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Abstract. An overview of the Time Series Knowledge Mining framework to dis-
cover knowledge in multivariate time series is given. A hierarchy of temporal pat-
terns, which are not a priori given, is discovered. The patterns are based on the rule
language Unification-based Temporal Grammar. A semiotic hierarchy of temporal
concepts is build in a bottom up manner from multivariate time instants. We de-
scribe the mining problem for each rule discovery step. Several of the steps can be
performed with well known data mining algorithms. We present novel algorithms
that perform two steps not covered by existing methods. First results on a dataset
describing muscle activity during sports are presented.

1 Introduction

Many approaches in time series data mining concentrate on the compres-
sion of univariate time series (patterns) down to a few temporal features.
The aim is often to speed up the search for known patterns in a time series
database (see Hetland (2004) for an overview). The introduced techniques
for time series abstraction and the accompanying similarity measures can of-
ten be used in other contexts of data mining and knowledge discovery, e.g.
for searching unknown patterns or rules. Most rule generation approaches
search for rules with a known consequent, that is some unknown pattern
predicting a predefined event (Povinelli (2000)). In addition, the form of the
possible patterns is often restricted by rule language syntax (see Hetland and
Saetrom (2002) for a discussion). Very few approaches search for rules with
an unknown antecedent part and an unknown consequent part (Saetrom and
Hetland (2003), Höppner (2001)). Finally, few publications explicitly consider
multivariate time series (Höppner (2002)).

Knowledge Discovery is the mining of previously unknown rules that are
useful, understandable, interpretable, and can be validated and automatically
evaluated (Ultsch (1999)). It is unlikely that one method will maintain good
results on all problem domains. Rather, many data mining techniques need to
be combined for this difficult process. In Guimaraes and Ultsch (1999) some
early results of understandable patterns extracted from multivariate times
series were presented. Here, we want to describe our new hierarchical time
series rule mining framework Time Series Knowledge Mining (TSKM).

The rest of this paper is structured as follows. The data from sports
medicine is described in Section 2. The temporal concepts expressible by the
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rule language are explained in Section 3 using examples from the application.
Section 4 defines the steps of the framework and gives details on two novel
algorithms. The merits of the application, possible extensions of our work,
and related methods are discussed in Section 5. Section 6 summarizes the
paper.

2 Data

The TSKM method is currently applied to a multivariate time series from
sports medicine. Three time series describe the activity of the leg muscles dur-
ing In-Line Speed Skating measured with surface EMG (Electromyography)
sensors. The current leg position is described by three angle sensors (Electro-
goniometer), attached at the ankle, the knee, and the hip. Finally, there is a
time series produced by an inertia switch, indicating the first ground contact.

3 Unification-based Temporal Grammar

The Unification-based Temporal Grammar (UTG) is a rule language devel-
oped especially for the description of patterns in multivariate time series
(Ultsch (1996)). Unification-based Grammars are an extension of context free
grammars with side conditions. They are formulated with first order logic and
use unification. The UTG offers a hierarchical description of temporal con-
cepts. This opens up unique possibilities in relevance feedback during the
knowledge discovery process and in the interpretation of the results. An ex-
pert can focus on particularly interesting rules and discard valid but known
rules before the next level constructs are searched. After obtaining the final
results, an expert can zoom into each rule to learn about how it is composed
and what it’s meaning and consequences might be.

At each hierarchical level the grammar consists of semiotic triples: a
unique symbol (syntax), a grammatical rule (semantic), and a user defined la-
bel (pragmatic). The unique symbols can be generated automatically during
the mining process. The labels should be given by a domain expert for better
interpretation. Due to lack of space we will only briefly describe the concep-
tual levels of the hierarchy (see also Figure 1) along with an example from
the application. The basic ideas of the UTG were developed in Ultsch (1996)
and applied in Guimaraes and Ultsch (1999). For a detailed description see
Ultsch (2004).

A Primitive Pattern is a temporal atom with unit duration. It describes
a state of the time series at the smallest time scale. For the muscle activity
we found 3 to 5 states corresponding to subsets of very low, low, medium,
high, and very high. For the leg position six typical sport movement phases,
namely stabilization, forward gliding, pre-acceleration (of center of gravity),
preparation (of foot contact), foot placement, push-off, and leg swing were
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Fig. 1. UTG concepts Fig. 2. UTG Event rule

identified. The labeling (pragmatic) needs to be done in close cooperation
with an expert to ensure meaningful results.

A Succession introduces the temporal concept of duration. It represents
a time interval where nearly all time points have the same Primitive Pattern
label. Short interruptions (Transients) of an otherwise persisting state should
be removed. For the muscle activity interruptions shorter than 50ms were
discarded because a change of the state at this time scale is physiologically
not plausible. The movement phases are much longer in general, interruptions
up to 100ms were removed.

An Event represents the temporal concept of coincidence. It represents
a time interval where several Successions overlap. If the start points of all
overlapping Succession are approximately equal and the same is true for the
end points, the Event is called synchronous. The Events present in the skating
data relate the current movement phase and the position of the foot to the
activation of the muscles at the same time. One Event in the skating data
corresponded to all three muscles being highly active during the forward
gliding phase with the foot on the ground. This Event was labeled by the
expert as the weight transfer from one leg to the other (see Figure 2). The
five most frequent Events were labeled by the expert as follows: active gliding
(G), relaxation (R), anticipation (A), weight transfer (W), initial gliding (I).

A Sequence introduces the temporal concept of order. A Sequence is com-
posed of several Events occurring sequentially, but not necessarily with meet-
ing end and start points. The three most frequent Sequences were (G,R,A),
(G,R,A,W), and (G,R,A,W,I). They all have the same prefix (G,R,A) corre-
sponding to the contraction & relaxation phase. The Events W and I com-
plete the typical skating motion cycle, but are not always recognized due to
measurement errors in the foot contact sensor.

A Temporal Pattern is the summary of several Sequences by allowing a set
of Events at some positions of the pattern. Temporal Patterns represent the
non-temporal concept of alternative. Since all Sequences were quite similar in
this application, they were merged into a single Temporal Pattern describing
the typical motion cycle during Inline-Speed Skating.
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4 Time Series Knowledge Mining

The temporal knowledge discovery framework Time Series Knowledge Mining
(TSKM) aims at finding interpretable symbolic rules describing interesting
patterns in multivariate time series. We define the data models, mining task,
and algorithms for each level of the framework. The levels correspond to
the temporal concepts of the UTG and include some additional steps (see
Figure 5. Some tasks can be solved with well known data mining algorithms,
while other require new algorithms.

Aspects: The starting point of the TSKM is a multivariate time series,
usually but not necessarily uniformly sampled. An expert should divide the
features of the time series into possibly overlapping groups that are related
w.r.t. the investigated problem domain. Each feature subset is called an As-
pect and should be given a meaningful name. In the absence of such prior
knowledge, one Aspect per time series can be used. Each Aspect is treated
individually for the first steps of the framework.

Preprocessing and feature extraction techniques are applied to each
Aspect or even each time series individually. This is a highly application
dependent step.

Finding Primitive Patterns: The task of finding Primitive Patterns is
the reduction of the time series to a series of states. The input data is a real
or vector valued time series, the output is a time series of symbols for each
atomic time interval. It is important, that each symbol is accompanied by a
rule and a linguistic description to complete the semiotic triple.

Many discretization techniques can be used to find Primitive Patterns for
univariate Aspects. Simple methods aggregate the values using histograms.
Additionally down-sampling can be performed by aggregation over a time
window, e.g. Lin et al. (2003). The symbols for the bins can easily be mapped
to linguistic descriptions like high or low. A first order description method
describes the current trend of a time series, e.g. Kadous (1999). Second order
descriptions additionally incorporate the second derivative of the signal to
distinguish convex from concave trends, e.g Höppner (2001).

For Aspects spanning several time series we propose to use clustering and
rule generation on the spatial attributes. If the process alternates between
several regimes or states, these regions should form clusters in the high di-
mensional space obtained disregarding the time attribute. In Guimaraes and
Ultsch (1999) and for the identification of the skating movement phases Emer-
gent Self-Organizing Maps (ESOM)(Ultsch (1999)) have been used to identify
clusters. The rules for each cluster were generated using the Sig∗ Algorithm
(Ultsch (1991)). The ESOM enables visual detection of outliers and arbi-
trarily shaped clusters and Sig∗ aims at understandable descriptions of the
Primitive Patterns.

Finding Successions: The input data for finding Successions is a uni-
variate symbolic time series of Primitive Patterns, the output consist of a uni-
variate series of labeled intervals. The merging of consecutive Primitive Pat-
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i := 2
while i < n

// check symbols and duration
if (si−1 = si+1) and (di ≤ dmax)
and (di ≤ rmax ∗ (di−1 + di+1))

// merge 3 intervals
di − 1 :=

�i+1
j=i−1 dj

∀k ∈ {i, i + 1} dk := 0
i := i + 2

else
i := i + 1

end if
end while
// remove zero durations
S := S \ {(ti, di, si) ∈ S|di = 0}

Fig. 3. SequentialTransientFilter

i := 2
while i < n

s := i
// search end
while S(i)=S(i-1)

i := i + 1
end while
// check duration
if i − s ≥ mind

add Event on [s, i − 1]
end if
i := i + 1

end while

Fig. 4. FullEvents

terns into a Succession is straight forward. But with noisy data there are
often interruptions of a state (Transients). Let a Succession interval be a
triple of a start point t, a duration d, and a symbol s. Let the input Suc-
cessions be S = {(ti, di, si) i = 1..n} with ti + di ≤ ti+1 and si �= si+1.
Let dmax be the maximum absolute duration and rmax the maximum rela-
tive duration of a Transient. For the removal of Transients we propose the
SequentialTransientFilter algorithm shown in Figure 3.

The time complexity of the algorithm is O(n). A good choice for rmax

is 0.5, i.e. the gap is allowed to be at most half as long as the surrounding
segments together. The dmax parameter has to be chosen w.r.t to the appli-
cation. Often, some knowledge on the minimum duration of a phenomena to
be considered interesting is available.

Finding Events: Events represent the concept of coincidence, thus in
this step all Aspects are considered simultaneously. The input data is a mul-
tivariate series of labeled intervals (Successions) and the output is a univariate
series of labeled intervals (Events). Let S be a k × n matrix containing the
symbols of the Successions from k Aspects at n time points. We use S(i) for
the i-th column of S and S(i) = S(j) for element-wise equality. Let mind

be the minimum duration of an Event. The algorithm FullEvents shown in
Figure 4 discovers all Events where Successions from all Aspects coincide.

The time complexity of the algorithm is O(n). The dmax parameter can
be chosen similar the maximum duration of Transients when finding Succes-
sions. The post-processing to identify synchronous Events is rather straight
forward. For each Event the maximum difference between all start points of
the participating Successions are checked against a threshold and the same
is done for the end points. Additionally, the SequentialTransientFilter algo-
rithm can be applied to the resulting Event series.
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Fig. 5. The TSKM process

Finding Sequences: For the step of finding Sequences there is a large
number of algorithms that could be utilized. The input data is a univariate
series of labeled intervals and the output is a set of subsequences thereof. For
moderately sized dataset we use a suffix trie (e.g. Vilo (1998)). Compared
to a suffix tree, all egde labels in a trie have length one. Tries are larger,
but can easier be queried for patterns with wild-cards. The trie stores all
subsequences up to a maximum length and can be queried with frequency and
length thresholds to find the most interesting patterns. For larger datasets
more scalable and robust techniques from sequential pattern mining, e.g.
Yang et al. (2002), can be used.

Finding Temporal Patterns: The Sequences often overlap. The last
step of the framework is finding generalized Sequences, called Temporal Pat-
terns. We propose to use clustering based on a string metric to find groups of
similar Sequences. The Temporal Pattern can be generated by merging the
patterns in a cluster using groups of symbols at positions where the patterns
do not agree. We have successfully used hierarchical clustering based on the
string edit distance with a dendrogram visualization.

5 Discussion

The Temporal Pattern found in the skating data provided new insights for the
expert. The symbolic representation offers better interpretation capabilities
on the interactions of different skeletal muscles than the raw EMG data. We
identified the most important cyclical motion phases. The rule describing this
phase can be expanded to provide more details. At the level of Temporal Pat-
terns there is a Sequence of Events allowing some variations. Each Event is
associated with a rule listing the coinciding muscle and movement states in
form of the underlying Successions. Each movement Succession is linked to
a Primitive Pattern with a rule describing the range of hip, knee, and ankle
angles observed during this state. We plan to compare the patterns between
several skaters and running speeds to investigate possible differences. Based
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on background knowledge about the performance of the individual skaters
this can lead to strategies for individualized training optimization.

One could criticize the manual interaction needed at some levels of our
mining process, but we feel that a fully automated knowledge discovery is
not desirable. We see the hierarchical decomposition into single temporal
concepts as a great advantage of the TSKM. The separate stages offer unique
possibilities for the expert to interpret, investigate and validate the discovered
rules at different abstraction levels. The search space for the algorithms is
smaller than when mining several concepts at the same time. Also, a large set
of different algorithms can be plugged in the framework, e.g. segmentation to
discover Successions or Hidden Markov Models to obtain Primitive Pattern
to name just a few.

Usually only frequent Events and Sequences are kept while rare occurring
patterns are discarded from further processing. Depending on the application,
rare pattern might be important, however, and ranking should be done by a
different interestingness measure.

While the data model for Events is currently univariate, we are experi-
menting with algorithms allowing overlapping Events involving less Aspects.
However, this increases the number of Events found and makes mining Se-
quences more problematic.

There are only very few methods for rule discovery in multivariate time
series. Last et al. (2001) use segmentation and feature extraction per seg-
ment. Association rules on adjacent intervals are mined using the Info-Fuzzy
Network (IFN). The rule set is reduced using fuzzy theory. Höppner mines
temporal rules in sequences of labeled intervals (Höppner (2001), Höppner
(2002)), also obtained by segmentation and feature extraction. Patterns are
expressed with Allen’s interval logic (Allen (1983)) and mined with an Apriori
algorithm. A comparison to the TSKM method on a conceptual and experi-
mental level is planned.

6 Summary

We have presented our time series knowledge extraction framework TSKM.
The hierarchal levels of the underlying rule language UTG cover the temporal
concepts duration, coincidence, synchronicity and order at successive levels.
Rules from each level are accompanied by linguistic descriptions, thus partial
results can be interpreted and filtered by experts. We proposed algorithms
for the mining stages including two new algorithms for mining duration and
coincidence. First results of an application in sports medicine were mentioned.
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