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Abstract. Cluster ensembles are collections of individual solutions to a given clus-
tering problem which are useful or necessary to consider in a wide range of appli-
cations. Aggregating these to a “common” solution amounts to finding a consensus
clustering, which can be characterized in a general optimization framework. We dis-
cuss recent conceptual and computational advances in this area, and indicate how
these can be used for analyzing the structure in cluster ensembles by clustering its
elements.

1 Introduction

Ensemble methods create solutions to learning problems by constructing a set
of individual (different) solutions (“base learners”), and subsequently suitably
aggregating these, e.g., by weighted averaging of the predictions in regression,
or by taking a weighted vote on the predictions in classification. Such meth-
ods, which include Bayesian model averaging (Hoeting et al. (1999)), bagging
(Breiman (1996)) and boosting (Friedman et al. (2000)) have already become
very popular for supervised learning problems (Dietterich (2002)).

In general, aggregation yields algorithms with “low variance” in the sta-
tistical learning sense so that the results obtained by aggregation are more
“structurally stable”. Based on the success and popularity of ensemble meth-
ods, the statistical and machine learning communities have recently also be-
come interested in employing these in unsupervised learning tasks, such as
clustering. (Note that in these communities, the term “classification” is used
for discriminant analysis. To avoid ambiguities, we will use “supervised classi-
fication” to refer to these learning problems.) For example, a promising idea is
to obtain more stable partitions of a given data set using bagging (Bootstrap
Aggregating), i.e., by training the same base clusterer on bootstrap samples
from the data set and then finding a “majority decision” from the labelings
thus obtained. But obviously, aggregation is not as straightforward as in the
supervised classification framework, as these labelings are only unique up
to permutations and therefore not necessarily matched. In the classification
community, such aggregation problems have been studied for quite some time
now. A special issue of the Journal of Classification was devoted to “Compar-
ison and Consensus of Classifications” (Day (1986)) almost two decades ago.
By building on the readily available optimization framework for obtaining
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consensus clusterings it is possible to exploit the full potential of the cluster
ensemble approach.

Employing cluster ensembles can be attractive or even necessary for sev-
eral reasons, the main ones being as follows (see e.g. Strehl and Ghosh (2002)):

• To improve quality and robustness of the results. Bagging is one ap-
proach to reduce variability via resampling or reweighting of the data,
and is used in Leisch (1999) and Dudoit and Fridlyand (2002). In addi-
tion, many clustering algorithms are sensitive to random initializations,
choice of hyper-parameters, or the order of data presentation in on-line
learning scenarios. An obvious idea for possibly eliminating such algo-
rithmic variability is to construct an ensemble with (randomly) varied
characteristics of the base algorithm. This idea of “sampling from the
algorithm” is used in Dimitriadou et al. (2001, 2002). Aggregation can
also leverage performance in the sense of turning weak into strong learn-
ers; both Leisch (1999) and Dimitriadou et al. (2002) illustrate how e.g.
suitable aggregation of base k-means results can reveal underlying non-
convex structure which cannot be found by the base algorithm. Other
possible strategies include varying the “features” used for clustering (e.g.,
using various preprocessing schemes), and constructing “meta-clusterers”
which combine the results of the application of different base algorithms
as an attempt to reduce dependency of results on specific methods, and
take advantage of today’s overwhelming method pluralism.

• To aggregate results over conditioning/grouping variables in situations
where repeated measurements of features on objects are available for
several levels of a grouping variable, such as the 3-way layout in Vichi
(1999) where the grouping levels correspond to different time points at
which observations are made.

• To reuse existing knowledge. In applications, it may be desired to reuse
legacy clusterings in order to improve or combine these. Typically, in
such situations only the cluster labels are available, but not the original
features or algorithms.

• To accommodate the needs of distributed computing. In many applica-
tions, it is not possible to use all data simultaneously. Data may not nec-
essarily be available in a single location, or computational resources may
be insufficient to use a base clusterer on the whole data set. More gener-
ally, clusterers can have access to either a subset of the objects (“object-
distributed clustering”) or the features (“feature-distributed clustering”),
or both.

In all these situations, aggregating (subsets of) the cluster ensemble by
finding “good” consensus clusterings is fundamental. In Section 2, we consider
a general optimization framework for finding consensus partitions. Extensions
are discussed in Section 3.
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2 Consensus partitions

There are three main approaches to obtaining consensus clusterings (Gor-
don and Vichi (2001)): in the constructive approach, a way of constructing a
consensus clustering is specified: for example, a strict consensus clustering is
defined to be one such that objects can only be in the same group in the con-
sensus partition if they were in the same group in all base partitions. In the
axiomatic approach, emphasis is on the investigation of existence and unique-
ness of consensus clusterings characterized axiomatically. The optimization
approach formalizes the natural idea of describing consensus clusterings as
the ones which “optimally represent the ensemble” by providing a criterion
to be optimized over a suitable set C of possible consensus clusterings. Given
a function d which measures dissimilarity (or distance) between two cluster-
ings, one can e.g. look for clusterings which minimize average dissimilarity,
i.e., which solve

C∗ = argminC∈C
∑B

b=1
d(C,Cb)

over C. Analogously, given a measure of similarity (or agreement), one can
look for clusterings maximizing average similarity. Following Gordon and
Vichi (1998), one could refer to the above C∗ as the median or medoid clus-
tering if the optimum is sought over the set of all possible base clusterings,
or the set {C1, . . . , CB} of the base clusterings, respectively.

When finding consensus partitions, it seems natural to look for optimal
soft partitions which make it possible to assign objects to several groups with
varying degrees of “membership” (Gordon and Vichi (2001), Dimitriadou et
al. (2002)). One can then assess the amount of belongingness of objects to
groups via standard impurity measures, or the so-called classification mar-
gin (the difference between the two largest memberships). Note that “soft”
partitioning includes fuzzy partitioning methods such as the popular fuzzy
c-means algorithm (Bezdek (1974)) as well as probabilistic methods such as
the model-based approach of Fraley and Raftery (2002). In addition, one can
compute global measures Φ of the softness of partitions, and use these to
extend the above optimization problem to minimizing∑B

b=1
ωbd(C,Cb) + λΦ(C)

over all soft partitions, where the ω indicate the importance of the base clus-
terings (e.g., by assigning importance according to softness of the base par-
titions), and λ controls the amount of “regularization”. This extension also
allows for a soft-constrained approach to the “simple” problem of optimizing
over all hard partitions. Of course, one could consider criterion functions re-
sulting in yet more robust consensus solutions, such as the median or trimmed
mean of the distances d(C,Cb).

One should note that the above optimization problems are typically com-
putationally very hard. Finding an optimal hard partition with K labels in
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general makes it necessary to search all possible hard partitions (the num-
ber of which is of the order (K + 1)n (Jain and Dubes (1988)) for the op-
timum. Such exhaustive search is clearly impossible for most applications.
Local strategies, e.g. by repeating random reassigning until no further im-
provement is obtained, or Boltzmann-machine type extensions (Strehl and
Ghosh (2002)) are still expensive and not guaranteed to find the global opti-
mum.

Perhaps the most popular similarity measure for partitions of the same
data set is the Rand index (Rand (1971)) used in e.g. Gordon and Vichi
(1998), or the Rand index corrected for agreement by chance (Hubert and
Arabie (1985)) employed by Krieger and Green (1999). Finding (hard) con-
sensus partitions by maximizing average similarity is NP-hard in both cases.
Hence, Krieger and Green (1999) propose an algorithm (SEGWAY) based
on the combination of local search by relabeling single objects together with
“smart” initialization using random assignment, latent class analysis (LCA),
multiple correspondence analysis (MCA), or a greedy heuristic. Note also
that using (dis)similarity measures adjusted for agreement by chance works
best if the partitions are stochastically independent, which is not necessarily
the case in all cluster ensemble frameworks described in Section 1.

In what follows, the following terminology will be useful. Given a data set
X with the measurements of the same features (variables) on n objects, a K-
clustering of X assigns to each xi in X a (sub-)probability K-vector C(xi) =
(µi1, . . . , µiK) (the “membership vector” of the object) with µi1, . . . , µiK ≥ 0,∑

k µik ≤ 1. Formally,

C : X → M ∈ MK ; MK = {M ∈ Rn×K : M ≥ 0,M1K ≤ 1K},
where 1K is a lenght K column vector of ones, and M1K is the matrix
product of M and 1K . This framework includes hard partitions (where each
C(xi) is a unit Cartesian unit vector) and soft ones, as well as incomplete
(e.g., completely missing, for example if a sample from X was used) results
where

∑
k µik < 1. Permuting the labels (which correspond to the columns

of the membership matrix M) amounts to replacing M by MΠ , where Π is
a suitable permutation matrix.

The dissimilarity measure used in Models I and II of Gordon and Vichi
(2001) and in Dimitriadou et al. (2002) use the Euclidean dissimilarity of the
membership matrices, adjusted for optimal matching of the labels. If both
partitions use the same number of labels, this is given by

dF (M, M̃) = minΠ ‖M − M̃Π‖2

where the minimum is taken over all permutation matrices Π and ‖ · ‖ is the
Frobenius norm (so that ‖Y ‖2 = tr(Y ′Y ), where ′ denotes transposition).
As ‖M − M̃Π‖2 = tr(M ′M) − 2 tr(M ′M̃Π) + tr(Π ′M̃ ′M̃Π) = tr(M ′M) −
2 tr(M ′M̃Π) + tr(M̃ ′M̃), we see that minimizing ‖M − M̃Π‖2 is equivalent
to maximizing tr(M ′M̃Π) =

∑
i,k µikµ̃i,π(k), which for hard partitions is
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the number of objects with the same label in the partitions given by M
and M̃Π . Finding the optimal Π is thus recognized as an instance of the
assignment problem (or weighted bipartite graph matching problem), which
can be solved by a linear program using the so-called Hungarian method in
time O(K3) (e.g., Papadimitriou and Steiglitz (1982)). If the partitions have
different numbers of labels, matching also includes suitably collapsing the
labels of the finer partition, see Gordon and Vichi (2001) for details.

Finding the consensus K-clustering of given base K-clusterings with mem-
bership matrices M1, . . . ,MB amounts to minimizing

∑B
b=1 dF (M,Mb) over

MK , and is equivalent to minimizing
∑B

b=1 ‖M − MbΠb‖2 over M ∈ MK

and all permutation matrices Π1, . . . , ΠK . Dimitriadou et al. (2002) show
that the optimal M is of the form

M =
1
B

∑B

b=1
MbΠb

for suitable permutation matrices Π1, . . . , ΠB. A hard partition obtained
from this consensus partition by assigning objects to the label with maximal
membership thus performs simple majority voting after relabeling, which
motivates the name “voting” for the proposed framework. The Π1, . . . , ΠB

in the above representation are obtained by simultaneously maximizing the
profile criterion function∑

1≤β,b≤B
tr(Π ′

βM
′
βMbΠb)

over all possible permutation matrices (of course, one of these can be taken as
the identity matrix). This is a special case (but not an instance) of the mul-
tiple assignment problem, which is known to be NP-complete, and can e.g.
be approached using randomized parallel algorithms (Oliveira and Pardalos
(2004)). However, we note that unlike in the general case, the above criterion
function only contains second-order interaction terms of the permutations.
Whether the determination of the optimal permutations and hence of the
consensus clustering is possible in time polynomial in both B and K is cur-
rently not known.

Based on the characterization of the consensus solution, Dimitriadou et
al. (2002) suggest a greedy forward aggregation strategy for determining ap-
proximate solutions. One starts with M̃0 = M1 and then, for all b from 1
to B, first determines a locally optimal relabeling Π̃b of Mb to M̃b−1 (i.e.,
solves the assignment problem argminΠ ‖M̃b−1 − MbΠ‖2 using the Hungar-
ian method), and determines the optimal M = M̃b = (1/b)

∑b
β=1 M̃βΠ̃β for

fixed Π̃1, . . . , Π̃b by on-line averaging as M̃b = (1 − 1/b)M̃b−1 + (1/b)MbΠ̃b.
The final M̃B is then taken as the approximate consensus clustering. One
could extend this approach into a fixed-point algorithm which repeats the for-
ward aggregation, with the order of membership matrices possibly changed,
until convergence. Gordon and Vichi (2001) propose a different approach
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which iterates between simultaneously determining the optimal relabelings
Π1, . . . , ΠB for fixed M by solving the corresponding assignment problems,
and then optimizing for M for fixed Π1, . . . , ΠB by computing the average
(1/B)

∑B
b=1 MbΠb.

In the aggregation strategy Bag1 of Dudoit and Fridlyand (2002), the
same base clusterer is applied to both the original data set and B bootstrap
samples thereof, giving membership matrices Mref and M1, . . . ,MB. Optimal
relabelings Πb are obtained by matching the Mb to Mref , and (a hard version
of) the consensus partition is then obtained by averaging the MbΠb. There
seems to be no optimization criterion underlying this constructive approach.

According to Messatfa (1992), historically the first index of agreement
between partitions is due to Katz and Powell (1953), and based on the Pear-
son product moment correlation coefficient of the off-diagonal entries of the
co-incidence matrices MM ′ of the partitions. (Note that the (i, j)-th element
of MM ′ is given by

∑K
k=1 µikµjk, which in the case of hard partitions is one

if objects i and j are in the same group, and zero otherwise, and that relabel-
ing does not change MM ′.) A related dissimilarity measure (using covariance
rather than correlation) is

dC(M, M̃) = ‖MM ′ − M̃M̃ ′‖2

The corresponding consensus problem is the minimization of
∑

b ‖MM ′ −
MbM

′
b‖2, or equivalently of∥∥∥∥MM ′ − 1

B

∑B

b=1
MbM

′
b

∥∥∥∥2
over MK . This is Model III of Gordon and Vichi (2001), who suggest to use a
sequential quadratic programming algorithm (which can only be guaranteed
to find local minima) for obtaining the optimal M ∈ MK . The average co-
incidence matrix (1/B)

∑B
b=1 MbM

′
b also forms the basis of the constructive

consensus approaches in Fred and Jain (2002) and Strehl and Ghosh (2002).

3 Extensions

The optimization approach to finding consensus clusterings is also applicable
to the case of hierarchical clusterings (Vichi (1999)). If these are represented
by the corresponding ultra-metric matrices U1, . . . , UB, a consensus clustering
can be obtained e.g. by minimizing

∑
b ‖U−Ub‖2 over all possible ultra-metric

matrices U .
In many applications of cluster ensembles, interest is not primarily in ob-

taining a global consensus clustering, but to analyze (dis)similarity patterns
in the base clusterings in more detail—i.e., to cluster the clusterings. Gor-
don and Vichi (1998) present a framework in which all clusterings considered
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are hard partitions. Obviously, the underlying concept of “clustering cluster-
ings”, based on suitable (dis)similarity measures between clusterings, such as
the ones discussed in detail in Section 2, is much more general. In particular,
it is straightforward to look for hard prototype-based partitions of a cluster
ensemble characterized by the minimization of∑K

k=1

∑
C(Mb)=ek

d(Mb, Pk),

where ek is the k-th Cartesian unit vector over all possible hard assignments
C of membership matrices to labels and all suitable prototypes P1, . . . , PK .
If the usual algorithm which alternates between finding optimal prototypes
for fixed assignments and reassigning the Mb to their least dissimilar proto-
type is employed, we see that finding the prototypes amounts to finding the
appropriate consensus partitions in the groups. Similarly, soft partitions can
be characterized as the minima of the fuzzy c-means style criterion function∑

k,b u
q
kbd(Mb, Pk).
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