
6 Impact Analysis

Per Jönsson and Mikael Lindvall

Abstract: Software changes are necessary and inevitable in software develop-
ment, but may lead to software deterioration if not properly controlled. Impact
analysis is the activity of identifying what needs to be modified in order to make a
change, or to determine the consequences on the system if the change is imple-
mented. Most research on impact analysis is presented and discussed in literature
related to software maintenance. In this chapter, we take a different approach and
discuss impact analysis from a requirements engineering perspective. We relate
software change to impact analysis, outline the history of impact analysis and pre-
sent common strategies for performing impact analysis. We also mention the ap-
plication of impact analysis to non-functional requirements and discuss tool sup-
port for impact analysis. Finally, we outline what we see as the future of this
essential change management tool.

Keywords: Impact analysis, Software change, Traceability analysis, Propagation
of change, Non-functional requirements, Metrics.

6.1 Introduction

It is widely recognized that change is an inescapable property of any software, for
a number of reasons. However, software changes can, and will, if not properly
controlled, lead to software deterioration. For example, when Mozilla’s 2,000,000
Source Lines of Code (SLOC) were analyzed, there were strong indications that
the software had deteriorated significantly due to uncontrolled change, making the
software very hard to maintain [17].

Software deterioration occurs in many cases because changes to software sel-
dom have the small impact they are believed to have [40]. In 1983, some of the
world’s most expensive programming errors each involved the change of a single
digit in a previously correct program [38], indicating that a seemingly trivial
change may have immense impact. A study in the late 90s showed that software
practitioners conducting impact analysis and estimating change in an industrial
project underestimated the amount of change by a factor of three [26]. In addition,
as software systems grow increasingly complex, the problems associated with
software change increase accordingly. For example, when the source code across
several versions of a 100,000,000 SLOC, fifteen-year-old telecom software system
was analyzed, it was noticed that the system had decayed due to frequent change.
The programmers estimating the change effort drew the conclusion that the code
was harder to change than it should be [13].

Impact analysis is a tool for controlling change, and thus for avoiding deteriora-
tion. Bohner and Arnold define impact analysis as “the activity of identifying the

118 Jönsson and Lindvall

potential consequences, including side effects and ripple effects, of a change, or
estimating what needs to be modified to accomplish a change before it has been
made” [3]. Consequently, the output from impact analysis can be used as a basis
for estimating the cost associated with a change. The cost of the change can be
used to decide whether or not to implement it depending on its cost/benefit ratio.

Impact analysis is an important part of requirements engineering since changes
to software often are initiated by changes to the requirements. In requirements en-
gineering textbooks, impact analysis is recognized as an essential activity in
change management, but details about how to perform it often left out, or limited
to reasoning about the impact of the change on the requirements specification [20,
23, 27, 32, 35]. An exception is [40], where Wiegers provides checklists to be
used by a knowledgeable developer to assess the impact of a change proposal.

Despite its natural place in requirements engineering, research about impact
analysis is more commonly found in literature related to software maintenance. In
this chapter, we present impact analysis from a requirements engineering perspec-
tive. In our experience, impact analysis is an integral part of every phase in soft-
ware development. During requirements development, design and code do not yet
exist, so new and changing requirements affect only the existing requirements.
During design, code does not yet exist, so new and changing requirements affect
only existing requirements and design. Finally, during implementation, new and
changing requirements affect existing requirements as well as design and code.
This is captured in Fig. 6.1. Note that in less idealistic development processes, the
situation still holds; requirements changes affect all existing system representa-
tions.

Fig. 6.1 Software life-cycle objects (SLOs) affected (right) due to requirements changes in
different phases (left)

The chapter is organized as follows. In the remainder of this section, we define
concepts, discuss software change and outline the history of impact analysis. In
Sect. 6.2, we present common strategies for impact analysis. Sect. 6.3 discusses
impact analysis in the context of non-functional requirements. We explore a num-
ber of metrics for impact analysis and give an example of an application of such
metrics in Sect. 6.4. In Sect. 6.5, we look at tool support for impact analysis and
discuss impact analysis in requirements management tools. Finally we outline the
future of impact analysis in Sect. 6.6 and provide a summary of the chapter in
Sect. 6.7.

6 Impact Analysis 119

6.1.1 Concepts and Terms

Throughout this chapter, we use several terms and concepts that are relevant in the
field of impact analysis. In this section, we briefly visit these terms and concepts,
and explain how each relates to impact analysis and to other terms and concepts.

Software life-cycle objects (SLOs also called software products, or working
products) are central to impact analysis. An SLO is an artifact produced during a
project, such as a requirement, an architectural component, a class and so on.
SLOs are connected to each other through a web of relationships. Relationships
can be both between SLOs of the same type, and between SLOs of different types.
For example, two requirements can be interconnected to signify that they are re-
lated to each other. A requirement can also be connected to an architectural com-
ponent, for example, to signify that the component implements the requirement.

Impact analysis is often carried out by analyzing the relationships between
various entities in the system. We distinguish between two types of analysis: de-
pendency analysis and traceability analysis [3]. In dependency analysis, detailed
relationships among program entities, for example variables or functions, are ex-
tracted from source code. Traceability analysis, on the other hand, is the analysis
of relationships that have been identified during development among all types of
SLOs. Traceability analysis is thus suitable for analyzing relationships among re-
quirements, architectural components, documentation and so on. Requirements
traceability is defined and discussed in Chap. 5. It is evident that traceability
analysis has a broader application within requirements engineering than depend-
ency analysis; it can be used in earlier development phases and can identify more
diverse impact in terms of different SLO types.

It is common to deal with sets of impact in impact analysis. The following sets
have been defined by Arnold and Bohner [3]:

The System Set represents the set of all SLOs in the system – all the other sets
are subsets of this set.
The Starting Impact Set (SIS) represents the set of objects that are initially
thought to be changed. The SIS typically serves as input to impact analysis ap-
proaches that are used for finding the Estimated Impact Set.
The Estimated Impact Set (EIS) always includes the SIS and can therefore be
seen as an expansion of the SIS. The expansion results from the application of
change propagation rules to the internal object model repeatedly until all ob-
jects that may be affected are discovered. Ideally, the SIS and EIS should be the
same, meaning that the impact is restricted to what was initially thought to be
changed.
The Actual Impact Set (AIS), finally, contains those SLOs that have been af-
fected once the change has been implemented. In the best-case scenario, the
AIS and EIS are the same, meaning that the impact estimation was perfect.

In addition to the impact sets, two forms of information are necessary in order to
determine the impact of a change: information about the dependencies between
objects, and knowledge about how changes propagate from object to object via
dependencies and traceability links. Dependencies between objects are often cap-

120 Jönsson and Lindvall

tured in terms of references between them (see Chap. 5). Knowledge about how
change propagates from one object to another is often expressed in terms of rules
or algorithms.

It is common to distinguish between primary and secondary change. Primary
change, also referred to as direct impact, corresponds to the SLOs that are identi-
fied by analyzing how the effects of a proposed change affect the system. This
analysis is typically difficult to automate because it is mainly based on human ex-
pertise. Consequently, little can be found in the literature about how to identify
primary changes. It is more common to find discussions on how primary changes
cause secondary changes, also referred to as indirect impact.

The indirect impact can take two forms: Side effects are unintended behaviors
resulting from the modifications needed to implement the change. Side effects af-
fect both the stability and function of the system and must be avoided. Ripple ef-
fects, on the other hand, are effects on some parts of the system caused by making
changes to other parts. Ripple effects cannot be avoided, since they are the conse-
quence of the system’s structure and implementation. They must, however, be
identified and accounted for when the change is implemented.

We have previously mentioned architectural components as an example of
SLOs. The software architecture of a system is its basic structure, consisting of in-
terconnected components. There are many definitions of software architecture, but
a recent one is “the structure or structures of the system, which comprise software
elements, the externally visible properties of those elements, and the relationships
among them” [2]. Several other definitions exist as well (see [34]), but most echo
the one given here. Software architecture is typically designed early in the project,
hiding low-level design and implementation details, and then iteratively refined as
the knowledge about the system grows [10]. This makes architecture models inter-
esting from a requirements engineering and impact analysis point-of-view, be-
cause they can be used for early, albeit initially coarse, impact analysis of chang-
ing requirements.

6.1.2 Software Change and Impact Analysis

Software change occurs for several reasons, for example, in order to fix faults, to
add new features or to restructure the software to accommodate future changes
[28]. Changing requirements is one of the most significant motivations for soft-
ware change. Requirements change from the point in time when they are elicited
until the system has been rendered obsolete. Changes to requirements reflect how
the system must change in order to stay useful for its users and remain competitive
on the market. At the same time, such changes pose a great risk as they may cause
software deterioration. Thus, changes to requirements must be captured, managed
and controlled carefully to ensure the survival of the system from a technical point
of view. Factors that can inflict changes to requirements during both initial devel-
opment as well as in software evolution are, according to Leffingwell and Widrig
[23]:

6 Impact Analysis 121

The problem that the system is supposed to solve changes, for example for eco-
nomic, political or technological reasons.
The users change their minds about what they want the system to do, as they
understand their needs better. This can happen because the users initially were
uncertain about what they wanted, or because new users enter the picture.
The environment in which the system resides changes. For example, increases
in speed and capacity of computers can affect the expectations of the system.
The new system is developed and released leading users to discover new re-
quirements.

The last factor is both real and common. When the new system is released, users
realize that they want additional features, that they need data presented in other
ways, that there are emerging needs to integrate the system with other systems,
and so on. Thus, new requirements are generated by the use of the system itself.
According to the “laws of software evolution” [24], a system must be continually
adapted, or it will be progressively less satisfactory in its environment.

Problems arise if requirements and changes to requirements are not managed
properly by the development organization [23]. For example, failure to ask the
right questions to the right people at the right time during requirements develop-
ment will most likely lead to a great number of requirements changes during sub-
sequent phases. Furthermore, failure to create a practical change management
process may mean that changes cannot be timely handled, or that changes are im-
plemented without proper control.

Maciaszek points out: “Change is not a kick in the teeth, unmanaged change is”
[27]. In other words, an organization that develops software requires a proper
change management process in order to mitigate the risks of constantly changing
requirements and their impact on the system. Leffingwell and Widrig discuss five
necessary parts of a process for managing change [23]. These parts, depicted in
Fig. 6.2, form a framework for a change management process allowing the project
team to manage changes in a controlled way.

Fig. 6.2 Change management process framework [23]

Plan for change involves recognizing the fact that changes occur, and that they
are a necessary part of the system’s development. This preparation is essential for
changes to be received and handled effectively.

Baseline requirements means to create a snapshot of the current set of require-
ments. The point of this step is to allow subsequent changes in the requirements to
be compared with a stable, known set of requirements.

A single channel is necessary to ensure that no change is implemented in the
system before it has been scrutinized by a person, or several persons, who keep the

122 Jönsson and Lindvall

system, the project and the budget in mind. In larger organizations, the single
channel is often a change control board (CCB).

A change control system allows the CCB (or equivalent) to gather, track and as-
sess the impact of changes. According to Leffingwell and Widrig, a change must
be assessed in terms of impact on cost and functionality, impact on external stake-
holders (for example, customers) and potential to destabilize the system. If the lat-
ter is overlooked, the system (as pointed out earlier) is likely to deteriorate.

To manage hierarchically defeats a perhaps too common line of action: a
change is introduced in the code by an ambitious programmer, who forgets, or
overlooks, the potential effect the change has on test cases, design, architecture,
requirements and so on. Changes should be introduced top-down, starting with the
requirements. If the requirements are decomposed and linked to other SLOs, it is
possible to propagate the change in a controlled way.

This framework for the change process leaves open the determination of an ac-
tual change process. Requirements engineering textbooks propose change man-
agement processes with varying levels of detail and explicitness [27, 32, 35]. The
process proposed by Kotonya and Sommerville is, however, detailed and consists
of the following steps [20]:

1. Problem analysis and change specification
2. Change analysis and costing, which in turn consists of:

1. Check change request validity
2. Find directly affected requirements
3. Find dependent requirements
4. Propose requirements changes
5. Assess costs of change
6. Assess cost acceptability

3. Change implementation

Impact analysis is performed in steps 2b, 2c and 2e, by identifying requirements
and system components affected by the proposed change. The analysis should be
expressed in terms of required effort, time, money and available resources.
Kotonya and Sommerville suggest the use of traceability tables to identify and
manage dependencies among requirements, and between requirements and design
elements. We discuss traceability as a strategy for performing impact analysis in
Sect. 6.2.1.1.

6.1.3 History and Trends

In some sense, impact analysis has been performed for a very long time, albeit not
necessarily using that term and not necessarily resolving the problem of accurately
determining the effect of a proposed change. The need for software practitioners
to determine what to change in order to implement requirement changes has al-
ways been present. Strategies for performing impact analysis were introduced and
discussed early in the literature. For example, Haney’s paper from 1972 on a tech-
nique for module connection analysis is often referred to as the first paper on im-

6 Impact Analysis 123

pact analysis [18]. The technique builds on the idea that every module pair of a
system has a probability that a change in one module in the pair necessitates a
change in the other module. The technique can be used to model change propaga-
tion between any system components including requirements. Program slicing,
which is a technique for focusing on a particular problem by retrieving executable
slices containing only the code that a specific variable depends on, was introduced
already in 1979 by Weiser [39]. Slicing, which is explained in Sect. 6.2.1.2, can be
used to determine dependencies in code and can be used to minimize side effects.
Slicing can also be used to determine dependencies between sections in docu-
ments, including requirements, which is described below. Requirements traceabil-
ity was defined in ANSI/IEEE Standard 830-1984 in 1984 [1]. Traceability de-
scribes how SLOs are related to each other and can be used to determine how
change in one type of artifact causes change in another type of artifact. The notion
of ripple effect was introduced by Yau and Collofello in 1980 [41]. Their models
can be used to determine how change in one area of the source code propagates
and causes change in other areas.

Impact analysis relies on techniques and strategies that date back a long time. It
is however possible to identify a trend in impact analysis research over the years.
Early impact analysis work focused on source code analysis, including program
slicing and ripple effects for code. The maturation of software engineering among
software organizations has led to a need to understand how changes affect other
SLOs than source code.

For example, Turver and Munro [37] point out that source code is not the only
product that has to be changed in order to develop a new release of the software
product. In a document-driven development approach, many documents are also
affected by new and changed requirements. The user manual is an example of a
document that has to be updated when new user functionalities have been pro-
vided. Turver and Munro focus on the problem of ripple effects in documentation
using a thematic slicing technique. They note that this kind of analysis has not
been widely discussed before. The same approach can be applied to the require-
ments document itself in order to determine how a new or changed requirement
impacts the requirements specification.

In 1996, Arnold and Bohner published a collection of research articles called
Software Change Impact Analysis [3]. The purpose of the collection was to pre-
sent the current, somewhat scattered, material that was available on impact analy-
sis at the time. Reading the collection today, nearly ten years later, it becomes ap-
parent that it still is very relevant. Papers published after 1996 seem to work with
the same ideas and techniques. We do not mean to depreciate the work that has
been done, but it indicates that the field is not in a state of flux. Rather, the focus
remains on adapting existing techniques and strategies to new concepts and in new
contexts. Impact analysis on the architectural level is an example of this.

When the year 2000 approached, the Y2K problem made it obvious that exten-
sive impact analysis efforts were needed in order to identify software and parts of
software that had to be changed to survive the century shift. This served as a reve-
lation for many organizations, in which the software process previously had not
included explicit impact analysis [4].

124 Jönsson and Lindvall

Today, software systems are much more complex than they were 25 years ago,
and it has become very difficult to grasp the combined implications of the re-
quirements and their relationships to architecture, design, and source code. Thus, a
need for impact analysis strategies that employ requirements and their relation-
ships to other SLOs has developed. Still, dependency webs for large software sys-
tems can be so complex that it is necessary to visualize them in novel ways.
Bohner and Gracanin present research that combines impact analysis and 3D visu-
alization in order to display dependency information in a richer format than is pos-
sible with 2D visualization [5]. Bohner also stresses the need to extend impact
analysis to middleware, COTS software and web applications. The use of these
types of software is becoming more common, moving the complexity away from
internal data and control dependencies to interoperability dependencies. Current
impact analysis strategies are not very well suited for this type of dependencies
[4].

6.2 Strategies for Impact Analysis

There are various strategies for performing impact analysis, some of which are
more germane to the requirements engineering process than others. Common
strategies are:

Analyzing traceability or dependency information
Utilizing slicing techniques
Consulting design specifications and other documentation
Interviewing knowledgeable developers

We divide these impact analysis strategies into two categories: automatable and
manual. With automatable strategies, we mean those that are in some sense algo-
rithmic in their nature. These have the ability to provide very fine-grained impact
estimation in an automated fashion, but require on the other hand the presence of a
detailed infrastructure and result at times in too many false positives [30]. With
manual strategies, we mean those that are best performed by human beings (as op-
posed to tools). These require less infrastructure, but may be coarser in their im-
pact estimation than the automatable ones. We recognize that the two categories
are not entirely orthogonal, but they do make an important distinction; the manual
strategies are potentially easier to adopt and work with because they require less
structured input and no new forms of SLOs need to be developed.

A previous study indicated that developers’ impact analyses often result in op-
timistic predictions [26], meaning that the predicted set of changes represents the
least possible amount of work. Thus, the work cannot be easier, only more diffi-
cult. The study also identified the need for conservative predictions and establish-
ing a “worst level” prediction. The real amount of work will lie between the opti-
mistic and the conservative level. An improvement goal would be to decrease
variation as the impact analysis process stabilizes and becomes more mature.

6 Impact Analysis 125

The cost associated with producing a conservative prediction depends on its ex-
pected accuracy. Since conservative predictions identify such a large part of the
system, developers often cannot believe they are realistic. The benefit of having a
conservative prediction is the ability to determine a most probable prediction
somewhere between the optimistic and the conservative prediction. An ideal im-
pact analysis approach would always provide an optimistic and a conservative es-
timate. By collecting and analyzing empirical data from the predictions as well as
the actual changes, it can be established where in that span the correct answer lies.

6.2.1 Automatable Strategies

Automatable impact analysis strategies often employ algorithmic methods in order
to identify change propagation and indirect impact. For example, relationship
graphs for requirements and other SLOs can be used with graph algorithms to
identify the impact a proposed change would have on the system. The prerequisite
for automatable strategies is a structured specification of the system. By struc-
tured, we mean that the specification is consistent and complete, and includes
some semantic information (for example, type of relationship). Once in place,
such a specification can be used by tools in order to perform automatic impact
analysis. Requirements dependency webs and object models are examples of
structured specifications.

The strategies presented here, traceability and dependency analysis and slicing,
are typically used to assess the Estimated Impact Set by identifying secondary
changes made necessary because of primary changes to the system. They are not
well suited for identifying direct impact.

6.2.1.1 Traceability/Dependency Analysis
Traceability analysis and dependency analysis both involve examining relation-
ships among entities in the software. They differ in scope and detail level; trace-
ability analysis is the analysis of relationships among all types of SLOs, while de-
pendency analysis is the analysis of low-level dependencies extracted from source
code [3]. Requirements traceability is discussed further in Chap. 5.

By extracting dependencies from source code, it is possible to obtain call
graphs, control structures, data graphs and so on. Since source code is the most
exact representation of the system, any analysis based on it can very precisely pre-
dict the impact of a change. Dependency analysis is also the most mature strategy
for impact analysis available [3]. The drawback of using source code is that it is
not available until late in the project, which makes dependency analysis narrow in
its field of application. When requirements traceability exists down to the source,
it can, however, be very efficient to use source code dependencies in order to de-
termine the impact of requirements changes. A drawback is that very large sys-
tems have massive amounts of source code dependencies, which make the de-
pendency web difficult to both use and to get an overview of [5].

Traceability analysis also requires the presence of relationship links between the
SLOs that are analyzed. Typically, these relationships are captured and specified

126 Jönsson and Lindvall

progressively during development (known as pre-recorded traceability). The suc-
cess of traceability analysis depends heavily on the completeness and consistency
of the identified relationships. However, if traceability information is properly re-
corded from the beginning of development, the analysis can be very powerful.

A common approach for recording traceability links is to use a traceability ma-
trix (see, for example, [20], [23] and [40]). A traceability matrix is a matrix where
each row, and each column, corresponds to one particular SLO, for example a re-
quirement. The relationship between two SLOs is expressed by putting a mark
where the row of the first SLO and the column of the second SLO intersect. It is
also possible to add semantic information to the relationship between SLOs. For
example, the relationship between a requirement and an architectural component
can be expanded to include information about whether the component implements
the requirement entirely, or only partially.

Fig. 6.3 Three views of the relationships among SLOs

Ramesh and Jarke report that current requirement practices do not fully embrace
the use of semantic information to increase the usefulness of relationships between
SLOs [31]. A relationship stating that two SLOs affect each other but not how,
will be open to interpretation by all stakeholders. According to Ramesh and Jarke,
different stakeholders interpret relationships without semantic information in dif-
ferent ways. For example, a user may read a relationship as “implemented-by,”
while a developer may read the same relationship as “puts-constraints-on.”

To further illustrate the need for semantics in traceability links, we have created
an example with six interconnected SLOs. Figure 6.3 shows the SLOs in a con-
nectivity graph (left), where an arrow means that the source SLO affects the desti-
nation SLO. For example, SLO 2 affects, or has an impact on, SLO 1 and SLO 4.

The connectivity graph corresponds exactly to a traceability matrix, shown next
in the figure. An arrow in the traceability matrix indicates that the row SLO af-
fects the column SLO. Both the connectivity graph and the traceability matrix
show direct impact, or primary change needed, whereas indirect impact, or secon-
dary change needed, can only be deduced by traversing the traceability links. For
systems with many SLOs, the amount of indirect impact quickly becomes im-
mense and hard to deduce from a connectivity graph or a traceability matrix. In
order to better visualize indirect impact, the traceability matrix can be converted

6 Impact Analysis 127

into a reachability matrix, using a transitive closure algorithm1. The reachability
matrix for our example is also in Fig. 6.3, showing that all SLOs eventually have
impact on every other SLO. Consequently, the reachability matrix for this exam-
ple is of limited use for assessing indirect impact. Bohner points out that this prob-
lem is common in software contexts, unless some action is taken to limit the range
of indirect impact [4].

One way of limiting the range of indirect impact is to add distances to the reach-
ability matrix. By doing so, it becomes possible to disregard indirect impacts with
distances above a predefined threshold. This is a simple addition to the normal
creation of reachability matrices, but it fails to address the fact that different types
of traceability relationships may affect the range of indirect impact differently.
Another solution is to equip the traceability matrix with traceability semantics and
adjust the transitive closure algorithm to take such information into account. The
algorithm should consider two SLOs reachable from each other only if the trace-
ability relationships that form the path between them are of such types that are ex-
pected to propagate change.

Traceability analysis is useful in requirements engineering, which we view as an
activity performed throughout the entire software lifecycle. Initially, traceability
links can only be formed between requirements, but as design and implementation
grow, links can be created from requirements to other SLOs as well.

6.2.1.2 Slicing Techniques
Slicing attempts to understand dependencies using independent slices of the pro-
gram [16]. The program is sliced into a decomposition slice, which contains the
place of the change, and the rest of the program, a complement slice. Slicing is
based on data and control dependencies in the program. Changes made to the de-
composition slice around the variable that the slice is based on are guaranteed not
to affect the complement slice. Slicing limits the scope for propagation of change
and makes that scope explicit. The technique is, for example, used by Turver and
Munro [37] for slicing of documents in order to account for ripple effects as a part
of impact analysis. Shahmehri et al. [33] apply the technique to debugging and
testing. Pointer-based languages like C++ are supported through the work of Tip
et al. and their slicing techniques for C++ [36]. Slicing tools are often based on
character-based presentation techniques, which can make it more difficult to ana-
lyze dependencies, but visual presentation of slices can be applied to impact
analysis as shown by Gallagher [15].

Architectural slicing was introduced by Zhao [42], and is similar to program
slicing in that it identifies one slice of the architecture that is subject to the pro-
posed change, and one that is not. As opposed to conventional program slicing, ar-
chitectural slicing operates on the software architecture of a system. As such, it
can be employed in early development, before the code has been written. The
technique uses a graph of information flows in order to trace those components
that may be affected by the component being changed. In addition, those compo-

1 The transitive closure of a graph is a graph where an edge is added between nodes A and

B if it is possible to reach B from A in the original graph.

128 Jönsson and Lindvall

nents that may affect the component being changed are also identified. This means
that there must be a specification of the architecture that exposes all the informa-
tion flows that it contains.

Slicing techniques can be useful in requirements engineering to isolate the im-
pact of a requirements change to a specific part of the system. In order to provide
a starting point for the slicing technique, the direct impact of the change must first
be assessed.

6.2.2 Manual Strategies

Manual impact analysis strategies do not depend as heavily on structured specifi-
cations as their automatable counterparts do. Consequently, there is a risk that they
are less precise in their predictions of impact. On the other hand, they may be eas-
ier to introduce in a change management process and are, in our experience, com-
monly employed in industry without regard to their precision.

The strategies presented here, using design documentation and interviewing, are
primarily used for assessing the Starting Impact Set by identifying direct impact.
The identification of secondary impact is possible, but is better handled by auto-
matable strategies. Note that manual strategies, like the ones described here, can
be used to capture traceability links between SLOs to be used in traceability
analysis.

6.2.2.1 Design Documentation
Design documentation comes in many different forms, for example as architecture
sketches, view-based architecture models, object-oriented UML diagrams, textual
descriptions of software components and so on. The quality of design documenta-
tion depends on the purpose for which it was written, the frequency with which it
is updated, and the information it contains. It is far too common in industry that
design documentation is written early in a project only to become shelfware, or
that the documentation is written after the project, just for the sake of writing it.
To perform impact analysis and determine how a new or changed requirement af-
fect the system based on design documentation requires the documentation to be
up-to-date and consistent with any implementation made so far. In addition, a pre-
requisite for using design documentation to assess direct impact is the possibility
of relating requirements to design SLOs found in the documentation. The success
and precision of this activity depends on a number of factors:

The knowledge and skills of the persons performing the analysis. Persons with
little insight into the system will most likely have problems pinpointing the im-
pact of changed requirements in the system.
The availability of the documentation. Documentation that is “hidden” in per-
sonal computers or stored in anonymous binders may be overlooked in the
analysis.
The amount of information conveyed in the documentation. Simple design
sketches are common, but fail to express the semantics in connections between

6 Impact Analysis 129

classes or architectural components. Ill-chosen naming schemes or inconsistent
notation makes the analysis task arduous.
Clear and consistent documentation. Ambiguous documentation is open for in-
terpretation, meaning, for example, that the impact of a proposed change is
coupled with great uncertainty, simply because another interpretation would
have yielded different impact.

If the factors above have been taken into account, impact analysis of a require-
ments change can be performed by identifying the design SLOs that implement or
in any other way depend on the requirements affected by the change. Additional
measures that can be taken in order to alleviate the impact analysis effort are:

Keep a design rationale. A design rationale is documentation describing why
decisions are made the way they are. Bratthall et al. performed an experiment
on the effect of a design rationale when performing impact analysis [7]. The re-
sults from the experiment suggest that a design rationale in some cases can
shorten the time required for impact analysis, and increase the quality of the
analysis.
Estimate impact of requirements as soon as the requirements are developed.
The estimated impact is necessarily coarse to begin with, but can be improved
incrementally as knowledge about the system increases.

Of course, structured design documentation can also be used with traceability
analysis (see Sect. 6.2.1.1) to identify indirect impact. For example, Briand et al.
propose a method for performing impact analysis in UML models, where they use
a transitive closure algorithm to find indirect impacts in the models [8]. They do
point out, however, the essential criterion that the UML models are updated as the
system undergoes changes.

6.2.2.2 Interviews
Interviewing knowledgeable developers is probably the most common way to ac-
quire information about likely effects of new or changed requirements according
to a study on impact analysis [25]. The study found that developers perceive it as
highly cost-effective to ask a knowledgeable person instead of searching in docu-
ments or other forms of information sources. Extensive communication between
developers was also mentioned by developers as a success factor for software de-
velopment projects. Analysis of source code was the second most common way of
acquiring information about the likely impact of new or changed requirements.
While all developers said they interviewed other developers and consulted source
code, about half of the developers answered that they also consulted information,
such as use-case models and object models, stored in the CASE tool in use. When
asked why information in object models was not used more extensively, the de-
velopers answered that the information in object models was not detailed enough
for impact analysis. In addition, they did not believe that the information in the
models was up-to-date. “Source code, on the other hand, is always up-to-date.”
Among some developers, especially newcomers, the attitude towards using object
models as the basis for determining change as an effect of new or changed re-

130 Jönsson and Lindvall

quirements was less than positive. Object models (and the particular CASE tool
that was used) were, however, mentioned as a good tool for documenting impact
analysis and for answering questions about the relation between requirements and
design objects using the support for traceability links.

6.3 Non-Functional Requirements

Requirements are often divided into functional and non-functional requirements.
Non-functional requirements, or quality requirements, are those requirements
“which are not specifically concerned with the functionality of the system” [20].
Non-functional requirements are often harder to deal with than functional ones,
because their impact is generally not localized to one part of the system, but cuts
across the whole system.

A non-functional requirement that, for example, relates to and calls for high se-
curity, often requires fundamental support in the software architecture, as it may
constrain data access, file management, database views, available functionality
and so on. Changes to functional requirements may also affect non-functional re-
quirements. For example, if a change involves replacing a data transfer protocol to
one that is more data intensive, overall system performance may be degraded. One
approach for dealing with non-functional requirements is to convert them into one
or more functional requirements [6]. For example, a requirement stating that “no
unauthorized person should be allowed access to the data” may be broken down
into the more tangible requirements “a user must log into the system using a pass-
word” and “the user’s identity must be verified against the login subsystem upon
data access.” Not all non-functional requirements can be converted in this way,
however, which means that changes to them still have system-wide impact. Unfor-
tunately, most impact analysis techniques deal exclusively with changes that can
be initially pinpointed to a specific component, class or the like.

Lam and Shankararaman stress the distinction between functional impact analy-
sis and quality impact analysis, i.e. impact analysis for functional and quality re-
quirements, respectively [21]. They suggest the use of Quality Function Deploy-
ment (QFD) for dealing with changes to both functional and non-functional
requirements. In QFD, a matrix connecting customer requirements with design
features is constructed. A change to a requirement can be mapped to design fea-
tures through the QFD matrix.

Cleland-Huang et al. accomplish performance-related impact analysis through
event-based traceability [9]. In their approach, requirements are interconnected as
event publishers to subscribing performance models. Whenever a change to a re-
quirement is proposed, the relevant performance models are re-calculated. The re-
sulting impact analysis is subsequently compared to constraints in the require-
ments specification. If several requirements are linked to the same performance
model, they will all be verified against the impact analysis.

6 Impact Analysis 131

Fig. 6.4 Measuring impact using metrics

The impact of non-functional requirements is commonly dealt with in software
architecture evaluation. Bosch has created a software architecture design method
with a strong focus on non-functional requirements [6]. In the method, an initially
functional architecture is progressively transformed until it is capable of meeting
all non-functional requirements posed on the system. Parts of the method lend
themselves well to impact analysis, since they deal with the challenge of assessing
the often system-wide impact that non-functional requirements have. For most op-
erational non-functional attributes (for example performance and reliability), a
profile consisting of usage scenarios, describing typical uses of the system-to-be is
created. The scenarios within the profile are assigned relative weights, in accor-
dance with their frequency or probable occurrence. In scenario-based assessment,
an impact analysis is performed by assessing the architectural impact of each sce-
nario in the profile. For performance, the impact may be expressed as execution
time, for example. Based on the impact and the relative weights of the scenarios, it
is possible to calculate overall values (for example, throughput and execution
time) for the quality attribute being evaluated. These values can be compared to
the non-functional requirements corresponding to the quality attribute, in order to
see whether they are met or not. Furthermore, they serve as constraints on the ex-
tent to which non-functional requirements can change before an architectural reor-
ganization is necessary. Also, should a functional requirement change, it is possi-
ble to incorporate the change in a speculative architecture, re-calculate the impact
of the scenarios in the scenario profile, and see whether the non-functional re-
quirements are still met or not.

6.4 Impact Analysis Metrics

Metrics are useful in impact analysis for various reasons. They can, for example,
be used to measure and quantify change caused by a new or changed requirement
at the point of the impact analysis activity. Metrics can also be used to evaluate the
impact analysis process itself once the changes have been implemented. This is il-
lustrated in Fig. 6.4, in which two measure points are depicted; one after the re-
quirements phase has ended and design is about to start, and one when testing has
been completed. Using these measure points, one can capture the predicted impact

132 Jönsson and Lindvall

(the first point) and compare it to the actual impact (the second point). This kind
of measurement is crucial for being able to do an analysis and learn from experi-
ences in order to continuously improve the impact analysis capability. The figure
is simplified and illustrates a learning cycle based on a waterfall-like model. As
discussed earlier, impact analysis can be used throughout the life cycle in order to
analyze new requirements and the measure points can be applied accordingly:
whenever a prediction has been conducted and whenever an implementation has
been completed.

6.4.1 Metrics for Quantifying Change Impact

Metrics for quantifying change impact are based on the SLOs that are predicted to
be changed as an effect of new or changed requirements. In addition, indicators of
how severe the change is can be used. Such measures of the predicted impact can
be used to estimate the cost of a proposed change or a new requirement. The more
requirements and other SLOs that are affected, the more widespread they are and
the more complex the proposed change is, the more expensive the new or changed
requirement will be. Requirements that are costly in this sense but provide little
value can, for example, be filtered out for the benefit of requirements that provide
more value but to a smaller cost.

Change impact can be measured based on the set of requirements that is affected
by the change. For example, the number of requirements affected by a change can
be counted based on this set. The affected requirements’ complexity often deter-
mines how severe the change is and can be measured in various ways. Examples
are the size of each requirement in terms of function points and the dependencies
of each requirement on other requirements. For other SLOs, the metrics are simi-
lar. For architecture and design, measures of impact include the number of af-
fected components, the number of affected classes or modules, and number of af-
fected methods or functions. For source code, low-level items such as affected
lines of code can be measured and the level of complexity for components,
classes, and methods can be measured using standard metrics such as cyclomatic
complexity and regular object-oriented metrics.

In determining how severe or costly a change is, it is useful to define the impact
factor. Lindvall defined the impact factors in Table 6.1 to measure the impact of a
suggested change [25]. The impact factor is based on empirical findings in which
it was determined that changes to different types of SLOs can be used as an indi-
cator of the extent of the change. The higher the impact factor, the more severe the
change. For example, changes that do not affect any other type of SLO but the de-
sign object model are relatively limited in scope. Changes that affect the use-case
model are instead likely to require changes that are related to the fundamentals of
the system and are therefore larger in scope. In addition, changes to the use-case
model most likely also involve changes of all other SLOs making this kind of
changes even more severe.

6 Impact Analysis 133

Table 6.1 Impact factors

Impact Factor Impact Description
M1 Change of the

design object
model.

These changes regard the real or physical descrip-
tion of the system and may generate change in the
software architecture about the size of the change in
the model.

M2 Change of the
analysis ob-
ject model.

These changes regard the ideal or logical descrip-
tion of the system. A small change here may gener-
ate change in the software architecture larger than
the change in this model.

M3 Change the
domain object
model.

These changes regard the vocabulary needed in the
system. A small change here may generate large
change in the software architecture.

M4 Change the
use-case
model.

These changes require additions and deletions to
the use-case model. Small changes here may re-
quire large change in the software architecture

Fig. 6.5 Tree of impact analysis metrics

6.4.2 Metrics for Evaluation of Impact Analysis

Bohner and Arnold proposed a number of metrics with their introduction of im-
pact sets [3]. These metrics are relations between the cardinalities of the impact
sets, and can be seen as indicators of the effectiveness of the impact analysis ap-
proach employed (# denotes the cardinality of the set):

1. #SIS / #EIS, i.e. the number of SLOs initially thought to be affected over the
number of SLOs estimated to be affected (primary change and secondary
change). A ratio close to 1 is desired, as it indicates that the impact is restricted
to the SLOs in SIS. A ratio much less than 1 indicates that many SLOs are tar-
geted for indirect impact, which means that it will be time-consuming to check
them.

2. #EIS / #System, i.e. the number of SLOs estimated to be affected over the
number of SLOs in the system. The desired ratio is much less than 1, as it indi-

134 Jönsson and Lindvall

cates that the changes are restricted to a small part of the system. A ratio close
to 1 would indicate either a faulty impact analysis approach or a system with
extreme ripple effects.

3. #EIS / #AIS, i.e. the number of SLOs estimated to be affected over the number
of SLOs actually affected. The desired ratio is 1, as it indicates that the impact
was perfectly estimated. In reality, it is likely that the ratio is smaller than 1, in-
dicating that the approach failed to estimate all impacts. Two special cases are
if AIS and EIS only partly overlap or do not overlap at all, which also would
indicate a failure of the impact analysis approach.

Fasolino and Visaggio also define metrics based on the cardinalities of the im-
pact sets [14]. They tie the metrics to properties and characteristics of the impact
analysis approach, as per the tree in Fig. 6.5.

Adequacy is the ability of the impact analysis approach to estimate the impact
set. It is measured by means of the binary metric Inclusiveness, which is strictly
defined to 1 if all SLOs in AIS also are in EIS and 0 otherwise. Effectiveness is the
ability of the approach to provide beneficial results. It is refined into Ripple-
sensitivity (the ability to identify ripple effects), Sharpness (the ability not to over-
estimate the impact) and Adherence (the ability to estimate the correct impact).

Ripple-sensitivity is measured by Amplification, which is defined as
(#EIS - #SIS) / #SIS, i.e. the ratio between the number of indirectly impacted
SLOs and the number of directly impacted SLOs. This ratio should preferably not
be much larger than 1, which would indicate much more indirect impact than di-
rect impact. Sharpness is measured by ChangeRate, which is defined as
#EIS / #System. This is the same metric as the second of Arnold and Bohner’s
metrics presented previously. Adherence is measured by S-Ratio, which is defined
as #AIS / #EIS. S-Ratio is the converse of the third of Arnold and Bohner’s met-
rics presented previously.

Lam and Shankararaman propose metrics that are not related to the impact sets.
These metrics are more loosely defined and lack consequently recommended val-
ues [21]:

Quality deviation, i.e. the difference in some quality attribute (for example, per-
formance) before and after the changes have been implemented, or between ac-
tual and simulated values. A larger than expected difference could indicate that
the impact analysis approach failed to identify all impact.
Defect count, i.e. the number of defects that arise after the changes have been
implemented. A large number of defects could indicate that some impact was
overlooked by the impact analysis approach.
Dependency count, i.e. the number of requirements that depend on a particular
requirement. Requirements with high dependency count should be carefully ex-
amined when being subjected to change.

Lindvall [25] defined and used metrics in a study at the Swedish telecom com-
pany Ericsson AB in order to answer a number of questions related to the result
(prediction) of impact analysis as conducted in a commercial software project and
performed by the project developers as part of the regular project work. The study

6 Impact Analysis 135

was based on impact analysis conducted in the requirements phase, as Fig. 6.4 in-
dicates, and the term requirements-driven impact analysis was coined to capture
this fact. The results from the impact analysis was used by the Ericsson project to
estimate implementation cost and to select requirements for implementation based
on the estimated cost versus perceived benefit. The study first looked at the col-
lected set of requirements’ predicted and actual impact by answering the following
questions: “How good was the prediction of the change caused by new and
changed requirements in terms of predicting the number of C++ classes to be
changed?” and “How good was this prediction in terms of predicting which classes
to be changed?” The last question was broken down into the two sub questions:
“Were changed classes predicted?” and “Were the predicted classes changed?”

There were a total of 136 C++ classes in the software system. 30 of these were
predicted to be changed. The analysis of the source code edits showed that 94
classes were actually changed. Thus, only 31.0% (30 / 94) of the number of
changed classes were predicted to be changed.

In order to analyze the data further, the classes were divided into the two groups
Predictive group and Actual group. In addition, each group was divided into two
subgroups: Unchanged and Changed. The 136 classes were distributed among
these four groups as shown in Table 6.2.

Table 6.2 Predicted vs. actual changes

Predictive Group
Unchanged Changed

Unchanged A: 42
(30.9%)

B:0
(0.0%

A+B: 42
(30.9%)Actual

Group Changed C; 64
(47.1%)

D: 30
(22.1%)

C+D: 94
(69.1%)

 A+C: 106
(77.9%)

B+D: 30
(22.1%)

N: 136
(100.0%)

Cell A represents the 42 classes that were not predicted to change and that also
remained unchanged. The prediction was correct as these classes were predicted to
remain unchanged, which also turned out to be true. The prediction was implicit as
these classes were indirectly identified they resulted as a side effect as comple-
ment of predicting changed classes.

Cell B represents the zero classes that were predicted to change, but actually
remained unchanged. A large number here would indicate a large deviation from
the prediction.

Cell C represents the 64 classes that were not predicted to change, but turned out
to be changed after all. As with cell B, a large number in this cell indicates a large
deviation from the prediction.

Cell D, finally, represents the 30 classes that were predicted to be changed and
were, in fact, changed. This is a correct prediction. A large number in this cell in-
dicates a good prediction.

There are several ways to analyze the goodness of the prediction. One way is to
calculate the percentage of correct predictions, which was (42 + 30) / 136 =

136 Jönsson and Lindvall

52.9%. Thus, the prediction was correct in about half of the cases. Another way is
to use Cohen’s Kappa value, which measures the agreement between two groups
ranging from -1.0 to 1.0. The -1.0 figure means total discompliance between the
two groups, 1.0 means total compliance and 0.0 means that the result is no better
than pure chance [11]. The kappa value in this case is 0.22, which indicates a fair
prediction. We refer to [26] for full details on the Kappa calculations for the ex-
ample. A third way to evaluate the prediction is to compare the number of classes
predicted to be changed with the number of classes actually changed. The number
of classes predicted to be changed in this case turned out to be largely underpre-
dicted by a factor of 3. Thus, only about one third of the set of changed classes
was identified. It is, however, worth noticing that all of the classes that were pre-
dicted to be changed were in fact changed.

The study then analyzed the predicted and actual impact of each requirement by
answering similar questions for each requirement. The requirements and the
classes that were affected by these requirements were organized in the following
manner: For each requirement, the set of classes predicted to be changed, the set
of changed classes and the intersection of the two sets, i.e. classes that were both
predicted and changed. In addition, the sets of classes that were predicted but not
changed and the set of classes that were changed but not predicted were identified.

The analysis showed that in almost all cases, there was an underprediction in
terms of number of classes. In summary, the analysis showed that the number of
changed classes divided by the number of predicted classes ranged from 1.0 to 7.0.
Thus, up to 7 times more classes than predicted were actually changed.

Estimating cost in requirements selection is often based on the prediction like it
was in the Ericsson case, which means that requirements predicted to cause
change in only a few entities are regarded as less expensive, while requirements
predicted to cause change in many entities are regarded as more expensive. This
makes the rank-order of requirements selection equal to a requirements list sorted
by the number of items predicted. By comparing the relative order based on the
number of predicted classes with the relative order based on the number of actu-
ally changed classes, it was possible to judge the goodness of the prediction from
yet another point of view. In summary, the analysis on the requirements level
showed that a majority of the requirements were underpredicted. It was also clear
that it is relatively common that some classes predicted for one requirement are
not changed because of this particular requirement, but because of some other re-
quirement. This is probably because the developers were not required to imple-
ment the changed requirements exactly as was specified in the implementation
proposal resulting from the impact analysis. The analysis of the order of require-
ments based on number of predicted classes showed that the order was not kept
entirely intact; some requirements that were predicted to be small proved to have a
large change impact, and vice versa.

In order to try to understand the requirements-driven impact analysis process
and how to improve it, an analysis of the various characteristics of changed and
unchanged classes was undertaken. One such characteristic was size, and the ques-
tions were: “Were large classes changed?”, “Were large classes predicted?” and
“Were large classes predicted compared to changed classes?”

6 Impact Analysis 137

The analysis indicated that large classes were changed, while small classes re-
mained unchanged. The analysis also indicated that large classes were predicted to
change, which leads to the conclusion that class size may be one of the ingredients
used by developers, maybe unconsciously, when searching for candidates for a
new or changed requirement.

6.5 Tool Support

The complexity of the change management process makes it necessary to use
some sort of tool support [27, 35]. A change management tool can be used to
manage requirements and other SLOs, manage change requests, link change re-
quests to requirements and other SLOs, and monitor the impact analysis progress.
A simple database or spreadsheet tool may be used as basic change management
support, but still requires a considerable amount of manual work, which eventu-
ally may lead to inconsistencies in the change management data. If the tool sup-
port is not an integral part of the change management process, there is always a
risk that it will not be used properly. A change management system that is not
used to its full extent cannot provide proper support to the process.

A problem with many change management tools is that they are restricted to
working with change and impact analysis on the requirements level. Ideally, a
change management tool would support impact analysis on requirements, design,
source code, test cases and so on. However, that would require the integration of
requirement management tools, design tools and development environments into
one tool or tool set. In a requirements catalog for requirements management tools,
Hoffmann et al. list both traceability and tool integration as high-priority re-
quirements, and analysis functions as a mid-priority requirement, confirming the
importance of these features [19].

In a survey of the features of 29 requirements management tools supporting
traceability, we could only find nine tools for which it was explicitly stated on
their web sites that they supported traceability between requirements and other
SLOs, such as design elements, test cases and code. Depending on the verbosity
and quality of the available information, this may not be an exact figure. However,
it indicates that in many cases it is necessary to use several different tools to man-
age traceability and perform impact analysis, which can be problematic depending
on the degree of integration between the tools.

There are tools that extract dependency information from existing system repre-
sentations, for example source code and object models, but the task of such tools
is nonetheless difficult and often requires manual work [12]. Higher-level repre-
sentations may be too coarse, and source code may have hidden dependencies, for
instance due to late binding. Egyed, for example, proposes an approach for ex-
tracting dependencies primarily for source code [12]. Input to the approach is a set
of test scenarios and some hypothesized traces that link SLOs to scenarios. The
approach then calculates the footprints of the scenarios, i.e. the source code lines
they cover, and based on footprints and hypothesized traces generates the remain-

138 Jönsson and Lindvall

ing traces. The approach can also be used when no source code exists, for example
by simulating the system or hypothesizing around the footprints of the scenarios.

Tools that deal with source code are mostly used in software maintenance con-
texts, and are obviously of limited use within the development project. Natt och
Dag et al. have studied automatic similarity analysis as a means to find duplicate
requirements in market-driven development [29]. In addition to the original field
of application, they suggest that their technique can be used to identify depend-
ency relationships between requirements, for example that two requirements have
an “or” relation, or that several requirements deal with similar functionality. How
to deal with natural language requirements is further explored in Chap. 10. Tools
that aid in performing impact analysis can be synonymous with the underlying
methods. Methods that rely on traceability analysis are well suited for inclusion in
tools that try to predict indirect impact. For example, Fasolino and Visaggio pre-
sent ANALYST, a tool that assesses impact in dependency-based models [14].
Lee et al. present another tool, ChAT, which calculates ripple effects caused by a
change to the system [22]. Many such tools are commonly proof-of-concept tools,
constructed to show or support a particular algorithm or methodology. What is
lacking is the integration into mainstream change management tools.

6.6 Future of Impact Analysis

Most strategies for impact analysis work under the assumption that changes only
affect functionality. It is thus more difficult to assess the impact of changes to
non-functional requirements, or changes where non-functional requirements are
indirectly affected. Some work on this topic exists (see [9] and [21]), but a
stronger focus on impact analysis for non-functional requirements is needed.

As we have pointed out, impact analysis is mostly referred to in software main-
tenance contexts. We have argued that impact analysis is an essential activity also
in requirements engineering contexts, and that standard impact analysis strategies
apply in most cases (for example, traceability approaches are commonly exercised
for requirements). There is still, however, a need for more research focusing on
the requirements engineering aspects of impact analysis, for example, how to re-
late requirements to other SLOs and how to perform change propagation in this
context. Most automatable strategies for impact analysis assume complete models
and full traceability information. Since it is common in industry to encounter
models that are not updated and traceability information that is only partial, there
is a need for more robust impact analysis strategies that can work with partial in-
formation. Egyed has proposed one such approach [12]. Existing tools for impact
analysis are often proof-of-concept tools, or work only with limited impact analy-
sis problems, such as the extraction of dependencies from system representations.
Some mainstream requirements management tools incorporate impact analysis of
not only requirements, but also design, code and test, but far from all these things.
Full-scale impact analysis must be an integral part of requirement management
tools in order for change to be dealt with properly. Impact analysis needs to be

6 Impact Analysis 139

adapted to the types of systems that become increasingly common today, such as
web applications and COTS software. Web applications, for example, often con-
sist of standalone components that connect to a central repository, such as a data-
base. Thus, there are few control dependencies between components, and instead
rich webs of data dependencies towards and within the central repository. The fact
that such repositories can be shared among several distinct systems introduces in-
teroperability dependencies that impact analysis strategies especially tailored for
these technologies must address in order to be effective.

6.7 Summary

Impact analysis is an important part of requirements engineering since changes to
software often are initiated by changes to the requirements. As the development
process becomes less and less waterfall-like and more of new and changed re-
quirements can be expected throughout the development process, impact analysis
becomes an integral part of every phase in software development. In some sense,
impact analysis has been performed for a very long time, albeit not necessarily us-
ing that term and not necessarily fully resolving the problem of accurately deter-
mining the effect of a proposed change. The need for software practitioners to de-
termine what to change in order to implement requirement changes has always
been present. Classical methods and strategies to conduct impact analysis are de-
pendency analysis, traceability analysis and slicing. Early impact analysis work
focused on applying such methods and strategies onto source code in order to
conduct program slicing and determine ripple effects for code changes. The matu-
ration of software engineering among software organizations has, however, led to
a need to understand how change requests affect other SLOs than source code, in-
cluding requirements, and the same methods and strategies have been applied.
Typical methods and strategies of today are based on analyzing traceability or de-
pendency information, utilizing slicing techniques, consulting design specifica-
tions and other documentation, and interviewing knowledgeable developers. Inter-
viewing knowledgeable developers is probably the most common way to acquire
information about likely effects of new or changed requirements. Metrics are use-
ful and important in impact analysis for various reasons. Metrics can, for example,
be used to measure and quantify change caused by a new or changed requirement
at the point of the impact analysis activity. Metrics can also be used to evaluate the
impact analysis process itself once the changes have been implemented. In deter-
mining how severe or costly a change is, it is useful to determine the impact factor
as it indicates the likely extent of a change to a certain type of SLO. To summa-
rize: Impact analysis is a crucial activity supporting requirements engineering. The
results from impact analysis feed into many activities including estimation of re-
quirements’ cost and prioritizing of requirements. These activities feed directly
into project planning, making impact analysis a central activity in a successful
project.

140 Jönsson and Lindvall

Acknowledgements

We would like to thank Jen Dix for proof reading, and the anonymous reviewers
for helping to improve the chapter.

References

1. ANSI/IEEE Std 830-1984 (1984) IEEE guide to software requirements specifications,
Institute of the Electrical and Electronics Engineers

2. Bass L, Clements P, Kazman R (2003) Software architecture in practice, Addison
Wesley

3. Bohner SA, Arnold RS (1996) Software change impact analysis, IEEE Computer Society
Press

4. Bohner SA (2002) Extending software change impact analysis into COTS components.
In: Proceedings of the 27th Annual NASA Goddard Software Engineering Workshop,
December 4 6, Greenbelt, USA, pp.175 182

5. Bohner SA, Gracanin D (2003) Software impact analysis in a virtual environment. In:
Proceedings of the 28th Annual NASA Goddard Software Engineering Workshop, De-
cember 2 4, Greenbelt, USA, pp.143 151

6. Bosch J (2000) Design & use of software architectures - Adopting and evolving a prod-
uct-line approach. Pearson Education, UK

7. Bratthall L, Johansson E, Regnell B (2000) Is a design rationale vital when predicting
change impact? - A controlled experiment on software architecture evolution. In: Pro-
ceedings of the 2nd International Conference on Product Focused Software Process Im-
provement, June 20-22, Oulo, Finland, pp.126 139

8. Briand LC, Labiche Y, O’Sullivan L (2003) Impact analysis and change management of
UML models. In: Proceedings of the International Conference on Software Mainte-
nance, September 22 26, Amsterdam, Netherlands, pp 256 265

9. Cleland-Huang J, Chang CK, Wise JC (2003) Automating performance-related impact
analysis through event based traceability. Requirements Engineering 8(3):171 182

10. Clements P, Bachmann F, Bass L, Garlan D, Ivers J, Little R, Nord R, Stafford J (2003)
Documenting software architectures: Views and beyond. Addison Wesley, UK

11. Cohen J (1960) A coefficient of agreement for nominal scales, educational and psycho-
logical measurement 20(1):37 46

12. Egyed A (2003) A scenario-driven approach to trace dependency analysis. IEEE Trans-
actions on Software Engineering 29(2):116 132

13. Eick SG, Graves L, Karr AF, Marron JS (2001) Does code decay? Assessing the evi-
dence from change management data. IEEE Transactions on Software Engineering
27(1):1 12

14. Fasolino AR, Visaggio G (1999) Improving software comprehension through an auto-
mated dependency tracer. In: Proceedings of the 7th International Workshop on Pro-
gram Comprehension, May 5 7, Pittsburgh, USA, pp 58 65

15. Gallagher KB (1996) Visual impact analysis. In: Proceedings of the International Con-
ference on Software Maintenance, November 4 8, Monterey, USA, pp 52 58

16. Gallagher KB, Lyle JR (1991) Using program slicing in software maintenance. IEEE
Transactions on Software Engineering 17(8):751 761

6 Impact Analysis 141

17. Godfrey LW, Lee EHS (2000) Secrets from the monster - Extracting Mozilla's software
architecture. In: Proceedings of the 2nd International Symposium on Constructing
Software Engineering Tools, Limerick, Ireland, pp 15 23

18. Haney FM (1972) Module connection analysis - A tool for scheduling software debug-
ging activities. In Proceedings of AFIPS Joint Computer Conference, pp 173 179

19. Hoffmann M, Kühn N, Bittner M (2004) Requirements for requirements management
tools. In: Proceedings of the 12th IEEE International Requirements Engineering Con-
ference, September 6 10, Kyoto, Japan, pp 301 308

20. Kotonya G, Sommerville I (1998) Requirements engineering - Processes and tech-
niques. Wiley and Sons, UK

21. Lam W, Shankararaman V (1999) Requirements change: A dissection of management
issues. In: Proceedings of the 25th EuroMicro Conference, September 8 10, Milan, It-
aly, Vol. 2, pp.244 251

22. Lee M, Offutt JA, Alexander RT (2000) Algorithmic analysis of the impacts of changes
to object-oriented software. In: Proceedings of the 34th International Conference on
Technology of Object-Oriented Languages and Systems, July 30 Aug 4, Santa Bar-
bara, USA, pp 61 70

23. Leffingwell D, Widrig D (1999) Managing software requirements - A unified approach.
Addison Wesley

24. Lehman MM, Ramil JF, Wernick PD, Perry DE, Turski WM (1997) Metrics and laws
of software evolution - The nineties view. In: Proceedings of the 4th International
Software Metrics Symposium, November 5-7, Albuquerque, USA, pp 20 32

25. Lindvall M (1997) An empirical study of requirements-driven impact analysis in object-
oriented systems evolution. Ph.D. thesis no. 480, Linköping Studies in Science and
Technology, Sweden

26. Lindvall M, Sandahl K (1998) How well do experienced software developers predict
software change?, Journal of Systems and Software 43(1):19 27

27. Maciaszek L (2001) Requirements analysis and system design - Developing informa-
tion systems with UML, Addison Wesley

28. Mockus A, Votta LG (2000) Identifying reasons for software changes using historic da-
tabases. In: Proceedings of the International Conference on Software Maintenance, Oc-
tober 11-14, San Jose, USA, pp 120 130

29. Natt och Dag J, Regnell B, Carlshamre P, Andersson M, Karlsson J (2002) A feasibility
study of automated support for similarity analysis of natural language requirements in
market-driven development. Requirements Engineering 7:20 33

30. O’Neal JS, Carver DL (2001) Analyzing the impact of changing requirements. In: Pro-
ceedings of the International Conference on Software Maintenance, November 6-10,
Florence, Italy, pp.190 195

31. Ramesh B, Jarke M (2001) Towards reference models for requirements traceability.
IEEE Transactions on Software Engineering 27(1): 58 93

32. Robertson S, Robertson J (1999) Mastering the requirements process. Addison Wesley,
UK

33. Shahmehri N, Kamkar M, Fritzson P (1990) Semi-automatic bug localization in soft-
ware maintenance. In: Proceedings of the Conference on Software Maintenance, No-
vember 26-29, San Diego, USA, pp 30 36

34. Software Engineering Institute (2004): How do you define software architecture?,
http://www.sei.cmu.edu/architecture/definitions.html, Accessed November 19, 2004.

142 Jönsson and Lindvall

35. Sommerville I, Sawyer P (1997) Requirements engineering - A good practice guide.
John Wiley and Sons, London

36. Tip F, Jong DC, Field J, Ramlingam G (1996) Slicing class hierarchies in C++. In: Pro-
ceedings of Object-Oriented Programming, Systems, Languages & Applications Con-
ference, October 6-10, San Jose, USA, pp 179 197

37. Turver RJ, Munro M (1994) An early impact analysis technique for software mainte-
nance. Journal of Software Maintenance Research and Practice 6(1):35 52

38. Weinberg GM (1983) Kill that code. Infosystems 30: 48 49
39. Weiser M (1979) Program slices: formal, psychological, and practical investigations of

an automatic program abstraction method. Ph.D. thesis, University of Michigan, Michi-
gan, USA

40. Wiegers KE (2003): Software requirements. Microsoft Press
41. Yau SS, Collofello JS (1980) Some stability measures for software maintenance. IEEE

Transactions on Software Engineering 6(6): 545 552
42. Zhao J (1998) Applying slicing technique to software architectures. In: Proceedings of

the 4th IEEE International Conference on Engineering of Complex Computer Systems,
August 10-14, Monterey, USA, pp.87 98

Author Biography

Per Jönsson is a Ph.D. student in Software Engineering at the School of Engineer-

ing at Blekinge Institute of Technology in Sweden, where he also received his De-

gree of Master of Science in Software Engineering in 2002. His main research in-

terest is impact analysis on a software architecture level. This touches the

boundary between requirements engineering and software architecture, and in-

cludes questions about how requirements affect the architecture, but also how ar-

chitectures are created, changed, maintained and merged.

Dr. Mikael Lindvall is a scientist at Fraunhofer Center Maryland. He manages the
center’s participation in NASA’s High Dependability Computing Project. He
heads test bed development for experimenting with and determining technologies’
impact on software dependability and studies how best practices, lessons learned
and other experience and knowledge management strategies are best applied in
software engineering. He studies software architecture evaluation and evolution to
efficiently understand software architectures and to identify architectural viola-
tions. Lindvall received a Ph.D. from Linköping University, Sweden 1997, on im-
pact analysis and evolution of object-oriented systems at Ericsson Radio in Swe-
den.

