
Empirical Comparison of

Boosting Algorithms

Riadh Khanchel and Mohamed Limam

Institut superieur de gestion
41, Rue da la liberte, Le Bardo 2000 Tunis, Tunisia

Abstract. Boosting algorithms combine moderately accurate classifiers in order
to produce highly accurate ones. The most important boosting algorithms are Ad-
aboost and Arc-x(j). While belonging to the same algorithms family, they differ
in the way of combining classifiers. Adaboost uses weighted majority vote while
Arc-x(j) combines them through simple majority vote. Breiman (1998) obtains the
best results for Arc-x(j) with j = 4 but higher values were not tested. Two other
values for j, j = 8 and j = 12 are tested and compared to the previous one and
to Adaboost. Based on several real binary databases, empirical comparison shows
that Arc-x4 outperforms all other algorithms.

1 Introduction

Boosting algorithms are one of the most recent developments in classification
methodology. They repeatedly apply a classification algorithm as a subrou-
tine and combine moderately accurate classifiers in order to produce highly
accurate ones. The first boosting algorithm, developed by Schapire(1990),
converts a weak learning algorithm into a strong one. A strong learning al-
gorithm achieves low error with high confidence while a weak learning algo-
rithm drops the requirement of high accuracy. Freund (1995) presents another
boosting algorithm, boost-by-majority, which outperforms the previous one.

Freund and Schapire (1997) present another boosting algorithm, Ad-
aboost. It is the first adaptive boosting algorithm because its strategy de-
pends on the advantages of obtained classifiers, called hypotheses. For binary
classification, the advantage of a hypothesis measures the difference between
its performance and random guessing. The only requirement of Adaboost
is to obtain hypotheses with positive advantage. Furthermore, the final hy-
pothesis is a weighted majority vote of the generated hypotheses where the
weight of each hypothesis depends on its performance. Due to its adaptive
characteristic, Adaboost has received more attention than its predecessors.
Experimental results (Freund and Schapire (1996), Bauer and Kohavi (1999))
show that Adaboost decreases the error of the final hypothesis.

Breiman (1998) introduces the ARCING algorithm’s family: Adaptively
Resampling and Combining which Adaboost belongs to. In order to bet-
ter understand the behavior of Adaboost, Breiman (1998) develops a sim-
pler boosting algorithm denoted by Arc-x(j). This algorithm uses a different



162 Khanchel and Limam

weight updating rule and combines hypotheses using simple majority vote.
The best results of Arc-x(j) are obtained for j = 4. When compared to Ad-
aboost, Breiman’s results show that both algorithms perform equally well.
Breiman (1998) argues that the success of Adaboost is not due to its way of
combining hypotheses but on its adaptive property. He argues also that since
higher values for j were not tested further improvement is possible.

In this paper, two other values for the parameter j of Arc-x(j) algorithm,
j = 8 and j = 12, are tested and their performance compared to Adaboost
and Arc-x4 in the subsampling framework using a one node decision tree
algorithm.

In section two, the different boosting algorithms used are briefly intro-
duced. In section three, the empirical study is described and the results are
presented. Finally, section four provides a conclusion to this article.

2 Arcing algorithms

Adaboost was the first adaptive boosting algorithm. First, the general frame-
work of boosting algorithms is introduced, then Adaboost and some of its
characteristics are reviewed. Finally, arcing algorithm’s family is discussed.

Given a labeled training set (x1, y1), . . . , (xn, yn), where each xi belongs
to the instance space X , and each label yi to the label set Y . Here only
the binary case is considered where Y = {−1, 1}. Adaboost applies repeat-
edly, in a series of iterations t = 1, . . . , T , the given learning algorithm to
a reweighted training set. It maintains a weight distribution over the train-
ing set. Starting with equal weight assigned to all instances, D(xi) = 1/n,
weights are updated after each iteration such that the weight of misclassi-
fied instances is increased. Weights represent instance importance. Increasing
instance’s weight will give it more importance and thus forcing the learning
algorithm to focus on it in the next iteration. The learning algorithm outputs
in each iteration a hypothesis that predicts the label of each instances ht(xi).
For a given iteration, the learning algorithm tends to minimize the error:

εt = Pr[ht(xi) �= yi], (1)

where Pr[.] denote empirical probability on the training sample.

2.1 Adaboost

Adaboost requires that the learning algorithm outputs hypotheses with error
less than 0.5. A parameter αt is used to measure the importance assigned
to each hypothesis. This parameter depends on hypothesis’ performance. For
the binary case this parameter is set to:

αt =
1
2

ln(
1 − εt
εt

). (2)



Empirical Comparison of Boosting Algorithms 163

The weight distribution is updated using αt (see Figure 2.1). This parame-
ter is positive because Adaboost requires that the learning algorithm output
hypotheses with error less than 0.5. At the end of the process, a final hypoth-
esis is obtained by combining all hypotheses from previous iterations using
weighted majority vote. The parameter αt represents the weight of the hy-
pothesis ht generated in iteration t. The pseudocode of Adaboost for binary
classification is presented in Figure 2.1.

Adaboost requires that the base learner performs better than random
guessing. The error can be written as follows:

εt = 1/2 − γt, (3)

where γt is a positive parameter that represents the advantage of the hy-
pothesis over random guessing. The training error of the final hypothesis is
bounded by: ∏

t

2
√

εt(1 − εt) (4)

Given: (x1, y1), . . . , (xn, yn) where xi ∈ X, yi ∈ Y = {−1; +1}
1-Initialize D1(i) = 1/n
2-For t = 1 to T:

• Train the weak classifier using Dt and get a hypothesis
ht : X �→ {−1; +1}
• Compute εt =

∑
i:ht(xi) �=yi

Dt(xi)

• If εt ≥ 0.5 stop.

• Choose: αt = 1
2 ln(1−εt

εt
)

• Update: Dt+1(i) = Dt(i) exp(−αtyiht(xi))
Zt

where Zt is a normalization factor

3-output the final hypothesis: H(x) = sign(
∑T

t=1 αtht(x))

Figure 2.1: Adaboost algorithm

This bound can be expressed in term of the advantage sequence γt:∏
t

2
√

εt(1 − εt) ≤ exp(−2
∑

t

γ2
t ). (5)

Thus, if each hypothesis is slightly better than random guessing, that is
γt > γ for γ > 0, the training error will drop exponentially fast.



164 Khanchel and Limam

The bound of generalization error, or the error of the final hypothesis
over the whole instance space X , depends on the training error, the size of
the sample n, the Vapnik-Chervonenkis (VC, Vapnik 1998) dimension d of
the weak hypothesis space and the number of boosting iterations T . The
generalization error is at most:

Pr[H(x) �= y] + Ô

(√
T.d

n

)
. (6)

This bound depends on the number of iterations T and we would think that it
will overfit as T becomes large but experimental results (Freund and Schapire
(1996)) show that Adaboost continue to drop down generalization error as T
becomes large.

2.2 Arcing family

Breiman (1998) used the ARCING term to describe the family of algorithms
that Adaptively Resample data and Combine the outputted hypotheses. Ad-
aboost was the first example of an arcing algorithm.

In order to study the behavior of Adaboost, Breiman developed an ad-hoc
algorithm, Arc-x(j). This algorithm is similar to Adaboost but differs in the
following:

• it uses a simpler weight updating rule:

Dt+1(i) =
1 + m(i)j∑
(1 + m(i)j)

, (7)

where m(i) is the number of misclassifications of instance i by classifiers
1, . . . , t and j is an integer.

• classifiers are combined using simple majority vote.

Since the development of arcing family, Adaboost and Arc-x4 were compared
in different framework and using different collections of datasets. Breiman
(1998) and Bauer and Kohavi (1999) show that Arc-x4 has an accuracy com-
parable to Adaboost without using the weighting scheme to construct the
final classifier. Breiman (1998) argues that higher values of j were not tested
so improvement is possible.

In this empirical study, two other values of the parameter j, j = 8 and
j = 12, are tested in the subsampling framework and compared to Adaboost
and Arc-x4.

3 Empirical study

First, the base classifier and the performance measure used in the experi-
ments are introduced then we the experimental results of each algorithm are
presented. Finally, the performance of all algorithms are compared.



Empirical Comparison of Boosting Algorithms 165

3.1 Base classifier and performance measure

Boosting algorithms require a base classifier as a subroutine that performs
slightly better than random guessing. In our experiments, we use a simple
algorithm, developed by Iba and Langley (1992), that induces a one node
decision tree from a set of preclassified training instances.

In order to compare different boosting algorithms, we use a collection of
binary data sets from UCI Machine learning Repository (Blakes et al. (1998)).
Details of these data sets are presented in Table 2.

For each data set, we repeat the experiment 50 times. Each time, the data
set is randomly partitioned into two equally sized sets. Each set is used once
as a training set and once as a testing set. We run each algorithm for T =
25 and 75 iterations and report the average test error.

Bauer and Kohavi (1999) measures of performance are used. For a fixed
number of iterations, the performance of each algorithm is evaluated using
test error averaged over all data sets. To measure improvement produced by
a boosting algorithm, absolute test error reduction and relative test error
reduction are used.

3.2 Results

Results are reported in Table 1 and interpreted as follows: for a fixed number
of iterations, we evaluate the performance of each algorithm on the collection
of data sets and on each data set. Then all algorithms are compared for 25
and 75 iterations using test error averaged over all data sets.

Table 1. Average test error for each algorithm for 25 and 75 iterations on each
data set.

base Adaboost Arc-x4 Arc-x8 Arc-x12

Data Classifier 25 75 25 75 25 75 25 75

Liv. 41.81 % 29.78% 29.35% 29.96% 28.94% 31.94% 29.24% 34.28% 29.60%
Hea. 28.96% 19.58% 20.38% 18.99% 18.93% 20.25% 19.41% 21.79% 20.07%
Ion. 18.93% 12.38% 11.32% 12.27% 11.83% 12.22% 11.21% 12.59% 11.01%
Bre. 8.32% 4.56% 4.62% 3.88% 3.87% 4.22% 4.14% 4.40% 4.26%
Tic. 34.66% 28.80% 28.68% 29.59% 28.43% 31.38% 28.82% 30.11% 29.36%

mean 26.54% 19.02% 18.87% 18.94% 18.40% 20.00% 18.56% 20.63% 18.86%

Adaboost results: Adaboost decreases the average test error by 7.52% for
25 iterations and by 7.67% for 75 iterations. All data sets have relative test
error reduction higher than 15%. The results for 75 iterations are better than
those obtained for 25 iterations except for breast cancer data and heart data.



166 Khanchel and Limam

Table 2. Data sets used in the experimental study

Data set number of instances number of attributes

Liver disorders(Liv) 345 7
Heart (Hea) 270 13
Ionosphere (Ion) 351 34
Breast cancer (Bre) 699 10
Tic tac toe (Tic) 958 9

Arc-x(j) results: All Arc-x(j) algorithms decrease the test error. The rel-
ative test error reduction is higher than 15% for all datasets except when
Arc-x(j) algorithms are applied for 25 iterations on the tic tac toe dataset.
Results produced for 75 iterations are better than those obtained for 25 iter-
ations.

Comparing algorithms: When comparing the results of the different
boosting algorithms for 25 and 75 iterations, we notice that:

• For 25 iterations, the lowest average test error is produced by Arc-x4
algorithm.

• The relative average error reduction between Arc-x4 and Adaboost is
0.43% which is not significant.

• The average error of Arc-x4 is better than the average error of Arc-x8 by
5.62% and by 8.96% for Arc-x12 which are significant at 5% level.

• Arc-x4 and Adaboost produce the lowest error on 2 databases, Arc-x8
outperforms the other algorithms on 1 data set.

• For 75 iterations, Arc-x4 outperforms all other algorithms.
• Adaboost and Arc-x12 performs equally well and less accurately than

Adaboost and Arc-x8.
• Arc-x4 produces the lowest error on 4 data sets and Arc-x12 on 1 data

set.
• The relative average error reduction between the lowest and the highest

error is 2.55% which is not significant.

4 Conclusion

This empirical study is an extension to Breiman’s (1998) study on the family
of boosting algorithms, the ARCING family. Two extensions of arcing weight
updating rules are tested and compared to the one used by Breiman (1998)
and to Adaboost in the subsampling framework.

Our empirical study shows that, based on these empirical results, increas-
ing the factor j of Arc-x(j) algorithm does not improve the performance of



Empirical Comparison of Boosting Algorithms 167

Arcing algorithms. The absolute test error reduction is higher for the first 25
iterations than for the last 50 iterations. It is interesting to look for another
way of combining classifiers which gives more weight to the first ones and
thus producing lower test error.

References

BAUER, E. KOHAVI, R. (1999): An empirical comparison of voting classification
algorithms: Bagging, boosting and variants.Machine learning, 36(1), 105–142.

BLAKES, C. KEOGH and E. MERZ, C.J. (1998): UCI repository of machine learn-
ing databases. http://www.ics.uci.edu/ mlearn/MLRepository.html

BREIMAN, L. (1998): Arcing classifiers.The Annals of Statistics, 26(3), 801–849.
FRIEDMAN, J., HASTIE, T. and TIBSHIRANI, R. (2000): Additive logistic re-

gression: A statistical view of boosting. The Annals of Statistics, 28(2), 337-
407.

FREUND, Y. (1995): Boosting a weak learning algorithm by majority. Information
and Computation, 121(2), 256–285.

FREUND, Y. and SCHAPIRE, R.E. (1996): Experiments with a new boosting al-
gorithm. Machine Learning: Proceedings of the Thirteenth International Con-
ference, 148–156.

FREUND, Y. and SCHAPIRE, R.E. (1997): A decision-theoretic generalization
of on-line learning and an application to boosting. Journal of Computer and
System Sciences, 55(1), 119–139.

IBA, W. and LANGLEY, P. (1992): Induction of one-level decision trees. Proceed-
ings the ninth international conference on machine learning, 233–240.

SCHAPIRE, R.E. (1990): The strength of weak learnability. Machine Learning,
5(2), 197–227.

VAPNIK, V. (1998): Statistical learning theory. John Wiley & Sons INC., New
York. A Wiley-Interscience Publication.




