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Abstract: As supported by many empirical evidences since early 1970s, “good 
quality” requirements are the leading factor for a successful software development 
project that delivers a “good quality” product with originally specified features 
and functionalities, on time, and within the originally estimated budget. The chal-
lenge gets tougher and more critical when the competition in the market is severe, 
the number of customers on the world is rather limited and static, and the cus-
tomer demands are high. As functioning in such a market, with the main goal to 
maintain the leading position of the previous versions of its Stressometer®, ABB 
has adopted a RUP®1-based software development process in the new generation 
Stressometer systems development projects. Stressometer Unified Process (SUP) 
integrates the RUP essentials with some features of agile processes such as heavy 
involvement of various stakeholders, preparation of test cases before coding, and 
continuous testing during development. This chapter describes the essential qual-
ity characteristics of requirements –both individual and aggregates such as embod-
ied in a use-case model or in a specification, analyses the relations among them, 
evaluates RUP regarding the means it provides or lacks for developing “good 
quality” requirements, and discusses how ABB Stressometer projects have tackled 
these shortcomings via SUP.   

Keywords: Quality attributes of requirements, Requirements quality metrics, Re-
quirements engineering and management via Rational Unified Process, Use-cases, 
Use-case model, Measuring quality of requirements. 

17.1 Introduction  

“Good quality” software requirements are prerequisite for “good quality” software 
products. Results of the research by Standish Group [23] verify our theory. The 
Standish Group’s CHAOS report that covers the findings from study of 8380 IT 
projects illustrates that 31.1% of projects are cancelled before they are completed. 
The results indicate 52.7% of projects cost 189% of their original estimates, and 
still deliver fewer features and functionalities than originally specified. Only 
16.2% of software projects are completed on time and on budget. Among the pro-
jects completed by the large companies, only 42% of them comprise the originally 
proposed features and functions. The top three factors on challenged projects are 
lack of user input (12.8%), incomplete requirements and specifications (12.3%), 
and changing requirements and specifications (11.8%). Finally, the major reason 
for projects cancellation is reported as incomplete requirements (13.1%). 

                                                           
1 Rational Unified Process®
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Cost of “bad quality” requirements have been studied since early 1970s. 
Boehm’s study of 63 software projects from three companies, namely GTE, TRW, 
and IBM, illustrated that the cost of change grows exponentially as the project 
progresses [2]. [4] reiterates this result by stating that the relative cost of repair is 
two hundred times greater in the maintenance phase than if it is detected in the re-
quirements phase. Further, it bases the escalation in cost on two factors: (i) the de-
lay from when the defect was introduced until it was detected, (ii) the amount of 
rework needed to correct both the original defect as well as the consequent defects 
in the later stages. As referred to by [4], DeMarco states that 56% of the bugs de-
tected during testing can be traced to the requirements errors. 

Iterative nature of RUP assists in eliminating above mentioned risks by inte-
grating a software product progressively throughout its development life cycle, by 
managing requirements change and “creep” in a controlled manner, by learning 
early and improving incrementally, and by detecting flaws early thus, building 
higher quality over several iterations. Yet, RUP is a generic process and it is inevi-
table to tailor it according to the needs of a particular project or the projects of a 
specific department for better efficiency and effectiveness. In an attempt to estab-
lish a balance between delivering good quality software products and delivering 
them on time, ABB’s Stressometer product line adapted RUP in an agile fashion 
while adhering to the RUP essentials.  

The main aim of this chapter is to evaluate a use-case driven, iterative software 
development process during which modeling is done via UML2, within the context 
of requirements development and management, against the quality of the require-
ments established during such a process. To this end, Sect. 17.2 provides back-
ground information about ABB and the Stressometer product line. Section 17.3 
presents the requirements management and engineering activities involved in 
ABB’s RUP-based software development process, SUP. Section 17.4 describes 
the characteristics of “good quality” requirements, elaborates on the relations 
among the characteristics, and further discusses how ABB Stressometer projects 
managed to achieve “good quality” requirements, supplying the discussions with 
experiences from the three major projects at ABB. Finally, Sect. 17.5 concludes 
the chapter. 

17.2 Background 

ABB (Asea Brown Boveri Ltd.) began operations in 1988 following a merger of 
two parent companies namely, ASEA AB and BBC Brown Boveri Ltd, each of 
which has been in business for more than a century (www.abb.com). Today, with 
about 105000 employees in around 100 countries, the ABB Group of companies 
functions in two core business areas, automation and power technologies that en-
able utility and industry customers to improve performance while lowering envi-
ronmental impact.

                                                           
2 Unified Modelling Language 
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ABB Power Technologies serves industrial and commercial customers, as well 
as electric, gas and water utilities, with a broad range of products, services and so-
lutions for power transmission and distribution. The portfolio includes transform-
ers, switchgear, breakers, capacitors and cables, as well as high- and medium-
voltage applications, many of which are also sold through external channel part-
ners like distributors, system integrators, contractors and original equipment 
manufacturers. ABB Automation Technologies serves the automotive, building, 
chemicals, consumer, electronics, life sciences, manufacturing, marine, metals, 
minerals, paper, petroleum, transportation, turbo-charging and utility industries. 
Key technologies include control, drives, enterprise software, instrumentation, 
low-voltage products, motors, robots and turbochargers. These offerings are sup-
ported by field maintenance and asset management services, and are sold both di-
rectly and through channel partners. 

As a part of the ABB Automation Technologies, Force Measurement unit sup-
plies products, systems, and services for measurement and control in a broad range 
of application from steel making to paper conversion. Stressometer is a Force 
Measurement product line that involves software intensive systems, which have 
been providing rolling mills with accurate online control of the flatness of cold 
rolled strips for more than 30 years. Stressometer system measures flatness, ana-
lyzes and stores flatness data, generates output for automatic flatness controls, and 
presents data in informative displays. Stressometer systems are designed for 
minimum maintenance and maximum uptime to ensure undisturbed continuous 
production and minimized scrap levels. Over the years, ABB has been continu-
ously improving the Stressometer product line parallel to the technological pro-
gress in software engineering in an attempt to keep its number one position in the 
market [26]. 

17.3 Practice 

New generation Stressometer systems are implemented by using SUP that is RUP 
tailored to fit the needs of the Stressometer department’s development projects. 
The major issue considered during such tailoring is being agile by involving 
stakeholders with different profiles external customers as well as the internal 
ones –actively and heavily throughout the development life cycle, preparing the 
test cases before coding, and having continuous testing during development. SUP 
facilitates agile, use-case driven, iterative development during which modeling is 
done via UML [26]. This section presents the requirements management and engi-
neering activities that are involved in the SUP. For a comprehensive discussion on 
agile methods, and particularly, requirement engineering via agile methods readers 
should refer to Chap. 14 in this book.  

The first step in the requirements engineering process via SUP is to elicit in-
formation from the stakeholders in order to understand their needs. SUP imposes 
the involvement of external customers with business knowledge and internal cus-
tomers with technical domain knowledge, in this activity. It recommends inter-
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views and requirements workshop as the techniques to elicit the needs. The find-
ings are used as primary inputs to defining the features of the prospective product 
hence, the high-level requirements that are described in a Vision document. A Vi-
sion may include features that do not fit in the project scope or the existing busi-
ness plans yet, should be kept for future references. Accordingly, the stakeholders 
prioritize the features based on pre-agreed attributes in order to identify the final 
set to be attended by the particular iteration of the project. Before moving to the 
lower level requirements identification, the complete Vision document and the 
prioritization results are reviewed and approved by all the stakeholders who took 
part in the elicitation. Eventually, approved Vision together with the prioritization 
matrix is checked into the configuration management database, and is labeled as 
“Approved IterX”. As the next activity, the same group of stakeholders gathers at 
a use-case workshop to define the functional requirements of the system. Initial 
group of actors and use-cases derived from appropriate features are compiled in a 
use-case model and illustrated in use-case diagram(s) during the meeting by using 
a tool. Brief descriptions for each actor and use-case are also entered. The results 
are further documented in a Use-Case Model Survey. A few review meetings with 
the same attendees follow in order to finalize an approved version. Features that 
could not be traced to functional requirements in use-cases, for example those that 
imply non-functional requirements such as performance requirements, are re-
visited in order to compile a Supplementary Specifications document. As any 
other formal artifact in the process, Supplementary Specifications document is 
also reviewed, approved by the stakeholders, and eventually, version controlled. 

The identified use-cases are prioritized according to a set of pre-agreed attrib-
utes in a separate session by the same requirements team. Those use-cases as-
sessed as high priority to attend are assigned to the requirements specifier for de-
tailing. 

The requirements specifier with assistance of the end-users from both external 
and internal customers describes the flows of each use-case under concern in de-
tail in separate specification documents. She/he also writes the supplementary re-
quirements to the level of detail needed to hand off to the next stages in the devel-
opment. If required, she/he can prepare sub-supplementary specifications. For 
example, user-interface descriptions, control algorithms, digital and analogue sig-
nal descriptions are detailed in separate sub-supplementary specification docu-
ments. As soon as the first version of a specification is ready, it is passed to the 
test designer(s) for test case preparations. Each specification is reviewed by a 
group that includes the external customers with business knowledge, internal cus-
tomers with technical domain knowledge, requirements specifier, end-users that 
assisted during detailing the requirements, software architect, designer, and test 
designer. Upon approval, each document is checked into the configuration man-
agement database and labeled as “Approved IterX”. Subsequently, the design 
team starts working on the architectural and detailed design of the requirements. 
The test cases are updated according to the final changes in the related require-
ments specifications, reviewed and approved by the requirements specifying team 
and the test team before they are version controlled and passed to the attention of 
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the test team. Parallel to the above activities, the project team also continuously 
gathers terminology in a project Glossary. 

17.4 Evaluation  

Quality of requirements can be characterized by a number of attributes. We collect 
those that are commonly discussed by the academia and the industry, and merge 
them into a set of 26 quality attributes in Table 17.1. During our study of these at-
tributes, we encountered the following inconsistencies: (i) Different references 
may use different terms for the same attribute. For example, the first attribute in 
the table is termed “Attainable” in [11], “Feasible” in [24], and “Achievable” in 
[11]. In such cases, we either include all different terms found in the literature, or 
refer to all of them by using the most common one; (ii) Content of an attribute 
may differ from reference to reference. For example, [12] and [5] define “Correct” 
as what is termed “Necessary” in [24], which also presents “Correct” as a separate 
requirements quality attribute but with a definition that differs from the one found 
in [12] and in [5]. In such cases, we keep both attributes and assume a positive re-
lation between the two attributes; (iii) No clear distinction between quality attrib-
utes that are applicable only to individual requirements and quality attributes that 
are applicable only to the aggregate requirements. In most of the cases, the defini-
tion of an attribute presented as an attribute of an aggregate implies dependency 
on the individual requirements of the aggregate constituting the same quality. 
Moreover, one can hardly find a consensus between different references on 
whether an attribute is applicable to an individual requirement or to an aggregate. 
For example, “Complete”-ness is claimed to be an attribute of an aggregate by [4] 
and [5] whereas, it is suggested to be applicable to an individual requirement by 
[9], and to both an individual requirement and an aggregate by [24]. In our evalua-
tion, we disregard such distinction and use the attribute to measure both individual 
requirements and aggregates, unless there is common consensus on the applicabil-
ity of an attribute for example as in the case of “Achievable/Feasible/Attainable”, 
“Clear/Precise/Meaningful” etc.  

These attributes are not independent: (i) It is not possible to achieve a certain 
quality unless another one exists. For example, if a requirement is not “Unambi-
guous” it cannot be “Verifiable”. Naturally, there is no means to verify a require-
ment if multiple interpretations exist for it [4, 5, 24, 12]. (ii) An attribute may af-
fect achievement of another attribute depending on the way the affecting attribute 
is achieved. For example, if we try to make a requirement more “Unambiguous”, 
more “Verifiable”, “Complete”, and “Consistent” by using extremely formal nota-
tions, we definitely decrease the level of “Understandability” by especially the 
non-computer specialist stakeholders [4].  Whereas, on the other hand, by no 
means “Unambiguous”, “Verifiable”, “Complete”, and “Consistent” requirements 
are un”Understandable”. On the contrary, “Unambiguous”ness, “Complete”ness, 
and “Consisten(t)”cy enhance “Understandabl(e)”ity when achieved via less for-
mal means such as by using Natural Language augmented with more formal mod-
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els [5]. (iii) Existence of an attribute jeopardizes achievement of another attribute. 
For example, if all use-cases included in a use-case model were “Necessary” then 
why would we need to “Rank”ing one or more of them as optional “by relative 
importance”? We have summarized our findings from experiences with relations 
between various quality attributes in Tables 17.2(a) and 17.2(b).  

Finally, most of the requirements attributes are subjective. In such cases, it can 
be difficult to measure a quality objectively via metrics; it may require performing 
expert reviews for the ultimate assessment. Still, it is possible to associate those 
characteristics with indicators that point at existence or absence of the quality un-
der concern.      

Our experiences at ABB have proven that the level of quality achieved in re-
quirements produced during a software development project highly depends on the 
process adopted. A feature of a process can influence a specific quality by leading 
to an improvement in the quality, by detracting from the quality, or by doing both 
hence, a trade-off situation; as well as a process might not address the quality at 
all. An individual requirement or an aggregate of requirements created via RUP 
would score very well across most of the quality attributes, whereas fare rather in-
sufficiently on others. Tailoring the standard RUP practices to fit a specific soft-
ware development project’s needs helps enhancing the poor quality but mainly 
those attributes that matter most to the project. In the following sub-sections, we 
describe those quality characteristics that were deemed important by the Stres-
someter projects at ABB, elaborate on their relations with other characteristics, 
discuss the indicators of strengths and weaknesses, evaluate how the projects at-
tempted to achieve the quality, and specify the metrics for measuring the quality 
where applicable.   
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Table 17.1 Quality attributes of requirements

Quality Attributes 
[4] [5] [9] [11] [12] [14] [19] [24] [25] 

Achievable/Feasible/Attainable  I  I  I  I  

At the Right Level of Detail  I, A    I    

Clear/ Precise/Meaningful  I I I      

Complete A A I  A I, A A I, A A 

Concise A A  I  I    

Correct I, A I, A   I, A   I A 

Cross-Referenced  A        

Design Independent I, A I, A    I    

Electronically Stored  A        

Executable/Interpretable  A        

Externally Consistent A A      A  

Forward Traceable I, A I, A   I, A  I I, A I 

Implementation Independent      I    

Internally Consistent A A   A A  A A 

Modifiable A A   A   A A 

Necessary     I  I  I  

Not Redundant   I, A        

Organized A A        

Prioritized/Ranked/Annotated 
by Relative Importance 

I I, A   I, A   I I, A 

Prioritized/Ranked/Annotated 
by Relative Stability 

I I, A   I, A    I, A 

Prioritized/Ranked/Annotated 
by Version 

 I, A        

Reusable  A        

Traced/Backward Traceable I, A I, A   I, A I I  I 

Unambiguous I, A I, A I I I, A I I I I 

Understandable A I, A     A   

Verifiable I, A I, A  I I, A I  I I, A 

I= Applies to an individual requirement; A=Applies to aggregate requirements such as a 
complete SRS, a use-case model, a use-case specification etc. 
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17.4.1 Achievable/Feasible/Attainable 

A requirement or an aggregate is achievable/feasible/attainable if and only if there 
exists at least one system design and implementation that correctly implements the 
requirement or all the requirements stated in the aggregate [5] at a definable cost 
[14]. 

There are no particular means utilized or recommended by RUP to ensure or to 
measure the achievability of all kinds of requirements involved in a development 
project at an early stage of a software development project. Only standard RUP 
activity that have relevance to ensure feasibility is constructing architectural-
proof-of-concept, which helps with determining whether there exists, or is likely 
to exist, a solution that satisfies the architecturally-significant requirements, i.e. 
the activity does not cover all the requirements.  

Yet, for an industrial company that launches a software project with consider-
able amount of investment, tight time-to-market constraints, and severe competi-
tion, it is vital to know: (i) whether it is technically possible to achieve the identi-
fied requirements; (ii) whether it is possible to achieve the requirements within the 
limitations imposed by time and budget. At ABB, we ensure the first concern by 
including the developers in the reviews of the requirements artifacts. In the Vision 
document, which comprises the high-level requirements, feasibility is not a high 
priority quality to achieve; yet if a feature or a need is determined to be infeasible 
with today’s technical knowledge, it is noted during the review meeting to be ne-
gotiated with the stakeholders. If the stakeholders insist keeping the requirement 
in the Vision, the requirement is annotated with “not to be included in an immedi-
ate release”. Accordingly, infeasible requirements may stay in the Vision but they 
are not traced forward to any use-cases or any lower level supplementary require-
ments, at least not until the next iteration or until a new technological improve-
ment in the area. It is higher importance to achieve feasibility nature in the lower 
level requirements, i.e. in the use-case model, in the supplementary specifications 
documents, and in the use-case specifications, because the actual work is defined 
based on these artifacts. The first concern, i.e. technical feasibility, is achieved via 
reviews and including not only the stakeholders but also the software architect(s), 
and designer(s) in the reviews. The second concern, i.e. financial feasibility, is en-
sured by preparing a number of scenarios, and computing the project length and 
cost in the case of each scenario (see Table 17.3). The calculations are performed 
to view the worst possible case, the best possible case and three optimal cases that 
demonstrate the probable, very probable, and most probable proceeding of the 
project. These states differ from each other based on the number of weeks per it-
eration, number of developers that can be involved throughout the development 
process, number of use cases identified for the whole system, number of weeks to 
be spent on the development of each use case, and the characteristics of each de-
veloper during the development process. Our method is adapted from “Use-Case 
Points” of Gustav Karner [15], [20]. We ignore the weight of actors in the calcula-
tions. We consider our “supplementary requirements” as the technical factors, and 
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include their effect in the calculations indirectly via the complexity of use-cases. 
Finally, we decide on complexity of use-cases by ranking them on a 5-point scale, 
5 illustrating the highest complexity.  

Table 17.3 Financial feasibility scenarios 

No. weeks 
/iteration (3..8) 

L 8 7 6 5 5 

No. of developers N 2 3 4 4 4 

No of use cases K 15 15 15 15 15 

No. weeks/use 
case

T 6 5 4 4 5 

Efficiency per 
user (0..1) 

U 0.5 0.6 0.5 0.5 0.7 

 Worst Best Optimal 1 Optimal 2 Optimal 3 
Developer effort 
(dev/iteration) 

E 8 13 12 10 14 

No of iterations M 11.25 6 5 6 5 

Project length 
(weeks) 

S 90 42 30 30 27 

Project costs 
(men* week) 

P 90 75 60 60 75 

The computations are done by using the following formulas: 
E = U*L*N   
M = T*K / (U*L*N) = T*K/E 
S = T*K / (U*N) = M*L  
P = S*N*U  

Upon completion of computations, we compare the existing situation in the 
project with the results of different scenarios, and determine whether the project is 
too optimistic about the number and content of the requirements to be fulfilled by 
the final product. Measurement of requirements attainability is done at least once 
by the beginning of a project. Depending on the volatility of the requirements and 
changes in the environmental factors for the team, it may be repeated by the be-
ginning of each iteration.  

17.4.2 Clear/ Precise/Meaningful 

A requirement or an aggregate is clear/precise/meaningful if and only if (a) nu-
meric quantities are used whenever possible, and (b) the appropriate levels of pre-
cision are used for all numeric quantities [5]. Keeping a proper scope in the sense 
of providing a definite amount of information, avoiding “motherhood” statements 
like “shall provide a continuous service”, “shall ensure the highest system secu-
rity” is vital for clarity [9]. 
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Executable requirements are Clear requirements. A requirement that is written 
in a formally defined computer executable, rather than a natural language, pro-
vides a more precise description. For example, the MATLAB simulation of the 
automatic mode of our cluster type control system operation provided more pre-
cise and validated requirements input into the design phase of the development.  
Moreover, Unambiguousness enhances Clarity of requirements. If we take an ex-
ample to ambiguous requirements from one of our Stressometer projects at ABB, 
initially what the marketing department desired was “The system shall have a fast 
computation time”. Such a requirement was rather vague and too general to work 
with for the development team. There were questions as “How fast is good 
enough?”, “We can have various configurations of the system, which configura-
tion are we talking about? The speed of computation time differs depending if it is 
a monolithic system or a distributed one; if it is a measurement only or a full con-
trol system; etc.” Eventually, the requirement had to take a clearer format as “A 
full computation of the main functions, from the time the Base Measurement Sys-
tem TCP/IP signal is received until an output is issued (external communication 
not included), for a reversible mill single node flatness measurement system with 
64 measurement zones, shall not be greater than 6.0 ms”. The problem with this 
requirement was not only that it was ambiguously stated but also that there was 
quite a lot vital information missing. Accordingly, we can infer that incomplete-
ness may lead to unclear requirements; or in other words, completeness may in-
crease the possibility of having clear requirements.  

RUP supplies templates and examples, which provide structure and guidance 
for content of different types of requirements thus assists in preparing 
clear/precise/meaningful requirements. Further, it recommends review of these ar-
tifacts against checkpoints, which include criteria for fulfilling the attribute. Some 
examples to the checkpoints for requirements clarity are “It is clear how and when 
the use case's flow of events starts and ends” “It is clear who wishes to perform a 
use case” “The purpose of the use case is also clear.” “The actor interactions and 
exchanged information are clear.” “The use case model clearly presents the behav-
ior of the system.” “The Introduction section of the use-case model provides a 
clear overview of the purpose and functionality of the system.” 

SUP did not add any new means to what is already suggested by the general 
RUP. In our Stressometer projects, we did not measure requirements clarity di-
rectly but rather ensured a common agreement on existence of it through reviews 
by the stakeholders that constituted the domain experts, representatives of the ex-
ternal customers who bought the system, and representatives of the internal cus-
tomers who used the requirements in the subsequent steps of the development life-
cycle. 

17.4.3 Complete 

A requirement is complete if it is capable of standing alone when separated from 
other requirements and does not need further amplification [14]. An aggregate of 
requirements is complete if and only if (a) It includes all significant requirements, 
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whether relating to functionality, performance, design constraints, attributes, or 
external interfaces. In particular, any external requirements imposed by a system 
specification should be acknowledged and treated. (b) It involves all responses of 
the software to all realizable classes of input data in all realizable classes of situa-
tions –including responses to both valid and invalid input values. (c) All figures, 
tables, and diagrams in the aggregate are fully labeled and referenced; all terms 
are defined; units of measure are provided [12]. (d) No sections are marked “To 
Be Determined (TBD)” [4]. (e) It covers all allocations from higher level [14]. (f) 
It must not include situations that will not be encountered or unnecessary capabil-
ity features [25]. 

Organizing the requirements in a logical way, for example by following a tem-
plate recommended by a specific process or by a standard, helps readers under-
stand the structure of a functionality described in a use-case or in a standard re-
quirements specification document, and makes it easier for them to identify if 
something is missing; hence, complete requirements. In similar sense, executing 
requirements via prototyping or via simulation during requirements analysis gives 
the stakeholders opportunity to validate the requirements as well as reflect on the 
missing ones, leading to a more complete set of requirements and more complete 
definition of requirements. Further, considering the condition (f) in the above 
definition, we can conclude that for requirements to be complete they have to be 
necessary. In other words, preparing an immense use-case model with “golden 
plating” use-cases omitting the necessary functionalities does not make the use-
case model more complete. In fact, if we refer to the condition (e) in our defini-
tion, we determine that it is essential to establish backward traceability from the 
use-case model to the higher-level requirements specification, for example in 
ABB’s case, to the vision document that includes all the features and user needs of 
the prospective software system.  

Focusing on user tasks instead of system functions during requirements elicita-
tion avoids overlooking the requirements as well as including requirements that 
are not necessary [24]. To this end, using use-cases for capturing requirements are 
the ideal means. In addition, semi-formal nature of use-cases makes it easy for the 
stakeholders to read and understand a requirements document, and eventually, 
provide a feedback on the missing parts. Further, using a standard specification 
format, a template, can reveal omissions and prevent loss of requirements [10]. 
Moreover, iterative development of RUP brings about assessment of and maturing 
accordingly the quality of artifacts throughout the development life cycle. Every 
iteration results in an executable release, which facilitates identification of missing 
requirements that can be dealt with in the subsequent iterations.  

During our projects at ABB, we considered completeness of requirements as 
one of the primary quality characteristics. SUP mainly utilized the strategies and 
tools provided by the RUP. Further, we ensured that the release produced by the 
end of an iteration was executed and continuously tested in an environment that 
simulated a typical final customer environment. Watching real life scenarios in-
creased the interest level, the concentration, and the comprehension of the stake-
holders thus opened new discussions, which led to identification of new, insuffi-
ciently described, or missing requirements. Even though, we highly depended on 
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qualitative means as stakeholders’ judgment, compliance with templates and 
guidelines, we also used the metrics listed in Table 17.4 in an attempt to quantify 
the maturity of completeness of different requirements artifacts by the end of each 
iteration: 

Table 17.4 Completeness metrics 

Metric Related Requirement Artifact and Implications 
Number of Use-Cases Traced Back 
to Features/Total Number of Use-
Cases   

Completeness of Use-Case Model. Low value indi-
cates existence of use-cases without any origin. 

Number of Supplementary Re-
quirements Traced Back to Fea-
tures/Total Number of Supplemen-
tary Requirements 

Completeness of Supplementary Specifications. 
Low value indicates existence of non-functional re-
quirements without any origin. 

Number of Incompletes in a Use-
Case Specification 

Completeness of a Use-Case Specification. SUP 
recognizes incompletes such as TBD, TBS, Not de-
fined, Not determined etc. as risk indicators for re-
quirements completeness. SUP imposes minimizing 
the usage of incompletes, allows usage of such 
terms if and only if they are followed by informa-
tion regarding when and by whom the incomplete 
portion will be attended, and considers it as high 
risk for the project if the number of incompletes 
were not decreased after two consequent iterations. 

Number of Incompletes in a Sup-
plementary Specification 

Completeness of a Supplementary Specification 
document. Implications apply as in the case of use-
case specifications. 

17.4.4 Concise 

A requirement or an aggregate is concise if it is as short as possible without ad-
versely affecting any other quality [5].  

Generally, conciseness is measured in terms of size. Going overboard with 
completeness may easily increase the size, and consequently, jeopardize the con-
ciseness of the requirement or the aggregate. A requirement, no matter in which 
format it is, must only state what is required and not how it shall be met in terms 
of design or implementation. Obviously, including such unnecessary information 
will bring about unnecessary increase in size hence, less concise.  Besides, re-
quirements can be stated at different levels of abstraction highly depending on the 
preferences of different projects. For example, [3] has defined two different use-
case specification formats, namely casual and fully dressed, both of which are 
valid but may differ in size and thus, in conciseness. Finally, in order to increase 
understandability, requirements specifiers often use redundancy, which is not an 
error itself [12, 4, 5], yet can easily lead to problems in achieving other qualities 
one of which is conciseness.     
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RUP does not provide any particular assistance for conciseness. During our 
projects at ABB, we were mainly concerned about the size of the use-case models 
increased with the number of use-cases, number of included use-cases, number of 
extending use-cases, and number of each type of relations. Besides, writing exten-
sive use-cases by keeping a low level of abstraction was a topic discussed at al-
most every review meeting. Yet, the first two projects proved that conciseness of 
the use-case model or the conciseness of use-case specifications did not constitute 
a high risk for the project or for the quality of the final product. Accordingly, it 
was not addressed in the subsequent projects by the SUP.    

17.4.5 Correct 

A requirement is correct if it accurately describes a functionality to be delivered 
[24]. An aggregate is correct if and only if every requirement stated therein is one 
that the software shall meet [12].  

As mentioned earlier in Sect. 17.4.3, executing requirements enables the stake-
holders to validate the specified requirements, thus, to ensure the correctness of 
the requirements. Externally and/or internally inconsistent requirements hinder es-
tablishing correctness for it can be difficult to know which one of the conflicting 
requirements is correct if there is any.  Further, regarding our definition of cor-
rectness it is explicit that a requirement or an aggregate of requirements is always 
correct if it is necessary. Finally, based on the relations both with external consis-
tency and with necessity, we can infer that a requirement is correct if it can be 
traced back to its source at a higher-level –naturally, on the condition that the 
higher-level requirement itself is correct. 

RUP suggests involvement of end users in the requirements review meetings 
only if possible. It provides guidelines for test case generation from the require-
ments, but leaves the preparation of the test cases until the implementation work is 
scheduled for them. It does not require review of test cases either. By recommend-
ing usage of UML, and tools that do not provide any facilities for internal or ex-
ternal consistency checks of requirements, RUP hinders achievement of correct-
ness. Yet, the iterative nature of the process enables continuous learning and 
improving throughout the development life cycle, and accommodating corrective 
changes in requirements as a result of such learning, any time during the project. 
On the other hand, we believe it is only the end users who can determine the cor-
rectness of user requirements. Accordingly, SUP process imposes involvement of 
representatives of both external users that work at the customer site and the inter-
nal users that customize, install, and maintain the system, in the review of use-case 
model, use-case specifications, and supplementary specifications. Further, accord-
ing to the SUP, test cases should be derived from the requirements and parallel to 
the specification of the requirements so that any errors in the requirements can be 
revealed and corrected before the design activities start. The test cases should be 
reviewed by the requirements reviewers. Finally, continuous execution and testing 
of incremental releases in an environment that simulated a typical final customer 
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site provides continuous and realistic feedback to the development team about the 
requirements that conflict with customer expectations.  

17.4.6 Design Independent 

A requirement or an aggregate is design independent if and only if there exists 
more than one system design and implementation that correctly implements the 
individual requirement or the requirements in the aggregate [5].  

RUP provides only assistance for design independence via brief information 
about how to distinguish “what” from “how” in the use-case model guidelines. 
Templates and examples provided are also useful but not sufficient. In order to en-
sure design independence of the requirements, SUP imposes including the soft-
ware architect and designers in the review of requirements artifacts so that they 
can point out those details that may limit their ability to consider alternative de-
sign possibilities in order to synthesize the most optimal one. 

17.4.7 Externally Consistent 

An aggregate is externally consistent if and only if no requirement stated therein 
conflicts with any already baselined project documentation [5].  

Traditionally, external consistency is defined in terms of compliance with the 
preceding documents [4] and in most of the cases, those that include higher-level 
requirements [24]. Yet, considering the importance of configuration and change 
management during the whole lifecycle of software development, especially when 
following an iterative and incremental approach, at ABB we preferred to adopt a 
definition that emphasizes the importance of promoted baselines. In this way, we 
aimed to: (i) handle inconsistencies as a part of our formal change management, 
(ii) extend the context of external inconsistency to include project artifacts other 
than the high-level requirements documents such as project plan, a baselined re-
lease from the previous iteration, etc. Traceability is the only characteristic that we 
have experienced to affect the external consistency. If there is a link from every 
low-level software requirement, for example a use-case in the use-case model, a 
supplementary requirement in a supplementary specifications document, to a 
higher-level requirement, for example a feature or a need in the vision document, 
i.e., backward traceable then the aggregate including these requirements is exter-
nally consistent with the high-level requirements. In the same manner, if there is a 
link from each requirement to at least one lower-level requirement or to a further 
development artifact such as a sequence diagram, a class diagram, a test case, i.e. 
forward traceable then the aggregate including these requirements is in agree-
ment with the lower-level documentation thus externally consistent with the par-
ticular documentation.  

RUP provides well-defined requirements management activities, which in-
cludes detailed guidance for establishing and maintaining implicit and explicit 
traceabilities to and from requirements at different levels, and for managing 
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changing requirements, and change management activities. Further, it presents 
Requisite Pro to facilitate its requirements management practice. Yet, as being a 
UML-based software development process, both RUP and SUP suffer inter- and 
intra-model inconsistencies. For example, during our projects at ABB we experi-
enced difficulties in keeping the use-case models of different sub-systems consis-
tent with each other. Eventually, we decided to use one common use-case model, 
which was in the end too large to manage. Besides, without any support for auto-
matic consistency checks from Rational Rose, it required considerable amount of 
manual effort to ensure consistency even among the elements of the same model. 
Similar situation applied in preserving the existing consistencies between different 
models during model transformations, for example while reflecting changes in the 
implementation model to the design model and eventually to the relevant use-case, 
actor, or portion of the specification of a use-case in the use-case model. 

17.4.8 Forward Traceable 

A requirement or an aggregate is forward traceable if and only if it is written in a 
manner that facilitates the referencing of the requirement or each individual re-
quirement of the aggregate in future development or enhancement documentation 
[5, 12].

Common methods used for explicit traceability includes numbering every para-
graph hierarchically, numbering every requirement with a unique number, using a 
convention to indicate a requirement and using a tool to extract and uniquely 
number all sentences that comply with the particular convention [4]. To this end, it 
will be much easier to achieve forward traceability if the requirements are elec-
tronically stored by using a tool that facilitates numbering and/or extracting sen-
tences according to a defined convention. Besides explicit traceability, there is 
certain amount of traceability implicit in every development process [21]. For ex-
ample in the case of projects that follow RUP, such traceabilities are achieved via: 
(i) Naming Conventions, (ii) The construction of mappings between the models, 
(iii) Relationships between the model items themselves, (iv) The creation of dif-
ferent perspectives illustrating how the elements of one model satisfy the demands 
implicit in the elements of another model. Some of these are easier to fulfill by 
electronically storing the requirements in a tool that has the UML meta-model de-
fined in it, such as Rational Rose. A detailed discussion about forward traceability 
can also be found in Chap. 5. 

One of the best practices with RUP is managing requirements [18]. As a major 
part of the requirements management, RUP puts specific emphasis on establishing 
traceabilities among different levels of requirements and from the requirements to 
the rest of the software development artifacts. It provides information about and 
guidance for various possible traceability strategies, most common of which are 
No Use-Case Model; Use-Case Model Only; Features Drive the Use Case Model; 
The Use-Case Model is an interpretation of the Software Requirements Specifica-
tion; The Use Case Model reconciles multiple sets of traditional software require-
ments [21]. Further, RUP facilitates building and utilizing these strategies via tool 
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support. For example, it recommends Rational RequisitePro as a tool for defining, 
capturing, and tracking the traceability links. Whereas, on the other hand, as being 
a UML-based software development process, RUP employs a "use-case driven 
approach", meaning use cases that can only describe the functional requirements 
are the basis for the entire development process [18]. It describes the activities to 
move from specifications of use-cases to the realization of use-cases subsequently 
to the implementation and testing of use-cases, in detail. It provides no similar as-
sistance for the non-functional requirements, which must also be provided to the 
customer in the final product together with the functionality thus, must be de-
signed and tested together with the functionality.  

Table 17.5 Forward traceability metrics (1 of 2)

Metric Related Requirement Artifact and Implications 
(Number of Features Traced to Use-
Cases) + (Number of Features 
Traced to Supplementary Specifica-
tions )/Total Number of Features   

Forward Traceability of Vision. This metric is 
mainly used before lower level requirements speci-
fications are prepared. Low value may suggest un-
satisfactory quality in various areas. It directly illus-
trates poor forward traceability from the high-level 
requirements to the lower level ones. In addition, it 
may imply inconsistency between the high-level re-
quirements and the lower level requirements. It may 
indicate incorrect requirements at the lower level. It 
may signal incompleteness unless the Vision in-
cludes requirements to be fulfilled in the long-term, 
as it was the case in our projects.  

(Number of Features Traced to Use-
Case Specification Sections) + 
(Number of Features Traced to 
Supplementary Requirements)/Total 
Number of Features   

Forward Traceability of Vision. This metric can be 
used after starting to prepare the lower level re-
quirements specifications. The implications are of 
the same nature as described regarding the previous 
metric; yet it provides results that are more accurate 
thus, facilitates identifying the root causes.  

Number of Use-Case Specification 
Sections Traced to Sequence Dia-
grams / Total Number of Use-Case 
Specification Sections to be Traced 
to Sequence Diagrams 
   
(Previously: Number of Use-Case 
Specification Flows Traced to Se-
quence Diagrams/Total Number of 
Use-Case Specification Flows)    

Forward Traceability of Use-Cases to the Design 
Model. Low value indicates low traceability to the 
sequence diagrams. All development cases prepared 
according to the SUP principles imposes one-to-one 
relation between the flows of a use-case specifica-
tion and of a use-case realization specification. Yet, 
as it was observed in some projects, it might be eas-
ier, less redundant, more concise, and more under-
standable to describe the design of more than one 
flow in the same sequence diagram. Besides, due to 
the iterative nature of the projects, not all flows 
might be considered for a design in a particular it-
eration. Further, occasionally, we encountered the 
need to design use-case specification sections other 
than the flows via sequence diagrams. Accordingly, 
we adjusted our initial metric.  
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Table 17.5 (cont.) Forward traceability metrics (2 of 2)

Metric Related Requirement Artifact and Implications 
Number of Use-Case Specifications 
Traced to Class Diagrams/Total 
Number of Use-Case Specifications 
to be Traced to Class Diagrams 

(Previously: Number of Use-Case 
Specification Flows Traced to Class 
Diagrams/Total Number of Use-
Case Specification Flows)    

Forward Traceability of Use-Cases to the Design 
Model. Low value indicates low traceability to the 
class diagrams thus, eventually quality problems in 
the code. In the very first project, it was decided to 
illustrate each use-case flow with one class diagram 
in the design model. By doing so, we experienced 
difficulties in keeping the diagrams consistent, and 
the design model and the use-case realization 
documents concise.  Accordingly, we adjusted the 
development case and our initial metric.  

Number of Use-Case Scenarios 
Traced to Functional Test 
Cases/Total Number of Use-Case 
Scenarios to be Traced to Test 
Cases 

Forward Traceability of Use-Cases to the Test 
Model. Low value indicates low traceability to the 
test cases thus, insufficient testing.  

RUP does not recognize any explicit link between the use-cases and the sup-
plementary, i.e. the non-functional, requirements, either. In brief, even though 
some of the traceability strategies include links from the Supplementary Specifica-
tions to the subsequent artifacts, there exists no particular RUP guidance for how 
to establish such traceabilities. 

During our projects at ABB, we used “Features Drive the Use Case Model”, 
which is the default strategy recommended by the Rational Unified Process. The 
Use-Case Model and Supplementary Specifications form a complete software re-
quirements specification. Features are documented in the Vision Document and 
are traced to use cases. If they are not reflected in the Use Case Model then they 
are traced to supplementary requirements in the Supplementary Specifications 
[21]. Accordingly, we handled the tracing from features to the use-case sections 
and to the supplementary requirements, from use-case specifications to the use-
case realizations, to the functional test cases and eventually to the test procedures 
whereas, we managed the linkage from the supplementary requirements to the use-
case realizations and to the test procedures in an ad hoc manner. For example, we 
could easily point at which test case realized which part of which use-case in the 
test model; whereas, supplementary specifications were directly entered into the 
test procedures, and in most of the cases to a degree depending on the initiative of 
the test designer. Table 17.5 includes the forward traceability metrics we used in 
our projects run according to SUP:  

17.4.9 Internally Consistent 

An aggregate is internally consistent if and only if no subset of individual re-
quirements stated in it conflict [12]. The same term is used for the same item in all 
requirements of the aggregate [14].  
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When an aggregate is not organized, it may be difficult to identify the inconsis-
tencies [14]. Therefore, it should be preferred to organize the requirements accord-
ing to a standard or by using a template recommended by the process used. In ad-
dition, we often use redundancies in documentation in order to increase the 
readability, while causing a risk for internal inconsistency. When altering one oc-
currence of a requirement we may forget to do so with other occurrences; hence, 
internal inconsistency; yet, we can decrease the risk by using cross-references. Fi-
nally, better consistency can be achieved with executable requirements depending 
on whether the tool used has a consistency check facility and how sophisticated 
the facility is. For example, [7] describes a consistency algorithm for the live se-
quence charts of the “play engine” [8] mentioned earlier. By adopting such an al-
gorithm in the “play engine”, it is aimed to automatically detect inconsistencies in 
a specification, enable a user to track the reason for inconsistencies via play out, 
suggest a consistent scenario with “good” order of events whenever there is one, 
and avoid abnormal abortion of play outs due to inconsistencies [8]. [4] identifies 
four types of inconsistencies: (i) Conflicting behavior; (ii) Conflicting terms; (iii) 
Conflicting characteristics; (iv) Temporal inconsistency.  

RUP recommends developing a Glossary during the early phases of a project, 
in order to ensure consistent usage of the terms throughout the whole development 
life cycle hence, assistance to avoid conflicting terms. Even though, as our experi-
ences showed, it might occasionally be difficult to keep the Glossary itself consis-
tent, it is helpful to have one Glossary. On the other hand, both RUP and SUP rely 
highly on the reviews for detecting the conflicting behavior, conflicting character-
istics, and temporal inconsistencies. Tracing such inconsistencies manually in a 
large, evolving use-case model or supplementary specifications can be hard and 
error prone.   

17.4.10 Modifiable 

An aggregate is modifiable if and only if its structure and style are such that any 
changes to the requirements can be made easily, completely, and consistently 
while retaining the structure and style [12]. 

Our experiences from software development projects at ABB have illustrated 
high importance of requirements modifiability for: (i) requirements change; (ii) 
concerns other than but affecting software requirements change; (iii) requirements 
evolve; (iv) requirements can be wrongly stated due to various inadvertent rea-
sons. In such cases, it is easier to identify and subsequently, apply the modifica-
tions if (i) the requirements are organized in a coherent and easy-to-use way; (ii) 
redundancy is kept to minimum; (iii) cross-references are used where necessary; 
(iv) the requirements are uniquely labeled to ease both forward and backward 
traceabilities; and (iv) the requirements are electronically stored. On the other 
hand, ranking requirements by importance, stability, or version may inhibit modi-
fiability if the aggregate is organized according to the ranking instead of according 
to some logical grouping recommended by a standard, or by a template provided 
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by the process followed, or chosen by the project in order to keep the related con-
cerns together and unrelated ones separate. 

RUP iterative life cycle allows changes to the requirements at almost any point 
in the development. Besides, since development is done incrementally, it is easier 
to detect the effects, estimate the cost of, and eventually carry out a suggested 
modification. RUP distinguishes between different types of requirements, and 
provides templates for organizing each type of requirements. It recommends using 
Rational Rose to electronically store the use-case models and diagrams, and sup-
plies specification templates ready to be used in Microsoft Word, Adobe Frame-
Maker, and HTML formats. SUP inherits the advantages of the generic RUP as 
described above. 

17.4.11 Necessary  

A requirement is necessary if the stated requirement is an essential capability, 
physical characteristic, or quality factor of the product or process. If it is removed 
or deleted, a deficiency will exist, which cannot be fulfilled by other capabilities 
of the product or process [14]. 

One common way suggested by the literature to decide on the necessity of a re-
quirement is to trace the requirement back to its origin, for example in the case of 
our projects, which use RUP as the software development process, to trace a use-
case back to a feature or a need in the vision. If it cannot be traced it may not be 
necessary. All definitions of necessity introduce the characteristic as a primary 
condition for a requirement to qualify for being included in the final product [11], 
[14], and [24]. Yet, depending on the scheme we use, ranking a requirement for 
importance may conflict with the necessary nature of the requirement. For exam-
ple, [12] suggests ranking requirements based on a degree of necessity that distin-
guishes classes of requirements as essential, conditional, and optional. According 
to the scheme, essential requirements are those that must be provided for the final 
product to be accepted, hence necessary requirements. Whereas, conditional re-
quirements are those that would enhance the final product but would not make it 
unacceptable if they are absent, and optional requirements are those that may or 
may not be worthwhile, hence not necessary requirements. 

Table 17.6 Necessity metrics

Metric Related Requirement Artifact and Implications 
Number of Use-Case Sections 
Traced Back to Features/Total 
Number of Use-Case Sections   

Necessity of Use-Cases. A value other than 1 indi-
cates existence of not required use-case flows, spe-
cial requirements, post, or pre-conditions. 

Number of Supplementary Re-
quirements Traced Back to Fea-
tures/Total Number of Supple-
mentary Requirements 

Necessity of Supplementary Requirements. A 
value other than 1 indicates existence of unneces-
sary non-functional requirements. 

RUP describes specific and detailed activities for requirements elicitation. It 
suggests methods to follow for identifying what the stakeholders require. It en-
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hances the assistance with guidelines where appropriate. It also provides related 
checkpoints to be adopted at the review meetings. As a part of its requirements 
management practice, RUP suggests various traceability strategies, which provide 
guidance on keeping links between requirements at different levels. Finally, the it-
erative nature of RUP allows continuous learning and improving the requirements 
throughout the development life cycle. SUP requires involvement of representa-
tives of all types of stakeholders in the requirements elicitation and identification 
process. Besides, it uses well-defined traceability procedures between high level 
and lower level requirements. Accordingly, the risk with identifying requirements 
that do not contribute to the satisfaction of some customer needs is minimized. 
SUP also suggests collecting the metrics identified in Table 17.6 and discussing 
the results in the relevant review meetings.  

17.4.12 Organized 

An aggregate is organized if and only if its contents are arranged so that readers 
can easily locate information and logical relationships among adjacent sections are 
apparent [5]. 

RUP recommends organizing the functional requirements using use-cases. In-
stead of a traditional bulleted list of requirements, RUP suggests organizing them 
in a way that tells a story of how someone may use the final product [18]. Further, 
it provides templates complemented with guidelines and examples to assist in 
documenting the needs and features in Vision document, and lower level require-
ments in Use-Case Model survey, Use-Case Specifications, and Supplementary 
Specifications, in an organized manner. SUP adopts generic RUP means, with mi-
nor adaptations according to the ABB instructions. The “organized” nature of re-
quirements is ensured via the checkpoints at the review meetings.  

17.4.13 Prioritized/Ranked/ Annotated 

A requirement is prioritized/ranked/annotated by relative importance if the re-
quirement is assigned an implementation priority to indicate how essential it is to 
include it in a particular product [24]. An aggregate is prioritized/ranked/annotated 
by relative importance if each requirement in it has an identifier to indicate the 
importance of that particular requirement [12]. 

A requirement is prioritized/ranked/annotated by relative stability if the re-
quirement is assigned an identifier to indicate the stability of the particular re-
quirement [5]. An aggregate is prioritized/ranked/annotated by relative stability if 
each requirement in it has an identifier to indicate the stability of that particular 
requirement [12]. A requirement or an aggregate is prioritized/ranked/annotated 
by version if a reader can easily determine whether the particular requirement or 
which requirements of the aggregate will be satisfied in which version of the pro-
spective product [5].  
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The characteristics that may hinder from achieving prioritized/ranked/annotated 
by relative importance are those that are related to the organization of require-
ments in the aggregates. If it is preferred by the project to organize the require-
ments to be modifiable, or to rank by relative stability, or to rank by version, then 
prioritization by relative importance cannot be performed in the structure of the 
aggregate. Yet, by extracting the requirements into another means such as a work-
book or a database, the project can still rank the requirements by relative stability 
and by version without adversely affecting the ranking by relative importance na-
ture of the original aggregate. Besides, if an aggregate is organized by following a 
standard or a template provided by the process adopted, it cannot be organized ac-
cording to the ranking of its requirements by relative importance. Similar situa-
tions also apply to achieving prioritization of requirements by relative stability and 
by version. Finally, if a requirement is necessary, it represents functionality, a ca-
pability, a physical characteristic, or a quality factor essential for the final product; 
therefore, it cannot be ranked to a level that degrades its necessity.  

Traditionally, it is suggested to establish ranking according to relative impor-
tance, stability, or version in the organization and the structure of an aggregate. 
Accordingly, an aggregate organized to be modifiable would have a negative im-
pact on this characteristic. However, in SUP, it is suggested to extract the re-
quirements from the aggregate into a workbook, execute the rankings based on the 
attributes chosen beforehand, and eventually, sort and save the matrix in separate 
datasheets per each ranking. In this way, the project could keep the original or-
ganizations of the use-case model, supplementary specifications, and the vision 
while at the same time it could refer to the rankings when needed, for example for 
(re-)planning by the beginning of an iteration. In this way, it was also possible to 
generate different combinations of rankings in summary tables depending on the 
aim of the planning. For example, if it was decided that we should plan the itera-
tion to develop the use-cases with the critical benefits, and to stabilize the archi-
tecture, then it would be necessary to view the matrix sorted first by relative im-
portance and then by stability on one worksheet. Table 17.7 illustrates a portion of 
a use-case matrix resulted from such combined ranking during one of our projects 
at ABB. 

As a part of its Requirements Management activities, the generic RUP recom-
mends defining the attributes to be tracked for each type of requirement. Examples 
to such attributes are Stability, Effort to implement, Risk to the development ef-
fort, etc. It provides detailed guidelines how to identify, store, and review the at-
tributes. Further, it supplies a tool mentor to facilitate these activities via Requi-
sitePro, which enables defining attributes for different types of requirements, 
storing the requirements together with the attribute values, and retrieving and or-
ganizing the requirements by attribute values via filtering or sorting in views. In 
conclusion, RUP excels the “prioritization” related quality attributes by delivering 
the means for sophisticated groupings of requirements.  



398      Yilmaztürk 

Table 17.7 Example use-case attribute matrix

Use-Case No Status Benefit Effort 

Technical 

Risk

Architectural 

Impact Stability Priority

Scheduled 

for the 

Current 

Iteration

Responsible 

Party

UC-20 Proposed Critical High Medium Extends High High Yes Christer

UC-23 Proposed Critical High Medium None Medium High Yes Olle

UC-51 Proposed Critical Medium Medium None Medium High Yes Olle

UC-21 Proposed Critical Medium Medium None High Medium Yes Christer

UC-49 Proposed Critical Medium Medium None High Medium Yes Christer

UC-33 Proposed Critical Medium Low None High Low Yes LEM

UC-55 Proposed Critical Medium Low None High Low

For a more detailed survey on requirements prioritization and requirements pri-
oritization techniques, readers should also refer to Chap. 4 in this book. 

Table 17.8 Backward traceability metrics

Metric Related Requirement Artifact and Implications 
Number of Use-Cases 
Traced Back to Fea-
tures/Total Number of Use-
Cases   

Backward Traceability of Use-Case Model. A value 
other than 1 indicates poorly traced use-cases. It also 
suggests existence of use-cases without any origin.  

Number of Use-Case Speci-
fication Traced Back to Fea-
tures/Total Number of Use-
Case Specification Sections   

Backward Traceability of a Use-Case. A value other 
than 1 indicates poorly traced use-cases. It also sug-
gests existence of use-case sections, such as pre or 
post conditions, or special requirements, without any 
origin.  

Number of Supplementary 
Requirements Traced Back 
to Features/Total Number of 
Supplementary Require-
ments   

Backward Traceability of Supplementary Specifica-
tion. A value other than 1 indicates poorly traced sup-
plementary specification and supplementary require-
ment. It also suggests existence of supplementary 
requirements without any origin.  

Number of Sequence Dia-
grams Traced Back to Use-
Case Specification Sec-
tions/Total Number of Se-
quence Diagrams 

Backward Traceability of Design Model to the Use-
Cases. A value other than 1 indicates poorly traced 
sequence diagrams. It signifies existence of design 
elements without any origin. It may also suggest in-
consistencies between what the end customer expects 
and what is being developed. 

Metric Related Requirement Artifact and Implications 
Number of Class Diagrams 
Traced Back to Use-Case 
Specification Sections/Total 
Number of Class Diagrams 

Backward Traceability of Design Model to the Use-
Cases. A value other than 1 indicates poorly traced 
class diagrams. It signifies existence of design ele-
ments without any origin. It may also suggest incon-
sistencies between what the end customer expects and 
what is being developed. 

Number of Functional Test 
Cases Traced to Use-Case 
Scenarios/Total Number of 
Functional Test Cases 

Backward Traceability of Test Model to the Use-
Cases. A value other than 1 indicates poorly traced 
test cases. It suggests existence of test cases without 
origin. It also signifies that necessary functionalities 
were not tested and/or extra functionality was imple-
mented without informing the requirements team first.  
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17.4.14 Traced/Backward Traceable 

A requirement or an aggregate is traced/backward traceable if the origin of the re-
quirement or of each requirement of the aggregate is clear [5]. 

The discussion about the explicit and implicit traceability and the influence of 
electronically stored characteristics on the forward traceability (see Sect. 17.4.8) 
also applies to the backward traceability. Further, the discussion about the support 
by the generic RUP and SUP for establishing traceability in the same section 
should also be considered here. Yet, what differs is the metrics we used in our pro-
jects in order to measure the degree of backward traceability achieved thus, detect 
possible risks and flaws in the projects:  

17.4.15 Unambiguous 

A requirement or an aggregate is unambiguous if different readers with similar 
backgrounds would be able to draw only one interpretation of the requirement [9, 
24] or of each requirement in the aggregate [12]. As discussed in detail earlier in 
Chap. 11, natural language is inherently ambiguous. In order to decrease the am-
biguity thus increase the unambiguousness, one can use more deterministic meth-
ods and languages with well-defined semantics, such as state machines, predicate 
calculus, prepositional calculus, petri nets. Most of these methods and languages 
are supported by software tools that can automatically detect lexical, syntactic, 
and semantic errors. Accordingly, electronically stored and/or executable require-
ments may constitute less ambiguity.

RUP is a UML-based software development process. UML has limited notation 
to express different types of requirements. In fact, it only helps visualizing the ac-
tors and the use-cases that constitute the lower level functional requirements. 
UML does not provide support for detailing the use-cases. Even though RUP sug-
gests using sequence diagrams to show how an actor interacts with a use-case, or 
using activity diagrams or state charts to describe a single use-case in order to 
formalize use-cases, the common means to describe use-cases is Natural Lan-
guage. In addition, use-cases are not the only requirements of a software product. 
RUP uses Vision documents for specifying the high-level requirements, and Sup-
plementary Specifications to describe the non-functional requirements. Both Vi-
sion and Supplementary Specifications are created also by using Natural Lan-
guage. Natural Language has inherent ambiguity. Yet, RUP defines a common 
vocabulary in order to decrease ambiguity among team members. It recommends 
checkpoints to be used during the review of requirements specification documents. 
Such checkpoints are too general and insufficient to ensure a satisfying level of 
unambiguousness in the requirements artifacts.   

Active participation of all types of stakeholders in the elicitation and review of 
the requirements and preparation of test cases parallel to the preparation of the 
use-cases are the main means that SUP recommends in order to decrease the am-
biguity in the requirements. It recognizes a list of weak phrases that may cause 
uncertainty and lead to multiple interpretations, such as flexible, fault tolerant, 
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adequate, as appropriate, maximize, minimize, at a given time, up to etc., and op-
tions that give the developers freedom to satisfy the related requirement by follow-
ing more than one way such as can, may, optionally etc. During review meetings, 
checks are done in order to detect usage of these words. In addition, the following 
metrics in Table 17.9 are used to measure the ambiguity level in a specification.        

Table 17.9 Unambiguousness metrics

Metric Related Requirement Artifact and Implications 
Number of Weak Phrases + Num-
ber of Options in a Use-Case 
Specification 

Unambiguousness of a Use-Case Specification. 
Values other than 0 indicate ambiguity in the speci-
fication. 

Number of Weak Phrases + Num-
ber of Options in a Supplementary 
Specification 

Unambiguousness of a Supplementary Specifica-
tion. Values other than 0 indicate ambiguity in the 
specification. 

17.4.16 Understandable 

A requirement or an aggregate is understandable if all classes of readers can easily 
comprehend the meaning of the requirement or all requirements in the aggregate, 
with a minimum of explanation [5]. 

Naturally, an unambiguous requirement or aggregate is clearer/more precise 
and more meaningful thus more understandable. On the other hand, if the unam-
biguousness is achieved by using formal notations, understandability of the re-
quirements by non-technical stakeholders will decrease. In addition, redundancy 
increases readability thus may increase understandability of requirements. More-
over, it is easier to comprehend behavior by seeing it in action than by reading 
about it in a document. Accordingly, executability/interpretability of requirements 
enhances the understandability of them. Further, organizing the requirements ac-
cording to a standard or by using a template recommended by the process fol-
lowed or according to another logical grouping accepted by the project will in-
crease the understandability of the requirements. The iterative nature of the RUP 
process enables continuous learning and improving throughout the development 
life cycle. Every iteration results in an executable release, which improves effec-
tive understandability. Besides, our experiences have illustrated that organizing 
functional requirements by using use-cases leads to greater completeness and bet-
ter understanding of the requirements hence, support by RUP for better under-
standability of requirements. In addition, RUP provides templates to organize the 
high-level requirements and non-functional requirements in logical groupings.  

In the projects that follow SUP, since all types of stakeholders, i.e. representa-
tives of end users, representatives of actual buyers of the system, architect, and de-
signer of the system, those who do the installation and maintenance of the final 
product, and take part in the review of the requirements problems with under-
standing the requirements can easily be revealed and solved.    
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17.5 Conclusions 

The Stressometer products have been providing rolling mills with accurate online 
control of the flatness of cold rolled strips for more than 30 years. As the early 
generation, PLC-based Stressometer systems have been migrated to a Java-based 
platform, ABB has faced a need for change in the way it works to continue provid-
ing value to its customers and ensuring customer satisfaction in a controlled man-
ner. Accordingly, it adopted RUP in an agile fashion mainly by maintaining active 
and heavy involvement of stakeholders that include both external and internal cus-
tomers, preparing the test cases before coding, and continuously testing during de-
velopment. The resultant development process namely SUP has been applied in 
three projects and has presented satisfying results regarding the achievement of 
“good quality” requirements.   

The Stressometer projects received major gains from the disciplined nature of 
RUP in traceability, completeness, and necessity attributes via well-defined trace-
ability strategies that were provided as a part of thorough requirements manage-
ment. Templates and examples together with the associated guidelines and check-
points helped to achieve the organized, modifiability, and clarity qualities in the 
requirements. Further, iterative nature of RUP gave a considerable support in 
achieving completeness, modifiability, and understandability. On the other hand, 
standard RUP means was insufficient for ensuring achievability. Accordingly, in 
SUP we introduced financial feasibility scenarios and imposed active communica-
tion of the development team with the rest of the stakeholders including the exter-
nal as well as the internal customers.  

Tool support by RUP to “ease” achieving the prioritization related attributes
was found not enough value providing to invest time and effort. Instead, in the 
SUP, simpler guidelines to follow were defined and usage of worksheets was sug-
gested. Active involvement of the end users in the creation and review of the re-
quirements artifacts, as imposed by SUP, proved to be an invaluable means to 
achieve correctness, and unambiguousness.

Completeness and correctness qualities were further excelled by producing an 
executable release by the end of every iteration, and allowing the external and the 
internal customers to interact with it in an environment, which simulates a typical 
final customer site, mainly as a part of continuous testing.  

Including the architects and the designers in the review of requirements arti-
facts even though it is not required by the standard RUP procedures ensured de-
sign independence of the requirements. Preparing the test cases early in the devel-
opment, parallel to the requirements specification, and having them reviewed by 
the stakeholders supported achievement of most of the quality attributes; however, 
the main benefits were perceived regarding the requirements correctness.

The projects had to put considerable amount of manual effort and had to main-
tain a close communication within the development team in order to ensure inter-
nal and external consistency. This was not a satisfactory practice and accordingly, 
was considered to be improved in the future. 
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