
17 “Good Quality” Requirements in Unified Process

Nur Yilmaztürk

Abstract: As supported by many empirical evidences since early 1970s, “good
quality” requirements are the leading factor for a successful software development
project that delivers a “good quality” product with originally specified features
and functionalities, on time, and within the originally estimated budget. The chal-
lenge gets tougher and more critical when the competition in the market is severe,
the number of customers on the world is rather limited and static, and the cus-
tomer demands are high. As functioning in such a market, with the main goal to
maintain the leading position of the previous versions of its Stressometer®, ABB
has adopted a RUP®1-based software development process in the new generation
Stressometer systems development projects. Stressometer Unified Process (SUP)
integrates the RUP essentials with some features of agile processes such as heavy
involvement of various stakeholders, preparation of test cases before coding, and
continuous testing during development. This chapter describes the essential qual-
ity characteristics of requirements –both individual and aggregates such as embod-
ied in a use-case model or in a specification, analyses the relations among them,
evaluates RUP regarding the means it provides or lacks for developing “good
quality” requirements, and discusses how ABB Stressometer projects have tackled
these shortcomings via SUP.

Keywords: Quality attributes of requirements, Requirements quality metrics, Re-
quirements engineering and management via Rational Unified Process, Use-cases,
Use-case model, Measuring quality of requirements.

17.1 Introduction

“Good quality” software requirements are prerequisite for “good quality” software
products. Results of the research by Standish Group [23] verify our theory. The
Standish Group’s CHAOS report that covers the findings from study of 8380 IT
projects illustrates that 31.1% of projects are cancelled before they are completed.
The results indicate 52.7% of projects cost 189% of their original estimates, and
still deliver fewer features and functionalities than originally specified. Only
16.2% of software projects are completed on time and on budget. Among the pro-
jects completed by the large companies, only 42% of them comprise the originally
proposed features and functions. The top three factors on challenged projects are
lack of user input (12.8%), incomplete requirements and specifications (12.3%),
and changing requirements and specifications (11.8%). Finally, the major reason
for projects cancellation is reported as incomplete requirements (13.1%).

1 Rational Unified Process®

374 Yilmaztürk

Cost of “bad quality” requirements have been studied since early 1970s.
Boehm’s study of 63 software projects from three companies, namely GTE, TRW,
and IBM, illustrated that the cost of change grows exponentially as the project
progresses [2]. [4] reiterates this result by stating that the relative cost of repair is
two hundred times greater in the maintenance phase than if it is detected in the re-
quirements phase. Further, it bases the escalation in cost on two factors: (i) the de-
lay from when the defect was introduced until it was detected, (ii) the amount of
rework needed to correct both the original defect as well as the consequent defects
in the later stages. As referred to by [4], DeMarco states that 56% of the bugs de-
tected during testing can be traced to the requirements errors.

Iterative nature of RUP assists in eliminating above mentioned risks by inte-
grating a software product progressively throughout its development life cycle, by
managing requirements change and “creep” in a controlled manner, by learning
early and improving incrementally, and by detecting flaws early thus, building
higher quality over several iterations. Yet, RUP is a generic process and it is inevi-
table to tailor it according to the needs of a particular project or the projects of a
specific department for better efficiency and effectiveness. In an attempt to estab-
lish a balance between delivering good quality software products and delivering
them on time, ABB’s Stressometer product line adapted RUP in an agile fashion
while adhering to the RUP essentials.

The main aim of this chapter is to evaluate a use-case driven, iterative software
development process during which modeling is done via UML2, within the context
of requirements development and management, against the quality of the require-
ments established during such a process. To this end, Sect. 17.2 provides back-
ground information about ABB and the Stressometer product line. Section 17.3
presents the requirements management and engineering activities involved in
ABB’s RUP-based software development process, SUP. Section 17.4 describes
the characteristics of “good quality” requirements, elaborates on the relations
among the characteristics, and further discusses how ABB Stressometer projects
managed to achieve “good quality” requirements, supplying the discussions with
experiences from the three major projects at ABB. Finally, Sect. 17.5 concludes
the chapter.

17.2 Background

ABB (Asea Brown Boveri Ltd.) began operations in 1988 following a merger of
two parent companies namely, ASEA AB and BBC Brown Boveri Ltd, each of
which has been in business for more than a century (www.abb.com). Today, with
about 105000 employees in around 100 countries, the ABB Group of companies
functions in two core business areas, automation and power technologies that en-
able utility and industry customers to improve performance while lowering envi-
ronmental impact.

2 Unified Modelling Language

17 “Good Quality” Requirements in Unified Process 375

ABB Power Technologies serves industrial and commercial customers, as well
as electric, gas and water utilities, with a broad range of products, services and so-
lutions for power transmission and distribution. The portfolio includes transform-
ers, switchgear, breakers, capacitors and cables, as well as high- and medium-
voltage applications, many of which are also sold through external channel part-
ners like distributors, system integrators, contractors and original equipment
manufacturers. ABB Automation Technologies serves the automotive, building,
chemicals, consumer, electronics, life sciences, manufacturing, marine, metals,
minerals, paper, petroleum, transportation, turbo-charging and utility industries.
Key technologies include control, drives, enterprise software, instrumentation,
low-voltage products, motors, robots and turbochargers. These offerings are sup-
ported by field maintenance and asset management services, and are sold both di-
rectly and through channel partners.

As a part of the ABB Automation Technologies, Force Measurement unit sup-
plies products, systems, and services for measurement and control in a broad range
of application from steel making to paper conversion. Stressometer is a Force
Measurement product line that involves software intensive systems, which have
been providing rolling mills with accurate online control of the flatness of cold
rolled strips for more than 30 years. Stressometer system measures flatness, ana-
lyzes and stores flatness data, generates output for automatic flatness controls, and
presents data in informative displays. Stressometer systems are designed for
minimum maintenance and maximum uptime to ensure undisturbed continuous
production and minimized scrap levels. Over the years, ABB has been continu-
ously improving the Stressometer product line parallel to the technological pro-
gress in software engineering in an attempt to keep its number one position in the
market [26].

17.3 Practice

New generation Stressometer systems are implemented by using SUP that is RUP
tailored to fit the needs of the Stressometer department’s development projects.
The major issue considered during such tailoring is being agile by involving
stakeholders with different profiles external customers as well as the internal
ones –actively and heavily throughout the development life cycle, preparing the
test cases before coding, and having continuous testing during development. SUP
facilitates agile, use-case driven, iterative development during which modeling is
done via UML [26]. This section presents the requirements management and engi-
neering activities that are involved in the SUP. For a comprehensive discussion on
agile methods, and particularly, requirement engineering via agile methods readers
should refer to Chap. 14 in this book.

The first step in the requirements engineering process via SUP is to elicit in-
formation from the stakeholders in order to understand their needs. SUP imposes
the involvement of external customers with business knowledge and internal cus-
tomers with technical domain knowledge, in this activity. It recommends inter-

376 Yilmaztürk

views and requirements workshop as the techniques to elicit the needs. The find-
ings are used as primary inputs to defining the features of the prospective product
hence, the high-level requirements that are described in a Vision document. A Vi-
sion may include features that do not fit in the project scope or the existing busi-
ness plans yet, should be kept for future references. Accordingly, the stakeholders
prioritize the features based on pre-agreed attributes in order to identify the final
set to be attended by the particular iteration of the project. Before moving to the
lower level requirements identification, the complete Vision document and the
prioritization results are reviewed and approved by all the stakeholders who took
part in the elicitation. Eventually, approved Vision together with the prioritization
matrix is checked into the configuration management database, and is labeled as
“Approved IterX”. As the next activity, the same group of stakeholders gathers at
a use-case workshop to define the functional requirements of the system. Initial
group of actors and use-cases derived from appropriate features are compiled in a
use-case model and illustrated in use-case diagram(s) during the meeting by using
a tool. Brief descriptions for each actor and use-case are also entered. The results
are further documented in a Use-Case Model Survey. A few review meetings with
the same attendees follow in order to finalize an approved version. Features that
could not be traced to functional requirements in use-cases, for example those that
imply non-functional requirements such as performance requirements, are re-
visited in order to compile a Supplementary Specifications document. As any
other formal artifact in the process, Supplementary Specifications document is
also reviewed, approved by the stakeholders, and eventually, version controlled.

The identified use-cases are prioritized according to a set of pre-agreed attrib-
utes in a separate session by the same requirements team. Those use-cases as-
sessed as high priority to attend are assigned to the requirements specifier for de-
tailing.

The requirements specifier with assistance of the end-users from both external
and internal customers describes the flows of each use-case under concern in de-
tail in separate specification documents. She/he also writes the supplementary re-
quirements to the level of detail needed to hand off to the next stages in the devel-
opment. If required, she/he can prepare sub-supplementary specifications. For
example, user-interface descriptions, control algorithms, digital and analogue sig-
nal descriptions are detailed in separate sub-supplementary specification docu-
ments. As soon as the first version of a specification is ready, it is passed to the
test designer(s) for test case preparations. Each specification is reviewed by a
group that includes the external customers with business knowledge, internal cus-
tomers with technical domain knowledge, requirements specifier, end-users that
assisted during detailing the requirements, software architect, designer, and test
designer. Upon approval, each document is checked into the configuration man-
agement database and labeled as “Approved IterX”. Subsequently, the design
team starts working on the architectural and detailed design of the requirements.
The test cases are updated according to the final changes in the related require-
ments specifications, reviewed and approved by the requirements specifying team
and the test team before they are version controlled and passed to the attention of

17 “Good Quality” Requirements in Unified Process 377

the test team. Parallel to the above activities, the project team also continuously
gathers terminology in a project Glossary.

17.4 Evaluation

Quality of requirements can be characterized by a number of attributes. We collect
those that are commonly discussed by the academia and the industry, and merge
them into a set of 26 quality attributes in Table 17.1. During our study of these at-
tributes, we encountered the following inconsistencies: (i) Different references
may use different terms for the same attribute. For example, the first attribute in
the table is termed “Attainable” in [11], “Feasible” in [24], and “Achievable” in
[11]. In such cases, we either include all different terms found in the literature, or
refer to all of them by using the most common one; (ii) Content of an attribute
may differ from reference to reference. For example, [12] and [5] define “Correct”
as what is termed “Necessary” in [24], which also presents “Correct” as a separate
requirements quality attribute but with a definition that differs from the one found
in [12] and in [5]. In such cases, we keep both attributes and assume a positive re-
lation between the two attributes; (iii) No clear distinction between quality attrib-
utes that are applicable only to individual requirements and quality attributes that
are applicable only to the aggregate requirements. In most of the cases, the defini-
tion of an attribute presented as an attribute of an aggregate implies dependency
on the individual requirements of the aggregate constituting the same quality.
Moreover, one can hardly find a consensus between different references on
whether an attribute is applicable to an individual requirement or to an aggregate.
For example, “Complete”-ness is claimed to be an attribute of an aggregate by [4]
and [5] whereas, it is suggested to be applicable to an individual requirement by
[9], and to both an individual requirement and an aggregate by [24]. In our evalua-
tion, we disregard such distinction and use the attribute to measure both individual
requirements and aggregates, unless there is common consensus on the applicabil-
ity of an attribute for example as in the case of “Achievable/Feasible/Attainable”,
“Clear/Precise/Meaningful” etc.

These attributes are not independent: (i) It is not possible to achieve a certain
quality unless another one exists. For example, if a requirement is not “Unambi-
guous” it cannot be “Verifiable”. Naturally, there is no means to verify a require-
ment if multiple interpretations exist for it [4, 5, 24, 12]. (ii) An attribute may af-
fect achievement of another attribute depending on the way the affecting attribute
is achieved. For example, if we try to make a requirement more “Unambiguous”,
more “Verifiable”, “Complete”, and “Consistent” by using extremely formal nota-
tions, we definitely decrease the level of “Understandability” by especially the
non-computer specialist stakeholders [4]. Whereas, on the other hand, by no
means “Unambiguous”, “Verifiable”, “Complete”, and “Consistent” requirements
are un”Understandable”. On the contrary, “Unambiguous”ness, “Complete”ness,
and “Consisten(t)”cy enhance “Understandabl(e)”ity when achieved via less for-
mal means such as by using Natural Language augmented with more formal mod-

378 Yilmaztürk

els [5]. (iii) Existence of an attribute jeopardizes achievement of another attribute.
For example, if all use-cases included in a use-case model were “Necessary” then
why would we need to “Rank”ing one or more of them as optional “by relative
importance”? We have summarized our findings from experiences with relations
between various quality attributes in Tables 17.2(a) and 17.2(b).

Finally, most of the requirements attributes are subjective. In such cases, it can
be difficult to measure a quality objectively via metrics; it may require performing
expert reviews for the ultimate assessment. Still, it is possible to associate those
characteristics with indicators that point at existence or absence of the quality un-
der concern.

Our experiences at ABB have proven that the level of quality achieved in re-
quirements produced during a software development project highly depends on the
process adopted. A feature of a process can influence a specific quality by leading
to an improvement in the quality, by detracting from the quality, or by doing both
hence, a trade-off situation; as well as a process might not address the quality at
all. An individual requirement or an aggregate of requirements created via RUP
would score very well across most of the quality attributes, whereas fare rather in-
sufficiently on others. Tailoring the standard RUP practices to fit a specific soft-
ware development project’s needs helps enhancing the poor quality but mainly
those attributes that matter most to the project. In the following sub-sections, we
describe those quality characteristics that were deemed important by the Stres-
someter projects at ABB, elaborate on their relations with other characteristics,
discuss the indicators of strengths and weaknesses, evaluate how the projects at-
tempted to achieve the quality, and specify the metrics for measuring the quality
where applicable.

17 “Good Quality” Requirements in Unified Process 379

Table 17.1 Quality attributes of requirements

Quality Attributes
[4] [5] [9] [11] [12] [14] [19] [24] [25]

Achievable/Feasible/Attainable I I I I

At the Right Level of Detail I, A I

Clear/ Precise/Meaningful I I I

Complete A A I A I, A A I, A A

Concise A A I I

Correct I, A I, A I, A I A

Cross-Referenced A

Design Independent I, A I, A I

Electronically Stored A

Executable/Interpretable A

Externally Consistent A A A

Forward Traceable I, A I, A I, A I I, A I

Implementation Independent I

Internally Consistent A A A A A A

Modifiable A A A A A

Necessary I I I

Not Redundant I, A

Organized A A

Prioritized/Ranked/Annotated
by Relative Importance

I I, A I, A I I, A

Prioritized/Ranked/Annotated
by Relative Stability

I I, A I, A I, A

Prioritized/Ranked/Annotated
by Version

 I, A

Reusable A

Traced/Backward Traceable I, A I, A I, A I I I

Unambiguous I, A I, A I I I, A I I I I

Understandable A I, A A

Verifiable I, A I, A I I, A I I I, A

I= Applies to an individual requirement; A=Applies to aggregate requirements such as a
complete SRS, a use-case model, a use-case specification etc.

 T

ab
le

 1
7.

2(
a)

 R
el

at
io

ns
 b

et
w

ee
n

qu
al

ity
 a

ttr
ib

ut
es

 o
f

re
qu

ir
em

en
ts

Achievable/ Fea-
sible/ Attainable

At the Right
Level of Detail

Clear/ Precise/
Meaningful

Complete

Concise

Correct

Cross-Referenced

Design Independent

Electronically Stored

Executable/ Inter-
pretable

Externally Consistent

Forward Trace-
able

Implementation
Independent

Internally Consis-
tent

A
ch

ie
va

bl
e/

Fe
as

ib
le

/A
tta

in
ab

le

A
t t

he
 R

ig
ht

 L
ev

el
 o

f
D

et
ai

l

C
le

ar
/ P

re
ci

se
/M

ea
ni

ng
fu

l
+?

+

C
om

pl
et

e

+

C
on

ci
se

+

-?

+

+

C
or

re
ct

+

+
+

C
ro

ss
-R

ef
er

en
ce

d

+

D
es

ig
n

In
de

pe
nd

en
t

E
le

ct
ro

ni
ca

ll
y

St
or

ed

+?

E
xe

cu
ta

bl
e/

In
te

rp
re

ta
bl

e

E
xt

er
na

lly
 C

on
si

st
en

t

+

F
or

w
ar

d
T

ra
ce

ab
le

+

Im
pl

em
en

ta
ti

on
 I

nd
ep

en
de

nt

In
te

rn
al

ly
 C

on
si

st
en

t

+

+?

T
ab

le
 1

7.
2(

a)
 R

el
at

io
ns

 b
et

w
ee

n
qu

al
ity

 a
tt

ri
bu

te
s

of
 r

eq
ui

re
m

en
ts

 (
co

nt
.)

Achievable/ Fea-
sible/ Attainable

At the Right
Level of Detail

Clear/ Precise/
Meaningful

Complete

Concise

Correct

Cross-Referenced

Design Independent

Electronically Stored

Executable/ Inter-
pretable

Externally Consistent

Forward Trace-
able

Implementation
Independent

Internally Consis-
tent

M
od

if
ia

bl
e

+
+

+

N
ec

es
sa

ry

N
ot

 R
ed

un
da

nt

O
rg

an
iz

ed

P
ri

or
it

iz
ed

/R
an

ke
d/

A
nn

ot
at

ed

by
 R

el
at

iv
e

Im
po

rt
an

ce

P
ri

or
it

iz
ed

/R
an

ke
d/

A
nn

ot
at

ed

by
 R

el
at

iv
e

St
ab

ili
ty

P
ri

or
it

iz
ed

/R
an

ke
d/

A
nn

ot
at

ed

by
 V

er
si

on

R
eu

sa
bl

e

T
ra

ce
d/

B
ac

kw
ar

d
T

ra
ce

ab
le

+

U
na

m
bi

gu
ou

s

+?

+?

U
nd

er
st

an
da

bl
e

+

+

V
er

if
ia

bl
e

+
+

+

=
 S

tr
en

gt
he

ns
 th

e
re

la
te

d
at

tr
ib

ut
e;

 -
 =

 W
ea

ke
ns

 th
e

re
la

te
d

at
tr

ib
ut

e;
 =

 N
o

re
la

ti
on

;
-?

 =
 M

ay
 s

tr
en

gt
he

n
th

e
re

la
te

d
at

tr
ib

ut
e;

 +

?
=

 M
ay

 w
ea

ke
n

th
e

re
la

te
d

at
tr

ib
ut

e

 T

ab
le

 1
7.

2(
b)

 R
el

at
io

ns
 b

et
w

ee
n

qu
al

ity
 a

tt
ri

bu
te

s
of

 r
eq

ui
re

m
en

ts

Necessary

Not Redundant

Organized

Prioritized/Ranked/
Annotated by Rela-
tive Importance

Prioritized/Ranked/
Annotated by Rela-
tive Stability

Prioritized/Ranked/
Annotated by Ver-
sion

Reusable

Traced/Backward
Traceable

Unambiguous

Understandable

Verifiable

A
ch

ie
va

bl
e/

Fe
as

ib
le

/A
tt

ai
na

bl
e

A
t t

he
 R

ig
ht

 L
ev

el
 o

f
D

et
ai

l

C
le

ar
/ P

re
ci

se
/M

ea
ni

ng
fu

l

+

C
om

pl
et

e
+

+

+

C
on

ci
se

+

C
or

re
ct

+

+

C
ro

ss
-R

ef
er

en
ce

d
-

D
es

ig
n

In
de

pe
nd

en
t

E
le

ct
ro

ni
ca

lly
 S

to
re

d

E
xe

cu
ta

bl
e/

In
te

rp
re

ta
bl

e

E
xt

er
na

lly
 C

on
si

st
en

t

+

Fo
rw

ar
d

T
ra

ce
ab

le

Im
pl

em
en

ta
tio

n
In

de
pe

nd
en

t

In
te

rn
al

ly
 C

on
si

st
en

t
+

+?

T
ab

le
 1

7.
2(

b)
 R

el
at

io
ns

 b
et

w
ee

n
qu

al
it

y
at

tr
ib

ut
es

 o
f

re
qu

ir
em

en
t (

co
nt

.)

Necessary

Not Redundant

Organized

Prioritized/Ranked/
Annotated by Rela-
tive Importance

Prioritized/Ranked/
Annotated by Rela-
tive Stability

Prioritized/Ranked/
Annotated by Version

Reusable

Traced/Backward
Traceable

Unambiguous

Understandable

Verifiable

M
od

if
ia

bl
e

+

-?

-?
-?

+

N
ec

es
sa

ry

-?

+

N
ot

 R
ed

un
da

nt

O
rg

an
iz

ed

Pr
io

ri
tiz

ed
/R

an
ke

d/
A

nn
ot

at
ed

by

 R
el

at
iv

e
Im

po
rt

an
ce

-

+?
/

-?

-?
-?

Pr
io

ri
tiz

ed
/R

an
ke

d/
A

nn
ot

at
ed

by

 R
el

at
iv

e
S

ta
bi

lit
y

+?
/

-?

-?
-?

Pr
io

ri
tiz

ed
/R

an
ke

d/
A

nn
ot

at
ed

by

 V
er

si
on

+?

/
-?

-?

-?

R
eu

sa
bl

e

T
ra

ce
d/

B
ac

kw
ar

d
T

ra
ce

ab
le

U
na

m
bi

gu
ou

s

U
nd

er
st

an
da

bl
e

-?
+

+?

/
-?

V
er

if
ia

bl
e

+

+

=
 S

tr
en

gt
he

ns
 th

e
re

la
te

d
at

tr
ib

ut
e;

 -
 =

 W
ea

ke
ns

 th
e

re
la

te
d

at
tr

ib
ut

e;
 =

 N
o

re
la

ti
on

;

- ?

 =
 M

ay
 s

tr
en

gt
he

n
th

e
re

la
te

d
at

tr
ib

ut
e;

 +

?
=

 M
ay

 w
ea

ke
n

th
e

re
la

te
d

at
tr

ib
ut

e

384 Yilmaztürk

17.4.1 Achievable/Feasible/Attainable

A requirement or an aggregate is achievable/feasible/attainable if and only if there
exists at least one system design and implementation that correctly implements the
requirement or all the requirements stated in the aggregate [5] at a definable cost
[14].

There are no particular means utilized or recommended by RUP to ensure or to
measure the achievability of all kinds of requirements involved in a development
project at an early stage of a software development project. Only standard RUP
activity that have relevance to ensure feasibility is constructing architectural-
proof-of-concept, which helps with determining whether there exists, or is likely
to exist, a solution that satisfies the architecturally-significant requirements, i.e.
the activity does not cover all the requirements.

Yet, for an industrial company that launches a software project with consider-
able amount of investment, tight time-to-market constraints, and severe competi-
tion, it is vital to know: (i) whether it is technically possible to achieve the identi-
fied requirements; (ii) whether it is possible to achieve the requirements within the
limitations imposed by time and budget. At ABB, we ensure the first concern by
including the developers in the reviews of the requirements artifacts. In the Vision
document, which comprises the high-level requirements, feasibility is not a high
priority quality to achieve; yet if a feature or a need is determined to be infeasible
with today’s technical knowledge, it is noted during the review meeting to be ne-
gotiated with the stakeholders. If the stakeholders insist keeping the requirement
in the Vision, the requirement is annotated with “not to be included in an immedi-
ate release”. Accordingly, infeasible requirements may stay in the Vision but they
are not traced forward to any use-cases or any lower level supplementary require-
ments, at least not until the next iteration or until a new technological improve-
ment in the area. It is higher importance to achieve feasibility nature in the lower
level requirements, i.e. in the use-case model, in the supplementary specifications
documents, and in the use-case specifications, because the actual work is defined
based on these artifacts. The first concern, i.e. technical feasibility, is achieved via
reviews and including not only the stakeholders but also the software architect(s),
and designer(s) in the reviews. The second concern, i.e. financial feasibility, is en-
sured by preparing a number of scenarios, and computing the project length and
cost in the case of each scenario (see Table 17.3). The calculations are performed
to view the worst possible case, the best possible case and three optimal cases that
demonstrate the probable, very probable, and most probable proceeding of the
project. These states differ from each other based on the number of weeks per it-
eration, number of developers that can be involved throughout the development
process, number of use cases identified for the whole system, number of weeks to
be spent on the development of each use case, and the characteristics of each de-
veloper during the development process. Our method is adapted from “Use-Case
Points” of Gustav Karner [15], [20]. We ignore the weight of actors in the calcula-
tions. We consider our “supplementary requirements” as the technical factors, and

17 “Good Quality” Requirements in Unified Process 385

include their effect in the calculations indirectly via the complexity of use-cases.
Finally, we decide on complexity of use-cases by ranking them on a 5-point scale,
5 illustrating the highest complexity.

Table 17.3 Financial feasibility scenarios

No. weeks
/iteration (3..8)

L 8 7 6 5 5

No. of developers N 2 3 4 4 4

No of use cases K 15 15 15 15 15

No. weeks/use
case

T 6 5 4 4 5

Efficiency per
user (0..1)

U 0.5 0.6 0.5 0.5 0.7

 Worst Best Optimal 1 Optimal 2 Optimal 3
Developer effort
(dev/iteration)

E 8 13 12 10 14

No of iterations M 11.25 6 5 6 5

Project length
(weeks)

S 90 42 30 30 27

Project costs
(men* week)

P 90 75 60 60 75

The computations are done by using the following formulas:
E = U*L*N
M = T*K / (U*L*N) = T*K/E
S = T*K / (U*N) = M*L
P = S*N*U

Upon completion of computations, we compare the existing situation in the
project with the results of different scenarios, and determine whether the project is
too optimistic about the number and content of the requirements to be fulfilled by
the final product. Measurement of requirements attainability is done at least once
by the beginning of a project. Depending on the volatility of the requirements and
changes in the environmental factors for the team, it may be repeated by the be-
ginning of each iteration.

17.4.2 Clear/ Precise/Meaningful

A requirement or an aggregate is clear/precise/meaningful if and only if (a) nu-
meric quantities are used whenever possible, and (b) the appropriate levels of pre-
cision are used for all numeric quantities [5]. Keeping a proper scope in the sense
of providing a definite amount of information, avoiding “motherhood” statements
like “shall provide a continuous service”, “shall ensure the highest system secu-
rity” is vital for clarity [9].

386 Yilmaztürk

Executable requirements are Clear requirements. A requirement that is written
in a formally defined computer executable, rather than a natural language, pro-
vides a more precise description. For example, the MATLAB simulation of the
automatic mode of our cluster type control system operation provided more pre-
cise and validated requirements input into the design phase of the development.
Moreover, Unambiguousness enhances Clarity of requirements. If we take an ex-
ample to ambiguous requirements from one of our Stressometer projects at ABB,
initially what the marketing department desired was “The system shall have a fast
computation time”. Such a requirement was rather vague and too general to work
with for the development team. There were questions as “How fast is good
enough?”, “We can have various configurations of the system, which configura-
tion are we talking about? The speed of computation time differs depending if it is
a monolithic system or a distributed one; if it is a measurement only or a full con-
trol system; etc.” Eventually, the requirement had to take a clearer format as “A
full computation of the main functions, from the time the Base Measurement Sys-
tem TCP/IP signal is received until an output is issued (external communication
not included), for a reversible mill single node flatness measurement system with
64 measurement zones, shall not be greater than 6.0 ms”. The problem with this
requirement was not only that it was ambiguously stated but also that there was
quite a lot vital information missing. Accordingly, we can infer that incomplete-
ness may lead to unclear requirements; or in other words, completeness may in-
crease the possibility of having clear requirements.

RUP supplies templates and examples, which provide structure and guidance
for content of different types of requirements thus assists in preparing
clear/precise/meaningful requirements. Further, it recommends review of these ar-
tifacts against checkpoints, which include criteria for fulfilling the attribute. Some
examples to the checkpoints for requirements clarity are “It is clear how and when
the use case's flow of events starts and ends” “It is clear who wishes to perform a
use case” “The purpose of the use case is also clear.” “The actor interactions and
exchanged information are clear.” “The use case model clearly presents the behav-
ior of the system.” “The Introduction section of the use-case model provides a
clear overview of the purpose and functionality of the system.”

SUP did not add any new means to what is already suggested by the general
RUP. In our Stressometer projects, we did not measure requirements clarity di-
rectly but rather ensured a common agreement on existence of it through reviews
by the stakeholders that constituted the domain experts, representatives of the ex-
ternal customers who bought the system, and representatives of the internal cus-
tomers who used the requirements in the subsequent steps of the development life-
cycle.

17.4.3 Complete

A requirement is complete if it is capable of standing alone when separated from
other requirements and does not need further amplification [14]. An aggregate of
requirements is complete if and only if (a) It includes all significant requirements,

17 “Good Quality” Requirements in Unified Process 387

whether relating to functionality, performance, design constraints, attributes, or
external interfaces. In particular, any external requirements imposed by a system
specification should be acknowledged and treated. (b) It involves all responses of
the software to all realizable classes of input data in all realizable classes of situa-
tions –including responses to both valid and invalid input values. (c) All figures,
tables, and diagrams in the aggregate are fully labeled and referenced; all terms
are defined; units of measure are provided [12]. (d) No sections are marked “To
Be Determined (TBD)” [4]. (e) It covers all allocations from higher level [14]. (f)
It must not include situations that will not be encountered or unnecessary capabil-
ity features [25].

Organizing the requirements in a logical way, for example by following a tem-
plate recommended by a specific process or by a standard, helps readers under-
stand the structure of a functionality described in a use-case or in a standard re-
quirements specification document, and makes it easier for them to identify if
something is missing; hence, complete requirements. In similar sense, executing
requirements via prototyping or via simulation during requirements analysis gives
the stakeholders opportunity to validate the requirements as well as reflect on the
missing ones, leading to a more complete set of requirements and more complete
definition of requirements. Further, considering the condition (f) in the above
definition, we can conclude that for requirements to be complete they have to be
necessary. In other words, preparing an immense use-case model with “golden
plating” use-cases omitting the necessary functionalities does not make the use-
case model more complete. In fact, if we refer to the condition (e) in our defini-
tion, we determine that it is essential to establish backward traceability from the
use-case model to the higher-level requirements specification, for example in
ABB’s case, to the vision document that includes all the features and user needs of
the prospective software system.

Focusing on user tasks instead of system functions during requirements elicita-
tion avoids overlooking the requirements as well as including requirements that
are not necessary [24]. To this end, using use-cases for capturing requirements are
the ideal means. In addition, semi-formal nature of use-cases makes it easy for the
stakeholders to read and understand a requirements document, and eventually,
provide a feedback on the missing parts. Further, using a standard specification
format, a template, can reveal omissions and prevent loss of requirements [10].
Moreover, iterative development of RUP brings about assessment of and maturing
accordingly the quality of artifacts throughout the development life cycle. Every
iteration results in an executable release, which facilitates identification of missing
requirements that can be dealt with in the subsequent iterations.

During our projects at ABB, we considered completeness of requirements as
one of the primary quality characteristics. SUP mainly utilized the strategies and
tools provided by the RUP. Further, we ensured that the release produced by the
end of an iteration was executed and continuously tested in an environment that
simulated a typical final customer environment. Watching real life scenarios in-
creased the interest level, the concentration, and the comprehension of the stake-
holders thus opened new discussions, which led to identification of new, insuffi-
ciently described, or missing requirements. Even though, we highly depended on

388 Yilmaztürk

qualitative means as stakeholders’ judgment, compliance with templates and
guidelines, we also used the metrics listed in Table 17.4 in an attempt to quantify
the maturity of completeness of different requirements artifacts by the end of each
iteration:

Table 17.4 Completeness metrics

Metric Related Requirement Artifact and Implications
Number of Use-Cases Traced Back
to Features/Total Number of Use-
Cases

Completeness of Use-Case Model. Low value indi-
cates existence of use-cases without any origin.

Number of Supplementary Re-
quirements Traced Back to Fea-
tures/Total Number of Supplemen-
tary Requirements

Completeness of Supplementary Specifications.
Low value indicates existence of non-functional re-
quirements without any origin.

Number of Incompletes in a Use-
Case Specification

Completeness of a Use-Case Specification. SUP
recognizes incompletes such as TBD, TBS, Not de-
fined, Not determined etc. as risk indicators for re-
quirements completeness. SUP imposes minimizing
the usage of incompletes, allows usage of such
terms if and only if they are followed by informa-
tion regarding when and by whom the incomplete
portion will be attended, and considers it as high
risk for the project if the number of incompletes
were not decreased after two consequent iterations.

Number of Incompletes in a Sup-
plementary Specification

Completeness of a Supplementary Specification
document. Implications apply as in the case of use-
case specifications.

17.4.4 Concise

A requirement or an aggregate is concise if it is as short as possible without ad-
versely affecting any other quality [5].

Generally, conciseness is measured in terms of size. Going overboard with
completeness may easily increase the size, and consequently, jeopardize the con-
ciseness of the requirement or the aggregate. A requirement, no matter in which
format it is, must only state what is required and not how it shall be met in terms
of design or implementation. Obviously, including such unnecessary information
will bring about unnecessary increase in size hence, less concise. Besides, re-
quirements can be stated at different levels of abstraction highly depending on the
preferences of different projects. For example, [3] has defined two different use-
case specification formats, namely casual and fully dressed, both of which are
valid but may differ in size and thus, in conciseness. Finally, in order to increase
understandability, requirements specifiers often use redundancy, which is not an
error itself [12, 4, 5], yet can easily lead to problems in achieving other qualities
one of which is conciseness.

17 “Good Quality” Requirements in Unified Process 389

RUP does not provide any particular assistance for conciseness. During our
projects at ABB, we were mainly concerned about the size of the use-case models
increased with the number of use-cases, number of included use-cases, number of
extending use-cases, and number of each type of relations. Besides, writing exten-
sive use-cases by keeping a low level of abstraction was a topic discussed at al-
most every review meeting. Yet, the first two projects proved that conciseness of
the use-case model or the conciseness of use-case specifications did not constitute
a high risk for the project or for the quality of the final product. Accordingly, it
was not addressed in the subsequent projects by the SUP.

17.4.5 Correct

A requirement is correct if it accurately describes a functionality to be delivered
[24]. An aggregate is correct if and only if every requirement stated therein is one
that the software shall meet [12].

As mentioned earlier in Sect. 17.4.3, executing requirements enables the stake-
holders to validate the specified requirements, thus, to ensure the correctness of
the requirements. Externally and/or internally inconsistent requirements hinder es-
tablishing correctness for it can be difficult to know which one of the conflicting
requirements is correct if there is any. Further, regarding our definition of cor-
rectness it is explicit that a requirement or an aggregate of requirements is always
correct if it is necessary. Finally, based on the relations both with external consis-
tency and with necessity, we can infer that a requirement is correct if it can be
traced back to its source at a higher-level –naturally, on the condition that the
higher-level requirement itself is correct.

RUP suggests involvement of end users in the requirements review meetings
only if possible. It provides guidelines for test case generation from the require-
ments, but leaves the preparation of the test cases until the implementation work is
scheduled for them. It does not require review of test cases either. By recommend-
ing usage of UML, and tools that do not provide any facilities for internal or ex-
ternal consistency checks of requirements, RUP hinders achievement of correct-
ness. Yet, the iterative nature of the process enables continuous learning and
improving throughout the development life cycle, and accommodating corrective
changes in requirements as a result of such learning, any time during the project.
On the other hand, we believe it is only the end users who can determine the cor-
rectness of user requirements. Accordingly, SUP process imposes involvement of
representatives of both external users that work at the customer site and the inter-
nal users that customize, install, and maintain the system, in the review of use-case
model, use-case specifications, and supplementary specifications. Further, accord-
ing to the SUP, test cases should be derived from the requirements and parallel to
the specification of the requirements so that any errors in the requirements can be
revealed and corrected before the design activities start. The test cases should be
reviewed by the requirements reviewers. Finally, continuous execution and testing
of incremental releases in an environment that simulated a typical final customer

390 Yilmaztürk

site provides continuous and realistic feedback to the development team about the
requirements that conflict with customer expectations.

17.4.6 Design Independent

A requirement or an aggregate is design independent if and only if there exists
more than one system design and implementation that correctly implements the
individual requirement or the requirements in the aggregate [5].

RUP provides only assistance for design independence via brief information
about how to distinguish “what” from “how” in the use-case model guidelines.
Templates and examples provided are also useful but not sufficient. In order to en-
sure design independence of the requirements, SUP imposes including the soft-
ware architect and designers in the review of requirements artifacts so that they
can point out those details that may limit their ability to consider alternative de-
sign possibilities in order to synthesize the most optimal one.

17.4.7 Externally Consistent

An aggregate is externally consistent if and only if no requirement stated therein
conflicts with any already baselined project documentation [5].

Traditionally, external consistency is defined in terms of compliance with the
preceding documents [4] and in most of the cases, those that include higher-level
requirements [24]. Yet, considering the importance of configuration and change
management during the whole lifecycle of software development, especially when
following an iterative and incremental approach, at ABB we preferred to adopt a
definition that emphasizes the importance of promoted baselines. In this way, we
aimed to: (i) handle inconsistencies as a part of our formal change management,
(ii) extend the context of external inconsistency to include project artifacts other
than the high-level requirements documents such as project plan, a baselined re-
lease from the previous iteration, etc. Traceability is the only characteristic that we
have experienced to affect the external consistency. If there is a link from every
low-level software requirement, for example a use-case in the use-case model, a
supplementary requirement in a supplementary specifications document, to a
higher-level requirement, for example a feature or a need in the vision document,
i.e., backward traceable then the aggregate including these requirements is exter-
nally consistent with the high-level requirements. In the same manner, if there is a
link from each requirement to at least one lower-level requirement or to a further
development artifact such as a sequence diagram, a class diagram, a test case, i.e.
forward traceable then the aggregate including these requirements is in agree-
ment with the lower-level documentation thus externally consistent with the par-
ticular documentation.

RUP provides well-defined requirements management activities, which in-
cludes detailed guidance for establishing and maintaining implicit and explicit
traceabilities to and from requirements at different levels, and for managing

17 “Good Quality” Requirements in Unified Process 391

changing requirements, and change management activities. Further, it presents
Requisite Pro to facilitate its requirements management practice. Yet, as being a
UML-based software development process, both RUP and SUP suffer inter- and
intra-model inconsistencies. For example, during our projects at ABB we experi-
enced difficulties in keeping the use-case models of different sub-systems consis-
tent with each other. Eventually, we decided to use one common use-case model,
which was in the end too large to manage. Besides, without any support for auto-
matic consistency checks from Rational Rose, it required considerable amount of
manual effort to ensure consistency even among the elements of the same model.
Similar situation applied in preserving the existing consistencies between different
models during model transformations, for example while reflecting changes in the
implementation model to the design model and eventually to the relevant use-case,
actor, or portion of the specification of a use-case in the use-case model.

17.4.8 Forward Traceable

A requirement or an aggregate is forward traceable if and only if it is written in a
manner that facilitates the referencing of the requirement or each individual re-
quirement of the aggregate in future development or enhancement documentation
[5, 12].

Common methods used for explicit traceability includes numbering every para-
graph hierarchically, numbering every requirement with a unique number, using a
convention to indicate a requirement and using a tool to extract and uniquely
number all sentences that comply with the particular convention [4]. To this end, it
will be much easier to achieve forward traceability if the requirements are elec-
tronically stored by using a tool that facilitates numbering and/or extracting sen-
tences according to a defined convention. Besides explicit traceability, there is
certain amount of traceability implicit in every development process [21]. For ex-
ample in the case of projects that follow RUP, such traceabilities are achieved via:
(i) Naming Conventions, (ii) The construction of mappings between the models,
(iii) Relationships between the model items themselves, (iv) The creation of dif-
ferent perspectives illustrating how the elements of one model satisfy the demands
implicit in the elements of another model. Some of these are easier to fulfill by
electronically storing the requirements in a tool that has the UML meta-model de-
fined in it, such as Rational Rose. A detailed discussion about forward traceability
can also be found in Chap. 5.

One of the best practices with RUP is managing requirements [18]. As a major
part of the requirements management, RUP puts specific emphasis on establishing
traceabilities among different levels of requirements and from the requirements to
the rest of the software development artifacts. It provides information about and
guidance for various possible traceability strategies, most common of which are
No Use-Case Model; Use-Case Model Only; Features Drive the Use Case Model;
The Use-Case Model is an interpretation of the Software Requirements Specifica-
tion; The Use Case Model reconciles multiple sets of traditional software require-
ments [21]. Further, RUP facilitates building and utilizing these strategies via tool

392 Yilmaztürk

support. For example, it recommends Rational RequisitePro as a tool for defining,
capturing, and tracking the traceability links. Whereas, on the other hand, as being
a UML-based software development process, RUP employs a "use-case driven
approach", meaning use cases that can only describe the functional requirements
are the basis for the entire development process [18]. It describes the activities to
move from specifications of use-cases to the realization of use-cases subsequently
to the implementation and testing of use-cases, in detail. It provides no similar as-
sistance for the non-functional requirements, which must also be provided to the
customer in the final product together with the functionality thus, must be de-
signed and tested together with the functionality.

Table 17.5 Forward traceability metrics (1 of 2)

Metric Related Requirement Artifact and Implications
(Number of Features Traced to Use-
Cases) + (Number of Features
Traced to Supplementary Specifica-
tions)/Total Number of Features

Forward Traceability of Vision. This metric is
mainly used before lower level requirements speci-
fications are prepared. Low value may suggest un-
satisfactory quality in various areas. It directly illus-
trates poor forward traceability from the high-level
requirements to the lower level ones. In addition, it
may imply inconsistency between the high-level re-
quirements and the lower level requirements. It may
indicate incorrect requirements at the lower level. It
may signal incompleteness unless the Vision in-
cludes requirements to be fulfilled in the long-term,
as it was the case in our projects.

(Number of Features Traced to Use-
Case Specification Sections) +
(Number of Features Traced to
Supplementary Requirements)/Total
Number of Features

Forward Traceability of Vision. This metric can be
used after starting to prepare the lower level re-
quirements specifications. The implications are of
the same nature as described regarding the previous
metric; yet it provides results that are more accurate
thus, facilitates identifying the root causes.

Number of Use-Case Specification
Sections Traced to Sequence Dia-
grams / Total Number of Use-Case
Specification Sections to be Traced
to Sequence Diagrams

(Previously: Number of Use-Case
Specification Flows Traced to Se-
quence Diagrams/Total Number of
Use-Case Specification Flows)

Forward Traceability of Use-Cases to the Design
Model. Low value indicates low traceability to the
sequence diagrams. All development cases prepared
according to the SUP principles imposes one-to-one
relation between the flows of a use-case specifica-
tion and of a use-case realization specification. Yet,
as it was observed in some projects, it might be eas-
ier, less redundant, more concise, and more under-
standable to describe the design of more than one
flow in the same sequence diagram. Besides, due to
the iterative nature of the projects, not all flows
might be considered for a design in a particular it-
eration. Further, occasionally, we encountered the
need to design use-case specification sections other
than the flows via sequence diagrams. Accordingly,
we adjusted our initial metric.

17 “Good Quality” Requirements in Unified Process 393

Table 17.5 (cont.) Forward traceability metrics (2 of 2)

Metric Related Requirement Artifact and Implications
Number of Use-Case Specifications
Traced to Class Diagrams/Total
Number of Use-Case Specifications
to be Traced to Class Diagrams

(Previously: Number of Use-Case
Specification Flows Traced to Class
Diagrams/Total Number of Use-
Case Specification Flows)

Forward Traceability of Use-Cases to the Design
Model. Low value indicates low traceability to the
class diagrams thus, eventually quality problems in
the code. In the very first project, it was decided to
illustrate each use-case flow with one class diagram
in the design model. By doing so, we experienced
difficulties in keeping the diagrams consistent, and
the design model and the use-case realization
documents concise. Accordingly, we adjusted the
development case and our initial metric.

Number of Use-Case Scenarios
Traced to Functional Test
Cases/Total Number of Use-Case
Scenarios to be Traced to Test
Cases

Forward Traceability of Use-Cases to the Test
Model. Low value indicates low traceability to the
test cases thus, insufficient testing.

RUP does not recognize any explicit link between the use-cases and the sup-
plementary, i.e. the non-functional, requirements, either. In brief, even though
some of the traceability strategies include links from the Supplementary Specifica-
tions to the subsequent artifacts, there exists no particular RUP guidance for how
to establish such traceabilities.

During our projects at ABB, we used “Features Drive the Use Case Model”,
which is the default strategy recommended by the Rational Unified Process. The
Use-Case Model and Supplementary Specifications form a complete software re-
quirements specification. Features are documented in the Vision Document and
are traced to use cases. If they are not reflected in the Use Case Model then they
are traced to supplementary requirements in the Supplementary Specifications
[21]. Accordingly, we handled the tracing from features to the use-case sections
and to the supplementary requirements, from use-case specifications to the use-
case realizations, to the functional test cases and eventually to the test procedures
whereas, we managed the linkage from the supplementary requirements to the use-
case realizations and to the test procedures in an ad hoc manner. For example, we
could easily point at which test case realized which part of which use-case in the
test model; whereas, supplementary specifications were directly entered into the
test procedures, and in most of the cases to a degree depending on the initiative of
the test designer. Table 17.5 includes the forward traceability metrics we used in
our projects run according to SUP:

17.4.9 Internally Consistent

An aggregate is internally consistent if and only if no subset of individual re-
quirements stated in it conflict [12]. The same term is used for the same item in all
requirements of the aggregate [14].

394 Yilmaztürk

When an aggregate is not organized, it may be difficult to identify the inconsis-
tencies [14]. Therefore, it should be preferred to organize the requirements accord-
ing to a standard or by using a template recommended by the process used. In ad-
dition, we often use redundancies in documentation in order to increase the
readability, while causing a risk for internal inconsistency. When altering one oc-
currence of a requirement we may forget to do so with other occurrences; hence,
internal inconsistency; yet, we can decrease the risk by using cross-references. Fi-
nally, better consistency can be achieved with executable requirements depending
on whether the tool used has a consistency check facility and how sophisticated
the facility is. For example, [7] describes a consistency algorithm for the live se-
quence charts of the “play engine” [8] mentioned earlier. By adopting such an al-
gorithm in the “play engine”, it is aimed to automatically detect inconsistencies in
a specification, enable a user to track the reason for inconsistencies via play out,
suggest a consistent scenario with “good” order of events whenever there is one,
and avoid abnormal abortion of play outs due to inconsistencies [8]. [4] identifies
four types of inconsistencies: (i) Conflicting behavior; (ii) Conflicting terms; (iii)
Conflicting characteristics; (iv) Temporal inconsistency.

RUP recommends developing a Glossary during the early phases of a project,
in order to ensure consistent usage of the terms throughout the whole development
life cycle hence, assistance to avoid conflicting terms. Even though, as our experi-
ences showed, it might occasionally be difficult to keep the Glossary itself consis-
tent, it is helpful to have one Glossary. On the other hand, both RUP and SUP rely
highly on the reviews for detecting the conflicting behavior, conflicting character-
istics, and temporal inconsistencies. Tracing such inconsistencies manually in a
large, evolving use-case model or supplementary specifications can be hard and
error prone.

17.4.10 Modifiable

An aggregate is modifiable if and only if its structure and style are such that any
changes to the requirements can be made easily, completely, and consistently
while retaining the structure and style [12].

Our experiences from software development projects at ABB have illustrated
high importance of requirements modifiability for: (i) requirements change; (ii)
concerns other than but affecting software requirements change; (iii) requirements
evolve; (iv) requirements can be wrongly stated due to various inadvertent rea-
sons. In such cases, it is easier to identify and subsequently, apply the modifica-
tions if (i) the requirements are organized in a coherent and easy-to-use way; (ii)
redundancy is kept to minimum; (iii) cross-references are used where necessary;
(iv) the requirements are uniquely labeled to ease both forward and backward
traceabilities; and (iv) the requirements are electronically stored. On the other
hand, ranking requirements by importance, stability, or version may inhibit modi-
fiability if the aggregate is organized according to the ranking instead of according
to some logical grouping recommended by a standard, or by a template provided

17 “Good Quality” Requirements in Unified Process 395

by the process followed, or chosen by the project in order to keep the related con-
cerns together and unrelated ones separate.

RUP iterative life cycle allows changes to the requirements at almost any point
in the development. Besides, since development is done incrementally, it is easier
to detect the effects, estimate the cost of, and eventually carry out a suggested
modification. RUP distinguishes between different types of requirements, and
provides templates for organizing each type of requirements. It recommends using
Rational Rose to electronically store the use-case models and diagrams, and sup-
plies specification templates ready to be used in Microsoft Word, Adobe Frame-
Maker, and HTML formats. SUP inherits the advantages of the generic RUP as
described above.

17.4.11 Necessary

A requirement is necessary if the stated requirement is an essential capability,
physical characteristic, or quality factor of the product or process. If it is removed
or deleted, a deficiency will exist, which cannot be fulfilled by other capabilities
of the product or process [14].

One common way suggested by the literature to decide on the necessity of a re-
quirement is to trace the requirement back to its origin, for example in the case of
our projects, which use RUP as the software development process, to trace a use-
case back to a feature or a need in the vision. If it cannot be traced it may not be
necessary. All definitions of necessity introduce the characteristic as a primary
condition for a requirement to qualify for being included in the final product [11],
[14], and [24]. Yet, depending on the scheme we use, ranking a requirement for
importance may conflict with the necessary nature of the requirement. For exam-
ple, [12] suggests ranking requirements based on a degree of necessity that distin-
guishes classes of requirements as essential, conditional, and optional. According
to the scheme, essential requirements are those that must be provided for the final
product to be accepted, hence necessary requirements. Whereas, conditional re-
quirements are those that would enhance the final product but would not make it
unacceptable if they are absent, and optional requirements are those that may or
may not be worthwhile, hence not necessary requirements.

Table 17.6 Necessity metrics

Metric Related Requirement Artifact and Implications
Number of Use-Case Sections
Traced Back to Features/Total
Number of Use-Case Sections

Necessity of Use-Cases. A value other than 1 indi-
cates existence of not required use-case flows, spe-
cial requirements, post, or pre-conditions.

Number of Supplementary Re-
quirements Traced Back to Fea-
tures/Total Number of Supple-
mentary Requirements

Necessity of Supplementary Requirements. A
value other than 1 indicates existence of unneces-
sary non-functional requirements.

RUP describes specific and detailed activities for requirements elicitation. It
suggests methods to follow for identifying what the stakeholders require. It en-

396 Yilmaztürk

hances the assistance with guidelines where appropriate. It also provides related
checkpoints to be adopted at the review meetings. As a part of its requirements
management practice, RUP suggests various traceability strategies, which provide
guidance on keeping links between requirements at different levels. Finally, the it-
erative nature of RUP allows continuous learning and improving the requirements
throughout the development life cycle. SUP requires involvement of representa-
tives of all types of stakeholders in the requirements elicitation and identification
process. Besides, it uses well-defined traceability procedures between high level
and lower level requirements. Accordingly, the risk with identifying requirements
that do not contribute to the satisfaction of some customer needs is minimized.
SUP also suggests collecting the metrics identified in Table 17.6 and discussing
the results in the relevant review meetings.

17.4.12 Organized

An aggregate is organized if and only if its contents are arranged so that readers
can easily locate information and logical relationships among adjacent sections are
apparent [5].

RUP recommends organizing the functional requirements using use-cases. In-
stead of a traditional bulleted list of requirements, RUP suggests organizing them
in a way that tells a story of how someone may use the final product [18]. Further,
it provides templates complemented with guidelines and examples to assist in
documenting the needs and features in Vision document, and lower level require-
ments in Use-Case Model survey, Use-Case Specifications, and Supplementary
Specifications, in an organized manner. SUP adopts generic RUP means, with mi-
nor adaptations according to the ABB instructions. The “organized” nature of re-
quirements is ensured via the checkpoints at the review meetings.

17.4.13 Prioritized/Ranked/ Annotated

A requirement is prioritized/ranked/annotated by relative importance if the re-
quirement is assigned an implementation priority to indicate how essential it is to
include it in a particular product [24]. An aggregate is prioritized/ranked/annotated
by relative importance if each requirement in it has an identifier to indicate the
importance of that particular requirement [12].

A requirement is prioritized/ranked/annotated by relative stability if the re-
quirement is assigned an identifier to indicate the stability of the particular re-
quirement [5]. An aggregate is prioritized/ranked/annotated by relative stability if
each requirement in it has an identifier to indicate the stability of that particular
requirement [12]. A requirement or an aggregate is prioritized/ranked/annotated
by version if a reader can easily determine whether the particular requirement or
which requirements of the aggregate will be satisfied in which version of the pro-
spective product [5].

17 “Good Quality” Requirements in Unified Process 397

The characteristics that may hinder from achieving prioritized/ranked/annotated
by relative importance are those that are related to the organization of require-
ments in the aggregates. If it is preferred by the project to organize the require-
ments to be modifiable, or to rank by relative stability, or to rank by version, then
prioritization by relative importance cannot be performed in the structure of the
aggregate. Yet, by extracting the requirements into another means such as a work-
book or a database, the project can still rank the requirements by relative stability
and by version without adversely affecting the ranking by relative importance na-
ture of the original aggregate. Besides, if an aggregate is organized by following a
standard or a template provided by the process adopted, it cannot be organized ac-
cording to the ranking of its requirements by relative importance. Similar situa-
tions also apply to achieving prioritization of requirements by relative stability and
by version. Finally, if a requirement is necessary, it represents functionality, a ca-
pability, a physical characteristic, or a quality factor essential for the final product;
therefore, it cannot be ranked to a level that degrades its necessity.

Traditionally, it is suggested to establish ranking according to relative impor-
tance, stability, or version in the organization and the structure of an aggregate.
Accordingly, an aggregate organized to be modifiable would have a negative im-
pact on this characteristic. However, in SUP, it is suggested to extract the re-
quirements from the aggregate into a workbook, execute the rankings based on the
attributes chosen beforehand, and eventually, sort and save the matrix in separate
datasheets per each ranking. In this way, the project could keep the original or-
ganizations of the use-case model, supplementary specifications, and the vision
while at the same time it could refer to the rankings when needed, for example for
(re-)planning by the beginning of an iteration. In this way, it was also possible to
generate different combinations of rankings in summary tables depending on the
aim of the planning. For example, if it was decided that we should plan the itera-
tion to develop the use-cases with the critical benefits, and to stabilize the archi-
tecture, then it would be necessary to view the matrix sorted first by relative im-
portance and then by stability on one worksheet. Table 17.7 illustrates a portion of
a use-case matrix resulted from such combined ranking during one of our projects
at ABB.

As a part of its Requirements Management activities, the generic RUP recom-
mends defining the attributes to be tracked for each type of requirement. Examples
to such attributes are Stability, Effort to implement, Risk to the development ef-
fort, etc. It provides detailed guidelines how to identify, store, and review the at-
tributes. Further, it supplies a tool mentor to facilitate these activities via Requi-
sitePro, which enables defining attributes for different types of requirements,
storing the requirements together with the attribute values, and retrieving and or-
ganizing the requirements by attribute values via filtering or sorting in views. In
conclusion, RUP excels the “prioritization” related quality attributes by delivering
the means for sophisticated groupings of requirements.

398 Yilmaztürk

Table 17.7 Example use-case attribute matrix

Use-Case No Status Benefit Effort

Technical

Risk

Architectural

Impact Stability Priority

Scheduled

for the

Current

Iteration

Responsible

Party

UC-20 Proposed Critical High Medium Extends High High Yes Christer

UC-23 Proposed Critical High Medium None Medium High Yes Olle

UC-51 Proposed Critical Medium Medium None Medium High Yes Olle

UC-21 Proposed Critical Medium Medium None High Medium Yes Christer

UC-49 Proposed Critical Medium Medium None High Medium Yes Christer

UC-33 Proposed Critical Medium Low None High Low Yes LEM

UC-55 Proposed Critical Medium Low None High Low

For a more detailed survey on requirements prioritization and requirements pri-
oritization techniques, readers should also refer to Chap. 4 in this book.

Table 17.8 Backward traceability metrics

Metric Related Requirement Artifact and Implications
Number of Use-Cases
Traced Back to Fea-
tures/Total Number of Use-
Cases

Backward Traceability of Use-Case Model. A value
other than 1 indicates poorly traced use-cases. It also
suggests existence of use-cases without any origin.

Number of Use-Case Speci-
fication Traced Back to Fea-
tures/Total Number of Use-
Case Specification Sections

Backward Traceability of a Use-Case. A value other
than 1 indicates poorly traced use-cases. It also sug-
gests existence of use-case sections, such as pre or
post conditions, or special requirements, without any
origin.

Number of Supplementary
Requirements Traced Back
to Features/Total Number of
Supplementary Require-
ments

Backward Traceability of Supplementary Specifica-
tion. A value other than 1 indicates poorly traced sup-
plementary specification and supplementary require-
ment. It also suggests existence of supplementary
requirements without any origin.

Number of Sequence Dia-
grams Traced Back to Use-
Case Specification Sec-
tions/Total Number of Se-
quence Diagrams

Backward Traceability of Design Model to the Use-
Cases. A value other than 1 indicates poorly traced
sequence diagrams. It signifies existence of design
elements without any origin. It may also suggest in-
consistencies between what the end customer expects
and what is being developed.

Metric Related Requirement Artifact and Implications
Number of Class Diagrams
Traced Back to Use-Case
Specification Sections/Total
Number of Class Diagrams

Backward Traceability of Design Model to the Use-
Cases. A value other than 1 indicates poorly traced
class diagrams. It signifies existence of design ele-
ments without any origin. It may also suggest incon-
sistencies between what the end customer expects and
what is being developed.

Number of Functional Test
Cases Traced to Use-Case
Scenarios/Total Number of
Functional Test Cases

Backward Traceability of Test Model to the Use-
Cases. A value other than 1 indicates poorly traced
test cases. It suggests existence of test cases without
origin. It also signifies that necessary functionalities
were not tested and/or extra functionality was imple-
mented without informing the requirements team first.

17 “Good Quality” Requirements in Unified Process 399

17.4.14 Traced/Backward Traceable

A requirement or an aggregate is traced/backward traceable if the origin of the re-
quirement or of each requirement of the aggregate is clear [5].

The discussion about the explicit and implicit traceability and the influence of
electronically stored characteristics on the forward traceability (see Sect. 17.4.8)
also applies to the backward traceability. Further, the discussion about the support
by the generic RUP and SUP for establishing traceability in the same section
should also be considered here. Yet, what differs is the metrics we used in our pro-
jects in order to measure the degree of backward traceability achieved thus, detect
possible risks and flaws in the projects:

17.4.15 Unambiguous

A requirement or an aggregate is unambiguous if different readers with similar
backgrounds would be able to draw only one interpretation of the requirement [9,
24] or of each requirement in the aggregate [12]. As discussed in detail earlier in
Chap. 11, natural language is inherently ambiguous. In order to decrease the am-
biguity thus increase the unambiguousness, one can use more deterministic meth-
ods and languages with well-defined semantics, such as state machines, predicate
calculus, prepositional calculus, petri nets. Most of these methods and languages
are supported by software tools that can automatically detect lexical, syntactic,
and semantic errors. Accordingly, electronically stored and/or executable require-
ments may constitute less ambiguity.

RUP is a UML-based software development process. UML has limited notation
to express different types of requirements. In fact, it only helps visualizing the ac-
tors and the use-cases that constitute the lower level functional requirements.
UML does not provide support for detailing the use-cases. Even though RUP sug-
gests using sequence diagrams to show how an actor interacts with a use-case, or
using activity diagrams or state charts to describe a single use-case in order to
formalize use-cases, the common means to describe use-cases is Natural Lan-
guage. In addition, use-cases are not the only requirements of a software product.
RUP uses Vision documents for specifying the high-level requirements, and Sup-
plementary Specifications to describe the non-functional requirements. Both Vi-
sion and Supplementary Specifications are created also by using Natural Lan-
guage. Natural Language has inherent ambiguity. Yet, RUP defines a common
vocabulary in order to decrease ambiguity among team members. It recommends
checkpoints to be used during the review of requirements specification documents.
Such checkpoints are too general and insufficient to ensure a satisfying level of
unambiguousness in the requirements artifacts.

Active participation of all types of stakeholders in the elicitation and review of
the requirements and preparation of test cases parallel to the preparation of the
use-cases are the main means that SUP recommends in order to decrease the am-
biguity in the requirements. It recognizes a list of weak phrases that may cause
uncertainty and lead to multiple interpretations, such as flexible, fault tolerant,

400 Yilmaztürk

adequate, as appropriate, maximize, minimize, at a given time, up to etc., and op-
tions that give the developers freedom to satisfy the related requirement by follow-
ing more than one way such as can, may, optionally etc. During review meetings,
checks are done in order to detect usage of these words. In addition, the following
metrics in Table 17.9 are used to measure the ambiguity level in a specification.

Table 17.9 Unambiguousness metrics

Metric Related Requirement Artifact and Implications
Number of Weak Phrases + Num-
ber of Options in a Use-Case
Specification

Unambiguousness of a Use-Case Specification.
Values other than 0 indicate ambiguity in the speci-
fication.

Number of Weak Phrases + Num-
ber of Options in a Supplementary
Specification

Unambiguousness of a Supplementary Specifica-
tion. Values other than 0 indicate ambiguity in the
specification.

17.4.16 Understandable

A requirement or an aggregate is understandable if all classes of readers can easily
comprehend the meaning of the requirement or all requirements in the aggregate,
with a minimum of explanation [5].

Naturally, an unambiguous requirement or aggregate is clearer/more precise
and more meaningful thus more understandable. On the other hand, if the unam-
biguousness is achieved by using formal notations, understandability of the re-
quirements by non-technical stakeholders will decrease. In addition, redundancy
increases readability thus may increase understandability of requirements. More-
over, it is easier to comprehend behavior by seeing it in action than by reading
about it in a document. Accordingly, executability/interpretability of requirements
enhances the understandability of them. Further, organizing the requirements ac-
cording to a standard or by using a template recommended by the process fol-
lowed or according to another logical grouping accepted by the project will in-
crease the understandability of the requirements. The iterative nature of the RUP
process enables continuous learning and improving throughout the development
life cycle. Every iteration results in an executable release, which improves effec-
tive understandability. Besides, our experiences have illustrated that organizing
functional requirements by using use-cases leads to greater completeness and bet-
ter understanding of the requirements hence, support by RUP for better under-
standability of requirements. In addition, RUP provides templates to organize the
high-level requirements and non-functional requirements in logical groupings.

In the projects that follow SUP, since all types of stakeholders, i.e. representa-
tives of end users, representatives of actual buyers of the system, architect, and de-
signer of the system, those who do the installation and maintenance of the final
product, and take part in the review of the requirements problems with under-
standing the requirements can easily be revealed and solved.

17 “Good Quality” Requirements in Unified Process 401

17.5 Conclusions

The Stressometer products have been providing rolling mills with accurate online
control of the flatness of cold rolled strips for more than 30 years. As the early
generation, PLC-based Stressometer systems have been migrated to a Java-based
platform, ABB has faced a need for change in the way it works to continue provid-
ing value to its customers and ensuring customer satisfaction in a controlled man-
ner. Accordingly, it adopted RUP in an agile fashion mainly by maintaining active
and heavy involvement of stakeholders that include both external and internal cus-
tomers, preparing the test cases before coding, and continuously testing during de-
velopment. The resultant development process namely SUP has been applied in
three projects and has presented satisfying results regarding the achievement of
“good quality” requirements.

The Stressometer projects received major gains from the disciplined nature of
RUP in traceability, completeness, and necessity attributes via well-defined trace-
ability strategies that were provided as a part of thorough requirements manage-
ment. Templates and examples together with the associated guidelines and check-
points helped to achieve the organized, modifiability, and clarity qualities in the
requirements. Further, iterative nature of RUP gave a considerable support in
achieving completeness, modifiability, and understandability. On the other hand,
standard RUP means was insufficient for ensuring achievability. Accordingly, in
SUP we introduced financial feasibility scenarios and imposed active communica-
tion of the development team with the rest of the stakeholders including the exter-
nal as well as the internal customers.

Tool support by RUP to “ease” achieving the prioritization related attributes
was found not enough value providing to invest time and effort. Instead, in the
SUP, simpler guidelines to follow were defined and usage of worksheets was sug-
gested. Active involvement of the end users in the creation and review of the re-
quirements artifacts, as imposed by SUP, proved to be an invaluable means to
achieve correctness, and unambiguousness.

Completeness and correctness qualities were further excelled by producing an
executable release by the end of every iteration, and allowing the external and the
internal customers to interact with it in an environment, which simulates a typical
final customer site, mainly as a part of continuous testing.

Including the architects and the designers in the review of requirements arti-
facts even though it is not required by the standard RUP procedures ensured de-
sign independence of the requirements. Preparing the test cases early in the devel-
opment, parallel to the requirements specification, and having them reviewed by
the stakeholders supported achievement of most of the quality attributes; however,
the main benefits were perceived regarding the requirements correctness.

The projects had to put considerable amount of manual effort and had to main-
tain a close communication within the development team in order to ensure inter-
nal and external consistency. This was not a satisfactory practice and accordingly,
was considered to be improved in the future.

402 Yilmaztürk

References

1. Basili V, Weiss D (1981) Evaluation of a software requirements document by analysis of
change data. In: Proceedings of 5th IEEE International Software Engineering Confer-
ence, March 9-12, 1981, San Diego, California, United States, pp.314 323

2. Boehm B (1981) Software engineering economics. Prentice Hall: Englewood Cliffs, New
Jersey

3. Cockburn A (2001) Writing effective use cases. Addison-Wesley: Boston, Massachusetts
4. Davis AM (1993) Software requirements: Objects, functions, and states. Revision. PTR

Prentice Hall: Englewood Cliffs, New Jersey
5. Davis A, Overmyer S, Jordan K, Caruso J, Dandashi F, Dinh A, Kincaid G, Ledeboer G,

Reynolds P, Sitaram P, Ta A, Theofanos M (1993) Identifying and measuring quality in
a software requirements specification. In: Proceedings of 1st International Software
Metrics Symposium, Baltimore, Maryland, United States, pp.141 152

6. Grieskamp W, Lepper M (2000) Using use cases in executable Z. In: Proceedings of
IEEE Conference on Formal Engineering Methods, September 4-7, York, England,
pp.111 120

7. Harel D, Kugler H (2002) Synthesizing state-based object systems from LSC specifica-
tions. International Journal of Foundations of Computer Science (IJFCS), 13(1): 5 51

8. Harel D, Marelly R (2002) Specifying and executing behavioral requirements: The play-
in/play-out approach. Technical Report MCS01-15, The Weizmann Institute of Science

9. Harwell R, Aslaksen E, Mengot R, Hooks I, Ptack K (1993) What is a requirement? In:
Proceedings of 3rd International Symposium of the NCOSE, July 26-28, Arlington,
Virginia, United States, 1: 17 22

10. Hooks I, Farry K (2000) Customer-centered products: Creating successful products
through smart requirements management. American Management Association: New
York, New York

11. Hooks I (1993) Writing good requirements. In: Proceedings of 3rd International Sym-
posium of the INCOSE, July 26-28, Arlington, Virginia, United States, 2: 197 203

12. IEEE (1998) IEEE Recommended practice for software requirements specifications,
IEEE Std. 830-1998

13. (2004) http://www.ilogix.com/fs prod.htm. Last accessed: 2004-09-09
14. Kar P, Bailey M (1996) Characteristics of good requirements. In: Proceedings of 6th In-

ternational Symposium of the NCOSE, 7-11 July, Boston, Massachusetts, USA 2:
284 291

15. Karner G (1993) Metrics for objectory. Diploma thesis, University of Linköping, Swe-
den, No LiTHIDA-Ex-9344:21

16. Kruchten P (1999) The rational unified process. Addison-Wesley: Reading, Massachu-
setts

17. Oberg R, Probasco L, Ericsson M (2000) Applying requirements management with use-
cases. Rational Software White Paper, Technical Paper TP505 (Version 1.3),
http://www.pureproject.com/reqs_mgmt_usecases.htm

18. Rational Sofware Corporation (2002) Rational unified process software. Version
2002.05.00

17 “Good Quality” Requirements in Unified Process 403

19. Rosenberg L, Hyatt L, Hammer T, Huffman L, Wilson W (1998) Testing metrics for
requirements quality. In: Proceedings of 2nd International Software Quality Week, 9-13
November, Brussels, Belgium. Access on 13th December 2004.
http://satc.gsfc.nasa.gov/support/

20. Schneider G, Winters J P (1998) Applying use-cases - A practical guide. Addison-
Wesley: Reading, Massachusetts

21. Spence I, Probasco L (2000) Traceability strategies for managing requirements with use
cases. Rational Software White Paper, Access on 13th December 2004.
http://www.isk.kth.se/proj/2003/6b3403/sa3/www/RationalUnifiedProcess/papers/trace
ability.htm

22. (2004) http://www.mathworks.com/. Last accessed: 2004-11-12
23. (2004) http://www.standishgroup.com/. Last accessed: 2004-11-10
24. Wiegers KE (1999) Writing quality requirements. Software Development Magazine,

May, http://www.sdmagazine.com/
25. Wilson WM (1997): Writing effective requirements specifications. In: Proceedings of

9th Annual Software Technology Conference, 27 April–2 May, Salt Lake City, Utah,
USA

26. Yilmaztürk N (2003) RE in flatness measurement and control systems development at
ABB. In: Proceedings of 11th IEEE International Requirements Engineering Confer-
ence, 8-12 September, Monterey Bay, California, USA, pp. 293

Author Biography

Nur Yilmaztürk is a computer scientist in the Software Architecture and Processes
(SWAP) Group of the Automation Technologies department at ABB Corporate
Research. She worked in different roles including process and project manage-
ment during development of new generation Stressometer systems at ABB. Her
research interests involve software development processes mainly model-driven
development, and iterative and incremental development, conceptual modeling,
architectural visualization and analysis, and object oriented technologies. She re-
ceived her bachelor’s degree in mathematical engineering from Istanbul Technical
University (ITU) in Turkey, and her MSc and PhD in computer science from the
University of Manchester Institute of Science and Technology (UMIST) in UK.

