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Abstract. Software development has become a distributed, collaborative process
based on the assembly of off-the-shelf and purpose-built components. The selection
of software components from component repositories and the development of com-
ponents for these repositories requires an accessible information infrastructure that
allows the description and comparison of these components.

General knowledge relating to software development is equally important in
this context as knowledge concerning the application domain of the software. Both
form two pillars on which the structural and behavioural properties of software
components can be expressed. Form, effect, and intention are the essential aspects
of process-based knowledge representation with behaviour as a primary property.

We investigate how this information space for software components can be or-
ganised in order to facilitate the required taxonomy, thesaurus, conceptual model,
and logical framework functions. Focal point is an axiomatised ontology that, in
addition to the usual static view on knowledge, also intrinsically addresses the dy-
namics, i.e. the behaviour of software. Modal logics are central here – providing a
bridge between classical (static) knowledge representation approaches and behav-
iour and process description and classification.

We relate our discussion to the Web context, looking at Web services as com-
ponents and the Semantic Web as the knowledge representation framework.

1 Introduction

The style of software development has changed dramatically over the past
decades. Software development has become a distributed, collaborative pro-
cess based on the assembly of off-the-shelf and purpose-built software com-
ponents – an evolutionary process that in the last years has been strongly
influenced by the Web as a software development and deployment platform.

This change in the development style has an impact on information and
knowledge infrastructures surrounding these software components. The se-
lection of components from component repositories and the development of
components for these repositories requires an accessible information infra-
structure that allows component description, classification, and comparison.
Organising the space of knowledge that captures the description of properties
and the classification of software components based on these descriptions is
central. Discovery and composition of software components based on these
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descriptions and classifications have become central activities in the soft-
ware development process (Crnkovic and Larsson (2002)). In a distributed
environment where providers and users of software components meet in elec-
tronic marketplaces, knowledge about these components and their proper-
ties is essential; a shared knowledge representation language is a prerequisite
(Horrocks et al. (2003)). Describing software behaviour, i.e. the effect of the
execution of services that a component might offer, is required.

We will introduce an ontological framework for the description and classi-
fication of software components that supports the discovery and composition
of these components and their services – based on a formal, logical coverage
of this topic in (Pahl (2003)). Terminology and logic are the cornerstones of
our framework. Our objective is here twofold:

• We will illustrate an ontology based on description logics (a logic under-
lying various ontology languages), i.e. a logic-based terminological clas-
sification framework based on (Pahl (2003)). We exploit a connection to
modal logics to address behavioural aspects, in particular the safety and
liveness of software systems.

• Since the World-Wide Web has the potential of becoming central in future
software development approaches, we investigate whether the Web can
provide a suitable environment for software development and what the
requirements for knowledge-related aspects are. In particular Semantic
Web technologies are important for this context.

We approach the topic here from a general knowledge representation and
organisation view, rather than from a more formal, logical perspective.

In Section 2 we describe the software development process in distributed
environments in more detail. In Section 3, we relate knowledge representation
to the software development context. We define an ontological framework for
software component description, supporting discovery and composition, in
Section 4. We end with some conclusions in Section 5.

2 The software development process

The World-Wide Web is currently undergoing a change from a document- to
a services-oriented environment. The vision behind the Web Services Frame-
work is to provide an infrastructure of languages, protocols, and tools to
enable the development of services-oriented software architectures on and
for the Web (W3C (2004)). Service examples range from simple informa-
tion providers, such as weather or stock market information, to data storage
support and complex components supporting e-commerce or online banking
systems. An example for the latter is an account management component of-
fering balance and transfer services. Service providers advertise their services;
users (potential clients of the provider) can browse repository-based market-
places to find suitable services, see Fig. 1. The prerequisite is a common
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Fig. 1. A Service Component Development Scenario.

language to express properties of these Web-based services and a classifica-
tion approach to organise these. The more knowledge is available about these
services, the better can a potential client determine the suitability of an offer.

Services and components are related concepts. Web services can be pro-
vided by software components; we will talk about service components in
this case. If services exhibit component character, i.e. are self-contained with
clearly defined interfaces that allows them to be reused and composed, then
their composition to larger software system architectures is possible. Plug-
gable and reusable software components are one of the approaches to software
developments that promises risk minimisation and cost reduction. Composi-
tion can be physical, i.e. a more complex artefact is created through assembly,
or logical, i.e. a complex system is created by allowing physically distributed
components to interact. Even though our main focus are components in gen-
eral, we will discuss them here in the context of the Web Services platform.

The ontological description of component properties is our central concern
(Fig. 1). We will look at how these descriptions are used in the software
development process. Two activities are most important:

• Discovery of provided components (lower half of Fig. 1) in structured
repositories. Finding suitable, reusable components for a given develop-
ment based on abstract descriptions is the problem.

• Composition of discovered components in complex service-based compo-
nent architectures through interaction (upper half of Fig. 1). Techniques
are needed to compose the components in a consistent way based on their
descriptions.

For a software developer, the Web architecture means that most software de-
velopment and deployment activities will take place outside the boundaries of
her/his own organisation. Component descriptions can be found in external
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repositories. These components might even reside as provided services out-
side the own organisation. Shared knowledge and knowledge formats become
consequently essential.

3 A knowledge space for software development

The Web as a software platform is characterised by different actors, different
locations, different organisations, and different systems participating in the
development and deployment of software. As a consequence of this hetero-
geneous architecture and the development paradigm as represented in Fig.
1, shared and structured knowledge about components plays a central role.
A common understanding and agreement between the different actors in the
development process are necessary.

A shared, organised knowledge space for software components in service-
oriented architectures is needed. The question how to organise this knowledge
space is the central question of this paper. In order to organise the knowledge
space through an ontological framework (which we understand essentially as
basic notions, a language, and reasoning techniques for sharable knowledge
representation), we address three facets of the knowledge space: firstly, types
of knowledge that is concerned, secondly, functions of the knowledge space,
and, finally, the representation of knowledge (Sowa (2000)).

Three types of knowledge can be represented in three layers:

• The application domain as the basic layer.
• Static and dynamic component properties as the central layer.
• Meta-level activity-related knowledge about discovery and composition.

We distinguish four knowledge space functions (Daconta et al. (2003)) that
characterise how knowledge is used to support the development activities:

• Taxonomy – terminology and classification; supporting structuring and
search.

• Thesaurus – terms and their relationships; supporting a shared, controlled
vocabulary.

• Conceptual model – a formal model of concepts and their relationships;
here of the application domain and the software technology context.

• Logical theory – logic-supported inference and proof; here applied to be-
havioural properties.

The third facet deals with how knowledge is represented. In general, knowl-
edge representation (Sowa (2000)) is concerned with the description of entities
in order to define and classify these. Entities can be distinguished into ob-
jects (static entities) and processes (dynamic entities). Processes are often
described in three aspects or tiers:

• Form – algorithms and implementation – the ‘how’ of process description
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• Effect – abstract behaviour and results – the ‘what’ of process description
• Intention – goal and purpose – the ‘why’ of process description

We have related the aspects form, effect, and intention to software character-
istics such as algorithms and abstract behaviour. The service components are
software entities that have process character, i.e. we will use this three-tiered
approach for their description.

The three facets of the knowledge space outline its structure. They serve
as requirements for concrete description and classification techniques, which
we will investigate in the remainder.

4 Organising the knowledge space

4.1 Ontologies

Ontologies are means of knowledge representation, defining so-called shared
conceptualisations. Ontology languages provide a notation for terminological
definitions that can be used to organise and classify concepts in a domain.
Combined with a symbolic logic, we obtain a framework for specification,
classification, and reasoning in an application domain. Terminological logics
such as description logics (Baader et al. (2003)) are an example of the latter.

The Semantic Web is an initiative for the Web that builds up on ontology
technology (Berners-Lee et al. (2001)). XML – the eXtensible Markup Lan-
guage – is the syntactical format. RDF – the Resource Description Framework
– is a triple-based formalism (subject, property, object) to describe entities.
OWL – the Web Ontology Language – provides additional logic-based rea-
soning based on RDF.

We use Semantic Web-based ontology concepts to formalise and axioma-
tise processes, i.e. to make statements about processes and to reason about
them. Description logic, which is used to define OWL, is based on concept
and role descriptions (Baader et al. (2003)). Concepts represent classes of
objects; roles represent relationships between concepts; and individuals are
named objects. Concept descriptions are based on primitive logical combina-
tors (negation, conjunction) and hybrid combinators (universal and existen-
tial quantification). Expressions of a description logic are interpreted through
sets (concepts) and relations (roles).

We use a connection between description logic and dynamic logic (Sattler
et al. (2003), Chapter 4.2.2). A dynamic logic is a modal logic for the de-
scription of programs and processes based on operators to express necessity
and possibility (Kozen and Tiuryn (1990)). This connection allows us to ad-
dress safety (necessity of behaviour) and liveness (possibility of behaviour)
aspects of service component behaviour by mapping the two modal opera-
tors ‘box’ (or ‘always’, for safety) and ‘diamond’ (or ‘eventually’, for liveness)
to the description logic universal and existential quantification, respectively.
The central idea behind this connection is that roles can be interpreted as
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Fig. 2. A Service Component Ontology.

accessibility relations between states, which are central concepts of process-
oriented software systems. The correspondence between description logics
and a multi-modal dynamic logic is investigated in detail in (Schild (1991)).

4.2 A discovery and composition ontology

An intuitive approach to represent software behaviour in an ontological form
would most likely be to consider components or services as the central con-
cepts (DAML-S Coalition (2002)). We, however, propose a different approach.
Our objectve is to represent software systems. These systems are based on
inherent notions of state and state transition. Both notions are central in our
approach. Fig. 2 illustrates the central ideas. Service executions lead from old
(pre)states to new (post)states, i.e. the service is represented as a role (a rec-
tangle in the diagram), indicated through arrows. The modal specifications
characterise in which state executions might (using the possibility operator to
express liveness properties) or should (using the necessity operator to express
safety properties) end. For instance, we could specify that a customer may
(possibly) check his/her account balance, or, that a transfer of money must
(necessarily) result in a reduction of the source account balance. Transitional
roles such as Service in Fig. 2 are complemented by more static, descriptional
roles such as preCond or inSign, which are associated through non-directed
connections. For instance, preCond associates a precondition to a prestate;
inSign associates the type signatures of possible service parameters. Some
properties, such as the service name servName, will remain invariant with
respect to state change.

Central to our approach is the intrinsic specification of process behav-
iour in the ontology language itself. Behaviour specifications based on the
descriptions of necessity and possibility are directly accessible to logic-based
methods. This makes reasoning about behaviour of components possible.

We propose a two-layered ontology for discovery and composition. The
upper ontology layer supports discovery, i.e. addresses description, search,
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discovery, and selection. The lower ontology layer supports composition, i.e.
addresses the assembly of components and the choreography of their interac-
tions. We assume that execution-related aspects are an issue of the provider
– shareable knowledge is therefore not required.

Table 1 summarises development activities and knowledge space aspects.
It relates the activities discovery, composition, and execution on services
(with the corresponding ontologies) to the three knowledge space facets.

Table 1. Development Activities and Knowledge Space Facets.

Knowledge Aspect Knowledge Type Function

Discovery intention domain taxonomy
(upper ontology) (terminology) thesaurus

Composition effect component conceptual model
(lower ontology) (behaviour) component activities logical theory

Execution form component conceptual model
(implementation)

4.3 Description of components

Knowledge describing software components is represented in three layers. We
use two ontological layers here to support the abstract properties.

• The intention is expressed through assumptions and goals of services in
the context of the application domain.

• The effect is a contract-based specification of system invariants, pre- and
postconditions describing the obligations of users and providers.

• The form defines the implementation of service components, usually in a
non-ontological, hidden format.

We focus on effect descriptions here. Effect descriptions are based on modal
operators. These allow us to describe process behaviour and composition
based on the choreography of component interactions. The notion of compo-
sition shall be clarified now. Composition in Web- and other service-oriented
environments is achieved in a logical form. Components are provided in form
of services that will reside in their provider location. Larger systems are
created by allowing components to interact through remote operation in-
vocation. Components are considered as independent concurrent processes
that can interact (communicate) with each other. Central in the composition
are the abstract effect of individual services and the interaction patterns of
components as a whole.

We introduce role expressions based on the role constructors sequential
composition R;S, iteration !R, and choice R + S into a basic ontology lan-
guage to describe interaction processes (Pahl (2003)). We often use R ◦ S
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instead of R;S if R and S are functional roles, i.e. are interpreted by func-
tions – this notation will become clearer when we introduce names and ser-
vice parameters. Using this language, we can express ordering constraints for
parameterised service components. These process expressions constrain the
possible interaction of a service component with a client.

For instance, Login; !(Balance+ Transfer) is a role expression describing
an interaction process of an online banking user starting with a login, then
repeatedly executing balance enquiry or money transfer.

An effect specification1 focussing on safety is for a given system state

∀preCond.positive(Balance(no)) and
∀Transfer.∀postCond.reduced(Balance(no))

saying that if the account balance for account no is positive, then money
can be transfered, resulting (necessarily) in a reduced balance. Transfer is a
service; positive(Balance(no)) and reduced(Balance(no)) are pre- and post-
condition, respectively. These conditions are concept expressions. The specifi-
cation above is formed by navigating along the links created by roles between
the concepts in Fig. 2 – Transfer replaces Service in the diagram.

In Fig. 3, we have illustrated two sample component descriptions – one
representing the requirements of a (potential) client, the other representing a
provided bank account component. Each component lists a number of individ-
ual services (operations) such as Login or Balance. We have used pseudocode
for signatures (parameter names and types) and pre-/postconditions – a for-
mulation in proper description logic will be discussed later on. We have
limited the specification in terms of pre- and postconditions to one service,
Transfer.

The requirements specification forms a query as a request, see Fig. 1. The
ontology language is the query language. The composition ontology provides
the vocabulary for the query. A query should result ideally in the identifica-
tion of a suitable (i.e. matching) description of a provided component. In our
example, the names correspond – this, however, is in general not a matching
prerequisite. Behaviour is the only definitive criterion.

4.4 Discovery and composition of components

Component-based development is concerned with discovery and composition.
In the Web context, both activities are supported by Semantic Web and Web
Services techniques. They support semantical descriptions of components,
marketplaces for the discovery of components based on intention descriptions
as the search criteria, and composition support based on semantic effect de-
scriptions. The deployment of components is based on the form description.
1 This safety specification serves to illustrate effect specification. We will improve

this currently insufficient specification (negative account balances are possible,
but might not be desired) in the next section when we introduce names and
parameters.
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Component AccountRequirements

signatures and pre-/postconditions
Login

inSign no:int,user:string

outSign void

Balance

inSign no:int

outSign real

Transfer

inSign no:int,dest:int,sum:real

outSign void

preCond Balance(no) ≥ sum

postCond Balance(no) = Balance(no)@pre - sum

Logout

inSign no:int

outSign void

interaction process
Login;!Balance;Logout

Component BankAccount

signatures and pre-/postconditions
Login(no:int,user:string)

inSign no:int,user:string

outSign void

Balance(no:int):real

inSign no:int

outSign real

Transfer(no:int,dest:int,sum:real)
inSign no:int,dest:int,sum:real

outSign void

preCond true

postCond Balance(no) = Balance(no)pre - sum

Logout(no:int)

inSign no:int

outSign void

interaction process
Login;!(Balance+Transfer);Logout

Fig. 3. Bank Account Component Service.

Query and Discovery. The aim of the discovery support is to find suitable
provided components in a first step that match based on the application
domain related goals and that, in a second step, match based on the more
technical effect descriptions. Essentially, the ontology language provides a
query language. The client specifies the requirements in a repository query
in terms of the ontology, which have to be matched by a description of a
provided component.



94 Pahl

Matching requires technical support, in particular for the formal effect
descriptions. Matching can be based on techniques widely used in software
development, such as refinement (which is for instance formalised as the con-
sequence notion in dynamic logic). We will focus on the description of effects,
i.e. the lower ontology layer (cf. Fig. 2):

• Service component-based software systems are based on a central state
concept; additional concepts for auxilliary aspects such as the pre- and
poststate-related descriptions are available.

• Service components are behaviourally characterised by transitional roles
(for state changes between prestate and poststate) and descriptional roles
(auxilliary state descriptions).

Matching and composition. In order to support matching and com-
position of components through ontology technology, we need to extend
the (already process-oriented) ontology language we presented above (Pahl
and Casey (2003)). We can make statements about component interaction
processes, but we cannot refer to the data elements processed by services.
The role expression sublanguage needs to be extended by names (represent-
ing data elements) and parameters (which are names passed on to services
for processing):

• Names: a name is a role n[Name] defined by the identity relation on the
interpretation of an individual n.

• Parameters: a parameterised role is a transitional role R applied to a
name n[Name], i.e. R ◦ n[Name].

We can make our Transfer service description more precise by using a data
variable (sum) in pre- and postconditions and as a parameter:

∀preCond.(Balance(no) ≥ sum) and
∀Transfer◦sum[Name].∀postCond.(Balance(no)=Balance(no)@pre−sum)

This specification requires Transfer to decrease the pre-execution balance by
sum.

Matching needs to be supported by a comparison construct. We already
mentioned a refinement notion as a suitable solution. This definition, however,
needs to be based on the support available in description logics. Subsumption
is the central inference technique. Subsumption is the subclass relationship
on concept and role interpretations. We define two types of matching:

• For individual services, we define a refinement notion based on weaker pre-
conditions (allowing a service to be invoked in more states) and stronger
postconditions (improving the results of a service execution). For example
true as the precondition and Balance(no) = Balance(no)@pre− sum as
the postcondition for Transfer ◦ sum[Name] matches, i.e. refines the re-
quirements specification with Balance(no) >= sum as the precondition
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and Balance(no) = Balance(no)@pre − sum as the postcondition since
it allows the balance to become negative (i.e. allows more flexibility for
an account holder).

• For service processes, we define a simulation notion based on sequential
process behaviour. A process matches another process if it can simulate
the other’s behaviour. For example the expression Login; !(Balance +
Transfer);Logout matches, i.e. simulates Login; !Balance;Logout, since
the transfer service can be omitted.

Both forms of matching are sufficient criteria for subsumption. Matching of
effect descriptions is the prerequisite for the composition of services. Matching
guarantees the proper interaction between composed service components.

5 Conclusions

Knowledge plays an important role in the context of component- and service-
oriented software development. The emergence of the Web as a development
and deployment platform for software emphasises this aspect.

We have structured a knowledge space for software components in service-
oriented architectures. Processes and their behavioural properties were the
primary aspects. We have developed a process-oriented ontological model
based on the facets form, effect, and intention. The discovery and the com-
position of process-oriented service components are the central activities. This
knowledge space is based on an ontological framework formulated in a de-
scription logic. The defined knowledge space supports a number of different
functions – taxonomy, thesaurus, conceptual model, and logical theory. These
functions support a software development and deployment style suitable for
the Web and Internet environment.

Explicit, machine-processable knowledge is the key to future automation
of software development activities. In particular, Web ontologies have the
potential to become an accepted format that supports such an automation
endeavour.
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