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Abstract: An increasing number of market and technology driven software devel-
opment companies face the challenge of managing an enormous amount of re-
quirements written in natural language. As requirements arrive at high pace, the 
requirements repository easily deteriorates, impeding customer feedback and well-
founded decisions for future product releases. In this chapter we introduce a lin-
guistic engineering approach in support of large-scale requirements management. 
We present three case studies, encompassing different requirements management 
processes, where our approach has been evaluated. We also discuss the role of 
natural language requirements and present a survey of research aimed at giving 
support in the engineering and management of natural language requirements. 
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10.1 Introduction 

Market and technology driven companies developing increasingly complex soft-
ware products eventually face the challenge of dealing with huge information 
flows that may overwhelm their management and analysis capabilities. Require-
ments are particularly difficult to manage effectively due to their unstructured na-
ture. The requirements also have a potential to grow to such volumes and arrive at 
such rates that specific information and knowledge management challenges 
emerge: deterioration of the requirements repository and an increasing difficulty to 
identify and maintain requirements inter-relationships. 

A major reason for these problems is that requirements are communicated in 
natural language, which induces several problems like imprecision, ambiguity, in-
completeness, conflict, and inconsistency, which take time to resolve (see Chap. 
11 for a separate discussion on ambiguity). Requirements management processes 
may be very different in design. Nevertheless, companies that acknowledge both 
customer involvement and their own innovative potential as rewarding means for 
discovering successful product services and functionality are faced with a com-
mon challenge: analyzing and evaluating every incoming requirement, customer 
wish and technical suggestion as soon and as thoroughly as possible.  

In traditional requirements management [49] there is an implicit focus on iso-
lated monolithic requirements specifications. The new challenge of managing 
enormous amounts of requirements that continuously must be analyzed, re-
analyzed and consolidated is generally left untouched. This is also reflected by 
current requirements management tools, which do provide the functionality to as-



220      Natt och Dag and Gervasi 

sign links between requirements, but give no assistance in the actual matching of 
thousands of incoming requirements with those already analyzed. Requirements 
management tools could do better than providing simple keyword search facilities 
to alleviate the manual burden of consolidating large amounts of requirements. 

Companies facing these challenges may arrive at a cross-road where the choice 
is to reduce the flow of incoming requirements or to assign more resources to han-
dle them [24]. However, seen from a business perspective, neither of these ap-
proaches is particularly rewarding (and in many situations impossible). Choking 
the elicitation and invention of new requirements will increase the risk of missing 
potential business opportunities [28], and adding more people to do the job has 
been shown to be too costly and at times counter-productive [3, 24]. 

In this chapter we present a linguistic engineering approach that may give con-
siderable support in the continuous management of large amounts of textual re-
quirements. The approach is based on techniques from information retrieval where 
similarities between requirements are calculated to indicate the semantic overlap. 
This gives a possibility for product managers to more quickly find relationships 
between requirements based on their textual content. 

In Sect. 2 we will first discuss the general role that natural language require-
ments play in large-scale software development. Section 3 provides an in-depth 
survey of the current research in linguistic engineering applied to requirements 
engineering and management. Section 4 introduces the idea of calculating similar-
ity between requirements as a means for identifying semantically related require-
ments. In Sects. 5 through 7 we present three case studies conducted at three soft-
ware developing companies, while Sect. 8 concludes the chapter. 

10.2 The Role of Natural Language Requirements 

A recent survey supports our own research experience that requirements to a very 
large extent are written and communicated in natural language (NL) [34]. Still, af-
ter years of rewarding research that has helped us understand and improve the way 
requirements may be specified and formulated [Chaps 3 & 11], the state of the 
practice is generally that requirements quality guidelines are rarely applied. There 
is a large gap between the formal models advocated by many researchers and the 
informality that dominates in industry. Several reasons can be identified to why 
requirements are initially specified in natural language and in many cases kept in 
that form throughout the development process: 

NL is the primary communication language, which is shared by all stakeholders 
and participants in the development process. Formal languages require specific 
training, which is unrealistic to expect from every stakeholder and in particular 
from customers or end-users. 
Requirements engineering (RE) is a social and evolutionary process where re-
quirements are elicited and specified at different levels of abstraction at differ-
ent points in the development process. NL is universal, meaning that it can be 
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used to talk about arbitrary domains and at arbitrary levels of abstraction. Many 
formal languages do not have this strength.  
In large-scale development there are comparatively few of the proposed re-
quirements that are actually selected for implementation (see for example Chap. 
4 on prioritization and Chap. 13 on market-driven RE). Since not all require-
ments are expected to be implemented, there is little motivation for spending 
time formalizing them. In particular, our experience tells us that companies 
which value close interaction with their customers and rapid reaction to chang-
ing market conditions do not find it cost-beneficial to translate all requirements 
into formal specifications. 
Many formal methods do not offer any support for the management and analy-
sis of erroneous, incomplete, or partially-specified requirements. In contrast, 
NL techniques adapt naturally to such situations, which in practice make up a 
large part of a requirement life cycle. 
While formal languages can improve our ability to check internal consistency 
and completeness of requirements (a process often referred to as verification), 
they cannot capture external properties of the requirements, e.g. correspon-
dence between the requirements and the actual user intentions. It requires good 
communication and interaction with the stakeholders to verify such properties 
(validation) – and to this end, NL is a more suited language. 

Thus, despite its recognized and infamous deficiencies, there are few incentives 
to avoid natural language. We should therefore expect that its use cannot be es-
caped. This is also elucidated by M. Jackson stating that RE is where the informal 
meets the formal [25]. The gap between the users’ needs and a new release of the 
software system must therefore be bridged using methods and techniques that ac-
knowledge, in some form, communication in natural language. 

An increasing number of software development companies move away from 
isolated contract development projects (also called bespoke software develop-
ment) towards development for a broader market. This is, for example, also indi-
cated by the growing interest in commercial off the shelf (COTS) development in 
the RE research community [52]. Companies developing for a broader market face 
distinct challenges, of which one crucial is to stay ahead of competitors and reduce 
time-to-market [Chap. 13]. After an initial version of a product has been released, 
there is a need for a dynamic process of elicitation and prioritization. In this dy-
namic environment where requirements arrive from many different sources and 
stakeholders (customers, sales representatives, developers, support personnel), the 
decision of which requirements are to be included in the next release of the prod-
uct must in most cases be made based on the NL requirements available in the re-
pository, in addition to the experience and skill of the product manager and certain 
nonnegotiable requests by key customers.  

In essence, these companies face an information overload problem. But, as we 
already pointed out in the introduction, the most apparent solutions (reducing the 
inflow of requirements or adding personnel) are not satisfying. Another approach 
has therefore been examined, which aims at supporting requirements analysis ac-
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tivities through automation. The proposed solution is to use the techniques from 
natural language processing (NLP) [26]. 

10.3 State of the Research Addressing NL Requirements 

As pointed out in the well-referenced paper by Ryan [46], there have been many 
unrealistic expectations on NLP techniques given the desire for a system that 
could support the currently expensive activities within RE. These expectations are 
typically based on misconceptions about what the communication problem in in-
dustrial RE really is and to what extent the requirements on a system are available 
in textual form (e.g. see [51] on linguistic problems with requirements elicitation). 
Ryan concludes that RE is a social process and that linguistic techniques can suc-
ceed only in a supporting role to this process not by trying to replace it.  

A pragmatic approach is suggested by Garigliano, who points out a range of 
criteria for applied systems dealing with natural language [18]. The criteria eluci-
date the possible variation points for the usefulness of an NLP-based system. In 
essence, it is a matter of systematic cost-benefit analysis. 

To relate our work to the current body of knowledge, we present here a survey 
of research aimed at supporting RE activities using linguistic engineering tech-
niques, grouped by three major RE process activities addressed: 

Domain and requirements understanding, which is a fundamental success fac-
tor in all systems and software development. 
Requirements verification and validation, which are carried out to ensure that a 
specification is internally consistent and to certify that the requirements are a 
correct representation of the users’ intentions [2, Chap. 8]. 
Requirements management, dealing with storage, change management and 
traceability issues. This is within the scope of this paper. 

We encourage the interested reader to look into the work of each author. In 
many cases the industrial applicability and scalability is yet to be determined 
through larger case studies with real data. Also, although most approaches ac-
knowledge ambiguity and inconsistencies, seldom is it reported how any other 
pollution in the data is treated (e.g. misspellings and non-information carrying 
characters). A combination of different techniques would likely be the most re-
warding and the research surveyed provides an excellent basis for this acquisition. 

10.3.1 Domain and Requirements Understanding 

A central task in domain and requirements understanding is to identify and under-
stand domain concepts, also called domain abstractions. Domain abstractions are 
general concepts that are formed to represent common features of specific in-
stances in the domain. Domain abstractions make communication more efficient 
within the domain, but developers must nevertheless take into account not only the 
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general concept, but also the specific instances, in order to fully understand the 
abstractions. Domain abstractions are typically represented in NL through sets of 
terms (often nouns and noun phrases). Researchers have therefore investigated 
linguistic engineering techniques to extract these terms, representing the abstrac-
tions, from the discourse generated from interview transcripts and customer 
wishes expressed in natural language. Following is a survey of the major research 
efforts addressing abstractions. 

Goldin and Berry [21] presents an original approach and a prototype tool for 
suggesting requirement abstractions to the human elicitor. Their method compares 
sentences using a sliding window approach on a character-by-character basis and 
extracts matching fragments that are above a certain threshold in length. The ap-
proach can properly handle arbitrary lengths, gaps and permutations and avoids 
some specific weaknesses in confidence and precision when using only parsers or 
counting isolated words. 

Rayson et al. [44] present two experiments in probabilistic NLP using tools 
they have developed (part-of-speech and semantic taggers integrated into an end-
user tool). The results suggest that the tools are effective in helping to identify and 
analyze domain abstractions. This is further supported by a later study by Sawyer 
and Cosh [47] where ontology charts of key entities are produced using colloca-
tion analysis. 

10.3.2 Requirements Verification and Validation 

It is generally acknowledged that spending more time in the verification and vali-
dation stages and finding errors early is more rewarding than proceeding too soon 
to coding [1, 9, 10]. Therefore, considerable research effort has been put applying 
natural language processing to support requirements verification and validation. 
The two activities are not carried out separately. Checking a set of requirements 
may reveal internal inconsistencies that may as well be external, which must be 
resolved with a stakeholder. Therefore, requirements verification and validation 
are here addressed together. 

Gervasi and Nuseibeh [19] treat validation as a decision problem on whether a 
given software model, generated by parsing the requirements text, satisfies certain 
properties. Their experiment with the use of lightweight formal methods shows 
that even subtle errors, not discovered by human inspection, may be identified.  

An approach to improve the quality of written requirements is proposed by The 
Goddard Space Flight Center’s Software Assurance Technology Center (SATC) 
[53]. They have derived seven quality indicators used for measuring the quality of 
requirements specifications. These have been used to develop a tool which is used 
by NASA to improve their requirements specifications. Fabbrini et al. [11, 12] 
also propose a quality model and have implemented a tool to show the quality 
model’s industrial applicability. Fantechi et al. [13] have applied both the tool by 
Fabbrini et al. and SATC to evaluate the quality of 100 use cases. They conclude 
that although the techniques may support quality evaluation, they are not sufficient 
to completely address correctness and consistency. Cybulski and Reed [6, 7] de-
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scribe an elicitation method and a supporting management tool that help in analyz-
ing and refining requirements A set of NLP components are used to force the re-
quirements engineer to rephrase requirements in order to unify the terminology. 

Burg and van de Riet [4] have developed an approach and a supporting envi-
ronment for specification, verification, and validation of functional requirements. 
Verification is supported graphically, lexically, and logically, while validation is 
supported through paraphrasing (transforming models into language readable by 
the user or customer) and simulation of the dynamic behavior. In several different 
ways they show how the approach enhances the quality of the specification. Park 
et al. [42] present an implementation of a requirements analysis supporting sys-
tem, which may help to identify conflicts, inconsistencies, and ambiguities in re-
quirement. Their approach to combine syntactic parsing with a sliding window 
method gives more accurate similarity measures than using them separately. 

To further adapt the language to formal validation, several researchers have 
proposed to explicitly restrict the language used in requirements. The suggested 
advantage is that it may be used by domain specialists that want the benefits from 
formal languages but who lack the required training. Fuchs and Schwertzel [16] 
and Macias and Pulman [31, 32] use a subset of English to forbid the expression 
of ambiguous sentences. Cyre and Takar [8] define a syntax and grammar of re-
stricted English. Somé et al. [50] go one step further and restrict the language and 
semantics to a scenario style, albeit more understandable by the user than formal 
specification. Osborne and MacNish [41] suggest using extensions to a parser with 
a wide-coverage grammar in order to identify and present syntactic and semantic 
ambiguities to the requirements analyst.  

Towards formalization, Fliedl et al. [14] suggest the use of a conceptual pre-
design model to bridge the gap between the NL representations and enable formal 
validation. The pre-design model is not as technical as common conceptual model-
ing languages, while still supporting the general principles behind several different 
conceptual models (e.g. use cases, state charts, etc.) and the mapping to more for-
mal model. 

Nanduri and Rugaber [38] use object modeling technique guidelines and a link 
grammar parser for transforming high level specifications into object charts. Al-
though their tool produces object diagrams that may help identify omissions, the 
approach suffers from several common problems when trying to transform natural 
language requirements into object models: parser limitations, ambiguity, incom-
pleteness and insufficient domain knowledge and transformation rules. A similar 
approach is taken by Mich and Garigliano [35]. Rolland and Proix [45] describe a 
prototype that aims at providing support to problem-statement acquisition, elicita-
tion, modeling and validation. It has not been validated but likely also suffers from 
the common problems listed above. In a recent paper García Flores [17] proposes 
to use NLP techniques to extract relevant sentences from and identify inconsisten-
cies within large requirements corpora. The approach uses shallow parsing and 
contextual exploration networks, based on the presence of certain textual markers 
in the text. It has not yet been evaluated.  
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10.3.3 Requirements Management 

As previously noted, large-scale software systems development involves a consid-
erable flow of requirements. Requirements are elicited and arrive from many dif-
ferent sources and constantly change [49]. When numerous requirements arrive 
each month, either in bursts of thousands or continuously 3-5 requirements each 
day, the importance of proper requirements management activities becomes very 
apparent. Although requirements management is intertwined with the traditional 
software development process (i.e., where requirements are further analyzed and 
successively formalized into specifications, ending in executable and tested code), 
there are requirement management activities that take place before actual devel-
opment starts [Chap. 13]. But, although it may be clear what must be done, the re-
quirements management process easily becomes overloaded due to the sheer num-
ber of requirements. Thus, there is a strong need for more supportive tools. 

Current requirements management tools provide facilities for storing and recall-
ing requirements, annotating them with metadata (usually consisting in arbitrary 
attribute/value pairs, where standard sets of attributes are offered as libraries), and 
for managing relationships between requirements. Indexing, keyword-based 
search, and search on metadata are normally provided. Unfortunately, the man-
agement of relationships is most often limited to manually establishing links (typi-
cally used for traceability) between pairs of requirements. Some link types can be 
declared as fragile, in that any change in one of the linked requirements marks the 
link as broken until manually verified and re-established by the user. 

Surprisingly, there are, beside the cases presented later on in this chapter, no 
specific attempts that directly try to tackle the management challenges by using 
natural language requirements processing. In particular, the following specific 
hands-on requirements management activities are open for scrutinized research: 

Matching incoming (potentially new) requirements to previously elicited, 
planned, and already implemented requirements 
Maintaining a separation and finding relationships between customer requests 
and requirements invented within the organization 
Identifying dependencies and other interrelationships between requirements [5] 
Supporting the extraction of requirements from the repository that fit strategic 
areas (e.g. invoicing capabilities, decision-making features) 

Difficulties in performing these activities are a major obstruction in the effi-
cient management of elicited, invented and implemented requirements. Any tech-
nique that may support requirements maintenance and management activities, 
even if partially, can be expected to be warmly accepted in industry. 

10.4 Requirements Similarity 

In this section we introduce a fundamental concept in our discussion, that of re-
quirements similarity. As we will see in the following, a number of problems in 
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the management of large volumes of requirements can be solved or at least allevi-
ated by using a measure of how similar two requirements are. Naturally, many dif-
ferent notions of similarity can be used. In most problems, what is needed is a no-
tion of semantic similarity: a measure of whether two requirements convey the 
same meaning, and to what extent. However, other notions of similarity can also 
be used. A few of these are listed in Table 10.1; more measures can easily be ob-
tained by considering other metadata about the requirements (e.g., priority as-
signed, system version targeted, approval responsibility, implemented status, etc.). 

Table 10.1 A listing of some similarity measures 

Similarity measures Description 
Semantic Similarity in meaning 
Syntactic Similarity in grammatical structure
Lexical Similarity in words used
Structural Similarity in sectional structure
Extensional Similarity in size
Argumentative Similarity in rationale
Goal Similarity in objective
Source Similarity in the proponent
Function Similarity in function addressed
Object Similarity in system parts affected
Temporal Similarity in time of origin

Whatever measure is chosen, in order to be applicable to the management of 
large repository it must possess a fundamental property: it has to be computable in 
a relatively inexpensive way. Any measure requiring significant human interven-
tion will be too costly to be used on large requirement repositories; we are thus 
forced to focus on similarity measures that can be computed in a totally automatic 
way. Unfortunately, given the current state of the art in natural language process-
ing and in knowledge representation, it is not feasible to extract meaning in a reli-
able way from totally unrestricted natural language text as that found in most re-
quirements. We therefore focus on lexical similarity as a way of approximating 
semantic similarity. 

On a lexical level, we consider a requirement as a sequence of words. The exact 
definition of what a word is varies with the language and the application. More re-
fined approaches distinguish the various lexical (and at times, morphological) 
constituents of requirements with more precision, e.g., punctuation (as in “,”), 
contraction markers (as the apostrophe in “can’t”), parenthetical structures (as “(“) 
etc. can be considered as words on their own. We refer to the process of separating 
the lexical constituents of a requirement as tokenization, and each word (in this ex-
tensive definition) is called a token. In the upcoming case studies, a token is re-
garded as sequence of letters and/or digits. Any other characters are regarded as 
delimiters and thus discarded. 
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Fig. 10.1 The Cosine measure 

Tokens can be further processed in various ways. Most typically, tokens are re-
duced to their base form, removing morphological inflections (e.g., reducing plu-
ral nouns to their singular form, or removing person, mood or aspect information 
from verbs). This process is called stemming and is usually performed with the 
help of general morphological rules, and a dictionary listing exceptions to those 
rules. In Case 1 we have used the well-known Porter stemmer [43], but in Cases 2 
and 3 we have switched to a newer one, reported to perform better [37]. 

Another common operation is stop word removal. It consists in dropping from 
the sequence of tokens all those words that have a purely grammatical role. The 
grammatical information they convey may be stored in some other form (e.g., in 
parsing trees) before removing the stop words, if so desired. Again, the details of 
the process depend on the language at hand, and on the kind of analysis that is to 
be performed on the requirements. In most cases, stop words coincide with so-
called closed class words, e.g. articles and prepositions. Also in this case, a spe-
cial-purpose dictionary can list exceptions. In the presented cases we have used a 
stop word list comprising 425 words derived from the Brown corpus [15]. 

Further various processing steps are possible, but for the sake of brevity we re-
turn now to the problem of measuring requirements similarity. We can formally 
consider a requirement r taken from a requirement set � as a finite sequence 

miii vvvr ,...,,
21

 of tokens drawn from a given alphabet V={v1, v2, … vn}, which 

includes all the tokens that appear in our requirements database. Using the pre-
processing steps described above, V would consequently contain stemmed tokens 
that do not appear in the stop word list. If order is not considered important, an al-
ternative representation is possible: a requirement r can be considered as a vector 
ar=[wr(v1), wr(v2), … wr(vn)], where wr(vi) denotes the weight, or relative impor-
tance, of the token vi in requirement r. Different weighting schemes are possible. 
As requirements expressed in feature style are more focused than literary text, we 
assume that the tokens remaining after the preprocessing step are all equally valu-
able. In Case 1, we apply the simplest weighting scheme, assuming that weight co-
incides with frequency. However, as it is considered that the importance of a token 
is not linearly proportional to the number of times it occurs, in Cases 2 and 3 we 
also use the well-known weighting formula 1+log2(term frequency) [33]. Case 2 
explicitly compares the results obtained by using the two schemes. 

Once requirements have been encoded as vectors, it becomes possible to apply 
standard similarity measures. In Case 1 we chose to compare the performance of 
the Dice, Jaccard, and Cosine measures [33]. Their most significant difference is 
how they treat different lengths of the compared requirements. In Case 2 and 3, 
the Cosine measure was selected as it was considered to generally perform better 
than the other two. This measure got its name from calculating the cosine of the 
angle between the vectors that represent the requirements in a vector-space model. 
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Formally, given two requirements, p and r, we have that the similarity between p
and r is given by the formula in Fig. 10.1 (An example of applying the measure 
can be found in [39]). The definition assumes that the vector space employed has a 
Euclidean distance, uniform across all dimensions. This is of course a gross over-
simplification: in practice, the presence or absence of certain terms may be much 
more important and revealing of true semantic similarity than that of other terms. 
However, since we are mainly interested in techniques that work irrespective of 
the exact domain and language used, and for the sake of generality, we will accept 
this simplification, keeping in mind that more refined techniques can be employed 
in specific domains. 

In the following sections we present three case studies in which the technique 
of calculating similarity between requirements has been evaluated. For the evalua-
tion we utilize the widely adopted measures of recall, precision, and accuracy. 
Since their usage and interpretation is dependent on the application we leave the 
definitions and explanations of the measures to each individual case.

10.5 Case 1: Keeping the Repository in Shape 

Telelogic AB develops a software development environment for real-time systems 
called Telelogic Tau, which supports standardized graphical languages and code 
generation. Telelogic Tau is marketed globally and requirements are collected 
continuously from several different sources (e.g. marketing, support, development, 
testing, usability evaluations, and technology forecasting). The requirements are 
collected into a repository and assigned the status of “New”. Each requirement 
then undergoes a series of evaluations and refinements, such as checking for ap-
propriate detail level, and assignment of cost, impact, and priority. Each require-
ment has a lifecycle progressing through specific states in the development proc-
ess. So, for example, when a requirement has been implemented and verified, it is 
assigned the status “Applied”. Thus, all requirements are kept in the repository, 
which continuously grows. 

In its initial state a requirement is checked for three related properties: (1) 
whether or not the requirement is regarded as a duplicate of another requirement 
already in the repository, (2) if it is possible to merge the requirement with another 
requirement, or (3) if the requirement should be split into two or more require-
ments before further analysis. If a requirement has one of these properties, it is as-
signed the “Duplicate” status and an appropriate action is taken. When a require-
ment is merged, all the information is added to the requirement it is merged with. 
When a requirement is split, the information is distributed over two or more new 
requirements. When a requirement is a pure duplicate, no further action is taken. 

As requirements arrive at an average rate of three per day, and as the require-
ments repository unendingly increases in size, these activities are causing conges-
tion in the requirements process [24]. Automated support in this situation, using 
similarity measures to identify duplicates, is suggested to help avoiding deteriora-
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tion of the repository and enable a quicker way of checking arriving requirements 
against the ones stored in the repository. 

10.5.1 Case Study Requirements Data 

A snapshot of the state of the requirements and the repository by the year 2000 is 
shown in Table 10.2. Of the 1,920 requirements in the repository, 130 had been 
identified by the analysts as being duplicates, merges, or split sources (i.e. as-
signed the status ‘duplicate’). Example requirements may be found in [40]. 

Table 10.2 Number of requirements in the database. 

New Assigned Classified Implemented Rejected Duplicates Total
406 428 601 252 103 130 1,920

10.5.2 Evaluation 

Of the 130 requirements marked as duplicates, we only consider the 101 that were 
real duplicates for evaluation purposes, as merges and split sources would match 
partially and thus bias the results. Moreover, we use the standard measures of re-
call, precision and accuracy. Let sim(ri,rj) be a function that takes a pair of re-
quirements and gives a similarity measure between 0 and 1, and t be a threshold 
value, which acts as a selection criteria. If sim(ri,rj)  t then (ri,rj) are considered 
to be a suspected duplicate pair. Recall is calculated as the percentage of the actual 
duplicate pairs that fall above the similarity threshold. Precision is calculated as 
the percentage of actual duplicates above the similarity threshold in relation to all 
pairs above the similarity threshold. Finally, accuracy is the percentage of all du-
plicate pairs that fall on the correct side of the threshold (i.e. correctly suggested 
duplicate pairs and non-duplicate pairs respectively). 

The textual information used to represent each requirement was collected from 
the “Summary” field, which corresponds to a short requirement title, and the “De-
scription” field, which corresponds to a further explanation (see the examples in 
Table 10.6 and Table 10.7 in the appendix). These fields were then pre-processed 
according to the steps described in Sect. 10.4. To investigate the impact of differ-
ent similarity measures we calculated recall, precision, and accuracy curves for the 
three different measures in Sect. 10.4. The results are presented in Fig. 10.2, 
which shows that recall decreases from around 80% at threshold level 0+ to just 
below 20% at threshold level 1. At threshold levels 0+ and 1 the similarity meas-
ures perform exactly the same (as expected considering the formula) but between 
these two extremes the curves differ. The Dice measure gives slightly worse recall 
compared to the Cosine measure and may thus be discarded. The best choice be-
tween the Jaccard and the Cosine measure is not obvious. The Cosine gives higher 
recall but lower precision than Jaccard. The choice would thus depend on the ap-
plication.  
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The low precision at threshold level 0+ may at first seem very discouraging. 
However to properly evaluate the feasibility of the approach in an industrial set-
ting, a deeper investigation of the requirement pairs is needed. Taking any two 
suggested pairs, they may or may not involve the same particular requirements. 
For example, the requirement pairs (A, F) and (C, F) share the requirement F. If 
the analyzer assigns similarity values above zero to each of these pairs and a simi-
larity value equal to zero to the pair (A, C) it would nevertheless be interesting to 
look at the three involved requirements together. We denote these preferred group-
ings of requirements as n-clusters, where n is the number of requirements in the 
cluster. The two single pairs in the previous example will thus form a 3-cluster. 
The cluster distribution can be derived by calculating the transitive closure of a 
graph in which the nodes correspond to requirements and edges correspond to 
pairs of requirements (ri,rj) with sim(ri,rj) t.
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The cluster distributions at three different threshold levels are shown in Fig. 
10.3. The last graph shows the cluster distribution for the actual duplicates found 
by the experts. The graphs show that with increasing threshold the number of clus-
ters of larger size decreases. For example, at threshold level 0.375 there is one 
very large cluster involving 42 different requirements. 

Noteworthy is that the presented evaluation is made on a snapshot of a reasona-
bly large set of requirements. However, at Telelogic, the requirements arrive con-
tinuously, a few at a time. The similarity analysis can thus be made incrementally 
on a smaller set of requirements, avoiding the need for interpreting the results of 
similarity analysis of the entire set of requirements at one time. The cluster distri-
bution shows that if we analyze one randomly selected requirements from the da-
tabase (which may represent a newly submitted requirement), the worst case 
would be that the analyzer suggests a cluster of 42 requirements to be identical. 
This is thus the maximum number of requirements the requirement analyst must 
handle simultaneously. As the number may seem too high for the lower thresh-
olds, it is reasonable to suggest that such large clusters may be ignored as they are 
probably irrelevant. 

Table 10.3 Expert reanalysis of requirements presumed to be incorrectly classified 

Relationship Count 
Duplicates 28 

Similar 13 

Related 8 

Part of 5 

Not related 21 

Another interesting issue is whether the automated analyzer reveals duplicate 
pairs that the experts missed. To explore this we let an expert analyze 75 require-
ments that were suggested as duplicates using the Cosine measure at threshold 
level 0.75, but had not been assigned as duplicates by the experts. Table 10.3 
shows the surprising result from the analysis. It turned out that 37% of the sug-
gested duplicate pairs had been actually missed by the experts! For that threshold 
level, recall would increase from 25% to 40%, precision from 30% to 56% and the 
already high accuracy would become even higher. The analyst did not regard two 
requirements in a pair as duplicate or similar if they were to be implemented in 
different parts of the software. The table also shows the additional relationships 
identified, which thus imply that only 21 of the 75 pairs identified would be com-
pletely wrong. These 21 erroneously identified pairs should be put in relation to 
the several thousand potential suggestions. In an industrial setting it is better to 
have a few extra suggestions that may be discarded rather than missing any actual 
duplicates. Stated differently, it is (to a certain extent) of greater interest to in-
crease recall at the expense of precision. 
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10.6 Case 2: Linking Customer Wishes to Product Requirements 

Baan, now part of SSA Global, develops large complex applications aimed for en-
terprise resource planning, customer relationship management, supply chain man-
agement, product lifecycle management, and business intelligence. Continuously, 
new customer wishes, called Market Requirements (MR), and product require-
ments, called Business Requirements (BR), are inserted into the Baan Require-
ments Database (BRD) upon their receipt or creation, respectively. Periodically, 
the company management decides to start a new release project, and a number of 
BRs are selected for implementation preferably, in such a way as to maximize 
the number of MRs that are satisfied in the new release, compatibly with time and 
budget constraints. Customers receive informative messages when a MR is ac-
cepted in the BRD and when it is satisfied in an upcoming release. Thus, establish-
ing complete and correct MRs-BRs links is paramount to maintaining good rela-
tionships with the customers. 

MRs and BRs that cover the same underlying functional requirement are linked 
to each other in a many-to-many relationship; a single MR can span several BRs 
(e.g., to split a huge work package into manageable pieces), and a BR can satisfy 
several MRs (e.g., when several customers are requesting the same functionality). 
MRs are copied into the BRD as-is, i.e. without altering the original text as speci-
fied by the customer. Linking MRs to BRs and the other way round is a daily rou-
tine for product managers. Each time a new MR is inserted into the BRD, it is first 
checked by searching whether there are one or more BRs that already include the 
specified functionality. This process is very time consuming, as the current tool 
only allows text search in the requirement description. Similarly, when a new BR 
is created, the corresponding MRs need to be found in the BRD, since the objec-
tive is to satisfy as many customers as possible. Finding all MRs that are covered 
by the BR at hand is virtually impossible, because of the large number of MRs and 
due to the time-consuming understanding of MR content. Advanced automated as-
sistance to the MRs-BRs linking can improve the quality of the requirements man-
agement process and save costly man-hours of the product managers. 

Given the favorable lexical features of the requirements, that use mostly terms 
from a restricted domain, we propose a tool-supported linking process that inte-
grates well with the existing practices and technologies, while at the same time re-
ducing the cost and improving on the effectiveness of manual linking. Based on 
the similarity calculations, a tool can suggest which requirements already in the 
BRD could be linked to an incoming MR or BR. The human expert can then de-
cide whether to accept these suggestions or not, or can decide to resort to key-
words-based search (as in the original process) for further options. Our expecta-
tion is that relevant suggestions will be provided faster this way than if a human 
would have to select several different search terms and, for each of these, search 
through the database. 
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10.6.1 Case Study Requirements Data 

The total number of business and market requirements elicited at Baan between 
1996 and 2002 and manually linked to each other is found in Table 10.4. Overall, 
the analyzed corpus contained almost one million words, with MRs contributing 
approximately two thirds of the total, and BRs constituting the remaining third. 
Representative examples of each of the two kinds of requirements may be found 
in [39]. 

Table 10.4 Requirements elicited and linked at Baan, 1996

Business 
Requirements 

Market 
Requirements Year

Elicited Linked Elicited Linked 
1996 0 0 183 113 
1997 5 4 683 262 
1998 275 169 1,579 388 
1999 709 261 2,028 502 
2000 669 167 1,270 397 
2001 1,000 153 864 224 
2002 1,121 340 1,695 514 
Total 3,779 1,094 8,302 2,400 

In current practice, the association between the two presented requirements 
would be found by emanating from the submitted BR in Table 10.9, searching for 
the term container among the MRs. Such a search returns 37 hits if searching only 
in the label field and 318 hits if searching the description field. Experts would then 
have to browse through all the MRs returned by the search. However, historical 
data shows that only five MRs were actually linked by the experts (all five were 
submitted earlier than the BR). 
Of these, four could be found by searching for container, but the last relevant MR 
was not returned by the search, and required a new search (for example, on statis-
tics, which however adds another 40 hits on the label field and 99 hits on the de-
scription field to the already daunting set of candidates to examine). Based on this 
and similar cases, we estimate that significant time can be saved by replacing the 
search procedure based on designated keywords with a more sophisticated one 
based on lexical similarity of the requirements. 

A potential hurdle to be overcome is the varying linguistic quality of the text of 
the requirements. As in Case 1, requirements are often typed in haste, and may 
contain acronyms, spelling errors, code snippets, colloquial language, etc. We in-
vestigated these occurrences for a subset of all terms (those starting with “a”), 
finding that non-word entities represent around 2 3% of the whole corpus, with 
spelling errors (the only real threat to lexical matching) only accounting for 0.3%-
0.4%. We can therefore assume that the calculation of lexical similarity will not be 
significantly affected by occasional typing errors in the requirements. The investi-
gation also showed that the two sets of requirements (MRs and BRs) have very 
similar composition in terms of statistical features. A more detailed comparison 
can be obtained by considering the two lists of distinct term occurrences, ranked 
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by frequency. The two lists have a 4,660 terms intersection (most of them in the 
topmost ranking positions); 1,899 terms only occur in BRs, with 8,234 terms only 
occurring in MRs. Overall, the Spearman rank order correlation coefficient for the 
two lists is rs  0,78, significant at the p < 0.00003 level (see [48] and [27] for a 
discussion on statistics for corpora comparison). The correlation coefficient gives 
a good indication that a shared lexicon is being used in the two kinds of require-
ments. This is not surprising, as both MRs and BRs are discussing issues in a re-
stricted domain. In turn, this gives support to our assumption that in this context 
lexical similarity can be a good approximation for semantic similarity. 

10.6.2 Evaluation

In order to evaluate how well the approach presented above performs for identify-
ing correct links, we use the links established manually by the various product 
managers as the “presumably correct” answer. Our goal is to find out how many 
of these links the automatic approach can retrieve. 

In our industrial setting, we can expect user interaction to consist in the follow-
ing steps: 

1. A new requirement (MR or BR) is submitted to the BRD.  
2. A tool computes the similarity score between the new requirement and the pre-

existing ones of the opposite type (i.e., BRs or MRs, respectively), and ranks all 
the requirements according to the similarity score.  

3. The top-ranking n requirements are presented to the user for manual verifica-
tion and, optionally, for establishing links in the BRD.  

4. Optionally, the user can “scroll down” the list, and check the next page of re-
sults. 

The size of the top list n will thereby represent our similarity threshold. A top 
list size of 7±2 could be a good compromise [36], as such a size would enable the 
user to quickly spot one or more correctly related requirements, while taking into 
account that we are not able to reach 100% recall or precision anyway. In this 
situation it is not critical that a correct suggestion is presented at position 1 but, of 
course, the higher the position the better. We could then use the ranked recall 
measure [26], but as we would like to relate the recall to a threshold (i.e. the top 
list size) we choose to compute recall for different top list sizes. Recall is in this 
case the proportion of the target items that a system gets right (i.e., true positives 
divided by the total number of answers returned) and we use the following 
adapted procedure to compute it: 

1. Compute the complete similarity matrix 
2. For each requirement of one type, sort the requirements of the other type by 

similarity 
3. Calculate the overall recall for a top list of size n as the ratio between the num-

ber of correct links identified among the top n ones and the total number of cor-
rect links 
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Fig. 10.4 Recall for linking a MR to BRs 

The recall curve as a function of the top list size is shown in Fig. 10.4. The fig-
ure shows the recall curve for the top lists of suggested BRs for each MR. The 
dashed line represents the recall curve for calculating the similarity using just the 
term frequency as weight; the solid line represents the recall curve using 
1+log2(term frequency), which provides slightly better recall. 

The figure reveals that we only reach a maximum recall of approximately 94% 
(though with an unreasonable top list of 3,000 requirements). This is due to 204 
requirements that have been linked manually but have no terms in common at all. 
The 204 links are particularly interesting to look at, as they represent cases where 
our assumption about the validity of lexical similarity as an approximation of se-
mantic similarity does not hold. In particular, we found that: 

The links comprised 101 BRs and 158 MRs. 
The majority of the requirements were sparingly described, consisting of just a 
single line of text. In some cases there was no description at all. This is not 
necessarily wrong in the Baan RM process perspective (an empty BR is al-
lowed to be created and directly linked to an MR). These special cases do, 
however, affect the results negatively. 
Some requirements were completely written in languages other than English, 
while the requirements they were linked to were written in English. This should 
not be allowed without an additional English description, and of course makes 
automatic matching practically infeasible. 
Some of the linked BRs and MRs seemed to us to describe completely different 
things. They could have been erroneously linked, or perhaps be related in a way 
that escaped our understanding. For a more thorough analysis of these cases 
further work would be required, which is beyond the scope of this analysis.  

On the positive side, Fig. 10.4 shows that, for a very reasonable top list size of 
10, we reach a recall of 51%, which is good considering the pragmatic approach 
taken and the impact on the saving of time that could be made in industry. 
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To get an impression of the time that could be saved, we can make a rough es-
timate based on the statistics presented and on another measure reflecting how 
many requirements could be completely linked just by browsing a top-10 list. We 
found that for 690 of the BRs, the recall rate would be 100% using a top list size 
of 10, i.e. every related MR for each of the BRs would be found within a top-10 
list. These 690 BRs are linked to 1,279 MRs, giving an average of 1.85 MRs per 
BR, but in order not to exaggerate the gain we assume that, in the manual case, 
one search term would be enough to find all the links for one requirement. Sup-
ported by the search hit example in [Sect. 10.6.1], we further assume that a search 
would return approximately 30 hits. Thus, in the manual setting the average case 
scenario would be to browse 30 requirements. With a top list size of 10, the worst 
case scenario with automated support would be to browse 10 requirements. Up to 
66% effort could consequently be saved. If we assume that it takes about 15 sec-
onds to read a requirement and either accept or reject it as a link, we find that the 
overall gain is 57.5 hours. 

The critical reader might observe that in a real setting it is not possible to know 
when to stop perusing the list, as more relevant links could be found by further 
browsing. The same applies to the manual case: searching for more keywords 
could yield more links. Nevertheless, the data from our case study show that a 
similar level of coverage can be reached more efficiently (i.e., with less effort) by 
applying lexical similarity when compared to keywords search. If so desired, the 
time saved can be spent in increasing the level of coverage, by examining more 
candidates, or devoted to other RE activities if the coverage attained is deemed ac-
ceptable. 

10.7 Case 3: Managing Redundant Customer Requests 

Sony Ericsson Mobile Communications AB (SEMC) develops mobile phones for 
a global market. As such, they must handle requirements from many different 
sources in the RE process. SEMC’s primary customers are the mobile phone op-
erators, who sell the phones to the end user, either directly or through a third party. 
In order for the operators to acquire knowledge in the technical capabilities of 
SEMC’s phones, so called Requests for Information (RFI) are submitted to SEMC 
by the operators. Two kinds of RFI’s can be identified: general requests for in-
formation and requests for statement of compliance (SoC). SoCs, which are the 
most common ones, comprise specific requirements and are replied upon using 
simple standardized statements on whether or not a certain product complies, i.e. 
whether or not a stated requirement is fulfilled by the product.  

The RFI process is depicted in Fig. 10.5. Each year each operator submits a 
couple of RFIs. The RFIs arrive to the Key Account Managers (KAM), one for 
each major operator, in different document formats (PDF, Excel, MSWord, etc) 
and at different times. The main specification technique for the RFI requirements 
is feature style, i.e. function specification in natural language [30]. The KAM 
passes the RFI on to a Bid Support Specialist (BSS), who reviews the RFI from a 
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market point of view and decides which products shall be considered when deal-
ing with the RFI. The BSS then passes the documents on to the coordinator, who 
analyzes the RFI and accompanying instruction and then distributes relevant parts 
of the RFI to Areas of Expertise (AoE). An AoE consists of a Function Group 
(FG) and a Technical Work Group (TWG). The TWG works with roadmaps (i.e. 
future functions) and the FG works with implementation and testing. When the 
AoEs have stated the compliance to each requirement, they send the RFI reply 
back to the coordinator. He reviews the answers and sends the replies on to the 
Bid Support Specialist, who also checks the answers. If the RFI originates from a 
major operator, a meeting is held with Global Product Management, the coordina-
tor, and experts from the AoE in order to discuss the answers which are to be 
submitted back to the operator. The RFI reply is then sent back to the operator by 
the KAM. 

The RFIs play a important role in the operator’s strategic planning. The RFIs 
also provide SEMC with vital business intelligence information as the features 
prioritized by the operators may be used as a guideline when developing future 
phones. The operators thus have a great deal of influence on the final requirements 
for a product and a good relationship with the operators, based on timely and cor-
rect replies to the RFI’s, is therefore of utmost concern. 

The efficiency of the RFI process, in which requirement are analyzed and 
checked against product features, is however severely impeded. The AoE are con-
cerned with their primary assignment in development and testing and have trouble 
finding the time required to analyze the RFIs. Furthermore, they get particularly 
frustrated as they have to state the compliance to the same or very similar re-
quirements over and over again. Large parts of new versions of RFIs arriving from 
the same operator are typically the same as previous versions. Unfortunately, the 
revision history of the operators requirements cannot be trusted as there have been 
cases where requirement IDs have been reused and where requirements have been 
changed without indication. Current requirements management tools give no 
automated assistance in merging thousands of requirements. Furthermore, it is of-
ten the case that the same and very similar requirements occur in the RFIs from 
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Fig. 10.5 The request for information process at Sony Ericsson 
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different operators. Consequently, there is much unnecessary redundant work re-
quired by the AoE. 

As the RFIs are written in natural language, we have investigated the possibility 
of providing automated support to the RFI process using linguistic engineering 
techniques in order to find similar and related requirements. When RFIs arrive 
they are converted into a standardized format, where atomic requirements may be 
identified using unique identifiers. Of course, there is a desire to get the operators 
to use a standardized format when submitting their RFIs. The manual conversion 
step could then be removed and more time could be saved –which is of mutual in-
terest for the operators. The standardized RFI is matched against a database of 
previous RFIs, which have been analyzed for compliance. For each requirement in 
the RFI, matches are provided based on a similarity measure. The KAM or the Bid 
Support Specialist may then mark the new RFI requirements as duplicate or simi-
lar, or not at all. The RFIs may then be passed on to the AoEs as before, but this 
time the AoEs only have to check those that are marked as similar or not marked 
at all. The hypothesis is that it is quicker to judge how similar two requirements 
are, than to reanalyze each for compliance. Additional benefits are automatically 
provided through this process: 

All business intelligence is gathered in one place.  
Similarities between different operator requirements may be identified and 
maintained.  
Contradictions between different operators requirements may be identified 
more easily.  

At the time of writing, a central repository has been put in place comprising ap-
proximately 11,000 previously collected requirements. The goal is now to give 
support in the RFI process as explained above. Furthermore, it has been suggested 
that the similarity measuring techniques are used to clean the repository by identi-
fying duplicates as described in Case 1. 

10.7.1 Evaluation

The technique of using lexical similarity for matching incoming requirements to 
those already in the repository is currently undergoing further investigations. A 
support tool, based on our prototype presented in [39] is being developed. The de-
cision to go further was based on an initial pre-study, which is presented here. 

At the time of this evaluation, the envisioned repository was unfortunately not 
yet in place. This put constraints on the number of requirements that could be used 
in the evaluations. Furthermore, due to the resource constraints at SEMC, there 
was no possibility to do a full experimentation with experts. SEMC could not al-
low the AoE to perform the same compliance check twice on the same set of re-
quirements. Instead, indication on potential time to be saved using the proposed 
approach was made by comparing the work and performance of experts and non-
experts and let the expert’s judgment decide if the approach is worthwhile. For the 
case where requirement only were checked for similarity, an expert performed the 
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compliance check both manually and with automated supported, below referred to 
as the semi-automatic approach, in which a simple software script was used to 
calculate similarity between requirements sets and suggest, for each requirement 
in one set, the five most similar in the other set. The evaluation results are shown 
in Table 10.5 and discussed in the following. 

Run 1. Two revisions of requirements from Operator A were selected to see to 
what extent the approach could save time by supporting an early process of sifting 
out similar requirements in order to reduce the redundant work currently required 
by the AoE. Revision 1 comprised 242 requirements that previously had been 
checked for compliance. Revision 2 comprised 434 requirements and was sent to 
an AoE for compliance check by experts. They were thus checking compliance on 
all requirements in Revision 2 (the revision history from the operator could not be 
relied upon). The non-expert used the semi-automatic approach and was within 8 
hours able to identify that, compared to revision 1, 209 requirements were new, 50 
were changed, and 175 were identical. Only 259 requirements would thus have re-
quired attention by the AoE. However, the AoE estimated that 65% of the re-
quirements were identical or very similar to revision 1, implying that the KAM 
and BSS would likely only send 152 requirements to the AoE for compliance 
check. Assuming that experts within 8 hours (but likely quicker) would find 282 
requirements to be already checked according to revision 1 and thus forward the 
remaining 152 requirements for compliance check, 5 hours could be saved (i.e. 
20–(8+(152*20/434)) h).

Run 2. Two revisions from two different operators were selected to see how the 
approach may support the experts to sift out requirements that had already been 
checked for compliance. Furthermore, the requirements were chosen to see how 
the approach performs on requirements originating from different sources and 
which are thus expected to be stated differently. In this case, an expert made both 
a fully manual comparison between the two requirements sets and a comparison 
supported by the semi-automatic approach. The evaluation suggests a 33% in-
crease in performance, but as a learning effect is expected the exact figure should 
not be taken too seriously. However, a discussion with the expert revealed that the 
semi-automatic approach did give relevant support to be valuable in the process. 

Given the full picture from the evaluation, knowledge in the requirements, and 
an understanding of the non-expert’s lacking domain knowledge, it was concluded 
that it was worthwhile to proceed with further studies, which are now in progress. 
The lack of a streamlined, user-friendly support tool was identified as a perform-

Table 10.5 Evaluation results from Sony Ericsson 

Run RFI # reqs. 
Manual 

(h)
# identical 

requirements 
Semi-automatic 

(h)
1 A rev. 2 434 AoE: 20 175 (40%) Non-expert: 8 
 A rev. 1 242    
2 B rev. 2 63 Expert: 3  
 A rev. 2 434   

Expert: 2 
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ance killer when using the semi-automatic approach. The next logical step is thus 
the development of a tool that interactively supports the initial check for similar 
requirements. It has been estimated that 20% of the time spent on checking the 
products’ compliance to the RFIs may be saved. Even a lower expectation moti-
vates further investigations and improvements. 

10.8 Conclusions 

An increasing number of market- and technology-driven companies realize that 
requirements are better managed continuously, and therefore best stored, in larger 
repositories. Unfortunately, as indicated by the same companies’ struggle with 
their requirements repositories, it seems that pure information management chal-
lenges are becoming increasingly apparent in large-scale requirements manage-
ment. This may be an indication that currently available requirements manage-
ment tools do not meet the demands. The presented approach of calculating 
similarity between requirements on a lexical level gives reasonably high accuracy, 
considering its simplicity. Most importantly, it provides added support to the man-
agement of large repositories of natural language requirements. The support is not 
aimed at replacing the current way of working, but to complement it in order to 
save time. The simplicity of the technique is a deliberate choice. As such, it is ro-
bust and requires no or little maintenance or attention, which is important for ac-
ceptance in industry. Minor adaptations may be required to align the techniques 
with the current tools used and with the requirements process. Still, our experience 
from the three case studies is that the major obstacle is on the implementation 
level as there are no ready solutions. Until commercial solutions are available, the 
cost of adopting the technique would correspond to a general in-house develop-
ment project. 

For research purposes, the presented evaluations acts as a baseline to which fur-
ther research may be compared. Based on the three case studies we suggest an in-
cremental improvement approach. Additional research must be made at a linguis-
tic level, e.g. understanding how requirements are written and communicated, in 
order to fully understand the limitations and potential of linguistic engineering 
support. The current state is that twenty-five years of research in corpus linguistics 
has just recently and very briefly touched the new corpus of software require-
ments. The technique, as suggested by the three case studies, is relatively easy to 
implement and could be incorporated by most tool vendors. One vendor, Focal 
Points AB, already provide a “Find Similar”-functionality based on our earliest re-
sults, and our own recent prototype tool, ReqSimile, is freely available and may be 
adapted to fit the needs (http://reqsimile.sourceforge.net). In addition to the activi-
ties presented in the cases, the following other information intensive activities 
could be supported by the approach: 

Requirements tracing. For several purposes, a requirements traceability matrix 
should be maintained. A study by Hayes et al. suggests using similarity measur-
ing techniques for easy “after-the-fact” requirements tracing [22]. 
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Defect tracking. As new defects are reported, a similarity check can help testers 
to identify if similar defects have been reported earlier, and avoid spending 
time on duplicate “bug reports”. 
Support issues. Call center personnel browse support issues on a daily basis and 
could be supported by similarity measuring techniques. 

Linguistic engineering techniques are widely used in information intensive 
support systems; for some reason most CASE tools excluded. The techniques are 
available and may be successfully adapted and further exploited. With the increase 
in the amount of information written in natural language that large software devel-
opment companies need to manage, taking advantage of these techniques is defi-
nitely worthwhile.  
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