated from
the requirements to other artifacts and cause follow-up defects and avoidable re-
work [7, 17, 37, 44, 49].

A second important benefit of early QA is that many organizations report an
improved knowledge transfer achieved when performing early QA activities such
as inspections and test case creation. For example, with the help of the reading
scenarios and the checklist questions it is possible to transfer knowledge about de-
fect patterns, best practices and known pitfalls from experts to less experienced
people.

An inspection is characterized by a process, the roles involved in the process,
reading techniques used, and the information on how the results of the inspection
are documented. These elements can be seen as the four dimensions of an inspec-
tion [34].

The Inspection Process
A basic inspection process contains four main steps: planning (managing the or-
ganizational issues of an inspection), detection (inspectors search for issues in the
document under inspection), collection or meeting step (moderated meeting merg-
ing the results of the inspectors into approved defect list) and correction (where
the author has to resolve all the identified issues). These steps are common for al-

176 Denger and Olsson

most all instantiations of the inspection process. However, several inspection
processes mention additional steps such as the overview meeting or the follow-up
meeting [18, 49]

Each phase of the process can be implemented in different ways depending on
the level of detail with which the requirements should be inspected. For example,
in the case that the requirements should be checked only from an abstract view-
point, the individual preparation phase of the process could be skipped and the re-
quirements would be discussed during a meeting with certain experts. According
to the IEEE Standard 1028-1997 [26], such a process would be similar to a walk-
through of the requirements document. The company applying the inspection ap-
proach has to decide to which level of detail the requirements should be inspected
[49]. This mainly depends on the requirements quality strategy as discussed in
Sect. 8.2.2 (see discussion on how different elements of the framework impact the
QA approaches). The above-mentioned process steps are the four most essential
steps that should be performed in case the requirements are to be inspected in a
more detailed way.

Reading Techniques
The most important, but also the most difficult step, in a requirements inspection
is the detection step. In this step, the inspectors identify requirements issues. A
reading technique supports the inspectors in performing this step. A reading tech-
nique represents a series of steps or procedures that guide an inspector in acquir-
ing a deeper understanding of the requirements under inspection and detecting is-
sues in them [34].

There are different kinds of reading techniques that can be used during a re-
quirements inspection: ad-hoc reading (reading without further guidance based on
ones experience), checklist-based reading (using a list of questions to point to po-
tential issues in the requirements) and scenario-based reading (using a step-wise
description to guide the inspector during the defect detection step). Again, depend-
ing on the desired level of depth and coverage, one of these techniques might be
more suitable for verifying the requirements than another. A more detailed sum-
mary of different reading techniques can be found in [34].

Checklist based reading (CBR), as the name indicates, is based on checklists
containing questions that should be answered during the defect detection. These
questions focus on certain quality aspects that are relevant for the requirements
under inspection. The checklist approach tells an inspector what to check. How-
ever, an often cited weakness of CBR is that it provides little support for how to
perform the analysis [34, 48]. The reviewers get no guidance or hints on how to
answer the questions in the checklist.

A checklist for use cases, for example, is presented in [2]. Many other check-
lists for requirements can be found on the Internet. However, it is important to
note that there exist no standard checklist that can be applied in all contexts. A
checklist has to be company- and sometimes even project-specific. Thus, the
checklist has to be tailored to the context and characteristics of the company and
the project. It is important to consider the elements of the requirements quality
framework as it provides input for defining valuable checklist questions (e.g. input

8 Quality Assurance in Requirements Engineering 177

on quality goals, existing checklists (basic techniques), quality characteristics of
importance, organizational restrictions, etc.). In addition, one should consider
known defects or problems and, of course, expert knowledge, as further sources
for checklists questions.

Checklists have three basic weaknesses [34]. First, the checklist questions are
often extremely general. That is, concrete guidance on how to use the checklist is
missing. Further, the checklist questions are often not up to date. To overcome
these drawbacks, alternative approaches were developed. One class of alternative
approaches is called scenario-based approaches. For requirements, the following
scenario-based approaches are applicable: Perspective-based reading (PBR) [4, 34,
43, 45], traceability-based reading [45], defect-based reading [40] and usage-based
reading [48].

The basic idea of the scenario-based reading techniques is that inspectors are
guided by a scenario that tells them what to look for during the inspection and
how to perform the inspection. Furthermore, the scenario guides the inspector to
actively work with the requirements, resulting in a deeper understanding of the re-
quirements and their interrelationships [34, 43]. Having such a deep understanding
of the requirements is a prerequisite for finding more subtle and logical defects,
which are often critical to the final system. Finally, the scenarios focus the atten-
tion of the inspectors on the essential quality aspects and on the essential parts of
the requirements under inspection that need the most thorough investigation [34].
This input should be taken for example from prioritization techniques (see Chap.
5).

The special aspect of PBR is that the requirements are inspected from the view-
point of different stakeholders, see Fig. 8.4. Different stakeholders have different
interests in the requirements. The assumption behind PBR is that the requirements
are of good quality if all stakeholders who use the requirements for their specific
tasks, agree on the requirements quality (find no serious issues in them).

user

designer

tester

Design

Document

domain-

expert

customer

user

designer

tester

Design

Document

domain-

expert

customer

Fig. 8.4 Some perspectives to inspect the requirements

In each company context, the involved perspectives are different. Therefore, the
first essential step when applying the PBR approach is identification of the poten-
tial perspectives and the quality concerns these perspectives are interested in.

During an inspection traceability links (see Chap. 5) can help to guide the in-
spectors through the requirements. For example, the quality attribute of consis-

178 Denger and Olsson

tency (see Sect. 8.2.1) is directly related to the ability to trace one requirement to
another. The problems with inconsistency are well documented and are often one
reason for quality problems and project delays [35]. With well defined links be-
tween the requirements it is possible for the inspector to follow these links and
check that the requirements work together in a consistent and correct way. In that
sense, the defect detection step gets more efficient as the inspectors do not have to
think of potential relationships between requirements but can follow the links be-
tween them. Beside the consistency issue, it is also possible for the inspector to
judge whether certain functions are completely realized with the different re-
quirements described in the specification by following the traceability links and
judging whether the sum of the requirements results in the desired support for the
user. Finally, the traceability links indicate requirements that are highly related to
each other and therefore help the inspectors to judge the maintainability and un-
derstandability of the requirements.

But also without the support of traceability, inspections can address many of
the quality attributes specified in Sect. 8.2.1 (assuming that the inspection is per-
formed thoroughly): correctness, completeness, unambiguity, comprehensibility,
feasibility, modifiability, verifiability. This can be achieved with the right set of
questions in the reading scenarios and checklists.

8.4.2 Requirements-Based Testing

Testing is usually performed at the end of the development process when executa-
ble system parts are available. Test cases are usually defined and run on the sys-
tem to validate whether the system fulfills its specification. For example, the test
cases derived from the requirements are used during the acceptance and system
test phase. Testing is often perceived as the pure execution of the test cases at the
end of the development cycle. This perception has led to the myth that testing can
start only at the end of the software development process [22]. However, testing is
more than running the test cases and looking for failures in the final software. At
least the two steps test planning and test case creation can and should be integrated
in the development process much earlier than they are usually integrated.

It is recommended that test planning and test case creation should be performed
as soon as the requirements, or a self-contained sub-set, are defined [22, 51]. The
idea of early test case creation is similar to the idea of perspective-based inspec-
tions. Through the early construction of the test cases, the test engineers gain a
better understanding of the requirements and are able to identify weaknesses and
potential issues within the requirements. Moreover, test engineers bring in a com-
pletely new perspective on the requirements which also contributes to identify re-
quirements issues during the early test case creation. For example, if the test engi-
neers have difficulties in deriving the acceptance test case from requirements it
might be necessary to refine the requirements, to add missing information or to
remove/restate the requirement as it is not possible to test them.

The principle of early test case creation helps to improve the quality of the re-
quirements by identifying correctness, completeness, ambiguity, consistency and

8 Quality Assurance in Requirements Engineering 179

verifiability issues during the specification of the test cases. If this is done at the
very end of the project, these issues are propagated from the requirements to all
later phases and the test engineers might base their test cases on the wrong re-
quirements, as the requirements are taken for granted (a fixed source of truth
which is different at the beginning of the process).

An overview on requirements based testing approaches can be found in [15].
Special approaches that work on use cases are described in [6, 12, 30, 42]. General
approaches that can be applied on the requirements specification to define detailed
test cases are, for example, defined in [31, 39].

Again, it is possible to use traceability links to facilitate this activity (see Chap.
5). They provide a better understanding of which aspects in the requirements have
to be tested together (e.g. in a test scenario) and which requirements are already
covered by the defined test cases. Depending on the granularity of the traceability
links, it is then possible to judge which requirements as a whole are covered by
one ore more test cases, which test cases test more than one requirement, or
whether there are test cases that cover only a single requirements. This informa-
tion helps to identify points that need further consideration and special attention.
Furthermore, traceability can help to select those parts that need regression testing
by identifying which requirements are affected by a certain change [1, 33].

8.4.3 Automated Approaches and Formal Methods

Due to the abstract and informal nature of most requirements documents it is diffi-
cult to apply any automated tools to ensure their quality. For simple issues, such as
grammar or spelling defects, there are tools available. Removing such issues from
the requirements typically improve their comprehensibility.

For one quality attribute, unambiguity, more tool support is available. The idea
of tools that address ambiguity flaws is the identification of certain patterns and
keywords in the requirements that point to potential risk areas (i.e. areas where
more than one interpretation of the requirements is possible). These tools identify,
based on a glossary, phrases that are marked as weak or subjective, for example,
“if possible”, “may”, “could”, “optionally”, etc. The tools parse the requirements
document based on the pre-defined glossary and provide a list of all occurrences
of the weak-phrases in the document [19, 52]. Even though the tools automatically
detect certain quality issues in the requirements, the applicability of these tools in
industrial practice has to be further investigated.

Further automation is possible when the requirements are defined in a formal
way. The use of formal languages copes with requirements issues by avoiding the
imprecise nature of natural language. Requirements are specified in a semantically
well-defined way, typically mathematically based. Several benefits can be gained
by using formal methods. The communication between the stakeholders is more
precise, and thus, misunderstandings and ambiguities can be reduced. It is possible
to check the completeness and the consistency of the requirements document, and
automated proof of safety properties is possible. Finally, the requirements engi-

180 Denger and Olsson

neer can perform simulations of the future system, when the language is supported
by a tool. Examples for such languages are SCR [23], SDL [27], and VDM [29].

However, formal methods also have drawbacks. They are difficult to learn and
difficult to understand for a person without the necessary background. Specifi-
cally, the customer is often not interested in learning the formal language, and a
compromise needs to be found. The first version of the requirements might be
formulated in natural language, in the language of the customer. The requirements
must then be translated into the formal version.

8.5 Open Research Questions

Based on the current state of the practice, some open questions with respect to
quality assurance in the requirements engineering phase are identified. First, some
open issues with respect to testing are discussed and afterwards, inspections are
further elaborated on.

The survey on existing approaches for early test case creation and the involve-
ment of testing during requirements engineering reveals that there are many prom-
ising approaches and that the need of early tester involvement is clearly recog-
nized. However, the survey also shows that there is a lack of empirical evidence
that the proposed approaches do, in fact, save money, improve the quality of the
requirements, and to improve the overall system quality by means of better accep-
tance and system test cases that are more related to the requirements. Future re-
search should focus on gathering this data as these results are important to transfer
the approaches into industry (convince practitioners of the benefits).

Related to this aspect is the fact that test case creation for system and accep-
tance testing is performed without the involvement of the final system user. Al-
most all of the research papers explicitly mention that the user should be involved
during test case creation but do not state how this should be done. Here, research
is necessary to define ways to involve the system end users in this process in a
most efficient and beneficial way.

Many test case creation approaches provide only little guidance on how to de-
rive the test cases from the requirements or intermediate models of the require-
ments (e.g. sequence or state charts that represent the requirements). Often, there
are only high level descriptions on how to come up with good test cases. There-
fore, more research activities should focus on the relationships between require-
ments and other artifacts such as certain types of models and, of course, test cases.
Guidelines that provide a stepwise approach on how to derive intermediate models
should be defined to further facilitate the test case creation activity and, of course,
any further development steps (e.g., analysis and high level design would also
benefit from such guidelines).

Finally, it is a common fact that within requirements specifications, more and
more various notations are used (e.g., pure text, tables, use case diagrams, se-
quence diagrams, etc.). How to deal with this variety of notations during test case

8 Quality Assurance in Requirements Engineering 181

creation is an unresolved question. Each notation provides relevant input and has
to be considered during test case creation.

Concerning requirements inspections, most of the above-mentioned open issues
with respect to requirements based testing also apply to inspections. Approaches
for inspecting heterogeneous requirements documents need to be developed, and a
process needs to be defined on how to most efficiently integrate the various stake-
holders of the requirements in the inspection process. Here, it is especially impor-
tant to define decision support for inspections that gives guidance on when to in-
clude which stakeholders (e.g., when to include which perspectives) and when it is
necessary to perform which process steps. More research is therefore needed that
investigates the factors influencing a good inspection process and to develop
guidelines to customize the inspections in an optimal way to the quality needs that
should be addressed during requirements engineering.

One part of this decision support should be a guideline on which inspection
technique (checklist, scenario-based reading, including usage based reading, per-
spective-based reading, defect-based reading, etc.) should be used to verify the re-
quirements. Past research focused only on the question of which of the techniques
outperforms the other technique with respect to efficiency and effectiveness of the
inspection process. The more relevant question seems to be how the different
reading techniques should be combined to gain a more efficient inspection of the
requirements. Thus, one should address the question of which of the reading tech-
niques is more suited in detecting certain types of requirements issues. A second
part of such a customization approach should be a guideline that provides hints on
which questions or reading scenarios should be used during the inspection in order
to address certain quality issues in a most efficient way. Therefore, it is up to fu-
ture research to investigate what kind of inspection questions (for requirements)
have an impact on which qualities the customer is interested in.

Finally, the question of tool support for inspections should be further addressed.
With respect to requirements inspections, it should be investigated which quality
issues could be automatically checked by a tool (e.g., application to certain struc-
tural restrictions) and how the inspection of other quality aspects could be facili-
tated, e.g. by providing support in checking certain checklist questions.

The most important open question that should be addressed in future research
activities is how the different quality assurance approaches (constructive and ana-
lytic ones) of the requirements engineering phase can be combined into a compre-
hensive quality assurance strategy. There are some initial results that address this
question [13], but these results need to be further investigated. In [9], it is stated
that different quality assurance approaches help to address different quality issues.
Unfortunately, neither the state of art nor the state of the practice can explicitly
state which approaches are most efficient to address which quality issues, i.e. it is
important to evaluate which of the approaches is more effective and consumes less
effort in addressing certain requirements quality issues. In other words, future re-
search has to investigate which qualities of the final system and the requirements
are most efficiently assured by means of which approach (constructive, testing, in-
spections). Here, especially, more research is needed on the impact of applying
constructive approaches such as certain elicitation techniques or specification

182 Denger and Olsson

techniques on the quality of the requirements. A second important step is the defi-
nition of external or system quality characteristics that should be addressed (e.g.
safety, security, reusability, maintainability, etc.) and how these qualities manifest
in the requirements. If this connection can be drawn, it is possible to customize the
different QA approaches in that way that they focus on those system qualities that
are most relevant for the customer.

These are all cornerstones that need to be investigated for the definition of a re-
quirements quality strategy. And we should force our efforts as a well-defined re-
quirements quality strategy would help to minimize the costs for quality assurance
and, in parallel, increase the effectiveness and efficiency of the different ap-
proaches.

8.6 Conclusion

Quality is an elusive but important subject for requirements, especially since the
quality of the requirements will more or less affect all other artifacts in the devel-
opment. This chapter presents ideas on a framework for quality assurance (QA) in
the requirements phase. The framework describes a set of attributes that are used
to define quality. In addition, the framework describes what has to be considered
when defining a QA strategy, to achieve the defined quality characteristics of re-
quirements and requirements documents.

Further, an overview of state of art constructive and analytical QA approaches
is presented. The theoretical contribution consists of an overview of state of the art
QA approaches for requirements, as well as a more detailed description of a se-
lected set. The QA approaches addressed are inspections, test case creation, and
the impact of elicitation specification, and prototyping on quality. Moreover, some
initial ideas are sketched on when to apply a specific type of QA approach by
means of a mapping the QA approach to requirements quality characteristics.

Looking at the state of the art, it is clear that there are certain gaps in our under-
standing of how high quality requirements can be achieved and how the costs of
the QA activities on the requirements affect the cost of the rest of the develop-
ment. It is, however, a fair amount of research performed on individual QA ap-
proaches, but the combination and wider effects need more investigation.

Acknowledgements

This work has been partly supported by the ForPICS project, funded by the
Provincia Autonoma di Trento, Italy. The authors also would like to thank the
anonymous reviewers, as well as colleagues, specifically Sonnhild Namingha, for
helpful comments on draft version of this chapter.

8 Quality Assurance in Requirements Engineering 183

References

1. Ahlowalia N (2002) Testing from use cases using path analysis technique. In: Proceed-
ings of the International Conference on Software Testing, Analysis & Review, Ana-
heim, CA, USA

2. Anda B, Sjøberg D I K (2002) Towards an inspection technique for UC models. In: Pro-
ceedings of the 14th International Conference on Software Engineering and Knowledge
Engineering (SEKE), Italy, pp 127 134

3. Aurum A, Petersson H, Wohlin C (2002) State-of-the-Art: Software Inspections Turning
25 Years. Journal on Software Testing, Verification and Reliability 12(3): 133 154

4. Basili V R, Green S, Laitenberger O, Lanubile F, Shull F, Sorumgard S, Zelkowitz M
(1996) The empirical investigation of perspective-based reading. Empirical Software
Engineering 1(2): 133–164

5. Beck K (1999) Extreme programming explained. Boston: Addison-Wesley
6. Binder RV (1999) Testing object-oriented systems: Patterns, models and tools. Boston:

Addison-Wesley Object Technologies Series
7. Briand L, Freimut B, Vollei F, (2000) Assessing the cost-effectiveness of inspections by

combining project data and expert opinion. In: Proceedings of the 11th International
Symposium on Software Reliability Engineering, pp.124 135

8. Bittner K, Spence I (2003) Use case modeling. Boston: Addison-Wesley
9. Boehm BW, Gray TE (1984) Prototyping versus specifying: A multi-project experiment.

IEEE Transaction on Software Engineering 10(3):290 302
10. Boehm BW, Basili VR (2001) Software defect reduction top 10 list. IEEE Computer

34(1):135 137
11. Cockburn, A (2001) Writing effective use cases. Boston: Addison-Wesley
12. Collard R (1999) Test design: Developing test cases from use cases. Software Testing

and Quality Engineering July/August 1(4): 31 36
13. Denger C, Paech B (2004) An integrated quality assurance approach for use case based

requirements. In: Proceedings of the German conference of Modellierung, pp.59 74
14. Denger C, Paech B, Benz S (2003) Guidelines -- Creating use cases for embedded sys-

tems. IESE-Report, 078.03/E, Kaiserslautern, Germany
15. Denger C, Medina M (2003) Test cases derived from user requirements specifications:

Literature survey. IESE Report No. 033.03/E, Kaiserslautern, Germany
16. Denger C, Kerkow D, Knethen Av, Paech B (2003) A comprehensive approach for cre-

ating high-quality requirements and specifications in automotive projects. In: Proceed-
ings of the International Conference Software and Systems Engineering and their Ap-
plications, 2-6 December, Paris, France

17. Endres A, Rombach H D (2003) A handbook of software and systems engineering. Em-
pirical Observations, Laws and Theories. New York: Addison-Wesley

18. Fagan ME, (1976) Design and code inspections to reduce errors in program develop-
ment. IBM Systems Journal 15(3):182–211

19. Fantechi A, Gnesi S, Lami G, Maccari A (2002) Application of linguistic techniques for
use case analysis. In: Proceedings of the International Conference on Requirements En-
gineering, pp 157-164, Essen, Germany

20. Gilb T, Graham D (1993) Software inspection. Boston, Addison-Wesley
21. Glass RL (1998) Software runaways. Lessons learned from massive software project

failures. Upper Saddle River, NJ: Prentice Hall

184 Denger and Olsson

22. Graham D (2002) Requirements and testing: Seven missing-link myths. IEEE Software
19(9):15-17

23. Heitmeyer CL, Jeffords RD, Labaw BG, (1996) Automated consistency checking of re-
quirements specifications. ACM Transactions on Software Engineering and Methodol-
ogy 5(3): 231–261

24. IEEE Recommended practice for software requirements specification. IEEE Standard
830-1998, 1998

25. IEEE guide for developing system requirements specification. IEEE Standard 1233-
1998, 1998

26. IEEE standard for software reviews. IEEE Standard 1028-1997, 1997
27. ITU-T (1993) Recommendation Z.100. Specification and description language (SDL)

ITU-International Communication Unit, Geneva
28. Jalote P (1989) Testing of completeness of specifications. IEEE Transactions on Soft-

ware Engineering 15(5): 526 531
29. Jones CB, (1990) Systematic software development using VDM. Upper Saddle River,

NJ, Prentice Hall
30. Kamsties E, Pohl K, Reis S, Reuys A (2004) Szenario-basiertes systemtesten von soft-

ware-produktfamilien mit ScenTED. In: Proceedings of Modellierung, Marburg, Ger-
many, pp.169 186

31. Keese P, Meyerhoff D (2003) Tutorial on requirements-based testing (SQS). Held in
conjunction of the International Conference on Software Testing, Cologne, Germany

32. Kitchenham B, Pfleeger S (1996) Software quality: the elusive target. IEEE Software,
13(1): 12 21

33. Le Lann G (1996) The Ariane 5 Flight 501 Failure - A case study in system engineering
for computing systems. Research report RR-3079, INRIA

34. Laitenberger O (2000) Cost-effective detection of software defects through perspective-
based inspections. PhD Thesis in Experimental Software Engineering; Fraunhofer IRB
Verlag

35. Leffingwell D, Widrig D (2000) Managing software requirements – A unified approach.
Boston: Addison-Wesley

36. Liggesmeyer P (1990), Modultest und modulverifikation – State of the art. Mannheim,
Wien Zürich, BI-Wissesverlag

37. Briand LC, Freimut B, Vollei F (2000) Assessing the cost-effectiveness of inspections
by combining project data and expert opinion. In: Proceedings of the 11th International
Symposium on Software Reliability Engineering, pp 124 135

38. Musa J (1993) Operational profiles in software-reliability engineering. IEEE Software
10:(2): 14 32

39. Ostraned T J, Balcer M J (1988) The category-partition method for specifying and gen-
erating functional tests. Communications of the ACM 31(6):676 686

40. Porter A, Votta LG (1998) Comparing detection methods for software requirements
specification: A replication using professional subjects. Empirical Software Engineer-
ing 3(4): 355 379

41. Robertson S, Robertson JH (1999) Mastering the requirements process. Boston: Addi-
son-Wesley

42. Rupp C, Queins S (2003) Vom use-case zum Test-Case. OBJEKTspektrum, Vol.4
43. Shull F, Rus I, Basili V (2000) How perspective-based reading can improve require-

ments inspections. IEEE Computer 33(7):73 79

8 Quality Assurance in Requirements Engineering 185

44. Shull F, Basili V, Boehm B, Brown AW, Costa P, Lindvall M, Port D, Rus I, Tesoriero
R, Zelkowitz M (2002) What we have learned about fighting defects. In: Proceedings of
8th International Metrics Software Metrics Symposium: p 249ff., Ottawa, Canada

45. Shull F, Travassos G H, Carver J (1999) Evolving a set of techniques for OO inspec-
tions. Technical Report CS-TR-4070, UMIACS-TR-99-63; University of Maryland

46. Sommerville I, Sawyer P (1997) Requirements engineering. A good practice guide.
Chichester: John Wiley & Sons

47. http://www.standishgroup.com/chaos_chronicles/index.php Accessed on 3rd December
2004

48. Thelin T, Runeson P, Wohlin C (2003) An experimental comparison of usage-based
reading and checklist-based reading. IEEE Transactions on Software Engineering,
29(8): 687 704

49. Wiegers K E (2002) Peer reviews in software. A practical guide. Boston: Addison-
Wesley

50. Wiegers K E (1999) Writing quality requirements. Software Development Magazine,
7(5): 44 48

51. Wiegers K E (2000) Karl Wiegers describes 10 requirements traps to avoid. Software
Testing & Quality Engineering Journal, January/February, 2(1)

52. Wilson WM, Rosenberg LH, Hyatt LE (1996) Automated quality analysis of natural
language requirements specifications. NASA Software Assurance Technology Center,
USA

Author Biography

Christian Denger studied computer science at the University of Kaiserslautern,
Germany, with a minor in economics. He received his master in computer science
in 2002. Since then, he has been working as a scientist at the Fraunhofer Institute
for Experimental Software Engineering in Kaiserslautern, Germany. His research
interests are software inspections in the context of defect cost reduction ap-
proaches in early development phases and the combination of quality assurance
techniques in the context of embedded systems. Currently, he is involved in sev-
eral German and international projects as a team member and project leader and is
pursuing a PhD degree at the University of Kaiserslautern.

Thomas Olsson works as a scientist at the Fraunhofer Institute for Experimental
Software Engineering in Kaiserslautern, Germany. He received a Licentiate of
Engineering in Software Engineering in 2002 and a Master of Science in Com-
puter Science and Engineering in 1999, both from Lund University, Sweden. His
research interests lie in heterogeneous information and documentation models, es-
pecially in the context of requirements. Currently, he is leading one European and
one German project, and is at the same time pursuing a PhD degree at Lund Uni-
versity.

Part 2
The Next Practice in Requirements Engineering

This part provides descriptions of some specific ways of addressing the challenges
in requirements engineering as well as presenting various areas where require-
ments engineering plays a key role in the success of a software project. There are
seven chapters in this Part. Chapter 9 addresses the possibility of using goal mod-
eling in requirements engineering and, in particular, how to reason with goals.
Chapter 10 recognizes that software requirements are often represented in natural
language, which results in some challenges when it comes to the management of
large repositories of requirements. Natural language also raises the challenge of
overcoming ambiguity in the wording of requirements. Chap. 11 presents an in-
troduction and some empirical results in relation to ambiguity. Part I has estab-
lished that decision-making is an important aspect of engineering and managing
requirements. Thus Chap. 12 is devoted to decision-support. Requirements engi-
neering is all too often focused on bespoke software development. In many cases,
software is developed for markets. A market-driven approach to requirements en-
gineering is presented in Chap. 13. Software development methods evolve over-
time. One such family of methods is agile methods. The handling of requirements
within agile development is presented in Chap. 14. Finally, requirements engineer-
ing in a web-based context is presented in Chap. 15.

Thus, in summary, this part contains chapters on the following topics:

Chapter 9: Goal modeling
Chapter 10: Use of natural language
Chapter 11: Ambiguity in requirements
Chapter 12: Decision support
Chapter 13: Market-orientation
Chapter 14: Agile methods
Chapter 15: Web-based development

These seven chapters highlight some of the main issues related to engineering
and managing software requirements. The chapters are written by researchers
from around the world that have conducted extensive and reputable research in the
above areas.

The seven chapters are by Collette Rolland and Camille Salinesi from Univer-

sity of Paris, France; Johan Natt och Dag from Lund University, Sweden and Vin-
cenzo Gervasi from University of Pisa, Italy; Erik Kamsties from University of
Essen, Germany; An Ngo-The and Günther Ruhe from University of Calgary,
Canada; Björn Regnell from Lund University, Sweden and Sjaak Brinkkemper
from Utrecht University, The Netherlands; Alberto Sillitti and Giancarlo Succi
from the Free University of Bozen, Italy; Jacob L. Cybulski from Deakin Univer-
sity, Australia and Pradip K. Sarkar from Central Queensland University, Austra-
lia.

