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Preface

This volume contains revised versions of selected papers presented during
the 28th Annual Conference of the Gesellschaft für Klassifikation (GfKl), the
German Classification Society. The conference was held at the Universität
Dortmund in Dortmund, Germany, in March 2004. Wolfgang Gaul chaired
the program committee, Claus Weihs and Ernst-Erich Doberkat were the
local organizers. Patrick Groenen, Iven van Mechelen, and their colleagues
of the Vereniging voor Ordinatie en Classificatie (VOC), the Dutch-Flemish
Classification Society, organized special VOC sessions.

The program committee recruited 17 notable and internationally renown-
ed invited speakers for plenary and semi-plenary talks on their current re-
search work regarding classification and data analysis methods as well as ap-
plications. In addition, 172 invited and contributed papers by authors from 18
countries were presented at the conference in 52 parallel sessions representing
the whole field addressed by the title of the conference “Classification: The
Ubiquitous Challenge”. Among these 52 sessions the VOC organized sessions
on Mixture Modelling, Optimal Scaling, Multiway Methods, and Psychomet-
rics with 18 papers. Overall, the conference, which is traditionally designed as
an interdisciplinary event, again provided an attractive forum for discussions
and mutual exchange of knowledge.

Besides the results obtained in the fundamental subjects Classification
and Data Analysis, the talks in the applied areas focused on various appli-
cation topics. Moreover, along with the conference a competition on “Social
Milieus in Dortmund”, co-organized by the city of Dortmund, took place.
Hence the presentation of the papers in this volume is arranged in the fol-
lowing parts:

I. (Semi-)Plenary Presentations
II. Classification and Data Analysis

III. Applications, and
IV. Contest: Social Milieus in Dortmund.

The part on applications has sub-chapters according to the different applica-
tion fields Archaeology, Astronomy, Bio-Sciences, Electronic Data and Web,
Finance and Insurance, Library Science and Linguistics, Macro-Economics,
Marketing, Music Science, and Quality Assurance. Within (sub-)parts pa-
pers are mainly arranged in alphabetical order with respect to (first) author’s
names.

I.
Plenary and semi-plenary lectures enclose both conceptual and applied

papers. Among the conceptual papers Erosheva and Fienberg present a fully
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Bayesian approach to soft clustering and classification within a general frame-
work of mixed membership, Friendly introduces the Milestones Project on
documentation and illustration of historical developments in statistical graph-
ics, Hornik discusses consensus partitions particularly when applied to ana-
lyze the structure of cluster ensembles, Kiers gives an overview of procedures
for constructing bootstrap confidence intervals for the solutions of three-way
component analysis techniques, Pahl argues that a classification framework
can organize knowledge about software components’ characteristics, and Uter
and Gefeller define partial attributable risk as a unique solution for allocating
shares of attributable risk to risk factors. Within the applied papers Beran
presents preprocessing of musical data utilizing prior knowledge from musicol-
ogy, Fischer et al. introduce a method for the prediction of spatial properties
of molecules from the sequence of amino acids incorporating biological back-
ground knowledge, Grzybek et al. discuss how far word length may contribute
to quantitative typology of texts, and Snoek and Worring present the Time
Interval Multimedia Event framework as a robust approach for classification
of semantic events in multimodal soccer video.

II.

The second part of this volume is concerned with methodological progress
in classification and data analysis and methods presented cover a variety of
different aspects.

In the Classification part, more precise confidence intervals for the pa-
rameters of latent class models using the bootstrap method are proposed
(Dias), as well as a method of feature selection for ensembles that signif-
icantly reduces the dimensionality of subspaces (Gatnar), and a sensitive
two-stage classification system for the detection of events in spite of a noisy
background in the processing of thousands of images in a few seconds (Hader
and Hamprecht). Variants of bagging and boosting are discussed, which make
use of an ordinal response structure (Hechenbichler and Tutz), a methodology
for exploring two quality aspects of cluster analyses, namely separation and
homogeneity of clusters (Hennig), and a comparison of Adaboost to Arc-x(h)
for different values of h in the subsampling of binary classification data is car-
ried out (Khanchel and Limam). The method of distance-based discriminant
analysis (DDA) is introduced finding a linear transformation that optimizes
an asymmetric data separability criterion via iterative majorization and the
necessary number of discriminative dimensions (Kosinov et al.), an efficient
hybrid methodology to obtain CHAID tree segments based on multiple de-
pendent variables of possibly different scale types is proposed (Magidson and
Vermunt), and possibilities of defining the expectation of p-dimensional inter-
vals (Nordhoff) are described. Design of experiments is introduced into vari-
able selection in classification (Pumplün et al.), as well as the KMC/EDAM
method for classification and visualization as an alternative to Kohonen Self-
Organizing Maps (Raabe et al.). A clustering of variables approach extended
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to situations with missing data based on different imputation methods (Sah-
mer et al.), a method for binary online-classification incorporating temporal
distributed information (Schäfer et al.), and a concept of characteristic re-
gions and a new method, called DiSCo, to simultaneously classify and visu-
alize data (Szepannek and Luebke) are described. The part concludes with
two papers discussing multivariate Pareto Density Estimation (PDE), based
on information optimality, for data sets containing clusters (Ultsch) and an
extension of standard latent class or mixture models that can be used for the
analysis of multilevel and repeated measures data (Vermunt and Madgison).

The part on Data Analysis starts with papers proposing a robust pro-
cedure for estimating a covariance matrix under conditional independence
restrictions in graphical modelling (Becker) and a new approach to find prin-
cipal curves through a multidimensional, possibly branched, data cloud (Ein-
beck et al.). A three–way multidimensional scaling approach developed to
account for individual differences in the judgments about objects, persons or
brands (Krolak-Schwerdt), and the Time Series Knowledge Mining (TSKM)
framework to discover temporal structures in multivariate time series based
on the Unification-based Temporal Grammar (UTG) (Mörchen and Ultsch)
are introduced. A framework for the comparison of the information in contin-
uous and categorical data (Nishisato) and an external analysis of two-mode
three-way asymmetric multidimensional scaling for the disclosure of asymme-
try (Okada and Imaizumi) are presented. Finally, nonparametric regression
with the Relevance Vector Machine under inclusion of covariate measurement
error (Rummel) is described.

III.
In the third part of this volume all contributions are also related to ap-

plications of classification and data analysis methods but structured by their
application field.

Two papers deal with applications in Archaeology. The first is a his-
torical overview (Ihm) over early publications about formal methods on seri-
ation of archaeological finds, in the second article some cluster analysis mod-
els including different data transformations in order to differentiate between
brickyards of different areas on the basis of chemical analysis are investigated
(Mucha et al.).

Another two papers (both by Bailer-Jones) discuss applications in As-
tronomy. A brief overview of the upcoming Gaia astronomical survey mis-
sion, a major European project to map and classify over a billion stars in our
Galaxy, and an outline of the challenges are given in the first paper while in
the second a novel method based on evolutionary algorithms for designing
filter systems for astronomical surveys in order to provide optimal data on
stars and to determine their physical parameters is introduced.

The articles with applications in the Bio-Sciences all deal with enzyme,
DNA, microarray, or protein data, except the presentation of results of a sys-
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tematic and quantitative comparison of pattern recognition methods in the
analysis of clinical magnetic resonance spectra applied to the detection of
brain tumor (Menze et al.). The Generative Topographic Mapping approach
as an alternative to SOM for the analysis of microarray data (Grimmenstein
et al.) and a finite conservative test for detecting a change point in a bi-
nary sequence with Markov dependence and applications in DNA analysis
(Krauth) are proposed as well as a new algorithm for finding similar sub-
structures in enzyme active sites with the use of emergent self-organizing
neural networks (Kupas and Ultsch). How the feature selection procedure
“Significance Analysis of Microarrays” (SAM) and the classification method
“Prediction Analysis of Microarrays” (PAM) can be applied to “Single Nu-
cleotide Polymorphism” (SNP) data is explained (Schwender) as well as that
using relative differences (RelDiff) instead of LogRatios for cDNA microarray
analysis solves several problems like unlimited ranges, numerical instability
and rounding errors (Ultsch). Finally, a novel method, PhyNav, to reconstruct
the evolutionary relationship from really large DNA and protein datasets is
introduced applying the maximum likelihood principle (Vinh et al.).

Among the contributions on applications to Electronic Data and Web
one paper discusses the application of clustering with restricted random walks
on library usage histories in large document sets containing millions of objects
(Franke and Thede). In the other four papers different aspects of web-mining
are tackled. A tool is described assisting users of online news web-sites in
order to reduce information overload (Bomhardt and Gaul), benchmarks are
offered with respect to competition and visibility indices as predictors for
traffic in web-sites (Schmidt-Mänz and Gaul), an algorithm is introduced for
fuzzy two-mode clustering that outperforms collaborative filtering (Schlecht
and Gaul), and visualizations of online search queries are compared to im-
prove understanding of searching, viewing, and buying behavior of online
shoppers and to further improve the generation of recommendations (Thoma
and Gaul).

Two of the articles on Finance and Insurance deal with insurance
problems: A strategy based on a combination of support vector regression
and kernel logistic regression to detect and to model high-dimensional de-
pendency structures in car insurance data sets is proposed (Christmann) and
support vector machines are compared to traditional statistical classification
procedures in a life insurance environment (Steel and Hechter). Applications
in Finance deal with evaluation of global and local statistical models for
complex data sets of credit risks with respect to practical constraints and
asymmetric cost functions (Schwarz and Arminger), show how linear sup-
port vector machines select informative patterns from a credit scoring data
pool serving as inputs for traditional methods more familiar to practitioners
(Stecking and Schebesch), analyze the question of risk budgeting in contin-
uous time (Straßberger), and formulate a one-factor model for the correla-
tion between probabilities of default across industry branches, comparing it
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to more traditional methods on the basis of insolvency rates for Germany
(Weißbach and Rosenow).

Besides one contribution on Library Science where it is argued that the
history of classification is intensively linked to the history of library science
(Lorenz) the volume encloses five papers on applications in Linguistics.
It is shown that one meta-linguistic relation suffices to model the concept
structure of the lexicon making use of intensional logic (Bagheri), that im-
provements of the morphological segmentation of words using classical dis-
tributional methods are possible (Benden), and that in Russian texts (letters
and poems by three different authors) word length is a characteristic of genre,
rather than of authorship (Kelih et al.). A validation method of cluster analy-
sis methods concerning the number and stability of clusters is described with
the help of an application in linguistics (Mucha and Haimerl), clustering of
word contexts is used in a large collection of texts for word sense induction,
i.e. automatic discovery of the possible senses for a given ambiguous word
(Rapp), and formal graphs that structure a document-related information
space by using a natural language processing chain and a wrapping proce-
dure are proposed (Rist).

There are three papers with applications in Macro-Economics, two of
them dealing with the comparison of economic structures of different coun-
tries. The sensitivity of economic rankings of countries based on indicator
variables is discussed (Berrer et al.), structural variables of the 25 member
European Union are analyzed and patterns are found to be quite different
between the 15 current and the 10 new members (Sell), while the question
whether methods measuring (relative) importance of variables in the context
of classification allow interpretation of individual effects of highly correlated
economic predictors for the German business cycle (Enache and Weihs) is
tackled in a more methods-based contribution.

Within the Marketing applications one article shows by means of an
intercultural survey (Bauer et al.) that the cyber community is not a homo-
geneous group since online consumers can be classified into the three clusters:
“risk avers doubters”, “open minded online-shoppers” and “reserved infor-
mation seekers”. Two papers deal with reservation prices. A novel estimation
procedure of reservation prices combining adaptive conjoint analysis with
a choice task using individually adapted price scales is proposed (Breidert
et al.), and an explicit evaluation of variants of conjoint analysis together
with two types of data collection is described for the detection of reservation
prices of product bundles applied to a seat system offered by a German car
manufacturer (Stauß and Gaul).

Music Science is an application field that is present at GfKl conferences
for the first time. In this volume one paper deals with time series analysis, the
other five papers apply classification methods. A new algorithm structure is
introduced for feature extraction from time series, its efficiency is proofed, and
illustrated by different classification tasks for audio data (Mierswa). Classifi-
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cation methods are used to show that the more the musical sound is unstable
in time domain the more pitch bending is admitted to the musician expressing
emotions by music (Fricke). Classification rules for quality classes of “sight
reading” (SR) are derived (Kopiez et al.) based on indicators of piano prac-
tice, mental speed, working memory, inner hearing etc. as well as the total SR
performance of 52 piano students. Classification rules are also found for dig-
itized sounds played by different instruments based on the Hough-transform
(Röver et al.). Finally, classifications of possibly overlapping drum sounds
by linear support vector machines (Van Steelant et al.) and of singers and
instruments into high or low musical registers only by means of timbre, i.e.
after elimination of pitch information, are proposed (Weihs et al.).

Applications in Quality Assurance include one methodological paper
(Jessenberger and Weihs) which proposes the use of the expected value of the
so-called desirability function to assess the capability of a process. The other
papers discuss different statistical aspects of a deep hole drilling process in
machine building. The Lyapunov exponent is used for the discrimination be-
tween well-predictable and not-well-predictable time series with applications
in quality control (Busse). Two multivariate control charts to monitor the
drilling process in order to prevent chatter vibrations and to secure produc-
tion with high quality are proposed (Messaoud et al.) as well as a procedure
to assess the changing amplitudes of relevant frequencies over time based on
the distribution of periodogram ordinates (Theis and Weihs).

IV.
The fourth part of this volume starts with an introduction to the competi-

tion on “Social Milieus in Dortmund” (Sommerer and Weihs). Moreover, the
best three papers of the competition by Scheid, by Schäfer and Lemm, and
by Röver and Szepannek appear in this volume. We would like to thank the
head of the “dortmund-project”, Udo Mager, and the head of the Fachbereich
“Statistik und Wahlen” of the City of Dortmund, Ernst-Otto Sommerer, for
their kind support.
The conference owed much to its sponsors (in alphabetical order)

• Deutsche Forschungsgemeinschaft (DFG), Bonn,
• dortmund-project, Dortmund,
• Fachbereich Statistik, Universität Dortmund, Dortmund,
• Landesbeauftragter für die Beziehungen zwischen den Hochschulen in

NRW und den Beneluxstaaten,
• Novartis, Basel, Switzerland,
• Roche Diagnostics, Penzberg,
• sas Deutschland, Heidelberg,
• Sonderforschungsbereich 475, Dortmund,
• Springer-Verlag, Heidelberg,
• Universität Dortmund, and
• John Wiley and Sons, Chicester, UK.
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who helped in many ways. Their generous support is gratefully acknowledged.
Additionally, we wish to express our gratitude to the authors of the pa-

pers in the present volume, not only for their contributions, but also for their
diligence and timely production of the final versions of their papers. Fur-
thermore, we thank the reviewers for their careful reviews of the originally
submitted papers, and in this way, for their support in selecting the best
papers for this publication.

We would like to emphasize the outstanding work of Uwe Ligges and Nils
Raabe who did an excellent job in organizing the program of the confer-
ence and the refereeing process as well as in preparing the abstract booklet
and this volume, respectively. We also wish to thank our colleague Prof.
Dr. Ernst-Erich Doberkat, Fachbereich Informatik, University Dortmund,
for co-organizing the conference, and the Fachbereich Statistik of the Uni-
versity Dortmund for all the support, in particular Anne Christmann, Dr.
Daniel Enache, Isabelle Grimmenstein, Dr. Sonja Kuhnt, Edelgard Kürbis,
Karsten Luebke, Dr. Constanze Pumplün, Oliver Sailer, Roland Schultze,
Sibylle Sturtz, Dr. Winfried Theis, Magdalena Thöne, and Dr. Heike Traut-
mann as well as other members and students of the Fachbereich for helping to
organize the conference and making it a big success, and Alla Stankjawitsch-
ene and Dr. Stefan Dißmann from the Fachbereich Informatik for all they did
in organizing all financial affairs.

Finally, we want to thank Christiane Beisel and Dr. Martina Bihn of
Springer-Verlag, Heidelberg, for their support and dedication to the produc-
tion of this volume.

Dortmund and Karlsruhe, Claus Weihs, Wolfgang Gaul
April 2005
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Classification and Data Mining in Musicology

Jan Beran

Department of Mathematics and Statistics,
University of Konstanz, 78457 Konstanz, Germany

Abstract. Data in music are complex and highly structured. In this talk a number
of descriptive and model-based methods are discussed that can be used as pre-
processing devices before standard methods of classification, clustering etc. can
be applied. The purpose of pre-processing is to incorporate prior knowledge in
musicology and hence to filter out information that is relevant from the point of
view of music theory. This is illustrated by a number of examples from classical
music, including the analysis of scores and of musical performance.

1 Introduction

Mathematical considerations in music have a long tradition. The most ob-
vious connection between mathematics and music is through physics. For
instance, in ancient Greece, the Pythagoreans discovered the musical signif-
icance of simple frequency ratios such as 2/1 (octave), 3/2 (pure fifth), 4/3
(pure fourth) etc., and their relation to the length of a string. There are, how-
ever, deeper connections between mathematical and musical structures that
go far beyond acoustics. Many of these can be discovered using techniques
from data mining, together with a priori knowledge from music theory. The
results can be used, for instance, to solve classification problems. This is
illustrated in the following sections by three types of examples.

2 Music, 1/f -noise, fractal and chaos

In their celebrated – but also controversial – paper, Voss and Clarke (1975)
postulated that recorded music is essentially 1/f -noise (in the spectral do-
main), after high frequencies have been eliminated. (The term 1/f -noise is
generally used for random processes whose power spectrum is dominated by
low frequencies f such that its value is proportional to 1/f.) Can we verify
this statement? At first, the following question needs to be asked: Which
aspects of a composition does recorded music represent? Sound waves are
determined not only by the selection of notes, but also by the instrumental
sound itself. It turns out, however, that the sound wave of a musical instru-
ment often resembles 1/f -noise (see e.g. Beran (2003)). Thus, if recorded
music looks like 1/f -noise, this may be due to the instrument rather than
a particular composition. To separate instrumental sounds from composed
music, we therefore consider the score itself, in terms of pitch and onset
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time. The problem of superposition of notes in polyphonic music is solved
by replacing chords by arpeggio chords, replacing a chord by the sequence of
notes in the chord starting with the lowest note. In order to eliminate high
frequencies and to simplify the spectral density, data are aggregated by tak-
ing averages over disjoint blocks of k = 7 notes (see Beran and Ocker (2001)
and Tsai and Chan (2004) for a theoretical justification). Subsequently, a
semiparametric fractional model with nonparametric trend function, the so-
called SEMIFAR-model (Beran and Feng (2002), also see Beran (1994)), is
fitted to the aggregated series. In a SEMIFAR-model, the stochastic part has
a generalized spectral density behaving at the origin like 1/fα (where f is
the frequency) with α = 2d for some − 1

2 < d. Thus, 1/f -noise corresponds
to d = 1/2. Figure 1 shows smoothed histograms of α for four different time
periods. The results are based on 60 compositions ranging from the 13th to
the 20th century. Apparently a value around α = 1 is favored in classical
music up to the early romantic period (first three distributions, from above).
However, this preference is less clear in the late 19th and the 20th century.
Similar investigations can be made for other characteristics of a composi-
tion. For instance, we may consider onset time gaps between the occurence
of a particular note. Figure 2 displays typical log-log-periodograms and fitted
spectra, for gap series referring to the most frequent note (modulo 12). Note
that, near zero, each fitted log-log-curve essentially behaves like a straight
line with estimated slope α̂.

In summary, we may say that 1/fα-behaviour with α > 0 appears to be
common for many musical parameters. The fractal parameter α = 2d may
be interpreted as a summary statistic of the degree of variation and memory.
From the examples here it is clear, however, that 1/f -noise is not the only,
though perhaps the most frequent, type of variation.

3 Music and entropy

The fractal parameter d (or α = 2d) is a measure of randomness and coher-
ence (memory) in the sense mentioned above. Another, in some sense more
direct, measure of randomness is entropy. Consider, for instance, the distri-
bution of notes modulo 12 and its entropy. We calculate the entropy for 148
compositions by the following composers: Anonymus (dates of birth between
1200 and 1500), Halle (1240-1287), Ockeghem (1425-1495), Arcadelt (1505-
1568), Palestrina (1525-1594), Byrd (1543-1623), Dowland (1562-1626), Has-
sler (1564-1612), Schein (1586-1630), Purcell (1659-1695), D. Scarlatti (1660-
1725), F. Couperin (1668-1733), Croft (1678-1727), Rameau (1683-1764),
J.S. Bach (1685-1750), Campion (1686-1748), Haydn (1732-1809), Clementi
(1752-1832), W.A. Mozart (1756-1791), Beethoven (1770-1827), Chopin
(1810-1849), Schumann (1810-1856), Wagner (1813-1883), Brahms (1833-
1897), Faure (1845-1924), Debussy (1862-1918), Scriabin (1872-1915), Rach-
maninoff (1873-1943), Schoenberg (1874-1951), Bartok (1881-1945), Webern
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Fig. 1. Distribution of −α = −2d for four different time periods.

(1883-1945), Prokoffieff (1891-1953), Messiaen (1908-1992), Takemitsu (1930-
1996) and Beran (*1959). For a detailed description how the entropy is cal-
culated see Beran (2003). A plot of entropy against the date of birth of the
composer (figure 3) reveals a positive dependence, in particular after 1400.
Why that is so can be seen, at least partially, from star plots of the distribu-
tions. Figure 4 shows a random selection of star plots ranging from the 15th to
the 20th century. In order to reveal more structure, the 12 note categories are
ordered according to the ascending circle of fourths. The most striking feature
is that for compositions that may be classified as purely tonal in a traditional
sense, there is a neighborhood of 7 to 8 adjacent notes where beams are very
long, and for the rest of the categories not much can be seen. The plausible
reason is that in tonal music, the circle of fourths is a dominating feature
that determines a lot of the structure. This is much less the case for classical
music of the 20th century. With respect to entropy it means that for newer
music, the (marginal) distribution of notes is much less predictable than in
earlier music (see figure 3 where composers born after 1881 are marked as
“20th century”, namely Prokoffieff, Messiaen, Takemitsu, Webern and Be-
ran). Note, however, that there are also a few outliers in figure 3. Thus, the
rule is not universal, and entropy may depend on the individual composer or
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Fig. 2. Log-log-periodograms and fitted spectra for gap time series.

even the composition. In the last millennium, music moved gradually from
rather strict rules to increasing variety. It is therefore not surprising that
variability increases throughout the centuries - composers simply have more
choice. On the other hand, a comparison of Schumann’s entropies (which were
not included in figure 3) with those by Bach points in the opposite direction
(figure 5). As a cautionary remark it should also be noted that this data set
is a very small, and partially unbalanced, sample from the huge number of
existing compositions. For instance, Prokoffieff is included 15 times whereas
many other composers of the 20th century are missing. A more systematic
empirical investigation will need to be carried out to obtain more conclusive
results.

4 Score information and performance

Due to advances in music technology, performance theory is a very active
area of research where statistical analysis plays an essential role. In contrast
to some other branches of musicology, repeated observations and controlled
experiments can be carried out. With respect to music where a score exists,
the following question is essential: Which information is there in a score,
and how can it be quantified? Beran and Mazzola (1999a) (also see Maz-
zola (2002) and Beran (2003)) propose to encode structural information of a



Classification and Data Mining in Musicology 7

date of birth 

e
n

tr
o

p
y

1200 1400 1600 1800

1
.8

2
.0

2
.2

2
.4

A
rc

a
d

e
lt

A
rc

a
d

e
lt

A
rc

a
d

e
lt

P
a

le
st

ri
n

a
P

a
le

st
ri
n

a
P

a
le

st
ri
n

a
B

yr
d

B
yr

d
B

yr
d

H
a

ss
le

r
H

a
ss

le
r

H
a

ss
le

r

S
ca

rl
a
tt
i

S
ca

rl
a
tt
i

S
ca

rl
a
tt
i

S
ca

rl
a
tt
i

S
ca

rl
a
tt
i

S
ca

rl
a
tt
i

S
ca

rl
a
tt
i

S
ca

rl
a
tt
i

B
a
ch

B
a
ch

B
a
ch

B
a
ch

B
a
ch

B
a
ch

B
a
ch

B
a
ch

B
a
ch

B
a
ch

B
a
ch

B
a
ch

B
a
ch

B
a
ch

B
a
ch

B
a
ch

B
a
ch

B
a
ch

B
a
ch

B
a
ch

B
a
ch

B
a
ch

B
a
ch

B
a
ch

H
a
yd

n
H

a
yd

n
H

a
yd

n
H

a
yd

n
H

a
yd

n
H

a
yd

n
H

a
yd

n

C
h
o
p
in

C
h
o
p
in

C
h
o
p
in

C
h
o
p
in

2
0
th

 c
e
n
tu

ry
2
0
th

 c
e
n
tu

ry

2
0
th

 c
e
n
tu

ry

2
0
th

 c
e
n
tu

ry

2
0

th
 c

e
n

tu
ry

Fig. 3. Entropy of notes in Z12 versus date of birth.

score by so-called metric, harmonic and melodic weights or indicators. These
curves quantify the metric, harmonic and melodic importance of a note re-
spectively. A modified motivic indicator based on a priori knowledge about
motifs in the score is defined in Beran (2003). Figure 6 shows some indicator
functions corresponding to eight different motifs in Schumann’s Träumerei.
These curves can be related to observed performance data by various sta-
tistical methods (see e.g. Beran (2003), Beran and Mazzola (1999b, 2000,
2001)). For instance, figure 7 displays tempo curves of different pianists after
applying data sharpening with the indicator function of motif 2. Sharpening
was done by considering only those onset times where the indicator curve
of motif 2 is above its 90th percentile. This leads to simplified tempo curves
where differences and communalities are more visible. Also, sharpened tempo
curves can be used as input for other statistical techniques, such as classifi-
cation. A typical example is given in figure 8, where clustering is based the
motif-2-sharpened tempo curves in figure 7.
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Abstract. The paper describes and applies a fully Bayesian approach to soft clus-
tering and classification using mixed membership models. Our model structure
has assumptions on four levels: population, subject, latent variable, and sampling
scheme. Population level assumptions describe the general structure of the popula-
tion that is common to all subjects. Subject level assumptions specify the distribu-
tion of observable responses given individual membership scores. Membership scores
are usually unknown and hence we can also view them as latent variables, treating
them as either fixed or random in the model. Finally, the last level of assumptions
specifies the number of distinct observed characteristics and the number of replica-
tions for each characteristic. We illustrate the flexibility and utility of the general
model through two applications using data from: (i) the National Long Term Care
Survey where we explore types of disability; (ii) abstracts and bibliographies from
articles published in The Proceedings of the National Academy of Sciences. In the
first application we use a Monte Carlo Markov chain implementation for sampling
from the posterior distribution. In the second application, because of the size and
complexity of the data base, we use a variational approximation to the posterior.
We also include a guide to other applications of mixed membership modeling.

1 Introduction

The canonical clustering problem has traditionally had the following form:
for N units or objects measured on J variables, organize the units into G
groups, where the nature, size, and often the number of the groups is un-
specified in advance. The classification problem has a similar form except
that the nature and the number of groups are either known theoretically or
inferred from units in a training data set with known group assignments. In
machine learning, methods for clustering and classification are referred to
as involving “unsupervised” and “supervised learning” respectively. Most of
these methods assume that every unit belongs to exactly one group. In this
paper, we will primarily focus on clustering, although methods described can
be used for both clustering and classification problems.
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Some of the most commonly used clustering methods are based on hi-
erarchical or agglomerative algorithms and do not employ distributional as-
sumptions. Model-based clustering lets x = (x1, x2, . . . , xJ) be a sample of J
characteristics from some underlying joint distribution, Pr(x|θ). Assuming
each sample is coming from one of G groups, we estimate Pr(x|θ) indicat-
ing presence of groups or lack thereof. We represent the distribution of the
gth group by Prg(x|θ) and then model the observed data using the mixture
distribution:

Pr(x|θ) =
G∑

g=1

πgPrg(x|θ), (1)

with parameters {θ, πg}, and G.
The assumption that each object belongs exclusively to one of the G

groups or latent classes may not hold, e.g., when characteristics sampled are
individual genotypes, individual responses in an attitude survey, or words
in a scientific article. In such cases, we say that objects or individuals have
mixed membership and the problem involves soft clustering when the nature
of groups is unknown or soft classification when the nature of groups is known
through distributions Prg(x|θ), g = 1, . . . , G, specified in advance.

Mixed membership models have been proposed for applications in several
diverse areas. We describe six of these here:

1. NLTCS Disability Data. The National Long Term Care Survey assesses
disability in U.S. elderly population. We have been working with a 216

contingency table on functional disability drawing on combined data from
the 1982, 1984, 1989, and 1994 waves of the survey. The dimensions of
the table correspond to 6 Activities of Daily Living (ADLs)–e.g., getting
in/out of bed and using a toilet–and 10 Instrumental Activities of Daily
Living (IADLs)–e.g., managing money and taking medicine. In Section
3, we describe some of our results for the combined NLTCS data. We
note that further model extensions are possible to account for the lon-
gitudinal nature of the study, e.g., via employing a powerful conditional
independence assumption to accommodate a longitudinal data structure
as suggested by Manton et al. (1994).

2. DSM-III-R Psychiatric Classifications. One of the earliest proposals for
mixed membership models was by Woodbury et al. (1978), in the con-
text of disease classification. Their model became known as the Grade
of Memebership or GoM model, and was later used by Nurnberg et al.
(1999) to study the DSM-III-R typology for psychiatric patients. Their
analysis involved N = 110 outpatients and used the J = 112 DSM-III-R
diagnostic criteria for clustering in order to reassess the appropriateness
of the “official” 12 personality disorders. One could also approach this
problem as a classical classification problem but with J > N.



Mixed Membership Models 13

3. Peanut Butter Market Segmentation. Seetharaman et al. (2001) describe
data on peanut butter purchases drawn from A.C. Nielsen’s scanner data-
base. They work with data from 488 households over 4715 purchase occa-
sions (chosen such that there are at least 5 per household) for 8 top brands
of peanut butter. For each choice occasion we have: (a) shelf price, (b)
information on display/feature promotion, and a set of household char-
acteristics used to define “market segments” or groupings of households.
Market segmentation has traditionally been thought of as a standard
clustering problem but Varki et al. (2000) proposed a mixed-membership
model for this purpose which is a variant on the GOM model.

4. Matching Words and Pictures. Blei and Jordan (2003) and Barnard et al.
(2003) have been doing mixed-membership modeling in machine learn-
ing combining different sources of information in text documents, i.e.,
main text, photographic images, and image annotations. They estimate
the joint distribution of these characteristics via employing hierarchical
versions of a model known as the Latent Dirichlet Allocation in machine
learning. This allows them to perform such tasks as automatic image an-
notations (recognizing image regions that portray, for example, clouds,
water, and flowers) and text-based image retrieval (finding unannotated
images that correspond to a given text query) with remarkably good
performance.

5. Race and Population Genetic Structure. In a study of human population
structure Rosenberg et al. (2002) used genotypes at 377 autosomal mi-
crosatellite loci in 1056 individuals from 52 populations and part of their
analysis focuses on the soft clustering of individuals in groups. One of
the remarkable results of their study which uses the mixed membership
methods of Pritchard et al. (2002), is a typology structure that is very
close to the “traditional” 5 main racial groups, a notion much maligned
in the recent social science and biological literatures.

6. Classifying Scientific Publications. Erosheva, Fienberg et al. (2004) and
Griffiths and Styvers (2004) have used mixed membership models to
analyse related data bases involving abstracts, text, and references of
articles drawn from the Proceedings of the National Academy of Sciences
U S A (PNAS). Their mutual goal was to understand the organization
of scientific publications in PNAS and we explore the similarities and
differences between their approaches and results later in Section 4.

What these examples have in common is the mixed membership struc-
ture. In the following sections, we first introduce our general framework for
mixed membership models and then we illustrate its application in two of
the examples, using the PNAS and NLTCS data sets.
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2 Mixed membership models

The general mixed membership model relies on four levels of assumptions:
population, subject, latent variable, and sampling scheme. At the population
level, we describe the general structure of the population that is common
to all subjects, while at the subject level we specify the distribution of ob-
servable responses given individual membership scores. At the latent variable
level, we declare whether the membership scores are considered fixed or ran-
dom with some distribution. Finally, at the last level, we specify the number
of distinct observed characteristics and the number of replications for each
characteristic. Following the exposition in Erosheva (2002) and Erosheva et
al. (2004), we describe the assumptions at the four levels in turn.

Population level. We assume that there are K basis subpopulations (extreme
or pure types) in the population of interest. For each subpopulation k, we de-
note by f(xj |θkj) the probability distribution for response variable j, where
θkj is a vector of parameters. Moreover, we assume that, within a subpopu-
lation, responses for the observed variables are independent.

Subject level. For each subject, membership vector λ = (λ1, . . . , λK) repre-
sents the degrees of a subject’s membership in each of the subpopulations
or the consonance of the subject with each of the pure types. The form of
the conditional probability, Pr(xj |λ) =

∑
k λkf(xj |θkj), combined with the

assumption that the response variables xj are independent conditional on
membership scores, fully defines the distribution of observed responses xj for
each subject. In addition, given the membership scores, we take the observed
responses from different subjects to be independent.

Latent variable level. We can either assume that the latent variables are
fixed unknown constants or that they are random realizations from some
underlying distribution.

1. If the membership scores λ are fixed but unknown, then

Pr(xj |λ; θ) =
K∑

k=1

λkf(xj |θkj) (2)

is the conditional probability of observing xj , given the membership
scores λ and parameters θ.

2. If the membership scores λ are realizations of latent variables from some
distribution Dα, parameterized by α, then

Pr(xj |α,θ) =
∫ ( K∑

k=1

λkf(xj |θkj)
)
dDα(λ) (3)

is the marginal probability of observing xj , given the parameters.
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Sampling scheme. Suppose we observe R independent replications of J dis-
tinct characteristics for one subject, {x(r)

1 , . . . , x
(r)
J }R

r=1. If the membership
scores are realizations from the distribution Dα, the conditional probability
is

Pr

(
{x(r)

1 , . . . , x
(r)
J }R

r=1|α,θ
)

=
∫ ( J∏

j=1

R∏
r=1

K∑
k=1

λkf(x(r)
j |θkj)

)
dDα(λ). (4)

If we treat the latent variables as unknown constants, we get an analogous
representation for the conditional probability of observing R replications of
J variables. In general, the number of observed characteristics J need not be
the same across subjects, and the number of replications R need not be the
same across observed characteristics.

This mixed membership model framework unifies several specialized mod-
els that have been developed independently in the social sciences, in genetics,
and in machine learning. Each corresponds to different choices of J and R,
and different latent variable assumptions. For example, the standard GoM
model of Woodbury and Clive (1974) and Manton et al. (1994) assumes that
we observe responses to J survey questions without replications, i.e., R = 1,
and treats the membership scores as fixed unknown constants (fixed-effects).
Examples of the “fixed-effect” GoM analyses include but are not limited to: an
analysis mentioned earlier of DSM-III psychiatric classifications in Nurnberg
et al. (1999), a study of data on remote sensing (Talbot (1996)), an analysis
of business opportunities (Talbot et al. (2002)), and a classification of indi-
vidual tree crowns into species groups from aerial photographs (Brandtberg
(2002)).

Another class of mixed membership models is based directly on the stan-
dard GoM model but places a distribution on the membership scores. Thus,
Potthoff et al. (2000) treat the membership scores as realizations of Dirichlet
random variables and are able to use marginal maximum likelihood estima-
tion in a series of classification examples when the number of items J is small.
Erosheva (2002) provides a Markov chain Monte Carlo estimation scheme for
the GoM model also assuming the Dirichlet distribution on the membership
scores. Varki et al. (2000) employ a mixture of point and Dirichlet distribu-
tions as the generating distribution for the membership scores in their work.

Independently from the GoM developments, in genetics Pritchard et al.
(2000) use a clustering model with admixture. For diploid individuals the
clustering model assumes that R = 2 replications (genotypes) are observed
at J distinct locations (loci) and that the membership scores are random
Dirichlet realizations. Again, J and N vary in this and related applications.
In the Introduction, we briefly described an example of findings obtained
via this model in the study on race and population genetic structure by
Rosenberg et al. (2002).

A standard assumption in machine learning of text and other objects is
that a single characteristic is observed multiple times. For example, for a
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text document of length L only one distinct characteristic, a word, is ob-
served with R = L realizations. In this set-up, the work of Hofmann (2001)
on probabilistic latent semantic analysis treated membership scores as fixed
unknown constants and that of Blei et al. (2003) adopted a Dirichlet gen-
erating distribution for the membership scores. More recently, this line of
modeling has moved from considering a single characteristic (e.g., words in
a document) to working with a combination of distinct characteristics. An
example that we discussed in this area is by Barnard et al. (2003) who mod-
eled a combination of words and segmented images via a mixed membership
structure.

Given this multiplicity of unrelated mixed membership model develop-
ments, we should not be surprised by the variety of estimation methods
adopted. Broadly speaking, estimation methods are of two types: those that
treat membership scores as fixed and those that treat them as random. The
first group includes the numerical methods introduced by Hofmann (2003)
and by Kovtun et al. (2004b), and joint maximum likelihood type methods
described in Manton et al. (1994) and Varki and Cooil (2003) where fixed
effects for the membership scores are estimated in addition to the popula-
tion parameter estimates. The statistical properties of the estimates in these
approaches, such as consistency, identifiability, and uniqueness of solutions,
are suspect. The second group includes variational estimation methods used
by Blei et al. (2003), expectation-propagation methods developed by Minka
and Lafferty (2002), joint maximum likelihood approaches of Potthoff et al.
(2000) and Varki et al. (2000), and Bayesian MCMC simulations (Pritchard
et al. (2002), Erosheva (2002, 2003a)). These methods solve some of the sta-
tistical and computational problems, but many other challenges and open
questions still remain as we illustrate below.

3 Disability types among older adults

3.1 National Long Term Care Survey

The National Long-Term Care Survey (NLTCS), conducted in 1982, 1984,
1989, 1994, and 1999, was designed to assess chronic disability in the U.S.
elderly Medicare-enrolled population (65 years of age or older). Beginning
with a screening sample in 1982, individuals were followed in later waves
and additional samples were subsequently added maintaining the sample at
about 20,000 Medicare enrollees in each wave. The survey aims to provide
data on the extent and patterns of functional limitations (as measured by
activities of daily living (ADL) and instrumental activities of daily living
(IADL), availability and details of informal caregiving, use of institutional
care facilities, and death. NLTCS public use data can be obtained from the
Center for Demographic Studies, Duke University.

Erosheva (2002) considered the mixed membership model with up to K =
5 subpopulations or extreme profiles for the 16 ADL/IADL measures, pooled
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across four survey waves of NLTCS, 1982, 1984, 1989, and 1994. For each
ADL/IADL measure, individuals can be either disabled or healthy. Thus the
data form a 216 contingency table. The table has 65,536 cells, only 3,152 of
which are non-zero and there are a total of N = 21, 574 observations. This
is a large sparse contingency table that is not easily analyzed using classical
statistical methods such as those associated with log-linear models.

3.2 Applying the mixed membership model

Following the GoM structure for dichotomous variables, we have J = 16
dichotomous characteristics observed for each individual and the number of
replications R is 1. For each extreme profile k, the probability distribution
for characteristic j, f(xj |θkj) is binomial parameterized by the probability of
the positive response µkj .

We assume that the membership scores follow a Dirichlet distribution Dα

and employ Monte Carlo Markov chain estimation for the latent class repre-
sentation of the GoM model (Erosheva (2003a)). We obtain posterior means
for the response probabilities of the extreme profiles and posterior means of
the membership scores conditional on observed response patterns. Estimated
response probabilities of the extreme profiles provide a qualitative description
of the extreme categories of disability as tapped by the 16 ADL/IAD mea-
sures while the estimated parameters α of the Dirichlet distribution describe
the distribution of the mixed membership scores in the population.

Although the Deviance Information Criteria (Spiegelhalter et al. (2002))
indicates an improvement in fit for K increasing from 2 to 5 with the largest
improvement for K going from 2 to 3, other considerations point out that a
K = 4 solution might be appropriate for this data set (Erosheva (2002)). In
Table 1, we provide posterior means and standard deviation estimates for the
parameters of the GoM model with four extreme profiles. The estimates of
ξi and α0 reported in Table 1 and their product gives the vector of Dirichlet
distribution parameters. The estimated distribution of the membership scores
is bathtub shaped, indicating that the majority of individual profiles are close
to estimated extreme profiles.

One of the most significant findings in this analysis is based on examining
interpretations of the extreme profiles for the mixed membership models for
K = 4, 5 which rejects the hypothesis of a unidimensional disability structure,
i.e., the extreme profiles are qualitatively different and can not be ordered by
severity. In particular, individuals at two of the estimated extreme profiles can
be described as mostly cognitive and mostly mobility impaired individuals.
For more details on the analysis and substantive findings see Erosheva (2002).
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Table 1. Posterior mean (standard deviation) estimates for K = 4 extreme profiles.
The ADL items are: (1) eating, (2) getting in/out of bed, (3) getting around inside,
(4) dressing, (5) bathing, (6) using toilet. The IADL items are: (7) doing heavy
house work, (8) doing light house work, (9) doing laundry, (10) cooking, (11) grocery
shopping, (12) getting about outside, (13) traveling, (14) managing money, (15)
taking medicine, (16) telephoning.

k 1 2 3 4

µk,1 0.000 (3e-04) 0.002 (2e-03) 0.001 (6e-04) 0.517 (1e-02)
µk,2 0.000 (3e-04) 0.413 (1e-02) 0.001 (5e-04) 0.909 (7e-03)
µk,3 0.001 (5e-04) 0.884 (1e-02) 0.018 (8e-03) 0.969 (5e-03)
µk,4 0.007 (2e-03) 0.101 (6e-03) 0.016 (4e-03) 0.866 (8e-03)
µk,5 0.064 (4e-03) 0.605 (9e-03) 0.304 (9e-03) 0.998 (2e-03)
µk,6 0.005 (2e-03) 0.316 (9e-03) 0.018 (4e-03) 0.828 (8e-03)
µk,7 0.230 (7e-03) 0.846 (7e-03) 0.871 (7e-03) 1.000 (3e-04)
µk,8 0.000 (2e-04) 0.024 (4e-03) 0.099 (7e-03) 0.924 (7e-03)
µk,9 0.000 (3e-04) 0.253 (9e-03) 0.388 (1e-02) 0.999 (1e-03)
µk,10 0.000 (2e-04) 0.029 (5e-03) 0.208 (1e-02) 0.987 (4e-03)
µk,11 0.000 (3e-04) 0.523 (1e-02) 0.726 (1e-02) 0.998 (2e-03)
µk,12 0.085 (5e-03) 0.997 (2e-03) 0.458 (1e-02) 0.950 (4e-03)
µk,13 0.021 (4e-03) 0.585 (1e-02) 0.748 (1e-02) 0.902 (5e-03)
µk,14 0.001 (7e-04) 0.050 (5e-03) 0.308 (1e-02) 0.713 (8e-03)
µk,15 0.013 (2e-03) 0.039 (4e-03) 0.185 (8e-03) 0.750 (8e-03)
µk,16 0.014 (2e-03) 0.005 (2e-03) 0.134 (7e-03) 0.530 (9e-03)
ξk 0.216 (2e-02) 0.247 (2e-02) 0.265 (2e-02) 0.272 (2e-02)

α0 0.197 (5e-03)

4 Classifying publications by topic

4.1 Proceedings of the National Academy of Sciences

The Proceedings of the National Academy of Sciences (PNAS) is the world’s
most cited multidisciplinary scientific journal. Historically, when submitting
a research paper to the Proceedings, authors have to select a major category
from Physical, Biological, or Social Sciences, and a minor category from the
list of topics. PNAS permits dual classifications between major categories
and, in exceptional cases, within a major category. The lists of topics change
over time in part to reflect changes in the National Academy sections. Since
in the nineties the vast majority of the PNAS research papers was in the Bi-
ological Sciences, our analysis focuses on this subset of publications. Another
reason for limiting ourselves to one major category is that we expect papers
from different major categories to have a limited overlap.

In the Biological Sciences there are 19 topics. Table 2 gives the percentages
of published papers for 1997-2001 (Volumes 94-98) by topic and and numbers
of dual classification papers in each topic.
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Table 2. Biological Sciences publications in PNAS volumes 94–98, by subtopic,
and numbers of papers with dual classifications. The numbers in the final column
represent projections based on our model.

Topic Number % Dual % Dual More Dual?

1 Biochemistry 2578 21.517 33 18.436 338
2 Medical Sciences 1547 12.912 13 .263 84
3 Neurobiology 1343 11.209 9 5.028 128
4 Cell Biology 1231 10.275 10 5.587 111
5 Genetics 980 8.180 14 7.821 131
6 Immunology 865 7.220 9 5.028 39
7 Biophysics 636 5.308 40 22.346 62
8 Evolution 510 4.257 12 6.704 167
9 Microbiology 498 4.157 11 6.145 42
10 Plant Biology 488 4.073 4 2.235 54
11 Developmental Biology 366 3.055 2 1.117 43
12 Physiology 340 2.838 1 0.559 34
13 Pharmacology 188 1.569 2 1.117 34
14 Ecology 133 1.110 5 2.793 16
15 Applied Biological Sciences 94 0.785 6 3.352 7
16 Psychology 88 0.734 1 0.559 22
17 Agricultural Sciences 43 0.359 2 1.117 8
18 Population Biology 43 0.359 5 2.793 4
19 Anthropology 10 0.083 0 0 2

Total 11981 100 179 100 1319

4.2 Applying the mixed membership model

The topic labels provide an author-designated classification structure for pub-
lished materials. Notice that the vast majority of the articles are members
of only a single topic. We represent each article by collections of words in
the abstract and references in the bibliography. For our mixed membership
model, we assume that there is a fixed number of extreme categories or as-
pects, each of which is characterized by multinomial distributions over words
(in abstracts) and references (in bibliographies). A distribution of words and
references in each article is given by the convex combination of the aspects’
multinomials weighted by proportions of the article’s content coming from
each category. These proportions, or membership scores, determine soft clus-
tering of articles with respect to the internal categories.

Choosing a suitable value for the number of internal categories or aspects,
K, in this type of setting is difficult. We have focused largely on two versions
of the model, one with eight aspects and the other with ten. The set of para-
meters in our model is given by multinomial word and reference probabilities
for each aspect, and by the parameters of Dirichlet distribution, which is a
generating distribution for membership scores. There are 39,616 unique words
and 77,115 unique references in our data, hence adding an aspect corresponds
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to having 39,615 + 77,114 + 1 = 116,730 additional parameters. Because of
the large numbers of parameters involved, it is difficult to assess the extent to
which the added pair of aspects actually improve the fit of the model to the
data. In a set of preliminary comparisons we found little to choose between
them in terms of fit and greater ease of interpretation for the eight aspect
model. In Erosheva et al. (2004) we report on the details of the analysis of
the K = 8 aspect model and its interpretation and we retain that focus here.

From our analysis of high probability words and references, the 8 aspects
of our model have the following interpretation:

1. Intracellular signal transaction, neurobiology.
2. Evolution, molecular evolution.
3. Plant molecular biology.
4. Developmental biology; brain development.
5. Biochemistry, molecular biology; protein structural biology.
6. Genetics, molecular biology; DNA repair, mutagenesis, cell cycle.
7. Tumor immunology; HIV infection.
8. Endocrinology, reporting of experimental results; molecular mechanisms

of obesity.

Based on the interpretations, it is difficult to see whether the majority of as-
pects correspond to a single topic from the official PNAS classifications. To in-
vestigate a correspondence between the estimated aspects and the given top-
ics further, we examine aspect “loadings” for each paper. Given estimated pa-
rameters of the model, the distribution of each article’s “loadings” can be ob-
tained via Bayes’ theorem. The variational and expectation-propagation pro-
cedures give Dirichlet approximations to the posterior distribution p(λ(d),θ)
for each document d. We employ the mean of this Dirichlet as an estimate of
the “weight” of the document on each aspect.

We can gauge the sparsity of the loadings by the parameters of the Dirich-
let distribution, which for the K = 8 model we estimate as α1 = 0.0195, α2 =
0.0203, α3 = 0.0569, α4 = 0.0346, α5 = 0.0317, α6 = 0.0363, α7 = 0.0411,
α8 = 0.0255. This estimated Dirichlet, which is the generative distribution of
membership scores, is “bathtub shaped” on the simplex; as a result, articles
will tend to have relatively high membership scores in only a few aspects.

To summarize the aspect distributions for each topic, we provide a graph-
ical representation of these values for K = 8 and K = 10 in Figure 1 and
Figure 2, respectively. Examining the rows of Figure 1, we see that, with the
exception of Evolution and Immunology, the subtopics in Biological Sciences
are concentrated on more than one internal category. The column decomposi-
tion, in turn, can assist us in interpreting the aspects. Aspect 8, for example,
which from the high probability words seems to be associated with the re-
porting of experimental results, is the aspect of origin for a combined 37%
of Physiology, 30% of Pharmacology, and 25% of Medical Sciences papers,
according to the mixed membership model.
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Fig. 1. Graphical representation of mean decompositions of aspect membership
scores for K = 8. Source: Erosheva et al.(2004).

Fig. 2. Graphical representation of mean decompositions of aspect membership
scores for K = 10.

Finally, we compare the loadings (posterior means of the membership
scores) of dual-classified articles to those that are singly classified. We con-
sider two articles as having similar membership vectors if their loadings are
equal for the first significant digit for all aspects. One might consider singly
classified articles that have membership vectors similar to those of dual-
classified articles as interdisciplinary, i.e., the articles that should have had
dual classification but did not. We find that, for 11 percent of the singly
classified articles, there is at least one dual-classified article that has similar
membership scores. For example, three biophysics dual-classified articles with
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loadings 0.9 for the second and 0.1 for the third aspect turned out to have
similar loading to 86 singly classified articles from biophysics, biochemistry,
cell biology, developmental biology, evolution, genetics, immunology, medical
sciences, and microbiology. In the last column of Table 2, we give the numbers
of projected additional dual classification papers by PNAS topic.

4.3 An alternative approach with related data

Griffiths and Steyvers (2004) use a related version of the mixed membership
model on the words in PNAS abstracts for the years 1991-2001, involving
28,154 abstracts. Their corpus involves 20,551 words that occur in at least five
abstracts, and are not on the “stop list”. Their version of the model does not
involve the full hierarchical probability structure. In particular, they employ
Dirichlet(α) distribution for membership scores λ, but they fix α at 50/K,
and a Dirichlet(β) distribution for aspect word probabilities, but they fix β
at 0.1. These choices lead to considerable computational simplification that
allows using a Gibbs sampler for the Monte Carlo computation of marginal
components of the posterior distribution.

In Griffiths and Steyvers (2004) they report on estimates of Pr(data|K)
for K= 50, 100, 200, 300, 400, 500, 600, 1000, integrating out the latent vari-
able values. They then pick K to maximize this probability. This is referred
to in the literature as a maximum a posteriori (MAP) estimate (e.g., see
Denison et al. (2002)), and it produces a value of K approximately equal to
300, more than an order of magnitude greater than our value of K = 8.

There are many obvious and some more subtle differences between our
data and those analyzed by Griffiths and Steyvers as well as between our
approaches. Their approach differs from ours because of the use of a words-
only model, as well as through the simplification involving the fixing of the
Dirichlet parameters and through a more formal selection of dimensionality.
While we can not claim that a rigorous model selection procedure would
estimate the number of internal categories close to 8, we believe that a high
number such as K = 300 is at least in part an artifact of the data and
analytic choices made by Griffiths and Steyvers. For example, we expect
that using the class of Dirichlet distributions with parameters 50/K when
K > 50 for membership scores biases the results towards favoring many more
categories than there are in the data due to increasingly strong preferences
towards extreme membership scores with increasing K. Moreover, the use
of the MAP estimate of K has buried within it an untenable assumption,
namely that Pr(K) constant a priori, and pays no penalty for an excessively
large number of aspects.

4.4 Choosing K to describe PNAS topics

Although the analyses in the two preceding subsections share the same gen-
eral goal, i.e., detecting the underlying structure of PNAS research publica-



Mixed Membership Models 23

tions, they emphasize two different levels of focus. For the analysis of words
and references in Erosheva et al. (2004), we aimed to provide a succinct high-
level summary of the population of research articles. This led us to narrow
our focus to research reports in biology and to keep the numbers of topics
within the range of the current classification scheme. We found the results
for K = 8 aspects were more easily interpretable than those for K = 10 but
because of time and computational expense we did not explore more fully the
choice of K.

For their word-only model, Griffiths and Steyvers (2004) selected the
model based on K = 300 which seems to be aimed more at the level of
prediction, e.g., obtaining the most detailed description for each paper as
possible. They worked with a database of all PNAS publications for given
years and considered no penalty for using a large number of aspects such
as that which would be associated with the Bayesian Information Criterion
applied to the marginal distributions integrating out the latent variables.

Organizing aspects hierarchically, with sub-aspects having mixed mem-
bership in aspects, might allow us to reconcile our higher level topic choices
with their more fine-grained approach.

5 Summary and concluding remarks

In this paper we have described a Bayesian approach to a general mixed
membership model that allows for:

• Identification of internal clustering categories (unsupervised learning).
• Soft or mixed clustering and classifications.
• Combination of types of characteristics, e.g., numerical values and cate-

gories, words and references for documents, features from images.

The ideas behind the general model are simple but they allow us to view
seemingly disparate developments in soft clustering or classification prob-
lems in diverse fields of application within the same broad framework. This
unification has at least two saluatory implications:

• Developments and computational methods from one domain can be im-
ported to or shared with another.

• New applications can build on the diverse developments and utilize the
general framework instead of beginning from scratch.

When the GoM model was first developed, there were a variety of im-
pediments to its implementation with large datasets, but the most notable
were technical issues of model identifiability and consistency of estimation,
since the number of parameters in the model for even a modest number of
groups (facets) is typically greater than the number of observations, as well as
possible multi-modal likelihood functions even when the model was properly
identified. These technical issues led to to practical computational problems
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and concerns about the convergence of algorithms. The Bayesian hierarchical
formulation described here allows for solutions to a number of these diffi-
culties, even in high dimensions, as long as we are willing to make some
simplifying assumptions and approximations. Many challenges remain, both
statistical and computational. These include computational approaches to
full posterior calculations; model selection (i.e., choosing K), and the devel-
opment of extensions of the model to allow for both hierarchically structured
latent categories and dependencies associated with longitudinal structure.
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Abstract. The primary structure of a protein is the sequence of its amino acids.
The secondary structure describes structural properties of the molecule such as
which parts of it form sheets, helices or coils. Spacial and other properties are
described by the higher order structures. The classification task we are considering
here, is to predict the secondary structure from the primary one. To this end we
train a Markov model on training data and then use it to classify parts of unknown
protein sequences as sheets, helices or coils. We show how to exploit the directional
information contained in the Markov model for this task. Classifications that are
purely based on statistical models might not always be biologically meaningful. We
present combinatorial methods to incorporate biological background knowledge to
enhance the prediction performance.

1 Introduction

The primary structure of a DNA-sequence is given by the sequence of its
amino-acids. The secondary structure is a classification of contiguous stretch-
es of a DNA-molecule according to their conformation. We use a threefold
classification, namely the conformation helices, sheets, and coils. Most data-
bases contain a finer classification into 6 or more classes. We use the mapping
from Garnier et al. (1996) and Kloczkowski et al. (2002) to reduce to the three
aforementioned classes.

The task is to determine the secondary structure from the primary one.
We use a supervised learning approach for this purpose. From a database one
collects a number of DNA-sequences for which the classifications are known.
On these a (statistical) model is trained and then used to assign classifications
to new, unclassified protein sequences. There is a number of such classifiers
which are based on different learning concepts. Some use statistical methods
like, e.g., the GOR algorithm, Garnier et al. (1996) and Kloczkowski et al.
(2002). GOR are the initials of the authors of the first version of this method:
Garnier, Osguthorpe, and Robson. Other algorithms rely on neural networks
like PHD, Rost and Sander (1993) and (1994). The acronym means “Pro-
file network from HD”, where HD is the number plate code for Heidelberg,
Germany, where the authors worked. Most of them incorporate biological
background knowledge at some stage. For example a first classification given
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by a statistical model is then checked for biological plausibility and, if neces-
sary, corrected.

We use a first order Markov model as classifier. This type of classifier
has been successfully used before in a related setting, Brunnert et al. (2002).
There, the order and length of the helix and sheet subsequences was given
(but no information on the intermediate coil parts was known). Here, we
investigate how this classifier performs without the additional information
on order and length and how its performance can be improved. The aim is
to push the basic statistical method to its limits before combining it with
other techniques. We use the GOR algorithms as references. They have been
re-implemented without the incorporation of background knowledge.

2 The method

Let Σa denote the alphabet for the 20 amino acids, and let Σc = {H,E,C}
denote the classification alphabet, where H denotes helix, E sheet, and C coil.
In the following let x = x1, . . . , xn be a protein sequence, where xi ∈ Σa. Let
‖x‖ denote its length. Let C = c1, . . . , cn be the corresponding classification
sequence, ci ∈ Σc.

We shall use a first order Markov model for the prediction. The model
uses a parameter �, the window size. Such a model assigns probabilities p to
subsequences of x of length l as follows:

p(xi, . . . , xi+�−1) = p(xi) p(xi+1 | xi) · · · p(xi+�−1 | xi+�−2) (1)

For the threefold classification task we have in mind, three such models are
used, one for each of the classes {H,E,C}. The probability functions of the
respective models are denoted by pH , pE , and pC . The three models are
trained by estimating their parameters of the kinds pX( · ) and pX( · | · )
X ∈ {H,E,C}. Then they can be used for classification of new sequences as
follows: One evaluates all three models and then assigns that class which cor-
responds to the model with highest probability: argmax{pH , pE , pC}. The ob-
vious problem with this approach is, that a Markov model assign probabilities
to subsequences (windows) and not to individual amino acids. This might lead
to conflicting predictions. If, for example, E = argmaxX{pX(x1, . . . , x�−1)}
and H = arg maxX{pX(x2, . . . , x�)}, it is not clear which of the two classifi-
cations x2 should get. We choose to assign the classification of a window to
the first amino acid in that window. The estimation of the model parameters
is then performed to support this choice. We denote this by using the term
p(i) for this, i.e.,

pX(i) = pX(xi) pX(xi+1 | xi) · · · pX(xi+�−1 | xi+�−2) (2)

We investigated several modifications of the Markov model, some of which
also differ in the training process. The basic training is conducted as follows.
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The training data consists of N DNA-sequences x(j) and the corresponding
classification sequences c(j), j = 1, . . . , N . Now, three sets of subsequences
are constructed, one for each of the three classes. Each DNA-sequence x(j)

is divided into maximal substrings according to the classification c(j): Let
x

(j)
k x

(j)
k+1 · · ·x(j)

k+�−1 be such a subsequence. Then c
(j)
k = c

(j)
k+1 = · · · = c

(j)
k+�−1

and either k = 1 or c
(j)
k−1 �= c

(j)
k and either k + �− 1 = ‖x‖ or c

(j)
k+�−1 �= c

(j)
k+�.

When we use the term subsequence in the following we mean such a maximal
subsequence. We denote the three collections of subsequences by SH , SE , and
SC . On each of these sets a Markov model is trained by estimating its para-
meters. Let MH , ME , and MC be the respective models. The estimations
are the relative frequencies of (pairs of) residues in the training data. To
avoid zero empirical probabilities, we introduce a pseudocount value c ≥ 0,
where c = 0 is the estimation without pseudocounts. Let X ∈ {H,E,C} be
the class and let y(j) denote the maximal subsequences. Then the estimations
are

pX(a) :=
c +
∣∣∣{j | y(j) ∈ SX ∧ y

(j)
1 = a}

∣∣∣
|Σa| c + |SX | (3)

pX(b|a) :=
c +
∣∣∣{(i, j) | y(j) ∈SX ∧ 1<i≤∥∥y(j)

∥∥ ∧ y
(j)
i =a ∧ y

(j)
i−1 =b

}∣∣∣∣∣∣{(i, j) | y(j) ∈ SX ∧ 1 < i ≤ ∥∥y(j)
∥∥ ∧ y

(j)
i = a

}∣∣∣+ |Σa| c
(4)

3 Improvements

The basic classification method described above has been analysed and mod-
ified in order to detect the importance of the various parameters and to
improve its performance. The tests were carried out while maintaining the
statistical nature of the approach. No biological background knowledge was
incorporated. Also, the method was not combined with other techniques. The
aim was to push the performance of the basic method as far as possible before
applying other techniques. In the following we describe the modifications and
their influence on the performance.

The results shown here come from tests performed in Larsen and Thomsen
(2004) on the GOR data set (Garnier et al. (1996)), which consists of 267
protein sequences. It was evaluated using a leave-one-out cross-validation.
We also used the benchmark data set of 513 protein sequences. The results
on the latter set showed no relevant difference to those on the GOR data set.
Due to the structure of the Markov model with window size �, the last �− 1
residuals of a sequence cannot be classified. The percent figures thus are the
ratios of correctly classified residuals and all classified residuals.

Pseudocount and window size: These two parameters have been var-
ied independently. The window size parameter � is the number of terms used
in the Markov expansion (1). The range for the window size was 1 through 10.
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One would expect that a very small window size results in bad performance,
because too few information is used in the classification process. Also very
large window sizes should decrease the performance because the local infor-
mation is blurred by far off data. The pseudocount parameter c was varied
from 0 through 1000. The effect of this parameter depends on the size of the
training set. In our case the set was so large, that no zero empirical probabil-
ities occurred. Nevertheless, the performance of the classifier was improved
when using small positive pseudocount values. We believe that this is due to
the fact, that statistical fluctuation in small (unprecisely estimated) empirical
probabilities are leveled by this.

The optimal choice of the parameters was a window size of 5 and a pseudo-
count value of 5. These settings were used in all following results. We also
varied the window size and pseudocount constant in combination with other
modifications but the aforementioned values stayed optimal. Figure 1 shows
a plot of the test results. With this choice, the basic model has a classification
rate (number of correctly classified residuals) of 51.0%. The naive classifica-
tion – constantly predicting the most frequent residual (coil) – would give
43%.

Fig. 1. A contour plot of the prediction performance of the Markov model as a
function of the window size and the pseudocount constant. The vertical axis is
from S1 = 0 to S7 = 15

Estimation of pX(a): In Equation (3) the parameter pX(a) was esti-
mated as the empirical frequency of a as a first letter of a maximal subse-
quence with classification X . This definition stems from the application in
Brunnert et al. (2002) where additional knowledge on the structure of the
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subsequences (length/order) was available. We changed the estimation (3) to

p′X(a) :=
c +
∣∣∣{(i, j) | y(j) ∈ SX ∧ y

(j)
i = a}

∣∣∣
|Σa| c +

∑
j

∣∣y(j)
∣∣ , (5)

the frequency of the letter a in all subsequences with classification X . Us-
ing this definition improved the classification performance by 1.4 percentage
points. The increase was expected, because the information on residuals in
the middle of the subsequence is increased.

Estimation of p(a|b): Instead of using Equation (4) to estimate the
conditional probabilities, we also considered the reversed sequence. That is
we computed pforw(a|b) as in Equation (4) and prev(a|b) as in Equation (4)
but on the reversed sequence. Then we set p(a|b) to the sum of pfore(a|b) and
prev(a|b) and normalize to get a probability distribution. Using this definition
of p(a|b) improved the prediction performance by 2 percentage points.

Direction: Markov models exploit directional information. We therefore
tried another modification, namely to reverse the sequences in the train-
ing and the classification process. We did not expect a significant increase
from this. To our surprise the classification performance was increased by
1.5 percentage points when using reversed sequences. This indicates that the
sequence data is more informative in one direction than in the other one.

Momentum: This variation of the basic method tries to achieve a more
“stable” classification as the classification window moves along the DNA-
sequence. To this end we consider the discounted values of previous classifi-
cations. The new classification value, denoted by p′X(i), replaces the original
values pX(i) from (2) and is defined by

p′X(1) = pX(1)
p′X(i) = w · p′X(i − 1) + (1 − w) · pX(i)

To determine a good value for the discount constant w, different settings of
w ∈ [0, 1] were tested. The choice of w = 0.5 showed the best results with an
increase of 4.3 percentage points in the prediction performance.

One can say that the use of a momentum term does model some biological
knowledge. It is known that helix, coil, or sheet subsequences usually consist
of a number of amino acids, not just a single one. The momentum method
eliminates a number of subsequences of length one from the prediction. This
often replaces the old prediction by the correct one, which results in the
better performance.

Combination of methods: A number of combinations of the above
methods were tested. Combining the definition given in Equation (5) for
p(a), the momentum and the modified definition of p(a|b) proved to be the
most successful one. It resulted in the considerable increase of the prediction
performance of 6.3 percentage points resulting in 57.3%.
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Our implementations of the GOR algorithm versions I, III and IV, all
without the incorporation of background knowledge and with window size 17,
gave classification rates of 60.7%, 59.6%, and 63.4%. It is not surprising that
the GOR-algorithms outperform the Markov approach, as it uses a statistic
of all pairs in the window. It is however surprising, how close one can come
to versions I and III of GOR.

4 Ongoing research

We are currently considering “peaks” of the probabilities. The idea of using
the concept of a peak is motivated by the shapes of the graphs of the three
probability functions pE(i), pH(i), and pC(i). Often the function pX has a
peak at the first residuum of a X-subsequence. See Figure 2 for an example.
The peaks are more prominent when using the original definition (3) of the
term p(a) than that given in (5). A peak could be used as indicator of the start
of a new subsequence. Then the corresponding classification is maintained
until a peak of another probability function is found.

TPEMPVLENRAAQGNITAPGGARRLTGDQTAALRNSLSDKPAKNIILLIGDGMGDSEITAARNYAEGAGGFFKGIDALP

Coil group Sheet group Helix group

Fig. 2. The picture shows the probability functions for the three classes. Two peaks
at the left start points of subsequences are marked by ovals. Below the graphs is
the protein sequence with the correct classifications shown by colors. The colors in
the line below show the predictions of the Markov model.

The problem here is to find an appropriate combinatorial definition of
the term “peak”. The absolute value of the functions pX cannot be used
due to their strong variation. Also, a peak of one function, say pE , does not
necessarily exceed the values of the two other functions. On the other hand,
a peak value of pE should not be ridiculously small relative to the two other
functions.

First tests with a simple definition of a peak show that using this concept
as a start indicator only gives an improvement of 4 percentage points over
the naive classification leading to 47%. The plan is to incorporate peak in-
dicators into the Markov method (or other prediction methods). One way of
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doing this is to compare the peak locations with a prediction given by some
other method. Then the alignment of a peak with the start of a predicted
subsequence would raise our confidence in the prediction. If a predicted sub-
sequence does not coincide with a peak, then the prediction at this location
should be checked.

5 Summary

We have significantly improved a simple statistical prediction method by a
thorough analysis of the influence of its different components. Now, the next
step is to incorporate biological background knowledge into the classification
process and to combine the Markov predictor with other classifiers. The in-
vestigations also exposed the “peak” concept as a promising alternative for
using the statistical information.
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Abstract. The Milestones Project is a comprehensive attempt to collect, docu-
ment, illustrate, and interpret the historical developments leading to modern data
visualization and visual thinking. This paper provides an overview and brief tour
of the milestones content, with a few illustrations of significant contributions to the
history of data visualization. This forms one basis for exploring interesting ques-
tions and problems in the use of statistical and graphical methods to explore this
history, a topic that can be called “statistical historiography.”

1 Introduction

The only new thing in the world is the history you don’t know.—Harry S
Truman

The graphic portrayal of quantitative information has deep roots. These
roots reach into the histories of the earliest map-making and visual depic-
tion, and later into thematic cartography, statistics and statistical graphics,
medicine, and other fields, which are intertwined with each other. They also
connect with the rise of statistical thinking and widespread data collection
for planning and commerce up through the 19th century. Along the way, a
variety of advancements contributed to the widespread use of data visualiza-
tion today. These include technologies for drawing and reproducing images,
advances in mathematics and statistics, and new developments in data col-
lection, empirical observation and recording.

From above ground, we can see the current fruit; we must look below to
understand their germination. Yet the great variety of roots and nutrients
across these domains, that gave rise to the many branches we see today, are
often not well known, and have never been assembled in a single garden, to
be studied or admired.

The Milestones Project is designed to provide a broadly comprehensive
and representative catalog of important developments in all fields related to
the history of data visualization. Toward this end, a large collection of images,
bibliographical references, cross-references and web links to commentaries on
these innovations has been assembled.
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This is a useful contribution in its own right, but is a step towards larger
goals as well. First, we see this not as a static collection, but rather a dynamic
database that will grow over time as additional sources and historical contri-
butions are uncovered or suggested to us. Second, we envisage this project as
providing a tool to enable researchers to work with or study this history, find-
ing themes, antecedents, influences, patterns, trends, and so forth. Finally,
as implied by our title, work on this project has suggested several interesting
questions subsumed under the self-referential term “statistical historiogra-
phy.”

1.1 The Milestones Project

The past only exists insofar as it is present in the records of today. And what
those records are is determined by what questions we ask.—–(Wheeler (1982),
p. 24)

There are many historical accounts of developments within the fields of
probability (Hald (1990)), statistics (Pearson (1978), Porter (1986), Stigler
(1986)), astronomy (Riddell (1980)), cartography (Wallis and Robinson
(1987)), which relate to, inter alia, some of the important developments
contributing to modern data visualization. There are other, more special-
ized accounts, which focus on the early history of graphic recording (Hoff
and Geddes (1959), Hoff and Geddes (1962)), statistical graphs (Funkhouser
(1936), Funkhouser (1937), Royston (1970), Tilling (1975)), fitting equations
to empirical data (Farebrother (1999)), cartography (Friis (1974), Kruskal
(1977)) and thematic mapping (Palsky (1996), Robinson (1982)), and so
forth; (Robinson (1982, Ch. 2)) presents an excellent overview of some of
the important scientific, intellectual, and technical developments of the 15th–
18th centuries leading to thematic cartography and statistical thinking.

But there are no accounts that span the entire development of visual
thinking and the visual representation of data, and which collate the contri-
butions of disparate disciplines. In as much as their histories are intertwined,
so too should be any telling of the development of data visualization. Another
reason for interweaving these accounts is that practitioners in these fields to-
day tend to be highly specialized, often unaware of related developments
in areas outside their domain, much less their history. Extending (Wheeler
(1982)), the records of history also exist insofar as they are collected, illus-
trated, and made coherent.

The initial step in portraying the history of data visualization was a sim-
ple chronological listing of milestone items with capsule descriptions, bibli-
ographic references, markers for date, person, place, and links to portraits,
images, related sources or more detailed commentaries. Its current public
and visible form is that of hyper-linked, interactive documents available
on the web and in PDF form (http://www.math.yorku.ca/SCS/Gallery/
milestone/). We started with the developments listed by (Beniger and Ro-
byn (1978)) and incorporated additional listings from Hankins (1999)), Tufte
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(1983), Tufte (1990), Tufte (1997)), (Heiser (2000)), and others. With assis-
tance from Les Chevaliers, many other contributions, original sources, and
images have been added. As explained below, our current goal is to turn this
into a true multi-media database, which can be searched in flexible ways and
can be treated as data for analysis.

2 Milestones tour

In organizing this material, it proved useful to divide history into epochs, each
of which turned out to be describable by coherent themes and labels. In the
larger picture— recounting the history of data visualization— each milestone
item has a story to be told: What motivated this development? What was
the communication goal? How does it relate to other developments? What
were the pre-cursors? What makes it a milestone? To illustrate, we present
just a few exemplars from a few of these periods. For brevity, we exclude the
earliest period (pre-17th century) and the most recent period (1975–present)
in this description.

2.1 1600-1699: Measurement and theory

Among the most important problems of the 17th century were those con-
cerned with physical measurement— of time, distance, and space— for as-
tronomy, surveying, map making, navigation and territorial expansion. This
century also saw great new growth in theory and the dawn of practice— the
rise of analytic geometry, theories of errors of measurement and estimation,
the birth of probability theory, and the beginnings of demographic statistics
and “political arithmetic.”

As an example, Figure 1 shows a 1644 graphic by Michael Florent van
Langren, a Flemish astronomer to the court of Spain, believed to be the first
visual representation of statistical data (Tufte (1997, p. 15)). At that time,
lack of a reliable means to determine longitude at sea hindered navigation and
exploration.1 This 1D line graph shows all 12 known estimates of the differ-
ence in longitude between Toledo and Rome, and the name of the astronomer
(Mercator, Tycho Brahe, Ptolemy, etc.) who provided each observation.

What is notable is that van Langren could have presented this information
in various tables— ordered by author to show provenance, by date to show
priority, or by distance. However, only a graph shows the wide variation in
the estimates; note that the range of values covers nearly half the length of
the scale. Van Langren took as his overall summary the center of the range,
where there happened to be a large enough gap for him to inscribe “ROMA.”
Unfortunately, all of the estimates were biased upwards; the true distance
(16◦30′) is shown by the arrow. Van Langren’s graph is also a milestone
1 For navigation, latitude could be fixed from star inclinations, but longitude re-

quired accurate measurement of time at sea, an unsolved problem until 1765.
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Fig. 1. Langren’s 1644 graph of determinations of the distance, in longitude, from
Toledo to Rome. The correct distance is 16◦30′. Source: Tufte (1997, p.15.)

as the earliest-known exemplar of the principle of “effect ordering for data
display” (Friendly and Kwan (2002)).

2.2 1700-1799: New graphic forms

The 18th century witnessed, and participated in, the initial germination of
the seeds of visualization that had been planted earlier. Map-makers began to
try to show more than just geographical position on a map. As a result, new
graphic forms (isolines and contours) were invented, and thematic mapping
of physical quantities took root. Towards the end of this century, we see the
first attempts at the thematic mapping of geologic, economic, and medical
data.

Abstract graphs, and graphs of functions were introduced, along with the
early beginnings of statistical theory (measurement error) and systematic
collection of empirical data. As other (economic and political) data began to
be collected, some novel visual forms were invented to portray them, so the
data could “speak to the eyes.”

As well, several technological innovations provided necessary nutrients.
These facilitated the reproduction of data images (color printing, lithogra-
phy), while other developments eased the task of creating them. Yet, most
of these new graphic forms appeared in publications with limited circulation,
unlikely to attract wide attention.

William Playfair (1759–1823) is widely considered the inventor of most of
the graphical forms widely used today— first the line graph and bar chart
(Playfair (1786)), later the pie chart and circle graph (Playfair (1801)). A
somewhat later graph (Playfair (1821)), shown in Figure 2, exemplifies the
best that Playfair had to offer with these graphic forms. Playfair used three
parallel time series to show the price of wheat, weekly wages, and reigning
monarch over a ∼250 year span from 1565 to 1820, and used this graph to
argue that workers had become better off in the most recent years.

2.3 1800-1850: Beginnings of modern graphics

With the fertilization provided by the previous innovations of design and
technique, the first half of the 19th century witnessed explosive growth in
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Fig. 2. William Playfair’s 1821 time series graph of prices, wages, and ruling
monarch over a 250 year period. Source: Playfair (1821), image from Tufte (1983,
p. 34)

statistical graphics and thematic mapping, at a rate which would not be
equalled until modern times.

In statistical graphics, all of the modern forms of data display were in-
vented: bar and pie charts, histograms, line graphs and time-series plots,
contour plots, scatterplots, and so forth. In thematic cartography, mapping
progressed from single maps to comprehensive atlases, depicting data on a
wide variety of topics (economic, social, moral, medical, physical, etc.), and
introduced a wide range of novel forms of symbolism.

To illustrate this period, we choose an 1844 “tableau-graphique” (Fig-
ure 3) by Charles Joseph Minard, an early progenitor of the modern mosaic
plot (Friendly (1994)). On the surface, mosaic plots descend from bar charts,
but Minard introduced two simultaneous innovations: the use of divided and
proportional-width bars so that area had a concrete visual interpretation. The
graph shows the transportation of commercial goods along one canal route in
France by variable-width, divided bars (Minard (1844)). In this display the
width of each vertical bar shows distance along this route; the divided bar
segments have height ∼ amount of goods of various types (shown by shading),
so the area of each rectangular segment is proportional to cost of transport.
Minard, a true visual engineer (Friendly (2000)), developed such diagrams to
argue visually for setting differential price rates for partial vs. complete runs.
Playfair had tried to make data “speak to the eyes,” but Minard wished to
make them “calculer par l’oeil” as well.
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Fig. 3. Minard’s Tableau Graphique, showing the transportation of commercial
goods along the Canal du Centre (Chalon–Dijon). Intermediate stops are spaced
by distance, and each bar is divided by type of goods, so the area of each tile
represents the cost of transport. Arrows show the direction of transport. Source:
ENPC:5860/C351 (Col. et cliché ENPC; used by permission)

2.4 1850-1900: The Golden Age of statistical graphics

By the mid-1800s, all the conditions for the rapid growth of visualization had
been established. Official state statistical offices were established throughout
Europe, in recognition of the growing importance of numerical information for
social planning, industrialization, commerce, and transportation. Statistical
theory, initiated by Gauss and Laplace, and extended to the social realm by
Quetelet, provided the means to make sense of large bodies of data.

What started as the Age of Enthusiasm (Palsky (1996)) for graphics may
also be called the Golden Age, with unparalleled beauty and many innovations
in graphics and thematic cartography.

2.5 1900-1950: The modern dark ages

If the late 1800s were the “golden age” of statistical graphics and thematic
cartography, the early 1900s could be called the “modern dark ages” of visu-
alization (Friendly and Denis (2000)).
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There were few graphical innovations, and, by the mid-1930s, the enthusi-
asm for visualization which characterized the late 1800s had been supplanted
by the rise of quantification and formal, often statistical, models in the social
sciences. Numbers, parameter estimates, and, especially, standard errors were
precise. Pictures were— well, just pictures: pretty or evocative, perhaps, but
incapable of stating a “fact” to three or more decimals. Or so it seemed to
statisticians.

But it is equally fair to view this as a time of necessary dormancy, ap-
plication, and popularization, rather than one of innovation. In this period
statistical graphics became main stream. It entered textbooks, the curricu-
lum, and standard use in government, commerce and science. In particular,
perhaps for the first time, graphical methods proved crucial in a number of
scientific discoveries (e.g. the discovery of atomic number by Henry Mosely,
lawful clusterings of stars based on brightness and color in the Hertzprung-
Russell diagrams; see Friendly and Denis (2004) for details.)

2.6 1950-1975: Re-birth of data visualization

Still under the influence of the formal and numerical zeitgeist from the mid-
1930s on, data visualization began to rise from dormancy in the mid 1960s,
spurred largely by three significant developments:

(a) In the USA, John W. Tukey began the invention of a wide variety of
new, simple, and effective graphic displays, under the rubric of “Exploratory
Data Analysis.” (b) In France, Jacques Bertin published the monumental
Sémiologie Graphique (Bertin (1967), Bertin (1983)). To some, this appeared
to do for graphics what Mendeleev had done for the organization of the
chemical elements, that is, to organize the visual and perceptual elements of
graphics according to the features and relations in data. (c) Finally, computer
processing of data had begun, and offered the possibility to construct old and
new graphic forms by computer programs. True high-resolution graphics were
developed, but would take a while to enter common use.

By the end of this period significant intersections and collaborations would
begin: (a) computer science research (software tools, C language, UNIX, etc.)
at Bell Laboratories (Becker (1994)) and elsewhere would combine forces with
(b) developments in data analysis (EDA, psychometrics, etc.) and (c) display
and input technology (pen plotters, graphic terminals, digitizer tablets, the
mouse, etc.). These developments would provide new paradigms, languages
and software packages for expressing statistical ideas and implementing data
graphics. In turn, they would lead to an explosive growth in new visualization
methods and techniques.

Other themes began to emerge, mostly as initial suggestions: (a) various
visual representations of multivariate data (Andrews’ plots, Chernoff faces,
clustering and tree representations); (b) animations of a statistical process;
and (c) perceptually-based theory (or just informed ideas) related to how
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graphic attributes and relations might be rendered to better convey the data
visually.

3 Problems and methods in statistical historiography

As we worked on assembling the Milestones collection, it became clear that
there were several interesting questions and problems related to conducting
historical research along these lines.

3.1 What counts as a Milestone?

In order to catalog the contributions to be considered as “milestones” in the
history of data visualization, it is necessary to have some criteria for inclusion:
for form, content, and substantive domain, as well as for “what counts” as a
milestone in this context. We deal only with the last aspect here.

We have adopted the following scheme. First, we decided to consider sev-
eral types of contributions as candidates: true innovations, important pre-
cursors and developments or extensions. Second, we have classified these con-
tributions according to several themes, categories and rubrics for inclusion.
Attributions without reference here are listed in the Milestones Project web
documents.

• Contributions to the development and use of graphic forms. In
statistical graphics, inventions of the bar chart, pie chart, line plot (all
attributed to Playfair), the scatterplot (attributed to J.F.W. Herschel;
see Friendly and Denis (2004)), 3D plots (Luigi Perozzo), boxplot (J.
W. Tukey), and mosaic plot (Hartigan & Kleiner) provided new ways of
representing statistical data. In thematic cartography, isolines (Edmund
Halley), choropleths (Charles Dupin) and flow maps (Henry Harness; C.
J. Minard) considerably extended the use of a map-based display to show
more than simple geographical positions and features.

• Graphic content: data collection and recording. Visual displays
of information cannot be done without empirical data, so we must also
include contributions to measurement (geodesy), recording devices, col-
lection and dissemination of statistical data (e.g., vital statistics, census,
social, economic data).

• Technology and enablement. It is evident that many developments
had technological prerequisites, and conversely that new technology al-
lowed new advances that could not have been achieved before. These
include advances in (a) reproduction of printed materials (printing press,
lithography), (b) imaging (photography, motion pictures), and (c) ren-
dering (computing, video display).

• Theory and practice. Under this heading we include theoretical ad-
vances in the treatment and analysis such as (a) probability theory and



42 Friendly

notions of errors of measurement, (b) data summarization (estimation
and modelling), (c) data exposure (e.g., EDA), as well as (d) awareness
and use of these ideas and methods.

• Theory and data on perception of visual displays. Graphic displays
are designed to convey information to the human viewer, but how people
use and understand this form of communication was not systematically
studied until recent times. As well, proposals for graphical standards,
and theoretical accounts of graphic elements and graphic forms provided
a basis for thinking of and designing visual displays.

• Implementation and dissemination. New techniques become avail-
able when they are introduced, but additional steps are needed to make
them widely accessible and useable. We are thinking here mainly of im-
plementations of graphical methods in software, but other contributions
fall under this heading as well.

3.2 Who gets credit?

All of the Milestones items are attributed to specific individuals where we
have reason to believe that names can be reasonably attached. Yet, Stigler’s
Law of Eponomy (Stigler (1980)) reminds us that standard attributions are
often not those of priority. The Law in fact makes a stronger claim: “No
scientific discovery is named after its original discoverer.” As prima facie
evidence, Stigler attributes the origin of this law to Merton (1973).

As illustrations, Stigler (1980) states that Laplace first discovered the
Fourier transform, Poisson first discovered the Cauchy distribution, and both
de Moivre and Laplace have prior claims to the Gaussian distribution. He
concludes that epononyms are conveyed by the community of scholars, not
by historians.

Thus, although all of the events listed are correctly attributed to their de-
velopers, it cannot be claimed with certainty that we are always identifying
the first instance, nor that we give credit to all who have, perhaps indepen-
dently, given rise to a new idea or method. Similarly, in recent times there
may be some difficulty distinguishing credit among developers of (a) an un-
derlying method or initial demonstration, (b) a corresponding algorithm, or
(c) an available software implementation.

3.3 Dating milestones

In a similar way, there is some unavoidable uncertainty in the dates attached
to milestone items, in a degree which generally increases as we go back in
time. For example, in the 18th and 19th centuries, many papers were first
read at scientific meetings, but recorded in print some years later; William
Smith’s geological map of England was first drawn in 1801, but only finished
and published in 1815; some pre-1600 dates are only known approximately.
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In textual accounts of history this does not present any problem— one
can simply describe the circumstances and range of events, dated specifically
or approximately, contributing to some development.

It does matter, however, if we wish to treat item dates as data, either for
retrieval or analysis/display. For retrieval, we clearly want any date within a
specified range to match; for analysis or display, the end points will sometimes
be important, but sometimes it will suffice to use a middle value.

3.4 What is milestones “data”

The Milestones Project represents ongoing work. We continually update the
web and pdf versions as we add items and images, many of which have been
contributed by Les Chevaliers. To make this work, we rely on software tools
to generate different versions from a single set of document sources, so that
all versions can be updated automatically. For this, we chose to use LATEX
and BibTEX.

More recently, we have developed tools to translate this material to other
forms (e.g., XML or CSV) in order to be able to work with it as “data.” In
doing so, it seemed natural to view the information as coming from three
distinct sources, that we think of as a relational database, linked by unique
keys in each, as shown in Figure 4.

3.5 Analyzing milestones “data”

Once the milestones data has been re-cast as a database, statistical analysis
becomes possible. The simplest case is to look at trends over time. Figure 5
shows a density estimate for the distribution of milestones items from 1500 to
the present, keyed to the labels for the periods in history. The bumps, peaks
and troughs all seem interpretable: note particularly the steady rise up to ∼
1880, followed by a decline through the “modern dark ages” to ∼ 1945, then
the steep rise up to the present.

If we classify the items by place of development (Europe vs. North Amer-
ica), other interesting trends appear (Figure 6). The decline in Europe fol-
lowing the Golden Age was accompanied by an initial rise in North America,
largely due to popularization (e.g., text books) and significant applications of
graphical methods, then a steep decline as mathematical statistics held sway.

3.6 What was he thinking?: Understanding through reproduction

Historical graphs were created using available data, methods, technology,
and understanding current at the time. We can often come to a better un-
derstanding of intellectual, scientific, and graphical questions by attempting
a re-analysis from a modern perspective.

Earlier, we showed Playfair’s time-series graph (Figure 2) of wages and
prices, and noted that Playfair wished to show that workers were better off at
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Fig. 4. Milestones data as a relational database composed of history-item, biblio-
graphic, and multimedia databases

the end of the period shown than at any earlier time. Presumably he wished
to draw the reader’s eye to the narrowing of the gap between the bars for
prices and the line graph for wages. Is this what you see?

What this graph shows directly is quite different than Playfair’s intension.
It appears that wages remained relatively stable, while the price of wheat
varied greatly. The inference that wages increased relative to prices is indirect
and not visually compelling.

We cannot resist the temptation to give Playfair a helping hand here—
by graphing the ratio of wages to prices (labor cost of wheat), as shown in
Figure 7. But this would not have occurred to Playfair, because the idea of
relating one time series to another by ratios (index numbers) would not occur
for another half-century (Jevons). See Friendly and Denis (2004) for further
discussion of Playfair’s thinking.

3.7 What kinds of tools are needed?

We have also wondered how other advances in statistics and data visualiza-
tion could be imported to a historical realm. Among other topics, there has
recently been a good deal of work in document analysis and classification that
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Fig. 5. The distribution of milestone items over time, shown by a rug plot and
density estimate.

suggests an analog of EDA we might call Exploratory Bibliographic Analysis
(EBA).

It turns out that there are several instances of software systems that
provide some basic tools for this purpose. An example is RefViz (http:
//www.refviz.com), shown in Figure ??. This software links to common
bibliographic software (EndNote, ProCite, Reference Manager, etc.), codes
references using key terms from the title and abstract and calculates an index
of similarity between pairs of references based on frequencies of co-occurrence.
Associations between documents can be shown in a color-coded matrix view,
as in Figure ??, or a galaxy view (combining cluster analysis and MDS),
and each view offers zoom/unzoom, sorting by several criteria, and querying
individual documents or collections.

4 How to visualize a history?

A timeline is obvious, but has severe limitations. We record a history of over
8000 years, but only the last 300-400 have substantial contributions. As well,
a linear representation entails problems of display, resolution and access to
detailed information, with little possibility to show either content or context.
We explore a few ways to escape these constraints below.
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Fig. 7. Redrawn version of Playfair’s time series graph showing the ratio of price
of wheat to wages, together with a loess smoothed curve.

4.1 Lessons from the past

In the milestones collection, we have three examples of attempts to display
a history visually. It is of interest that all three used essentially the same
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Fig. 8. RefViz similarity matrix view of a bibliographic database. The popup grid
is a zoomed display of the region surrounding a selected cell.

format: a horizontal, linear scale for time, with different content or context
stacked vertically, as separate horizontal bands.

We illustrate with Joseph Priestley’s Chart of Biography (Priestley
(1765)), showing the lifespans of famous people from 1200 BC to 1750 (Fig-
ure 9). Priestley divided people into two groups: 30 “men of learning” and
29 “statesmen,” showing each lifespan as a horizontal line. He invented the
convention of using dots to indicate uncertainty about exact date of birth or
death.

4.2 Lessons from the present

In modern times, a variety of popular publications, mostly in poster form,
have attempted to portray graphically various aspects of the history of civi-
lization, geographic regions, or of culture and science.

For example, Hammond’s Graphic History of Mankind (Figure 10) shows
the emergence of new cultures and the rise and fall of various empires, nations
and ethnic groups from the late Stone Age to the present in a vertical format.
It uses a varying-resolution time scale, quite coarse in early history, getting
progressively finer up to recent times. It portrays these using flow lines of
different colors, whose width indicates the influence of that culture, and with
shading or stripes to show conquest or outside influence.
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Fig. 9. Priestley’s Chart of Biography. Source: Priestley (1765)

Fig. 10. Hammond’s Graphic History of Mankind (first of 5 panels)

4.3 Lessons from the web

A large component of the milestones collection is the catalog of graphic images
and portraits associated with the milestones items. At present, they are stored
as image files of fixed resolution and size, and presented as hyper-links in the
public versions. How can we do better, to make this material more easily
accessible?
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There are now a number of comprehensive image libraries available on
the web that provide facilities to search for images by various criteria and in
some cases to view these at varying resolutions. Among these, David Rum-
sey’s Map Collection (http://www.davidrumsey.com) is notable. It provides
access to a collection of over 8800 historical maps (mostly 18th-19th century,
of North/South America, with some European content) online, extensively
indexed so they may be searched by author, category, country or region,
and a large number of other data fields. The maps are stored using Mr. Sid
technology (http://www.lizardtech.com), which means that they can be
zoomed and panned in real time. Rumsey provides several different browsers,
including a highly interactive Java client.

4.4 Lessons from the data visualization

Modern data visualization also provides a number of different ideas and ap-
proaches to multivariate complexity, time and space we may adapt (in a
self-referential way) to the history of data visualization itself.

Interactive viewers provide one simple solution to the trade-off between
detail and scope of a data view through zoom and unzoom, but in the most
basic implementation, any given view is a linear scaling of the section of the
timeline that will fit within the given window.

We can do better by varying resolution continuously as a non-linear, de-
creasing function of distance from the viewer’s point of focus. For example,
Figure 11 shows a fisheye view (Furnas (1986)) of central Washington, D.C.,
using a hyperbolic scale, so that resolution is greatest at the center and
decreases as 1/distance. The map is dynamic, so that moving the cursor
changes the focal point of highest resolution, This has the property that it
allows the viewer to see the context surrounding the point of focus, yet nav-
igate smoothly throughout the entire space. Similar ideas have been applied
to tables in the Table Lens (http://www.tablelens.com) and hierarchies
(Lamping et al. (1995)) such as web sites and file systems, and can easily be
used for a 1D timeline.
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Fig. 11. Fisheye view of central Washington, D.C., illustrating a hyperbolic view
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Abstract. The present study aims at the quantitative classification of texts and
text types. By way of a case study, 398 Slovenian texts from different genres and
authors are analyzed as to their word length. It is shown that word length is an
important factor in the synergetic self-regulation of texts and text types, and that
word length may significantly contribute to a new typology of discourse types.2

1 Introduction: Structuring the universe of texts

Theoretically speaking, we assume that there is a universe of texts represent-
ing an open (or closed) system, i.e. an infinite (or finite) number of textual
objects. The structure of this universe can be described by two processes:
identification of its objects, based on a definition of ‘text’, and classification
of these objects, resulting in the identification and description of hierarchi-
cally ordered sub-systems. To pursue the astronomic metaphor, the textual
universe will be divided into particular galaxies, serving as attractors of indi-
vidual objects. Finally, within such galaxies, particular sub-systems of lower
levels will be identified, comparable to, e.g., stellar or solar systems. The
two processes of identification and classification cannot be realized without
recourse to theoretical assumptions as to the obligatory and/or facultative
characteristics of the objects under study: neither quantitative nor qualita-
tive characteristics are immanent to the objects; rather, they are the result
of analytical cognitive processes.

1.1 Classification and quantification

To one degree or another, any kind of classification involves quantification:
Even in seemingly qualitative approaches, quantitative arguments come into
play, albeit possibly only claiming – implicitly or explicitly – that some ob-
jects are ‘more’ or ‘less’ similar or close to each other, or to some alleged
norm or prototype. The degree of quantification is governed by the traits
incorporated into the meta-language. Hence it is of relevance on which ana-
lytical level the process of classification is started. Note that each level has
its own problems as to the definition of sub-systems and their boundaries.
2 This study is related to research project #15485 (Word Length Frequencies in

Slavic Texts), supported by the Austrian Research Fund (FWF).
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In any case, a classification of the textual universe cannot be achieved
without empirical research. Here, it is important to note that the under-
standing of empirical work is quite different in different disciplines, be they
concerned with linguistic objects or not. Also, the proportion of theory and
practice, the weighting of qualitative and quantitative arguments, may sig-
nificantly differ. Disciplines traditionally concentrating on language tend to
favor theoretical and qualitative approaches; aside from these approaches,
corpus linguistics as a specific linguistic sub-discipline has a predominant
empirical component. Defining itself as “data-oriented”, the basic assump-
tion of corpus linguistics is that a maximization of the data basis will result
in an increasingly appropriate (“representative”) language description. Ulti-
mately, none of these disciplines – be they of predominantly theoretical or
empirical orientation – can work without quantitative methods.

Here, quantitative linguistics comes into play as an important discipline
in its own right: as opposed to the approaches described above, quantita-
tive linguistics strives for the detection of regularities and connections in the
language system, aiming at an empirically based theory of language. The
transformation of observed linguistic data into quantities (i.e., variables and
constants), is understood as a standardized approach to observation. Specific
hypotheses are statistically tested and, ideally speaking, the final interpreta-
tion of the results obtained is integrated into a theoretical framework.

1.2 Quantitative text analysis: From a definition of the basics
towards data homogeneity

The present attempt follows these lines, striving for a quantitative text ty-
pology. As compared to corpus linguistics, this approach – which may be
termed quantitative text analysis – is characterized by two major lines of
thinking: apart from the predominantly theoretical orientation, the assump-
tion of quantitative text analysis is that ‘text’ is the relevant analytical unit at
the basis of the present analysis. Since corpus linguistics aims at the construc-
tion, or re-construction, of particular norms, of “representative” standards, of
(a given) language, corpus-oriented analyses are usually based on a mixture of
heterogeneous texts, of a “quasi text”, in a way (Orlov (1982)). On contrast,
quantitative text analysis focuses on texts as homogeneous entities. The basic
assumption is that a (complete) text is a self-regulating system, ruled by par-
ticular regularities. These regularities need not necessarily be present in text
segments, and they are likely to intermingle in any kind of text combination.
Quite logically, the question remains, what a ‘text’ is: is it a complete novel,
composed of books?, or the complete book of a novel, consisting of several
chapters?, or each individual chapter of a given book?, or perhaps even a
paragraph, or a dialogical or narrative sequence within it? Ultimately, there
is no clear definition in text scholarship, and questions whether we need a
“new” definition of text, regularly re-occur in relevant discussions. Of course,
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this theoretical question goes beyond the scope of this paper. From a statisti-
cal point of view, we are faced with two major problems: the problem of data
homogeneity, and the problem of the basic analytical units. Thus, particular
decisions have to be made as to the boundary conditions of our study:
� We consider a ‘text’ to be the result of a homogeneous process of text

generation. Therefore, we concentrate on letters, or newspaper comments,
or on chapters of novels, as individual texts. Assuming that such a ‘text’ is
governed by synergetic processes, these processes can and must be quan-
titatively described. The descriptive models obtained for each ‘text’ can
be compared to each other, possibly resulting in one or more general
model(s); thus, a quantitative typology of texts can be obtained.

� But even with a particular definition of ‘text’, it has to be decided which
of their traits are to be submitted to quantitative analyses. Here, we
concentrate on word length, as one particular linguistic trait of a text.

1.3 Word length in a synergetic context

Word length is, of course, only one linguistic trait of texts, among others, and
one would not expect a coherent text typology, based on word length only.
However, the criterion of word length is not an arbitrarily chosen factor (cf.
Grzybek (2004)). First, experience has shown that genre is a crucial factor
influencing word length (Grzybek and Kelih (2004); Kelih et al., this volume);
this observation may as well turned into the question to what degree word
length studies may contribute to a quantitative typology of texts. And second,
word length is an important factor in a synergetic approach to language
and text. We cannot discuss the synergetics of language in detail, here (cf.
Köhler (1986)); yet, it should be made clear that word length is no isolated
linguistic phenomenon: given one accepts the distinction of linguistic levels, as
(1) phoneme/grapheme, (2) syllable/morpheme, (3) word/lexeme, (4) clause,
and (5) sentence, at least the first three levels are concerned with recurrent
units. Consequently, on each of these levels, the re-occurrence of units results
in particular frequencies, which may be modelled with recourse to specific
frequency distribution models. Both the units and their frequencies are closely
related to each other. The units of all five levels are characterized by length,
again mutually influencing each other, resulting in specific frequency length
distributions. Table 1 demonstrates the interrelations.

Finally, in addition to the decisions made, it remains to be decided which
shall be the analytical units, that is not only what a ‘word’ is (a graphemic,
phonetic, phonological, intonational, etc. unit), but also in which units word
length is supposed to be measured (number of letters, of graphemes, of
phonemes, syllables, morphemes, etc.).
� In the present analysis, we concentrate on word as an orthographic-

phonemic category (cf. Antić et al. (2004)), measuring word length as
the number of syllables per word.
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Table 1. Word length in a synergetic circuit

SENTENCE Length Frequency
�

CLAUSE Length Frequency
� � �

Frequency WORD / LEXEME Length Frequency
� � � �

Frequency SYLLABLE / MORPHEME Length Frequency
� � � �

Frequency PHONEME / GRAPHEME Length Frequency

1.4 Qualitative and quantitative classifications:
A priori and a posteriori

Given these definitions, we can now pursue our basic question as to a quanti-
tative text typology. As mentioned above, the quantitative aspect of classifica-
tion is often neglected or even ignored in qualitative approaches. As opposed
to this, qualitative categories play an overtly accepted role in quantitative
approaches, though the direction of analysis may be different:
1. One may favor a “tabula rasa” principle not attributing any qualitative

characteristics in advance; the universe of texts is structured according to
word length only, e.g. by clustering methods, by analyzing the parameters
of frequency distributions, etc.;

2. One may prefer an a priori ↔ a posteriori principle: in this case, a partic-
ular qualitative characteristic is attributed to each text, and then, e.g. by
discriminant analysis, one tests whether these categorizations correspond
to the quantitative results obtained.
Applying qualitative categories, the problem of data heterogeneity once

again comes into play, now depending on the meta-language chosen. In order
to understand the problem, let us suppose, we want to attribute a category
such as ‘text type’ to each text. In a qualitative approach, the text universe
is structured with regard to external (pragmatic) factors – ”with reference to
the world”. The categories usually are based either on general communicative
functions of language (resulting in particular functional styles) or on specific
situational functions (resulting in specific text sorts).
(a) The concept of functional style, successfully applied in previous quanti-

tative research (cf. Mistŕık (1966)), has been mainly developed in Russian
and Czechoslovak stylistics, understanding style as serving particular socio-
communicative functions. A functional style thus relates to particular dis-
course spheres, such as everyday, official-administrative, scientific, jour-
nalistic, or artistic communication. Such a coarse categorization with
about only half a dozen of categories necessarily results in an extreme
heterogeneity of the texts included in the individual categories.
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(b) Contemporary text sort research (cf. Adamczik (1995), 255ff.) distin-
guishes ca. 4,000 categories. In this case, the categories are less broad
and general, the material included tends to be more homogeneous, but
the number of categories can hardly be handled in empirical research.
In order to profit from the advantages of both approaches, it seems rea-

sonable to combine these two principles (cf. Grzybek and Kelih (2004)): each
text sort thus tentatively is attributed to a functional style (cf. Figure 1), the
attribution being understood as a more or less subjective a priori classifica-
tion. Thus, in the subsequent quantitative analysis, both bottom-up (text →
text sort → functional style) and top-down analyses are possible in a vertical
perspective, as well as first order and second order cross-comparisons, in a
horizontal perspective (i.e., between different functional styles or text sorts).
Our basic assumption is that the highest level – the entities of which are
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Fig. 1. Functional styles and text sorts

comparable to ‘text galaxies’ (see above) – should not primarily considered
to be defined by socio-communicative functions, but regarded as linguistic
phenomena: It seems reasonable to assume that different text sorts (analo-
gous to our “stellar systems”), which serve particular functions as well, should
be characterized by similar linguistic or stylistic traits. As opposed to merely
qualitative text typologies, the attribution of text sorts to functional styles
is to be understood as an a priori hypothesis, to be submitted to empirical
tests. As a result, it is likely that either the a priori attributions have to be
modified, or that other categories have to be defined at the top level, e.g.
specific discourse types, instead of functional styles.

2 A case study: Classifying 398 Slovenian texts

The present case study is an attempt to arrive at a classification of 398
Slovenian texts, belonging to various sorts, largely representing the spectrum
of functional styles; the sample is characterized in Table 2. The emphasis
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Table 2. 398 Slovenian texts

FUNCTIONAL STYLE AUTHOR(S) TEXT TYPE(S) no.

� Everyday Cankar, Jurčič Private Letters 61
� Public various Open Letters 29
� Journalistic various Readers’ Letters, Comments 65
� Artistic

� Prose Cankar Individual Chapters from 68
Short Novels (povest)

Švigelj-Mérat / Letters from an 93
Koľsek Epistolary Novel

� Poetry Gregorčič Versified Poems 40
� Drama Jančar Individual Acts 42

from Dramas

on different types of letters is motivated by the fact that ‘letter’ as a genre
often is regarded to be prototypical of (a given) language in general, since
a ‘letter’ is assumed to be located between oral and written communication,
and considered as the result of a unified, homogeneous process of text gen-
eration. This assumption is problematic, however, if one takes into account
the fact that contemporary text sort research (cf. Adamczik (1995), 255ff.)
distinguishes several dozens of different letter types. Consequently, it would
be of utmost importance (i) to compare how the genre of letters as a whole
relates to other genres, and (ii) to see how different letter types relate to
each other – in fact, any difference would weaken the argument of the letter’s
prototypicality.

In our analyses, each text is analyzed with regard to word length, the mean
(m1) being only one variable characterizing a given frequency distribution.
In fact, there is a pool of ca. 30 variables at our disposal, including the four
central moments, variance and standard deviation, coefficient of variation,
dispersion index, entropy, repeat rate, etc. These variables are derived from
the word length frequencies of a given text; Figure 2 examplarily represents
the relative frequencies of x-syllable words for two arbitrarily chosen texts. In
this case, there are significant differences between almost all length classes.

Fig. 2. Word length frequencies (in %) of two different texts (Left: Comment
(#324). Right: Private letter (#1))



Quantitative Text Typology: The Impact of Word Length 59

2.1 Post hoc analysis of mean word length

By way of a first approximation, it seems reasonable to calculate a post-hoc-
analysis of the mean values. As a result of this procedure, groups without
significant differences form homogeneous subgroups, whereas differing groups
are placed in different groups. As can be seen from Table 3, which is based on
mean word length (m1) only, homogeneous subgroups do in fact exist; even
more importantly, however, all four letter types fall into different categories.
This observation gives rise to doubt the assumption, that ‘letter’ as a category
can serve as a prototype of language without further distinction.

Table 3. Post hoc analyses (m1)

Subgroup for α = .05

Text sort n 1 2 3 4 5

Poems 40 1.7127
Short stories 68 1.8258
Private letters 61 1.8798
Drama 42 1.8973
Epistolary novel 93 2.0026
Readers’ letters 30 2.2622
Comments 35 2.2883
Open Letters 29 2.4268

2.2 Discriminant analyses: The whole corpus

In linear discriminant analyses, specific variables are submitted to linear
transformations in order to arrive at an optimal discrimination of the in-
dividual cases. At first glance, many variables of our pool may be important
for discrimination, where the individual texts are attributed to groups, on the
basis of these variables. However, most of the variables are redundant due to
their correlation structure. The stepwise procedures in our analyses resulted
in at most four relevant predictor variables for the discriminant functions.
Figure 3 shows the results of the discriminant analysis for all eight text sorts,
based on four variables: mean word length (m1), variance (m2), coefficient
of variation (v = s/m1), and relative frequency of one-syllable words (p1).
With only 56.30% of all texts being correctly discriminated, some general
tendencies can be observed: (1) although some text sorts are located in clearly
defined areas, there are many overlappings; (2) poems seem to be a separate
category, as well as readers’ letters, open letters, and comments, on the other
end; (3) drama, short story, private letters and the letters from the epistolary
novel seem to represent some vaguely defined common area.
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Fig. 3. Discriminant analysis: Eight text sorts

2.3 From four to two letter types

In a first approach to explore the underlying structure of the textual universe,
we concentrate on the four letter types, only, since they were all attributed to
different classes in the post hoc analyses. Treating all of them – i.e., private
letters (PL), open letters (OL), readers’ letters (RL), and letters from an
epistolary novel (EN) –, as separate classes, a percentage of 70.40% correctly
discriminated texts is obtained, with only two relevant variables: m1 and v.
There is an obvious tendency that private letters (PL) and the letters from

Table 4. Discriminant analysis: Four letter types (n = 213)

Predicted group

Letter Type PL OL RL EN Total

PL 37 0 2 22 61
OL 0 22 3 4 29
RL 1 9 10 10 30
EN 10 0 3 80 93

the epistolary novel (EN) represent a common category, whereas open letters
(OL) and readers’s letters (RL) display this tendency to a lesser degree, if
at all. Combining private letters and the letters from the epistolary novel in
one group, thus discriminating three classes of letters, yields a percentage of
86.90% correctly discriminated texts, with only two variables: m1 and p2 (i.e.,
the percentage of two-syllable words). Table 5 shows the results in detail: 98%
of the combined group are correctly discriminated. This is a strong argument
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Table 5. Discriminant analysis: Three letter types (n = 213)

Predicted group

Group 1 2 3 Total

1 151 0 3 154
2 2 20 6 28
3 12 5 14 31

1={PL, EN} 2=OL 3=RL

in favor of the assumption that we are concerned with some common group of
private letters, be they literary or not. This result sheds serious doubt on the
possibility to distinguish fictional literary letters: obviously, they reproduce
or “imitate” the linguistic style of private letters, what generally calls into
question the functional style of prosaic literature. Given this observation, it
seems reasonable to combine readers’ letters (RL) and open letters (OL) in
one common group, too, and to juxtapose this group of public letters to the
group of private letters. In fact, this results in a high percentage of 92.00%,
with m1 and p2 being the relevant variables.

2.4 Towards a new typology

On the basis of these findings, the question arises if the two major groups –
private letters (PL/EN) and public letters (OL/RL) – are a special case
of more general categories, such as, e.g., ‘private/everyday style’ and ‘pub-
lic/official style’. If this assumption should be confirmed, the re-introduction
of previously eliminated text sorts should yield positive results.

The re-introduction of journalistic comments (CO) to the group of
public texts does not, in fact, result in a decrease of the good discrimination
result: as Table 6 shows, 91.10% of the 248 texts are correctly discriminated
(again, with m1 and p2, only). Obviously, some distinction along the line of
public/official vs. private/everyday texts seems to be relevant.

Table 6. Discriminant analysis: Five text sorts in two categories: Public/Official
vs. Private/Everyday (n = 248)

Predicted group

Group 1 2 Total

1 148 6 154
2 16 78 94

1={PL, EN} 2={OL, RL, CO}
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The re-introduction of the dramatic texts (DR), as well, seems to be
a logical consequence, regarding them as the literary pendant of everyday
dialogue. We thus have 290 texts, originating from six different text sorts,
and grouped in two major classes; as Table 7 shows, 92.40% of the texts
are correctly discriminated. One might object, now, that the consideration
of only two classes is likely to be effective. Yet, it is a remarkable result that
the addition of two non-letter text sorts does not result in a decrease of the
previous result.

Table 7. Discriminant analysis: Six text sorts in two categories: Public/Official vs.
Private/Everyday (n = 290)

Predicted group

Group 1 2 Total

1 190 6 196
2 16 78 94

1={PL, EN, DR} 2={OL, RL, CO}

The re-introduction of the poetic texts (PO) as a category in its own
right, results in three text classes. Interestingly enough, under these circum-
stances, too, the result is not worse: rather, a percentage of 91.20% correct
discriminations is obtained on the basis of only three variables: m1, p2, v. The
results are represented in detail, in Table 8.

Table 8. Discriminant analysis: Seven text sorts in three categories: Public/Official
vs. Private/Everyday vs. Poetry (n = 330)

Predicted group

Group 1 2 3 Total

1 191 3 2 196
2 19 75 0 94
3 5 0 35 40

1={PL, EN, DR} 2={OL, RL, CO} 3={PO}

It can clearly be seen that the poetic texts represent a separate category
and imply almost no mis-classifications. At this point, the obvious question
arises if a new typology might be the result of our quantitative classification.
With this perspective in mind, it should be noticed that seven of our eight
text sorts are analyzed in Table 8.
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The re-introduction of the literary prose texts (LP ) is the last step,
thus again arriving at the initial number of eight text sorts. As can be seen
from Table 9, the percentage of correctly discriminated texts now decreases
to 79.90%.

Table 9. Discriminant analysis: Eight text sorts in four categories (n = 398)

Predicted group

Group 1 2 3 4 Total

1 183 3 9 1 196
2 19 75 0 0 94
3 42 0 26 0 68
4 1 0 5 34 40

1={PL, EN, DR} 2={OL, RL, CO}
3={LP} 4={PO}

A closer analysis shows that the most mis-classifications appear between
literary texts and private letters. Interestingly enough, many of these texts
are from one and the same author (Ivan Cankar). One might therefore suspect
authorship to be an important factor; however, Kelih et al. (this volume) have
good arguments (and convincing empirical evidence) that word length is less
dependent on authorship, than it is on genre. As an alternative interpretation,
the reason may well be a specific for the analyzed material because in case
of the literary texts, we are concerned with short stories which aim at the
imitation of orality, and include dialogues to varying degree.

Therefore, including the literary prose texts (LP ) in the group of inoffi-
cial/oral texts, and separating them from the official/written group, on the
one hand, and the poetry group, on the other, results in a percentage of
92.70% correctly discriminated texts, as can be seen from Table 10. The final
outcome of our classification is represented in Figure 4.

Table 10. Discriminant analysis: Eight text sorts in three categories: Inofficial /
Oral vs. Official / Written vs. Poetry (n = 398)

Predicted group

Group 1 2 3 Total

1 260 3 1 264
2 19 75 0 94
3 6 0 34 40

1={PL, EN, DR, LP} 2={OL, RL, CO}
3={PO}
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Fig. 4. Discriminant analysis: Final results and new categorization

2.5 Conclusion

The results suggest the existence of specific discourse types, which do not
coincide with traditional functional styles. Future research must concentrate
on possible additional discourse types and their relation to text sorts.
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Abstract. Cluster ensembles are collections of individual solutions to a given clus-
tering problem which are useful or necessary to consider in a wide range of appli-
cations. Aggregating these to a “common” solution amounts to finding a consensus
clustering, which can be characterized in a general optimization framework. We dis-
cuss recent conceptual and computational advances in this area, and indicate how
these can be used for analyzing the structure in cluster ensembles by clustering its
elements.

1 Introduction

Ensemble methods create solutions to learning problems by constructing a set
of individual (different) solutions (“base learners”), and subsequently suitably
aggregating these, e.g., by weighted averaging of the predictions in regression,
or by taking a weighted vote on the predictions in classification. Such meth-
ods, which include Bayesian model averaging (Hoeting et al. (1999)), bagging
(Breiman (1996)) and boosting (Friedman et al. (2000)) have already become
very popular for supervised learning problems (Dietterich (2002)).

In general, aggregation yields algorithms with “low variance” in the sta-
tistical learning sense so that the results obtained by aggregation are more
“structurally stable”. Based on the success and popularity of ensemble meth-
ods, the statistical and machine learning communities have recently also be-
come interested in employing these in unsupervised learning tasks, such as
clustering. (Note that in these communities, the term “classification” is used
for discriminant analysis. To avoid ambiguities, we will use “supervised classi-
fication” to refer to these learning problems.) For example, a promising idea is
to obtain more stable partitions of a given data set using bagging (Bootstrap
Aggregating), i.e., by training the same base clusterer on bootstrap samples
from the data set and then finding a “majority decision” from the labelings
thus obtained. But obviously, aggregation is not as straightforward as in the
supervised classification framework, as these labelings are only unique up
to permutations and therefore not necessarily matched. In the classification
community, such aggregation problems have been studied for quite some time
now. A special issue of the Journal of Classification was devoted to “Compar-
ison and Consensus of Classifications” (Day (1986)) almost two decades ago.
By building on the readily available optimization framework for obtaining
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consensus clusterings it is possible to exploit the full potential of the cluster
ensemble approach.

Employing cluster ensembles can be attractive or even necessary for sev-
eral reasons, the main ones being as follows (see e.g. Strehl and Ghosh (2002)):

• To improve quality and robustness of the results. Bagging is one ap-
proach to reduce variability via resampling or reweighting of the data,
and is used in Leisch (1999) and Dudoit and Fridlyand (2002). In addi-
tion, many clustering algorithms are sensitive to random initializations,
choice of hyper-parameters, or the order of data presentation in on-line
learning scenarios. An obvious idea for possibly eliminating such algo-
rithmic variability is to construct an ensemble with (randomly) varied
characteristics of the base algorithm. This idea of “sampling from the
algorithm” is used in Dimitriadou et al. (2001, 2002). Aggregation can
also leverage performance in the sense of turning weak into strong learn-
ers; both Leisch (1999) and Dimitriadou et al. (2002) illustrate how e.g.
suitable aggregation of base k-means results can reveal underlying non-
convex structure which cannot be found by the base algorithm. Other
possible strategies include varying the “features” used for clustering (e.g.,
using various preprocessing schemes), and constructing “meta-clusterers”
which combine the results of the application of different base algorithms
as an attempt to reduce dependency of results on specific methods, and
take advantage of today’s overwhelming method pluralism.

• To aggregate results over conditioning/grouping variables in situations
where repeated measurements of features on objects are available for
several levels of a grouping variable, such as the 3-way layout in Vichi
(1999) where the grouping levels correspond to different time points at
which observations are made.

• To reuse existing knowledge. In applications, it may be desired to reuse
legacy clusterings in order to improve or combine these. Typically, in
such situations only the cluster labels are available, but not the original
features or algorithms.

• To accommodate the needs of distributed computing. In many applica-
tions, it is not possible to use all data simultaneously. Data may not nec-
essarily be available in a single location, or computational resources may
be insufficient to use a base clusterer on the whole data set. More gener-
ally, clusterers can have access to either a subset of the objects (“object-
distributed clustering”) or the features (“feature-distributed clustering”),
or both.

In all these situations, aggregating (subsets of) the cluster ensemble by
finding “good” consensus clusterings is fundamental. In Section 2, we consider
a general optimization framework for finding consensus partitions. Extensions
are discussed in Section 3.
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2 Consensus partitions

There are three main approaches to obtaining consensus clusterings (Gor-
don and Vichi (2001)): in the constructive approach, a way of constructing a
consensus clustering is specified: for example, a strict consensus clustering is
defined to be one such that objects can only be in the same group in the con-
sensus partition if they were in the same group in all base partitions. In the
axiomatic approach, emphasis is on the investigation of existence and unique-
ness of consensus clusterings characterized axiomatically. The optimization
approach formalizes the natural idea of describing consensus clusterings as
the ones which “optimally represent the ensemble” by providing a criterion
to be optimized over a suitable set C of possible consensus clusterings. Given
a function d which measures dissimilarity (or distance) between two cluster-
ings, one can e.g. look for clusterings which minimize average dissimilarity,
i.e., which solve

C∗ = argminC∈C
∑B

b=1
d(C,Cb)

over C. Analogously, given a measure of similarity (or agreement), one can
look for clusterings maximizing average similarity. Following Gordon and
Vichi (1998), one could refer to the above C∗ as the median or medoid clus-
tering if the optimum is sought over the set of all possible base clusterings,
or the set {C1, . . . , CB} of the base clusterings, respectively.

When finding consensus partitions, it seems natural to look for optimal
soft partitions which make it possible to assign objects to several groups with
varying degrees of “membership” (Gordon and Vichi (2001), Dimitriadou et
al. (2002)). One can then assess the amount of belongingness of objects to
groups via standard impurity measures, or the so-called classification mar-
gin (the difference between the two largest memberships). Note that “soft”
partitioning includes fuzzy partitioning methods such as the popular fuzzy
c-means algorithm (Bezdek (1974)) as well as probabilistic methods such as
the model-based approach of Fraley and Raftery (2002). In addition, one can
compute global measures Φ of the softness of partitions, and use these to
extend the above optimization problem to minimizing∑B

b=1
ωbd(C,Cb) + λΦ(C)

over all soft partitions, where the ω indicate the importance of the base clus-
terings (e.g., by assigning importance according to softness of the base par-
titions), and λ controls the amount of “regularization”. This extension also
allows for a soft-constrained approach to the “simple” problem of optimizing
over all hard partitions. Of course, one could consider criterion functions re-
sulting in yet more robust consensus solutions, such as the median or trimmed
mean of the distances d(C,Cb).

One should note that the above optimization problems are typically com-
putationally very hard. Finding an optimal hard partition with K labels in
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general makes it necessary to search all possible hard partitions (the num-
ber of which is of the order (K + 1)n (Jain and Dubes (1988)) for the op-
timum. Such exhaustive search is clearly impossible for most applications.
Local strategies, e.g. by repeating random reassigning until no further im-
provement is obtained, or Boltzmann-machine type extensions (Strehl and
Ghosh (2002)) are still expensive and not guaranteed to find the global opti-
mum.

Perhaps the most popular similarity measure for partitions of the same
data set is the Rand index (Rand (1971)) used in e.g. Gordon and Vichi
(1998), or the Rand index corrected for agreement by chance (Hubert and
Arabie (1985)) employed by Krieger and Green (1999). Finding (hard) con-
sensus partitions by maximizing average similarity is NP-hard in both cases.
Hence, Krieger and Green (1999) propose an algorithm (SEGWAY) based
on the combination of local search by relabeling single objects together with
“smart” initialization using random assignment, latent class analysis (LCA),
multiple correspondence analysis (MCA), or a greedy heuristic. Note also
that using (dis)similarity measures adjusted for agreement by chance works
best if the partitions are stochastically independent, which is not necessarily
the case in all cluster ensemble frameworks described in Section 1.

In what follows, the following terminology will be useful. Given a data set
X with the measurements of the same features (variables) on n objects, a K-
clustering of X assigns to each xi in X a (sub-)probability K-vector C(xi) =
(µi1, . . . , µiK) (the “membership vector” of the object) with µi1, . . . , µiK ≥ 0,∑

k µik ≤ 1. Formally,

C : X → M ∈ MK ; MK = {M ∈ Rn×K : M ≥ 0,M1K ≤ 1K},
where 1K is a lenght K column vector of ones, and M1K is the matrix
product of M and 1K . This framework includes hard partitions (where each
C(xi) is a unit Cartesian unit vector) and soft ones, as well as incomplete
(e.g., completely missing, for example if a sample from X was used) results
where

∑
k µik < 1. Permuting the labels (which correspond to the columns

of the membership matrix M) amounts to replacing M by MΠ , where Π is
a suitable permutation matrix.

The dissimilarity measure used in Models I and II of Gordon and Vichi
(2001) and in Dimitriadou et al. (2002) use the Euclidean dissimilarity of the
membership matrices, adjusted for optimal matching of the labels. If both
partitions use the same number of labels, this is given by

dF (M, M̃) = minΠ ‖M − M̃Π‖2

where the minimum is taken over all permutation matrices Π and ‖ · ‖ is the
Frobenius norm (so that ‖Y ‖2 = tr(Y ′Y ), where ′ denotes transposition).
As ‖M − M̃Π‖2 = tr(M ′M) − 2 tr(M ′M̃Π) + tr(Π ′M̃ ′M̃Π) = tr(M ′M) −
2 tr(M ′M̃Π) + tr(M̃ ′M̃), we see that minimizing ‖M − M̃Π‖2 is equivalent
to maximizing tr(M ′M̃Π) =

∑
i,k µikµ̃i,π(k), which for hard partitions is
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the number of objects with the same label in the partitions given by M
and M̃Π . Finding the optimal Π is thus recognized as an instance of the
assignment problem (or weighted bipartite graph matching problem), which
can be solved by a linear program using the so-called Hungarian method in
time O(K3) (e.g., Papadimitriou and Steiglitz (1982)). If the partitions have
different numbers of labels, matching also includes suitably collapsing the
labels of the finer partition, see Gordon and Vichi (2001) for details.

Finding the consensus K-clustering of given base K-clusterings with mem-
bership matrices M1, . . . ,MB amounts to minimizing

∑B
b=1 dF (M,Mb) over

MK , and is equivalent to minimizing
∑B

b=1 ‖M − MbΠb‖2 over M ∈ MK

and all permutation matrices Π1, . . . , ΠK . Dimitriadou et al. (2002) show
that the optimal M is of the form

M =
1
B

∑B

b=1
MbΠb

for suitable permutation matrices Π1, . . . , ΠB. A hard partition obtained
from this consensus partition by assigning objects to the label with maximal
membership thus performs simple majority voting after relabeling, which
motivates the name “voting” for the proposed framework. The Π1, . . . , ΠB

in the above representation are obtained by simultaneously maximizing the
profile criterion function∑

1≤β,b≤B
tr(Π ′

βM
′
βMbΠb)

over all possible permutation matrices (of course, one of these can be taken as
the identity matrix). This is a special case (but not an instance) of the mul-
tiple assignment problem, which is known to be NP-complete, and can e.g.
be approached using randomized parallel algorithms (Oliveira and Pardalos
(2004)). However, we note that unlike in the general case, the above criterion
function only contains second-order interaction terms of the permutations.
Whether the determination of the optimal permutations and hence of the
consensus clustering is possible in time polynomial in both B and K is cur-
rently not known.

Based on the characterization of the consensus solution, Dimitriadou et
al. (2002) suggest a greedy forward aggregation strategy for determining ap-
proximate solutions. One starts with M̃0 = M1 and then, for all b from 1
to B, first determines a locally optimal relabeling Π̃b of Mb to M̃b−1 (i.e.,
solves the assignment problem argminΠ ‖M̃b−1 − MbΠ‖2 using the Hungar-
ian method), and determines the optimal M = M̃b = (1/b)

∑b
β=1 M̃βΠ̃β for

fixed Π̃1, . . . , Π̃b by on-line averaging as M̃b = (1 − 1/b)M̃b−1 + (1/b)MbΠ̃b.
The final M̃B is then taken as the approximate consensus clustering. One
could extend this approach into a fixed-point algorithm which repeats the for-
ward aggregation, with the order of membership matrices possibly changed,
until convergence. Gordon and Vichi (2001) propose a different approach
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which iterates between simultaneously determining the optimal relabelings
Π1, . . . , ΠB for fixed M by solving the corresponding assignment problems,
and then optimizing for M for fixed Π1, . . . , ΠB by computing the average
(1/B)

∑B
b=1 MbΠb.

In the aggregation strategy Bag1 of Dudoit and Fridlyand (2002), the
same base clusterer is applied to both the original data set and B bootstrap
samples thereof, giving membership matrices Mref and M1, . . . ,MB. Optimal
relabelings Πb are obtained by matching the Mb to Mref , and (a hard version
of) the consensus partition is then obtained by averaging the MbΠb. There
seems to be no optimization criterion underlying this constructive approach.

According to Messatfa (1992), historically the first index of agreement
between partitions is due to Katz and Powell (1953), and based on the Pear-
son product moment correlation coefficient of the off-diagonal entries of the
co-incidence matrices MM ′ of the partitions. (Note that the (i, j)-th element
of MM ′ is given by

∑K
k=1 µikµjk, which in the case of hard partitions is one

if objects i and j are in the same group, and zero otherwise, and that relabel-
ing does not change MM ′.) A related dissimilarity measure (using covariance
rather than correlation) is

dC(M, M̃) = ‖MM ′ − M̃M̃ ′‖2

The corresponding consensus problem is the minimization of
∑

b ‖MM ′ −
MbM

′
b‖2, or equivalently of∥∥∥∥MM ′ − 1

B

∑B

b=1
MbM

′
b

∥∥∥∥2
over MK . This is Model III of Gordon and Vichi (2001), who suggest to use a
sequential quadratic programming algorithm (which can only be guaranteed
to find local minima) for obtaining the optimal M ∈ MK . The average co-
incidence matrix (1/B)

∑B
b=1 MbM

′
b also forms the basis of the constructive

consensus approaches in Fred and Jain (2002) and Strehl and Ghosh (2002).

3 Extensions

The optimization approach to finding consensus clusterings is also applicable
to the case of hierarchical clusterings (Vichi (1999)). If these are represented
by the corresponding ultra-metric matrices U1, . . . , UB, a consensus clustering
can be obtained e.g. by minimizing

∑
b ‖U−Ub‖2 over all possible ultra-metric

matrices U .
In many applications of cluster ensembles, interest is not primarily in ob-

taining a global consensus clustering, but to analyze (dis)similarity patterns
in the base clusterings in more detail—i.e., to cluster the clusterings. Gor-
don and Vichi (1998) present a framework in which all clusterings considered
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are hard partitions. Obviously, the underlying concept of “clustering cluster-
ings”, based on suitable (dis)similarity measures between clusterings, such as
the ones discussed in detail in Section 2, is much more general. In particular,
it is straightforward to look for hard prototype-based partitions of a cluster
ensemble characterized by the minimization of∑K

k=1

∑
C(Mb)=ek

d(Mb, Pk),

where ek is the k-th Cartesian unit vector over all possible hard assignments
C of membership matrices to labels and all suitable prototypes P1, . . . , PK .
If the usual algorithm which alternates between finding optimal prototypes
for fixed assignments and reassigning the Mb to their least dissimilar proto-
type is employed, we see that finding the prototypes amounts to finding the
appropriate consensus partitions in the groups. Similarly, soft partitions can
be characterized as the minima of the fuzzy c-means style criterion function∑

k,b u
q
kbd(Mb, Pk).
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Abstract. The two most common component methods for the analysis of three-
way data, CANDECOMP/PARAFAC (CP) and Tucker3 analysis, are used to sum-
marize a three-mode three-way data set by means of a number of component matri-
ces, and, in case of Tucker3, a core array. Until recently, no procedures for computing
confidence intervals for the results from such analyses were available. Recently, such
procedures have come available by Riu and Bro (2003) for CP using the jack-knife
procedure, and by Kiers (2004) for CP and Tucker3 analysis using the bootstrap
procedure. The present paper reviews the latter procedures, discusses their per-
formance as reported by Kiers (2004), and illustrates them on an example data
set.

1 Introduction

For the analysis of three-way data sets (e.g., data with scores of a number
of subjects, on a number of variables, under a number of conditions) various
exploratory three-way methods are available. The two most common methods
for the analysis of three-way data are CANDECOMP/PARAFAC (Carroll
and Chang (1970), Harshman (1970)) and Tucker3 analysis (Tucker (1966),
Kroonenberg and De Leeuw (1980)). Both methods summarize the data by
components for all three modes, and for the entities pertaining to each mode
they yield component loadings; in the case of Tucker3 analysis, in addition,
a so-called core array is given, which relates the components for all three
modes to each other.
If we denote our I × J × K three-way data array (which has usually been
preprocessed by centering and/or scaling procedures) by X, then the two
methods can be described as fitting the model

xijk =
P∑

p=1

Q∑
q=1

R∑
r=1

aipbjqckrgpqr + eijk, (1)

where aip, bjq, and ckr denote elements of the component matrices A (for the
first mode, e.g., the subjects), B (for the second mode, e.g., the variables),
� e-mail: : h.a.l.kiers@ppsw.rug.nl
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and C (for the third mode, e.g., the conditions), of orders I × P , J × Q,
and K ×R, respectively; gpqr denotes the element (p, q, r) of the P × Q×R
core array G, and eijk denotes the error term for element xijk ; P , Q, and R
denote the numbers of components for the three respective modes. Once the
solution has been obtained, component matrices and/or the core are usually
rotated to simplify the interpretation (see, Kiers, 1998), without loss of fit.
CANDECOMP/PARAFAC (CP) differs from Tucker3 analysis in that in CP
the core is set equal to a superidentity array (i.e., with gpqr = 1 if p = q = r,
and gpqr = 0 otherwise). As a consequence, in the case of CP, for all modes
we have the same number of components, and (1) actually reduces to

xijk =
R∑

r=1

airbjrckr + eijk, (2)

Because the CP model is unique up to scaling and permutation, no rotations
can be used to simplify the interpretation.
Both models are fitted to sample data by minimizing the sum of squared er-
rors. Usually, the model that fits optimally to the sample is assumed to be, at
least to some extent, also valid for the population from which the sample was
drawn. However, until recently, only global measures for indicating the reli-
ability of such generalizations from sample to population were available, for
instance by using cross-validation (e.g, see Kiers and van Mechelen (2001)).
Recently, however, resampling procedures (see, e.g., Efron and Tibshirani
(1993)) have been proposed for obtaining confidence intervals for all general-
izable individual parameters resulting from a three-way component analysis.
For this purpose, Riu and Bro (2003) proposed a jack-knife procedure for CP,
and Kiers (2004) proposed various bootstrap procedures for CP and Tucker3
analysis. Both procedures can be used when the entities in one of the three
modes can be considered a random sample from a population. According to
Efron and Tibshirani, in general, the bootstrap can be expected to be more
efficient than the jack-knife, so here we will focus on the bootstrap rather
than the jackknife.
Bootstrap analysis can be applied straightforwardly when solutions are uni-
quely determined. However, the Tucker3 solution is by no means uniquely
determined. Kiers (2004) described various procedures for handling this non-
uniqueness in case of Tucker3. He also studied their performance in terms
of coverage of the resulting confidence intervals, and in terms of computa-
tional efficiency by means of a simulation study. The main purpose of the
present paper is to review these procedures briefly, and to describe how such
a procedure works in practice in case of the analysis of an empirical data set.

2 The bootstrap for fully determined solutions

The basic idea of the bootstrap is to mimic the sampling process that gen-
erated our actual data sample, as follows. We suppose that the entities in
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the first mode (e.g., the individuals) are a random sample from a popula-
tion. Then, with the bootstrap procedure we assess what could happen if we
would consider our sample as a population, and if we randomly (re)sample
with replacement from this ’pseudo-population’. In fact, we consider the dis-
tribution of score profiles in our actual sample as a proxy of the distribution
of such profiles in our population; by randomly resampling from our sample,
we mimic the construction of a sampling distribution, on the basis of which
we intend to make inferences about actual population characteristics. In prac-
tice, if our three-way data set of order I × J × K is denoted by X, and the
score profiles for individual i are denoted by Xi, which is a matrix of order
J × K, then we randomly draw (with replacement) I matrices Xi from the
set of matrices {X1, . . . , XI}. This creates one bootstrap sample (in which
some matrices may occur repeatedly, and others not at all), which is then
reorganized into a three-way array. This procedure is to be repeated in order
to obtain, for instance, 500 such bootstrap three-way arrays. (In the sequel,
500 is taken as the number of bootstrap samples, but this is just meant as an
example; a higher number will always be better, although the improvement
may be little).
Now to each bootstrap three-way array, we apply a three-way component
method in exactly the same way as we applied it originally to our sample
(hence including the pre- and postprocessing procedures we used in the analy-
sis of the sample data), and we compute the statistics we are interested in.
The statistics of main interest are the loadings and the core values. Let these
be collected in a single vector θ. The vector of outcomes for our original sam-
ple is denoted as θs, whereas those for the bootstrap samples are denoted
as θb, b = 1, . . . , 500. Now, the variation in the 500 bootstrap sample out-
come vectors indicates how and how much the outcome vectors vary if we
randomly resample from our pseudo-population. This is used as an estimate
of how much real samples from our real population can be expected to vary
if we would sample repeatedly from our actual population.
A simple way to describe the variation across the bootstrap sample outcomes
is to give, for each parameter separately, a percentile interval (e.g., a 95%per-
centile interval) which describes the range in which we find the middle 95%
values (out of the total of 500 values) of the parameter at hand. In this way,
for each loading and each core value we get a 95%percentile interval. Such
percentile intervals can be interpreted as approximate confidence intervals.
The above procedure was based on computing the loadings and core values
in exactly the same way for each bootstrap three-way array. However, this
requires that the models are completely identified, in some way or another.
Identification of CP or Tucker3 solutions can be done as follows. One of the
key features of the CP model is that it is ’essentially’ uniquely identified (see
Carroll and Chang (1970), Harshman (1970)). By this it is meant that the
component matrices A, B, and C resulting from a CP analysis are, under
mild assumptions unique up to a joint permutation of the columns of the
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three matrices, and up to scaling of the columns of the three matrices. Hence
a simple procedure to further identify this solution is to scale components
such that the component matrices for two modes (e.g., the first two modes)
have unit column sums of squares. A procedure to fix the order of the com-
ponents is by ordering them such that the column sums of squares decrease.
Then it still remains to identify the sign of the component matrices. This can
be done in various ways, that are, however, all rather arbitrary (e.g., ensure
that the column sums in the component matrices A and B are positive).
The Tucker3 model is not at all uniquely identified: As already shown by
Tucker (1966), the fit is not affected by arbitrarily multiplying each of the
component matrices by a nonsingular square matrix, provided that the core is
multiplied appropriately by the inverse of these transformations. Specifically,
postmultiplication of the component matrices A, B, and C by nonsingular
matrices S, T, and U, respectively, does not affect the model estimates if
the core array is multiplied in the appropriate way by S−1, T−1, and U−1,
respectively.
To identify the Tucker3 solution, a first commonly used step is to require
the component matrices to be columnwise orthonormal, which reduces the
transformational nonuniqueness to rotational nonuniqueness. A requirement
to further identify the solution is to rotate the component matrices to what
Kiers (2004) called the ”principal axes” orientation of the Tucker3 solution.
This identifies the rotation of all component matrices, as well as their per-
mutation.
The principal axes solution has nice theoretical properties, but usually is not
easy to interpret. Alternatively, identification can be obtained by some simple
structure rotation of the core and component matrices (Kiers (1998)). Such
rotations identify the Tucker3 solution up to permutation and scaling. We
thus end up in the same situation as with CP, and can hence use the same
procedure to obtain full identification (see above).
Above it has been shown how the CP solution and the Tucker3 solution can
be identified completely. If we would use exactly the same identification pro-
cedure for all bootstrap solutions, then we can compare bootstrap solutions,
and sensibly compute percentile intervals, and use these as estimates of con-
fidence intervals for our parameters. However, in doing so, we imply that in
our actual data analysis, we consider as our solution only the one that we get
from exactly the same identification procedure. As a consequence, if we would
have two samples from the same population, and we analyze both in exactly
the same way, and it so happens that the solutions are almost identical but
have a different ordering of the columns or (in case of Tucker3 analysis) a
different rotation of the component matrix at hand, then we would not recog-
nize this near identity of the solutions (as is illustrated by Kiers (2004)). To
avoid overlooking such near similarities, we should not take the identifications
used for obtaining the bootstrap solutions too seriously, and we should use
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procedures that consider bootstrap solutions similar when they only differ by
permutations or (in case of Tucker3) other nonsingular transformations.

3 Smaller bootstrap intervals using transformations

When, in computing percentile intervals, we wish to consider bootstrap solu-
tions as similar when they differ only by a permutation and scaling, this can
be taken into account as follows. Before comparing bootstrap solutions, the
components are all reflected and permuted (as far is possible without affect-
ing the fit) in such a way that they optimally resemble the sample solution. In
case of Tucker3, also the core should be appropriately reflected and rescaled.
For details, the reader is referred to Riu and Bro (2003) or Kiers (2004),
who offer two slightly different procedures for achieving this. As an obvious
consequence, then the bootstrap solutions will also resemble each other well.
For each loading and core value, the associated 500 values in the result-
ing permuted and reflected bootstrap solutions can then be used to set up
a 95%percentile interval. Typically, these intervals will be smaller than the
ones based on fully identified solutions. If orderings and scalings are not to
be taken seriously (as is often the case in practice), this is indeed desirable,
because then the fully identified solutions would lead to artificially wide in-
tervals, as bootstrap solutions that differ mainly in irrelevant ways (i.e., by
permutations and/or scalings) would nevertheless be considered as strongly
different.
As mentioned above, fully identified Tucker3 bootstrap solutions may differ
considerably even when fit preserving transformations exist that make them
almost equal. For example, simple structure rotation may lead to very dif-
ferent solutions for two bootstrap samples, when for the original sample two
rather different rotations will yield almost the same degree of simplicity; in
such cases solutions for some bootstrap samples may, after rotation, resem-
ble one rotated sample solution, while others may resemble the other rotated
sample solution, even when, before rotation, both would resemble the orig-
inal unrotated sample solution very much. Often, the optimal simplicity of
a solution, as such, is not taken seriously (similarly as the actual ordering
with respect to sums of squares is usually not taken seriously). Then, it is
appropriate to consider as similar all bootstrap solutions that are similar af-
ter an optimal transformation towards each other, or to a reference solution.
This idea has repeatedly been used in bootstrap or jack-knife procedures
for two-way analysis techniques (Meulman and Heiser (1983), Krzanowski
(1987), Markus (1994), Milan and Whittaker (1995), Groenen, Commandeur
and Meulman (1998)). These two-way techniques cannot as such be used in
the three-way situation. For Tucker3, Kiers (2004) proposed two procedures
to make three-way bootstrap solutions optimally similar to the sample solu-
tion. The first uses ’only’ rotational freedom, leaving intact the columnwise
orthonormality of the component matrices; the other uses the full transfor-
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mational freedom in the Tucker3 model. The basic idea is as follows.
Let a Tucker3 solution be given by A, B, C and G, and bootstrap solutions
be indicated by Ab, Bb, Cb and Gb. As in the usual solutions, the compo-
nent matrices are columnwise orthonormal. Now we want to transform Bb,
Cb and Gb such that they become optimally similar to B, C and G, respec-
tively. Thus, we first search (possibly orthonormal) transformation matrices
T and U, such that BbT, and CbU become optimally similar to B and,
C, respectively. For this purpose, we minimize f1(T) =‖ BbT − B ‖2 and
f2(U) =‖ CbU−C ‖2. The inverses of the optimal transformations T and U
are then appropriately applied to the core array Gb. Next, transformational
freedom for the first mode (associated with component matrix Ab and the
first mode of the core array) is exploited by transforming the current boot-
strap core array across the first mode such that it optimally resembles the
sample core array G in the least squares sense. See Kiers (2004) for technical
details.
For each loading and core value, the associated 500 values in the resulting
transformed bootstrap solutions can be used to set up a 95%percentile inter-
val. These intervals will typically be smaller than both the ones based on fully
identified solutions, and the ones based on only permuting and scaling boot-
strap solutions, because now similarity across all possible transformations is
taken into account.

4 Performance of bootstrap confidence intervals

The above described bootstrap percentile intervals are considered estimates
of confidence intervals. This means that, if we have a 95%percentile interval,
we would like to conclude from this that with 9% certainty it covers the true
population parameter. If we would work with fully identified solutions, then
it is clear what the actual population parameters refer to. When transforma-
tional freedom is used, the coverage property of our intervals should be that,
in 95% of all possible samples from our population, after optimal transfor-
mation of the population component matrices and core towards their sample
counterparts, the population parameters fall in the confidence intervals we
set up. Obviously, for transformation we should read ”permutation and scal-
ing”, or ”orthonormal rotation”, if this is the kind of transformation actually
used.
By means of a simulation study, Kiers (2004) assessed the coverage proper-
ties of the above described bootstrap procedures, both for CP and Tucker3.
Specifically, first, large population data sets were constructed according to
the three-way model at hand, to which varying amounts of noise were added.
The numbers of variables were 4 or 8, and the numbers of conditions were 6 or
20; the numbers of components used varied between 2 and 4. The appropriate
three-way solution was computed for the population. Next, samples (of sizes
20, 50, and 100) were drawn from this population, the three-way method at
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hand was applied to each sample, and this was followed by a bootstrap pro-
cedure set up in one of the ways described above. Finally, for each parameter
it was assessed whether the population parameter, after optimal transforma-
tion of the population solution towards the sample solution, was covered by
the 95%bootstrap confidence interval estimated for it. Across all samples and
populations, the percentage of coverages should be 95%, and it was verified
whether the actual coverages came near to this percentage.
It was found in the simulation studies that the overall average coverages per
method and per type of parameter (variable loading, situation loading, or
core), ranged from 92% to 95%, except for Tucker3 using the principal axes
solution and making bootstrap solutions comparable to it by only using per-
mutations and reflections ( here the worst average coverage was found for
the elements of the B matrices: 85%). Such overall average coverages are
optimistic, because they may have resulted from over- and undercoverages
cancelling each other. Therefore, coverage percentages for individual condi-
tions (which are less reliable, because they pertain to smaller numbers of
cases) were also inspected. It turned out that these range from roughly 84%
to 98%, disregarding the troublesome case mentioned above. The lowest cov-
erage percentages were found for the smallest sample size (20). It can be
concluded that, when interpreting the bootstrap percentile intervals as con-
fidence intervals, it should be taken into account that they tend to be too
small, especially in case of sample sizes as small as 20.
For a single full bootstrap analysis, 500 three-way component analyses have
to be carried out, so it is important to know whether this can be done in rea-
sonable time. Kiers (2004) reported that, for the largest sizes in his study, the
Tucker3 bootstrap analyses cost about 30 seconds, which seems acceptable.
For CP, however, even for sample sizes of 50, computation time was about 5
minutes. Fortunately, a procedure using the sample solution as start for the
bootstrap analyses, can help to decrease this computation time considerably,
while not affecting the coverage performance.

5 An application: Bootstrap confidence intervals for
results from a Tucker3 Analysis

Kiers and van Mechelen (2001) reported the Tucker3 analysis of the scores
of 140 subjects on 14 five-point scales measuring the degree of experiencing
various anxiety related phenomena in 11 different stressful situations. The
data have been collected by Maes, Vandereycken, and Sutren at the Univer-
sity of Leuven, Belgium. Here we have reanalyzed their data, using the very
same options as they used, and now computed bootstrap confidence intervals
for the outcomes. Here we used the procedure where the bootstrap compo-
nent loadings for the anxiety scales and for the situations, and the core array
are matched by means of optimal orthogonal rotations to the corresponding
sample component matrices and core.
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The bootstrap confidence intervals for the loadings of the anxiety scales are
given in Table 1, and those for the situations in Table 2. In Table 3, the core
values are reported, and, to keep the results insightful, only for the values
that play a role in the interpretation, confidence intervals are reported.

Table 1. Confidence intervals for loadings of anxiety scales on components (the
latter interpreted as by Kiers and van Mechelen, 2001).

component\ ”Approach- ”Autonomic ”Sickness” ”Excretory
anxiety scale avoidance” physiology” need”

Heart beats faster -0.12 -0.00 0.44 0.64 -0.19 0.07 -0.26 -0.08
”Uneasy feeling” -0.34 -0.19 0.15 0.38 -0.05 0.23 -0.18 0.02
Emotions disrupt -0.25 -0.09 0.11 0.34 0.10 0.41 -0.15 0.11
Feel exhilarated 0.41 0.52 0.04 0.20 -0.03 0.17 -0.00 0.15
Not want to avoid 0.29 0.45 -0.22 -0.03 -0.12 0.14 -0.09 0.10
Perspire -0.13 -0.02 0.41 0.58 -0.11 0.11 -0.11 0.05
Need to urinate -0.04 0.15 0.02 0.35 -0.24 0.23 0.34 0.61
Enjoy challenge 0.43 0.53 0.02 0.17 -0.01 0.18 -0.05 0.08
Mouth gets dry -0.06 0.16 0.12 0.51 -0.24 0.25 0.18 0.49
Feel paralyzed -0.14 0.02 0.01 0.33 0.03 0.44 0.07 0.36
Full stomach -0.09 0.05 -0.10 0.13 0.54 0.85 -0.20 0.05
Seek experiences 0.42 0.54 0.03 0.23 -0.05 0.22 -0.12 0.06
Need to defecate -0.15 0.03 -0.27 0.10 -0.30 0.25 0.48 0.81
Feel nausea -0.19 -0.08 -0.24 -0.03 0.28 0.54 0.12 0.35

Note: intervals for high loadings used in the original interpretation are set in

bold.

The confidence intervals for the anxiety scale loadings vary somewhat in
width, but are usually rather small for the highest loadings (which are set
in bold face). These values are the ones on which Kiers and van Mechelen
(2001) based their interpretation of the components, hence it is comforting to
see that these intervals are usually not too wide. The main exceptions are the
intervals for the loadings of ”Mouth gets dry” on ”Autonomic physiology”
and ”Excretory need”, which are both wide, and which indicates that it is
not at all clear with which component this anxiety scale is related strongest
(which is remarkable, because this refers clearly and solely to an autonomic
physiological reaction). Without confidence intervals, this unclarity had gone
unnoticed.
The confidence intervals for the situation loadings vary somewhat more in
width. Again the intervals for the highest loadings are set in bold face. They
are small for ”Performance judged by others”, but for ”Inanimate danger”
especially the ”Sail boat on rough sea” situation has a wide interval, and
both highest loadings on the ”Alone in woods at night” component have wide
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intervals as well. Clearly, the judgement component is better determined than
the other two.

Table 2. Confidence intervals for component values of situations on components
(the latter interpreted as by Kiers and van Mechelen, 2001).

component\ Performance judged Inanimate Alone in wood
situation by others danger at night

Auto trip 0.02 0.22 0.01 0.26 -0.29 0.20
New date 0.14 0.31 0.03 0.24 -0.40 -0.03
Psychological experiment -0.19 0.23 -0.12 0.42 -0.30 0.72
Ledge high on mountain side -0.05 0.19 0.56 0.87 -0.18 0.30
Speech before large group 0.36 0.55 -0.25 0.02 -0.24 0.12
Consult counseling bureau 0.10 0.45 -0.27 0.12 -0.25 0.53
Sail boat on rough sea 0.02 0.29 0.27 0.70 -0.34 0.26
Match in front of audience 0.22 0.46 -0.02 0.26 -0.25 0.24
Alone in woods at night 0.06 0.33 -0.09 0.17 0.25 0.93
Job-interview 0.36 0.51 -0.18 0.01 -0.13 0.21
Final exam 0.38 0.53 -0.29 -0.03 0.02 0.33

Note: intervals for high loadings used in the original interpretation are set in

bold.

The core values are used to interpret the components for the individu-
als indirectly, through the interpretation of the components for the anxiety
scales and the situations, see Kiers and van Mechelen (2001). The confidence
intervals for the highest core values are usually relatively small. This is even
the case for the values just higher than 10 (in absolute sense). The confidence
intervals suggest even these smaller values can be taken rather seriously.

6 Discussion

In the present paper, procedures have been described for determining boot-
strap percentile intervals for all parameters resulting from a Tucker3 or CP
three-way analysis. These can be used as such, that is, as intervals indi-
cating the stability of solutions across resampling from the same data, and
hence give an important primary indication of their reliability. However, it
was found that the 95%percentile intervals also turn out to be fairly good
approximations to 95%confidence intervals in most cases. Thus, they can at
least tentatively be used as confidence intervals as well. Some improvement
of these intervals, however, still remains to be desired.

Note: core values higher than 10 (in absolute sense) are set in bold.
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Table 3. Core array with confidence intervals, in brackets, only for the high core
values. Labels A1,. . . ,A6 refer to the 6 components for summarizing the subjects.

Performance judged by others

Appr.Avoid. Auto.phys. Sickness Excr.need
A1 36.5 [28, 45] -1.0 -0.5 -0.2
A2 0.8 1.6 -0.3 2.2
A3 -0.2 0.7 -0.1 36.9 [29, 43]
A4 -0.9 40.0 [31, 48] 1.2 1.2
A5 0.5 -0.1 1.2 0.9
A6 -0.3 1.0 34.9 [28, 43] 0.2

Inanimate Danger

Appr.Avoid. Auto.phys. Sickness Excr.need
A1 1.6 3.4 2.0 1.0
A2 30.3 [25, 34] -11.0 [−15,−7] -11.8 [−15,−8] -9.0
A3 2.8 3.5 2.4 15.2 [9, 20]
A4 2.7 11.2 [5, 16] 0.6 -0.6
A5 0.4 -2.6 1.9 1.9
A6 -0.4 -4.0 6.5 -4.7

Alone in woods at night

Appr.Avoid. Auto.phys. Sickness Excr.need
A1 2.5 4.3 1.7 -2.2
A2 0.4 -0.4 0.8 2.4
A3 1.6 -0.5 3.9 12.4 [7, 16]
A4 1.2 5.0 -4.8 -7.0
A5 26.4 [19, 30] -18.4 [−22,−11] -8.3 -6.6
A6 3.0 1.7 9.8 2.2

Different procedures have been proposed, depending on which transfor-
mations one allows for the bootstrap solutions. The choice between these
should be made on theoretical grounds, not on empirical grounds. That is,
this depends on whether or not the ordering of components in terms of col-
umn sums of squares, and the optimal simplicity of solutions in terms of
varimax is taken seriously or not. If such characteristics are not taken seri-
ously, indeed one should use all the rotational freedom that is available in
setting up bootstrap intervals.
The approximate confidence intervals given here pertain to each individual
output parameter. However, obviously, the output parameters are not in-
dependent from each other. For instance, already the unit column sums of
squares constraints on the component matrices ensure that elements within
columns of such matrices depend on each other. Moreover, the optimality of
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a solution does not depend on each parameter individually, but on the com-
plete configuration of all output parameters. Thus, one may expect that, if
a percentile interval for a particular element of B, say, does not contain the
population parameter value, then it is rather likely that percentile intervals
for other elements of B will not cover their population counterparts either.
Such dependence even holds for elements from different matrices: Consider
that an ’extreme’ solution for B is found (such that the associated percentile
intervals miss most of the population parameters), then this will most likely
also affect the solution for the core G (and hence lead to misfitting percentile
intervals for many elements of G). Clearly, further research is needed to deal
with the dependence of output parameters. For now, it suffices to remark
that the confidence intervals are each taken as if they ’were on their own’,
and in interpreting the confidence intervals their dependence should not be
overlooked, in particular when they are to be used to make probability state-
ments on sets of parameters jointly.
The bootstrap method is sometimes called a computer intensive method.
When we apply it to three-way analysis, indeed, this intensity becomes ap-
parent, especially when using CP. Computation times for moderately sized
problems are nonnegligible, although not prohibitive. Some speed improve-
ment was obtained, and further speed improvement may be possible. All in
all, however, it can be concluded that the bootstrap now is a viable procedure
for estimating confidence intervals for the results from exploratory three-way
methods.
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Organising the Knowledge Space

for Software Components

Claus Pahl

School of Computing,
Dublin City University, Dublin 9, Ireland

Abstract. Software development has become a distributed, collaborative process
based on the assembly of off-the-shelf and purpose-built components. The selection
of software components from component repositories and the development of com-
ponents for these repositories requires an accessible information infrastructure that
allows the description and comparison of these components.

General knowledge relating to software development is equally important in
this context as knowledge concerning the application domain of the software. Both
form two pillars on which the structural and behavioural properties of software
components can be expressed. Form, effect, and intention are the essential aspects
of process-based knowledge representation with behaviour as a primary property.

We investigate how this information space for software components can be or-
ganised in order to facilitate the required taxonomy, thesaurus, conceptual model,
and logical framework functions. Focal point is an axiomatised ontology that, in
addition to the usual static view on knowledge, also intrinsically addresses the dy-
namics, i.e. the behaviour of software. Modal logics are central here – providing a
bridge between classical (static) knowledge representation approaches and behav-
iour and process description and classification.

We relate our discussion to the Web context, looking at Web services as com-
ponents and the Semantic Web as the knowledge representation framework.

1 Introduction

The style of software development has changed dramatically over the past
decades. Software development has become a distributed, collaborative pro-
cess based on the assembly of off-the-shelf and purpose-built software com-
ponents – an evolutionary process that in the last years has been strongly
influenced by the Web as a software development and deployment platform.

This change in the development style has an impact on information and
knowledge infrastructures surrounding these software components. The se-
lection of components from component repositories and the development of
components for these repositories requires an accessible information infra-
structure that allows component description, classification, and comparison.
Organising the space of knowledge that captures the description of properties
and the classification of software components based on these descriptions is
central. Discovery and composition of software components based on these
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descriptions and classifications have become central activities in the soft-
ware development process (Crnkovic and Larsson (2002)). In a distributed
environment where providers and users of software components meet in elec-
tronic marketplaces, knowledge about these components and their proper-
ties is essential; a shared knowledge representation language is a prerequisite
(Horrocks et al. (2003)). Describing software behaviour, i.e. the effect of the
execution of services that a component might offer, is required.

We will introduce an ontological framework for the description and classi-
fication of software components that supports the discovery and composition
of these components and their services – based on a formal, logical coverage
of this topic in (Pahl (2003)). Terminology and logic are the cornerstones of
our framework. Our objective is here twofold:

• We will illustrate an ontology based on description logics (a logic under-
lying various ontology languages), i.e. a logic-based terminological clas-
sification framework based on (Pahl (2003)). We exploit a connection to
modal logics to address behavioural aspects, in particular the safety and
liveness of software systems.

• Since the World-Wide Web has the potential of becoming central in future
software development approaches, we investigate whether the Web can
provide a suitable environment for software development and what the
requirements for knowledge-related aspects are. In particular Semantic
Web technologies are important for this context.

We approach the topic here from a general knowledge representation and
organisation view, rather than from a more formal, logical perspective.

In Section 2 we describe the software development process in distributed
environments in more detail. In Section 3, we relate knowledge representation
to the software development context. We define an ontological framework for
software component description, supporting discovery and composition, in
Section 4. We end with some conclusions in Section 5.

2 The software development process

The World-Wide Web is currently undergoing a change from a document- to
a services-oriented environment. The vision behind the Web Services Frame-
work is to provide an infrastructure of languages, protocols, and tools to
enable the development of services-oriented software architectures on and
for the Web (W3C (2004)). Service examples range from simple informa-
tion providers, such as weather or stock market information, to data storage
support and complex components supporting e-commerce or online banking
systems. An example for the latter is an account management component of-
fering balance and transfer services. Service providers advertise their services;
users (potential clients of the provider) can browse repository-based market-
places to find suitable services, see Fig. 1. The prerequisite is a common
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Fig. 1. A Service Component Development Scenario.

language to express properties of these Web-based services and a classifica-
tion approach to organise these. The more knowledge is available about these
services, the better can a potential client determine the suitability of an offer.

Services and components are related concepts. Web services can be pro-
vided by software components; we will talk about service components in
this case. If services exhibit component character, i.e. are self-contained with
clearly defined interfaces that allows them to be reused and composed, then
their composition to larger software system architectures is possible. Plug-
gable and reusable software components are one of the approaches to software
developments that promises risk minimisation and cost reduction. Composi-
tion can be physical, i.e. a more complex artefact is created through assembly,
or logical, i.e. a complex system is created by allowing physically distributed
components to interact. Even though our main focus are components in gen-
eral, we will discuss them here in the context of the Web Services platform.

The ontological description of component properties is our central concern
(Fig. 1). We will look at how these descriptions are used in the software
development process. Two activities are most important:

• Discovery of provided components (lower half of Fig. 1) in structured
repositories. Finding suitable, reusable components for a given develop-
ment based on abstract descriptions is the problem.

• Composition of discovered components in complex service-based compo-
nent architectures through interaction (upper half of Fig. 1). Techniques
are needed to compose the components in a consistent way based on their
descriptions.

For a software developer, the Web architecture means that most software de-
velopment and deployment activities will take place outside the boundaries of
her/his own organisation. Component descriptions can be found in external
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repositories. These components might even reside as provided services out-
side the own organisation. Shared knowledge and knowledge formats become
consequently essential.

3 A knowledge space for software development

The Web as a software platform is characterised by different actors, different
locations, different organisations, and different systems participating in the
development and deployment of software. As a consequence of this hetero-
geneous architecture and the development paradigm as represented in Fig.
1, shared and structured knowledge about components plays a central role.
A common understanding and agreement between the different actors in the
development process are necessary.

A shared, organised knowledge space for software components in service-
oriented architectures is needed. The question how to organise this knowledge
space is the central question of this paper. In order to organise the knowledge
space through an ontological framework (which we understand essentially as
basic notions, a language, and reasoning techniques for sharable knowledge
representation), we address three facets of the knowledge space: firstly, types
of knowledge that is concerned, secondly, functions of the knowledge space,
and, finally, the representation of knowledge (Sowa (2000)).

Three types of knowledge can be represented in three layers:

• The application domain as the basic layer.
• Static and dynamic component properties as the central layer.
• Meta-level activity-related knowledge about discovery and composition.

We distinguish four knowledge space functions (Daconta et al. (2003)) that
characterise how knowledge is used to support the development activities:

• Taxonomy – terminology and classification; supporting structuring and
search.

• Thesaurus – terms and their relationships; supporting a shared, controlled
vocabulary.

• Conceptual model – a formal model of concepts and their relationships;
here of the application domain and the software technology context.

• Logical theory – logic-supported inference and proof; here applied to be-
havioural properties.

The third facet deals with how knowledge is represented. In general, knowl-
edge representation (Sowa (2000)) is concerned with the description of entities
in order to define and classify these. Entities can be distinguished into ob-
jects (static entities) and processes (dynamic entities). Processes are often
described in three aspects or tiers:

• Form – algorithms and implementation – the ‘how’ of process description
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• Effect – abstract behaviour and results – the ‘what’ of process description
• Intention – goal and purpose – the ‘why’ of process description

We have related the aspects form, effect, and intention to software character-
istics such as algorithms and abstract behaviour. The service components are
software entities that have process character, i.e. we will use this three-tiered
approach for their description.

The three facets of the knowledge space outline its structure. They serve
as requirements for concrete description and classification techniques, which
we will investigate in the remainder.

4 Organising the knowledge space

4.1 Ontologies

Ontologies are means of knowledge representation, defining so-called shared
conceptualisations. Ontology languages provide a notation for terminological
definitions that can be used to organise and classify concepts in a domain.
Combined with a symbolic logic, we obtain a framework for specification,
classification, and reasoning in an application domain. Terminological logics
such as description logics (Baader et al. (2003)) are an example of the latter.

The Semantic Web is an initiative for the Web that builds up on ontology
technology (Berners-Lee et al. (2001)). XML – the eXtensible Markup Lan-
guage – is the syntactical format. RDF – the Resource Description Framework
– is a triple-based formalism (subject, property, object) to describe entities.
OWL – the Web Ontology Language – provides additional logic-based rea-
soning based on RDF.

We use Semantic Web-based ontology concepts to formalise and axioma-
tise processes, i.e. to make statements about processes and to reason about
them. Description logic, which is used to define OWL, is based on concept
and role descriptions (Baader et al. (2003)). Concepts represent classes of
objects; roles represent relationships between concepts; and individuals are
named objects. Concept descriptions are based on primitive logical combina-
tors (negation, conjunction) and hybrid combinators (universal and existen-
tial quantification). Expressions of a description logic are interpreted through
sets (concepts) and relations (roles).

We use a connection between description logic and dynamic logic (Sattler
et al. (2003), Chapter 4.2.2). A dynamic logic is a modal logic for the de-
scription of programs and processes based on operators to express necessity
and possibility (Kozen and Tiuryn (1990)). This connection allows us to ad-
dress safety (necessity of behaviour) and liveness (possibility of behaviour)
aspects of service component behaviour by mapping the two modal opera-
tors ‘box’ (or ‘always’, for safety) and ‘diamond’ (or ‘eventually’, for liveness)
to the description logic universal and existential quantification, respectively.
The central idea behind this connection is that roles can be interpreted as
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Fig. 2. A Service Component Ontology.

accessibility relations between states, which are central concepts of process-
oriented software systems. The correspondence between description logics
and a multi-modal dynamic logic is investigated in detail in (Schild (1991)).

4.2 A discovery and composition ontology

An intuitive approach to represent software behaviour in an ontological form
would most likely be to consider components or services as the central con-
cepts (DAML-S Coalition (2002)). We, however, propose a different approach.
Our objectve is to represent software systems. These systems are based on
inherent notions of state and state transition. Both notions are central in our
approach. Fig. 2 illustrates the central ideas. Service executions lead from old
(pre)states to new (post)states, i.e. the service is represented as a role (a rec-
tangle in the diagram), indicated through arrows. The modal specifications
characterise in which state executions might (using the possibility operator to
express liveness properties) or should (using the necessity operator to express
safety properties) end. For instance, we could specify that a customer may
(possibly) check his/her account balance, or, that a transfer of money must
(necessarily) result in a reduction of the source account balance. Transitional
roles such as Service in Fig. 2 are complemented by more static, descriptional
roles such as preCond or inSign, which are associated through non-directed
connections. For instance, preCond associates a precondition to a prestate;
inSign associates the type signatures of possible service parameters. Some
properties, such as the service name servName, will remain invariant with
respect to state change.

Central to our approach is the intrinsic specification of process behav-
iour in the ontology language itself. Behaviour specifications based on the
descriptions of necessity and possibility are directly accessible to logic-based
methods. This makes reasoning about behaviour of components possible.

We propose a two-layered ontology for discovery and composition. The
upper ontology layer supports discovery, i.e. addresses description, search,
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discovery, and selection. The lower ontology layer supports composition, i.e.
addresses the assembly of components and the choreography of their interac-
tions. We assume that execution-related aspects are an issue of the provider
– shareable knowledge is therefore not required.

Table 1 summarises development activities and knowledge space aspects.
It relates the activities discovery, composition, and execution on services
(with the corresponding ontologies) to the three knowledge space facets.

Table 1. Development Activities and Knowledge Space Facets.

Knowledge Aspect Knowledge Type Function

Discovery intention domain taxonomy
(upper ontology) (terminology) thesaurus

Composition effect component conceptual model
(lower ontology) (behaviour) component activities logical theory

Execution form component conceptual model
(implementation)

4.3 Description of components

Knowledge describing software components is represented in three layers. We
use two ontological layers here to support the abstract properties.

• The intention is expressed through assumptions and goals of services in
the context of the application domain.

• The effect is a contract-based specification of system invariants, pre- and
postconditions describing the obligations of users and providers.

• The form defines the implementation of service components, usually in a
non-ontological, hidden format.

We focus on effect descriptions here. Effect descriptions are based on modal
operators. These allow us to describe process behaviour and composition
based on the choreography of component interactions. The notion of compo-
sition shall be clarified now. Composition in Web- and other service-oriented
environments is achieved in a logical form. Components are provided in form
of services that will reside in their provider location. Larger systems are
created by allowing components to interact through remote operation in-
vocation. Components are considered as independent concurrent processes
that can interact (communicate) with each other. Central in the composition
are the abstract effect of individual services and the interaction patterns of
components as a whole.

We introduce role expressions based on the role constructors sequential
composition R;S, iteration !R, and choice R + S into a basic ontology lan-
guage to describe interaction processes (Pahl (2003)). We often use R ◦ S
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instead of R;S if R and S are functional roles, i.e. are interpreted by func-
tions – this notation will become clearer when we introduce names and ser-
vice parameters. Using this language, we can express ordering constraints for
parameterised service components. These process expressions constrain the
possible interaction of a service component with a client.

For instance, Login; !(Balance+ Transfer) is a role expression describing
an interaction process of an online banking user starting with a login, then
repeatedly executing balance enquiry or money transfer.

An effect specification1 focussing on safety is for a given system state

∀preCond.positive(Balance(no)) and
∀Transfer.∀postCond.reduced(Balance(no))

saying that if the account balance for account no is positive, then money
can be transfered, resulting (necessarily) in a reduced balance. Transfer is a
service; positive(Balance(no)) and reduced(Balance(no)) are pre- and post-
condition, respectively. These conditions are concept expressions. The specifi-
cation above is formed by navigating along the links created by roles between
the concepts in Fig. 2 – Transfer replaces Service in the diagram.

In Fig. 3, we have illustrated two sample component descriptions – one
representing the requirements of a (potential) client, the other representing a
provided bank account component. Each component lists a number of individ-
ual services (operations) such as Login or Balance. We have used pseudocode
for signatures (parameter names and types) and pre-/postconditions – a for-
mulation in proper description logic will be discussed later on. We have
limited the specification in terms of pre- and postconditions to one service,
Transfer.

The requirements specification forms a query as a request, see Fig. 1. The
ontology language is the query language. The composition ontology provides
the vocabulary for the query. A query should result ideally in the identifica-
tion of a suitable (i.e. matching) description of a provided component. In our
example, the names correspond – this, however, is in general not a matching
prerequisite. Behaviour is the only definitive criterion.

4.4 Discovery and composition of components

Component-based development is concerned with discovery and composition.
In the Web context, both activities are supported by Semantic Web and Web
Services techniques. They support semantical descriptions of components,
marketplaces for the discovery of components based on intention descriptions
as the search criteria, and composition support based on semantic effect de-
scriptions. The deployment of components is based on the form description.
1 This safety specification serves to illustrate effect specification. We will improve

this currently insufficient specification (negative account balances are possible,
but might not be desired) in the next section when we introduce names and
parameters.
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Component AccountRequirements

signatures and pre-/postconditions
Login

inSign no:int,user:string

outSign void

Balance

inSign no:int

outSign real

Transfer

inSign no:int,dest:int,sum:real

outSign void

preCond Balance(no) ≥ sum

postCond Balance(no) = Balance(no)@pre - sum

Logout

inSign no:int

outSign void

interaction process
Login;!Balance;Logout

Component BankAccount

signatures and pre-/postconditions
Login(no:int,user:string)

inSign no:int,user:string

outSign void

Balance(no:int):real

inSign no:int

outSign real

Transfer(no:int,dest:int,sum:real)
inSign no:int,dest:int,sum:real

outSign void

preCond true

postCond Balance(no) = Balance(no)pre - sum

Logout(no:int)

inSign no:int

outSign void

interaction process
Login;!(Balance+Transfer);Logout

Fig. 3. Bank Account Component Service.

Query and Discovery. The aim of the discovery support is to find suitable
provided components in a first step that match based on the application
domain related goals and that, in a second step, match based on the more
technical effect descriptions. Essentially, the ontology language provides a
query language. The client specifies the requirements in a repository query
in terms of the ontology, which have to be matched by a description of a
provided component.



94 Pahl

Matching requires technical support, in particular for the formal effect
descriptions. Matching can be based on techniques widely used in software
development, such as refinement (which is for instance formalised as the con-
sequence notion in dynamic logic). We will focus on the description of effects,
i.e. the lower ontology layer (cf. Fig. 2):

• Service component-based software systems are based on a central state
concept; additional concepts for auxilliary aspects such as the pre- and
poststate-related descriptions are available.

• Service components are behaviourally characterised by transitional roles
(for state changes between prestate and poststate) and descriptional roles
(auxilliary state descriptions).

Matching and composition. In order to support matching and com-
position of components through ontology technology, we need to extend
the (already process-oriented) ontology language we presented above (Pahl
and Casey (2003)). We can make statements about component interaction
processes, but we cannot refer to the data elements processed by services.
The role expression sublanguage needs to be extended by names (represent-
ing data elements) and parameters (which are names passed on to services
for processing):

• Names: a name is a role n[Name] defined by the identity relation on the
interpretation of an individual n.

• Parameters: a parameterised role is a transitional role R applied to a
name n[Name], i.e. R ◦ n[Name].

We can make our Transfer service description more precise by using a data
variable (sum) in pre- and postconditions and as a parameter:

∀preCond.(Balance(no) ≥ sum) and
∀Transfer◦sum[Name].∀postCond.(Balance(no)=Balance(no)@pre−sum)

This specification requires Transfer to decrease the pre-execution balance by
sum.

Matching needs to be supported by a comparison construct. We already
mentioned a refinement notion as a suitable solution. This definition, however,
needs to be based on the support available in description logics. Subsumption
is the central inference technique. Subsumption is the subclass relationship
on concept and role interpretations. We define two types of matching:

• For individual services, we define a refinement notion based on weaker pre-
conditions (allowing a service to be invoked in more states) and stronger
postconditions (improving the results of a service execution). For example
true as the precondition and Balance(no) = Balance(no)@pre− sum as
the postcondition for Transfer ◦ sum[Name] matches, i.e. refines the re-
quirements specification with Balance(no) >= sum as the precondition
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and Balance(no) = Balance(no)@pre − sum as the postcondition since
it allows the balance to become negative (i.e. allows more flexibility for
an account holder).

• For service processes, we define a simulation notion based on sequential
process behaviour. A process matches another process if it can simulate
the other’s behaviour. For example the expression Login; !(Balance +
Transfer);Logout matches, i.e. simulates Login; !Balance;Logout, since
the transfer service can be omitted.

Both forms of matching are sufficient criteria for subsumption. Matching of
effect descriptions is the prerequisite for the composition of services. Matching
guarantees the proper interaction between composed service components.

5 Conclusions

Knowledge plays an important role in the context of component- and service-
oriented software development. The emergence of the Web as a development
and deployment platform for software emphasises this aspect.

We have structured a knowledge space for software components in service-
oriented architectures. Processes and their behavioural properties were the
primary aspects. We have developed a process-oriented ontological model
based on the facets form, effect, and intention. The discovery and the com-
position of process-oriented service components are the central activities. This
knowledge space is based on an ontological framework formulated in a de-
scription logic. The defined knowledge space supports a number of different
functions – taxonomy, thesaurus, conceptual model, and logical theory. These
functions support a software development and deployment style suitable for
the Web and Internet environment.

Explicit, machine-processable knowledge is the key to future automation
of software development activities. In particular, Web ontologies have the
potential to become an accepted format that supports such an automation
endeavour.
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Abstract. In this paper we propose the Time Interval Multimedia Event (TIME)
framework as a robust approach for recognition of multimedia patterns, e.g. high-
light events, in soccer video. The representation used in TIME extends the Allen
temporal interval relations and allows for proper inclusion of context and synchro-
nization of the heterogeneous information sources involved in multimedia pattern
recognition. For automatic classification of highlights in soccer video, we compare
three different machine learning techniques, i.c. C4.5 decision tree, Maximum En-
tropy, and Support Vector Machine. It was found that by using the TIME framework
the amount of video a user has to watch in order to see almost all highlights can be
reduced considerably, especially in combination with a Support Vector Machine.

1 Introduction

The vast amount of sport video that is broadcasted on a daily basis, is even for
sports enthusiasts too much to handle. To manage the video content, annota-
tion is required. However, manual annotation of video material is cumbersome
and tedious. This fact has already been acknowledged by the multimedia re-
search community more than a decade ago, and has resulted in numerous
methodologies for automatic analysis and indexing of video documents, see
Snoek and Worring (2005).

However, automatic indexing methods suffer from the semantic gap or
the lack of coincidence between the extracted information and its interpreta-
tion by a user, as recognized for image indexing in Smeulders et al. (2000).
Video indexing has the advantage that it can profit from combined analysis of
visual, auditory, and textual information sources. For this multimodal index-
ing, two problems have to be unravelled. Firstly, when integrating analysis
results of different information channels, difficulties arise with respect to syn-
chronization. The synchronization problem is typically solved by converting
all modalities to a common layout scheme, e.g. camera shots, hereby ignor-
ing the layout of the other modalities. This introduces the second problem,
namely the difficulty to properly model context, i.e. how to include clues that
do not occur at the exact moment of the highlight event of interest? When
synchronization and context have been solved, multimodal video indexing
might be able to bridge the semantic gap to some extent.
� This research is sponsored by the ICES/KIS MIA project and TNO-TPD.
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Existing methods for multimedia pattern recognition, or multimodal video
indexing, can be grouped into knowledge based approaches (Babaguchi et al.
(2002), Fischer et al. (1995)) and statistical approaches (Assfalg et al. (2002),
Han et al. (2002), Lin and Hauptmann (2002), Naphade and Huang(2001)).
The former approaches typically combine the output of different multimodal
detectors into a rule based classifier. To limit model dependency, and improve
the robustness, a statistical approach seems more promising. Various statis-
tical frameworks can be exploited for multimodal video indexing. Recently
there has been a wide interest in applying the Dynamic Bayesian Network
(DBN) framework for multimedia pattern recognition (Assfalg et al. (2002),
Naphade and Huang(2002)). Other statistical frameworks that were proposed
include Maximum Entropy (Han et al. (2002)), and Support Vector Machines
(Lin and Hauptmann (2002)). However, all of these frameworks suffer from
the problems of synchronization and context, identified above. Furthermore,
they lack satisfactory inclusion of the textual modality.

To tackle the problems of proper synchronization and inclusion of contex-
tual clues for multimedia pattern recogntion, we propose the Time Interval
Multimedia Event (TIME) framework. Moreover, as it is based on statis-
tics, TIME yields a robust approach for multimedia pattern recognition. To
demonstrate the viability of our approach we provide a systematic evalua-
tion of three statistical classifiers, using TIME, on the domain of soccer and
discuss their performance. The soccer domain was chosen because contextual
clues like replays and distinguishing camera movement don’t appear at the
exact moment of the highlight event. Hence, their synchronization should be
taken into account. We improve upon existing work related to soccer video
indexing, e.g. Assfalg et al. (2002) and Ekin et al. (2003), by exploiting mul-
timodal, instead of unimodal, information sources, and by using a classifier
based on statistics instead of heuristics that is capable to handle both syn-
chronization and context.

The rest of this paper is organized as follows. First we introduce the TIME
framework, discussing both representation and classification. Then we discuss
the multimodal detectors used for classification of various highlight events in
soccer video in section 3. Experimental results are presented in section 4.

2 Multimedia event classification framework

We view a video document from the perspective of its author (Snoek and
Worring (2005)). Based on a predefined semantic intention, an author com-
bines certain multimedia layout and content elements to express his message.
For analysis purposes this authoring process should be reversed. Hence, we
start with reconstruction of layout and content elements. To that end, dis-
crete detectors, indicating the presence or absence of specific layout and con-
tent elements, are often the most convenient means to describe the layout
and content. This has the added advantage that detectors can be developed
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Fig. 1. Detector based segmentation of a multimodal soccer video document into
its layout and content elements with a goal event (box) and contextual relations
(dashed arrows).

independently of one another. To combine the resulting detector segmenta-
tions into a common framework, some means of synchronization is required.
To illustrate, consider Fig. 1. In this example a soccer video document is
represented by various time dependent detector segmentations, defined on
different asynchronous layout and content elements. At a certain moment a
goal occurs. Clues for the occurrence of this event are found in the detector
segmentations that have a value within a specific position of the time-window
of the event, e.g. excited speech of the commentator. But also in contextual
detector segmentations that have a value before, e.g. a camera panning to-
wards the goal area, or after the actual occurrence of the event, e.g. the
occurrence of the keyword score in the time stamped closed caption. Clearly,
in terms of the theoretical framework, it doesn’t matter exactly what the
detector segmentations are. What is important is that we need means to ex-
press the different visual, auditory, and textual detector segmentations into
one fixed representation without loss of their original layout scheme.

Hence, for automatic classification of a semantic event, ω, we need to grasp
a video document into a common pattern representation. In this section we
first consider how to represent such a pattern, x, using multimodal detector
segmentations and their relations, then we proceed with statistical pattern
recognition techniques that exploit this representation for classification using
varying complexity.

2.1 Pattern representation

Applying layout and content detectors to a video document results in various
segmentations, we define:

Definition 1 (TIME Segmentation) Decomposition of a video document
into one or more series of time intervals, τ , based on a set of multimodal
detectors.
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Fig. 2. Overview of the differences between exact Allen relations and TIME rela-
tions, extended from Aiello et al. (2002).

To model synchronization and context, we need means to express relations
between these time intervals. Allen showed that thirteen relationships are
sufficient to model the relationship between any two intervals. To be specific,
the relations are: precedes, meets, overlaps, starts, during, finishes, equals, and
their inverses, identified by adding i to the relation name (Allen (1983)). For
practical application of the Allen time intervals two problems occur. First,
in video analysis exact alignment of start- or endpoints seldom occurs due
to noise. Second, two time intervals will always have a relation even if they
are far apart in time. To solve the first problem a fuzzy interpretation was
proposed by Aiello et al. (2002) . The authors introduce a margin, T1, to
account for imprecise boundary segmentations, explaining the fuzzy nature.
The second problem only occurs for the relations precedes and precedes i,
as for these the two time intervals are disjunct. Thus, we introduce a range
parameter, T2, which assigns to two intervals the type NoRelation if they are
too far apart in time. Hence, we define:

Definition 2 (TIME Relations) The set of fourteen fuzzy relations that
can hold between any two elements from two segmentations, τ1 and τ2, based
on the margin T1 and the range parameter T2.

Obviously the new relations still assure that between two intervals one and
only one type of relation exists. The difference between standard Allen rela-
tions and TIME relations is visualized in Fig. 2.

Since TIME relations depend on two intervals, we choose one interval as a
reference interval and compare this interval with all other intervals. Contin-
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uing the example, when we choose a camera shot as a reference interval, the
goal can be modelled by a swift camera pan that starts the current camera
shot, excited speech that overlaps i the camera shot, and a keyword in the
closed caption that precedes i the camera shot within a range of 6 seconds.
This can be explained because of the time lag between actual occurrence
of the event and its mentioning in the closed caption. By using TIME seg-
mentations and TIME relations it now becomes possible to represent events,
context, and synchronization in one common framework:

Definition 3 (TIME Representation) Model of a multimedia pattern x
based on the reference interval τref , and represented as a set of n TIME
relations, with d TIME segmentations.

In theory, the number of TIME relations, n, is bounded by the number of
TIME segmentations, d. Since, every TIME segmentation can be expressed
as a maximum of fourteen TIME relations with the fixed reference interval,
the maximum number of TIME relations in any TIME representation is equal
to 14(d− 1). In practice, however, a subset can be chosen, either by feature
selection techniques (Jain et al. (2000)), experiments, or domain knowledge.

With the TIME representation we are able to combine layout and content
elements into a common framework. Moreover, it allows for proper modelling
of synchronization and inclusion of context as they can both be expressed as
time intervals.

2.2 Pattern classification

To learn the relation between a semantic event ω, and corresponding pattern
x, we exploit the powerful properties of statistical classifiers. In standard pat-
tern recognition, a pattern is represented by features. In the TIME framework
a pattern is represented by related detector segmentations. In literature a var-
ied gamut of statistical classifiers is proposed, see Jain et al. (2000). We will
discuss three classifiers with varying complexity. We start with the C4.5 de-
cision tree (Quinlan (1993)), then we proceed with the Maximum Entropy
framework (Jaynes (1957), Berger et al. (1996)), and finally we discuss clas-
sification using a Support Vector Machine (Vapnik (2000)).

C4.5 Decision tree The C4.5 decision tree learns from a training set the
individual importance of each TIME relation by computing the gain ratio
(Quinlan (1993)). Based on this ratio a binary tree is constructed where
a leaf indicates a class, and a decision node chooses between two subtrees
based on the presence of some TIME relation. The more important a TIME
relation is for the classification task at hand, the closer it is located near the
root of the tree. Because the relation selection algorithm continues until the
entire training set is completely covered, some pruning is necessary to prevent
overtraining. Decision trees are considered suboptimal for most applications
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(Jain et al. (2000)). However, they form a nice benchmark for comparison
with more complex classifiers and have the added advantage that they are
easy to interpret.

Maximum Entropy Whereas a decision tree exploits individual TIME re-
lations in a hierarchical manner, the Maximum Entropy (MaxEnt) framework
exploits the TIME relations simultaneously. In MaxEnt, first a model of the
training set is created, by computing the expected value, Etrain, of each TIME
relation using the observed probabilities p̃(x, ω) of pattern and event pairs,
(Berger et al. (1996)). To use this model for classification of unseen patterns,
we require that the constraints for the training set are in accordance with
the constraints of the test set. Hence, we also need the expected value of the
TIME relations in the test set, Etest. The complete model of training and
test set is visualized in Fig. 3. We are left with the problem of finding the
optimal reconstructed model, p∗, that finds the most likely event ω given an
input pattern x, and that adheres to the imposed constraints. From all those
possible models, the maximum entropy philosophy dictates that we select the
one with the maximum entropy. It is shown by Berger et al. (1996) that there
is always a unique model p∗(ω|x) with maximum entropy, and that p∗(ω|x)
has a form equivalent to:

p∗(ω|x) =
1
Z

n∏
j=1

α
τj(x,ω)
j (1)

where αj is the weight for TIME relation τj and Z is a normalizing constant,
used to ensure that a probability distribution results. The values for αj are
computed by the Generalized Iterative Scaling (GIS) algorithm (Darroch and
Ratcliff (1972)). Since GIS relies on both Etrain and Etest for calculation of
αj , an approximation proposed by Lau et al. (1993) is used that relies only on
Etrain. This allows to construct a classifier that depends completely on the
training set. The automatic weight computation is an interesting property
of the MaxEnt classifier, since it is very difficult to accurately weigh the
importance of individual detectors and TIME relations beforehand.

Support Vector Machine The Support Vector Machine (SVM) classifier
follows another approach. Each pattern x is represented in a n-dimensional
space, spanned by the TIME relations. Within this relation space an optimal
hyperplane is searched that separates the relation space into two different
categories, ω, where the categories are represented by +1 and −1 respectively.
The hyperplane has the following form: ω|(w ·x+b)| ≥ 1, where w is a weight
vector, and b is a threshold. A hyperplane is considered optimal when the
distance to the closest training examples is maximum for both categories.
This distance is called the margin. Consider the example in Fig. 3. Here a
two-dimensional relation space consisting of two categories is visualized. The
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Fig. 3. (a) Simplified visual representation of the maximum entropy framework.
(b) Visual representation of Support Vector Machine framework in two dimensions.
The optimal hyperplane is indicated as a thick solid line.

solid bold line is chosen as optimal hyperplane because of the largest possible
margin. The circled data points closest to the optimal hyperplane are called
the support vectors. The problem of finding the optimal hyperplane is a
quadratic programming problem of the following form (Vapnik (2000)):

min
w,ξ

{1
2
w · w + C

( l∑
i=1

ξi

)}
(2)

Under the following constraints:

ω|(w · xi + b)| ≥ 1 − ξi, i = 1, 2, . . . , l (3)

Where C is a parameter that allows to balance training error and model
complexity, l is the number of patterns in the training set, and ξi are slack
variables that are introduced when the data is not perfectly separable. These
slack variables are useful when analyzing multimedia, since results of indi-
vidual detectors typically include a number of false positives and negatives.

3 Highlight event classification in soccer broadcasts

Important events in a soccer game are scarce and occur more or less random.
Examples of such events are goals, penalties, yellow cards, red cards, and
substitutions. We define those events as follows:

• Goal : the entire camera shot showing the actual goal;
• Penalty: beginning of the camera shot showing the foul until the end of

the camera shot showing the penalty;
• Yellow card : beginning of the camera shot showing the foul until the end

of the camera shot that shows the referee with the yellow card;
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Table 1. TIME representation for soccer analysis. T2 indicates the contextual range
used by the precedes and precedes i relations.

TIME segmentation TIME relations T2 (s)
Camera work during
Person during
Close-up precedes i 0 - 40
Goal keyword precedes i 0 - 6
Card keyword precedes i 0 - 6
Substitution keyword precedes i 0 - 6
Excitement All relations 0 - 1
Info block statistics precedes i 20 - 80
Person block statistics precedes i 20 - 50
Referee block statistics precedes i 20 - 50
Coach block statistics precedes i 20 - 50
Goal block statistics precedes i 20 - 50
Card block statistics precedes i 20 - 50
Substitution block statistics during
Shot length during

• Red card : beginning of the camera shot showing the foul until the end of
the camera shot that shows the referee with the red card;

• Substitution: beginning of the camera shot showing the player who goes
out, until the end of the camera shot showing the player who comes in;

Those events are important for the game and therefore the author adds con-
textual clues to make the viewer aware of the events. For accurate detection
of events, this context should be included in the analysis.

Some of the detectors, used for the segmentation, are soccer specific. Other
detectors were chosen based on reported robustness and training experiments.
The parameters for individual detectors were found by experimentation using
the training set. Combining all TIME segmentations with all TIME relations
results in an exhaustive use of relations, we therefore use a subset, tuned
on the training set, to prevent a combinatory explosion. For all events, all
mentioned TIME segmentations and TIME relations are used, i.e. we used
the same TIME representation for all events from the same domain.

The teletext (European closed caption) provides a textual description of
what is said by the commentator during a match. This information source
was analyzed for presence of informative keywords, like yellow, red, card,
goal, 1-0, 1-2, and so on. In total 30 informative stemmed keywords were
defined for the various events. On the visual modality we applied several
detectors. The type of camera work (Baan et al. (2001)) was computed for
each camera shot, together with the shot length. A face detector by Rowley
et al. (1998) was applied for detection of persons. The same detector formed
the basis for a close-up detector. Close-ups are detected by relating the size
of detected faces to the total frame size. Often, an author shows a close-up
of a player after an event of importance. One of the most informative pieces
of information in a soccer broadcast are the visual overlay blocks that give
information about the game. We subdivided each detected overlay block as
either info, person, referee, coach, goal, card, or substitution block (Snoek
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and Worring (2003)), and added some additional statistics. For example the
duration of visibility of the overlay block, as we observed that substitution
and info blocks are displayed longer on average. Note that all detector results
are transformed into binary output before they are included in the analysis.
From the auditory modality the excitement of the commentator is a valuable
resource. For the proper functioning of an excitement detector, we require
that it is insensitive to crowd cheer. This can be achieved by using a high
threshold on the average energy of a fixed window, and by requiring that an
excited segment has a minimum duration of 4 seconds.

We take the result of automatic shot segmentation as a reference interval.
An overview of the TIME representation for the soccer domain is summarized
in Table 1. In the next section we will evaluate the automatic indexing of
events in soccer video, based on the presented pattern representation.

4 Evaluation

For the evaluation of the TIME framework we recorded 8 live soccer broad-
casts, about 12 hours in total. We used a representative training set of 3
hours and a test set of 9 hours. In this section we will first present the evalu-
ation criteria used for evaluating the TIME framework, then we present and
discuss the classification results obtained.

4.1 Evaluation criteria

The standard measure for performance of a statistical classifier is the error
rate. However, this is unsuitable in our case, since the amount of relevant
events are outnumbered by irrelevant pieces of footage. An alternative is to
use the precision and recall measure adapted from information retrieval. This
measure gives an indication of correctly classified highlight events, falsely
classified highlight events, and missed highlight events. However, since high-
light events in a soccer match can cross camera shot boundaries, we merge
adjacent camera shots with similar labels. As a consequence, we loose our
arithmetic unit. Therefore, precision and recall can no longer be computed.
As an alternative for precision we relate the total duration of the segments
that are retrieved to the total duration of the relevant segments. Moreover,
since it is unacceptable from a users perspective that scarce soccer events are
missed, we strive to find as many events as possible in favor of an increase
in false positives. Finally, because it is difficult to exactly define the start
and end of an event in soccer video, we introduce a tolerance value T3 (in
seconds) with respect to the boundaries of detection results. We used a T3

of 7 s. for all soccer events. A merged segment is considered relevant if one
of its boundaries plus or minus T3 crosses that of a labelled segment in the
ground truth.
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Table 2. Evaluation results of the different classifiers for soccer events, where
duration is the total duration of all segments that are retrieved.

Ground truth C4.5 MaxEnt SVM

Total Duration Relevant Duration Relevant Duration Relevant Duration
Goal 12 3m07s 2 2m40s 10 10m14s 11 11m52s

Yellow Card 24 10m35s 13 14m28s 22 26m12s 22 12m31s

Substitution 29 8m09s 25 15m27s 25 7m36s 25 7m23s

�
65 21m51s 40 32m35s 57 44m02s 58 31m46s

4.2 Classification results

For evaluation of TIME on the soccer domain, we manually labelled all the
camera shots as either belonging to one of four categories: yellow card, goal,
substitution, or unknown. Red card and penalty were excluded from analysis
since there was only one instance of each in the data set. For all three re-
maining events a C4.5, MaxEnt, and SVM classifier was trained. Results on
the test set are visualized in Table 2.

When analyzing the results, we clearly see that the C4.5 classifier performs
worst. Although it does a good job on detection of substitutions, it is sig-
nificantly worse for both yellow cards and goals when compared to the more
complex MaxEnt and SVM classifiers. When we compare results of MaxEnt
and SVM, we observe that almost all events are found independent of the
classifier used. The amount of video data that a user has to watch before
finding those events is about two times longer when a MaxEnt classifier is
used, and about one and a half times longer when a SVM is used, compared
to the best case scenario. This is a considerable reduction of watching time
when compared to the total duration, 9 hours, of all video documents in the
test set. With the SVM we were able to detect one extra goal, compared to
MaxEnt. Analysis of retrieved segments learned that results of Maximum En-
tropy and SVM are almost similar. Except for goal events, where nine events
were retrieved by both, the remaining classified goals were different for each
classifier.

When we take a closer look to the individual results of the different clas-
sifiers, it is striking that C4.5 can achieve a good result on some events, e.g.
substitution, while performing bad on others, e.g. goal. This can, however, be
explained by the fact that the events where C4.5 scores well, can be detected
based on a limited set of TIME relations. For substitution events in soccer
an overlay during the event is a very strong indicator. When an event is com-
posed of several complex TIME relations, like goal, the relatively simple C4.5
classifier performs worse than both complex MaxEnt and SVM classifiers.

To gain insight in the meaning of complex relations in the soccer domains,
we consider the GIS algorithm from section 2.2, which allows to compute the
importance or relative weight of the different relations used. The weights
computed by GIS indicate that for the soccer events goal and yellow card
specific keywords in the closed captions, excitement with during and overlaps
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Fig. 4. The Goalgle soccer video search engine.

relations, a close-up afterwards, and the presence of an overlay nearby are
important relations.

Overall, the SVM classifier achieves comparable or better results than
MaxEnt. When we analyze false positives for both classifiers, we observe
that those are caused because some of the important relations are shared
between different events. This mostly occurs when another event is indeed
happening in the video, e.g. a hard foul or a scoring chance. False negatives
are mainly caused by the fact that a detector failed. By increasing the number
of detectors and relations in our model we might be able to reduce those false
positives and false negatives.

5 Conclusion

To bridge the semantic gap for multimedia event classification, a new frame-
work is required that allows for proper modelling of context and synchroniza-
tion of the heterogeneous information sources involved. We have presented
the Time Interval Multimedia Event (TIME) framework that accommodates
those issues, by means of a time interval based pattern representation. More-
over, the framework facilitates robust classification using various statistical
classifiers.

To demonstrate the effectiveness of TIME it was evaluated on the domain
of soccer. We have compared three different statistical classifiers, with varying
complexity, and show that there exists a clear relation between narrowness
of the semantic gap and the needed complexity of a classifier. When there
exists a simple mapping between a limited set of relations and the semantic
concept we are looking for, a simple decision tree will give comparable re-
sults as a more complex SVM. When the semantic gap is wider, detection
will profit from combined use of multimodal detector relations and a more
complex classifier, like the SVM. Results show that a considerable reduction
of watching time can be achieved. The indexed events were used to build the
Goalgle soccer video search engine, see Fig. 4.
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Abstract. The concept of attributable risk (AR), introduced more than 50 years
ago, quantifies the proportion of cases diseased due to a certain exposure (risk)
factor. While valid approaches to the estimation of crude or adjusted AR exist,
a problem remains concerning the attribution of AR to each of a set of several
exposure factors. Inspired by mathematical game theory, namely, the axioms of
fairness and the Shapley value, introduced by Shapley in 1953, the concept of partial
AR has been developed. The partial AR offers a unique solution for allocating shares
of AR to a number of exposure factors of interest, as illustrated by data from the
German Göttingen Risk, Incidence, and Prevalence Study (G.R.I.P.S.).

1 Introduction

Analytical epidemiological studies aim at providing quantitative information
on the association between a certain exposure, or several exposures, and
some disease outcome of interest. Usually, the disease etiology under study
is multifactorial, so that several exposure factors have to be considered si-
multaneously. The effect of a particular exposure factor on the dichotomous
disease variable is quantified by some measure of association, including the
relative risk (RR) or the odds ratio (OR), which will be explained in the next
section.
While these measures indicate by which factor the disease risk increases if a
certain exposure factor is present in an individual, the concept of attribut-
able risk (AR) addresses the impact of an exposure on the overall disease load
in the population. This paper focusses on the AR, which can be informally
introduced as the answer to the question, “what proportion of the observed
cases of disease in the study population suffers from the disease due to the ex-
posure of interest?”. In providing this information the AR places the concept
of RR commonly used in epidemiology in a public health perspective, namely
by providing an answer also to the reciprocal question, “what proportion of
cases of disease could — theoretically — be prevented if the exposure factor
could be entirely removed by some adequate preventive action?”.
Since its introduction in 1953 (Levin (1953)), the concept of AR is increas-
ingly being used by epidemiological researchers. However, while the method-
ology of this invaluable epidemiological measure has constantly been extended
to cover a variety of epidemiological situations, its practical use has not fol-
lowed these advances satisfactorily (reviewed by Uter and Pfahlberg (1999)).
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One of the difficulties in applying the concept of AR is the question of how to
adequately estimate the AR associated with several exposure factors of inter-
est, and not just one single exposure factor. The present paper briefly intro-
duces the concept of sequential attributable risk (SAR) and then focusses on
the partial attributable risk (PAR), following an axiomatic approach founded
on game theory. For illustrative purposes, data from a German cohort study
on risk factors for myocardial infarction are used.

2 Basic definitions of attributable risk

Suppose a population can be divided into an exposed subpopulation (E = 1)
and an unexposed one (E = 0), as well as a diseased part (D = 1) and a non-
diseased one (D = 1). Denote P (A) the probability that a randomly chosen
subject from this population belongs to subpopulation A, and P (A|B) the
corresponding conditional probability of A given B.
The definition of the relative risk (RR) is then as follows:

RR :=
P (D = 1|E = 1)
P (D = 1|E = 0)

. (1)

Another, well-established measure of individual risk is the odds ratio (OR),
which compares the odds of being diseased instead of the risk of being diseased
between the exposed (E = 1) and the unexposed (E = 0) subpopulation:

OR :=
P (D = 1|E = 1)/P (D = 0|E = 1)
P (D = 1|E = 0)/P (D = 0|E = 0)

. (2)

The definition of attributable risk, in contrast, is as follows (for more formal
details see Eide and Heuch (2001)) :

AR :=
P (D = 1) − P (D = 1|E = 0)

P (D = 1)
. (3)

Alternatively, the AR can be expressed in algebraically equivalent forms, as
originally introduced by Levin (1953) as

AR =
P (E = 1) ∗ [RR− 1]

P (E = 1) ∗ [RR − 1] + 1
. (4)

or, as defined by Miettinen (1974),

AR = P (E = 1|D = 1) ∗ RR − 1
RR

. (5)

As can be seen from these definitions, the AR depends both on the individual
risk (RR) and on the exposure prevalence (P (E = 1)): the larger the RR,
the larger the AR will be, given a fixed P (E = 1), and the higher the expo-
sure prevalence, the larger the AR will be, given a certain RR. Moreover, a
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certain AR may result from different scenarios — a rare exposure associated
with a high individual (relative) risk, or a common, but weak risk factor.
Knowledge of the underlying scenario, and not only of the AR alone, is im-
portant for public health decisions regarding intervention strategies: in the
first case, a targeted approach aiming at the small, identifiable subgroup at
high risk would be appropriate, while in the latter case, a “population strat-
egy” offering intervention for nearly the whole population would be more
advisable.

3 Crude and adjusted attributable risk

The maximum likelihood estimator of AR can be easily obtained in 2×2 tables
from cohort and cross-sectional studies by substituting sample proportions
for the respective probabilities in (1) leading to what has been termed crude
estimators of the AR (Walter (1976)). Some additional approximations (i.e.,
replacing RR by OR in (3)) is necessary for the case-control design (Whit-
temore (1982), Benichou (1991)).

However, often we face a multifactorial etiology of disease, some of these
factors being potential confounders for the impact of one certain factor of
interest. In this situation, crude estimates of the AR derived from a D × E
contingency table will be biased. If only one exposure factor is of interest in
terms of AR estimation, confounding of this estimate can be overcome by
calculating an adjusted AR:

ARadj :=
P (D = 1) −∑i P (D = 1|E = 0, C = i)

P (D = 1)
. (6)

where C denotes the stratum variable formed by the combination of all other
L exposures considered as nuisance factors. This AR adjusted for the to-
tal effect of all L nuisance factors may be interpreted as the proportion of
the diseased population that is potentially preventable if the risks of disease
in the exposed sub-populations were changed to the risks of the unexposed
(E = 0) population in all C strata of the adjusting variables. Estimation of
the adjusted AR based on stratification methods (Gefeller (1992)) or on a
logistic regression approach (Bruzzi et al. (1985)) have been investigated in
detail some time ago already.

Such an approach, however, is only reasonable whenever the specific aim
of the study is to evaluate the role of only one particular exposure factor.
Otherwise, the implicit hierarchy imposed on the variables involved in the
calculation is not justified and another approach to AR estimation is required
(Gefeller and Eide (1993)).
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4 Sequential attributable risk

As a first step to overcome the limited usefulness of adjusted AR estimates
when dealing with the problem of quantifying several ARs of several expo-
sure factors of interest, the sequential AR (SAR) has been suggested. The
idea behind the SAR is to consider sequences of exposure variables of inter-
est and quantify the additional effect of one exposure on disease risk after
the preceding variables have already been taken into account. For didactic
purposes, the approach is outlined below in its basic form ignoring for the
moment any hierarchy or grouping of exposure variables as well as additional
nuisance variables used exclusively for the purpose of controlling confounding
(Eide and Gefeller (1995)).

Suppose a total of the K+1 exposure classes are generated by L exposure
factors each with Kl +1 exposure categories, i.e., K+1 =

∏L
l=1(Kl +1). Our

interest lies in the potential reduction of cases when preventing the L expo-
sures, one at a time, in a given sequence, for instance starting with exposure
no. 1, then exposure no. 2, and so on, until all L exposures are eliminated
in the population. A reasonable way to accomplish this will be first to cal-
culate the adjusted AR as shown in the previous section with all exposure
factors but the first one included among the adjusting variables. This re-
sults in an adjusted AR denoted by AR

(1)
adj derived from a situation with∏L

l=2(Kl +1) strata and K1 +1 exposure classes. Thereafter, define AR
(2)
adj as

the adjusted attributable risk calculated for the combined effect of first and
second exposure variable (creating (K1 +1) ∗ (K2 +1) exposure classes), and
the remaining exposures, including the adjustment variables (confounders)
forming the

∏L
l=3(Kl + 1) strata. This stepwise procedure of calculating ad-

justed AR for different sets of exposure variables can be continued until all L
exposures are incorporated among the exposure classes generating variables.
The last term of this sequence AR

(L)
adj corresponds to the total population

impact of all L exposures.
Any difference AR

(r)
adj − AR

(p)
adj , p < r, p, r ∈ N , describes the additional

effect of considering the (p + 1)st, (p + 2)nd, ..., r − th exposure after having
previously taken into account the effect of the first p exposures in the spec-
ified sequence. These differences may be called sequential attributable risks
(SAR). Notice that the SAR of a specific exposure factor may differ even for
the same set of L exposures according to the sequence of exposure variables
considered during the stepwise process of calculation. Hence, the SAR de-
pends on the ordering within the sequence and is not unique for an exposure
(for an illustrative example of this property see Gefeller et al. (1998)). Thus,
the problem of an unambiguous quantification of the contribution of one ex-
posure to the disease load on a population in a multifactorial situation under
the assumption of quasi equal-ranking of factors remains, but in situations
where, e.g., a specific sequence of exposure factors targeted in a prevention
campaign is given the SAR can be of intrinsic interest (Rowe et al. (2004)).
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5 Partial attributable risk

As a solution of the problem of ambiguity, the partial AR (PAR) has been
suggested. Originally, the idea has been proposed in a preliminary form by
Cox (1987). The PAR is estimated in two steps:

1. by deriving the joint attributable risk for all exposures E1, ..., EL under
consideration, i.e., the AR for at least one of these exposure factors, and
then

2. additively partitioning this quantity into shares for each exposure Ei

using an appropriate allocation rule

These resulting shares for Ei are referred to as “partial attributable risk
for Ei” PAR(Ei). The development of an appropriate allocation rule has
been inspired by game theory. A classical problem in game theory is the
following: how can the (momentary) profit that several players have gained
by cooperative action in varying coalitions be fairly divided among them?
In 1953, Shapley developed a set of axioms for profit division which leads
to a unique solution, the Shapley value. The Shapley value averages the
contributions of single players to all possible coalitions and is still one of
the most common methods of payoff allocation in game theory based on the
following assumptions:

• Efficiency: Entire value of each coalition must be paid out to members
• Symmetry: Payoffs must be independent from order of players
• Additivity: Payoff of the sum of two games must be the sum of two

separate payoffs
• Null player: Any player, whose value added to any coalition is 0, receives

0 payoff in any coalition

Table 1. Comparison of game-theoretic and epidemiological setting

Game theory Epidemiology

Player P i Exposure Ei

Varying coalitions among Combinations of exposures
P 1, ..., P L among E1, ..., EL

Profit Risk

Fair division of profit Allocation of AR to
among all players each exposure factor

Shapley value: average of Partial AR: average of
the contribution of a single all L! sequential ARs
player P i to all coalitions of an exposure factor Ei

While the problem of fair profit division of players, and of “fair” allocation of
shares of AR to certain exposure factors bears striking similarity (Table 1),



114 Uter and Gefeller

the axioms have to be reformulated. In particular, the axiom of additivity
with its clear meaning in typical game-theoretic applications with succes-
sive games has no meaningful counterpart in epidemiological applications.
Therefore, an algebraically equivalent set of axioms has been derived to be
applicable in the epidemiological context including the following “properties
of fairness” (Land and Gefeller (1997)):
Marginal rationality ensures a consistent comparison of the population
impact of one exposure factor Ei with respect to separate (sub-)populations
(denoted by superscripts I and II, respectively). If the AR associated with
this risk factor Ei is higher in subpopulation I than in subpopulation II
for all combinations with other exposure factors under study, then the at-
tributable share allocated to Ei in subpopulation I should be larger than in
subpopulation II. More formally:

ARI(S ∪ Ei) − ARI(S) ≥ ARII(S ∪ Ei) − ARII(S),∀S ⊂ {E1, ..., EL}\{Ei}
⇒ PARI(Ei) ≥ PARII(Ei)

Internal marginal rationality ensures a consistent comparison of different
exposure factors concerning their respective impact on the disease load in one
population, i.e., if the AR associated with a certain risk factor Ei is larger
than the AR associated with another risk factor Ek in all corresponding
combinations with other exposure factors under study in a given population,
then PAR(Ei) should also be larger than PAR(Ek). More formally:

ARI(S ∪ Ei) ≥ ARI(S ∪ Ek),∀S ⊂ {E1, ..., EL}\{Ei, Ek}
⇒ PAR(Ei) ≥ PAR(Ek)

Symmetry ensures that the method used for dividing up the joint AR among
the L different exposure factors is not influenced by any ordering among the
variables. While SARs are not symmetrical, as pointed out above, the PAR
is symmetrical by virtue of the averaging process.
Finally, there is exactly one way of partitioning the joint attributable risk for
L exposure factors into L single components, which then sum up to the joint
AR, which satisfies both marginal rationality and internal marginal rational-
ity as well as symmetry (Land and Gefeller (1997)). Recently, extensions of
the concept of PAR have been introduced to address the situation of grouped
(hierarchical) exposure variables. In this situation, a “top down” approach of
first deriving the PARs for the group variables and then further subdividing
these into shares for each single exposure factors must be followed (Land et
al. (2001)).

6 Illustrative example: The G.R.I.P.S. Study

Data of the G.R.I.P.S. study (Göttingen Risk, Incidence, and Prevalence
Study), a cohort study with 6029 male industrial workers aged 40 to 60,
designed to analyze the influence of potential risk factors for myocardial in-
farction (Cremer et al. (1991)), are used to illustrate the different concepts of
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attributable risk. For our purposes, we focus on the effect of the three lipopro-
tein fractions (LDL-, VLDL- and HDL-cholesterol) and cigarette smoking as
exposures of interest, while controlling for age, familiar disposition, alco-
hol consumption, blood pressure and glucose level as potential confounders.
All analyzes were performed with the SAS software package. Table 2 shows
estimates for crude AR (derived from the corresponding 2 × 2 tables), ad-
justed AR (based on a logistic regression analysis) and partial AR. Note that
estimates of precision are omitted. From the comparison of crude and ad-

Table 2. Crude, adjusted and partial AR for exposure factors in G.R.I.P.S.

Exposure Definition of Crude Adjusted Partial
factor “unexposed” AR AR AR

LDL-cholesterol < 160mg/dl 0.612 0.577 0.396
HDL-cholesterol > 35mg/dl 0.204 0.172 0.072
VLDL-cholesterol < 30mg/dl 0.217 0.167 0.067
Smoking nonsmoker 0.371 0.370 0.234

Total effect of all 4 factors 0.803 0.769 0.769
(joint AR)

justed values it is evident that some confounding of the relationship between
lipoprotein exposure variables and the outcome is present, while this is not
the case for cigarette smoking. Moreover, in the situation of the G.R.I.P.S.
study the PAR for each exposure variable is generally much lower than the
corresponding crude and adjusted AR. Due to their construction the PARs
given in table 2 reveal an additive property, i.e., the sum of all PAR values
equals the total effect of all four exposures measured by the corresponding
adjusted AR, according to expression (4) (adjusted for the set of five other,
confounding variables quoted above). Consequently, in all situations the sum
of PAR values cannot exceed the natural limit of one, which must be regarded
as a strong advantage with respect to the interpretation of this measure in a
multifactorial setting.

7 Conclusion

The estimation of attributable risks from epidemiological data forms an in-
tegral part of modern analytical approaches quantifying the relationship be-
tween some binary disease variable and a set of exposure factors. Whereas
the relative risk quantifies the impact of exposure factors on an individual
level, the AR addresses the impact on a population level. The multifactorial
situation usually encountered in epidemiological studies should be reflected in
the definition of these risk parameters. The definition of partial attributable
risks incorporates the multifactorial nature of the attribution problem and
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offers a solution to the task of assigning shares for several exposure factors.
Further methodological research will address interval estimation of the PAR
to promote its utilization in practical epidemiological studies.
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Abstract. This paper deals with improved measures of statistical accuracy for
parameter estimates of latent class models. It introduces more precise confidence
intervals for the parameters of this model, based on parametric and nonparametric
bootstrap. Moreover, the label-switching problem is discussed and a solution to
handle it introduced. The results are illustrated using a well-known dataset.

1 Introduction

The finite mixture model is formulated as follows. Let y = (y1, ...,yn) de-
note a sample of size n, with yi a J-dimensional vector. Each data point is
assumed to be a realization of the random variable Y with S-component mix-
ture probability density function (p.d.f.) f(yi;ϕ) =

∑S
s=1 πsfs(yi; θs), where

the mixing proportions πs are nonnegative and sum to one, θs denotes the pa-
rameters of the conditional distribution of component s defined by fs(yi; θs),
and ϕ = {π1, ..., πS−1, θ1, ..., θS}. In this paper, we focus on the case where
S is fixed. Note that πS = 1−∑S−1

s=1 πs. The log-likelihood function of the fi-
nite mixture model (i.i.d. observations) is �(ϕ;y) =

∑n
i=1 log f(yi;ϕ), which

is straightforward to maximize by the EM algorithm (Dempster et al. (1977)).
This paper focuses on the following question: how accurate is the ML

estimator of ϕ? A natural methodology to answering this question is the
bootstrap technique. Bootstrap analysis has been applied in finite mixture
modeling mainly to compute uncertainty of parameters by bootstrap stan-
dard errors (e.g., de Menezes (1999)). As a result of the difficulties of using
likelihood ratio tests for testing the number of components of finite mix-
tures, another application is the boostrapping of the likelihood ratio statistic
(McLachlan and Peel (2000)). A full computation of bootstrap confidence
intervals for finite mixture models has not been reported in the literature. In
this paper we focus on the latent class model.

The paper is organized as follows: Section 2 gives a short review of the
bootstrap technique; Section 3 discusses specific aspects of bootstrap when
� His research was supported by Fundação para a Ciência e Tecnologia Grant no.

SFRH/BD/890/2000 (Portugal) and conducted at the University of Groningen
(Population Research Centre and Faculty of Economics), The Netherlands. I
would like to thank Jeroen Vermunt and one referee for their helpful comments
on a previous draft of the manuscript.
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applied to finite mixture models; Section 4 illustrates the contributions for
the latent class model (finite mixture of conditionally independent multino-
mial distributions). Section 5 summarizes main results and needs for further
research.

2 Bootstrap analysis

The bootstrap is a computer intensive resampling technique introduced by
Efron (1979) for assessing among other things standard errors, biases, and
confidence intervals, in situations where theoretical statistics are difficult to
obtain. The bootstrap technique is easily stated. Suppose we have a random
sample D from an unknown probability distribution F , and we want to esti-
mate the parameter ϕ = t(F ). Let S(D, F ) be a statistic. In order to infer, the
underlying sampling distribution of S(D, F ) has to be known. The bootstrap
method estimates F by some estimate F̂ based on D, giving a sampling distri-
bution based on S(D∗, F̂ ), where the bootstrap sample D∗ = (y∗

1 ,y
∗
2 , ...,y

∗
n)

is a random sample of size n drawn from F̂ , and ϕ̂∗ = S(D∗, F̂ ) is a boot-
strap replication of ϕ̂. The bootstrap uses a Monte Carlo evaluation of the
properties of ϕ̂, repeating sampling, say B times, from F̂ to approximate the
sampling distribution of ϕ̂. The B samples are obtained using the following
cycle:

1. Draw a bootstrap sample D(∗b) = {y(∗b)
i , i = 1, . . . , n}, y(∗b)

i
i.i.d.∼ F̂ ;

2. Estimate ϕ̂(∗b) = S(D(∗b), F̂ ) by the plug-in principle.

For an overview of bootstrap methodology, we refer to Efron and Tibshirani
(1993). The quality of the approximation depends on the value of B and how
close F̂ is to distribution F . Efron and Tibshirani (1993, 13) suggest that
typical values of B for computing standard errors are in the range from 50 to
200. For example, Albanese and Knott (1994) used 100 replications. For con-
fidence intervals, typical values of B are ≥ 1000 (Efron (1987)). Because we
wish to compute more precise confidence intervals for finite mixture models,
there is no prior indication on the appropriate number of bootstrap sam-
ples. We set B = 5000. The application of the bootstrap technique depends
on the estimation of F (F̂ ) that can be parametric or nonparametric. Para-
metric bootstrap assumes a parametric form for F (F̂par) and estimates the
unknown parameters by their sample quantities. That is, one draws B sam-
ples of size n from the parametric estimate of the function F . Nonparametric
bootstrap estimates F (F̂nonpar) by its nonparametric maximum likelihood
estimate, the empirical distribution function which puts equal mass 1/n at
each observation. Then, sampling from F̂ means sampling with replacement
from D. In our analyses, we compare results from the nonparametric (NP)
and parametric (PAR) versions of the bootstrap.
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After generating B bootstrap samples and computing bootstrap (ML)
estimates {ϕ̂(∗b), b = 1, ..., B}, standard errors, bias, and confidence in-
tervals for ϕ can easily be computed (Efron and Tibshirani (1986)). Bias
and standard error of ϕr are given by bias∗(ϕr)=ϕ̂

(∗)
r − ϕ̂r and σ∗(ϕr)=√

1
B−1

∑B
b=1

(
ϕ̂

(∗b)
r − ϕ̂

(∗)
r

)2

respectively, with ϕ̂
(∗)
r = 1

B

∑B
b=1 ϕ̂

(∗b)
r , where r

indexes the elements of vector ϕ.
Standard errors are a crude but useful measure of statistical accuracy, and

are frequently used to give approximate confidence intervals for an unknown
parameter ϕr given by ϕ̂r ± σ̂rz

(α), where ϕ̂r and σ̂r are the ML estimate
and the estimated standard error of ϕr respectively, and z(α) is the 100 × α
percentile point of a standard normal variate. In our analyses, we compare
this approximation using the asymptotic standard error (ASE), the nonpara-
metric bootstrap standard error (BSE NP), and the parametric bootstrap
standard error (BSE PAR).

The percentile method takes a direct (1 − α)100% bootstrap confidence
interval using the empirical α/2− and (1 − α/2)−quantiles of the boot-
strap replicates. The BCa confidence interval improves precision by cor-
recting for bias and nonconstant variance (skewness) and is especially im-
portant for asymmetric distributions (Efron (1987); Efron and Tibshirani
(1993)). The confidence interval for ϕr with endpoints α/2 and (1 − α/2) is(
(ϕr)

∗
BCa

(α/2), (ϕr)
∗
BCa

(1 − α/2)
)
, with

(ϕr)
∗
BCa

(α) = Ĝ−1

(
Φ

{
z0 +

z0 + z(α)

1 − â(z0 + z(α))

})
,

where Ĝ is the bootstrap cumulative density function (c.d.f.), Φ is the c.d.f. of
the normal distribution, and ẑ0 = Φ−1{Ĝ(ϕ̂r)} roughly measures the median
bias of ϕ̂r, i.e., the discrepancy between the median of the bootstrap dis-
tribution of ϕr and ϕ̂r (Efron and Tibshirani (1993), 185). The acceleration
value â (for nonconstant variance) can be estimated using jackknife values
(for details, see Efron and Tibshirani (1993), 186). Setting â = 0, yields
the BC confidence interval that corrects bias. Confidence intervals by the
percentile method are simpler to compute from the bootstrap distribution
by
(
Ĝ−1(α/2), Ĝ−1(1 − α/2)

)
, but may be less precise, since they assume

ẑ0 = â = 0.

3 Bootstrap analysis in finite mixture models

The complex likelihood function of finite mixture models adds extra diffi-
culties in implementing the bootstrap method due to local optima and non-
identifiability.

For estimating the parameters of the finite mixture model (ϕ̂(∗b)), one
needs to use an iterative process. The EM algorithm is an elegant alternative,
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but its success depends on different issues such as starting values. Because
the original sample D and the replicated sample D(∗b) may not differ too
much, McLachlan and Peel (2000) suggest the use of the maximum likelihood
estimate of ϕ from D as a starting value. As stopping rule we set an absolute
difference of two successive log-likelihood values smaller than 10−6.

The likelihood function of the finite mixture model is invariant under
permutations of the S components, i.e., rearrangement of the component in-
dices will not change the likelihood (label-switching). In bootstrap analysis
as well as Bayesian analysis by Markov chain Monte Carlo (MCMC) tech-
niques, a permutation of the components may occur, resulting in the dis-
tortion of the distribution of quantities of interest. One way of eliminating
this non-identifiability is to define a natural order for each bootstrap sample,
based, for example, on π

(∗b)
1 ≤ π

(∗b)
2 ≤ ... ≤ π

(∗b)
S , b = 1, ..., B, commonly

utilized in Bayesian analysis. We refer to this procedure as the Order strat-
egy. However, it has been shown for Bayesian analysis that also this method
can distort the results. Stephens (2000) suggests relabeling or reordering the
classes based on the minimization of a function of the posterior probabilities

α
(∗b)
is = π

(∗b)
s fs(yi; θ

(∗b)
s )

[∑S
h=1 π

(∗b)
h fh(yi; θ

(∗b)
h )

]−1

. It has been shown that
this method performs well in comparison with other label-switching methods
in the Bayesian setting (Dias and Wedel (2004)). Let υ(∗b)(ϕ(∗b)) define a per-
mutation of the parameters for the bootstrap sample b, and Q(b−1)= (q(b−1)

is )
be the bootstrap estimation of α = (αis), based on the previous b − 1 boot-
strap samples. The algorithm is initialized with a small number of runs, say
B∗: Q(0) =

(
1

B∗
∑B∗

m=1 α̂
(m)
is

)
. Then, for the bth bootstrap sample, choose

υ(∗b) to minimize the Kullback-Leibler (KL) divergence between the poste-
rior probabilities α̂is

{
υ(∗b)(ϕ̂(∗b))

}
, and the estimate of the posterior prob-

abilities Q(b−1), and compute Q(b). For computational details, we refer to
Stephens (2000). In MCMC, as a result of the underlying Markov chain, la-
bel switching happens less often than in independent situations such as the
bootstrap resampling. Therefore, an initial estimate using a small number of
B∗ bootstrap estimates (without taking into account label switching) may
not be appropriate, and a better solution is to take Q(0) as the MLE solution.
This strategy of dealing with the label switching is referred to as KL.

4 An application to the latent class model

The finite mixture of conditionally independent multinomial distributions,
also known as a latent class (LC) model, has become a popular technique
for clustering and subsequent classification of discrete data (Vermunt and
Magidson (2003)). For binary data, let Yj have 2 categories, i.e., yij ∈ {0, 1}.
The latent class model with S latent classes for yi is defined by the density
fs(yi; θs) =

∏J
j=1 θ

yij

sj (1 − θsj)
1−yij , where θsj denotes the parameters of the

conditional distribution of component s, θsj = P (Yij = 1 | Zi = s), i.e.,
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Fig. 1. Effect of the label-switching strategy.

the probability that observation i belonging to component s has category 1
(success) in variable j. This definition assumes conditional independence of
the J manifest variables given the latent variable. The estimation of the LC
model is straightforward by the EM algorithm.

This application uses the well-known Stouffer-Toby dataset, which has
been also used by others (e.g., Albanese and Knott (1994)). It corresponds
to 216 observations with respect to whether they tend toward particularistic
or universalistic values when confronted by each of four different role conflict
situations. We set universalist values as the reference category, and reported
conditional probabilities (θsj) refer to particularistic values. We set S = 2
(identified model).

We started the EM algorithm 10 times with random values of the para-
meters ϕ from the uniform distribution on [0, 1] for each bootstrap sample.
Comparing to starting the EM algorithm from the MLE solution, we con-
cluded that differences are very small, and starting with the MLE solution
works well for parametric and nonparametric bootstrap.

Figure 1 depicts the histogram and kernel density estimation of the non-
parametric bootstrap distribution of π1 and θ12 for order and KL strategies.
For π1, the order strategy truncates the distribution at 0.5, forcing the rela-
beling of the components, whereas the KL strategy relabels the components
respecting the geometry of the distribution, allowing values above 0.5. In this
application, the effect of the order strategy is small, since only 0.64% of the
bootstrap estimates of π1 are above 0.5, and the bootstrap estimates of π1 by
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both procedures have similar values. However, even for a very small number
of bootstrap samples, the effect on other parameter estimates can be seri-
ous. For example, Figure 1 shows the distribution of the bootstrap estimates
of θ12. As can be seen, the order strategy in which π1 is truncated at 0.5
creates multimodality in the distribution of θ12. This leads to a serious over-
estimation of the standard error and the confidence interval for θ12. Results
presented below are, therefore, based on KL relabeling.

Table 1 reports ML estimates (MLE), the bootstrap mean (BMean), boot-
strap median (BMedian), and bootstrap bias (Bias) for nonparametric and
parametric estimates. Though most of the parameter estimates present some
bias, it is somewhat larger for θ̂23. Bootstrap means and medians tend to
be similar, which may indicate similar symmetry of the bootstrap distribu-
tions. From the comparison of parametric and nonparametric estimates, we
conclude that differences are small.

Table 1. ML estimates, bootstrap mean and median, and bias

MLE BMean BMedian Bias
NP PAR NP PAR NP PAR

Class 1
π1 0.279 0.295 0.289 0.289 0.285 0.015 0.009
θ11 0.007 0.015 0.015 0.006 0.005 0.008 0.008
θ12 0.074 0.082 0.079 0.076 0.076 0.009 0.006
θ13 0.060 0.070 0.068 0.062 0.062 0.010 0.008
θ14 0.231 0.233 0.228 0.237 0.233 0.002 −0.003

Class 2
π2 0.721 0.706 0.711 0.711 0.715 −0.015 −0.009
θ21 0.286 0.291 0.288 0.289 0.287 0.005 0.002
θ22 0.646 0.654 0.652 0.652 0.652 0.007 0.006
θ23 0.646 0.679 0.676 0.677 0.675 0.033 0.030
θ24 0.868 0.876 0.875 0.876 0.874 0.008 0.007

Table 2 presents standard errors and respective 95% confidence intervals.
Note that π2 is not a free parameter, and so asymptotic results are not defined
for it. We concluded that standard errors are, in general, similar, however,
with slight differences. The relation between them is difficult to generalize.
We observe that for θ11, θ12, and θ13 the normal approximation does not give
accurate results as a consequence of the symmetry of the interval close to
the boundary of the parameter space. Another approximation results from
applying the logit transformation to the probability parameters defined on
[0, 1], i.e. log [ϕr/(1 − ϕr)] = ψr, ψr ∈ (−∞,∞). As an attempt to improve
this approximation when bootstrap is applied, one may transform every boot-
strap estimate and ML estimates to the logit scale, compute the confidence
interval on the logit scale, and finally apply the inverse transformation. We
concluded that the logit scale gives poor results. For example, for π1 the 95%
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confidence interval is (0.180, 0.700) and (0.201, 0.671) for nonparametric and
parametric bootstrap respectively.

Table 2. Standard errors and 95% confidence intervals

Standard error Normal approximation
Asymp. NP PAR Asymptotic BSE (NP) BSE (PAR)

Class 1
π1 0.056 0.061 0.046 (0.169, 0.389) (0.160, 0.398) (0.190, 0.369)
θ11 0.025 0.021 0.021 (−0.043, 0.057) (−0.034, 0.047) (−0.034, 0.047)
θ12 0.064 0.064 0.058 (−0.052, 0.199) (−0.052, 0.199) (−0.040, 0.187)
θ13 0.065 0.060 0.056 (−0.067, 0.187) (−0.057, 0.177) (−0.050, 0.171)
θ14 0.093 0.100 0.094 (0.049, 0.413) (0.036, 0.426) (0.046, 0.416)
Class 2
π2 − 0.061 0.046 − (0.602, 0.840) (0.631, 0.810)
θ21 0.039 0.044 0.040 (0.209, 0.363) (0.201, 0.372) (0.208, 0.365)
θ22 0.048 0.049 0.049 (0.552, 0.740) (0.550, 0.742) (0.551, 0.741)
θ23 0.049 0.052 0.049 (0.550, 0.742) (0.544, 0.748) (0.550, 0.742)
θ24 0.038 0.038 0.037 (0.793, 0.942) (0.793, 0.942) (0.796, 0.939)

The percentile method and BCa do not impose the symmetry condition
of the previous approximations and respect the parameter space (Table 3).
The value of â (not shown) is relatively larger (absolute value) for θ11, θ12,
θ13, and θ24. The larger skewness of the bootstrap distributions of θ11, θ12,
θ13, and θ24 leads to a larger correction undertaken by the BCa confidence
interval for these parameters.

Table 3. Bootstrap 95% confidence intervals

Percentile method BCa

NP PAR NP PAR

Class 1
π1 (0.192, 0.430) (0.210, 0.389) (0.177, 0.393) (0.199, 0.371)
θ11 (0.000, 0.071) (0.000, 0.070) (0.000, 0.082) (0.000, 0.083)
θ12 (0.000, 0.225) (0.000, 0.205) (0.000, 0.240) (0.000, 0.211)
θ13 (0.000, 0.207) (0.000, 0.191) (0.000, 0.217) (0.000, 0.201)
θ14 (0.008, 0.426) (0.015, 0.401) (0.001, 0.420) (0.021, 0.403)

Class 2
π2 (0.570, 0.808) (0.611, 0.790) (0.607, 0.823) (0.629, 0.801)
θ21 (0.213, 0.383) (0.212, 0.371) (0.210, 0.379) (0.212, 0.371)
θ22 (0.562, 0.755) (0.561, 0.750) (0.544, 0.734) (0.547, 0.735)
θ23 (0.584, 0.787) (0.582, 0.774) (0.572, 0.765) (0.570, 0.761)
θ24 (0.803, 0.951) (0.804, 0.948) (0.773, 0.928) (0.784, 0.930)
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5 Conclusion

This paper proposed and described improved measures for estimation of the
statistical accuracy of finite mixture model parameters. To our knowledge,
for the first time more precise confidence intervals for the latent class model
were computed, avoiding approximations with asymptotic standard errors, or
using bootstrap standard errors coupled with normal approximations. Our
comparison shows the improvement provided by full bootstrap confidence
intervals, namely the BCa confidence interval. We observed in the application
similar results for the parametric and nonparametric bootstrap.

Furthermore, we showed that label-switching strategies are needed to han-
dle the non-identifiability of component labels of finite mixture models. We
introduced an adaptation of the Stephens method to the bootstrap method-
ology that alleviates the effect of hard constraints and respects the geometry
of the bootstrap distributions.

Future research could extend our findings to other finite mixture models
such as finite mixture of generalized linear models.
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Dimensionality of Random Subspaces
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Abstract. Significant improvement of classification accuracy can be obtained by
aggregation of multiple models. Proposed methods in this field are mostly based
on sampling cases from the training set, or changing weights for cases. Reduction
of classification error can also be achieved by random selection of variables to the
training subsamples or directly to the model. In this paper we propose a method of
feature selection for ensembles that significantly reduces the dimensionality of the
subspaces.

1 Introduction

Combining classifiers into an ensemble is one of the most interesting recent
achievements in statistics aiming at improving accuracy of classification. Mul-
tiple models are built on the basis of training subsets (selected from the train-
ing set) and combined into an ensemble or a committee. Then the component
models determine the predicted class.

Combined classifiers work well if the component models are “weak” and
diverse. The term “weak” refers to poorly performing classifiers, that have
high variance and low complexity. The diversity of base classifiers is obtained
by using different training subsets, assigning different weights to instances or
selecting different subsets of features.

Examples of the component classifiers are: classification trees, nearest
neighbours, and neural nets.

A number of aggregation methods have been developed so far. Some are
based on sampling cases from the training set while others use systems of
weights for cases and combined models, or choosing variables randomly to
the training samples or directly to the model.

Selecting variables for the training subsamples is the projection of cases
into the space of lower dimensionality to the original space. Therefore, reduc-
tion of the number of dimensions of the subspaces is an important problem
in statistics.

In sections 1-4 of this paper we give a review of model aggregation and
feature selection methods for ensembles. Then in section 5 we propose a new
method of feature selection for combined models that significantly reduces the
classification error. Section 6 contains a brief description of related work in
correlation-based feature selection. Results of our experiments are presented
in section 7. The last section contains a short summary.
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Fig. 1. The aggregation of classification models.

2 Model aggregation

Given a set of training instances:

T = {(x1, y1), (x2, y2), . . . , (xn, yn)}, (1)

we form a set of training subsets: T1, T2, . . . , TM and a classifier is fitted to
each of them, resulting in a set of base models: C1, C2, . . . , CM . Then they
are combined in some way to produce the ensemble C∗. When component
models are tree-based models the ensemble is called a forest. Figure 1 shows
process of combining classification models.

Several variants of aggregation methods have been developed that differ
in two aspects. The first one is the way that the training subsets are formed
on the basis of the original training set. Generally three approaches are used:

• Manipulating training examples: Windowing (Quinlan (1993)); Bagging
(Breiman (1996)); Wagging (Bauer and Kohavi (1999)); Boosting (Freund
and Shapire (1997)) and Arcing (Breiman (1998)).

• Manipulating output values: Adaptive bagging (Breiman (1999)); Error-
correcting output coding (Dietterich and Bakiri (1995)).

• Manipulating features (predictors): Random subspaces (Ho (1998)); Ran-
dom split selection (Amit and Geman (1997)), (Dietterich (2000)); Ran-
dom forests (Breiman (2001)).

The second aspect is the way that the outputs of base models are combined
for the aggregate C∗(x). There are three methods:

• Majority voting (Breiman (1996)), when the component classifiers vote
for the most frequent class as the predicted class:

Ĉ∗(x) = argmaxy∈Y

{
M∑

m=1

I(Ĉm(x) = y)

}
. (2)
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• Weighted voting (Freund and Schapire (1997)), where predictions of base
classifiers are weighted. For example in boosting the classifiers with lower
error rate are given higher weights:

Ĉ∗(x) = argmaxy∈Y

{
M∑

m=1

amI(Ĉm(x) = y)

}
. (3)

where: am = log
(

1−em

em

)
, and em is the error rate of the classifier Cm.

• Stacked generalisation (Wolpert (1992)) that also uses a system of weights
for component models:

Ĉ∗(x) =
M∑

m=1

ŵmĈm(x), (4)

where: ŵm = argminw

∑N
i=1

{
yi −∑M

m=1 wmĈ−i
m (xi)

}2

. The models

Ĉ−i
m (x) are fitted to training samples U−i

m obtained by leave-one-out cross-
validation (i.e. with i-th observation removed).

3 Random Subspace Method

Ho (1998) introduced a simple aggregation method for classifiers called “Ran-
dom Subspace Method” (RSM). Each component model in the ensemble is
fitted to the training subsample containing all cases from the training set but
with randomly selected features. Varying the feature subsets used to fit the
component classifiers results in their necessary diversity.

This method is very useful, especially when data are highly dimensional,
or some features are redundant, or the training set is small compared to the
data dimensionality. Similarly, when the base classifiers suffer from the “curse
of dimensionality”.

The RSM uses a parallel classification algorithm in contrast to boosting or
adaptive bagging that are sequential. It does not require specialised software
or any modification of the source code of the existing ones.

A disadvantage of the RSM is the problem of finding the optimal number
of dimensions for random subspaces. Ho (1998) proposed to choose half of
the available features while Breiman (2001) - the square root of the number
of features, or twice the root.

Figure 2 shows the classification error for the committee of trees built
for the Satellite dataset (Blake et al. (1998)). The error has been estimated
on the appropriate test set. Note that the error starts to rise up after quick
decrease, while the number of dimensions of Random Subspaces increases.

We propose to reduce the dimensionality of the subspaces by applying a
feature selection to the initial number of variables chosen at random.
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Fig. 2. Effect of the number of features on classification error rate.

4 Feature selection for ensembles

The aim of feature selection is to find the best subset of variables. There are
three approaches to feature selection for ensembles:

• filter methods that filter undesirable features out of the data before clas-
sification,

• wrapper methods that use the classification algorithm itself to evaluate
the usefulness of feature subsets,

• ranking methods that score individual features.

Filter methods are the most common used methods for feature selection
in statistics. We will focus on them in the next two sections.

The wrapper methods generate sets of features. Then they run the clas-
sification algorithm using features in each set and evaluate resulting models
using 10-fold cross-validation. Kohavi and John (1997) proposed a stepwise
wrapper algorithm that starts with an empty set of features and adds sin-
gle features that improve the accuracy of the resulted classifier. Unfortu-
nately, this method is only useful for data sets with relatively small number
of features and very fast classification algorithms (e.g. trees). In general, the
wrapper methods are computationally expensive and very slow.

The RELIEF algorithm (Kira and Rendell (1992)) is an interesting exam-
ple of ranking methods for feature selection. It draws instances at random,
finds their nearest neighbors, and gives higher weights to features that dis-
criminate the instance from neighbors of different classes. Then those features
with weights that exceed a user-specified threshold are selected.
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5 Proposed method

We propose to reduce the dimensionality of random subspaces using a filter
method based on Hellwig heuristic. The method is a correlation-based feature
selection and consists of two steps:

1. Iterate m=1 to M:
• Choose at random half of the data set features (L/2) to the training

subset Tm.
• Determine the best subset Fm of features in Tm according to the

Hellwig’s method.
• Grow and prune the tree using the subset Fm.

2. Finally combine the component trees using majority voting.

The heuristic proposed by Hellwig (1969) takes into account both class-
feature correlation and correlation between pairs of variables. The best subset
of features is selected from among all possible subsets F1, F2, . . . , FK (K =
2L − 1) that maximises the so-called “integral capacity of information”:

H(Fm) =
Lm∑
j=1

hmj , (5)

where Lm is the number of features in the subset Fm and hmj is the capacity
of information of a single feature xj in the subset Fm:

hmj =
r2
cj

1 +
∑Lm

i=1
i�=j

|rij |
. (6)

In the equation (6) rcj is a class-feature correlation, and rij is a feature-
feature correlation.

The correlations rij are computed using the formula of symmetrical un-
certainty coefficient (Press et al. (1988)) based on the entropy function E(x):

rij = 2
[
E(xi) + E(xj) − E(xi, xj)

E(xi) + E(xj)

]
. (7)

The measure (7) lies between 0 and 1. If the two variables are independent,
then it equals zero, and if they are dependent, it equals unity.

Continuous features have been discretised using the contextual technique
of Fayyad and Irani (1993).

6 Related work

Several correlation-based methods of feature selection for ensembles have
been developed so far. We can assign them into one of the following groups:
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simple correlation-based selection, advanced correlation-based selection, and
contextual merit-based methods.

Oza and Tumar (1999) proposed a simple method that belongs to the first
group. It ranks the features by their correlations with the class. Then the L
features of highest correlation are selected to the model. This approach is not
effective if there is a strong feature interaction (multicollinearity).

The correlation feature selection (CFS) method developed by Hall (2000)
is advanced because it also takes into account correlations between pairs of
features. The set of features Fm is selected to the model that maximizes the
value:

CFS(Fm) =
Lm |r̄c|√

Lm + Lm(Lm − 1) |r̄ij |
. (8)

where r̄c is the average feature-class correlation and r̄ij – the average feature-
feature correlation.

Hong (1997) developed a method that assigns a merit value to the feature
xi that is the degree to which the other features are capable of classifying
the same instances as xi. The distance between the examples xi and xj in
the set of features Fm is defined as:

Dij =
Lm∑
k=1

d
(k)
ij , (9)

For the categorical feature xk the component distance is:

d
(k)
ij =

{
0 if xki = xkj

1 if xki �= xkj

(10)

and for a continuous one it is:

d
(k)
ij = min

{∣∣xki − xkj

∣∣
tk

, 1

}
(11)

where tk is a feature-dependent threshold (i.e. the half of the range).
The contextual merit of the feature xk is:

CM(xk) =
N∑

i=1

∑
j∈C(i)

wijd
(k)
ij , (12)

where wij = 1/D2
ij if xj is one of the K-nearest counter examples to xi and

wij = 0 otherwise. C(i) in equation (12) is the set of counter examples to xi

(all instances not in the set of xi).

7 Experiments

To compare prediction accuracy of ensembles for different feature selection
methods we used 9 benchmark datasets from the Machine Learning Reposi-
tory at the UCI (Blake et al. (1998)).
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Results of the comparisons are presented in Table 1. For each dataset
an aggregated model has been built containing M=100 component trees1.
Classification errors have been estimated for the appropriate test sets.

Table 1. Classification errors and dimensionality of random subspaces.

Data set Single tree CFS New Average number
(Rpart) method of features

(new method)

DNA 6.40% 5.20% 4.51% 12.3
Letter 14.00% 10.83% 5.84% 4.4
Satellite 13.80% 14.87% 10.32% 8.2
Soybean 8.00% 9.34% 6.98% 7.2
German credit 29.60% 27.33% 26.92% 5.2
Segmentation 3.70% 3.37% 2.27% 3.4
Sick 1.30% 2.51% 2.14% 6.7
Anneal 1.40% 1.22% 1.20% 5.8
Australian credit 14.90% 14.53% 14.10% 4.2

8 Summary

In this paper we have proposed a new correlation-based feature selection
method for classifier ensembles that is contextual (uses feature intercorrela-
tions) and based on the Hellwig heuristic. It gives more accurate aggregated
models than those built with the CFS correlation-based feature selection
method. The differences in classification error are statistically significant at
the α = 0.05 level (two-tailed t-test).

The presented method also considerably reduces the dimensionality of
random subspaces.
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2 Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR),
Universität Heidelberg, D-69120 Heidelberg, Germany

Abstract. We address a current problem in industrial quality control, the detec-
tion of defects in a laser welding process. The process is observed by means of a
high-speed camera, and the task is complicated by the fact that very high sensi-
tivity is required in spite of a highly dynamic / noisy background and that large
amounts of data need to be processed online. In a first stage, individual images are
rated and these results are then aggregated in a second stage to come to an overall
decision concerning the entire sequence. Classification of individual images is by
means of a polynomial classifier, and both its parameters and the optimal subset
of features extracted from the images are optimized jointly in the framework of a
wrapper optimization. The search for an optimal subset of features is performed
using a range of different sequential and parallel search strategies including genetic
algorithms.

1 Introduction

Techniques from data mining have gained much importance in industrial ap-
plications in recent years. The reasons are increasing requirements of quality,
speed and cost minimization and the automation of high-level tasks previ-
ously performed by human operators, especially in image processing. Since
the data streams acquired by modern sensors grow at least as fast as the
processing power of computers, more efficient algorithms are required in spite
of Moor’s law.

The industrial application introduced here is an automated supervision
of a laser welding process. A HDRC (High-Dynamic-Range-CMOS) sensor
records a welding process on an injection valve. It acquires over 1000 frames
with a resolution of 64×64 pixels per second. The aim is to detect welding
processes which are characterized by sputter, i.e. the ejection of metal par-
ticles from the keyhole, see Fig. 1. These events are rare and occur at most
once in a batch of 1000 valves. Potential follow-up costs of a missed detection
are high and thus a detection with high sensitivity is imperative, while a
specificity below 100% is tolerable.

The online handling and processing of the large amounts of raw data is
particularly difficult; an analysis becomes possible if appropriate features are
extracted which can represent the process. Of the large set of all conceivable
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Fig. 1. Top row, left: original frame (64 × 64) from laser welding process, show-
ing a harmless perturbation which should not be detected. Middle: image of the
estimated pixel-wise standard deviations, illustrating in which areas the keyhole is
most dynamic. Right: pixels which exceed the expected deviation from the mean are
marked. Large aggregations of marked pixels are merged to an “object hypothesis”.
Bottom row: as above, but for original image showing a few sputter that should be
detected.

features, we should choose the ones that maximize the classification perfor-
mance on an entire sequence of images. An exhaustive evaluation of all possi-
ble combinations of both features and classifiers is usually too expensive. On
the other hand, the recognition performance using a manually chosen feature
set is not sufficient in most cases. An intermediate strategy is desired and
proposed here: section 2 introduces a two-stage classification system which is
optimized using the wrapper approach (section 3) while experimental results
are given in section 4.

2 Two-stage classification

2.1 Motivation

While the task is to evaluate the entire sequence of images, we have im-
plemented a divide-and-conquer strategy which focuses on individual images
first. In particular, we use a very conservative classifier on individual im-
ages: even if there is only a weak indication of an abnormality, the presumed
sputter is segmented from the background and stored as an object hypothesis.
Evidence for a sputter is substantiated only if several such hypotheses appear
in consecutive frames.

The advantage of a simple classification in the first stage is the fast evalu-
ation and adaptation of the classifier. The second stage aggregates classifica-
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tions derived from individual images into an overall decision with increased
reliability.

2.2 First stage – object classification

In the first stage, object hypotheses from single images are extracted and
classified.

In particular, an image of pixel-wise means and an image of pixel-wise
standard deviations are computed from the entire sequence. Deviations from
the mean, which are larger than a constant (e.g. ∈ [2.0, 4.0]) times the stan-
dard deviation at that pixel are marked as suspicious (Brocke (2002), Hader
(2003)). Sufficiently large agglomerations of suspicious pixels then become an
object hypothesis Ot,i with indices for time t and object number i. Next, fea-
tures such as area, eccentricity, intensity, etc. (Teague (1980)) are computed
for all object hypotheses.1 Based on these features, we compute (see section
2.4) an index d(Ot,i) ∈ [0, 1] for membership of object hypothesis Ot,i in class
“sputter”.

2.3 Second stage – image sequence classification

The first stage leaves us with a number of object hypotheses and their class
membership indices. Sputters appear in more than one consecutive frame,
whereas random fluctuations have less temporal correlation. The second stage
exploits this temporal information by aggregating the membership indices
into a single decision for the entire sequence as follows: for each frame, we
retain only the highest membership index: dt := maxi d(Ot,i). If there is no
hypothesis in a frame, the value is set to 0. The dt can be aggregated using
a variety of functions. We use a sliding window located at time t, and apply
the
∑

,
∏
,min operators to the indices dt, . . . , dt+w−1 to obtain aggregating

functions aw(t). The length of the time window w is arbitrary, but should
be no longer than the shortest sputter event in the training database. The
largest value of the aggregate function then gives the decision index for the
entire sequence,

dsequence = max
t∈T

aw(t) (1)

If dsequence exceeds a threshold Θ, the entire sequence is classified as defective,
otherwise as faultless. The optimum value for the threshold Θ depends on
the loss function, see section 3.

2.4 Polynomial classifier

The choice of the classifier used in the first stage is arbitrary. We use the
polynomial classifier (PC, Schürmann (1996)) which offers a high degree of
1 This list of features is arbitrarily expandable and previous knowledge on which

(subset of) features are useful is not necessary, see section 3.1.
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flexibility if sufficiently high degrees are used. Since it performs a least-squares
minimization, the optimization problem is convex and its solution unique.
Training is by solving a linear system of equations and is faster than that of
classifiers like multilayer perceptrons or support vector machines (LeCun et
al. (1995)), which is important in case the training is performed repeatedly
such as a wrapper optimization (section 3.1). PCs have essentially only one
free parameter, the polynomial degree.

In the development stage, a tedious manual labeling of image sequences
is required to assemble a training set. Based on an initial training set and
the resultant classifier, further sequences can be investigated. The variance
of predictions for single object hypotheses can be estimated and those for
which a large variance is found can be assumed to be different from the ones
already in the training set and added to it. In particular, under a number
of assumptions (uncorrelated residuals with zero mean and variance σ2) the
variance of a prediction can be estimated by σ2xT (XTX)−1x where X is
the matrix of all explanatory variables (features and monomials formed from
these) for all observations in the training set, and x is the new observation
(Seeber and Lee (2003)).

3 System optimization

As stated above, sensitivity is of utmost importance in our application, while
an imperfect specificity can be afforded. These requirements are met by opti-
mizing the detection threshold Θ such that the overall cost is minimized. The
losses incurred by missed detections or false positives are given by LNIO,IO

and LIO,NIO, respectively, with the former much larger than the latter.
It is customary to arrange the loss function in a matrix as shown below:

L =
∣∣∣∣ LIO,IO LIO,NIO

LNIO,IO LNIO,NIO

∣∣∣∣ , LIO,IO = LNIO,NIO = 0, LIO,NIO � LNIO,IO

The first index gives the true class, the second one the estimated class, with
IO faultless, and NIO defective. The aim is to find a decision function which
minimizes the Bayes risk r = E{L}. A missed NIO part makes for a large
contribution to the risk r̂.

The generalization error of a given feature subset and classifier is esti-
mated from the bins that are held out in a k-fold cross-validation (CV). 5-
or 10-fold CV is computationally faster than leave-one-out and is a viable
choice in the framework of a wrapper algorithm; moreover, these have per-
formed well in a study by Breiman and Spector (1992).

3.1 Wrapper approach

We see great potential in the testing of different feature subsets. In earlier
applications the filter approach (which eliminates highly correlated variables
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or selects those that correlate with the response) was the first step in finding
the relevant features. The filter approach attempts to assess the importance
of features from the data alone. In contrast, the wrapper approach selects
features using the induction algorithm as a black box without knowledge of
feature context (Kohavi and John (1997)). The evaluation of a large number
of different subsets of features with a classifier is possible only with computa-
tionally efficient procedures such as the PC. We use the wrapper approach to
simultaneously choose the feature subset, the polynomial degree G, the oper-
ator in the aggregation function a, the window width w and the threshold Θ.
Evaluating a range of polynomial degrees 1, . . . , G is expensive; in section 3.3
we show how PCs with degree < G can be evaluated at little extra cost.

3.2 Search strategies in feature subsets

The evaluation of all 2n combinations of n individual features is usually
prohibitive. We need smart strategies to get as close as possible to the global
optimum without an exhaustive search. Greedy sequential search strategies
are among the simplest methods, with two principal approaches, sequential
forward selection (SFS) and sequential backward elimination (SBE). SFS
starts with an empty set and iteratively selects from the remaining features
the one which leads to the greatest increase in performance. Conversely, SBE
begins with the complete feature set and iteratively eliminates the feature
that leads to the greatest improvement or smallest loss in performance. Both
SFS and SBE have a reduced complexity of O(n2). Both heuristics can miss
the global optimum because once a feature is selected/eliminated, it is never
replaced again.

A less greedy strategy is required to reach the global optimum. In particu-
lar, locally suboptimal steps can increase the search range. We use a modified
BEAM algorithm (Aha and Bankert (1995)) in which not only the best, but
the q best local steps are stored in a queue and explored systematically. De-
viating from the original BEAM algorithm, we allow either the adding of an
unused feature or the exchange of a selected with an unused feature.

Another global optimization method are genetic algorithms (GAs), which
represent each feature subset as member of a population. Individuals can
mutate (add or lose a feature) and mate with others (partly copy each other’s
feature subsets), where the probability of mating increases with the predictive
performance of the individuals / subsets involved. It is thus possible to find
solutions beyond the paths of a greedy sequential search. A disadvantage is
the large number of parameters that need to be adjusted and the suboptimal
performance that can result if the choice is poor.

3.3 Efficiency

The analysis of the runtime is important to understand the potential of the
PC for speed-up. A naive measure of the computational effort is the total
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count of multiplications. Although it is just a “quick and dirty” method
ignoring memory traffic and other overheads, it provides good predictions.

The coefficient matrix A for the PC is obtained by solving

E{xxT } ·A = E{xyT } (2)

with x a column vector specifying the basis functions (i.e. the monomials
built from the original features) of an individual observation and y a vector
which is [1 0]T for one class and [0 1]T for the other. The expectation values
are also called moment matrices.

The computational effort mainly consists of two steps: estimation of the
moment matrix E{xxT } and its inversion. The former requires D2N multi-
plications, with N the number of observations and D =

(
F+G

G

)
the dimension

of x, that is the feature space obtained by using all F original features as
well as all monomials thereof up to degree G.

In CV, the data is partitioned into k bins; accordingly, the N ×D design
matrix X can be partitioned into Ni × D matrices Xi, with

∑k
i=1 Ni = N .

The moment matrices are estimated for each bin separately by XT
i Xi. For

the jth training in the course of a k-fold CV, the required correlation matrix
is obtained from

XT
−jX−j =

∑
i�=j

XT
i Xi (3)

that is, D × D matrices are added only.
In summary, while the correlation matrices need to be inverted in each

of the k runs in a k-fold CV (requiring a total of k 2
3D

3 multiplications for a
Gauss-Jordan elimination), they are recomputed at the cost of a few additions
or subtractions only once the correlation matrices for individual bins have
been built (requiring a total of D2N multiplications).

In addition, once the correlation matrix for a full feature set F and poly-
nomial degree G has been estimated, all moment matrices for F ′ ⊆ F and
G′ ≤ G are obtained by a mere elimination of appropriate rows and columns.

4 Experimental results

The system has been tested on a dataset of 633 IO and 150 NIO image
sequences which comprise a total of 5294 object hypotheses that have been
labeled by a human expert. A large part of the IO sequences selected for
training were “difficult” cases with sputter look-alikes. The loss function used
was LIO,NIO = 1 and LNIO,IO = 100 and generalization performance was
estimated using a single 10-fold CV. A total of 19 features were computed for
each object hypothesis. The four subset selection strategies described were
tested. For the modified BEAM algorithm, the parameter q = 5 and 20
generations were used. The GA ran for 50 generations with 60 individuals
each.
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Fig. 2. Each point gives the generalization performance, as estimated by CV, for
a particular subset of features and an optimized classifier. For a given subset, all
classifier parameters such as aggregation function operator and its window width,
degree of polynomial, and threshold Θ, were optimized using a grid search.

Results are shown in Fig. 2. SBE works better than SFS on average,
though their best results are similar (r̂ = 0.015 and 0.014). BEAM and GA
offer minor improvements (r̂ = 0.010 and 0.012) only.

Surprisingly, the final optimized system recognizes individual object hy-
potheses with a low accuracy: r̂ = 0.341 with LNon−Sputter,Sputter = 10
and LSputter,Non−Sputter = 1. The high performance obtained in the end is
entirely due to the temporal aggregation of evidence from individual frames.
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Fig. 3. Results obtained when replacing object estimates of class membership in
individual images with the lower bound of interval estimates, see section 2.4.

Figure 3 shows the results obtained when the membership index d(Ot,i)
is not given by the object estimate obtained from the PC, but by the lower
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bound of an interval estimate to reflect the strongly asymmetric loss function.
Overall classification accuracy is not improved, but the magnitude of the
interval can help identifying sequences that ought to be labeled manually
and should be included in future training sets.

5 Conclusion and outlook

Since the number of objects, N , is typically much larger than the number of
basis functions, D, the most expensive part in training a PC is the compu-
tation of the correlation matrix and not its inversion. Recomputations of the
former can be avoided in the framework of cross-validation, as illustrated in
section 4 For our particular data set, advanced subset selection strategies did
not lead to a much improved performance.

Even though all features computed on object hypotheses were chosen with
the aim of describing the phenomenon well, the generalization performance
varies greatly with the particular subset that is chosen in a specific classifier.
A systematic search for the optimal subset is thus well worth while, and is
made possible by the low computational cost of the PC which allows for a
systematic joint optimization of parameters and feature subset.
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Abstract. Since the introduction of bagging and boosting many new techniques
have been developed within the field of classification via aggregation methods. Most
of them have in common that the class indicator is treated as a nominal response
without any structure. Since in many practical situations the class must be consid-
ered as an ordered categorical variable, it seems worthwhile to take this additional
information into account. We propose several variants of bagging and boosting,
which make use of the ordinal structure and it is shown how the predictive power
might be improved. Comparisons are based not only on misclassification rates but
also on general distance measures, which reflect the difference between true and
predicted class.

1 Introduction

In statistical classification covariates are used to predict the value of an un-
observed class variable. Various methods have been proposed and are nicely
summarized e.g. in Hastie et al. (2001).

In recent years especially the introduction of aggregation methods like
bagging (Breiman (1996)) and boosting (Freund (1995), Freund and Schapire
(1996)) led to spectacular improvements of standard techniques. In all these
methods a basic discrimination rule is used not only once but in different
(weighted or unweighted) bootstrap versions of the data set.

A special problem is how to treat categorical ordered response variables.
This additional information should be used to improve the accuracy of a
classification technique. The purpose of our work is to combine aggregation
methods with ordered class problems. Therefore aggregated classifiers for or-
dered response categories are developed and compared considering empirical
data sets.

2 Aggregating classifiers

In a classification problem each object is assumed to come from one out of k
classes. Let L = {(yi, xi), i = 1, . . . , nL} denote the learning or training set of
observed data, where yi ∈ {1, . . . , k} denotes the class and x′

i = (xi1, . . . , xip)
are associated covariates. Based on these p characteristics a classifier of the
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form

C(., L) : X −→ {1, . . . , k}
x −→ C(x, L)

is built, where C(x, L) is the predicted class for observation x. In the following
three variants of aggregated classifiers, that are used as building blocks later,
are shortly sketched.

Bagging (bootstrap aggregating) uses perturbed versions Lm of the learn-
ing set and aggregates the corresponding predictors by plurality voting, where
the winning class is the one being predicted by the largest number of predic-
tors

argmaxj

(
M∑

m=1

I(C(x, Lm) = j)

)
.

The perturbed learning sets of size nL are formed by drawing at random from
the learning set L. The predictor C(., Lm) is built from the m-th bootstrap
sample.

In boosting the data are resampled adaptively and the predictors are ag-
gregated by weighted voting. The Discrete AdaBoost procedure starts with
weights w1 = · · · = wnL = 1/nL which form the resampling probabilities.
Based on these probabilities the learning set Lm is sampled from L with re-
placement and the classifier C(., Lm) is built. The learning set is run through
this classifier yielding error indicators εi = 1 if the i-th observation is classi-
fied incorrectly and εi = 0 otherwise. With

em =
nL∑
i=1

wiεi and cm = log
1 − em

em

the resampling weights are updated for the next step by

wi,new =
wiexp(cmεi)∑nL

j=1 wjexp(cmεj)
.

After M steps the aggregated voting for an observation is obtained by

argmaxj

(
M∑

m=1

cmI(C(x, Lm) = j)

)
.

Real AdaBoost (Friedman et al. (2000)) uses real valued classifier functions
f(x, L) instead of C(x, L). Since the original algorithm only works for two
class problems, we present a variant that can be used for more than two classes
in the following: Again it starts with the weights w1 = · · · = wnL = 1/nL

which form the resampling probabilities. The learning set is run through a
classifier that yields class probabilities

pj(xi) = P̂ (yi = j|xi) .
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Based on these probabilities real valued scores fj(xi, Lm) are built by

fj(xi, Lm) = 0.5 · log
pj(xi)

(
∏k

l�=j pl(xi))
1

k−1

and the weights are updated for the next step by

wi,new =
wiexp(−fyi(xi, Lm))∑nL

j=1 wjexp(−fyj(xj , Lm))
.

After M steps the aggregated voting for observation x is obtained by

argmaxj

(
M∑

m=1

fj(x, Lm)

)
.

Both AdaBoost algorithms are based on weighted resampling. In alter-
native versions of boosting observations are not resampled but the classifiers
are computed by weighting the original observations by weights w1, . . . , wnL

that are updated iteratively. Then C(., Lm) should be read as the classifier
based on the current weights in the m-th step.

3 Ordinal prediction

In the following it is assumed that the classes in y ∈ {1, . . . , k} are ordered.
In Fixed split boosting the classification procedure is divided into two stages:
First aggregation is done by splitting the response categories. Then the re-
sulting binary classifiers are combined. It works by defining

y(r) =
{

1 , y ∈ {1, . . . , r}
2 , y ∈ {r + 1, . . . , k}

for r = 1, . . . , k − 1.
Let C(r)(., L) denote the classifier for the binary class problem defined by

y(r). For fixed r, by using any form of aggregate classifier one obtains the
predicted class for observation x by computing

C(r)
agg(x) = argmaxj

(
M∑

m=1

c(r)
m I(C(r)(x, L(r)

m ) = j)

)
.

These first stage aggregate classifiers C
(r)
agg(.) have been designed for fixed

split at r. The combination of C(1)
agg(.), . . . , C

(k−1)
agg (.) is based on the second

stage aggregation, now by exploiting the ordering of the categories. Thereby
let the result of the classifier be transformed into the sequence ŷ

(r)
1 , . . . , ŷ

(r)
k

of binary variables.
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For C(r)(x) = 1 corresponding to ŷ(x) ∈ {1, . . . , r} one has

ŷ
(r)
1 (x) = · · · = ŷ(r)

r (x) =
1
r
, ŷ

(r)
r+1(x) = · · · = ŷ

(r)
k (x) = 0 .

For C(r)(x) = 2 corresponding to ŷ(x) ∈ {r + 1, . . . , k} one has

ŷ
(r)
1 (x) = · · · = ŷ(r)

r (x) = 0, ŷ
(r)
r+1(x) = · · · = ŷ

(r)
k (x) =

1
k − r

.

Thus the classifier C
(r)
agg(.) yields the binary sequence

1
r

· (1, 1, . . . , 1, 0, 0, . . . , 0) or
1

k − r
· (0, 0, . . . , 0, 1, 1, . . . , 1)

where the change from 1 to 0 or 0 to 1 is after the r-th component. We divide
these sequences by r or k − r respectively to take into account the different
number of categories within each dichotomization. The final classifier is given
by the second stage aggregation

Cagg(x) = argmaxj

(
k−1∑
r=1

ŷ
(r)
j

)
.

In Fixed split boosting the ordinal structure of the response is not used in
the reweighting scheme. Only in the final combining step it is exploited that
the response is ordinal. Therefore in the following an alternative algorithm
(called Ordinal Discrete AdaBoost) is suggested which connects the weights
in Discrete AdaBoost to the ordered performance of the classifier.

Again we start with weights w1, . . . , wnL which form the resampling prob-
abilities. Based on these probabilities the learning set Lm is sampled from
L with replacement. Based on Lm the classifiers C(r)(., Lm) are built for all
dichotomous splits of the ordinal class variable at value r. The learning set
is run through each classifier C(r)(., Lm) yielding the information if the i-th
observation is predicted into a class higher or lower than r. The results of the
classifiers for different split values r are combined by majority vote into the
aggregated classifier C(., Lm).

Let the error indicators now be given by

εi =
|C(xi, Lm) − yi|

k − 1
.

Therefore with em =
∑nL

i=1 wiεi and cm = log((1 − em)/em) the weights are
updated by

wi,new =
wiexp(cmεi)∑nL

j=1 wjexp(cmεj)
.

After M steps the aggregated voting for observation x is obtained by

argmaxj

(
M∑

m=1

cmI(C(x, Lm) = j)

)
.
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In a similar way an ordinal version of Real AdaBoost (called Ordinal
Real AdaBoost) can be developed: For each dichotomization probabilities
p(r)(x) = P̂ (y ≤ r|x) are provided by a dichotomous classifier. From these
probabilities one obtains a sequence of scores ŷ(r)(x) for each class by

ŷ
(r)
1 (x) = · · · = ŷ(r)

r (x) = p(r)(x), ŷ
(r)
r+1(x) = · · · = ŷ

(r)
k (x) = 1 − p(r)(x) .

For the aggregation across splits one considers the value

ŷj(x) =
k−1∑
r=1

ŷ
(r)
j (x)

which reflects the strength of prediction in class j. Then an ordinal algorithm,
that still shows a close relationship to Real AdaBoost, works as follows: Based
on weights w1, . . . , wnL a classifier ŷj(.) for ordered classes 1, . . . , k is built
and the learning set is run through it yielding scores ŷj(xi), j = 1, . . . , k.
Based on these scores real valued terms fj(xi, Lm) are built by

fj(xi, Lm) = 0.5 · log
ŷj(xi)

1�k
l �=j dil

∑k
l�=j dilŷl(xi)

where dij is the distance between true class and class j for observation i.
So class probabilities are weighted according to the distance between current
and true class. The weights are updated for the next step by

wi,new =
wiexp(−fyi(xi, Lm))∑nL

j=1 wjexp(−fyj(xj , Lm))
.

After M steps the aggregated voting for observation x is obtained by

argmaxj

(
M∑

m=1

fj(x, Lm)

)
.

In Friedman et al. (2000) a variant for Real AdaBoost, called Gentle
AdaBoost, is suggested, which uses a different update function and seems
to work more stable. Without a detailed description of this algorithm, the
results of the ordinal adaption just in the same way as for Real AdaBoost
are presented in the empirical part.

Finally a boosting variant is presented, that originally was developed to
predict binary classes or real valued variables, but is easily transformed to
cope with ordinal classes: L2-Boost (Bühlmann and Yu (2002)), a special case
of the more general gradient descent boosting algorithm, works without any
kind of weighting. In the first step a real-valued initial learner F̂0(x) = f̂(x) is
computed by means of least squares min

∑nL

i=1(yi−f̂(xi))2. Then the iteration
starts with m = 0. The negative gradient vector

ui = yi − F̂m(xi)
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is computed and the real-valued learner f̂m+1(x) is now fit to these current
residuals, again by means of least squares min

∑nL

i=1(ui − f̂m+1(xi))2. Finally
the prediction F̂m+1(x) is updated by

F̂m+1(x) = F̂m(x) + f̂m+1(x)

and the iteration index m is increased by one.
As the mean squared error is a sensitive indicator for ordinal distances,

this algorithm can be used for ordinal classification with only one little ad-
justment: The values of F̂m+1(x) are rounded to the nearest class label in
order to follow the allowed domain of y.

4 Empirical studies

The scapula data are part of a dissertation (Feistl and Penning (2001)) writ-
ten at the Institut für Rechtsmedizin der LMU München. The aim was to
predict the age of dead bodies only by means of the scapula. Therefore a lot
of measures, implying angles, lengths, descriptions of the surface, etc. were
provided. We preselected 15 important covariates to predict age, which was
splitted into 8 distinct ordinal classes. Each class covers ten years. The data
set consists of 153 complete observations.

In the following we compare the different ordinal approaches to simpler
alternative methods, that either do not use the ordinal information within
the data or do not use aggregation techniques. The first one is a simple clas-
sification tree, called nominal CART. Here a tree is built by means of the
deviance criterion and grown up to maximal depth. Afterwards it is pruned
on the basis of resubstitution misclassification rates until a fixed tree size
(given by the user and dependent on the data set) is reached. An alternative
approach which uses the ordering of the classes, but still without bagging
or boosting, is to build a tree for every dichotomization in r separately and
aggregate them according to argmaxj

∑k−1
r=1 I(C

(r)(x, L) = j). This method
is called ordinal CART. In the same way two bagging variants are considered:
A nominal approach, where every tree predicts the multi class target variable
and the final result is obtained by a majority vote of these predictions, and
ordinal bagging, in which bagging is applied to fixed splits. The results are ag-
gregated over dichotomizations according to argmaxj

∑k−1
r=1 I(C

(r)(x, L) = j)
and over the bagging cycles. The nominal methods are considered as baseline
for possible improvements by ordinal bagging or ordinal boosting.

In addition we consider ten different boosting versions: The simple nomi-
nal Discrete, Real and Gentle AdaBoost, which do not use the ordinal struc-
ture within the data, are used for comparison only. The new methods are the
ordinal boosting techniques: On the one hand we distinguish between real,
discrete and gentle methods, on the other hand between Fixed split boosting
and Ordinal AdaBoost. Finally L2-Boost results are shown.
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The evaluation of the methods is based on several measures of accuracy.
As a raw criterion for the accuracy of the prediction we take the misclassifi-
cation error rate 1

n

∑n
i=1 1{yi �=ŷi}. But in the case of ordinal class structure

measures should take into account that a larger distance is a more severe
error than a wrong classification into a neighbour class. Therefore we use the
mean absolute value (here called mean abs) of the differences 1

n

∑n
i=1 |yi − ŷi|

and the mean squared difference (here called mean squ) 1
n

∑n
i=1(yi − ŷi)2

which penalizes larger differences even harder.
When measuring accuracy one has to distinguish between resubstitution

error and validation (or test) error. Resubstitution error is used to examine
how fast the misclassification error can be lowered by the different techniques,
but because of its bias it is not an appropriate measure for prediction accu-
racy. Therefore we divide the data set at random into two parts consisting
of one respectively two thirds of the observations. From the larger (learning)
data set the classification model is built and the observations of the smaller
(test) data set are predicted. We use 50 different random splits into learning
and test set and give the mean over these splits. As testing for differences
between the performance of various techniques is quite difficult because of
the statistical dependence between the different test sets, we omit it in the
framework of this study.

When aggregating classifiers one has to choose the number of cycles, which
means the number of different classifiers that are combined in one bagging or
boosting run. As standard we use a number of 50 cycles in this study. The last
parameter that has to be chosen is the (fixed) tree size, that is defined as the
number of terminal nodes of each tree. Here we use a number of 15 terminal
nodes in the nominal approach, which seems necessary for a problem with 8
classes and after all 15 covariates. All ordinal approaches are performed with
trees of size 5, because as far as trees are concerned only two class problems
are treated.

The interpretation of Table 1 leads to the following conclusions: As far
as the misclassification error is concerned there are only slight differences
between the classifiers. However, the more important measures for problems
with ordinal classes are the distance measures. Here the results of CART are
improved by all aggregation methods. Especially Fixed split boosting, but
also the other ordinal boosting methods and ordinal bagging perform very
well. For example the mean squared distance 2.365 of the classification tree
is reduced to 1.215 by Discrete Fixed split boosting.

5 Concluding remarks

The concept to combine aggregating classifiers with techniques for ordinal
data structure led to new methods that can be compared with common clas-
sification techniques. In further studies (Tutz and Hechenbichler (2003)) we
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Table 1. Test error for scapula data

method misclass mean abs mean squ

nominal CART 0.676 1.085 2.365
ordinal CART 0.652 0.995 2.112
nominal bagging 0.663 0.982 1.925
ordinal bagging 0.628 0.828 1.375
Discrete AdaBoost 0.649 0.932 1.747
Real AdaBoost 0.646 0.904 1.619
Gentle AdaBoost 0.643 0.876 1.502
Discrete Fixed split boosting 0.629 0.799 1.215
Real Fixed split boosting 0.646 0.818 1.244
Gentle Fixed split boosting 0.638 0.808 1.216
Ordinal Discrete AdaBoost 0.611 0.841 1.473
Ordinal Real AdaBoost 0.691 0.878 1.330
Ordinal Gentle AdaBoost 0.644 0.806 1.210
L2-Boost 0.652 0.851 1.316

found promising results for other empirical data sets as well. Ordinal tech-
niques definitely improve the performance of a simple CART tree.

All in all there seems to be no dominating method as for different data
sets the best results occur by different methods. Although ordinal bagging
shows satisfying results for all data sets, it often is outperformed by at least
one of the ordinal boosting techniques. These findings suggest that further
research seems to be a worthwhile task.
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A Method for Visual Cluster Validation
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Abstract. Cluster validation is necessary because the clusters resulting from clus-
ter analysis algorithms are not in general meaningful patterns. I propose a method-
ology to explore two aspects of a cluster found by any cluster analysis method: the
cluster should be separated from the rest of the data, and the points of the cluster
should not split up into further separated subclasses. Both aspects can be visually
assessed by linear projections of the data onto the two-dimensional Euclidean space.
Optimal separation of the cluster in such a projection can be attained by asym-
metric weighted coordinates (Hennig (2002)). Heterogeneity can be explored by the
use of projection pursuit indexes as defined in Cook, Buja and Cabrera (1993). The
projection methods can be combined with splitting up the data set into clustering
data and validation data. A data example is given.

1 Introduction

Cluster validation is the assessment of the quality and the meaningfulness
of the outcome of a cluster analysis (CA). Most CA methods generate a
clustering in all data sets, whether there is a meaningful structure or not.
Furthermore, most CA methods partition the data set into subsets of a more
or less similar shape, and this may be adequate only for parts of the data,
but not for all. Often, different CA methods generate different clusterings
on the same data and it has to be decided which one is the best, if any.
Therefore, if an interpretation of a cluster as a meaningful pattern is desired,
the cluster should be validated by information other than the output of the
CA. A lot of more or less formal methods for cluster validation are proposed
in the literature, many of which are discussed, e.g., in Gordon (1999, Section
7.2) and Halkidi et al. (2002). Six basic principles for cluster validation can
be distinguished:

Use of external information External information is information that
has not been used to generate the clustering. Such information can stem
from additional data or from background knowledge. However, such in-
formation is often not available.

Significance tests for structure Significance tests against null models
formalizing “no clustering structure at all” are often used to justify the
interpretation of a clustering. While the rejection of homogeneity is a rea-
sonable minimum requirement for a clustering, such tests cannot validate
the concrete structure found by the CA algorithm.
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Comparison of different clusterings on the same data Often, the
agreement of clusterings based on different methods is taken as a con-
firmation of clusters. This is only meaningful if sufficiently different CA
methods have been chosen, and in the case of disagreement it could be
argued that not all of them are adequate for the data at hand.

Validation indexes In some sense, the use of validation indexes is similar to
that of different clusterings, because many CA methods optimize indexes
that could otherwise be used for validation.

Stability assessment The stability of clusters can be assessed by tech-
niques such as bootstrap, cross-validation, point deletion, and addition
of contamination.

Visual inspection Recently (see, e.g., Ng and Huang (2002)), it has been
recognized that all formal approaches of cluster validation have limita-
tions due to the complexity of the CA problem and the intuitive nature
of what is called a “cluster”. Such a task calls for a more subjective
and visual approach. To my knowledge, the approach of Ng and Huang
(2002) is the first visual technique which is specifically developed for the
validation of a clustering.

Note that these principles address different aspects of the validation problem.
A clustering that is well interpretable in the light of external information will
not necessarily be reproduced by a different clustering method. Structural
aspects such as homogeneity of the single clusters and heterogeneity between
different clusters as indicated by validation indexes or visual inspection are
not necessarily properties of clusters which are stable under resampling. How-
ever, these aspects are not “orthogonal”. A well chosen clustering method
should tend to reproduce well separated homogeneous clusters even if the
data set is modified.

In the present paper, a new method for visual cluster validation is pro-
posed. As opposed to the approach of Ng and Huang (2002), the aim of the
present method is to assess every cluster individually. The underlying idea is
that a valid cluster should have two properties:

• separation from the rest of the data, so that it should not be joined with
other parts of the data,

• homogeneity, so that the points of the cluster can be said to “belong
together”.

In Section 2, asymmetric weighted coordinates (AWCs) are introduced. AWCs
provide a linear projection of the data in order to separate the cluster un-
der study optimally from the rest of the data. In Section 3, I propose the
application of some projection pursuit indexes to the points of the cluster
to explore its heterogeneity. Additionally, if there is enough data to split the
data set into a “training sample” and a “validation sample”, the projections
obtained from clustering and visual validation on the training sample can be
applied also to the points of the validation sample to see if the found pat-
terns can be reproduced. Throughout the paper, the data is assumed to come
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from the p-dimensional Euclidean space. The methods can also be applied
to distance data after carrying out an appropriate multidimensional scaling
method. Euclidean data is only needed for the validation; the clustering can
be done on the original distances. In Section 4, the method is applied to a
real data set.

2 Optimal projection for separation

The most widespread linear projection technique to separate classes goes back
to Rao (1952) and is often called “discriminant coordinates” (DCs). The first
DC is defined by maximizing the ratio

F (c1) =
c′1Bc1

c′1Wc1
, where

W =
1

n− s

s∑
i=1

ni∑
j=1

(xij − mi)(xij − mi)′,

B =
1

n(s− 1)

s∑
i=1

ni(mi − m)(mi − m)′.

n denotes the number of points, ni is the number of points of class i, s
denotes the number of classes, xi1, . . . ,xini are the p-dimensional points of
class i, mi is the mean vector of class i and m is the overall mean. The
further DCs maximize F under the constraint of orthogonality to the previous
DCs w.r.t. W. B is a covariance matrix for the class means and W is a
pooled within-class covariance matrix. Thus, F gets large for projections
that separate the means of the classes as far as possible from each other
while keeping the projected within-class variation small. Some disadvantages
limit the use of DCs for cluster validation. Firstly, separation is formalized
only in terms of the class means, and points of different classes far from
their class means need not to be well separated (note that the method of Ng
and Huang (2002) also aims at separating the cluster centroids). Secondly,
s − 1 dimensions are needed to display all information about the separation
of s classes, and therefore there is no guarantee that the best separation of
a particular cluster shows up in the first two dimensions in case of s > 3.
This could in principle be handled by declaring the particular cluster to be
validated as class 1 and the union of all other clusters as class 2 (this will
be called the “asymmetry principle” below). But thirdly, DCs assume that
the covariance matrices of the classes are equal, because otherwise W would
not be an adequate covariance matrix estimator for a single class. If the
asymmetry principle is applied to a clustering with s > 2, the covariance
matrices of these classes cannot be expected to be equal, not even if they
would be equal for the s single clusters.

A better linear projection technique for cluster validation is the appli-
cation of asymmetric linear dimension reduction (Hennig (2002)) to the two
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classes obtained by the asymmetry principle. Asymmetry means that the two
classes to be projected are not treated equally. Asymmetric discriminant co-
ordinates maximize the separation between class 1 and class 2 while keeping
the projected variation of class 1 small. Class 2, i.e., the union of all other
data points, may appear as heterogeneously as necessary. Four asymmet-
ric projection methods are proposed in Hennig (2002), of which asymmetric
weighted coordinates (AWCs) are the most suitable for cluster validation.
The first AWC is defined by maximizing

F ∗(c1) =
c′1B∗c1

c′1S1c1
, where

S1 =
1

n1 − 1

n1∑
j=1

(x1j − m1),

B∗ =
∑
i,j

wj(x1i − x2j)(x1i − x2j)′,

wj = min
(

1,
d

(x2j − m1)′S−1
1 (x2j − m1)

)
,

d > 0 being some constant, for example the 0.99-quantile of the χ2
p-dis-

tribution. The second AWC c2 maximizes F ∗ subject to c′1S
−1
1 c2 = 0 and

so on. c′1B∗c1 gets large if the projected differences between points of class
1 and class 2 are large. The weights wj downweight differences from points
of class 2 that are very far away (in Mahalanobis distance) from class 1.
Otherwise, c′1B

∗c1 would be governed mainly by such points, and class 1
would appear separated mainly from the furthest points in class 2, while
it might be mixed up more than necessary with closer points of class 2.
The weights result in a projection that separates class 1 also from the closest
points as well as possible. More motivation and background is given in Hennig
(2002). As for DCs, the computation of AWCs is very easily be done by an
Eigenvector decomposition of S−1

1 B∗. Note that AWCs can only be applied if
n1 > p, because otherwise class 1 could be projected onto a single point, thus
c′1S

−1
1 c1 = 0. If n1 is not much larger than p, c′1S

−1
1 c1 can be very small,

and some experience (e.g., with simulated data sets from unstructured data)
is necessary to judge if a seemingly strong separation is really meaningful.

3 Optimal projection for heterogeneity

Unfortunately, AWCs cannot be used to assess the homogeneity of a cluster.
The reason is that along projection directions that do not carry any informa-
tion regarding the cluster, the cluster usually does not look separated, but
often more or less homogeneous. Thus, to assess separation, the projected
separation has to be maximized, which is done by AWCs. But to assess ho-
mogeneity, it is advantageous to maximize the projected heterogeneity of the
cluster.
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Projection pursuit is the generic term for linear projection methods that
aim for finding “interesting”, i.e., heterogeneous projections of the data (Hu-
ber (1985)). The idea is to project only the points of the cluster to be vali-
dated in order to find a most heterogeneous visualization. There are lots of
projection pursuit indexes. Some of them are implemented in the data visual-
ization software XGOBI (Buja et al. (1996)). A main problem with projection
pursuit is that the indexes can only be optimized locally. XGOBI visualizes
the optimization process dynamically, and after a local optimum has been
found, the data can be rotated toward new configurations to start another
optimization run.

Two very simple and useful indexes have been introduced by Cook et al.
(1993) and are implemented in XGOBI. The first one is the so-called “holes
index”, which is defined by minimizing

F ∗∗(C) =
n1∑
i=1

ϕ2(C′x1i),

over orthogonal p×2-projection matrices C, where ϕ2 denotes the density of
the two-dimensional Normal distribution and the points x1i are assumed to
be centered and scaled. F ∗∗ becomes minimal if as few points as possible are
in the center of the projection, in other words, if there is a “hole”. Often, such
a projection shows a possible division of the cluster points into subgroups.

It is also useful to maximize F ∗∗, which is called “central mass index” in
XGOBI. This index attempts to project as many points as possible into the
center, which can be used to find outliers in the cluster. But it can also be
useful to try out further indexes, as discussed in Cook et al. (1993).

4 Example

As an example, two CA methods have been applied to the “quakes” data set,
which is part of the base package of the free statistical software R (to obtain
from www.R-project.org). The data consist of 1000 seismic events on Fiji,
for which five variables have been recorded, namely geographical longitude
and latitude, depth, Richter magnitude and number of stations reporting.
Because of the favorable relation of n to p, I divided the data set into 500
points that have been used for clustering and 500 points for validation.

The first clustering has been generated by MCLUST (Fraley and Raftery
(2003)), a software for the estimation of a Normal mixture model including
noise, i.e., points that do not belong to any cluster. The Bayesian information
criterion has been used to decide about the number of clusters and the com-
plexity of the model for the cluster’s covariance matrices. It resulted in four
clusters with unrestricted covariance matrices plus noise. As a comparison, I
have also performed a 5-means clustering on sphered data.

Generally, the validity of the clusters of the MCLUST-solution can be
confirmed. In Figure 1, the AWC plot is shown for the second cluster (points
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Fig. 1. Left: AWCs of cluster 2 (black points) of the MCLUST solution. Right:
validation data set projected onto the AWCs.
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Fig. 2. Left: AWCs of cluster 3 (black points) of the MCLUST solution. Right:
AWCs of cluster 1 (black points) of the 5-means solution.

of other clusters are always indicated with the cluster numbers). These points
do neither appear separated in any scatterplot of two variables nor in the
principal components (not shown), but they are fairly well separated in the
AWC plot, and the projection of the validation points on the AWCs (right
side) confirms that there is a meaningful pattern. Other clusters are even
better separated, e.g., cluster 3 on the left side of Figure 2. Some of the
clusters of the 5-means solution have a lower quality. For example, the AWC-
plot of cluster 1 (right side of Figure 2) shows the separation as dominated
by the variation within this cluster.
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Fig. 3. Left: “holes” projection of cluster 2 of the MCLUST solution. Right: “holes”
projection of cluster 3 of the MCLUST solution.
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Fig. 4. Left: “holes” projection of cluster 1 of the 5-means solution. Right: “central
mass” projection of cluster 4 of the 5-means solution.

Optimization of the holes index did not reveal any heterogeneity in
MCLUST-cluster 2, see the left side of Figure 3, while in cluster 3 (right
side) two subpopulations could roughly be recognized. Sometimes, when ap-
plying MCLUST to other 500-point subsamples of the data, the correspond-
ing pattern is indeed divided into two clusters (it must be noted that there is a
non-negligible variation in the resulting clustering structures from MCLUST,
including the estimated number of clusters, on different subsamples). Some
of the 5-means clusters show a much clearer heterogeneity. The holes index
reveals some subclasses of cluster 1 (right side of Figure 4), while the central
mass index highlights six outliers in cluster 4 (right side).
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5 Conclusion

A combination of two plots for visual cluster validation of every single cluster
has been proposed. AWCs optimize the separation of the cluster from the
rest of the data while the cluster is kept homogeneous. Projection pursuit is
suggested to explore the heterogeneity of a cluster.

Note that for large p compared to n, the variety of possible projections is
large. Plots in which the cluster looks more or less separated or heterogeneous
are found easily. Thus, it is advisable to compare the resulting plots with the
corresponding plots from analogous cluster analyses applied to data with the
same n and p generated from “null models” such as a normal or uniform
distribution to assess if the cluster to be validated yields a stronger pattern.
This may generally be useful to judge the validity of visual displays.

The proposed plots are static. This has the advantage that they are repro-
ducible (there may be a non-uniqueness problem with projection pursuit) and
they are optimal with respect to the discussed criteria. However, a further dy-
namical visual inspection of the data by, e.g., the grand tour as implemented
in XGOBI (Buja et al. (1996)), can also be useful to assess the stability of
separation and heterogeneity as revealed by the static plots.

AWCs are implemented in the add-on package FPC for the statistical
software package R, available under www.R-project.org.
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Abstract. Boosting algorithms combine moderately accurate classifiers in order
to produce highly accurate ones. The most important boosting algorithms are Ad-
aboost and Arc-x(j). While belonging to the same algorithms family, they differ
in the way of combining classifiers. Adaboost uses weighted majority vote while
Arc-x(j) combines them through simple majority vote. Breiman (1998) obtains the
best results for Arc-x(j) with j = 4 but higher values were not tested. Two other
values for j, j = 8 and j = 12 are tested and compared to the previous one and
to Adaboost. Based on several real binary databases, empirical comparison shows
that Arc-x4 outperforms all other algorithms.

1 Introduction

Boosting algorithms are one of the most recent developments in classification
methodology. They repeatedly apply a classification algorithm as a subrou-
tine and combine moderately accurate classifiers in order to produce highly
accurate ones. The first boosting algorithm, developed by Schapire(1990),
converts a weak learning algorithm into a strong one. A strong learning al-
gorithm achieves low error with high confidence while a weak learning algo-
rithm drops the requirement of high accuracy. Freund (1995) presents another
boosting algorithm, boost-by-majority, which outperforms the previous one.

Freund and Schapire (1997) present another boosting algorithm, Ad-
aboost. It is the first adaptive boosting algorithm because its strategy de-
pends on the advantages of obtained classifiers, called hypotheses. For binary
classification, the advantage of a hypothesis measures the difference between
its performance and random guessing. The only requirement of Adaboost
is to obtain hypotheses with positive advantage. Furthermore, the final hy-
pothesis is a weighted majority vote of the generated hypotheses where the
weight of each hypothesis depends on its performance. Due to its adaptive
characteristic, Adaboost has received more attention than its predecessors.
Experimental results (Freund and Schapire (1996), Bauer and Kohavi (1999))
show that Adaboost decreases the error of the final hypothesis.

Breiman (1998) introduces the ARCING algorithm’s family: Adaptively
Resampling and Combining which Adaboost belongs to. In order to bet-
ter understand the behavior of Adaboost, Breiman (1998) develops a sim-
pler boosting algorithm denoted by Arc-x(j). This algorithm uses a different
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weight updating rule and combines hypotheses using simple majority vote.
The best results of Arc-x(j) are obtained for j = 4. When compared to Ad-
aboost, Breiman’s results show that both algorithms perform equally well.
Breiman (1998) argues that the success of Adaboost is not due to its way of
combining hypotheses but on its adaptive property. He argues also that since
higher values for j were not tested further improvement is possible.

In this paper, two other values for the parameter j of Arc-x(j) algorithm,
j = 8 and j = 12, are tested and their performance compared to Adaboost
and Arc-x4 in the subsampling framework using a one node decision tree
algorithm.

In section two, the different boosting algorithms used are briefly intro-
duced. In section three, the empirical study is described and the results are
presented. Finally, section four provides a conclusion to this article.

2 Arcing algorithms

Adaboost was the first adaptive boosting algorithm. First, the general frame-
work of boosting algorithms is introduced, then Adaboost and some of its
characteristics are reviewed. Finally, arcing algorithm’s family is discussed.

Given a labeled training set (x1, y1), . . . , (xn, yn), where each xi belongs
to the instance space X , and each label yi to the label set Y . Here only
the binary case is considered where Y = {−1, 1}. Adaboost applies repeat-
edly, in a series of iterations t = 1, . . . , T , the given learning algorithm to
a reweighted training set. It maintains a weight distribution over the train-
ing set. Starting with equal weight assigned to all instances, D(xi) = 1/n,
weights are updated after each iteration such that the weight of misclassi-
fied instances is increased. Weights represent instance importance. Increasing
instance’s weight will give it more importance and thus forcing the learning
algorithm to focus on it in the next iteration. The learning algorithm outputs
in each iteration a hypothesis that predicts the label of each instances ht(xi).
For a given iteration, the learning algorithm tends to minimize the error:

εt = Pr[ht(xi) �= yi], (1)

where Pr[.] denote empirical probability on the training sample.

2.1 Adaboost

Adaboost requires that the learning algorithm outputs hypotheses with error
less than 0.5. A parameter αt is used to measure the importance assigned
to each hypothesis. This parameter depends on hypothesis’ performance. For
the binary case this parameter is set to:

αt =
1
2

ln(
1 − εt
εt

). (2)
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The weight distribution is updated using αt (see Figure 2.1). This parame-
ter is positive because Adaboost requires that the learning algorithm output
hypotheses with error less than 0.5. At the end of the process, a final hypoth-
esis is obtained by combining all hypotheses from previous iterations using
weighted majority vote. The parameter αt represents the weight of the hy-
pothesis ht generated in iteration t. The pseudocode of Adaboost for binary
classification is presented in Figure 2.1.

Adaboost requires that the base learner performs better than random
guessing. The error can be written as follows:

εt = 1/2 − γt, (3)

where γt is a positive parameter that represents the advantage of the hy-
pothesis over random guessing. The training error of the final hypothesis is
bounded by: ∏

t

2
√

εt(1 − εt) (4)

Given: (x1, y1), . . . , (xn, yn) where xi ∈ X, yi ∈ Y = {−1; +1}
1-Initialize D1(i) = 1/n
2-For t = 1 to T:

• Train the weak classifier using Dt and get a hypothesis
ht : X �→ {−1; +1}
• Compute εt =

∑
i:ht(xi) �=yi

Dt(xi)

• If εt ≥ 0.5 stop.

• Choose: αt = 1
2 ln(1−εt

εt
)

• Update: Dt+1(i) = Dt(i) exp(−αtyiht(xi))
Zt

where Zt is a normalization factor

3-output the final hypothesis: H(x) = sign(
∑T

t=1 αtht(x))

Figure 2.1: Adaboost algorithm

This bound can be expressed in term of the advantage sequence γt:∏
t

2
√

εt(1 − εt) ≤ exp(−2
∑

t

γ2
t ). (5)

Thus, if each hypothesis is slightly better than random guessing, that is
γt > γ for γ > 0, the training error will drop exponentially fast.
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The bound of generalization error, or the error of the final hypothesis
over the whole instance space X , depends on the training error, the size of
the sample n, the Vapnik-Chervonenkis (VC, Vapnik 1998) dimension d of
the weak hypothesis space and the number of boosting iterations T . The
generalization error is at most:

Pr[H(x) �= y] + Ô

(√
T.d

n

)
. (6)

This bound depends on the number of iterations T and we would think that it
will overfit as T becomes large but experimental results (Freund and Schapire
(1996)) show that Adaboost continue to drop down generalization error as T
becomes large.

2.2 Arcing family

Breiman (1998) used the ARCING term to describe the family of algorithms
that Adaptively Resample data and Combine the outputted hypotheses. Ad-
aboost was the first example of an arcing algorithm.

In order to study the behavior of Adaboost, Breiman developed an ad-hoc
algorithm, Arc-x(j). This algorithm is similar to Adaboost but differs in the
following:

• it uses a simpler weight updating rule:

Dt+1(i) =
1 + m(i)j∑
(1 + m(i)j)

, (7)

where m(i) is the number of misclassifications of instance i by classifiers
1, . . . , t and j is an integer.

• classifiers are combined using simple majority vote.

Since the development of arcing family, Adaboost and Arc-x4 were compared
in different framework and using different collections of datasets. Breiman
(1998) and Bauer and Kohavi (1999) show that Arc-x4 has an accuracy com-
parable to Adaboost without using the weighting scheme to construct the
final classifier. Breiman (1998) argues that higher values of j were not tested
so improvement is possible.

In this empirical study, two other values of the parameter j, j = 8 and
j = 12, are tested in the subsampling framework and compared to Adaboost
and Arc-x4.

3 Empirical study

First, the base classifier and the performance measure used in the experi-
ments are introduced then we the experimental results of each algorithm are
presented. Finally, the performance of all algorithms are compared.
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3.1 Base classifier and performance measure

Boosting algorithms require a base classifier as a subroutine that performs
slightly better than random guessing. In our experiments, we use a simple
algorithm, developed by Iba and Langley (1992), that induces a one node
decision tree from a set of preclassified training instances.

In order to compare different boosting algorithms, we use a collection of
binary data sets from UCI Machine learning Repository (Blakes et al. (1998)).
Details of these data sets are presented in Table 2.

For each data set, we repeat the experiment 50 times. Each time, the data
set is randomly partitioned into two equally sized sets. Each set is used once
as a training set and once as a testing set. We run each algorithm for T =
25 and 75 iterations and report the average test error.

Bauer and Kohavi (1999) measures of performance are used. For a fixed
number of iterations, the performance of each algorithm is evaluated using
test error averaged over all data sets. To measure improvement produced by
a boosting algorithm, absolute test error reduction and relative test error
reduction are used.

3.2 Results

Results are reported in Table 1 and interpreted as follows: for a fixed number
of iterations, we evaluate the performance of each algorithm on the collection
of data sets and on each data set. Then all algorithms are compared for 25
and 75 iterations using test error averaged over all data sets.

Table 1. Average test error for each algorithm for 25 and 75 iterations on each
data set.

base Adaboost Arc-x4 Arc-x8 Arc-x12

Data Classifier 25 75 25 75 25 75 25 75

Liv. 41.81 % 29.78% 29.35% 29.96% 28.94% 31.94% 29.24% 34.28% 29.60%
Hea. 28.96% 19.58% 20.38% 18.99% 18.93% 20.25% 19.41% 21.79% 20.07%
Ion. 18.93% 12.38% 11.32% 12.27% 11.83% 12.22% 11.21% 12.59% 11.01%
Bre. 8.32% 4.56% 4.62% 3.88% 3.87% 4.22% 4.14% 4.40% 4.26%
Tic. 34.66% 28.80% 28.68% 29.59% 28.43% 31.38% 28.82% 30.11% 29.36%

mean 26.54% 19.02% 18.87% 18.94% 18.40% 20.00% 18.56% 20.63% 18.86%

Adaboost results: Adaboost decreases the average test error by 7.52% for
25 iterations and by 7.67% for 75 iterations. All data sets have relative test
error reduction higher than 15%. The results for 75 iterations are better than
those obtained for 25 iterations except for breast cancer data and heart data.
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Table 2. Data sets used in the experimental study

Data set number of instances number of attributes

Liver disorders(Liv) 345 7
Heart (Hea) 270 13
Ionosphere (Ion) 351 34
Breast cancer (Bre) 699 10
Tic tac toe (Tic) 958 9

Arc-x(j) results: All Arc-x(j) algorithms decrease the test error. The rel-
ative test error reduction is higher than 15% for all datasets except when
Arc-x(j) algorithms are applied for 25 iterations on the tic tac toe dataset.
Results produced for 75 iterations are better than those obtained for 25 iter-
ations.

Comparing algorithms: When comparing the results of the different
boosting algorithms for 25 and 75 iterations, we notice that:

• For 25 iterations, the lowest average test error is produced by Arc-x4
algorithm.

• The relative average error reduction between Arc-x4 and Adaboost is
0.43% which is not significant.

• The average error of Arc-x4 is better than the average error of Arc-x8 by
5.62% and by 8.96% for Arc-x12 which are significant at 5% level.

• Arc-x4 and Adaboost produce the lowest error on 2 databases, Arc-x8
outperforms the other algorithms on 1 data set.

• For 75 iterations, Arc-x4 outperforms all other algorithms.
• Adaboost and Arc-x12 performs equally well and less accurately than

Adaboost and Arc-x8.
• Arc-x4 produces the lowest error on 4 data sets and Arc-x12 on 1 data

set.
• The relative average error reduction between the lowest and the highest

error is 2.55% which is not significant.

4 Conclusion

This empirical study is an extension to Breiman’s (1998) study on the family
of boosting algorithms, the ARCING family. Two extensions of arcing weight
updating rules are tested and compared to the one used by Breiman (1998)
and to Adaboost in the subsampling framework.

Our empirical study shows that, based on these empirical results, increas-
ing the factor j of Arc-x(j) algorithm does not improve the performance of
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Arcing algorithms. The absolute test error reduction is higher for the first 25
iterations than for the last 50 iterations. It is interesting to look for another
way of combining classifiers which gives more weight to the first ones and
thus producing lower test error.
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Abstract. This paper proposes a method of finding a discriminative linear trans-
formation that enhances the data’s degree of conformance to the compactness hy-
pothesis and its inverse. The problem formulation relies on inter-observation dis-
tances only, which is shown to improve non-parametric and non-linear classifier per-
formance on benchmark and real-world data sets. The proposed approach is suitable
for both binary and multiple-category classification problems, and can be applied
as a dimensionality reduction technique. In the latter case, the number of necessary
discriminative dimensions can be determined exactly. The sought transformation is
found as a solution to an optimization problem using iterative majorization.

1 Introduction

Efficient algorithms, developed originally in the field of multidimensional scal-
ing (MDS), quickly gained popularity and paved their way into discriminant
analysis. Koontz and Fukunaga (1972), as well as Cox and Ferry (1993) pro-
posed to include class membership information in the MDS procedure and
recover a discriminative transformation by fitting a posteriori a linear or
quadratic model to the obtained reduced-dimensionality configuration. The
wide-spread use of guaranteed-convergence optimization techniques in MDS
sparked the development of more advanced discriminant analysis methods,
such as one put forward by Webb (1995), that integrated the two stages of
scaling and model fitting, and determined the sought transformation as a
part of the MDS optimization. These methods, however, focused mostly on
deriving the transformation without adapting it to the specific properties of
the classifier that is subsequently applied to the observations in the trans-
formed space. In addition to that, these techniques do not explicitly answer
the question of how many dimensions are needed to distinguish among a
given set of classes.

In order to address these issues, we propose a method that relies on an
efficient optimization technique developed in the field of MDS and focuses on
finding a discriminative transformation based on the compactness hypothesis
(see Arkadev and Braverman (1966)). The proposed method differs from the
above work in that it specifically aims at improving the accuracy of the non-
parametric type of classifiers, such as nearest neighbor (NN), Fix and Hodges
(1951), and can determine exactly the number of necessary discriminative
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dimensions, since feature selection is embedded in the process of deriving the
sought transformation.

The remainder of this paper is structured as follows. In Section 2, we
formulate the task of deriving a discriminant transformation as a problem of
minimizing a criterion based on the compactness hypothesis. Then, in Section
3, we demonstrate how the method of iterative majorization (IM) can be used
to find a solution that optimizes the chosen criterion. Section 4 describes
the extensions of the proposed approach for dimensionality reduction and
multiple class discriminant analysis, whereas the details of our experiments
are provided in Section 5.

2 Problem formulation

Suppose that we seek to distinguish between two classes represented by ma-
trices X and Y having NX and NY rows of m-dimensional observations,
respectively. For this purpose, we are looking for a transformation matrix
T ∈ Rm×k, k � m, that eventuates in compactness within members of one
class, and separation within members of different classes.

While the above preamble may fit just about any class-separating trans-
formation method profile (e.g., Duda and Hart (1973)), we must emphasize
several important assertions that distinguish the presented method and nat-
urally lead to the problem formulation that follows. First of all, we must re-
iterate that our primary goal is to improve the NN performance on the task
of discriminant analysis. Therefore, the sought problem formulation must re-
late only to the factors that directly influence the decisions made by the NN
classifier, namely - the distances among observations. Secondly, in order to
benefit as much as possible from the non-parametric nature of the NN, the
sought formulation must not rely on the traditional class separability and
scatter measures that use class means, weighted centroids or their variants
which, in general, connote quite strong distributional assumptions. Finally,
an asymmetric product form should be more preferable, justified as consistent
with the properties of the data encountered in the target application area of
multimedia retrieval and categorization, Zhou and Huang (2001). More for-
mally, these requirements can be accommodated by an optimization criterion
expressed in terms of distances among the observations from the two datasets
as follows:

J(T ) =

⎛⎝NX∏
i<j

Ψ
(
dW

ij (T )
)⎞⎠ 2

NX (NX−1)

⎛⎝NX∏
i=1

NY∏
j=1

dB
ij(T )

⎞⎠ 1
NX NY

, (1)

where the numerator and denominator of (1) represent the geometric means of
the within- and between-class distances defined as

√
(xi − xj)TT T (xi − xj)T
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and
√

(xi − yj)TT T (xi − yj)T , respectively, and Ψ(·) denotes a Huber robust
estimation function, Huber (1964), parametrized by a positive constant c and
defined as:

Ψ(dW
ij ) =

⎧⎪⎨⎪⎩
1
2
(
dW

ij

)2
if dW

ij ≤ c;

cdW
ij − 1

2
c2 if dW

ij > c.
(2)

The choice of Huber function in (1) is motivated by the fact that at c the
function switches from quadratic to linear penalty allowing to mitigate the
consequences of an implicit unimodality assumption that the formulation of
the numerator of (1) may lead to. In the logarithmic form, criterion (1) is
written as:

log J(T ) =
2

NX(NX − 1)

NX∑
i<j

logΨ
(
dW

ij (T )
)− 1

NXNY

NX∑
i=1

NY∑
j=1

log dB
ij(T ) (3)

= αSW (T ) − βSB(T ).

Our preliminary studies, Kosinov (2003), have shown that neither
straightforward gradient descent nor some of the state-of-the-art optimization
routines are suitable for solving the above optimization problem mostly due
to susceptibility to local minima, adverse dependence on the initial value, and
difficulties related to the discontinuities of the derivative of (3). However, by
deriving some approximations of SW (T ) and SB(T ) one can make the task of
minimizing log J(T ) criterion amenable to a simple iterative procedure based
on the majorization method (Borg and Groenen (1997), de Leeuw (1977),
Heiser (1995)), which we discuss in the following section.

3 Iterative majorization

It can be verified that majorization remains valid under additive decom-
position. Therefore, a possible strategy for majorizing (3) is to deal with
SW (T ) and −SB(T ) separately and subsequently recombine their respective
majorizing expressions. We begin by noting that both the logarithm and Hu-
ber function are majorizable by linear and quadratic functions, respectively,
Heiser (1995). This fact makes it possible to derive a majorizing function of
SW (T ) as follows:

SW (T ) =
NX∑
i<j

logΨ
(
dW

ij (T )
) ≤

NX∑
i<j

w̄ij · (dW
ij (T )

)2
2Ψ
(
dW

ij (T̄ )
) + K1 = µSW (T, T̄ ), (4)

where T, T̄ ∈ Rm×m, T̄ is a supporting point for T , w̄ij is a weight of the
Huber function majorizer, that in this case is equal to 1 if Ψ(dW

ij (T̄ )) < c

or c/Ψ(dW
ij (T̄ )) otherwise, and K1 is a constant term with respect to T .
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Switching to matrix notation and defining a square symmetric design matrix
B dependent on T̄ :

bij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− w̄ij

Ψ
(
dW

ij (T̄ )
) if i �= j;

NX∑
k=1,k �=i

bik if i = j;
(5)

leads to the majorizing expression of SW (T ) in its final form:

µSW (T, T̄ ) =
1
2
tr
(
T TXTBXT

)
+ K1. (6)

An attempt to majorize −SB(T ) directly runs into problems due to the
difficulties of finding a proper quadratic majorizing function of the negative
logarithm. As a practical solution, we replace the neg-logarithm with its
piece-wise linear approximation (see Figure 1, left panel), which, in turn, can
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3
log(x)
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x
support

=1.8

Fig. 1. Majorization of piecewise-linear approximation of −log(x)

be represented as a sum of the functions defined as:

g(x;x0, l, r) =
{

r(x − x0) if x ≥ x0,
−l(x− x0) if x < x0;

(7)

where l + r > 0, to ensure convexity. It is easy to see that the family of
functions defined in (7) is one of the many possible generalizations of the
absolute value function |x|, the former being equivalent to the latter whenever
x0 = 0 and l = r = 1. Similarly to |x|, g(x;x0, l, r) can be majorized by a
quadratic ax2 + bx + c with coefficients a > 0, b and c determined from the
majorization requirements (see an example in Figure 1, right panel). Finally,
−SB(T ) expressed in terms of the above quadratics can be majorized by the
following function, written in matrix notation as:

µ−SB (T, T̄ ) = tr(T TZTGZT ) − tr(T TZTCZT̄ ) + K2, (8)
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where Z is the matrix obtained by joining X and Y together, row-wise, and
G, C are design matrices dependent on T̄ , whose non-zero elements mij are:

mij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
pij for i ∈ [1;NX ] and j ∈ [NX + 1;N ],
pij for i ∈ [NX + 1;N ] and j ∈ [1;NX ],

NX+NY∑
k=1,k �=i

mik for i = j,
(9)

where pij is equal to −1 and −1/
(
dB

ij(T̄ )
)2 for C and G, respectively (see

Kosinov (2003) for derivation details and a description of an alternative faster
method based on Taylor series expansion).

Finally, combining results (6) and (8), we obtain a majorizing function of
the log J(T ) optimization criterion:

µlog J(T, T̄ ) = αµSW + βµ−SB

=
α

2
tr
(
T TXTBXT

)
+ βtr(T TZTGZT )

−βtr(T TZTCZT̄ ) + K3, (10)

that is used to find an optimal transformation T minimizing log J(T ) criterion
via the iterative procedure described in Heiser (1995), and, thus, constitutes
the core of the proposed distance-based discriminant analysis (DDA) method.

While at every iteration it is possible to minimize (10) by solving a system
of linear equations, it is often recommended, Krogh and Hertz (1992), that
a length-constrained solution be found, especially in the case of classifiers
capable of achieving zero training error, to prevent overfitting. By incorpo-
rating the constraint into the Lagrangian, we obtain a standard trust-region
subproblem, for which efficient solution methods exist, Rojas et al. (2000),
Hager (2001).

4 Dimensionality reduction and multiple-class setting

For any T ∈ Rm×k, k < m, the proposed method has an additional advan-
tage of being a dimensionality reduction technique. Moreover, the value of
k, i.e., the exact number of dimensions the data can be reduced to with-
out loss of discriminatory power with respect to (3), is precisely determined
by the number of non-zero singular values of T . Indeed, the distances be-
tween the transformed observations may be viewed as distances between the
original observations in a different metric TT T , that can be expressed as
TT T = USV TV SUT = UkS

2
kU

T
k using the singular value decomposition of

T . The obtained expression reveals that the effect of the full-dimensional
transformation T is captured by the first k left-singular vectors of T scaled
by the corresponding non-zero singular values, whose number gives an answer
to the question of how many dimensions are needed in the transformed space.
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While the above discussion is concentrated mostly on the two-class con-
figuration, it is straightforward to generalize the presented formulation to a
multiple-class discriminant analysis setting, for the number of classes K ≥ 2:

log JK(T ) =
K−1∑
i=1

(
α(i)SW (T )(i) − β(i)SB(T )(i)

)
. (11)

5 Experimental results

Our empirical analysis was based on data sets from the UCI Machine Learning
Repository, Blake and Merz (1998). First of all, we verified that the solutions
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Fig. 2. Two-dimensional discriminative projections of the Sonar data set: inferior
solutions found by the gradient descent method

of the optimization problem formulated in Section 2 found by the proposed
method were of better quality compared to those of generic techniques, con-
firming the results reported by Van Deun and Groenen (2003), and Webb
(1995). Indeed, numerous random initializations of the gradient search led to
inferior as well as unstable results reflected in higher values of logJ (see Fig-
ure 2), while the IM-based method proved nearly insensitive to the choice of
the initial supporting point and regularly reached far lower criterion values
maintaining convergence property at all times. We also validated the pro-
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Fig. 3. Dimensionality reduction experiments: classification performance results
(left) and singular values of T ∈ Rm×m (right). The dashed lines mark the boundary
that determines the dimensionality of the transformed space.
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posed dimensionality reduction technique by analysing how the classification
performance varied with respect to k, the dimensionality of the transformed
space, and how it was related to the number of non-zero singular values of the
full-dimensional transformation, an example of which for the Sonar data set is
depicted in Figure 3. The right pane plots 10 largest out of 60 singular values
of the full-dimensional transformation, in descending order, while the left di-
agram shows the results of 10-fold cross-validation experiments with respect
to the transformed space dimensionality. Dot-filled bars denote performance
achieved by fixing k a priori, while shaded bars show results obtained from
a k-truncated SVD of the full-dimensional transformation. It is easy to see
that the singular values beyond the 7th are virtually zero. And as the dia-
gram on the left confirms, adding dimensions beyond 7 no longer improves
the classification performance (confirmed by Chow test at 99% confidence).

The experiments with the rest of the UCI data sets compared 10-fold
cross-validation classification performance of the nearest neighbor classifier
in the original feature space (denoted as NN) and that achieved in the trans-
formed space derived by the proposed distance-based discriminant analysis
method (denoted henceforth as DDA+NN). Hence, the goal of this analysis
was to assess the effect of applying a DDA transformation on the accuracy
of the NN classifier. The error rates of NN and DDA+NN data classifica-
tion experiments are presented in Table 1, showing a consistent improvement

Table 1. Classification results for UCI data sets

Data set Classes % Error of NN % Error of DDA+NN

Hepatitis 2 29.57 0.00
Ionosphere 2 13.56 7.14
Diabetes 2 30.39 27.11
Heart 2 40.74 21.11
Monk’s P1 2 14.58 0.69
Balance 3 21.45 3.06
Iris 3 4.00 3.33
DNA 3 23.86 6.07
Vehicle 4 35.58 24.70

in performance. A separate set of experiments (see Kosinov (2003) for de-
tails) using the ETH80 database also revealed the importance of the length
constraint, introduced in Section 3 to avoid overfitting. The results of these
tests demonstrated up to 20% better classification accuracy for the length-
constrained version of the method. Additionally, the results of our more recent
experiments reveal that the DDA combined with an SVM classifier, Cristian-
ini and Shawe-Taylor (2000), produces a smaller number of support vectors
leading to better classification accuracy.
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Abstract. The CHAID algorithm has proven to be an effective approach for ob-
taining a quick but meaningful segmentation where segments are defined in terms
of demographic or other variables that are predictive of a single categorical crite-
rion (dependent) variable. However, response data may contain ratings or purchase
history on several products, or, in discrete choice experiments, preferences among
alternatives in each of several choice sets. We propose an efficient hybrid method-
ology combining features of CHAID and latent class modeling (LCM) to build a
classification tree that is predictive of multiple criteria. The resulting method pro-
vides an alternative to the standard method of profiling latent classes in LCM
through the inclusion of (active) covariates.

1 Background and summary of approach

The CHAID (Chi-Squared Automatic Interaction Detection) tree-based seg-
mentation technique has been found to be an effective approach for obtaining
meaningful segments that are predictive of a K-category (nominal or ordinal)
criterion variable. For example, the dependent variable might be response to
a mailing (responders vs. non-responders). Each of the resulting segments,
depicted as a terminal node in a tree diagram, is defined as a combination of
directly observable categorical predictors such as AGE = 18-24 & INCOME
= $80,000+. Descriptive entries in each tree node consist of the sample size
and the corresponding observed distribution on the dependent variable (e.g.,
associated response rate).

Latent class (LC) models are useful in identifying segments that underlie
multiple response variables. While the resulting latent classes can be either
ordered (ordinal latent variable) or unordered (nominal latent variable), they
are not actionable like CHAID segments, because by definition they are un-
observable (latent).

In this paper we propose a hybrid methodology that combines strengths
of both approaches. After decomposing a set of M response variables into K
underlying latent class segments, a modified CHAID algorithm is used with
the K latent classes serving as the K-category nominal (ordinal) criterion
variable. The resulting CHAID segments, derived from selected demographic
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or other exogenous variables that are predictive of the classes, should also
tend to be predictive of the M criterion variables.

The hybrid method also provides an alternative to the use of covariates
in LCM to profile the classes. In practice, one or more demographic or other
exogenous variables are included in an LCM to describe/predict the latent
classes using a multinomial logit model. The proposed CHAID-based alterna-
tive is especially advantageous when the number of covariates is large, when
covariate effects are non-linear, or when there are complicated higher-order
interactions.

In the next section we provide brief introductions to the standard CHAID
algorithm and the standard LC (cluster and factor) models. We then provide
the technical details of the hybrid approach, followed by an empirical example
from a pre-post survey (Burns et al. (2001)). We conclude with some final
remarks.

2 The CHAID algorithm

The original CHAID algorithm was introduced by Kass (1980) for nomi-
nal dependent variables. CHAID is a recursive partitioning method useful
in exploratory analyses that relate a potentially large number of categorical
predictor variables to a single categorical nominal dependent variable. It was
extended to ordinal dependent variables by Magidson (1993) who illustrated
how this extension could be used to take advantage of fixed scores such as
profitability, for each category of the dependent variable when such scores are
known, as well as how to estimate meaningful scores when category scores
are unknown. Chi-squared goodness of fit tests are used to identify signifi-
cant predictors, and to merge predictor categories that do not differ in their
prediction of the dependent variable.

Predictor categories are eligible to be merged according to specified scale
types. Any categories of Nominal (“free”) predictors can be merged, while
only adjacent categories of ordinal or grouped continuous (“monotonic”) pre-
dictors are allowed to merge. A final scale type (“float”) may be used to
specify that the variable is to be treated as monotonic except for the final
category, often corresponding to a ‘don’t know’ or ‘missing’ response, which
is free to merge with any of the other categories. Technical settings include
significance levels associated with merging and splitting and a stopping rule.
A case weight and a frequency variable may also be included in the analysis.

As an example, Figure 1 illustrates a CHAID analysis based on data from
a post-election survey on 1,051 persons who voted for either Bush or Gore
in the 2000 U.S. election. The dependent variable (VOTE) is the candidate
voted for and the predictors are 5 demographic variables: 1) MARSTAT
(1=married, 2=widowed, 3= separated/divorced, 4= never married, 5= other
– “Free”), AGEr (1=18-24, 2=25-34, 3=35-44, 4= 45-54, 5= 55-64, 6=65+,
‘.’ = refused – “Float”), GENDER (1 = male, 2 = female), EDUCATION
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Fig. 1. CHAID tree for VOTE.

(1 = less than HS, 2= HS grad, 3= some college, 4=college grad, 5= post
grad, 5-refused – “Float”), and EMPLOYED (1 = Yes, 2 = No, 3 = retired
– “Free”).

Overall, 48.2% voted for Bush. This is displayed in the top (root node) of
the tree. Among the 5 demographic predictors included in this analysis, only
2 were significant at the root node – MARSTAT (p<.00001), and GENDER
(p<.01). The CHAID analysis resulted in 4 segments. The best segments
for Bush are S1, consisting of the 673 married voters (53.94% for Bush)
and S2 consisting of 100 unmarried employed males (53.67% for Bush). The
remaining segments – S3 (unmarried unemployed males) and S4 (unmarried
females) – voted more than 2:1 in favor of Gore over Bush.

One limitation of CHAID is that segments are defined based on a single
criterion variable. Given situations where multiple criteria exist, it is not clear
how one should go about obtaining a single common segmentation. Using one
dependent variable as the criterion may result in one set of segments, while
use of an alternative dependent variable will likely yield a different set of
segments. Moreover, the categories of a predictor may merge in different ways
depending upon which dependent variable is used, again leading to different
segments.

In addition, when multiple dependent variables do exist, they may be
of different scale types (nominal, ordinal, continuous, count, etc.). Using a
3-category response variable as an example Magidson (1993) showed that
CHAID segments resulting from treating the dependent variable as ordinal
(using profitability scores for the categories) differed substantially from seg-
ments derived from the nominal algorithm which ignored the scores. The
hybrid approach resolves the need to chose between different segmentations
because indicators with differing scale types can be used in extended LCMs,
yielding a single LC solution. An important advantage of this hybrid approach
over approaches based on specific measures for node homogeneity rather than
a model (e.g., Kim and Lee (2003)) is that the LC model used here can handle
dependent variables of different scale types.
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3 Latent class modeling

A LC model postulates a nominal K-category latent (unobservable) variable
X to explain the associations/correlations between the observed response
variables (multiple criteria; Lazarsfeld and Henry (1968); Goodman (1974)).
Each category of X is called a latent class. Let Ym denote one of M nominal
response variables, m = 1, 2...,M ; jm is a particular response category and
Jm the number of categories of variable Ym. Notation Y and j is used to refer
to a full response vector and a full set of response categories. The LC model
for M response variables is defined as

P (Y = j) =
K∑

k=1

P (X = k,Y = j) =
K∑

k=1

P (X = k)P (Y = j|X = k)

=
K∑

k=1

P (X = k)
M∏

m=1

P (Ym = jm|X = k), (1)

where P (X = k) denotes the probability of being in latent class k, k =
1, 2, ...,K, and P (Ym = jm|X = k) denotes the conditional probability of
obtaining the jmth response to item Ym, from members of class k, jm =
1, 2, ..., Jm.

Cases with response pattern j are typically classified into the latent class
for which the posterior membership probability P (X = k|Y = j) is highest.
Estimates for the posterior membership probabilities – for k = 1, 2, ...,K –
can be obtained using Bayes theorem as follows:

P (X = k|Y = j) =
P (X = k,Y = j)

P (Y = j)
. (2)

The numerator and denominator were defined in equation (1).
Recent advances allow for dependent variables (indicators) of varying scale

types to be used – including mixing categorical, continuous, and count vari-
ables – by specifying the appropriate probability densities P (Ym = jm|X = k)
(Vermunt and Magidson (2002)). By expressiong the mean of these densities
in terms of a generalized linear model (GLM), one can include direct effects
between 2 or more indicators, multiple categorical latent variables, contin-
uous latent factors and/or other terms into the model (see Magidson and
Vermunt (2001); Vermunt and Magidson, (2005)).

It is also possible to include one or more exogenous variables called covari-
ates in a LCM, allowing one to explore the relationship between exogenous
variables and the latent classes and assess the significance of such relation-
ships in a formal way. However, the covariates included in LCM influence
the estimates of the parameters in the original measurement model. If the
covariate part of the model holds true, inclusion of the covariates improves
the efficiency of the estimates. However, if it is misspecified, the estimates
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may become somewhat biased. In addition, profiling latent classes in terms
of many covariates may cause the solution to become unstable. As an alter-
native, Magidson and Vermunt (2001) allow covariates to be treated in an
inactive manner – providing appropriate cross-tabulations but not influenc-
ing the original measurement model. But this approach comes at the expense
of no longer being able to assess statistical significance.

In the next section, we show how the hybrid algorithm provides an al-
ternative treatment to the use of both active and inactive covariates in LC
models. The new approach provides an assessment of statistical significance
for selected covariates included within the LCM framework, whether the co-
variate is specified as active or inactive. Those covariates specified as inactive
do not alter the estimates obtained from the LCM.

4 The hybrid CHAID algorithm

Our hybrid CHAID algorithm involves 3 steps.

1. Perform an LC cluster analysis on M response variables to obtain K
latent classes.

2. Perform a CHAID analysis using the K classes as a nominal dependent
variable.

3. Obtain predictions for each of M response variables based on the resulting
CHAID segments and/or on any preliminary set of CHAID segments.

Step 1 yields class-specific predicted probabilities for each category of the
m-th dependent variable1, as well as posterior membership probabilities for
each case.

Step 2 yields a set of CHAID segments that differ with respect to their
average posterior membership probabilities for each class. We use the poste-
rior membership probabilities defined in equation (2) as fixed case weights as
opposed to the modal assignment into one of the K classes. This weighting
eliminates bias due to the misclassification error that occurs if cases were
equated (with probability one) to that segment having the highest posterior
probability. Specifically, each case contributes K records to the data, the kth
record of which contains the value k for the dependent variable, and contains
a case weight of P (X = k|Y = j), the posterior membership probability
associated with that case. Thus, as opposed to the original algorithm where
chi-square is calculated on observed 2-way tables, in the hybrid algorithm,
the chi-squared statistic is computed on 2-way tables of weighted cell counts.2

If as an alternative to performing a standard LC analysis, one performs
an LC factor analysis in step 1, in step 2 the CHAID ordinal algorithm can
1 When one or more of the dependent variables are quantitative, for each class this

step also yields predicted means for the quantitative dependent variables.
2 The new algorithm also incorporates sampling weights, if present, using an effi-

cient ML algorithm proposed by Vermunt and Magidson (2001).
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Fig. 2. Hybrid CHAID tree for 11 dependent variables.

be used to obtain segments based on the use of any of the LC factors as the
ordinal dependent variable, or a single segmentation can be obtained using
the nominal algorithm to identify segments based on the single joint latent
variable defined as a combination of two or more identified LC factors.

Step 3 involves obtaining predictions for any or all of the M dependent
variables for each of the I CHAID segments by cross-tabulating the resulting
CHAID segments by the desired dependent variable(s). An alternative is to
obtain predictions as follows

P (Ym = j|i) =
K∑

k=1

P (Ym = j|X = k)P (X = k|i).

As can be seen, we compute a weighted average of the class-specific distri-
butions for dependent variable Ym obtained in step 1 [P (Ym = j|X = k)],
with the average posterior membership probabilities obtained in step 2 for
segment i being used as the weights [P (X = k|i)].

5 Empirical example

Among other questions, the pre-election survey solicited ratings for each can-
didate on 5 attributes – leadership, caring, knowledge, honesty and morality.
A LCM was fit to these data, using VOTE as an active covariate, and the
5 demographics as inactive covariates. This model may be viewed as a kind
of unsupervised regression with 11 dependent variables – VOTE, plus the
10 attribute ratings. This LCM yielded 3 segments. The first segment (32%)
favored Gore, the second (39%) was neutral and the third favored Bush with
respect to the attribute ratings and in their votes. These percentages are
displayed in the root node of the hybrid CHAID tree in Figure 2.

The hybrid CHAID used the 3-category latent variable (segments) as the
dependent variable and again utilized the 5 demographics as the predictors.
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Fig. 3. Hybrid CHAID tree for VOTE.

At the root node 3 of the 5 predictors were found to be significant – MAR-
STAT (p < .00002), AGEr (p<.001), and GENDER (p=.01). Compared to
our earlier CHAID, age is more important than when VOTE was the only de-
pendent variable. The hybrid CHAID analysis resulted in 6 segments (Figure
2). Since the attributes are now included as additional dependent variables
(the latent classes are a proxy for these dependent variables) we might expect
that the resulting segments might predict any single dependent variable less
well than CHAID based on only that dependent variable.

Figure 3 shows how the 6 hybrid segments predict VOTE. To compare this
to the predictions based on our original segments (Figure 1) we first compare
those segments favorable to Bush. Our previous analysis identified segments
S1 and S2 as favorable to Bush. The hybrid CHAID (Figure 3) identifies 3
segments most likely to vote for Bush – segments 1, 2 and 3. Note that these
3 segments combined, are equivalent to the original segment S1. Since the
hybrid CHAID fails to yield any additional segments that prefer Bush such
as S2, it appears that the hybrid segmentation predicts VOTE less well than
the original CHAID. Similarly, focusing on segments most favorable to Gore,
our previous CHAID identified S3 and S4 (n= 277 cases) as favoring Gore
by more than 2:1. The hybrid CHAID finds segments 4, 5 and 6 as favoring
Gore, but not by as much as 2:1 over Bush.

6 Final comments

In this paper, we introduced a hybrid CHAID algorithm3 as an extension
of CHAID to multiple dependent variables of possibly differing scale types.
Alternatively, this hybrid algorithm could be described as an alternative to
the standard treatment of active and/or inactive covariates in LCM. The

3 The extended CHAID algorithm has been implemented in a commercially avail-
able computer program called SI-CHAID 4.0, and works in conjunction with the
latent class programs Latent GOLD 4.0 and Latent GOLD Choice 4.0.



CHAID for Multiple Dependent Variables 183

CHAID-type output can simplify the process of examining the relationship
between the demographics and/or other exogenous variables and the latent
segments by 1) ranking the covariates from most to least significant and 2)
for each covariate, merging categories that are not significantly different. This
new output is especially valuable when the number of covariates is large.

We illustrated the hybrid algorithm here with dependent variables con-
sisting of favorability ratings of Bush and Gore on 5 attributes plus the actual
vote among 1,051 voters in the 2000 U.S. election. We showed how the hybrid
CHAID provides a unique segmentation. We showed how it compares with
a segmentation obtained using the traditional CHAID algorithm for a single
dependent variable – VOTE. The results suggest that the segments resulting
from the hybrid CHAID may fall somewhat short of predictability of any
single dependent variable in comparison to the original algorithm, but makes
up for this by providing a single unique set of segments that are predictive
of all dependent variables.
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Abstract. Several possibilities of defining the expectation of random p-dimension-
al intervals are proposed. After defining the expectation via reducing intervals to
their extremal points p-dimensional intervals (rectangles) are treated as Random
Closed Sets (RCSs). In this framework Random Closed Rectangles (RCRs) are
defined and the properties of different definitions for expectations of RCSs, applied
on RCRs are studied. In addition known mean values of interval data are integrated
in this generalized approach.

1 Introduction

Clustering methods often use class representatives or prototypes to describe
data clusters. Prototypes are involved in many clustering criteria, where the
dissimilarity between a data point and a cluster representative is considered.
Moreover, the properties of a cluster are often characterised briefly by one
single data point, e.g. the class centroid.
There are several clustering methods preparing p-dimensional interval data
x1, . . . , xn with

xi = [ai, bi], ai ≤ bi ∈ IRp (that means ai,j ≤ bi,j ∀i, j),
:= [ai,1, bi,1] × · · · × [ai,p, bi,p], i = 1, . . . , n.

For instance these data could be daily meteoroligical data (atmospheric pres-
sure, temperature, air humidity, etc.) of a certain city, or medical data (blood
pressure, temperature,...) of different patients. These data consist of many
different measuremnts which are contained in an interval.
When preparing p-dimensional interval data with a certain clustering method
one is correspondingly searching for the mean of intervals as the representa-
tive of all intervall data in a class. This leads to the question how the mean of
some p-dimensional intervals is defined. We will introduce two different ways
of defining a mean of (p-dimensional) intervals, which also can be taken by
hyper-rectangles. First we reduce an interval to its minimum and its maxi-
mum value to shift the problem to the case of real-valued data, where the
definition of expectation and mean is well known. In the second approach
we treat an interval as a a special form of closed (convex) sets and use the
theory of Random Closed Sets (RCSs) to define the mean via some different
definitions of expectation.
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2 Reduction to characteristic points

In this chapter a very obvious possibility to average a set of p-dimensional
rectangles is studied. Like circles can be characterised only by their midpoint
and their radius rectangles can also be reduced to some few points. Hence, we
want to use the lower left vertex and the upper right vertex to characterise
a subset of IRp by only two p-dimensional real-valued vectors. To put this
approach in a more formal framework we use the transformations t, t−1 to
switch between rectangles and pairs of p-dimensional vectors. On
Q := {Q ⊂ IRp| Q = [a, b], a ≤ b ∈ IRp} we define

t : Q −→ IRp × IRp, (1)
t(Q) = t([a, b]) := (a, b) ∀Q ∈ Q,

t−1 : {(a, b) ∈ IRp × IRp| a ≤ b} −→ Q, (2)
t−1((a, b)) := [a, b] ∀(a, b) ∈ {(a, b) ∈ IRp × IRp| a ≤ b}.

Definition 1. Let (Ω,A, P ) be a probability space and X = (A,B) : (Ω,A)
→ (IRp × IRp,B2p) a random variable which satisfies

A ≤ B a.s. (3)

Then we call X a Random Point Rectangle (RPR).

Definition 2. Let X = (A,B) a Random Point Rectangle with the property
that A,B are integrable. Then the expectation of X is defined as

Ê[X ] := (E[A],E[B]). (4)

Remark 1. Treating a p-dimensional interval as a pair of points gives us the
ability to obtain a definition for the mean of a finite set of rectangles.
Let {Q1, . . . , Qn} be a set of p-dimensional intervals and M(·) the empir-
ical mean (corresponding to Definition 2 of expectation) of a finite set of
p-dimensional RPRs. Then we obtain

M̂ := t−1(M(t(Q1), . . . , t(Qn))) (5)

as a mean of p-dimensional intervals. This result coincides with the intuitive
way to built the mean of finitely many rectangles and this identicalness leads
from the also intuitive construction of Ê. Later in Section 4 we will get the
same mean from a more general construction of expectation.

3 Several expectations of Random Closed Sets

Bearing in mind that the source of the treated rectangles can be values which
shall be represented by their complete spectrum and not only by their ex-
tremal points now we treat the rectangles as ’real’ subsets of IRp.
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According to this proceeding one considers p-dimensional intervals as reali-
sations of set-valued random variables. We will introduce briefly to the more
general theory of Random Closed Sets (RCSs) based on Matheron (Matheron
(1975), Stoyan and Mecke (1983)) to provide a basis for several definitions of
expectations.
Let F be the system of all closed subsets in IRp and K the system of all
compact subsets. Then we consider the σ-algebra F on F which contains for
all K ∈ K:

FK := {F ∈ F| F ∩ K �= ∅}. (6)

Definition 3. A Random Closed Set (RCS) is a random variable X with
values in (F ,F).
X is called convex, if X is convex almost surely.
X is called a Random Closed Rectangle (RCR), if X is a closed rectangle
almost surely.

Remark 2. The distribution PX of a RCS X is determined by knowing
PX(FK) for all K ∈ K.

3.1 The Aumann expectation

Definition 4. Let (Ω,A, P ) be a probability space and X : (Ω,A) → (F ,F)
a RCS. A random point φ : (Ω,A) → (IRp,Bp) is called selection of X , if

φ(ω) ∈ X(ω) a.s. (7)

Definition 5. Let (Ω,A, P ) be a probability space, X : (Ω,A) → (F ,F) a
RCS and ΦX the set of all selections of X . Then

EA[X ] := {E[φ]| φ ∈ ΦX} (8)

is called the Aumann expectation of X.

3.2 The Frechet expectation

Definition 6. For closed A,B ⊆ IRp and with de : IRp × IRp → IR+ the
euclidean distance we can define the Hausdorff-distance between A and B as:

d(A,B) := max{max
x∈A

min
y∈B

de(x, y),max
y∈B

min
x∈A

de(x, y)}. (9)

Let be X a Random Closed Set. Then the solution K0 of

E[d(X,K0)2] = min
K∈K

E[d(X,K)2] (10)

is called the Frechet expectation EF [X ] of X .
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Remark 3. Although the Frechet expectation is in general very hard to spec-
ify, because it is a solution (existence, uniqueness?) of a hard optimisation
problem it can be generalised to a whole class of different expectations, if the
type of distance is changed. We can consider the Aumann expectation as a
special case (see Molchanov (1997)) and moreover, we are able to choose spe-
cial distances for rectangles such that the expectation of RCRs has a closed
solution (see Section 4).
The second advantage of this definition of expectation is the fact that we
obtain a formulation of a corresponding variance, too. If

VF := min
K∈K

E[d(X,K)2] (11)

is considered as a Frechet-Variance, it is possible to show several properties
of this object the variance of a real-valued random variable has.

3.3 The Doss expectation

As the kinds of expectation introduced above the Doss expectation is also
defined via a distance measure.

Definition 7. Let (Ω,A, P ) be a probability space and X : (Ω,A) → (F ,F)
a RCS. Consider for an arbitrary x ∈ IRp

Mx := {y ∈ IRp| de(x, y) ≤ E[d(x,X)]}, (12)

then

ED[X ] :=
⋂

x∈IRp

Mx = {y ∈ IRp| de(x, y) ≤ E[d(x,X)] ∀x ∈ IRp} (13)

is called the Doss expectation of X .

Remark 4. In analogy to the Frechet expectation it is possible to vary the
distance measure. A whole family of different expectations of RCSs can be
obtained that way, but there are even more possibilities. Instead of using
the expectation E[d(x,X)] in (12) it would be possible to use an arbitrary
functional on IRp.

Theorem 1. The Doss expectation of a Random Closed Set is convex.

Proof. see Nordhoff (2003).

3.4 The Vorob’ev expectation

In contrast to the other presented expectations the Vorob’ev expextation
is defined via the volume of a Random Closed Set. As the volume of the
boundary is zero, the boundary of the RCS will not play that important role
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as in the other definitions of expectation.
The Vorob’ev expectation uses the characteristic function of a RCS, viz the
function 1lX : IRp × Ω → {0, 1} with

1lX(ω)(x) =
{

1, if x ∈ X(ω),
0, else. (14)

Definition 8. Let (Ω,A, P ) be a probability space and X : (Ω,A) → (F ,F)
a RCS. Then the function pX : IRp → [0, 1] with

pX(x) := E[1lX(x)] =
∫

Ω

1lX(ω)(x) dP (ω) = P (x ∈ X) (15)

is called cover function of X .

Definition 9. Let (Ω,A, P ) be a probability space, X : (Ω,A) → (F ,F) a
RCS and pX : IRp → [0, 1] the cover function of X . For an arbitrary q ∈ [0, 1]
and the Lebesgue-measure λp in IRp one considers

Lq(X) := {x ∈ IRp| pX(x) ≥ q} and (16)
q0 := inf{q ∈ [0, 1]| λp(Lq(X)) ≤ E[λp(X)]}. (17)

Then the Vorob’ev expectation EV [X ] of X is defined by

EV [X ] := Lq0 . (18)

Remark 5. The set L 1
2
(X) of a compact RCS X is often named Median (see

Stoyan and Stoyan (1994)), because it minimises the expected volume of the
symmetric difference between X and a Borel-set.

4 Expectations of Random Closed Rectangles

After introducing several definitions of epectations for RCSs one is interested
in the behaviour of theses expectations, if the underlying sets are Random
Closed Rectangles.

4.1 The Aumann expectation

A very pleasant property of the Aumann expectation and the resulting mean
for a finite number of fixed closed rectangles is the easy evaluation. More pre-
ciseley they coincide with the expectation/mean of Definition 2 and Remark
1.

Theorem 2. Let (Ω,A, P ) be a probability space, X : (Ω,A) → (F ,F) a
RCR and the functions t, t−1 defined like in (2) und (3). If the expectation
Ê[t(X)] exists, it is applied to the Aumann- Expectation:

EA[X ] = t−1(Ê[t(X)]). (19)
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Proof. Let (Ω,A, P ) be a probability space, F the system of closed sets in
IRp and let for the RCR X : (Ω,A) → (F ,F)

X(ω) = [A(ω), B(ω)]
= [A1(ω), B1(ω)] × [A2(ω), B2(ω)] × · · · × [Ap(ω), Bp(ω)]

with A(ω) ≤ B(ω) ∈ IRp a.s. be valid.
To raise survey we abandon the transformations t, t−1. That means, we write
Ê[X ] instead of t−1(Ê[t(X)]) in this proof, although the expectation Ê[·] is
defined on the set of Random Point Rectangles.
Like in Chapter 2 it is

Ê[X ] := [E[A], E[B]] = [E[A1], E[B1]] × · · · × [E[Ap], E[Bp]]. (20)

We want to show: EA[X ] = Ê[X ].

⊆: We consider x ∈ EA[X ], then there is a selection φ : (Ω,A) → (IRp,Bp)
of X with x = E[φ] and φ(ω) ∈ X(ω) a.s. Thus

E[A] =
∫

Ω

A(ω) dP (ω) ≤
∫

Ω

φ(ω) dP (ω) = x (21)

≤
∫

Ω

B(ω) dP (ω) = E[B],

because A(ω) ≤ φ(ω) ≤ B(ω) a.s. It follows from (21) that

x ∈ Ê[X ]. (22)

⊇ : Consider now x ∈ Ê[X ], then there are real-valued 0 ≤ t1, . . . , tp ≤ 1
satisfying

x =

�
��

t1E[A1] + (1 − t1)E[B1]
...

tpE[Ap] + (1 − tp)E[Bp]

�
�� = E

�
��

�
��

t1A1

...
tpAp

�
��

	

�+ E

�
��

�
��

(1 − t1)B1

...
(1 − tp)Bp

�
��

	

� .

We choose now φ : (Ω,A) → (IRp,Bp) with

φ(ω) =

⎛⎜⎝ t1A1(ω)
...

tpAp(ω)

⎞⎟⎠+

⎛⎜⎝ (1 − t1)B1(ω)
...

(1 − tp)Bp(ω)

⎞⎟⎠ ∀ω ∈ Ω.

Then φ is a selection of X , due to φ(ω) ∈ X(ω) ∀ω ∈ Ω and we obtain
x = E[φ]. So we can conclude that x ∈ EA[X ].

With the aid of Theorem 2 the canonical definition of Aumann mean
can be replaced by a simple representation, if the underlying objects are
rectangles.
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Proposition 1. Let Q1, . . . , Qn be fixed closed p-dimensional intervals. To
get a definition for ’mean’ via Aumann expectation we construct a finite prob-
ability space (Ω,A, P ) with Ω = {ω1, . . . , ωn}, A = P(Ω) and P as the
uniform distribution on Ω. By defining a Random Closed Rectangle X with
X(ωi) := Qi, i = 1, . . . , n, we get the Aumann mean MA(Q1, . . . , Qn) :=
EA[X ], and taking note of Theorem 2 we obtain

MA(Q1, . . . , Qn) = M̂(Q1, . . . , Qn). (23)

4.2 The Frechet expectation

As proposed in Remark 3 it is possible to define various kinds of expectation
and mean, if we consider several distance measures between sets. In the case of
p-dimensional intervals there are several distance measures between intervals
(for example see Chavent (2000)).

Example 1. Now, we take a look at the distance d̃ : Q×Q → IR+, satisfying

d̃([a, b], [a′, b′]) :=

√√√√ p∑
i=1

(ai − a′i)2 + (bi − b′i)2 a ≤ b, a′ ≤ b′ ∈ IRp. (24)

Looking for a closed form of the Frechet expectation of RCRs with respect
to this special kind of distance-measure one can show easily (see Nordhoff
(2003)) that this expectation coincides with the expectation which is defined
in Definition 2.

In the case of a finite number of rectangles the optimisation problem which
is connected to the Frechet expectation is treated in Chavent and Lechevallier
(2002) for a special form of Hausdorff-distance.

4.3 The Doss expectation

Like the Aumann expectation and the version of Frechet expectation in Ex-
ample 1 the Doss-Expectaion of Random Closed Rectangles coincides under
the assumption of uniform boundedness with the expectation which is de-
fined in Def. 2 (for details see Nordhoff (2003). Therefore the Doss mean of a
finite number of closed rectangles which is defined in a canonical way like the
Aumann mean (via constructing a uniformly bounded RCR) is concordant
with the empirical mean of the corresponding RPRs.

4.4 The Vorob’ev expectation

The Vorob’ev expectation depends on the volume of the RCR and therefore
does not conserve the shape as the following simple example shows.
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Example 2. In the case of p = 2 let be X the (convex) RCR with

X(ω) =

{
Q1 := [1, 2] × [1, 2], with probability 1

2 ,

Q2 := [3, 6] × [1, 8], with probability 1
2 .

(25)

Then the Vorob’ev expectation of X is EV [X ] = Q1 ∪ Q2, in particular it is
no rectangle and not convex.

Additionally in case of simple probability spaces , the ’approximation of
the expected volume’ often fails. So this kind of expectation is not suited to
built a mean of random rectangles.

5 Discussion

We have considered the problem of building a mean of p-dimensional rectan-
gles in a more general framework. With the aid of Random Closed sets the
intuitive way of building the mean can be embedded as a special case. This
fact legitimates the intuitive approach and in some cases it specifies a closed
form for expectations of Random Closed Sets.
There are more imaginable approaches to define an expectation for RCSs
and thus a mean of p-dimensional intervals, but it has to be analysed if the
resulting mean has reasonable properties. The different kinds of expectations
considered in this paper have shown that only those expectations of RCSs
seem useful for RCRs which take the shape of the sets into account.
Furthermore, in this paper we always use the empirical mean as a standard
estimator for the expectation of RCSs. But taking other statistical models
(Stoyan and Mecke (1983)) into account one could use an estimated distrib-
ution of RCRs to build the mean of intervals.
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Abstract. This paper analyses the influence of 13 stylized facts of the German
economy on the West German business cycles from 1955 to 1994. The method
used in this investigation is Statistical Experimental Design with orthogonal fac-
tors. We are looking for all existing Plackett-Burman designs realizable by coded
observations of these data. The plans are then analysed by regression with forward
selection and various classification methods to extract the relevant variables for
separating upswing and downswing of the cycles. The results are compared with
already existing studies on this topic.

1 Introduction

In the following, existing data are analysed using the method of statistical
experimental design. The aim of experimental design is to estimate factor
effects with the highest accuracy possible. Usually, an experimental design
with fixed factor levels is taken and the response of the experiment is used
to find factors of high influence with as few experiments as possible. Thus
the optimal factors determining the response are found faster and with less
expense than by carrying out all experiments with all possible factor level
combinations. In order to detect the variables which do influence the up- and
downswing phases of the economy, we use a special type of screening plans,
namely Plackett-Burman plans. Contrary to the method of full factorial de-
signs, which investigate main effects and all possible interactions, these plans
are employed to find only the main effects in the model.

The original data used here are highly correlated. In order to eliminate
these correlations, the data are coded by -1 and +1 only and then special ob-
servations are selected building Plackett-Burman plans. The main advantage
of this method is that it selects the most important factors not disturbed by
correlations in the data. By this procedure, on the one hand, the data are
reduced by the discrete coding by -1 and +1 and on the other hand by choos-
ing special observations only. In order to at least partially compensate this,
we are analysing all existing Plackett-Burman plans with respect to the data
� This work has been supported by the Deutsche Forschungsgemeinschaft, Sonder-

forschungsbereich 475. We also thank Uwe Ligges and Karsten Luebke for their
support.
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and finally choose those variables which are, what we call, uniquely correlated
to the up- and down phases of the economy. The following investigations are
based on 13 stylized facts of the West German economy (cf. Heilemann and
Münch (1999)) which have been selected by Heilemann and Münch to ex-
plain the German business cycle. There exists already a number of papers
which analyse and interpret these data based on, e.g. classification methods
like linear discriminant analysis and time series analysis (cp. Heilemann and
Münch (1999), Weihs, Röhl and Theis (1999), Weihs and Garczarek (2002)).

In this paper in the first step, we code the data to -1 and +1 and in the
second step we look for all Plackett-Burman plans in the coded data. All
these plans are analysed by stepwise regression with forward selection, by
unpruned classification trees, by trees consisting only of the tree stump and
by stepwise linear discriminant analysis (cp. Röver (2003)). All this is based
on an a priori classification of the response in the phases ‘up’, and ‘down’
in the years under investigation, based on Heilemann and Münch (1999).
Finally, the variables which have turned out to be important are compared
with the results of existing studies.

2 Data

The predictor data set consists of 13 variables which have been measured
quarterly (157 quarters) in the years 1955/4 to 1994/4 (price index base
is 1991) (cf. Heilemann and Münch (1999)). The variables (and their ab-
breviations) are real-gross-national product-gr (BSP91JW), real-private-con-
sumption-gr (CP91JW), government-deficit-rate (DEFRATE), wage-and
salary-earners-gr (EWAJW), net-export-rate (EXIMRATE), money-supply-
M1-gr (GM1JW), real-investment-in-equipment-gr (IAU91JW), real-
investment-in-construction-gr (IB91JW), unit-labour-cost-gr (LSTKJW),
GNP-price-deflator-gr (PBSPJW), consumer-price-index-gr (PCPJW),
nominal-short-term-interest-rate (ZINSK), real-long-term-interest-rate
(ZINSLR). The letters ‘gr’ are an abbreviation of ‘growth rates relative to
last years corresponding quarter’.

3 Plackett-Burman designs

Heilemann and Münch (1999) distinguish 4 phases of the business cycle:
‘upswing’, ‘upper turning point’, ‘downswing’ and ‘lower turning point’. Each
quarter has been assigned one of these phases which we assume to be the
correct one. Here only the phases ‘up-’, and ‘downswing’ are considered.
Therefore, the phases ‘upper turning point’ and ‘lower turning point’ are
split in the middle, i.e. if, e.g., the ‘upper turning point’ phase lasts for k
quarters, k ∈ N, [k/2] quarters will be added to the ‘upswing’ phase and
k − [k/2] quarters will be added to the succeeding ‘downswing’ phase, where
[x] denotes the so called Gauß brackets, i.e. the largest integer less or equal
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to x, x ∈ N. An analogous convention holds for the ‘lower turning point’
phase. These two phases ‘upswing’ and ‘downswing’ are coded by 0 and 1,
respectively. Note that two phase consideration is standard in business cycle
analysis. Thus, it is the natural starting point for our studies. Extensions to
4 classes are planned.

Plackett-Burman plans only exist if the number of experiments n is a
multiple of four and the number of variables is n-1 (cf. Plackett and Burman
(1946), Weihs and Jessenberger (1999)). The Plackett-Burman plan for n = 8
is shown in Table 1.

Table 1. Plackett-Burman plan with 8 experiments.

x1 x2 x3 x4 x5 x6 x7
1 - - - - - - -
2 - - + - + + +
3 + - - + - + +
4 + + - - + - +
5 + + + - - + -
6 - + + + - - +
7 + - + + + - -
8 - + - + + + -

The second row is called generating row, as it generates the rows 3–8 of
the matrix by being shifted one position to the right at each step. Plackett-
Burman plans are orthogonal arrays in the sense of (Hedayat et al. (1999)),
they are of the form OA(4λ, 4λ − 1, 2, 2), λ ∈ N, (λ = 2 in Table 1), i.e.
each factor has only two levels -1 and +1, the sum of each column is 0 and
columns are pairwise orthogonal. If an 8th column consisting only of +1’s
is added to the matrix, one gets a unique Hadamard matrix of order 8 (cp.
Hedayat et al. (1999)). Therefore it is necessary to code the existing data in
+1 and -1, in order to look for Plackett-Burman designs. For each variable,
all values less than its median are taken as -1 and all values greater than or
equal to its median are taken as +1. As there are 13 variables, one looks for
Plackett-Burman plans with n = 8 or n = 12 in the coded data. 113 different
plans were found for n = 8 and none for n = 12.

The algorithm for finding these plans is first to look for all rows which
contain at least seven times the number -1. The corresponding columns are
then searched for the generating row. After this has been found, the search
continues for the generating row shifted one position to the right, etc. This
process has to be carried out for all possible permutations of the original seven
columns. A much faster algorithm has been suggested by S.Haustein (private
communication), where one looks for the base row u0 = (− − − − − − −)
and then searches for a row v in the corresponding columns with Hamming
distance 4 to u0. After this has been found, one looks for a row v1 with
Hamming distance 4 to u0 and v. This process is continued until eight rows
have been found which are equidistant with Hamming distance 4. These eight
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rows form a Plackett-Burman plan for n = 8, because the Plackett-Burman
plan for n = 8 is an orthogonal array of the form OA(8, 8 − 1, 2, 2) and
this class has only one isomorphism class. Here two arrays are said to be
isomorphic (cf. Hedayat et al. (1999)), if one can be obtained from the other
by permutations of rows, columns or factor levels.

In the following investigations, a linear screening model is used, y = Xβ+
ε, where X = (1, A) is an (n × n) matrix with 1 = (1, 1, 1, ...)t and A the
Plackett-Burman matrix. β is the vector of unknown coefficients, y the result
vector with the coded business cycle phases and ε the error vector.

4 Results

4.1 Stepwise regression by forward selection

113 different Plackett-Burman plans were found by the method described in 3.
When evaluating these plans by stepwise regression with forward selection
with respect to y (cp. Weihs and Jessenberger (1999)), we used the F-test
at level 0.2. Figures 1, and 2 show the absolute and the relative frequency
of the selected variables (dark bars). The light bars show how often each
variable appears in all 113 Plackett-Burman plans. Figure 1 thus shows that
each variable is at least once in a plan (light bars). The variables which turn
out to be most important by this method are ‘DEFRATE’, ‘EXIMRATE’,
‘LSTKJW’, ‘IAU91JW’ and ‘ZINSK’(cp. Figure 2). If one uses the F-test
with level 0.05 one gets the same variables except ‘EXIMRATE’. It is also
interesting that in almost half of all cases none of the variables turns out
to be important. Furthermore it strikes that for all variables the dark bars
are rather small, compared to the light ones. That means that although a
variable appears often in the plans it is chosen only a few times as important
concerning the up- and down of the economy.

4.2 Classification methods

In the 113 plans, variables are selected also by different classification meth-
ods, i.e.unpruned classification trees (TreeAllNodes), classification trees with
only the tree stump (TreeStump) and stepwise linear discriminant analysis
(cp. Röver (2003)). Figures 3, and 4 again show the absolute and the rel-
ative frequency of selected variables by the different methods. The number
in brackets following the variable name indicates how often the variable ap-
pears in a Plackett-Burman plan. Classification by unpruned trees yields as
important variables ‘BSP91JW’, ‘CP91JW’, ‘DEFRATE’ and ‘EXIMRATE’.
Using only the tree stump yields the same variables without ‘CP91JW’ as
important. This is the same result one gets by stepwise linear discriminant
analysis. On the whole, these three classification methods yield similar results
but on different levels.



196 Pumplün et al.

B
S

P
91

JW

C
P

91
JW

D
E

F
R

A
T

E

E
W

A
JW

E
X

IM
R

A
T

E

G
M

1J
W

IA
U

91
JW

IB
91

JW

LS
T

K
JW

P
B

S
P

JW

P
C

P
JW

Z
IN

S
K

Z
IN

S
LR

no
ne

fr
eq

ue
nc

y

0
20

40
60

80
10

0

regression selection
PB plan

Fig. 1. Absolute frequency of variable selected by stepwise regression with forward
selection.
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Fig. 2. Relative frequency of variable selected by stepwise regression with forward
selection.

For all used classification methods as well as for stepwise regression with
forward selection it is important to know how the rows which build the
Plackett-Burman plans are distributed. This is illustrated in Figure 5 which
shows how often each row is contained in a plan. Note that the outstanding
row number 72 refers to the 4th quarter of 1972 and row number 145 to the
1st quarter of 1991. These years are special years from an economic point of
view, as in 1972 the German economy suffered from the oil price shock. The
German unification influences the post 1990 data, an effect shown in the first
quarter of 1991.

4.3 Variable assessment

If one wants to decide which of the above variables plays a dominant role
with respect to the business cycle, it is important to assess their correlation
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Fig. 4. Relative frequency of variables selected in Plackett-Burman design.

in all those Plackett-Burman plans where the corresponding variable was
included. It turns out (see Table 2) that unit labour costs(‘LSTKJW’) is
clearly positively correlated to y (84% of all cases) and the government deficit
(‘DEFRATE’) can still be considered as positive correlated (78% of all cases),
taking into account a possible error margin. No variable is clearly negatively
correlated to y. Hence, one may finally consider those variables as important
which on the one hand are chosen most often, both by regression and by
classification, and which on the other hand possess a distinct positive or
negative correlation to y. Using this decision criterion, one gets ‘unit labour
costs’ (‘LSTKJW’) and ‘government deficit’ (‘DEFRATE’) as variables which
clearly determine the West German business cycles.
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In previous studies of this topic (cp. e.g. Weihs and Garczarek (2002),
Weihs et al. (1999)) the variables most influential for the West German busi-
ness cycle in the 4 phase case were ‘wage and salary earners’ (‘EWAJW’)
and ‘unit labour costs’ (‘LSTKJW’). Moreover, if one compares the above
method to stepwise regression by forward selection on the whole data set,

Table 2. Correlation with respect to y.

Positive Negative No Cor. % positive
BSP91JW 18 41 17 24
CP91JW 32 24 26 39
DEFRATE 62 3 14 78
EWAJW 13 2 5 65
EXIMRATE 19 5 4 68
GM1JW 8 53 19 10
IAU91JW 5 40 16 8
IB91JW 21 51 29 21
LSTKJW 36 1 6 84
PBSPJW 29 6 15 58
PCPJW 24 6 9 49
ZINSK 50 14 13 65
ZINSLR 25 18 12 45
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again taking level 0.2 in the F-test, the model ‘LSTKJW’ + ‘IAU91JW’ +
‘DEFRATE’ + ‘ZINSK’ + ‘CP91JW’ + ‘BSP91JW’ is chosen. This strongly
indicates the importance of ‘LSTKJW’ and ‘DEFRATE’. Also stepwise linear
discriminant analysis, classification by unpruned trees and classification trees
using only the tree stump were applied on the whole data set. The application
of unpruned classification trees shows ‘IAU91JW’ to be the most important
variable, as does classification trees using only the tree stump. Stepwise linear
discriminant analysis shows that besides ‘IAU91JW’, also two other variables
are important, ‘LSTKJW’ and ‘PCPJW’.

5 Conclusion

‘Unit labour costs’ (‘LSTKJW’) has been detected as an important variable
by this method as well as by previous methods (cp. 4.3). This strongly indi-
cates that this variable has a great influence on the West German business
cycle. The question why the ‘government deficit’ (‘DEFRATE’) turns out to
be important here, but does not so in previous studies, requires a thorough
analysis of the influence of the methods applied here on the results. The ad-
vantage of using Plackett-Burman plans lies in the clean and easy selection of
variables in determining the important variables. This is only a first step in
this direction. Right now, we are investigating only the correlations of those
variables with the business cycle, which have turned out to be important in
the above described investigations. A next step could be to investigate a sim-
ilar procedure with full factorial designs or fractional factorial designs. These
plans also respect orthogonality, but in addition permit interactions between
the factors.
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KMC/EDAM: A New Approach for the
Visualization of K-Means Clustering Results
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Abstract. In this work we introduce a method for classification and visualization.
In contrast to simultaneous methods like e.g. Kohonen SOM this new approach,
called KMC/EDAM, runs through two stages. In the first stage the data is clustered
by classical methods like K-means clustering. In the second stage the centroids of the
obtained clusters are visualized in a fixed target space which is directly comparable
to that of SOM.

1 Introduction

In many applications a classification of the examined objects in both in-
ter-heterogeneous and intra-homogeneous groups (clusters) is desired. Many
methods have been developed to solve this problem and are subsumed under
the term classification-methods as well as clustering-methods.

In the context of clustered objects another problem often occurs. This
problem consists of the graphical representation - called visualization - of the
objects resp. classes which are often represented by high-dimensional data
vectors in a space of lower dimension. The requirement for such representa-
tions is topology preservation, i.e. objects which are comparatively close in
the original space should also be close together in the representation space
and, corresponding by, pairs of distant objects should have high distances in
the visualization.

One method, which can be interpreted both as a visualization and a clas-
sification method, is the so called Kohonen Self-Organizing-Map (SOM) (Ko-
honen (1990)). SOM performs classification and visualization simultaneously.
Many alternatives to SOM have been proposed in the past. One example is
another simultaneous method suggested by Bock (1997). Bezdek and Pal
(1995) compare the methods principal component analysis (PCA) and the
Sammon algorithm to SOM concerning topology preservation. They try to
avoid the problem of different solution spaces - with SOM in contrast to the
latter methods only a subset of the objects is visualized - by assigning to
each object an image in the neighborhood of the nearest visualized object.

� This work has been supported by the Deutsche Forschungsgemeinschaft, Sonder-
forschungsbereich 475.
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Since this is done by randomly jittering it is questionable if the corresponding
results can still be seen as the results generated by SOM. Hence the results
of Bezdek and Pal – PCA and Sammon are superior to SOM – are to be
interpreted cautiously.

Being aware of the aforementioned comparability-problems we introduce
a new approach of carrying out classification and visualization one after
the other. This approach consists of a combination of classical classification
methods (mainly K-Means-Clustering, KMC) and a new approach for the
visualization of the corresponding centroids. This approach is called Eight-
Directions-Arranged-Map (EDAM) and has a fixed representation space. This
solution space can be chosen in SOM as well. Under these conditions crite-
ria for classification and topology preservation can be defined and compared
between the two methods.

This paper starts with a description of the methods in section 2. Then
section 3 gives a view on a few examples. The paper concludes in a summary
given in section 4.

2 Methods

2.1 Preliminaries

All following methods refer to a data matrix X ∈ IRn×k. Its rows x1·, ..., xn· ∈
IRk represent the data vectors of n corresponding objects and its columns
x·1, ..., x·k ∈ IRn represent the measurement vectors of k corresponding
variables. Distances between two data vectors xi· and xj· are denoted by
d(xi·, xj·). We use the ordinary euclidean distance in this paper.

A classification of X is a set of c clusters, where each object belongs to
exactly one cluster. A classification is denoted by a vector κ ∈ {1, ..., c}n,
where the ith element κi of κ gives the cluster-number of the ith object. A
common representative of cluster i is the so called centroid µi ∈ IRk, which
is defined as:

µi = (µi1, ..., µik)′ with µih = 1
ni

∑
j:κj=i

xjh, h = 1, ..., k,

ni = #{j : κj = i}, i = 1, ..., c.
(1)

All centroids are compiled in the centroid matrix M = (µij) 1≤i≤c
1≤j≤k

.

A visualization of X is a function f : {x1·, ...xn·} → Z ⊆ IRn×m,m < k,
which assigns an image zi = (zi

1, .., z
i
m)′ = f(xi·) to each row of X . Z is

called the image-space.
With Z = (zi

j) 1≤i≤n
1≤j≤m

the visualization f may be written as f(X) = Z. In
the following we only consider the case of m = 2.
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2.2 Basic idea

Our approach to visualize high-dimensional data in a plane is based on the
idea of considering the plane as a topographical map. When the images are
visualized as the vertices of a rectangular grid, each object has eight direct
neighbors, one in each direction of the compass (by taking NE, SE, SW and
NW into account, compare figure 1). We try to obtain topology preservation
by re-ordering the objects on each of these eight directions corresponding to
the distances of their data vectors in the original space IRk. Considering the
example of the vector pointing from z20 to west in figure 1 this means, that
with xi· = f−1(zi) after re-ordering, i.e. interchanging the values of x21· to
x24·, the relation d(x20·, x21·) ≤ d(x20·, x22·) ≤ d(x20·, x23·) ≤ d(x20·, x24·)
holds.

The method EDAM visualizes by repeating this “star-shaped” re-ordering
step successively for all objects up to either convergence or to another stop-
ping criterion. The following subsection gives a formal definition of the meth-
od.

2.3 KMC/EDAM

The classification of X into a set of c < n clusters, c given, by the method
KMC/EDAM is performed by a combination of a K-Means-algorithm and
a hierarchical method. First g > c clusters are constructed by applying the
K-Means-algorithm suggested by Forgy (see Anderberg (1973)). Then the ag-
glomerative hierarchical Centroid-method (see Kaufmann and Pape (1996))
is applied to these clusters. After (g − c) steps of this method the final clas-
sification κ of the n objects into c clusters is obtained.

In the next stage of KMC/EDAM the centroids {µ1, ..., µc} of κ are visu-
alized. Therefore first the image space is fixed to the points of intersections of
b1 vertical and b2 horizontal lines of a two-dimensional, equally spaced grid,
with c = b1 ·b2. By labelling the images by their integer Euclidean coordinates
and enumerating them from the lower left corner by rows the image-space
can be written as:

Z =
{
z1, · · · , zc

}
with zi =

(
zi
1

zi
2

)
=

(
i − � i−1

b1
� · b1

� i
b1

�

)
. (2)

The problem of visualizing the centroids in Z by a visualization f is to find
a permutation π of {1, ..., c}, such that f(µπ(i)) = zi, i = 1, ..., c, preserves
topology as well as possible (concerning to a predefined criterion).

The main idea of our method is to consider1 each centroid µπt−1(i) as
a “reference point” for the centroids whose images are lying on the vectors
1 The consideration of one centroid defines one step denoted by index t; the index i

defining the actual centroid computes to i = t−
 t−1
c
� · c, i.e. each time t exceeds

a multiple of c, i is switched back to 1.
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Fig. 1. Z as topographical map

pointing from zi to each direction D ∈ {N,NE, ..., NW}, where π0 is a
randomly chosen initial permutation. First, for each direction D, the indices
jD
q , q = 1, ..., nD of these images are determined. Table 1 gives an overview

of how these indices are calculated for all directions.

Table 1. Calculation of indices

D jD
q nD D jD

q nD

N i + qb1 b2 − zi
2 NE i + qb1 + q min(nN , nE)

E i + q b1 − zi
1 SE i − qb1 + q min(nS , nE)

S i − qb1 zi
2 − 1 SW i − qb1 − q min(nS , nW )

W i − q zi
1 − 1 NW i + qb1 − q min(nN , nW )

Let now ϕD be the permutation of {πt−1(jD
1 ), ..., πt−1(jD

nD
)} so that

d(µπt−1(i), µϕD[πt−1(jD
1 )]) ≤ d(µπt−1(i), µϕD[πt−1(jD

2 )])

≤ ... ≤ d(µπt−1(i), µϕD[πt−1(jD
nD

)])

for each direction D. Now, set πt := πt−1. Next, the following substeps are
repeated for all directions D:

1. πD
t := πt
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2. {πD
t (jD

1 ), ..., πD
t (jD

nD
)} := {ϕD([πD

t (jD
1 )], ..., ϕD([πD

t (jD
nD

)]}

3. πt :=
{
πD

t , if S(πD
t ) < S(πt)

πt , else
.

The function S is a predefined criterion for visualizations with lower values
indicating better visualizations. Repeating the described procedure for all
centroids – i.e. a set of c steps – builds one iteration. In our investigations we
choose S as the STRESS known from MDS (see Hamerle and Pape (1996, p.
769)).

Each time, when no more improvement can be obtained after a com-
plete iteration (or alternatively if a given maximum number of iterations is
reached), the area, in which re-ordering is possible is decreased by changing
the values of nD in table 1 to min(nD,max[b1, b2]− r), where r runs succes-
sively from 1 to max[b1, b2] − 2. A set of iterations with the same value of r
is called iteration cycle.

The final visualization result f(µπ(i)) = zi, i = 1, ..., c, of KMC/EDAM is
obtained by setting π := πt where t is the number of the last step.

3 Examples

First the introduced method is applied to the synthetic Chainlink data, which
consist of two three-dimensional interlocking ring-shaped classes as seen in
figure 2. In our example each class contains 1000 data points.

Fig. 2. The Chainlink data and their MDS visualization

On the right side of figure 2 the two-dimensional result of the method
MDS for this example is depicted. The STRESS of this result is 0.246. Note
that in the original space the two classes have exactly the same relation to
each other, i.e. they have the same shape, the rings have the same radius
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and the center of each ring lies on the other one. But looking at the MDS
visualization one gets the impression that there are differences between the
shapes of the classes.

For the computation of KMC/EDAM for the Chainlink data the following
settings were used: g=750, c=500,b1 = 20, b2 = 25, maximum number of
iterations per cycle: 10. The result is shown in U-Matrix-representation on
the left side of figure 3. The U-matrix is a well-known tool developed for the
representation of Self-Organizing Maps (compare Ultsch (2003)). Since the
image space of KMC/EDAM is restricted to a rectangular grid the U-Matrix
can easily be applied to the results of this method as well. For comparison
purposes the right side of figure 3 shows the U-matrix of a SOM of the same
size applied to the same data. For the computation of the SOM the package
som available for the statistical software R (R Development Core Team (2004))
with its default settings was used. The size of the symbols in both pictures
corresponds to the number of objects assigned to each cluster.

Fig. 3. KMC/EDAM and SOM visualization of the Chainlink data

The STRESS of the KMC/EDAM solution is 0.209, that of SOM is 0.252,
so KMC/EDAM seems to be better. Beyond this superiority of KMC/EDAM
to the MDS and SOM the result of KMC/EDAM gives an evidently better
mirror of the fact, that the Chainlink classes are equally placed relatively to
each other. This is not the case for SOM, since the class depicted by circles
seems to surround parts of the classes depicted by triangles. At first glance
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the separation of the classes seems better for MDS resp. SOM, since the lat-
ter leave gaps between the classes. But in the U-Matrix of the KMC/EDAM
result a dark line is visible which corresponds to relatively high distances
between objects along the line. This line runs between the two classes like
a boundary. The brightness of the rest of the map is well-adjusted, which
suggests that the topology within the classes is well preserved. Another ad-
vantage of the KMC/EDAM result compared to that of SOM is, that it main-
tains the connection of the classes, i.e. there are now exclaves. In the SOM
result there are apparently a few objects of the “triangle class” separated
from the rest by the “circle class”.

The next example we consider is the well-known iris data set introduced
by Fisher (1936), which contain setal and petal lengths and widths of three
species of iris for 150 flowers. Figure 4 shows a plot of the MDS result and the
U-matrices of KMC/EDAM and SOM results for this example. The settings
of KMC/EDAM were: g=50, c=35,b1 = 5, b2 = 7, maximum number of
iterations per cycle: 10.
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Fig. 4. MDS, KMC/EDAM and SOM visualizations of the iris data

The STRESS of KMC/EDAM is 0.351 in this case, while that of SOM
is 0.252. MDS performs even better with a STRESS of 0.04. Similarly to
the previous example SOM leaves a gap between the well-separated classes
versicolor and setosa. Again this separation is visible as a dark line in the
U-matrix of the KMC/EDAM result. The separation of the classes virginica
and versicolor seems slightly better in the SOM result, since one can notice
the darkest squares between these classes than at other regions of the map.
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4 Conclusion

With KMC/EDAM a method is introduced which allows to visualize the
results of classical clustering methods. Because of its specially chosen target
space the results of this method are directly comparable to those of SOM.
The method is applied to two popular examples, the artificial Chainlink data
and Fisher’s iris data. In the critical Chainlink example KMC/EDAM leads
to better results than MDS and SOM.

In the iris example KMC/EDAM has the highest STRESS. But the rel-
ative positions of classes are the same with KMC/EDAM. Furthermore the
lacking separation – which is probably the reason for the higher STRESS –
becomes visible as well by representing the result in an U-matrix.

Modifications for the improvement of EDAM are conceivable. Such modi-
fications may concern the optimization of the initial ordering of the centroids.
On the other hand a method like Simulated Annealing could be integrated
into the algorithm to avoid local optima. First attempts in this direction led
to promising results.
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Abstract. Clustering of variables around latent components is a means of orga-
nizing multivariate data into meaningful subgroups. We extend the approach to
situations with missing data. A straightforward method is to replace the missing
values by some estimates and cluster the completed data set. This basic imputation
method is improved by more sophisticated procedures which update the imputa-
tions within each group after an initial clustering of the variables. We compare
the performance of the different imputation methods with the help of a simulation
study.

1 Introduction

The problem of missing values occurs very often in practice. In this paper
we propose methods to deal with the problem of missing values when we
want to cluster variables. A method of clustering variables around latent
components (CAVALC) was proposed by Vigneau and Qannari (2003). This
procedure bears some similarity to VARCLUS which is implemented in SAS
(SAS/STAT (1990)). However, it is based on a simple algorithm and may be
extended in various ways as discussed by Vigneau and Qannari (2002). This
method is briefly described in section 2.

An important application of this technique is given by the clustering of
consumers who give their scores of preference to different products. Usually
these preference scores are analysed by means of a preference mapping tech-
nique which mainly consists in performing a principal components analysis
on the data set whose rows are the products and columns are the scores given
by the various consumers (Greenhoff and MacFie (1994)).

However, it is not always possible to present all the products to each con-
sumer, especially when we have saturating products such as beers. Therefore
each consumer evaluates a subset of the products. The resulting data set is
incomplete.

In section 3 we propose some imputation methods for the clustering in
this situation. The real data set under study is briefly described in section
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4. We compare these imputation methods on the basis of a simulation study
(section 5).

2 Clustering of variables around latent components

We consider p variables x1, x2, . . . , xp measured on a sample of n observa-
tions. The procedure of clustering discussed herein consists in representing
each cluster of variables by a latent component.
More precisely, the strategy consists in simultaneously determining K (sup-
posed to be fixed) clusters of variables and K latent components c1, c2, . . . , cK

such that
S =

∑
k

∑
j

δjkcov(xj , ck)

is maximized under the constraint c′kck = 1. In this criterion S, the parameter
δjk is equal to 1 if variable xj belongs to cluster k and 0, otherwise, and cov
stands for the covariance.

S is maximized by a partitioning algorithm in the course of which latent
components and group memberships are iteratively updated. The initializa-
tion of the partitioning algorithm is based on an agglomerative hierarchical
procedure (Vigneau and Qannari (2003)).

For a given cluster Gk, the latent variable ck is collinear with the mean
x̄k of the variables belonging to cluster Gk.

3 Imputation methods

3.1 Direct imputation methods

An intuitive method for dealing with missing values consists in replacing
each missing value by the mean of the observed values for the variable under
consideration. We will refer to this method as the vertical imputation.

In the special case of preference data it is also possible to replace each
missing value by the mean of the observed values for the observation (prod-
uct) under consideration. In that way, the mean score observed on the whole
panel is attributed to all missing data for a product. We will refer to this
imputation method as the horizontal imputation.

After replacing the missing values by these estimates, we cluster the com-
pleted data set.

3.2 Imputation within each cluster

We can improve the results by updating the imputations after clustering.
Each missing value is replaced by an estimate that is based on the values
observed on the variables of the same group.
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In preference studies the consumers use the given scale in different man-
ners. More precisely, consumers may score at different levels of the scale, as
it will be illustrated in section 4, or may differ in the range of scoring. To
make the variables comparable, it is necessary to firstly standardize them as
follows:

x̃ij =
xij − µ̂j

σ̂j
.

The needed estimations µ̂j and σ̂j of the mean and standard-deviation are
calculated using the observed values of the variable. In each group Gk, the
mean mik of each observation i (i = 1, . . . , n) is calculated using the stan-
dardized observed values.

If the value of observation i for variable j in group Gk is missing, ẑij =
mik is used as an estimate. Finally, the imputed data are ’destandardized’
as follows: x̂ij = ẑij σ̂j + µ̂j . The calculation of the latent components is
finally updated using the observed values and the new imputations x̂ij of the
unobserved values.

3.3 Method based on a cross-partition

This method is based on the two different initial imputations outlied in section
3.1 (horizontal and vertical imputations). Generally, the clustering of the two
completed data sets provides two different partitions into K groups. The
analysis of their cross-partition may improve the grouping. We proceed as
follows (Sahmer (2003)):

We calculate the cross-partition which consists of K2 groups, called ’sta-
ble groups’ (’groupements stables’, Lebart et al. (2000)). As an illustration,
consider the clustering of six variables which we denote 1, 2, 3, 4, 5, 6. Sup-
pose that the first clustering leads to the partition (1, 2, 3) and (4, 5, 6) and
the second clustering leads to the partition (1, 2, 6) and (3, 4, 5). The four
stable groups are obtained by considering the intersections of each group from
the first partition with each group of the second partition. This leads to the
partition (1, 2), (3), (6) and (4, 5). The imputations are then updated in the
stable groups according to the procedure described in section 3.2. However, it
should be noted that the stable groups may contain only very few variables.
So it is possible that in group Gk there is no data for an observation i. In this
case, the mean of the observed values of the variable (vertical imputation) is
used.

The K stable groups with the largest numbers of variables are determined.
In the case of ties, we may randomly select which of the tied groups to retain.

The latent components ck = x̄k/
√

x̄′
kx̄k of these K largest stable groups

are calculated. The covariances of all the variables not belonging to these K
groups with each of the K latent components are determined. Each variable
is assigned to a group, considering its largest covariance with the group latent
components.
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Finally, in each of the K groups, the imputations and the latent compo-
nent are again updated as described in section 3.2.

4 Illustration: data set ’jam’

The methods are compared on the basis of a real data set from a preference
study. These data were collected by students at ENITIAA (Nantes, France)
during a training period. These students manufactured seven varieties of jam
with different percentages of apple and pear and added vanilla or cinnamon
flavour. Hedonic ratings were given by a panel of consumers. In addition, the
sensory properties of the jams were evaluated. Therefore, we have three kinds
of variables concerning the jams: the compositional data, sensory variables
and the hedonic scores.

In this paper we focus on the analysis of the hedonic data. 56 consumers
gave their scores of preference. They scored each product on a non structured
10 cm scale according to their liking.

Table 1. Preference data of two consumers

Observed data Standardized data

Consumer 41 Consumer 53 Consumer 41 Consumer 53

Jam 1 5.0 1.2 -0.9 -0.2

Jam 2 8.3 3.6 1.6 1.9

Jam 3 6.0 0.4 -0.1 -0.9

Jam 4 4.0 0 -1.7 -1.2

Jam 5 7.0 2.4 0.6 0.9

Jam 6 7.0 1.1 0.6 -0.3

Jam 7 6.0 1.2 -0.1 -0.2

Average 6.2 1.4 0 0

Standard deviation 1.3 1.1 1 1

As an illustration, the left side of Table 1 shows the scores given by con-
sumers 41 and 53 to the seven varieties of jam. This example makes it possible
to outline the different use of the scale by the consumers. Obviously, consumer
41 gives higher scores than consumer 53. Nevertheless, their patterns of liking
are very similar as reflected by the standardized data.

We used this data set together with simulated data in order to compare
the different imputation methods.
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5 Simulation study

5.1 Jam data set

We clustered the complete data set and determined two groups of consumers.
In a subsequent stage, we simulated one to four missing values per consumer.
We clustered the incomplete data sets with each of the imputation methods
and compared the results to the clusters obtained from the complete data set.
For each number of missing values, we repeated this procedure 100 times.

5.2 Simulated data

We simulated data that were designed to reflect the different ways consumers
use the given scale. For each group k, we simulated an average score mik for
each product i. The score of each consumer j is based on this average. More
precisely, the score of a consumer j in cluster k is simulated by multiplying
mik by a scaling factor djk which reflects the different ranges of scale used by
the consumers. Thereafter, a translation tjk and a normally distributed noise
εijk are added. The score of consumer j in group k for product i is given by
(Callier (1996)):

xijk = tjk + m̄k + djk(mik − m̄k) + djkεijk, εijk i.i.d. ∼ N(0, σ2).

We simulated data sets with two and three groups. The standard deviation
of the noise was set to σ = 0.5 and to σ = 2. For each combination of
these two parameters we simulated 100 data sets with eight products and
56 consumers each. Then, in each data set we simulated one to five missing
values per consumer. We clustered the incomplete data sets with the different
imputation methods. We compared the resulting groups to the simulated
groups.

5.3 Criterion for comparison

The comparison of the methods was based on different criteria. We show
herein the results regarding the criterion ACALC (Average of the Corre-
lations of the Associated Latent Components). It was proposed by Cal-
lier (1996) under the acronym of MCGA (Moyenne des Corrélations entre
Groupes Associés). This criterion indicates the extent to which the latent
components of the incomplete data are related to those of the complete data.
However, the labelling of the groups is arbitrary. Group 1 of the complete
data set does not necessarily correspond to group 1 of the incomplete data
set, etc. Consequently, we first have to determine the association between the
groups and the latent components in the two partitions (from the incomplete
and complete data sets). In practice, we consider each possible combination
and calculate the average correlation between associated latent components
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for each of them. The criterion ACALC corresponds to the maximum average
correlation.

The calculation is illustrated for the case of K = 2 as follows. The average
correlations of the possible combinations are given by

mcor1 =
1
2
(cor(c1, c̃1) + cor(c2, c̃2))

and
mcor2 =

1
2
(cor(c1, c̃2) + cor(c2, c̃1)),

where ck are the latent components of the complete data and c̃k the latent
components of the incomplete data.

We define
ACALC = max(mcor1,mcor2).

5.4 Results

It was observed that the two direct-imputation methods were almost always
improved by an update of the imputations after clustering.

In the following, we consider the vertical imputation with an update of the
imputations, the horizontal imputation with an update of the imputations
and the method based on a cross-partition. Their results are shown in Figure
1. For the simulated data sets we only give the results for two groups and σ =
0.5 and for three groups and σ = 2. The results for the other combinations
of parameters lay between these two extremes.

The figure shows the average of the criterion ACALC over the simulations
as a function of the number of missing values per consumer. As it can be
expected, the quality of the clustering decreases when the number of missing
values increases.

For the simulated data with two groups and σ = 0.5 the three methods
are almost equivalent. In this situation (small noise) we obtain good results
when up to five out of eight values (60 %) are missing.

For the case of three groups and σ = 2 and also for the data ’jam’, the
method which is based on a cross-partition and the horizontal imputation
with an update of the imputations perform best. We observe a sharp decrease
in criterion ACALC when the number of missing values increases. If we set
up a limit at 0.9 regarding the average value of criterion ACALC, it turns out
that the two best methods give good results when up to three out of eight
values (40 %) are missing (simulated data with three groups and σ = 2) or
when up to two out of seven values (30 %) are missing (data ’jam’).

However, the results of the different simulations showed great variations.
Therefore, it is interesting to consider not only the average value of ACALC
but the complete distribution. Boxplots of the values of criterion ACALC for
the data with three groups and σ = 2 are given in Figure 2, for three missing
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Fig. 1. Mean of criterion ACALC for the vertical imputation with an update (’vert
update’), horizontal imputation with an update (’hor update’) and the method
based on a cross-partition (’cross’)
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values per consumer. It appears that the method based on a cross-partition
safeguards against very poor results.

6 Conclusion

We have compared several imputation methods with regard to their perfor-
mance within a clustering of variables framework. Two methods performed
very well when applied in preference studies context. The first one replaces
each missing value by the mean of the observed values for the observation un-
der consideration and then clusters the completed data set. After clustering,
the imputations are updated within each cluster. The second one is based on
the clustering of two completed data sets and the cross-partition of the two
partitions thus obtained.

In an ideal situation with small noise these methods perform very well
even when more than half of the values are missing. In more realistic situa-
tions, they can perform well if less than one third of the values are missing.
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Abstract. We present a method for on-line classification of triggered but tempo-
rally blurred events that are embedded in noisy time series. This means that the
time point at which an event is initiated or a dynamical system is perturbed is
known, e.g., the moment an injection of a therapeutic agent is given to a patient.
From the ongoing monitoring of the system one has to derive a classification of the
event or the induced change of the state of the system, e.g., whether the state of
health improves or degrades. For simplification we assume that the reactions form
two classes of interest. In particular the goal of the binary classification problem is
to obtain the decision on-line, as fast and as reliable as possible.

To provide a probabilistic decision at every time-point t the presented method
gathers information across time by incorporating decisions from prior time-points
using an appropriate weighting scheme. For this specific weighting we utilize the
Bayes error to gain insight into the discriminative power between the instantaneous
class distributions.

The effectiveness of this procedure is verified by its successful application in the
context of a Brain Computer Interface, especially to the binary discrimination task
of left against right imaginary hand-movements from ongoing raw EEG data.

1 General framework

In this paper we present an approach how to improve on-line classification
of sequential data by combining information across time. Accordingly the
proposed method has the following underlying assumptions: First we consider
only binary classification problems, which can directly be interpreted as the
detection of two distinguishable states of a dynamical system, embedded in a
high-dimensional noisy environment. Second we assume that the event onset
or the time the system is perturbed is known. However the development of
the event or the change of the systems state might be fuzzy, in the sense that
relevant informations are blurred or spread over time. Examples of such kind
of problem often occur in biomedical investigations, e.g., monitoring the vital
state of health of a patient after an injection (Morik et al. (2000)). Also in
the more general context of control and feedback control systems, this is a
commonly used framework.
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Fig. 1. Single epoch: containing a pre-event time interval and the event embedded
in a high-dimensional time series. The task is to classify on-line the change of the
system during the time window of interest after the event onset (gray area).

The task is to provide an on-line classification of the systems state at every
time point t in a time window of interest after the event onset. The decision
must be derived from the ongoing observations of the high-dimensional noisy
process.

1.1 Data format

Relative to the given event onsets we cut the time-series into epochs where
each epoch contains a single event in the corresponding time window of in-
terest. Additionally, the epochs can also include data from pre-event time
intervals, that can be used for calibration or baseline correction (see Fig. 1).

Let x1, . . . ,xN ∈ X denote the training sample, where xk(t) is the high-
dimensional observation of the k-th epoch, k = 1, . . . , N , and t = Ta, . . . , Te

the time index. The event onset takes place at t0, Ta ≤ t0 ≤ Te. The cor-
responding class labels y1, . . . , yN ∈ Y = {−1, 1} of the training sample are
given. The on-line classification can now be formulated as a collection of
mappings ft : X → Y. These functions ft can be estimated on the basis
of Zt = {(xk(ti), yk), k = 1, . . . , N , t0 ≤ ti ≤ t}. Utilizing these estimated
functions the on-line classification of unlabeled epochs can be derived.

1.2 On-line classification

Regardless of the used classification algorithm one can distinguish between
two opposite on-line classification approaches: ‘instantaneous’ and ‘batch’
classification. The instantaneous classification gives a decision dti for each
time point ti based only on the observation at this time xk(ti). On the oppo-
site batch classification derives the decision Dti based on all previous obser-
vations {xk(t), t ≤ ti}. Both approaches have advantages and drawbacks. The
series of instantaneous classifications dt can be very unsteady, whereas in con-
trast the series of Dt is more stable. However this stability comes at the cost
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of an increased model complexity, also the amount of used data can become
intractable due to memory restrictions. The complexity of the instantaneous
classification problem is lower and keeps constant over the time.

Similar to batch classification one can also combine all preceding instan-
taneous decisions dt, t ≤ ti, to a single decision Dti . This combination can
be done in several ways. One can use:

1) expectation Dti = 1
ti−t0

�ti
t=t0

dt,

2) majority vote Dti = argmaxy∈Y{
�ti

t=t0
I(dt = y)},

3) product Dti =
�ti

t=t0
dt.

Applying anyone of these combination methods one implicit assumes that
each time point t contains the same ‘amount’ of information. In many prac-
tical applications this assumption is questionable. Furthermore by using the
product based combination scheme one assumes independence of the deci-
sions, that does not hold in general for the class of problems we are address-
ing.

Instead of using these combination schemes we suggest to derive a decision
Dti at each time point ti as a weighted combination of all previous, instan-
taneous decisions dt, t ≤ ti, where the weights are chosen proportional to
an estimate of the amount of discriminative information that can be derived
from this specific time point.

The paper is organized as follows: The introduction of the method in
section 2 is followed by an experimental section, in which we present results
of a case study, illustrating the benefit of the proposed approach.

2 Integration of information across time

In order to finally derive the on-line classification at a certain time ti, we
incorporate knowledge from all preceding time points t0 ≤ t ≤ ti, leading
to an evidence accumulation over time about the binary decision process dt.
The temporal combination is realized by taking the expectation of the class
probability with respect to the discriminative power of each time instance.

More formally, a decision at time ti is given through a weighted linear
combination of the previous decision process dt:

Dti =
ti∑

t=t0

gtdt. (1)

The weights gt represent the discriminative power. The question arises how
to measure this discriminative power. In our situation we estimate two class
distributions P (x(t)|y), y ∈ {−1, 1}, on the training data. Applying Bayes
decision rule, one decides for y = 1 if P (y = 1|x(t)) > P (y = −1|x(t)),
otherwise for y = −1. The Bayes error of this decision rule is given through:
P (error|x(t)) = min[P (y = 1|x(t)), P (y = −1|x(t))]. A small Bayes error
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indicates a good separability of the two class distributions while on the other
hand, if the Bayes error is high the data contain less discriminative informa-
tion. Consequently, we use the Bayes error as a measure of the discriminative
power at time point t. Thus the weights are defined as

gt = 0.5 − P (error|x(t)). (2)

Since the estimation of the Bayes error is usually intractable, we exploit the
Chernoff bound (Duda et al. (2001)), which upper bounds the Bayes error.
The Chernoff bound is defined as the minimum over all β ∈ [0, 1] of the right
hand side of the following inequality:

P (error) ≤ P (y = 1)βP (y = −1)1−β

∫
p(x|y = 1)βp(x|y = −1)1−βdx. (3)

Notice that, if p(x|y = 1) and p(x|y = −1) are normal, the Chernoff bound
can be evaluated analytically by finding β that minimizes∫

p(x|y = 1)βp(x|y = −1)1−βdx = e−k(β), (4)

where

2k(β) = β(1−β)(µ+−µ−)′[βΣ−+(1−β)Σ+]−1(µ+−µ−)+ln
|βΣ−+(1−β)Σ+|
|Σ−|β|Σ+|1−β

.

3 Application

As an application of the proposed method we choose the binary classification
problem of distinguishing between left and right imagined hand movements
from recordings of electroencephalogram (EEG). This is a common task in
the newly emerging field of Brain Computer Interface (BCI)(Krausz et al.
(2003), Dornhege et al. (2004)).

The data we use in this study, are taken from the 2003 BCI-competition
(Blankertz et al. (2003)). In particular we apply our method to data set III
- “imagined hand movement”, provided by the Dept. of Med. Informatics,
Inst. for Biomed. Eng. at the Univ. of Techn. Graz. The EEG from three
channels (C3, Cz, C4) was acquired with band filter settings of 0.5 to 30Hz
and sampled at 128Hz. The data consist of 140 labeled and 140 unlabeled
trials of imaginary hand movements, with an equal number of left and right
hand trials. Each trial has a duration of 9 s: after a 3 s preparation period a
visual cue (arrow) is presented pointing either to the left or the right. This
is followed by another 6 s for performing the imagination task (for further
details see Blankertz et al. (2003)). The specific competition task is to provide
an on-line discrimination between left and right movements for each of the
140 unlabeled single trials (STs). In particular, at every time instance in the
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interval from 3 to 9 seconds a decision and its confidence must be supplied.
The objective of the competition was to detect the respective motor intention
as early and as reliable as possible and therefore perfectly meets the settings
of the proposed method.

3.1 Neurophysiology

The human perirolandic sensorimotor cortices show rhythmic macroscopic
EEG oscillations (µ-rhythm) (Hari and Salmelin (1997)), with spectral peak
energies around 10Hz (localized predominantly over the postcentral soma-
tosensory cortex) and 20Hz (over the precentral motor cortex). Modulations
of the µ-rhythm have been reported for different physiological manipula-
tions, e.g., by motor activity, both actual and imagined (Jasper and Pen-
field (1949), Pfurtscheller and Arabibar (1979), Schnitzler et al. (1997)).
Standard trial averages of µ-rhythm power show a sequence of attenuation,
termed event-related desynchronization (ERD) (Pfurtscheller and Arabibar
(1979)), followed by a rebound (event-related synchronization: ERS) which
often overshoots the pre-event baseline level. Imaginary movements modulate
the µ-rhythm on the hemisphere contralateral to the respective event more
than ipsilateral (Pfurtscheller and Arabibar (1979), Schnitzler et al. (1997),
Nikouline et al. (2000)), e.g. left imaginary movement causes stronger per-
turbations on the right motor cortex (C4) and vice versa (see Figure 2).

3.2 Model

In order to distinguish between STs of left and right hand imaginary move-
ments, we utilize the accompanying EEG µ-rhythm perturbation. Similar ap-
proaches were pursued in (Pfurtscheller et al. (1997), Neuper et al. (1999)).
Since we assume that the mid-line channel Cz contains little discriminative
information, we exclude it and restrict the analysis to C3 and C4. To extract
the modulations in the two relevant frequency bands, we map the EEG to the
time-frequency domain by means of Morlet wavelets (Torrence and Compo
(1998)). Furthermore, we assume the existence of two distinguishable proto-
typical behaviors of modulation for the absolute amplitude of the µ-rhythm
caused by either imaginary left or, respectively, right hand movements. Based
on these physiological concepts we estimate two probabilistic models, one for
each class of imaginary movement. For each class and at any time instance
t ∈ [0 − 9] s we assume a 4-dimensional Gaussian distribution of the feature
vectors a(t) (the amplitudes of the two relevant frequency bands at the two
electrodes), i.e.,

p(a(t)|y) = N(µy(t), Σy(t)) , (5)

where µy(t) and Σy(t) are the individual means and the covariance matrices
of the two classes y ∈ {L,R} that have been estimated in a robust manner.
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Fig. 2. The panels show the averaged event-related desynchronization (ERD) of the
µ-rhythm at 10Hz for the imagination of left (solid line) and right (dashed line)
hand movement. The vertical line indicates the begin of the imagination period.
The µ-rhythm amplitude is attenuated in relation to the preceding baseline during
the motor intention. This attenuation is prominent contralateral to the intended
movement, i.e., for right hand movement over the left hemisphere (C3) and over
the right hemisphere (C4) for the left hand.

The instantaneous classification at a single time point is given by

p (y|a(t)) =
p (a(t)|y)

p (a(t)|L) + p (a(t)|R)
. (6)

The temporal combination according to eq.(1) is realized by taking the
expectation of the class probabilities from eq.(6) with respect to the discrim-
inative power gt at each time point:

p (y|a(t0), . . . ,a(ti)) =

∑
t0≤t≤ti

gtp(y|a(t))∑
t0≤t≤ti

gt
. (7)

As described above (section 2) we measure the discriminative power
through the Bayes error, which itself is approximated from above by the
Chernoff bound eq.(3) and finally define gt using equal class prior probabili-
ties by

2gt := 1 − min
0≤βt≤1

∫
p(a(t)|L)βtp(a(t)|R)1−βtda(t). (8)

The distributions of the feature vectors a(t) are normal, therefore the
minimization can be obtained easily. Fig. 3 shows the estimated Chernoff
bound, given the labeled training data. Note that the most discriminative
information occurs around 4.5 s, as indicated by the minimum of the error
bound that corresponds to the maximum weight in the integration process.

Due to the submission requirements of the competition the final decision
at this time point is

dti = 0.5 − p(L|at0 , . . . ,ati), (9)

where a positive or negative sign refers to right or left movements, while the
magnitude indicates the confidence in the decision.
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Fig. 3. Left panel shows the time course of the classification error (thin solid),
the Chernoff bound on the Bayes error (dashed) and the mutual information (thick
solid). Right panel displays time course of the mean and standard deviations of
the decision according eq. (9) for right (light grey) and left (dark grey) imaginary
movements on the test data.

3.3 Results

After all model parameters have been estimated by means of a leave-one-
out cross-validation optimization on the labeled training data, we applied
the estimated model to the feature vectors of the unlabeled STs of the test
data. The resulting time courses for both the model error of the binary clas-
sification and the mutual information (MI) (Schlögl et al. (2003)) on the
previously unlabeled data are presented in Fig. 3. During the first four sec-
onds the classification is rather by chance, after four seconds a steep ascent
in the classification accuracy can be observed in both the raising MI and
the decreasing classification error. Although the Bayes error bound starts
to gradually increase again after 4.5 s, indicating fading separability, the full
model still gains information due to the integration process, so that at 6.8 s
an overall minimum error of 10.7% is achieved. The MI maximum of 0.61
Bit occurs at 7.6 s indicating a peak decision confidence at this time. Demon-
strating the time courses of the class means and the standard deviations
of the decision the right panel of Fig. 3 emphazises the high discriminative
ability of the proposed procedure: around 6 s there is no overlap between
the class standard deviation tubes, reflecting the high confidence of the de-
cisions. A comprehensive comparison of all submitted techniques to solve
the specific task for the data set III of the BCI competition is provided in
(http://ida.first.fraunhofer.de/projects/bci/competition/...
...results/index.html#graz). Basically this evaluation reveals that the
proposed algorithm outperforms all competing approaches, including tradi-
tional adaptive AR-parameter based methods.
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M., ANTONOVA, E., ILMONIEMI, R. and HUTTUNEN, J. (2000): Dynamics
of mu-rhythm suppression caused by median nerve stimulation: a magnetoen-
cephalographic study in human subjects. Neuroscience Letters, 294.

PFURTSCHELLER, G. and ARABIBAR, A. (1979): Evaluation of event-related
desynchronization preceding and following voluntary self-paced movement.
Electroenceph. clin. Neurophysiol, 46, 138–146.

PFURTSCHELLER, G., NEUPER, C., FLOTZINGER, D. and PREGENZER, M.
(1997): EEG-based discrimination between imagination of right and left hand
movement. Electroenceph. clin. Neurophysiol., 103, 642–651.
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Different Subspace Classification

Gero Szepannek � and Karsten Luebke

University of Dortmund��, Department of Statistics, 44221 Dortmund, Germany

Abstract. We introduce the idea of Characteristic Regions to solve a classi-
fication problem. By identifying regions in which classes are dense (i.e. many ob-
servations) and also relevant (for discrimination) we can characterize the different
classes. These Characteristic Regions are used to generate a classification rule. The
result can be visualized so the user is provided with an insight into data for an easy
interpretation.

1 Introduction

Supervised Classification or Discrimination often involves two goals: the first
is allocation or prediction, i.e. assigning class labels to new observations. The
second goal, which can be even more important, is descriptive and involves
the disclosure of the underlying differences between the classes. The new
Different Subspace Classification (DiSCo) method is a method to simultane-
ously visualize and classify multi-class-problems in high dimensional spaces
and therefore is designed to attain both predictive and descriptive goals.

The problem of classification or pattern recognition is given in the follow-
ing way: N objects xn, n = 1, . . . , N , are observed, each object belonging to
one and only one class kn, kn ∈ {1, . . . ,K}, n = 1, . . . , N . The class member-
ship is known to the user. Nk objects are observed from class k. This set of
objects is called training data. For each object D variables xd, d = 1, . . . , D,
are observed. Every object xn can be considered as a D-dimensional realiza-
tion of a random vector Xn following an unknown distribution that depends
on its class kn.

The first goal is to be able to determine the correct (unknown) class for
objects xnew that will be observed in future. The second goal is to find out
the characteristics of the different classes by analyzing the training data. The
higher the dimension of the data the more challenging is the understanding
of the data. So if there are many observed variables, methods of variable
selection are often used to reduce the dimension of the data. These methods
identify and retain those of the variables that separate the classes best. Then
following this procedure a classification method is (re-)applied to the resulting
subspace of variables. A problem may be that in general the variables do not
contain equal separating-information for all classes. So a variable can contain

�� This work has been supported by the Deutsche Forschungsgemeinschaft, Sonder-
forschungsbereich 475.

� e-mail: szepannek@statistik.uni-dortmund.de
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information for separating class i from the rest but no information for the
separation of class j �= i.

In DiSCo variable selection is intrinsic to the classification method. The
resulting subsets of variables which are used for discrimination of the classes
can differ between the classes.
A focus is also laid on the visualization of the class-characteristics. The pro-
posed method does not make any assumptions about the underlying distrib-
ution of the data. The only weak assumption is that objects of the same class
are similar in some of their predictor values.

In the following chapter the principle of Characteristic Regions is defined
and a classification rule developed. Chapter 3 explains the visualization of
the results. Chapter 4 briefly summarizes the choice of parameters for the
implementation of the method while chapter 5 contains a simulation study
with comparison to Classification trees and Discriminant analysis.

2 Notation and method

The idea of the new method is to search for Characteristic Regions, i.e. sets
of values in some variables that indicate the class-membership. To build up
these Characteristic Regions two steps are needed. The first step is to search
for intervals of the realizations of the random variables that contain a large
probability mass of the classes. The resulting ”regions” are called Dense Re-
gions. The second step, which is independent of the first, identifies regions
that discriminate at least one class from the others because of a relatively
high density. These regions are called Relevant Regions. Regions that are
both dense and relevant are then called Characteristic Regions.

2.1 Characteristic regions

Definition 1. S being the set of all possible predictor values of an object
xn, for all d let {Rd

m : 0 ≤ m ≤ Md + 1} be a contiguous segmentation of an
interval covering S ∩Xd following

1.
⋃Md+1

m=0 Rd
m ⊇ S ∩ Xd

(All possible values of Xd are covered by the union of all its regions.)
2. ∀x1, x2 ∈ Rd

m and α ∈ [0, 1] : αx1 + (1 − α)x2 ∈ Rd
m

(The regions of every variable are contiguous.)
3. ∀x1 ∈ Rd

m1
, x2 ∈ Rd

m2
, m1 < m2 : x1 < x2

(In every variable the regions are disjoint and also ordered.)

Rd
m are called regions of variable Xd.

By restriction 2 all the objects that fall into one region can be considered to
be similar.



226 Szepannek and Luebke

Definition 2. Let xd
n be the value taken by object n in variable Xd and let

kn be the corresponding, known index of its class. Then

nd
m(k) :=

N∑
n=1

I[Rd
m](x

d
n) I[k](kn) (1)

with I[·] as the indicator function is called the corresponding frequency of
class k in Region m of variable d.

As the nd
m(k) should represent the density of the data it is assumed

for simplicity of comparisons that for any fixed d and all 1 ≤ m ≤ Md :
supx∈Rd

m
− infx∈Rd

m
≡ const., so the regions of a variable have equal width.

By this the corresponding frequencies are proportional to heights of histogram
bars of the classes if the bandwidths are given by the regions.

Let Dense Regions be those regions which contain most of the classes’
probability masses. Let SDR > 0 be a threshold to construct classwise Dense
Regions. Then Dense Regions are regions Rd

m0
(k) with

nd
m0

(k) ≥ SDR

∑Md+1
m=0 nd

m(k)
Md

(2)

This proceeding corresponds to comparing the observed corresponding fre-
quency to the mean over all regions.

Relevant Regions should be the regions where the density of one class
k is high compared to those of the other classes and so a new observed object
lying in this region strongly indicates its membership to class k. Let SRR >
0 be a threshold to construct classwise Relevant Regions. Then Relevant
Regions are regions Rd

m(k0) with:

nd
m(k0)
Nk0

≥ SRR

∑K
k=1

nd
m(k)
Nk

K
(3)

To be able to compare the regions’ densities of different classes by correspond-
ing frequencies they have to be weighted by their observed absolute frequen-
cies. Finally, Characteristic Regions are regions that are both dense and
relevant.

2.2 Classification rule

Let wd
m(k) ≥ 0 be the class wise weight of a region of class k connected

to region Rd
m.

The Characteristic Regions are used to build up the classification rule by
summing the weights over all variables. Then the assignment of the class is
obtained by

k̂(xnew) = argmax
k

D∑
d=1

Md+1∑
m=0

I[Rd
m](xnew)wd

m(k) (4)
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where the weights of the Characteristic Regions are defined by

wd
m(k0) :=

⎧⎨⎩
0 if (2) or (3) do not hold

nd
m(k0)

p(k0)N
Nk0�K

k=1 nd
m(k) p(k)N

Nk

if Rd
m is characteristic for class k0

(5)

p(k)N
Nk

is a correction term for the absolute frequency of the classes in the
data with the prior probabilities of the classes – if it differs from the observed
frequency. The weights are motivated by the marginal probability of knew = k
given xd

new ∈ Rd
m, if Rd

m is ”characteristic” for class k.
As only Characteristic Regions are used for the classification rule the

cutpoints of the regions may disregard information. So to keep more of the
classes’ probability masses we propose another smoothed classification rule
where the weights wd

m(k) are as before but additionally the adjoining regions
are included in the model. Then:

k̂(xnew) = argmax
k

D∑
d=1

Md+1∑
m=0

I[Rd
m](xnew)(

1
2
wd

m−1(k) + wd
m(k) +

1
2
wd

m+1(k))

(6)
with wd

m(k) = 0 for m = −1,Md + 2.

3 Visualization

The weights wd
m(k) described above mimic marginal conditional probability

of the different classes. As only Characteristic Regions will be shown in our
visualization only robust information relevant for classification is given. So
plotting these class wise weights of the regions (see equation 5) provides a
visualization of the class characteristics and an interpretation may be sim-
plified.

As example we illustrate the method in Figure 1 on the well known Iris
data set introduced by Fisher. The values of the variables are shown on the x-
axes while the different colours of the bars symbolize the different true classes
(black = ”Setosa”, light grey = ”Virginica” and dark grey = ”Versicolor”).
The heights are the weights of the Characteristic Regions. It can be seen
that the variable ”Sepal length” only serves to indicate membership of one
of the classes ”Virginica” or ”Setosa” but not for ”Versicolor”, while the
variable ”Sepal width” just serves to characterize a plant of class ”Setosa” or
”Versicolor”.

The ”Petal” variables seem to separate all three classes with the lowest
values for class ”Setosa”.The upper extreme values indicate the class ”Vir-
ginica”. As the plots of these two variables are of the same structure one can
suppose a correlation between these variables.
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Fig. 1. Example: Visualization of a result for Iris data

4 Parameter choice for DiSCo

For the implementation one has to find the Characteristic Regions. So the
problem is how to form the regions and how to choose the thresholds.

4.1 Building the regions

As mentioned earlier the corresponding frequencies should be proportional
to heights of histogram bars for convenience so we can refer to the theory of
nonparametric density estimation to build the regions. In histogram density
estimation the problem consists in smoothing but not over-smoothing the
empirical distribution of the data. Thus the bandwidth of a histogram should
be chosen neither too small nor too large. Freedman and Diaconis (1981)
suggest a choice of

bw =
2

3
√
N

IQR (7)

as bandwidth where IQR is the interquartile range. Under weak assump-
tions this histogram is L2-convergent for density estimation (Freedman and
Diaconis (1981)). As the distribution may be different in the classes this
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must be done for every class – and every variable. The number of classwise

bins is then Md(k) = �xd
(Nk)−xd

(1k)

bw(k,d) � with xd
(Nk) and xd

(1k) being the classwise
maximum respective minimum and �.� being the rounding operator. With
IV d := [xd

(1), x
d
(N)] and IV d

k := [xd
(1k), x

d
(Nk)] let:

Md :=

⌊ ∫
IV d 1dt∫

∪kIV d
k

1dt

{∑
k

(
Md(k)

∫
IV d

k

{
∑

k
I[IV d

k ](s)}−1ds

)}⌋
(8)

This means that the classwise number of bins is interpolated resp. averaged
for intervals covered by none, one or more than one class. So the regions of
variable d are IV d divided into Md equal parts. Rd

0 and Rd
Md+1 cover the

upper and lower rest.

4.2 Optimizing the thresholds

There remains the question how to choose the thresholds in equation 2 and
equation 3. So far no theoretical background is known for an optimal choice
of both SDR (Dense Regions) and SRR (Relevant Regions).

The optimal parameters are found by a contracting 2-dimensional grid-
search algorithm. As the criterion for optimization the cross validated error
rate is used. It should be noticed that since the number of observations is finite
small changes of the two thresholds will not change the resulting model. In
order to check the parameters one can consider that a rather small threshold
SDR eliminates outliers but keeps a large probability mass in the remaining
regions. A SRR rather large keeps only regions in the model that strongly
indicate one class.

5 Simulation study

5.1 Data generation

In order to obtain more general results an experimental design is used in data
generation to be able to compare the effects of possibly influencing factors
in the data on the classification result of DiSCo and of two well-established
other methods: Classification Trees (CART) and Linear Discriminant Analy-
sis (LDA).

With the factor levels described below, data of 8 or 12 variables are first
drawn from independent normal distributions with variance 1 but different
expectations in 3 classes. These data are transformed to possess different
kurtosis and skewness and to be deflected.

Below we give a brief description of the seven investigated factors:

• The class priors may be equal or not.
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• We investigated two different class mean settings in the first 6 variables:
either only one class mean separated from the others or all three class
means are different (one in the middle between the others). For 3 variables
the doubled 0.95 quantile is chosen, for the 3 other variables the doubled
0.9 quantile of the standard normal distribution is chosen for the tallest
differences in the location of the class means.

• 2 or 6 irrelevant independent variables are attached to the data that
are N(0, 1) distributed for all classes, i.e. either a quarter or half of the
variables do not contain any separating information.

• All variables are transformed to have high or low kurtosis and skewness
following the Johnson-System (see Johnson (1949)) to generate a wide
range of values in the kurtosis-skewness-plane.

• The probability of an object to be deflected is fixed to be 0.1 or 0.4, where
deflection means that an object is moved into one of two directions: half
the distance towards its class mean or half the way away from it into the
direction of its nearest wrong class.

The factors and levels included in the experimental design of the simulation
study are summarized in Table 1. A Plackett-Burman design (Plackett and
Burman (1946)) for these factors was repeated 20 times.

Table 1. Effects and levels on the simulated data sets

Effect Low level High level

Class priors ( 1
3
, 1

3
, 1

3
) ( 2

3
, 1

6
, 1

6
)

Number of different class means 3 2

Added irrelevant variables 2 6

Kurtosis 2.7 5

Skewness 0.12 1.152

Probability to be deflected 0.1 0.4

Direction of deflection towards class mean away from class mean

5.2 Results

Compared are both proposed classification rules for the DiSCo method in-
cluding (labelled (1)) and not including (2) the adjoining regions, CART
(Breiman et al. (1984)) and LDA. Table 1 shows the mean error rates on the
test data and the estimated effects of the main factors (coded to −1/ + 1)
used in the design (cp. table 1) on log(odds(hitrate)). These effects can be
estimated independently by a regression on the coded influencing factors:

DiSCo seems to outperform the Classification trees and is almost as good
as LDA. One can also see that there are only small differences between both



Different Subspace Classification 231

Table 2. Results: Overall mean error and estimated effects on log(odds(hitrate))

DiSCo (1) DiSCo (2) CART LDA

Overall mean error 0.085 0.079 0.127 0.075

Class Priors 0.41 0.48 0.19 0.24

Number of different class means 0.17 0.24 0.34 0.37

Irrelevant variables 0.19 0.26 0.21 -0.11

Kurtosis -0.12 -0.07 -0.27 0.09

Skewness 1.16 1.06 0.89 0.70

Probability to be deflected -0.10 -0.16 -0.24 -0.61

Deflected direction -2.17 -2.23 -1.00 -2.73

proposed classification rules for the DiSCo method so there is no general rule
which one to use.

It can be concluded that LDA has best overall mean error. Classification
trees perform well with deflection away from the class mean but having a
large general deficit. The DiSCo method, having a good average result, is
preferable with skewed data or differing class priors and a high percentage of
deflected objects.

Mean values for the optimal thresholds are SDR = 0.67 and 0.54 including
and not including the neighbour regions while the averaged optimal SRR are
1.88 and 1.75.

6 Summary

The introduced concept of Characteristic Regions allows the visualization
of the class characteristics and so satisfies the aim of an easy comprehension
and interpretation of the data. It also yields intuitive classification rules.
On simulated test data it outperformed classification trees and was almost
as good as the linear discriminant analysis.
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Density Estimation and Visualization for Data

Containing Clusters of Unknown Structure

Alfred Ultsch
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Abstract. A method for measuring the density of data sets that contain an un-
known number of clusters of unknown sizes is proposed. This method, called Pareto
Density Estimation (PDE), uses hyper spheres to estimate data density. The radius
of the hyper spheres is derived from information optimal sets. PDE leads to a tool
for the visualization of probability density distributions of variables (PDEplot). For
Gaussian mixture data this is an optimal empirical density estimation. A new kind
of visualization of the density structure of high dimensional data set, the P-Matrix
is defined. The P-Matrix for a 79- dimensional data set from DNA array analysis
is shown. The P-Matrix reveals local concentrations of data points representing
similar gene expressions. The P-Matrix is also a very effective tool in the detection
of clusters and outliers in data sets.

1 Introduction

To identify clusters in a data set it is sometimes not enough to consider dis-
tances between the data points. Consider, for example, the TwoDiamonds
data set depicted in Figure 1. The data consists of two clusters of two
dimensional points. Inside each “diamond” the values for each data point
were drawn independently from uniform distributions. At the central region,
marked with an arrow circle in Figure 1, the distances between the data
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Fig. 1. The TwoDiamonds data set



PDEplot 233

points are very small. For distance based cluster algorithms it is hard to de-
tect correct boundaries for the clusters. Distance oriented clustering methods
such as single linkage, complete linkage, Ward etc. produce classification er-
rors. The picture changes, however, when the data’s density is regarded. The
density at the touching point of the two diamonds is only half as big as the
densities in the center regions of the clusters. This information may be used
for a clustering of the data. Density based clustering algorithms have drawn
much attention in the last years within the context of data mining, see for
example (Xu et al (1998), Hinneburg (1998)). These algorithms call for meth-
ods to estimate the density of the data. In this paper we propose a method
for density estimation that is optimal in an information theoretic sense. Fur-
thermore we propose a one dimensional plot for empirical probability density
and a method to visualize high dimensional density distributions.

2 Information optimal sets, Pareto Radius, PDE

Let S be a subset of a set of points and p denote the probability that a point
belongs to S. The information of the set S can be calculated using Shannon’s
formula for information. Scaled to the range [0,1], the information of a set
I(S) is calculated as I(S) = - e p ln (p). An information optimal set is minimal
in size but contains as much information as possible. To find such an optimal
set size, define the unrealized potential URP (S) of a set S as the Euclidian
distance from the ideal point to (p, I(S)) of a given set. The ideal point (0,1)
corresponds to a minimal set size producing 100% of information. Minimiz-
ing the unrealized potential URP results in an optimal set with pu =20.13%.
This set size produces 88% information. Subsets of the relative size pu are
called information optimal. The optimality of this set at about (20%, 80%)
can serve as an explanation for the so called Pareto 80/20 law, which is empir-
ically found in many domains. Let d(xi, xj) be a dissimilarity measure defined
on the set E = x1, ..., xd of collected data. N(x, r) = |{xi ∈ E | d(x, xi) ≤ r}|
is the number of points inside a sphere of radius r around x. The Pareto
Radius rp is a radius such that the median of the spheres around all data
points is information optimal, i.e.: median(N(xi, rp)) = pu · d. This means
the spheres contain in the average information optimal sets.
If a data set contains cluster, the Pareto Radius should be information op-
timal for each cluster. Let v(k) denote the ratio of intra cluster distances to
inter distances for k clusters in the data set. Then the optimal Pareto Ra-
dius is rp(k) = v(k) · rp. In Ultsch (2003) an estimation procedure for v(k)
is described. The results of a large simulation study to find v(k) is shown in
Figure 2. For a given number k of clusters the circles give the mean of v(k).
The bordering lines indicate the interval in which v(k) could be found with
95% probability. If the number of clusters k is known, v(k) can be estimated
as the mean in Figure 2. If k is unknown, v = 1/3 is covered by the 95% confi-
dence interval for 3 up to 13 clusters. For only one or two clusters, v(2) = 0.7
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is a good estimate. If the minimum number of clusters in a data set can be
estimated, the lower bound of the 95% confidence interval is a good choice
for v. From Figure 2 it can also be seen that all v < 1/3 cover a broad range
of possible cluster numbers. Thus a rough estimate of the cluster number k is
sufficient for the calculation of a suitable Pareto Radius. The calculation of
a Pareto Radius for large data sets can be optimized by concentrating on the
percentiles of distances. The Pareto Percentile pcpar is then the percentile of
all distances closest to the Pareto Radius. As cluster corrected Pareto Radius
the distance percentile closest to v(k) · pcpar is used. An empirical density
estimate at a point x for data sets containing clusters is the number of points
inside the sphere around x with radius rp(k). This density estimation is called
Pareto Density Estimation (PDE).
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3 PDE in one dimension: PDEplot

For one dimensional data a probability density estimation can be calculated
from PDE.

PPDE(x) =
N(x, rp)

area
where area is

∞∫
−∞

N(x, rp)dx (1)

The denominator ‘area’ is approximated using the trapezoidal method on
(xi,N(xi, rp)). The formula (1) assures that the integral on PPDEplot(x)
is equal to 1 to get a valid probability density function. Plotting PPDE(x)
against x is the PDEplot.
PDEplots can be used for a closer look on distributions. In DNA microarray
experiments using high density oligonucleotide arrays, such as the Affymet-
rics gene chip, it is important to visualize the distributions of gene expression
rates (Parmigiani et al. (2003)). Gentleman and Carry implemented software,
the so called “Expression Density Diagnostics”, to compare empirical distri-
butions to a given set of model distribution (Gentleman and Carry (2003)).
Their probability density visualization allows, however, hardly a distinction
between the presumably different distributions (see Gentleman and Carry
(2003), p. 70, Figure 2.7). Figure 3 shows a PPDE plot of an Affymetrix
data set of 124222 gene expressions for 7 liver and 7 brain cells of mice. The
figure shows, that a decision for the origin of the cells (liver vs brain) can be
based only on the different distributions. In histograms this is hardly seen.
To find gene expression that differenciate brain vs. liver, the two different
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distributions have to be adapted carefully. PDEplots allow to judge the qual-
ity of such adaptations. In this way PDE contribute to a successful search
for differential expressed genes in DNA microarray experiments.

4 Measuring and visualization of density of high
dimensional data

We used PDE on a data set of 1000 points with 120 variables. The vari-
ables describe molecules by the number of different atom types (Ghose and
Crippen (1986)). It was known that there were at least five clusters in the
data set. The Pareto Radius obtained for this data set was rp(k) = 3.6. Fig-
ure 4 shows the Pareto Radius compared to hypersphere density estimations
using other radii. It can be seen that for a large radius the density estima-
tion oversmoothes the true density distribution. No structural information
can be gained from such a density estimation. For a small radius e.g. r = 2
many of the spheres are empty. The density estimation with the Pareto Ra-
dius shows the most structural features of the data set. A large number of
points, presumably inside a cluster have a comparably large density (around
250 points in the sphere). Then the density estimation drops to below 100
points for thinner regions of the data set. For all density estimations with hy-
perspheres this structural feature can be seen best when the Pareto Radius
is used. Emergent SOM (ESOM) construct a nonlinear, topology preserv-
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Fig. 4. Hypershere density estimation with different radii

ing mapping from high dimensional spaces to two dimensional grids (the
map space)(Kohonen (1989)). A U-Matrix can be constructed on the map
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space (Ultsch (2003c)). A U-Matrix displays the local dissimilarity between
data points or interpolating points. The same map space can also be used
for the display of density relationships. The PDE can be measured for each
weight vector of a neuron on the map space. This gives a local density es-
timation in the input space. The display of these PDE measures as height
values on top of the map space is a visualization of the density relationships
in the high dimensional space. The properties of the SOM algorithm guar-
antee that local and global distance relationships between data points are
appropriately represented on the map space. Such a display has been called a
P-Matrix (Ultsch (2003c)). Figure 5 shows a P-matrix of Eisen’s Yeast data

Fig. 5. P-Matrix of DNA microarray data

(Eisen et al. (1998)). The data set contains 2465 data points of 2465 gene
expressions of yeast of dimension 79. The data is available from the web site
“http://www-genome.stanford.edu”. On the P-Matrix it can be seen that a
substantial subset of the data points are mapped to locations where there is a
big concentration of points. Compare the dark regions in Figure 5. There, the
neighborhood numbers are around 400. Other regions, distant from the first
have also a local density maximum of more than 250. This points to possible
cluster structures. Some regions on the ESOM are also very under-populated.
This is an indication for “outliers”, i.e. singular special situations in the data
set.

P-Matrices can also be used to enhance the visibility of cluster borders in
a U-Matrix and to detect clusters in data sets. Figure 6 b shows a so called
U*-Matrix which is the combination of a U-Matrix and a P-matrix (Ultsch
(2003b)) in comparison to the display published by Kaski et al. (1998) on the
same data set. Centering a SOM mapping on the point with highest PDE
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(a) Kaski (1998)

(b) U*-Matrix

Fig. 6. Displays of Yeast data

results in a canonical view for SOM with borderless map space such as toroids
(Ultsch (2003c)).

5 Summary

One of the goals of data mining is to discover clusters in empirical data.
Distances are a prerequisite for the detection of clusters, but sometimes not
enough for an automatic clustering. Data density is an alternative viewpoint
on the data. Density considerations lead often to better cluster definition. The
combination of both methods is hardly attempted. In this work a method for
an efficient measurement of data density is presented. Pareto Density Estima-
tion (PDE) is a method for the estimation of density functions using hyper
spheres. The radius of the hyper spheres is derived from information optimal
sets. The construction of the PDE from an empirical data set takes in par-
ticular into account that there might be an unknown number of clusters of
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also unknown size in the set. Starting at an educated guess, the information
on clusters discovered during the process of data mining can be employed
in the method. A tool for the visualization of probability density distrib-
utions of variables, the PDEplot is defined. The usefulness of this tool is
demonstrated on DNA array data. The visualization guides the search for
better models for empirical distributions for this type of data. The usage
of PDE to visualize the density relationships of high dimensional data sets
leads to so called P-Matrices which are defined on the mapping space of emer-
gent self-organizing maps (ESOM). A P-Matrix for a 79-dimensional DNA
array data set is shown. The ESOM mapping preserves the data’s topol-
ogy. The P-Matrix reveals local concentrations of data points. This is a very
useful tool in the detection of clusters and outliers in unknown data sets.
Pareto Density Estimation, PDEplots for one dimensional data and the con-
struction of P-matrices for high dimensional data have been implemented
as MATLAB� routines. These routines may be obtained from the author
(http://www.mathematik.uni-marburg.de/∼databionics/).
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Abstract. A hierarchical extension of the finite mixture model is presented that
can be used for the analysis of nested data structures. The model permits a simulta-
neous model-based clustering of lower- and higher-level units. Lower-level observa-
tions within higher-level units are assumed to be mutually independent given cluster
membership of the higher-level units. The proposed model can be seen as a finite
mixture model in which the prior class membership probabilities are assumed to
be random, which makes it very similar to the grade-of-membership (GoM) model.
The new model is illustrated with an example from organizational psychology.

1 Introduction

Social science researchers, as researchers in other fields, are often confronted
with nested or hierarchical data structures. Examples are data from em-
ployees belonging to the same organizations, individuals living in the same
regions, customers of the same stores, repeated measures taken from the same
individuals, and individuals belonging to the same primary sampling units in
two-stage cluster samples.

This paper introduces an extension of the standard finite mixture model
(McLachlan and Peel (2000)) that can take the hierarchical structure of a
data set into account. Introducing random-effects in the model of interest
is a common way to deal with dependent observations arising from nested
data structures. It is well known that the finite mixture model is itself a
nonparametric random-effects model (Aitkin (1999)). The solution that is
proposed here is to introduce nonparametric random effects within a finite
mixture model. That is, on top of a finite mixture model, we build another
finite mixture model, which yields a model with a separate finite mixture
distribution at each level of nesting.

When using the hierarchical mixture model for clustering, one obtains
not only a clustering of lower-level units, but also a clustering of higher-
level units. The clusters of higher-level units differ with respect to the prior
probabilities corresponding to the lower-level clusters. This is similar to what
is done in multiple-group latent class analysis, with the difference that we
assume that each group belongs to one of a small number of clusters (latent
classes) instead of estimating of a separate latent class distribution for each
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group. The latter approach would amount to using a fixed-effect instead of a
random-effects model.

Because it is not practical to estimate the hierarchical mixture using a
standard EM algorithm, we propose a variant of EM that we call the upward-
downward algorithm. This method uses the conditional independence as-
sumption of the underlying graphical model for an efficient implementation
of the E step.

2 Model formulation

2.1 Standard finite mixture model

Let yik denote the response of individual i on indicator, attribute, or item k.
The number of cases is denoted by N , and the number of items by K. The
latent class variable is denoted by xi, a particular latent class by t, and the
number of latent classes by T . Notation yi is used to refer to the full response
vector for case i. A finite mixture model can be defined as (McLachlan and
Peel (2000))

f(yi) =
T∑

t=1

π(xi = t) f(yi|xi = t).

where π(xi = t) is the prior class membership probability corresponding to
class t and f(yi|xi = t) is the class conditional density of yi. With continuous
yik, we may take f(yi|xi = t) to be multivariate normal. If the indicators yik

are categorical variables, we usually make the additional assumption that
responses are independent given class membership (Lazarsfeld and Henry
(1968)); that is,

f(yi|xi = t) =
K∏

k=1

π(yik|xi = t). (1)

This assumption is justified if – as in our empirical example – the K items
can be assumed to measure a single underlying dimension.

2.2 Hierarchical finite mixture model

For the hierarchical extension of the mixture model, we have to extend our
notation to take into account the extra level of nesting. Let yijk denote the
response of lower-level unit i within higher-level unit j on indicator k. The
number of higher-level units is denoted by J , the number of lower-level units
within higher-level unit j by nj, and the number of items by K. Notation yij

is used to refer to the full vector of responses of case i in group j, and yj to
refer to the full vector of responses for group j.

The latent class variable at the lower level is denoted by xij , a particular
latent class by t, and the number of latent classes by T . The latent class
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variable at the higher level is denoted by uj, a particular latent class by m,
and the number of latent classes by M .

The hierarchical mixture model consist of two parts. The first part con-
nects the observations belonging to the same group. It has the following form:

f(yj) =
M∑

m=1

π(uj = m) f(yj |uj = m)

f(yj |uj = m) =
nj∏
i=1

f(yij |uj = m).

As can be seen, groups are assumed to belong to one of M latent classes with
prior probabilities equal to π(uj = m) and observations within a group are
assumed be mutually independent given class membership of the group. Note
that this conditional independence assumption is similar to the assumption
of the latent class model for categorical variables (see equation 1).

The second part of the model is similar to the structure of a standard finite
mixture model, except for the fact that now we are dealing with f(yij |uj =
m) instead of f(yi); that is, we have to define a density conditional on the
class membership of the higher-level unit. This yields

f(yij |uj = m) =
T∑

t=1

π(xij = t|uj = m) f(yij |xij = t). (2)

In the case of categorical yijk, we will again assume that

f(yij |xij = t) =
K∏

k=1

π(yijk |xij = t).

If we compare the standard mixture model with the hierarchical mixture
model, we see two important differences: 1] we not only obtain information
on class membership of individuals, but also on class membership of groups
and 2] groups are assumed to differ with respect to the prior distribution of
their members across lower-level latent classes.

It should be noted that the hierarchical mixture model is a graphical
model with a tree structure. The upper node is the discrete latent variable
at the higher level. The intermediate nodes consist of the nj discrete latent
variables for the lower-level units belonging to higher-level unit j. These xij

are mutually independent given uj. The lower nodes contain the observed
responses yijk, which in the latent class model are assumed to be mutually
independent given xij .
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3 Maximum likelihood estimation by an adapted EM
algorithm

If we put the various model parts together, we obtain the following log-
likelihood function for the hierarchical mixture model:

logL =
J∑

j=1

log f(yj)

=
J∑

j=1

log
M∑

m=1

π(uj = m)
nj∏
i=1

[
T∑

t=1

π(xij = t|uj = m) f(yij |xij = t)

]
.

A natural way to solve the ML estimation problem is by means of the EM
algorithm (Dempster et al. (1977)). The E step of the EM algorithm involves
computing the expectation of the complete data log-likelihood, which in the
hierarchical mixture model is of the form

E(logLc) =
J∑

j=1

M∑
m=1

P (uj = m|yj) log π(uj = m)

+
J∑

j=1

M∑
m=1

nj∑
i=1

T∑
x=1

P (uj = m,xij = t|yj) log π(xij = m|uj = m)

+
J∑

j=1

M∑
m=1

nj∑
i=1

T∑
t=1

P (xij = t|yj) log f(yij |xij = t).

This shows that, in fact, the E step involves obtaining the posterior proba-
bilities P (uj = m,xij = t|yj) given the current estimates for the unknown
model parameters. In the M step of the EM algorithm, the unknown model
parameters are updated so that the expected complete data log-likelihood is
maximized (or improved). This can be accomplished using standard complete
data algorithms for ML estimation.

The implementation of the E step is more difficult than the M step. A
standard implementation would involve computing the joint conditional ex-
pectation of the nj + 1 latent variables for higher-level unit j, that is, the
joint posterior distribution P (uj, x1j , x2j , ..., xnjj |yj) with M · T ni entries.
Note that this amounts to computing the expectation of all the “missing
data” for a higher-level unit. These joint posteriors would subsequently be
collapsed to obtain the marginal posterior probabilities for each lower-level
unit i within higher-level unit j. A drawback of this procedure is that com-
puter storage and time increases exponentially with the number of lower-level
units, which means that it can only be used with small nj .

Fortunately, it turns out that it is possible to compute the nj marginal
posterior probability distributions P (uj = m,xij = t|yj) without going
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through the full posterior distribution by making use of the conditional in-
dependence assumptions implied by the hierarchical mixture model. In that
sense our procedure is similar to the forward-backward algorithm that can
be used for the estimation of hidden Markov models with large numbers of
time points (Baum et al. (1970)). In the upward-downward algorithm, first,
latent variables are integrated out going from the lower to the higher lev-
els. Subsequently, the relevant marginal posterior probabilities are computed
going from the higher to the lower levels. This yields a procedure in which
computer storage and time increases linearly with the number of lower-level
observations instead of exponentially, as would have been the case with a
standard EM algorithm.

The upward-downward algorithm makes use of the fact that

P (uj = m,xij = t|yj) = P (uj = m|yj)P (xij = t|yj , uj = m)
= P (uj = m|yj)P (xij = t|yij , uj = m);

that is, given class membership of the group (uj), class membership of the
individuals (xij) is independent of the information of the other group mem-
bers. The terms P (uj = m|yij) and P (xij = t|yij , uj = m) are obtained as
follows:

P (xij = t|yij , uj = m) =
π(xij = t|uj = m)f(yij |xij = t)

f(yij |uj = m)

P (uj = m|yj) =
π(uj = m)

∏nj

i=1 P (yij |uj = m)
f(yj)

,

where f(yij |uj = m) =
∑T

t=1 π(xij = t|uj = m)f(yij |xij = t) and f(yj) =∑M
m=1 π(uj = m)

∏nj

i=1 P (yij |uj = m).
In the upward part, we compute f(xij = t,yij |uj = m) for each indi-

vidual, collapse these over xij to obtain f(yij |uj = m), and use these to
obtain P (uj = m|yj) for each group. The downward part involves comput-
ing P (uj = m,xij = t|yij) for each individual using P (uj = m|yi) and
P (xij = t|yij , uj = m).

A practical problem in the implementation of the above upward-downward
method is that underflows may occur in the computation of P (uj = m|yj).
Such underflows can, however, easily be prevented by working on a log scale.
The algorithm described here will be implemented in version 4.0 of the Latent
GOLD program for finite mixture modeling (Vermunt and Magidson (2000)).

4 An empirical example

We will illustrate the hierarchical mixture model using data taken from a
Dutch study on the effect of team characteristics on individual work condi-
tions (Van Mierlo (2003)). A questionnaire was completed by 886 employees
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from 88 teams of two organizations, a nursing home and a domiciliary care
organization. Of interest for the illustration of the hierarchical mixture model
is that employees are nested within (self-managing) teams, where the total
number of observations per team ranged from 1 to 22.

Various aspects of work conditions were measured, one of which was the
perceived task variety. The item wording of the five dichotomous items mea-
suring perceived task variety is as follows (translated from Dutch):
1. Do you always do the same things in your work?
2. Does your work require creativity?
3. Is your work diverse?
4. Does your work make enough usage of your skills and capacities?
5. Is there enough variation in your work?

We had 36 cases with missing values on one or more of the indicators, but
these cases can be retained in the analysis.

The model we use for these dichotomous response variables is an unre-
stricted latent class models. Besides a latent class model for the employees,
we have to take into account the nested data structure. This is done by allow-
ing teams to belong to clusters of teams that differ with respect to the prior
distribution of the task-variety classes of employees. An alternative would
have been to adopt a fixed-effects approach in which each team has its own
prior latent class distribution. However, given the large number of higher-level
units (88), this would yield a model with many parameters.

We fitted models with different numbers of classes of teams and different
numbers of classes of employees within classes of teams. Table 1 reports the
log-likelihood value, the number of parameters, and the BIC value for the
estimated models. In the computation of BIC, we used the total number of
employees (886) as the sample size. As can be seen, the very parsimonious
model with two classes of teams and two classes of employees (within classes
of teams) is the preferred model according to the BIC criterion.

Table 1. Testing results for the estimated models with the task-variety data

Teams Employees Log-likelihood # Parameters BIC value

1-class 1-class -2797 5 5628
1-class 2-class -2458 11 4991
1-class 3-class -2444 17 5004
2-class 2-class -2435 13 4958
2-class 3-class -2419 20 4974
3-class 2-class -2434 15 4970
3-class 3-class -2417 23 4991

The estimated probability of giving a response that is in agreement with a
high task variety (“no” for item 1 and “yes” for the other 4 indicators) equals
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.51, .70, .97, .83, and .93 for the employees in the first latent class and .14,

.17, .20, .42, and .17 for the second latent class. Thus, the first latent class
can be called the high task-variety class and the second the low task-variety
class.

Besides these two classes of employees we encountered two clusters of
teams that differ in their team members’ prior probability of belonging to
the high task-variety class. In the first cluster of teams – containing 66% of
the teams – this prior probability equals .79, whereas it is only .39 in the
second cluster of teams. This shows that there are large differences between
teams with respect to the perceived task variety of their employees. It also
shows that the observations belonging to the same group are quite strongly
correlated.

Whereas in this application the hierarchical structure arises from the nest-
ing of individuals within groups, the proposed methodology is also useful in
longitudinal studies: the higher-level units would then be individuals and the
lower-level units measurement occasions or time points.

5 Variants and extensions

This paper presented the simplest form of the hierarchical mixture model.
Several extensions and variants can be formulated. One important extension
is the use of covariates affecting uj , xij , or yijk. For example, assume that
we have a set of P covariates affecting xij and that zijp denotes a particular
covariate. In that case, we may use the following logit form for π(xij = t|uj =
m, zij):

π(xij = t|uj = m, zij) =
exp(γm

t0 +
∑P

p=1 γtp zijp)∑T
r=1 exp(γm

r0 +
∑P

p=1 γrp zijp)
.

In equation (2), we implicitly assumed that uj has no direct effect on yij .
In some applications one may wish to use an alternative structure for this
equation. For example,

f(yij |uj = m) =
T∑

t=1

π(xij = t) f(yij |xij = t, uj = m),

which can be used for obtaining a three-level extension of the mixture re-
gression model (see Vermunt (2004)). That is, a nonparametric random-
coefficients model in which regression coefficients not only differ across clus-
ters of lower-level units, but also across clusters of higher-level units.

The hierarchical mixture model is similar to the grade-of-membership
(GoM) model (Manton et al. (1994)). As pointed out by Haberman (1995)
and Esherova (2003), a GoM model can be defined as a latent class model
with multiple exchangeable latent variables, which is exactly the same as
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is done in the hierarchical mixture model. Whereas we model the variation
in prior class membership probabilities by nonparametric random effects, a
hierarchical mixture model with parametric random effects would be even
more similar to the GoM model. Vermunt (2003) proposed such a variant
in which the logit of π(xij = t|uj) is assumed to be normally distributed,
which is the common specification for the random effects in logistic regression
models. More specifically,

π(xij = t|uj) =
exp(γt + τt · uj)∑T

r=1 exp(γr + τr · uj)

with uj ∼ N(0, 1).
Whereas the hierarchical mixture model presented in this paper contains

only two levels of nesting, it is straightforward to extend the model and the
upward-downward algorithm to three or more levels.
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Iterative Proportional Scaling Based on a

Robust Start Estimator

Claudia Becker
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Abstract. Model selection procedures in graphical modeling are essentially based
on the estimation of covariance matrices under conditional independence restric-
tions. Such model selection procedures can react heavily on the presence of outlying
observations. One reason for this might be that the covariance estimation is influ-
enced by outliers. Hence, a robust procedure to estimate a covariance matrix under
conditional independence restrictions is needed. As a first step to robustify the
model building process in graphical modeling we propose to use a modified itera-
tive proportional scaling algorithm, starting with a robust covariance estimator.

1 Introduction

Graphical modeling deals with detecting (conditional) independencies be-
tween variables. Model selection in this context implies the repeated esti-
mation of covariance matrices under certain conditional independence re-
strictions. Kuhnt and Becker (2003) show how sensitive such model selection
procedures react to the presence of outlying observations in the context of
mixed graphical models. As estimating the covariance matrix is an essential
part of these procedures it can be assumed that one reason for this sensitivity
might lie in the sensitivity of covariance estimation against the influence of
outliers. Hence, a robust procedure to estimate a covariance matrix under
conditional independence restrictions is needed. In the case of a graphical
covariance selection model based on a normal distribution assumption, the
covariance estimation is usually performed by means of the so-called iterative
proportional scaling algorithm (see Lauritzen (1996)), which uses the classi-
cal empirical covariance as a starting estimate and hence will inherently be
nonrobust in nature. As a first step to robustify the model building process
in graphical modeling we therefore propose to start the iteration with a ro-
bust covariance estimator like the minimum covariance determinant (MCD)
estimator (Rousseeuw (1985), Rousseeuw and van Driessen (1999)) instead.

In the following section we briefly introduce the general setting of covari-
ance selection models. Section 3 deals with the original version of the iterative
proportional scaling algorithm while the new robustified approach is intro-
duced and discussed in Section 4. In Section 5 we investigate the integration
of the robustified approach into model selection strategies. We finish with
some concluding remarks and put open questions arising from the presented
results.
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2 Covariance selection models

Graphical models are used to determine and at the same time visualize de-
pendency structures between random variables (Cox and Wermuth (1996),
Edwards (2000), Lauritzen (1996), Whittaker (1990)). A statistical model
for a random vector X = (X1, ..., Xp)T is presented as the combination of
a distributional assumption and a mathematical graph, where the vertices
of the graph represent the variables X1, . . . , Xp. The dependency structure
between the variables is related to the existence or non-existence of edges
between the vertices. We restrict ourselves to the case of undirected graphs
here, where edges are undirected lines, and the relationship expressed by an
edge is mutual. Figure 1 shows an example of an undirected graph G with
vertices {1, . . . , 5} representing random variates X1, . . . , X5.

For a p-dimensional random vector X = (X1, ..., Xp)T and an undirected
graph G with vertices {1, . . . , p} a graphical independence model consists of
all distributions of X, for which Xi and Xj are conditionally independent
given all other variables, whenever G does not contain an edge between ver-
tices i and j. As a special case, a covariance selection model additionally
imposes a normality assumption, namely X ∼ N(µ,Σ). For the graph of
Figure 1, we conclude that e.g. X1 is conditionally independent of X4 given
(X2, X3, X5).

In covariance selection models, the conditional independencies given by
the graph are reflected in the inverse K = Σ−1 of the covariance matrix Σ
in the way that missing edges yield zeroes in K (Lauritzen (1996, p. 129)).
For the graph of Figure 1, K would be of the following type:

K =

⎡⎢⎢⎢⎢⎣
k11 k12 k13 0 0
k21 k22 k23 0 0
k31 k32 k33 k34 k35

0 0 k43 k44 k45

0 0 k53 k54 k55

⎤⎥⎥⎥⎥⎦ ,

where K−1 has to be a valid covariance matrix, i.e. K−1 positive definite and
symmetric.
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Fig. 1. Example of a graph.
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3 Iterative proportional scaling (IPS)

Assume that for a data set x1, . . . ,xn under investigation the graph struc-
ture is given, hence the conditional independencies are known. One can then
estimate Σ with the maximum likelihood (ML) approach, restricted upon
the zeroes in K according to the missing edges in the graph G. The solution
of the ML equations cannot be given in closed form, but there exists an al-
gorithm to compute the solution, the so-called iterative proportional scaling
(IPS) algorithm (Lauritzen (1996), Speed and Kiiveri (1986)):

start estimate: K0 with zeroes according to G, K−1
0 valid covariance ma-

trix (e.g. K0 = Ip, the (p × p)-identity matrix)
iteration: Kr+1 = (TC1 . . . TCk

)Kr,

where TCKr = Kr + [n(SSDCC)−1 − (K−1
r,CC)−1]G,

SSD =
∑n

i=1(xi − x)(xi − x)T .

Here, C denotes a clique of G, a subset of maximum size of the vertices of G
such that all vertices in C are joined by an edge. For a (p× p)-matrix M the
operation MCC = [mij ]i,j∈C means to extract the objects of M according
to a clique C, whereas [MCC ]G stands for the opposite operation, namely
to write the elements of MCC back into a (p × p)-matrix according to the
positions of the clique elements. Each iteration step is performed over the set
of all cliques C1, . . . , Ck of G. Lauritzen (1996) shows that the series {Kr}
converges to the ML estimate K̂ of K. Inverting K̂ yields Σ̂.

As an example consider the data on the examination marks of n = 88
students in the p = 5 subjects mechanics (1), vectors (2), algebra (3), analy-
sis (4), and statistics (5), as given in Mardia et al. (1979) and analyzed by
Edwards (2000). The graph of Figure 1 was considered appropriate to re-
flect the dependency structure of these variables. Given this graph, the IPS
algorithm results in

K̂ =

⎡⎢⎢⎢⎢⎣
0.005 −0.002 −0.003 0 0

−0.002 0.011 −0.006 0 0
−0.003 −0.006 0.029 −0.008 −0.005

0 0 −0.008 0.010 −0.002
0 0 −0.005 −0.002 0.007

⎤⎥⎥⎥⎥⎦ ,
corresponding to

Σ̂ =

⎡⎢⎢⎢⎢⎣
298.9 124.3 99.3 98.6 107.2
124.3 168.9 83.2 82.7 89.9
99.3 83.2 110.3 109.6 119.1
98.6 82.7 109.6 215.4 152.0

107.2 89.9 119.1 152.0 291.0

⎤⎥⎥⎥⎥⎦ .
If we now replace the first observation x1 = (77, 82, 67, 67, 81)T of the data
set by (770, 82, 67, 67, 81)T , by this imposing a massive outlier into the data,
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IPS comes up with

K̂ =

⎡⎢⎢⎢⎢⎣
0.0001 −0.0003 −0.0001 0 0

−0.0003 0.010 −0.007 0 0
−0.0001 −0.007 0.028 −0.008 −0.005

0 0 −0.008 0.010 −0.002
0 0 −0.005 −0.002 0.007

⎤⎥⎥⎥⎥⎦ ,

corresponding to

Σ̂ =

⎡⎢⎢⎢⎢⎣
6225.3 368.9 226.9 225.4 245.0
368.9 168.9 83.2 82.7 89.9
226.9 83.2 110.3 109.6 119.1
225.4 82.7 109.6 215.4 152.0
245.0 89.9 119.1 152.0 291.0

⎤⎥⎥⎥⎥⎦ .
Similar to other situations, the ML estimates of K and Σ under the restric-
tions given by G turn out to be not at all robust against disturbances of the
data.

4 IPS robustified

To overcome the problem illustrated in the previous section, we propose to
insert a robust estimator into the IPS algorithm:

start estimate: K0 with zeroes according to G, K−1
0 valid covariance ma-

trix (e.g. K0 = Ip)
iteration: Kr+1 = (TC1 . . . TCk

)Kr,

where TCKr = Kr + [m(MCDCC)−1 − (K−1
r,CC)−1]G,

MCD =
∑n

i=1 wi(xi − tMCD)(xi − tMCD)T ,
m =

∑n
i=1 wi.

In this algorithm, tMCD denotes the MCD location estimate according to
Rousseeuw (1985). Observations whose Mahalanobis-type distance with re-
spect to tMCD and the corresponding raw MCD covariance estimate is too
large (> (χ2

p;0.975)
1/2) get weight wi = 0, all other obserations get weight

wi = 1. Hence, up to a constant, MCD is the one-step reweighted MCD co-
variance estimate (Rousseeuw (1985), Rousseeuw and van Driessen (1999)).
We call this modified IPS algorithm robustified iterative proportional scaling
(RIPS).

In the students’ marks example RIPS yields

K̂RIPS =

⎡⎢⎢⎢⎢⎣
0.007 −0.002 −0.006 0 0

−0.002 0.011 −0.007 0 0
−0.006 −0.007 0.041 −0.008 −0.007

0 0 −0.008 0.013 −0.003
0 0 −0.007 −0.003 0.008

⎤⎥⎥⎥⎥⎦ ,
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for the undisturbed data which is similar to the IPS solution, which is also
true for Σ̂RIPS :

Σ̂RIPS =

⎡⎢⎢⎢⎢⎣
224.5 93.8 77.6 73.7 97.0
93.8 148.2 63.7 60.5 79.6
77.6 63.7 76.4 72.6 95.6
73.7 60.5 72.6 153.9 127.8
97.0 79.6 95.6 127.8 262.3

⎤⎥⎥⎥⎥⎦ .
Contrary to IPS, its robustified counterpart is not as much influenced by the
outlier, ending up with

K̂RIPS =

⎡⎢⎢⎢⎢⎣
0.007 −0.002 −0.006 0 0

−0.002 0.011 −0.007 0 0
−0.006 −0.007 0.040 −0.008 −0.006

0 0 −0.008 0.013 −0.003
0 0 −0.006 −0.003 0.008

⎤⎥⎥⎥⎥⎦ ,

which yields

Σ̂RIPS =

⎡⎢⎢⎢⎢⎣
209.8 80.1 71.2 66.9 85.0
80.13 137.7 58.3 54.8 69.6
71.2 58.3 74.3 69.8 88.7
66.9 54.7 69.8 151.5 119.8
85.0 69.6 88.7 119.9 245.0

⎤⎥⎥⎥⎥⎦ .
From the results of this example, RIPS appears to be a sensible approach to
robustify the covariance estimation in graphical covariance selection models.

5 Model selection with RIPS

Since usually the dependency structure and the graph corresponding to a
data set is not known beforehand, model selection procedures are applied.
Their goal is to find an appropriate dependency structure, which is as sparse
as possible while at the same time consistent with the data. We will now
investigate how the RIPS based estimators can be integrated into such pro-
cedures.

Model selection strategies in graphical modeling include several ap-
proaches like forward or backward selection, full model search based on infor-
mation criteria, or the so-called Edwards-Havranek procedure (see Edwards
(2000) for a detailed review). We investigate the backward selection proce-
dure based on the deviance difference. This method starts with the satu-
rated model corresponding to the complete graph, where any two vertices
are joined by an edge. From this full model, claiming no conditional inde-
pendencies, edges are successively removed by performing likelihood ratio
tests of the actual model against all possible models containing one edge
less. The edge whose removal leads to the largest p-value in the tests (“least
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Fig. 2. Distribution of robustified D2: qq-plot of χ2 distribution.

significant edge”) is then taken out, and the model is updated. This is con-
tinued until there are no more removable edges, meaning that all p-values
lie below a given test level α. The test statistic is the deviance difference
D2 = n(ln det K̂M1 − ln det K̂M0) between two successive models M0 and
M1, M0 ⊆ M1, where M0 and M1 differ by one edge. Here, K̂M denotes the
ML estimate of K under model M . The deviance difference can also more
generally be used to test between two arbitrary models M0 and M1 which
may differ by more than one edge. The test statistic is asymptotically χ2

distributed with degrees of freedom equal to the difference in the number of
edges between the two models.

Since the distributional result is based on ML estimation, if we use the
RIPS based estimators instead of the ML estimators within the procedure, we
have to check whether still the same χ2 distribution can be used. Up to now,
there do not exist any theoretical results. We performed some simulations to
get a first impression. Figure 2 illustrates the results in an exemplary manner.
The data of size n = 1000 were generated according to a covariance selection
model reflected by G from Figure 1. The statistic D2 was calculated for the
test against the saturated model, where the RIPS based estimators for K were
used. The two models differ by four edges, hence the original version of D2

would follow a χ2
4 distribution. Figure 2 shows the corresponding qq-plot of

the distribution of our D2. It seems that the distribution type is appropriate.
Similar results came out with further simulations for other models. Detailed
analyses of the histograms of the distributions of the new D2 together with
χ2 densities revealed that rescaling the test statistic is necessary to get a
sufficient approximation. We use the square root of a χ2 quantile as the
rescaling factor, which is motivated by the construction of the MCD estimator
in the RIPS algorithm. Figure 3 shows the result for the data of Figure 2.
Hence, we propose to use the RIPS based estimators K̂RIPS with test statistic

D2
RIPS =

n√
χ2

r;0.95

(ln det K̂RIPS,M1 − ln det K̂RIPS,M0),
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Fig. 3. Distribution of rescaled robustified D2: histogram and density of χ2.

where r denotes the number of edges different between models M0 and M1.
Critical values can then be taken from χ2

r. In backward selection we have
r = 1.

To give an impression of the proposed procedure, we performed a small
simulation study. We took a covariance selection model according to G from
Figure 1 as basic model (model 0). Data sets of size n = 1000 were generated
according to this model. We further considered three simple disturbances
by replacing the first component of the first (model 1), the first 10 (model
2), and the first 25 (model 3) observations by a large value, in this way
generating 0.1%, 1%, and 2.5% outliers, respectively. For each data set, the
usual and the proposed RIPS based backward selection were performed with
α chosen to be 5%. We generated 500 simulation runs for each model. The
results are presented in Table 1. In the left part we see, how often the model

Table 1. Simulation results for model selection

true model found too many edges removed
in ... out of 500 runs in ... out of 500 runs

ML backward RIPS backward ML backward RIPS backward

model 0 364 145 0 0
model 1 381 151 0 0
model 2 250 159 191 0
model 3 38 153 435 0

selection procedures selected exactly the correct model. Obviously, the ML
based procedure is much better under the null model and slight disturbances.
However, already with 2.5% of extremely deviating observations the RIPS
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based model selection beats ML. Moreover, as can be seen in the right part of
the table, in outlier situations ML based backward selection tends to remove
too many edges, hence claiming conditional independencies which do not
hold. Here, RIPS is clearly advantageous.

6 Open questions

In this paper, we proposed a new approach for robustifying model selection
in graphical covariance selection models. Up to now, there do not exist any
theoretical results about this approach, but first experiences in a small sim-
ulation study confirm that it is worth investigating further. Still, there is a
bunch of interesting research topics in this field like

• Does the RIPS algorithm converge, and to which solution?
• Can the asymptotic χ2 distribution of D2

RIPS be shown?
• Would some different test statistic be better?
• Is the MCD a good estimator in RIPS? What about other robust covari-

ance estimators?
• How do we measure the robustness of model selection in graphical mod-

eling? Is “counting edges” enough?
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Abstract. A new approach to find the underlying structure of a multidimensional
data cloud is proposed, which is based on a localized version of principal components
analysis. More specifically, we calculate a series of local centers of mass and move
through the data in directions given by the first local principal axis. One obtains
a smooth “local principal curve” passing through the “middle” of a multivariate
data cloud. The concept adopts to branched curves by considering the second lo-
cal principal axis. Since the algorithm is based on a simple eigendecomposition,
computation is fast and easy.

1 Introduction

Principal components analysis (PCA) is a well established tool in dimension
reduction. For a set of data X = (X1, . . . , Xn)T with Xi in Rd the principal
components provide a sequence of best linear approximations to that data.
Specifically, let Σ be the empirical covariance matrix of X, then the principal
components decomposition is given by

Σ = ΓΛΓ T (1)

where Λ = diag(λ1, . . . , λd) is a diagonal matrix containing the ordered eigen-
values of Σ, with λ1 ≥ . . . ≥ λd, and Γ is an orthogonal matrix. The columns
of Γ = (γ1, . . . , γd) are the eigenvectors of Σ. The first eigenvector γ1 maxi-
mizes the variance of Xγ over all γ ∈ Rd with ||γ|| = 1, the second eigenvector
γ2 maximizes the variance of Xγ over all γ ∈ Rd with ||γ|| = 1 which are or-
thogonal to γ1, and so on. For illustration, we consider the location of scallops
near the NE coast of the United States (Fig. 1; the data are included in the
S+ SpatialStats Package). The first and second principal component axes,
gj(t) = µ + tγj (j = 1, 2, t ∈ R), with µ = 1

n

∑n
i=1 Xi, are also depicted.

The principal axes unveil nicely the main directions in which the scallops
spread out: the first from SW to NE, and the second from NW to SE. In the
data cloud we clearly see two fields of scallops: one along the first principal
axis and the other one along the second principal axis. The crossing of the
axes is not positioned at the junction of the fields, since the default centering
in PCA is at the over-all-center of mass of the data. Intuitively, one might
determine the position of the crossing of the two fields by the point on the
first principal axis where the spread on the second principal axis is maximal.



Exploring Multivariate Data Structures with Local Principal Curves 257

·
··

·
··

·
··

·
·

····
·
·

·
····

··
··

·
·
·

··
· ·

···
· · ·

·
·

· ·
·
· ·

·
··
· ·
·

· ·
··

··
· ·

· ·
·· ··

·
·

·
··· ·

···
· ····

····
·

·

·
· · · ·

···
·
·
· ·

· ···
·

·
· ·

· ·
·
· ·

· · ·

·········
·
· · · ···

·
· · ·

·
···· ··

· · ·
·· ·

1st PC
2nd PC

Fig. 1. First and second principal component through scallops near the NE coast
of the USA.

In the following, we will go one step further and abandon the assumption of
linearity, i.e. not only linear structures shall be described, but any form of
multivariate curvaceous, possibly branched, connected or disconnected data
structures. The goal is to find smooth nonparametric local principal curves
passing through a data cloud. Therefore, it can be seen as a competitor to
the principal curve algorithms from Hastie and Stuetzle (1989), Tibshirani
(1992), Kégl et al. (2000), and Delicado (2001). Only the latter one is also
based on the concept of localization. However, Delicado does not use local
principal components, but rather local principal directions, which however
cannot be calculated by a simple eigendecomposition. Principal directions
are defined as vectors orthogonal to the hyperplane that locally minimize the
variance of the data points projected on it. For a comparison of the principal
curve algorithms we refer to Einbeck et al. (2003).

2 Local principal curves

Assume a data cloud X = (X1, . . . , Xn)T , where Xi = (Xi1, . . . , Xid)T . We
propose the following algorithm to find the local principal curve passing
through X:

Algorithm 1 (Local principal curves)

1. Choose a set S0 �= ∅ of starting points. This may be done randomly, by
hand, or by choosing the maximum/maxima of a kernel density estimate.

2. Draw without replacement a point x0 ∈ S0. Set x = x0.
3. Calculate the local center of mass

µx =
∑n

i=1 KH(Xi − x)Xi∑n
i=1 KH(Xi − x)

at x, where KH(·) is a d−dimensional kernel function and H a multi-
variate bandwidth matrix. Denote by µx

j the j-th element of µx.
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4. Estimate the local covariance matrix Σx = (σx
jk) at x via

σx
jk =

n∑
i=1

wi(Xij − µx
j )(Xik − µx

k)

with weights wi = KH(Xi − x)/
∑n

i=1 KH(Xi − x), and H as in step 3.
Let γx be the first column of the loadings matrix Γ x computed locally at
x in analogy to equation (1).

5. Update x by setting

x := µx + t0γ
x,

where t0 determines the step length.

6. Repeat steps 3 to 5 until the border of the data cloud is reached. This is
the case when the sequence of µx remains approximately constant. Then
set again x = x0, set γx := −γx and continue with step 5.

7. Repeat steps 2 to 6 as long as the set S0 is not empty.

The local principal curve (LPC) is given by the sequence of the µx. Note
that, in step 5, one has to make sure that the orientation of the local eigen-
vector γx

(i) after a number i of loops is the same as the local eigenvector γx
(i−1)

one loop before, and has to change its signum if γx
(i−1) ◦ γx

(i) < 0, where ◦
denotes the scalar product.

In the sequel, we will extend the algorithm and look at local principal
components of higher order. Let the term “k-th local eigenvalue” denote the
k-th largest eigenvalue of Σx. The k−th local eigenvalues λx

k (k ≥ 2) are
useful indicators for branching points.
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Definition 1 (Branches of order θ and depth φ ).

• The order θ of a branch of a LPC is the order of the local principal com-
ponent which launched it. In other words, θ = k means that this branch
of the LPC was induced by the k-th local eigenvalue. LPC’s according to
Algorithm 1 lead for all x0 ∈ S0 to a branch with θ = 1.

• The depth φ of a branch is the number of junctions (plus 1) between the
starting point and the branch. Thus, a branch of depth φ = � (� ≥ 2)
is launched by a high k-th (k ≥ 2) local eigenvalue on a branch with
φ = � − 1. Algorithm 1 always yields curves of depth φ = 1.

• Denote the maximum values of θ and φ used to construct a LPC by θmax

and φmax, resp.

Obviously, θmax = 1 implies φmax = 1; θmax ≥ 2 implies φmax ≥ 2;
and vice versa. The case θmax ≥ 3 might be interesting for highdimensional
and highly branched data structures. However, for the most applications it
should be sufficient to have only one possible bifurcation at each point. Thus,
we extend Algorithm 1 only to the case φmax ≥ 2, θmax = 2:

Algorithm 2 (LPC with φmax ≥ 2, θmax = 2)
Let 0 ≤ ρ0 ≤ 1 be a suitable constant, e.g. ρ0 = 0.5.

1. Construct a local principal curve α according to Algorithm 1. Compute
the relation

ρx =
λx

2

λx
1

for all points x which were involved in the construction of α.
2. Iterate for all φ = 2, . . . , φmax:

(a) Let ζ1, . . . , ζm denote all points x belonging to branches of depth φ−1
with ρx > ρ0. If this condition is fulfilled for a series of neighboring
points, take only one of them.

(b) Iterate for j = 1, . . . ,m:

i. Compute the second local eigenvector γ
ζj

2 .
ii. Set x := µζj + 2t0γ

ζj

2 and continue with Algorithm 1 at step 3.
Afterwards, set x := µζj − 2t0γ

ζj

2 and continue with Algorithm 1
at step 3.

The factor 2 employed in 2.b.ii) for the construction of starting points of
higher depth shall prevent that branches of second order fall immediately
back to the branch of first order. In order to avoid superfluous or artificial
branches one can apply a very simple form of pruning: If starting points of
depth φ ≥ 2 fall in regions with negligible density, simply dismiss them.
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3 Simulated data examples

The performance of the method shall be illustrated by means of some simu-
lated examples. Our simulated data clouds resemble letters, keeping in mind
that the recognition of hand-written characters is a possible application of
principal curves (Kegl and Krzyzak (2002)). We consider noisy data struc-
tures in the shape of a “C”, “E”, and “K”. In all examples, the set of starting
points S0 contains only one element x0 which was chosen randomly. For the
“C” only one branch of depth φ = 1 is needed and thus Algorithm 1 is ap-
plied. The letter “E” requires to compute branches of depth up to φ = 2. The
letter “K” is even a little more complicated, and depending on the position
of x0 one needs branches of depth φ = 2 or φ = 3. Table 1 shows the setting
of the simulation, and the parameter values used in the algorithm. We apply
a bandwith matrix H = h2 · I, where I is the 2-dimensional identity matrix.

Table 1. Parameters for simulation and estimation of characters.

Simulation Estimation
σ n φmax θmax h = t0 ρ0

“C” 0.01 60 1 1 0.1 −
0.1 60 1 1 0.15 −

“E” 0.01 100 2 2 0.1 0.4
0.1 100 2 2 0.1 0.4

“K” 0.01 90 3 2 0.08 0.4
0.07 90 2 2 0.15 0.4

The results are depicted in Fig. 2. The large amount of tuning parameters
might give the impression that finding an appropriate curve might be quite
cumbersome. In practice, however, there is only one crucial smoothing para-
meter: the bandwidth h. The parameter t0 has certainly to be chosen as well,
but it turned out to be a sensible choice setting it equal to the bandwidth.
The parameters θmax and φmax depend directly on the data structure. The
parameter ρ0 does not play any role when θmax = 1, and will usually be
situated in the small interval between 0.3 and 0.6. We illustrate the detection
of branching points by means of the “E” with small noise. Fig. 3 shows the
flow of the second local eigenvalue starting from the right bottom end of the
“E” and rising to the right top end of it. One sees that the peaks are distinct
and well localized, and thus useful for the detection of a bifurcation.

4 Real data examples

We return to the scallops example from the introduction. From the structure
of these data it is immediately clear that one needs curves of second order
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Fig. 2. LPC through letters with small (top) and large noise (bottom). Data points
are depicted as “·”. Branches of depth φ = 1 are symbolized by a solid line, branches
of depth φ = 2 by a dashed line, and branches of depth φ = 3 by a dashed-dotted
line. The numbers indicate the starting points for branches of the corresponding
depth.
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Fig. 3. Flow diagram of ρx = λx
2/λx

1 from the right bottom to the right top of the
“E” with small noise. The horizontal line symbolizes the threshold ρ0 = 0.4.

and depth, i.e. θmax = 2 and φmax = 2. Fig. 4 shows that the results of
Algorithm 2 can differ for different starting points. Thus, it is natural to ask
what the constructed curves represent. Scallops are known to like shallow
ocean water. This suggests that the resulting local principal curves follow
the ridges of underwater mountains. This hypothesis is confirmed by looking
at contour plots from that area (Fig. 4 right). Obviously the left one of the
two pictures represents nicely the underwater ridges: One small one from NW
to SE (corresponding to the branch with φ = 2), and one larger one from SW
to NE (corresponding to the branch with φ = 1). Certainly, the gap between
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the two branches is not a real feature but is due to the factor 2 employed in
step 2.b.ii) in Algorithm 2.

Fig. 4. Left, Middle: LPC of scallops data with bandwidth h = 0.15. Branches of
depth φ = 1 are launched by starting points “1” and branches of depth φ = 2 start
at points “2”. Right: Contour plot of underwater plateaus. The numbers indicate
the depth: High numbers mean shallow water. In all three pictures the NE coast
line of the USA is plotted for orientation.

The scallops data are highly noisy, but not very far from linearity. We
will provide one more real data example with data having small noise, but
having a very complex nonparametric structure. The data are coordinates of
European coastal resorts (taken from Diercke (1984)). Suppose one wants to
reconstruct the European coast line given these sites. The European coast
does not have mentionable ramifications, thus we use φmax = θmax = 1, but
choose 10 starting points randomly. A typical result is shown in Fig. 5. Taking
into account that Algorithm 1 does not have the notion about the shape of
Europe that humans have, the coast is reconstructed nicely, although it failed
to describe areas with very few data, as Albania, and highly chaotic regions
as Schleswig-Holstein and Southern Denmark.

5 Conclusion

We demonstrated that local principal components can be effectively used to
explore the structure of multivariate complex data structures. The method
is especially useful for noisy spatial data as frequently met in geostatistics.
The next step should be to reduce the dimensionality of the predictor space
in a multivariate regression or classification problem by employing the local
principal curve as low-dimensional, but highly informative predictor.
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KÉGL, B., KRZYZAK, A., LINDER, T. and ZEGER, K. (2000): Learning
and Design of Principal Curves, IEEE Trans. Patt. Anal. Mach. Intell.,
22, 281–297.

TIBSHIRANI, R. (1992): Principal Curves Revisited. Statistics and Comput-
ing, 2 , 183–190.



A Three-way Multidimensional Scaling

Approach to the Analysis of
Judgments About Persons

Sabine Krolak–Schwerdt

Department of Psychology, Saarland University, 66041 Saarbrücken, Germany

Abstract. Judgments about persons may depend on (1) how coherently person at-
tributes are linked within the stimulus person and (2) how strongly the given person
information activates a social stereotype. These factors may determine the number
of judgment dimensions, their salience and their relatedness. A three-way multi-
dimensional scaling model is presented that measures these parameters and their
change across stimulus persons or judgment conditions. The proposed approach in-
volves a formal modelling of information integration in the judgment process. An
application to experimental data shows the validity of the model.

1 Introduction

This paper is concerned with cognitive structures which underly judgments
about persons and the presentation of a formal account to model judgment
processes. Social judgments play a central role in the professional as well as
private everyday life. Frequently, these judgments contribute to far reaching
decisions about persons. Examples are eye witness testimonies at the court-
yard, medical expert judgments or decisions about job applicant candidates.
The question arises what a formal account of judgments should offer to ad-
equately model the nature of judgments. In the following, this issue will be
investigated and a corresponding data model will be presented. Subsequently,
the usefulness of the proposed approach will be shown in an application to
experimental judgment data.

2 The structure of judgments about persons

Social cognition research has shown that the structure of judgments may be
described by a dimensional representation. That is, judgments consist of grad-
uating stimuli along a number of continua (Anderson and Sedikides (1991)).
Examples of judgment dimensions are evaluation or agreeableness of per-
sons (Schneider (1973); McCrae and Costa (1985)). In a number of judgment
conditions people make judgments based on all of the relevant information,
weighted and combined into a dimension by an algebraic integration princi-
ple (Anderson (1974); Fishbein and Ajzen (1975)). For example, if a person
is assessed as agreeable, each piece of information is checked according to
its relevance and consistency to agreeableness. Subsequently, the information
pieces are combined or integrated, either by adding them all up or by taking
their average.
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In this case, the mental representation used for making judgments de-
pends on the diversity and coherence of the encountered person attributes
(Asch and Zukier (1984)). Thus, cognitive structures underlying judgments
reflect the co–occurrence of attributes within the stimulus. If the attribute
information exhibits a consistent pattern of co–occurrences, a coherent and
simple pattern of associations between attributes may be extracted resulting
in a set of correlated judgment dimensions. Conversely, rather diverse person
attributes lacking a conceivable pattern of co–occurrences cause a represen-
tation composed of independent dimensions.

Under many conditions, however, people use heuristic strategies that de-
part from a deliberate integration of each piece of information (Gigerenzer
and Todd (1999)). One such strategy is to search through a small subset of
the information cues and to base one’s judgment on a few number of cues.
The effect on the judgmental system is that only a small number of dimen-
sions receive sufficient attention and will be integrated within the cognitive
structure whereas others will be ignored. Thus, different attribute dimen-
sions receive different weights of importance or saliences. Another strategy
is to use a category or stereotype in the process of judging the target per-
son. Stereotypes are cognitive structures that contain people’s belief about
person attributes and they involve illusory correlations of category member-
ship and specific person attributes (Leyens, Yzerbyt and Schadron (1994)).
As an example, females categorized as ‘business women’ are believed to be
self–assertive and not agreeable. Thus, in referring to stereotypes, judgment
dimensions which are truly independent domains may become correlated.

To adequately model the outlined nature of judgments, a formal account
must incorporate the following components: (1) In deriving dimensions from
judgment data, a formal account should reflect the combination principle
of information integration. (2) The model has to specify parameters for the
salience and relatedness of dimensions in each judgment condition. (3) The
model has to provide statements about changes in these parameters across
different conditions. The model to be presented in the following, termed
‘SUMM–ID’, was designed to adopt these requirements.

3 ‘SUMM–ID’ model

Our approach belongs to the class of three–way multidimensional scaling
techniques which were developed to model individual differences in the re-
presentation of proximities. In the following, the scalar product form of the
approach will be outlined. The input data to the model are assumed to consist
of a three–way data matrix X = (xijj′ ), i = 1, . . . , I, j, j′ = 1, . . . , J , where
I is the number of individuals or conditions and J the number of attributes.
X can be thought of as comprising a set of I(≥ 2)J × J scalar products
matrices. Xi, a slice of the three–way matrix, consists of scalar products
between attributes j, j′ for an individual or a condition i. The scalar products
may derive from cognitive associations between the attributes.
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The basic equation of the approach can be expressed as

Xi = BHiB
′ + Ei , (1)

where B is a J×P matrix specifying an attribute space or judgment configu-
ration which is common to all individuals or conditions where P is the number
of dimensions. Hi is a P ×P symmetric matrix designating the nature of indi-
vidual i′s representation of the judgment dimensions. Diagonal elements hipp

of Hi correspond to weights applied to the judgment dimensions by individ-
ual i, while off–diagonal elements hipp′ are related to perceived relationships
among the judgment dimensions p and p′. As Equation (1) shows, the matrix
Hi, termed ‘individual characteristic matrix’ (Tucker (1972)), transforms the
common judgment space into the individual representation, and Ei collects
the errors of approximation eijj′ .

Thus, the model assumes that there is a common space represented by
matrix B which underlies judgments in general. On the basis of the common
space, the model allows for two kinds of distortions in individual representa-
tions. The first is that individuals may attach different weights to different
judgment dimensions. The second is that individual representations may be
rotated versions of the common space in which independent dimensions be-
come correlated.

The final decomposition of the data matrix, as outlined in Equation (1),
is accomplished in two steps. The first step is to implement the combination
principle of information integration as well as to introduce parameters for
individual weights. The second step is to optimize the representation as to the
dimensionality of the judgment space and to introduce differential rotations
of the common judgment dimensions.

In order to implement the combination principle in the first step, it is nec-
essary to introduce a comparatively large number F of judgment dimensions
(these will be condensed into an optimal number P in the second step). The
judgment dimensions will be termed bf in the following, f = 1, . . . , F , and a
corresponding set of dimensions af will be introduced representing weights
for the individuals or conditions. The central feature is to base bf on the
introduction of sign vectors zf for the attributes j, zjf ∈ {−1, 1}, and, in an
analogous way, to base af on sign vectors sf for individuals i, sif ∈ {−1, 1},
where ∑

i

∑
j

∑
j′

sifzjfzj′fxijj′ = γf := max . (2)

In the equation, the scalar γf is a normalizing factor and the vector zf indi-
cates if an attribute j (j′ respectively) consistently pertains to the judgment
dimension bf (in this case zjf = 1) or if the attribute conveys information
which is inconsistent to the judgment domain (in this case zjf = −1). The
vector zf thus reflects the consistency or inconsistency of the attributes to
the judgment domain f . In an analogous way, sf indicates how individuals
should be combined to derive the common judgment dimension.
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The vectors zf and sf are the basis for the determination of dimension
af and bf in the following way:

aif = 1
3√γf

2 uif , where uif =
∑

j

∑
j′ zjfzj′fxijj′ ,

bjf = 1
3√γf

2 vjf , where vjf =
∑

i

∑
j′ sifzj′fxijj′ ,

and γf =
∑

i sifuif =
∑

j zjfvjf .
(3)

After the determination of af and bf in this way, the procedure continues
in computing the residual data x∗

ijj′ = xijj′ − aif bjfbj′f and repeating the
extraction of dimensions according to (2) and (3) on the residual data until a
sufficient amount of the variation in the data is accounted for by the represen-
tation. Dimensions bf may be considered as those dimensions which are used
for the combination of attributes in order to generate a judgment. Values
aif of the individuals i on the dimension af indicate how salient judgment
dimension bf is under the point–of–view of individual i.

As Equation (2) shows, the values of the sign vectors zf and sf are deter-
mined in such a way that the sum of the data values collected in a dimension
will be maximized. To compute the sign vectors, an algorithm is used that al-
ternates between the subject and the attribute mode. That is, given the sign
vector of one mode, multiplying the data matrix (the residual data matrix,
respectively) with this sign vector yields the signs of the other vector. This
is due to the cyclical relation between the modes∑

i

∑
j

∑
j′ sifzjfzj′fxijj′ =

∑
i sifuif =

∑
i | uif |

=
∑

j zjfvjf =
∑

j | vjf | = γf ,

which also motivates the definition of the normalizing factor γf in Equation
(3). The relation between the modes is used in the SUMM–ID algorithm by
iteratively fixating one vector and estimating the other vector until the values
of both sign vectors have stabilized. The procedure was first introduced by
Orlik (1980).

After extraction of F dimensions the three–way data matrix is given by

xijj′ =
F∑

f=1

aif bjfbj′f + eijj′ . (4)

Arranging the values of an individual i in the derived dimensions in a diagonal
F × F matrix Ai yields a matrix formulation

Xi = BFAiB
′
F + Ei (5)

where BF is a J ×F matrix with the dimensions bf , f = 1, . . . , F as columns
which represents the common judgment space and Ai reflects the dimen-
sional weights under the point–of–view of individual i. Applying the individ-
ual weights to the common judgment space BF yields the individual judg-
ment space, Yi = BFA

1
2
i , which corresponds to differentially weighing the

importance of the common judgment dimensions.
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However, the representation obtained in step 1 has the drawback that
the dimensions in the common judgment space are oblique or even linear
dependent and thus do not provide a parsimonious description of the data.
To derive a more compact and non–redundant representation the second step
of the model involves a rotation of the common judgment space

B̃ := BFT , (6)

where the orthonormal rotation matrix T evolves from the eigenvector–eigen-
value decomposition B′

FBF = T∆T ′. The rotated judgment space is inserted
into the model equation from step 1 in the following way:

Xi = BF Ai B′
F +Ei

= BFT (T ′AiT ) T ′B′
F +Ei

= B̃ H̃i B̃′ +Ei

Finally, omitting columns of B̃ with an eigenvalue of zero or near zero and
corresponding rows and columns of H̃i yields the final representation that
was introduced in Equation (1) in which the set of F oblique dimensions is
condensed into P orthogonal and substantial dimensions in B and Hi.

The following relations to other three–way models should be noted. The
explication of SUMM–ID step 1 in Equation (5) is formally equivalent to
the INDSCAL model (Carroll and Chang (1970)). Thus, both methods fit
the same model, but SUMM–ID step 1 finds the estimates by a particular
algorithm which optimizes the representation of hypotheses regarding the
data involving binary contrasts whereas INDSCAL optimizes the algorithmic
fitting procedure. This has some consequences for empirical validity. Whereas
INDSCAL has a considerable tendency towards degenerate solutions, this
problem is avoided in SUMM–ID by introducing constraints which correspond
better to the data. Furthermore, as compared to the INDSCAL algorithm
the SUMM–ID estimates are very easy to obtain. The Tucker (1972) model
and SUMM–ID step 2 have the introduction of the individual characteristic
matrix Hi in common. In SUMM–ID step 2, Hi evolves from the product of
a rotation matrix and dimensional weights with aif as diagonal values and
t′f tf ′ as off–diagonal values. In contrast to the core matrix from the Tucker
model, this offers a more straightforward interpretation in terms of saliences
and perceived relationships between judgment dimensions, while the Tucker
core matrix is confounded with other information such as variances of the
judgment dimensions (cf. Kroonenberg (1983)).

Statements about changes in salience and correlations of judgment dimen-
sions may be obtained by comparing the individual characteristic matrices Hi

across individuals or conditions. This will be demonstrated in the following
application of the SUMM–ID model to experimental judgment data.
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4 Application

In an experiment on social judgments subjects received descriptions about
persons as stimulus materials. The experiment had a factorial design where
the first factor was stereotype activation. That is, in one condition a stereo-
type was activated by the description, while the other condition pertained to a
non–stereotypical (individual) stimulus person. The second factor introduced
coherence of person attributes with an unconnected list of statements about
a person lacking consistency of attributes in one condition and a coherent
description introducing patterns of co–occurences of person attributes in the
other condition. After having read one of the descriptions, subjects’ (number
of subjects = 40) task was to judge the personality of the described person.
Subjects received 16 rating scales for the rating task. The scales corresponded
to the following judgment domains which have been shown as fundamental
in social cognition (Schneider (1973); McCrae and Costa (1985)): (a) agree-
ableness (e.g., ‘materialistic – idealistic’), (b) self-assertiveness (e.g., ‘selfless
– egoistic’), (c) evaluation (e.g., ‘good – bad’) and (d) dynamism (e.g., ‘active
– passive’).

The data were preprocessed in the following way. For each of the four
experimental conditions, the scales were standardized and data were aggre-
gated across the ten subjects in each condition. Thus, I = 4 and J = 16 in
this example. Subsequently, the distances between the scales were computed.
Distances were transformed into scalar products by Torgerson’s formula (cf.
Carroll and Chang (1970)) and then subjected to the proposed scaling model.

We expected the following results. If the model is valid, then a common
judgment space should occur which consists of four dimensions, each corre-
sponding to one of the fundamental domains outlined above. Distortions of
this space due to experimental conditions should be reflected in the individ-
ual characteristic matrix by diminished saliences hipp in the diagonal and
increased correlations between judgment dimensions hipp′ in the off–diagonal
due to the activation of a stereotype and the introduction of a coherent text
description. The most extreme distortions should occur in the characteristic
matrix for the stereotypical text condition.

The SUMM–ID solution accounted for 90% of the variance of the data
after having extracted 16 dimensions in step 1. Thus, our account showed an
excellent recovery of the data. In the following, the SUMM–ID step 2 rep-
resentation is reported. In the common judgment space, after rotation four
dimensions were obtained as substantial. Thus, F = 16 and P = 4 in this
data analysis. To test the hypothesis that these correspond to the reported
judgment domains, a procrustes analysis was conducted where the obtained
dimensions were rotated to optimal agreement with the fundamental domains
outlined above. Congruence coefficients (cr) were in the range between 0.85
and 0.91. We found that the first dimension corresponds to agreeableness (cr
= 0.91) , the second reflects self-assertiveness to a certain degree (cr = 0.85),
the third resembles evaluation (cr = 0.87) and the fourth is dynamism (cr
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Table 1. Individual characteristic matrices of the SUMM–ID representation of the
experimental judgment data.

Experimental Judgment dimensions:

condition: Agreeable. Self–Assert. Evaluation Dynamism

individual, list Agreeableness 1.17
Self–Assertion 0.36 1.43
Evaluation -0.33 -0.23 1.01
Dynamism 0.26 0.00 0.21 1.38

individual, text Agreeableness 1.04
Self–Assertion 0.30 0.83
Evaluation 0.12 -0.34 1.15
Dynamism -0.59 -0.31 -0.69 1.24

stereotypical, list Agreeableness 1.13
Self–Assertion 0.44 0.84
Evaluation -0.34 -0.41 1.01
Dynamism -0.91 -0.18 -0.67 1.01

stereotypical, text Agreeableness 0.68
Self–Assertion 1.00 0.46
Evaluation -0.14 -0.75 1.32
Dynamism -0.73 -0.13 -0.80 0.97

= 0.89). The individual characteristic matrices are shown in Table 1. The
diagonal values hipp indicate that in the individual listwise description all
four judgment dimensions are salient, whereas the activation of a stereotype
and the introduction of a text each reduce the salience of the second dimen-
sion. The most extreme condition is the stereotypical text description, where
the salience of all dimensions is reduced except of dimension 3 and this is
evaluation.The off–diagonal values hipp′ show the following. As compared to
the individual listwise description, the presentation of a stereotype and of a
coherent text each yields substantial correlations of the dynamism dimension
with the others. Again, the most extreme condition is the stereotypical text
description, where a number of substantial correlations between all dimen-
sions evolves.

5 Concluding remarks

In conclusion, then, the proposed scaling approach reflects the structure of the
common judgment space and the expected distortions in every detail. That is,
the parameters of the model were sensitive to manipulations of coherence and
stereotype activation. The model shows (1) how the combination principle of
information integration may be implemented and (2) how saliences and per-
ceived relationships between judgment domains may be formally represented.
Advantages of our approach compared to others are that the introduction of
constraints in terms of binary contrasts helps to avoid degeneracy kwown
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from the INDSCAL technique and that the introduction of conceptual prin-
ciples concerning hypotheses on the data also yield an interpretation of the
individual characteristic matrix which is improved over the one from Tucker’s
model.

At the outset, the approach was introduced as a data model for the analy-
sis of judgments about persons. However, the basic principles of the model,
that is information integration and judgment distortions by salience and illu-
sory correlations, are very general principles of human judgment. As another
example, research in the attitude domain (Fishbein and Ajzen (1975)) has
shown that these principles underly the formation and use of attitudes.

Thus, the scope of the proposed model is not restricted to the social
cognition domain, but may offer a more general formal modelling of judgment
processes. Other domains of relevance may be expert judgments, or product
judgments in marketing, or attitudes.
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Abstract. An overview of the Time Series Knowledge Mining framework to dis-
cover knowledge in multivariate time series is given. A hierarchy of temporal pat-
terns, which are not a priori given, is discovered. The patterns are based on the rule
language Unification-based Temporal Grammar. A semiotic hierarchy of temporal
concepts is build in a bottom up manner from multivariate time instants. We de-
scribe the mining problem for each rule discovery step. Several of the steps can be
performed with well known data mining algorithms. We present novel algorithms
that perform two steps not covered by existing methods. First results on a dataset
describing muscle activity during sports are presented.

1 Introduction

Many approaches in time series data mining concentrate on the compres-
sion of univariate time series (patterns) down to a few temporal features.
The aim is often to speed up the search for known patterns in a time series
database (see Hetland (2004) for an overview). The introduced techniques
for time series abstraction and the accompanying similarity measures can of-
ten be used in other contexts of data mining and knowledge discovery, e.g.
for searching unknown patterns or rules. Most rule generation approaches
search for rules with a known consequent, that is some unknown pattern
predicting a predefined event (Povinelli (2000)). In addition, the form of the
possible patterns is often restricted by rule language syntax (see Hetland and
Saetrom (2002) for a discussion). Very few approaches search for rules with
an unknown antecedent part and an unknown consequent part (Saetrom and
Hetland (2003), Höppner (2001)). Finally, few publications explicitly consider
multivariate time series (Höppner (2002)).

Knowledge Discovery is the mining of previously unknown rules that are
useful, understandable, interpretable, and can be validated and automatically
evaluated (Ultsch (1999)). It is unlikely that one method will maintain good
results on all problem domains. Rather, many data mining techniques need to
be combined for this difficult process. In Guimaraes and Ultsch (1999) some
early results of understandable patterns extracted from multivariate times
series were presented. Here, we want to describe our new hierarchical time
series rule mining framework Time Series Knowledge Mining (TSKM).

The rest of this paper is structured as follows. The data from sports
medicine is described in Section 2. The temporal concepts expressible by the
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rule language are explained in Section 3 using examples from the application.
Section 4 defines the steps of the framework and gives details on two novel
algorithms. The merits of the application, possible extensions of our work,
and related methods are discussed in Section 5. Section 6 summarizes the
paper.

2 Data

The TSKM method is currently applied to a multivariate time series from
sports medicine. Three time series describe the activity of the leg muscles dur-
ing In-Line Speed Skating measured with surface EMG (Electromyography)
sensors. The current leg position is described by three angle sensors (Electro-
goniometer), attached at the ankle, the knee, and the hip. Finally, there is a
time series produced by an inertia switch, indicating the first ground contact.

3 Unification-based Temporal Grammar

The Unification-based Temporal Grammar (UTG) is a rule language devel-
oped especially for the description of patterns in multivariate time series
(Ultsch (1996)). Unification-based Grammars are an extension of context free
grammars with side conditions. They are formulated with first order logic and
use unification. The UTG offers a hierarchical description of temporal con-
cepts. This opens up unique possibilities in relevance feedback during the
knowledge discovery process and in the interpretation of the results. An ex-
pert can focus on particularly interesting rules and discard valid but known
rules before the next level constructs are searched. After obtaining the final
results, an expert can zoom into each rule to learn about how it is composed
and what it’s meaning and consequences might be.

At each hierarchical level the grammar consists of semiotic triples: a
unique symbol (syntax), a grammatical rule (semantic), and a user defined la-
bel (pragmatic). The unique symbols can be generated automatically during
the mining process. The labels should be given by a domain expert for better
interpretation. Due to lack of space we will only briefly describe the concep-
tual levels of the hierarchy (see also Figure 1) along with an example from
the application. The basic ideas of the UTG were developed in Ultsch (1996)
and applied in Guimaraes and Ultsch (1999). For a detailed description see
Ultsch (2004).

A Primitive Pattern is a temporal atom with unit duration. It describes
a state of the time series at the smallest time scale. For the muscle activity
we found 3 to 5 states corresponding to subsets of very low, low, medium,
high, and very high. For the leg position six typical sport movement phases,
namely stabilization, forward gliding, pre-acceleration (of center of gravity),
preparation (of foot contact), foot placement, push-off, and leg swing were
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Fig. 1. UTG concepts Fig. 2. UTG Event rule

identified. The labeling (pragmatic) needs to be done in close cooperation
with an expert to ensure meaningful results.

A Succession introduces the temporal concept of duration. It represents
a time interval where nearly all time points have the same Primitive Pattern
label. Short interruptions (Transients) of an otherwise persisting state should
be removed. For the muscle activity interruptions shorter than 50ms were
discarded because a change of the state at this time scale is physiologically
not plausible. The movement phases are much longer in general, interruptions
up to 100ms were removed.

An Event represents the temporal concept of coincidence. It represents
a time interval where several Successions overlap. If the start points of all
overlapping Succession are approximately equal and the same is true for the
end points, the Event is called synchronous. The Events present in the skating
data relate the current movement phase and the position of the foot to the
activation of the muscles at the same time. One Event in the skating data
corresponded to all three muscles being highly active during the forward
gliding phase with the foot on the ground. This Event was labeled by the
expert as the weight transfer from one leg to the other (see Figure 2). The
five most frequent Events were labeled by the expert as follows: active gliding
(G), relaxation (R), anticipation (A), weight transfer (W), initial gliding (I).

A Sequence introduces the temporal concept of order. A Sequence is com-
posed of several Events occurring sequentially, but not necessarily with meet-
ing end and start points. The three most frequent Sequences were (G,R,A),
(G,R,A,W), and (G,R,A,W,I). They all have the same prefix (G,R,A) corre-
sponding to the contraction & relaxation phase. The Events W and I com-
plete the typical skating motion cycle, but are not always recognized due to
measurement errors in the foot contact sensor.

A Temporal Pattern is the summary of several Sequences by allowing a set
of Events at some positions of the pattern. Temporal Patterns represent the
non-temporal concept of alternative. Since all Sequences were quite similar in
this application, they were merged into a single Temporal Pattern describing
the typical motion cycle during Inline-Speed Skating.
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4 Time Series Knowledge Mining

The temporal knowledge discovery framework Time Series Knowledge Mining
(TSKM) aims at finding interpretable symbolic rules describing interesting
patterns in multivariate time series. We define the data models, mining task,
and algorithms for each level of the framework. The levels correspond to
the temporal concepts of the UTG and include some additional steps (see
Figure 5. Some tasks can be solved with well known data mining algorithms,
while other require new algorithms.

Aspects: The starting point of the TSKM is a multivariate time series,
usually but not necessarily uniformly sampled. An expert should divide the
features of the time series into possibly overlapping groups that are related
w.r.t. the investigated problem domain. Each feature subset is called an As-
pect and should be given a meaningful name. In the absence of such prior
knowledge, one Aspect per time series can be used. Each Aspect is treated
individually for the first steps of the framework.

Preprocessing and feature extraction techniques are applied to each
Aspect or even each time series individually. This is a highly application
dependent step.

Finding Primitive Patterns: The task of finding Primitive Patterns is
the reduction of the time series to a series of states. The input data is a real
or vector valued time series, the output is a time series of symbols for each
atomic time interval. It is important, that each symbol is accompanied by a
rule and a linguistic description to complete the semiotic triple.

Many discretization techniques can be used to find Primitive Patterns for
univariate Aspects. Simple methods aggregate the values using histograms.
Additionally down-sampling can be performed by aggregation over a time
window, e.g. Lin et al. (2003). The symbols for the bins can easily be mapped
to linguistic descriptions like high or low. A first order description method
describes the current trend of a time series, e.g. Kadous (1999). Second order
descriptions additionally incorporate the second derivative of the signal to
distinguish convex from concave trends, e.g Höppner (2001).

For Aspects spanning several time series we propose to use clustering and
rule generation on the spatial attributes. If the process alternates between
several regimes or states, these regions should form clusters in the high di-
mensional space obtained disregarding the time attribute. In Guimaraes and
Ultsch (1999) and for the identification of the skating movement phases Emer-
gent Self-Organizing Maps (ESOM)(Ultsch (1999)) have been used to identify
clusters. The rules for each cluster were generated using the Sig∗ Algorithm
(Ultsch (1991)). The ESOM enables visual detection of outliers and arbi-
trarily shaped clusters and Sig∗ aims at understandable descriptions of the
Primitive Patterns.

Finding Successions: The input data for finding Successions is a uni-
variate symbolic time series of Primitive Patterns, the output consist of a uni-
variate series of labeled intervals. The merging of consecutive Primitive Pat-
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i := 2
while i < n

// check symbols and duration
if (si−1 = si+1) and (di ≤ dmax)
and (di ≤ rmax ∗ (di−1 + di+1))

// merge 3 intervals
di − 1 :=

�i+1
j=i−1 dj

∀k ∈ {i, i + 1} dk := 0
i := i + 2

else
i := i + 1

end if
end while
// remove zero durations
S := S \ {(ti, di, si) ∈ S|di = 0}

Fig. 3. SequentialTransientFilter

i := 2
while i < n

s := i
// search end
while S(i)=S(i-1)

i := i + 1
end while
// check duration
if i − s ≥ mind

add Event on [s, i − 1]
end if
i := i + 1

end while

Fig. 4. FullEvents

terns into a Succession is straight forward. But with noisy data there are
often interruptions of a state (Transients). Let a Succession interval be a
triple of a start point t, a duration d, and a symbol s. Let the input Suc-
cessions be S = {(ti, di, si) i = 1..n} with ti + di ≤ ti+1 and si �= si+1.
Let dmax be the maximum absolute duration and rmax the maximum rela-
tive duration of a Transient. For the removal of Transients we propose the
SequentialTransientFilter algorithm shown in Figure 3.

The time complexity of the algorithm is O(n). A good choice for rmax

is 0.5, i.e. the gap is allowed to be at most half as long as the surrounding
segments together. The dmax parameter has to be chosen w.r.t to the appli-
cation. Often, some knowledge on the minimum duration of a phenomena to
be considered interesting is available.

Finding Events: Events represent the concept of coincidence, thus in
this step all Aspects are considered simultaneously. The input data is a mul-
tivariate series of labeled intervals (Successions) and the output is a univariate
series of labeled intervals (Events). Let S be a k × n matrix containing the
symbols of the Successions from k Aspects at n time points. We use S(i) for
the i-th column of S and S(i) = S(j) for element-wise equality. Let mind

be the minimum duration of an Event. The algorithm FullEvents shown in
Figure 4 discovers all Events where Successions from all Aspects coincide.

The time complexity of the algorithm is O(n). The dmax parameter can
be chosen similar the maximum duration of Transients when finding Succes-
sions. The post-processing to identify synchronous Events is rather straight
forward. For each Event the maximum difference between all start points of
the participating Successions are checked against a threshold and the same
is done for the end points. Additionally, the SequentialTransientFilter algo-
rithm can be applied to the resulting Event series.
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Fig. 5. The TSKM process

Finding Sequences: For the step of finding Sequences there is a large
number of algorithms that could be utilized. The input data is a univariate
series of labeled intervals and the output is a set of subsequences thereof. For
moderately sized dataset we use a suffix trie (e.g. Vilo (1998)). Compared
to a suffix tree, all egde labels in a trie have length one. Tries are larger,
but can easier be queried for patterns with wild-cards. The trie stores all
subsequences up to a maximum length and can be queried with frequency and
length thresholds to find the most interesting patterns. For larger datasets
more scalable and robust techniques from sequential pattern mining, e.g.
Yang et al. (2002), can be used.

Finding Temporal Patterns: The Sequences often overlap. The last
step of the framework is finding generalized Sequences, called Temporal Pat-
terns. We propose to use clustering based on a string metric to find groups of
similar Sequences. The Temporal Pattern can be generated by merging the
patterns in a cluster using groups of symbols at positions where the patterns
do not agree. We have successfully used hierarchical clustering based on the
string edit distance with a dendrogram visualization.

5 Discussion

The Temporal Pattern found in the skating data provided new insights for the
expert. The symbolic representation offers better interpretation capabilities
on the interactions of different skeletal muscles than the raw EMG data. We
identified the most important cyclical motion phases. The rule describing this
phase can be expanded to provide more details. At the level of Temporal Pat-
terns there is a Sequence of Events allowing some variations. Each Event is
associated with a rule listing the coinciding muscle and movement states in
form of the underlying Successions. Each movement Succession is linked to
a Primitive Pattern with a rule describing the range of hip, knee, and ankle
angles observed during this state. We plan to compare the patterns between
several skaters and running speeds to investigate possible differences. Based
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on background knowledge about the performance of the individual skaters
this can lead to strategies for individualized training optimization.

One could criticize the manual interaction needed at some levels of our
mining process, but we feel that a fully automated knowledge discovery is
not desirable. We see the hierarchical decomposition into single temporal
concepts as a great advantage of the TSKM. The separate stages offer unique
possibilities for the expert to interpret, investigate and validate the discovered
rules at different abstraction levels. The search space for the algorithms is
smaller than when mining several concepts at the same time. Also, a large set
of different algorithms can be plugged in the framework, e.g. segmentation to
discover Successions or Hidden Markov Models to obtain Primitive Pattern
to name just a few.

Usually only frequent Events and Sequences are kept while rare occurring
patterns are discarded from further processing. Depending on the application,
rare pattern might be important, however, and ranking should be done by a
different interestingness measure.

While the data model for Events is currently univariate, we are experi-
menting with algorithms allowing overlapping Events involving less Aspects.
However, this increases the number of Events found and makes mining Se-
quences more problematic.

There are only very few methods for rule discovery in multivariate time
series. Last et al. (2001) use segmentation and feature extraction per seg-
ment. Association rules on adjacent intervals are mined using the Info-Fuzzy
Network (IFN). The rule set is reduced using fuzzy theory. Höppner mines
temporal rules in sequences of labeled intervals (Höppner (2001), Höppner
(2002)), also obtained by segmentation and feature extraction. Patterns are
expressed with Allen’s interval logic (Allen (1983)) and mined with an Apriori
algorithm. A comparison to the TSKM method on a conceptual and experi-
mental level is planned.

6 Summary

We have presented our time series knowledge extraction framework TSKM.
The hierarchal levels of the underlying rule language UTG cover the temporal
concepts duration, coincidence, synchronicity and order at successive levels.
Rules from each level are accompanied by linguistic descriptions, thus partial
results can be interpreted and filtered by experts. We proposed algorithms
for the mining stages including two new algorithms for mining duration and
coincidence. First results of an application in sports medicine were mentioned.
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Abstract. Our common sense tell us that continuous data contain more infor-
mation than categorized data. To prove it, however, is not that straightforward
because most continuous variables are typically subjected to linear analysis, and
categorized data to nonlinear analysis. This discrepancy prompts us to put both
data types on a comparable basis, which leads to a number of problems, in par-
ticular, how to define information and how to capture both linear and nonlinear
relations between variables both continuous and categorical. This paper proposes
a general framework for both types of data so that we may look at the original
statement on information.

1 Information in data

If X and Y are distributed as bivariate normal, its product-moment correla-
tion (population correlation) is an upper limit for the correlation calculated
from any categorized X and Y. In this case, using correlation as a measure
of information, one may conclude that the continuous variables provide more
information than their categorized counterparts. There is an important point
to note, however, that once the bivariate normal distribution is assumed this
assumption excludes the possibility of two variables ever being nonlinearly
related: the Pearsonian (linear) correlation is the only parameter for the re-
lationship.

There are several widely used measures of information such as Fisher’s
information, Kullback-Liebler information, Shannon’s information and the
sum of eigenvalues of the variance-covariance matrix. Out of them, the last
one is often used for both continuous and categorical variables. However, the
meaning of the eigenvalue for continuous data is often different from that for
categorical data.

Considering that data are typically multidimensional, the most econom-
ical ways to describe data are principal component analysis (PCA) for con-
tinuous data and dual scaling (DS)(or, multiple-correspondence analysis, ho-
mogeneity analysis) for categorical data. Both PCA and DS are applications
of singular value decomposition to the respective data types. Can we then
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compare eigenvalues from PCA and DS in a meaningful manner? The answer
is no. There is an important difference between PCA and DS: PCA consid-
ers a linear combination of variables; DS considers a linear combination of
categories of variables. This difference is important in the sense that in PCA
any variable (continuous or fixed-interval categorical) is represented as an
axis in multidimensional space, while in DS categories of a variable are not
restricted to lie on a straight line. Let us look at this difference first by using
a numerical example.

2 Illustrative example

Let us borrow an example from Nishisato (2000, 2002)- please see the original
papers for detailed analysis.

1. How would you rate your blood pressure?...(Low, Medium, High): coded
1, 2, 3

2. Do you get migraines?...(Rarely, Sometimes, Often): 1, 2, 3 (as above)
3. What is your age group?...(20-34; 35-49; 50-65): 1, 2, 3
4. How would you rate your daily level of anxiety?...(Low, Medium, High):

1, 2, 3
5. How would you rate your weight?...(Light, Medium, Heavy): 1, 2, 3
6. What about your height?...(Short, Medium, Tall): 1, 2, 3

Table 1 lists those Likert scores and also (1,0) response patterns. For data
analysis, it is a widely used practice to regard Likert (fixed-interval) scores
as continuous data, and treat them by methods for continuous variables, in
the current case by PCA.

Following the current practice, PCA was applied to the left-hand side of
the table, and DS to the corresponding response-pattern or indicator form
on the right-hand side of the table.

The results of PCA show one cluster of blood pressure (BP), age (Age)
and anxiety (Anx), meaning that as one gets older the blood pressure and
the anxiety level tend to increase. In the orthogonal coordinate system, each
variable is represented as an axis (i.e., the positions of three categories of BP
lie on a straight line from the origin to the coordinates of BP) and this is the
same whether fixed-interval categorical variables (the present case) or con-
tinuous variables are subjected to PCA. As such the correlation between two
variables is defined as the cosine of the angles of the two axes. In contrast,
DS does not restrict the positions of the categories of each variable and thus
identifies clusters of any functionally related variables, linear or nonlinear.
The DS results can be summarized as in Table 2.
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Table 1. Likert Scores and Response Patterns

PCA DS
BP Mig Age Anx Wgt Hgt BP Mig Age Anx Wgt Hgt

Subject Q1 Q2 Q3 Q4 Q5 Q6 123 123 123 123 123 123

1 1 3 3 3 1 1 100 001 001 001 100 100
2 1 3 1 3 2 3 100 001 100 001 010 001
3 3 3 3 3 1 3 001 001 001 001 100 001
4 3 3 3 3 1 1 001 001 001 001 100 100
5 2 1 2 2 3 2 010 100 010 010 001 010
6 2 1 2 3 3 1 010 100 010 001 001 100
7 2 2 2 1 1 3 010 010 010 100 100 001
8 1 3 1 3 1 3 100 001 100 001 100 001
9 2 2 2 1 1 2 010 010 010 100 100 010

10 1 3 2 2 1 3 100 001 010 010 100 001
11 2 1 1 3 2 2 010 100 100 001 010 010
12 2 2 3 3 2 2 010 010 001 001 010 010
13 3 3 3 3 3 1 001 001 001 001 001 100
14 1 3 1 2 1 1 100 001 100 010 100 100
15 3 3 3 3 1 2 001 001 001 001 100 010

Table 2. Characteristics of Two DS Solutions

Component 1 Component 2

Association among [Low BP, High BP, Association among [High BP, Old,
Frequent Migraine, Old, Heavy, Short]

High Anx, Short] [Low BP, Young, Tall]

A strong nonlinear association between BP and Mig (i.e., a frequent mi-
graine occurs when BP is either low or high) was detected by DS, but it
was completely ignored by PCA since the Pearsonian correlation between
them was -0.06. Similarly, the above table shows a number of other nonlinear
relations.

At this point, we should note the following characteristic of linear analysis.
The correlation (-0.06) between BP and Mig indicates the extent to which it
is similar to the perfect linear relationship. The value of -0.06 indicates that
there is not much (linear) relation between them. PCA decomposes only a
set of linear relations in data into orthogonal components, ignoring nonlinear
relations. Notice that the value of -0.06 does not contain any information
on what kind of nonlinear relationship is involved, but just almost the total
absence of linear relation. Thus, when variables do not follow the multivariate
normal distribution, PCA is not a method for data analysis, but is only a
method for analyzing the linearly related portion of data. In contrast, DS
decomposed whatever relations involved in data and as such it can always be
said a method for data analysis.
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Do these results indicate that DS captured more information than PCA?
If the answer is yes, does it mean that categorized variables contain more
information than continuous variables, contrary to our common sense?

3 Geometric model for categorical data

Let us introduce a common framework for both continuous and categorical
data. Consider a variable with three categories (e.g., a multiple-choice ques-
tion with three response options). The possible response patterns are (1,0,0),
(0,1,0) and (0,0,1), which can be regarded as coordinates of three possible
responses (Nishisato (2003a)). Each time, the question is answered by a sub-
ject, his or her response falls at one of these points. Once data are collected,
the final locations of the three points are determined by the principle of the
chi-square distance, as used by DS. Connecting the three points results in a
triangle in two-dimensional space.

When a variable has more than two categories, therefore, we need more
than one-dimensional space to represent it. Specifically speaking, a variable
with p categories generally requires p-1-dimensional space. Thus, as has been
widely done, approximating a multidimensional variable by a single compo-
nent or two appears almost ill-founded. Rather the first approximation to
a triangle in multidimensional space, for example, should be defined as its
projection to the space with the first two principal axes.

Let us consider a continuous variable in the same way such that the
number of its categories is equal to the number of distinct elements in the
date set, say p*. Then, the variable can be represented as a (p*-1)-dimensional
polyhedron. Admitting that this is not practical, we will find a common
framework for both types of data.

4 Squared item-component correlation

Let us now pay attention to a statistic that can be used for multidimensional
decomposition of data. One of them is the square of the item-component
correlation, which indicates the degree of the contribution of a variable to a
particular component. In terms of this statistic, our numerical examples of
PCA and DS provide the decompositions of information in data as in Table
3.

In Table 3, “Eta2” indicates the correlation ratio, an objective function
used by DS for optimization. Note that the sum of the square of item-
component correlation over all components is equal to the number of cat-
egories minus one, that is, 2 in the above table of 3-category data. This sum
is indicative of the degree of a polynomial functional relation, up to which
DS can capture, that is, linear and quadratic relations in our example. Note
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Table 3. Squared Item-Component Correlations of PCA and DS

(a)Squared Item-Component Correlation of PCA

Dim BP Mig Age Anx Wgt Hgt Sum(eigenvalue)

1 .59 .02 .55 .26 .24 .41 2.053
2 .03 .78 .23 .02 .58 .03 1.665
3 .23 .10 .10 .51 .02 .05 1.007
4 .05 .00 .00 .06 .03 .57 0.738
5 .05 .03 .11 .01 .10 .01 0.292
6 .04 .09 .06 .01 .05 .00 0.245

Sum 1 1 1 1 1 1 6

(b)Squared Item-Component Correlation of DS

Dim BP Mig Age Anx Wgt Hgt Eta2 Sum

1 .92 .93 .54 .41 .11 .36 .54 3.24
2 .38 .34 .22 .29 .52 .49 .37 2.25
3 .40 .48 .55 .46 .18 .01 .35 2.07
4 .02 .03 .40 .36 .83 .21 .31 1.84
5 .02 .01 .03 .31 .06 .35 .13 0.78
6 .10 .06 .03 .02 .02 .49 .12 0.72
7 .04 .08 .13 .06 .12 .03 .08 0.45
8 .05 .04 .06 .06 .07 .00 .05 0.28
9 .04 .01 .00 .03 .05 .05 .03 0.19
10 .01 .02 .03 .01 .03 .01 .02 0.10
11 .00 .01 .02 .01 .00 .00 .01 0.04
12 .00 .00 .00 .00 .00 .00 .00 0.00

Sum 2 2 2 2 2 2 2 12

therefore that DS of categorical data does not necessarily capture all nonlin-
ear relations, but it is restricted to the number of categories of a variable.

5 Correlation between multidimensional variables

Suppose we have two categorical variables with mi,mj categories each.
From two sets of response patterns, we can construct the contingency
table of order mixmj , which yields q (non-trivial) eigenvalues, where
q = min(mi − 1,mj − 1), say λ1, λ2, ..., λq in the descending order.

Recently Nishisato (2004 in press) derived a measure of correlation, ν, be-
tween multidimensional variables, using forced classification (Nishisato
(1984), Nishisato and Gaul (1991), Nishisato and Baba (1999)). He showed
then that his measure is equal to the square root of the average eigenvalue of
the contingency table, and that it is identical to Cramér’s coefficient V. The
interested readers are referred to the above paper.
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6 Decomposition of information in data and total
information

As was shown in the above examples of PCA and DS as applied to the Blood
Pressure Data, the information in data can be decomposed into the contribu-
tion of the variable to each dimension (component) in terms of the squared
item-component correlation coefficient (Nishisato (2003b)). When all the six
variables are perfectly correlated to each other, those tables for PCA and DS
would change respectively as in Table 4.

Table 4. Squared Item-Component Correlations of PCA and DS

(a)Squared Item-Component Correlation of PCA

Dim BP Mig Age Anx Wgt Hgt Sum(eigenvalue)

1 1.00 1.00 1.00 1.00 1.00 1.00 6.000
2 0.00 0.00 0.00 0.00 0.00 0.00 0.000
3 0.00 0.00 0.00 0.00 0.00 0.00 0.000
4 0.00 0.00 0.00 0.00 0.00 0.00 0.000
5 0.00 0.00 0.00 0.00 0.00 0.00 0.000
6 0.00 0.00 0.00 0.00 0.00 0.00 0.000

Sum 1 1 1 1 1 1 6

(b)Squared Item-Component Correlation of DS

Dim BP Mig Age Anx Wgt Hgt Eta2 Sum

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 6.00
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 6.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Sum 2 2 2 2 2 2 2 12

This means that when all the variables are perfectly correlated PCA yields
only one axis to represent the variables and DS in this case of three category
data needs only two dimensions where all six triangles are completely merged
into one triangle.

Imagine what will happen when all the variables are mutually uncorre-
lated. In PCA, the above table changes to the identity matrix, meaning that
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each variable is represented by its own axis. In DS, the triangle of the first
variable occupies, for example, dimensions 1 and 2, where we see the entries
of 1, the second variable dimensions 3 and 4, and so on, thus all six triangles
span 12-dimensional space without any overlapping among them.

In the case of DS, the data set can be accommodated in two-dimensional
space (perfect correlation) or 12-dimensional space (uncorrelated case), which
seems to show a great discrepancy in information contained in data. If six
items are perfectly correlated to one another, we need only one item to know
everything about six items. What emerges from this is a proposal for a de-
finition of information, not im terms of the sum of eigenvalues (variances),
or the sum of six triangles in the current example, but in terms of the joint
variance. This idea can be related to the terms used in set theory and in-
formation theory. In set theory, the traditional definition of the sum of the
variances or eigenvalues corresponds to the sum of sets, while the new idea
corresponds to the union of sets. In information theory, the traditional idea
is the sum of entropies of variables, while the new idea is the joint entropy.
Along these lines of thought, Nishisato (2003b) adjusted the sum of squares
of item-component correlations (the sum of eigenvalues) by eliminating over-
lapping portion through two-way correlations, three-way correlations and so
on up to the n-th order correlation, n being the number of variables, as we
do in expressing the joint entropy in information theory, arriving at the fol-
lowing measure:

T (inf) =
n∑

j=1

K∑
k=1

r2
jt(k) −

n∑
i<j

rij +
n∑

i<j<k

rijk − · · · + (−1)n−1r123···n, (1)

where

r123···p =
N∑

i=1

z1iz2iz3i· · ·zpi

N
, (2)

zij is the standardized score of subject i on item j, N is the number of subjects,
and K is the total number of components. In practice, we would need to use a
simplified expression as an approximation to the above expression since it is
likely that high-order terms may not contribute much to the measure. Since
this aspect of approximation depends on data, we are yet to see how it works
in practice.

7 Conclusion

The current study proposes the following framework for multidimensional
data analysis.
(1) Discretize (desensitize) continuous measurement so that nonlinear rela-
tions between variables may be captured by DS without difficulty.
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(2) When a variable is described as a k-dimensional polyhedron, the first
approximation to the variable should be defined as one from the fist k com-
ponents, rather than the current practice of the first component.
(3) In view of (2), correlation between two categorical variables should be
defined in k-dimensional space, rather than in one dimension.
(4) The total information in data should be defined as the union of poly-
hedrons or joint entropy of variables. (5) In view of (4), the information
contained in k-dimensional space should be defined, not by the k-th eigen-
value, but by the union of variables in k-dimensional space. (6) In view of (4)
and (5), the traditional hypothesis testing in multivariate analysis may have
to be reconsidered since a function of eigenvalues will be modified by the new
definition of information.
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Abstract. An external analysis of two-mode three-way (object×object×source)
asymmetric multidimensional scaling is introduced, which is similar to the exter-
nal analysis of INDSCAL. The present external analysis discloses the asymmetry
of each object, and source differences in symmetric and in asymmetric proximity
relationships among objects respectively for an externally given configuration of
objects. The present external asymmetric multidimensional scaling is applied to
the university enrollment flow among Japanese prefectures.

1 Introduction

Multidimensional scaling (MDS) usually analyzes proximities or preferences
to obtain a spatial representation or a configuration of objects or of ob-
jects and sources. In the configuration, proximity relationships among ob-
jects are represented as interpoint distances, or preference relationships are
represented as distances from ideal points to object points or as projections
of object points on ideal vectors. The external analysis of MDS integrates
proximities or preferences with an externally given configuration to obtain
additional information. PREFMAP (Carroll (1972)) maps sources into an
externally given configuration of objects as ideal vectors or ideal points by
analyzing preferences for objects of sources. The external analysis of IND-
SCAL (Arabie et al. (1987)) derives a weight configuration of sources for an
externally given group stimulus configuration of objects by analyzing a set of
proximity matrices among objects where each matrix comes from a source.

The present external analysis of two-mode three-way asymmetric MDS
is based on the predecessor (Okada and Imaizumi (1997)), and is similar to
the external analysis of INDSCAL mentioned above. For an externally given
configuration of objects, the present external analysis discloses (a) the asym-
metry of each object, (b) source differences (differences among sources) in
symmetric proximity relationships among objects, (c) the orthogonal rotation
for the externally given configuration of objects, and (d) source differences
in asymmetric proximity relationships among objects by analyzing two-mode
three-way asymmetric proximities (object×object×source).
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2 The method

The model and the method are external analysis versions of those combining
the two earlier studies (Okada and Imaizumi (2000, 2002)), both were ex-
tended from those of the predecessor. While in Okada and Imaizumi (2000)
the common object configuration was not rotated, in Okada and Imaizumi
(2002) an orthogonal rotation was applied to the common object configu-
ration. The combined model consists of the common object configuration,
the symmetry weight, the asymmetry weight, and the orthogonal rotation
matrix for the common object configuration. The common object configu-
ration shows symmetric and asymmetric proximity relationships among ob-
jects which are common to all sources, where each object is represented as
a point and a circle (sphere, hypersphere) centered at that point in a mul-
tidimensional Euclidean space. The radius of the circle of an object shows
the asymmetry of the object; the larger the radius of an object is, the larger
the similarity from the object to the other objects is, and the smaller the
radius of an object is, the larger the similarity from the other objects to the
object is. The larger the difference of the two radii of two objects is, the
larger the asymmetry between the two objects is. When two objects have
the radius of the same size, there is no asymmetry between the two objects.
The symmetry weight shows source differences in symmetric proximity rela-
tionships among objects. The asymmetry weight shows source differences in
asymmetric proximity relationships among objects.

Let n be the number of objects, N the number of sources, p the dimen-
sionality of the externally given common object configuration, and sjki the
observed proximity from object j to object k for source i (j, k = 1, · · · , n; i =
1, · · · , N). It is assumed that for each source sjki is monotonically related to
mjki;

mjki = djki − djkirj√
p∑

t′=1

[
x∗

jt′−x∗
kt′

uiu∗
t′

]2 +
dkjirk√

p∑
t′=1

[
x∗

kt′−x∗
jt′

uiu∗
t′

]2 , (1)

where x∗
jt′ is the coordinate of object j on dimension t′ derived by orthogo-

nally rotating dimensions of the common object configuration, rj ≥ 0 is the
radius representing object j, and djki is the distance between two points rep-
resenting objects j and k in the configuration of objects for source i, which
is defined as

djki = wi

√√√√ p∑
t=1

(xjt − xkt)2, (2)

and xjt is the coordinate of object j on dimension t of the common object con-
figuration. The symmetry weight wi ≥ 0 represents the salience of symmetric
proximity relationships among objects for source i. There are two kinds of
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the asymmetry weights ui ≥ 0 and u∗
t′ ≥ 0 (Okada and Imaizumi 2000). ui

represents the salience of asymmetric proximity relationships among objects
for source i, and u∗

t′ represents the salience of asymmetric proximity relation-
ships among objects along dimension t′ of the orthogonally rotated common
object configuration.

The procedure for deriving the common joint configuration, the symme-
try weight, the asymmetry weight, and the orthogonal rotation matrix in the
combined model is almost the same as those for Okada and Imaizumi (2000,
2002). A nonmetric iterative algorithm to derive the common object configu-
ration (xjt; j = 1, · · · , n, t = 1, · · · , p, and rj ; j = 1, · · · , n), the symmetry
weight (wi; i = 1, · · · , N), the asymmetry weight for the source (ui; i = 1,
· · · , N), the asymmetry weight for the dimension (u∗

t′ ; t
′ = 1, · · · , p), and the

orthogonal rotation matrix from sjki (j, k[j �= k] = 1, · · · , n; i = 1, · · · , N)
was extended from the one for the predecessor. The badness-of-fit measure S
Stress is defined as

S =

√√√√√√ 1
N

N∑
i=1

⎡⎢⎣ n∑
j=1

n∑
k=1

j �=k

(mjki − m̂jki)2/
n∑

j=1

n∑
k=1

j �=k

(mjki − m̄i)2

⎤⎥⎦, (3)

where m̂jki is the monotone transformed sjki, and m̄i is the mean of mjki

for source i. The radius, the symmetry and the asymmetry weights, and the
orthogonal rotation matrix which minimize the Stress are sought for a given
dimensionality.

In the present external analysis model, the common object configuration
is given externally, representing each object as a point without a radius. In
this configuration, only symmetric proximity relationships among objects are
shown, and asymmetric proximity relationships among objects are not shown.
The externally given common object configuration is normalized in exactly
the same manner as that of the predecessor, so that the origin is at the cen-
troid of the points representing objects and the sum of squared coordinates of
objects is equal to the number of objects (Okada and Imaizumi (1997), Equa-
tion (3.4)). Then, the radius, the symmetry weight, the asymmetry weight,
and the orthogonal rotation matrix to be applied to the externally given com-
mon object configuration are derived exactly the same procedure mentioned
above from the observed proximity sjki (j, k[j �= k] = 1, · · · , n; i = 1, · · · ,
N). In the iterative process of the procedure, the externally given coordinates
of the objects (xjt; j = 1, · · · , n, t = 1, · · · , p) are unchanged.

3 An application

The present external analysis of asymmetric MDS was applied to the univer-
sity enrollment flow data among 47 Japanese prefectures. The data, which
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Fig. 1. Rotated common object configuration of the external analysis.

had been analyzed in Okada and Iwamoto (1996) by using the asymmetric
cluster analysis extended from Hubert (1973), consist of two 47×47 tables.
Each table corresponds to the data before and after the introduction of the
JFSAT (Joint First Stage Achievement Test) in 1979. The (j, k) element of
each table represents the number of enrollments into universities in prefec-
ture k from high schools in prefecture j during four years from 1974 to 1977
for the first table and from 1981 to 1984 for the second table. The two tables
are 47×47×2 two-mode three-way asymmetric proximities.

The longitude and the latitude of the capitol of each prefecture were used
as the externally given two-dimensional common object configuration of 47
prefectures; i.e., a geographical map was used. Analyzing the two tables by
using the two-dimensional configuration of prefectures as the externally given
common object configuration, the radius of the prefecture, the symmetry
weight for source or the table (before and after the JFSAT), the asymmetry
weights for source and for dimension, and the orthogonal rotation matrix are
derived.
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Table 1. Radius

Prefecture External Internal Prefecture External Internal

1 Hokkaido 0.649 0.202 25 Shiga 1.424 0.757
2 Aomori 0.649 0.268 26 Kyoto 0.247 0.064
3 Iwate 0.788 0.291 27 Osaka 0.648 0.299
4 Miyagi 0.282 0.055 28 Hyogo 0.997 0.462
5 Akita 1.020 0.394 29 Nara 0.782 0.284
6 Yamagata 0.984 0.382 30 Wakayama 1.493 0.807
7 Fukushima 0.534 0.155 31 Tottori 1.259 0.630
8 Ibaragi 0.415 0.075 32 Shimane 1.342 0.650
9 Tochigi 0.761 0.266 33 Okayama 1.180 0.524

10 Gunma 0.748 0.262 34 Hiroshima 1.153 0.513
11 Saitama 0.212 0.000 35 Yamaguchi 1.321 0.585
12 Chiba 0.287 0.040 36 Tokushima 1.231 0.601
13 Tokyo 0.000 0.016 37 Kagawa 1.382 0.679
14 Kanagawa 0.107 0.002 38 Ehime 1.609 0.757
15 Nigata 0.949 0.380 39 Kochi 1.204 0.558
16 Toyama 1.293 0.616 40 Fukuoka 0.857 0.371
17 Ishikawa 0.548 0.138 41 Saga 1.387 0.644
18 Fukui 1.212 0.589 42 Nagasaki 1.316 0.626
19 Yamanashi 0.529 0.109 43 Kumamoto 1.246 0.536
20 Nagano 0.852 0.325 44 Oita 1.218 0.540
21 Gifu 1.230 0.594 45 Miyazaki 1.270 0.583
22 Shizuoka 1.024 0.429 46 Kagoshima 1.244 0.586
23 Aichi 0.659 0.258 47 Okinawa 1.044 0.544
24 Mie 1.398 0.706

The analysis was done in two-dimensional space, and the minimized Stress
was 0.745. Figure 1 shows the rotated common object configuration. Dimen-
sions 1′ and 2′ were derived by orthogonally rotating the dimensions of the
map (the longitude and the latitude) 19.9 degrees clockwise. The longitude
and the latitude coordinates are represented in the upper left corner of Figure
1 to show the orientation of the dimensions before the orthogonal rotation.
Although in the present model each prefecture is represented as a point and a
circle centered at that point, the circle was drawn only for prefectures having
the smallest and largest three radii. The other circles were eliminated to avoid
the complexity of the configuration and to more clearly show the location of
prefectures. The horizontal dimension (Dimension 1′) is almost parallel with
the line connecting Tokyo (#13), Aichi (#23), and Kyoto (#26) which have
universities being in high reputation, and constitute the most industrialized
region as well. In addition, the horizontal dimension seems to differentiate
two areas distinguished by Okada and Iwamoto (1996): one, whose center is
Tokyo, consists of prefectures whose high school graduates have a stronger
tendency of entering into universities in Tokyo, and the other, whose center
is Kyoto, consists of prefectures whose high school graduates have a stronger
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tendency of entering into universities in Kyoto. The vertical dimension (Di-
mension 2′) corresponds to the geographic distance from the centers of the
two areas, and seems to represents differences among prefectures within each
of the two areas.

The radius is shown at the column labeled external of Table 1. In the
present application, the larger radius means the larger tendency of entering
into universities in the other prefectures from high schools in the correspond-
ing prefecture, and the smaller radius means the larger tendency of accept-
ing high school graduates from the other prefectures into universities in the
corresponding prefecture. Prefectures (Tokyo, Kanagawa (#14), and Kyoto)
having universities into which many high school graduates from the other
prefectures enter, have the smaller radii (Table 1). The radius of Tokyo is the
smallest which is zero by the normalization.

Table 2 shows the symmetry and the asymmetry weights. The symmetry
weight is smaller before the introduction of the JFSAT than after the JFSAT;
suggesting the symmetry of the university enrollment flow among prefectures
increased by the introduction of the JFSAT. This is also reflected in the
asymmetry weight for the sources; the asymmetry weight before the JFSAT
is larger than that after the JFSAT. The asymmetry weight for Dimension
1′ is larger than that for Dimension 2′. This suggests that the asymmetry
between the two areas is larger than that within the area.

Table 2. Symmetry and asymmetry weights

Source Symmetry weight for source

Before the JFSAT 1.000
After the JFSAT 1.068

Source Asymmetry weight for source

Before the JFSAT 1.110
After the JFSAT 0.918

Dimension Asymmetry weight for rotated dimension

Dimension 1′ 1.013
Dimension 2′ 0.987

4 Discussion

An external analysis of two-mode three-way asymmetric MDS was introduced
and applied to the migration data from the high school to the university
among Japanese prefectures. The results are consistent with those obtained
in Okada and Iwamoto (1996).

To compare the present result with that obtained by using the internal
(usual) analysis, the present data were analyzed by the internal two-mode
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three-way asymmetric MDS using the same model as that of the present
external analysis. The analyses with rational initial configuration and values
were done by using the maximum dimensionality of five through nine and the
minimum dimensionality of one (Okada and Imaizumi (1997, p. 216)). The
analyses gave five different kinds of results for each dimensionality from five
through one. The minimum Stress values of the five different kinds of results
at each of five- through unidimensional spaces were 0.372, 0.379, 0.402, 0.455,
and 0.610. The two-dimensional result was chosen as the solution. Comparing
the minimized Stress values of the external (0.745) and the internal (0.455)
analyses suggests that the goodness-of-fit deteriorated by using the geograph-
ical map of the country as the externally given common object configuration.
Figure 2 shows the obtained common object configuration with radius for
only the same prefectures having radii in Figure 1. The radius is shown at
the column labeled internal of Table 1. In Figure 2 the map of the country is
distorted; northern (#1-#7) and southern (#40-#47) prefectures are located
closer to the center of the area (Tokyo and Kyoto) than in the geographical
map.

The two dimensions seem to represent the same meaning as in the ex-
ternal analysis; the difference between two areas (Dimension 2′), and the
difference within each of the two areas (Dimension 1′). Also, Dimension 2′

is almost parallel with the line connecting Tokyo, Aichi, and Kyoto. While
the radii of the external analysis are larger than that of the internal analysis,
two sets of radii shown in Table 1 are similar, and the correlation coefficient
between the two sets is 0.98. Thus, although the asymmetric relationships of
the university enrollment flow is more exaggerated in the external analysis
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than in the internal analysis, almost the same characteristics of the asym-
metric relationships among prefectures are represented in both the external
and the internal analyses. The symmetry and asymmetry weights of the in-
ternal analysis have the same characteristics as those of the external analysis;
both analyses suggest that the symmetry of the university enrollment flow
increased after the introduction of the JFSAT, and the asymmetry between
the two areas are larger than that within the area.

The ratios of the magnitude of symmetric and asymmetric components
of the total sum of squared deviation of mjki from m̄i (Okada and Imaizumi
(1997, p. 212)) were 0.653 and 0.347 for the external analysis, and 0.799
and 0.201 for the internal analysis. This suggests that the larger asymmet-
ric component of the external analysis resulted in the deterioration of the
goodness-of-fit. But the deterioration seems not to destroy the relationships
of the university enrollment flow based on the two areas, and not to destroy
characteristics of the asymmetric relationships. While the present external
analysis has poorer fit to the data than the internal analysis has, the exter-
nal analysis gives results which can be interpreted based on the geographical
features of prefectures, which facilitates understanding of the results consid-
erably.
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Abstract. This paper presents the application of two correction methods for co-
variate measurement error to nonparametric regression. We focus on a recent and
due to its sparsity properties very promising smoothing approach coming from the
area of machine learning, the Relevance Vector Machine (RVM), developed by Tip-
ping (2000). Two correction methods for measurement error are then applied to the
RVM: regression calibration (Carroll et al. (1995)) and the SIMEX method (Car-
roll et al. (1995)). We show why standard regression calibration fails and present a
simulation study that indicates an improvement of the RVM regression in terms of
bias when SIMEX correction is applied.

1 Introduction

Considering bivariate data {(xi, ti)}N
i=1 ∈ R × R including a single covariate

xi and a scalar response ti (so-called target) for each observation i, we usually
assume the targets being decomposable into a structural and a random part:

ti = f(xi) + εi, i = 1, . . . , N,

where the random errors εi are independent samples from some noise process.
From a statistical point of view one is now interested in estimating the func-
tional relationship between the target variable and the covariates. In contrast
to parametric modeling we will not impose a certain model structure on f(·),
but allow for a flexible approximation faithful to the data, using the Rele-
vance Vector Machine introduced by Tipping (2000).
Our special interest however lies in the behavior of the RVM under covari-
ate measurement error. This aspect gains impact when we analyze real world
data, where assumption of at least minor measurement error seems indispens-
able. Popular examples come from the area of medicine and epidemiology,
where exposure to a certain radiation or nutrition habit is recorded.
Carroll et al. (1999) presented work on measurement error for (penalised)
regression splines, but to our knowledge this problem has not yet been dis-
cussed in the context of RVM.
Section 2 contains the theory of the RVM, while in Section 3 we describe our
approach to measurement error correction in the RVM context. Finally we
present the results of a simulation study on the error correction applying the
SIMEX method.



The Relevance Vector Machine Under Covariate Measurement Error 297

2 Nonparametric regression using the RVM

Kernel methods like the Support Vector Machines (Vapnik (1995)) became
increasingly popular in the last years (Schölkopf and Smola (2002)). Against
this background Tipping (2000, 2001) presented the Relevance Vector Ma-
chine which is related to the Support Vector Machines (SVM) but within a
truly Bayesian framework.

2.1 The RVM model setup

Similar to the B-Spline, P-Spline and SVM approach, the RVM concept of
approximation is fitting a sum of individually weighted, generally nonlinear
basis functions to the data. The targets are assumed to be decomposable into

ti =
N∑

j=0

wj · φj(xi) + εi, i = 1, . . . , N. (1)

We note that φ0(x) is an intercept vector with associated weight w0, while
for j ≥ 1 the basis function φj(x) is centered on xj . The errors are assumed
to be i.i.d. normally distributed

p(ε) =
N∏

i=1

N (εi|0, σ2). (2)

Here and in any subsequent expression we omit the implicit condition on
the covariate data {xi}. The model (1) is overspecified since every covariate
sample serves as a basis knot in this formulation. Tipping (2001) encodes the
preference for a sparse model by placing a prior distribution on the N + 1
weights:

p(w|α) =
N∏

j=0

N (wj |0, α−1
j ), (3)

where w denotes the parameter vector including all N+1 model weights with
each weight wj being i.i.d. Gaussian with zero mean and individual variance
α−1

j .
To put the RVM into a fully Bayesian framework two more distributional
assumptions are employed for the inverse variance parameters α = (α0, . . . ,
αN )T and β = σ−2. Tipping (2001) specifies Gamma (hyper-) priors for these
scale parameters:

p(α) =
N∏

j=0

Gamma(αj |a, b) and p(β) = Gamma(β|c, d), (4)

setting the corresponding parameters a = b = c = d = 0; this is equivalent to
specifying uniform distributions for α and β on a logarithmic scale. Specifica-
tion of an individual prior/hyperprior for every weight, follows an approach
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from MacKay (1994), termed as automatic relevance determination, generally
leading to sparse models.

2.2 Inference

Estimation of the unknown parameters w,α and β in a Bayesian framework
is done via the posterior distribution of these parameters:

p(w,α, β|t) =
p(t|w,α, β)p(w,α, β)

p(t)
. (5)

Analytic calculation of (5) is not feasible, since the normalizing integral
p(t) =

∫
p(t|w,α, β)p(w,α, β) dwdαdβ cannot be computed.

Tipping (2001) suggests decomposition of the posterior distribution into

p(w,α, β|t) = p(w|t,α, β)p(α, β|t),
with p(w|t,α, β) being Gaussian, see Tipping (2001) for details. However,
the posterior of the hyperparameters α, β cannot be stated and under the
assumption of p(α) and p(β) being uniform (over a logarithmic scale) Tip-
ping (2001) just maximizes the marginal likelihood to find most probable
hyperparameters:

p(t|α, β) = (2π)−
N
2 | C |− 1

2 exp
{
−1

2
tTC−1t

}
, (6)

with covariance matrix C := β−1I + ΦA−1ΦT and design matrix ΦN×N+1

consisting of the intercept vector and a set of columns, representing basis
function values. Inherent parameters in the basis functions need to be set in
advance or estimated via cross validation. In similar Bayesian models, this
maximizing method is referred to as type-II maximum likelihood method.
For most probable values α̂MP and β̂MP , based on (6), the weights are com-
puted as the mean of the Gaussian posterior p(w|t, α̂MP , β̂MP ).
Optimizing the unknown parameters is then an iterative cycling through two
steps:

• estimate most probable values (α̂MP , β̂MP ) via type-II ML based on the
marginal likelihood (6), using actual estimates for the weights,

• update the weights as mean of the Gaussian posterior p(w|t, α̂MP , β̂MP ).

For many weights the posterior becomes sharply peaked around zero and
these weights will practically be set to zero during the optimization process.
Thus the estimated model (1) shrinks to a sum of very few weighted basis
functions. Tipping (2001) compares the performance of the RVM to the SVM
and states comparable results for benchmark data sets in terms of accuracy.
However, the major result was the superior sparsity of the RVM in using
relevant basis functions for modeling the data.
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3 Covariate measurement error and its correction

In many practical situations the variable X we observe is merely a surrogate
for the variable ξ that cannot be observed directly. That happens when mea-
surement of ξ is error prone, as it is the case when e.g. physical measurement
is affected by the surrounding conditions. We stress that there is almost no
kind of measurement that is free from potential measurement error. This error
may seem negligible in some cases, however in a lot of cases it is not. Sta-
tistical analysis ignoring such inherent error is referred to as ’naive analysis’
and Carroll et al. (1999) emphasize, that when measurement error is ignored
’conventional parametric and nonparametric techniques are no longer valid’.
That is, the parameter estimates we get from the naive analysis are usually
biased.
There are two standard approaches to error correction: Carroll et al. (1995)
describe regression calibration and an approach based on simulation and
extrapolation (SIMEX). Carroll et al. (1999) present one adoption of this
SIMEX for nonparametric regression using (penalised) regression splines.

3.1 The classical error model

In order to take measurement error into account in our statistical analysis,
we need a model relating the true covariate to the observable covariate.
Assume that there is a variable ξ one would like to include into the set of
covariates but the device allows measurement merely under inclusion of a
random error. A common model for that type of error process is:

X = ξ + δ, (δ, ξ) ∼ indep., E(δ) = 0, (7)

which is frequently extended to δ ∼ N (0, σ2
δ ) and ξ ∼ N (µξ, σ

2
ξ ).

Measurement deviates randomly from the true value but is expected to be
correct on average.

3.2 Error correction using regression calibration

Carroll et al. (1995) describe regression calibration, where the true but un-
observable covariate ξ is replaced by E(ξ|X) and then a standard analysis is
carried out. Computability of E(ξ|X) depends on the type of error model,
but for the classical error model it is easily derived and given as:

E(ξ|X) = µξ + λ · (X − µξ), with λ :=
σ2

X − σ2
δ

σ2
X

. (8)

The error variance σ2
δ needs to be known or estimated from e.g. valida-

tion/replication data and both µξ(= µX) and σ2
X can be estimated from

the sample. This approach yields consistent parameter estimates in the lin-
ear regression.
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We apply this method to the RVM by rewriting the regression of the target
variable T on the observable covariate X in terms of the model weights:

E(T |X) = E(E(T |X, ξ)|X)
= E(E(T |ξ)|X) (9)

= E

((∑N
j=0wjφj(ξ)

)
|X
)

(10)

=
∑N

j=0wj · E (φj(ξ)|X) . (11)

(In (9) it is assumed that the measurement error is independent of the target
variable.) Now, if there is measurement error in the data, E (φj(ξ)|X) should
be used to estimate the weight parameters instead of naively using φj(X),
which generally yields biased estimates. Note that only if φ(·) is a linear basis
E(φj(ξ|X)) in (11) simplifies to φj (E(ξ|X)).
Ignoring nonlinearity of Gaussian basis functions and simply replacing the
error prone X by E(ξ|X) from (8) into the RVM model gives the following
modified basis function:

φj (E(ξ|X)) = exp(−η2(E(ξ|X) − E(ξ|xj))2)
= exp(−(η · λ)2 · (X − xj)2),

where the parameter η determines the width of the Gaussian basis. Thus,
inference of the weight parameters applying standard regression calibration
is equivalent to a naive analysis using a modified basis kernel. We expect no
genuine correction effect from merely using a wider (since λ ≤ 1) Gaussian
kernel and thus this regression calibration approach will not be considered in
our simulation study.
Calibration of the basis functions i.e. replacing the unobservable φj(ξ) by
E (φj(ξ)|X) is another more promising approach and will be explored in forth-
coming work.

3.3 Error correction using SIMEX

Carroll et al. (1999) describe the concept of SIMEX (SIMulation EXtrapo-
lation) for nonparametric regression based on the ’classical’ SIMEX (Carroll
et al. (1995)). The effect of covariate measurement error on the estimated
function is studied in a simulation study and afterwards an extrapolation on
the error-free case is performed.
For the classical error model (7), random errors δ∗i ∼ N(0, σ2

δ∗) are generated
and added to the observed xi, i = 1, . . . , N . Then a standard RVM analysis
is performed using these ’new’ data under additional error. Varying the error
variances σ2

δ∗ = c · σ2
δ in multiples of the true measurement error variance

allows us to study its effect on the prediction f̂(ξk) at arbitrary points of
interest ξk, k = 1, . . . ,K. Figure 1 illustrates the increasing attenuation of
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Fig. 1. By inflating the variance for artificially generated error by c×σ2
δ , the effect

of additional error on the estimation �f(ξk) can be studied. For c = 0 we use the
original data in the analysis. The curve can be extrapolated to the case of zero
measurement error by using quadratic regression.

f̂(ξk) with increasing variance σ2
δ∗ of the additional error. Finally we extra-

polate on the case of zero measurement error (for all K points of interest).
We note that the true error variance σ2

δ again has to be estimated or known.
Since in fact we generate multiple sets of errors for each chosen error variance
SIMEX becomes a computational heavy method. This problem can be taken
into account by starting with a subset of basis functions in the RVM to speed
up the calculations.

3.4 Simulation results for the SIMEX

We extended an RVM program code by Michael Tipping to perform SIMEX
correction. This original RVM code can be found at
http://research.microsoft.com/mlp/RVM/relevance.htm.
To check the performance of the SIMEX method, we ran 200 simulations with
201 samples generated from the sinc-function f(ξ) = sin(ξ)/ξ under Gaussian
error ε ∼ N (0, 0.22) at data points ξ ∈ {−10,−9.9, . . . , 10}. Measurement
error was chosen to be Gaussian δ ∼ N (0, 1), where we assumed its variance
σ2

δ = 1 to be known for SIMEX.
Figure 2 displays the mean prediction function for the naive RVM and the
SIMEX-corrected RVM. The true function and the mean prediction for the
RVM using the error free samples from ξ are included as references. The mean
naive approximation clearly over-smoothes the data, especially where the
curvature of the true function is high. The SIMEX correction does obviously
better, particularly at the center of the data but there is also a tendency to
over-smooth at the fringe of the data. Figure 3 displays the mean bias and
95% error bars over 200 simulations for the SIMEX and the naive analysis. We
identify a generally smaller bias of the SIMEX method but more expanded
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Fig. 2. Comparison of mean prediction using SIMEX and naive analysis under
measurement error.

Fig. 3. Mean bias (solid line) and 95% error bars (= 95% confidence interval of the
mean bias) of the estimated function using naive analysis and SIMEX, respectively.

error bars, especially at the center of the data. Thus by applying the SIMEX
correction we gain in terms of unbiasedness but on the other hand seem to
pay for that by higher variability of the estimates.

4 Discussion

In this work we presented a combination of two methods: nonparametric
regression with the RVM and covariate measurement error correction using
regression calibration and SIMEX, respectively. From the simulation study we
see that the SIMEX correction works quite well in this basic case of modeling
Gaussian responses and correcting for additive Gaussian measurement error
in a single covariate. However, we must keep in mind the computational
effort to perform SIMEX. We showed that, for the RVM with Gaussian basis,
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inference of the weight parameters under standard regression calibration is
equivalent to inference based on naively using the error-prone covariate within
a wider basis kernel. A more sophisticated approach is calibration of the basis
functions which requires knowledge of the measurement error distribution
and involves integration over the nonlinear basis functions. This promising
calibration approach will be explored in forthcoming work.
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Abstract. The honour to be the first who published the seriation of archaeological
finds by formal methods is attributed by David Kendall (1964) to Sir W. M. Flinders
Petrie (1899). According to Harold Driver (1965), an American anthropologist, the
earliest numerical seriation studies are those of Kidder (1915), Kroeber (1916),
and Spier (1917). It seems, however, that a general acceptance of formal seriation
methods did not begin until the pioneering publications of Ford and Willey (1949)
and G. W. Brainerd (1951) and W. S. Robinson (1951). Hole and Shaw published an
algorithm for permutation search (1967), Elisséeff’s (1965) and Goldmann’s (1968)
methods leading finally to correspondence analysis.

1 Introduction

Today advanced statistical methods are commonly used in archaeology. Most-
ly inferential and explorative methods are being used, and numerical classifi-
cation and chronological seriation are primarily applied. While cluster analy-
sis deals with the discovery of distinct groups, seriation aims to bring archae-
ological finds into chronological order. Only the latter will be subject of the
present contribution. For the application of other aspects of data analysis in
archaeology see Ihm (2001).

2 The early years

David Kendall (1964, 1971) attributes the merit to Sir W. M. Flinders Petrie
(1899) to be the first who used formal seriation methods. The material Petrie
analyzed was discovered between 1884 and 1899 in cemeteries near the river
Nile. The graves contained dynastic pottery and many other objects. Decades
later carbon dating assigned them to a period between 4000 B.C. and 2500
B.C. Since this evidence was not available to him at the time, he proposed a
formal method for arranging the graves roughly in their chronological order
using a criterion which he called the concentration principle. He selected a
subsample of 900 graves and 804 types of pottery and did what we call today
the ‘diagonalisation’ of a 900 × 804 contingency table grave × type, mostly
subjectively and to some extend with elementary computations. However
� Illustrations have been omitted by a lack of space. The author will provide them

on request.
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Petrie’s records were destroyed and it is now hard to understand what Petrie
really did.

According to Harold Driver (1965), an American anthropologist, “the ear-
liest numerical seriation studies are those of Kidder (1915), Kroeber (1916),
and Spier (1917). These men collected pottery fragments from a number of
sites in the Southwestern United States, classified the sherds into artifact
types, and arranged the raw frequencies or percentages of each type into se-
ries which they inferred were temporal sequences. The authenticity was later
confirmed by stratification.”

It seems, however, that a general acceptance of formal seriation methods
did not begin until the pioneering publications of G. W. Brainerd (1951)
and W. S. Robinson (1951). Two years before, Ford and Willey published a
manual technique which became the basis of formal methods developed by
Elisséeff (1965, 1968, 1970) and Goldmann (1968) and their mathematicians.
This led finally to correspondence analysis.

3 Mathematical models

The initial quantification of archaeological evidence deals with the primary
translation of archaeological material into a descriptive, numerical language
that can provide a starting point for its seriation. The objects of this analysis
are single artifacts, i.e. items defined by a number of features, or collections
of artifacts of different type and arranged in a table called data matrix. The
data matrix presents quantified information where the units of concern are
listed and described by their scores on a number of variables. In the following,
either incidence matrices with presence/absence data or abundance matrices
with frequencies (contingency tables) will be treated.

Denote the m × n data matrix by P = (pik) with row and column sums

pi· :=
n∑

k=1

pik, p·k :=
m∑

i=1

pik, p·· :=
m∑

i=1

n∑
k=1

pik.

Two common models of chronological variation are defined as follows:
Model I: Incidence matrix: Here pik ∈ {0, 1}. Per time unit one type
appears (0 → 1) and another one disappears (1 → 0). The result is a band
matrix, e.g.

P =

∣∣∣∣∣∣
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1

∣∣∣∣∣∣
In French publications the band matrix is also known as scalogramme parfait
or privilégié. Similar models are given by the transpose of the above matrix
or a mixture of both.
Model II: Abundance matrix: Here pik ≥ 0. In dependence of time, the
elements in each column increase to a maximum and then decrease, or the
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elements increase, or the elements decrease. Here an example P from Kendall
(1971) with:

PT =

∣∣∣∣∣∣
4 1 1 0 0 0
2 2 4 4 1 1
0 0 2 2 3 5

∣∣∣∣∣∣
This property may be called unimodality.

4 The method of Brainerd and Robinson

In two didactically excellent articles, Brainerd (1951), an archaeologist, and
Robinson (1951), a sociological statistician, proposed a method based on the
concept that each type originates at a given time at a given place, is made in
gradually increasing numbers as time goes on, then decreases in popularity
until it becomes forgotten, never to recur. This is exactly Model II. Table 1 is
based upon data from a Mani collection of Brainerd’s. The deposits from three
trenches I, II, III were taken stratigraphically, and the letters denote the order
of the strata per trench, A indicating the top stratum, i.e. the latest one, B
indicating the next below, and so on. Robinson expressed the row frequencies
in percent, i.e. pi· = 100, and computed first the L1-distance between each
pair of rows, measuring their disagreement. The maximum value which the
disagreement could have is 200. Then a suitable agreement coefficient between
rows i and j will be

sij = 200 −
n∑

k=1

|pik − pjk|. (1)

If the collections are in correct order then the following relations between
neighboring row elements of the matrix S will hold: For all i

sij ≥ si(j+1), for all j ≥ i and si(j−1) ≤ sij , for all j ≤ i. (2)

S is called a Robinson matrix. Not all matrices S of agreement coefficients
can be made to satisfy (2) by rearranging the rows of P. Robinson used
the number cS of agreement coefficients not satisfying (2) as measure of
deviation from unimodality, but he did not describe an algorithm for the
ordering of rows and columns of S minimizing cS. However, if the deposits
are chronologically arranged along the margins of the table, the totals for
the rows and columns will show a typical pattern: Beginning at either end
of the chronologically ordered series, the totals will rise progressively to a
maximum, and then will decrease progressively to a minimum at the other
end of the series. This fact may help to rearrange the matrix more or less ‘by
hand’. The rearranged abundance matrix is shown in Table 2.

Kendall (1971) proposed an alternative agreement measure instead of (1):

sij =
n∑

k=1

wk{min(pik, pjk)}. (3)
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Table 1. Percentages of eight types of pottery in three stratified trenches.

Type 1 2 3 4 5 6 7 8
Deposits

IIA 24.0 66.8 1.3 .0 .0 4.0 .0 3.9
IIB 1.4 .9 .0 .0 .0 .0 97.7 .0
IIC .2 .0 .2 .0 .0 .0 99.3 .3
IA 11.3 .0 3.8 1.3 3.3 24.9 52.6 2.8
IB .3 .0 .2 .2 .5 1.4 97.4 .0
IIIA 29.6 .0 14.1 .0 .0 7.0 .0 49.3
IIIB 54.3 3.5 14.0 1.8 5.3 7.0 12.3 1.8
IIIC .0 .0 6.6 3.3 5.5 27.5 57.1 .0

Table 2. Percentages of eight types of pottery in three stratified trenches, after
rearrangement of rows.

Type 1 2 3 4 5 6 7 8
Deposits

IIA 24.0 66.8 1.3 .0 .0 4.0 .0 3.9
IIIA 29.6 .0 14.1 .0 .0 7.0 .0 49.3
IIIB 54.3 3.5 14.0 1.8 5.3 7.0 12.3 1.8
IA 11.3 .0 3.8 1.3 3.3 24.9 52.6 2.8
IIIC .0 .0 6.6 3.3 5.5 27.5 57.1 .0
IB .3 .0 .2 .2 .5 1.4 97.4 .0
IIB 1.4 .9 .0 .0 .0 .0 97.7 .0
IIC .2 .0 .2 .0 .0 .0 99.3 .3

with strictly positive, but otherwise arbitrary numbers wk. He showed that
if there exists a permutation matrix Π such that ΠP has unimodal columns,
then ΠSΠT has also unimodal rows and columns i.e. is a Robinson matrix.
However, he did not mention how a permutation matrix Π could be derived.
Two mathematical methods were described by Gelfand (1971).

5 Permutation search

It was the merit of Frank Hole (archaeologist) and Mary Shaw (mathemati-
cian) (1967) to have overcome the difficulties of permutation search ‘by hand’
although their method did not become a standard in archaeological numerical
methodology. In a worldwide distributed booklet they published an algorithm
with only m× (m− 1)/2 +m2 instead of m! permutations to be tested. The
algorithm is explained in full extension and applied to the Brainerd-Robinson
data, leading to the same solution.

An application of permutation search was presented by Ileana Kivu-Sculy
(1971) at the Mamaia Conference 1970 and applied to the seriation of certain
inscriptions of the Hellenistic epoch in Romania.

Doran (1971), in his computer analysis of data from the La Tène cemetery
at Münsingen-Rain, Switzerland, used Flinders Petrie’s concentration prin-
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ciple minimising by permutation search
∑n

k=1 Rk where Rk is the number
of rows from the first to the last entry equal 1 in the k-th column of the
incidence matrix grave×type.

Another application is that of Simon Régnier (1977) who proposed also
an alternative measure of deviation from unimodality.

6 Towards correspondence analysis

How a data matrix could be ordered ‘by hand’ and without computation of
agreement coefficients was demonstrated by Ford.1 He wrote:

Method of constructing a seriation graph. Frequencies of the types in each
collection (=row) are drawn as bars along the top as graph paper strips. These
are arranged to discover the type-frequency pattern and are fastened to a paper
backing with paper clips. When the final arrangement has been determined, a
finished drawing may be prepared. (Ford (1957), quoted from Ford (1962)).

Other technical devices have been constructed to move rows and columns
mechanically. The task was simplified with the appearance of electronic com-
puters. ‘Scores’ were computed for rows and columns and the data matrix
arranged according to their value. This procedure lead finally to correspon-
dence analysis.

Mathematically, correspondence analysis is the singular value decompo-
sition of a standardised non-negative data matrix or contingency table. The
name goes back to the French Analyse factorielle des correspondances. A
short history can be found e.g. in Ihm and van Groenewoud (1984).

As in Ford’s example, data matrices have been analyzed directly by dif-
ferent authors. Early examples are those of Vadim Elisséeff and Klaus Gold-
mann.

Elisséeff (1965, 1968, 1970) described an analysis of a sample of Chinese
archäıc bronzes of type Yeou large assigned to a period between 1400 to 800
B.C. He distinguished 19 types, characterised by 16 stylistic and iconographic
features, and tried to seriate them as band matrix which he called scalo-
gramme parfait. He computed similarity measures between rows and columns
of his data matrix type × feature and grouped and seriated the types until
he arrived finally at the band matrix of table 3 2.

I presented a principal component analysis of Elisséeff data in a seminar,
1961, and Brigitte Escofier-Cordier published a correspondence analysis in
Benzécri’s Analyse des Données, vol. 2, p. 321 seq. (1973).

Goldmann (1968) published a chronology of Bronze Age swords, ranging
in date from 2000 to 1400 B.C., originating in South Eastern, Central, and
Northern Europe. The seriation was based on a number of technical and

1 According to Driver (1965, p. 320) Ford published this technique already in 1949
(Ford and Willey (1949))

2 Elisséeff’s example is reproduced in Ihm et al. (1978).
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Table 3. Elisséeff’s ‘scalogramme parfait’; x: feature present, blank: absent.

Feature

Type 3 5 15 13 4 6 16 14

A,F,B x x x x

C,H x x x x

R,J,O,K,S,M x x x x

T,U x x x x

N,X,Z,P x x x x

decorative features. 3 In cooperation with the mathematician E. Kammerer
he developed a seriation algorithm based on reciprocal ranking of rows and
columns. The variables are the row and column indices i, k of an m × n
incidence matrix P = (pik) (artifact × feature) with entries 0 and 1 and row
and column sums pi· and p·k, respectively. First calculate

xi =
n∑

k=1

k · pik/pi· i = 1, . . . ,m

Then the rows of P are rearranged according to the rank of xi. In the following
step the columns of P are rearranged in a similar way in increasing order of

yk =
m∑

i=1

i · pik/p·k k = 1, . . . , n

such that, e.g., column with the smallest y-value will be the first one etc.
These two steps are iterated in turn until convergence. Ties require a special
treatment. A disadvantage of this simple procedure was that it could enter
into an infinite cycle and a special stopping rule was required. Nevertheless,
it could be applied without a computer, and some users cut the table, as
Ford did, into paper-strips and glued them on a backing paper. I was told
that someone constructed even a simple device to replace row- or column-
wise strings of wooden cubes with zero’s and one’s. Clearly, an experienced
computer programmer would not have rearranged rows and columns before
the final stop. It was sufficient to replace the type or location indices after
each step by their ranks and to compute mean ranks instead of mean row
and column numbers.

It took some time until it was understood that not reciprocal ranking
but reciprocal averaging 4 was the method of choice, leading to the matrix
equations

Py = ρRx, (4)
PT x = ρCy (5)

3 Goldmann’s data and results are reported in Ihm and van Groenewoud (1984, p.
30)

4 After replacement of xi and yk by e.g. {xi −min(xi)}/{max(xi)−min(xi)} and
{yk−min(yk)}/{max(yk)−min(yk)} to avoid convergence to the trivial solution.
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with R = diag(pi.), C = diag(p.k), showing that reciprocal averaging is a
solving algorithm of the singular value decomposition of the matrix

R−1/2PC−1/2 (6)

with singular values ρ and singular vectors R1/2x and C1/2y, leading to

P = R
∑

ν

ρνxνyT
ν C (7)

with ρν ≥ ρν+1 and ρ1 = 1. The solutions of (4) and (5) maximize the
canonical correlation coefficients. The singular vectors x1, y1 are trivial, and
rows and columns of P are arranged in increasing value of the coordinates
of x2 and y2. More details can be found e.g. in Benzécri (1973), Nishisato
(1980), Greenacre (1984), Ihm and van Groenewoud (1984).

Today, instead of seriating rows and columns of a data matrix, x3 is
plotted against x2, sometimes the plot of y3 against y2 is superposed. Some
early users of the method were surprised that the plot did not show a more or
less elliptical point cluster; the frequent parabolic point configuration became
known as ‘horseshoe’.

The elements pik of an ordered abundance matrix from Clarke (1970),
plotted against i and k, show a pattern which can be approximated by a two-
dimensional normal distribution.5 A two-dimensional normal density φ(x, y)
with unit variances and correlation coefficient ρ > 0 has Hermite polynomials
Hν(x), Hν(y) as eigenfunctions, ν = 0, 1, . . . , where ν indicates the degree of
the polynomial, H2(x) corresponding to x3 etc.. Ihm et al. (1978) fitted one-
dimensional normal densities φ(x) to Clarke’s data (see also Ihm (1976, 1981)
and Ihm and van Groenewoud (1984)). Iwatsubo (1984) gives eigenvectors for
some special cases of incidence matrices typical in correspondence analysis.
Both cases explain the horseshoe.

Correspondence analysis became a useful tool for the chronological seri-
ation of graves in historic cemeteries. As examples may serve (i) the analy-
ses of two Merovingean cemeteries from Southwest Germany where the data
analyses were carried out in cooperation with members of the GfKl (see Roth
and Theune (1995), Sasse (2001)) and (ii) a collection of papers from various
fields of archaeology and history, edited by Johannes Müller and Andreas
Zimmermann (1997).

In a publication of 2001 Groenen and Poblome treat the problem of
available extra information on artefact assemblages as e.g. the stratification
A � B � C in Robinson’s example and describe how a constrained correspon-
dence analysis can be obtained.

In my opinion, correspondence analysis became as popular because the
maximization of a correlation coefficient is a principle common to many other

5 Clarke’s example is reproduced in Ihm et al. (1978) and Ihm and van Groenewoud
(1984)
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procedures and easily understood. It might not be generally known that corre-
spondence analysis was first proposed by Hans Otto Hirschfeld (1935), better
known as H. O. Hartley, who determined for a contingency table P ‘scores’
xi, yk such that both regressions are linear.
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une zone archéologique homogène. In: M. Borillo et al. (Eds.): Raisonnement
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Kaiserstuhl. K. Theiss Verlag, Stuttgart.

SCHWAIGER, M. and OPITZ, O. (Eds.) (2001): Exploratory Data Analysis in
Empirical Research.Proc. 25th Ann. Conf. of GfKl, Springer, Heidelberg.

SPIER, L. (1917): An outline for a chronology of Zuni ruins. Anthropological Papers
of the American Museum of Natural History, 18, 207–331.



Model-based Cluster Analysis of Roman

Bricks and Tiles from Worms and Rheinzabern

Hans-Joachim Mucha1, Hans-Georg Bartel2, and Jens Dolata3

1 Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS),
Mohrenstraße 39, 10117 Berlin, Germany

2 Institut für Chemie, Humboldt-Universität zu Berlin,
Brook-Taylor-Straße 2, 12489 Berlin, Germany

3 Landesamt für Denkmalpflege Rheinland-Pfalz, Abt. Archäologie,
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Abstract. Chemical analysis of ancient ceramics has been used frequently to sup-
port archaeological interpretation. Often the dimensionality in the data has been
high. Therefore multivariate statistical techniques like cluster analysis have been
applied. Successful applications of simple model-based Gaussian clustering of Ro-
man bricks and tiles has been reported by Mucha et al. (2001). And now, more
complex Gaussian models can be investigated because of an increase of sample size
by new findings excavated in Boppard. Additionally these and previous success-
ful simple models will be applied in a very local fashion considering two supposed
brickyards only. Here, after giving a brief history of clustering Roman bricks and
tiles, some cluster analysis models including different data transformations will be
investigated in order to answer questions like: Is it possible to differentiate between
brickyards of Rheinzabern and Worms on basis of chemical analysis? Do the bricks
and tiles found in Boppard belong to the brickyards of Worms or Rheinzabern?

1 Introduction and task

Cluster analysis can support researchers in interesting application areas like
archaeology. In the last decade, the advantage of cluster analysis (Mucha
(1992)) as the most commonly used multivariate technique in archaeometry
has been taken to investigate about 600 samples of bricks and tiles from the
northern part of the former Roman Empire’s province Germania Superior.
There has been developed a complex model of history and relations of the
brick and tile production by archaeologist and now it is proposed to consoli-
date these ideas. The aim of that clustering respecting 19 chemical elements
measured with X-ray fluorescence analysis (XRF) was both to confirm sup-
posed sites of brickyards and to find places of those ones that are not yet
identified. The obtained results were published in a few tens previous papers,
among them Bartel et al. (2003), Dolata (2000, 2001), Dolata et al. (2003),
Mucha et al. (2001), and Werr (1998). The data itself was published by Dolata
(2000) (see pages 53–67). As a result the following military brickyards could
be established (in brackets the number of objects): Frankfurt-Nied (137),
Groß-Krotzenburg (63), Rheinzabern (192), Straßburg-Königshofen (113),
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Worms (19) and two with respect to their provenience not yet known ones
(67 and 7 respectively). The corresponding bivariate nonparametric density
estimation (Figure 1) shows two mountain chains. The four mountain heads
on the left side could be identified with not yet known 1, Rheinzabern A and
B, and Worms (from left to right). But there is not a sufficient possibility
to distinguish the several tops, especially Worms proves almost to be only a
slope of Rheinzabern B.

Fig. 1. Bivariate density estimation based on the first two principal components

Already there exist geochemical reference-data from XRF for the products
belonging to two of these production-fields (Worms: n = 19, Rheinzabern:
n = 192). Both brickyards are close together from geography, geology and
chronology . The chemical components of the references are characteristic for
the whole production of the two sites. Now an enlarged number of 47 samples
analysed by XRF and archaeologically assigned to Worms was placed at our
disposal (see Figure 2 for an example). The new data was published by Mucha
et al. (2004). Therefore 66 objects from Worms are available altogether until
now. Using this set of samples joined with that of the 192 ones assigned to
Rheinzabern it could be asked if it is possible in a mathematical way to find
a stable “Worms” - cluster that is well separated from the brickyard(s) in
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Fig. 2. Brick (later) from Boppard (LDA Koblenz, Inv. 64/440 = Boppard ZS8)

Rheinzabern by its chemical components only. Thus the main question is:
Do the bricks and tiles from Boppard belong without doubt to the Worms-
references? Since the number of samples from Worms is more than three times
greater than the number of variables the most complex model-based Gaussian
clustering can be tried using different data pre-processing transformations.

2 Model-based Gaussian clustering

Here model-based Gaussian clustering techniques are applied in archaeometry
in order to set up new hypotheses about the data under investigation. Con-
cerning model-based clustering the paper of Banfield and Raftery (1993) gives
a good insight into the topic. Let X be the (I × J)-data matrix consisting of
I observations and J variables. The most general model-based Gaussian clus-
tering is if the covariance matrix Σk of each cluster k is allowed to vary com-
pletely. Then the log-likelihood is maximized whenever the partition P(I,K)
of I observations into K clusters minimizes

YK =
K∑

k=1

nk log |Wk

nk
|. (1)

Herein Wk =
∑

i∈Ck
(xi − xk)(xi − xk)T is the sample cross-product matrix

for the k-th cluster Ck, and xk is the usual maximum likelihood estimate of
expectation values in cluster Ck. The cardinality of cluster Ck is denoted by
nk. When the covariance matrix of each cluster is constrained to be Σk = λI,
the well-known sum-of-squares criterion

VK =
K∑

k=1

tr(Wk), (2)

has to be minimized. When the covariance matrix of each cluster is con-
strained to be Σk = λkI, the logarithmic sum-of-squares criterion

ZK =
K∑

k=1

nk log tr(Wk/nk), (3)
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has to be minimized. The last two cluster analysis models are dependent
on scales. In order to apply such models to data with quite different scales
the variables have to be transformed. More generally, a transformation can
be considered as weighting the variables. For instance, criterion (2) can be
written as

VK =
K∑

k=1

∑
i∈Ck

d2
Q(xi,xk), (4)

where d2
Q(xi,xk) = (xi − xk)T Q(xi − xk) is the squared weighted Euclidean

distance with Q diagonal. Because of successful results (see the references
concerning the history above, for instance Mucha et al. (2001)) we recommend
either the use of the special weights

qjj = 1/x2
j (5)

(see Underhill and Peisach (1985)) or the use of adaptive weights like diagonal
elements proportional to the inverse pooled within-cluster variances

qjj = 1/s2j , (6)

where

s2
j = 1/K

K∑
k=1

I∑
i=1

δik(xij − xkj)2. (7)

is the pooled standard deviation of the variable j. The indicator function δik

is defined in the usual way: δik = 1, if observation i comes from cluster k, or
δik = 0 otherwise.

The weights can be estimated in the adaptive K-means method in an it-
erative manner (Mucha (1992)). Figure 3 shows a low-dimensional projection
of the data. Here, the adaptive K-means method presents two well separated
clusters. It should be mentioned that the principal component analysis (PCA)
based on the correlation matrix presents only one cloud of points ( Mucha et
al. (2004)). Additionally the two interesting objects “H880” and “G139” are
marked (see the discusssion below).

In terms of transformations the special weights (5) can be obtained by
preprocessing the original data matrix by dividing each column (variable) by
its arithmetic mean. This quite simple transformation has the useful property
that the relative variability in the original variables become the variability of
the transformed ones. As a consequence of this transformation the original
variables, measured in quite different scales, become comparable one with
each other. The arithmetic mean of each new variable is equals 1. Moreover
the variables preserve their different original variability and therefore have
different influence (contribution to) on the sum of squares criterion (2) as
well as the logarithmic sum of squares criterion (3). Obviously the results
of data pre-processing are influenced by going from global data analysis of
about 600 observations to the local one here. For instance, the chemical trace
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Fig. 3. PCA plot based on the covariance matrix after transforming by (6).

element Zr becomes much more important in the local cluster analysis (for
details, see Mucha et al. (2004)). Figures 4, 5 and 6 show the same data as
Figure 3. Additionally the two interesting objects “H880” and “H857” are
marked (see the discussion below). The transformations above do not affect
the most general (unconstrained) Gaussian model (1) and the “constant”
within clusters covariance matrix model minimizing

UK = |
K∑

k=1

Wk|, (8)

where it is supposed the covariance matrix is uniform across all clusters. Here
nonlinear transformations of Box-Cox-type (Box and Cox (1964)) are recom-
mended with the special cases of transforming logarithmically (Papageorgiou
et al. (2001)) or taking the squareroots of the values.

3 Results and archaeological discussion

The logarithmic sum-of-squares criterion using the weights (5) performs best.
That can be confirmed by simulations. From archeological point of view there
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Fig. 4. PCA plot based on the covariance matrix after transforming by (5).

Fig. 5. Density plot based on the first two PC after transforming by (6).
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Fig. 6. Several cuts of density based on the first two PC after transforming by (6).

is one error only (see the next paragraph below). Figure 4 shows the clustering
results. Similar results can be obtained by using the weights (6) in the simple
models (2) and (3) (see Figure 3). The results of the most complex model (1)
are quite instable and highly dependent on the initial partition. For instance,
taking as initial partitions the ones from Figure 4 or Figure 3 the determinant
criterion works best, but with at least six “errors”. The model (8) performs
similar as (1).

Almost all (except one) of the new analysed bricks and tiles from Boppard
are geochemical homogeneous and belong without any doubt to the brickyard
of Worms. These products present brick stamps of the so-called Flörsheim
group of the legio XXII Primigenia (Dolata (2001)). Without exception all
the different types of brick stamps (Boppard type 1 – 6) do belong to the
references of Worms. The tile (tubulus) H 880 is an exception that was not
furnished with a stamp. It could be assigned now to the area of Rheinzabern.
That is confirmed by both clusterings (Figure 3 and Figure 4). Hence it follows
that it is from a late repair. Tubuli are flue-tiles that are a part of the heating-
system hypocausis. They were worn out by effects of heat and therefore they
could have been replaced after years of utilization. The repair happened in a
time where no supply from Worms was possible or the brickyards of Worms
did no longer exist. In the epoch of the Emperor Valentinianus I (364–375
A.D.) the first century brickyard of Rheinzabern has been reopened. It is
possible that the milites menapii, of which a single brick stamp has been found
at Boppard, also have manufactured the tubulus examined. The following two
interesting objects are classified different, see Figure 4 and Figure 3. H 857 is
geochemically aside the other samples but belongs certainly to the Worms-
products. Because of the well known inhomogeneity of coarse ware products
(Werr (1998)) there is no problem to interpret that fact. G 139 has changed
its membership from Rheinzabern-references to Worms. The sample is of
a column for a hypocausis and presents no brick stamp. Because of broad
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basis the new integration is the statistical better one. Here is no problem for
archaeology to interpret these suggestions.

4 Conclusion

Simple Gaussian models perform best in the case of appropriate data trans-
formation. Therefore the recommendation is adaptive weights transformation
or “coefficient of variation” - transformation. Complex models are quite in-
stable because of the high number of dimensions regarding the sample size.
They perform well only in the case of low dimensionality of the data and if
the structure in the data has been very clear (see Tubb et al. (1980) and Pa-
pageorgiou et al. (2001)). Logarithmic and square root data transformations
perform similar in complex Gaussian models in this application.
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Baukeramik. Archäometrie und Denkmalpflege, 96–98.



Astronomical Object Classification and

Parameter Estimation with the
Gaia Galactic Survey Satellite

Coryn A.L. Bailer-Jones

Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany

Abstract. Gaia is a cornerstone mission of the European Space Agency (ESA)
which will undertake a detailed survey of over 109 stars in our Galaxy. This will
generate an extensive, multivariate, heterogeneous data set which presents numer-
ous problems in classification, regression and time series analysis. I give a brief
overview of the characteristics and requirements of this project and the challenges
it provides.

1 The Gaia Galactic survey mission

Gaia is a future satellite mission which will study our Galaxy in unprece-
dented detail (ESA (2000); Perryman et al. (2001)). Its objective is to study
its composition, origin and ultimate evolution by determining the proper-
ties of over one thousand million stars in different populations across our
entire Galaxy. One of the major contributions of Gaia is that it will measure
distances to stars with much higher precision than is currently possible. Dis-
tance measurement is a very important (and difficult) task in astrophysics, as
only with distances can we properly map structure in the Galaxy and deter-
mine fundamental stellar properties (e.g. absolute brightness). Gaia will also
measure the space motions of stars in exquisite detail, which will be used in
sophisticated dynamical models to map out the distribution of matter and is
an important component in testing models of Galaxy formation.

2 Astrophysical data

Much of this so-called astrometric data from Gaia would be of little value if
we did not know the intrinsic properties of the stars observed, quantities such
as the temperature, mass, chemical compositions, radius etc. (collectively re-
ferred to as Astrophysical Parameters, or APs; see Bailer-Jones (2002b)). For
this reason, Gaia is equipped with two photometric instruments which sample
the stellar spectral energy distributions (or spectra) at discrete locations, pro-
ducing photometric data. The first of these instruments measures the spectra
at five locations, the second at about ten. (The optimization of these filter sys-
tems is ongoing; for more details on this and the sampling of stellar spectra,
see my other contribution in these proceedings.) Together these data provide
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a 15-dimensional data space from which we need to determine at least four
APs for a very wide range of types of stars. For many of these stars we have (or
can gather or simulate) reasonable quality pre-classified data which may be
used as templates in a supervised classification/regression model (e.g. Hastie
et al. (2001)), such as neural networks or minimum distance methods (Al-
lende Prieto (2003); Bailer-Jones et al. (1998); Bailer-Jones (2002a); Folkes
et al. (1996)).

The problem is, however, considerably more complex. First, each star is
observed about 100 times over the course of the mission, and many of these
stars are variable, i.e. their photometric measures vary over time on a range of
time scales. This is both a problem and a benefit, because for some objects the
way in which they vary is a significant source of information for determining
their intrinsic properties (both the primary APs and additional character-
istics). Second, not all of the objects which Gaia observes are stars. Gaia
observes ‘blind’, that is, it observes every single object in the sky brighter
than some level without any prior selection or information on what the ob-
jects are. Many of these objects will be single stars, but many other types of
objects will be observed, including galaxies, quasars, asteroids and unresolved
binary stars. Therefore, before we can even try to determine APs, we must
perform a discrete classification to see whether the object is a type of star
we are interested in. In some cases we can use morphological information,
i.e. we get an image which is not simply a point source (typically for some –
but not all – galaxies). Using this is of course an involved image classification
problem in its own right (Naim et al. (1995)). In many cases we have no such
morphological information, so we must perform the classification using the
photometric data.

The classification problem is complicated further by the presence of a
third instrument which will measure the entire stellar spectrum of each star
over a narrow wavelength region. The spectrum covers some 500 elements.
While we can certainly apply dimension reduction techniques to these data,
it nonetheless provides considerably more independent information on the
primary APs. Moreover there are several additional astrophysical parameters
which we want to determine from these spectra. A particular challenge is
combining these data with the two sets of photometric data.

3 Classification challenges

Gaia will produce a complex data set, the proper exploitation of which
presents us with a number of significant challenges. The objectives can be
summarised as follows:

• Discrete classification of objects: discriminate between single stars, mul-
tiple stars, galaxies, quasars, supernovae, asteroids etc.

• For single stars, determine their astrophysical parameters (APs), the ex-
act number of which and the precision with which they should be estab-
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lished depending on their type. There are four primary APs and several
subsidiary ones. We will probably also want to perform a (discrete) clas-
sification of these stars into astrophysically relevant groups.

• Provide for the efficient identification of new types of objects for which
we have no (or little) prior knowledge, i.e. employ unsupervised methods
or outlier detection techniques.

The practical requirements of the classification system may be summarized
as follows:

• Cope with missing data (e.g. due to partial instrument failure or ‘down
time’) and deal with censored data (i.e. upper or lower limits on a measure
due to the limited sensitivity or dynamic range of an instrument) in an
unbiased fashion. In some cases an upper limit on a non-detection is an
important indication of the type of star.

• Quantify uncertainties via probabilities of class membership; this must
take account of the fact that some stars may be members of more than
one class.

• Provide accurate estimates of AP uncertainties. The input data and the
resulting APs will sometimes have correlated errors. Typically we have a
good noise model for our instruments although the correlations between
them are harder to characterize.

• The APs are not independent and they do not have an isolated effect on
the data. For this reason, we cannot independently infer each AP in a
multivariate regression.

• Cope with degeneracies. A degeneracy means that different objects can
appear the same in the data space (within the expected measurement
errors), especially at low signal-to-noise ratios. Some degeneracies are
intrinsic and known to exist but have not been mapped out in detail.
Degeneracies must be recognised and different classifications/sets of APs
provided where appropriate (along with associated probabilities).

• Make efficient use of variability (time series) information. The classifica-
tion systems should be insensitive to variability where it is not relevant
(e.g. due to noise or errors) but recognise and exploit it where it is relevant
(for certain types of stars).

• In some cases we have prior information on the APs of specific objects;
making efficient use of this is a challenge.

Clearly, classification and parameter estimation with Gaia cannot be solved
with a simple one-step approach. It will probably have to employ many dif-
ferent techniques operating in a hierarchical or iterative fashion. An outline
framework for such an approach is shown in Fig. 1.

4 Outlook

Gaia will be launched in 2010 at a cost of some 450 million Euro. The data
analysis – including the classification – will be undertaken by a dedicated
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Fig. 1. A possible approach to the determination of physical stellar parameters
with Gaia. SED= Spectral Energy Distribution (photometry and/or spectrum);
nSED is the flux normalized version of this. RVS= Radial Velocity Spectrum, a
high resolution spectrum in the region 850–875 nm containing important diagnostic
information. r(t) and v(t) refer to the positional and kinematic information ob-
tained as a function of time; the various parameters emerging on the right are the
astrophysical parameters of interest, such as the effective temperature (Teff ) and
the chemical abundance ([Fe/H]). Not all elements of the system are shown. For ex-
ample, parallax and proper motion information which only become available at the
end of the mission are useful for identifying extragalactic objects, and variability is
an important means of identifying a number of types of stars.

but geographically distributed consortium of astronomers, computer scien-
tists and statisticians. For more information on the mission, see the Gaia
web site at http://www.esa.int/science/gaia. The classification issues
are being addressed by a dedicated working group, ICAP, which stands for
Identification, Classification and Astrophysical Parametrization. Its web site,
which gives more details on the problem, data and techniques currently being
used, is http://www.mpia.de/GAIA
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Abstract. I present a novel method for designing filter systems for astrophysical
surveys. The filter system is designed to optimally sample a stellar spectrum such
that its astrophysical parameters (APs: temperature, chemical composition etc.)
can be determined using supervised regression methods. The problem is addressed
by casting it as an optimization problem: A figure-of-merit (FoM) is constructed
which measures the ability of the filter system to ’separate’, in a vectorial sense,
stars with different APs; this FoM is then maximized with respect to the parameters
of the filter system using an evolutionary algorithm. The resulting filter systems
are found to be competitive in performance with conventionally designed systems.

1 Astrophysical context

Astrophysics relies on large statistical surveys of astronomical objects for ad-
vancing our understanding of the cosmos. In stellar astrophysics, for example,
by measuring the spectral energy distribution (spectrum) of many different
types of stars across our Galaxy we can gain insight into the formation and
evolution of stars and of the Galaxy itself. Ideally we would obtain high qual-
ity spectra of literally billions of stars, from which we can determine stellar
intrinsic properties, or astrophysical parameters (APs), continuous quantities
such as the temperature, chemical composition and surface gravity. However,
for various technical reasons detailed spectroscopy on so many objects is not
possible. Instead, we must limit ourselves to photometry, that is, coarsely
sampling a spectrum at pre-defined locations with a filter system (for an
example see Fig. 3). By analysing the spectrum of a specific star in detail,
we could design a filter system which is adequate for determining the APs
of that type of star to some desired accuracy. However, large surveys must
observe many different types of stars with a single filter system. Hence this
filter system must be some kind of optimal average system, the design of
which is furthermore subject to numerous instrumental constraints.

A number of upcoming surveys are therefore faced with the difficult ques-
tion of how to define their optimal filter system. Existing filter systems were
designed for more specific purposes or for more restricted classes of objects,
so are not appropriate for these new surveys. The ‘conventional’ approach
to this problem is to manually modify existing systems based on the best
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of our astrophysical knowledge. Yet given the numerous conflicting require-
ments placed on the filter system, this is unlikely to be very efficient or even
successful. Moreover, one would still not know whether a better filter system
could be constructed within the constraints.

In this paper I outline a more systematic approach to the filter design
problem called Heuristic Filter Design (HFD). Given a set of stellar spectra
(the grid) with known APs, we perform a directed search for a filter sys-
tem which optimally samples these spectra such that we can best determine
their various APs. The constraints of the problem are represented by the
(fixed) instrument model, which defines the size of telescope, noise in detec-
tors etc. Given a filter system, this instrument model allows us to calculate
the amount of light (number of photons per unit wavelength) measured for
each star in each filter, plus their expected errors. This is used to calculate
the performance of the filter system (the FoM, section 2.2).

The spectral grid is designed to be representative of the stars of interest
which will be observed in the survey. Here I use simulated spectra. We de-
cide on a set of APs and use physical models to generate the corresponding
spectra. This way we can populate the AP space with spectra as desired and
can ensure we have appropriate neighbours (defined in section 2.2). In the
application in section 3 I use a grid of 415 spectra showing variance in 4 APs.

This filter design problem is closely related to the issue of determining the
J APs of a star from measurements in I filters. This latter problem is usually
solved using supervised multivariate regression methods, that is, given a set
of pre-classified filter data we apply a regression method (such as a neural
network) to establish the data–AP mapping (Bailer-Jones (2002)). HFD can
be seen as a partial inversion of this problem in which we essentially optimize
the data space itself in order to simplify its topology with respect to the APs.
This should increase the performance of an ideal regression model fitted to
these data and/or permit a simpler model.

HFD is being used to aid the design of the filter system for a future
astronomical survey (see the my other contribution in these proceedings).
More details on HFD and its application can be found in Bailer-Jones (2004).

2 The optimization model

2.1 Parametrization

A filter is parametrized with three parameters: the central wavelength, c,
the half-width at half maximum (HWHM), b, and the fractional integration
(or exposure) time, t, i.e. the fraction of the total integration time available
per star which is allocated to this filter. (The instrument model specifies the
total time available per star.) The profile of a filter – the fraction of light
transmitted at each wavelength, λ – is given by the generalized Gaussian

Ψ(λ) = Ψ0 exp
[
−(ln 2)

∣∣∣∣λ− c

b

∣∣∣∣γ] . (1)



332 Bailer-Jones

Fig. 1. A three-dimensional data (filter) space: pi is the number of photons (i.e.
brightness) collected in filter i. For star r in the grid we identify its two nearest
neighbours (assuming the number of APs is two), b and c, each of which differs
from r in just one of the APs. The scalar distance to these neighbours defines the
AP-gradient and the angle between their vectors, sin α, the ‘vector separation’. An
optimal filter system (for r) has α =90◦ and the AP-gradients large.

This is Gaussian for γ = 2, and rectangular for γ = ∞. γ = 8 and Ψ0 = 0.9
are used. For a system of I filters there are therefore 3I parameters which
must be optimized. The optimization is performed within practical limits (set
by the instrument): c and b are limited such that no part of any filter has a
significant transmission (Ψ) outside of the wavelength range 2750–11250Å.
Additionally, the maximum HWHM is restricted to about 4000 Å. t must of
course be 0.0 ≤ ti ≤ 1.0 and be normalized,

∑
iti = 1.0 (i labels a filter).

2.2 Figure-of-merit (fitness)

The I filters of any filter system define an I dimensional data space in which
the measured objects (stars) reside (see Fig. 1), the units being photon counts
observed in each filter. The location of any star is defined by its J APs. At
any point in this space, each AP will therefore vary in a certain direction (the
principal direction), and at a certain rate, the (scalar) AP-gradient. Using our
pre-defined grid of stars, we can calculate, or at least approximate these. The
ultimate purpose of the filter system is to enable us to determine these J
APs. To do this, we clearly need I ≥ J , but we must also ensure (1) that the
AP-gradient is sufficiently large so that, given the signal-to-noise ratio (SNR)
in the data, we can determine the AP to the desired precision, and (2) that
the principal directions for each AP are mutually orthogonal, or as close to
this as possible (otherwise the APs are partially degenerate). In other words,
the goal of a filter system is to maximally ‘separate’ the different APs for the
different stars in a vectorial sense.
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These ideas are converted into a figure-or-merit, or fitness, as follows. For
each star, r, in the grid, we find its J nearest neighbours, each of which
differs from r in only one of the J APs (the grid can be constructed to ensure
such neighbours exist). The relevant ‘distance’ between r and that neighbour
differing in AP j (call it nj), is the AP-gradient and is defined as

hr,nj =
dr,nj

|∆φr,nj |
(2)

where dr,nj is the Euclidean distance1 between r and nj in and ∆φr,nj is their
difference in AP j. Clearly, the larger h the better we have separated r and
nj . However, we must also minimise the degeneracy between the principal
directions to these J neighbours, in other words, we want angle α in Fig. 1
to be as close to 90◦ as possible for all neighbour pairs. Combining these
measures, we see that a useful figure-of-merit of separation is

xr,j,j′ = hr,nj hr,nj′ sinαr,j,j′ (3)

where j and j′ label those neighbours which differ from r in APs j and j′

respectively. Note that the above is simply the magnitude of the cross product
between the two vectors. For J APs we have J(J − 1)/2 pairs of neighbours
and thus J(J − 1)/2 terms like eqn 3. Summing these over all stars in the
grid gives the final fitness which is to be maximized

F =
∑

j,j′ �=j

∑
r

xr,j,j′ . (4)

(The actual fitness function is a slight modification which weights and trans-
forms some of the terms to increase its sensitivity: see Bailer-Jones (2004)).

2.3 Evolutionary algorithm

An evolutionary algorithm (EA) is used for the optimization (e.g. Bäck and
Schwefel (1993)). A population of 200 individuals is evolved over 200 gen-
erations. An outline of the algorithm is shown in Fig. 2. Natural selection
is emulated using the ‘roulette wheel’ method, i.e. objects are selected with
a probability directly proportional to their fitness (eqn. 4). Elitism is used,
meaning that the E fittest individuals are always selected (and are still sub-
ject to probabilistic selection). In common with many other EA applications,
this is found to improve performance. E = 10 is used in the results shown,
although E = 50 actually ensures more consistent convergence (independence
of initial conditions). The two search operators are recombination and mu-
tation. Recombination involves swapping a randomly chosen filter between
1 Distances between two points are divided by their combined error (obtained from

the instrument model), so dr,nj is a dimensionless SNR.
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Fig. 2. Flow chart of the core aspects of the HFD optimization algorithm. A single
loop represents a single iteration, i.e. the production of one new generation of filter
systems.

two individuals. Mutation is implemented by adding a Gaussian random vari-
able, N(0, σc), to the central wavelength, c, and multiplying the HWHM, b,
and fractional integration time, t, by N(1, σh) and N(1, σt) respectively. If a
mutation would take a filter parameter out of bounds, then the mutation is
rejected and that parameter passed on unchanged. The standard deviations
σc, σh and σt were 500 Å, 0.5 and 0.25 respectively, and the mutation proba-
bility per parameter was 0.4. It was found that HFD was quite insensitive to
the mutation probability (unless a very low probability is used, in which case
there is rapid convergence to a poor local maximum) and to the standard
deviations. The absence of recombination also made negligible impact.

3 Application, results and interpretation

HFD is applied to the design of a 10-filter system for determining four APs.
Optimization was terminated after 200 iterations after which the fitness was
found not to improve. The entire optimization was repeated 20 times from
different initial (random) populations. The fittest filter system produced from
this is shown in Fig. 3.

Inspection of the filter system shows that it consists of only seven filters,
i.e. the optimization has ‘turned off’ three filters by setting their fractional
integration times to zero. This is a recurrent feature. At low SNR it makes
sense, because there is a penalty to be paid for retaining more filters (due to a
constant noise source from the detectors). It is also interesting that the system
has naturally self-regulated the widths (b) of the filters: in particular they are
narrower than the maximum permitted by the limits of the optimization. This
is encouraging, because on pure SNR grounds wider filters are better as they
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Fig. 3. An optimized filter system produced by HFD. Each of the seven filters is
the plot of Ψ(λ) from eqn. 1, but multiplied by the fractional integration time, t.
Overplotted is an example of a stellar spectrum (number of photons vs. wavelength)
arbitrarily scaled.

collect more photons (Poisson statistics). Yet beyond a certain width this is
detrimental to the vector separation, and HFD has found this. The fact that
the central wavelengths, c, cover the whole permitted wavelength range is
expected from what we know about stellar spectra: a wide coverage is good
for determining small changes in the slope of the spectrum. Some features
are unexpected, for example the fact that the wide filter between and 8000 Å
and 10 500 Å is almost equal to the sum of the two filters covering the same
range. It could be that this is measuring small differences between the filters.

Astrophysically these filter systems are unconventional in two important
respects. First, the filters are very broad compared to filters typically used
for stellar parameter estimation. Narrow filters are able to isolate individual
spectral features that we know are sensitive to specific APs. Certainly, in
an ideal case, such narrow filters could better isolate specific signatures. But
this implicitly assumes that we only have to deal with a narrow range of
stellar types so that we could employ such specific filters. In contrast, HFD
has been applied to a very broad grid of stars, as demanded by the planned
surveys. Moreover, it has been applied to stellar parameters which can be
demonstrated to have a broad band impact on the stellar spectrum (i.e.
cause a variation which is coherent over a large wavelength range). In this
case, broad band filters may be more efficient.

Second, the filters overlap in the wavelength domain. This is sometimes
avoided, as it complicates the interpretation of plots of colour indices (a colour
index is the ratio of the flux obtained in two filters). However, modern surveys
employing many filters produce high dimensional data sets which cannot be
so easily visualised, and probably contain much more information than low
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Fig. 4. Evolution of the three filter system parameters for a 10-filter system. At
each generation there are ten points (one per filter) for each of the 200 filter systems
for that filter parameter type, plotted as a grey scale.

dimensional slices through them. Thus the HFD results might be telling us
that overlapping filters provide a more efficient sampling of stellar spectra
than non-overlapping systems. This is not implausible, also given that each
filter probably has a different relevance for determining each AP for each
star, so the effective number of filters in each case is reduced.

When compared with alternative filter systems proposed for the same
instrument, the HFD system performs much better in terms of overall fit-
ness. This is mostly due to the broad filters and hence larger AP-gradients
than conventional systems. One may suspect, therefore, that the HFD sys-
tem suffers from low vector separation, because broad filters are generally
less sensitive to individual APs. But the distribution of the vector separation
terms shows this not to be the case (Bailer-Jones (2004)). Nonetheless, both
the HFD and conventional systems continue to suffer from some limitations,
and these will be addressed in future developments of the model.

It is interesting to follow the evolution of the filter system parameters
during the optimization, as shown in Fig. 4. Looking first at the central
wavelength (top left) we see that the filters occupy a fairly broad part of the
parameter space for the first 20 or so iterations (generations). After about
20 iterations, some clear preferred regions appear which continue through-
out the optimization and the region between 6000 and 8000 Å is disfavoured
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throughout. Turning to the filter width (top right) we see that, although fil-
ters with a HWHM up to 4000 Å are permitted, after about 20 iterations the
population is largely purged of filters wider than 2000 Å. A few dominant
regions narrower than this stand out, but generally a range of widths are
represented. The evolution of the fractional integration time (bottom panel)
is quite different. They are initialized to equal values yet quickly diverge to
cover the full range possible. Note the gap at low t. This is because a lower
limit of 0.025 was imposed for practical reasons: filters allocated very little
time will be ineffective due to low SNR. If a mutation takes t below 0.025
then t is set to zero (the thick line at the bottom). A positive mutation turns
a filter on again. A maximum value of t of 0.4 is also imposed yet we see that
HFD essentially self imposes a more stringent limit of about 0.3. Clearly it
is inefficient if any one filter severely dominates the integration time budget.

4 Conclusions and future work

The Heuristic Filter Design model represents a systematic way for design-
ing astronomical filters by casting this as a formal optimization problem.
This makes it amenable to the extensive optimization literature. The cur-
rent model is somewhat rudimentary, yet produces filter systems which are
competitive with other systems designed for the same problem/instrument,
at least according to the figure-of-merit developed here. The filters are some-
what unconventional – broad and overlapping – yet physically we can see
why this may be preferred. Nonetheless, a number of improvements should
be made to the model. First, the fitness function may be an oversimplifica-
tion: it only accounts for linear variations in the data space and ignores any
global degeneracies. It is also prone to ‘overseparate’ some stars or APs at the
expense of others. Part of the problem here is that the fitness is a combination
of fundamentally different terms with different scales, so the optimization is
dependent on the weighting adopted (not discussed here; see Bailer-Jones
(2004)). One way around this might be to use multiobjective optimization
methods. In addition, more sophisticated genetic operators for search and
selection could be employed, e.g. to make the search more directed, perhaps
by explicitly incorporating astrophysical information.
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Abstract. The Generative Topographic Mapping (GTM) approach of Bishop et
al. (1998) is proposed as an alternative to the Self-Organizing Map (SOM) approach
of Kohonen (1998) for the analysis of gene expression data from microarrays. It is
applied exemplarily to a microarray data set from renal tissue and the results are
compared with those derived by SOM. Furthermore, enhancements for the appli-
cation of the GTM methodology to microarray data are made.

1 Introduction

The technology of microarrays became very popular in the last years. It allows
to monitor the expression patterns of thousands of genes from different cell
types under diverse conditions simultaneously. This offers new perspectives
for research in microbiology. It can help in understanding complex biochemi-
cal processes and gives a new perspective for the design of advanced therapies
against diseases. However, the vast amount of data produced by microarray
experiments makes efficient statistical tools necessary.

Depending on the research topic there are different approaches to analyze
microarray data. If the aim is to discover inherent structures in the data (e.g.
tumor classes or coregulated genes) without using prior knowledge, cluster
analysis methods are appropriate. Such cluster analysis methods are often
used in the exploratory phase of data analysis. Very popular for microarray
data analysis is hierarchical clustering, which has however deficiencies in this
context (see Tamayo et al. (1999)). Moreover, if also a visualization of the
data is desired giving information about the relationships of the derived clus-
ters to each other, other methods are more appropriate. The Self-Organizing
Map (SOM) approach by Kohonen (1982) proved to be well suited for such
purposes. It was established in the field of microarray data analysis by two
cornerstone papers of Tamayo et al. (1999) and Golub et al. (1999). It showed
to cope well with high-dimensional and large data sets. However, to decipher
the details of biochemical pathways like e.g enzyme pathways and the patho-
genesis of diseases, other statistical methods are needed, which construct
statistical models and also additional information to the gene expression val-
ues is needed. One approach to detect and model genetic pathways from
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microarray data are e.g. Bayesian networks as applied in Grzegorczyk and
Urfer (2004). Results from microarray data analysis derived by SOMs can
help in generating hypotheses for such purposes.

Due to its heuristic nature though, the SOM approach exhibits also some
deficiencies, which have been discussed for example in Grimmenstein et al.
(2002) in the context of protein data analysis. It is not based on a statistical
model and there exists no global optimization criterion. The convergence of
the weight vectors is not guaranteed as well as a topographic ordering. The
selection of the parameters employed has no theoretical basis. Different runs
of the algorithm with different initializations and parameter settings can yield
different results and there is no direct information about the reliability of the
cluster assignments and topology preservation.

To overcome the main deficiencies of the SOM, the closely related Genera-
tive Topographic Mapping (GTM) approach by Bishop et al. (1998), being
founded on a probabilistic framework, is proposed as an alternative. Its suit-
ability for the analysis of microarray data is explored on an example set from
renal tissue samples after describing the data structure and the theoretical
framework. Due to restrictions of space only one data example is presented
here. More data examples and more details can be found in Grimmenstein
(2005). In conclusion, proposals for further enhancements of the GTM ap-
proach in the context of microarray data analysis are made.

2 Data structure

The acquisition of gene expression levels with microarrays is a complex pro-
cess and includes many single steps from collection and preparation of sam-
ples, scanning the images on the arrays to determination of single expression
values for each gene or expressed sequence tag (EST). All these steps have
influence on the data quality. There are two common microarray technologies
in use: cDNA arrays and oligonucleotide arrays by Affymetrix (cf. for more
details Sebastiani et al. (2003)). The analysis methods described in the fol-
lowing are equally applicable to expression data derived by both technologies.
The microarray data can be displayed in matrix form as in Table 1, where
usually rows represent the genes and columns the different samples.

For higher-level analysis with GTM or SOM, the expression data have
to be preprocessed. Common steps are normalization over different arrays
to account for biases between arrays, the logarithmic transformation to even
out highly skewed distributions and a normalization of the expression values
for each gene to down weight genes with high variation across samples or to
put the focus on the shape of the expression profiles rather than on absolute
values. Additionally, a filtering step is usually performed, where genes with
unreliable measurements, no expression or no significant variation across sam-
ples are filtered out from the data set to avoid that the relevant information
for classification is obscured by too much noise. The selected preprocessing
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Table 1. Matrix display of microarray data. Rows correspond to genes and columns
to samples.

gene array 1 · · · array b · · · array B

1 y11 · · · y1b · · · y1B

...
...

...
...

a ya1 · · · yab · · · yaB

...
...

...
...

A yA1 · · · yAb · · · yAB

steps have as well influence on the classification and visualization results -
especially the filtering step of genes, where the application of different meth-
ods can lead to different sets of selected genes. However, these preprocessing
steps are not topic of this work and we have to assume that the evaluation
and preprocessing steps yield data of sufficient quality for further analysis.

3 The GTM approach

A classification of microarray data can be performed either by genes or by
samples depending on the research topic. Microarray data are classified by
genes, if genes with similar expression profiles should be determined like e.g.
coregulated genes in the cell cycle. A classification by samples is performed,
if objects with similar expressions over diverse genes should be determined
like e.g. in the case of tumor classification.

For classification and visualization purposes of gene expression data, we
propose to use the Generative Topographic Mapping (GTM) approach by
Bishop et al. (1998) as an alternative to the SOM approach by Kohonen
(1982). The GTM approach is in spirit similar to the SOM, but has the ad-
vantage that it is founded on a probabilistic background and overcomes there-
fore essential deficiencies of the SOM. As a consequence of the probabilistic
framework, a likelihood function forms a global optimization criterion not
existing for SOMs, the convergence of the likelihood is guaranteed (at least
to a local maximum), in contrast to the convergence of the weight vectors
in SOMs, as well as the topographic ordering, which is also not guaranteed
with SOMs. Additionally, direct information about the reliability of the clus-
ter assignments of the data points is provided by posterior probabilities in
contrast to SOMs.

With the GTM approach the higher dimensional data space ⊂ RD is
modelled by some latent variables x in a lower dimensional space ⊂ RL, L <
D, which is analogous to the representation of the data points by the grid
nodes of a map with SOMs. More precisely, GTM projects the latent space
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into a non-Euclidean manifold within the data space of same dimension L
as the latent space via a nonlinear mapping function f(·) and incorporates
additionally a probability model to account for the variation of real data
around the manifold. The mapping is thereby determined by a parameter
matrix W and has to be optimized.

For visualization purposes the latent space is set to be two-dimensional,
i.e. L = 2. For a data vector y ∈ RD it is assumed that it follows a spherical
Gaussian distribution according to

y|x,W, σ2 ∼ N (f(x;W), σ2 · I) (1)

being centered on f(x;W) for a given latent point x, parameter matrix W
and variance parameter σ2. For the distribution p(x) over the two-dimensio-
nal latent space we assume in analogy to the SOM that it is just centered on
K nodes of a regular grid, which is thus a sum of delta functions

p(x) =
1
K

K∑
k=1

δ(x − xk). (2)

Each such grid node xk, k = 1, . . . ,K, can be interpreted as standing for a
cluster and being responsible for different parts of the data set. The projec-
tions of the grid nodes f(x;W) form in data space the centers of different
Gaussian distributions. As it is not known, according to the given classifica-
tion problem, by which grid node xk a data point y has been generated, the
distribution p(y|W, σ2) independent of latent points has to be considered.
This is obtained by integrating over the latent variables, resulting in

p(y|W, σ2) =
∫

p(y|x,W, σ2)p(x) dx =
1
K

K∑
k=1

p(y|xk,W, σ2), (3)

a mixture of constrained Gaussian distributions. For N observations y1, . . . ,
yN ∈ RD the joint density can be determined correspondingly by

p(y1, . . . ,yN |W, σ2) =
N∏

n=1

{
1
K

K∑
k=1

p(yn|xk,W, σ2)

}
, (4)

if the simplifying assumption of independence between the observations is
made. To determine an optimal mapping f(·) on the basis of the given data,
the log likelihood of (4) is maximized with respect to the parameters W and
σ2. If the mapping function f(·) is chosen as a generalized linear regression
model of the form

f(x;W) = Wφ(x) (5)

with φ(x) = (φ1(x), . . . , φM (x))′ as a vector of M fixed basis functions and
W as a D × M parameter matrix, the maximum likelihood estimates for
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W and σ2 can be determined with the expectation maximization algorithm
(Dempster et al. (1977)) in closed forms. The basis functions φj(·), j =
1, . . . ,M , are thereby chosen in analogy to Bishop et al. (1998) as Gaussian
functions being centered on a regular grid in latent space. However, also other
functional forms are conceivable (see for more details Bishop et al. (1998)).

By applying Bayes’ theorem, the posterior distribution of the latent points
xk is determined for each data point yn, n = 1, . . . , N . For an unambiguous
assignment of the data points to a latent point for classification and visual-
ization purposes, the mode

argmax
k

p(xk|yn,W, σ2), (6)

is calculated. By comparing the mode with the posterior probabilities for
other assignments, information about the reliability of the derived cluster
assignment for a given data point is provided. On the map, several neighbor-
ing clusters can also represent together larger classes, if such a grouping is
present in the data. The projected latent points f(xk;W) in data space can
be used for the determination of class profiles.

4 Application to a data set

For a comparative application of the SOM and GTM methodology we used
a data set comprising gene expression values from altogether 28 samples
from human kidney tissue acquired by Affymetrix GeneChips�. Thereby, 14
samples were from normal kidney and likewise 14 from renal tumors. The ex-
pression levels were determined for 10521 genes and expressed sequence tags.
By the analysis of this data set with SOM and GTM it should be examined,
if the inherent grouping can be retrieved on the gene expression level. The
classification is therefore performed by samples. Further, subclassifications of
the samples should be derived with a visualization of the relationships.

Before application of the two methods, the given expression data was pre-
processed with standard methods as recommended in Section 2 by normal-
izing over arrays, logarithmic transformation (base 10), standardizing across
samples for each gene and filtering of genes. 262 genes remained in the data
set resulting in a 262-dimensional data space with 28 observations. For analy-
sis with SOM we used the program package GeneCluster 2.0 (freely available
on http://www.broad.mit.edu/cancer/software/gene
cluster2/gc2.html) and for analysis with GTM the GTM toolbox 1.02 (freely
available on http://www.ncrg.aston.ac.uk/GTM/MATLAB Impl.html).

The results with SOM showed that, apart from one sample from normal
kidney, the other 27 samples were correctly classified together in one group
containing the tumor samples and in another one containing the normal sam-
ples, also illustrated in Table 2. This result could be retrieved with a 1 × 2
SOM and also with larger map resolutions. However, the subclassifications
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Table 2. Classification of 28 kidney samples with a 1 × 2 SOM (14 tumors, 14
normal). The second and third column contain respectively the distance of the
samples to their corresponding weight vector forming cluster centers.

Cluster 1 Cluster 2
Probe (#15) Distance Probe (#13) Distance
tumor5 0.08723682 normal12 0.10456699
tumor2 0.088320196 normal9 0.11200833
tumor1 0.09527016 normal11 0.11891258
tumor9 0.12903029 normal13 0.12331128
tumor10 0.13737208 normal8 0.13159418
tumor12 0.14019221 normal3 0.13522816
tumor7 0.22082251 normal2 0.1356138
tumor14 0.2914098 normal10 0.16937995
tumor11 0.31995034 normal4 0.23670995
tumor8 0.32479638 normal5 0.23675716
tumor3 0.32805514 normal1 0.32501644
tumor13 0.35095918 normal14 0.3584385
tumor4 0.37606353 normal6 0.42434978
normal7 0.52952516
tumor6 0.6459302

of the samples from runs with different initializations and parameter settings
showed some variation.

By applying the GTM method to the data set we could retrieve the main
classification found by SOM, where one part of the map represents the tumor
samples and the other part the normal samples. Also the wrong assignment
of the same normal sample to the tumor samples could be retrieved (see
Figure 1). However, the subclassifications of the samples deviated partly from
the ones by SOM. As conclusion, the one normal sample which was wrongly
assigned should be examined more thoroughly.

�
�

� � � �

� � � �
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x x
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x x
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2 2
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Fig. 1. Classification of 28 kidney samples by GTM on a 6 × 6 grid with sample
numbers indicated, if more than one is assigned to a grid node. (◦: normal, x:
tumor). It can be seen that the two categories are divided on different parts of the
map.
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5 Summary and outlook

We suggested in this work to use the GTM approach for the analysis of gene
expression data for classification and visualization purposes instead of the
widely used SOM approach in this context. The GTM approach is in spirit
similar to the SOM, but overcomes because of its probabilistic framework
some main drawbacks of the SOM, caused by its heuristic nature.

We compared the two methodologies on a data set with gene expression
data from altogether 28 samples from renal tumors and normal kidney. The
main inherent structure in the data set could be retrieved either with SOMs
and with GTM. The subclassifications on the other hand showed some differ-
ences with the two methodologies and have to be further analyzed for their
validity. The computational time needed with GTM was also considerably
fast. Overall, the GTM approach with its proper probabilistic foundation
and advantages seems to be a valid alternative to the SOM for the analysis
of microarray data. For final conclusions about its suitability, it should be
tested however on more and also larger gene expression data sets with known
structure. As it is difficult to simulate microarray data with their complex
inherent structure, real data should be used for this purpose.

Moreover, other distributions than Gaussians should be tried with the
GTM methodology, which are potentially better suited for microarray data.
Also a hierarchical approach for GTM could be used for gene expression
data, if substructures should be discovered and related to each other, as
a single classification step does not capture usually the whole information
inherent in the data. Another aspect would be to take prior knowledge into
consideration if available, which is quite often the case. The incorporation of
these additional information could help in improving the classification and
visualization results by GTM. In the case of classifying genes, additional
information concerning the genes can be incorporated as extra components
in the data vectors. These could be for example gene annotations from data
bases in the internet regarding the location on the chromosome, as adjacent
genes are often regulated conjointly, or the affiliation to functional groups, as
proteins belonging to the same functional group often work in a similar way.
When the classification of the gene expression data should be performed by
samples, information concerning the samples has to be introduced in the data
vectors like for example diagnostic information. The additional components
introduced in the data vectors, could be either of continuous or of discrete
nature. The incorporation of discrete variables would be straightforward with
the probabilistic foundation of the GTM in contrast to the SOM, which is
originally designed for continuous data. The incorporation of a binary variable
would give for example data vectors with a conditional mixture distribution
of the form

y|x,W1, σ2,W2 ∼ N (f(x;W1), σ2 · I)× Ber(π(x;W2)) (7)
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under the simplifying assumption of independence between the components,
where W1 and W2 denote parameter matrices determining the mapping
from latent to data space and π(x;W2) describes the probability parameter
of the Bernoulli distribution. The applied probability model with the GTM
approach could be further refined by introducing a weighting for the different
components of the data vectors to give some components either more or
less influence on the outcome. In the case of classifying genes this might be
expedient, if samples with special properties should be highlighted or in the
case of classifying samples genes with known importance like for example with
special influence on a considered disease. A possible conditional distribution
for the data vectors would be then

y|x,W, σ2 ∼
∏

i

wi N
(
fi(x;W), σ2

)
,

∑
i

wi = 1. (8)

A combination of the two refinements of incorporating prior knowledge and
using a weighting would be possible as well, like for example according to

y|x,W1, σ2,W2 ∼ wN (f(x;W1), σ2 · I)× (1 − w)Ber(π(x;W2)) , (9)

where the additional binary component is given a different weight as the gene
expression values.
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Test for a Change Point

in Bernoulli Trials with Dependence
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Abstract. In Krauth (2003, 2004) we considered modified maximum likelihood
estimates for the location of change points in Bernoulli sequences with first-order
Markov dependence. Here, we address the more difficult problem of deriving in
this situation a finite conditional conservative test for the existence of a change
point. Our approach is based on the property of intercalary independence of Markov
processes (Dufour and Torrès (2000)) and on the CUSUM statistic considered in
Krauth (1999, 2000) in the case of independent binomial trials.

1 Introduction

In Krauth (2003) we derived modified ML estimates to identify change points
and changed segments in Bernoulli trials with first-order Markov dependence.
The results were extended in Krauth (2004) to the situation with multiple
change points in an alternating-segments model and in a more general mul-
tiple change-points model. The results were applied to the analysis of DNA
sequences.
It is a problem with our approach that it is certainly a valuable tool for de-
tecting existing change points and changed segments but that it will yield
also results in situations where no change points or changed segments, re-
spectively, exist in reality. This problem can be addressed by using statistical
tests indicating the presence of change points. Tests for one or two change
points were studied in Krauth (1999, 2000) in the far simpler situation of
independent binomial trials. However, the assumption of independence does
not necessarily hold for DNA sequences. This was observed not only by Avery
and Henderson (1999) but also in examples which were analyzed in Krauth
(2003, 2004).
In the following, we consider only the case of the detection of one change
point in a Bernoulli sequence with first-order Markov dependence. Based on
the property of intercalary independence of Markov processes (Dufour and
Torrès (2000)) we decompose the original Markov chain into subsequences
of conditionally independent identically distributed Bernoulli variables. To
these sequences a test described in Krauth (2000) is applied.
We are well aware that the test derived here is not the first and only test
which has been proposed for detecting change points in DNA sequences. How-
ever, other published tests consider more restricted situations or are applied
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without stating that they give valid results only if certain conditions are ful-
filled. Corresponding tests for change points in independent Bernoulli trials
were proposed not only by Krauth (1999, 2000) but also by Avery and Hen-
derson (1999) and Halpern (1999, 2000). Other authors derived tests in the
situation with dependent sequences, e.g. Johnson and Klotz (1974). However,
these authors considered only the stationary case without change points.
An overview of statistical approaches used in DNA analysis has been given
by Braun and Müller (1998). It seems that one of these methods nowadays
is preferred above all in bioinformatics. This is the hidden Markov chain
model proposed by Churchill (1989) for the segmentation of DNA sequences
where the unknown parameters are estimated by means of the EM algorithm.
However, as noted in Braun and Müller (1998) this approach assumes inde-
pendent observations (though the unobserved states form a hidden Markov
chain), requires large data sets and the EM algorithm may fail to find the
global optimum. Other problems with this approach are indicated in Liu,
Neuwald and Lawrence (1999), e.g. the inherent assumption that dublica-
tions and transpositions of segments of the gene are not permitted. Only
under this assumption the recursive relationship comes to bear which is the
key to the hidden Markov model.

2 Test problem

In Section 3 we consider the property of intercalary independence for first-
order Markov chains. This property is described for a chain with an odd
number (say (2k + 1)) of trials. This is the reason why we formulate the
following test problem for a sequence with (2k + 1) random variables. If an
observed sequence consists of an even number of trials we omit the last trial.
This loss of information will be of only minor importance with respect to the
detection of a change point in an empirical sequence.
We consider a sequence of (2k + 1) random variables X1, ..., X2k+1 ∈ {0, 1}
where

P (Xi = 1) = 1 − P (Xi = 0) =
{
π0 for 1 ≤ i ≤ τ
π1 for τ + 1 ≤ i ≤ 2k + 1

with k ∈ {2, 3, ...}, τ ∈ {2, ..., 2k − 1}, 0 < π0, π1 < 1. Further, we define
first-order transition probabilities
πst,i = P (Xi = t|Xi−1 = s) for 2 ≤ i ≤ 2k + 1, s, t ∈ {0, 1}.
If we assume stationarity of the transition probabilities before and after the
change point (τ) we can consider the following reparametrization:
For 2 ≤ i ≤ τ :

π11(0) := π11,i =: λ0, π10(0) := π10,i = 1 − λ0,

π01(0) := π01,i =
(1 − λ0)π0

1 − π0
, π00(0) := π00,i =

1 − 2π0 + λ0π0

1 − π0
,
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for i = τ + 1:

π11(τ) := π11,τ+1 =: λτ , π10(τ) := π10,τ+1 = 1 − λτ ,

π01(τ) := π01,τ+1 =
π1 − λτπ0

1 − π0
, π00(τ) := π00,τ+1 =

1 − π0 − π1 + λ1π0

1 − π0
,

for τ + 2 ≤ i ≤ 2k + 1:

π11(1) := π11,i =: λ1, π10(1) := π10,i = 1 − λ1,

π01(1) := π01,i =
(1 − λ1)π1

1 − π1
, π00(1) := π00,i =

1 − 2π1 + λ1π1

1 − π1
.

The following one-sided test problem is considered:
H0 : π1 = π0, λ0 = λτ = λ1 vs. H1 : π1 < π0.
In Krauth (1999, 2000) we considered the test problem above in the special
case of independence, i.e. for λ0 = π0, λτ = λ1 = π1. We approximated the
log likelihood ratio close to H0 by means of a linearization and derived finally
a cumulative sum statistic which is equivalent to similar statistics studied by
Pettitt (1980), Worsley (1983) and Horváth (1989). Because we intend to use
this test in the following we give here a short description of the procedure
based on the presentation in Krauth (2000):
Let W1, ...,Wn ∈ {0, 1} with n ∈ {3, 4, ...} independent random variables
with

P (Wi = 1) = 1 − P (Wi = 0) =
{
π0 for 1 ≤ i ≤ τ
π1 for τ + 1 ≤ i ≤ n

.

For the test problem H0 : π1 = π0 vs. H1 : π1 < π0 we consider the test
statistic
T = max

1≤j≤n−1
{Mj − Mn

n
j}

where Mj =
j∑

i=1

Wi, 1 ≤ j ≤ n. We define

Aj,u = {Mj − mn

n
j ≥ u} = {Mj ≥ u +

mn

n
j} for 1 ≤ j ≤ n− 1

and derive under H0 conditional on the observed value Mn = mn the condi-
tional probability

PH0(T ≥ u|Mn = mn) = P (
n−1⋃
j=1

Aj,u|Mn = mn).

In order to get an upper bound for this probability of a union we define
yi := max{0, �T +

mn

n
i�} for 1 ≤ i ≤ n − 1,

pi := PH0(Ai,u|Mn = mn) =
(

n
mn

)−1
min{mn,i}∑

s=yi

(
i
s

)(
n−i

mn−s

)
for 1 ≤ i ≤ n− 1,

pij := PH0(Ai,u ∩Aj,u|Mn = mn)

=
(

n
mn

)−1
min{mn,i}∑

s=yi

min{mn,j−i+s}∑
t=max{s,yj}

(
i
s

)(
j−i
t−s

)(
n−j

mn−t

)
for 1 ≤ i < j ≤ n− 1,



Test for a Change Point in Bernoulli Trials with Dependence 349

pij := pji for 1 ≤ j < i ≤ n− 1.
A good upper bound for the probability of a union which was derived by
Kounias (1968) yields

PH0(T ≥ u|Mn = mn) ≤ U := min{1,
n−1∑
i=1

pi − max
1≤j≤n−1

n−1∑
i=1
i�=j

pij}.

We can reject H0 for U ≤ α. This results in a one-sided exact conditional
conservative test for the existence of a change point in the situation with
(independent) Bernoulli trials.

3 Intercalary independence of Markov processes

In Section 2 we considered a one-sided test problem, where we assumed un-
der the null hypothesis (H0) a homogeneous first-order Markov chain with
(2k+1) random variables X1, ..., X2k+1 ∈ {0, 1}, where k ∈ {2, 3, ...}, P (Xi =
1) = 1 − P (Xi = 0) = π0 for 1 ≤ i ≤ 2k + 1, 0 < π0 < 1, πst,i = P (Xi =
t|Xi−1 = s) for 2 ≤ i ≤ 2k + 1 and s, t ∈ {0, 1}, π11 := π11(0) = π11,i = λ0,

π10 := π10(0) = π10,i = 1 − λ0, π01 := π01(0) = π01,i =
(1 − λ0)π0

1 − π0
,

π00 := π00(0) = π00,i =
1 − 2π0 + λ0π0

1 − π0
for 2 ≤ i ≤ 2k + 1.

For this chain the following properties hold for any choice of (x1, ..., x2k+1)
∈ {0, 1}2k+1:

(i) P (
k�

i=1

{X2i = x2i}|
k+1�

j=1

{X2j−1 = x2j−1})

=

k�

i=1

P (X2i = x2i|
k+1�

j=1

{X2j−1 = x2j−1})

(ii) P (X2i = x2i|
k+1�

j=1

{X2j−1 = x2j−1})

= P (X2i = x2i|X2i−1 = x2i−1, X2i+1 = x2i+1) for 1 ≤ i ≤ k

(iii) P (X2i = x2i|X2i−1 = x2i−1, X2i+1 = x2i+1)

=
πx2i−1x2iπx2ix2i+1

πx2i−11π1x2i+1 + πx2i−10π0x2i+1

for 1 ≤ i ≤ k

(iv) P (X2i = 1|X2i−1 = 1, X2i+1 = 1)

= 1 − P (X2i = 0|X2i−1 = 1, X2i+1 = 1) =
π2

11

π2
11 + π10π01

,

P (X2i = 1|X2i−1 = 0, X2i+1 = 0)

= 1 − P (X2i = 0|X2i−1 = 0, X2i+1 = 0) =
π01π10

π01π10 + π2
00

,

P (X2i = 1|X2i−1 = 1, X2i+1 = 0) = P (X2i = 1|X2i−1 = 0, X2i+1 = 1)

= 1 − P (X2i = 0|X2i−1 = 1, X2i+1 = 0)

= 1 − P (X2i = 0|X2i−1 = 0, X2i+1 = 1) =
π11

π11 + π00
for 1 ≤ i ≤ k
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The properties (i) and (ii) can be concluded from results in literature as
special cases. The result (i) has been called “intercalary independence” by
Dufour and Torrès (2000), and the result (ii) “truncation property”. These
authors prove these properties for general Markov processes of order p and
generalize in this way more specific results by former authors. It is claimed
that the proofs given are the first proofs for intercalary independence and
the truncation property ever published. In Ogawara (1951) we find the re-
mark that U.V. Linnik used intercalary independence (without proof) in
1949 in his proof of a central limit theorem (exact reference in Dufour and
Torrès (2000)). Our result (i) corresponding to intercalary independence for
first-order Markov chains is contained in Theorem 1 of Ogawara (1951) and
Theorem 3.1 in Dufour and Torrès (2000). Our result (ii) corresponding to
the truncation property for first-order Markov chains is contained in Theo-
rem 3.2 of Dufour and Torrès (2000).
By expressing the right side of (ii) by the transition probabilities π11, π10,
π01, and π00 we derive (iii). In (iv) the eight possible values of (iii) are
explicitly given.

4 Strategies for performing a test

If we want to analyse a sequence with (2k + 1) binary trials we are in the
situation described above. In case of a sequence with (2k + 2) trials we omit
the last one. Conditional on the (k+1) values of X2j−1, 1 ≤ j ≤ k+1, the (k)
variables X2i, 1 ≤ i ≤ k, are independent though not necessarily identically
distributed according to the results (i) - (iv) above. This sequence of (k) inde-
pendent variables can be split up into 3 subsequences of independent identi-
cally distributed random variables of lengths k11, k00, k10,01 (k11, k00, k10,01 ∈
{0, 1, 2, ..., k}, k11 + k00 + k10,01 = k):
X

(11)
2i with x

(11)
2i−1 = x

(11)
2i+1 = 1 for 1 ≤ i ≤ k11,

X
(00)
2i with x

(00)
2i−1 = x

(00)
2i+1 = 0 for 1 ≤ i ≤ k00,

X
(10,01)
2i with x

(10,01)
2i−1 = 1, x(10,01)

2i+1 = 0 or x
(10,01)
2i−1 = 0, x(10,01)

2i+1 = 1
for 1 ≤ i ≤ k10,01.
In Section 2 we considered a one-sided test problem where even under the
null hypothesis of no change point a first order Markov chain is assumed.
The parameter describing the dependence of this chain can be considered
as a nuisance parameter. We might estimate this parameter and derive an
asymptotic test where in a real data situation we do not know whether the
test is conservative or not. We preferred to derive an exact conditional con-
servative test applied to a sequence of conditionally independent variables.
Unfortunately, the variables of this sequence are not identically distributed
but form the three subsequences above with possibly different unknown pa-
rameters.
We can apply the one-sided finite conservative test with respect to the al-
ternative hypothesis H1 : π1 < π0 described in Section 2 to any of the three
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subsequences. If we are interested in the one-sided hypothesis H′
1 : π1 > π0 we

consider the inverted sequence X2(k−i+1), 1 ≤ i ≤ k, and proceed as above.
However, if we are interested in the two-sided hypothesis H′

2 : π1 �= π0 we
perform the test as well for a subsequence as for its inversion and reject H0

if U ≤ α
2 for one of the two resulting bounds defined in Section 2.

In most empirical situations, e.g. in DNA analysis, we do not have a directed
hypothesis and do not know which of the three subsequences with its in-
version should be considered. A first idea for solving this problem might be
to perform one-sided tests for all 6 subsequences and use one of the known
procedures for multiple testing for 6 dependent tests, e.g. the Bonferroni pro-
cedure. However, due to the different lengths of the subsequences and the
influence of the unknown parameters of the model the efficiencies of the 6
tests can differ considerably and due to the conservativeness of the tests up-
per bounds of 1 may occur frequently. Therefore, we propose to derive in a
first stage modified maximum likelihood estimates of π1 and π0 as described
in Krauth (2003) on the basis of the fixed sequence x2j−1, 1 ≤ j ≤ k + 1.
From this sequence we derive also the lengths of the 3 subsequences. Then we
formulate a one-sided test problem based on the knowledge of these estimates
and perform the corresponding test for the longest subsequence. Here, it is
hoped that the estimates of π0 and π1 based on the sequence with (k + 1)
trials are near to the corresponding true parameters in the original sequence
with (2k+1) trials and that the test has the highest efficiency for the longest
subsequence.
An alternative approach considering the upper bounds for the 3 indepen-
dent subsequences is based on the Tippett multiple test procedure (Tippett
(1931)), where the smallest upper bound is compared with 1 − (1 − α)1/3

instead of with α. In the case of a two-sided test problem the procedure is
performed for the original 3 subsequences and also for the 3 inverted subse-
quences, both times with (α

2 ) instead of α. In Sections 2-4 we assumed trials
with first-order Markov dependence. This assumption can be weakened, at
least in theory, by considering sequences with second- or even higher-order
dependence. The main problem is that not only a far greater number of sub-
sequences has to be considered but that in addition these subsequences are
much shorter than in the case of first-order dependence. In view of the con-
servativeness of our test procedure we will have thus only a small chance to
detect a change point.

5 Example

Just as in Krauth (2003, 2004) we consider the nucleotide sequence reported
by Robb et al. (1998, Fig. 1). This is 1,200 nt in length, is constructed from
overlapping clones and is based on the analysis of up to 181 mice embryos.
Just as in Krauth (2004) we coded the letter A (corresponding to the purine
adenine) by 1 and the other three letters (G = guanine, T = thymine, C =
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cytosine) by 0 and generated in this way a binary sequence with 1,200 trials.
After omitting the last trial we can choose k = 599. Fixing the k + 1 = 600
odd trials we get k11 = 44, k00 = 332, and k10,01 = 223 for the 599 even trials.
The modified ML estimates of π0 and π1 based on the 600 odd trials are given
by π̂0 = .2354, π̂1 = .3762. Because π̂1 > π̂0 holds, we have to consider an
inverted (i) sequence. For the longest subsequence with k00 = 332 trials we
get the upper bound U i

00 = .0495. This bound is smaller than α = .05 and
therefore we assume that a change point exists.
The other two bounds for the inverted sequence are given by U i

11 = .5029 and
U i

10,01 = .5413. Tippett’s procedure yields 1 − (1 − .05)1/3 = .0170 and this
is smaller than U i

00 = .0495, i.e. no significant result is obtained. The three
bounds for the noninverted sequence are given by U11 = .7677, U00 = 1, and
U10,01 = 1. Thus, neither the two-sided test for the (00)-sequence nor the
comparison with the Bonferroni bound .05/6 = .0083 for all 6 (dependent)
tests yield a significant result.
It should be emphasized that our procedure is based on the assumption that
first we have at least the same ordering of π̂0 and π̂1 on the one side and of π0

and π1 on the other side, and second that the efficiency of the test increases
with the length of the sequence of independent trials under consideration.
It is not guaranteed that these assumptions are valid for empirical data. As
a consequence it might be worthwhile to consider in addition all 6 possible
upper bounds in case of a nonsignificant result.
In Section 1 we mentioned various former approaches for detecting change
points in DNA sequences. However, if we cannot rule out that trials are
dependent we cannot decide whether results for corresponding tests differ
from our results because our test is rather conservative or whether those
tests are not robust with respect to the presence of dependence.
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Abstract. The molecular function of a protein is coupled to the binding of a sub-
strate or an endogenous ligand to a well defined binding cavity. To detect functional
relationships among proteins, their binding-site exposed physicochemical character-
istics were described by assigning generic pseudocenters to the functional groups of
the amino acids flanking a particular active site. These pseudocenters were assem-
bled into small substructures and their spatial similarity with appropriate chemical
properties was examined. If two substructures of two binding cavities are found to
be similar, they form the basis for an expanded comparison of the complete cavities.
Preliminary tests indicate the benefit of this method and motivate further studies.

1 Introduction

In a biological system multiple biochemical pathways are proceeded and reg-
ulated via the complementary recognition properties of proteins and their
substrates. The ligand accommodates the binding cavity of the protein ac-
cording to the lock-and-key principle. Two fold requirements are given: on
the one hand, the ligand needs to fit sterically into the binding cavity of the
protein. On the other hand, the spatial arrangement of ligand and receptor
must correspond to a complementary physicochemical pattern.

The shape and function of a protein, e.g. of an enzyme together with its
active site is not exclusively represented by a unique amino acid sequence.
Accordingly, proteins with deviating amino acid sequence, even adopting a
different folding pattern, can nevertheless exhibit related binding cavities to
accommodate a ligand. Low sequence homology does not imply any conclu-
sions on binding site differences or similarities. For this reason one has to
regard the three-dimensional structure as a prerequisite for a reliable com-
parison of proteins. Such structures are available for many examples from
X-ray crystallography. In literature, different methods based on the descrip-
tion of the spatial protein structures in terms of a reduced set of appropriate
descriptors have been reported. In addition to the shape, it is required to
code correctly the exposed physicochemical properties in a geometrical and
also chemical sense.

In this paper, we describe a new algorithm to compare protein binding
sites by the use of common local regions. These local regions form the ba-
sis for the further comparison of two binding cavities. Similar local regions
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among sets of spatially arranged descriptors of two binding cavities provide a
coordinate system which will be used in the next step to perform other sub-
structure searches for related cavities. Once a convincing match is detected,
it can be assumed that the two active centers are capable to bind similar
ligands and thus exhibit related function.

The paper is organized as follows: In Chapter 2, other approaches to
classify binding cavities are reviewed. Chapter 3 describes the underlying
theory and concept of our algorithm used for cavity matching. The local
region in descriptor space is defined. In Chapter 4, some preliminary results of
a binding cavity matching are presented. Conclusions are given in Chapter 5.

2 Other approaches

Previously reported approaches to classify binding cavities can be assigned to
three categories, according to the information they use for the classification:

1. Sequence alignments.
2. Comparison of folding patterns and secondary structure elements.
3. Comparison of 3D substructural epitopes.

Sequence alignments

If two proteins show high sequence identity one can assume structural and
most likely also functional similarity among them. The mostly applied pro-
cedures were presented by Needleman and Wunsch (1970) and by Waterman
(1984). Nevertheless, they are computationally and memory-wise quite de-
manding, so that often heuristic methods are used such as FASTA(Pearson
and Lipman (1988), Pearson (1990)) and BLAST (Altschul et al. (1990)).
These procedures do not find an optimal solution in all cases, but generally
reveal good approximative results.

Comparison of folding patterns and secondary structure elements

In general, sequence alignment methods are only capable to detect relation-
ships among proteins if sequence identity exceeds beyond 35%. To classify
more distant proteins, information about their three-dimensional structure
has to be incorporated to the comparison. Many methods, that establish
classification and assignment of proteins to structural families, exploit global
fold similarities. Hierarchical procedures have been developed which classify
proteins according to their folding, their evolutionary ancestors, or according
to their functional role. These systems operate either automatically or are
dependent on manual intervention. Many of the classification schemes treat
proteins as being composed by domains and classify them in terms of the
properties of their individual domains (Ponting and Russell (2002)). Impor-
tant approaches for such classifications are: SCOP(Murzin et al. (1995), Lo
Conte et al. (2002)), CATH (Orengo et al. (1997, 2000)), FSSP/DALI (Holm
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and Sander (1996), Holm (1998)), MMDB (Gibrat et al. (1996)). The EN-
ZYME (Bairoch (2000)) and BRENDA database (Schomburg et al. (2002))
annotate proteins with respect to the catalyzed reaction.

Comparison of 3D substructural epitopes

Beyond these relationships, proteins can possess a similar function even if
they do not have any sequence and/or folding homology in common. Ac-
cordingly, methods that compare proteins only with respect to their folding
pattern cannot detect such similarities. Procedures which seek for similar
substructures in proteins are better adapted to discover similarities in such
cases.

The first group of algorithms comprises methods that scan protein struc-
tural databases in terms of pre-calculated or automatically generated tem-
plates. A typical example of such a template is the catalytic triad in serine
proteases. A substantial advantage to restrict to relatively small templates
is due to the fact that even large data collections can be scanned efficiently.
Some of the best known procedures based on templates are ASSAM intro-
duced by Artymiuk et al. (1993,2003), TESS/PROCAT by Wallace et al.
(1996, 1997), PINTS by Stark and Russell (2003), DRESPAT by Wangikar
et al. (2003) as well as the methods of Hamelryck (2003) and Kleywegt (1999).

The second group includes approaches to compare substructural epitopes
of proteins which operate independent of any template definition. For the
similarity search the whole proteins or substructures are used. The group of
Ruth Nussinov and Haim Wolfson developed many approaches to compare
entire receptor structures or substructures. The individual methods essen-
tially differ whether the protein structure is represented by their Cα-atoms
or grid points on their solvent-accessible surface, or by so-called “sparse criti-
cal points”, a compressed description of the solvent-accessible surface. In each
case, the different procedures use geometric hashing (Bachar et al. (1993)) for
common substructure detection. They perform completely independent of se-
quence or fold homology. The approach of Rosen (1998) permits an automatic
comparison of binding cavities. Kinoshita et al. (2003) use a graph-based al-
gorithm to compare the surfaces of two proteins. Other methods, such as
GENE FIT of Lehtonen et al. (1999) and the approach of Poirrette et al.
(1997) use genetic algorithms to optimally superimpose proteins in identified
substructure ranges.

3 Theory and algorithm

The algorithm builds on the approach of Schmitt et al. (2002). The physic-
ochemical properties of the cavity-flanking residues are condensed into a re-
stricted set of generic pseudocenters corresponding to five properties essential
for molecular recognition: hydrogen-bond donor (DO), hydrogen-bond accep-
tor (AC), mixed donor/acceptor (DA), hydrophobic aliphatic (AL) and aro-
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matic (PI). The pseudocenters express the features of the 20 different amino
acids in terms of five well-placed physicochemical properties.

Fig. 1. Surface (left) and pseudocenters (right) of a binding cavity with bound
ligand

The idea for this algorithm resides on the concept that common substruc-
tures of two binding cavities have an arrangement of these pseudocenters
in common. Therefore local regions are regarded. They are composed by a
center under consideration and the three nearest neighboring centers form-
ing a pyramid. The pyramid was chosen as similarity measure because it
corresponds to the smallest spatial unit spanned by these four centers.

Systematically every pseudocenter in a cavity is selected as the current
center and forms a local region with its three nearest neighbors. Following
the procedure, the binding cavities are partitioned by all local regions to be
possibly inscribed. Accordingly, the mutual comparison of binding cavities is
reduced to a multiple comparison of the different local regions.

Therefore, the spatial and physicochemical characteristics of the local
regions are considered separately. The spatial features of the local regions
were chosen under the aspects of using a minimum number of descriptors to
identify local regions and producing minimal measuring errors. A set of six
spatial descriptors was tested. Three of them, the height of the pyramid, the
area of the triangle spanned by the three neighbor centers and the distance
between the root point of the height and the barycenter of this triangle, have
been chosen.

Every pair of local regions of two cavities with the same physicochemical
and spatial properties forms the basis for the comparison of the two cavities.
These two local regions are matched and the score of the appropriate overlay
of the cavities is calculated.

1. Two pyramids with appropriate chemical and spatial characteristics of
different binding cavities give rise to a coordinate transformation, which
optimally superimposes both pyramids. That means if pyramid A consists
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of the points (A1, A2, A3, A4) and pyramid B of the points (B1, B2, B3,
B4), then a rotation/translation has to be found, so that the sum of the
squares of the distances from Ai to Bi adopts a minimal value (Prokrustes
analysis).

2. Subsequently this coordinate transformation is applied to all cavities.
Then, every pair of pseudocenters of the two cavities, which mutually
match chemically and fall close to each other beyond a threshold of 1
Å is counted. This number of successful matches is the score for this pair
of pyramids.

3. The superpositioning is applied to all pairs of pyramids with the same
physicochemical and sterical properties of these two cavities. The maxi-
mum of the resulting scores is determined.

4. Relating this maximum score to the “maximally achievable score”, i.e.
the number of pseudocenters in the smaller of the two cavities, gives an
estimate of the maximally achievable score.

This algorithm has a set of advantages contrary to a consideration only of
the individual pseudocenters. With a Prokrustes analysis concerning the in-
dividual pseudocenters the coordinate transformation must be accomplished
for all pairs of chemically identical pseudocenters and the best match has
to be calculated. By consideration of local regions four suitable pseudocen-
ters are given, which have to be matched. Thus the number of computations
for the superpositioning of the two cavities is reduced. Only those overlaps
with a match of all four pseudocenters have to be computed. A local re-
gion composed of four centers gives a good initialization for the Prokrustes
analysis. Fewer degrees of freedom exist for the coordinate transformation. A
further advantage is that not all binding cavities of a data base have to be
considered. Only those cavities containing a suitable local region come into
consideration for the surface overlay of the cavities. The remaining cavities
without a suitable local region are not consulted.

4 First results

The approach based on local regions for the comparison of protein active sites
has been tested with four pairs of binding cavities with well known common
substructures (Siemon (2001)). Other similarities between the proteins than
these pairs were not expected. The proteins from where the binding cavities
had been extracted are the following:
an Adenylate Kinase (1ake.2), an allosteric Chorismate Mutase (1csm.3), the
Chorismate Mutase of E. Coli (1ecm.5), a Bovine-Actin-Profilin Complex
(1hlu.1), a heat shock cognate Protein (1kay.1), Trypsin (1tpo.1), the Uridy-
late Kinase (1ukz.1) and Proteinase K (2prk.2) (Protein Data Base code
(PDB)).
The pairs of proteins with well-known common substructures in their binding
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cavities are 1ake.2/1ukz.1 (Kinases), 1csm.3/1ecm.5 (Isomerases),
1hlu.1/1kay.1 (Hydrolases) and 1tpo.1/2prk.1 (Serine Proteinases). The re-
sulting scores after mutual match are shown in Figure 1.

Table 1. Resulting scores of a mutual comparison of four pairs of binding cavities
with well-known common substructures

1ake.2 1csm.3 1ecm.5 1hlu.1 1kay.1 1tpo.1 1ukz.1 2prk.1

1ake.2 — 21.1 20.7 11.5 13.5 19.4 69.1 26.2

1csm.3 21.1 — 41.4 14.0 21.1 12.3 17.5 9.5

1ecm.5 20.7 41.4 — 13.8 17.2 0.0 20.7 17.2

1hlu.1 11.5 14.0 13.8 — 29.7 14.9 12.7 11.9

1kay.1 13.5 21.0 17.2 29.7 — 17.9 13.6 21.4

1tpo.1 19.4 12.3 0.0 14.9 17.9 — 14.9 28.6

1ukz.1 69.1 17.5 20.7 12.7 13.6 14.9 — 19.1

2prk.1 26.2 9.5 17.2 11.9 21.4 28.6 19.1 —

The numbers are given as percentage with respect to the maximally
achievable score (see section 3.3).

The table shows that those cavities which are known to possess common
substructures also achieve the best scores, whereas the best fit found for the
other cavities reveals in most of the cases significantly smaller values. The
results have been examined by an expert. The coordinate transformations
and the matching pseudocenters of the known pairs of binding cavities were
identical with the estimated analogy.

5 Conclusions

We presented a new algorithm to find common substructures and compare
protein binding cavities. The cavities are partitioned into small local regions
with spatial and physicochemical properties. They are formed by pseudo-
centers assigned to five different physicochemical qualities. The local region
exists of a center under consideration and its three nearest neighbors. The
physicochemical characteristics of the local regions are the combination of
the physicochemical attributes assigned to each pseudocenter. The spatial
characteristics were described by the height of the pyramid, the area of the
triangle spanned by the three neighbor centers and the distance between the
root point of the height and the barycenter of this triangle.

The advantage of this algorithm is, that only those cavities are observed,
that share a common local region, expressed in terms of the pyramid. Such
substructures, which are represented by pseudocenters widely distributed over
the cavity and so are not biologically relevant, are a priori excluded from the
consideration. An advantage of the use of an ESOM for classifying protein
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binding cavities is the fast comparison of one individual cavity with the entire
database. All candidates of proteins of the whole database sharing in common
similar local regions are identified in one step.

The comparison of four pairs of binding cavities with well-known common
substructures led to promising results. It can be assumed that the approach
of dividing protein binding cavities into local regions and comparing them is
capable to detect similar substructures in the cavities.
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Abstract. We present the results of a systematic and quantitative comparison of
methods from pattern recognition for the analysis of clinical magnetic resonance
spectra. The medical question being addressed is the detection of brain tumor. In
this application we find regularized linear methods to be superior to more flexible
methods such as support vector machines, neural networks or random forests. The
best preprocessing method for our spectral data is a smoothing and subsampling
approach.

1 Introduction

The use of magnetic resonance (MR) is a well established and widespread
standard in medical imaging. Less known is the use of magnetic resonance
spectroscopy (MRS) for the in vivo analysis of the cell metabolism.
Metabolites evoke a specific spectral pattern, which is characteristic for a
number of tissue types. Changes in this spectral signature allow for a diagnosis
of certain pathophysiologies.

For the extraction of diagnostic information a further processing of the
data is indispensable. Due to their high potential of automation, we focus on
methods of pattern recognition and machine learning.

Our aim is the detection of recurrent tumors after radiotherapy by means
of MRS. In this application standard imaging methods usually fail. Remain-
ing brain lesions cannot be diagnosed reliably based on the intensity images
provided by ordinary imaging methods. Intracranial biopsies, being consid-
ered as gold standard, do not guarantee a fully reliable result either and are
associated with a considerable lethal risk of up to one percent. As a conse-
quence, biopsies are not applicable in routine follow-up examinations and any
other complementary information such as the one inherent to MRS signals is
desirable (Howe and Opstad (2003)). While nearly all clinical MR scanners
are able to acquire MR spectra, the know-how for interpretating these data is
still rare among radiologists. A reliable automated method has the potential
of making MRS accessible to a wider group of clinical practitioners.
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Fig. 1. Spectral pattern. Top: tumor group; bottom: non-tumor group. Central
lines: median/quartiles; outer lines & dots: outlier

2 Data

2.1 General features

In vivo magnetic resonance spectra share a number of features with other
spectral data. A high correlation of the P spectral channels is typical for this
kind of data. As a consequence, the intrinsic dimensionality is low. In our case,
only three to five resonance lines are observable (Fig. 1). As the acquisition
time is limited in clinical practice, the signal-to-noise-ratio is poor. Some
spectra are additionally corrupted by technical artifacts or uneven baselines.
Generally, as in most medical studies of this kind, the number of observations
N is much smaller than the number of explanatory variables P . In our data
set, we have N = 58 and P ≤ 350, depending on the preprocessing.

2.2 Details

The data set used in our survey comes from a retrospective study on the
use of MRS in the evaluation of suspicious brain lesions after stereotactic
radiotherapy (Schlemmer et al. (2001)). The spectra were acquired on a 1.5
Tesla MR Scanner at the German cancer research center (dkfz), Heidelberg,
with long echo time (TE=135ms) by single-voxel-MRS sequences.

The study comprises a total of 58 spectra, recorded from 56 patients in a
time span of several years. (Two patients participated twice in the study, at
different time points.) The spectra fall into two classes: 30 of them stem from
recurrent tumors, the remaining 28 from non-tumorous brain lesions (Fig. 1).
The final assignment of a spectrum to either of these classes was confirmed
by clinical follow-up examinations.
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Fig. 2. Left: Flowchart of the different algorithms in the preprocessing step. All
transformations involving the whole data set were part of the cross-validation
process. Right: Plot of the tumor group, with an indication of the spectral re-
gions chosen for the corresponding preprocessing; number of parameters P . Wavelet
transformations were performed on the medium spectral range data set. Solid lines
(upper/lower): mean/median; dashed lines (inner/outer): quartiles/variance.

Apart from filtering out the water resonance line and normalizing to the
cumulative sum from the spectral region of the three most prominent peaks
(choline, creatine and NAA resonances), no further preprocessing was per-
formed on the absolute MR spectra.

3 Methods

We divide the algorithms applied to the data in two groups: preprocessing
algorithms and classification algorithms. The algorithms in the first group
disregard any class label information, while the latter use the group mem-
bership as an integral part.

Conceptually, the process of pattern recognition is often described as a
sequence of feature extraction, feature selection and subsequent classification.
For the purpose of feature extraction, the data are often transformed to a
new space, the basis of which can be chosen independently of the data (as in
wavelets) or dependent on the pooled observations (such as independent com-
ponent analysis). Feature selection can either be explicit, as in a univariate
preselection step, or implicit in the final classification. In feature extraction,
a number of optional preprocessing methods were evaluated in a combina-
torial way (cf. Fig. 2). In the end, we had about 50 differently preprocessed
representations of the initial data set to evaluate the classifiers and regression
methods on.

The question how to properly evaluate a benchmark of different classifiers
on a small data set is yet unanswered, and hence the assessment of our
results is anything but straightforward. Even for our limited problem it is
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not clear, how to deduce general results from a wide range of combinations
of preprocessing and classification without getting trapped in overfitting or
overmodelling.

3.1 Evaluated algorithms

For the preprocessing, we applied a number of transformations individually
to each spectrum. Some of these preprocessing algorithms were as simple as
discarding certain spectral ranges (cf. fig. 2). The resulting data sets varied
only in the number of spectral channels and the number of peaks visible
in the graph of the spectral pattern. We also performed a smoothing and
subsampling operation, called binning: it entails an accumulation of all the
values from a certain number of adjacent spectral channels within a bin of
predefined width, e.g. 3, 5, 10 or 15 channels. Another standard procedure
in spectral preprocessing is to accumulate the spectral parameters into a
single value within certain predefined spectral regions, e.g. around single res-
onance lines. For this we defined three bins around the three most prominent
peaks. In addition, spectra were expressed in a dyadic wavelet basis (notably
Daubechies-4 wavelets). Finally, continuous wavelets and wavelet packages
were evaluated as possible preprocessing steps (for an overview see Fig. 2).

Also, there were transformations as adapted from the full data set. Prin-
cipal component analysis (PCA) was used in conjunction with a follow-up
regression step (principal component regression), while independent compo-
nent analysis (ICA) was optionally performed on all data sets obtained from
other preprocessing steps.

If necessary, an auxiliary selection was applied beforehand, in order to
reduce the number of variables P approximately to the number of samples
N . A ranking was performed according to the class label difference or the
class label correlation of the single variables. In particular, it was optionally
applied to the wavelet transformed data and the medium and wide range
spectral vector data.

In the classification step, we evaluated fourteen different classification or
regression methods. For the latter, a threshold was adjusted to obtain a binary
result from the predicted values. Standard classifiers under study were lin-
ear discriminant analysis (Rao’s LDA) and k-nearest-neighbours (knn). The
first was also applied as stepwise LDA, with a F-value criterion. Regression
methods using pooled data information were principal component regression
(PCR) and partial least squares (PLS). Besides ordinary multivariate lin-
ear regression and logistic regression we used regularized multivariate linear
regression methods, namely: ridge regression (here: being equivalent to pe-
nalized discriminant analysis), the lasso, least angle regression (LARS) and
forward selection. From the classifiers, we evaluated support vector machines
(using radial basis functions), feed-forward neural networks (nnet) and ran-
dom forests. The hyperparameter of most of these methods was varied from
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λ = 1..12 (see Table 1). Support vector machines, neural networks and ran-
dom forests were evaluated with parameters varied in a grid search according
to (Meyer et al. (2003)).

All computations were performed using the R computing language. For
the algorithms mentioned above, we used the implementations available from
the CRAN R repository (cran.r-project.org).

3.2 Benchmark settings

The optimization of real-world problems is rarely amenable to a one-stage-
solution. A good representation of the problem in a low-level description
usually has to be found in a first step, in order to obtain the desired high-
level information in the following.

Proper benchmarking of different classifiers, even on one single data set
of adequate size, is still an open question and subject to debate (Hothorn et
al. (2003)). It is even more difficult to obtain results from an evaluation of
processes that are composed of two essential parts.

Considering the small size of the data set, a naive selection of the best
classifiers will easily result in overfitting or -modelling in spite of the cross-
validation. So, having the size of the data set in mind, quantitative values
should not be taken too literally and only allow for conclusions of a qualitative
nature.

Within the given parameter range of each method, we assessed the clas-
sification error using the leave-one-out cross-validation. For the regression
methods, we also evaluated the area under the receiver operator characteris-
tic (ROC AuC), and the area under the precision-recall curve (PR AuC) as
a performance measure.

The performance of each algorithm was measured using the best value
obtained within the parameter range under study. This is probably overly
optimistic, but can be understood in the light of the intrinsically low dimen-
sional binary classification problem (see also Fig. 3). If possible (e.g. for the
regression methods) top performing classifiers were checked for dimensional-
ity and spectral interpretability.

To get a rough comparison of different preprocessing paradigms, we have
pooled results as follows: at first we determined a subset of well performing
classifiers (PCR, PLS and ridge regression showed to have the best over-
all performance with respect to our three measures). Then, we determined
their optimal hyperparameters for each preprocessing scheme (binning with
different sizes, wavelets, etc., cf. Fig.2). The number of correct and incor-
rect predictions in the leave-one-out cross-validation were evaluated for each
method and interpreted as realizations from identical Bernoulli distributions.
For each regression method, a Binomial distribution was fitted to these out-
comes. Samples were drawn from the three distributions and concatenated
into one list. Finally, the distribution of values in this list was visualized by
the box-and-whisker plots in Fig. 3.
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Fig. 3. Left: Spectral channels as chosen by lasso regression with corresponding
classification error along hyperparameter lambda within tuning range. - Varying
lambda values as determined by a - hypothetic - inner cross-validation loop would
hardly affect the overall classification result, since the classification performance
is nearly constant over lambda. Right: Classification performance pooled over the
three top performing classifier for the given preprocessing. The only preprocessing
to outperform plain spectral input (as in ’small’ spectral range) is binning with an
optimized bin width.

4 Results

Standard classifiers such as linear discriminant analysis or k-nearest- neigh-
bours show rather moderate results and are outperformed by most of the
other algorithms. Unconstrained regression methods only work well on the
relatively low dimensional data sets. All kinds of shrinkage/regularized re-
gressions perform considerably better, but a differentiation is difficult. On
our data set principal component regression seems to perform best. Regard-
less of our wide grid search in the optimization of neural networks, we were
seemingly not able to initialize this method correctly. Performance was bad
throughout all data sets. Random forests and RBF-kernel support vector
machines performed reasonably, especially after a prior dimensionality re-
duction. To summarize standard linear methods like PCA, PLS and ridge
regression perform notably well throughout all three measures (classification
accuracy (cf. Fig.4), ROC AuC, PR Auc). As measured by the ROC and PR,
these three performed best on nearly any preprocessing under study.

All three spectral ranges yield a similar classification accuracy: Neither
the use of lipid/lactate (as included in the medium range), nor the extension
of the spectral region to the water peak (as in the wide range data set)
changed the overall classification result.
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Fig. 4. Partial overview of the results. Scale: classification accuracy. Classifier &
regression methods: see text; preprocessing: small/medium/wide spectral ranges;
wavelets, continuous wavelets, wavelet packages; bins around peaks, binning width
3/5/10/15. N.A.: no results available.

For an optimal bin width, smoothing and subsampling as performed by
the binning approach, proved to be the best preprocessing.

The manual selection of bins around the visible peaks is somewhat worse
than using the full spectral vector and seems to be – in our case – an inap-
propriate way of including a priori knowledge into the preprocessing.

The application of a wavelet transformation does not alter the classifica-
tion performance compared to the raw spectrum. Without a preselection, the
continuous wavelet transformation shows poor results. However, the use of
wavelets that are smoother than the Daubechies 4 type we used, might result
in better performance.

Generally, a preselection (from the auxiliary selection step) either on the
wavelet transformed data or on the wide spectral ranges does not impair the
classification performance. Nevertheless, it does not increase it over the per-
formance of the respective smaller data sets (small spectral range, normal
wavelet transform) either. A difference between the two univariate preselec-
tors cannot be found.

The application of ICA does not improve the results, regardless of the
number of mixing sources. Neither do the loadings of the independent com-
ponents found by the algorithm help to interprete the data better than PCA,
nor does the use of the ICA scores improve the following classification step
compared to the performance obtained by PCA.
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Table 1. Parameter range under study and optimal parameters on the differently
preprocessed data (compare Fig. 4).

classifier/ parameter preprocessing function from R
regression range S M W dw cw wp bp b3 b5 b10 b15 name package

ridge λ = 2−12..12 -4 -2 0 -3 -8 -3 -10 -1 -2 -1 2 gen.ridge fda
PLS n = 1..12 1 2 2 1 5 1 2 2 2 2 1 pls pls.pcr
PCR n = 1..12 9 3 8 6 8 6 2 3 5 7 2 pcr pls.pcr
lasso n = 1..12 6 6 6 8 5 8 3 7 10 5 5 lars lars
lars n = 1..12 6 6 6 7 7 7 3 7 9 5 5 lars lars
forward n = 1..12 6 6 6 8 8 8 3 5 9 6 6 lars lars
knn k = 1..12 6 8 8 6 3 6 3 2 1 10 7 knn class
svm c = 2−5..12 0 0 - 2 - - - - 2 4 4 svm e1071

γ = 2−10..12 -8 -8 - -10 - - - - -5 -10 -5
nnet s = 1..5 5 5 - 5 - - - - 5 5 5 nnet nnet

d = 0.1..1 0.2 0.2 - 0.2 - - - - 0.2 0.2 0.2
randForest t = 25..200 25 - - 50 - - - - 75 25 75 random- random-

m = 1..7 5 - - 6 - - - - 6 5 6 Forest Forest
ns = 1..12 10 - - 4 - - - - 6 2 10

stepw.LDA n = 1..8 2 5 2 - - - 2 4 3 3 2 (lda) (MASS)
LDA - lda MASS
regression - lm base
logit - glm glm

5 Conclusions

In preprocessing, the application of binning, a smoothing along the spectral
vector in conjunction with a dimensionality reduction by subsampling, im-
proves the overall result. Regularized regression methods perform well on this
binary and balanced problem. We cannot find a need to use nonlinear, ’black-
box’ type models. This is of some importance, as in medical applications an
interpretability of the diagnostic helper is of high value.
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Abstract. Common and important tasks arising in microarray experiments are
the identification of differentially expressed genes and the classification of biological
samples. The SAM (Significance Analysis of Microarrays) procedure is a widely used
method for dealing with the multiple testing problem concerned with the former
task, whereas the PAM (Prediction Analysis of Microarrays) procedure is a method
that can cope with the problems associated with the latter task.

In this presentation, we show how these two procedures developed for analyzing
continuous gene expression data can be modified for the analysis of categorical SNP
(Single Nucleotide Polymorphism) data.

1 Introduction

All humans share almost the same DNA. Only less than 0.1% of it differs
between individuals. Single nucleotide polymorphisms (SNPs) are the most
common type of such variations. They are single base pair positions at which
different sequence alternatives exist in a population. To be considered a SNP,
a variation has to occur in at least 1% of the population. Since almost any
SNP exhibits only two variants, we assume that each SNP can take three
realizations: “1” if both bases that explain the SNP (one base for each of
the two haploid sets of chromosomes) are the more frequent variant in the
population, “2” if one of the bases is the more frequent and the other is the
less frequent variant, and “3” if both are the less frequent variant.

Advances in biotechnology have made it possible to measure the levels
of hundreds or even thousands of SNPs simultaneously. Common and in-
teresting statistical tasks arising in such experiments are the identification
of SNPs whose distribution strongly differs under several conditions (e.g.,
case/control, different kinds of cancer), the classification of biological sam-
ples using the SNP data, and the determination of clusters of SNPs with
coherent patterns.

Hence, the problems (e.g., that the number of variables is much larger than
the number of observations) and the tasks in such experiments are similar to
the problems and tasks in the analysis of gene expression data. It is therefore
� This work has been supported by the Deutsche Forschungsgemeinschaft, Sonder-

forschungsbereich 475.
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a reasonable idea to apply procedures that are well established in microarray
experiments to SNP data. Such methods however cannot be applied directly,
since gene expression data are continuous, while SNP data are categorical.

In this paper, we exemplify how two well-known and widely used microar-
ray analysis methods can be modified for the analysis of SNP data. This is,
on the one hand, the Significance Analysis of Microarrays (SAM ) proposed
by Tusher et al. (2001), and on the other hand, the Prediction Analysis of
Microarrays (PAM ) suggested by Tibshirani et al. (2002a). The former pro-
cedure can be used for the identification of differentially expressed genes,
while the latter is a classification method.

The paper is organized as follows. In Section 2, the False Discovery Rate
(FDR), an error measure that is ideal for the testing situation in the analysis
of both gene expression data and SNP data, is described. This error measure
is estimated by the SAM procedure presented in Section 3. In Section 4, we
show how SAM can be applied to SNP data. Section 5 contains a presentation
of the PAM procedure which can be modified for SNP data as described in
Section 6. Finally, Section 7 discusses our modifications.

2 Multiple testing and the false discovery rate

An important task in microarray experiments is the identification of differen-
tially expressed genes, i.e. the identification of genes whose expression levels
strongly differ under several conditions. Since the goal of such an analysis is
the identification of a fairly large number of genes, typically a few hundred,
for further analysis, one has to accept that some of these findings are false
positives.

It has turned out that the False Discovery Rate (FDR) introduced by
Benjamini and Hochberg (1995) is an ideal error measure for this testing
situation. Denoting the number of identified genes by R and the number of
false positives by V , the FDR is defined as

FDR = E
(
V

R

∣∣∣∣R > 0
)

Prob(R > 0),

where the FDR will be set to 0 if there is no significant finding, i.e. if R = 0.
The FDR can be estimated by

F̂DR(α) =
π̂0αm

max
{
#{pi ≤ α}, 1} ,

where α is the acceptable error rate, pi is the (uncorrected) p-value of the ith
test, i = 1, . . . ,m, and π̂0 is an estimate of the prior probability π0 that a
gene is not differentially expressed (Storey and Tibshirani (2001), and Storey
(2003)).

There are several ways how π0 can be estimated. Storey and Tibshirani
(2003), for example, suggest to compute π̂0 by calculating π̂0(λ) = #{pi >
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λ}/((1−λ)m
)

for λ = 0, 0.01, . . . , 0.95, and setting π̂0 to min
{
h(1), 1

}
, where

h is a natural cubic spline with three degrees of freedom fitted through the
data points

(
λ, π̂0(λ)

)
weighed by 1 − λ.

3 Significance analysis of microarrays

The SAM (Significance Analysis of Microarrays) procedure suggested by
Tusher et al. (2001) is a widely-used method for the identification of dif-
ferentially expressed genes and the estimation of the FDR.

Given the expression levels xij , i = 1, . . . ,m, j = 1, . . . , n, of m genes and
n biological samples, and a response yj for each of the samples, an expression
score di for each gene i is computed, where di is an appropriate statistic for
testing if there is an association between the expression levels of gene i and
the responses.

In the original setting, for example, Tusher et al. (2001) consider two class
unpaired data. In this case, the usual t-statistic could be an appropriate test
statistic. There however is one problem concerned with the t-statistic that is
especially encountered in microarray experiments: Genes with low expression
levels. Since Tusher et al. (2001) want to avoid that such genes dominate
the results of their SAM analysis, they add a small strictly positive constant,
the so called fudge factor, to the denominator of the t-statistic, and use this
modified t-statistic as expression score for each gene. For the computation
and the effects of the fudge factor, see Schwender et al. (2003).

Given the set of di values, i = 1, . . . ,m, the SAM procedure described in
the following can be used to identify “significantly” large expression scores,
and hence to find differentially expressed genes:

1. Compute the observed order statistics d(1) ≤ d(2) ≤ . . . ≤ d(m).

2. Draw B random permutations of the group labels. For each permutation
b, b = 1, . . . , B, compute the statistics db

i , and the corresponding order
statistics db

(1) ≤ . . . ≤ db
(m). Estimate the expected order statistics by

d̄(i) =
∑

b d
b
(i)/B, i = 1, . . . ,m.

3. Plot the observed order statistics di against the expected order statistics
d̄(i) to obtain the SAM plot (see Figure 1(a)).

4. Compute i0 = arg min
i=1,...,m

{∣∣d̄(i)

∣∣}.

5. For a fixed threshold ∆ > 0,
(a) compute i1 = min

i=i0,...,m

{
i : d(i) − d̄(i) ≥ ∆

}
, and set cutup(∆) = d(i1),

or if no such i1 exists, set i1 = m + 1, and cutup(∆) = ∞,

(b) find i2 = max
i=1,...,i0

{
i : d(i) − d̄(i) ≤ −∆

}
, and set cutlow(∆) = d(i2), or

if no such i2 exists, set i2 = 0, and cutlow(∆) = −∞,
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Fig. 1. SAM Plots. Plots of the ordered observed expression scores d(i) against the
ordered expected expression scores d̄(i) for (a) an analysis of two class unpaired
gene expression data (∆ = 0.7), and (b) an analysis of two class (unpaired) SNP
data (∆ = 5). The horizontal dashed lines represent the lower and upper cut-points,
cutlow(∆) and cutup(∆), respectively.

(c) call all genes with di ≥ cutup(∆) positive significant, and all genes
with di ≤ cutlow(∆) negative significant,

(d) estimate the FDR by

F̂DR(∆) = π̂0

(1/B)
∑

b #
{
db

i �∈(cutlow(∆), cutup(∆)
)}

max
{
i2 + m− i1 + 1, 1

} ,

where π̂0 is the natural cubic spline based estimate described in Sec-
tion 2.

6. Repeat step 5 for several values of the threshold ∆. Choose the value of
∆ that provides the best balance between the number of identified genes
and the estimated FDR.

4 SAM applied to single nucleotide polymorphisms

SAM has been developed for the analysis of (continuous) gene expression
data. It is however easy to modify SAM for the analysis of (categorical) SNP
data. Actually, the SAM algorithm presented in the previous section needn’t
to be modified. One only has to find an appropriate test statistic d. Such a
score is given by the Pearson’s χ2-statistic

χ2
i =

K∑
k=1

3∑
t=1

(
n

(i)
kt − ñ

(i)
kt

)2

ñ
(i)
kt

, (1)



374 Schwender

Table 1. Contingency table for testing if the distribution of the 3 levels of SNP i,
i = 1, . . . , m, strongly differs between K groups. Note that the total number n and
the group sizes nk·, k = 1, . . . , K, are the same for all SNPs.

1 2 3
�

Group 1 n
(i)
11 n

(i)
12 n

(i)
13 n1·

...
...

...
...

...

Group K n
(i)
K1 n

(i)
K2 n

(i)
K3 nK·

�
n

(i)
·1 n

(i)
·2 n

(i)
·3 n

where ñ
(i)
kt = nk·n

(i)
·t /n (see Table 1), that can be used to test if the distri-

bution of the levels of SNP i, i = 1, . . . ,m, strongly differs under several
conditions or between several groups, respectively. We therefore compute for
each gene i the value of the χ2-statistic and then set di = χ2

i .
Even though the SAM procedure actually assumes that the rejection re-

gion of the test statistic is two-sided, the algorithm presented in the previous
section can also handle one-sided rejection regions as the rejection region that
corresponds to Pearson’s χ2-statistic (1). In such a case the lower cut-point
cutlow(∆) is set to −∞, and there thus is no negative significant gene. Figure
1(b) displays a SAM plot for the analysis of SNP data.

5 Prediction analysis of microarrays

The PAM (Prediction Analysis of Microarrays) procedure proposed by Tib-
shirani et al. (2002) is a discrimination method based on nearest shrunken
centroids that can cope with high-dimensional classification problems.

Recall from Section 3 that xij is the expression level of gene i and sample
j, i = 1, . . . ,m, j = 1, . . . , n, and that a response yj has been observed for
each sample j. Since we here assume that the samples are independent and
come from K different classes (with K � n), possible realizations of yj are
1, . . . ,K. Denoting furthermore the number of samples in class k by nk, the
PAM procedure works as follows:

1. For each gene i, i = 1, . . . ,m, compute the centroid x̄ik of each class k,
i.e. the average expression level of gene i in class k, k = 1, . . . ,K, and
the overall centroid x̄i =

∑
k nkx̄ik/n.

2. Compute

dik =
x̄ik − x̄i

mk(si + s0)
,

where s0 is the fudge factor (see Section 3), mk =
√

1/nk + 1/n, and
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s2
i =

1
n− K

K∑
k=1

∑
j:yj=k

(
xij − x̄ik

)2
is the pooled within-class variance of gene i.

3. For a set of values Θ > 0, compute

d′ik = sign
(
dik

)(|dik| − Θ
)
I
(|dik| > Θ

)
, (2)

and the shrunken centroids

x̄′
ik = x̄i + mk(si + s0)d′ik. (3)

4. Choose the value of Θ that minimizes the misclassification error estimated
by cross-validation (e.g., 10-fold cross-validation).

5. Given a new sample with expression levels x∗ =
(
x∗

1, x
∗
2, . . . , x

∗
m

)
,

(a) compute the discrimination score

δk(x∗) =
m∑

i=1

(
x∗

i − x̄′
ik

)2
(si + s0)2

− 2 log π̂k

for each class k, k = 1, . . . ,K, where π̂k is an estimate of the prior
probability πk of class k,

(b) estimate the class probabilities pk(x∗), k = 1, . . . ,K, by

p̂k(x∗) =
exp
{−0.5δk(x∗)

}∑K
h=1 exp

{−0.5δh(x∗)
} ,

(c) predict the class of the new observation by

k̂ = arg max
k=1,...,K

p̂k(x∗).

6 Prediction analysis of SNPs

Contrary to SAM, it is difficult to modify PAM for SNP data. Since we do
not use shrunken centroids, we actually do not modify PAM. We only use
some of its ideas.

For each SNP i, i = 1, . . . ,m, the number n(i)
·t of samples with SNP value

t, t = 1, 2, 3, is computed (cf. Table 1). Denoting the number of samples in
class k, k = 1, . . . ,K, having a SNP value t by n

(i)
kt , the value of

χ2
ik =

3∑
t=1

(
n

(i)
kt − ñ

(i)
kt

)2

ñ
(i)
kt
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is computed to compare the distribution of the levels of SNP i in group k

with the overall distribution of the levels of SNP i. Since n
(i)
·t of the n values

of SNP i are t, we would expect that under the assumption that the group
and the overall distribution are equal, ñ(i)

kt = n
(i)
·t /n · nk· of the nk· samples

in group k have a SNP value of t. Hence, ñ(i)
kt is the expected number that is

also used in Section 4.
Following (2), we compute

χ2′
ik =

(
χ2

ik − Θ
) · I(χ2

ik > Θ
)

(4)

for a set of Θ > 0, and choose the value of the shrinkage parameter Θ by
(10-fold) cross-validation.

A new observation x∗ = (x∗
1, x

∗
2, . . . , x

∗
m), where x∗

i ∈ {1, 2, 3}, i =
1, . . . ,m, is classified by computing the posterior probability

p
(
k|x∗

Θ

)
=

πkp
(
x∗

Θ|k)∑K
h=1 πhp

(
x∗

Θ|h) ,
where x∗

Θ denotes the subvector of x∗ that contains the values of all SNPs
with at least one non-zero χ2′

ik value, and by predicting the class k̂ of the new
observation by

k̂ = arg max
k=1,...,K

p
(
k|x∗

Θ

)
.

7 Discussion

In this presentation, we have shown how procedures for analyzing continuous
gene expression data can be modified for another type of genetic data, namely
categorical SNP data.

The first method considered in this presentation is the SAM procedure
that can be used for the identification of differentially expressed genes. SAM
is relatively easy to modify for other kinds of data, since one only has to
define a score for each gene/SNP that is suitable for testing if there is an
association between the values of the genes/SNPs and a response variable. In
the case of categorical SNP data, such an appropriate test statistic is given
by the Pearson’s χ2-statistic.

As a second method, we have considered the PAM procedure. PAM is a
discrimination method that uses nearest shrunken centroids. Since our ap-
proach for SNPs does not use such shrunken centroids, it is not really a
modification of PAM. It however uses some of the ideas of PAM. In both
procedures, a test statistic for each group and gene/SNP is computed, and
genes/SNPs that are representative for the different groups are selected by
successively reducing the values of the test statistics and by choosing the



SAM and PAM for SNPs 377

reduction that minimizes the misclassification rate. This type of feature se-
lection differs from more common approaches that screen genes by the sig-
nificance of their corresponding test statistics.

A drawback of our versions of SAM and PAM modified for SNPs is that
they require lots of samples. While in a microarray experiment the number
of samples is typically much smaller than 50, we here should have far more
than 50 samples.

The SAM version for SNPs will be contained in one of the next versions
of our R (Ihaka and Gentleman 1996) package siggenes which can be down-
loaded from http://www.bioconductor.org.
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Improving the Identification of Differentially

Expressed Genes
in cDNA Microarray Experiments�

Alfred Ultsch

Databionics Research Group
University of Marburg
35032 Marburg, Germany

Abstract. The identification of differentially expressed genes in DNA microarray
experiments has led to promising results in DNA array analysis. The identification
as well as many other methods in cDNA array analysis rely on correct calculations
of differential colour intensity. It is shown that the calculation of logarithms of the
ratio of the two color intensities (LogRatio) has several disadvantages. The effects of
numerical instabilities and rounding errors are demonstrated on published data. As
an alternative to LogRatio calculation, relative differences (RelDiff) are proposed.
The stability against numerical and rounding errors of RelDiffs are demonstrated
to be much better than for LogRatios. RelDiff values are linearly proportional to
LogRatios for the range where genes are not differentially expressed. Relative dif-
ferences map differential expression to a finite range. For most subsequent analysis
this is a big advantage, in particular for the search of expression patterns. It has
been reported that the variance of intensity measurements is a nonlinear function on
intensity. This effect can be explained by an additive measurement error with con-
stant variance. Applying the logarithm to such intensity measurements introduces
the presumed nonlinear dependence. Thus in many cases no complicated variance
stabilization transformation using nonlinear functions on the LogRatio expression
values is necessary.

1 Introduction

In complementary DNA (cDNA) microarray experiments the data for each
gene (spot) are two fluorescence intensity measurements (Parmigiani et al.
(2003)). The measurements are produced by a mixture of two portions of
mRNA labeled with two different fluorescent color dyes. One portion of the
mRNA is labeled by the dye Cy5 producing a red fluorescence color (R),
the other is marked by the dye Cy3 producing a green fluorescence color
(G). The predominance of one of the colors indicates the relative abundance
of the corresponding DNA sequence. This indicates the over expression of
a particular gene. Equal intensities in red and green fluorescence at a spot
indicate no particular over- or under expression of the corresponding gene.
� A longer version of this paper including more references can be obtained at

www.mathematik.uni-marburg.de/∼ databionics
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In most publications on microarray data the (binary) logarithm of the ratio
R/G (LogRatio) is used, see Parmigiani et al. for an overview (Parmigiani
et al. (2003)). There seem to be different types of arguments using a loga-
rithmic transformation on intensity values: first, absolute differences are less
meaningful, than relative ratios; second, convenience of visualisation; third,
compensation for skewness of the distributions; four, lognormality of the dis-
tributions; five, stabilization of variance. The first argument is more an ar-
gument for the approach followed in this paper: to use relative differences.
The convenience for plotting is a valid argument, if the colours are regarded
separately. Skewness is compensated using log, but it is clear, that the distri-
butions of intensities are not log normal distributed. So a log transformation
changes the distribution but does not normalize it. The last argument, vari-
ance stabilisation is treated in detail in Chapter 4. In the following we will
demonstrate, that using LogRatio has severe disadvantages and propose an
alternative: relative differences.

2 Data sets, LogRatio, RelDiff

One of the cDNA data sets used consists of microarray experiments of Saccha-
romyces Cerevisiae. The focus of the experiment is the shift from anaerobic
(fermentation) to aerobic (respiration) metabolism. At 7 time points dur-
ing this diauxic shift the expression of 6153 genes is measured. We call this
data the “DiauxicShift” data. The data is publicly available form the web-
site http://cmgm.stanford.edu/pbrown/explore/index.html. Another data set
was published by Eisen. The data consists of a set of 2465 gene expressions
of yeast in 79 different experiments. The data is available from the website
http://www-genome.stanford.edu. We refer to this data set as the “Yeast”
data. The distribution of R and G is typically severely skewed. I.e. there
are many small values and few very big values. The values for R and G, for
example in the DiauxicShift data, range from 50 to 50.000.

The LogRatio is defined as LogRatio(R,G) = ld(R/G), where ld is the
logarithm for basis two. If R is equal to G, then LogRatio equals 0. If LogRa-
tio is greater then 0 (less then 0), then R is greater then G (R less then G).
The distribution of LogRatios is centered around zero, but has a substantial
number of values which are greater than one in absolute value. In the Yeast
data set 2800 values i.e. 1.2% of LogRatios are greater than 2, 113 values i.e.
0.06% are greater than 4. In this paper we propose another value for the indi-
cation of differentially expressed genes, the relative difference (RelDiff). The
relative difference is the ratio of the difference (R-G) to the mean intensity
of the spot. RelDiff is defined as follows.

If R is equal to G, then RelDiff equals 0. If RelDiff is greater then 0 (less
then 0), then R is greater then G (R less then G). The relative difference may
also be measured in percent. This leads to the definition of RelDiff%(R,G).

RelDiff(R,G) =
R − G

1
2
(R + G)

= 2 ∗ R − G

R + G
; RelDiff%(R,G) =

R − G

(R + G)
∗ 200 [%]
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3 Comparison of LogRatio and RelDiff

Interpretation: The direct interpretation of LogRatio values is difficult ex-
cept for powers of two. It is easy to see that a LogRatio of 1 means that the
expression level of a particular gene is two fold. It is, however, not straight
forward to see that a LogRatio value of 1.58 corresponds to a threefold, a Lo-
gRatio value of 3.322 to a ten fold over expression rate. For an interpretation
of such LogRatio values one must be familiar with dual logarithms. The nu-
merical values of RelDiff and in particular RelDiff% have a straight forward
interpretation. Even an “odd” value of, for example 22.12%, for RelDiff has
a direct interpretation. Such a value means that there is 22.12 percent more
red color in the average luminosity of the particular spot.
Numerical stability: In many two color experiments almost all of the thou-
sands of measured genes have an identical level of R and G. In order to in-
vestigate the numerical properties of the formulas above we assume that R
is equal to G plus some small measurement error ε. I.e. we assume R = G
+ ε for some small error ε. For LogRatio we obtain: LogRatio(G + ε,G) =
ld
(

G+ε
G

)
= ld

(
1 + ε

G

)
.

This term results in very large negative values the closer ε gets to -G.
For small values of G this might be the case. This means that there might
be numerical instable LogRatio calculations. Furthermore for G close to zero
the LogRatio may become very big. For RelDiff on the other hand we obtain:
RelDiff(G + ε,G) = 2 ∗ G+ε−G

G+ε+G = 2ε
2G+ε = ε

G+0.5ε .
In this case ε must become as big as -2G in order to cause numerical

problems. It can be concluded that RelDiff is twice as numerically stable as
LogRatio. For G approaching zero, the RelDiff values approach 2. This means
that the error for RelDiff is bound: |RelDiff(G + ε,G)| ≤ 2.
For the DiauxicShift data we have observed the numerical properties empir-
ically. R was set to G + EPS. The measurement error ε (EPS) was varied
in the interval [0,10%] relative to the maximal value (max(G)) occurring in
G. Figure 1 shows the resulting LogRatio and RelDiff values. The erroneous
RelDiff values are consistently lower than the LogRatio errors. Figure 1 also
demonstrates that the RelDiff errors are bound by 2 while the LogRatio error
may become arbitrarily big.

In many two dye microarray experiments most measured intensities are
very small. To analyze the numerical situation in this case we assume
R = G + ε and G ≈ ε. This gives: LogRatio(ε + ε, ε) = ld

(
ε+ε

ε

)
= ld(2ε) −

ld(ε). This is numerically instable! For ε close to zero, LogRatio values ex-
plode. For RelDiff on the other hand we get: RelDiff(ε + ε, ε) = 2 ∗ ε

ε+ε+ε .
Even if ε gets very close to zero, the denominator of the fraction in this term
is always three times the numerator. This means: RelDiff(ε+ε, ε) ∼= 2

3 = 0.67.
The clear conclusion is that log ratios are numerically instable in particular
for small intensities with almost equal values in the red and green intensities.
Relative differences on the other hand are numerically stable with a maxi-
mum error value of 0.67, if both intensities are small and practically equal.
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Fig. 1. LogRatios and RelDiff values for R =G+EPS in the DiauxicShift data

Rounding errors: The Yeast data is published as LogRatios with a precision
of two digits after the decimal point. We examine the errors with respect to
rounding by the exact calculation of LogRatio and RelDiff values, then round
the values to a precision of one hundredth. From these rounded values the
original value of G is reconstructed using the correct value of R. This gives
a value G’. The difference between the value G’ and the true value of G
leads to the relative error (err) measured in percent of the true value. I.e.
err = G′−G

G ∗ 100 [%].
Figure 2 shows the relative error for the reconstructed values of G in the

diauxic shift data. The left side of Figure 2 shows the error for LogRatio, the
right side for rounded RelDiff. It can be seen that the error level may become
very extreme for LogRatios. The conclusion is that rounding LogRatios to is
considerable more critical than a rounding of RelDiff. To round LogRatios to
two decimal digits, as done in Eisen et al’s data is critical and may influence
subsequent calculations severely. The same rounding has much less effects for
RelDiff data.
Negative and zero values: In some two color microarray experiments the
raw values measured for the intensities are close to the background values.
Sometimes there is even more background intensity encountered than inten-
sity inside a spot. The corrected difference between spot measurements and
the background luminescence become negative in these cases. For such cases,
the logarithm is undefined. This may lead to unwanted numerical errors or
imaginary results in LogRatio. For RelDiff negative values are no problem.
If one of the intensities is zero, this causes a numerical error for LogRatios.
If R is zero, the logarithm gets arbitrarily big. If G is zero, the denominator
of R/G causes an error. For RelDiff zero values in R or G are uncritical. The
result is a meaningful value of RelDiff. If both intensities are zero, RelDiff is
undefined. In this case, however, no intensity at all is measured in both col-
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Fig. 2. LogRatio and RelDiff error values for R =G+EPS in the DiauxicShift data

ors. This case can be treated properly either by ignoring the measurement or
setting the resulting RelDiff value to zero. The difficulties in the calculation
of zero or negative logarithms might be the reason for the 3760 undefined
values in the published Yeast data set.
Bounded in the limit: We will now investigate the properties of LogRatio
and RelDiff for very large differences in color intensities. Let R >>G such that
R±G≈R resp. ld(R)±ld(G)≈ld(R). We obtain: LogRatio(R,G) = ld

(
R
G

)
=

ld(R)− ld(G) → ld(R). This means in particular, that there is no theoretical
limit to the LogRatio values. Under the same assumptions for RelDiff holds:
RelDiff(R,G) = 2 ∗ R−G

R+G → 2 ∗ R
R = 2.

In the same manner for G>>R Log Ratio goes to -ld(G) and RelDiff
approaches -2. This means that RelDiff has a limited value range. Many
two color DNA microarray experiments search for some similar expression of
genes. For this a similarity measure is defined. Typical measures are Euclid-
ian distances, correlation measures, Mahalanobis distances and others. Since
the expression data of several experiments have to be compared, the variance
of the data have to be taken into account. The limited scope of the RelDiff
values is advantageous in this case since it limits the influence of very outlying
values. In the DiauxicShift data, for example, the range in LogRatios varies
by a factor up to 3.3 for the different times the experiment was performed
during the diauxic shift. On the other hand the maximal ratio of the ranges
of RelDiff is only 2.3, i.e. 45% less. In Figure 3 the variances of LogRatio and
RelDiff values of the microrarrays measured at different time points during
the diauxic shift can be compared. The variances are normalized such that the
smallest variance is 1. Many authors use Euclidian distances to find similar
expression patterns, for example, Hain and Ultsch (2002). If the different vari-
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(a) Comparison of the variances (b) Proportionality

Fig. 3. Properties of LogRatio and RelDiff for the DiauxicShift data

ances are not compensated, the Euclidian distance is mainly determined by
the experiments with largest variance. To normalize by the empirical variance
is, however, a big problem, since the LogRatio values are not normally dis-
tributed. The “fat tails” of the distributions (see Figure 2) invalidate simple
variance calculations. The same holds for many other distance calculations,
e.g. for the correlation distances. For RelDiff values this normalization prob-
lem is alleviated due to the natural limitation of the range. From Figure 3 it
can be concluded, that for RelDiff a compensation for variance is less critical.
In this experimental setting the variances differ by a factor of 3 in RelDiff.
Log Ratio variances differ by factor of more than 12 in the same experiment!
Proportionality: The relationship between LogRatio values and RelDiff
values is considered. The LogRatio values are almost directly proportional in
the range of [-2;2]. A derivation of this can be obtained using approximations
for logarithms. In practice this can be seen in Figure 3 for the DiauxicShift
data. Within a range of 1/4 to 4 fold of gene expression the values of LogRa-
tio are practically proportional to RelDiff values. Outside of this range the
RelDiff values become over proportionally smaller in absolute values. This
means that all subsequent calculations that rely on the relative differences
of LogRatio values are still possible with RelDiff values. Differences in the
analysis can only be expected, if the absolute values of extremely over- or
under expression are important. The limitation to the range [-2 2] is mostly
advantageous. In many publications gene expressions are depicted as color
coded bars. For RelDiff data it is possible to assign a definite range. Extreme
values are fixed to 2 for RelDiff. From the theoretical considerations above,
it is also possible assign the range [-0.67 0.67] to a color indicating “hardly a
differential expressed gene”. A de facto convention for this color is yellow.
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4 Stabilization of variance

Many researchers report, that the variance of gene intensities varies systemat-
ically with intensity. It is observed, that the variance reduces with increasing
intensity. It is also noted that this phenomenon is a nonlinear function of log
intensities. Complex mathematical transformations such as a combination of
logarithms, squaring and squarerooting or synonymously the application of
arcsinh have been proposed. We believe, however, that this is an effect artifi-
cially introduced by using LogRatio. Lee and O’Connell have estimated the
variance at each expression level using local estimation methods (Parmigiani
pp 163-184). They found that the variance Var(I) decays exponential with
logarithmic intensity log(I). This means Var(I) = exp(-c log(I)), for some
positive constant c. With a small algebraic calculation this gives:

Var(I) = e−c log(I) =
(
elog(I)

)−c

= I−c

Assume an N(0,s) distributed measurement error for the intensities. Let
R’ and G’ be the true measurements. The measured intensities R and G are
then R = R’ + e1 resp. G = G’ + e2, with e1 and e2 drawn from N(0,s).
We have simulated such measurements for 500 true measurements at each
intensity level within the range 0.01 to 50. Figure 4 shows the so called MA
plot. This plots the difference of the logarithmic intensities vs. their sums.

(a) MA plot of simulated data (b) RelDiff vs. true values

Fig. 4. Both (a) and (b) with an additive error of constant variance.

As it can be seen, the variance of this data depends nonlinearly on the
intensity values. The similarity of this figure with published MA plots from
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measured data is striking. The nonlinear decreasing dispersion of the mea-
surements may therefore be explained by the application of the logarithm.
Plotting the RelDiff values vs. the true intensities shows the I−c obtained
by the calculation above (see Figure 4). This is expected from the definition
of RelDiff. For small intensities RelDiff is dominated by the denumerator, in
particular by the inverse of the measurement error drawn from N(0,s).

5 Summary

This paper investigates the log ratio calculations for DNA array experiments
using two color dyes. The calculation of a logarithm of the ratio of the two
color intensities has several disadvantages. The numerical stability is ques-
tionable for measurement errors and for small intensities. It has also been
shown that rounding errors are important for LogRatio calculations. Both
effects have been demonstrated to play a critical role for published data. As
an alternative to LogRatios the calculation of relative differences (RelDiff) is
proposed. These values are directly proportional to LogRatio values when the
two color intensities are about identical. In contrast to LogRatio, however,
RelDiff values are bound. This is a big advantage if similarities on genes are
calculated. For logarithms on intensities a nonlinear correlation of variance to
intensities has been observed. Complicated variance stabilizing transforma-
tions have been proposed to compensate this. As shown here, this effect can
also be explained by an additive error of constant variance for the intensity
measurements. The nonlinearity is then produced mainly by the logarithmic
transformation. The numerical stability for RelRiff is much better than for
LogRatio. For small and almost equal intensities in both colors the error
of RelDiff is finite and can be calculated precisely. The error for LogRatio
may, however, become arbitrarily big for such measurements. Rounding has
a much smaller influence on the precision of the obtained values for RelDiff
than for LogRatios. Finally the values of RelDiff have a direct interpreta-
tion while LogRatio values require the knowledge of binary logarithms. In
summary this paper shows that RelDiff is much better for DNA microarray
analysis than LogRatio calculation.
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Abstract. A novel method, PhyNav, is introduced to reconstruct the evolutionary
relationship among contemporary species based on their genetic data. The key idea
is the definition of the so-called minimal k-distance subset which contains most
of the relevant phylogenetic information from the whole dataset. For this reduced
subset the subtree is created faster and serves as a scaffold to construct the full tree.
Because many minimal subsets exist the procedure is repeated several times and
the best tree with respect to some optimality criterion is considered as the inferred
phylogenetic tree. PhyNav gives encouraging results compared to other programs
on both simulated and real datasets.

A program to reconstruct phylogenetic trees based on DNA or amino acid based
is available (http://www.bi.uni-duesseldorf.de/software/phynav/).

1 Introduction

One objective in phylogenetic analysis is the reconstruction of the evolu-
tionary relationship among contemporary species based on their genetic in-
formation. The relationship is described by an unrooted bifurcating tree on
which the leaves represent contemporary species and the internal nodes can
be thought of as speciation events. The total number of unrooted bifurcating
trees with n ≥ 3 leaves is

∏n
i=3 (2i − 5) (cf. Felsenstein (1978)). This number

increases rapidly with n. For n = 55 sequences the number of trees exceeds
the estimate of 1081 atoms in the known universe.

Commonly used tree reconstruction methods can be classified into three
groups: (1) Minimum evolution methods (e.g., Rzhetsky and Nei (1993)),
(2) maximum parsimony methods (e.g., Fitch (1971)), and (3) maximum
likelihood methods (e.g., Felsenstein (1981)). Among these the maximum
likelihood (ML) methods are statistically well founded and tend to give better
results. An overview is given in Swofford et al. (1996) and Felsenstein (2004).

Here, we propose a new heuristic tree search strategy, which reduces the
computational burden. Details how to construct minimal k-distance subsets
are given in section 2. In section 3 we will describe the PhyNav algorithm
and how it elucidates the landscape of possible optimal trees. The algorithm
is then applied to simulated as well as biological data (Section 4).
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Fig. 1. An unrooted bifurcating tree of 6 species {A, B, C, D, E, F}. The bold tree
is the scaffold with minimal 2-distance subset {A, C, D, E}.

2 Minimal k-distance subsets

First, we introduce the concept of k-distance representatives. A sequence s is
said to be a k-distance representative for a sequence s′ in a tree T if and only
if their topological distance d(s, s′) in T , that is the number of branches on
the path from s to s′, is smaller or equal to k ≥ 0. The smaller the value of
k is the better a sequence s represents sequence s′, and vice versa.

The k-distance representative sequence concept is now used to introduce
minimal k-distance subsets. A subset Sk of sequences is called a minimal
k-distance subset of an n-sequence set S if and only if the following two
conditions hold:

1. For each sequence s ∈ S, there exists a sequence s′ ∈ Sk such that the
sequence s′ is a k-distance representative for the sequence s.

2. If we remove any sequence s′ from Sk, Sk will violate the first condition.
That means, the subset cannot be reduced any further.

The idea behind minimal k-distance subsets is that the phylogenetic infor-
mation in the sequence subset Sk represents phylogenetic information from
the whole set. k = 3 is a good choice according to our experience because
it prevents the deletion of too many sequences as well as the removal of
sequences that provide information to bridge long paths between distantly
related subtrees.

A sequence s̄ �∈ Sk is then called a remaining sequence. The set Sk := S\Sk

of all such sequences, which remain to be added to Sk to obtain the full set
S, is called remaining set.

Since |Sk| ≤ |S|, the subtree Tk from subset Sk can usually be constructed
in less time than the full tree. This subtree is used as a scaffold to build a
full tree containing all sequences by adding all sequences s̄ ∈ Sk.

For example, sequences A and B in the tree in Figure 1 are 2-distance rep-
resentative of each other, as are E and F . The sequence subsets {A,C,D,E},
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{A,C,D, F}, {B,C,D,E} and {B,C,D, F} are minimal 2-distance subsets
of the full set {A,B,C,D,E, F}.

3 The PhyNav algorithm

The Navigator algorithm is a three-step procedure: (1) the Initial step, (2) the
Navigator step, and (3) the Disembarking step. We could use the algorithm
with any objective function, e.g. maximum parsimony, maximum likelihood,
to create a list of possible optimal trees. According to the objective function
the best tree found is taken as the inferred phylogeny. In the PhyNav pro-
gram we use the maximum likelihood principle because of its better accuracy.

Initial step: We employ some fast tree reconstruction method to create
an initial tree. To that end, PhyNav uses the BIONJ (Gascuel (1997)) an
improved Neighbor-Joining algorithm (Saitou and Nei (1987)) with the pair-
wise evolutionary distances and a fast nearest neighbor interchange (NNI)
operation as described by Guindon and Gascuel (2003) to create the initial
tree. This tree is then called the current best tree and denoted as Tbest. Tbest

is used to construct the k-distance subsets.
Navigator step: Finds a minimal k-distance subset Sk and constructs

the corresponding subtree Tk. Note, that there exist many minimal k-distance
subsets and each can be determined in time of O(n2) (details are left out due
to limited space). From the minimal k-distance subset Sk the correspond-
ing subtree Tk could be created by several tree reconstruction methods. In
PhyNav, Tk is created by optimizing the subtree Tsub of Tbest induced by
the leaves in Sk using NNI operations.

Disembarking step: Constructs the whole tree T based on the scaffold
tree Tk using the k-distance information. To this end, PhyNav inserts the
remaining sequences into the scaffold as follows: (1) assign T by Tk; (2) insert
each remaining sequence s̄ ∈ Sk into an external branch e of T such that the
corresponding leaf se adjacent to e is a k-distance representative for s̄. If there
are more than one external branches possible one branch is selected randomly;
(3) apply NNI operations to T to compensate for incorrect placements. The
new resulting whole tree is called intermediate tree. If the intermediate tree
T has a better score than the current best tree Tbest, replace Tbest by T .

It cannot be guaranteed that Tk determined in the Navigator step is the
optimal tree for Sk due to the use of heuristics. Even if Tk is the best tree it
does not guarantee that tree T will be the optimal full tree. Hence, the Navi-
gator and Disembarking steps are repeated several times. Then the program
stops and the best tree Tbest is considered as the final phylogenetic n-tree.

4 The efficiency of PhyNav

To measure the accuracy and the time-efficiency of PhyNav we reconstructed
phylogenetic trees from simulated as well as biological datasets. The results
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are compared to the results of other programs, in particular, Weighbor (Bruno
et al. (2000); version 1.2) and PHYML (Guindon and Gascuel (2003); version
2.1).

Computing times were measured on a Linux PC Cluster with 2.0 GHz
CPU and 512MB RAM.

4.1 Simulated datasets

Analysis

To evaluate the accuracy we performed simulations. To simulate realistic
datasets we performed the simulations on a tree topology reconstructed from
a real dataset. To that end an elongation factor (EF-1α) dataset with 43
sequences was used. The dataset as well as the tree was obtained from Tree-
Base (http://www.treebase.org, accession number S606, matrix accession
number M932). The branch lengths of the tree topology were inferred using
the TREE-PUZZLE package (Strimmer and von Haeseler (1996), Schmidt
et al. (2002); version 5.1).

Based on that tree topology datasets were simulated using Seq-Gen (Ram-
baut and Grassly (1997); version 1.2.6) assuming the Kimura 2-parameter
model with an transition:transversion ratio of 2.0 (Kimura (1980)). 1,000
datasets each were simulated with sequence lengths of 700 and 1000 bp.

The trees for simulated data sets were reconstructed using PhyNav,
Weighbor (Bruno et al. (2000); version 1.2) and PHYML (Guindon and Gas-
cuel (2003); version 2.1).

All programs were run with default options. The evolutionary model and
its parameters were set to the simulation parameters. The PhyNav options
were set to 5 repetitions and k = 3.

The results of the tree reconstructions were compared using two different
methods. First the percentage of correctly reconstructed tree topologies was
derived for each program and sequence length. To measure the variability of
the results for each program, the Robinson-Foulds distance (Robinson and
Foulds (1981)) was computed from each tree to the ’true tree’ and the aver-
age was taken for each program and sequence length. The Robinson-Foulds
distance is the number of splits (bipartitions) in the two trees, which occur
in only one of the trees but not in the other. If the trees are identical their
distance is zero.

Results for the simulated datasets

Tables 1(a) and 1(b) display the results for PhyNav, PHYML, and Weigh-
bor. Both tables show that Weighbor (Table 1(c)) is out-performed by both
PHYML and PhyNav. PHYML and PhyNav perform similarly well, both
in the percentage of correctly reconstructed trees as well as in their average
Robinson-Foulds distance to the ’true tree’. However, PhyNav shows slightly
better values for all analyses.
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Table 1. Results for the simulated datasets: (a) percentage of correctly recon-
structed trees, (b) average Robinson-Foulds distance between the ’true tree’ and
the reconstructed trees, and (c) average runtime of tree reconstruction (1000 sim-
ulations per parameter setting).

(a) Percentage of correct trees.

Weighbor PHYML PhyNav

700 bp 2.4 12.3 13.1

1000 bp 9.6 33.7 33.9

(b) Robinson-Foulds distance.

Weighbor PHYML PhyNav

700 bp 7.57 4.09 3.96

1000 bp 4.62 2.11 2.07

(c) Average runtime.

Weighbor PHYML PhyNav

700 bp 3s 7s 52s

1000 bp 4s 9s 66s

4.2 Biological datasets

Analysis

The PhyNav algorithm was applied to large biological datasets to test its
efficiency on real datasets. Three datasets have been obtained from the PAN-
DIT database version 7.6 (http://www.ebi.ac.uk/goldman-srv/pandit/;
Whelan et al. (2003)). The first dataset consists of 76 Glyceraldehyde 3-
phosphate dehydrogenase sequences with an alignment length of 633 bp
(PF00044), the second of 105 sequences from the ATP synthase alpha/beta
family (1821 bp, PF00006), and the last of 193 sequences with Calporin ho-
mology with an alignment of 465 bp (PF00307).

Since the true tree is usually not known for real datasets, the Robinson-
Foulds distance cannot be used to measure the efficiency of algorithms. There-
fore the likelihood value of the reconstructed trees is used to compare the
methods.

Since Weighbor does not use likelihoods we only compare PHYML and
PhyNav from the methods above. Note, that Weighbor already was out-
performed in the simulation study (cf. 4.1). Additionally we wanted to use
METAPIGA (Lemmon and Milinkovitch (2002)), another method for large
datasets based on a genetic algorithm. Unfortunately the program crashed
on all three datasets. Thus, only PHYML and PhyNav were used for com-
parison.



PhyNav 391

Table 2. Results from the biological datasets of 76 Glyceraldehyde 3-phosphate
dehydrogenase sequences, of ATP synthase alpha/beta (105 seqs.), and of 193 Cal-
porin homologs: (a) Log-likelihood values of the best reconstructed trees and (b)
Runtimes of tree reconstruction consumed by the different methods. The PhyNav
column presents the runtime of a single repetition.

(a) Log-likelihood values.

sequences length PHYML PhyNav

76 633 bp -32133 -32094

105 1821 bp -88975 -88632

193 465 bp -64919 -64794

(b) Runtimes.

sequences length PHYML PhyNav
runtime repetitions (single repetition)

76 633 bp 40s 2529s 70 36s

105 1821 bp 117s 14413s 100 144s

193 465 bp 101s 22306s 200 116s

Results for the biological datasets

As explained above we use the likelihood values of the reconstructed trees
to compare the efficiency of the two programs. According to the maximum
likelihood framework (cf. for example Felsenstein (1981)) the tree with the
higher likelihood value represents the more likely tree.

The log-likelihood values are given in Table 2(a). These results show that
PhyNav always find a tree with a higher likelihood. The increase of the log
likelihood ranged from 39 up to 343 units.

However, as Table 2(b) shows, the price to pay for better likelihood trees
is an increase in computing time. Each single repetition in the algorithm has
a time consumption comparable to the one run of PHYML.

5 Discussion and conclusion

We propose a new search strategy to optimize the objective function for large
phylogenies. Starting from an initial tree the PhyNav method uses heuristics
to reduce the number of sequences, to reconstruct scaffold trees, and to add
again the remaining sequences. During these steps the constructed trees are
optimized using fast NNI operations.

The suggested method produced better results on all dataset compared to
Weighbor and PHYML. The tradeoff for better accuracy is of course the run-
time. While Weighbor outperformed PHYML and PhyNav with respected
to the runtime on the simulated datasets, PHYML is 7.5-fold faster than
PhyNav. However, spending more time might be well acceptable, because
the quality of the results increases.
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On the biological datasets PhyNav showed much longer runtimes com-
pared to PHYML. Nevertheless, the substantial increase of the likelihoods
might well justify that this effort is worthwhile, since it is still far from the
time consumptions demanded by classical ML methods like DNAML (Felsen-
stein (1993)).

The mechanism to add the remaining sequences of Sk to Tk cannot be
expected to give the most accurate results. However, our way is simple and
performs efficiently, especially since the NNI operations seem to well remove
unfortunate placements during the construction of the full trees T . Addition-
ally, it might be worth trying other algorithms like Important Quartet Puzzle
(Vinh and von Haeseler (2004)) to add the remaing sequences.

PhyNav can be applied to large dataset. We analyzed an alignment of
1146 Ankyrin amino acid sequences (PF00023) downloaded from the PAN-
DIT database version 12.0 (Whelan et al. (2003)). The PhyNav options were
set to 1000 repetitions and k = 3 and the WAG model (Whelan and Goldman
(2001)) was applied. PhyNav found a best tree with -74665 log likelihood
and needed about 15 minutes per repitition. The whole computation took
about 10 days.
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Abstract. The behavior of how individuals select and read news depends on the
underlying media for reproduction. Today, the use of news websites is increasing.
Online readers usually have to click on abstracts or headlines in order to see full
articles. This kind of selection of information is less pleasant than in traditional
newspapers where glancing over the whole layout of double pages is possible. Per-
sonalization is a possible solution for this article selection problem. So far, most
types of personalization are controlled by website owners. In our work, we discuss
design aspects and empirical results of our personal recommendation system for
news websites, which uses text classification techniques.

1 Introduction

The internet can be seen as an enabling technology for the development of
innovative product ideas. File sharing services or online news papers are well-
known examples. One handicap of web sites in general is the necessity to nav-
igate through them by following hyperlinks - it is, e.g., not possible to quickly
run over the pages of an online newspaper - in contrast to printed media. On
the hyperlinked internet, information selection is therefore more “expensive”
in terms of time required as every click results in a transfer delay. A common
approach for this information selection problem is personalization. Mobasher
et al. (1999) describe web personalization as “any action that makes the
web experience of a user personalized to the user’s taste”. In Gaul et al.
(2002) personalization is used as important feature for the characterization
of recommender system output. Personalization methods can be categorized,
e.g., as personalization by information filtering (e.g., on Lycos.com, regis-
tered users can choose their interests from given categories; on further visits,
only information from the selected categories is displayed) and personaliza-
tion by information supplementing (e.g., Amazon.com enhances the detail
view pages of books with recommendations of additional/alternative books)
where additional context specific information is provided. These personal-
ization methods can use well structured input data from databases but are
solely offered by website operators for their own websites. As not every web-
site offers personalization, a limitation exists. If someone wishes personalized
assistance independent of a special website, the help of browsing agents is
an alternative. These agents can solely rely on webpages, as databases may
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not exist or are not accessible by the public. As long as website management
does not apply robot detection technologies (cp. Bomhardt et al. (2004)) in
order to prevent robots from accessing their websites, browsing agents can
be used.

Browsing agents are well-known from the literature (Middleton (2001)).
One example is WebWatcher (Joachims et al. (1996)) which is a tour guide
for the world wide web and assists users in browsing the www. It learns
from the experiences of multiple users and given keywords using term fre-
quency/inverse document frequency (TF-IDF) similarity measures. Letizia
(Lieberman (1995)) is an agent that monitors user behavior. During idle
times, Letizia autonomously and concurrently explores links available at the
user’s current position and tries to anticipate items of interest which are
displayed upon request. Letizia uses a set of heuristics and TF similarities.
While WebWatcher provides tours to many people and learns to become a
specialist with respect to a particular web site, Personal WebWatcher (PWW)
(Mladenić (2001)) accompanies a single user and considers her/his individ-
ual interests. It doesn’t ask the user for any keywords or opinions about
pages but instead solely records the addresses of pages requested by the user
and highlights interesting hyperlinks. During a learning phase, the requested
pages are analyzed and a model is built. For speed reasons (Mladenić (1999)),
PWW uses the anchor text of a hyperlink and the text near by the hyper-
link as input for prediction. The agent NewsWeeder (Lang (1995)) is spe-
cialized with respect to Usenet newsgroups. It is implemented as web-based
newsgroup client which stores user ratings of articles, learns preferences, and
builds personalized news collections. It combines content-based filtering and
collaborative filtering while using TF-IDF similarities. WebMate (Chen and
Sycara (1997)) is a personal agent for browsing and searching. WebMate au-
tomatically sorts documents into categories and tracks interesting ones per
category, thus building a domain-specific knowledge base. A document is rec-
ommended if it is “close enough” to an interesting reference document of the
detected document category. WebMate can spider a user-defined list or URLs
to compile a personal newspaper or it can feed search engines with several
top key words of the current profile and rate pages found. WebMate also uses
TF-IDF similarities.

As we are not aware of any browsing agent that is specialized with re-
spect to news websites, uses support vector machines as prediction method,
is designed as a single user system, and is silently augmenting browsing expe-
rience, our implementation NewsRec (News Recommender) will be described
in the following. In the next section requirements, system design, and imple-
mentation details of NewsRec are discussed. The used classification methods
and their evaluation measures are described in section 3. Empirical results
are presented in section 4. Our findings are summarized in section 5.
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2 Requirements, system design, and implementation
details

A personal recommendation system for news websites should be compati-
ble with HTML-based news websites, should be usable with any browser,
should contain a user-friendly interface that annotates hyperlinks with its
recommendations instead of requiring explicit requests for recommendations,
should contain domain-specific state-of-the-art prediction models, should be
designed for single user application, and should not lead to noticeable delay
during web browsing. NewsRec fulfills all mentioned aspects.

NewsRec is implemented as HTTP proxy server. All HTTP requests and
responses pass through the proxy server which manages communication be-
tween web browser and internet. The interaction between NewsRec and the
user (article labeling, requesting model updates) is realized via additional
embedded HTML buttons. The user configurates desired hosts for which the
recommendation engine should be used. If a webpage from such a website is
requested, it is processed by NewsRec’s recommendation engine. Otherwise,
the request is forwarded to the internet. NewsRec’s recommendation engine
loads a requested webpage, searches for linked documents, requests and rates
the linked documents, marks the links within the original webpage as inter-
esting (+) or uninteresting (-), adds interaction buttons, and sends the page
back to the web browser.

As news websites can contain many links sequentially requesting and rat-
ing them would be too slow. We addressed this speed problem by using a
thread pool which issues many requests in parallel. This approach overcomes
the time consuming summation of transfer delays and timeouts that occur
if pages are requested sequentially. Another important implementation de-
tail is the usage of a recommendation cache. It stores the rating of every
examined webpage. As several webpages within one website can link to the
same page, this reduces the number of pages that have to be investigated.
Webpages are represented using the common bag-of-words approach. Here,
memory saving data structures have to be taken into consideration in or-
der to avoid time-consuming memory swapping. A dictionary maps between
words and word IDs. These mappings are used frequently. As dictionaries can
easily contain more than 50000 words, fast and efficient data structures are
required. We selected a Ternary Tree (Bentley/Sedgewick (1997)) as dictio-
nary and slightly modified it in order to meet our requirements. The thread
pool together with the recommendation cache, memory saving data struc-
tures, and the fast dictonary structure lead to significant performance gains
that enabled the consideration of the contents of linked webpages. It should
be noted that the recommendation cache has to be cleared, if the prediction
model is updated.
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3 Website classification and evaluation measures

A webpage is written in HTML and consists of common text, surrounded
by HTML tags. The layout of a usual news webpage contains fixed elements
like logos, advertisements, components for navigation, and the text of the
news article. Our basic idea is to transform a webpage into common text, on
which well known text classification algorithms can be applied. We extract the
relevant text - that is the part of the webpage that contains the article text -
remove HTML tags like <B> and substitute or remove HTML entities like
&uuml; &bpsp;. Now, we have raw text for which appropriate transformations
are required. The following notation is used:

n number of documents
di document i in text representation, i = 1...n
m number of distinct words contained in all documents

di (i = 1...n)
wj unique word j, j = 1...m
TF (wj , di) number of occurrences of word wj in document di

(term frequency)
BIN(wj , di) = 1, if word wj is contained in document di, 0 otherwise

(binary)
IDFj = log(

n∑n
i=1 BIN(wj , di)

)

(inverse document frequency)
Rj = log(n) +

∑n
i=1

TF (wj ,di)�
n
g=1 TF (wj ,dg) log(

TF (wj ,di)�
n
g=1 TF (wj ,dg))

(redundancy)

A document di can be represented as document vector
−→
d i = (dij), where

each component dij of
−→
d i either contains TF (wj , di) (TF-notation), or

log(1 + TF (wj , di)) (LOG-notation), or BIN(wj , di) (BIN-notation). This
first step is called frequency transformation. Term weighting is the next step,
where each dij of the document vector is multiplied by a weight factor. This
factor can be 1 (NOWEIGHTS-notation), IDFj (IDF-notation) or Rj (RED-
notation). The last step comprises the normalization of the document vec-
tor

−→
d i. It can be skipped (NONE-notation), or 1�

j=1..m dij
(L1-notation), or

1√�
j=1..m d2

ij

(L2-notation) can be used. A selection of one frequency trans-

formation, one term weighting, and one normalization scheme describes a
preprocessing setting. We have not implemented frequency transformation
via BIN as it has lead to poor results in the experiments performed by Coo-
ley (1999). Weighting via RED is expensive in terms of resource usage and,
according to Paaß et al. (2004), the advantage of redundancy weighting via
IDF seems to be greater for larger documents, thus, we have not included the
RED weighting scheme. We selected support vector machines (SVM) (Boser
et al. (1992)) for prediction, as different researchers have found out that
SVMs are well suited for text classification and outperform other methods
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like naive bayes classifiers, C4.5, etc. (Joachims (2002), Dumais et al. (1998),
Cooley (1999), Sebastiani (2002)).

Recall, precision, and the measure F1 (F1 = 2∗recall∗precision
recall+precision ) were se-

lected as common evaluation measures from information retrieval. Recall is
defined as the number of correctly predicted interesting documents divided by
the total number of interesting documents. Precision is defined as the number
of correctly predicted interesting documents divided by the total number of
predicted interesting documents. Good recall values can be easily achieved in
expense of poor precision values (think of predicting all documents as inter-
esting) and vice versa. This is why the F1-metric is often used in practice.
It is a balanced measure and is dominated by the smaller of the recall and
precision values.

4 Empirical results

NewsRec was tested on the Heise news ticker (HEISE), which is maintained
by the German computer magazine c’t. As a first step, one of the authors
used the news website during a period of 7 weeks and read and labeled 1265
articles. To avoid self fulfilling prophecies, the recommendation engine was
deactivated during this time. 27% of the articles were indicated as interesting
by personal inspection. The next step was the simulation and evaluation of a
real-world scenario. We assume that a common user labels a certain number
of articles and is then interested in the valuation of the next upcoming ar-
ticles (e.g., based on achieved recall and precision values). Thus, we trained
successive prediction models. The first model was trained on the first 50 doc-
uments and evaluated on the next 50 documents. The number of training
documents was increased by the just evaluated 50 documents for every new
model as long as there remained 50 unevaluated documents for the next ap-
plication step. The achieved recall and precision values were micro-averaged
in order to receive an overall prediction measure. This evaluation procedure
was repeated for each preprocessing setting.

For our experiments, we fell back on the SVM implementation SVMlight
by Joachims (1999) and used the linear kernel. We are aware of the fact that
slightly better models based on the radial basis function (rbf) kernel (cp.
Paaß et al. (2004) and Joachims (2002)) may exist, but rbf models require
extensive fine tuning of model parameters. For an automatic system like
NewsRec, the linear kernel turned out to be a good choice as it is less sensitive
to parameter selection than the rbf kernel. Another advantage of the linear
kernel is its speed.

Table 1 summarizes our findings. TF-IDF-L2 was the optimal preprocess-
ing setting in terms of F1 and recall. Users which prefer high precision could
select TF-IDF-NONE.

Going into more detail, table 2 contains the detailed recall and precision
values for the best three preprocessing settings in terms of F1. Here, one can
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see that model selection is not trivial, e.g., TF-NOWEIGHTS-L2 and TF-
IDF-L2 achieve the same recall values, if trained on the first 50 documents. If
trained on the first 100 documents, TF-NOWEIGHTS-L2 outperforms TF-
IDF-L2 in terms of recall. Taking a look at the next application step with
150 training documents, TF-NOWEIGHTS-L2, LOG-IDF-L2, and TF-IDF-
L2 achieve the same recall, but TF-NOWEIGHTS-L2 is outperformed in
terms of precision by the two other preprocessing settings.

Another important aspect is the fact that recall and precision values are
not constantly increasing but are oscillating up and down, instead. This is a
result of the fact that articles on new subjects may come up. Notice, e.g., that
the models built on 550 training documents altogether perform very poor.
TF-NOWEIGHTS-L2 did not valuate any document as interesting (although
nine where contained within the evaluation set) and therefore achieved 0%
recall and 100% precision, because no uninteresting document was labeled
interesting. LOG-IDF-L2 and TF-IDF-L2 valuated some documents as inter-
esting which indeed were uninteresting which lead to 0% recall and 0% preci-
sion. For the 550 training documents, the best prediction quality was achieved
with the LOG-NOWEIGHTS-NONE preprocessing setting (not contained in
the table): 11,1% recall, 16,6% precision and 0.13 for F1. On the other hand,
there exist models that achieve 100% recall (LOG-IDF-L2, 650 training docu-
ments) or 100% precision (TF-NOWEIGHTS-L2, 1000 training documents).
Here, one can see that model selection on the basis of table 2 is a difficult
task. Thus, we recommend TF-IDF-L2 according to the overall performance
mentioned in table 1.

5 Conclusions and outlook

NewsRec is easy to use and enriches conventional browsing by augmented
browsing with real add-on value. The results of similar tools - if reported -
cannot be compared with the ones of NewsRec, as the approaches vary
and so do the datasets. Nevertheless, we report results concerning WebMate
and NewsWeeder to mediate a feeling for what can be expected. WebMate
achieved 31% overall precision and NewsWeeder achieved 44% (dataset a)
and 59% (dataset b) precision for the highest rated positive 10% of articles.
Recall was not reported for these agents. If we use these precision values as
benchmarks, then NewsRec - which achieved 49.2% overall recall and 55%
overall precision - seems to compete favorable. Our results fall within a rea-
sonable range and were confirmed on another dataset. One problem in the
area just mentioned is the requirement of explicit user feedback. Other re-
searchers therefore use implicit feedback (Mladenić (1999)). We think that
implicit feedback alone is a weak indicator. Instead, we will address this prob-
lem in a forthcoming paper by using a hybrid (implicit and explicit) feedback
approach.
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Table 1. Micro-averaged prediction quality for different preprocessing settings.
Values in parenthesis denote the best results for a single set of evaluation documents

Preprocessing setting Overall Recall Overall Precision Overall F1

TF-NOWEIGHTS-NONE 45.01% (80%) 50.01% (85.71%) 0.4738 (0.70)
TF-NOWEIGHTS-L1 12.86% (100%) 40.00% (54%) 0.1946 (0.70)
TF-NOWEIGHTS-L2 48.55% (81%) 49.18% (100%) 0.4886(0.74)
LOG-NOWEIGHTS-NONE 45.98% (80%) 44.96% (82%) 0.4546 (0.67)
LOG-NOWEIGHTS-L1 14.47% (100%) 43.27% (100%) 0.2169 (0.71)
LOG-NOWEIGHTS-L2 47.27% (82%) 48.68% (100%) 0.4796 (0.78)
LOG-IDF-NONE 37.94% (100%) 55.14% (100%) 0.4495 (0.71)
LOG-IDF-L1 21.22% (100%) 50.77% (100%) 0.2993 (0.70)
LOG-IDF-L2 44.69% (100%) 52.85% (100%) 0.4843 (0.71)
TF-IDF-NONE 37.62% (80%) 60.62% (86%) 0.4643 (0.80)
TF-IDF-L1 12.86% (100%) 40.00% (54%) 0.1946 (0.70)
TF-IDF-L2 49.20% (82%) 55.04% (89%) 0.5196 (0.73)

Table 2. Detailed recall and precision values for the best three preprocessing set-
tings

Number of TF-NOWEIGHTS-L2 LOG-IDF-L2 TF-IDF-L2
training

documents Recall Precision F1 Recall Precision F1 Recall Precision F1

50 81.48% 66.67% 0.73 55.56% 83.33% 0.67 81.48% 64.71% 0.72
100 61.54% 24.24% 0.35 46.15% 35.29% 0.40 53.85% 28.00% 0.37
150 46.15% 33.33% 0.39 46.15% 46.15% 0.46 46.15% 46.15% 0.46
200 56.25% 45.00% 0.50 37.50% 60.00% 0.46 56.25% 60.00% 0.58
250 64.29% 39.13% 0.49 42.86% 37.50% 0.40 57.14% 40.00% 0.47
300 62.50% 55.56% 0.59 37.50% 60.00% 0.46 56.25% 60.00% 0.58
350 18.18% 20.00% 0.19 9.09% 16.67% 0.12 9.09% 20.00% 0.12
400 50.00% 69.23% 0.58 55.56% 55.56% 0.56 66.67% 66.67% 0.67
450 57.14% 47.06% 0.52 57.14% 53.33% 0.55 57.14% 61.54% 0.59
500 75.00% 21.43% 0.33 25.00% 10.00% 0.14 50.00% 22.22% 0.31
550 0.00% 100.00% 0.00 0.00% 0.00% - 0.00% 0.00% -
600 42.86% 23.08% 0.30 42.86% 27.27% 0.33 42.86% 37.50% 0.40
650 80.00% 66.67% 0.73 100.00% 55.56% 0.71 80.00% 66.67% 0.73
700 53.85% 77.78% 0.64 46.15% 60.00% 0.52 46.15% 75.00% 0.57
750 55.56% 45.45% 0.50 66.67% 50.00% 0.57 44.44% 44.44% 0.44
800 15.38% 33.33% 0.21 23.08% 42.86% 0.30 7.69% 25.00% 0.12
850 8.33% 50.00% 0.14 41.67% 83.33% 0.56 41.67% 83.33% 0.56
900 25.00% 40.00% 0.31 25.00% 40.00% 0.31 25.00% 40.00% 0.31
950 35.71% 71.43% 0.48 35.71% 71.43% 0.48 35.71% 83.33% 0.50

1000 53.33% 100.00% 0.70 46.67% 77.78% 0.58 53.33% 88.89% 0.67
1050 23.81% 62.50% 0.34 38.10% 100.00% 0.55 38.10% 80.00% 0.52
1100 52.63% 83.33% 0.65 57.89% 73.33% 0.65 52.63% 76.92% 0.63
1150 55.56% 55.56% 0.56 55.56% 45.45% 0.50 44.44% 36.36% 0.40
1200 72.73% 66.67% 0.70 72.73% 53.33% 0.62 81.82% 64.29% 0.72



NewsRec, a Personal Recommendation System for News Websites 401

References

BENTLEY, J. and SEDGEWICK, R. (1997): Fast Algorithms for Sorting and
Searching Strings.
http: // www. cs. princeton. edu/∼rs/ strings/ paper. pdf

BOMHARDT, C., GAUL, W. and SCHMIDT-THIEME, L. (2004): Web Robot
Detection - Preprocessing Web Logfiles for Robot Detection, to appear.

BOSER, B., GUYON, I. and VAPNIK, V. (1992): A Training Algorithm for Opti-
mal Margin Classifiers.
http: // citeseer. nj. nec. com/ boser92training. html

CHEN, L. and SYCARA, K. (1997): WebMate: A Personal Agent for Browsing and
Searching. http: // citeseer. nj. nec. com/ chen98webmate. html

COOLEY, R. (1999): Classification of News Stories Using Support Vector Machines.
http: // citeseer. nj. nec. com/ cooley99classification. html

DUMAIS, S., PLAT, J., HECKERMAN, D. and SAHAMI, M. (1998): Inductive
Learning Algorithms and Representation for Text Categorization.
http: // robotics. stanford. edu/ users/ sahami/ papers-dir/ cikm98. pdf

GAUL, W., GEYER-SCHULZ, A., HAHSLER, M. and SCHMIDT-THIEME, L.
(2002): eMarketting mittels Recommendersystemen. MARKETING ZFP, 24.
Jg. Spezialausgabe “E-Marketing” 2002, 47–55.

HEISE: Heise News Ticker, http://www.heise.de/ct
JOACHIMS, T. (1999): Making Large-Scale SVM Learning Practical. Advances

in Kernel Methods. In: B. Schölkopf, C. Burges and A. Smola (Ed.): Support
Vector Learning, MIT-Press.

JOACHIMS, T. (2002): Learning to Classify Text Using Support Vector Machines.
Kluwer Academic Publishers

JOACHIMS, T., FREITAG, D. and MITCHELL, T. (1996): WebWatcher: A Tour
Guide for the World Wide Web.
http: // citeseer. nj. nec. com/ joachims96webwatcher. html

LANG, K. (1995): NewsWeeder: Learning to Filter Netnews.
http: // citeseer. nj. nec. com/ lang95newsweeder. html

LIEBERMAN, H. (1995): Letizia: An Agent That Assists Web Browsing.
http: // lieber. www. media. mit. edu/ people/ lieber/ Lieberary/

Letizia/ Letizia-AAAI/ Letizia. ps
MIDDLETON, S. (2001): Interface Agents: A Review of the Field. Technical Report

Number: ECSTR-IAM01-001.
http: // www. ecs. soton. ac. uk/∼sem99r/ agent-survey. pdf
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Clustering of Large Document Sets with

Restricted Random Walks on Usage Histories

Markus Franke and Anke Thede

Institut für Informationswirtschaft und -management
Universität Karlsruhe (TH), 76128 Karlsruhe, Germany

Abstract. Due to their time complexity, conventional clustering methods often
cannot cope with large data sets like bibliographic data in a scientific library. We
will present a method for clustering library documents according to usage histories
that is based on the exploration of object sets using restricted random walks.

We will show that, given the particularities of the data, the time complexity of
the algorithm is linear. For our application, the algorithm has proven to work well
with more than one million objects, from the point of view of efficiency as well as
with respect to cluster quality.

1 Motivation

15 million documents – how to find similar ones? This is the question when
designing an automated indexing system in a scientific library like the Uni-
versitätsbibliothek at Karlsruhe. Another question should be answered first:
How exactly can similarities between documents be measured?

At Karlsruhe, a system for giving recommendations on books is operative
(Geyer-Schulz et al. (2003)) that is based on applying Ehrenberg’s (1988)
repeat-buying theory to the purchase histories of documents. These purchase
histories describe which combinations of books have been inspected by users
of the OPAC web interface in one session. The documents accessed during
a short time can be expected to have a strong coherence, a fact that is also
used in market basket analysis.

Our motivation was to use the information inherent in these data sets in
order to construct an automated complement for the tedious, error-prone and
expensive task of manual indexing. However, normal clustering algorithms (cf.
e.g. Bock (1974)) imply a superlinear complexity, leading to an explosion of
the computation time when applied to data of such dimensions as we deal
with here. The failure of clustering with single linkage algorithms has been
described by Viegener (1997). Based on the ideas of Schöll and Paschinger
(2002), we have developed a clustering method based on random walks on
purchase history similarity graphs that allows to efficiently cluster document
sets of this size (Franke (2003)).

In this paper, we will first describe the purchase histories serving as input
data, then develop the ideas of the algorithm before addressing time com-
plexity. Some results from the test runs, followed by an outlook on further
research will conclude the text.
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2 Clustering with purchase histories

We cluster the documents on the basis of similarity graphs. As similarity
measure, we take usage histories: A purchase occasion is a user’s request
for a document detail page in the library’s web interface. If the same user,
in the same session, requests another document detail page, this is a cross-
occurrence between the two documents. The results depend on the search
behavior of the users, not on hypertext links between documents. As most
users search by title, even new documents are quickly integrated. The input
data for the clustering was derived from the log file of the library’s WWW
server and organized into “raw baskets” prior to the algorithm’s execution.
The raw basket of a document contains the documents it has been viewed
with as well as the respective frequencies of these cross-occurrences.

Let V be the set of all documents whose raw basket contains at least one
entry. From the contents of all raw baskets, we derive a symmetric and non-
negative similarity measure s(i, j) defined as the number of cross-occurrences
between documents i and j. The self-similarity of an object can be defined ar-
bitrarily, it is never used. s(i, j) induces a finite weighted graph G = (V,E, ω)
formed by the documents as vertices V and by edges E between documents
with positive similarity, weighted with the similarity between their end points:

G = (V,E, ω): E = {(i, j) ∈ V × V |s(i, j) > 0, i �= j}, ωij = s(i, j) (1)

The basic idea of clustering with restricted random walks (RRW) is to execute
a series of random walks on the graph such that, with growing walk length,
the similarity between consecutively chosen nodes increases. Consequently,
the later a pair of nodes is chosen in a walk, the more their content is related
and the higher the probability that they belong to one cluster.

In the following algorithm, all random choices are based on a uniform
probability distribution. A random walk on the set V = {1, . . . n} is a series
R = (i0, i1, . . .), where ik ∈ V for k ∈ IN0. We start by randomly choosing a
starting node i0 from the set V of all documents. For the first step, a successor
i1 is chosen at random from the document set

T0 = {j ∈ V |s(i0, j) > 0, i0 �= j} = {j ∈ V |(i0, j) ∈ E} (2)

that have been viewed at least once together with i0. In other words, we
select one of the neighbors of i0. For the m-th step, m ≥ 1, the similarity
sm := s(im−1, im) between the documents participating in this step is called
the step length. For all further steps, we add the following restriction: The
next object, i2, is picked from those neighbors of i1 having a higher similarity
to i1 than i0 does. Formally, the m + 1-st object is picked from the set

Tm = {j ∈ V |s(im, j) > sm} (3)

of nodes that can be reached via an edge with a greater weight than the
preceding one. The sm are then updated according to

sm+1 = s(im, im+1) (4)
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Thus, sm grows strictly monotonic until Tm is empty, i.e. a node is reached
that has no neighbor j with s(im, j) > sm. The resulting series is called a
restricted random walk.

Since restricted random walks have an expected length of O(log n), we
need to execute more than one walk in order to completely cover the document
set. Random graph theory (Erdös and Renyi (1957)) suggests that, given n
vertices, a number of 1

2n log n+10n randomly selected edges (corresponding
to O(1

2n + 10n
log n

) walks) is sufficient to obtain a connected graph and thus
the necessary information for clustering with a probability of 99.995%. As a
more simple solution, Schöll and Paschinger (2002) propose to start a walk
from each of the documents. In this work, we followed their approach. As to
the exact number of walks that need to be started to detect clusters with a
given probability, further research will be undertaken.

In Schöll and Paschinger’s formulation given above, the transition proba-
bilities depend on the two last nodes, consequently, the RRW is not a Markov
chain. In order to restore the Markov property, we formulate a Markov
chain of order 2 on the set E of edges of the similarity graph: The set of
states is now defined as S = E ∪ {Ω} where E is the set of all possible
steps from one object to another as defined in (1) and Ω is the “empty”
or start/end state that we use to concatenate the single walks into an irre-
ducible Markov chain. In this formulation, a restricted random walk R has
the form R = (Ω, (i0, i1), (i1, i2), . . . , (if−1, if), Ω). The set of possible direct
successors for a step (i, j) is now defined as

Tij = {(j, k) ∈ E|s(j, k) > s(i, j)} (5)

From this, we can derive the transition probabilities as follows:
Suppose that the Markov chain is in the empty state, Ω. Remember that,

for the first step, we choose an object i0 as a starting point with equal prob-
ability 1

|V | from the set V . We then select a second object from the set
T0 = {j ∈ V |s(i0, j) > 0}\{i0} (Equation (2)) of objects having a positive
similarity s(i0, j) to i0 with probability

1
|{j ∈ V |s(i0, j) > 0}\{i0}| =

1
deg(i0)

(6)

where deg(i0) is the degree of node i0, thus the number of edges incident to
it. In the alternative formulation, we pick a step from TΩ = E. Thus, the
probability of a step (i, j) being chosen after the initial state is

P ((i, j)|Ω) =
{ 1

|V | deg(i) if (i, j) ∈ E

0 else
(7)

Analogously, the probability of a (k, l) ∈ E ∪ {Ω} being chosen after (i, j) is

P ((k, l)|(i, j)) =

⎧⎨⎩
1

|Tij | if (k, l) ∈ Tij

1 if Tij = ∅ and (k, l) = Ω
0 else

(8)
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Fig. 1. An example similarity graph

The first condition models the uniformly distributed choice of the successor
object from the set Tij . The second part assures the return to the empty
state Ω after the end of a walk. Other transitions are not possible.

Consider the example similarity graph in Figure 1 on which a walk is to be
executed. From the set TΩ = E = {AB,AC, . . . , EF,EG} of possible steps,
we pick one at random, AC. According to the formula (7), the probability of
this event is 1

|V | deg(A) = 1
7∗3 = 1

21 . We set TAC = {CB,CD,CE}. We then
pick CB, according to (8); the probability of this event is 1

|TAC | = 1
3 . We set

TCB = {BA}. Since only one step is left, we take it and set TBA = {AD}.
Once more, we take the only step left, AD. TAD is empty because there is no
neighbor node that is more similar to D than A. Consequently, the Markov
chain enters Ω and the walk ACBAD ends. Starting from other nodes, we
get the walks, say BDC, CEF , DBAD, ECBAD, FGEF , and GFE.

The later a pair of objects appears in a walk, the higher is the significance
of this event. On the other hand, walk lengths can differ considerably from
each other like the ones in the example. In order to remove the influence
of different walk lengths on the interpretation of the walk, we define the
ratio step number

walk length as the level of a step. Its purpose is to denote the relative
position of a step in a walk. Thereby, it facilitates the comparison of the
importance of steps coming from walks of differing lengths. For example, the
step (i0, i1) = AC in the first example walk has a level of 1

4 , since the walk
comprises four steps. The higher the level of a step, the more meaning we
attach to the occurrence of the nodes in the step.

For the cluster construction, three different approaches have been used
in this article all of whom return a hierarchical clustering whose hierarchy
cutoff levels are denoted by the variable l:

1. The original method by Schöll and Paschinger (2002) defined a cluster
for the cutoff l as follows: For each step k, define a graph Gk = (V,Ek)
where V is the set of objects and Ek contains an edge for each pair of
objects (i, j) iff i and j have been chosen in the k-th step of any walk,
independent of the order in which they were visited. We then construct
the union Hl = ∪∞

k=lGk. Consequently, if two objects have been chosen in
any step greater or equal l, they are neighbors in Hl. Clusters are defined



406 Franke and Thede

as components (connected subgraphs) of Hl. This means that two objects
belong to the same cluster iff there exists a path in Hl between them.
In our example, this leads to edge sets E1 = {AC,BD,CE, FG}, E2 =
{AB,BC,CD,EF,EG}, E3 = {AB,AD,EF}, E4 = {AD} with alpha-
betically ordered edges. The graph H3 has the edges {AB,AD,EF} and
thus the clusters {A,B,D}, {E,F} and singletons {C}, {G}.
This approach leads to large clusters. For our purpose, this is not ade-
quate: The algorithm produces clusters with tens of thousands of docu-
ments per cluster even on the highest level, which disqualifies it for the
use in our specific scenario.

2. An alternative is the concept of the walk context we developed. The
original method displays a sort of chaining effect, it connects – in our case
– documents that have nothing in common via so-called bridge elements:
Imagine a book about statistics and sociology. Its raw basket will contain
some books that contain solely sociological matters and some others that
only deal with statistics. A walk starting in the statistics region could
end – via this bridge element – in the sociology section. This effect is
much weaker than with single linkage clustering as described by Viegener
(1997), but it is still visible. In order to limit the scope of this chaining,
it is necessary to prune the search for components in the graph Hl. In
the process of cluster identification, we put more emphasis on the context
given by the course of the restricted random walks.
In order to find a cluster for a given object i at a given level l, we consider
all walks where i participated in a step at a level greater than or equal l.
The cluster consists of all objects that also appeared in those walks and
had a step level greater or equal l.
In the example, a cluster for node D at level 1 is constructed from the
walks ABCAD, BDC, DBAD and ECBAD (edges at level 1 in bold)
with D at level 1. A and C also occur in these walks at level 1, so the
cluster is the set {A,C,D}. Of course, the clustering resulting from walk
contexts is no longer disjunctive since clusters partially overlap, but for
our application this can even be desirable: Consider, once again, the book
about statistics and sociology. In the cluster generated by this book, both
books on statistics and sociology should be included. On the other hand,
we do not want sociology books in a statistics cluster. This is the intuitive
motivation for the use of the walk context: Consecutive steps in one walk
have a lower risk of producing a chaining effect than whole components of
the graph Hl and for our scenario, non-disjunctive clusters are desirable.

3. The bounded iterations variant is a compromise between the first two. We
introduce another parameter, the number of iterations t, that determines
whether this variant’s results are closer to the walk context (t = 0) or
the component clusters (t = ∞). For a given document i and a level l, we
start by taking the walk context of i at level l and then, for t iterations,
iteratively add all documents that are in the walk context – again at
level l – of any of the documents already in the cluster. In our example,
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we take the walk context cluster for D at level 1. We then add the walk
contexts of A and C at level 1, that are {A,D} and {C,D}, so the cluster
is {A,C,D}.

3 Time complexity

A very attractive aspect of the RRW method lies in its low time complexity
compared to the standard algorithms. Schöll and Paschinger (2002) give an
average length of one walk of O(log n) and thus a complexity of O(n log n)
for an object set of size n where log2 seems to be a suitable approximation.
With our data, the expected walk length is nearly 24.

However, in the case of library purchase histories, the data display one par-
ticularity that reduces the complexity to O(n). The similarity matrix implied
by the usage histories is extremely sparse. Among the 1.2 million documents
having a raw basket there is none that exceeds the number of 2700 neighbors.
Typically, an object has between 1 and 50 neighbors. Deducing from the ex-
periences of the last years, the maximum number of neighbors seems to be a
constant that shall be denoted by c. With this, the size of a raw basket is also
bounded by a constant. Consequently, a RRW on the data has an average
length of O(log c) = O(1). Although this conjecture still needs to be proven
by further observation of the evolution of our usage histories, it is supported
for the moment by our test runs of the algorithm, yielding an average length
of about four which is much less than the theoretically expected length.

On the whole, the complexity of the RRW algorithm on these specific
data is as follows (remember that c is a constant):

• Parsing baskets and building the partial similarity matrix: O(nc) = O(n).
• Executing n consecutive random walks: O(n log c) = O(n).
• Finding clusters: depending on the method chosen (components or walk

context), this value differs. For the walk context, the complexity of finding
a cluster for a given document is O(log n) provided an efficient indexing
system is used on the data.

Together, this yields a complexity of O(n) for the preliminary works with the
construction of the initial data base and O(log n) for the cluster generation.

4 Results

For a measurement of the quality of the clusters returned by the variants we
tested the results against an external criterion, the library’s manual classifica-
tion that classifies documents into an hierarchy of categories. Documents can
be assigned to several categories, leading to a quasi-hierarchical classification.

As a quality function, we decided to take the precision measure: For a
cluster containing a certain document, we counted the number of documents
in the cluster that share at least one category in the manual classification and
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Duran, Benjamin S. and Odell, Patrick L. Cluster Analysis - A Survey

Anderberg, Michael R. Cluster analysis for applications

Everitt, Brian. Cluster analysis

Mather, Paul M. Cluster analysis

Benzécri, J.P. L’analyse des données

Fig. 2. A sample cluster for Duran and Odell’s book on Cluster Analysis

divide it by the total number of documents in the cluster. The precision mea-
sure is preferable over the simple matching coefficient if, like in our case, the
a priori classification cannot clearly state which documents are not related.
The quality of the manual classification system at Karlsruhe differs strongly
between the topics, depending on the person who entered the classification.

Since our main goal was a complementary indexing system, we focused
on the precision of the results rather than on a high recall, since for indexing,
quality is more important than quantity. Furthermore, the manual classifi-
cation only covers about 30% of the documents, so that recall could not be
tested in a sensible way.

As discussed, clustering with restricted random walks returns a (quasi-)
hierarchical clustering. Since we are interested in a set of clusters rather than
a hierarchy for indexing it is necessary to first find an optimal cutoff level
that minimizes the deviation from the target, the manual classification. This
was done with a small training sample (10% of the documents) for all three
variants discussed in section 2. We used the RRW algorithm to construct
clusters at levels 0, 0.25, 0.5, 0.75, and 1, then refined the search in promising
areas up to a grid of 0.02. Finally, we conducted a hypothesis test on the whole
document set, using the best method at the optimal level.

Before we discuss the numerical results, consider figure 2, showing the
cluster that contains the book of Duran and Odell (1974). The cluster was
constructed using the walk context variant at a step level of 0.88. As we can
see, the precision is very high, all documents that were returned have a high
similarity to each other and to the book by Duran and Odell, but the cluster
size is relatively small given the current amount of literature on clustering.

The walk context gave the best results with a precision of 61.1 per cent at
level .88 for the training sample, producing clusters of an average size of 3.14.
The method of Schöll and Paschinger only reached 0.284 at level 1, while the
bounded iterations yield a precision of 0.474 at level 1 for two iterations.

A χ2-test (40 classes, α = 0.05) revealed that the precision in the sample
was normally distributed. Thus, the results of the walk context method were
verified using Wald’s (1966) sequential probability ratio test with H0: The
cluster precision is normally distributed with mean Θ = .61 and α = 0.05,
β = 0.05, Θ0 = 0.56, Θ1 = 0.61. The variance was estimated from the sample.
The advantage of Wald’s method is a much smaller sample size for the same
confidence, compared to standard methods. The test confirmed a precision
of .61 after having tested the clusters of 5489 documents out of over 450,000
for having a cluster at level 0.88. For further details refer to Franke (2003).
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5 Outlook

There are some possible enhancements and directions for future research: In-
stead of picking a successor from a uniform distribution, the probability of an
object being chosen could directly depend on its similarity to the current one.
This would cause faster walk convergence towards very similar documents but
reduce the discriminatory power of the steps since the walks would be shorter.

The level as criterion for the construction of the hypergraph could be
replaced by the step number, counted from the end of each walk. By using
this variant, steps with high levels of long walks are weighted stronger, but
those with middle weight are mixed with the start steps from short walks.

There is still some work to be done to gain insights into the stability of
RRW clusters. We conjecture that it is strongly dependent on the number of
walks, but the subject of convergence of the solutions and the number of walks
that are necessary to detect clusters with a certain probability have not been
investigated further yet due to the considerable computational complexity.

As our usage histories evolve, we will observe the raw basket sizes in order
to verify if they can be bounded by a constant as proposed in section 3.

Another interesting aspect of our method is the possibility of detecting
bridge elements with restricted random walks that still needs some research.
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Abstract. When users rate interesting objects one often gets two-mode data with
missing values as result. In the area of recommender systems (automated) collabo-
rative filtering has been used to analyze such kind of two-mode data. Like collabo-
rative filtering (fuzzy) two-mode clustering can be applied to handle so far unknown
ratings of users concerning objects of interest. The aim of this paper is to suggest
a new algorithm for (fuzzy) two-mode clustering and compare it to collaborative
filtering.

1 Introduction

Two-mode data depict relations between so-called first and second mode
elements. These relations can describe the quantity of product j (second mode
element) which customer i (first mode element) buys, the percentage of buyers
that purchase a brand at time t+1 (second mode element) given that they
bought a certain brand at time t (first mode element), or a rating concerning
item j which person i has provided. Researchers from different fields, e.g.,
marketing (Schader and Gaul (1991), Gaul and Schader (1996), Baier et al.
(1997)), psychology (Eckes and Orlik (1993), Ceulemans and Van Mechelen
(2002), Krolak-Schwerdt (2003)), and biology (Li and Zha (2002), Kluger et
al. (2003), Pollard and Van der Laan (2002), Jörnsten and Yu (2003)) have
focused their attention on the analysis of two-mode data.

In applications one is often faced with the problem that some relations
between elements of different modes have not been reported or are not avail-
able. A well-known example describes ratings concerning movies, which per-
sons have provided. As it is unlikely that a person can rate every movie from
a given list and as different persons will rate different movies it is of interest
to recommend to persons such movies which they do not know (i.e., have not
rated) yet but would probably like to see.

Collaborative Filtering (e.g., Breese et al. (1998), Herlocker et al. (1999))
manages to handle missing values by first comparing the person, for whom
one wants to provide recommendations, to other people with respect to their
ratings. According to Shardanand and Maes (1995) the basic assumption of
collaborative filtering is that the more similar persons are to the person, for
whom one wants to provide recommendations, the better the estimates of the
missing values should be.
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While classical methods of cluster analysis (Hartigan (1975)) rely on re-
lationships ((dis)similarities, distances) between elements of just one mode,
two-mode clustering can take information within and between modes into
account.

If two-mode clustering is modified in such a way, that it can handle missing
values, ratings of persons for certain items on the basis of cluster-memberships
of both persons and items can be determined.

The aim of this paper is to compare the performance of a new algorithm
for fuzzy two-mode clustering to the performance of collaborative filtering.

2 Two-mode data analysis

2.1 Memory-based Collaborative Filtering (CF)

Both model-based and memory-based algorithms for collaborative filtering
exist for the analysis of two-mode data. The memory-based algorithms for col-
laborative filtering always utilize the whole user database to generate sugges-
tions, whereas the model-based algorithms for collaborative filtering perform
a two-step procedure. In the first step these algorithms operate over the en-
tire user database to learn a model from which recommendations/suggestions
are derived in the second step.

Today, most memory-based collaborative filtering techniques apply the
Bravais-Pearson correlation coefficient, since it can easily be computed and
outperforms known alternatives, e.g., vector similarity and Spearman rank
correlation approaches (see Breese et al. (1998), Herlocker et al. (1999), Sar-
war et al. (2000)). The Bravais-Pearson correlation coefficient describes the
extent to which two different users are correlated with each other with respect
to items which both of them have rated.

Let index i denote some user and index j denote an item. Furthermore, let
sij be a rating, which user i has given concerning item j. Since most people
rate only part of the items, the matrix S=(sij) contains missing values. We
introduce Ji as the set of items, which user i has rated. Then

s̄i =
1

|Ji|
∑
j∈Ji

sij

is the average of all ratings that user i has provided and the adjusted Bravais
Pearson correlation coefficient can be calculated:

w(a, i) =

∑
j∈Ja∩Ji

(saj − s̄a)(sij − s̄i)√∑
j∈Ja

(saj − s̄a)2
∑

j∈Ji
(sij − s̄i)2

Here, the index a denotes the active user for whom one wants to provide
recommendations.
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With Ij as set of users that have provided a rating for item j the Bravais-
Pearson correlation coefficient can be used to determine a so far unknown
rating of user a concerning item j:

ŝaj = s̄a +

∑
i∈Ij

w(a, i)(sij − s̄i)∑
i∈Ij

|w(a, i)|

2.2 (Fuzzy) Two-Mode Clustering (FTMC)

Two-mode clustering is another well-known approach for the analysis of two-
mode data. There are different approaches to two-mode clustering (e.g., De-
Sarbo (1982), DeSarbo et al. (1988), Gaul and Schader (1996)). Here, first
mode elements and second mode elements are clustered simultaneously. Every
first mode cluster is in some characteristic way associated with the second
mode clusters and vice versa. Hence, every first mode cluster can be inter-
preted by looking at the second mode clusters it is connected with and vice
versa. The following notation is used:

i ∈ {1, ..., I} [j ∈ {1, ..., J}] index of the first [second] mode elements,
k ∈ {1, ...,K} [l ∈ {1, ..., L}] index of the first [second] mode clusters,
S = (sij) [Ŝ = (ŝij)] observed [estimated] two-mode data matrix,
P = (pik) [Q = (qjl)] matrix which describes the cluster-membership

of the first [second] mode elements with

pik [qjl] =

⎧⎨⎩ 1, if i [j] belongs to first [second]
mode cluster k [l],

0, otherwise,
W = (wkl) matrix of weights.

Two-mode clustering algorithms try to find the best-fitting estimator Ŝ
for the given two-mode data matrix S (Gaul and Schader (1996), Baier et al.
(1997)). A simple way for determining this best-fitting estimator Ŝ is Ŝ =
PWQ′, where the matrices P , W , and Q have to be alternatingly determined
by minimizing the objective function

Z =
I∑

i=1

∑
j∈Ji

(sij − ŝij)2,

where

ŝij =
K∑

k=1

L∑
l=1

pikwklqjl.

Both overlapping and non-overlapping versions of this kind of algorithm
for two-mode clustering exist.

In fuzzy two-mode cluster analysis the zero-one cluster-membership indi-
cators are replaced by
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pik ∈ [0, 1], i ∈ {1, ..., I}, k ∈ {1, ...,K}
∀ i ∈ {1, ..., I} :

∑K
k=1 pik = 1(≥ 1)

where pik denotes the degree of cluster-membership and the inequality “≥”
takes overlapping explicitly into account. Here, we just give the formulae for
(pik), since the restrictions for (qjl) are of equivalent form.

Gaul and Schader (1996) already mentioned that one could produce a
fuzzy two-mode classification if one imposes appropriate restrictions on the
matrices P and Q and applies a penalty-approach to compute P and Q in
the context of an iterative procedure. In this paper another alternative, the
“Delta”-Method for fuzzy two-mode clustering, is introduced.

3 The Delta-Method for fuzzy two-mode clustering

As starting-solution the Delta-Method uses a non-fuzzy non-overlapping two-
mode classification. Because we have to deal with missing values now, the
known formulae for deriving a starting-classification have to be adjusted to
the new situation.

Starting from results obtained by non-overlapping non-fuzzy two-mode
clustering the Delta-Method is able to produce quite similar classifications.
However, the larger the numbers K and L of first and second mode clusters
are chosen, the more the computation-time increases.

In the case of fuzzy two-mode cluster analysis one alternatingly determines
P , W , and Q by minimizing the objective function

Z =
I∑

i=1

∑
j∈Ji

(sij −
K∑

k=1

L∑
l=1

pikwklqjl)2

where Newton’s algorithm is used for the determination of W=(wkl). Since
equations are symmetric in (pik) and (qjl) the idea for optimizing P and Q
is the same. The optimization of P=(pik) is given in Table 1.

The general idea is to take the results of the non-overlapping non-fuzzy
two-mode clustering algorithm provided by Baier et al. (1997) as starting
solution and search for fuzzy cluster-membership values which improve the
objective function Z.

According to Table 1, for every i the following steps have to be performed:
First, we set Zbest

i and Zold
i equal to a large number M and calculate

Znew
i =

∑
j∈Ji

(sij −
K∑

k=1

L∑
l=1

pikwklqjl)2.

During the iterations, as long as Znew
i is smaller than Zold

i , we set Zold
i =

Znew
i . We determine the first mode cluster with the highest membership value

and denote the index of this cluster by kMAX = arg{maxk∈{1,...,K}{pik}}.
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Table 1. Delta-Method (Optimization of P )

Starting-solution: results of non-overlapping non-fuzzy
two-mode clustering ((pik), (wkl), (qjl))

i = 1;
While(i ≤ I){

Zbest
i = Zold

i = M ; M large

Znew
i =

�
j∈Ji

(sij −�K
k=1

�L
l=1 pikwklqjl)

2;

While(Znew
i < Zold

i ) {
Zold

i = Znew
i ;

kMAX = arg{maxk∈{1,...,K}{pik}};
pikMAX = pikMAX − ∆; (0 < ∆ ≤ 0.1)
k̄ = 1;
While(k̄ ≤ K){

If(k̄ �= kMAX) {
pik̄ = pik̄ + ∆; (if possible)

Ztemp
i =

�
j∈Ji

(sij −�K
k=1

�L
l=1 pikwklqjl)

2

If(Ztemp
i < Zbest

i ) {Zbest
i = Ztemp

i ; k+ = k̄; }
pik̄ = pik̄ − ∆;

}
k̄ = k̄ + 1;

}
If(Zbest

i < Zold
i ) { Znew

i = Zbest
i ; pik+ = pik+ + ∆; }

Else { pikMAX = pikMAX + ∆; }
}
i=i+1;

}

We set pikMAX = pikMAX − ∆ and check for every k̄ (unequal to kMAX)
whether

Ztemp
i =

∑
j∈Ji

(sij −
K∑

k=1

L∑
l=1

pikwklqjl)2

can become smaller than Zbest
i when we set pik̄ = pik̄ + ∆. If yes, we set

Zbest
i = Ztemp

i and k+ = k̄. Before we proceed to the next first mode cluster
we subtract ∆ from pik̄, again.

We follow this procedure for all k̄ and, finally, set Znew
i = Zbest

i and
pik+ = pik+ + ∆, if Zbest

i is smaller than Zold
i , otherwise we add ∆ again to

pikMAX .

4 Examples and comparisons

Collaborative filtering and fuzzy two-mode clustering were applied to the
MovieLens data (available from http://www.ecn.purdue.edu/KDDCUP) col-
lected from roughly 50000 users, who rated about 1500 films. This two-mode
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data matrix has many missing values as the average number of movies, which
one user has rated, is 46, while the average number of users, who rated the
same movie, is 762. After having excluded all users that rated less than 10
movies and all movies which were rated by less than 10 users the following
three data subsets were selected:

Data set 1 consisted of 60 users who rated 140 movies. In data set 2 a
(1000 users × 634 movies)-matrix was analyzed.

Data set 3 was chosen in order to compare the ability of fuzzy two-mode
clustering and collaborative filtering to cope with time-dependent appearance
of data. From the (1000 users × 634 movies)-matrix we selected 980 users ×
634 movies as training subset. For the rest of 20 users we divided the ratings
(the movies) into two parts, part ψt<tZ consisted of ratings provided before
time tZ , the remaining part ψt>tZ contained the ratings that were not known
up to time tZ , i.e. data from ψt>tZ were treated as missing values.

We used the average absolute deviation

T =
1
I

I∑
i=1

1
|Ji|

∑
j∈Ji

|sij − ŝij | (the smaller the better)

and the variance accounted for

V AF = 1 −
∑I

i=1

∑
j∈Ji

(sij − ŝij)2∑I
i=1

∑
j∈Ji

(sij − s̄..)2
(the larger the better)

for comparisons.
Tables 2, 3, and 4 show the results. With respect to data set 1 (see Table

2), fuzzy two-mode clustering (FTMC) outperformed collaborative filtering
(CF) for the shown numbers K, L of first and second mode clusters in terms
of V AF and T . With respect to data set 2 different numbers of first and
second mode clusters were used. For K = L = 8 Table 3 shows that CF
was still better than FTMC. K=10 and L=15 were needed for FTMC to
show better performance than CF. (The results for K = L=10, K = L=12,
K = L=15 are just shown to provide a feeling how FTMC improves.) Given
the results of Tables 2 and 3 one could argue that if FTMC is based on “‘large
enough”’ numbers of first and second mode clusters it will beat CF.

Finally, Table 4 shows how CF and FTMC behave on data set 3. Since
it is much harder to estimate unknown values than to fit known ones, both
methods perform worse if ψt>tZ is not known beforehand. Still fuzzy two-
mode clustering is able to outperform collaborative filtering, if we choose the
numbers K, L of first and second mode clusters large enough.
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Table 2. Performance of CF and the Delta-Algorithm for Fuzzy Two-Mode Clus-
tering (FTMC) (Data set 1: 60 users, 140 movies)

CF FTMC

K=L=5 K=L=7 K=L=8 K=L=10 K=L=12

VAF 0.543 0.658 0.748 0.775 0.837 0.868

T 0.128 0.127 0.109 0.102 0.087 0.079

Table 3. Performance of CF and the Delta-Algorithm for Fuzzy Two-Mode Clus-
tering (FTMC) (Data set 2: 1000 users, 634 movies)

CF FTMC

K=10, L=15 K=L=8 K=L=10 K=L=12 K=L=15

VAF 0.569 0.597 0.531 0.572 0.607 0.638

T 0.129 0.128 0.138 0.132 0.126 0.121

Table 4. Performance of CF and the Delta-Algorithm for Fuzzy Two-Mode Clus-
tering (FTMC) (Data set 3: Here, we used a training-set of 980 users and estimated
the values of ψt>tZ for a test-set of 20 users.)

CF FTMC FTMC FTMC
K=L=12 K=20, L=15 K=22, L=16

VAF 0.239 0.241 0.311 0.322

T 0.264 0.263 0.226 0.217

5 Conclusions

It is possible to derive versions of two-mode clustering, which can deal very
well with missing values. One of these versions is the Delta-Algorithm for
fuzzy two-mode clustering, which we introduced in this paper. Our results
show that fuzzy two-mode clustering is able to outperform collaborative fil-
tering with respect to the MovieLens data. Analyses of additional data sets
and further developments of two-mode clustering variants are under consid-
eration.
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Abstract. In order to attract web visitors via the internet online activities have
to be “visible” in the net. Thus, visibility measurement of web sites and strategies
how to optimize Online Visibility are important. Here, web mining helps to define
benchmarks with respect to competition and allows to calculate visibility indices
as predictors for site traffic.
We use information like keyword density, incoming links, and ranking positions in
search engines to measure Online Visibility. We also mention physical and psy-
chological drivers of Online Visibility and describe the appropriateness of different
concepts for measurement issues.

1 Introduction –
“Why measurement of online visibility?”

Search engines appear to be very important to reach new visitors of web sites,
because nearly 80% of all internet users find new web sites with the aid of
search engines (Fischerländer (2003)). Results by Johnson (2002) also show
that more active online shoppers tend to search across more sites and that
the amount of online search is actually quite limited when internet surfers
already have a special portfolio of web sites.
Therefore, it is very important to observe what could be called Online Visi-
bility of web sites (see Drèze and Zufryden (2003) who have defined Online
Visibility as the extent of presence of a brand or a product in the consumer’s
environment, e.g. by means of links from other web sites, online directories
and search engines).
We suggest a measure called GOVis (Gage of Online Visibility) to keep track
of the Online Visibility of web sites and to measure the success (unsuccess-
fulness) of conducted web site optimization.
In section 2 we shortly describe the web as a graph and focus on facts about
human online searching and surfing behavior. We explain our measure of On-
line Visibility and main drivers to influence this phenomenon in section 3
while conclusions and some managerial implications are given in section 4.

2 (Human) Online search in a changing webgraph

The structure of the web is often compared with a haystack in which one
tries to search for and find the needle. If the web is modeled as a directed
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graph, the addition of new vertices and edges and the omission of old ones
cause changings of the graphical structure.
Researchers try to build subgraphs of the complete underlying web graph
and develop models to interpret evolving views on this dynamically altering
net.
But what do persons really see when they are searching the web? They
only get sub-subwebgraphs corresponding to their search efforts and requests
which describe just static parts of the underlying situation.
In order to understand (human) online searching and surfing behavior and to
derive managerial implications for web site owners adequate measures with
respect to the underlying phenomena are needed.

2.1 The web as a graph

A web site consists of pages connected in a certain way. Their link structure
can be described by the associated site graph. The web consists of sites and
hyperlinks between certain pages within the same site (site subwebgraph)
and across different sites. The pages can be seen as vertices in a directed
graph and the hyperlinks as directed edges. If one tracks the web, one gets
from vertice to vertice by following the directed edges. In the end one has
information based on the structure of the tracked subgraph represented by its
adjacency matrix. Given this information it is possible to calculate measures
to characterize this subwebgraph.
Here, some facts about this microscopic view on the web have to be mentioned
(Barabasi and Albert (1999), Broder et al. (2000)):
The average distance (also referred to as diameter) as number of links to get
from any page to any other is about 19, if a path exists. The distribution of

Fig. 1. Distribution of in- and outgoing links of pages

incoming and outgoing links of pages in the web is shown in figure 1 (Broder
et al. (2000)) with the number of incoming and outgoing links on the x-axis
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and the number of pages with corresponding in- and out-links on the y-axis,
both depicted on logarithmic scales.We have used this shape to model the
function f(ZL) in section 3.3.

2.2 (Human) Online searching and surfing behavior

Three main studies can be mentioned that report on online searching via
web search engines by analyzing query logs: The Fireball, the Excite, and
the AltaVista study (Hölscher (1998), Jansen et al. (2000), Silverstein et al.
(1999)).
Conclusions of all three studies are nearly the same. The AltaVista study
is based on the largest data set: one billion queries submitted to the main
search engine over a 42-days period.
Facts about human online searching behavior corresponding to the AltaVista
study can be summarized as follows: Nearly 77.6% of all query sessions con-
sisted of only one request. 85.2% of the searchers examined only one result
screen per query (7.5% two and 3.0% three screens). The average number
of terms in a query adds up to 2.35 (σ = 1.74) and that of operators in a
query to 0.41 (σ = 1.11). According to the total number of queries, 63.7%
occurred only once. The most popular query was “sex” with an appearance of
1,551,477 times. This equals 2.7% of the total number of non-empty queries
in the study.
People become also more efficient in using the web by navigating directly to

Table 1. Global Internet Usage (WebSideStory (2003))

Referral Type 2002 2003 trend

Direct Navigation 50.21% 65.48% ↗
Web Links 42.60% 21.04% ↘
Search Engines 07.18% 13.46% ↗

a web site they already know, see table 1. And they often use search engines
to find new ones. Thus, search engines are effective instruments to reach new
visitors or potential customers in the web business.

3 Measurement of Online Visibility

Online Visibility of a web site (or part of it) describes the extent to which it
is recognizable or findable via normal searching strategies of web users.
Based on knowledge, e.g., about the link structure of the web as a graph,
the functioning of ranking algorithms of search engines such as PageRank
(Brin and Page (1998), Kleinberg (1999)), and human searching and surfing
behavior, several impacts on Online Visibility can be defined.
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3.1 Main drivers of Online Visibility

Online Visibility has to be composed of different visibility parts as, e.g., visi-
bility via links from other web sites, visibility via listings in online directories,
and visibility via search engines, to mention just the most important ones.
Some information of this kind is already used by search engines within their
strategies to place the most important web pages on top of corresponding
listings. All in all two main kinds of drivers of Online Visibility can be iden-
tified:

1. Psychological Drivers of Online Visibility: This means that human online
searching and surfing behavior and ways how humans interact with the
internet or with search engines (e.g., only the first three result pages of
search engines are normally inspected by browsing individuals) have to
be taken into consideration.

2. Physical Drivers of Online Visibility: Physical drivers are such as links to
a web site, banner ads, listings in search engines or directories etc.

Both psychological and physical drivers cause differences with respect to On-
line Visibility. To determine the real impact on Online Visibility one would
have to subtract all overlappings from different visibility parts. For this rea-
son, it is difficult to determine a precise measure. However, one can approxi-
mate a measure that takes the main phenomena mentioned into account.

3.2 Web data used for our sample

We used the Google search engine for data collection, because Google holds
73.4% of the share of the search engine market (percent of search requests),
followed by Yahoo! with 5.5% (Webhits (2004)).

Sponsored Links

Adwords

Results

Fig. 2. Conventional result window of Google

If one considers a conventional result window of the Google search engine as
it is shown in figure 2, one sees on the right hand side the so-called “Adword
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Area”, in the middle the result list of Urls corresponding to the search request,
and up to two so-called “Sponsored Links” on top of the result screen. For our
measurement of Online Visibility we keep track of the appearance of the Urls
of interest in the result list and in the adword area for appropriate requests
characterized by their keywords.
Additionally, we considered the AltaVista search engine for determining the
number of incoming links as in AltaVista it is possible to exclude links from
the home domain (link:www.xyz.com -host:www.xyz.com).
We excluded the measurement of Online Visibility in directories, on portals, in
chat rooms or banner ads, etc. The reason is that it is not possible to measure
OV, e.g., in directories in an impartial way (alphabetical order) and to take
changes of banner ads into account without a huge amount of data from other
webmasters (see, e.g. Drèze and Zufryden (2003) who incorporated expensive
and time consuming information retrieval methods to calculate their measure,
which is static and only a snap shot based on a selective situation in the web).

3.3 The measure GOVis

Obviously, there are many ways to try to formulate an Online Visibility mea-
sure but based on the reasons mentioned before our approach

GOV is(L) =

�N
n=1 (N

n)·n!�
k=1

�
α ·

2�
p=1

R�
r=1

1

ep−1
· Xkpr + β ·

2�
p=1

A�
a=1

Ykpa

�
+ γ · f(ZL)

is a fast and cheap method and independent of third party data. Additionally,
consecutive investigations can be performed. Here

* K is a set of interesting keywords for a query, with | K |= N (normally
N ≤ 3),

∑N
n=1

(
N
n

) · n! is the quantity of all ordered subsets of ℘ (K) \{∅}
and k is the kth subset of keywords with which a query in Google could
be performed,

* p is the depth of the result pages of the search engine used (normally
depth p ≤ 2),

* R is the quantity of results per result page and r is the rth ranking
position on the result pages (we used Google with R = 10),

* A is the maximum quantity of adwords per result page (Google standard
is A = 8) and a is the ath adword ranking position,

* L is the corresponding URL, ZL is the number of corresponding fan-ins,
* hkpr is the hyperlink at the rth ranking position on the page with depth

p by generating a query with the kth subset of keywords,
* wkpa is the adword link at the ath adword ranking position on the page

with depth p by generating a query with the kth subset of keywords,

* Xkpr =
{

1, hkpr links to L
0, otherwise Yk1a =

{
1, wkpa links to L
0, otherwise

* α + β + γ = 1 (these parameters help to adjust overlappings),
* and f(ZL) is a step function based on figure 1.
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3.4 Results

We examined different branches: e.g., online book stores, erotic service web
sites, automobile, and nonprofit web sites. We also observed “trendy” web
sites such as the German home page of the movie “Lord of the Rings”. The
number of incoming links changed dependent on the branches observed (the
number of incoming links of one book store decreased by 1,500 whereas the
number of incoming links of erotic and nonprofit web sites were static in the
last month (March 2004)). Incoming links of “trendy” web sites alter in ac-
cordance with the interest given to these web sites by press or television (e.g.,
the number of incoming links of the “Lord of the Rings” web site reincreased
again after the academy awards of 11 “Oscars” in March 2004 up to 4,099
and fell down to 216 in April 2004).
The function f(ZL) that we used is based on the findings presented in figure
1, relative to logZL, and absorbs changes in the number of incoming links to
some extend (e.g., if a web site has already “many” incoming links, it doesn’t
matter if it gains or looses “some”).
Figure 3 shows GOVis results of book stores (K = {dvds, roman, bestseller})

Fig. 3. GOV is(L) for different web sites

and erotic service web sites (K = {erotik, sex, porno}); α = 0.39, β = 0.01,
and γ = 0.6 was selected according to a scenario based on the numbers of
table 1 (Take α ≈ 13.46/35, β ≈ 0.5/35, and γ ≈ 21.04/35).
One sees that the outcomes of GOV is(L) for erotic web sites are very close to
each other. Based on our measure managers of these sites can evaluate how
their activities influence Online Visibility compared to salient competitors.
For book stores we could select two example which demonstrate how differ-
ent Online Visibility can be. Book1 is on an upper level of Online Visibility,
because this web site has good listings in Google for nearly every keyword
combination based on the chosen set K and has also many incoming links.
Book2 can now try various activities and observe how it “best” (on-/offline
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marketing campaigns) can approach this competitor (and, indeed, between
February 23 and March 6, 2004, the GOVis measure has increased by two
units). With the help of GOVis one can measure the “own” Online Visibility,
but can also make online competitors visible to search for best practice exam-
ples of web sites and to derive hints for successful actions. Table 2 shows the

Table 2. Appearance of URLs for different branches from April to June 2004

#Urls #Urls #Urls % of Capacity of

Branch in Total in Results in Adwords Adword Area

Book 502 377 117 48,9%

Erotic 1920 1058 853 91,55%

Automobile 565 337 215 99,6%

Nonprofit 1032 908 118 16%

appearance of Urls for different branches in online business. The appearance
of URLs and the used part of the Adword Area helps to adjust the choice of
α, β, and γ for GOVis. In our sample, e.g., the automobile and erotic branch
is very active in the Adword Area.

4 Conclusion and managerial implications

In total, GOV is(L) is qualified for revealing bench marks with respect to
possible competitors and observing visibility changes over time in the web.
It is also suited to get general impressions concerning how different branches
use adwords or rely on incoming links.
However, visibility has to be measured in constant short time periods to get
a deeper understanding of the rate with which the WWW or, more precisely,
subwebgraphs are changing and how certain web activities influence the GO-
Vis measure.
Based on the money spent on the optimization of web sites with respect
to Online Visibility, one can observe the success (unsuccessfulness) of special
arrangements with the help of GOVis. Although GOVis is only one suggestion
to measure Online Visibility with the help of content visibility, adwords visi-
bility, search engine visibility, and visibility based on incoming links (which,
however, appear to be the most important instruments to account for Online
Visibility), some managerial implications are obvious:
To improve Online Visibility it is important to follow different strategies. One
question is, how the link structure of the web site is built up, and another
one, how many links are pointing to different pages. An obvious strategy
to generally improve the ranking in search engines is to be listed in online
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directories. And, because there is an impact of the order of keywords in a
query, the way of ordering the content of web pages has to be considered for
long-time optimization of a corresponding web site. At first, however, web
site owners have to find out which keywords are relevant for online searchers
and web site content. For example, it is possible to observe the log files of
corresponding web sites to detect search engine referrals including important
keywords of searching persons. Another possibility is to sift through online
keyword databases to compare already used keywords with descriptions or
text content of the web site of interest to meet customer needs with respect to
content, special topics or product descriptions. And if one detects potential
competitors with GOVis, it is possible to analyze the sites of these competi-
tors to find out whether their web appearance works better than the own
one.
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Abstract. Recommender systems offer valuable information not only for web site
visitors (who are supported during site navigation and/or buying process) but also
for online shop owners (who can learn from the behavior of their web site visitors).
We use data from large German online stores gathered between March and Novem-
ber 2003 to visualize search queries by customers together with products viewed
most frequently or purchased most frequently. Comparisons of these visualizations
lead to a better understanding of searching, viewing, and buying behavior of on-
line shoppers and give important hints how to further improve the generation of
recommendations.

1 Introduction

A recommender system can be defined as software that collects and aggre-
gates information about site visitors (e.g., buying histories, products of inter-
est, hints concerning desired/desirable search dimensions or FAQ) and their
actual navigational and buying behavior and returns recommendations (e.g.,
based on customer demographics and/or past behavior of the actual visitor
and/or user patterns of top sellers with fields of interest similar to those of the
actual contact (Gaul and Schmidt-Thieme (2002)). A framework to classify
such systems according to their input and output facilities can be found in
Gaul et al. (2002). A substantial problem in the evaluation of recommender
systems is that in real-life environments their influence to customers buying
behavior can hardly be measured isolated from other effects, e.g., promotions,
price reductions, etc. The research questions therefore was to analyze the ac-
ceptance and the functioning of recommender systems in a more qualitative
way by making the site visitors interaction with it transparent.

In the following we will use multidimensional scaling (MDS) to visualize
how online shoppers place search queries and react to recommender system
output where MDS is the label for a class of methods that represent similarity
or dissimilarity values with respect to pairs of objects as distances between
corresponding points in a low-dimensional metric space (Borg and Groenen
(1997)). The graphical display of the object representations as provided by
MDS enables to literally “look” at the data and to explore structures visually.
We used this technique to analyze recommender system usage on the basis
of two data sets, collected from two different German online retail stores.
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Both use a ruled-based recommender system with the same kernel function-
ality to support customers during the buying process. As a result relations
between searching, viewing and buying behavior of the corresponding site
visitors visualized in the underlying product space revealed valuable insights
for product managers and recommender system engineers.

2 Methodology

A popular and classical technique to construct object representations in a
low-dimensional space is MDS (Kruskal (1964)). The goodness of fit of the
solution obtained within the different iterative steps of whatever method can
be assessed by the so called Kruskal stress. We used an implementation of
Kruskal’s non-metric MDS which is available as the isoMDS function in the
“MASS” library (Venables and Ripley (1997)) of the “R” software package.
To overcome a weakness of classical MDS, i.e. the interpretation of the object
positionings in low-dimensional spaces, we applied property fitting.

Let O = {o1, . . . , oN} be the set of objects and bn = (bn1, . . . , bnM ) the
representation of object on in the underlying M-dimensional target space,
n = 1, . . . , N . If additional information about the objects is given, e.g., in
form of attribute vectors ap = (a1p, . . . , aNp)′ for property p, p = 1, . . . , P,
one can construct property vectors cp = (cp1, . . . , cpM ) in the M-dimensional
space so that the projections

ânp =
M∑

m=1

cpmbnm (1)

of bn onto cp approximate the actual attribute values of the objects as good
as possible with respect to the least squares criterion

N∑
n=1

(ânp − anp)2. (2)

Vector notation leads to cp = (B′B)−1B′ap with B = (bnm). Quality of fit
can be measured by correlation coefficients between ânp and anp.

Similarly, we performed the subsequent transformation of the search que-
ries sq = (sq1, . . . , sqP̃q

)′. Here, p̃ = 1, . . . , P̃q, P̃q ≤ P , indicates properties
specified in the underlying query. In cases where a range of values was stated
for a property p, e.g., for the price, we set sqp̃ equal to the mean obtained from
the lower and upper boundaries of the specified range. With given property
vectors cp̃ we looked for the representation zq = (zq1, . . . , zqM )′ of sq so that
the projections

ŝqp̃ =
M∑

m=1

zqmcp̃m (3)
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of zq onto cp̃ approximate the actual attribute values of the search profiles
as good as possible with respect to the least squares criterion

P̃q∑
p̃=1

(ŝqp̃ − sqp̃)2. (4)

Vector notation leads to zq = (C′
qCq)−1C′

qsq with Cq = (cp̃m).

3 Empirical results

3.1 The data sets

We collected system usage information from two large German online retail
stores. The first data set contains searching, viewing and buying information
of website visitors looking for notebooks, the second data set contains the
respective information for washing machines. Both stores support their cus-
tomers with the help of recommender systems for dedicated product domains.
In both cases, users can specify a search query by defining the importance
of and the desired value for every attribute from a list of given attributes.
The recommender systems - as response - compute sorted lists of products
which best fulfill the customers requirements using an internal ruled-based
algorithm. The quality of the proposals is implicitly evaluated by counting
the number of clicks on the images of the suggested products which lead to
pages with additional, more detailed information about the products of inter-
est and additionally, by counting how often corresponding products were put
into electronic market baskets. These two events are in the following called
“views” and “purchases”.

The data set about notebooks was gathered between March and July
2003. Products were described by a list of 14 attributes of which we selected
price, clockrate, ram, harddisk, display, drives, weight, interfaces, battery,
and software for our analysis. Using these 10 properties a list of 307 different
products could be recommended. The data set contained 7125 search queries
of which 434 were empty which means that no values were specified for any
attribute. Feedback information consisted of 15305 views and 509 purchases.

The data set for washing machines was collected from May until November
2003. In this case, the selected attributes were price, type (front or top loader),
charge, effectiveness, maximum spin, programs, and extras. This data set
contains 54 different products, 20024 search queries (thereof 14131 empty
ones), 49696 views, and 758 purchases.

A comparison of these numbers shows the following: Online shoppers had
a closer look at 2-3 products (notebooks: 2.15, washing machines: 2.50) per
search query. The different number of empty search queries and the fact, that
for notebooks, the “click-to-buy-ratio” (purchases/views) is more than twice
the number for washing machines (notebooks: 3.3%, washing machines: 1.5%)
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might be an indicator that site visitors looking for notebooks have already a
clearer conception of what they are searching and thus are more willing to
buy online than users looking for washing machines. In our analysis we tried
to verify these assumptions of this kind.

3.2 Representation of products and search profiles

A first step of our analysis was to display the products together with the
specified search queries in a two-dimensional space. Dissimilarities between
objects were defined by first scaling all attribute vectors to N(0, 1) and then
calculating euclidean distances using the dist function (The R development
core team (2003)). As mentioned above, the object representations were ob-
tained with the help of the isoMDS function. The stress measures of the so
found solutions were sufficient (0.175) for notebooks and good (0.146) for
washing machines. The correlation coefficients of the property vectors where
rather high (> 0.7) in most cases, exceptions are interfaces (0.47) and battery
(0.56) for notebooks and programs (0.56) for washing machines. To structure
the many search queries, we grouped identical queries together and used the
notation “search profiles” for identical ones. We selected search profiles with
at least 10 queries and transformed them into the two-dimensional target
space according to the methodology explained in section 2. The results are
shown in figures 2 and 1. In figure 2 one can see, that notebooks and search
profiles are relatively equally spread around the origin. From a management’s
point of view, this could be interpreted as hint that the product catalog for
notebooks covers the range of customers’ requirements quite well. This is not
always the case as Gaul et al. (2004) revealed when analyzing a recommender
system for digital cameras. Remarkable is always the group of search profiles
forming a straight configuration in direction of the negative prolongation of
the price vector (The price vector is marked with a dashed line.). These pro-
files stand for queries where a low price was the only specified attribute. From
the comparatively high number of such profiles one can – not surprising – con-
clude that price is one of the most important search criteria and that many
of the users are quite price sensitive since these profiles represent demand
for products below the average price. For washing machines, figure 1 shows
two more distinguishable lines of search profiles. These configurations result
from queries that are identical in all but one attribute. The differentiating
attribute is the number of extras like a “water-stop-function” or a “timer”.
Contrary to the notebooks’ data set, most of the search profiles are situated
in the area of above average prices. This could be a hint that online shoppers
interested in washing machines are less price sensitive and more in favor of
additional equipment of the products.
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PRICE 0.74

TYPE 0.74

CHARGE 0.71

EFFECTIVENESS 0.76

MAXSPIN 0.89

PROGRAMS 0.56

EXTRAS 0.78

products
search profiles

Washing machines

Fig. 1. Property vectors, search profiles, and products (Washing machines)

3.3 Analysis of system usage

In the second step, we analysed coherences between specified search profiles
and subsequently viewed and/or purchased products. For this purpose, we
determined for each profile the ten most frequently viewed products and con-
nected their object representations in the target space with the representation
of the search profile. This would lead to many spider like graphs. In figure 3
the situation is shown for two selected search profiles from the data set for
washing machines. In both cases, most of the frequently viewed products are
relatively close to the specified search profile. However, there are also products
which have been viewed frequently but are positioned quite far away from the
originally specified search profile. For the search profile in the 3rd quadrant
these are the two products in the 4th quadrant. Looking at the underlying
data shows that these two products are of different type (front- instead of
top-loader). The opposite case also exists: There are products which seem to
fulfill the requirements quite well according to their positioning in the spider
graph but have not been viewed frequently. As users can only view products
that have been recommended, this could be an indicator that these products
were not on the recommendation list for the given search profile. Checking
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PRICE 0.77

CLOCKRATE 0.79

RAM 0.62

HARDDISK 0.76

DISPLAY 0.86

DRIVES 0.65

WEIGHT 0.78

INTERFACES 0.47

BATTERY 0.56

SOFTWARE 0.77

products
search profiles

Notebooks

Fig. 2. Property vectors, search profiles, and products (Notebooks)

this with the actual recommendations - an information not available in our
data sets - might help to improve recommendation generation.

The same analysis for notebooks showed a different picture (figure 4). In
this case, the most frequently viewed products cannot really be characterized
as always close to the search profile. From the underlying data, we can see that
a desired price of 900 EURO was specified while the prices of the products
viewed most frequently ranged from 979 EURO up to 1649 EURO. This
means that online shoppers looking for notebooks are restrictive with respect
to price when formulating their search queries, but are nevertheless interested
in better equipped items - even if the price is far beyond the their preferred
value.

This leads to the question how site visitors decide when it comes to buy-
ing. Figure 5 shows that for the selected search profile there is only one prod-
uct in the category “purchased most frequently”. Remarkably enough, this
product is not among the ones of the category “viewed most frequently”. Its
representation has a medium distance from the representation of the search
profile (in numbers: its price was 1249 EURO while 900 EURO were speci-
fied in the search query). This supports the assumption from section 3.1 that
online shoppers looking for notebooks have already quite a good knowledge
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search profiles
products viewed most frequently
other products

Washing machines

1st quadrant

2nd quadrant3rd quadrant

4th quadrant

Fig. 3. Selected search profiles and
products viewed most frequently
(Washing machines)

search profiles
products viewed most frequently
other products

Notebooks

Fig. 4. Selected search profiles and
products viewed most frequently
(Notebooks)

about the product domain and do not rely too much on recommendations.
For washing machines the situation is, again, different. Site visitors of wash-
ing machines bought to a much higher extent a product that was among the
ones viewed most frequently (see figure 6). In the given example, no product
was purchased after the search query in the 3rd quadrant had been specified.
The products purchased on basis of the search query in the 1st quadrant
are all relatively close and had been viewed frequently. This could be seen
as a confirmation, that online shoppers looking for washing machines are
more uncertain about their actual needs and therefore more willing to rely
on suggestions of recommender systems.

4 Summary

In this paper two product domains were used to demonstrate, that Multi-
dimensional Scaling can be a suitable tool to analyze recommender system
usage. For the given data sets, products were represented in a two-dimensional
space with sufficient/good stress measures and high correlation coefficients
for additional property vectors. The presented methodology allowed us to
subsequently transform the search profiles into the same target space and
to display them together with the products in joint representations. The
visualization of searching, viewing and buying behaviour of online shoppers
showed remarkable differences between the two product domains. While note-
book site visitors seem to have extensive knowledge concerning the product
domain and to be rather independent from system recommendations, online
shoppers looking for washing machines are more uncertain and therefore more
willing to rely on recommender system’s suggestions when they make their
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search profiles
products purchased most frequently
other products

Notebooks

Fig. 5. Selected profiles and prod-
ucts purchased most frequently (Note-
books)

search profiles
products purchased most frequently
other products

Washing machines

1st quadrant

2nd quadrant3rd quadrant

4th quadrant

Fig. 6. Selected search profiles and
products purchased most frequently
(Washing machines)

buying decision. Analysis of this kind can create value for product managers
and shop owners as well as for developers of recommender systems’ software.
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Abstract. A combination of methods from modern statistical machine learning
theory based on convex risk minimization is proposed. An interesting pair for such
a combination is kernel logistic regression to estimate conditional probabilities and
ε−support vector regression to estimate conditional expectations. A strategy based
on this combination can be helpful to detect and to model high-dimensional depen-
dency structures in complex data sets, e.g. for constructing insurance tariffs.

1 Introduction

In some applications regression problems can occur where the data set has the
following characteristic features. (1) Most of the response values are zero. (2)
The empirical distribution of the positive responses is extremely skewed to
the right. (3) There is a complex and high dimensional dependency structure
between explanatory variables. (4) The data sets to be analyzed are huge. (5)
Some extreme high response values are rare events, but contribute enormously
to the total sum of the response values. Sometimes there are only imprecise
values available for some explanatory variables or some response values are
only estimates. In this case robustness properties of the estimation techniques
can be important, cf. Rousseeuw and Christmann (2003). Regression models
to develop insurance tariffs or for scoring credit risks are examples where
data sets can have such features.

In Section 2 a simple strategy is described that exploits knowledge of these
features in order to detect and model hidden structure in such data sets. In
Section 3 some facts of kernel logistic regression and ε−logistic regression are
given. Section 4 briefly gives some results for applying the strategy to a large
data set from an insurance project and Section 5 gives a discussion.

2 Strategy

Let Y denote the non-negative response variable and x ∈ Rp the vector of
explanatory variables. In the first step we construct an additional stratifi-
cation variable C by defining a small number of classes for the values of Y
� This work has been supported by the Deutsche Forschungsgemeinschaft, Sonder-

forschungsbereich 475.
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with a high amount of interpretability. For example, define a discrete random
variable C by

C =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if Y = 0 (no claim)
1, if Y ∈ (0, c1] (small claim)
2, if Y ∈ (c1, c2] (medium claim)
3, if Y ∈ (c2, c3] (high claim)
4, if Y > c3 (extreme claim).

Of course, it depends on the application how many classes should be used
and how reasonable boundary values can be defined. We will not address
this problem here. Note that given the information that no event occurred,
it holds that

E(Y |C = 0, X = x) ≡ 0 . (1)

Using (1) we can write the conditional expectation of Y given X = x by

E(Y |X = x) = P(C > 0|X = x) ×∑k

c=1
P(C = c|C > 0, X = x) · E(Y |C = c,X = x) , (2)

and we denote this formula as strategy A. Note, that in (2) the summation
starts with c = 1. Hence, it is only necessary to fit regression models to small
subsets of the whole data set. However, one has to estimate the conditional
probability P(C > 0|X = x) and the multi-class probabilities P(C = c|C >
0, X = x) for c ∈ {1, . . . , k}, e.g. by a multinomial logistic regression model or
by kernel logistic regression. If one splits the total data set into three subsets
for training, validating, and testing, one only has to compute predictions for
the conditional probabilities and the corresponding conditional expectations
for all data points. Bias reduction techniques applied to the validation data
set may be helpful to reduce a possible bias of the estimates.

From our point of view the indirect estimation of E(Y |X = x) via strat-
egy A has practical and theoretical advantages over direct estimation of this
quantity. The terms in (2) are interesting, because they contain additional
information which can be important for example in the context of insurance
tariffs: the probability P(C > 0|X = x) that a customer with characteristics
x has at least one claim, the conditional probabilities P(C = c|C > 0, X = x)
that a claim of size class c occurs, and the conditional expected claim size
E(Y |C = c,X = x) given the event that the claim was within the size class
c. The strategy circumvents the problem that most observed responses yi are
0, but P(Y = 0|X = x) = 0 for many classical approaches based on a gamma
or log-normal distribution. A reduction of computation time is possible be-
cause we only have to fit regression models to a small subset of the data
set. The estimation of conditional class probabilities for the whole data set
is often much faster than fitting a regression model for the whole data set. It
is possible, that different explanatory variables show a significant impact on
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the response variable Y or on the conditional class probabilities for different
classes defined by C. This can also result in a reduction of interaction terms.
It is possible to use different variable selection methods for the k + 1 classes.
This can be especially important for the class of extreme events: because
there may be only some hundreds or a few thousands of these rare events
in the data set, it is in general impossible to use all explanatory variables
for these data points. Finally, the strategies have the advantage that differ-
ent techniques can be used for estimating the conditional class probabilities
P(C = c|X = x) and for estimating the expectations E(Y |C = c,X = x) for
different values of C. Examples for reasonable pairs are:

• Multinomial logistic regression + Gamma regression
• Robust logistic regression + semi-parametric regression
• Multinomial logistic regression + ε-Support Vector Regression

(or ν−SVR)
• Kernel logistic regression (KLR) + ε-Support Vector Regression
• Classification trees + regression trees
• A combination of the pairs given above, possibly also with methods from

extreme value theory.

Even for data sets with several million of observations it is generally not
possible to fit simultaneously all high-dimensional interaction terms with clas-
sical statistical methods such as logistic regression or gamma regression be-
cause the number of interaction terms increases too fast.

The combination of kernel logistic regression and ε−support vector regres-
sion described in the next section, both with the popular exponential radial
basis function (RBF) kernel, has the advantage that important interaction
terms are fitted automatically without the need to specify them manually.

We like to mention that some statistical software packages (e.g. R) may
run into trouble in fitting multinomial logistic regression models for large
and high dimensional data sets. Two reasons are that the dimension of the
parameter vector can be quite high and that a data set with many discrete
variables recoded into a large number of dummy variables will perhaps not fit
into the memory of the computer. To avoid a multinomial logistic regression
model one can consider all pairs and then use pairwise coupling, cf. Hastie
and Tibshirani (1998).

Of course, the law of total probability offers alternatives to (2). The mo-
tivation for the following alternative, say strategy B, is that we first split the
data into the groups ’no claim’ versus ’claim’ and then split the data with
’claim’ into ’extreme claim’ and the remaining classes:

E(Y |X = x) = P(C > 0|X = x) · (3)
{P(C = k|C > 0, X = x) · E(Y |C = k,X = x) +

[1 − P(C = k|C > 0, X = x)] ·
k−1∑
c=1

P(C = c|0 < C < k,X = x) · E(Y |C = c,X = x)} .
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This formula shares with (2) the property that it is only necessary to fit
regression models to subsets of the whole data set. Of course, one can also
interchange the steps in the above formula, which results in strategy C:

E(Y |X = x) = P(C = k|X = x) · E(Y |C = k,X = x) (4)
+ [1 − P(C = k|X = x)] · {P(C > 0|C �= k,X = x) ·

k−1∑
c=1

P(C = c|0 < C < k,X = x) · E(Y |C = c,X = x)} .

Note that two big binary classification problems have to be solved in (4),
whereas there is only one such problem in (3).

3 Kernel logistic regression and ε−support vector
regression

In this section we briefly describe two modern methods based on convex risk
minimization in the sense of Vapnik (1998), see also Schölkopf und Smola
(2002).

In statistical machine learning the major goal is the estimation of a func-
tional relationship yi ≈ f(xi) + b between an outcome yi belonging to some
set Y and a vector of explanatory variables xi = (xi,1, . . . , xi,k)′ ∈ X ⊆ Rp.
The function f and the intercept parameter b are unknown. The estimate
of (f, b) is used to get predictions of an unobserved outcome ynew based on
an observed value xnew. The classical assumption in machine learning is that
the training data (xi, yi) are independent and identically generated from an
underlying unknown distribution P for a pair of random variables (Xi, Yi),
1 ≤ i ≤ n. In applications the training data set is often quite large, high di-
mensional and complex. The quality of the predictor f(xi)+b is measured by
some loss function L(yi, f(xi)+ b). The goal is to find a predictor fP(xi)+ bP
which minimizes the expected loss, i.e.

EP L(Y, fP(X) + bP) = min
f∈F , b∈R

EP L(Y, f(X) + b), (5)

where EP L(Y, f(X) + b) =
∫
L(y, f(x) + b)dP(x, y) denotes the expectation

of L with respect to P. We have yi ∈ Y := {−1,+1} in the case of binary
classification problems, and yi ∈ Y ⊆ R in regression problems.

As P is unknown, it is in general not possible to solve the problem (5).
Vapnik (1998) proposed to estimate the pair (f, b) as the solution of an em-
pirical regularized risk. His approach relies on three important ideas: (1)
restrict the class of all functions f to a broad but still flexible subclass of
functions belonging to a certain Hilbert space, (2) use a convex loss function
L to avoid computational intractable problems which are NP-hard, and (3)
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use a regularizing term to avoid overfitting. Let L : Y × R → R be an appro-
priate convex loss function. Estimate the pair (f, b) by solving the following
empirical regularized risk minimization:

(f̂n,λ, b̂n,λ) = arg min
f∈H, b∈R

1
n

n∑
i=1

L(yi, f(xi) + b) + λ‖f‖2
H, (6)

where λ > 0 is a small regularization parameter, H is a reproducing kernel
Hilbert space (RKHS) of a kernel k, and b is an unknown real-valued offset.
The problem (6) can be interpreted as a stochastic approximation of the
minimization of the theoretical regularized risk, i.e.

(fP,λ, bP,λ) = arg min
f∈H, b∈R

EP L(Y, f(X) + b) + λ‖f‖2
H . (7)

In practice, it is often numerically better to solve the dual problem of (6). In
this problem the RKHS does not occur explicitly, instead the corresponding
kernel is involved. The choice of the kernel k enables the above methods to
efficiently estimate not only linear, but also non-linear functions. Of special
importance is the exponential radial basis function (RBF) kernel

k(x, x′) = exp(−γ‖x− x′‖2) , γ > 0, (8)

which is a universal kernel on every compact subset of Rd.
If C can have more than two values, we consider several binary regression

models for C ∈ {i, j}, and combine the estimation results in these models by
the pairwise coupling approach proposed by Hastie and Tibshirani (1998).

For the case of binary classification, popular loss functions depend on y
and (f, b) via v = y(f(x) + b). Special cases are:

Support Vector Machine (SVM): L(y, f(x)+b) = max{1−y(f(x)+b), 0}
Least Squares SVM: L(y, f(x) + b) = [1 − y(f(x) + b)]2
Kernel Logistic Regression: L(y, f(x) + b) = log(1 + exp[−y(f(x) + b)])

Kernel logistic regression has the advantage that it estimates

log(
P(Y = +1|X = x)
P(Y = −1|X = x)

) ,

i.e. P(Y = +1|X = x) = 1/(1+e−[f(x)+b]), such that scoring is possible. Note
that the support vector machine ’only’ estimates whether P(Y = +1|X = x)
is above or below 1

2 .
For the case of regression, Vapnik (1998) proposed the ε−support vector

regression (ε−SVR) which is based on the ε−insensitive loss function

Lε(y, f(x) + b) = max {0, |y − [f(x) + b]| − ε} ,
for some ε > 0. Note that only residuals y − [f(x) + b] lying outside of
an ε−tube are penalized. Strongly related to ε−support vector regression is
ν−support vector regression, cf. Schölkopf und Smola (2002).



On a Combination of Convex Risk Minimization Methods 439

Christmann and Steinwart (2004) showed that many statistical machine
learning methods based on Vapnik’s convex risk minimization principle have -
besides other good properties - also good robustness properties. Special cases
are kernel logistic regression and the support vector machine.

4 Application

We use strategy A based on a combination of kernel logistic regression and
ε−logistic regression for a large data set from the Verband öffentlicher Ver-
sicherer in Düsseldorf, Germany. The data set contains information about 4
million customers from 15 single German motor vehicle insurance companies.
There are two response variables: the sum of all claim sizes of a policy holder
within a year and the probability that the policy holder had at least one
claim. The set of possible explanatory variables is quite large and most of
the variables are measured on a nominal or ordinal scale. The data set also
contains geographical information, see Christmann (2004) for more details.
Approximately 95% of all policy holders had no claim, such that strategy A
reduces the computation cost for ε−support vector regression substantially.
It is interesting to note that less than 0.1% of all policy holders had a pure
premium value higher than 50000 EUR, but they contribute almost 50% to
the grand sum. Hence, the empirical distribution of the first response variable
had a large atom in zero and is extremely skewed to the right for the positive
values. The data set also fulfills other features listed in Section 1.

The combination of both nonparametric methods was helpful in auto-
matically modelling and detecting hidden structure in this high-dimensional
data set. For example, there is a non-monotone relationship between age of
the main user, the probability of having at least one claim and the expected
sum of claim sizes. Figure 1 shows the estimates of E(Y |X = x) and for
the conditional probabilities stratified by gender and age of the main user.
The conditional probability of a claim in the interval (0, 2000] EUR given the
event that a claim occurred, increases for people of at least 18 years, cf. the
subplot for P(C = 1|C > 0, X = x) in Figure 1. This is in contrast to the
corresponding subplots for medium, high or extreme events, see the subplots
for P(C = c|C > 0, X = x), c ∈ {2, 3, 4}, in Figure 1. Especially the last
two subplots show, that young people have a substantial higher probability
in producing a claim than more elderly people. There is also a dependency
structure between age of the main user, gender and both response variables.
Using claim size classes defined by the variable C turned out to be helpful to
investigate whether the impact of certain explanatory variables depends on
the claim size. This actually happened for some variables.
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Fig. 1. Results of applying strategy A. Pure premium and conditional probabilities
stratified by gender and age of the main user. Female: dashed. Male: solid.
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5 Discussion

The strategy described in this paper has the goal to exploit knowledge about
certain features often present in data sets from the insurance area. However,
the strategy is not limited to this kind of application and it may also be help-
ful for credit risk scoring or in some data mining projects. A combination of
modern statistical machine learning methods based on convex risk minimiza-
tion can help to detect and to model complex high-dimensional dependency
structures by using the kernel trick. Such dependency structures are often
hard to model with classical statistical methods such as generalized linear
models. An advantage of the strategy is that it is quite flexible because dif-
ferent estimation techniques, variable selection methods or parameter tuning
can be used for the different event classes. Extreme value theory based on
generalized Pareto distributions for the main knots of a tree can be helpful
to model the extreme event class. For other methods from extreme value the-
ory see e.g. Beirlant et al. (2002). The determination of the number of event
classes and their endpoints will have an impact on the predictions, but a rea-
sonable determination will depend on the concrete problem and no general
rule seems to be available.
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Abstract. This paper compares global and local statistical models that are used
for the analysis of a complex data set of credit risks. The global model for dis-
criminating clients with good or bad credit status depending on various customer
attributes is based on logistic regression. In the local model, unsupervised learning
algorithms are used to identify clusters of customers with homogeneous behavior.
Afterwards, a model for credit scoring can be applied separately in the identi-
fied clusters. Both methods are evaluated with respect to practical constraints and
asymmetric cost functions. It can be shown that local models are of higher discrim-
inatory power which leads to more transparent and convincing decision rules for
credit assessment.

1 Introduction

Most companies trading in durable consumer goods offer their customers the
opportunity of an installment credit. Because of the increasing number of
private arrears and insolvencies the modelling of consumer behavior becomes
particular important in this field of consumer credits. The target is to mini-
mize the costs resulting from the risk of the customers’ financial unreliability
which can be achieved by a credit assessment for predicting a customer’s
solvency.

In section 2 we briefly describe the data set analyzed in this paper. Section
3 deals with the basic ideas of credit scoring and refers to logistic discrimi-
nant analysis as a standard method for global classification and prediction.
This type of model is based on all attributes that turned out to significantly
influence the payment behavior in a certain sample. Thus the estimated pa-
rameters are equally applied to every rated customer. Therefore, it is a global
scoring model. Furthermore we mention purposes and restrictions of credit
analysis in practical applications and point out the differing classification
rules. To incorporate the heterogeneity and dynamics of customer behavior
we propose local models described in section 4. Unsupervised learning al-
gorithms, such as k-means clustering and self-organizing maps (SOM), are
applied to identify customer groups of homogeneous behavior on basis of
their given attributes. Afterwards a model for credit scoring is applied to the
identified clusters separately. Global and local models are developed on the
same training sample. Finally, the models are evaluated with respect to their
performance in the same test sample.
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2 Description of the data set

The data set originates from a company selling durable consumer goods by
direct sale. 25% of the customers use the opportunity of an installment credit.
Among the contracts with twelve monthly installments more than 40% show
deficient payment. For this company a credit assessment is established to
predict whether a loan should be granted or not. The complete sample con-
tains 5995 data sets of customers who decided to repay in twelve regular
installments. As given in Table 1, it is randomly divided into a training and
a test sample comprising two-thirds and one-third of all cases respectively.
The training sample is used for pattern recognition and estimating model
parameters whereas the test sample is applied to verify the discriminatory
and predictive power of the global and local models. The credit status of a
customer is measured by the observed process of repayment. If default or
deficiency of repayment occur, the dependent binary coded variable TYPE
is 1 and customer i is said to be not creditworthy. If the repayment is regular
during the whole credit period the customer is said to be creditworthy and
the variable TYPE is 0. The frequencies of the outcomes in the training and
test sample are given in Table 1. The p = 12 classification variables provide

Table 1. Outcomes of payment behavior in training and test sample

Training Sample Test Sample Total

TYPE = 1 1666 (41.7%) 810 (40.6%) 2476 (41.3%)

TYPE = 0 2333 (58.3%) 1186 (59.4%) 3519 (58.7%)

Total 3999 (66.7%) 1996 (33.3%) 5995 ( 100%)

information from the company’s own database (age of the customer, term of
delivery, amount of each installment and living in East or West Germany)
as well as information made available by commercial providers of consumer
and credit assessment data (e.g. social status, prevalent family structure and
type of housing, former judicial and encashment procedures). All classifica-
tion variables are subdivided into qualitative categories that are coded as
dummy variables.

3 Global scoring model

This section introduces logistic discriminant analysis as a global model for
measuring credit performance. Afterwards the adjustment of the classification
rule under practical constraints is described.

3.1 Global scoring using logistic discriminant analysis

For new customers the credit status is unknown. For this reason a prospective
customer i needs to be assigned to one of the two groups based on his p
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individual attributes xip. So a decision rule k(xip) is needed which assigns
customer i to the group he probably originates from. Discriminant analysis
based on logistic regression (Arminger et al. (1997)) is a standard method
for solving this classification problem. Here an estimation procedure with
automatic variable selection is used which also considers interaction effects
(Bonne (2000)). The linear predictor resulting from this logistic regression
may directly be interpreted as the score of customer i:

ŷi = β̂0 + β̂1xi1 + . . . + β̂pxip (1)

To predict a customer’s solvency a threshold value c must be determined by
which customer i is assessed to be not creditworthy. The resulting decision
rule states negative credit status if ŷi ≥ c. The following section deals with
the determination of c in practical applications.

3.2 Classification rule under constraints

In credit assessment two classification errors occur: a customer with negative
credit standing is assessed as creditworthy (with frequency h10) or a customer
with positive payment behavior is assessed as not creditworthy (h01, cf. Table
2). The conventional classification rule minimizes the total number of mis-
classified objects which results in a balanced weighting of both classification
errors. However, in business applications, the consideration of cost functions
often requires unbalanced weighting of classification errors which should be
incorporated in determining the threshold value c. For example we assume
the following:

• To ensure the acceptance of the credit assessment inside the company, a
maximum of 20% of the financially reliable customers should be wrongly
refused.

• The measurement of the effect of credit analysis and its profit contribution
is required. Therefore the resulting classification must be evaluated with
regard to the varying costs caused by gaining and losing customers.

To incorporate the first constraint we define the β-error as the proportion of
wrongly refused creditworthy applicants to all applicants refused: β = h01/h.1

and choose c on condition that β ≤ 0.2 which results in the classification for
the test sample given in Table 2 (β = 0.1960). For the second constraint, both
possible misclassifications are associated with differing costs. A customer with
negative credit standing that is assessed creditworthy causes loss and costs
in the absence of acquittance or interest payments. Simultaneously expenses
arise for dunning, encashment and processing. On the other hand, the wrong
refusal of a credit application involves opportunity costs in the amount of lost
assets and income from interest. It may also cause deterioration of customer
relations. The classification rule for credit analysis should incorporate these
varying costs to particular misclassification. In practice, at least the cost
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Table 2. Classification for the training sample with β ≤ 0.2

k(xi) = 1 k(xi) = 0
�

TYPEi = 1 1091 (h11) 575 (h10) 1666 (h1.)

TYPEi = 0 266 (h01) 2067 (h00) 2333 (h0.)�
1357 (h.1) 2642 (h.0) 3999 (h..)

ratio must be known. Different asymmetric cost functions are conceivable.
For example, the effect of the implementation of a credit assessment can
be evaluated based on the expected increase in marginal return (mr) by
analyzing the credit status of customer i (Bonne (2000)):

E(mr|xi) = C(1) · P (TYPE = 1|xi) − C(0) · (1 − P (TYPE = 1|xi)) (2)

where C(1) are costs and loss avoided by refusing customers that are not cred-
itworthy, and C(0) measures the opportunity costs at the rate of lost profit by
refusing customers that are creditworthy. P (TYPE = 1|xi) is the conditional
probability that the credit becomes deficient given the classification variables
xi. Trading in high-valued consumer goods we usually suppose C(1) > C(0),
and in the analyzed case we assume a cost ratio of C(1) : C(0) = 1 : 0.5.
Figure 1 shows the progression of the increase in marginal return according
to the classification rules on basis of the linear predictor. The vertical line in-
dicates the threshold value ŷi ≥ c under the restriction β ≤ 0.2 (ŷi ≥ 0.4944).
Given the classification in Table 2 the increase in marginal return differs for
varying cost ratios. It increases from 825 units for equal weighted costs to 958
at cost ratio 1:0.5. Fixing E(mr|xi) to 825 on the other hand, the β-error
decreases from 0.1960 to 0.1679 at cost ratio 1:0.5 as a lower refusal rate
occurs.

In implementing global statistical models for credit analysis, a major diffi-
culty arises. Often these models are not able to incorporate the heterogeneous
composition of the population. For example in a certain application the esti-
mated global model based on logistic regression rejects all applicants younger
than 25 years as this attribute is highly significant concerning the customers’
financial unreliability. In contrast to this we should request the credit as-
sessment to filter out those applicants among the youngest customers which
actually are solvent. We therefore suggest local scoring models to incorporate
the heterogeneity of customer behavior in the underlying population.

4 Local scoring by two-stage classification

The suggested local scoring model consists of two steps. First unsupervised
clustering algorithms are used to identify customer groups of homogeneous
behavior within the classification variables. For this purpose we compare a
self-organizing map, whose objects are afterwards clustered by the Ward algo-
rithm, with a k-means cluster analysis. The second step consists in estimating



446 Schwarz and Arminger

Fig. 1. Increase in marginal return (in thousand units) for different cost ratios

a model for predicting solvency based on logistic regression, as described in
section 3, for every identified cluster separately.

4.1 Clustering using self-organizing maps

The self-organizing maps algorithm introduced by Kohonen (1982) is a power-
ful method for modelling customer behavior (Schmitt and Deboeck (1998)).
Nevertheless, Kohonen maps are still rarely used in business applications.
Self-organizing maps (SOM) show some specific characteristics among unsu-
pervised learning algorithms. In particular they reduce a high dimensional
feature space by transforming it onto a usually two-dimensional layer. Simul-
taneously SOM preserve the topology and structure of the input space which
is basically characterized by the density of the input data and the ordering
relation between input vectors. Below only a brief description concerning the
application of this method according to Hastie et al. (2001) and Kohonen
(1998) is given. For a detailed description concerning SOM and the Kohonen
algorithm we refer to Kohonen (1982, 1984, and 1995).

A Kohonen self-organizing map (SOM) is an unsupervised artificial neural
network that adapts itself responding to input signals based on the Kohonen
algorithm. A SOM consists of K prototypes mj , j = 1, . . . ,K, which are
initialized laying a uniform spread over a two-dimensional grid. Each of the
K prototypes is parametrized with respect to a pair of integer coordinates
lj ∈ Q1 × Q2 with dimensions Q1 = {1, 2, . . . , q1} and Q2 = {1, 2, . . . , q2}
which leads to the the map’s size K = q1 ·q2. The sensible choice of q1, q2, and
K respectively is left to the user. During the training process the observations
xi are presented to the map one at a time. Usually a certain number of
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training cycles is carried out in which all the xi are reapplied in succession.
Presenting an observation xi to the map we find the closest prototype mj to
xi using a distance measure, e.g. the Euclidean norm. Then all neighbors mk

of this winning prototype mj are moved closer to the data xi via the update
step

mk ← mk + αh (‖lj − lk‖) (xi − mk) (3)

with learning rate α and neighborhood function h. Typically α decreases
during the training of the map from 1.0 to 0.0. Often a Gaussian neighborhood
function is used (Kohonen (1998), Poddig and Sidorovitch (2001)):

h = exp
(−‖lj − lk‖2/2σ2

)
(4)

with again σ continuously decreasing during the iterations. After completion
of the training process, every observation vector xi can be associated with
the prototype it is mapped on according to the chosen distance measure, e.g.
the Euclidean norm. This recall procedure can also be applied to accessory
data sets of new customers which nevertheless should be part of the dynamic
training process to achieve an adaptive and flexible map over time. We train a
SOM with a large number of prototypes (1848) using the standardized input
vectors of the training sample. Subsequently the prototypes of the resulting
map are clustered by the hierarchical Ward cluster algorithm (Bacher (1996)).

4.2 K-means cluster analysis

K-means cluster analysis is used as a reference procedure for the local detec-
tion of underlying structure in customer behavior. SOM and k-means cluster-
ing are closely related to each other. If the neighborhood distance is chosen
small enough so that each neighborhood contains only one prototype the
SOM algorithm reduces to a dynamic version of k-means clustering (Hastie
et al. (2001)). In addition the size of the Kohonen map, i.e. the number of
prototypes, can be chosen as the determined number of k-means clusters
(Poddig and Sidorovitch (2001)). As starting partitions in the k-means algo-
rithm (Bacher (1996), Hastie et al. (2001)) we use the outcome of a Ward
clustering. The initial cluster centroids are chosen at random and again all
input vectors are applied standardized.

4.3 Evaluation of two-stage classification

Both procedures for identifying classes of homogeneous behavior detect four
clusters. Within the particular local model every customer is first assigned
to one of the detected clusters. Afterwards a local logistic regression model
(cf. section 3) for classification and predicting the customer’s solvency is es-
timated for each cluster separately. This involves the separate determination
of the threshold value c with respect to an overall classification at optimal
costs and an overall β ≤ 0.2. The resulting classifications for the local models
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Table 3. Classification for the training sample using local scoring models

k-means model SOM model
k(xi) = 1 k(xi) = 0

�
k(xi) = 1 k(xi) = 0

�

TYPEi = 1 959 707 1666 TYPEi = 1 1001 665 1666
TYPEi = 0 194 2139 2333 TYPEi = 0 149 2184 2333�

1153 2846 3999
�

1150 2849 3999

are given in Table 3. Showing an almost equal refusal rate (28.83% in the
k-means model to 28.76% using SOM) the β-error for the local scoring model
with SOM shows a much lower value (β = 0.1296) compared to the model
using k-means clustering (β = 0.1683). By applying k-means clustering for
structure detection the increase in marginal return for this classification is
765 units at cost ratio 1:1 and 862 at cost ratio 1:0.5. Using SOM clusters
raises these results to 852 and 927 units.

5 Application to the test sample

In this section the developed local scoring models and the global model are
evaluated concerning their performance in the test sample and their gener-
alization ability. The particular threshold values are fixed according to the
classification results in the training sample (cf. Table 1). The final classifica-
tion results at cost ratio 1:0.5 are given in Table 4. The global scoring model
shows a refusal rate of 31.5% of all applicants with an increase in marginal re-
turn of 430 units. But β = 0.2019 exceeds the value of maximal 20% wrongly
refused applicants. Using the local k-means model for solvency prediction
under the same constraints we achieve a lower increase in marginal return
(400 units) accompanied by an acceptable β-error of 0.1798 at a refusal rate
of 27.3%. Finally, the SOM model shows a refusal rate of 28.6% raising the
increase in marginal return to 460 units. Simultaneously the β-error for this
local model decreases to 0.1331.

Table 4. Performance of global, k-means and SOM model in the test sample

global model k-means model SOM model
k(xi) = 1 k(xi) = 0 k(xi) = 1 k(xi) = 0 k(xi) = 1 k(xi) = 0

TYPEi = 1 (810) 502 308 447 363 495 315

TYPEi = 0 (1186) 127 1059 98 1088 76 1110
�

(1996) 629 1367 545 1451 571 1425
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6 Conclusions

With respect to the regarded purposes and the resulting constraints the local
statistical model using SOM clusters is superior to both the global and the
local k-means model. By means of clustering a self-organizing map with a rel-
atively large number of prototypes we achieve a segmentation into customer
groups of homogeneous behavior. Referring to the underlying classification
problem this leads to a fundamental reduction of misclassified objects, espe-
cially with regard to the number of wrongly refused creditworthy customers
and the associated loss of profit.

Concerning the application of the self-organizing map methodology in
credit management this is an ongoing work mainly depending on two impor-
tant conditions. First the misclassification costs, or even their ratio to each
other, must be known. Second for a sustainable measurement of dynamics
and heterogeneity of customer behavior a regular revision and adjustment of
the used model is required. Therefore training samples that provide customer
information along several years, especially including the exact time of credit
application, are needed.
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Abstract. Pertinent statistical methods for credit scoring can be very simple like
e.g. linear discriminant analysis (LDA) or more sophisticated like e.g. support vec-
tor machines (SVM). There is mounting evidence of the consistent superiority of
SVM over LDA or related methods on real world credit scoring problems. Meth-
ods like LDA are preferred by practitioners owing to the simplicity of the resulting
decision function and owing to the ease of interpreting single input variables. Can
one productively combine SVM and simpler methods? To this end, we use SVM
as the preselection method. This subset preselection results in a final classification
performance consistently above that of the simple methods used on the entire data.

1 Introduction

Credit scoring basically relies on a binary classification problem, which helps
forecasting whether a credit applicant will default during the contract period.
A credit applicant is described by many characteristics, resulting in a high
dimensional data vector, which is labeled according to whether defaulting or
non defaulting behavior was observed. Such labeled data vectors are used for
determining a classification rule, usually by a method of statistical learning.
The probable behavior of new credit applicants can then be read off by using
the classification rule on their (as yet unlabeled) data.

Even for a largely unknown geometry of high dimensional (labeled) data,
Support Vector Machines (SVM) are a very powerful statistical learning
method for determining a successful classification rule (Schölkopf and Smola
(2002)). In fact, for real life credit scoring data, Stecking and Schebesch
(2003), Schebesch and Stecking (2003a) and Schebesch and Stecking (2003b)
show that general SVM are superior to Linear Discriminant Analysis (LDA)
and Logistic Regression in terms of out-of-sample prediction accuracy, both
in the standard situation, but also under various more realistic circumstances,
including unequal number of class representatives and asymmetric misclas-
sification costs. Other recent work on credit scoring and SVM is Friedman
(2002), Van Gestel et al. (2003) and Huang et al. (2004). From the prac-
titioners point of view, a drawback of SVM is the need of a validation-
parameterization cycle, more typical for testing new scientific methods but
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less useful in routine applications with time constraints. Another observa-
tion of ours is that non-linear SVM applied to credit scoring data are not
leading to an overwhelming improvement of the error rate when compared
to linear SVM, probably owing to the relative sparsity of the data. However,
the much simpler linear SVM is still very different from the traditionally
used LDA, as is shown in this paper. Unlike LDA but similar to non-linear
SVM, linear SVM uses margin-maximization of the class boundaries, which
leads to a more robust separation rule in presence of noise and outliers. The
very compact description of the class boundaries by some of the data points
(i.e. certain support vectors of the linear SVM) can be used as a training
subset preselection for LDA. The practitioner can then use LDA but also
benefits from the more powerful results of the SVM. In this paper we show
that the compact description of the class boundaries by certain support vec-
tors of the linear SVM is a useful expert “data model” for credit scoring:
pooled or proprietary data sets need not be revealed to a decentralized user
(practitioner) who will employ traditional methods like LDA but who will
benefit from the results of the SVM.

2 Linear SVM and LDA

A classification model for credit scoring uses N > 0 labeled training examples
{xi, yi}, with vector xi ∈ Rd describing credit applicant i by d � 1 char-
acteristics, and with class label yi indicating whether credit applicant i was
“bad” (defaulting, yi = +1) or “good” (non-defaulting, yi = −1) during a
contract period. A detailed description of the SVM classifier for such data is
Schölkopf and Smola (2002) or Stecking and Schebesch (2003). Here we just
state the optimization problem of the linear SVM. Figure 1 depicts mar-
gin maximization between the classes, for a stylized situation, where classes
are linearly separable (〈., .〉 denotes scalar products). If all positive cases
(i.e. xi with yi = 1) are positioned such that 〈xi, w〉 + b ≥ 1 is verified (and
〈xi, w〉 + b ≤ −1 for all negative cases), then linear separation by some hy-
perplane 〈w, x〉 + b = 0 is possible. Owing to the fact that real life data can
be both non-linear and noisy, maximizing the margin (or minimizing ||w||)
is now done allowing for some misclassification by means of slacks ζ ≥ 0 and
parameter C > 0:

min
w,b,ζ

C

N∑
i=1

ζi +
1
2
〈w,w〉 s.t. yi[〈xi, w〉 + b] ≥ 1 − ζi, ζi ≥ 0.

The associated dual used for numerical computations reads

max
α

N∑
i=1

αi − 1
2

N∑
i=1

N∑
j=1

αiαjyiyj〈xi, xj〉 s.t.
N∑

i=1

yiαi = 0, C ≥ αi ≥ 0.
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Fig. 1. Linear SVM separates classes and maximizes the margin.

The solution of the dual leads to an optimal decision rule for new cases x

y∗(x) = sign

{
N∑

i=1

α∗
i yi〈x, xi〉 + b∗

}
.

Take N > d as is the case in credit scoring data. The Ns ≤ N support
vectors are the set {xi|α∗

i > 0} and the “informative” support vectors
are the subset {xi|0 < α∗

i < C}, which delimit regions of reliable class pre-
dictability. The remaining support vectors are critical, i.e., they fall into
the region, where predictability is not reliable. By varying C one can ob-
tain at least d + 1 informative support vectors. They can be used as data
input to a simple standard method like Linear Discriminant Analysis (LDA).
However, LDA encounters singularity of the covariance matrix when using
exactly d+1 data points in d dimensions. To circumvent problems of compu-
tation one can use the pseudo-inverse (Shashua (1999)). We choose to simply
duplicate the labeled support vectors and randomly perturb the location of
the replicated points in input space such that their maximum displacement is
much smaller than the minimum distance between two empirical data points.
LDA on this data approximates the SVM separation quite well. For linearly
separable data, the separating hyperplane of the LDA on the support vectors
and of the linear SVM are very similar and theoretically coincide when the
class-wise data distributions are the same (Shashua (1999)). A more inter-
esting situation is given if classes are not linearly separable, with effective
misclassification of the linear SVM (i.e. d + 1 < Ns < N), as we also find in
our real world credit scoring data. Figure 2 depicts the differences between
using LDA and linear SVM (or a LDA on informative support vectors) on
some two dimensional data, which are not linearly separable. Depending on
the priors for the two classes, LDA would turn out a class separating line from
the shaded area of the left column plots. Even for the first data example (up-
per row), the linear SVM selects the informative support vectors such that
the slope of the linear discriminant on these data points differs from the LDA
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Fig. 2. Two examples of nonlinear binary classification problems (by row), with
two dimensional inputs. Class labels of example data points are marked with circles
with crosses respectively (left column plots). Separation by linear SVM (middle
column plots): informative support vectors (big circles) and critical support vectors
(small circles and crosses). Separation slopes obtained by SVM+LDA (long solid
line) and that of LDA alone (long dashed line) are compared in the right column
plots. The shorter lines in the left and right column plots connect the respective
class means of informative support vectors.

on the original data (right column plot). The more extreme example (lower
row) is formed by taking the first example with “outliers opposing the linear
separation” added in the upper right corner (the new five distant points).
Owing to the strong influence of these outliers on the class centers, the LDA
is now tilting the slope of the separating line completely, while the linear
SVM still separates the “bulk” of the linearly separable data more faithfully.
The linear SVM is including the outliers into the set of critical support vec-
tors (middle plot of lower row). Besides being high dimensional, our real life
credit scoring data may exhibit distributional properties somewhere in be-
tween the presented examples. When classifying these data by SVM, quite
many critical support vectors occur, indicating non linear class data (Steck-
ing and Schebesch (2003), Schebesch and Stecking (2003a)). The rationale
of using a SVM+LDA combination is the following: Imagine a data-pooling
center which is collecting credit data from many financial firms, as presently
practiced with credit card fraud data. The proprietary data should be hidden
from the constituent members of the pool, but a data model (not revealing all
data) can be forwarded. The support vectors of a linear or non-linear SVM
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would in fact be such a model, which hence would enable members to use a
more conventional method (e.g. LDA on support vectors from a linear SVM)
to obtain high quality decisions implicitly based on much more representative
data.

3 Subset preselection for LDA: Empirical results

We use a sample of 658 cases describing applicants for building and loan
credits. A total of 323 out of 658 applicants could be classified as “default-
ing”, depending on their individual historical credit performance. The 335
remaining applicants are “non defaulting”, respectively. The number of in-
put variables is 16 (7 metric and 9 categorical). Due to coding of categorical
variables as indicator variables each input pattern finally consists of 40 di-
mensions. In the following it is shown how to use Linear Support Vector
Machines to detect informative patterns for Linear Discriminant Analysis.
Then, three models are built, using credit scoring data: (i) Linear Support
Vector Machine (SVM), (ii) Linear Discriminant Analysis (LDA), and (iii)
LDA with subset preselection (LDA-SP). The classification results of these
three models are compared and, finally, some advantages of our procedure
are discussed.

3.1 About typical and critical subsets

SVM divide the patterns of the input space into (1) informative, (2) typical
and (3) critical subsets. Informative patterns are essential support vectors
and will be used as input for Linear Discriminant Analysis. Typical patterns
can be separated with low (or zero) error by the SVM. Critical patterns
cannot be separated well by the SVM. The classification error usually is
high.

In case of labeled data classifying each pattern as informative, typical or
a critical can be done simply with regard to the αi of the SVM (see table 1).

Table 1. Overview of informative, typical and critical patterns.

Informative, typical and critical patterns

with regard to with regard to
Subset Lagrange multipliers αi SVM output

Informative patterns 0 < αi < C |〈xi, w〉 + b| = 1
Typical patterns αi = 0 |〈xi, w〉 + b| > 1
Critical patterns αi = C 0 < |〈xi, w〉 + b| < 1

False patterns ∈ {Critical patterns} y∗
i (〈xi, w〉 + b) < 0
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In case of unlabeled data only the output of the SVM is given. Let 〈xi, w〉+ b
be the output of the SVM. Then a support vector is defined as being located
exactly on the margin, i.e. |〈xi, w〉 + b| = 1. All typical patterns are outside
the margin (|〈xi, w〉+b| > 1), and the critical patterns are located within the
margin |〈xi, w〉+b| < 1. In practical use informative patterns will be extracted
by using the αi of the SVM. Whether an (unlabeled) credit applicant belongs
to the typical or critical subset then will be decided w.r.t. the SVM output.

3.2 LDA with subset preselection

A linear SVM with C = 100 was built to predict the state of credit (“good:
non defaulting” or “bad: defaulting”) using the credit scoring data set (658
cases) with 40 dimensional input vector to describe the credit applicants.
By using SVM with linear kernel, upper bound C is the only parameter
to be set in advance. By choosing C too small one gets a huge amount of
critical patterns which is not desirable. With growing C the distribution of
the patterns in between the subsets becomes stable, not changing anymore at
above some fixed level. In our example this is the case for C = 100. Table 2
shows the classification results of the LDA with subset preselection. There is
low error within the typical subset and high error within the critical subset
(cf. table 1).

Table 2. Classification results for informative, typical and critical subsets. Infor-
mative patterns are selected w.r.t to Lagrange multipliers αi, typical and critical
patterns w.r.t. to SVM output.

LDA with subset preselection (LDA-SP)

Informative Typical Critical
good bad good bad good bad

Observed good 24 0 155 17 85 54
bad 0 17 22 147 56 81

Region error in % 0.00 11.44 39.86

Total error in % 22.64

3.3 Comparing SVM, LDA and LDA-SP

LDA with subset preselection (LDA-SP) leads to a decision rule, which is a
simple linear discriminant function. Through subset selection on the other
hand, some of the advantages of the SVM are given to the LDA: a tight
subset of the input space, that is not disturbed by mass informations or by
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outliers, which entails all information needed to construct a useful decision
rule. Furthermore, it is possible to label a credit applicant as typical or crit-
ical, indicating excellent or poor classification capability. But is SVM-LDA
really competitive to SVM (and also to LDA)? One would assume, that the
performance of the combined approach lies between the ones of SVM and
LDA. Especially mass information of the full data set biases the classifica-
tion function of the LDA away from the true boundary between good and
bad credit applicants (Stecking and Schebesch (2003)). Table 3 shows inter-
mediate performance (compared to SVM and LDA) of the LDA with subset
preselection.

Table 3. Classification results for SVM, LDA and LDA-SP.

SVM LDA LDA-SP
good bad good bad good bad

Observed good 259 76 247 88 264 71
bad 71 252 69 254 78 245

Model error in % 22.34 23.86 22.64

3.4 Advantages of LDA with subset preselection

Subset preselection can be used in multiple ways: Using the informative pat-
terns as input for LDA leads to a very simple and comprehensive back-end
function, as simple as, but superior to the traditional LDA. Subset prese-
lection divides credit applicants into the subsets of “critical” and “typical”
patterns. The predicted classification of a typical pattern is much more re-
liable than that of a critical pattern. Consequently, the ratio of critical to
typical credit applicants can hint at the reliability of the classification model
given the data, and it can be used as a possible measure for the “predictabil-
ity” of the whole data set. Furthermore, if you profile and compare typical
good versus typical bad applicants it is easy to focus on the differences be-
tween both groups. Finally, as stated above, outlier and data error detection
is also possible with subset preselection.

4 Conclusions

Searching for classification methods best suitable for credit scoring, we back-
track in this paper to using SVM with linear kernels. The informative support
vectors of the linear SVM are stable data models of the original data. They
can be used as compact but encompassing data input to more conventional
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models like LDA by practitioners. For data which are not linearly separable
(as are e.g. credit scoring data), such preselected data (i.e. informative sup-
port vectors) also lead to a linear separation which may differ considerably
from that of directly applying LDA to the original data. Linear SVM more
faithfully separates the “bulk” of the linearly separable data, being much less
influenced by outliers which “oppose a linear separation”. For real life credit
scoring data it is shown that SVM can be successfully used to detect three
kinds of subsets: informative, typical and critical. By estimating the coeffi-
cients of the LDA with the small number of informative patterns (support
vectors) as the only inputs, a credit scoring performance is obtained, which
usually lies near that of SVM or between that of SVM and LDA on original
data. Furthermore, SVM can be easily adjusted to non standard situations
most common to credit scoring, like the vastly different numbers of good
and bad credit applicants and different misclassification costs (Schebesch and
Stecking (2003a)). Such strong asymmetries increase the benefit of building
a linear SVM by an expert modeler even further, but they still enable the
faithful use of LDA as a backend by the practitioner.
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Abstract. Since its introduction in Boser et al. (1992), the support vector machine
has become a popular tool in a variety of classification and regression applications.
In this paper we compare support vector machines and several more traditional
statistical classification techniques when these techniques are applied to data from
a life assurance environment. A measure proposed by Louw and Steel (2004) for
ranking the input variables in a kernel method application is also applied to the
data. We find that support vector machines are superior in terms of generalisation
error to the traditional techniques, and that the information provided by the pro-
posed measure of input variable importance can be utilised for reducing the number
of input variables.

1 Introduction

Since the introduction of the support vector machine by Boser et al. (1992),
this technique has become a popular tool for classification and regression.
Although it was initially mainly applied in the machine learning community,
the support vector machine is rapidly becoming a standard option for solv-
ing statistical problems (see for example Hastie et al. (2001) for a discussion
of support vector machines from a statistical perspective). In this paper we
report a study of support vector machines applied in a life assurance envi-
ronment. Data miners and statisticians at Sanlam, a major South African
financial services company, currently use standard statistical techniques to
classify new policy applicants into one of two classes, viz. clients that will in
future lapse one or more policies, and those that will not do so. The aim of
our study was twofold: firstly, to determine whether support vector machines
are capable of improving upon the standard techniques in terms of accurate
classification, and secondly, to apply a measure of variable importance pro-
posed by Louw and Steel (2004) to the data to rank the input variables in
terms of their ability to separate the two groups when using a support vector
machine.

The second aim deserves more comment. Although support vector ma-
chines typically classify very accurately, they do not provide a natural way of
determining the relative importance of the different input variables. Ranking
the input variables according to their importance serves several purposes: it
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leads to better insight into the structure of the problem or data set, we obtain
a parsimonious and sensible summary of the input variables, it is more cost-
effective to work with fewer input variables, and using fewer input variables
when classifying future cases may actually lead to more accurate results. See
in this regard Guyon and Elisseeff (2003). In Section 4 of this paper we there-
fore follow Louw and Steel (2004) and show how the concept of alignment
introduced by Cristianini et al. (2002) can be used to apply a new measure
of input variable importance in a support vector machine context.

Regarding the remainder of this paper, in Section 2 we provide a very
brief overview of support vector machine methodology. Section 3 contains
a description of the problem context and the data. Section 4 introduces the
new measure of variable importance, and illustrates its application to the data
under consideration. The results of the comparative study are presented and
discussed in Section 5.

2 Support vector machines

Support vector machines are sufficiently well known to make an extensive
discussion of the underlying theory in this paper unnecessary. We therefore
limit ourselves to a brief overview of the topic, introducing required notation
along the way. Detailed discussions of the theory of support vector machines
for classification and regression can be found in, amongst others, Schölkopf
and Smola (2002).

Consider the following generic two-group classification problem. We ob-
serve a binary response variable Y ∈ {−1,+1}, together with classification or
input variables X1, X2, · · · , Xp. These variables are observed for N = N1+N2

sample cases, with the first N1 cases coming from population 1 and the re-
maining N2 cases from population 2. The resulting training data set is there-
fore {(xi, yi) , i = 1, 2, · · · , N}. Here, xi is a p-component vector representing
the values of X1, X2, · · · , Xp for case i in the sample. Our purpose is to use
the training data to determine a rule that can be used to assign a new case
with observed values of the predictor variables in a vector x to one of the
two populations.

Application of a support vector machine to a given data set entails im-
plicit transformation of the input data to a high dimensional feature space,
followed by construction of a decision function for classification of future
cases by fitting a hyperplane to the transformed data. Let Φ denote the
transformation from input to feature space. Then the support vector ma-
chine classification function for a new case with input vector x is given by
sign

{
b +
∑N

i=1 αiyi〈Φ(xi), Φ(x)〉
}

. Here, b and α1, α2, · · · , αN are quanti-
ties determined by applying the support vector machine algorithm to the
training data, while 〈Φ(xi), Φ(x)〉 denotes the inner product between the
(possibly infinite dimensional) feature vectors Φ(xi) and Φ(x).
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The so-called kernel trick is an essential element of support vector ma-
chine methodology in that it obviates explicit calculations in the feature
space. This stratagem implies that the inner product 〈Φ(xi), Φ(x)〉 can be re-
placed by K(xi,x), where K(., .) is an appropriate kernel function. The SVM
classification function therefore becomes sign

{
b +
∑N

i=1 αiyiK(xi,x)
}
. Ex-

amples of popular kernel functions are the homogeneous polynomial kernel,
K(x1,x2) = 〈x1,x2〉d, where d is an integer, usually 2 or 3, the inhomo-
geneous polynomial kernel, K(x1,x2) = (c + 〈x1,x2〉)d, with c a positive
constant, and the Gaussian or radial basis function (RBF) kernel given by
K(x1,x2) = exp(−γ‖x1 −x2‖2), where γ is a so-called kernel hyperparame-
ter, and ‖x‖2 = 〈x,x〉 =

∑p
i=1 x

2
i . We restrict attention to the RBF kernel in

the remainder of this paper. For more detailed discussions of kernel functions,
see for example Herbrich (2001) or Schölkopf and Smola (2002).

Finally in this section, note that the quantities b and α1, α2, · · · , αN in
the support vector machine decision function are typically found by solving
a quadratic optimization problem. The objective function that is maximized
during this optimization also contains a constant C, called a cost parameter,
that guards against overfitting and consequent poor generalization ability
of the support vector machine. Both the cost parameter C and the kernel
hyperparameter γ have to be specified by the user from prior knowledge of
the problem area, or determined from the training data. This is an issue that
will arise again later in our discussion.

3 Problem context and the data

In the life assurance industry (as in most industries) client retention is very
important. One aspect of client retention in this industry is the issue of early
policy termination, in other words, lapses and surrenders. In essence a policy
lapse usually means that there is a financial loss for the company, as the
policy is terminated before the end of the period in which costs are recouped.
Determining or predicting whether a client will lapse a policy is therefore
very important for profitability, and it is crucial for the company to be able
to predict in advance whether a client is likely to lapse a policy.

Several standard techniques are currently used at Sanlam to evaluate the
risk of a policy lapsing. The aim of our study was to investigate the possible
use of support vector machines in this context.

Regarding the data that were analysed, a random sample of 4851 policy
lapse cases was selected from the client database. Another random sample
of 4745 non-lapse cases was added, yielding a total sample size of 9596. The
response (dependent) variable was an indicator of whether the person had
lapsed a policy or not. There were 61 input (independent) variables, consisting
of numerical and categorical variables. The categorical input variables were
handled by introducing appropriately defined indicator variables.
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The techniques that were applied to the data are Fisher’s linear dis-
criminant analysis (LDA), logistic regression, classification trees and support
vector machines (SVMs). Software from R were used to perform the data
analysis. The analysis included the following steps. The available data were
randomly divided into a training set (typically, 75% of the total) and a test
set (the remaining 25%). Each of the techniques mentioned above was ap-
plied to the training data, thereby obtaining four classification functions that
were used to predict the lapse category of the data cases in the test data set.
A test error was calculated for each technique as the percentage of test set
misclassifications. The random split of the data into training and test data
subsets was repeated 100 times, and an average test error was calculated for
each of the techniques under investigation.

4 A measure of variable importance

An important property of support vector machines is that the input vectors
xi appear in the algorithm only as arguments of the kernel function, i.e. we
encounter these vectors only in the form K(xi,xj), i, j = 1, 2, · · · , N . Evalu-
ating K(xi,xj) for i, j = 1, 2, · · · , N , we are able to construct the so-called
Gram matrix with ij-th entry K(xi,xj). When a support vector machine
is applied to a two-group classification problem, the Gram matrix contains
all the information provided by the input vectors xi. Since K(xi,xj) can be
interpreted as a measure of the similarity between xi and xj , Cristianini et
al. (2002) argue that an ideal Gram matrix would be of the form yy′, where
y is the N -component response input vector with -1 in the first N1 positions
and +1 in the remaining N2 positions. They define the concept of (empirical)
alignment between a given Gram matrix G = [K(xi,xj)] and the ideal Gram
matrix yy′ by

A(G,yy′) =
〈G,yy′〉F√〈G,G〉F 〈yy′,yy′〉F

,

where 〈R,S〉F = trace(RS) is the Frobenius inner product between the
symmetric matrices R and S. These authors investigate the properties of the
alignment, the most important for our purpose being that a large value of
the alignment is desirable, since this will typically lead to the support vector
machine generalizing well, i.e. classifying new cases accurately.

Louw and Steel (2004) use the concept of alignment to define a quantity
that reflects the importance of an input variable when fitting a support vector
machine to a given data set. Consider in this regard the RBF kernel, and let
Kr(xi,xj) = exp[−γ(xir − xjr)2] with corresponding Gram matrix Gr, r =
1, 2, · · · , p. These are therefore the Gram matrices obtained by evaluating
the kernel function on a single coordinate of the input vectors at a time.
Louw and Steel (2004) suggest measuring the importance of variable Xr

in terms of the alignment of Gr with the ideal Gram matrix yy′, i.e. by
calculating A(Gr,yy′). A large value of A(Gr,yy′) would imply that Xr
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is an important input variable in the sense that it contributes significantly
to separating the two populations under consideration. Whilst it may be
difficult to quantify exactly what is meant by a large value of A(Gr,yy′) in
this context, and further research is required on this aspect, it is clear that
the values of A(Gr,yy′), for r = 1, 2, · · · , p , can easily be used to rank the
input variables in order of importance.
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Fig. 1. Scree plot of ranked alignment values

There are several points deserving further attention that have to be made
regarding the proposal to use A(Gr,yy′) as a measure of individual variable
importance. Firstly, A(Gr,yy′) depends on the values of the kernel function
hyperparameters. For the RBF kernel there is only a single hyperparameter,
viz. γ. A decision therefore has to be made regarding the value of γ to use
when calculating A(Gr,yy′). Louw and Steel (2004) report empirical evi-
dence in favour of using a fixed value of γ, for example γ = 1. Although this
seems to work well in the examples that they consider, other strategies to
deal with this aspect clearly also need to be investigated. In our application
of alignment to rank the variables in the data set we used γ = 1. A second
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point regarding the proposed measure of variable importance concerns the
possibility of using other more well known measures than A(Gr,yy′) for this
purpose, for example the correlations between the input variables and the
response. In this regard it should be borne in mind that by using a kernel
function one is able to exploit highly non-linear relationships between the
input variables and the binary response. It seems that a measure such as
A(Gr,yy′) is able to capture such non-linear relationships, something which
will be difficult if instead we calculate quantities such as the correlations
between the independent variables and the response. A final question that
deserves consideration is whether A(Gr,yy′) can be used for effective di-
mensionality reduction. This would of course have the advantage that only
a subset of the original input variables need to be used in further analyses
and it may even lead to better classification performance of the resulting
rule. The crucial issue in this regard is how to decide on the number of in-
put variables to retain. This question is similar to the problem of deciding
on the number of principal components or factors to use when performing a
principal component or factor analysis. One strategy could be to use a scree
plot of the successive alignment values, a possibility that we explored for the
Sanlam data set. Figure 1 shows the scree plot that was obtained by plotting
the ranked A(Gr,yy′) values against the input variable numbers. Several
competing subsets of input variables to be used in the classification of future
cases can be identified from Figure 1, albeit somewhat subjectively. We there-
fore investigated the classification accuracy (using the procedure described
in Section 3) of the competing techniques in our comparative study for the
following subsets (identified here simply in terms of the variable numbers),
and report on the results in the next section:

A = {55, 53, 47, 50, 30}
B = {55, 53, 47, 50, 30, 35, 40}
C = {55, 53, 47, 50, 30, 35, 40, 51, 52, 37, 5, 6, 34, 54, 15, 31}
D = {55, 53, 47, 50, 30, 35, 40, 51, 52, 37, 5, 6, 34, 54, 15, 31, 32, 39, 41, 44, 13}
E = the full set of input variables.

5 Results

We report in two parts on the results: the effect on test error of the input
variable subset used to train a classifier, and the relative sizes of the test
errors corresponding to the four techniques that were investigated. Consider
first the average test errors summarised in Table 1.

It is clear that for every technique the test error decreases as the input
variable set increases in size, especially so when we move from variable set B
to variable set C. Increasing the number of input variables beyond the 17 in
variable set C causes the average test error to decrease still further, but now
much more slowly than before. Which variable subset should be used? Overall
it seems that variable set D provides almost the same accuracy in terms of
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Table 1. Mean test errors for different sets of input variables

LDA Logistic regression Classification trees SVM

Variable set A 0.242 0.236 0.232 0.222
Variable set B 0.229 0.227 0.226 0.214
Variable set C 0.193 0.173 0.181 0.154
Variable set D 0.189 0.165 0.179 0.153
Variable set E 0.185 0.160 0.178 0.146

test error as variable set E. If one considers that the former contains only
22 variables compared to the 61 in the latter, the gain in parsimony and the
potential cost saving if variable set D is used may well be worth the slightly
higher generalisation error compared to variable set E. Of course, one could
conduct a more detailed investigation of the connection between alignment
and average test error by sequentially adding one input variable at a time
and estimating the corresponding test error, but it seems that the impression
gained from the scree plot in Figure 1, namely that little is to be gained
by adding input variables beyond a certain point, is substantiated by the
entries in Table 1. It is also interesting to note that this holds for each of the
four techniques under consideration, although the alignment measure that
was used to rank the input variables is based on the kernel function used in
the support vector machine. Finally, basing a decision regarding the number
of input variables on a scree plot contains a subjective element. Finding an
objective criterion that can be used in this regard is still an open problem.

Moving on to the second aspect that was investigated in the study, we
present in Figure 2 boxplots of the 100 test errors for each technique (based
on variable set D). The superiority of the support vector machine is evident,
with logistic regression, classification trees and linear discriminant analysis
following in this order.

Nevertheless, although support vector machines are definitely an addition
to the statistician’s toolbox, it should be borne in mind that proper applica-
tion of support vector machines requires significant input from the user as far
as specifying values for the underlying parameters is concerned. In our study
this entailed fairly extensive experimentation to find appropriate values for
the kernel function hyperparameter, γ, and the cost complexity parameter,
C. The reported results were obtained for a specific combination of (γ, C)-
values. If different values of γ and/or C were to be used, it may well lead to
appreciable deterioration in the performance of the support vector machine.
In this sense the support vector machine is not an off-the-shelf procedure.
Finally, the use of support vector machines is hampered by the fact that this
technique is not yet part of the main statistical software packages. This state
of affairs is however sure to change in the near future.
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Fig. 2. Box plots of test errors of the four techniques
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Abstract. In this contribution we develop a profit & loss-dependent, continuous
market risk budgeting approach for financial institutions. Based on standard mod-
elling of financial market stochastics we provide a method of risk limit adjustment
adopting the idea of synthetic portfolio insurance. Due to varying the strike price
of an implicit synthetic put option we are able to keep within limits accepting a
certain default probability.

1 Introduction

Modern risk management practices in financial institutions include more and
more effective risk controlling procedures next to the pure measurement of
risk. Instruments of active risk controlling are, for example, budgeting risks
via setting concrete risk limits and hedging risks. Financial institutions may
need risk management to reduce costs of external capital. They may need
it to lower costs of financial distress and, by reducing earnings volatility,
to avoid high taxes (Froot et al. (1993), Stulz (1996)). Specifically financial
institutions face risk-based capital requirements so that hedging and budget-
ing risks may be preferred against raising additional capital. Motivations for
risk controlling were first for the most part driven by the increasing mag-
nitude of market risk and as a result, the Value-at-Risk (VaR) concept has
become the standard tool to specify risk. But although tremendous efforts of
academics and practitioners were undertaken to adequately measure Value-
at-Risk, questions of how to control and specifically how to budget these
measurable risk attracted surprisingly small interest.
But why should financial institutions even limit their risk-taking? The simple
answer is: because their economic capital backing risky positions is restricted.
Defining the institution’s sustainability of risk as the outmost loss it could
just bear by sure to maintain its solvability and long-term existence, we
identify the implicit risk capital as reserve capital which is sufficient to cover
unexpected losses with comparatively high probability. And why should the
limitation of risk-taking depend on actual profit and loss? We argue that risk
capital could be distinguished into different grades and that profit and loss
is a part of the institution’s short termed, first grade risk capital. Hence,
together with cumulative losses the risk capital and the ability of risk-taking
are decreasing (Merton and Perold (1993), Kupiec (1999)). Furthermore, by
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incorporating shortfall constraints like Value-at-Risk limits into portfolio the-
ory it was shown that risk becomes a function of the investor’s risk aversion
which again may depend on the amount of risk capital (Campbell et al.
(2001)). Against that background, a primary goal of risk management may
be to avoid so called lower-tail losses.
This paper enhances the ideas of Locarek-Junge et al. (2000) on an advanced
modelling. Section 2 introduces the analyzing framework. Section 3 provides
some remarks to the question of time and risk. The continuous market risk
budgeting approach is presented in Section 4 and applied in a simple simu-
lation study in Section 5.

2 Analysis framework

We consider a complete and arbitrage-free capital market where a single risky
asset, e.g. a stock market index, is traded in continuous time. The price S(t)
of that asset at time t is modelled by a geometric Brownian motion

dS(t) = µS(t)dt + σS(t)dz(t), (1)

where µ denotes the drift of the asset value, σ the standard deviation of the
asset value, and dz(t) the standard Brownian motion. In the market there
exists a risk free investment which’s price B(t) follows the dynamic

dB(t) = rB(t)dt, (2)

where r denotes the continuous interest rate. A (weakly) expected-utility
risk averse financial institution or its agent, respectively, only trades the
considered risky asset in his portfolio. The market risk which the bank or
financial institution faces can be identified as potential loss in portfolio value
caused by price changes in the risky asset. As well known, Value-at-Risk, a
measure of a portfolio’s market risk, quantifies a loss bound that will not be
exceeded by (positive) stochastic losses L(T ) with a specified probability p
at a given time horizon T (Duffie and Pan (1997), Jorion (2000), Linsmeier
and Pearson (2000), Locarek-Junge et al. (2002)). A general definition of
Value-at-Risk is given by:

VaR(p, T ) := inf{l : l ≥ 0,Pr(L(T ) ≤ l) ≥ p}. (3)

We assume the institution’s risk management criterion is Value-at-Risk. Be-
cause in our analysis framework the conditional distribution of asset prices
is log-normal and the conditional distribution of asset log-returns is normal,
Value-at-Risk can be easily estimated using a method known as delta-normal
approximation. This approach calculates Value-at-Risk at time t for a given
progress in time, t + T , along the price process (1) to

VaR(p, T ) = S(t) exp(rT ) − S(t) exp
((

µ − 1
2
σ2

)
T + z(p)σ

√
T

)
, (4)



468 Straßberger

where z(p) is the p-quantile of the standard normal distribution (Dowd
(2002), Duffie and Pan (1997)).
Although Value-at-Risk is not the latest of all possible risk measures, it is a
fair approximation of risk, and it has become a widely used industry stan-
dard. In the case of financial institutions it can be motivated through capital
requirements. Alternatively we could use other downside risk measures as,
for example, the recent Conditional Value-at-Risk (Rockafellar and Uryasev
(2002)). In brief, Conditional Value-at-Risk is an estimate of expected loss
under the condition of loss is exceeding Value-at-Risk. Furthermore, Value-
at-Risk was theoretically criticized (Szegö (2002)). It does not fulfill the co-
herence criteria set out by Artzner et al. (1999). But even though not in
general, in our modelling framework Value-at-Risk is a coherent measure of
risk and applies for our purposes.

3 Time dimension of risk limits

In the context of risk budgeting it is common practice in financial institu-
tions to understand risk capital as to be available per business year. Even in
academic literature the question arose of how an annually defined amount of
risk capital would have to be calculated into a daily amount of risk capital.
There was suggested to convert annual risk limits into daily risk limits using
the known square root of time rule (Beeck et al. (1999)). Before we develop
the dynamic risk budgeting model, in this section we discuss, whether risk
capital or a risk limit should be defined as to be annual and whether it could
be converted into sub-periods and vice versa.
For the first instance, the amount of risk capital is available independent
from any time horizon. If the bank management provides an amount of risk
capital for the business day that is smaller than the amount of risk capital
available on the whole, than this reflects nothing but the management’s atti-
tude towards risk. The more risk averse the management is, the less it would
feel up to put at stake per day. As shown by Campbell et al. (2001), the
management’s degree of risk aversion is captured by both the size and the
confidence level of the chosen Value-at-Risk limit.
Next to economic reasons, this can be founded by expected-utility theory if
we assume the bank management to have a concave utility function u(C)
of risk capital C, and to be risk averse with constant relative risk aversion
C (−u′′(C)/u′(C)) = Cρ(C). Absolute risk aversion ρ(C) then depends on
the amount of risk capital available, which seems to be evident. The higher
the amount of risk capital to dispose the lower the risk aversion, and the more
risk is taken (Froot et al. (1993), Froot and Stein (1998)). Cumulative losses
accompany decreasing risk capital. If relative risk aversion is constant then
absolute risk aversion must increase together with cumulative losses which
means lower acceptance of risk-taking and therefore lower risk limits.
What now is needed to incorporate into the theory is the dimension of time.



Continuous Market Risk Budgeting in Financial Institutions 469

As well as one should additionally to the traditional criteria expected re-
turn and risk (as measured in terms of variance or down-side risk) account
for time in modern portfolio theory, we additionally account for time in risk
budgeting. In the figurative sense, the risk averse manager would prefer to
put at stake a certain amount of risk capital within a certain period of time
against the same amount of risk capital for a shorter period of time. Absolute
risk aversion ρ(C, T ) then additionally depends on the time period T of risk
bearing (Gollier and Zeckhauser (2002)). We argue that if a risk limit per
business day or some other comparatively short time interval is smaller than
the risk capital available, the rational is the preference of lower risk per unit
of time.

4 Continuous risk budgeting

In this section we develop the continuous market risk budgeting approach.
For the operational solution of the profit and loss dependent risk limiting
problem we use the idea of portfolio insurance. Varying the strike price of
the synthetic put option, we are able to move from perfect hedging to a hedge
with accepted default probability.
Since the work of Rubinstein and Leland (1981), we know that options can
exactly be replicated. They showed that a put option at every time can be
duplicated by trading the underlying asset and the risk free investment, e.g.
a (near) risk free government bond. That is, because in case of a geometric
Brownian motion for the asset price process both the option and the under-
lying asset depend linearly on a single source of market risk. The duplication
portfolio consists of a short position in the underlying asset and a long po-
sition in the risk free bond. Option delta is thereby calculated within the
well known model of Black and Scholes (1973). So, in that ”classical” option
based portfolio insurance, instead of hedging portfolios with put options the
hedging effect is achieved by dynamic reallocation of the capital between the
risky asset and the risk free bond.
For simplicity, we assume options to be priced according to the Black-Scholes
model. The market price P (t) = P (S(t), X, r, T, σ) of a put option at time t
equals

P (t) = X exp(−rT )Φ(d1) − S(t)Φ(d2), (5)

d1 =
ln
(

X
S(t)

)
−
(
r − σ2

2

)
T

σ
√
T

,

d2 =
ln
(

X
S(t)

)
−
(
r + σ2

2

)
T

σ
√
T

,
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where X denotes the strike price, and Φ(.) the cumulative standard normal
distribution. We continuously calculate the delta factor of this put option as:

∆(t) =
∂P (S(t), X, r, T, σ)

∂S(t)
< 0. (6)

The put delta expresses the sensitivity of the market price of the put option
with respect to changes in the market price of the underlying asset. The
reciprocal of the delta factor ceteris paribus indicates the number of put
options needed to completely neutralize the price change per asset over the
next infinitesimal time step. As is known, the put option can be duplicated
by a portfolio consisting of a short position in the underlying asset amounting
to

−∆(t)S(t) = S(t)Φ(d2),

and a long position in the risk free bond amounting to

B(t) = X exp(−rT )Φ(d1).

Hence, for the synthetic put option it follows:

P (t) = B(t) + ∆(t)S(t). (7)

Because the synthetic put option itself partly consists of a short position
in the asset, hedging with synthetic put options means reducing the risky
position in assets in favor of a risk free position in bonds. The hedged portfolio
then has a quota in the asset amounting to

a(t) =
(1 + ∆(t))S(t)

(1 + ∆(t))S(t) + B(t)
, (8)

and a quota in the risk free bond amounting to 1−a(t). With our risk budget-
ing problem in mind, this portfolio insurance procedure is not implemented
in real. We further just adopt the results obtained, leaving the risky position
in the asset at the portfolio manager’s charge, and adjusting the risk limit
set by the management via:

VaR(t) = a(t)(VaR(t − 1) − L(t)). (9)

Market risk budgeting is made in such a way that the risk limit set decreases
with cumulating losses and vice versa. We define the strike price of the syn-
thetic put option as

X ∈
⎛⎝0,

VaR(0)

exp(rT ) − exp
((

µ− 1
2σ

2
)
T + z(p)σ

√
T
) − VaR(0)

⎤⎦ , (10)

whereby the upper bound of the interval marks the lowest accepted bound
in portfolio value given the Value-at-Risk limit VaR(0) set at the beginning.
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At time t = 0, the risky position maximally possible in the asset is much
greater than the strike price of the synthetic put option. The option is well
”out of the money” and its delta factor is near zero. At the same time, d1

becomes very small, and hence the value of the cumulative standard normal
distribution becomes nearly zero. From this it follows that B(0) becomes
zero, and a(0) becomes one. Thus this means, the Value-at-Risk limit set is
completely available at the beginning. Does the risky asset rise in market
value the financial institution is making profits, and the risk limit expands
at these profits because the risk capital increases at this amount. B(t) stays
unchanged at zero, and a(t) stays unchanged at one. Whereas, does the risky
asset fall in market value, and the financial institution is cumulating losses the
synthetic put option moves more and more towards ”at the money”. Thereby
both the delta factor and the quota in the asset of the hedged portfolio are
declining. The Value-at-Risk limit is then reduced, ones due to the charging
of losses and also due to the lower a(t)-factor.
Ahn et al. (1999) provide a model of optimally hedging a given market risk
exposure under a Value-at-Risk constraint using options. In the same setting
of a complete and arbitrage-free capital market they show that hedging costs
are independent of the strike price of the put option used. The optimal strike
price rather depends on the riskiness of the asset, the time horizon of the
hedge, and the confidence level desired by the management.
Thus, by varying the strike price of the synthetic put option it must be
possible to determine the level of portfolio protection. If the strike price equals
the upper bound of the interval defined in (10) the asset position would be
hedged at its lowest accepted value bound and the risk limit keeps that level.
Reducing the strike price continually yields to accepting the fall below the
lowest value bound of the asset position with increasing probability. We now
can reduce the strike price as long as the default probability associated with
the Value-at-Risk limit set is achieved. Then the risk limit will be violated
with this probability.

5 Simulation analysis

We test the proposed continuous risk budgeting approach within our analysis
framework. For the asset price process we assume µ = .0005 and σ = .015.
Furthermore, we set S(0) = 100 and r = .03. In 7,500 test runs we calculate
price processes each with 256 time steps. In parallel we apply risk budgeting
using an implicit synthetic put option with strike price at the lowest accepted
bound in portfolio value. The Value-at-Risk limit is calculated at a five per-
cent probability level. Comparing the dynamic behavior of the portfolio value
the risk budgeting approach shows the expected properties. In Figure 1 we
draw the resulting probability density of the portfolio profit & loss in the
case of continuous market risk budgeting against the case of a constant risk
limit over time.
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Fig. 1. Profit & loss density without (- - -) and with (—) continuous risk budgeting.

Applying the continuous risk budgeting strategy the distribution of portfolio
profit & loss becomes more asymmetric. Skewness increases and kurtosis de-
creases. This is because of the portfolio insurance property. There is moved
probability mass from the left tail of the distribution into its center.
In order to stay close to the desired Value-at-Risk probability we accept a
default probability of the budgeting approach at the confidence level of the
initial Value-at-Risk limit. We reduce the strike price of the implicit synthetic
put option and find that a strike price of the half of the lowest asset value
bound results in a default probability of about five percent. That equals the
five percent probability level from risk calculation.
For financial institutions facing risk based capital requirements the situation
has improved. Our approach does announce both reducing costs of capital
and reducing probability of bankruptcy (For further analysis strengthen the
aspect of cost reduction using knock-out- instead of plain-vanilla-put-options
see Locarek-Junge et al. (2000)).
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SZEGÖ, G. (2002): Measures of risk. Journal of Banking & Finance, 26, 1253–1272.



Smooth Correlation Estimation

with Application to Portfolio Credit Risk
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Abstract. When estimating high-dimensional PD correlation matrices from short
times series the estimation error hinders the detection of a signal. We smooth the
empirical correlation matrix by reducing the dimension of the parameter space from
quadratic to linear order with respect to the dimension of the underlying random
vector. Using the method by Plerou et al. (2002) we present evidence for a one-
factor model. Using the noise-reduced correlation matrix leads to increased security
of the economic capital estimate as estimated using the credit risk portfolio model
CreditRisk+.

1 Introduction

Managing portfolio credit risk in a bank at first place requires sound and
stable estimation of the loss distribution (for a given time horizon being typi-
cally one year). Special emphasis couches on high quantiles denoted by Credit
Value-at-Risk (CreditVaR) and the resulting span between the expected loss
and the CreditVaR, the Economic Capital, a scarce resource of a bank in
general.

In large banks one key risk driver to be taken into account is concentration
risk in industry sectors.

In CreditRisk+ (Credit Suisse First Boston (CSFB) (1997)) concentration
in sectors is modelled by a multiplicative random effect to the probability of
default (PD) per counterpart or more general per risk entity. If sectors are
set equal to the industry sectors - which seems to be common and straight-
forward practice - the sector variables Xk be can interpreted as “economy
activity in sector k”. In the technical document of CreditRisk+ (Credit Suisse
First Boston (CSFB) (1997)) the loss distribution is calculated for indepen-
dent sector variables. The correlation of sector PD’s was incorporated into the
CreditRisk+ framework by Bürgisser et al. (1999). Comparing the two situa-
tions of correlated and uncorrelated sectors clearly shows significant impact
on the loss distribution.

While the authors of Rosenow et al. (2004) have focused on a conservative
estimate of PD correlation, the emphasis of the present work is the detailed
� The work of Rafael Weißbach has been supported by the Deutsche Forschungs-

gemeinschaft, Sonderforschungsbereich 475.
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comparison of different types of point estimators. We present a stable esti-
mate for the PD correlation matrix without changing the portfolio credit risk
assessment. To this end, we reduce the dimensionality of the parameter space
by formulating and proving a model. The dimensionality of the estimation
problem is reduced from K(K − 1)/2 to K (in the example from 190 to 20).
The observation of further data in time will change the correlation estimate
smoothly as long as the one-factor model is applied. If evidence for a second
latent factors is available it can be incorporated without a drastic change in
the estimate.

The simplest model is the independence of the sector effects. In multivari-
ate analysis tests for the covariance matrix to be the identity date back to the
early 70’s (see John (1971)). So far, testing was impossible when the sample
size was smaller than the dimension of the distribution. The restriction was
recently overcome by Ledoit and Wolf (2002). In credit risk in general and in
CreditRisk+ especially the effects of volatility and correlation are separated.
We consider the correlation in this paper and we assume the volatility to
be known. Hence the tests for the covariance matrix need to be applied to
the correlation matrix. The observations have to be standardized to variance
1. Under this restriction we investigate the independence of sectorial eco-
nomic activity with the result of a clear rejection of the independence for a
segmentation of the German industry into 20 sectors.

The contributions of this paper are: (i) Using the ideas of Ledoit and
Wolf (2002) to reject the independence of industry sectors with respect to
the PD’s; (ii) transforming the ideas of Plerou et al. (2002) from market
risk to credit risk to generate a model and (iii) comparing the parameter
estimates for the one-factor model of the “economy activity” to the empirical
correlation matrix including impact as co-variable in CreditRisk+.

The paper is organized as follows: Section 2 describes the generation of
the sector variables and the sample data of insolvency rates in Germany. The
test for independence of the latter sector variables and its results for the
example are described in Section 3. The transfer of the ideas from mathe-
matical physics to state the model is laid out in Section 3. The model and the
estimation of parameters are presented in Section 5. Section 6 presents an
algebraic approximation to the correlation matrix. In Section 7 the results of
the data example are used to assess the impact on a realistic bank portfolio
subject to credit risk using the CreditRisk+ model.

2 The sector variable

A variable which measures the economic activity in various industry sectors
is not observable at first place. The relevant concretization for the latent
variable in CreditRisk+ is a variable which quantifies the correlation between
PD’s of companies in the sectors.
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The model is
P (A defaults) = pAXk

for a counterpart A belonging to sector k with individual (expected) PD pA.
The “relative sector economic activity” Xk has expectation 1.

We observe the insolvency rates per sector in past years t = 1, . . . , T . The
estimator of the sectorial PD in observation year t is:

P̂Dkt =
${A ∈ Sector k in year t defaulting}

${ A ∈ Sector k in year t} .

The relative PD movement is measured by

Xkt =
P̂DktT∑T
t=1 P̂Dkt

.

The common estimate of the covariance matrix is denoted by
S = 1

T

∑n
t=1(Xt − X̄)(Xt − X̄)′ where ′ denotes the transposed vector. The

column vector Xt contains the K entries for the sectors and X̄ is the mean
over the Xt’s. The empirical correlation matrix C is derived as usual with
Cij = Sij/σ̂Xi σ̂Xj and σ̂2

Xi
= Sii.

Example. The sample which will serve as illustration is the following:
The Federal Statistical Office of Germany supplies default histories per in-
dustry sector. The industry sectors are defined in depth in the WZ93 key
(Statistisches Bundesamt (1999)). We analyzed default quotes for the seg-
mentation of the economy into 20 sectors, a magnitude common in banking
trading-off concentration and granularity. The yearly data dated from 1994
till 2000.

The empirical correlation matrix is listed in Table 1 (left) in the Appendix.

3 Testing for independence

Ideas for testing the structure of the covariance matrix Σ of multivariate nor-
mally distributed random variables date back to the 70’s (John (1971)) and
were currently reviewed by Ledoit and Wolf (2002) with special dedication
to small samples and large dimensions, a typical situation for credit risk. For
testing the hypothesis H0 : Σ = I Ledoit and Wolf (2002) introduce the test
statistic

W =
1
K

tr((S − I)2) − K

T

(
1
K

tr(S)
)2

+
K

T

which is T -consistent and K-consistent with (T,K) limiting distribution
TK
2 W

D→ χK(K+1)/2.
Because our interest focuses on the correlation matrix we argue as follows

to deduce a level-α test. As we assume to know the variances we may nor-
malize the data such that the covariance matrix of the generated time series
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is the original correlation matrix. We apply the test and argue as follows. If
we reject we know that either the diagonal elements are not 1 or/and the
off-diagonal elements, i.e. the correlations are not 0. Because we know that
the diagonal elements must be 1 we can conclude that the correlations are
not negligible. In fact, we “wasted” power, the test is not admissible. Alter-
natively, we could have compared the variables on a one-by-one basis with
tests for independence incurring the problem of multiple testing.

Note: In the CreditRisk+ model the PD’s are assumed to be Γ -distributed.
However, there is no proof for the latter and the assumption is only of tech-
nical nature to enable an algebraic calculation of the probability generating
function (see Credit Suisse First Boston (CSFB) (1997)). Although the as-
sumption of normality of the “economic activity” factor X = (X1, . . . , Xp)
has the draw-back of enabling negative PD’s we like to consider the case and
have in a mind a truncated normality.

Example. For our example correlation matrix T is 7 and K is 20. The
value of W is 5.81 and the critical value for level α = 0.05 is 3.50. (The
p-value is below 10−4.) The calculations were performed using SAS/IML1.
At a level of 5% one must reject the hypothesis of independent sectors.

4 Model generation

For the case of market risk Plerou et al. (2002) consider the case of high
dimensional asset correlation estimation. They find that large eigenvalues of
the empirical correlation matrix indicate a difference of the correlation matrix
compared to the identity matrix implying independent dimensions. Note that
a correlation matrix of independent variables has a K-fold Eigenvalue of 1.

They find an asymptotic boundary of

λ± = 1 +
1
Q

± 2
√

1
Q

(1)

with Q = T/K for significant Eigenvalues where T denotes the number
of - K-dimensional - observations. Eigenvalues outside the boundary indicate
deviation from the hypotheses of independent sectors. The assumption of
normally distributed random variable is crucial for the Wishart distribution
of the empirical covariance. The same holds for the sample correlation matrix
S under the assumption of variances of 1 or equivalently for known variances2.
Following the argumentation of Plerou et al. (2002) we consider all eigenvalues
under the threshold λ+ to represent estimation noise.

1 SAS and SAS/IML are registered trademarks of SAS Institute Inc. Carry, NC,
USA.

2 For the components of the largest eigenvalue’s eigenvector they find that because
of the akin positive quantity of the components the interpretation is a common
influence by “the market” (see also Campbell et al. (1997)).
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Example. For our data λ+ = 1+ 20
7 +2

√
20
7 = 7.24. The ordered Eigenval-

ues are 10.38 > 4.60 > 2.01 > 1.26 > 0.96 > 0.78 > 1.71× 10−15 > 1.53× 10−15 >

1.21 × 10−15 > 6.22 × 10−16 > 5.57 × 10−16 > 1.86 × 10−16 > 3.6 × 10−18 >

−1.49 × 10−16 > −3.73 × 10−16 > −5.6× 10−16 > −8.24× 10−16 − 1.02 × 10−15 >

−1.26 × 10−15 > −1.74 × 10−15. The largest Eigenvalue of 10.38 is above the
threshold (1) whereas the second largest 4.60 is below. That means their
method advocates for one significant factor or equivalently for a one-factorial
design.

5 A one-factor model

We start with the one-factor design:

Xkt = αk + βkX̃t + γkεkt, (2)

for the dimensions k = 1, . . . ,K.
The αk’s and βk’s are given due to the restrictions E(Xkt) = 1 and

V ar(Xkt) = σ2
k. The parameters γk must be estimated. However, to apply

linear regression to estimate the K parameters we must restate the problem.
As we are interested in modelling correlations rather than covariances,

we normalize the Xit such that they have the same, namely the average
variance σ̂2

X = (1/K)
∑K

i=1 σ̂
2
Xi

and subtract the mean Yit = (Xit − 1) σ̂X

σ̂Xi
.

The empirical correlation matrix is unchanged.
We model the correlations between relative PD movements by the one–

factor model
Yit = δiX̃t + εit (3)

The coefficients {δi} are then found by performing a linear regression
without off-set.

How does one define the latent X̃t? A simple average over the Xkt’s,
X̃t ≈ 1

K

∑K
k=1 Xkt, would not reflect the importance of the specific sector.

We use the definition by Plerou et al. (2002). We diagonalize the empirical
cross correlation matrix C and rank order its eigenvalues λ(i) < λ(i+1). We
use the components of the eigenvector u(K) corresponding to the largest
eigenvalue λ(K) = 11.46 to define the factor time series

X̃t =
K∑

k=1

u
(K)
k Ykt .

The point estimator can now be calculated under the assumption that
the residuals {εi,t} are iid observations from uncorrelated random variables
εi i = 1, . . . ,K, i.e. Corr(εi, εj) = 0 for i �= j. Estimating the factor variance
σ̂2

X̃
= 1

T−1

∑T
t=1 X̃

2
t , one finds the point estimator for the cross correlation

matrix as
C1F

ij = ∆ij + (1 − ∆ij)δiδj σ̂
2
Y /σ̂2

X . (4)
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with ∆ij as Kronecker-∆. The correlation matrix is given in Table 1 (right)
in the Appendix. Before comparing the impact of the one-factor model (2)
in a portfolio we like to compare the derived correlation matrix (4) with the
empirical correlation matrix in Table 1 (left). Although the maximal increase
of a correlation caused by the one-factor model is 0.56 and the maximal
decrease is 0.85 the mean change is only a decrease of 0.04. I.e. the overall
level of correlation has not been altered. In order to assessing the tendency of
individual changes we calculated the mean of the absolute changes; the result
0.18 demonstrates that the one-factor model does not change the correlation
estimate dramatically.

6 Algebraic approximation

The derived estimate of the correlation matrix has almost the form vector×
vector′. The same form arises when directly applying the spectral decompo-
sition of C =

∑K
k=1 λku

kuk′ with Eigenvalues λk and Eigenvectors uk. If the
largest Eigenvalue is dominant, the correlation matrix can be approximated
by C ≈ λ(K)u

(K)u(K)′ =: C̃. The approximating matrix has two deficiencies.
First, its trace is not K anymore but λ(K)

3. In order to regaining the trace
without interference of the positive semi-definiteness we multiply the matrix
with the factor K/λ(K). Secondly, the diagonal elements of the achieved ma-
trix are not 1 implying a change in the marginal variances because for the
resulting variance-covariance estimate Salg holds Salg

kk = σ2
kC̃kk or in matrix

notation Salg := K × diag((σ1, . . . , σK))u(K)u(K)′diag((σ1, . . . , σK))′, where
diag(v) denotes for v ∈ IRK the matrix ∈ IRK×K with v as diagonal and
0 else. In case of a matrix V , diag(V ) denotes the matrix with identical
diagonal and 0 else. The implicit correlation matrix can be calculated by
multiplying Salg from left and right with the inverse of the square root of the
diagonal version of Salg. The procedure respects the necessary condition of
a correlation matrix to be positive semi-definite (psd).

Calg := diag(Salg)−
1
2Salgdiag(Salg)−

1
2

= diag((|σ1u
(K)
1 |, . . . , |σKu

(K)
K |))−1(σ1u

(K)
1 , . . . , σKu

(K)
K )′

(σ1u
(K)
1 , . . . , σKu

(K)
K )diag((|σ1u

(K)
1 |, . . . , |σKu

(K)
K |))−1

= (sign(u(K)
i u

(K)
j )1)i,j=1,...,K . (5)

Note, that the signs (denoted by sign) of the components of the Eigenvec-
tor u(K) to the largest Eigenvalue λ(K) vary. Alternatively, one could simply
set the diagonal to 1, which may destroy the psd feasure, but interestingly

3 Note that the trace of a product of matrices is invariant under cyclic inter-
changes and hence K = trace(C) = trace(UΛU t) = trace(U tUΛ) = trace(Λ) �=
trace(λ(K)u

(K)u(K)′) = λ(K), because U is orthogonal.
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equation (4) implies a similar method. Note that Rosenow et al. (2002) de-
scribe an akin approach using a principal component analysis.

As in Section 5 we like to compare the derived correlation matrix (5)
with the empirical correlation matrix in Table 1 (left). Here, the maximal
increase of a correlation caused by the one-factor model is 1.58 and the max-
imal decrease is 1.62 but the mean change is only a decrease of 0.02. I.e. the
overall level of correlation has not been altered. In order to assessing the ten-
dency of individual changes we calculated the mean of the absolute changes
0.60 demonstrating that algebraic manipulation does change the correlation
estimate dramatically.

We did not apply this procedure in the following because of the unrealistic
change in correlation structure. Additionally, the one-factor model has a more
appealing interpretation: All economic activity in different branches Xk is
linked via one latent global economic activity X̃, only the strength δk of the
relation varies.

7 Impact on the practical performance

Using a portfolio we compare the results of the CreditRisk+ calculation.
The portfolio we study is realistic – although fictitious – for an international
bank. It consists of around 5000 risk units distributed asymmetrically over
20 sectors with 20 to 500 counterparts per sector. The largest exposure is 500
mn Euro and the smallest exposure of 0.1 mn Euro. The counterpart specific
default probability varies between 0.03% and 7%, the expected loss for the
total portfolio is 121.1 mn Euro.

The competing correlation matrices are: (i) the original sample correla-
tion, (ii) the correlation matrix assuming a one-factor model (4) and (iii) the
algebraic approximation (5).

We calculated the loss distribution by using CreditRisk+ and the method
of Bürgisser et al. (1999) for integrating correlations. For the empirical cor-
relation matrix C the CreditVaR is 957 mn Euro, whereas the CreditVaR for
C1F is 943 mn Euro. The difference is negligible demonstrating the one-factor
model describes the data sufficiently in the context of portfolio credit risk.

Acknowledgement. The help of F. Altrock and the contribution of an
anonymous referee are gratefully acknowledged.
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A Appendix

Table 1. Left: Empirical correlation matrix. Right: One-factor correlation matrix.
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How Many Lexical-semantic Relations

are Necessary?

Dariusch Bagheri

Fachbereich II, Linguistische Datenverarbeitung,
Universität Trier, 54286 Trier, Germany

Abstract. In lexical semantics several meta-linguistic relations are used to model
lexical structure. Their number and motivation vary from researcher to researcher.
This article tries to show that one relation suffices to model the concept structure
of the lexicon making use of intensional logic.

1 Introduction

In recent years great effort has been undertaken to build up representative
cross-sections of the lexicon of a language. By far the best known result of
these efforts is WordNet. As the name suggests the entries of the lexicon
are linked by serveral lexical relations: hyponoymy/hyperonymy, synonymy,
meronymy/holonymy, oppositions, and familiarity. Even though the relations
are seen as primary they are not sufficient to distinguish different meanings.
In addition so-called glosses are added which resemble very much customary
definitions in defining dictionaries. The need for definitions is recognized as
a flaw which should be overcome by the use of more relations or by a further
division of the relations into subtypes.

But even the definitions of the most basic relations like hyponymy, hyper-
nonymy and synonymy cannot be considered as uncontroversial. (e. g. Cruse
(1986), Murphy (2003)). Another point of criticism is scalability of those lex-
ical systems. Once the relations are established and the lexicon is compiled
with many thousand entries it is in practice nearly impossible to add a new
relation. Furthermore, because of the different types of relations, it is sense-
less to give overall mathematical characteristics of the lexical systems, as for
example the distribution of the paths in the net. The question how many
relations are needed to code the lexicon or whether the relations used are
sufficient is never raised explicitly.

In order to elaborate the concept calculus in the next section first or-
der predicate logic is used. The sentence operators conjunction (and, symbol
∧), adjunction (or, symbol ∨), subjunction (conditional, if-then, symbol →),
bisubjunction (biconditional, if-and-only-if, symbol ↔), and negation (sym-
bol ∼) have the usual definitions. All variables and constants in the concept
calculus are concepts. So a variable or constant c might stand for a concept
beautiful or an n-ary concept like x is greater than y.
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2 Concept calculus

This concept calculus goes back to G. W. Leibniz. Kauppi (1967) condensed
and improved the intensional calculus and put it into a modern form in terms
of relations. Leibniz distinguished between logic purely based on concepts
(intension), and a logic based on objects (extension). A definition constitutes
the fundamental relation between concepts: the defined concept contains the
defining one. Usually a concept contains several concepts.

A system of concepts is always made up of concepts of the same arity,
i. e. the number of arguments that saturate a concept in the same sense a
mathematical function is saturated by its arguments. This means that there
are concept systems of concepts with arity 0, 1, 2 and so on. 1 These different
systems can be connected so that higher arity systems are determined by
systems of lower arity and that eventually all systems are determined by sys-
tems of arity one. The reason for this division of systems is that a one-place
concept like red (something is red) cannot contain a two-place concept like
for example lighter (red is lighter than blue). The following axioms and the-
orems hold for concepts irrespective of arity. This calculus is abbreviated as
BK (Begriffskalkül/concept calculus). The laws in connection with concepts
of an arity higher than one are taken into account by the relation calculus
RK (Relationenkalkül). These laws must be considered if concepts of differ-
ent arity are to be linked. Finally the application of a concept system has to
be specified by another relation not being part of BK or RK. This relation
specifies to what individuals or objects the concepts might be assigned. It is
a binary relation with as its first argument a concept, and, as its second ar-
gument, an object or an ordered tuple of objects, depending on the concept’s
arity.

Following is a selection of the laws of the concepts calculus: 2

a > b (containment) (1)

a ·> b =def a > b ∧ ∼ b > a and a <· b =def a < b ∧ ∼ b < a (2)

a < b =def b > a (3)

a = b =def a > b ∧ b > a (identity) (4)

a b =def ∃x(a > x ∧ b > x) (comparability) (5)

a b =def ∼ ∃x(a > x ∧ b > x) (6)

a b =def ∃x(x > a ∧ x > b) (compatibility) (7)

a b =def ∼ ∃x(x > a ∧ x > b) (8)

c = a$ b =def ∀x(c > x ↔ a > x ∧ b > x) (product) (9)

1 Concepts of arity 0 will not be considered here.
2 For a deeper discussion cf. Kauppi (1967).
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c = a ⊕ b =def ∀x(x > c ↔ x > a ∧ x > b) (sum) (10)

b = ā =def ∀x(x > b ↔ x a) (negation) (11)

a > ¯̄a (12)

c = a& b =def ∀x(x > c ↔ x > a ∧ x b) (quotient) (13)

a& b =def a⊕ b̄ (14)

The relation calculus RK is of great importance for the analysis of defini-
tions and for defining concepts. The distinction is mostly ignored. Consider a
definition of triangle which states that a triangle has three sides. Commonly
this is judged to be a feature of triangle, but compared to the distinction
drawn here between concepts of different arity, it must be stated that a tri-
angle cannot contain having three sides because this is a three-place predicate
of the form: X has N Y. A one-place predicate like triangle cannot contain a
three-place predicate like X has N Y. It determines only one argument, that
means the first argument is the concept triangle, the second an indivudual
concept for number like zero, one, two etc., and the third an unspecified con-
cept for what the first argument in question ‘has’: a triangle has three sides.
What this means for a definition and its corresponding linguistic sign, i. e. a
lexeme, will be considered later.

To distinguish these two kinds of relations it will be said that if a concept
contains another one they are intensionally connected, if a concept of lower
arity determines a place or places of a concept of higher arity then these
concepts are R-logically connected. Eventually every place of a n-ary concept
is determined by a concept of arity one. A n-ary relation r will be written as
rn. The determination of certain places means that those places are occupied
by certain concepts and that these places are only applicable to individuals to
which the determining concepts are applicable. The two-place concept father
contains the two-place concept parent and is determined in its first place by
the concept male. Formally this is notated like this

rn

a
k with 0 < k ≤ n

Determinations of several places simultaneously are notated like this

rn

a
k

b
l

c
m with 0 < k, l,m ≤ n

where k, l, m are the numbers of the places, and a, b, c are concepts deter-
mining these places. Another term which has to be introduced characterizes
concepts which are components of n-ary concepts. It is called component re-
lation (Unterrelation). For example, the concept father which has two places
has three component relations: father1 which is extensionally applicable to
a person who is a father, father2 which is applicable to the children (in the
sense of descendants), and father1 2 which is applicable to a pair of persons
who stand in this relationship to each other.
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3 Diagrammatic representation

Partially ordered set or lattice diagrams are good candidates for a graphical
representation. But the arity of the concepts cannot be distinguished. The
labels of the nodes are another disadvantage. This will be dealt with in the
next section. For now the focus lies on the graphic represention of the higher
arity concepts.

N -place concepts can only contain other concepts of the same arity. For
example the two-place concept father contains the two-place concept parent,
but cannot contain the one-place concept male, although male determines
the first place of the concept father. The idea is now to change the nodes
of higher arity concepts to circles containing nodes or other circles and to
join the edges to the line of an outer or inner circle or node to express the
containment relation appropriately. This looks now as shown in Figure 3. The
edge starting at the oval labelled “father” down to the oval labelled “parent”
represents a containment relation. The edge starting from leftmost inner node
of father down to node “male” represents the containment relation of the first
place of father. If the inner nodes of circles are not labelled with numbers
conventionally the indexing goes from left to right, that is, the leftmost one
represents the first place, the node next to this the second place etc.

This extension makes it possible to treat a rather complex example with
respect to the arity of concepts: kinship relations. The definitions of the
terms are not taken to be representative. Especially the affinal relations, i. e.
marriage, are left out completely. First the definitions are given and then
the diagram will be built up incrementally. Prime concepts are explicitly
marked, as well as arity, which is given in brackets. Polysemy or homonymy
are completely ignored in this example.

Male (1) undefined. Female (1) undefined. Ancestor = descendant (2)

undefined. Parent (2) is an ancestor of his or her children. Grandparent (3) is

a parent of a parent. Father (2) is a male parent. Mother (2) is a female

parent. Child (2) is a descendant of parents. Grandchild (3) is child a of a

child. Son (2) is a male child. Daughter (2) is a female child. Siblings (3) are

children with the same parents. Brother (3) is a male child of the same parents.

Sister (3) is a female child of the same parents. Grandfahter (3) is a father of

a parent. Grandmother (3) is a mother of a parent. Grandson (3) is a son of

a child. Granddaughter (3) is a daughter of a child. Uncle (4) is the brother of

a parent. Aunt (4) is a sister of a parent. Niece (4) is a daughter of a brother or

sister. Nephew (4) is a son of a brother or sister. Cousin (5) is a child of an

uncle or aunt.

Extensionally one would expect, for example, the cousin relation to be a pair
of individuals, not a concept of arity five. But imagine a family reunion with
many members and the participants reasoning who stands in what relation-
ship to others. To judge that two persons are cousins, they must figure out



486 Bagheri

who their parents are, and in which relation these parents stand to each other.
This will become clearer in due course.

All concepts of arity one are prime concepts and therefore contain no
other concepts. To start with the nuclear family the example of Figure 3
can be simply extended. The concepts of the nuclear family have arity two.
The only prime concept is that of ancestor/descendant. Figure 1 shows the
relations. The two nodes labelled “parent/child” and “ancestor/descendant”
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Fig. 2. Relation of brother and
sister.

represent a concept, for which there are two linguistic expressions. These
two expressions do not mean the same. As mentioned above, a higher arity
concept has component concepts that possess part of the determined places
of the original concept, or the same number of concepts but in different
order. So “parent” refers to the concept parent/child1 2 and “child” to the
component concept with inverted places parent/child2 1. As the places do
not contain different non-identical concepts they can be represented in one
node. The same holds for “ancestor/descendant”. It is different, for example,
in the case of the concepts father and son. Both first places are determined
by the concept male. But as they contain different non-identical concepts
they cannot be combined in one node. Son determines the second place of
parent/child as male, whereas father determines the first place. As can be
seen in the case of son, that contains child, as the above definition states,
this is realized via explicit edges starting from the places of son and ending
at the appropriate places in parent/child. There is no reason not to draw an
extra node for parent and child, but to convey the identity-relation between
these expressions and their concepts.

To complete the nuclear family the definitions for brother, sister, and
siblings are displayed in Figure 2. The second and the third place of siblings
determine the child relation to the same parent; the parent is specified in
the first place. The third place, though, is determined by sex on the concept
nodes for brother and sister.

The next step supplies the kinship concepts two generations above ego.
Figure 5 shows these relations and leaves out, for clarity, the relations just
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introduced. There are two component relations determining grandparent/-
child: first place is the parent of the second place and the second place is
the parent of the third place. The second place is a concept which is the
sum of being a parent and a child. The other concepts are determined at the
appropriate places like father and son. They could also be determined by the
sex concepts male and female, but choosing the higher arity concepts reveals
the structure much better.

The collateral four-place concepts are illustrated in Figure 6 and Figure
7. Here the first three-places of uncle are determined by the brother relation.
The third place is the uncle, that is the brother of ego’s parent. Ego’s parent
is determined in the second place by containment of the first place of parent,
and ego in the fifth place of uncle is determined as the child of parent. The
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nephew is determined in the first three places by siblings. The siblings’ son is
the nephew. This is determined by containment of the concept son. The third
place of nephew thereby is determined by the second place of son (which is
the parent), and the fifth place of nephew by the first place of son. Ego is
here in the second place of nephew.

Finally the relations of the five-place concept will be considered. They are
given in Figure 4. Ego is in the fourth place. His or her parents’ sibling is the
parent of the cousin, which is determined in the fifth-place.

All relations of the above definitions have now been put into diagrams. It
is, of course, possible to assemble them all together in one diagram.

At the end of this section it is reasonable to give a brief account of how
concepts are applied to extension, that is, the objects. A one-place concept
can be applied to individuals only. It has to be assumed – and this is never
part of the calculus – that a relation exists that enables the assignment of
concepts to objects. This relation exists, usually, in the ability of a person or
a system to use concepts correctly. This is not a question of logical or formal
concern at all. N -ary concepts are applied to n-tuples of objects. To return
to the example of family reunion: to find out whether two persons are cousins
five people have to be found of whom the explicated relations hold.

4 Concept and linguistic sign

How the concept structure is built up by the definitions of the concepts is
one side of the coin. The other side, which was another point of criticism,
has not been addressed yet: How is the linguistic expression related to the
concept? To stick to kinship relations: There are, for example, several expres-
sions connected to the concept father: “father”, “dad”, “daddy”, “pop”, “old
man”. These terms, extensionally interpreted, do not denote different kinds
of persons. But they are used in different circumstances for the same kind
of persons. The term “old man” might be used among adolescent people,
when they talk about their fathers. But they would not use this term when
they speak to their fathers. The term “daddy” is only used by girls (Schusky
(1972), 13) not by boys in referring to their father. There are many more as-
pects which determine the choice of expression. Especially kinship relations
of different cultures are truly a treasure trove for very subtle differences of
lexical coding. This cannot and should not be incorporated into the same
concept system.

This insight rules out the possibility to label a concept like father with a
set of expressions like “father”, “dad”, etc. Another concept system has to be
assembled, coding the knowledge that is responsible for the choice of expres-
sion. The application of the concepts of this kind of concept system is not
what is commonly understood by objects, viz. persons, entities, or everyday
situations. The application now involves the concepts of the concept system
of the ‘real world’ itself as objects, and the linguistic expressions as objects.
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Also some ‘real world’ reference is necessary. When to use the term “daddy”
would then be a concept having in one place a determination about social
circumstances like in family, in the second place a concept about a concept of
another concept system, the ‘real world’ concept system which is applied, the
father concept, and finally in the third place the correct expression, “dad”,
to speak to a person to whom the concept of the second place applies in a
situation like the one determined in the first place, in family.

5 Summary

This article introduced an intensional logic calculus and applied it to semantic
analysis. It is suggested to substitute the popular meta-linguistic relations
completely by the containment relation of the concept calculus, and to shift
the mapping between lexicon and concept system to another concept system
of language use.

The reduction to one type of relation enables research to develop math-
ematical characteristics which allow to draw conclusions about a language.
Statistics about different types of relation are merely valuable in a technical
sense. Their significance across the relation types is doubtful. The uniformity
of the structure eases the scalability of implementation. The lexicon and
the concept system can be extended by new lexemes and concepts without
changing the overall structure of the system.
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Automated Detection of Morphemes

Using Distributional Measurements�
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Abstract. To simply take the distribution of linguistic elements as a basis for
analysis was the methodological prime of researchers of the so-called “American
Structuralism”. This paper deals with the detection of morphemes from a large
corpus of German by simply applying a distributional procedure of counting the
number of potential successors of a given sequence of letters of a word, a method
reminiscent of proposals by Harris, Shannon and others. Morphemes can be heuris-
tically read off by an increase in the potential successor count. Three different
methods of identifying morpheme breaks are discussed and a proposal for improve-
ment of the method by transforming graphemic to partial phonemic representation
is put forward.

1 Overview and introduction

The paper deals with a method of detecting morphemes by segmenting words
into parts – ideally morphemes – following a distribution-based algorithm
originally developed during the 1940ies and 1950ies by Zellig S. Harris and
other researchers.2

Segmenting words in linguistically valid units is a task that has been neglected
in computational linguistics, especially for poorly documented languages (sec-
tion 2). The historical background and a short overview of the distributional
paradigm are given in section 3. The main part of the paper is dedicated
to the basic method, demonstrated by a few examples, and to some direct
refinements of the algorithm (sections 4, 5). In section 6 a proposal for refin-
ing the distributional analyses of the graphemic representations by (partly)

� A. Fenk pointed out to me that the method described does not strictly
speaking use an “information theoretical measurement” as the original title
suggested. I agree to this appraisal and accordingly replaced the term with
“distributional measurements” which – ultimately for historical reasons – might
be more appropriate. Thanks to Gustav Vella for painstaking corrections of my
“Enklisch”.

2 To my knowledge, this algorithm has up to now not been aplied to a large corpus.
Some work on distributional analysis has been done by Déjean (1998), but with a
somewhat different focus. The properties of language exploited here are of course
well known (e.g. Shannon (1950) and many more) and are somewhat remniscent
of Markov processes.
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converting them into a phonemic representation is suggested.
The corpus used for the following analyses consists of about 294.000 newspa-
per articles of different length, with a total of about 86 mil. tokens and about
1.8 mil. types. Here only those types with a token count > 10 = 201.000 were
used.

2 Why bother with the segmentation of words at all?

In the context of information retrieval Manning & Schütze (1999, 132f.) con-
cisely formulate why adequate segmentation is necessary in Natural Language
Processing:

[M]ost retrieval studies have been done on English – although re-
cently there has been increasing multilingual work. English has very
little morphology, and so the need for dealing intelligently with mor-
phology is not acute. Many other languages have far richer systems
of inflection and derivation, and then there is a pressing need for
morphological analysis. A full-form lexicon for such languages, one
that separately lists all inflected forms of all words, would simply
be too large. [...] [I]n the languages with ‘conjunctive’ orthographies,
morphological analysis is badly needed.

The problem grows if one takes into account that Manning and Schütze
only refer to some kind of “item-and-arrangement” morphology without the
everyday linguistic phenomena like morphophonology, (case) syncretism, ab-
laut etc.. As an admittedly rather extreme case compare Mohawk (Northern
Iroquoian, Canada/USA). The word for “stove polish”, for instance, (lit.
‘one makes it shine by blackening that what makes heat (in) the house’),
comsisting of at least 14 morphemes demonstrates the point (not every de-
tail is pointed out here e.g. for the pronominal prefix ion-, for -hon’tsihsta-
‘blacken’, the quite complex ‘epenthetic’ -tshera-):

ion– t(e)– nonhs(a)– ’tarih– (a)’t– (a)hkw(a)– tshera–
XxA(>NsU)– SRFLX– house– heat– CAUS– INSTR– E–

hon’tsihsta– tshera– hstar– a’the– ’t– (á)hkw– a’
blacken– E– ???– shine– CAUS– INSTR– HAB

3 The historical background of research: Distributional
analysis

Zellig S. Harris was the main figure of the so called “distributionalism”, some-
what pejoratively also dubbed “taxonomic linguistics”, a branch of “Amer-
ican structuralism” whose two other leading proponents were L. Bloomfield
and E. Sapir. Harris characterizes the “distributional” program as follows:
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[E]ach language can be described in terms of a distributional struc-
ture, i.e. in terms of the occurrence of parts (ultimately sounds) rel-
ative to other parts, and [...] this description is complete without in-
trusion of other features such as history or meaning. [...] All elements
in a language can be grouped into classes whose relative occurrence
can be stated exactly. However, for the occurrence of a particular
member of one class relative to a particular member of another class
it would be necessary to speak in terms of probability, based on the
frequency of that occurrence in a sample. (Harris (1954), 3f.)

Every statement about a linguistic element had to be made with respect to
its distribution, mainly using substitutability of elements in fixed environ-
ments as a class-defining property. The main advantage is the fact that the
degree of the categories thus (extensionally) established is the highest possi-
ble. This approach stands in sharp contrast to the traditional practice, which
is still common, of mixing and inconsequently applying ‘operational’ crite-
ria by e.g. determining parts-of-speech, where semantic, morphologcial and
syntactic criteria are half-heartedly applied, although the principal necessity
for a more reasonable classification, at least for scientific purposes, is always
mentioned (cf. for German: Duden (1998), Eisenberg (1998), Engel (1988),
Zifonun et al. (1997) etc.).
The results of distributional-analyses in the field of linguistic categorization
are almost always more complex than traditional classifications, cf. Bergen-
holtz and Schaeder (1977), who suggest 51 part–of–speech–categories for Ger-
man, a number which would be even higher if the distributional method they
adopted would have been applied with more rigor:

The criterion of distribution can be applied more or less consequently.
A part-of-speech-system strictly developed on the basis of distribu-
tional criteria would probably contain far more than 100 part-of-
speech-categories (Bergenholtz and Schaeder (1977), 14, my transla-
tion).

One should bear in mind that such a number of categories is not cognitively
implausible, but scientifically difficult to handle, at least within conventional
paradigms. This situation could be improved by complementing traditional
linguistics with computational means. The present work is part of such an
attempt.

4 Basic method

The proposals roughly follow the original suggestions by Harris (1951, 1954).
“Grapheme” was not the unit originally focussed on by Harris, but it is used
here because the corpus consists of written language.

1. Of the possible combinations of graphemes of a natural language L, only
a tiny fraction is used (partly due to phonological restrictions, but mostly
for no systematic reason: these combinations are simply not in use).
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2. Let G be the set of graphemes L possesses. The occurrence of any graph-
eme g ∈ G in an arbitrary position of a sequence of elements s = g1,
..., gn is not random: It depends on the valid sequences of graphemes
forming the morphemes L possesses.

3. Assumption: With growing length of s, the number of different g that
can follow the graphemes constituting s (called successor values, SV for
short), and which thereby form (part of) a valid verbal sequence of L,
tends to decrease.

4. If (III) formulates a valid tendency for the distribution of graphemes
within a morpheme, (a) words cosisting of more than one morpheme
should show an overall decreasing number of successors for increasing
number of graphemes (b) with increasing counts or local maxima of the
count of possible successors at the boundaries between two morphemes,
that is as SV of the last grapheme of the first morpheme under consider-
ation.

5. Assumption: For any sequence of graphemes s, the higher the index i
of gi becomes, the less significant the SV becomes with respect to a
morpheme break. This specifies assumption (4a) because the tendency
for longer words is for the later SV to become one, cf. (2).

As an illustration of (IVa, IVb) we will look at the SV for Vorstellung
in (1). Complete SV-analyses for two selections of the corpus had to be per-
formed beforehand. “Selection 1” refers to the values for a selection of all
words of the corpus, “Selection 2” refers to a selection of words with more
than 10 tokens (Only Selection 2 will be referred to in the following; the SVs
which, at first sight, may appear improbably high, like 36, 30 etc. but corre-
spond to the given data since graphemes like á, é etc., as well as the end of
word are also taken into account).

(1) v o r s t e l l u n g
36 30 31 15 12 8 4 9 2 4 7 SV for Selection 1
30 21 28 9 7 3 1 5 1 1 3 SV for Selection 2

(IVa) and (V) might be illustrated for Hausmüllverbrennungsanlage in (2)
a word that had to be chosen for illustrative purposes because the proposed
morpheme breaks are often better than purported by (V), cf. Abgeschlossen-
heitsbescheinigungen in (3).

(2) h a u s m ü l l v e r b r e n n u n g s a n l a g e
31 28 17 26 6 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(3) a b g e s c h l o s s e n h e i t s b e s c h e i n i g u n g e n
29 29 9 22 9 1 11 4 1 1 1 1 4 1 1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1

First algorithm. The first proposal is not really the search for local max-
ima but it simply starts with the SV of the leftmost element and sets the
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morpheme borders after the first grapheme whose SV is higher than that of
its predecessor.
The method yields some unwanted results, but is more plausible than would
be thought at first sight because it accounts for the “Fugenelement” -s- in
Abgeschlossenheit-s-bescheinigungen, which none of the other algorithms do,
by simply looking at the SV. The “Fugenelement”–pattern is easy to explain:
While the stem Abgeschlossenheit only allows for derivation and inflection,
that is for a small number of extensions, the stem for composition, just de-
rived by adding -s-, allows for potentially every grapheme to follow it in
compounds – although accidentally only three graphemes actually do turn
out to follow Abgeschlossenheits-.

5 Refinements of the evaluation

A few words on the evaluation of the results seems appropriate. There does
not appear to be a general method to evaluate the quality of the results,
other than by previously establishing a complete list of morphemes with
other means .
So points for refinements are “hand-picked” and only a few characteristic
sequences and positions are discussed in the following (compound words with
special features, short (= one- or two-segmental) prefixes at the beginning of
a word, etc.).
The first experiment showed a weakness e.g. with regards to the suffix -heit-
which is sometimes spelled with a final -d in the corpus (because of the
Afrikaans orthography of Apartheit):

(4) a p a r t h e i d
29 16 5 2 4 1 1 2 7

The word is segmented as apart-hei-d because of the SV of -i- which is higher
than the SV of -e-, but the final -d has an even higher successor-value than
the -i-. We do not come up with a suffix -heit but with a mutual suffix -hei.
The number of wrong segmentations in this guise was 66 types/6314 tokens.
Apparently, one should not simply search for the first grapheme with an SV
higher than that of its predecessor but for the first local maximum of SV:

Second algorithm. The second proposal is a slightly enhanced version of
the first experiment. Instead of taking the first grapheme with a SV higher
than that of its predecessor, the next local maximum is looked up and this
grapheme is taken to be the last grapheme of the morpheme under consid-
eration. The “local maximum” is defined as the first SV that has no greater
SV for the graphemes immediately to the left or right. This proposal seems
to realize the original idea of Harris best.
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For words like Apartheid we now get the better segmentation apart-heid.
Although the erroneous segmentations are depleted (17 types/2331 tokens),
we get stuck with words like Eigenheit, cf.:

(5) a p a r t h e i d (6) e i g e n h e i t
29 16 5 2 4 1 1 2 7 30 19 4 2 20 2 1 2 2

It seems reasonable to assume that the farther right in the sequence of
SV one gets, the higher the need of a careful evaluation of what constitutes a
morpheme break and what doesn’t. The next variant of the algorithm changes
the search for local maxima to the search for ranges of local maxima like in
Eigenheit..., Reinheit..., Gottheit... .

Third algorithm. For the third proposal, the algorithm searches from left
to right for increasing values for the SV until a local maximum is reached
and places the break after this maximum or at the end of the word, if it is
reached: ... 5 3 1 1 2 4 | 2 ... . Alternatively, it looks for sequences of
SV that constitute ranges of local maxima. The morpheme break is placed
after such a range or at the end of the word if it is reached: ... 5 3 1 1 2
3 3 | 2 ... .

The result for the third proposal seems to be the optimum that can be
achieved by a direct evaluation of the SV-measure for -heit (11 types/1570
tokens).
The three proposals for drawing morpheme breaks for large parts of the words
yield the same result. The “Fugenelement” was an example (cf. segmentation
of Ver-band-s-ge-meinde by the first algorithm vs. Ver-bands-ge-meinde by
the second and third algorithm).
Another case of interest might be the following: verschaffen is segmented dif-
ferently by the second algorithm (ver-sch-aff-en) and by the third algorithm
(ver-sch-affen) because of the existence of an erroneous verschaffen. (with a
final dot, due to inadequate preprocessing that only takes dots followed by
white-space as sentence boundary).

(7a) v e r s c h a f f e n (7b) v e r s c h a f f e n .
30 24 30 15 1 13 7 1 2 2 2 30 24 30 15 1 13 7 1 2 2 2 1

The different algorithms show different behavior, partly wanted, partly
unwanted. It is a matter of future work to refine the algorithms by combining
the wanted effects of the evaluation procedures. One should bear in mind that
these results have been obtained without the use of a parser that reapplies
already established units.

6 Transferring graphemic to phonemic representation

An interesting problem is the predicted morpheme sch, clearly no candiate for
a German morpheme. This problem is basically a mapping problem: Between
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graphemic and phonemic representations in alphabetic writing systems, a
mapping relation should be such that for any grapheme one can specify the
respective phoneme and vice versa. As is well known, this mapping relation
is somewhat defective (for an overview compare Eisenberg (1998)).

By looking at the SV for the word initial grapheme sequence <sch> we get
segmentations that are implausible and should be resolved (the segmentations
(not the SV!) are the same for the three algorithms), cf. (8).

(8a) s c h o n (8b) v e r s c h o b (8c) w u n s c h
34 14 18 15 12 30 24 30 15 1 13 5 2 28 17 2 3 1 14

Fourth algorithm. Following a table of grapheme-phoneme-corresponden-
ces for the language in question, replace the graphemic representations by
the respective phonemic representation (or an arbitrary symbol that acts as
a placeholder). Use as the SV of the new element the last value of the re-
placed grapheme, or, if it is a sequence of graphemes, the value of the last
grapheme replaced.
We thereby get the segmentations in (8), using <S> as replacement for
<sch>.

(9a) S o n (9b) v e r S o b (9c) w u n S
18 15 12 30 24 30 13 5 2 28 17 2 14

The grapheme-phoneme-correspondences are usually not that trivial. Sim-
ply replacing the <sch> by a single symbol, say <S>, in German is a rel-
atively reliable process (disregarding diminutives like Häschen, Küsschen).
Replacing the <S> for the correct instances of <s> in the digraphs <sp> or
<st> needs a high level of sophistication, above all because of the high pro-
ductivity of compounding in German. Nonetheless, it appears that the effort
to exploit the relatively transparent correspondences between graphemes and
phonemes in alphabetically written languages will improve the results.

7 Concluding remarks

The method presented for the segmentation of words in linguistically relevant
units, that is morphemes, is essentially distributional and, although not ex-
plicitly stated, exclusively uses a computational version of the substitution-
test (i.e. which grapheme can occur in a given position of a sequence and
which grapheme g’ can replace g, yielding a correct (partial) grapheme se-
quence of the given language).
SV-evaluations provide a simple method to segment words into morphemes
(“simple” not only with respect to the method itself but also with respect to
the implementation). Only universal (and orthographic – but this belongs to
another area) assumptions have been used, thus the method is easily trans-
ferable to data of other dialects or languages. We envisage to next apply the
methods to the agglutinative languages Basque and Turkish.
SV-evaluations are especially advisable in contexts, where
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1. Non-idiosyncratic (non-language-specific) methods should be applied to
gain a possibly new view and understanding of already ‘established’
analyses. SV-evaluation seems to be a good starting point.

2. No large lexicons, morphological descriptions etc. are available, to reach
an at least rough overview of the morphological setup of a language (one
of the main aims of distributional analyses from the outset).

One hypothesis of Harris (1968) was that the imbalance of the distribution
of vowels and consonants due to the syllabic setup of languages would lead
to imbalances in the analysis. Although not further discussed, this does not
seem to be the case (dipthongs might prove problematic but haven’t been
tested yet).
Of course, many improvements are conceivable:

1. Improvements of the ‘feeding’ components such as the deployed pre-
processor, the corpus itself etc.

2. Further elaboration of the evaluation algorithms; up to now only direct
countings and direct segmentation have been taken into account.
• A parser which uses already well established morphemes to segment

longer, suspiciously unsegmented, sequences; this way the analysis
develops by repeated ‘self precisioning’.

• Rising values in the SV-sequences seem to be meaningful (as well
as overproportional descent for absolute prefixes not discussed yet).
These could be brought to use via more complex mathematical eval-
uation, for instance, the comparison of the proportional gradient of
different rising sequences.

• By reversing the graphemic sequence of a word one will be able to an-
alyze the suffixes of longer words, a proposal originating from Harris
and mentioned by Déjean (1998) as an improving factor.

3. Further elaboration of the reduction from the graphemic to a phonemic
representation will surely render better results.
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Abstract. 190 Russian texts – letters and poems by three different authors –
are analyzed as to their word length. The basic question concerns the quantitative
classification of these texts as to authorship or as to text sort. By way of multivariate
analyses it is shown that word length is a characteristic of genre, rather than of
authorship.3

1 Word length and the quantitative description of
text(s) and author(s)

This study focuses on word length. Word length is a central characteristic
in the framework of quantitatively oriented linguistics. In fact, the study of
word length can be traced back to a hundred year long tradition (as to a
historical and methodological survey of these studies, cf. Grzybek (2004)).
Knowing this historical background, it is evident that word length, as it is
studied today, is no isolated characteristic.4

The basic question of the present study is to what degree word length may
contribute to the discrimination of authors and genres. An answer to this
question will not only shed light on specific factors influencing word length;
it will also provide an argument if word length is an appropriate variable to
describe an author’s individual style, or the stylistic traits of specific genres.

The discussion of these questions has a history of its own: as opposed
to the field of quantitative typology of texts (cf. Alekseev (1988), Pieper
(1979)), approaches in the realm of stylometry (cf. Martynenko (1988)) as-
sume that the individual style of texts and/or authors can be quantita-
tively described. Part of this research has concentrated on the question of
authorship attribution, particularly applying quantitative methods to decide

3 This study has been conducted in context of research project # 15485 (Word
Length Frequencies in Slavic Texts), financially supported by the Austrian Re-
search Fund (FWF); cf.: http://www-gewi.uni-graz.at/quanta.

4 Within a synergetic approach, word length is closely interrelated with other lin-
guistic levels and units, and it is well known that word length interacts, e.g., with
the number of phonemes (in a given inventory), with lexicon size (cf. Köhler
(1986)), with polysemy (cf. Altmann et al. (1982)), or word length and word
frequency (Strauss et al. (2004), with a survey of the Zipfian tradition).
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doubtful cases of authorship (cf. Marusenko (1990)). In a way, these ap-
proaches have paved the way for contemporary research in the field of com-
puter linguistics, where related problems are being discussed under the head-
ing of automatic authorship attribution and text categorization. The status
of this contemporary research may be characterized by two tendencies. On
the one hand, word length is not at all taken into consideration; in this case,
researchers assume word length to be a “low-level phenomenon” (cf. Sta-
matatos et al. (2001), 195), which leads to no reliable results, neither for
text categorization nor for authorship attribution. On the other hand, word
length is taken into account as one possible variable among others (such as,
e.g., sentence length, lexical type-token ratio, adverb counts, etc.) for multi-
variate discriminant analyses (vgl. Karlgren and Cutting (1994)). As to this
line of research, there are a number of methodological problems which have
not been sufficiently reflected:
1. More often than not, word length has been measured as the number

of characters per word; it is a well-known fact, however, that for most
languages, measuring word length as the number of characters (letter,
graphemes) per word is no appropriate procedure leading to erroneous
results due to the instability of the graphemic system (cf. Kelih and Grzy-
bek (2004));

2. Most of the studies in this field do not analyze the impact of word length
as a variable in its own right, but only as part of some undifferentiated
pool of variables.
This situation gives rise to a new systematic study of word length as a

possible discriminating variable for authorship attribution and/or text cate-
gorization, paying due attention to and avoiding the methodological flaws of
the studies mentioned above.

2 A case study: text basis and analytical options

With regard to the problems discussed above, the present study proceeds as
follows:
a. Word length is measured as the number of syllables per word; ‘word’ is

thus understood as an orthographical-phonological unit, the systematic
changes of which, depending on linguistic definitions, are well known as
well (cf. Antić et al. (2004)).

b. Discriminant analyses are undertaken, taking into consideration only vari-
ables which are directly related to or derived from the frequency distrib-
ution of x-syllable words in a given text.
In the present study, the word length of 190 Russian texts is analyzed.

These texts are systematically chosen in order to design a balanced study,
based on an approximately equal number of two different text types, written
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by three different authors. By way of multivariate methods, the role of word
length as a characteristic of authorship or of text type shall be studied.5

In order to study the relevance of word length on the level of text sorts
and authors, respectively, ca. 30 texts written by three well-known Russian
authors each (A. S. Puškin, D. Charms, and A.A. Achmatova) in two dif-
ferent sorts of text (poems and letters), are considered. On the basis of this
text sample, a number of different analytical options are at our disposal (cf.
Figure 1). These options include the discrimination

• of authors within a given genre (i.e., studying only letters or poems,
respectively);

• of different texts sorts written by different authors (e.g., Charms’ private
letters in contrast to Achmatova’s poems);

• of text sorts without paying attention to authorship.

Letters (95)� Poems (95)�

A.A. Achmatova�
(30)�

D. Charms�
(29)�

A.S. Pu�š�kin�
(36)�

A.A. Achmatova�
(30)�

D. Charms�
(30)�

A.S. Pu�š�kin�
(35)�

Russian Texts (190)�

Fig. 1. Graphical Representation of the Text Data Base

3 Methods of text discrimination

As to the discrimination of author and/or text, we want to concentrate on the
impact of word length, only. Therefore, from our pool of 30 possible discrimi-
nation variables, all those variables which are related to other characteristics
of a text (such as, e.g., text length), will be excluded, as well as variables
which, though primarily characterizing word length, have such factors as in-
direct components.6

5 The text basis is part of the text data base developed in the research project
mentioned above.

6 Text length is, of course, an important characteristic of a text, and has well been
used in other studies on authorship or genre discrimination (cf. Djuzelic (2002)).
Although in our case, the average text length of the letters (x̄ = 238.20, s =
170.37) does not significantly differ from that of the poems (x̄ = 204.37, s =
178.59) – as can be shown by a Mann/Whitney U -Test (z = −1.56, p = 0.12) –
we have focused on word length, only, in order to strictly control the impact of
this variable.
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3.1 Quantitative measures for text analysis

Each text contains N words (wi for i = 1, 2, . . . , N). Word length (xi) is mea-
sured in the number of syllables per word (xi = j where i = 1, 2, . . .N ; j =
1, 2, . . .K). Actually we are dealing with words of 1, 2, 3, . . ., or K syllables.
Words are divided into K frequency classes; fj refers to the number of el-
ements that belong to the same class (absolute frequencies). Texts will be
quantitatively described by a number of measures reflecting the moments of
the word length frequency distribution.

Not all variables which possibly describe the distribution are equally im-
portant for our study; our aim was to find a minimal set of variables, relevant
for discriminant analyses (thus having the strongest classification power). On
the basis of our empirical tests, we obtained a set of six variables, which are
appropriate for our purposes. The definitions of these six variables are listed
in Table 1.

Table 1. Six statistical measures characterizing 190 Russian texts

Variable Formula Explanation

m2 = s2
0 = 1/N ·

N�

i=1

(xi − x̄)2 empirical variance of the word length

m4 = 1/N ·
N�

i=1

(xi − x̄)4 fourth central moment

v = s0/m1 coefficient of variation
d = m2/(m1 − 1) quotient of dispersion
oi = m2/m1 first criterion of Ord
p4 = f4/N relative proportion of 4-syllable words

Every text, now, can be seen as a statistical object incorporating its infor-
mation in the six variables listed in Table 1. Thus, the quantitative description
of a given text j, belonging to group i, is given by an observation vector of
dimension 6 (for i = 1, 2 ; j = 1, . . . , 95):

xij = (m2 (i, j) ,m4 (i, j) , v (i, j) , d (i, j) , oi (i, j) , p4 (i, j))

For each group, the mean values of the six variables are combined in the
mean vector of the same dimension (for i = 1, 2):

x̄i =
(
m̄2 (i) , m̄4 (i) , v̄ (i) , d̄ (i) , ōi (i) , p̄4 (i)

)
Table 2 represents one example, including two Russian texts with all six

statistical values discussed above. Actually, there are 95 texts from both
genres in our text corpus. x̄1 and x̄2 denote the mean vector for the text
groups, i.e., letters and poems , respectively, and they are calculated for all
95 texts of each group.
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Table 2. Six statistical measures of two Russian texts for both text types

Text type m2 m4 v d oi p4

Letter #1 1.26 6.53 0.55 1.23 0.62 0.07
Letter #2 1.37 7.07 0.50 1.01 0.58 0.16
n1 = 95 ; x̄1 = (1.47 7.86 0.53 1.17 0.64 0.11)

Poem #96 0.81 2.04 0.45 0.83 0.41 0.04
Poem #97 0.86 2.92 0.49 0.97 0.46 0.04
n2 = 95 x̄2 = (0.92 2.57 0.47 0.88 0.45 0.06)

3.2 Discriminant analysis

In a first step, the texts are discriminated along the category of ‘author’, only.
In this case, each of our three authors – A.A. Achmatova {A}; D. Charms
{C}; A.S. Puškin {P}) – is treated as a separate class, and no genre distinction
is taken into consideration. As can be seen from Table 3[1], this results in a
percentage of only 38.4% correctly discriminated texts.

As can also be seen from Table 3[2], this poor result can be improved up
to a percentage of 56%, if ‘genre’ is additionally taken into consideration. In
the next step concentrating on one particular text group (i.e., either letters or
poems), and testing each combination of two authors, one obtains definitely
better results between 63% and 77% (cf. Table 3[3,4]). Finally concentrating
on one individual author, only, and juxtaposing letters vs. poems, one gets
even better results up to a percentage of 82% to 93% correctly classified texts
(cf. Table 3[5]).

This overall result is a clear indication for word length being dependent
on the type of text, rather than on authorship (i.e. being a good variable for
text categorization, rather than authorship attribution).

3.3 Statistical distance as a measure for data discrimination

Given these findings, it is important to see which relevant variables are ap-
propriate for discriminant analyses. The univariate distance is an important
measure for separating data corpora into two different text groups. Let us
assume that the texts are independent samples (x11 , . . . , x195),(x21 , . . . , x295)
of two distributions, which have possibly different theoretical means µi and
the same variance σ2. The theoretical means will be estimated by the arith-
metic mean x̄i of the sample, and the variance by pooling the two empirical
variances s2

i of the sample as follows:

s2
pool =

1
n1 + n2 − 2

(
(n1 − 1) s2

1 + (n2 − 1) s2
2

)
The univariate statistical distance D is given as:

D (x̄1, x̄2) =
|x̄1 − x̄2|
spool
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Table 3. Discriminant Analyses: Author vs. Genre

Text Type Author Classification

1 {A}{C}{P} 38.40%

{Letters}{Poems} {A}{C}{P} 46.30%

2 {Letters} {A}{C}{P} 55.80%
{Poems} {A}{C}{P} 54.70%

{A}{C} 62.70%

3 {Letters} {A}{P} 71.20%
{C}{P} 67.70%

{A}{C} 76.70%

4 {Poems} {A}{P} 0.00%
{C}{P} 73.80%

{A} 81.70%

5 {Letters}{Poems} {C} 93.00%
{P} 93.20%

The distance D between two groups is thus defined as the distance be-
tween the group centers (means), standardized by the pooled variance. Ta-
ble 4 contains mean values, standard deviations and univariate statistical
distances for all six variables; also, results are given for all pairwise compar-
isons between these two text groups.

Table 4. Means, standard deviations and univariate statistical distances for pair-
wise comparisons (letters vs. poems)

Variable Text type x̄1| x̄2 s1| s2 D(x̄1, x̄2)

m2 Letter 1.47 0.43 5.20
Poem 0.92 0.17

m4 Letter 7.86 6.75 0.23
Poem 2.57 1.09

v Letter 0.53 0.06 24.87
Poem 0.47 0.03

d Letter 1.17 0.15 16.53
Poem 0.88 0.11

oi Letter 0.64 0.11 23.66
Poem 0.45 0.06

p4 Letter 0.11 0.04 36.17
Poem 0.06 0.03
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Table 4 shows the highest distance value D, based on the variable p4 (i.e.,
the relative frequency of 4-syllable words). This means that variable p4 has
the strongest power for the separation of our text corpus into two groups: p4

thus is the best discriminator for these two text groups.

The fourth central moment (m4) has the lowest discrimination power,
what implies a bad separation. The reason for this is the fact that although
variable m4 has the highest mean value, it has as large statistical deviation,
which keeps the distance relatively small. Knowing that these two text groups
remarkably differ as to the proportion of 4-syllable words, this result was to
be expected. With variable p4 alone, up to 76.3% of our texts can be correctly
classified: combining p4 with variable d, the percentage of correctly classified
items improves to 89.5%. In Figure 2, variable p4 is plotted against variable
d for the two categories letters and poems.

Fig. 2. Left scatter plot p4 vs. d; right separation of letters and poems

Figure 2 illustrates the fact that it is possible to separate letters from
poems. The linear discriminant function is calculated as a linear combination
of relevant variables. In our case, the set of six variables is reduced to a
set of two relevant variables, namely, p4 and d. Figure 2 also shows the good
separation power of the discriminant function. The cut point between the two
groups is represented by the vertical line in 0, which marks the separation.
Each point represents a text; the text numbers can be seen on the y-axis.
Every text has different values of p4 and d, so the value of the discriminant
function is also different for each text: we can see two clearly separated groups.
We can notice that only nine poems and eleven letters are misclassified. This
corresponds to a high percentage of correct classifications, which sum up to
90.5%, or 88%, respectively.
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4 Summary

Our study clearly shows that word length, if properly defined as the number of
syllables per word, has a strong discriminating power for text categorization:
with only two variables, a percentage of up to 90% correctly discriminated
texts can be obtained. As opposed to this, word length does not seem to play
an important role as to questions of authorship attribution.
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verteilung am Beispiel von Texten slowenischer Sprache. Dipl. Arbeit, TU
Graz.

GRZYBEK, P. (2004): History and Methodology of Word Length Studies: The State
of the Art. In: P. Grzybek (Ed.): Contributions to the Science of Language:
Word Length Studies and Related Issues. New York, Springer. [In print]

KARLGREN, J. and CUTTING, D. (1994): Recognizing text genres with simple
metrics using discriminant analysis. In: M. Nagao (Ed.): Proceedings of COL-
ING, 94, 1071–1075.
http://www.sics.se/∼jussi/Papers/1994 Coling Kyoto l/cmplglixcol.ps

KELIH, E. and GRZYBEK, P. (2004): Wortlänge in Silben und Graphemen. [In
prep.]
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PIEPER, U. (1979): Über die Aussagekraft statistischer Methoden für die linguisti-
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Abstract. Classification as a human activity in general becomes a scientific ac-
tivity in librarianship. There are famous examples of this history of classification
among them the schemes of Conrad Gesner (1548) and the Princeton University
Library (1901). In present time we find a number of new tasks and obligations in
this field.

1 Introduction

Librarians and library science scholars were possibly the first information
specialists who developed theoretical approaches, practical tools and tech-
niques for organizing and retrieving bibliographic documents and also the
bibliographic data about them, above all more essentially information about
their subject contents. Indeed “It may not bee too far fetched to say that
the history of theoretical classification began with the division of knowledge
into the knowledge of good and the knowledge of evil”. With these words
Ernest Cushing Richardson (1930) cites the text of 1 Moses 2,9 as the start-
ing point of thinking and practicing classification in his basic work “classifi-
cation” (written nearly one hundred years ago).

Moreover, we must remind Antony Flew’s remarkable volume “An Intro-
duction to Western Philosophy. Ideas and Argument from Plato to Sartre”.
Flew (1971) chooses the title “Classification as a human activity” as the ti-
tle of a chapter of his book and coins with this title nearly a philosophical
program.

Indeed a library is “a unique type of human organisation” (KASHYAP
(2003)) and its classification, as a human activity in general, becomes a sci-
entific activity in librarianship during the epochs of history. The need of
organizing the contents of texts, books, libraries and so on requires thinking
and competent working above all, not only an imitation of some classification
of sciences and humanities.

Structuring and subject cataloguing was a permanent challenge in the
history of libraries and very much related to the physical location of a book
in shelves, stock-rooms, etc. Some examples of this history of classifications
within the libraries are listed chronologically below.
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In fact, the books in the great Byzantinic respectively Arabic libraries
were sorted by subject in shelves or rooms. Smaller libraries only grouped
the books by the main categories (e. g. clerical and secular, liturgical and
dogmatic opuses, etc.) or other criteria (Lorenz (2003b, pp. 57 and 64)).

2 Classified arrangement in monastery libraries of the
Middle Ages

In the Middle Ages - at least in the beginning - monastic libraries became
the important part in librarianship. “In der That, ein Kloster ohne Bücher
ist wie eine Festung ohne Waffen. Daher waren Mönche zun¨chst darauf be-
dacht, eine möglichst groe Bibliothek anzulegen.” (Wetzel 1877) [Cite: Really
a monastery without books is like a fort without arms. Due to this the monks
considered to set up a library as large as possible.] This reflection started with
the mighty deed of a whole catalogue, consisting of a sequence of single cat-
alogues of different libraries. Maybe the Benedictine monks of St. Emmeram
in Regensburg especially abbot Albert († 1358) started the distinguished at-
tempt unique in the German librarianship of the 14th century, to compile
the complete registration of all books of all the monasteries for monks in
Regensburg in one single volume.
The subject order of the registration of literature in the medieval catalogues
and projects followed also former examples, one is the “Biblionomia” by
Richard de Fournival († 1260) using academic aspects and therefore his li-
brary consisted of three sections: philosophy, medicine/jurisprudence (scien-
tiae lucrativae) and theology (starting with the profane literature).
Richard’s combination of “septem artes liberales” and aristotelic-scholastic
classification of science with the three university faculties at the top is known
since the 13th century as a common and conventional scheme although it
refers often to the shelving in medieval libraries.

3 Classified arrangement in private libraries of the
Middle Ages

Besides monastic libraries there were also some important private libraries
(Ludwig (1997), Lorenz (1997a)). One focus is the catalogue of the profes-
sor of medicine Amplonius Ratingk (1263/4-1435) in the 15th century who
sorted his library according to 12 subjects, whereas the Nuremberg physician
Hartmann Schedel (1440-1514) subdivided his catalogue into 22 subjects in
accordance to the Richard de Fournival system. In contrary to the medieval
usage the artes liberales were here at the beginning. Ratingk and Schedel also
grouped the theological literature at the end of the classification scheme.

This scheme with its 22 topics displayed its own history. Three hundred
years later it appeared again - as a product either of fortune or of deci-
sion - and was used by Ernst Gottfried Baldinger (1738 - 1804), professor of
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medicine in Marburg/Lahn. Due to his large collection the main topics were
subdivided.

4 Classified arrangement in the late Middle Ages and
at the beginning of modern times

From the beginning, librarians and readers use as their basis the consistent
classified arrangement - with some few local variations. The pattern was
Bible, Fathers of the Church, other theology, profane literature. Within the
subjects the arrangement was different. A correlation between the library
classification and the academic classification of Isidor of Sevilla, Hrabanus
Maurus or Vinzenz of Beauvais cannot be observed nor was the Bibliono-
mia of Richard de Fournival adapted. It is a moot point whether this opus
which is cited in only one manuscript was publically known or only by its
author/creator. Shelving could also be seen as a tool of subject cataloguing
and the fact that the order of the books is irrelevant to inventory as long as
they are in the same place for audit.
Already in the middle ages the basics of the modern three part cataloguing
were set up: Shelf, author, subject.
With timely changes the classification was used in accordance with the fac-
ulty departments. The main categories from of the Middle Ages like theology,
law and medicine were kept untouched whereas arts was split into different
disciplines some of which became new main categories and the rest were
subcategories.

As a famous example we reproduce here the system (created 1548 - 1549)
of Conrad Gesner (Zürich, bibliographer and physician):

1. Grammatica 8. Astronomica 15. Metaphysica
2. Dialectica 9. Astrologia 16. Ethica
3. Rhetorica 10. Historica 17. Oeconomia
4. Poetica 11. Geographia 18. Politica
5. Arithmetica 12. Divinatio et Magia 19. Juriprudentia
6. Geometrica 13. Artes literates 20. Medicina
7. Musica 14. Physica 21. Theologia

5 Cataloguing in the 18th century

In the Renaissance time many libraries just needed the classified arrange-
ment for browsing. Often catalogues existed but rather for inventory function.
Many catalogues registered location and subject at the same time. Without
any dramatic changes but with slight modification they were used in this
epoch for indexing as well.
Step by step the raw systematic catalogues changed to dignified ones best
seen at the university library of Göttingen in the 18th century. Classification
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was not yet a common task but introduced at several libraries in different ver-
sions as, for example, the fine structured subject classification in Göttingen
or as group marks number in Milan - in contrast to the individual marks for
every book.

6 Systematic cataloguing in the 18th century

Two main aspects were relevant for the development of modern systematic
cataloguing as it is still used today: the growing number of books in libraries
and the change in the scientific and educational system, as to say the begin-
ning of modern university, in the age of Enlightenment.

The universal philosophy of science in this era (eg. Leibniz) demanded
“man müsse schon beim Betrachten einer Büchersammlung die ganze Lit-
erargeschichte wie in einem Spiegel aufgefangen vor sich sehen”(Legipontius
(1747); see also Naud (1627)) [cite: Looking at a book collection should al-
ready give you an impression of the complete history of science and literature].
The libraries in the Baroque buildings represent glance and thinking of the
era and - in this way - present the books excellently: This was the main as-
pect for the librarians much more than cataloguing.
In some cases additional numbers of classes were adequate, elsewhere reor-
ganisation was done by systematic aspects. In 1694 Christoph Hendreich, a
library worker at the elector’s library at Cölln an der Spree (=Berlin), re-
placed the 6 main categories with 46 new ones - a nearly revolutionary act
during the history of sciences and the history of classification. Meanwhile at
Göttingen’s university library a voluminous systematic catalogue was set up
using the book marks mentioned above.

7 Subject cataloguing in the 19th century

At the beginning of the 19th century nearly every library had to reorganize
its book shelving and indexing system. This was necessary either because of
the recurring tightness in the classified arrangement and the full written cat-
alogues, or because of the ongoing accretion of books due to secularisation.
One exception again was the university library of Göttingen where catalogu-
ing was done in an exemplary way by Heyne and Reußin 1776–1790 and so
Göttingen became a centre of discussion in the progress of German libraries.
Some theoreticians in the 19th century accentuated that systematic cata-
loguing did not really matter as long as it only reproduced the arrangement
of books. For these theoreticians, writing up a systematic catalogue had a
minor significance in the daily work of librarian. The classified arrangement
- originating in the common medieval location of a - not so great - number
of books - spread out to most German libraries in the course of time. The
adaptation of the Göttingen archetype was wide, but seldom perfect. In de-
tail it was not practicable and did not succeed completely.
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But already in the 18th century the modern arrangement by groups was
alerted to the libraries in southern Germany due to the reorganisation of
the Munich State Library and the scripts of Martin Schrettinger (a Benedic-
tine monk before the secularization; then catalogue specialist at the Bavarian
State Library).
There was also another trend that contrasted the Göttingen model of a cen-
tralistic library for common use, the more and more differentiating learned
fields set up their own specific libraries in the middle of the 19th century.
The classification was refined in this time, but cumulated also in the big cat-
alogue systems of the 19th century - a heredity of the time of Enlightenment.
Examples may be Berlin, Darmstadt and Halle/Saale. As a rule, the subject
catalogue of a scientific library in the 19th and 20th century was a systematic
register of the location of the books. A great difference is obvious in this cat-
alogue between social and natural sciences. In social science, a detailed and
specialized, nearly canonical grouping is used. In contrast only a rough clas-
sification in small number existed in natural science, technology and other
upcoming fields.
The dichotomy social versus natural science first appeared in the library
classifications of the 19th century. Until the end of the 18th century this
separation was not usual.

In this context the meaning of the alphabetic order is of special interest,
but not really observed by historians of classification. Often the alphabetic
order was integrated in the systematic registers as an isolated application.
These solutions were often found in subjects or parts of subjects where a
systematic was not theoretically approved in detail. Much more important
is the fact that in accordance to the upcoming natural science, technology
was nearly not mentioned in the library systematic which was dominated
by the social sciences and the humanities. An early exception represents the
classification of the Princeton University Library (1901):

0. General 5. Theology
1. Historical sciences 6. Philosophy and education
2. Language and literature 7. Sociology
3. Modern languages and literatures 8. Natural Sciences
4. Arts 9. Technology

8 Subject cataloguing in the 20th century

After the First World War the time of traditional subject cataloguing with
references to the location seemed to be over because no library was capable of
regrouping their books on shelves to meet all requirements without changing
the signatures. Information management in a library was mainly considered
a practical task and not alone a speculative issue of the theory of science.
In an international context the Dewey Decimal Classification (DDC) that was
created in the end of the 19th century, came up. It dissected science into 10
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parts in a very formal way. With these premises Hans Wilhelm Eppelsheimer
(†1972) and his colleagues at the city library of Mainz created a location free
subject catalogue. The hierarchical systematic of science was replaced by the
coexistence of the subjects. This was done by clearance through standardis-
ation: Repeating parts of literature were put in a chronology. Eppelsheimer’s
invention was introduced in the state library of Darmstadt (1932), whereas
the “analytical subject catalogue” published 1931 by Hans Trebst from Dres-
den had found no practical application.

In present time there are five main streams:

1. Systematic shelving of large numbers of books - similarly to the situation
one and a half centuries ago - requires revised methods of ordering for
open access to book collections.

2. International respectively transnational use of classifications such as
DDC, UDC (Universal Decimal Classification) and the Regensburg Clas-
sification (Lorenz (1997b), Lorenz (2003a)) (at the same time: shelf classi-
fication) demands a continuing discussion of developments and prospects
for the major schemes (including the methodology of faceted classifica-
tion).

3. Relationship between theory and application demands an exchange be-
tween semantic structures / terminology and the technical development.

4. Study of classification theories and systems could stimulate and enlighten
discussion in a period of turbulent changes in the world of learning and
in the organisation of knowledge.

5. Classification research as a basis of information policy demands new steps
to the information technology in general.

Today the - longwinded discussed - projects for a “Unified Classification” (De
Grolier (1991)) have been finished, but the real situation of parallel existing
classification systems demands a trend to concordances.

Indeed the science of library classification (Losee (1993)) represents an
important part of the library and information science and of the philosophy
of science - with many needs, plans and visions.
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Abstract. Successful applications of hierarchical cluster analysis in the area of
quantitative linguistics were reported in the pioneering works by Goebl (1982, 1984,
1994). Often the dimensionality of linguistic data is high. Therefore multivariate
statistical techniques like cluster analysis can to some degree support the researcher.
However there is much room left for heuristics. Cluster analysis methods can be
generalized by taking weights of observations into account. Using special weights
leads to well-known resampling techniques. Here we offer an automatic validation
technique for hierarchical cluster analysis that can be considered as a so-called
built-in validation of the number of clusters and of each cluster itself, respectively.
Furthermore this built-in validation can be used to find the appropriate cluster
analysis model. As an illustration of an application in linguistics, the validation of
results of hierarchical clustering based on the adjusted Rand’s measure is presented.

1 Introduction

Cluster analysis has several synonyms like numerical taxonomy (Goebl
(1982)), segmentation or unsupervised learning. It aims at finding interesting
partitions or hierarchies without taking any background knowledge into ac-
count (Kaufman and Rousseeuw (1990), Mucha (1992), Banfield and Raftery
(1993)). Hierarchical clustering is in some sense more general than partitional
clustering because a hierarchy (this is usually the result of a hierarchical clus-
ter analysis) is a sequence of nested partitions. Here a partition is treated as
an elementary component of a hierarchy. In the following, partitions P(I,K)
of the set of I objects (observations) into K non-empty clusters (subsets,
groups) Ck are considered, k = 1, 2, ...,K. The clusters are assumed pair-
wise disjoint and a partition is an exhaustive subdivision. In this paper a
general way of validation of hierarchies will be recommended.

Some model-based clustering techniques can be expressed in terms of
pairwise data clustering (Fraley (1996), Mucha et al. (2002)). Starting from
pair-wise distances one can carry out both hierarchical and partitional clus-
tering (Späth (1985)). A generalised form using weighted observations can be
given. Otherwise it is well-known that the principle of weighting of observa-
tions is a key idea in data mining for handling cores (representatives of dense
regions) and outliers (Mucha et al. (2002)). In the case of outliers one has to
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downweight them in order to reduce their influence. Special weights are used
for resampling purposes in the proposed automatic validation technique that
is applied to linguistic data.

2 Pair-wise data clustering

Let X be the (I × J)-data matrix under investigation consisting of I obser-
vations (objects) and J variables. In view of the application in linguistics
below using the well-known Ward method, let us consider the well-known
sum-of-squares criterion

VK =
K∑

k=1

tr(Wk), (1)

that has to be minimized concerning the partition P(I,K). Herein Wk =∑
i∈Ck

(xi − xk)(xi − xk)T is the sample cross-product matrix for the k-th
cluster Ck, and xk is the usual maximum likelihood estimate of expectation
values in cluster Ck.

Criterion (1) can be written in the following equivalent form without
explicit specification of cluster centres xk

VK =
K∑

k=1

1/nk

∑
i∈Ck

∑
l∈Ck,l>i

dil, (2)

where nk is the cardinality of cluster Ck, and

dil = d(xi,xl) = (xi − xl)T (xi − xl)

is the pair-wise squared Euclidean distance between two observations i and l.
This criterion can be minimized for a single partition P(I,K) by exchanging
observations between clusters (Späth (1985)). This is equivalent to k-means
clustering. Otherwise the hierarchical Ward method (Ward (1963)) minimizes
(2) in a stepwise manner by agglomerative hierarchical clustering. Mucha
et al. (2002) presented other model-based cluster analysis in the pair-wise
distances fashion.

Another benefit of clustering based on pairwise distances over clustering
that is based directly on the (I × J)-data matrix X is the more general
meaning of distances. For instance, distances allow cluster analysis of mixed
data (quantitative and qualitative data, see, for example, Gower (1971)). By
doing so exploratory results can be obtained that are at least of practical use.

The expression in (2) can be generalized to

VK =
K∑

k=1

1
Mk

∑
i∈Ck

mi

∑
l∈Ck,l>i

mldil, (3)

by using positive weights of observations, where Mk =
∑

i∈Ck
mi and mi

denote the weight of cluster Ck and the weight of observation i, respectively.
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3 Resampling techniques based on weights of
observations

In the following, the weights mi will be used for resampling purposes. For
instance, considering the right hand side of equation (3) one can see obviously
the independence of weights mi and Mk, respectively, from the pair-wise dis-
tances dil. The latter one exists in any case and is independent from the
weighting the the observations. That means once a distance matrix is figured
out it will be unchanged in simulations. One has to change the weights only
for simulation purposes. For example, the well-known bootstrap resampling
technique can be formulated by choosing the following weights of observa-
tions:

mi =
{

n if observation i is drawn n times
0 otherwise

Here I =
∑

i mi holds in the bootstrap-resampling with replacement.
Other resampling techniques can be described in a similar fashion by intro-
ducing weights. In the following let us focus on effective simulations based on
pair-wise distances. Moreover the stability of every hierarchical cluster analy-
sis method based on pair-wise distances can be investigated by assigning the
following special weights of observations:

mi =
{

c if observation i is drawn randomly (c > 0)
0 otherwise

This resampling technique is without replacement. Usually c equals 1.
The observations with mi > 0 are called active objects whereas the ones with
mi = 0 are called supplementary objects. The latter ones do not affect the
cluster analysis in any way. However, as an option of our software, they can
be allocated after clustering into the partitions and hierarchies according to
their distance values. This can be done, for instance, by k nearest neighbour
classification.

4 Rand’s measure for comparing partitions

Partitions are basic results of cluster analysis that cover also hierarchies.
Therefore comparing partitions becomes a basic and general tool for valida-
tion of cluster analysis results. The key approach for comparing partitions is
based on the comparison of object pairs concerning their class membership
(Rand (1971)). For instance, to compare two partitions P(I,K) and Q(I,L),
the Rand index R∗ = (a+d)/

(
I
2

)
(similarity index) can be applied. Here a and

d count the pair-wise matches which are good in the sense of similarity (cor-
respondence), see Table 1. Equivalently, Rand’s index R∗ can be expressed
by using a contingency table obtained by crossing directly the two partitions
P and Q:
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R∗ = [
(
I

2

)
+ 2

K∑
k=1

L∑
l=1

(
nkl

2

)
−

K∑
k=1

(
nk+

2

)
−

L∑
l=1

(
n+l

2

)
]/
(
I

2

)
.

Partition Q

Partition P Same cluster Different clusters

Same cluster a b

Different clusters c d

Table 1. Contingency table of pairs of observations concerning two partitions

Partition Q

1 2 ... l ... L Sum

1 n11 n12 ... n1l ... n1L n1+

2 n21 n22 ... n2l ... n2L n2+

... ... ... ... ... ... ... ...

P k nk1 nk2 ... nkl ... nkL nk+

...

K nK1 nK2 ... nKl ... nKL nK+

Sum n+1 n+2 ... n+l ... n+L I = n++

Table 2. Contingency table by crossing two partitions P and Q

Table 2 shows such a contingency table with elements nkl. At the right
hand side and at the bottom there are the marginal sums nk+ and n+l,
respectively. The contingency table has the important advantage over Table
1 that the stability of every single cluster can be investigated additionally.
Moreover the reliability of each observation can be assessed based on the
framework of the investigation of the stability of clusters (see the application
below).

The measure R∗ is dependent on the number of clusters K. The higher
K the higher R∗ becomes in average. In order to avoid this disadvantage
Hubert and Arabie (1985) recommended the adjusted Rand index R based
on the assumption of the generalized hypergeometric model:
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Fig. 1. Medians of adjusted Rand’s index R for one standard normal (20 dimen-
sions).

R =
∑K

k=1

∑L
l=1

(
nkl

2

)− [
∑K

k=1

(
nk+
2

)∑L
l=1

(
n+l

2

)
]/
(
I
2

)
1/2[

∑K
k=1

(
nk+
2

)
+
∑L

l=1

(
n+l

2

)
] − [

∑K
k=1

(
nk+
2

)∑L
l=1

(
n+l

2

)
]/
(
I
2

) . (4)

This measure suits better for the decision about the number of clusters K
than R∗ because it takes the value 0 when the index R∗ equals its expected
value for each k, k = 2, 3, ...,K. Depending on the options of assignment of
supplementary observations after clustering (see the previous section below),
the measures R and R∗ are figured out based either on all I observations or
on a smaller number of observations (= sum over all mi).

5 A simulation study

Hierarchical clustering gives a unique solution (hierarchy). In this paper the
focus is on the investigation of such a unique solution and not on model
selection. A unique solution is in opposition to some iterative method like
k-means clustering that lead to locally optimal solutions depending on initial
partitions.

Now let us investigate a data set “without cluster structure”. The data is
drawn from a multivariate normal distribution with unit covariance matrix.
The number of dimensions equals 20, and the number of observations equals
250. Figure 1 shows a set of medians of the adjusted Rand index versus
the number of clusters. Each median is obtained from 250 adjusted Rand
values from bootstrap samples (250 replications) of a multivariate sample.
Obviously, the index values are located near above zero with an increasing
trend to higher values when the number of clusters increases.
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Fig. 2. Statistics of the adjusted Rand’s measure R versus the number of clusters.

6 Application in quantitative linguistics

This is an application in dialectometry, see Haimerl (2004) for more details of
this project. The linguistic data consists of 217 regions (observations) with a
high number of variables (3899 classified maps with a total number of 20177
taxats, for details see Bauer (2003)). Here the number of clusters, the stability
of each cluster and the reliability of the cluster membership of each region are
assessed. 250 simulations (and thus 250 cluster analyses) were carried out.

Figure 2 shows both the most important numerical results concerning the
adjusted Rand index and a corresponding graphical representation of these
univariate statistics. Here this measure is computed on the basis of active
observations only. The reading of this figure is as follows. The axis at the left
hand side and the bars in the graphic are assigned to the standard deviation
of R, whereas the axis at the right hand side and the box-plots are assigned to
other statistics of R (Median, Average, upper and lower 5 percent quantile).
The median of R for K = 7 takes the maximum value. That means, the
seven cluster solution is the most stable one. It can be confirmed in a high
degree for almost all samples. For more than seven clusters the median (or
alternatively the average) of the adjusted Rand’s values becomes much lower.
Therefore the number of cluster K = 7 is most likely.

Figure 3 presents the final result of Ward’s clustering of 217 regions. The
data are based on the linguistic atlas ALD I (Goebl (1998)). The polygon map
shows the spatial structure of the clustering result into 7 clusters: The area
of investigation is obviously divided into 7 sub areas marked with different
grey scales and numbers from 1 to 7. Those locations with hatching patterns
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Fig. 3. Linguistic map of cluster membership with information about the reliability
of cluster membership of regions. The clusters are marked by numbers.

have been identified as not stable whereas those without hatching are stable
with respect to the interval of depth of coverage. The groups with number 1,
2 and 4 are highly stable groups that do not contain any unstable location.
This result is what a linguist might expect: The Ladin areas in Grisons (1)
and in the northern part of the Dolimitic Ladinia (2) and the area Friuli (4)
are clearly separated from the bordering regions. The other four areas have
unstable locations at their borders; polygons with hatching at the border
between Veneto (3 and 7) and Trentino (6) on one side and between Trentino
(6) and Lombardy (5) on the other side. This analysis could be the basis for
a deeper linguistic investigation in unstable zones or into significant borders
as between Friuli and Veneto that is out of scope of this article.

7 Conclusions

The principle of weighting of observations is a key idea for the built-in valida-
tion technique for hierarchical clustering. Using special weights leads to well-
known resampling techniques. The proposed automatic validation techniques
based on comparison of partitions is especially recommended for investigat-
ing the results of hierarchical clustering. Moreover this built-in validation is
very easy to apply. Because hierarchical cluster analysis presents “nice” re-
sults (dendrograms) independent from the existence of real clusters it is higly
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recommended to validate the number of clusters, the stability of each cluster,
and the reliability of each observation.
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Akademie der Wissenschaften, Wien.

GOEBL, H. (1984): Dialektometrische Studien anhand italoromanischer, rätoroma-
nischer und galloromanischer Sprachmaterialien aus AIS und ALF, vol. 1 (vol.
2 and 3 contain maps and tables). Max Niemeyer, Tübingen.
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Abstract. As has been shown recently, it is possible to automatically discover the
senses of an ambiguous word by statistically analyzing its contextual behavior in a
large text corpus. However, this kind of research is still at an early stage. The results
need to be improved and there is considerable disagreement on methodological
issues. For example, although most researchers use clustering approaches for word
sense induction, it is not clear what statistical features the clustering should be
based on. Whereas so far most researchers cluster global co-occurrence vectors that
reflect the overall behavior of a word in a corpus, in this paper we argue that it is
more appropriate to use local context vectors. We support our view by comparing
both approaches and by discussing their strengths and weaknesses.

1 Introduction

Many problems in statistical natural language processing can be successfully
approached by using methods that rely on feature vectors. Since entities in
natural language tend to be ambiguous, the feature vectors that we derive
from text corpora can be assumed to be mixtures of the vectors of some un-
derlying unambiguous entities. The problem in understanding and simulating
natural language is that we can only observe and study the complicated be-
havior of the ambiguous entities, whereas the presumably simpler behavior
of the underlying unambiguous entities remains hidden.
To be more concrete, let us look at word meaning. In this case, the ambigu-
ous entities we consider are words, the unambiguous entities are their senses,
and as the relevant features the co-occurring words can be used. Looking at
co-occurrences is appropriate as it has been shown that the meanings of a
word are well reflected in its lexical neighborhood (Schütze (1997)), that is,
the neighbors of a word can be considered to be its features.
Past work on word senses has concentrated on disambiguation, that is, on
choosing among a predefined set of senses when given an ambiguous word in
context. In contrast, the problem that we consider in this paper is word sense
induction, which is the automatic discovery of the possible senses for a given
word. Several recent papers, e.g. Pantel and Lin (2002), Neill (2002), Dorow
and Widdows (2003), Rapp (2003), and Rapp (2004) give evidence that sense
induction now also attracts attention.
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Despite many differences, most approaches to sense induction that have been
published so far have a common limitation: They rely on global co-occurrence
vectors, i.e. on vectors that have been derived from an entire corpus. Since
most words are semantically ambiguous, this means that these vectors reflect
the sum of the contextual behavior of a word’s underlying senses, i.e. they
are mixtures of all senses occurring in the corpus.
When starting from global vectors the task of sense induction requires deter-
mining the co-occurrence vectors of the senses given the co-occurrence vectors
of the ambiguous words. As reconstructing the sense vectors from the mix-
tures is difficult and often suffers from the sparse data problem, the question
is if we really need to base our work on mixtures or if there is some way
to directly observe the contextual behavior of the senses thereby avoiding
the mixing beforehand. Our suggestion is to look at local instead of global
co-occurrence vectors. As can be seen from human performance, in almost
all cases the local context of an ambiguous word is sufficient to disambiguate
its sense. From this observation we conclude that the local context of a word
usually carries no ambiguities. The aim of this paper is to show how this ap-
proach, whose application tends to be affected adversely by the sparse-data
problem, can be successfully exploited for word sense induction.

2 Approach

Our computations are performed on a term/context-matrix that is based on
the concordance of a word. This is an important difference to approaches that
use co-occurrence- or term/document-matrices as the vectors in these types
of matrices reflect the overall behavior of a word in an entire corpus. That
is, they are mixes of all senses of a word, whereas in a term/context-matrix
each vector relates to a single sense.
An example of a term/context-matrix is shown in table 1. It relates to the
ambiguous word palm with its tree and hand senses. If we assume that our
corpus has six occurrences of palm, i.e. there are six local contexts, then we
can derive six local co-occurrence vectors for palm. Considering only strong
associations to palm, these vectors could, for example, look as shown in the
table.
The dots in the matrix indicate if the respective word occurs in a context or
not. We use binary vectors since we assume short contexts where words usu-
ally occur only once. By looking at the matrix it is easy to see that contexts
c1, c3, and c6 seem to relate to the hand sense of palm, whereas contexts c2,
c4, and c5 relate to its tree sense. Our intuitions can be resembled by using a
method for computing vector similarities, for example the cosine coefficient
or the (binary) Jaccard-measure. If we then applied an appropriate clustering
algorithm to the context vectors, we should obtain the expected two clusters,
and the words closest to the geometric centers of the clusters should be good
descriptors of each sense.
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Table 1. Term/context matrix for the word palm.

c1 c2 c3 c4 c5 c6

arm • •
beach • •
coconut • • •
finger •
hand • • •
shoulder • •
tree • •

However, as matrices of the above type can be quite large and extremely
sparse, clustering is a difficult task, and common algorithms often deliver
sub-optimal results. Fortunately, the problems of matrix size and sparseness
can be minimized by reducing the dimensionality of the matrix. An appro-
priate algebraic method that has the capability to reduce the dimensionality
of a rectangular or square matrix in an optimal way is singular value decom-
position (SVD). As shown by Landauer and Dumais (1997), Schütze (1997),
Rapp (2003), and others, by reducing the dimensionality a generalization ef-
fect can be achieved that often improves the results.
As this method is rather sophisticated, we can not go into the details here. A
good description can be found in Landauer and Dumais (1997). The essence
is that by computing the singular values of a matrix and by truncating the
smaller ones, SVD allows to significantly reduce the number of columns,
thereby (in a least squares sense) optimally preserving the euclidean dis-
tances (and angles) between the rows (Schütze (1997), 191). Alternatively, it
is also possible to reduce the number of rows thereby preserving the distances
between the columns.
The approach that we suggest in this paper involves reducing the number
of columns (contexts) and then applying a clustering algorithm to the rows
(words) of the resulting matrix. This works well since it is a strength of SVD
to reduce the effects of sampling errors and to close gaps in the data.

3 Algorithm

Our computations are based on a partially lemmatized version of the British
National Corpus (BNC) which has the function words removed (Rapp
(2002)). With partial lemmatization we mean that only those words in the
corpus have been replaced by their root forms that according to a large lex-
icon of English can be unambiguously assigned to a stem. This makes the
corpus more manageable, the computations faster, and reduces the sparse
data problem without introducing many errors (other than those resulting
from omissions in the lexicon). Our vocabulary consists of all 374240 differ-
ent word forms occurring in this corpus after lemmatization.
Next we have to specify how we define the context of a word. Since the doc-
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uments in the BNC are rather long (average sample size is 24274 words),
it seems advisable to choose shorter contexts, for example sentences, para-
graphs, or text windows of a fixed size. We decided to use text windows of
±20 words around the given word. Since function words were removed from
our corpus, this corresponds to a larger window size of approximately ±40
words in the original corpus if we assume that roughly every second word is
a function word.
Based on the list of 12 ambiguous words provided by Yarowsky (1995) which
is shown in table 2 we created the concordances for these words, with the
lines in the concordances each relating to one context window of ±20 words.
From the concordances we computed 12 term/context-matrices whose binary
entries indicate if a word occurs in a particular context or not (as exemplified
in table 1 for the word palm). Assuming that a context word’s discrimina-
tive power is highly correlated with its association strength to the ambiguous
word, in each matrix we removed all words that are not among the top 30
first order associations.
The selection of these first order associations was conducted fully automati-
cally using an algorithm that had been developed to simulate human associa-
tive behavior. In no case has there been any manual intervention in selecting
these words. As described in a previous paper (Rapp (2002)) the computa-
tions in this algorithm are based on the log-likelihood ratio. However, as it
was observed that in association experiments conducted with human sub-
jects there was a strong preference towards words that are in the middle of
the frequency range (Rapp (1996), 52), before ranking the words we multi-
plied the log-likelihood values with a triangular shaped function as shown
in figure 1 that depends on word frequency. This leads to a considerably
better agreement of the computed associations with human intuitions1. To
give an impression of typical results obtained with this algorithm, the top 30
associations to the words palm and poach are shown in figures 2 and 3.

Table 2. Ambiguous words and their senses as provided by Yarowsky (1995).

WORDS SENSES WORD SENSES
axes grid - tools palm tree - hand
bass fish - music plant living - factory
crane bird - machine poach steal - boil
drug medicine - narcotic sake benefit - drink
duty tax - obligation space volume - outer
motion legal - physical tank vehicle - container

1 The agreement between the simulation program and a group of test persons is
actually better than the average agreement among the humans: For 31 out of 100
stimulus words the predicted response is equal to the response most frequently
given by the subjects. This compares to an average of only 28 such responses
given by an average subject. Also, on average 13.5% of the human subjects give
the response predicted in the simulation, whereas only 12.6% give the answer
chosen by another subject.
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Fig. 1. Triangular function used for computing word associations.

Given that our term/context matrices are very sparse with each of their
individual entries seeming somewhat arbitrary, it is necessary to detect the
regularities in the patterns. For this purpose we applied the SVD to each of
the matrices, thereby reducing their number of columns to the three main
dimensions. This number of dimensions may seem low. However, since our
matrices of local contexts (derived from the concordance of a word) are much
smaller and usually more sparse than the global co-occurrence matrices used
elsewhere, it is clear that we had to use fewer than the 100 to 300 dimensions
used in other studies. Interestingly, as there are strong dependencies in our
data, it turned out that in some cases it was not even possible to compute
more than three singular values. Therefore, we decided to use three dimen-
sions for all matrices (with the exception of space, where only two singular
values could be computed).
The last step in our procedure involves applying a clustering algorithm to
the 30 words in each matrix. For our condensed matrices of 3 rows and 30
columns this is a relatively simple task. We decided to use the hierarchical
clustering algorithm readily provided in the MATLAB (MATrix LABoratory)
programming language. After some testing with the various similarity func-
tions and linkage types available in MATLAB, we finally opted for the cosine
coefficient and single linkage which is the combination that apparently gave
the best results.

4 Results

Let us exemplify our results by looking at a typical example. Figure 2 shows
the dendrogram for poach as obtained after applying the algorithm described
in the previous section to a dimensionality-reduced term/context matrix. The
two main clusters in the dendrogram nicely distinguish between the two senses
of poach, namely boil and steal. The left branch of the hierarchical tree con-
sists of words related to cooking, the right one mainly contains words related
to the unauthorized killing of wildlife in Africa which apparently is an impor-
tant topic in the BNC. This example nicely demonstrates what distinguishes
the clustering of local contexts from the clustering of global co-occurrence
vectors. To see this, let us bring our attention to the various species of an-
imals that are among the top 30 associations to poach. Some of them seem
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Fig. 2. Clustering results for poach with SVD.

more often affected by cooking (pheasant, chicken, salmon), others by poach-
ing (elephant, tiger, rhino). According to the diagram, only the rabbit can
be likewise the subject of both activities and in this way confirms its familiar
role as a victim to all kinds of actions. However, there is still some hope of
survival for the poor rabbit in our corpus-based reality, as luckily its affinity
to cooking is lower than it is for the chicken, and to poaching it is lower than
it is for the rhino.
The important thing is that by clustering local contexts our algorithm was
able to separate the different kinds of animals according to their relation-
ship to poach. If we instead clustered global vectors, it would most likely
be impossible to obtain this separation. Note that what we exemplified here
for animals applies to all linkage decisions made by the algorithm, i.e. all
decisions must be seen from the perspective of the underlying ambiguous
word. This implies that often the clustering may be counterintuitive from
the global perspective that as humans we tend to have when looking at iso-
lated words. In short, the clusters shown in figure 2 can only be understood
if the ambiguous words they are derived from are known.

Having shown that the clustering of local contexts is very specific with
respect to the given word, let us now show that the clustering of global co-
occurrence vectors does not have this desirable property. To illustrate this,
figure 3 shows the clustering results for poach based on global co-occurrence
vectors2. The dendrogram looks intuitively plausible as it places related words
2 These are the details of the computation: Our starting point was a global co-

occurrence matrix of 30 rows, with each row corresponding to one of the top
30 first order associations to poach, and several thousand columns, each relat-
ing to one of the observed context words in the lemmatized BNC that have a
corpus frequency of 20 or higher. The window size for counting co-occurrences
was ±20 words. We used a simple transformation function that incremented each
co-occurrence count by one and then dampened it by computing the logarithm.
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Fig. 3. Clustering results for poach using global co-occurrence vectors and SVD.

closely together, e.g. boil and toast, salad and sauce, elephant and elephants,
or Namibia and Zimbabwe. However, the overall appearance of the diagram
is different from figure 2, so which one is better?
Our answer is: It depends on the task. If a human subject is asked to cluster
the list of 30 words according to their semantic relatedness (not telling that
they are all associations to poach), then something similar to figure 3 might
come out. If, on the other hand, the subject is explicitly asked to cluster
the same list of words according to their relationship to poach (possibly even
specifying the two main senses of poach), then this should result in something
like figure 2.
In our view it is important to see that these are two distinct tasks. The first
task is related to thesaurus construction, the second to sense induction. This
distinction was not always made clear in previous papers, which led to some
confusion. As there is some correlation between the outcome of the two tasks,
mixups can easily go through unnoticed: A program that actually solves task
1 may be presented as a solution to task 2 with reasonable results.

5 Conclusions and prospects

From the observations described above we conclude that avoiding the mixture
of senses, i.e. clustering local context vectors instead of global co-occurrence
vectors, is a good way to deal with the problem of word sense induction.
The clustering of global vectors is inappropriate, as the global co-occurrence

For better comparison with the previous results (based on local contexts), before
conducting the hierarchical clustering an SVD-step was performed which reduced
the number of columns to three.
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vectors are usually dominated by word usage in less relevant contexts (i.e.
contexts not containing the ambiguous word). However, there is a pitfall, as
the matrices of local vectors are extremely sparse. Fortunately, our simula-
tions suggest that computing the main dimensions of a matrix through SVD
solves the problem of sparseness and leads to significant improvements.
Although the results seem useful even for practical purposes, we can not claim
that our algorithm is capable of finding all the fine grained distinctions that
are listed in manually created dictionaries such as the Longman Dictionary of
Contemporary English (LDOCE), or in lexical databases such as WordNet.
However, we see many possibilities for further improvements: For example,
we can consider a larger corpus, various window types and transformation
functions, a wider selection of context words, or we can take a word’s part of
speech into account.
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Development of Information Spaces
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Abstract. Through the use of formal document structures, for example paragraphs
and tables, steps are shown on how to use these to extract information in the course
of the automatic recognition of the contents of OpenOffice text documents and
HTML documents as part of a document management project. It is possible to
create formal graphs that structure the document-related information space based
on a given information model by using a natural language processing chain and a
wrapping procedure. A combined text and layout analysis is carried out with open
source components that aims at representing information as a semantic network
in a formal and visualizable manner. Scalable ways of retrieving information and
processing knowledge are produced by uniting document-related information spaces
to form thematic domains.

1 Starting point and task

A given information model serves to support the interoperability of electronic
information and simulation systems. The information categories of the data
model underlying the information model (referred to as a core data model,
hereinafter CDM) represent the lowest semantic level of a military ontology,
in which connection a uniform semantic description is given of the user data.
Due to the general design of the CDM the seamless integration of themes
of other domains is possible. The goal of text-related information extraction
consists in the projection of text information to constituents of the informa-
tion model. The generated information constructs are used to fill the CDM
database support. In this connection, the integration of efficient individual
technologies that require minimum tailoring comes to the fore.

2 Implementation

From the layout perspective, there is initially a concentration on flow texts
and tables. The DOM (document object model) of an OpenOffice text docu-
ment1 is accessible via the OpenOffice API. A Python class can access DOM
elements, such as the paragraph (flow text), headline, list etc. within an

1 In the OpenOffice open source environment, a MS Word document can be read
without any difficulty. URL: http://de.openoffice.org/.
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OpenOffice application. At the same time, partially structured HTML doc-
uments are migrated. From the perspective of the software architecture re-
garding OpenOffice, the relevant parts of a document undergo cross-computer
processing with a Python XML server2 which sends an XML copy as an in-
quiry to applications on other computers and, after processing, receives and
allocates the result.

3 Representation of the information space

Prime words (abbreviated to primes), e.g. for artifacts, that are linked to
one another through relations are derived from the CDM in the information
model. The semantics of primes is clearly defined in the CDM. The relations
also have a semantic dimension that is usually realized as a verbal context
pattern. As a directed graph, the prime-relation-prime structure grammati-
cally organizes a subject-verb context-object structure. Standardization takes
place on the uppermost level based on the following rule: Subject and object
positions are realized through basic forms on a syntactic level. Verbal con-
structs are in the third person singular syntactically (e.g. is-used-to-describe,
is-made-up-through). Examples of further standardization rules are deleting
leading determiners in noun phrases, separating prepositions from preposi-
tional phrases and adding the same to the verbal expression.

Graphs can be constructed to form complex graph structures that make
up a semantic network on a topological level. In its entirety, the informa-
tion model forms an information space that is structured by all the primes
and contexts involved the constituents. From the perspective of information
retrieval, the CDM database support underlying the information model pro-
vides a basis for filing and for searching for extracted text information. The
information space of an individual document is represented by the extracted
graphs. A thematic domain is represented as a cross-document information
space, i.e. as a union of the information spaces involved.

4 Processing flow text

As natural language expressions occur fairly rarely as simple linguistic sen-
tences (see below), several processing steps are usually required to transfer a
sentence from a German real world text into a number of derived graphs. For
this purpose, a natural language processing tool chain has been set up. Eng-
lish graphs are produced as a main result. The tool chain consists of several
autonomous modules steered by a Python integration layer.

The sentence-boundary detector serves sentence boundary disambigua-
tion of flow texts that are processed to form lists of sentences. The provision
of fragments of flow text at sentence level is essential for sentence-related
2 URL: http://www.xmlblaster.org.
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parsing later. An appropriate rule-based and lexicon-based Python class was
realized within only few man days. In the course of the further development
of modules, the following approaches are used as possible ways of optimis-
ing modules: Frey (2002) describes a non-rule-based method of detecting
sentence boundaries with high hit ratios using a neural network. A language-
independent, statistically-based connection between abbreviation recognition
and a subsequent least effort sentence boundary detection system is presented
by Kiss and Strunk (2003).

Apart from colloquial abbreviations, technical expressions must be put
into an expanded form. At present, a list of military abbreviations which has
around 10,000 entries in XML format provides the required data basis for this.
In addition, a decision must be made in one correction step for inflecting parts
of speech as to the syntactical form in which a lexeme appears in a phrase,
i.e. which case and number are realized in an individual case. For example,
noun phrases are thus to be formed correctly, e.g. Der Kdr PzBtl 592 to
Der Kommandeur des Panzerbataillons 592 (The commander of the tank
battalion 592).

The part of speech tagger (POS tagger) is used to determine parts of
speech based on the Stuttgart-Tübingen tagset (STTS) that has a scope
of 54 tags (Schiller (1995)). In addition, basic forms are to be detected to
standardize graphs. For this purpose, extensive, tagged material is presented
to a teachable tagger in a preliminary processing step. This type of tagger can
be implemented without much effort as an instance of a Python class in the
NLTK module (natural language toolkit, Loper and Bird (2002)). Technical
lexicons and a module for the provision of basic forms are currently being
set up. A syntactical parser generates the analysis of a natural language
expression. With the aid of a syntactic analysis, syntactical units can be
detected that assume certain grammatical functions in a sentence, such as
subjects and objects, that are usually realized as noun phrases (NP). The
in-house development of a parser for complete sentence analysis has proved
to be an impractical undertaking in the present project framework due to
the considerable effort required. The results on variabilities in tag patterns
gained from an informal text type study clearly show how difficult this task
is. In the study on text types, ten flow texts of different genres in ASCII
format were analysed which each had a scope of about 100,000 kilobytes.
A high degree of variability of sentence patterns was shown at tag pattern
level (see Table 2). An average sentence is thus composed of approximately
21 to 22 tagged parts (including punctuation). About 99 of 100 sentences are
uniquely structured at a tag pattern level (UTP portion in text).3

Only 0.512 percent of all sentences were discovered on average using a sen-
tence grammar, which required a few man days to develop. In order to achieve

3 The noticeably long sentences in fairy tales (FT) are due to frequently embedded
rhymes. The detection of the start and end of these would have required special
rules, which was dispensed with in this case.
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Table 1. Texts of the study on text types

Text type Abbreviation

Fairy tales FT

Bible BB

Bild Zeitung (yellow press, nationwide) BZ

Abendzeitung (tabloid paper, local) AZ

Süddeutsche Zeitung (daily newspaper, nationwide) SZ

Spiegel (weekly magazine) SP

IABG study report IB

PhD thesis (psychology) PT

Online consumer texts by financial service providers FI

German Federal Armed Forces (online) GA

Table 2. Text type-related tag pattern

Text type Sentences Unique tag Tags per UTP portion
patterns (UTP) sentence in text

FT 682 665 30.41 97.5%

BB 879 862 23.20 98.1%

AZ 779 774 20.64 99.4%

BZ 1241 1205 14.58 97.1%

SZ 790 788 20.09 99.7%

SP 867 866 18.83 99.9%

IB 545 532 26.03 97.6%

PT 604 598 24.95 99.0%

FI 852 842 17.24 99.8%

GA 779 776 18.83 99,6%

Sum 8018 7908 21.48 98.6%

a better text structure detection rate with the underlying variability in the
shortest possible time, the method of partial parsing was used as an alter-
native. The method of partial parsing (also called light parsing or chunking),
which requires less effort compared to complete parsing, can be combined
with other methods, if required, such as topological field analysis (Müller
and Ule (2001)). Chunking was designed to recognise noun phrases. In turn,
this was restricted to non-recurrent base noun phrases, whereby sequences
were permitted as a recurrent expansion. The wording of the grammatical
rules was carried out using the Python module NLTK (see above) at tag
pattern level.

In figures, it was possible to detect the syntax of about half of the text
structures (see Table 3) using only a few man days. The next task is to
derive the graphs from the detected syntactical structures that match the
information model. As it is not possible to automatically decide how lex-
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Table 3. Text type-related NP analysis

Text type NPs per sentence Tags per NP NP portion in text

FT 6.59 1.71 37.01%

BB 5.68 1.77 43.35%

AZ 5.01 2.09 51.46%

BZ 3.48 2.01 48.68%

SZ 4.79 2.12 50.60%

SP 4.40 2.09 48.73%

IB 5.91 2.46 55.78%

PT 5.72 2.11 48.75%

FI 4.25 2.01 51.51%

GA 4.60 2.24 54.50%

Sum 5.04 2.06 49.04%

emes are to be allocated to the valence framework of sentences without any
knowledge of the morpho-syntactical information of these lexemes, automatic
processing ends here. The XML output of the flow text in NP chunks is thus
analysed by the editor to identify the grammatical function of noun phrases
(e.g. subject of the noun phrase). Therefore, the XML document can be fur-
ther developed either as an excerpt from a raw text or, after SGML tailoring,
with the open source tool Alembic Workbench4 (Day et al. (1997)). A graph
pattern can be set up as a tagging pattern through the Alembic-supported
functionality of the definition of relations. A text tagged with Alembic re-
lations is subsequently read out by a Python class. The relations extract in
graph format is passed on to the translation module. Literal word-for-word
translations are carried out using multi-lingual catalogues of technical termi-
nology, e.g. Lexis (Federal Office of Language). Standardised German graphs
are translated into English graphs semi-automatically through the provision
of several possible translations. In addition, synonym wrappings can be de-
rived for expressions with WordNet and an appropriate Python bridge, as
well as hierarchical abstractions, which increases the possibility of matching
the primes of the information model. Initial experience gained shows the use
of extensive lexicons, special alignment methods (see Manning and Schütze
(2000)) and systematic paraphrasing (Barzilay (2003)).

5 Processing partially structured documents

For tables, reading out each table field of the lines contained in the table is
obvious, whereby semantic context information for table fields in the body
of the table can be found in the fields at the head of the table. Apart from
automatically generated tables with a systematic distribution of white space,
4 URL: http://www.mitre.org/tech/alembic-workbench/.
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there are also numerous irregularities in manually generated tables in flow
text format. HTML tables may also contain nested layout structures where
table lines are used as list elements, as the following example on the equip-
ment of Virginia class cruisers5 shows (edges of table marked). Wrapping is

Table 4. Detection systems of Virginia class cruisers

DETECTION SYSTEMS

Radar System:

Air Search: ITT SPS 48C or 48D/E, 3D

Lockheed SPS 40B or
Raytheon SPS 49(V) 5

Surface: SC Cardion SPS 55

Navigation: Raytheon SPS 64(V) 9

Fire Control: 2 SPG 5 1D

SPG 60 D

SPQ 9A

Sonar System: EDO/GE SOS 53A (Bow Mounted)

ideal as the technology for creating partially structured HTML documents.
The LAPIS wrapper employed in the project (Miller (2002)) uses TCL scripts
(tool command language) and a text constraint language developed specially
for this purpose in a Java environment. The interesting thing about LAPIS is
the graphic user interface which has WYSIWYG functionality and the ability
to work on texts with TCL with the aid of text constraint patterns. Aided
by a command line-oriented API, LAPIS can be used as a pattern matching
machine even without a GUI (graphical user interface). The extracted infor-
mation material is semantically tagged with XML. The complex data entries
of an XML fragment such as the following have to be broken down into several
consecutive steps in order to be used in the CDM database support.

<data_section theme="DETECTION SYSTEMS">
<sub_section theme="Radar System">

<sub_section_data>
<item_key>Air Search<item_key>
<item_value>ITT SPS 48C or 48D/E, 3D</item_value>
<item_value>Lockheed SPS 40B or

Raytheon SPS 49(V) 5</item_value>
</sub_section_data>

</sub_section>
[...]

</data_section>

5 URL: http://www.nasog.net/datasheets/warships/cruisers/Virginia Class.htm
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The anonymous relation stands-in-relation-to can be transferred to talking
contexts such as is-a-kind-of through the tabular generic relation between
the field in the head of the table and the field in the body of the table.
Details of the directory tree can also be used: The Virginia class association
between cruiser and warship ensues from the names of the directory tree
where the HTML file is located. Key-value pairs can be expanded to graph
format. Presentation as an IDEF1X diagram offers itself for the visualisation
of graphs in the information space.

Table 5. Graphs derived from an HTML table

Subject Context Object

Virginia class is-classified-as cruiser

cruiser is-a-kind-of warship

Virginia class has-as-a-component detection system

radar system is-a-kind-of detection system

air search requires radar system

ITT SPS 48C or
48D/E, 3D is-classified-as radar system

Lockheed SPS 40B or
Raytheon SPS 49(V) 5 is-classified-as radar system

air search requires ITT SPS 48C or
48D/E, 3D

air search requires Lockheed SPS 40B or
Raytheon SPS 49(V) 5

6 Summary and outlook

The approach adopted for information extraction is to be viewed as a demon-
stration showing the directions that are conceivable for the development of
estimates on costs and results related to a particular project, apart from
furnishing proof of the feasibility of the approach. If one understands infor-
mation extraction to be a mechanism that generates meaningful insertions
for variable positions in patterns (Manning and Schütze (2000), 376), it is
possible to favourably assess the conceptual approach adopted in the project.
From the perspective of project management, the major obstacle of linguistic
processing comes to the fore for operative use which, however, can be over-
come with sufficient resources. One only needs to consider the development
and care of electronic dictionaries, grammars on sentence analysis and meth-
ods on the dissolution of references in text discourse (e.g. anaphora). In this
connection, the use of automatic procedures is recommended, for example,
the automatic compilation of lexicons (Zernik (1991)). The use of open source
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components must be consistently increased. The functionality of the LAPIS
wrapper is up for expansion through the integration of additional parsers,
e.g. a parser for NP fine analysis which can be embedded in the pattern tree
as an additional text constraint pattern.
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Abstract. Rankings of countries are calculated using I indicator variables. Clear-
ly, any ranking based on an index depends on the weights used, and therefore we
conduct a sensitivity analysis on the weights of the index to obtain a measure for the
volatility of the performance rankings. The weights are simulated from uniform and
beta distributions on the simplex. As a result we observe a volatility “croissant”:
Countries in the top and the bottom of the ranking are less volatile than in the
middle of the ranking. The methodology is shown for the standardized performance
ranking (SPR) and the rank performance ranking (RPR).

1 Introduction

For companies there exists a single performance or success variable e.g. profit
or EBIT (earnings before interest & tax). National economies are too com-
plex to be rated by a single variable. Furthermore, there exists a huge amount
of potential variables that measure performance. One of the most common
methods to judge performance is the index method, where several factors
are condensed into one single number describing the overall economic perfor-
mance.

Index construction has become very popular over the last decades: This is
due to two developments. The liberalisation process in many areas of the mod-
ern economies increases the competitions between regions or other economic
units and people want to know where they stand. Also, modern technologies
allow the collection of a broad spectrum of data and to make them available
on the internet.

To motivate our approach we will review the index approaches of the most
popular international studies: In the year 2001 the ”Department of Trade and
Industry” in England was interested in measuring the regional performance
by using a wide range of indicators. This so-called DTI (2001) index includes
among other variables the establishment of an enterprise and survival rate,
occupation, creation of value per person employed according to industries,
average income, gross domestic product per head and expenditures for edu-
cation and infrastructure. The Milken Institute established several economic
indices to measure the performance of the US regions, e.g. the Capital Access
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Index, the Best Performing City Index, Best Places Index, State Technology
and Science Index and the Knowledge-Based Economy Index.

The Progressive Policy Institute (PPI) constructed “The State New Econ-
omy Index” using the following weighting methodology: Raw scores were cal-
culated for each state for each of the 21 indicators. In the composite analysis,
the indicators were weighted so that closely correlated ones did not influence
the results. In addition, to measure the magnitude of differences between
states and not just their ranks, in each indicator, scores were based on the
standard deviation from the mean score of all of the states. The 21 indicators
are summed up into five sub-indices, using different weights.

The World Economic Forum publishes the Global Competitiveness Index
(GCI) with the fundamental objective of evaluating the economic compet-
itiveness of a large sample of countries. The GCI uses both hard (publicly
available) data and data from the World Economic Forum’s Survey (in total
11 different indicators with different weights) to estimate three “component
indices” that capture the three pillars of growth: “Technology Index”, “Pub-
lic Institutions Index”, and “Macroeconomic Environment Index”. The three
components are then combined to calculate the overall GCI. The IMD (Inter-
national Institute for Management Development) started in 1989 to publish
the World Competitiveness Yearbook comparing 60 countries on more than
300 criteria.

These examples show that there are various approaches to measure dif-
ferent performance behaviour by using indices for many fields and especially
for national economies. Therefore the main goal of this paper is not to find
the ultimate “best economic index”, but rather to establish a framework to
test the stability of already existing indices. For demonstration reasons we
construct two different indices/rankings using 21 variables to describe the
performance of 28 European countries.

2 Index definition and ranking

Most index calculations are based on a 2-stage approach, after the set of
variables is defined {V1, ..., VI}. To create a ranking (or index) of different
indicators we first have to make the variables “commensurable” (by data
pre-processing), i.e. comparable for aggregation. In the second stage this
transformed variables are aggregated by a set of weights. To guarantee the
robustness of the final results we suggest two different data pre-processings
for the index generation.

Standardized performance index and ranking

First we standardized the absolute values for each variable. Based on this
data, the index was calculated for each country (standardized performance
index’ - SPI’). The index is therefore a weighted sum of I variables zi with
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equal mean and variance for each of the C countries, providing that the
different scales and data ranges of the original variables Vi do not influence
the result. Define the z-score of a country for variable i as:

zi(c) :=
Vi(c) − Mean(Vi)

stdev(Vi)
, c = 1, . . . , C, i = 1, . . . , I. (1)

SPI ′(c) :=
I∑

i=1

wizi(c), c = 1, . . . , C. (2)

Where (w1, ...., wI) are positive weights summing up to 1.
The SPI’ does not have the form of an index, i.e. the values can be positive

or negative1.
The standardized performance ranking (SPR) is obtained by ordering the

index values of the first stage:

SPR(c) := 1 +
C∑

l=1

1[SPI′(c)<SPI′(l)], c = 1, . . . , C. (3)

Rank performance index and ranking

For the second rank-based index construction we need a ranking for each
variable Vi, so that we get an (increasing) ordering of countries for every
variable (Oi).

Oi(c) := 1 +
C∑

l=1

1[Vi(c)<Vi(l)], i = 1, . . . , I, c = 1, . . . , C. (4)

The rank performance index’ (RPI’)2 is in the second stage a weighted
sum of the indicator ranks Oi(c) of country c:

RPI ′(c) :=
I∑

i=1

wiOi(c), c = 1, . . . , C. (5)

1 A possible index construction could be:

SPI(c) := (1 + SPI ′(c)) ∗ 100, ∀c = 1, . . . , C.

An index value (with equal index weights) of e.g. 106 means that the country
possesses on average z-scores which are 6 percent higher in terms of standard
deviation (=1 for all z-scores) than the average of the whole sample of countries.
But since we are primarily interested in the relative position of a country and
the volatility of this rank, this is just a side note.

2 As in the SPI case the RPI’ does not have the conventional form.
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Again the rank performance ranking (RPR) is derived by ordering the
achieved index values:

RPR(c) := 1 +
C∑

l=1

1[RPI′(c)>RPI′(l)], c = 1, . . . , C. (6)

In a first step all weights of the index are set to a fixed (equal) value,
a common approach for indices. The sensitivity of the index is calculated
through stochastic simulations.

3 Data

We used data statistics from Eurostat including the 15 EU-member states,
the 10 accession countries and the non-EU countries Romania, Bulgaria and
Norway.

Table 1. Eurostat indicator variables and codes

Code Variable Label

caa13584 Population increase Population
cba13584 Proportion of population aged 65 and over 100 - Non-Retirement
cca23312 Total population having completed at least

upper secondary education
Education

ccb13584 Employment rate total Employment1
ccb32528 Long-term unemployment -Employment2
daa11536 Gross value added at basic prices GVA
dab12048 Gross fixed capital formation (investments) Investment
dab13072 External balance of goods and services Balance
dad11024 Current taxes on income, wealth, etc. -Tax1
dad13072 Taxes on production and imports -Tax2
dbc11536 Short-term interest rates Three-month inter-

bank rates
-Short Interest

dbc12048 Long-term interest rates -Long Interest
dbc12560 Share price indices. Rebased Shares (Growth rate)

eb011 GDP per capita in PPS GDP capita
eb012 Real GDP growth rate GDP growth
eb021 Labour productivity per person employed Productivity1
eb022 Labour productivity per hour worked Productivity2
eb040 Inflation rate -Stability
eb060 Public balance Budget
eb070 General government debt Debt

eca10000 Research and development expenditure by sec-
tor

R&D
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The 21 indicator variables3 in Table 1 contain information about the pop-
ulation and its education, productivity, financial situation and the national
economy.

It follows from the index definition that all variables have to be aligned
in a “concordant” way, that a higher value denotes a better performance
for this indicator. Therefore we transformed the variable X= “Proportion of
population aged 65 and over” into the variable Non-Retirement (by the com-
plement 100-X). The indicators “Long-term unemployment”, “Current taxes
on income, wealth, etc.”, “Taxes on production and imports”, “Short-term in-
terest rates 3-month interbank rates”, “Long-term interest rates”, “Inflation
rate” and “General government debt” are pre-processed by a multiplication
of -1. Finally the variable “Share price indices; Rebased” was transformed
into “Share price indices; Growth” using the annual growth rate.

Some indicator statistics after this first data pre-processing are listed in
Table 2, indicating the need for a standardization of the indicator values
before calculating an index in general.

Table 2. Indicator statistics 2002

Label mean stdev min max

Non-Retirement 85.2 1.9 81.8 88.8
Employment1 60.5 13.6 50.7 75.9
GVA 3.2 2.1 0.6 8.3
Investment 21.5 4.7 4.4 28.8
Balance 0.1 7.7 -11.2 17.4
Short Interest -7.0 7.3 -41.3 -3.3
GDP capita 82.9 39.5 24.4 194.3
GDP growth 2.8 2.2 -1.2 7.9
Stability -4.9 6.2 -34.5 -1.2
Budget -0.6 4.5 -7.3 15.0
Debt -49.4 27.4 -109.5 -4.8

4 Sensitivity analysis by randomised weights

Starting from the initial (equal) weight setting we construct randomly derived
weights under the following conditions:

• The weight vector has to be uniformly distributed in the space of possible
weight vectors.

3 In the case of missing values for a country the average of the last 3 years was
used. In the case of missing variables the average of the EU-15 or the acceding
countries was used.
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• Each component of the random weight vector has the same expected
value and variance.

• The weights sum up to 1.

The Dirichlet distribution with identical parameters αj = 1 ( ∀j = 1, . . . ,
n) is a convenient specification to obtain uniformly distributed stochastic
weights:

θ ∼ Dirichlet(1, . . . , 1). (7)

The marginal distributions of each component are Beta-distributed (see
Gelman et al. (1995)), i.e.

θj ∼ Beta(1, n− 1), j = 1, . . . , n. (8)

E(θj) =
1
n
, ∀j = 1, . . . , n. (9)

var(θj) =
n− 1

n2(n + 1)
, j = 1, . . . , n. (10)

To generate samples of the Dirichlet distribution we use the following
approach. First we draw xj from a gamma distribution with shape parameter
αj = 1:

xj ∼ Γ (1, 1), j = 1, . . . , n. (11)

and then we calculate θj random weigths of the n gamma variables:

θj =
xj∑n

j=1 xj
j = 1, . . . , n. (12)

The θj are the randomised weights on the simplex for the sensitivity
analysis.

We produced 10.000 different random weight vectors and calculated the
mean and the standard deviation of each component. The averages range
between 0.047061 and 0.04859 and the standard deviations between 0.044166
and 0.046781. This obviously only marginally differ from the theoretical val-
ues specified in Eq. 9 Average = 1/21 ≈ 0.04761905 and Eq. 10 Stdev =√

20/(212 ∗ 22) ≈ 0.04540298, ensuring that each indicator is treated equally.

5 Ranking results

The advantage of the stochastic ranking procedure is that by simulating
weight we can calculate next to the mean of the simulated rank also an un-
certainty measure of the ranking, e.g. by the standard deviation. The stan-
dard deviation depends on the “volatility” of the z-scores (or the indicator
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rankings) for each country, and on the number of countries in the current
”ranking (index) neighbourhood” of the respective country.

In Figures 1 and 2 we can see the (µ, σ) plot of the average ranks versus
the standard deviation of this ranks is looking like a croissant. In the top and
the bottom the volatility of the stochastic ranking procedure is small while
the volatility is highest in the middle. This implies that changes in similar
future ranking of countries which lie in the middle of the index range are
more likely than on both end.
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Fig. 1. Stochastic ranking for 2002: By data standardization (SPR).
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Fig. 2. Stochastic ranking for 2002: By indicator ordering (RPR).

To get a final ranking of the countries we average over the simulated
stochastic weights. The rankings produced in the SPR and RPR case are
very similar which is expressed by very high correlation coefficients between
the two methods (see Table 3). The Pearson correlation between the average
ranking of the RPR and the SPR, - but also the Spearman correlation between
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the final ranking of the RPR and SPR, - always stays above 0.94 (for the
period 2000 to 2002).

Table 3. Correlation between average and final rank for SPR and RPR

Average rank Final rank

2000 0.970 0.958
2001 0.966 0.950
2002 0.961 0.945

6 Conclusions

The ranking of countries according to indices is very popular but only a
few studies also report the uncertainty associated with the ranking meth-
ods. In this paper we have explored two types of indices based on z-scores
of the indicators, the linear SPR and the rank-based RPR. We have evalu-
ated the standard deviations of these rankings based on the randomisation of
the index weights (generated by a Dirichlet distribution). We find that these
two stochastic ranking methods have similar average and final rankings, but
the uncertainty in terms of standard deviation is larger for the RPR. Plot-
ting these results in a (µ, σ)-diagramm shows the phenomenon of a volatility
croissant. Countries that are ranked best or worst have small standard de-
viations while countries in the middle have large standard deviations. These
results of the sensitivity analysis are quite robust with respect to the index
method or the type of stochastic weight simulations.
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Importance Assessment of Correlated

Predictors in Business Cycles Classification
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Abstract. When trying to interpret estimated parameters the researcher is in-
terested in the (relative) importance of the individual predictors. However, if the
predictors are highly correlated, the interpretation of coefficients, e.g. as economic
“multipliers”, is not applicable in standard regression or classification models. The
goal of this paper is to develop a procedure to obtain such measures of importance
for classification methods and to apply them to models for the classification of
german business cycle phases.

1 Problem

1.1 Introduction

Multivariate classification of the four business cycle phases upswing, upper
turning point, downswing, and lower turning point is often performed by
linear discriminant analysis (LDA, cf. Meyer and Weinberg (1975)) and by
time series analysis methods (e.g. Krolzig (1997)). Lately, other classification
methods, like quadratic discriminant analysis, classification trees, artificial
neural networks and support vector machines, have also been applied to this
problem (e.g. Garczarek and Weihs (2002)) and new classification methods
have been developed to solve this problem (e.g. Röhl et al. (2002)).

Heilemann and Münch (1996) reduced the stylized facts to a set of 13 im-
portant variables (see also Theis et al. (1999), Weihs and Garczarek (2002)):

� This work has been supported by the Deutsche Forschungsgemeinschaft, Sonder-
forschungsbereich 475.
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Y yearly growth rate of the gross national product (GNP)
C yearly growth rate of private consumption
GD government deficit as a proportion of the GNP
L yearly growth rate of the number of wage and salary earners
X netto exports as a proportion of the GNP
M1 yearly growth rate of money supply
IE yearly growth rate of equipment investments
IC yearly growth rate of construction investments
LC yearly growth rate of labour unit costs
PY yearly growth rate of GNP price deflator
PC yearly growth rate of the consumer price index
RS nominal short term interest rate
RL real long term interest rate
In analyzing business cycles it is important not only to obtain good pre-

dictions, but also to measure the influence of the individual variables to get
an impression of their importance. In linear models, the measures of influence
are usually the regression weights. Under ceteris-paribus assumptions, these
weights measure how much the dependent variable changes if the independent
variable is varied by a certain amount. In economic contexts these regression
coefficients are called “multipliers”.

Similar to these regression models, the coefficients of linear classification
equations, like LDA, can be interpreted as influences on the probability of
being classified into the selected class. For the interpretation of the coefficients
in linear regression or classification models it is crucial, that the independent
variables are uncorrelated. Unfortunately, several “stylized facts” appear to
be highly correlated, which prevents the interpretation of the coefficients as
“multipliers”, since the ceteris-paribus assumption is not realistic.

1.2 Measures of importance

This paper focuses on the importance of individual variables on the classi-
fication of business cycle phases. According to the focus of an analysis, two
types of statistical importance should be distinguished: the importance with
respect to model selection and the importance with respect to value change.

The first type is based on all the measures used for model selection, like
F-values (e.g. F-to-enter, F-to-remove), R2, etc. (e.g. Rencher (1995)). The
second type is based on the measures specifying value changes of the depen-
dent variable if the predictor variable changes its value. For regression and
linear classification models these are usually the coefficients to be estimated.

2 Correlated predictors in regression models

2.1 Overview

In order to develop an approach for measuring the importance of correlated
predictors in classification models, it can be useful to discuss some results in
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regression models, because a lot of research concerning correlated predictors
has been done in this area. The assumption of uncorrelated predictors is
often not appropriate for macro economic data. In fact, some of the variables
are highly correlated. This usually leads to correlated regression coefficients,
which are not easily interpreted (Assenmacher (2002)) and the coefficients
cannot be interpreted as “multipliers”.

In a regression model containing correlated predictor variables, there exist
several approaches to handle highly correlated variables:

The first type of methods transforms the predictor variables to eliminate
the correlations. For example orthogonalization of predictors, which is often
carried out by sequential regression (e.g. Kruskal (1987)). Such methods allow
the interpretation of the variables. On the other hand the coefficients highly
depend on the order of variables entered into the model.

The second type of methods corrects the coefficients using a scalar shrink-
age parameter, like ridge regression (e.g. Hoerl and Kennard (1969)). The
drawback of these methods, is that the scalar added to the main diagonal of
the covariance matrix does not improve interpretability.

The third type of methods tries to collect correlated variables into la-
tent variable, thus reducing dimensionality. These methods often use princi-
pal component regression models (e.g. Hawkins (1973)). The principal com-
ponents representation does also not allow the interpretation of the single
variable effect under ceteris paribus conditions. Models which combine ridge
regression and principal component regression have also been presented (eg.
Stone and Brooks (1990)), but have the same drawbacks as the individual
approaches.

2.2 Orthogonalization

Because the focus of this paper is on the interpretation of the single variable’s
influences, an orthogonalization method which is based upon sequential re-
gression has been used here to address the multicollinearity problem. The
disadvantage of this approach is, that the coefficients highly depend on the
order, in which the variables have been entered into the model.

Based upon Kruskal’s (1987) idea, Fickel (2002) proposes an algorithm
to overcome this disadvantage. It estimates sequential regression models for
every sequence i out of the p! possible variable sequences. From these estima-
tions the coefficients β̂ij and the increase in the coefficient of determination
(∆R2)ij are stored for each variable j and each sequence i. Then for each
variable

γ̂j =
1
p!

p!∑
i=1

β̂ij , δ̂j =
1
p!

p!∑
i=1

(∆R2)ij (1)

are estimated. The average coefficient γ̂j is a measure of importance for value
change and can be interpreted as average effect of variable j, when all other
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variables are held constant (like “multipliers”) and the average R2-increment
δ̂j as relative importance of variable j for model selection.

The additional level shift of the residuals e2, . . . ,ep introduced in Fickel’s
paper in order to scale the residuals to the same level as the original variables
is not used here, since the business cycle data consist of growth rates.

3 Correlated predictors in classification models

3.1 Orthogonalization

Most classification models provide a method to estimate the membership
probability of each class k, k = 1, . . . ,K, pMod(k|X), using specific density
assumptions and specific estimation criteria.

The approach of this paper is to use a linear probability model to estimate
the importance of the correlated variables for the estimated class membership
probabilities:

p̂Mod(k|X) = αk + Xβk + εk, k = 1, . . . ,K. (2)

where X is the matrix containing a sample of the random variable x. This
is done by estimation of the K discriminant functions by an appropriate
classification model Mod and of the posterior probabilities p̂Mod(k|xi). These
are then used as dependent variables in K linear regression models, one for
each class.

Fickel’s (2002) method can now be applied to each of the individual re-
gression equations (2). For each class k = 1, . . . ,K, all p! possible variable
sequences are used to estimate sequential regression models. Then the im-
portance measures γ̂ and δ̂ are computed from the estimation results.

This orthogonalization procedure can be used for a great variety of clas-
sification methods. The only requirement is that the classification is based
upon a membership function mMod(k|x) or, even better, upon the estimated
posterior probability function p̂Mod(k|x). The usage of the posterior proba-
bility instead of the membership function m(k|x) enables the comparability
of the results of different classification methods. In this paper the results of
a linear discriminant analysis and a multinomial logit are compared.

3.2 Using a large number of variables

The computation time of the proposed method increases excessively with
the number of variables. The reason is that all possible p! permutations of
variable sequences have to be evaluated. One possible way to deal with this
problem and to obtain interesting results is to choose a random subset of the
p! variable sequences.

The chosen subset must be uniformly distributed among the permutations
of variable sequences. If the sample of variable sequences is big enough, the
means of the coefficients and R2-increments will be estimated well enough.



Importance Assessment of Correlated Predictors in Classification 549

3.3 Results for the business cycle model

Using a random selection of variable orderings, all 13 “stylized facts” can now
be used for the analysis. Instead of evaluating all 13! = 6,227,020,800 possible
permutations of variable sequences, which takes a very long time even on fast
computers, only 50,000 randomly chosen variable sequences are used for the
analysis. The estimated total correlation matrix for all 13 stylized facts is

Table 1. Empirical correlation matrix for the 13 “stylized facts”.

Y C GD L X M1 IE IC LC PY PC RS RL
Y 1.000
C 0.776 1.000
GD 0.403 0.387 1.000
L 0.737 0.657 0.365 1.000
X -0.123 -0.154 -0.195 -0.074 1.000
M1 0.318 0.423 -0.098 0.198 0.169 1.000
IE 0.742 0.647 0.257 0.669 -0.160 0.314 1.000
IC 0.680 0.518 0.279 0.505 -0.042 0.176 0.388 1.000
LC -0.170 0.108 0.180 0.153 -0.328 -0.139 -0.087 -0.179 1.000
PY -0.176 0.012 0.034 0.048 -0.257 0.000 -0.093 -0.175 0.868 1.000
PC -0.352 -0.347 -0.193 -0.203 -0.294 -0.143 -0.367 -0.270 0.567 0.723 1.000
RS -0.241 -0.308 -0.181 0.051 0.071 -0.359 -0.269 -0.187 0.426 0.493 0.616 1.000
RL -0.094 -0.365 -0.322 -0.226 0.201 -0.197 -0.185 -0.099 -0.656 -0.656 -0.118 0.156 1.000

shown in Table 1. A few variable pairs, like PY and M1 as well as C and
PY are almost not correlated, but for most variable pairs, correlations are
in effect. The highest positive correlations have LC and PY with 0.868 and
C and Y with 0.776. RL and LC (-0.656) and RL and PY (-0.656) have the
highest negative correlations. The variables GD, X and M1 do not have very
high correlations with other variables.

Please note that bivariate correlations give only a vague impression of
the underlying multicollinearity, which should be reflected in the corrections
made by the orthogonalization procedure. Table 2 shows the estimated co-
efficients for the upswing class. The first column β̂j contains the standard
regression coefficients for the comparison to the importance measure γj ob-
tained by the orthogonalization procedure. The most important variables for
model selection are RS, C, PC, PY, LC, and IE. PY and RL have been cor-
rected strongly in LDA and in the logit model. Table 3 shows the estimated
coefficients for the upper turning point class. The most important variables
are C, L, and Y. The greatest correction has been made for Y in LDA and
for X in the logit model. RL and LC have also been corrected substantially
in both models. Table 4 shows the estimated coefficients for the downswing
class. The most important variables for model selection are RS, LC, PY, IE,
and RL. The most substantial corrections can be observed for PY and RL in
both models. Table 5 shows the estimated coefficients for the lower turning
point class. The variables most important for model selection are L and Y.
The strongest corrections are observed for RL and for PY in both models.
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Table 2. Estimated coefficients for the upswing class.

LDA logit

β̂j γ̂j δ̂j β̂j γ̂j δ̂j

const. 0.881 0.497 0.000 0.830 0.464 0.000
Y 0.042 0.030 0.031 0.034 0.024 0.023
C -0.117 -0.081 0.115 -0.104 -0.077 0.093
GD -0.025 -0.012 0.007 -0.034 -0.024 0.014
L 0.101 0.058 0.035 0.092 0.046 0.024
X 0.053 0.036 0.034 0.051 0.035 0.029
M1 -0.030 -0.017 0.033 -0.032 -0.017 0.030
IE 0.012 0.016 0.073 0.013 0.016 0.065
IC 0.000 0.001 0.006 0.001 -0.000 0.004
LC -0.008 -0.035 0.076 -0.022 -0.045 0.083
PY 0.162 -0.006 0.075 0.157 -0.008 0.071
PC -0.074 -0.085 0.102 -0.054 -0.071 0.076
RS -0.161 -0.105 0.191 -0.154 -0.100 0.156
RL 0.104 0.014 0.025 0.100 0.023 0.025

Table 3. Estimated coefficients for the upper turning point class.

LDA logit

β̂j γ̂j δ̂j β̂j γ̂j δ̂j

const. -0.356 0.077 0.000 -0.292 0.093 0.000
Y -0.017 0.014 0.075 -0.005 0.023 0.078
C 0.056 0.050 0.149 0.048 0.046 0.111
GD -0.009 -0.012 0.016 -0.004 -0.006 0.007
L 0.055 0.066 0.132 0.043 0.064 0.109
X -0.005 0.003 0.005 -0.015 -0.068 0.005
M1 0.011 0.014 0.063 0.011 0.013 0.042
IE 0.000 0.004 0.046 0.003 0.007 0.061
IC -0.001 0.002 0.024 -0.002 0.002 0.024
LC -0.029 -0.014 0.017 -0.031 -0.014 0.013
PY -0.014 -0.003 0.010 -0.013 0.010 0.009
PC 0.022 0.012 0.012 0.025 0.018 0.013
RS 0.045 0.037 0.069 0.054 0.041 0.062
RL 0.003 0.026 0.023 -0.016 0.013 0.011

4 Discussion and outlook

An orthogonalization procedure has been proposed for classification models
with correlated predictor variables. The procedure has been applied to west
german business cycle data to model the four cycle phases upswing, upper
turning point, downswing, and lower turning point. For 13 pre-selected styl-
ized facts the classification models linear discriminant analysis and multino-
mial logit have been compared.
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Table 4. Estimated coefficients for the downswing class.

LDA logit

β̂j γ̂j δ̂j β̂j γ̂j δ̂j

const. 1.154 0.252 0.000 1.136 0.259 0.000
Y 0.006 -0.013 0.019 0.021 -0.007 0.018
C 0.033 0.022 0.019 0.021 0.015 0.013
GD 0.005 0.015 0.010 0.002 0.015 0.011
L -0.046 0.002 0.017 -0.017 0.024 0.020
X -0.051 -0.033 0.035 -0.026 -0.015 0.012
M1 0.008 -0.010 0.036 0.004 -0.013 0.036
IE -0.015 -0.017 0.092 -0.018 -0.019 0.106
IC -0.003 0.000 0.004 -0.004 -0.001 0.004
LC 0.041 0.053 0.111 0.064 0.067 0.130
PY -0.336 -0.094 0.093 -0.348 -0.108 0.090
PC 0.058 0.043 0.050 0.072 0.047 0.044
RS 0.179 0.110 0.244 0.145 0.094 0.167
RL -0.269 -0.107 0.075 -0.251 -0.103 0.065

Table 5. Estimated coefficients for the lower turning point class.

LDA logit

β̂j γ̂j δ̂j β̂j γ̂j δ̂j

const. -0.679 0.169 0.000 -0.673 0.186 0.000
Y -0.032 -0.031 0.070 -0.050 -0.041 0.075
C 0.028 0.009 0.031 0.035 0.016 0.031
GD 0.029 0.010 0.016 0.037 0.015 0.018
L -0.109 -0.126 0.264 -0.119 -0.134 0.238
X 0.003 -0.007 0.008 -0.010 -0.013 0.008
M1 0.010 0.013 0.033 0.016 0.016 0.039
IE 0.002 -0.003 0.041 0.002 -0.004 0.038
IC 0.003 -0.004 0.030 0.007 -0.002 0.022
LC -0.005 -0.004 0.014 -0.012 -0.008 0.012
PY 0.188 0.103 0.066 0.203 0.105 0.051
PC -0.006 0.030 0.041 -0.043 0.005 0.020
RS -0.063 -0.042 0.063 -0.045 -0.034 0.038
RL 0.162 0.068 0.043 0.168 0.069 0.035

For model selection, RS, PY, LC, and IE seem to be important for both
the upswing and downswing phases, whereas Y and L seem to have more
importance for the turning point phases. For the upswing class additionally
the consumption related variables C and PC seem to be important for model
selection (C even for the upper turning point class) and RL seems to be
characteristic for the downswing class.

The orthogonalization procedure corrects the coefficients for the predic-
tors in such a way, that these corrected coefficients can be interpreted similar
to “multipliers”. The procedure also allows to compare different classification
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models, as LDA and multinomial logit for this paper. Apparently, the results
for both methods are similar for the business cycle data.

Similar comparisons will be done using other classification methods like
Support Vector Machines. Also, the approximation of using a linear proba-
bility model should be overcome. These two threads will be followed during
further research in this area.
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HEILEMANN, U. and MÜNCH, H.J. (1996): West german business cycles 1963–
1994: A multivariate discriminant analysis. In: CIRET-Conference in Singa-
pore, CIRET-Studien 50.

HOERL, A.E. and KENNARD, R.W. (1969): Ridge Regression: Biased Estimation
for Nonorthogonal Problems. Technometrics, 12(1), 55–67.

KROLZIG, H.-M. (1997): Markov-Switching Vector Autoregressions. Modelling,
Statistical Inference and Application to Business Cycle Analysis. Springer,
Berlin.

KRUSKAL, W. (1987): Relative importance by averaging over orderings. The
American Statistician, 41, 6–10.

MEYER, J.R. and WEINBERG, D.H. (1975): On the classification of economic
fluctuations. Explorations in Economic Research, 2, 167–202.

RENCHER, A. C. (1995): Methods of Multivariate Analysis. Wiley, New York.
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Abstract. In 2004, ten additional countries join the European Union. As a result,
the nature of the community and its member countries are predicted to change,
including the economic freedom of individuals and organizations. This study uses
classification tools to look at the Economic Freedom of the World index (EFI).
Patterns of economic freedom are quite different between the current and the ac-
ceding EU members. On average, economic freedom in Europe has a good chance
of increasing as a result the expansion.

1 Introduction

On May 1, 2004, ten additional countries join the 15-member European
Union. As a result, the nature of the community and its countries are pre-
dicted to change. Change is particularly expected for both the current and
the acceding members with respect to institutional and legal arrangements. A
common research proxy for a country’s set of institutional and legal arrange-
ments is the Economic Freedom of the World index (EFI) by the Fraser
Institute, the Heritage Foundation, and 50 think tanks worldwide (Gwartney
and Lawson (2002)).

This index measures more than the economic freedom of individuals and
organizations. It is of general interest because of the importance of economic
freedom to economic growth (Easton and Walker (1997)). Countries with
higher economic freedom also tend to enjoy higher economic growth. Thus, if
Europe is interested in accelerating its rate of economic growth, the EU has
to make certain that the enlargement of the EU expands rather than restricts
economic freedom. A good basis for such a development exists: individuals
and organizations in the European Union have higher average economic free-
dom than their counterparts in the new members.

According to the European Commission (2003, p.3), “never before have
(the candidates) been so thoroughly prepared, with a sweeping transforma-
tion of the economies and societies.” The EFI scores underline this assess-
ment; most of the new members rate well with respect to many of the EFI
� e-mail: cliffsell@t-online.de
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variables, in particular in the area of government size and involvement. In
some respects, the current EU members can also learn from the joining coun-
tries. The enlargement can thus be seen as a chance for both the current and
the acceding EU members to increase economic freedom.

2 Data description and distance measures

The current Economic Freedom of the World annual report shows the rank-
ings for the year 2000 for 123 economies. The three top-ranked countries are
Hong Kong, Singapore, and the United States. Section 2.1 lists the five ’ar-
eas’ of the freedom index, which in sum contain 21 variables. In order to get
a feeling for the data, the averages for the current and the new EU countries,
as well as the variable scores for five particular countries, are reported for all
21 variables. Section 2.2 takes a look at the Euclidian distances between the
countries.

2.1 Description of the economic freedom index data

The economic freedom index covers five areas: (1) size of government, (2)
legal system and property rights, (3) sound money, (4) freedom to trade with
foreigners, and (5) regulation. Each of these areas, in turn, consists of three
to five variables. The variables themselves can take on values between ten,
associated with the most economic freedom, and zero, associated with no
economic freedom.

Within each area, the variables are equally weighted. To arrive at the
overall index value, again all groups are equally weighted. Each variable thus
receives a different weight in the overall index: Variable 2-A, for example,
has a weight of 1/5 in its area and the area has a weight of 1/5 in the index,
giving it an overall weight of 1/25 in the index. Variable 5-A, however, has a
weight of 1/3 in its area and the are has a weight of 1/5 in the index, giving
variable 5-A an overall weight of 1/15 in the index.

When a value for a variable is missing, that variable is omitted in the
calculation of the area value and the remaining variables are equally weighted.
When an area value is missing, that area is omitted in the calculation of the
EFI and the remaining areas are equally weighted. Because of missing values,
the averages across countries and across areas do not yield the same numbers.
For an alternative weighting schemes, see Guggiola (2002).

To provide an overview of the variables and values of the EFI, Table 1
shows the variable scores for three current EU members (Germany, Ireland
and Spain) and two new EU members (Czech Republic and Lithuania). The
15 current members receive an average score of 7.5 (average EFI world rank
of 19) and the ten new members a score of 6.4 (average world rank of 61).

The current EU members score highly with respect to sound money, the
legal system, and the freedom to trade. The new EU members also score
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Table 1. Economic Freedom Index (EFI) example country scores

Area Description of Variable EU15 GER IRE SPA EU+10 CZE LIT
1-A Gov. consumption 3.8 4.6 5.3 5.2 4.9 4.1 4.4

1-B Transfers/subsidies 4.5 4.5 4.2 5.2 5.1 2.4 6.9
1-C Gov. enterprises/investment 6.5 6.0 10.0 4.0 4.6 8.0 6.0
1-D Top marginal tax rate 2.0 2.0 5.0 4.0 5.9 7.0 7.0

1 Size of government 4.6 4.3 6.1 4.6 5.1 5.3 6.1

2-A Judiciary independence 8.1 9.4 8.7 7.5 5.7 6.0 M
2-B Impartial courts 8.2 9.2 9.2 8.0 5.5 4.5 M
2-C Intellectual property protect. 7.9 8.8 7.0 7.2 4.7 5.6 3.2

2-D Military in politics 9.6 10.0 10.0 8.3 9.2 10.0 8.3

2-E Law and order 9.0 8.3 10.0 6.7 7.7 8.3 8.3
2 Legal system/property rights 8.5 9.1 9.0 7.5 6.9 6.9 6.6

3-A Money growth 8.9 9.1 9.9 8.5 7.5 9.3 8.4

3-B Std. dev. of annual inflation 9.6 9.7 9.2 9.5 7.7 8.5 3.8

3-C Annual inflation 9.4 9.6 8.9 9.3 8.8 9.2 9.7

3-D Foreign currency bank accts. 10.0 10.0 10.0 10.0 5.0 10.0 5.0
3 Sound money 9.5 9.6 9.5 9.3 7.2 9.2 6.7

4-A Tariffs 9.0 9.0 9.0 9.0 7.8 6.7 8.3

4-B Regulatory trade barriers 9.1 8.9 8.9 8.7 7.2 7.9 5.3

4-C Size of trade sector 5.1 5.6 8.2 5.6 5.6 7.4 5.7

4-D Black mkt. exchange rates 10.0 10.0 10.0 10.0 9.9 10.0 10.0

4-E Capital market controls 8.5 9.5 8.6 8.0 5.0 7.0 7.8
4 Freedom trade w. foreigners 8.3 8.6 8.9 8.3 7.2 7.8 7.4

5-A Credit market regulation 8.3 7.5 8.1 8.1 6.8 5.7 6.2

5-B Labor market regulation 4.4 2.9 5.3 5.3 4.6 5.2 4.2

5-C Business regulation 7.5 7.8 7.8 6.9 6.4 6.1 6.2
5 Regulation 6.7 6.1 7.1 6.8 5.8 5.7 5.6

EFI Economic freedom index 7.5 7.5 8.1 7.3 6.4 7.0 6.5

highest with respect to the variables in these three areas, but score somewhat
lower than the current 15 members. For the size of government, however, the
10 new EU members score higher on average than the current 15 members.
For example, the Czech Republic and Lithuania have governments that are
relatively smaller and less intrusive than those of Germany and Spain.

2.2 Distance measures

Measuring the distance between countries’ EFI scores is one way to quantify
the similarities and differences between countries. There are a number of such
measures, the most well-known of which is the Pearson correlation coefficient.
However, the correlation coefficient only measures linear association. The
relationships between the particular 21 variables of the economic freedom
index are not likely to be linear.

For a variety of reasons, any measure of dissimilarity between the entities
i and j (in this case countries) should satisfy the three properties (for a more
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detailed discussion, see Sell (2001)):

Dij ≥ 0 Dii = 0 Dij = Dji (1)

A dissimilarity measure is a metric if it also satisfies the following property,
called triangle inequality, between entities h, i, and j. Some researchers con-
sider being a metric to be a precondition of using a dissimilarity measure in
cluster analysis.

Dij ≤ Dik + Djk (2)

One geometrically appealing measure that fulfils the conditions of a metric,
while accounting for non-linearities, is Euclidian distance, which takes the
square root of the sums the squared distances between countries i and j over
all 21 variables k (Everitt (1993), Gordon(1999)).

Dij =
( K∑
k=1

(xik − xjk)2
) 1

2 (3)

For this study, the Euclidian distances are calculated based on the relative
weights of the 21 variables in the freedom index. If fewer variables are avail-
able for any of the countries, only those variables existing for both countries
of the country pair are included. Figure 1 provides a stylized overview of the

Fig. 1. Proximity Pattern
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values of the Euclidian distances, with countries displayed on the horizontal
and vertical axes. Country pairs with high similarity (low Euclidian distance)
are dark, while pairs with a high Euclidian distance are light. The dark box
covering the upper left quarter of the display shows that the countries from
the Netherlands to Portugal are more similar than the entire set of coun-
tries. This group contains 14 of the 15 current EU members (the exception
is Greece). Three smaller groups with high similarity are along the diagonal,
for example one group containing the three Baltic countries.

3 Cluster analysis methods and cluster patterns

As the description of the proximities between countries illustrates, it is cum-
bersome to look at, let alone interpret, all 300 Euclidian distances in detail.
It is, however, possible to impose a structure over this distance pattern using
cluster analysis, which is discussed in section 3.1. Section 3.2 then describes
the empirical cluster patterns.

3.1 Cluster analysis methods

The term cluster analysis covers a variety of methods for dividing data into
homogeneous groups. They typically involve the following four steps:

Step 1: Choice of the measures that characterize the entities to be clus-
tered. In the case of grouping countries cross-sectionally by their economic
freedom, the alternatives are to either use the five areas or the 21 variables
of the EFI. A larger number of variables results in greater stability of the re-
sults because missing or wrong data points exert a smaller influence. For this
study, the 21 variables (or the number of variables available for any country
pair) published for 2000 carry the same weights as in the index, as described
in section 2.1.

Step 2: Calculation of the proximity or distance between the entities
to be clustered. As discussed in section 2.2, this study uses the Euclidian
distance.

Step 3: Recovery of clusters from the proximity matrix. There are a large
number of theoretically appealing or empirically useful clustering algorithms
from which to choose. For the purposes of this study, the results of the Monte
Carlo studies presented in Milligan (1996) are used to select the so-called
Ward algorithm. This clustering method initially allocates each country to
a singleton cluster and then merges clusters in such an order that at each
step the increase of the within-cluster sum of squared distances to the cluster
means is minimized. The fusions of this clustering process can be displayed
in a dendrogram, or tree diagram, which shows the order of fusions and the
deviations from the cluster means.

Step 4: Evaluation and interpretation of the classification results. First
the appropriate number of clusters from the statistically significant cluster
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partitions has to be determined. In this case, the number of clusters was
chosen that yields the best improvement in the deviates from the cluster
means over the next smaller number of clusters. The detailed results are
discussed below.

3.2 Empirical cluster patterns

The process of clustering the Euclidian distances of the 21 EFI variable scores
for the 25 EU countries with the Ward algorithm is shown in figure 2. On
the vertical axis are the 25 countries. On the horizontal axis is the loss of
information when grouping, expressed as the average distance to the cluster
mean. The dark shading shows the cluster members when the dataset is
partitioned into six groups. This dendrogram shows that the countries fall

Fig. 2. Dendrogram

into (at least) two distinct groups: The Northwestern European countries
(from the Netherlands to France) and the Southeastern European countries
(from Italy to Cyprus). While the Northwestern group can be partitioned
into two groups that are quite similar, the Southeastern group decomposes
stagewise into four groups, some of which are quite heterogeneous.

Table 2 shows the average year 2000 scores of the six groups with respect
to each of the five areas of the EFI. Group 1 (8.2): Netherlands, Luxembourg,
Ireland, United Kingdom. This group has the highest average value of the
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EFI. It also has the highest average scores for all of the five areas of the
index, except with respect to the size of government. Group 2 (7.6): Denmark,
Finland, Sweden, Belgium, Germany, Austria, France. The countries in this
group receive the second highest overall score and are quite similar (but
a little less free) than the countries in the first group. When looking at this
area in detail, both groups’ low average score for government size results from
high government consumption, large transfers and subsidies, and a high top
marginal tax rate. All countries in these two groups are current EU members.

Table 2. Average cluster scores of the five Economic Freedom Index areas for six
country groups clustered using the Ward algorithm on Euclidian distances

Grp Grp Grp Grp Grp Grp EU EU
Description of Variable 1 2 3 4 5 6 15 +10
1 Size of government 5.4 3.7 5.3 6.0 4.0 5.9 4.6 5.1
2 Legal system 9.3 9.0 7.1 6.7 6.6 8.8 8.5 6.9
3 Sound money 9.6 9.5 9.3 7.5 6.6 7.0 9.5 7.2
4 Freedom to trade 8.7 8.4 7.9 7.8 7.1 5.4 8.3 7.2
5 Regulation 7.6 6.8 6.0 5.9 5.9 7.4 6.7 5.8
Economic Freedom Index 8.2 7.6 7.2 6.9 6.1 6.6 7.5 6.4

Group 3 (7.2): Italy, Spain, Portugal, Czech Republic, Greece. This group
contains the current EU members with the (relatively) lowest economic free-
dom and the acceding EU member with the highest economic freedom. In
2000, these countries have sound money but have large governments. Group
4 (6.9): Estonia, Latvia, Lithuania. This group contains the Baltic countries,
which are not very different from the countries in Group 3. These countries
score higher than almost all of the current EU members for the size of gov-
ernment, with an average score of 6.0 (only Greece, the United Kingdom, and
Ireland have smaller governments).

Group 5 (6.1): Slovenia, Hungary, Poland, Slovakia. This group has the
lowest average EFI value. With the exception of the freedom to trade, these
countries score lower than all other countries in every area of the EFI. Group
6 (6.6): Malta, Cyprus. These two small countries are the most different from
the current and new EU members. In particular, the freedom to trade is more
restricted in these countries. The results indicate that the countries in the
last two groups need to change considerably to reach the current EU average.

Table 2 also shows the average scores for each area of the Economic Free-
dom Index for the current 15 and the acceding 10 EU countries. With respect
to four areas, the current members score higher than the newcomers (in de-
scending order of difference): Sound money, legal system, freedom to trade
and regulation. With respect to government activity, however, individuals
and organizations in the acceding countries enjoy greater economic freedom.
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4 Conclusion and outlook

This study examines the similarities and differences of the current and the
acceding European Union countries based on the Economic Freedom of the
World Index. It calculates the Euclidian distances between 25 EU countries
based on the 21 variables in the EFI and then assigns countries to groups
using the Ward clustering algorithm. The ensuing groups reveal differing pat-
terns of economic freedom. The groups also show a split into the Northwestern
and the Southeastern countries of Europe.

Economic freedom is generally higher in the current EU countries, espe-
cially with respect to sound money, the legal system, freedom to trade and
regulation. If the new members take steps to the change the institutions and
legal frameworks in each of these four areas, it will increase economic freedom
in Europe in many ways.

The average size of government of the current EU members has grown over
the past 30 years. The opposite is true for the new EU members previously
located behind the Iron Curtain, who have used the regime change to dramat-
ically reduce the size and intrusiveness of their governments. If the current
EU countries can learn from the new members with respect to government,
especially government consumption and tax rates, economic freedom will also
increase for individuals and organizations in the current EU countries.
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Abstract. Global consumer typologies are an effective instrument for identifying
regional consumer clusters and addressing different client needs in a focused fashion.
The objective of this study is to examine whether the international online users are
a homogeneous target group, or if it is possible to identify segments by means
of selected criteria for constructing typologies. To answer the research question
through an online survey in which interviewees participated from the cultural areas
France, Germany and the US, theoretically secured constructs of the purchasing
behaviour in the internet were obtained as well as different cluster analyses carried
out. The results show that the internet users can be divided into three clusters
- the risk aversive doubters, the open minded online shoppers and the reserved
information seekers.

1 Introduction

To comply with the requirements of the strong international competition,
the instruments of company policies have to be focused on the individual
specificities of consumers. Consumer typologies are an effective instrument
to comply with the requirement of identifying and addressing different con-
sumer clusters despite of globally addressing markets. Only few typologies
of internet users exist, such as the user typologies of the Boston Consult-
ing Group or the one of McKinsey (Fritz (2001)), although the international
competition in e-commerce intensifies due to the inherent ubiquity, the pos-
sibility of synchronically addressing many consumers and the lower market
entry barriers of the distribution channel internet.

2 The concept of construction consumer typologies

The objective of a construction of typologies is to divide the totality of all
individuals in groups that are as homogeneous as possible within a group,
and as heterogeneous as possible between groups (Hair et al. (1995)). Freter
(1983, p.43) understands under the construction of consumer typologies the
division of buyers into subgroups as well as the treatment of one or more of
these subgroups by means of segment specific marketing programs.
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3 Characteristics for constructing typologies relevant
for E-Commerce

3.1 Requirements regarding criteria used for constructing
typologies

The present study organizes criteria for constructing typologies according to
consumer behaviour by taking into account latent constructs of purchasing
behaviour as features for segmentation. Because of the time stability and the
inherent durability as criteria for segmentation, psycho graphical constructs
are also being applied in the survey as criteria for the construction of typolo-
gies. To comply with the maxim of dividing a market into distinguishable
and sound significant segments, and to guarantee methodological quality, the
selection of relevant criteria for the construction of typologies in the frame of
the envisioned research context will be discussed below.

3.2 Selected constructs for a classification

In the context of the construction of consumer typologies, the personality
construct has an extraordinary position. Until today, the NEO-Five-Factor-
Inventory (Costa and McCrae (1989)) appears among the most important
measuring tools of personality research regarding the holistic systematization
of the human personality structure. The results of the scientific research con-
firm that primarily the personality dimensions extraversion and neuroticism
determine consumer behaviour in the internet (Kini and Chobineh (1998)).
Several publications show that considerable intercultural differences exist in
regard of the extent of these personality dimensions. Therefore, these per-
sonality dimensions represent a criterion for the construction of typologies in
the context of this study.

Trust is a key element in successful customer relationship management
(Hess (1995)). Moorman, Deshpand and Zaltman (1993, p. 82) define trust
“as a willingness to rely on an exchange partner in whom one has confidence”.
A mayor reason for not shopping over the internet is the lack of trust by
consumers into the medium and the shops selling their goods over the internet
(Hoffman et al. (1999)). Due to its high relevance in consumer behaviour
and its elementary importance for electronic commerce, trust is taken as
additional typology criteria.

The construct of perceived risk contains all negative consequences of a
purchase for a consumer which cannot be anticipated (Cunningham (1967)).
Cunningham (1967) describes the perceived risk according to its components
“Uncertainty” and “Consequences” or “dimension of loss”. The key assump-
tion of risk theory is the hypothesis that every individual has a limit of
tolerance in terms of risk perception which is being determined by personal
characteristics (Blackwell et al. (2001)). Action is therefore only triggered,
when this individual’s limit of tolerance is being crossed. In these cases, the
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consumer feels a need to implement risk reducing actions. It has to be shown
that perceived risk reduces the willingness to buy goods over the internet (Tan
(1999)). The presented considerations give reason for selecting this construct
as a typology criterion.

Attitudes have been used in market segmentation very successfully. The
popularity of the attitude construct in market segmentation has a number of
reasons. First of all, actions and intention can be forecasted by the positive
or negative attitude towards an object (Lingenfelder and Loevenich (2003)).
Second, results of attitude segmentation can be very helpful for designing
marketing instruments. Third, attitudes are relatively constant over time.
Due to these aspects, attitude toward online-shopping shall be added as a
further typology criterion.

Especially in retailing research, shopping enjoyment plays an important
role, since it determines the choice of the shopping location strongly and has
a significant influence on willingness to buy of a consumer (Järvenpää and
Tractinsky (1999)). The relevance of this construct for this study is argued
because of its influence on the choice of shopping location and consumer
loyalty. The results of scientific surveys show that shopping pleasure increases
the chance of repeat buying (Eighmey and McCord (1998)). Due to these
aspects, shopping pleasure is being added as typology criteria within this
study.

Willingness to buy can be defined as a hypothetical construct that states
how likely a person sees a purchase of a good concerning the shopping situa-
tion. It therefore considers the subjective judgement of the whole behavioural
situation. The construct of willingness to buy allows a researcher to identify
potential customers and reasons for positive or negative shopping intentions,
since it not only represents the esteem of an individual but also holds the sub-
jective judgement of the behavioural situation. Kamakura and Wedel (1995)
argues that market segmentation based on this construct would be successful.

4 Empirical survey of the typology theory

4.1 Survey design and data collection

The data of this study was collected by an online questionnaire. Seven point
Likert scales were used for testing the measurement models of the observed
constructs (1= strongly agree; 7= strongly disagree). For the questionnaire,
only existing inventories were used. To ensure a similar understanding of the
wording across different cultures and to avoid semantic discrepancies the back
translation method was used, as it has been suggested by Berry (1993). All
measurement modells have been tested with a pretest of 87 probands. The fi-
nal selection of these items was based on pretest-results of Cronbach’s Alpha,
item-to-total correlation and a Varimax-rotated exploratory factor analysis
considering the Kaiser-Meyer-Olkin measure of sampling adequacy (KMO).
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A consequent recognition of fit indices (Coeff. Alpha>0.7; KMO>0.7) guar-
anteed reliability and validity of the construct measurement (Gerbing and
Anderson (1988)). Results of a correlation analysis suggested that all con-
structs were uncorrelated (r<0.4).
The online survey was implemented from August 2nd until September 1st
2003. Of the 1011 probands, 45.8% were females and 54.8% males; 338 were
from Germany, 337 were from the USA and 336 were French. The average age
was 35.64 years within a range from 14 to 82 years. A descriptive analysis of
the different country samples was made to measure a similar set of probands.

Table 1. Statistical value of the constructs.

Construct Based on No. of KMO Coeff. Variance
Items Alpha α

Extraversion Costa and McCrae (1989) 8 0.786 0.7202 39.60%

Neuroticism Costa and McCrae (1989) 8 0.836 0.7715 36.62%

Trust Hess (1995) 9 0.906 0.8823 56.47%

Attitude (online-
shopping)

Chen and Wells (1999) 6 0.864 0.9082 69.42%

Perceived risk Järvenpää and Tractin-
sky (1999)

6 0.806 0.8201 53.23%

Shopping
enjoyment

Ailawadi et al. (2001) 5 0.738 0.7970 55.67%

Willingness to
buy

Baker et al. (1992) 4 0.812 0.8590 73.50%

4.2 A typology of online customers

An appropriate multivariate analysis method for this objective is the Cen-
troid Clustering Analysis as it is provided in SPSS 11.5. Due to the large data
sample, a four step cluster analysis was used to evaluate online customer seg-
ments. In the first step, the data input is being selected. The seven theory
constructs, presented in chapter 2, are selected as input variables. In a second
step, the cluster centres were built. The clusters were identified by running
several k-means iteration processes, which used the average value for every
variable as starting values, to be able to select the cases in a way internal
homogeneity is being minimized (Hair et al. (1995)).
The process is repeated until the maximum number of iterations provided
by the researcher is reached or until an additional selection of the objects
provides no or little improvement to the former solution (Hair et al. (1995)).
The third step contains the determination of the cluster number. Since the
data sample contains partial samples of the three different countries, a three
cluster solution was calculated first and then benchmarked against a four and
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five cluster solution. To judge the solution, the sum of the squared Euclidean
distance was used. Since homogeneity was enhanced with an increasing num-
ber of clusters, a decision for the three cluster solution was made. After that
the Centroids of the three clusters were assigned as starting centres for the it-
erative partionalizing k-means algorithm which provided the final solution. In
the fourth step of the clustering process the observed cases are being assigned
to the clusters. This is done by calculating groups within the cases, which
maximize the internal homogeneity within the determined clusters. The final
cluster centres of the study are provided in table 2. To test the first of the

Table 2. Mean values of the constructs for the different clusters (n = number of
probands).

Construct Cluster mean value (n)
1 (154) 2 (400) 3 (457)

Extraversion 3.68 3.04 3.83

Neuroticism 4.36 4.96 4.74

Trust 3.36 5.45 4.63

Attitude (online-shopping) 3.44 5.83 4.90

Percieved risk 4.87 2.61 3.45

Shopping enjoyment 2.93 5.77 4.47

Willingness to buy 2.83 6.15 5.31

solutions in terms if distinctions, a discriminant analysis was used. Due to
the confirmatory character of this analysis, the clustering characteristics are
defined as independent variables, while the cluster membership represents
the nominally scaled dependent variable. The solution shows that 97.7% of
the original groups’ participants were classified correctly and confirms the
very good fit of the three cluster solution, since the hit rate of the mini-
mum criteria (97.7%) topped the maximum chance criteria (45.2%) clearly.
To judge the classification capacity of a discriminant function correctly, the
calculated hit rate has to be compared to the hit rate of a randomly struc-
ture of the elements (Hair et al. (1995)). A value of 0.15 for the multivariate
Wilks-Lambda suggests a significant separation between the clusters by the
discriminant function. The significance of the F-Values demonstrates that
all related characteristic variables separate between the three groups at a
significance level of 5%. Furthermore an analysis of variance has been used
to evaluate whether the cluster centres are different. The results show to be
highly significant on a 5% level for all constructs, so that the cluster solution
can be interpreted.

• Cluster 1 “risk averse doubters”
Cluster 1 contains 154 (15.2%) of the Internet users. The evaluation of the
averages for the personality dimension neuroticism and extraversion shows
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Table 3. Results of the discriminant analysis (value in brackets = value of signifi-
cance).

Discrimi- Variance Canonical Wilks χ2(p) hit rate
nant correlation Lambda

function

1 96.2% 0.899 0.15 1809.57 (0.00) 97.7%
2 3.8% 0.375

Coefficient Coefficient
Univariate df standard.

F (p) 1. Fct. 2. Fct. 1. Fct. 2. Fct.

Neuroticism 62.05 (0.00) 2; 1008 -0.24 0.74 -0.11 0.63

Extraversion 24.47 (0.00) 2; 1008 0.13 0.28 0.11 0.01

Trust 348.49 (0.00) 2; 1008 0.26 -0.21 0.41 -0.04

Attitude 427.79 (0.00) 2; 1008 0.34 -0.05 0.45 -0.04
(online-shopping)

Percieved risk 400.90 (0.00) 2; 1008 -0.38 -0.06 -0.43 -0.03

Shopping enjoyment 611.61 (0.00) 2; 1008 0.45 -0.48 0.53 -0.29

Willingness to buy 807.56 (0.00) 2; 1008 0.48 -0.48 0.61 0.59

that these people are extremely careful, reserved and usually sceptical against
new experiences. Concerning the clustering variables, especially the highest
perceived risk (4.87) and the lowest trust into an online-shop stand out.
The averages of the latent buying relevant constructs, like “attitude towards
online-shopping” and “willingness to buy” show the smallest values as well.
The relative low shopping pleasure values support the point that Cluster 1
probands are critical about online shopping. In terms of national differences,
this cluster is dominated by French probands (66.3%), while Germans (20.1%)
and Americans are represented much less.

• Cluster 2 “open minded online shoppers”
Cluster 2 contains 400 Internet users and represents 39.6% of the total sample.
The people in this cluster show little fear in all live situations (“neuroticism”,
3.04) and are very open minded toward new things (extraversion, 4.96). The
probands in this cluster show the lowest perceived risk when online shopping
and at the same time the highest trust against an online shop. Therefore
they show a very positive attitude (5.83) and the highest willingness to buy
(6.15). The high rated shopping pleasure (5.77) the strong affinity of this
cluster for online shopping. The cultural comparison of this cluster shows
that Americans are represented most (44.5%) while only 22.0% are French.
In terms of usage, this cluster has the strongest percentage of online-shoppers
(97%), of which even 62% shop often or very often.

• Cluster 3 “reserved information seekers”
Cluster 3 contains 457 probands (45.2%). The analysis of the averages for
neuroticism (3.83) and extraversion (4.74) shows that these people are in av-
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erage careful and reserved. A positive opinion against online shopping (4.90),
over average shopping pleasure (4.47), reasonable trust in an online-shop
(4.63) and a relatively high willingness to buy (5.31) proof that this cluster
is generally open to shop goods over the internet. Analysing the passive vari-
able shows that the representatives of this cluster use the internet mainly
to search for information (94%) and pre-purchase products evaluations 84%.
Compatible with this is the high usage of search engines (95%). The clus-
ter contains mainly German citizens (37.9%), while Americans are less rep-
resented (30.2). The solution is plausible and a comparison of averages of
the different typology characteristics shows strong numeric differences. The
strongest characteristic of the cluster solution is the cultural differences of the
different clusters, however the country didn’t stand as a typology criteria and
only represented a passive variable for the interpretation of the clusters. The
cluster “risk averse doubters” contains 66.2% French but only 13.6% Ameri-
cans. On opposite to that, the cluster “open minded online shoppers” is being
dominated by American probands, while only 22.0% of French internet-users
are represented.

5 Conclusion

From a marketing perspective the identified typology refines former approach-
es of classifications by adding personality dimensions and cultural determi-
nants in combination with the shopping behaviour of online consumers. The
cluster solution provides significant differences between the three countries.
Based on the three cluster solution, useful management implications can be
set up that allow a better satisfaction of customers by providing a closer fit
between a company’s goods and services and their better understood hetero-
geneous customer needs. The main findings are the identification of different
clusters of internet users, which can be of good use for shaping internet mar-
keting, because the stability over time due to its cultural and personality
characteristics.
This study shows that there is no homogeneous cyber community and that
the adoption of marketing activities to the needs and expectations of cus-
tomers must take cultural differences into consideration. However the three
cluster solution clearly proved culturally shaped customer segments, every
identified segment contains users of all three countries.
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Abstract. Though reservation prices are needed for many business decision pro-
cesses, e.g., pricing new products, it often turns out to be difficult to measure
them. Many researchers reuse conjoint analysis data with price as an attribute
for this task (e.g., Kohli and Mahajan (1991)). In this setting the information if
a consumer buys a product at all is not elicited which makes reservation price
estimation impossible. We propose an additional interview scene at the end of the
adaptive conjoint analysis (Johnson (1987)) to estimate reservation prices for all
product configurations. This will be achieved by the usage of product stimuli as
well as price scales that are adapted for each proband to reflect individual choice
behavior. We present preliminary results from an ongoing large-sample conjoint
interview of customers of a major mobile phone retailer in Germany.

1 Introduction

Pricing products is a difficult task for every business. Thorough knowledge of
the demand in the market is necessary to predict the different effects that arise
from the pricing strategy as well as from the set price for a product: Customer
switching effects, cannibalization effects, and market expansion or contraction
effects. Many of these effects can be analyzed for different strategies using
the reservation prices of the participants in the market (Jedidi and Zhang
(2002)). Varian (2003, p. 4) defines the reservation price as follows:

The reservation price is the highest price that a given person will
accept and still purchase the good. In other words, a person’s reser-
vation price is the price at which he or she is just indifferent between
purchasing or not purchasing the good.

However, this definition is different from the definition of reservation price
used by other authors. For example, Kohli and Mahajan (1991) define the
reservation price for their study as the price for a product such that an in-
dividual switches away from her most preferred product. To our knowledge
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Jedidi and Zhang (2002) are the only researchers who have applied the eco-
nomic definition of reservation price in combination with a conjoint study on
product pricing.

In this paper we present a novel approach to estimate the economic reser-
vation price using the popular conjoint analysis. We do not incorporate price
as an attribute in the conjoint analysis but we introduce price by an addi-
tional choice-based scene after the conjoint analysis. The paper is organized
as follows: In section 2 we identify shortcomings of the estimation of reserva-
tion prices using only data from conjoint analysis. In section 3 we present our
novel approach and its foundation in economic theory. In section 4 we outline
an application of the method for a mobile phone retailer. We conclude with
a short discussion of further research.

2 Conjoint analysis for reservation price estimation

Conjoint analysis and especially adaptive conjoint analysis (ACA) (Johnson
(1987)) is a popular tool in marketing research to survey consumers’ pref-
erences for products that are seen as the combination of several attributes
which have different levels. With conjoint analysis utility-scores for the at-
tribute levels are estimated that reflect the respondents valuations of the
inclusion, exclusion or degree of the levels.

The major approach in pricing studies by conjoint analysis is incorporat-
ing the price as an additional attribute (e.g., Green and Srinivasan (1990),
Orme (2001)). The attribute price is then assigned a part-worth utility as the
other attributes and some interpolation heuristics are applied. To estimate
reservation prices several studies using conjoint data are found in the cur-
rent literature (e.g., Kohli and Mahajan (1991), Jedidi and Zhang (2002)).
In these studies authors try to estimate reservation prices from previously
acquired conjoint data which include price as an attribute. However, these
approaches have the following shortcomings:

1. Conjoint analysis only measures the preference structure for the analyzed
product configurations. If the individual would really purchase at a given
price is not elicited. Therefore, reservation price in an economic sense
cannot be measured.

2. The number-of-levels and the range effect are well-known in conjoint
analysis (Verlegh et al. (2002)). If the number of attribute levels or the
range covered by the attribute levels is increased by the researcher, the
perceived importance of that attribute also increases. These effects are
especially problematic for pricing studies in which often a large number
of different prices is surveyed.

In the following we address these issues by excluding the price from the
conjoint analysis and estimate the reservation price with an additional inter-
view scene which also allows for non-purchases.
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3 Reservation price estimation based on economic
theory

Following Varian (2003, p. 63) a utility function for two products X and Γ
can be formulated as

U(x, γ) = uX(x) + uΓ (γ). (1)

Hereby x is the amount of product X , for which the reservation price of
one specific individual is to be estimated, and γ denotes the amount of the
so-called composite product Γ . Varian (2003, p. 21) defines the composite
good as everything that the consumer might want to buy other than good X .
By definition the amount of money not spent on good X is spent on good Γ .
Note, that the composite good is arbitrarily divisible and also includes the
possibility to save money for later consumption.

The reservation price for a good X is defined as ”the price at which the
consumer is just indifferent between consuming good X or not consuming it”
(Varian (2003, pp. 108–109)). Therefore, the reservation price p∗X for one unit
of product X is found, when the customer is indifferent between purchasing
or not purchasing the product. Formally, indifference can be expressed by the
following condition

U(1, γ) = U(0, γ′) where γ′ > γ. (2)

On the left hand side of this equation the utility is given for an individual
who consumes one unit of product X and consumes some amount of the
composite good. On the right hand side of the equation the individual does
not consume product X and therefore consumes a greater amount of the
composite good denoted by γ′.

When consuming the goods X and Γ at the unit prices pX and pΓ each
consumer is confronted with an individual budget constraint which can be
defined as m = pXx + pΓγ. Since the composite good is defined to be arbi-
trarily divisible, we can set the price for one unit of Γ to 1 (Varian (2003,
p. 21)). For the consumption and non consumption of one unit of product X
the following equations derived from the budget constraint hold

γ = m− pX (3)
γ′ = m. (4)

We only consider the case of buying one or zero units of X . For zero units
no utility is derived from X (uX(0) = 0). For the sake of formal simplicity
let uX denote the utility of consuming one unit of product X , that is uX :=
uX(1). Using the utility function in equation 1 the condition for indifference
in equation 2 can be rewritten as

uX + uΓ (γ) = uΓ (γ′). (5)
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Fig. 1. Estimation of a high and a low reservation price point in the PE scene from
observed upper- or a lower bounds of the price (denoted by the arrows).

When consuming the composite good, an individual will certainly always
choose a combination that gives her the highest utility for her budget. Since
the composite good is arbitrarily divisible and constructed from all possible
goods (except good X), the consumer will face a large number of different
combinations which equally have the same highest utility per price ratio k.
Therefore, for uΓ (γ) a linear function with slope k and an intercept uΓ (0) = 0
can be used (compare Jedidi and Zhang (2002)).

uX + k · γ = k · γ′ (6)

Applying the budget constraint from equations 3 and 4 the following
condition for the consumption of one unit of product X at the reservation
price p∗X can be formulated

uX + k · (m− p∗X) = k ·m. (7)

Applying some simple arithmetics to the equation m can be eliminated.
Then, if the utility and the reservation price for one unit of product X is
known, the slope k of the utility function of the composite product Γ can be
calculated by

k =
uX

p∗X
. (8)

Economically, the factor k represents the exchange rate between utility
and money. With the factor k the reservation price for any product con-
figuration for which the utility is known can be calculated. Note, that this
calculation is based on ratio-scaled absolute utility but the conjoint analysis
only produces interval-scaled utility-scores for products.
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find-reservationprice-point(u, p, ∆u, ∆p, ∆pstop, smax, i) :
b+ := (u+, p+) := ∅, b− := (u−, p−) := ∅, j := 1
while b+ = ∅ or b− = ∅ do

if purchase(product(u), p)
b− := (u, p)
(u, p) := (u + ∆u, p + j∆p)

else
b+ := (u, p)
(u, p) := (u − ∆u, p − j∆p)

fi
j := j + i

od
while p+ − p− > ∆pstop and smax-- > 0 do

(u, p) := ( 1
2
(u− + u+), 1

2
(p− + p+))

if purchase(product(u), p)
b− := (u, p)

else
b+ := (u, p)

fi
od
return ( 1

2
(u− + u+), 1

2
(p− + p+))

Fig. 2. Search algorithm for a reservation price point.

However, in the following we will show how to transform the interval-
scaled utility-scores to ratio-scaled absolute utility while estimating the factor
k. For this transformation we append the new Price Estimation scene (PE
scene) at the end of the adaptive conjoint analysis. At this point all part-worth
utilities are already estimated by the conjoint analysis and the utility-scores
for all attribute combinations can be calculated. The PE scene is a choice-
based scene where we offer the proband several times a different product at
a dynamically set price and he or she has the option to accept the offer or
leave it. With these questions we iteratively search for two reservation price
points in the utility × price space. As shown in figure 1 with every question
we find an upper or lower bound for price at a certain utility. Once we have
found the reservation prices for two different products a straight line through
the two points gives us an estimate for the factor k. At the same time we
get an intercept with the utility axis which represents the conjoint analysis
utility-score for the price 0 which by economic theory must correspond to an
absolute utility of 0. Therefore, as shown in figure 1, we can assign an origin
to the utility axis and utility is now ratio-scaled as necessary for reservation
price estimation.

The algorithm for the estimation of the reservation price of one product
combination is presented in figure 2. The function product(u) chooses the
product configuration closest to a desired utility u from the list of all possible
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combinations. Function purchase(product(u), p) asks whether the user would
buy the product chosen by product(u) at a given price p.

The first while loop in figure 2 starts with an initial guess (u, p). The
algorithm tries to box the probands utility/price exchange ratio by locat-
ing an upper and a lower bound (b+, b−), i.e., a price point at which the
proband would purchase for a given utility and one at which the proband
would decline to purchase. In the second loop of the algorithm this interval
is gradually narrowed by a bisection search. The bisection search terminates
when the found interval, in which the reservation price lies, is narrowed to
a predefined accuracy ∆pstop. To limit the maximal number of purchasing
decisions a participant has to make, a second termination condition restricts
the algorithm to a predefined maximal number of search steps smax.

If only two reservation price points, (u1, p1) and (u2, p2), are used, the
utility/price exchange ratio can be easily found by k = (u2 − u1)/(p2 −
p1). When n > 2 reservation price points (ui, pi) are used the utility/price
exchange ratio can be found by least squares fitting.

The possibility that the procedure influences the respondent’s behavior
needs attention. To avoid this influence the respondent should be explicitly
asked to view each offer independently. Furthermore, the respondent can be
presented product combinations from the n reservation price estimations in
randomized or alternating order (e.g. alternating high utility with low utility
combinations), such that the influence is minimized.

4 Application of the method

We implemented the PE scene in the modular framework of the Java Adaptive
Conjoint tool (jAC version 1.1, Schmidt-Thieme (2004)) and incorporated it
in a study designed for the NOKIA online-shop in the German market for
mobile phones and accessories. In this shop customers are offered suitable
telephone enhancements at discounted price on the purchase of a telephone.
In terms of Pigou (1920) this strategy can be described as price discrimination
of the third degree, because the shown telephone enhancements are only
offered to a certain group of people at a lower price. The strategy can also
be viewed as a mixed-bundling strategy as described by Adams and Yellen
(1976). The telephone is offered together with enhancement at a discount,
but the products can also be purchased individually without a discount. At
the moment the marketing experts of the online-shop set the discounts for
the telephone enhancements manually in view of the cost structure and sales
information of the different products.

To enable the online-shop to optimize the pricing strategy we estimate
the reservation prices of customers at the individual level. First, we use the
adaptive conjoint analysis to estimate the part-worth utilities of all attribute
levels excluding the price information. And then, we use the Price Estimation
scene to estimate the reservation prices.
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Table 1. Estimated reservation prices for a sample proband.

Utility Reservation Price Extra Charger Car Accessory Headset Leather Case

17,64 171,46 EUR ACP-12E LCH-12 HDW-2 CNT-327

17,26 168,59 EUR DCV-14 LCH-12 HDW-2 CNT-327

17,05 167,01 EUR ACP-12E - HDW-2 CNT-327

16,67 164,14 EUR DCV-14 - HDW-2 CNT-327

16,60 163,63 EUR ACP-12E MBC-15S HDW-2 CNT-327

16,22 160,77 EUR DCV-14 MBC-15S HDW-2 CNT-327

15,99 159,05 EUR ACP-12E LCH-12 HS-3 CNT-327

15,97 158,93 EUR ACP-12E LCH-12 HDW-2 -

15,61 156,19 EUR DCV-14 LCH-12 HS-3 CNT-327

15,59 156,06 EUR DCV-14 LCH-12 HDW-2 -

15,43 154,87 EUR - LCH-12 HDW-2 CNT-327

15,40 154,60 EUR ACP-12E - HS-3 CNT-327

A large-sample online study will be carried out with the newsletter recip-
ients of the NOKIA online-shop later this year. Here we only show how the
procedure works by presenting results from a single sample participant. We
searched for two reservation price points (with utilities around the 0.25 and
0.75 quantiles). Utility increments ∆u were chosen to allow 20 steps in the
search procedure. ∆pstop was set to 2,- EUR. Initial guesses for prices, price
increments, and increase in step length were set by domain experts. Table 1
contains a subset of the results for the sample proband. The exchange rate
between utility (measured by the conjoint analysis) and reservation price was
estimated to utility = 0.13 · price− 5.22 (rounded values). The stimuli of the
conjoint analysis consisted of a fixed telephone and contract with different
additionally bundled components.

From a single interview we can estimate reservation prices for all product
combinations at the individual level. However, we can also aggregate the data
to estimate reservation prices at market-level. To avoid the problem of pref-
erence heterogeneity we can segment the customers by self-selection, i.e., the
preference for a certain phone type (business, fun, etc.), demographic vari-
ables, or characteristics of the self-explicated task of the adaptive conjoint
analysis (Moore et al. (1998)). For these, more homogeneous groups distri-
butions of reservation prices can be estimated. By applying an appropriate
choice rule market reaction at different prices can be predicted.

5 Conclusion and further research

The approach presented in this paper addresses shortcomings of traditional
pricing studies with conjoint analysis that arise from including price as an at-
tribute in the study. We exclude price from the conjoint analysis and estimate
it in an additional interview scene. With this procedure the number-of-levels
effect and the range effect do not occur for price. Furthermore, by the use of
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a no-purchase option we can also measure the reservation price as defined in
economic theory.

The new approach needs to be tested in a real setting which will be done
in a large-sample reservation price survey together with the NOKIA online-
shop. Further research is also necessary to compare this approach to tradi-
tional pricing studies and other techniques of reservation price estimation as
described by Sattler and Nitschke (2003).

Finally, it has to be noted that the presented approach is not bound to
conjoint analysis. Any estimation method that delivers preference information
for products and product combinations relatively scaled at the individual level
can be combined with our new estimation scene.
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Bundles Based on Paired Comparison Data
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Abstract. Reservation prices have evolved as important tool for designing and
pricing new products or bundles of products where a reservation price for an item
can be interpreted as maximum amount of money that a consumer is willing to pay
for that item. In this paper, focusing on product bundles, two types of data collec-
tion - an already known and a new one - based on direct elicitation of reservation
prices using paired comparison data are discussed. Variants of conjoint analysis that
were proposed so far in this context are used, an explicit evaluation of two methods
is described, and an example by means of empirical data from a seat system offered
by a German car manufacturer is used as demonstration of the applicability of the
methodology suggested.

1 Introduction

Bundling, i.e., the joint offer of two or more different products or services
that are sold at a unique bundle price has experienced growing attention in
marketing since it was first discussed in the early sixties in a primary le-
gal context (Stigler (1963)). Most of the work that was done on this topic
was rather theoretical analysis (Adams and Yellen (1976)) than normative
modeling. However, there are two main exceptions, i.e., the mathematical
approach of the bundle pricing problem by Hanson and Martin (1990) and
an alternative formulation by Stauß and Gaul (2004) that facilitates model-
ing and allows for an intuitive solution heuristics. The incorporation of the
reservation price concept is common to all formal modeling where reservation
prices normally are given on a product rather than an attribute level1. Reser-
vation prices may be seen as the maximum amount of money that someone
is willing to pay for respective products or, equivalently, (parts of) bundles.
Though reservation prices are often identified as an essential determinant of
bundling strategies, only a few authors discuss the estimation problem for
the unknown (individual) reservation prices (Aust (1995); Jedidi and Zhang
(2002) or Jedidi et al. (2003)). This is somewhat astonishing as many authors
explicitly use some special types of distributions (e.g. normal or unit) under-
lying reservation prices and analyze their influence on bundling outcomes.

1 Chung and Rao (2003) discuss a general framework of preference models for
bundles and provide an overview of attribute based models.
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The reservation price concept is closely related to the well known theory
of “willingness to pay” (WTP) which has its roots in economic literature
and was originally used in the context of evaluation tasks for public or en-
vironmental resources. WTP has the amenable property that it implicitly
transforms individuals’ preferences into a monetary valued utility measure,
which seems to be particularly appealing if market prices for the respective re-
sources are not available. Therefore, WTP became a famous construct within
projects of administration authorities, since it allows for a direct comparison
between costs and utility. A common (and probably the most favored) prac-
tice used to find out WTP is contingent valuation first employed by Davis
(1963) and is described,e.g., by Mitchell and Carson (1989, p. 3).

2 Gathering data for conjoint measurement

For quite some time, marketing literature ignored the need for tailored es-
timation procedures of reservations prices though the use of data analysis
techniques for utility estimation became more prevalent. Finally, in the late
eighties and early nineties both directions - the direct contingent valuation
method and decompositional data analysis, namely conjoint measurement -
were merged by the work of Cameron and James (1987) as well as Reardon
and Pathak (1990).

2.1 Direct vs. indirect elicitation of reservation prices

Basically, two different techniques exist for eliciting reservation prices within
the conjoint analysis framework2 depending on the functional form of the
underlying preference model.

Suppose that the preference of a consumer i for a bundle k (which is
defined by a set of components Bk) may be described by a mixed model
consisting of a part worth formulation with respect to the components j that
form the respective bundle (referred to as uik =

∑
j∈Bk

βij where βij indicates
consumer’s i part worth for component j) and a vector model with respect to
bundle prices. Thus, if αi is consumer’s i price sensitivity, uik−αipk measures
consumer’s i utility for bundle k at a price pk. Traditional conjoint analysis
can be used to estimate the price sensitivity parameters αi so that we get an
estimate of the reservation price rik of bundle k by consumer i via uik

αi
.

On the other hand, there is an alternative way of measuring reservation
prices. Since uik

αi
− pk is just a rescaling of consumer’s i utility for a bundle

k usually referred to as “consumer surplus” (Kalish and Nelson (1991)), one
may ask a consumer directly at what price p∗k he would be indifferent to

2 See, e.g., Aust and Gaul (1995) or Baier and Gaul (2003) and the references cited
there for conjoint analysis applications to product designs.
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buying bundle k or doing nothing at all.3 Suppose further that if the consumer
doesn’t purchase anything the utility he gets is zero. Thus, rik = uik

αi
=

p∗k holds, i.e., instead of processing rating or rank data we may use metric
price data directly. Obviously the conjoint design becomes more tractable,
since price has not to be modeled explicitly any more and the number of
“attributes” is reduced by one. However, consumers are obliged to make
valuations on a dollar-metric scale which is considered to be much more
difficult than the task of just ranking or rating objects.

2.2 Relative direct elicitation of reservation prices

The direct elicitation method is known to produce estimates of high internal
validity for the part worths (Kalish and Nelson (1991)). However, there is
some reservation about the direct elicitation of reservation prices primarily
due to the poor predictive validity of part worth estimates as indicated by the
Kalish and Nelson (1991) study. The reason for this may be due to the diffi-
culty of the underlying valuation tasks that may cause an inherent inconsis-
tency of the data. Thus, a modification of the evaluation tasks by using paired
comparisons appears to constitute a potentially promising way to improve va-
lidity. We may therefore ask consumers which amount of money would make
them indifferent between two bundles k and m: rik − rim = ∆ikm. This ne-
cessitates the use of a difference design D = (dcj)c=1,...,C;j=1,...,J which - of
course - has to guarantee for unbiased estimates of the part worths. The dif-
ference design is evidently dummy coded as in traditional conjoint designs,
where dcj = 1 (−1) indicates if product j is part of the right (left) bundle
in the c-th comparison. The case that product j is contained in both bun-
dles or isn’t part of any bundle is dummy coded as dcj = 0. There has been
some work done on the generation of difference designs for bundles. Haus-
ruckinger and Herker (1992) proposed a method for designing an orthogonal
difference design from Addleman’s 215 plan that yields at least 24 valuation
tasks. Aust (1995) has defined a reference profile which is part of every paired
comparison. He reported pretty worse validity of part worth estimates.

Consequently, this motivates our own study that compares the just de-
scribed two different methods for direct paired comparison reservation price
elicitation.

3 There has been a lively discussion concerning an adequate definition of the choice
alternative. We and many others use a so-called no-purchase-option while, e.g.,
Kohli and Mahajan (1991) suppose that the choice alternative consists of a status
quo product chosen previously by the consumer. However, the valuation against
a status quo product seems to be somewhat problematic, since an alteration of
the status quo price would also result in a change of the reservation price for the
new product.
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3 Study design and application situation

From the arguments above, the generation of difference designs has the ad-
vantage that it facilitates evaluation tasks while, simultaneously, the paired
comparison situation decreases the potential threat of exhaustion.

For an application data were collected with respect to a seat system as-
sembled for a German car manufacturer. The seat system offers several (addi-
tional) features or options such as seat heating device, memory function etc.
Using previous orders we identified seven seat options which seemed to be
quite important for customers as well as the firm. In order to make the study
design more elaborated departing from the complete 27- design a fractional
factorial 27−4-design X was constructed and two kinds of difference designs
were derived. The first one is called reference design Dref where a set of bun-
dles constructed by means of the design X is compared with a fixed reference
profile, i.e. (0, 1, 0, 1, 1, 1, 0). Constructing Dref in this way is due to Aust
(1995, pp. 183), however, in general no orthogonal design will be obtained.
The second design is called partition design Dpart that forms a bipartition
from the set of products or components by defining the two bundles in each
comparison of the difference design. It is evident that the second difference
design is constructed in such a way that it provides an orthogonal design
matrix which allows for an uncorrelated estimation of part worths. The two
design matrices given below on basis of the dummy coded difference designs
mentioned before are

Dref =

⎛⎜⎜⎜⎜⎝
0 −1 0 −1 −1 −1 0
0 −1 1 −1 0 0 1
0 0 0 0 −1 0 1
0 0 1 0 0 −1 0
1 −1 0 0 0 −1 1
1 −1 1 0 −1 0 0
1 0 0 −1 0 0 0
1 0 1 −1 −1 −1 1

⎞⎟⎟⎟⎟⎠ , Dpart =

⎛⎜⎜⎜⎜⎝
−1 −1 −1 −1 −1 −1 −1
−1 −1 1 −1 1 1 1
−1 1 −1 1 −1 1 1
−1 1 1 1 1 −1 −1

1 −1 −1 1 1 −1 1
1 −1 1 1 −1 1 −1
1 1 −1 −1 1 1 −1
1 1 1 −1 −1 −1 1

⎞⎟⎟⎟⎟⎠ ,

however, due to confidential reasons we do not resolve the coding of the
designs here. It should be noted that the results obtained from the reference
design depend on the reference profile which was selected in accordance with
suggestions given by the car manufacturer.

Data collection was partly done in the firm’s customer center where the
respective cars are surrendered to their new owners and on the fringes of
a firm’s celebration event. Respondents were asked which type of car they
had bought, how much they had paid for that car and which amount of
money they would be willing to spend on additional options. After that they
had to compare eight pairs of bundles that were constructed according to
Dref (study (1)) or Dpart (study (2)) on a dollar-metric scale. The answers
of 30 persons with respect to study 1 and 22 responses from study 2 could
be used. Finally, the respondents were presented three holdout bundles that
were arbitrarily chosen and identical across all respondents. Since price wasn’t
modeled explicitly as bundle attribute, we did without pricing the holdouts
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and just asked the respondents to rank them according to their (monetary)
preference for the bundles.

4 Results

As already mentioned, in advance of the actual valuation tasks in both parts
of our studies we asked the respondents how much money they would spend at
most on additional trim, what type of car they had bought, and which price
they paid for it. Based on cars’ price lists we were able to recalculate the
amounts of money that were actually spent on optional equipment. A paired
t-test showed a significant bias between self-explained and implicitly stated
amounts across the two studies (t(51) = 2.591, p < 0.05). Indeed, respon-
dents’ reported average amount spent on options was about 13.5% of cars’
base price while their true expenditure added up to 17.0% in average. Thus,
we assume that direct absolute elicitation of reservation prices would result
in biased estimates, a fact that further motivates the use of the suggested
relative elicitation methods.

Some results of our study are presented in tables 1 and 2 and compared
to known results from Kalish and Nelson (1991) and Aust (1995). However,
since the models used show different degrees of freedom and the construc-
tion as well as the number of holdout stimuli designed for the different kinds
of reservation price estimation vary the reported numbers can only serve as
hints for the ranges in which internal and predictive validity values can be
expected. As can be seen from table 1, internal validity indicated by means
of mean R2 and R2

adj is almost equally high for our own studies and com-
parable to the results of Kalish and Nelson (1991). However, the adjusted
R2 are quite low for our studies which is not surprising, since the underly-
ing models were designed to minimize the burden of paired comparisons for
the respondents which resulted in smallest numbers for the degrees of free-
dom. We also assessed models’ predictive validity by using three measures

Table 1. Internal validity measures

scale design mean R2(R2
adj) n

(KNRk) Rank - 0.91∗ 68
Kalish and

(KNRt) Rating - 0.88∗ 97
Nelson (1991)

(KN$a) Dollar absolute 0.96∗ 89

(A$a) Dollar absolute - (0.95) 158
Aust (1995)4

(A$r) Dollar relative - (0.79) 158

(study 1) Dollar reference 0.94 (0.56) 22
Own study results

(study 2) Dollar partition 0.95 (0.57) 30
* The reported measure is Spearman’s Rank Correlation.

4) Study by Aust (1995), pp. 182 – 191.
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which partly allows for a comparison with the results of Kalish and Nelson
(1991) or Aust (1995). First, from the ranking of the holdouts and the im-
plicitly defined rank order determined by predicted reservation prices for the
respective holdouts we calculated individual Spearman’s rank correlations
and corresponding means. Second, the fractions of correctly predicted first
choices were calculated and, finally, we determined the relative numbers of
correctly predicted total rankings. Table 2 depicts the three measures for the
above mentioned studies including our own results.

The reference-design (study 1) reveals a quite worse mean rank correla-
tion that falls even below the value for the direct elicitation of reservation
prices (KN$a-design) reported by Kalish and Nelson (1991). This result could
probably be attenuated by an alternative choice of the reference profile. Ac-
tually, nothing is known from the literature concerning the choice of optimal
reference stimuli. Since the strategy to repeat data collection with different
reference profiles and select a reference-design that shows best results is not
practicable further research is needed, here. However, the partition-design
(study 2) performs substantially better (with mean rank correlation of 0.56)
than the reference-design. The fraction of correctly predicted first choices is
also different in the two situations. The partition-design leads to correct first
rank prediction in almost two of three cases, whereas the reference-design re-
sults in a 41% fraction of correctly predicted first choices that is actually just
above the expectation of randomly assigned rankings. The partition-design
results in a fraction of one half of correctly predicted total rankings.

In summary, the partition-design performed substantially better than the
reference-design so that considerable concern about the predictive strength
of the latter method remains. This is indeed what we would have expected
having former arguments in mind. Thus, in conjunction with the results from
the cited former studies the partition-design actually appears to be a valuable
alternative in conjoint designs for estimating bundles’ reservation prices.

Table 2. Predictive validity

validity measures
mean correct cor. tot.

rank corr. first rank ranking n

(KNRk) 0.57 62% - 68
Kalish and

(KNRt) 0.49 62% - 97
Nelson (1991)5

(KN$a) 0.43 46% - 89

(ARg) 0.50 - - 120
Aust (1995)6

(A$a) 0.65 - - 120

(study 1) 0.26 41% 41% 22
Own study results7

(study 2) 0.56 63% 50% 30
5) 4 holdout stimuli, 6) 9 holdout stimuli, 7) 3 holdout stimuli. We refer to a study by Aust

(1995), pp. 191 – 196 based on rating (dollar-metric) data as ARg (A$a).
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5 Discussion

Though the use of reservation prices is prevalent in new product design and
bundling, respectively, only a few references are known concerning the devel-
opment of adequate estimation techniques for them. A promising research di-
rection combines contingent valuation techniques with metric conjoint analy-
sis. However, the absolute valuation tasks on a dollar-metric scale are known
to be difficult to manage by respondents and may - as our results show - lead
to downward biased self-reported willingness to pay measures. Thus, a differ-
ential analysis by means of paired comparisons seems to provide a promising
way to facilitate valuation tasks. We compared two conjoint designs for paired
comparison data, the so-called reference technique and the proposed parti-
tion design. The results show a high level of internal validity of both models.
Based on the selected models it was accepted that the adjusted R2 is quite
low. As expected, the more elaborated partition-design provides more valid
part worth estimates than its counterpart, the reference design. We suppose
that this is primarily due to the construction of the pairwise evaluation tasks
because the proposed Dpart difference design allows for an uncorrelated es-
timation of part worth, and the evaluation tasks became more interesting to
consumers as many completely different pairs of stimuli had to be compared.
However, it cannot be ruled out that the results favoring the partition de-
sign could also partly be assigned to an increased efficiency compared to the
reference design.8

There are some caveats with respect to the study that should be men-
tioned. First, the sample size is quite small for both designs (30/22 respon-
dents). This is mainly due to the fact that customers receiving their cars at
the customer center normally arrive just a few minutes before they attend a
guided tour, so just a small period of time remains where customers can be
interviewed. Second, the conjoint analysis results are based on a small num-
ber of degrees of freedom. However, this is a frequently observed problem
in most conjoint studies (Wittink and Cattin (1989)). As an advantage, the
valuation tasks became more tractable and interviewing time could be kept
short, thus, we do not expect any bias due to symptoms of fatique.

In conclusion, we want to stress the considerable differences in predictive
validity of both studies which suggests great potentials in getting better esti-
mates via partition-designs making relative reservation price estimation more
elaborate.
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Abstract. Tests were devised in which subjects were asked to judge the size of
musical intervals in a musical context of pairs of successive intervals and chords
performed by either harpsichord or violins. The judgements focused on the pitch
intonation of one of the notes. Since subjects cannot base their judgements on beats
since they are inaudible, results thus differ for one and the same interval depending
on the musical context. Discrimination tools were applied in order to ascertain the
significance of these differences. Furthermore, the fact that there is a region with a
certain extent on the frequency continuum for ‘in tune’ intonation and that there
is a region with constant interval perception (the latter can be interpreted as a
phenomenon of categorical perception)–both contradict current consonant theories
based on beats and roughness.

1 Background

By applying new statistical methods we can, in some cases, obtain new in-
sights, even reconsidering data from earlier experiments.The data on which
this article is based were collected 40 years ago in an experimental study of
the categorical perception of musical intervals. The intervals were embedded
in a musical context in order to provide them with a musical definition. This
context was determined unambiguously (for listeners familiarized with West-
ern music and with rock and pop music), just as a note which is represented
by one and the same key on the keyboards is used regardless of whether its
function is that of an ascending leading note (within the harmonic function of
a dominant) or that of a suspension descending towards harmonic resolution.

Previous experiments which intended to base theories of consonance on
listeners’ judgements of consonance presented the drawback that, quite often,
they only used isolated intervals produced by sine waves or by synthetic
sounds. This experimental situation, quite removed from reality, was only of
limited relevance. This can be atrributed to two factors:

I Rigid, fixed sounds, produced by individual pure tones or assembled from
synthesized rows of harmonics, produce beats and combination tones,
which, when we hear mistuned intervals composed of integral-digit fre-
quency ratios, provoke a disturbance which is perceived by the listeners as
‘roughness’ (certain theories of dissonance are based to a large extent on
such effects (Plomp and Levelt (1965)), which were designated earlier as
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sekundäre Klangerscheinungen (Scheminzky (1935), 553), i.e. ‘secondary
timbre attributes’).

II When an interval is played in isolation, the listener is not provided with
any indication of its concrete application within a musical context. For
instance, the listener is not informed whether a note within the interval
occurs as a transition (in ascending voice-leading) or as a suspension; as
a chromatic sharpening or as a dominant seventh. In other words, the
interval is not provided with its own corresponding designation - neither
in terms of chromatic alteration (sharp or flat), nor in terms of diatonic
use (transition, leading note or suspension).

If an experiment tests judgements of consonance by limiting itself to exploring
the phenomenon of beats, it is ignoring large areas of musical practice. This
is not only due to the restricted situation which is necessarily required by
any experiment in order to maintain test conditions and test variables under
control and within grasp. Rather, such an approach results from a series of
preconceptions which reflect an historical bias. Experiments constructed on
the basis of the phenomenon of beats tend to lend an inordinate amount of
importance to the musical repertoire written for reed organ (Fricke (2002),
107), for flute duets (recorder) and for organ (Helmholtz (1896), 511; Beilage
XVIII p. 664). Such instruments, when playing intervals which are slightly
out-of-tune (due to the fact that they result from integral-digit frequency
ratios), produce combination tones which also manifest the phenomenon of
‘beats’ as a side-effect. These beats consist in modulation tones resulting
from non-linear effects, and they can be perceived only under quite singular
and limited conditions (Fricke (1996)). They have only gained importance in
laboratory experiments which have used static timbres (those of tuning forks,
electronically synthesized sounds and sinus tones), yet they have no relevance
within the context of musical practice (Fricke (1980), 165).

When instruments play together, as in an orchestra, there are no combi-
nations tones. Particularly in string ensembles there are no beats at all. The
‘roughness’ is already present due to the nonstationary acoustical phenomena
produced by bowing (which hardly permit the emergence of beats). Vibrato,
as well, excludes - by its own nature - any emergence of beats whatsoever
(Fricke (1988), 69). For these reasons, it would be advisable to construct
test situations that are closer to reality - tests in which beats would play a
negligible role, or none at all, as a criterion for decision-making in interval
judgements.

Experiments featuring isolated intervals also tend to create a situation
which is too far removed from the reality of everyday musical practice. Nowa-
days, such experiments cannot be justified by evoking the necessity of re-
stricting the number of test variables, but, rather, they reflect an absolute
phenomena, which, supposedly, one should be able to test and judge ‘logi-
cally’ on the basis of isolated intervals (Plomp and Levelt (1965), Miskiewicz
and Rogalla (2003)).
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If we want to gather information about interval categories and their opti-
mal boundaries, then we should favor experiments featuring perceptual judge-
ments rather than those which measure performance. Experiments measur-
ing performance (Abraham (1923), Dahlback (1958), Lottermoser and Meyer
(1969), Shackford (1962), Kopiez (2003)) do indeed contain a) the desired,
intended shifts in intonation as a tendencial recognizable component - yet
they feature not only such shifts, but also b) the statistical fluctuations of
intonations whose practical realization is not always optimally successful.
Furthermore, ‘reproductive’ experiments, as opposed to perceptual experi-
ments, still feature c) the tolerance in hearing which allows for a certain
accepted variance in the area of intended target frequency. This phenomenon
is termed Zurechthören, or ‘hearing aright’. We must also bear in mind that
d) any reproductive musical instrument also has, by its own nature, peculiar
vicissitudes which can lead to certain imperfections in intonation. These four
overlapping factors cannot be separated from one another when we attempt
to analyze an individual case. This is why we should favor experimental sit-
uations which require the subjects to judge intervals, and not to perform
them.

In the experiment on which this article is based, intervallic distances were
varied and played for the subjects so that they could be judged. The first
goal was to find out which is the optimal intonation in a certain specific case
of performance. We were also interested in how much divergence the subjects
tolerated in relation to ‘optimal’ intonation, and where the line was drawn
between ‘still barely acceptable’ divergence and unacceptable divergence.
This approach was thus intended to collect information concerning interval
categories and their resulting classification.

2 Experimental setting

The tests we carried out forty years ago attempted to reflect real musical
situations as closely as possible, by applying the following criteria:
The acoustical material consisted in pairs of two- and three-part chords
played by either harpsichord or a group of violins. The violin examples were
recorded in three different versions: each part played by one soloist without
vibrato, then each part played by a soloist with vibrato and, finally, by an
ensemble of ca. 10 violins. The musical examples consisted in pairs of suc-
cessive intervals and chords. From these, we have chosen the following for
statistical analysis (Fig. 1): a suspension of a minor sixth resolves into the
fifth; a dominant chord featuring an augmented fifth resolves into the tonic
(Fig. 1, Ex. 2a, 2b); the augmented fourth, being an essential component of
the dominant seventh chord, resolves into the sixth in the tonic; also, the
corresponding diminished fifth (in the dominant seventh chord) resolves into
the third in the tonic (Fig. 1, Ex. 1a, 1b). Thus, in all of these examples, the
dissonances resolve into consonances following the rules of classical harmony.



588 Fricke

Fig. 1. Intervals and chords were heard in four different instrumental versions. The
filled (black) note indicates the tone varied in pitch. Range of pitch variation: from
b flat to c or from c to e flat resp..

Electronic loops of the recorded sounds were presented to experts, able to
express the size of musical intervals: lecturer of music theory, professionals of
instrumental teaching, leaders of choirs and orchestres, students in musicol-
ogy, about 25 test persons per item. The play-back-frequency of the vibrato-
or ensemble-played sounds, respectively, were measured by the oscilloscope
matching method. Oscilloscope trigger frequencies and the control frequency
for the period of repetition of the electronic loop were controlled by electronic
counters with a maximal error of 0.1% . The maximal over all relative error
was ± 0.002 corresponding to a 30th of a tempered semitone. When hearing
these successions of chords in which one note was varied in its frequency, the
subjects were asked to decide between:

a) optimal, perfectly in-tune intonation
b) tolerated, ‘still barely acceptable’ divergence from optimal intonation.

For theoretical reasons alone, it could be expected that the judgements of a)
would not result in ‘fixed points’, but, rather, in ‘stretches’ or sections which,
in terms of position and extension, are typical for the interval category which
they represent.

With the help of the “b)” judgements, interval categories should then
become visible, since the boundaries of ‘acceptable divergence’ represent the
categorical area within which the interval is defined as such. The interval’s
extension within the categorical boundaries and its position on the relative
frequency scale both serve as characteristic attributes for the function which it
fulfills within a certain musical context. In particular, the categorical bound-
ary which separates the ‘dissonance’ from its subsequent resolution into an
adjacent ‘consonance’ will be characteristically displaced in the direction of
the melodic step which the listener expects to hear next.

The tests were designed so that the note with variable intonation, which
was the one to be judged, was the same one in both contexts. The question
can thus be formulated as follows:

I. In the ‘fifth-fourth’ test (Ex. 1) contrasting the diminished fifth and the
augmented fourth, is the leading note ‘b’, when optimally in tune, judged
as being significantly different from the note ‘b’ in the role of seventh?
In the ‘fifth-sixth’ test (Ex. 2) contrasting the augmented fifth and the



Classification of Perceived Musical Intervals 589

minor sixth, is the note ‘c sharp’ in the role of augmented fifth, when
played optimally in tune, judged as being significantly different from the
note of (enharmonically identical) ‘d flat’ in the role of minor sixth?

II. Do these findings imply significant alterations of the interval category as
well? Is the interval category for diminished fifth (‘e sharp’ - ‘b’) located
in the same position as the interval category for augmented fourth (‘f’ -
‘b’) - or are their respective extensions and relative frequency positions
significantly divergent from one another? Do similar findings apply in the
‘fifth-sixth’ test?

III. With four different instrumental versions of the same successive pair of
chords, the following question could be clarified: Is the ‘c sharp’ in the
role of fifth, played on the harpsichord, judged as significantly different
from the same note played in an ensemble of violins? Does the same apply
to the ‘d flat’ in the role of sixth, or not?

3 Results

The first suggested statistical procedure which is appropriate to these alter-
natives is the decision tree. In the case of the ‘fifth-fourth’ test, Question No.
I received a statistically significant answer, both in the violin version as well
as in the harpsichord version. The corresponding tree consists only of one
decision: “optimal intonation located at ≥ 610 cents”. In the violin version
we even attain a separation of 100% for this rule. They can also be analyzed
and separated by means of linear discriminant analysis (LDA). Here, as well,
the positions for optimal intonation of ‘b’ as seventh and ‘b’ as third can be
separated from one another on a level of high significance. This applies to
both varieties of instrumental timbre, although it turned out that the violin
version attains better separation of interval categories than the harpsichord
version. Analysis of variance confirms these results: p-value < 2.2 · 10−16 for
the violins version, < 3 · 10−15 for the harpsichord version. The estimated
Bayes error rate of LDA is about 0.2% and 3% respectively. Thus, Question
No. I has been answered satisfactorily in the case of the ‘fifth-fourth’ test.
Certain typical tendencies were found relating to the width of the optimal
intonation area and its displacement: the correlation is mildly negative, i.e.
those subjects who tend to prefer sharp intonation (and, consequentially, a
narrow interval between the dissonant tone and its resolution) have a rela-
tively clear conception of the position to which their judgement if intonation
as “optimal” applies. In the cases of these subjects, the area of ‘optimal’ in-
tonation is very narrow (between 5 and 15 cents). This group’s typical values
for the resulting resolution from an optimal intonation position lie between
88 and 68 cents.

Significant results were also attained for the extension of interval category
and the displacement of the categorical boundary. The decision tree is not
an adequate tool for interpreting the results from violin examples, since they
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Fig. 2. LDA of judgements concerning pitch position and overall width of interval
categories resulting from Examples 1 (‘fifth-fourth’ test) in the violin (left) and the
harpsichord version (right).

are grouped diagonally (Fig. 2 (left)). Only the harpsichord examples yield
a degree of differentiation which is sufficiently clear (prediction error: 6.4
corresponding to 10.6% for a decision in favor of the fourth, if position ≥ 550
cents), as one can see directly in the judgement results shown in Fig. 2 (right).
However, using LDA we can separate, on a level of high significance, the
scatterplots resulting both from the violin examples and from the harpsichord
examples (Fig. 2). Thus, the questions in Point II have also been answered
satisfactorily. Furthermore, the degree of inclination of the separation lines
indicate the following correlation: the narrower the interval category, the
more its boundary tends to be displaced toward the resolving note’s pitch.
This applies more strongly to the violin examples than to the harpsichord
examples. Typical values for resulting resolution intervals lie only 30 to 15
cents beyond the categorical boundary.

Due to their strong internal correlations, the results from the ‘fifth-sixth’
test can only be separated adequately by using LDA. High significance is
obtained for the result from the violin examples featured in Fig. 3 (left)
when they are analyzed separately: apparent error rate 0.0%. In this case,
analysis of variance also yields significant results (estimated Bayes error rate
of classification about 3%).

However, the categories resulting from the harpsichord examples do not
differentiate the intonation of the fifth from the sixth interval as clearly:
apparent error rate 14%. The p-value from the harpsichord result t-test of
LDA scores is < 3.5 · 10−8 as compared to the overall result from violin and
harpsichord, which are of 2.8 ·10−13. The decision tree is not applicable as an
analysis tool in this case either, since the scatterplots are grouped diagonally
along the two-dimensional diagram.

The results for Question No. III were tested on the optimal intonations
of the ‘fifth-sixth’ test. The decision tree only yields positive results for the
interval of minor sixth. LDA analysis points in the same direction. The ex-
planation for this problem can be found by analyzing the subjects’ individual
tendency of judgement, visible in Fig. 3 (right), and which can be interpreted
as follows: Those subjects who, in one case, prefer a large displacement of
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Fig. 3. Left: LDA of judgements concerning pitch position and overall width of in-
terval categories resulting from Examples 2 (‘fifth-sixth’ test) in all versions (harp-
sichord and violins). Right: Comparison of judgements of violin versions (V) as
opposed to harpsichord version (H) for Examples 2 (‘fifth-sixth’ test) computed by
means of LDA.

intonation based on equal temperament, also do so in the other case. In other
words, the larger the augmented fifth, the smaller the minor sixth tends to
be. This context-dependent influence is stronger in violin examples than in
harpsichord examples (as we have already often seen in the cases cited above).
Here, the hypothesis that there is a significant difference based on instrumen-
tal timbre can only be confirmed in the case of the minor sixth; the effect of
musical (harmonic) context is differentiated according to which instrumental
timbre is chosen for the minor sixth. On the other hand, however, the values
for the augmented fifth show no difference between violin and harpsichord
examples - in all cases, intonation is strongly preferred in a displacement
towards chromatic sharpening, leaning toward the upper note of resolution.
This result would need to be interpreted as follows: the effect of the double
leading note produced by chromatic sharpening of the fifth is so strong that
the listener demands exaggerated chromatic sharpening of intonation in all of
the examples. The position for exact, ‘in-tune’ intonation is, on the average,
15 cents higher than the equal-temperament value - in harpsichord exam-
ples as well. When compared to the harmonically ‘pure’ value, the demanded
chromatic sharpening even attains an average of 21 cents.

4 Conclusion

Applying the decision tree and the method of LDA, it has become possi-
ble here to provide statistical evidence for hitherto suspected differences of
intonation which are solely dependent on musical context. Differences of in-
tonation (levelled off in equal temperament) occur not only in the case of
enharmonic changes, but also when the same note plays different harmonic
roles. Still, the most important result is that it is not systems of (Pythagorean
or harmonically pure) temperament that determine the practice of intona-
tion, but, rather, psychological factors as a result of musical context. ‘Striv-
ing’ tendencies of intonation realized in half-note steps which are ‘too’ small,
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exaggerations which expand the distance in augmented intervals (the tritone,
the fifth) and which contract the size of diminished fifths, etc., are the norm
– and such tendencies were already outlined three quarters of a century ago
(Abraham (1923)). The degree of non-stationary vibrations present in musi-
cally produced sounds (performed here by a violin ensemble, by individual
violins with or without vibrato and on a harpsichord) determines to what
extent these psychological tendencies prevail.
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Abstract. The unrehearsed performance of music, called ‘sight reading’ (SR), is
a basic skill for all musicians. Despite the merits of expertise theory, there is no
comprehensive model which can classify subjects into high and low performance
groups. This study is the first that classifies subjects and is based on an extensive
experiment measuring the total SR performance of 52 piano students. Classifica-
tion methods (cluster analysis, classification tree, linear discriminant analysis) were
applied. Results of a linear discriminant analysis revealed a 2-class solution with 4
predictors (predictive error: 15%).

1 Background

Sight reading (SR) is a functional skill which is required by all musicians. It
is not only of particular interest for musical occupations such as the piano
accompanist, the conductor, or the repetiteur, but is also one of the five basic
performance skills every musician should acquire. Obtained from path analy-
sis, McPherson (1993) defines these skills as follows: to perform a repertoire
of rehearsed music, to perform music from memory (where music was memo-
rised using notation and then recreated aurally), to play by ear (where music
was both learned and reproduced aurally), to improvise in both ‘stylistically
conceived’ and ‘freely conceived’ idioms, to sight read music without prior
rehearsal. This skill is characterized by high demands on the performer’s
capacity to process highly complex visual input (the score) under the con-
straints of real-time and without the opportunity for error correction. How-
ever, up until now, there has been no feasible theory of SR which considers
all relevant factors such as practice-related variables (e.g. expertise), speed of
information processing (e.g. mental speed), or psycho-motor speed (e.g. speed
or repeated finger movements such as trills). The differences between indi-
viduals in sight reading achievement have not yet been fully explained. From
� The work of Claus Weihs and Uwe Ligges has been supported by the Deutsche

Forschungsgemeinschaft, Sonderforschungsbereich 475.
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previous studies we already know that there are a number of skills which
are relevant for the explanation of differences in sight reading performance.
A study by Kornicke (1992; 1995), based on 73 piano students, revealed the
following influential variables: (1) aural imagery, (2) sight-reading experience
(quantity, frequency, and range of sight-reading), (3) cognitive style of field
dependence/field independence (important for males), (4) style of thinking
measured by the Myers-Briggs Type Indicator, (5) external locus of control
(important for males). Another influential study by Lehmann and Ericsson
(1996), based on expertise theory, measured the performance of 16 expert
pianists and revealed the following variables as best predictors in a multiple
regression analysis: (1) accumulated amount of time spent on accompanying-
related activities, (2) size of accompanying repertoire.

Against the background of an adjusted R2-value of 0.65 obtained from a
previous multiple regression analysis (see Lee (in press)), our study tries a
different methodological approach and is guided by the following hypothesis:
due to the limited number of subjects (n = 52), a method of data analysis
which searches for clusters, representing a sufficient number of cases and
separable with an acceptable predictive error, is more valid than analytical
methods which search for sophisticated linear or non-linear relationships.
To achieve our aim, we applied classification methods for the first time in
sight reading research to uncover those variables or variable combinations
which best contribute to the classification of SR performance classes. This
study is only a first approach to the application of classification methods to
sight reading performance. A more detailed publication is in preparation (see
Kopiez et al. (in preparation)).

2 Method

Subjects

52 piano students (28 females, 24 males) from the Hanover University of
Music and Drama served as subjects (mean age = 24.56, standard deviation
= 4.9). These students had to have piano as a major subject or had to be
experts in chamber music or accompanying.

Material

Sight reading task

For the sight reading task, the paradigm of a pre-recorded pacing melody was
used (Lehmann et al. (1993)). Stimulus consisted of 2 warm-up pieces and
5 pieces with increasing complexity. This method created time constraints
which forced the subjects to play in tempo. These were taken from existing
piano sight reading literature (UNISA (no date)), and a composer rewrote
these pieces for a solo melody and piano accompaniment. The pre-recorded
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solo melody was played strictly in time by a violinist, and tempo indications
were given by clicks before each piece, which were also pre-recorded.

Measurement of predictor variables

Selected predictor variables were derived from sight reading literature and
divided into 3 groups: (a) general cognitive skills (such as short term and
working memory), (b) elementary cognitive skills (such as simple reaction
time and speed of information processing) and (c) practice-related skills (such
as general piano expertise, inner hearing ability and accumulated hours of
sight reading expertise). In total, there were 27 single predictors considered
(Table 1; for a detailed description of the measurement of variables see Lee
(in press)).

Table 1. List of 27 independent variables used for classification of sight reading
performance.

Variable name Variable label

ACHSRE10 Accumulated hours of SR expertise up to age 10
ACHSRE15 Accumulated hours of SR expertise up to age 15
ACHSRE18 Accumulated hours of SR expertise up to age 18
ACHSRETT Accumulated hours of SR expertise total
ACHPSO10 Accumulated hours of solo practice up to age 10
ACHPSO15 Accumulated hours of solo practice up to age 15
ACHPSO18 Accumulated hours of solo practice up to age 18
ACHPSOTT Accumulated hours of solo practice total
ACYPLE10 Accumulated hours of piano lessons up to age 10
ACYPLE15 Accumulated hours of piano lessons up to age 15
ACYPLE18 Accumulated hours of piano lessons up to age 18
ACYPLETT Accumulated hours of piano lessons total
IH.DPRIM Inner hearing score (d’)
STMSMT Short term music-specific memory (no. of notes)
NUMCONTS Number connection Test (s)
RAVENMDS Raven D matrices (no. of correct items)
TOTTRAVE Total time for Raven’s D matrix (s)
STM.PER Short term memory (mean % of correct items)
WM.PERC Working memory (mean % of correct items)
PICRT.ME Reaction time picture (median in ms)
SNDRT.ME Reaction time sound (median in ms)
ITI.LRHZ Inter tap interval for both hands (median in Hz)
TR131HZ Trill speed over 15 s, f.c.1 1-3, 1. trial (median in Hz)
TR132HZ Trill speed over 15 s, f.c.1 1-3, 2. trial (median in Hz)
TR341HZ Trill speed over 15 s, f.c.1 3-4, 1. trial (median in Hz)
TR342HZ Trill speed over 15 s, f.c.1 3-4, 2. trial (median in Hz)
CCUM Tapping lateralization coefficient (< 1.7 = non right-handed)

1 f.c. = finger combination; all trills were played with the right hand.
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Procedure

Subjects were required to accompany the pre-recorded violin part on a MIDI
piano. Accompaniment was recorded onto a PC using the sequencer Software
‘Cubase’. Retrospective interviews and measurement of predictor variables
were carried out after the sight reading tasks (for a detailed description of
the entire procedure and devices see Lee (in press)). The entire procedure
lasted about 3 hours.

Scoring for the sight reading performances (target variable) was done us-
ing a researcher-developed computer program called ‘MidiCompare’ (Dixon
(2002)). This program matches the pitches of a subject’s recorded sight read-
ing performance with the score. The output shows the number of matches
within an adjustable critical time frame of ±0.25 s. For this analysis, the
total performance score of each subject for both hands, as a percentage, was
used.

3 Results

The main aim of the classification analysis was to find variables which can
classify cases with respect to the target variable ‘total sight reading perfor-
mance’ with a minimum predictive error. Calculation of statistical analyses
was done using the open source software ‘R’ (R Development Core Team
(2004)). The analysis is work in progress and in this paper we will only show
a classification into 2 classes. A more in-depth analysis is in preparation
(Kopiez et al. (in preparation)).

The 2-class solution

Cluster analysis and 2-class LDA

Analysis commenced with a separation of subjects into 2 classes by means of a
cluster analysis (method: k-means). All 27 predictor variables were included
and the total sight reading performance was used as the target variable.
Group boundaries were determined by the mean of the two cluster centre
values, resulting in two groups (0–66%, 66–100% performance). This separa-
tion of performance data into ranges of the lower two-thirds and the upper
one-third, with group sizes of 33 and 19 subjects, is reasonable. Cases were
classified by stepwise linear discriminant analysis (LDA; method: stepwise
with 4-fold cross-validation, direction: both, stop criterion: error improve-
ment < 5%).

Four separating variables (CCUM, NUMCONTS, TR342HZ, SNDRT.ME)

were revealed as classifying variables. Classification was successful with a
total predictive error of 0.15 (4-fold cross-validated). Figure 1 shows a differ-
entiated picture of the apparent error for each combination of the selected
separating variables. Class boundaries are indicated by the grey classification
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Fig. 1. Error matrix scatterplot for 2-classes LDA (0, 66, 100) with total sight read-
ing performance as target variable. Total predictive error (4-fold cross-validated):
0.15. Grey line indicates class boundaries. Case-allocation to classes is indicated by
symbol ‘0’ for 0–66% and ‘6’ for 66–100%. Bold symbols indicate false classifica-
tion of cases to the respective class. The apparent error for each combination of
separating variables is indicated in the upper left corner of each box.

line. Apparent error ranges from 0.154 (variable combination NUMCONTS-
TR342HZ) to 0.288 (variable combinations NUMCONTS-SNDRT.ME and
CCUM-SNDRT.ME). Despite the acceptable total apparent error of 0.15,
we can see that particular variable combinations differ in error rate: on the
one hand, the combination of an elementary cognitive skill, such as simple
reaction time, in an auditory task (SNDRT.ME) with a psychomotor skill
component (speed trill TR342HZ) reveals that a subject with a slower trill
speed (< 11 Hz) and a shorter reaction time (< 200 ms) can be classified to
the upper third performance class (66–100%) with an apparent error of 0.25.
On the other hand, a combination of right-handedness (CCUM > 1.7) and a
relatively slow mental speed (NUMCONTS > 60 s) also classifies subjects to
the upper third performance class.
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Fig. 2. Classification tree for the 2-class solution (0, 66, 100).

2-class classification tree

A clearer, but less differentiated picture of classifying variables is given by
the 2-class classification tree (Figure 4). All 27 independent variables were
included in the 2-class tree analysis leading to a tree with a relatively high
predictive error of 0.44 (10-fold cross-validated). The left side of the first
branch allocates those subjects to the lower performance group (0–66%) who
show a slow trill over 15 seconds with the 3rd and 4th finger. Those subjects
who could trill faster than 10 Hz were sorted into the right branch, and in
the next step they were sorted into the high performance group (66–100%),
in the case of a tendency to non-right-handedness (the CCUM value should
be smaller than 1.7). 13 out of 16 subjects could be classified to the high
performer class by these two criteria.

4 Discussion

Our motivation to look for an alternative method of performance prediction,
by using classification procedures, was the existence of an unexplained vari-
ance of 35% in the multiple regression analysis. In this study we could demon-
strate that classification of sight reading performance is a useful method of
data analysis and results in an acceptable predictive error. The 2-class clas-
sification tree emphasizes the subject’s psychomotor speed and handedness.
The 2-class LDA also emphasizes speed-related factors such as simple reaction
time, trill speed and cognitive speed as measured by the number connection
test. The first surprise was that at the 2-class level, solutions did not show
evidence of expertise-related factors as useful classifiers. As a second surprise,
handedness (measured by the lateralization coefficient) was considered. Thus,
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in a first rough approach we might conclude that ‘speed matters’. However,
future analyses will reveal how predictors are intertwined and where sight
reading expertise unfolds its influence. Another question to answer in future
analyses is whether below average performance in one predictor can be com-
pensated for by above average performance in another predictor. This will
be a completely new approach to a new insight into the structure of the
fascinating skill of sight reading.
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Abstract. The classification of high dimensional data like time series requires the
efficient extraction of meaningful features. The systematization of statistical meth-
ods allows automatic approaches to combine these methods and construct a method
tree which delivers suitable features. It can be shown that the combination of ef-
ficient methods also works efficiently, which is especially necessary for the feature
extraction from large value series. The transformation from raw series data to fea-
ture vectors is illustrated by different classification tasks in the domain of audio
data.

1 Introduction

Each instance for a numerical learning algorithm is described by the values
of a given set of features. The learning scheme should find a hypothesis which
allows the classification of unseen data (Mitchell (1996) and Witten and Frank
(2000)). Transforming the given representation may ease learning such that
a simple learning algorithm can solve the problem and provide better results
(Morik (2000) and Pyle (1999)).

Music is a real-valued function of time. Therefore, audio data can be seen
as an univariate value series. The amplitude ai for each time point i (sample
point) is given. A three-minute mono song consists of 44100Hz · 180s ≈
8 · 106 values. The classification of these high dimensional series requires
the extraction of features, so that a classification scheme can make use of
the feature vectors instead of the large series data. By extracting the small
feature vectors, both the improvement of results (Liu and Motoda (1998) and
Ritthoff et al. (2002)) and a strong data compression is expected.

We have to face up with two problems: first, the great amount of data
requires efficiently working methods to extract the features and second, it is
not always clear which is the meaning of the extracted features. The auto-
matic selection and combination of the best methods for feature extraction
would be very useful.

The next section introduces a systematization of statistical methods,
which allows automatic feature extraction from value series data. In section 3,
an automatic approach for feature extraction based on genetic programming
is presented and the runtime is analyzed. In section 4 the feature extraction
from audio data is described and the results are discussed.
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Functionals

Windowing Basis Transf. Filters Markup Trans.

Value Series Methods Series / Features

Transformations

Fig. 1. All methods for value series analysis can be divided into groups according
to their output. Transformations can be further divided in basis transformations,
filters, mark-up transformations, and windowing.

2 Systematization of statistical methods

A systematization of statistical methods must be powerful enough to cover all
known and future methods and it must be precise enough to allow automatic
approaches to select and combine methods to find the optimal set of extracted
features. A method is defined in an operator based way: it gets a value series
as input and applies an arbitrary operation in order to deliver a result. This
result turns out to be a good criterion to divide the methods into groups. We
distinguish between:

Transformations: All methods which deliver a value series as output, i. e.
a mapping t : F → F for a function space F of value series (xi)i∈{1,...,n}.

Functions: All methods which deliver single values without any order, i. e.
a mapping f : F → IRm between a function space F and real numbers.

Transformations, which change the series itself without generating features,
can be divided into several groups like basis transformations (e. g. Fourier
transformation or state space reconstruction), filters (e. g. window functions
or difference filter), and mark-up transformations (e. g. finding intervals in
the series). Chains built from an arbitrary number of transformations and
ending with a function deliver the desired features. Figure 1 shows the sys-
tematization.

2.1 Windowing extends the method space

In order to divide the existing methods for value series analysis (Bradley
(1999) and Schlittgen and Streitberg (1997)) into the specified groups, a
particular transformation requires a special treatment. With the aid of a
Windowing operator a bunch of further transformations can be simulated
and created:

Windowing: Given a value series (xi)i∈{1,...,n} with length n. A transfor-
mation is called Windowing if a window of size w is moved with step
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size s over the series and in each window the value of a function f is
calculated:

yj = f((xi)i∈{(j·s+1,...,j·s+w}).

The values yj form a new series (yj)j∈{0,...,�(n−w)/s�}.

If f is an average function, this definition of a windowing includes the well
known moving average filters. But we take a step forward and allow all func-
tions for windowing and additionally allow any number of transformations
before we calculate the value of the function1. For large value series we must
ensure that a windowing which uses efficient methods to calculate the values
yj also is an efficient method, i.e. has polynomial runtime. The overlap of a
windowing is defined as g = w

s . Each windowing creates n−w
s +1 = n

s − g+1
windows. A windowing performing transformations and a function with run-
time O(n2) on each window has an overall runtime of(n

s
− g + 1

)
· w2 = gnw − gw2 + w2.

To estimate the worst case we consider a windowing with step size s = 1.
For a realistic overlap of g = 2 the runtime is 2nw−w2 which is smaller than
n2 for all window sizes w < n. The maximum amount of multiple used values
is reached for a window size of w = n

2 and therefore an overlap of also g = n
2 .

For this worst case the runtime is

gnw − gw2 + w2 = n ·
(n

2

)2

−
(n

2

)3

+
(n

2

)2

=
n3

8
+

n2

4
.

The runtime has a greater power in n but is still efficient. Similar calculations
for the runtimes of other methods show that the usage of windowing with
a realistic overlap like g = 2 always result in a smaller runtime than the
application of the methods on the complete series.

2.2 Method trees for feature extraction

As we have mentioned, the extracted features are the result of a chain of
transformations and a function at its end. A windowing is also a transforma-
tion. But this particular transformation performs other methods on windows
to form a new series. One can see these methods as children of a windowing,
which leads to the model of method trees for feature extraction.

Figure 2 shows an example for a method tree. The tree is traversed with
a depth first search. The windowing is the root of a new tree, whose children
are invoked once for each window. The dashed lines show the parent-child
connection in the tree and the solid lines stand for the data flow. The last
child in the chain is an average function which delivers the features “average
and variance of the maximum frequency in the progression of time”.
1 Actually we can do a windowing without a function but with transformations

only. This should only be done for windowings with w = s and is called piecewise
filtering.
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Fig. 2. A method tree that extracts the feature “average and variance of the max-
imum frequency in the progression of time”. The windowing method is the root of
a new tree.

2.3 Dynamic windowing in method trees

Each method tree provides one or several features. The tree structure emerges
from the nesting of windowing methods. It is quite clear that it is impossible
to nest two windowings with the same window size w. Since the children of
the parent windowing work on windows of size w, a nested windowing with
window size w creates a series with length 1 which is actually not a series
anymore. Therefore the overlap of each windowing method should be fixed,
which makes sure that the windowing works efficiently for realistic overlaps.
The size of the windows must be dynamic and is defined as w = n

d for a
parameter d ∈ {2, . . . , n

2 }.

Dynamic windowing: Given a series (xi)i∈{1,...,n} with length n and a
parameter d ∈ {2, . . . , n

2 }. A windowing with overlap g, window size
w = n

d and step size s = n
gd is called dynamic windowing.

A method tree built of dynamic windowings and other transformations
and functions has a maximum depth of logd n − 1. A dynamic windowing
divides the series in windows with size n

d . Therefore, each dynamic windowing
which is a child of another windowing works only on n

d values and builds
windows with size n

d2 . After logd n− 1 nested windowings each window has

n

dlogd n−1
=

n
dlogd n

d

=
n · d
n

= d

values. Another windowing would reduce the number of values for the next
child to 1.

Now we are able to analyze the runtime of method trees on a value series
with length n. The worst case runtime of all transformations and functions
is given as L(k) on k values. The runtime of a dynamic windowing is(n

s
− g + 1

)
· L
(n
d

)
= (g(d − 1) + 1) · L

(n
d

)
.
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We add another dynamic windowing as a child and replace L(n
d ) by (g(d −

1) + 1) · L( n
d2 ) which leads to (g(d − 1) + 1)2 · L( n

d2 ). We iterate these steps
which delivers

(g(d− 1) + 1)i · L
( n
di

)
as runtime of a method tree with depth i. We have shown that each method
tree has a maximum depth of logd n− 1 which results in a runtime of

(g(d− 1) + 1)logd n−1 · L
( n

dlogd n−1

)
= (g(d − 1) + 1)logd n−1 · L(d).

A method tree based on methods with a worst case runtime of O(n2) therefore
has an overall runtime of

(g(d− 1) + 1)logd n−1 · d2 =
d2

g(d− 1) + 1
· n

1
logg(d−1)+1 d .

It has been shown that the runtime is never exponential, for realistic dynamic
windowings with overlap g = 2 and d = 2 the runtime is 4

3 · n1.585 which is
always smaller than n2. Hence, method trees built from efficient methods are
efficient too.

3 Automatic feature extraction

We have fulfilled two premises for automatic approaches for feature extrac-
tion: the search space is structured and the elements of this space work effi-
ciently and extract features from high dimensional data in polynomial time.
Now we introduce a simple way for automatic feature extraction based on
genetic programming. The search space in which the algorithm tries to find
the optimum is the space of all method trees which can be created with the
given transformations and functions. Each individual is a method tree and
the tree which provides the best features for the classification task at hand
is delivered as the result.

The first step is to create a population consisting of a number of individ-
uals. Here, randomly created method trees are used as individuals. Then the
same steps are performed repeatedly until a termination criterion is satisfied.
Mutations are operations which derive a new individual from one other indi-
vidual. The probability for small distances between parent and child should
be greater than for great distances. We use generating mutation, which ran-
domly creates a new method and adds it at an adequate place in the method
tree, removing mutation, which removes a randomly chosen method from the
method tree (windowing with overlap g > 1 must contain a function), and
changing mutation, which changes a randomly chosen method and replaces
it with a method from the same group (transformation or function). An-
other typical operation for evolutionary algorithms is crossover, where a new
individual is derived by combining the informations about several parents.
Crossover is realized by transfering subtrees of the same type.
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In each generation the individuals are evaluated with a k-fold cross val-
idation with respect to the learning task at hand. First, the method tree
which should be evaluated is used to extract the features from the data.
Then the performance of the learning task is estimated with an inner k-fold
cross validation. The transformed data is divided into k parts, on k− 1 parts
a classifier is trained and on the last part it is applied. Individuals with a
greater performance (fitness) will have a higher probability to survive.

Another fact is interesting for working with high-dimensional data: the
building of method trees with genetic programming in order to extract an
optimal feature set is like training the optimal feature extraction. We have
two phases of training. The first phase is the training of a method tree for
feature extraction which can be done on a subset of the data. This is especially
useful for the great amount of data the high dimensionality brings. Then the
best method tree is applied on the complete data and the second training
phase starts: a hypothesis is learned from the feature vectors created by the
method tree.

4 Experiments

We used the discussed approach to extract features from audio data for three
different classification tasks:

1. genre classification classic and popular music: CLA/POP
2. genre classification techno and popular music: TEC/POP
3. classification of user preference: USER1, USER2, and USER3

The first one is considered an easy task, the other two problems seem to
be much harder. CLA/POP contains 100 instances, TEC/POP contains 80
instances, and the USER data sets 50 instances for each class. The methods
are implemented within a generic framework for value series preprocessing
like the one demanded in Morik and Liedtke (2000). The experiments were
done with the learning environment Yale2 (Fischer et al. (2002) and Mier-
swa et al. (2003)). Feature extraction for a 60 second sample of music lasts
approximately 20 seconds using a 1600 MHz CPU.

The following features were extracted from the data sets: average loud-
ness, average distance and variance between extreme values, average distance
and variance between zero crossings, tempo and variance of autocorrelation,
k highest peaks after a Fourier transformation, gradient of a linear regression
function of the frequency spectrum, fraction of geometric and arithmetic av-
erage of the spectrum, fraction of maximum and arithmetic average of the
spectrum, average and variance of the strongest frequency in the progressing
of time, average and variance of the angles after a state space reconstruction,
and average and variance of the distances after a state space reconstruction.

2 http://yale.cs.uni-dortmund.de
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Table 1. The classification error for the different classification tasks. For each task,
an optimal subset of features was selected.

CLA/POP TEC/POP USER1 USER2 USER3

C4.5 1.67% 12.13% 8.12% 9.89% 5.02%

SVM 1.82% 13.22% 7.69% 9.44% 4.81%

They are described in detail in Mierswa (2003) and were collected during sev-
eral runs of the genetic programming approach for the classification of audio
data. The population size was 10, each mutation probability was 0.2, and
crossover probability was 0.4. The maximum number of generations was 100.
With a genetic algorithm (Ritthoff et al. (2002)), a subset of these features
were selected for each classification task.

The application of a simple 1-R-Learner (Holte (1993)) delivers differ-
ent features for the data sets. For the classification of CLA/POP, the vari-
ance of the distances after a state space reconstruction is the best feature.
The created rule correctly classifies 184 of the 200 instances. In the domain
TEC/POP the variance of the difference between the extreme values of the
series was selected as best feature. The knowledge of this feature alone allows
the correct classification of 121 of the 160 instances. Further results of the
selection among the audio features are discussed in Mierswa (2003).

4.1 Results

The learning schemes used were the decision tree learner C4.5 (Quinlan
(1993)) and a support vector machine (SVM) with a linear kernel function
(Joachims (1999) and Rueping (2000)). The classification error was estimated
with a 10-fold cross validation. The confidence for decision tree inducing was
0.25 with a minimum leaf size of 2. The support vector machine MySVM was
used with default parameters. Table 1 shows the results for the classification
tasks. The genre classification CLA/POP can be done with an error of 1.67%.
The more difficult classification of user preferences can be handled with clas-
sification errors between 4% and 10%. The genre classification TEC/POP is
the hardest discipline among these classification tasks. But the predictions
were done with an error of 12.13%.

5 Conclusion

The methods of value series analysis can be divided into groups and sys-
tematized. Together with an extended concept of windowing operators these
methods can build method trees for feature extraction. It has been shown
that the windowing of efficient methods also is efficient, the same applies for
method trees. The systematization and the efficiency of the methods allow
automatic approaches to extract an optimal set of features from value series.
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The discussed approach is based on genetic programming. The individuals
are method trees which work on a subset of the data and are mutated and
recombined. The result is a method tree which can be used on the complete
data set for feature extraction.

Audio data can be seen as time series with an extraordinary length. We
have seen a set of features which was automatically extracted from audio data.
This leads to an error of nearly 1% for the genre classification classic/popular
music and an user preference classification error below 10%.
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Abstract. In order to distinguish between the sounds of different musical instru-
ments, certain instrument-specific sound features have to be extracted from the
time series representing a given recorded sound.
The Hough Transform is a pattern recognition procedure that is usually applied to
detect specific curves or shapes in digital pictures (Shapiro (1978)). Due to some
similarity between pattern recognition and statistical curve fitting problems, it may
as well be applied to sound data (as a special case of time series data).
The transformation is parameterized to detect sinusoidal curve sections in a digi-
tized sound, the motivation being that certain sounds might be identified by cer-
tain oscillation patterns. The returned (transformed) data is the timepoints and
amplitudes of detected sinusoids, so the result of the transformation is another
‘condensed ’ time series.
This specific Hough Transform is then applied to sounds played by different musical
instruments. The generated data is investigated for features that are specific for the
musical instrument that played the sound. Several classification methods are tried
out to distinguish between the instruments and it turns out that RDA (a hybrid
method combining LDA and QDA) (Friedman (1989)) performs best. The resulting
error rate is better than those achieved by humans (Bruderer (2003)).

1 The Hough-transform

The Hough-transform was originally developed to detect straight lines in
(noisy) digital images, and was then later generalized to arbitrary lines or
shapes. The procedure has similarities to regression methods, the common
problem being to derive line parameters from points lying on that line. The
Hough-transform is very robust to outliers, points that are not on the line
have little influence on the estimation. It is even possible to fit several different
lines independently at the same time (Shapiro (1978)).
Here the Hough-transform is applied to digitized sounds — as a special case
� The work of Christian Röver and Claus Weihs has been supported by the

Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 475.
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of time series data — the question being, whether this yields a useful sound
characterization. We will check this by trying to identify musical instruments
by the sounds they play.
The motivation to apply the Hough-transform to sounds is that recently a
computer chip has been developed that is able to perform the numerically
expensive algorithm in real-time.

2 Application to sound data

2.1 Digital sounds

A sound is a periodic oscillation over time, as shown in Fig. 1. In this case
the sound frequency (pitch) is 440 Hz, so the oscillation period is 1

440 =
0.0023 seconds, as indicated by the bar in the upper left. A digital sound
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Fig. 1. Periodic oscillation of a sound.

recording is a discrete approximation of the original sound. The recording
quality is determined by the resolution of this approximation: CD-tracks are
recorded with a sampling rate of 44.1 kHz and a resolution of 16 bit, so the
approximating step function has 44100 steps per second and each step height
may take one out of 216 ≈ 65000 values between 1 and −1.
So, statistically spoken, a digital sound is an equidistant time series.

2.2 Motivation: signal edges

The motivation to apply the Hough-transform is that a sound might have a
specific oscillation pattern by which it can be identified. In order to catch
the pattern features, we concentrate on the so-called signal edges, that is,
the ascending oscillation sections rising from the time axis as indicated in
Fig. 2. We will try to detect these signal edges by fitting appropriate curves
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Fig. 2. Signal edges of a sound.

to the sound samples, and then see whether a sound can be classified by the
generated sequence of signal edges.

2.3 Parametrization

The Hough-transform was then set to detect sinusoidal signal edges, that is,
curves of the form

f(t) = A · sin(2πc · t − φ) (φ ≤ t ≤ φ + 1
4c)

are fit to the sound samples. Variable parameters are amplitude A (≥ 1)
and phase difference φ (≥ 0); the center frequency c is fixed. The function is
sketched in Fig. 3: A stretches the signal edge in the direction of the y-axis
and so controls amplitude and slope, while φ places the edge along the time
axis. Due to the transform procedure, both parameters take only discrete val-
ues: amplitudes are divided into 32 bins, and the phase difference resolution
is defined by the sound sampling rate (44.1 kHz).
The transformation was then applied to the first 0.7 seconds of each sound,
so for longer sound samples not the complete sound is captured in the trans-
formed data.

2.4 Resulting data format

The result of transforming a digitized sound is another time series of am-
plitudes (A) and phase differences (φ); an example is given in Tab. 1: phase
differences may be expressed in seconds or sample-indices, and the amplitude
can be given in absolute values or bin-numbers. Note that low bin-numbers
refer to high amplitudes (steep signal edges) and vice versa.
Fig. 4 shows the transformed data (amplitudes vs. time) for 4 different sounds,
the left two played by a piano, and the right ones played on a trumpet. You
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Fig. 3. The fitted signal edge.

phase difference φ amplitude A
Nr. sample seconds class-nr. value
...

...
...

...
...

104 16731 0.3793881 28 1.163636
105 16838 0.3818141 31 1.049180
106 16894 0.3830841 22 1.488372
107 19896 0.3831291 25 1.306122
108 17004 0.3855781 30 1.084746
109 17065 0.3869611 27 1.207547
110 17173 0.3894101 31 1.049180
...

...
...

...
...

Table 1. Data format after transformation.

can clearly see similarities within the same instrument and differences across
different instruments.
The next problem is now to derive characteristics from these time series that
allow for classification of sounds.

3 Classification

3.1 Approaches

In general, two approaches were tried out to summarize the transformed data.
The first question was whether the (overall) frequencies of amplitudes may
yield a sufficient ‘spectrum-like’ sound characterization. The second approach
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Fig. 4. Different instruments playing at same pitches; left: piano, right: trumpet.

was to derive other characteristics from the transformed time series (not only
from amplitudes, but also from frequencies fi := 1

φi−φi−1
).

The first approach uses 33 variables for classification (32 amplitude bins plus
pitch), for the second approach 62 potential discriminators were derived from
the transformed sound (for examples see results in section 6).

3.2 Data set

The investigated data set consisted of 1987 sounds played by different instru-
ments and with pitches of each sound given. There were 62 sound sequences at
subsequent pitches; different instruments covered different frequency bands,
overall these spanned a range from A0 to C8 (27.5 to 4186 Hz). Sequences
played by the same or very similar instruments were grouped together, like
piano at different volumes or bassoon and contrabassoon. Finally, the set
consisted of 25 instrument classes (Opolko and Wapnick (1987)).

3.3 Methods

The classification methods applied were:

• LDA: Linear Discriminant Analysis
• QDA: Quadratic Discriminant Analysis
• naive Bayes
• RDA: Regularized Discriminant Analysis
• Support Vector Machine
• Classification Tree
• k-NN: k-Nearest-Neighbour
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Most methods should be well known except for RDA, which may require
some explanation (for Classification Trees see Venables and Ripley (2002),
for other methods see Hastie et al. (2001)).

Regularized Discriminant Analysis (RDA) is a hybrid method including
LDA and QDA and was proposed by Friedman (1989). Assumptions and
procedure are as in QDA, that is, group distributions are conditionally normal
and the groups differ by their means and (co-)variances. But instead of using
the usual groupwise covariance estimates, the covariance is manipulated using
two parameters (λ and γ); first a convex combination is computed:

Σ̂RDA
k = λΣ̂LDA + (1 − λ)Σ̂QDA

k (0 ≤ λ ≤ 1)

So the covariance estimate is a combination of the pooled (Σ̂LDA) and the
individual group covariances (Σ̂QDA

k ); for λ = 1 it is equal to LDA, and
for λ = 0 it equals QDA. The second parameter γ then allows to shift the
estimate towards an identity matrix, but this turned out not to improve error
rates, so we restricted ourselves to using λ only and set γ to zero. Thus the
covariance estimate simplifies to the above formula.

3.4 Variable selection

Variable selection is necessary for the second approach (characterizing vari-
ables), but not appropriate for the first (amplitude frequencies only). Also,
classification trees select variables themselves.
For all other methods, variables were then selected applying the same prin-
ciple (analogous to stepwise regression): Variables were selected step-by-step
starting with pitch only and then in each step including the variable that
improves the error rate (estimated by cross-validation) most.

3.5 Results

The best classification was achieved using 11 characterizing variables and
applying RDA, which resulted in a misclassification rate of 26.1%. Using just
the amplitude frequencies, the best error rate was only 66%, using k-Nearest-
Neighbour.
The 11 discriminating features leading to the final error rate (26.1%) were:

• pitch
• waiting time for first edge and sound duration
• signal edge rate (per second)
• mean, variance and shape of amplitude distribution
• trend of amplitudes
• mean and variance of frequency distribution
• correlation of amplitude and frequency



614 Röver et al.

% ba be ce cl cr eb eg ed ef fl fr gk ma ob pi sx sy tb tp tp tu vb vp vi xy Σ

bassoon 78 0 2 1 0 1 0 0 0 0 0 0 0 1 0 0 2 9 0 0 6 0 0 0 0 22
bells 0 95 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 5
cello 6 0 72 3 0 0 4 3 0 0 0 0 0 1 0 4 0 0 2 0 5 0 0 0 0 28

clarinet 2 0 3 52 0 0 0 8 0 2 1 0 0 7 0 10 0 3 7 0 1 1 0 3 0 48
crotales 0 0 0 0 97 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 3
elecbass 0 0 0 0 0 80 7 0 4 0 0 0 2 0 4 0 0 0 0 0 2 1 0 0 0 20

elecguitar 1 6 8 1 0 12 53 1 2 0 1 0 0 0 4 1 0 1 0 0 1 6 0 1 1 47
elecguitar-distd. 0 0 0 1 0 3 0 95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5

elecguitar-fh. 0 0 0 0 0 12 3 0 73 0 0 0 0 0 3 0 0 0 0 0 0 1 8 0 0 27
flute 1 0 1 1 0 0 0 0 0 69 0 0 0 3 0 2 0 3 3 0 8 2 0 6 0 31

french horn 0 0 0 2 0 0 0 0 0 0 90 0 0 4 0 2 0 0 2 0 0 0 0 0 0 10
glockenspiel 0 0 0 0 11 0 0 0 0 0 0 83 0 0 1 0 0 0 2 0 0 0 0 0 2 17

marimba 0 0 0 0 0 8 0 0 0 0 0 0 61 0 1 0 0 0 0 0 0 0 3 0 26 39
oboe/enghorn 0 0 0 9 0 0 0 0 0 5 2 0 0 70 0 2 0 2 7 1 0 0 0 2 0 30

piano 6 1 1 0 0 7 3 0 1 0 0 2 10 0 55 0 0 0 0 0 0 4 2 0 8 45
saxophone 8 0 10 11 0 0 0 0 0 0 7 0 0 6 0 46 0 3 6 0 0 2 0 0 0 54
synthbass 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 98 0 0 0 0 0 0 0 0 2
trombone 4 0 0 7 0 0 0 1 0 3 0 0 0 3 0 0 0 73 7 0 0 0 0 1 0 27
trumpet 0 0 1 2 0 0 0 0 0 4 5 0 0 8 0 2 0 7 68 0 0 3 0 0 0 32

trumpet-csto 0 0 0 3 0 0 0 3 0 0 0 0 0 3 0 0 0 0 0 90 0 0 0 0 0 10
tuba 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 95 0 0 0 0 5

vibraphone 0 2 1 1 0 5 8 0 2 9 1 0 3 0 0 0 0 0 1 1 7 57 0 0 1 43
violin-pizzicato 0 0 0 0 0 2 0 0 5 0 0 1 6 0 2 0 0 0 0 0 0 0 84 0 0 16

violin/viola 2 0 2 6 0 0 0 0 2 7 1 0 3 16 0 1 0 7 1 2 1 0 1 48 1 52
xylophone 0 0 0 0 0 0 0 0 1 0 0 5 23 0 2 0 0 0 0 0 0 2 0 0 66 34

total misclassification rate: 26.1%

Table 2. Confusion matrix for RDA using 11 variables (percentages).

The error rates are shown in detail in the confusion matrix (Table 2): each
line corresponds to one instrument and shows how it was classified (in per-
centages); the main diagonal shows correct classifications, the off-diagonal el-
ements show false classifications. The last column gives the total (instrument-
wise) error rate.
For example, you can see that xylophone and marimba get confused with
each other, and that there are certain instruments that are classified well
(bells), while others are not clearly identified (saxophone).
Closer examination of the transformed data suggested that tuning of Hough-
transformation settings might lead to further improvement of classification
results. For further details see Röver (2003).

3.6 Comparing the results

The misclassification rate achieved by pure guessing would be 24
25 = 96%.

Error rates achieved by humans or other automatic classification approaches
have previously been investigated in other experiments; in roughly compa-
rable problem settings (with regards to number of instruments) rates for
humans are quoted at 44%, and for automatic classification these range from
19–7.2% (Bruderer (2003)).
Note that in this study only the first 0.7 seconds of a sound were used,
whereas usually complete sounds are evaluated for recognition. Other ap-
proaches often use features like envelope characteristics or fourier frequencies
for classification.
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4 Conclusions

Application of the Hough-transform to digitized sounds yields a useful sound
characterization; the generated data allows to distinguish between sounds
played by different instruments. Classification of 25 instruments leads to an
error rate of 26.1%.
The misclassification rate so far is better than those achieved by humans, but
still worse than for other automatic approaches. Further tuning of transform
settings and application to complete sounds (longer than 0.7 seconds) might
still improve the procedure.
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Abstract. In this paper we attempt to extract information concerning percussive
instruments from a musical audio signal. High-dimensional vectors of descriptors
are computed from the signal and classified by means of Support Vector Machines
(SVM). We investigate the performance on 2 important classes of drum sounds in
Western popular music: bass and snare drums, possibly overlapping. The results
are encouraging: SVM achieve a high accuracy and F1-measure, with linear kernels
performing (nearly) as good as Gaussian kernels, but requiring 1000 times less
computation time.

1 Introduction

With the explosive growth of the amount of digital music available on the In-
ternet, Musical Information Retrieval has become a topic that has attracted
the attention of researchers in a wide range of disciplines. The quality of
content-based retrieval however depends heavily on how well the individual
components for representation and matching of the data perform. Most ex-
isting commercial music information retrieval systems use text as the main
supplier of meta-data of music, such as the name of the artist/performer and
the title of the song. For text, rapid matching methods are available and
are applied extensively in search engines on the World Wide Web. However,
as soon as such meta-data is incomplete or unavailable, all of the existing
commercial systems will fail to deliver.

The MAMI-project (Musical Audio MIning) aims at working out method-
ologies and software tools for content-based audio-mining by bundling the
efforts of musicologists, engineers, mathematicians and computer scientists.
MAMI is centered on the ‘query-by-imitation’ paradigm, where users can
retrieve a musical piece by means of its sound characteristics, either by de-
scribing, playing or vocally imitating the piece.

In order to supply a ranked list of candidate songs to the user, the system
has to match an intermediate representation of the (melodic or rhythmic)
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input with a similar representation of all the songs in the database; this will
typically be done by means of a (time-consuming) dynamic programming
technique. To speed up the query, any additional information that can narrow
down the search space is welcome; not only meta-data, but also a description
of the content of the target song or the musical genre to which it belongs can
be used for this purpose.

A user study (Lesaffre et al. (2003)) has shown that when users are asked
to imitate a song they are familiar with, some of them will reproduce the
rhythmic structure of the piece. This is one of the motivations for analyzing
the percussive content of musical audio; if a transcription can be obtained, it
can be matched with the description delivered by the user, used as a feature
for genre classification or provide valuable information for the determination
of beat, tempo and rhythmic structure.

For the recognition of drum sounds three levels of difficulty can be distin-
guished: (i) Isolated drum sounds; (ii) Overlapping drum sounds; (iii) Over-
lapping drum sounds layered with other instruments and voices.

Obtaining a full transcription of the percussive content of musical audio
is a challenging task and, to our best knowledge, has never been attempted
using SVM. We will therefore concentrate on two important classes of sounds
(omnipresent in Western popular music): bass drums (typically low-pitched
and strongly indicating the beat) and snare drums (with highly noisy compo-
nents, delivering important clues about the metrical structure of the song).
In this paper we will concentrate on musical audio situated at the first and
second level, since Virtanen (2001) has shown recently that it is possible to
extract drum tracks from musical audio by subtracting the harmonic parts
from the signal.

The rest of this paper is organized as follows. In Section 2 we give an
overview of previous work. In Section 3 we describe how data were generated
using samples gathered from commercial CD’s, standard MIDI songs and
sequencer software. In Section 4 relevant descriptors for audio data are pre-
sented and in Section 5 Support Vector Machines are formally introduced. In
Section 6 we report results for two experiments and in Section 5 we comment
on these results and give directions for future research.

2 Previous work

A recent overview of classification techniques for musical instrument sounds
in general can be found in Herrera-Boyer et al. (2003). Percussive instruments
represent a special case as they can be considered to be pitch-independent, so
their appearance throughout a musical piece is much more constant. Although
this makes them good candidates for localization/classification, they only
represent a small part of previous research and in most cases only recognition
of isolated sounds is investigated.
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McDonald and Tsang (1997) use Spectral Centre Trajectories to classify
percussive sounds but tests are only conducted on a very small database. In
Zils et al. (2002) a percussion transcription is obtained by an analysis by
synthesis technique, whereby the sound searched for is gradually synthesized
from the signal; a success rate of over 75% is reported. A large-scale study
in Herrera et al. (2003) uses different subsets of temporal and spectral de-
scriptors (up to 207) for the recognition of thirty different classes of isolated
percussion instruments. K-NN, Kernel Density (KD) estimation, canonical
discriminant analysis and decision trees (C4.5) were investigated as classi-
fication techniques. KD combined with correlation-based feature selection
yielded a 85% hit rate.

3 Data gathering

We have gathered samples belonging to two classes of percussive instruments
(bass drum and snare drum) from commercial sample CD’s. Such CD’s typ-
ically indicate the class to which a sound belongs by the name of the sample
or its location in the directory structure, but this information is not always
equally reliable. Listening to the sounds we realized that some of them were
mixed with other (percussive) instruments and therefore we had them clas-
sified by two users; only the samples that were considered to be “pure” and
correctly classified by both users were retained. This yielded 656 bass drums
and 604 snare drums; in all classes samples of the acoustic as well as of the
electronic type were selected.

To gather realistic data, MIDI (Musical Instrument Digital Interface) files
were exploited. Standard MIDI assigns classes of instruments to predefined
tracks which makes it possible for an electronic sound device supporting
standard MIDI to play songs with its own internal sounds. From 32 songs in
standard MIDI format we selected 16 measures of the drum track. These 32
files were loaded into a sequencer program; 8 variations for each track were
generated by selecting at random pairs of bass and snare drum from the set
of samples while the other drum sounds were drawn from a standard MIDI
drum set. The audio generated by playing back the MIDI files using these sets
of drum sounds was recorded, yielding 256 audio files in total. The isolated
drum sounds were added to the data set. This yielded a positive/negative
example ratio of 1472/2508 for the bass drums and 1315/2729 for the snare
drums. All files were saved as mono wave files sampled at 44.1KHz.

In order not to introduce any errors due to the incorrect localization of
events, we did not perform any onset detection but instead used the timing
and labelling information available in the MIDI files to determine at what
position in time descriptors need to be extracted and whether an event is a
positive or negative instance for our binary classifiers. The information in the
MIDI files thus represents the “ground truth” for the corresponding recorded
audio renderings.
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4 Descriptors for audio

Digital audio corresponds to a very high data rate (88Kbyte/s for mono CD
quality). To arrive at a manageable data rate, one needs to select descriptors
that capture the characteristics of the audio while suppressing details that
are redundant for the problem at hand. This data reduction will typically be
done by sliding a window with a fixed step over the raw audio signal (e.g. a
20ms window every 10ms) and by computing at every step descriptors over
that window.

The events we are trying to classify do not have a fixed length; the bass
drums in our database for example have a duration ranging from 71ms to
1.892 s. Although SVM are able to handle variable temporal representations
by applying specific kernels, e.g. Shimodaira et al. (2001), determining the end
of an event in musical audio (offset detection) is difficult. We therefore decided
to use a fixed context at the beginning of the events over which descriptors
are to be computed. In Section 6 we determine the most appropriate context
length for each class. In order not to confuse the binary classifiers, we excluded
any negative examples that lie within the range of 50ms of a positive example.

A first set of descriptors concerns the energy in the signal computed by
means of a Root Mean Square (RMS) formula. When inspecting the accu-
mulated spectra of hundreds of bass drums and snare drums, it can be seen
that the spectral energy distributions of these different sounds are located in
more or less distinct frequency bands (although not completely separated).
Hence we divided the spectrum into three frequency bands and computed
energy-related descriptors over these bands: RMS in the whole signal, RMS
per frequency band, ratio of RMS to overall RMS (per band) and RMS per
band relative to RMS of other bands (1 to 2, 1 to 3 and 2 to 3).

Temporal descriptors are computed on the sample signal. The following
descriptors were withheld: Zero Crossing Rate (ZCR): number of times per
second the signal changes sign; Crest Factor: ratio of maximum absolute
value sample signal to RMS in the segment; Temporal Centroid: the center of
gravity of the distribution of the absolute values of the samples in the window.
Spectral descriptors are computed using the Fast Fourier Transform, which
converts the time domain data into the frequency domain: spectral centroid,
skewness and kurtosis; and the spectral rolloff.

Logan (2000) shows that Mel Frequency Cepstral Coefficients (MFCC),
short-term spectral-based features widely used for speech recognition, are
appropriate as a representation for music by examining the functionality of
a music/speech discriminator. MFCC are especially interesting for complex
music analysis because they combine low-dimensionality and the ability to
discriminate between different spectral content. The amount of detail in the
description depends on the number of coefficients extracted; for our exper-
iments 12 coefficients were computed. The temporal deployment of these
descriptors is further captured by computing their first and second order
derivatives. As a window size of 20ms and frame step of 10ms for the extrac-
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tion of this kind of descriptors is often advised, we used these settings and
we computed the mean and standard deviation of the coefficients and their
first and second order derivatives over the context.

5 Support Vector Machines

Formally, a data set T contains l instances xi (i = 1, . . . , l) with each xi

labelled as yi = 1 or yi = −1 (known as classes), indicating a positive or
negative instance, respectively. Each index xij (j = 1, . . . , n) in vector xi is
a descriptor as described above.

The Support Vector Machine (Vapnik (1995)) is a data-driven method for
solving two-class classification tasks. The Linear SVM (LSVM) separates the
two classes in T with a hyperplane in the input space such that:

(a) the “largest” possible fraction of instances of the same class are on the
same side of the hyperplane, and

(b) the distance of either class from the hyperplane is maximal.

The prediction of an LSVM for an unseen instance z is given by the decision
function

pred(z) = sgn(w · z + b) . (1)

The hyperplane is computed by means of a vector of Lagrange multipliers α
maximizing

W (α) =
l∑

i=1

αi − 1
2

l∑
i,j=1

αi αj yi yj (xi · xj) ,

subject to:

0 ≤ αi ≤ C and
l∑

i=1

αi yi = 0 , (2)

where C is a parameter set by the user to regulate the effect of outliers and
noise, i.e. it defines the meaning of the word “largest” in (a). Some tolerance
(denoted as ε) on the constraints in Equation 2 is acceptable.

A function K (called a kernel function) maps the descriptors in T , called
the input space, into a feature space defined by K in which then a linear class
separation is performed. For the LSVM this mapping is a linear mapping:

K(xi,xj) = xi · xj . (3)

The non-linear mapping used in this paper is the Gaussian-SVM (GSVM)

K(xi,xj) = e−|xi−xj|2/γ2
. (4)
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After calculating the αi’s in (2), the decision function (1) becomes:

pred(z) = sgn(
l∑

i=1

αi yi K(xi, z) + b) . (5)

An instance xi for which αi is not zero is called a Support Vector (SV).
Note that the prediction calculated in (5) uses the support vectors only. As
such, the support vectors are those instances that are closest to the decision
boundary in the feature space.

All SVM in our experiments were trained using SVMlight 5.0 (Joachims
(1999)1) in classification mode with all parameters at their default values,
except for C and the kernel-related parameter γ. The data were scaled so
that every descriptor lies within the range [−1, 1].

6 Experiments and results

In order to determine an appropriate context length for the two classes of
drum sounds we computed the descriptors over various lengths (50, 70, 100,
140, 170 and 200ms) and performed 3-Fold Cross Validation (3-FCV) using
LSVM with C = 2i (i = −8, . . . , 0, . . . , 10). As a performance measure we
combined the obtained average precision and recall into

Fβ =
(β2 + 1) · precision · recall

β2 · precision + recall

with β a user-controlled parameter expressing the preference for either high
precision or high recall (β = 1 in the sequel). Table 1 shows the best F1

for various context lengths. For both bass drum and snare drum the best
performance was obtained using a context length of 100ms.

Table 1. F1 with 3-FCV on the whole data set for different context lengths

Context (ms) 50 70 100 140 170 200
F1 BD 93.91 95.11 95.15 94.94 94.59 94.64
F1 SD 97.39 97.69 98.18 97.61 97.30 96.58

Using the obtained context lengths, we investigated the difference in per-
formance between a linear and (the more powerful) Gaussian kernel. It needs
to be pointed out that there is no guarantee that the optimal context length
for LSVM is also optimal for GSVM; ongoing research will have to clarify this
point.

1 http://svmlight.joachims.org/
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The data were split into a 87.5% training set (for model selection and
training) and a 12.5% test set (while respecting the balance between positive
and negative examples). We had the optimal parameters for Gaussian ker-
nels (C, γ) established by looms (Lee and Lin (2000)2) which estimates the
leave-one-out error rate over a grid of candidate values using a loose stop-
ping criterion in the optimization phase. For LSVM we obtained the optimal
C using 3-FCV on the training set and F1 as performance measure. The
results in Table 2 also contain overall accuracy and the number of support
vectors for the obtained models. These results show a very minor difference
in performance for BD and no improvement at all for SD; despite bigger com-
putational effort for model selection and the fact that the resulting model is
more complex (the number of support vectors has almost doubled), exactly
the same misclassifications are done with the Gaussian kernel as with the
linear one.

Table 2. Classification of the 12.5% test set using LSVM (model selection by 3-
FCV) and GSVM (model selection by estimating leave-one-out error).

LSVM GSVM
BD SD BD SD

C 0.5 8 0.25 8
γ - - 0.256 0.064

accuracy 94.98 97.63 95.58 97.63
F1 93.30 96.34 94.12 96.34

#SV 391 179 965 350

7 Conclusions and future work

The results show that our audio descriptors and SVM classifiers combine well
into a technique for the recognition of drum sounds in an audio signal. We
expect that the methodology can be extended for the detection of a wider
range of percussive instruments.

The observation that linear kernels perform only slightly worse than the
Gaussian ones is an important finding for applications in time-critical envi-
ronments. An LSVM with approximately 1300 support vectors classifies 5000
examples (89-dimensional) in less than 10ms while it takes a GSVM with the
same number of SV close to 10 s (done on a mobile Pentium III 1.2 GHz with
256 DDR RAM); this difference could turn out to be crucial in a real-time
system that, besides classification, also needs to perform onset detection and
compute appropriate descriptors.

2 http://www.csie.ntu.edu.tw/˜cjlin/looms/
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As there is a vast amount of candidate descriptors for the modelling of
audio and various ways of encoding them, future research should try to extend
the set of descriptors and at the same time, for the sake of simplicity, reduce
it by means of variable selection methods (e.g. as in Degroeve et al. (2002)).
Findings related to what kind of descriptors are relevant for the recognition
of percussion would also provide interesting feedback to researchers in the
field of musicology and perceptual psychology.
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Abstract. The aim of this analysis is the demonstration that the high and the
low musical register (Soprano, Alto vs. Tenor, Bass) can be identified by timbre,
i.e. after pitch information is eliminated from the spectrum. This is achieved by
means of pitch free characteristics of spectral densities of voices and instruments,
namely by means of masses and widths of peaks of the first 13 partials (cp. Weihs
and Ligges (2003b)).

Different analyses based on the tones in the classical song “Tochter Zion” com-
posed by G.F. Händel are presented. Results are very promising. E.g., if the char-
acteristics are averaged over all tones, then female and male singers can be easily
distinguished without any error (prediction error of 0%)! Moreover, stepwise linear
discriminant analysis can be used to separate even the females together with 28
high instruments (“playing” the Alto version of the song) from the males together
with 20 low instruments (playing the Bass version) with a prediction error of 4%.
Also, individual tones are analysed, and the statistical results are discussed and
interpreted from acoustics point of view.

1 Introduction

Sound characteristics of orchestra instruments derived from spectra are cur-
rently a very important research topic (see, e.g., Reuter (1996, 2002)). The
sound characterization of voices has, however, many more facets than for
instruments because of the sound variation in dependence of technical level
and emotional expression (see, e.g., Kleber (2002)).

During a former analysis of singing performances (cp. Weihs and Ligges
(2003b)) it appeared that register can be identified from the spectrum even af-
ter elimination of pitch information. In this paper this observation is assessed
by means of a systematic analysis not only based on singing performances
but also on corresponding tones of high and low pitched instruments. The
aim of this analysis is the demonstration that the high and the low musical
register (Soprano, Alto vs. Tenor, Bass) can be identified by timbre, i.e. by
the spectrum after pitch information is eliminated. To this end, pitch inde-
pendent characteristics of spectral densities of instruments and voices are
generated. As in the voice prints introduced in Weihs and Ligges (2003b) we
use masses and widths of peaks of the first 13 partials, i.e. of the fundamental
and the first 12 overtones. These characteristics are computed for represen-
tatives of all tones involved in the classical song “Tochter Zion” composed
� The work of Claus Weihs and Uwe Ligges has been supported by the Deutsche

Forschungsgemeinschaft, Sonderforschungsbereich 475.



Register Classification by Timbre 625

by G.F. Händel. For the singing performances the first representative of each
note was chosen, for the instruments the representatives were chosen from
the “McGill University Master Samples” (see section 2). These data were
analysed with Linear Discriminant Analysis (LDA) and decision trees (see
section 3). The results are very promising (see section 4). Some acoustics’
explanations of our findings are given in section 5.

2 Data

The analyses of this paper are based on time series data from an experiment
with 17 singers performing the classical song “Tochter Zion” (Händel) to a
standardized piano accompaniment played back by headphones (cp. Weihs
et al. (2001)). The singers could choose between two accompaniment ver-
sions transposed by a third in order to take into account the different voice
types (Soprano and Tenor vs. Alto and Bass). Voice and piano were recorded
at different channels in CD quality, i.e. the amplitude of the corresponding
vibrations was recorded with constant sampling rate 44100 hertz in 16-bit
format. The audio data sets were transformed by means of a computer pro-
gram into wave data sets. For time series analysis the waves were reduced to
11025 Hz (in order to restrict the number of data), and standardized to the
interval [−1, 1]. Since the volume of recording was already controlled individ-
ually, a comparison of the absolute loudness of the different recordings was
not sensible anyway. Therefore, by our standardization no additional infor-
mation was lost.

Since our analyses are based on characteristics derived from tones corre-
sponding to single notes, we used a suitable segmentation procedure (Ligges
et al. (2002)) in order to get data of segmented tones corresponding to notes.
The periodograms (cp. Brockwell and Davis (1991)) used for the analyses
described in this paper were calculated from overlapping sections of 2048 ob-
servations, overlap starting in the middle of the preceding section. This way,
we get roughly 11(= 2 · (11025/2048)) periodograms per second of sound,
whereas the duration of the whole song is roughly 60 seconds. These peri-
odograms are classified to notes, and the notes are smoothed by means of
double median smoothing. Based on the smoothed series of notes, begin and
end of sung notes are decided upon. For further analysis the first representa-
tive of the notes with identical pitch in the song was chosen. This leads to 9
different representatives per voice in “Tochter Zion”.

The notes involved in the analyzed song were also identified in the “McGill
University Master Samples” either in the Alto or in the Bass version for the
following instruments:

Alto version (McGill notation): aflute-vib, bells, cello-bv, clari-bfl, clari-
efl, elecguitar1, elecguitar4, enghorn, flute-flu, flute-vib, frehorn, frehorn-
m, marimba, oboe, piano-ld, piano-pl, piano-sft, sax-alt, tromb-ten, trump-
ba, trump-c, trump-csto, vibra-bow, vibra-hm, viola-bv, viola-mv, violin-bv,
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Fig. 1. Pitch independent periodogram (professional bass singer).

violin-mv.
Bass version: bassoon, bflute-flu, bflute-vib, cello-bv, elecbass1, elecbass5,

elecbass6, elecguitar1, elecguitar2, elecguitar4, frehorn, frehorn-m, marimba,
piano-ld, piano-pl, piano-sft, tromb-ten, tromb-tenm, tuba, viola-mv.
Thus, 28 high instruments and 20 low instruments were chosen together with
10 high female singers and 7 male.

From the periodogram corresponding to each tone corresponding to an
identified note voice print characteristics are derived (cp. Weihs and Ligges
(2003b)). For our purpose we only use the size and the shape corresponding
to the first 13 partials, i.e. to the fundamental frequency and the first 12 over-
tones, in a pitch independent periodogram (cp. Figure 1). In order to measure
the size of the peaks in the spectrum, the mass (weight) of the peaks of the
partials are determined as the sum of the percentage shares of those parts of
the corresponding peak in the spectrum which are higher than a pre-specified
threshold. The shape of a peak cannot easily be described. Therefore, we only
use one simple characteristic of the shape, namely the width of the peak of
the partials. The width of a peak is measured by the half tone distance be-
tween the smallest and the biggest frequency of the peak with a spectral
height above a pre-specified threshold. Overall, every tone is characterized
by the above 26 characteristics which are used as a basis for classification.
For details on the computation of the measures see Güttner (2001). Note that
pitch information is eliminated in that the frequencies corresponding to fun-
damentals and overtones are ignored in the pitch independent periodogram.
Mass is measured as a percentage (%), whereas width is measured in parts
of halftones (pht). Figure 2 illustrates the voice print corresponding to the
whole song “Tochter Zion” for a particular singer. For masses and widths
boxplots are indicating variation over the involved tones. For the analyses
of this paper we ignore halftone distance and formant intensity (cp. Weihs
and Ligges (2003b)), and use the other characteristics of the voice print for
individual tones, as well as averaged characteristics over all involved tones,
leading to only one value for each characteristic per singer or instrument.

3 Classification methods

On these data we applied supervised classification methods (see, e.g., Michie
et al. (1994)) trying to reproduce the pre-defined grouping by means of classi-
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Fig. 2. Voice print of professional bass singer.

fication rules from the chosen voice print characteristics. We applied the easily
interpretable classification tree (more specifically RPART by Therneau and
Atkinson (1997)) and the well-known statistical linear discrimination analysis
(LDA) to our data. These two classification methods are often identified to
be adequate for quite different situations. For such methods the classification
quality can, e.g., be measured by means of the misclassification rate, i.e. the
ratio of the wrongly classified cases to the overall number of cases, which will
be estimated by cross-validation.

4 Results

4.1 Individual tones, voices only

Let us start with the analysis of individual tones. If one restricts oneself to
voices, then the best classification with only an error rate of 9.2% (estimated
by 10-fold cross-validation) resulted from using only MassFF, MassOT01,
WidthFF, WidthOT01 as predictors in LDA. The classification is detailed
in Table 1. Obviously, the middle voice types Alto and Tenor generate the
most errors. The results even show that the four characteristics MassFF,
MassOT01, WidthFF, WidthOT01 are more appropriate for prediction of
register than all 26 characteristics together (12.4% error). Thus, there are
characteristics that deliver prediction irrelevant information for the classifi-
cation rule. The prediction error of 9% of the individual notes appear to be
acceptable. The most important characteristics for separation of high and low
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Table 1. Classifying individual tones of voices with LDA(MassFF, MassOT01,

WidthFF, WidthOT01).

high low error

Soprano 33 3 0.083
Alto 47 7 0.130
Tenor 3 24 0.111
Bass 1 35 0.028

voices are MassFF and WidthFF with 8.5% apparent error rate. However,
the groups are not very well separated even for these characteristics. MassFF
alone is not sufficient for prediction (21.6% error).

In the following we will mainly concentrate on reporting of the results
of LDA(MassFF, MassOT01, WidthFF, WidthOT01). Other results will only
be mentioned in comparison. Note, however, that decision trees were never
competitive.

4.2 Individual tones, voices and instruments

Considering the voices together with the instruments, the error rate of
LDA(MassFF, MassOT01, WidthFF, WidthOT01) is roughly doubled, name-
ly from 9.2% to 17.1% of the individual notes (estimated by 10-fold cross-
validation). The only instruments which are predominantly misclassified are
bass French horn and bass-marimba with 72% and 89% error, correspond-
ingly. Again, the characteristics MassFF and WidthFF separate high and
low particularly well (20.7% apparent error rate). However, the combination
MassOT01 and WidthOT01 is even somewhat better (19.9%). Separation of
groups is even worse than for voices alone. MassFF alone is, again, not suffi-
cient for prediction (38.1% prediction error). Note, however, that LDA based
on all 26 characteristics leads to the distinctly best error rate (14.2%). Here
only bass-marimba is particularly bad predicted.

4.3 Averaged tones, voices only

After averaging the characteristics of the individual tones, i.e. using only one
value for each characteristic per voice, prediction is possible without any er-
ror (0% error estimated by 17-fold cross-validation) using the classification
rule based on LDA(MassFF, MassOT01, WidthFF, WidthOT01). The appar-
ent error rate is 0% for three pairs of characteristics, namely for “MassFF,
WidthFF”, “MassOT01, WidthOT01”, and “WidthFF, WidthOT01”. Again,
MassFF alone is not sufficient for prediction (error rate = 11.8%).

4.4 Averaged tones, voices and instruments

If instruments are considered also, then the error rate is only increasing to
4.6% for LDA(MassFF, MassOT01, WidthFF, WidthOT01) (estimated by 65-
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Table 2. Classification of voices and instruments based on averaged characteristics.

LDA(MassFF, MassOT01, LDA(all

WidthFF, WidthOT01) charact.)

high low error high low error

Soprano 4 0 0.000 4 0 0.000
Alto 6 0 0.000 6 0 0.000
A-instr. 28 0 0.000 28 0 0.000

Tenor 0 3 0.000 1 2 0.333
Bass 0 4 0.000 0 4 0.000
B-instr. 3 17 0.150 1 19 0.050

fold cross-validation, i.e. by leave-one-out cross validation). Only the low
instruments cannot be predicted perfectly (see Table 2). When consider-
ing all characteristics the corresponding error rate of the LDA classification
rule is somewhat decreasing to 3.1%. In the case of LDA(MassFF, MassOT01,
WidthFF, WidthOT01) only three bass-instruments are wrongly predicted as
high, namely French horn (stomped and not stomped) and Marimba. Using
LDA with all characteristics only Marimba and one Tenor singer was wrongly
classified. The scatterplot matrix shows that the variable pair “MassOT01,
WidthOT01” leads to the smallest apparent error rate (see Figure 3). Again,
using only MassFF for prediction is not sufficient (41.5% error!).

5 Acoustics

Our findings are well supported by acoustics. Some explanations are the fol-
lowing. The relatively small opening of the human mouth acts as a high pass
filter, i.e. the lower the tone the less the mass of the fundamental relative to
the 1st overtone. This was already found in the middle of the last century
(s. Scheminzky (1943), 428). From this it, e.g., follows that sopranos have
more mass in the fundamental than basses. Moreover, synthesizing the fun-
damental together with a 18 dB weaker 1st overtone plus a vibrato typical
for singing voices (6 Hz, 1–2% lift) leads to the impression of a soprano voice
(Voigt and Reuter (1998), 18–20). Thus, the fundamental together with the
1st overtone is enough to produce voice similar tones. Overall, the fundamen-
tal and the 1st overtone appear to be important candidates for the separation
of high an low register for voices.

Sopranos nearly always use head voice with strong fundamentals, basses
nearly always chest voice. Altos and Tenors change between the two types
of register, which leads to errors in register prediction. Therefore, overlap of
registers occur for altos and tenors, and these voice cannot be attached to
only one type of register in the case of individual tones.

Most music instruments are too small for a strong production of their
lowest fundamentals. Thus, the fundamental has the more mass the higher
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Fig. 3. Scatterplot matrix of MassFF, MassOT01, WidthFF, WidthOT01 with
class separating lines and apparent error rates for voices and instruments based on
averaged characteristics (H = high, T = low).

the tone is, and a strong fundamental relative to the 1st overtone indicates a
high register for music instruments. The most problems occurred with French
horn and Marimba. However, comparing French horn and Bassoon in their
low register both instruments have similar spectral properties, e.g. a strong
formant area 300–500 Hz. For both instruments the fundamental reaches
the formant area with increasing pitch, however, slowly for the French horn,
and abruptly for the Bassoon (Reuter (2002), 263, 327). Thus, the change
between a strong fundamental and a strong 1st overtone is more exact for the
Bassoon, leading to a lower error rate. For the Marimba in its low register
partials are not harmonic so that the impression of the fundamental is built
by a residual tone not included in the spectrum (Hall (1997), 176). This
causes the problems with classification. Overall, following these arguments,
except for French horn and Marimba the fundamental and the 1st overtone
appear to be good indicators for register.

6 Conclusion

Altogether, the found characteristics lead to astonishingly well prediction
of register. Individual tones are predicted correctly in more than 90% of
the cases for the sung tones, and classification is only somewhat worse if
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instruments are included in the analysis. Even better, if the characteristics
are averaged over all involved tones, then voice type (high or low) can be
predicted without any error, and only with at most two instruments (French
horn and Marimba) severe classification problems appear, French horn not
being a problem when using all characteristics for classification. Thus, there
are small problems with predicting the register of individual tones, but on
averages the instruments can be identified as high or low nearly without
problems, with the exception of at least Marimba in its Bass version.
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Lyapunov Exponent
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Abstract. This paper deals with the problem of the discrimination between well-
predictable and not-well-predictable time series. One criterion for the separation
is given by the size of the Lyapunov exponent, which was originally defined for
deterministic systems. However, the Lyapunov exponent can also be analyzed and
used for stochastic time series. Experimental results illustrate the classification
between well-predictable and not-well-predictable time series.

1 Introduction

For the description and the analysis of time series it is useful to initially intro-
duce a coarse classification in order to be able to choose the most appropriate
tools for the more detailed analysis.

One important classification is to discriminate between well-predictable
and not-well-predictable processes. Information about the predictability of
a process facilitates e.g. a sensible choice of the forecasting window. In the
case of chaotic time series the prediction accuracy can decrease considerably
already after only a few time-steps in contrast to a stationary stochastic
process (Abarbanel (1996), Casdagli (1991)).

In addition, in the analysis of stochastic processes there often is the prob-
lem that only one time series is available and no previous knowledge about
the temporal-functional relationship is given.

Despite these restrictions a formal identification of predictable time series
can be achieved by analyzing the Lyapunov spectrum or the largest Lyapunov
exponent of the time series (this is often just referred to as the Lyapunov
exponent). Originally, the Lyapunov exponent was defined for non-stochastic,
deterministic systems. Anyhow, the concept behind the Lyapunov exponent
can be embedded into a statistical framework.

The remainder of this paper is organized as follows. After an introduction
of the Lyapunov exponent (Sec 2) we will show that it can be used as a
criterion to discriminate between well-predictable and not-well predictable
time series (Sec 4). Experimental results of a BTA-deep-hole drilling process

� This work has been supported by the Deutsche Forschungsgemeinschaft, Sonder-
forschungsbereich 475.
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Fig. 1. Two trajectories are regarded over time in order to observe the convergence
or divergence of a process.

illustrate the method of separation by the Lyapunov exponent (Sec 4). A
conclusion is drawn in Sec. 5.

2 Lyapunov exponent

One possibility to distinguish between well-predictable and not-well-predict-
able time series is given by the computation of the largest Lyapunov exponent
(often briefly called the Lyapunov exponent). This was originally defined for
non-stochastic, deterministic processes. However, the Lyapunov exponent can
also be analyzed and used for the stochastic case.

Firstly, it will be introduced for deterministic processes. The dynamics of
deterministic processes is defined by

xt+1 = ft(x0) = f(xt) , (1)

with initial point or initial state x0 ∈ IRk, xt describes the state at time
t. The functional relationship is described by f and it is assumed that f is
differentiable everywhere. Hence, the dynamics is entirely deterministic.

The Lyapunov exponent describes the divergence of two different trajec-
tories. This can be motivated as follows:

In Fig. 1 the behavior of two nearby trajectories is shown. The starting
point x∗

0 is “nearby” but displaced from x0. Furthermore, the trajectories
follow the same functional relationship. The distance between x0 and x∗

0 is
given by

∆0 = |x∗
0 − x0|. (2)

Hence, the distance after one iteration can be approximated by applying the
first order Taylor expansion as follows:

∆1 = |x∗
1 − x1| = |f(x∗

0) − f(x0)| ≈ |f ′(x0)| · |x∗
0 − x0|. (3)

After N iterations the distance between the trajectories arises from using the
chain rule:

∆N = |x∗
N − xN | ≈

N−1∏
i=0

|f ′(xi)| · ∆0 (4)



634 Busse

Thus, we are interested in diverging or converging of the trajectories after
N iterations in comparison to the beginning. This is estimated by an expan-
sion rate. Obviously, the expansion rate of the trajectories can be expressed
by

∆N

∆0
≈

N−1∏
i=0

|f ′(xi)| = eN ·λN (x0) , (5)

where λN is the characteristic value dependent on time N and x0. This ex-
pansion rate illustrates the behavior of the trajectories after N iterations in
dependence of ∆0 and x0.

The consideration of the asymptotic behavior for N → ∞ yields the
definition for the Lyapunov exponent of deterministic processes:

λ(x0) := lim
N→∞

1
N

N−1∑
i=0

ln |f ′(xi)|. (6)

It is the long time consideration of the average logarithmic derivation after
N equals infinity many iterations. The Lyapunov exponent measures the
asymptotic average logarithmic expansion rate along two trajectories.

The derivative f ′ of the function f is often unknown. It has to be evaluated
from the given observation series. Various approaches for the calculation of λ
have been suggested in the literature (for more details see for example Sano
and Sawada (1985), Kantz and Schreiber (1997)).

If stochastic processes are considered, two cases have to be distinguished
separately: The random effect is additive in the functional equation and the
random effect is not necessarily additive.

First the case with an additive noise is considered. The dynamics of sto-
chastic processes with an additive random effect is defined by

Xt+1 = f(Xt) + εt. (7)

By transforming

Xt+1 = g(Xt, εt), with g(Xt, εt) = f(Xt) + εt (8)

we obtain the same derivatives of g and f so that the definition of the Lya-
punov exponent for stochastic processes with an additive noise is directly
derived from the deterministic case. The function g is inserted in the defini-
tion of the Lyapunov exponent for deterministic processes and the definition
for stochastic processes with an additive noise is obtained:

λ(X0) := lim
N→∞

1
N

N−1∑
i=0

ln || d

dXt
g(Xt(xi), εt)|. (9)

However, an additive noise can not always be justified because this as-
sumption is too restrictive with regard to possible model classes. Thus, the
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Fig. 2. Information loss of the information area I0 in comparison to the information
area It

general case is considered. The dynamics of stochastic processes with a non-
necessarily additive noise is defined by

Xt+1 = h(Xt, εt). (10)

The Lyapunov exponent can be naturally generalized as:

λ̃(x0) := lim
N→∞

1
N

∑
t = 0N − 1[ln | d

dXt
h(Xt(x0), εt)|] (11)

In any case, as an estimator of the Lyapunov exponent

λ̂ =
1
N

N−1∑
i=0

ln | d

dXt
h(Xt, εt)|. (12)

is taken. For details about the Lyapunov exponent for deterministic and
stochastic processes see Busse et al. (2001), Busse (2003), and Busse and
Weihs (2004).

3 Well-predictable and not-well-predictable processes

The knowlegde about the quality of prediction of processes is an important
property for the interpretation of the predicted results. The greater the infor-
mation loss in a multi-step-forcasting the greater the decrease in the quality
of prediction. Thus, it is interesting to know a measure of information loss
for avoiding possible misinterpretations. The Lyapunov exponent can be in-
terpreted as an expansion rate with a direct context to the information loss
over time.

If we assume that the true starting point x0 of a time series is possibly
displaced by an ε, we know only the information area about the starting
point we do not know the proper position of x0. After t-time steps the time
series is in the information area at time t, It and after t+ 1-time steps in the
information area It+1 (Fig. 2). If the information area is small, we have more
information about the true position of the data point in contrast to a greater
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information area (Beck (1993)). As an adequate measure of information the
information content bn of a true position of a data point in an information
area In of the volume ∆n is given by:

bn := ln
1
∆n

= − ln(∆n). (13)

The connection to the volume of an information area is given by

∆n = exp(−bn). (14)

It can be characterized by the distance between two trajectories of a process
at time n. For the evaluation of the quality of prediction we are interested
in the information loss from one time to the next. For this the difference of
two information contents before and after an iteration step are determined.
Thus, the information loss IV about the true position of a data point in one
iteration step is given by

IV = bn − bn+1 = ln∆n+1 − ln∆n ≈ ln |f ′(xn)|, (15)

with ∆n+1 ≈ |f ′(xn)| · ∆n. If the difference is positive, IV describes an
information increase, whereas an information loss is given, if In is less than
In+1.

The information loss is the logarithmic first derivative of the functional
relationship of a process, so that the Lyapunov exponent can be used for the
description of the average information loss:

λ(X0) = lim
N→∞

1
N

N−1∑
i=0

ln |f ′(Xi)| ≈ lim
N→∞

1
N

N−1∑
i=0

(bi − bi+1). (16)

In contrast to the traditional classification of time series we do not use
the given data points but the possible position areas like k-means clustering
(Hastie et al. (2001)).

The classification of both deterministic and stochastic processes by the
Lyapunov exponent is given by:

• λ(x0) < 0 ⇔ ∆N < ∆0 ⇒ good predictability
The information about the true position of the data increases due to
the reduction of the information area. Consequently, we get a good pre-
dictability.

• λ(x0) ≈ 0 ⇔ ∆N ≈ ∆0 ⇒ predictability like a random walk
Here, the information content levels off. We have neither information loss
nor information increase.

• λ(x0) > 0 ⇔ ∆N > ∆0 ⇒ bad predictability
The information loss about the true position of the data increases over
time due to the information area increases. Consequently, we get a bad
predictability.
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Fig. 3. Acceleration of the drill head in the non-chatter (left) and the chatter (right)
area

4 Experimental results

The Lyapunov exponent achieved a distinction between well-predictable and
not-well-predictable time series. We applied this classification to a real-world-
problem. The aim was to analyze a BTA-deep-hole drilling process and to
control at best working conditions (VDI (1974)). BTA-deep-hole drilling is
used to produce holes with a high length-to-diameter-ratio. But the slen-
derness of the tool can yield unwanted states, like chatter. This should be
avoided, because chatter generates surface discontinuity at the workpiece,
noise exposure and increases the wear of cutting edges substantially.

For the analysis we were given a time series of acceleration data with dif-
ferent types of the process. First the non-chatter area with a weakly periodi-
cal part and the chatter area with a strongly periodical part. The transition
between these areas appears funnel shaped.

The aim was to identify the chatter early to avoid the possible conse-
quences. For this we characterize the transition in time windows of length
1024 data points. We chose the Lyapunov exponent because its ability to dis-
tinguish between good and bad predictability makes it possible to estimate
the starting point of the transition. For every time window in the transition
area the Lyapunov exponent of the given time series was evaluated. For this,
equation (6) and equation (12) respectively is estimated by the approach of
Kantz and Schreiber (1997). In order to identify the “true” transition it is
important whether the Lyapunov exponent is less than 0, that is to classify
a good forecast-property or whether λ is greater than 0.

For the interpretation of the resultsnote that amplitude increase is in
the time window 559313–560335. The identification of the change between
the non-chatter and the chatter area occured one and a half drill rotations
earlier than the real amplitude increase (see Table 1, 556240–558287).



638 Busse

Table 1. Lyapunov exponent in time windows in the transition area.

time windows (data points) Lyapunov exponent classification decision

550096–551119 0.004 > 0

551120–552143 0.009 > 0

552144–553167 0.008 > 0

553168–554191 0.019 > 0

554192–555215 0.016 > 0

555216–556239 0.012 > 0

556240–557263 0.003 > 0

557264–558287 -0.004 < 0

558288–559312 -0.003 < 0

559313–560335 -0.004 < 0

560336–561359 -0.004 < 0

561360–562383 -0.013 < 0

The distinction between well predictable and not-well predictable pro-
cesses by the Lyapunov exponent was applied with good results to various
time series. For more details about other applications see for example Busse
(2003).

5 Conclusion

We analyzed the Lyapunov exponent in the context of the separation be-
tween well-predictable and not-well-predictable processes. Such a classifica-
tion seems useful since it would facilitate a more detailed analysis of the
underlying process with respect to the choice of the appropriate tools. In
this work the Lyapunov exponent was suggested for separation. This crite-
rion describes the asymptotical average logarithmic expansion of the model
derivative.

It was shown that the Lyapunov exponent can be used for the evaluation
of predictability. The Lyapunov exponent as a classification criterion can be
used without knowledge stochastics of the process and without knowledge
about the temporal-functional relationship, only using the given time series.

In addition, different areas of a BTA-deep-hole drilling process were clas-
sified by the Lyapunov exponent. Detection of the transition to chatter was
possible substantially earlier than the rise in acceleration was visible.

References

ABARBANEL, H. D. I. (1996): Analysis of Observed Chaotic Data. Institute for
Nonlinear Science. Springer Verlag, New York.

ARNOLD, V. I. and AVEZ, A. (1968): Ergodic problems of classical mechanics.
W. A. Benjamin, New York.



Classification of Processes by the Lyapunov Exponent 639
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Abstract. Over the past few years continuously new process capability indices
have been developed, most of them with the aim to add some feature missed in
former process capability indices. Thus, for nearly any thinkable situation now a
special index exists which makes choosing a certain index as difficult as interpreting
and comparing index values correctly.
In this paper we propose the use of the expected value of a certain type of function,
the so-called desirability function, to assess the capability of a process. The resulting
index may be used analogously to the classical indices related to Cp, but can be
adapted to nearly any process and any specification. It even allows a comparison
between different processes regardless of their distribution and may be extended
straightforwardly to multivariate scenarios. Furthermore, its properties compare
favorably to the properties of the “classical” indices.

1 Introduction

The amount of indices developed in recent years has lead to insecurity among
the practitioners which index to use. The deficits of the classical indices re-
lated to the Cp-family have been extensively discussed (Kotz and Johnson
(1993), Jessenberger (1999)) and have led to the continuous development of
new indices which are custom-designed to eliminate these deficits one after
the other. A special problem arises with the interpretation of all these index
values. Most often the index values are associated with the percentage of
conforming or non-conforming (NC) product. However, this is only true if
implicit assumptions are valid. A Cp-value of 1 will only indicate a percent-
age of NC product of 0.27% if and only if the specification is symmetric, the
process is normally distributed, the mean equals the specification midpoint
and the process is under statistical control. In practice, the validity of these
assumptions often is not verified. If one additionally takes into account that
most capability values are estimates rather than true values and that the
estimators of nearly all process capability indices are biased it is understand-
able that some authors propose to stop using process capability indices at all

�� The work of Claus Weihs has been partly supported by the Collaborative Re-
search Centre “Reduction of Complexity in Multivariate Data Structures” (SFB
475) of the German Research Foundation (DFG). The simulations were run on
personal computers using the software S-PLUS 4.3 (Statistical Sciences Inc., Seat-
tle). The simulation programs are available through the first author.

� e-mail: weihs@statistik.uni-dortmund.de
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(Pignatiello and Ramberg (1993)).
However, in this paper we will propose another index which overcomes the
above-mentioned problems and has the properties needed to assess the qual-
ity of a process: ease of interpretation, validity for all specification types,
flexibility with respect to process distributions, and existence of a good esti-
mator.
In the following we will present the new index for uni- and multivariate
processes, and compare its properties with the main classical indices in the
bivariate case. As all classical indices are dependent on the validity of the
normal assumption we will only discuss the new index for normal processes
although the extension for other distributions is straightforward. For quality
characteristics X we will assume a univariate or multivariate normal distrib-
ution (with p dimensions) with mean (vector) µ and variance σ2 / covariance
matrix Σ , denoted by X ∼ N(µ, σ2) and X ∼ Np(µ,Σ), respectively. In the
multivariate case often a process ellipsoid is used to characterize the process
properties. This is defined to be the ellipsoid which contains a certain per-
centage (usually 99.73%) of the process distribution. In the univariate case
the ellipsoid collapses to an interval containing the desired percentage of the
process distribution.
For the univariate case, specifications consist of a target value T and lower
and/or upper specification limits (LSL, USL). If the target value lies on the
midpoint m := (LSL+USL)/2 of the specification interval, the specification
is called a (two-sided) symmetric specification, else a (two-sided) asymmet-
ric specification. If either the lower or the upper specification limit is infi-
nite while still retaining the nominal optimal target value, the specification
is called one-sided. Multivariate specification is described by the Cartesian
product of the univariate specifications and denoted by (M1). Frequently, el-
lipsoids are used as multivariate specification regions which are typically the
largest-volume ellipsoids completely contained in (M1), denoted by (M2).
In this paper we will develop uni- and multivariate indices, but restrict our-
selves to the discussion of the multivariate case because of space restrictions.
For comparison we will use the most common classical multivariate indices.
A multivariate analogue of the univariate Cp-Index (Taam et al. (1993)) is
given by:

MVCp :=
vol(max. vol. ellipsoid in specification)

vol(process ellipsoid)
=

� |A|
|Σ|

�1/2 �
1

χ2
p;0.9973

�p/2

.

χ2
p;0.9973 denotes the 99.73%-quantile of the χ2-distribution with p degrees

of freedom and A = diag(d2
1, ..., d

2
p), dj := (USLj − LSLj)/2, j = 1, ..., p,

is the specification matrix defining the specification ellipsoid (M2) given by
{x|(x − m)′A−1(x − m) ≤ 1}, m := (m1...mp)′, mi := (USLi + LSLi)/2.
The multivariate analogue of the Cpm-Index (Taam et al. (1993)) additionally
includes the Mahalanobis distance between the mean and the target vector
to measure a possible deviation of the mean from the target:
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MVCpm : =
vol(max. vol. ellipsoid in specification)
vol((x − T )′Σ−1

T (x − T ) ≤ χ2
p;0.9973)

where ΣT := E[(X − T )(X − T )′] = Σ + (µ − T )(µ− T )′

=
( |A|

|Σ|
)1/2

(
1

χ2
p;0.9973

)p/2/√
1 + (µ − T )′Σ−1(µ − T ) .

2 Combining capability and desirability - the indices
EDU and EDM

Desirability indices were invented in experimental design to summarize sev-
eral response variables and thus identify the direction of optimization (Der-
ringer and Suich (1980)). Typically, several - possibly contradicting - response
variables have to be optimized simultaneously where each response can be
modeled as a (different) function of a common set of predictors. The aim is to
have each response approach as much as possible their target optimum value
while at the same time ensuring that the overall result still is unacceptable
if only one of the responses attains an unacceptable value.
Derringer and Suich (1980) propose to transform the responses to so-called
“desirability values” between 0 and 1, which takes the value 1 if the quality
characteristic attains the target value and decreases if it deviates from the
target. Undesirable values have the desirability 0. Typically, for a two-sided
specification with target T and lower and upper specification limits LSL and
USL one would choose a desirability function as follows:

Dr;s : IR → [0, 1],

x �→ Dr;s(x) :=

⎧⎪⎨⎪⎩
(x − LSL)r/(T − LSL)r , for x ∈ [LSL, T ]
(USL − x)s/(USL− T )s , for x ∈ [T, USL]
0 , else.

where r, s ∈ IR are suitably chosen constants to reflect how rapidly a devi-
ation from the target becomes undesirable. For one-sided specifications the
idea is easily extended. Usually in one-sided specifications there exists a point
beyond which desirability improves only marginally and thus is defined to be
constant 1.
The desirability index is then defined as the geometric mean of the desirabil-
ity functions in each dimension (cf. Harrington (1965), and Derringer and
Suich (1980)). In this paper we will use a different approach and define the
indices EDU and EDM as the expected desirability for a given process. The
EDU-Index (expected desirability, univariate) is defined as:

EDU := E(D(X)).
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Analogously, the multivariate index EDM (expected desirability, multivari-
ate) is given as

EDM := E(DMV (X)),

where D(x) and DMV (x) are suitable univariate and multivariate desirability
functions.
This construction has the advantage that the EDU and EDM index values in
principle can be calculated regardless of the distribution of the process and
regardless of the specification, as long as the expectation over the desirability
function exists.
Through the custom-designed desirability function the practitioner gains flex-
ibility as any shape and structure of the specification region can be modeled
through this function. Taking the expectation even allows differently dis-
tributed processes to be compared directly with each other whereas for the
classical indices normality must hold.
The explicit form of the EDU-Index with a linear desirability function D1 for
a normal distribution is given in the following (cf. Jessenberger (1999)) as an
example.
Let X ∼ N(µ, σ2) with density function f and distribution function F ,
(LSL, T, USL) a two-sided specification and D1 the linear desirability func-
tion (r = s = 1).
Let δ := (µ − T )/d, η := σ/d, β := (T − m)/d, d := (USL − LSL)/2, m :=
(USL+LSL)/2, a := (−(δ + β) − 1)/η, b := (−(δ + β) + 1)/η. Then EDU is
given as:

EDU = δ

[
2

1 − β2
Φ

(−δ

η

)
− Φ(a)

1 + β
− Φ(b)

1 − β

]
− η

[
2

1 − β2
ϕ

(−δ

η

)
− ϕ(a)

1 + β
− ϕ(b)

1 − β

]
− Φ(a) + Φ(b)

where ϕ and Φ denote the standard normal density and distribution function,
respectively.

The multivariate desirability function DMV is defined as follows:

DMV (x1, x2, ..., xp) := min(D1(x1), D2(x2), ..., Dp(xp)),

where Di(xi) are desirability functions for Xi, i = 1, ..., p.
This also shows an obvious way of finding the distribution of DMV . Thus,
DMV is defined as a non-standard desirability index in that the univariate
desirability functions are joined via a minimum function and not via the more
usual geometrical mean (cp. Kim and Lin (2000)). For the explicit expression
of EDM in the bivariate case with linear desirability functions and normality
see Jessenberger (1999).

In this paper we will concentrate on the comparison of EDM with the
classical indices.
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3 Discussion

Bivariate normal processes will be used to illustrate the performance of the
EDM-Index. Table 1 gives the variances σ2

1 = σ2
2 , covariances σ12 and corre-

lations ρ of the examined processes A, B, C and D. The two quality charac-
teristics of the processes A and C are highly correlated, whereas the variables
for processes B and D are uncorrelated.

Table 1. Example processes

Process A B C D

σ2
1 = σ2

2 50 15 15 10
σ12 49 0 14 0
ρ 0.98 0 0.9333 0

For both quality characteristics a symmetric univariate specification of
(LSL, T, USL) = (35, 50, 65) is assumed. The Cartesian product of the uni-
variate specifications will be denoted by (M1) = (35,50,65)×(35,50,65), the
specification given by the largest-volume ellipsoid will be denoted by (M2).
Furthermore, the behavior for on-target and off-target processes will be ex-
amined. For on-target processes µ equals the target value: µ = T = (50, 50)′,
for off-target processes the process mean is moved into the direction of the
bottom-left corner of the specification area: µ = (40, 40)′ �= T . Figure 1 shows
process and specification ellipses for on- and off-target comparison. Table 2

Table 2. Example processes

Process 1 − q MV Cp EDM 1 − q MV Cpm EDM
(µ = T ) (µ = (40, 40)′)

A 0.175 1.912 0.595 0.171 1.100 0.338
B 0.466 1.268 0.709 0.340 0.335 0.211
C 0.612 3.532 0.760 0.513 1.257 0.311
D 0.751 1.902 0.762 0.470 0.415 0.224

shows the percentage of conforming product and the process capability index
(PCI) values for MVCp, MVCpm and EDM for the four example processes,
the highest values indicating the best processes are marked in bold type. For
all indices except EDM the processes C or D are the best. This result seems
to be intuitively sensible because these are the processes with the smallest
variation. For MVCp and MVCpm even the ranking of the processes A to
D is the same: The best process is the process with the smallest variation
and highest correlation (process C) and the worst process is the process with
largest variation and without correlation (process B). The reason for the good
performance of process C is that the volume of the corresponding process el-
lipsoid is much smaller than the specification ellipsoid. However, especially in
the case of process A (ranked second for both classical indices) this ignores
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the fact that a high percentage of the product produced with process A lies
outside the specification limits and is thus not or only partially fit for use.
The process ranking according to the EDM index is different. For the on-
target case the ranking of the processes by the EDM index is analogous to
the percentage of conforming product 1-q. Thus process D is the best and
process A the worst process according to EDM. For the off-target case the
situation changes. The highly correlated processes A and C are preferred to
the processes without correlation (B and D). It is intuitively clear that this
is because the deviation of the process means coincides with the direction of
correlation for processes A and C so that a larger percentage of the distri-
bution is close to the target. With the same argument A is preferred to C.
Overall it can be said that the EDM index - per definition -prefers processes
that are “on average close to target”.

Fig. 1. Specification (M1), process and specification ellipses (M2) for bivariate
processes

4 Estimation

Let us concentrate again on the bivariate case. Let δ := D(µ−T ), H := DΣD
and β := D(T − m), where D := diag(1/d1, 1/d2), m := (m1 m2)′, mi :=
(USLi + LSLi)/2 and di := (USLi − LSLi)/2, i = 1, 2. With this, MVCp,
MVCpm may be written as functions of δ, η or H , respectively, EDU was
expressed in analogous terms above.
For the estimation of MVCp and MVCpm estimates of the transformed mean
and variation are inserted into the functional form and the resulting value
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is used as an estimate for each index. For the estimation of the EDM-Index
two approaches are considered. If the functional form of EDM is known, it
is possible to insert estimates instead of the unknown distribution parame-
ters expectation and variation (plug-in estimator). Secondly, estimates can
be achieved by the average of individually determined desirability values:
Let X, Xi := (X1i, X2i)′ ∼ N2(δ,H) and X,X1, ..., Xn independently identi-
cally distributed variables. Further, let δ̂ := (δ̂1, δ̂2)′ with

δ̂j := (Xj1, . . . , Xjn)/n, j = 1, 2, and η̂2
j := 1

n−1

n∑
i=1

(Xji − δ̂j)2,

η̂2
12 := 1

n−1

n∑
i=1

(X1i − δ̂1)(X2i − δ̂2), ρ̂ = δ̂12/(η̂1η̂2).

Then two possible estimators of the EDM-Index are given as:

1. ˆEDM := EDM(δ̂1, δ̂2, η̂1, η̂2, ρ̂) and

2. ˆDMV := 1
n

n∑
i=1

DMV (X1i, X2i).

From the functional form of the estimator it is clear that it is unbiased and
asymptotically normally distributed.

5 Simulation

A common criterion to compare the performance of estimators is the mean
squared error MSE. However, the MSE is heavily scale-dependent. As the val-
ues of the “classical” indices are not bounded from above as is EDU/EDM,
to compare the performance of the estimators for EDU/EDM with the esti-
mators for the “classical” indices it is necessary to standardize the MSE by
the magnitude of the estimated quantity:
Let MSE(θ̂) denote the mean squared error of the estimator θ̂ for a statis-
tic θ > 0 or θ < 0. Then the standardized MSE, MSEst(θ̂), is defined as
MSEst(θ̂) := MSE(θ̂)/θ2.
For the bivariate case combinations of the values -0.5, 0, 0.5 for β1, β2, δ1, δ2
and ρ and combinations of the values 0.1 and 1.1 for η1 and η2 have been ex-
amined. The number of random variates used for estimating the location and
variation parameters is n = 50, the number of repetitions N = 1000 which was
sufficient for a good precision of the simulation (cf. Jessenberger (1999)). Due
to space restrictions we give summary results rather than all detailed results
which can be found in the above-mentioned literature. ˆEDM and ˆDMV were
shown to be better than ˆMVCpm in terms of the maximal values of MSEst.
Moreover, the MSEst for ˆEDM and ˆDMV are maximal for small values of the
distribution parameters. If the variation and correlation increases the mean
standardized error decreases and even the maximum MSEst is reduced by
half or more. In contrast, for ˆMVCpm the maximum value of MSEst may be
attained throughout all considered combinations of η1, η2 and ρ. Only the
spread of the values decreases. With regard to the comparison between ˆEDM
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and ˆDMV, the former has smaller MSEst than ˆDMV for all simulations. Thus
overall, ˆEDM is the best estimator among the estimators considered.

6 Conclusion

In this paper we have presented a new index for assessing process capability
which is based on the expected value of desirability functions. These desir-
ability functions assign a “desirability value” to each value a quality/process
characteristic may take. An average desirability of a process may then be
used as a measure for process capability.
The proposed approach is feasible for any given specification and distribution
and allows a wide range of processes to be compared directly. A comparison of
the newly proposed EDM index with the classical multivariate analoga of Cp

and Cpm shows that the new index compares favorably. Moreover, in choos-
ing different desirability functions EDU/EDM-indices offer a good chance to
reflect virtually every specification region as long as the corresponding ex-
pectation exists. Furthermore, regardless of underlying process distribution
the interpretation of the index values is always the same so that processes
following different distributions may be compared directly. Simulation stud-
ies show that an obvious estimator for EDM exhibits equally good or better
behavior than the usual estimators for the classical indices.
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Application and Use of Multivariate Control

Charts in a BTA Deep Hole Drilling Process

Amor Messaoud, Winfried Theis, Claus Weihs, and Franz Hering

University of Dortmund�, Department of Statistics, 44221 Dortmund, Germany

Abstract. Deep hole drilling methods are used for producing holes with a high
length-to-diameter ratio, good surface finish and straightness. The process is subject
to dynamic disturbances usually classified as either chatter vibration or spiralling.
In this paper, we will focus on the application and use of multivariate control
charts to monitor the process in order to detect chatter vibrations. The results
showed that chatter is detected and some alarm signals occur at time points which
can be connected to physical changes of the process.

1 Introduction

Deep hole drilling methods are used for producing holes with a high length-to-
diameter ratio, good surface finish and straightness. For drilling holes with
a diameter of 20 mm and above, the BTA (Boring and Trepanning Asso-
ciation) deep hole machining principle is usually employed. The process is
subject to dynamic disturbances usually classified as either chatter vibration
or spiralling. Chatter leads to excessive wear of the cutting edges of the tool
and may also damage the boring walls. Spiralling damages the workpiece
severely. The defect of form and surface quality constitutes a significant im-
pairment of the workpiece. As the deep hole drilling process is often used
during the last production phases of expensive workpieces, process reliability
is of primary importance and hence disturbances should be avoided. For this
reason, process monitoring is necessary to detect dynamic disturbances.

In this work, we will focus on chatter which is dominated by single fre-
quencies, mostly related to the rotational eigenfrequencies of the boring bar.
Therefore, we propose to monitor the amplitude of the relevant frequencies
in order to detect chatter vibration as early as possible. In practice, it is
necessary to monitor several relevant frequencies because the process is sub-
ject to different kind of chatter (i. e., chatter at the beginning of the drilling
process, high and low frequency chatter). The first idea is to monitor each
relevant frequency separately, using a proposed univariate control chart. This
strategy is discussed in section 2. Another solution is to use a multivariate
control chart to monitor several relevant frequencies simultaneously, which is

� The work of Winfried Theis and Claus Weihs has been supported by the Deutsche
Forschungsgemeinschaft, Sonderforschungsbereich 475.
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investigated in section 3. In section 4, the different control charts are applied
to real data.

2 Monitoring the process using multiple Residual
Shewhart control charts

Weinert et al. (2002) used the van der Pol equation to describe the transition
from stable operation to chatter in one frequency

d2M(t)
dt2

+ h(t)(b2 − M(t)2)
dM(t)
dt

+ w2M(t) = W (t), (1)

where t ∈ [0,∞), M(t) is the drilling torque, b ∈ R, the frequency w ∈
[200,2500], h(t) : R → R is an integrable function and W (t) is a white noise
process. Theis (2004) described the main features of the variation of the
amplitudes of the relevant frequencies, using a logistic function. He showed
that his approximation is directly connected to the proposed model. In fact,
he considered M(t) as a harmonic process

M(t) = R(t)cos(w + φ),

where φ is the corresponding phase. He showed that

2
dR(t)
dt

+ h(t)R(t)
(
b2 − R(t)2

2

)
=

W (t)
w

. (2)

is the amplitude-equation for the differential equation in (1) if there is only
one frequency present in the process. From equation (2), the observed varia-
tion in amplitude of the relevant frequencies may be described by

Rt = (1 + at)Rt−1 − atbtR
3
t−1 + εt, (3)

where at and bt are time varying parameters and εt is normally distributed
with mean 0 and variance σ2

ε . Messaoud et al. (2004a) used the autoregres-
sive part of equation (3) to monitor the variation of the amplitude of the
relevant frequencies of the process using residual control charts. We showed
that the variation in amplitude of the relevant frequencies of the process
can be approximated by the autoregressive AR(1) model when the process is
stable and that the nonlinear term −atbtR

3
t−1 is not important before chatter.

For the monitoring procedure, the AR(1) model is used to calculate the
residuals. The idea behind residual control charts is if the AR(1) model fits the
data well, the residuals will be approximately uncorrelated. Then, traditional
control charts, such as Shewhart chart can be applied to the residuals. A
window of the m recent observations is used to estimate parameters a, β and
σε of the linear regression model

Rt = β + (1 + a)Rt−1 + εt,
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where β is the mean of the autoregressive process. Note that β is included
because there is a general shift in the amplitudes after depth 35 mm due to a
change in the physical conditions of the process, see section 4.2. The residuals
are calculated using

et = Rt − (1 + ât−1)Rt−1 − β̂t−1, (4)

where ât−1 and β̂t−1 are estimates of the regression parameters a and β at
time t − 1. The lower and upper control limits LCL and UCL, respectively
are given by

LCL = −kσε,t−1 and UCL = kσε,t−1,

where σε,t−1 is the estimated standard deviation of the residuals at time t−1
and k is a constant. The residual Shewhart control chart operates by plotting
residuals et given by equation (4). It signals that the process is out-of-control
when et is outside UCL or LCL.

In order to monitor several relevant frequencies, the residual Shewhart
is used to monitor the variation in amplitude of each relevant frequency,
w, separately. The resulting monitoring strategy signals an out-of-control
condition when any univariate control chart produces an out-of-control signal.

3 Monitoring the process using multivariate control
charts

3.1 Data depth

Data depth measures how deep (or central) a given point X ∈ Rd is with re-
spect to (w.r.t.) a probability distribution F or w.r.t. a given data cloud {Y1,
. . . , Ym}. There are several measurements for the depth of the observations,
such as Mahalanobis depth, the simplicial depth, half-space depth, and the
majority depth of Singh, see Liu et al. (1999). In this work, the Mahalanobis
depth and simplicial depth are considered.

1. The Mahalanobis depth (MDF ) of a given point X ∈ Rd w.r.t. F is
defined to be

MDF (X) =
1

1 + (X − µF )′Σ−1
F (X − µF )

,

where µF and ΣF are the mean vector and dispersion matrix of F , re-
spectively. The sample version of MDF is obtained by replacing µF and
ΣF with their sample estimates. In fact, how deep X is w.r.t. F is mea-
sured by how small its quadratic distance is to the mean.
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2. The simplicial depth (SDF ) (Liu (1990)) of a given point X ∈ Rd w.r.t.
F is defined to be

SDF (X) = PF {X ∈ s[Y1, . . . ,Yd+1]},
where s[Y1, . . . ,Yd+1] is a d-dimensional simplex whose vertices are ran-
dom observations {Y1,. . . , Yd+1} from F . The sample simplicial depth
SDFm(X) is defined to be

SDFm(X) =
(

m
d + 1

)−1 ∑
1≤i1<···<id+1≤m

I
(
X ∈ s[Yi1 , . . . ,Yid+1 ]

)
,

where {Y1,. . . , Ym} is a random sample from F , Fm denotes the empir-
ical distribution of {Y1,. . . , Ym} and I(.) is the indicator function. For
example, the bivariate SDFm(X) relative to {Y1,. . . , Ym} is equal to the
proportion of closed triangles with vertices Yi, Yj , Yk that contain X,
1 ≤ i < j < k ≤ m. Liu (1990) showed that if F is absolutely continuous,
then as m −→ ∞, SDFm converges uniformly and strongly to SDF (X)
and that SDF (X) is affine invariant.

3.2 A control chart based on sequential rank of data depth
measures

Liu (1995) was the first who used the concept of data depth to construct a
nonparametric control chart for monitoring processes of multivariate quality
measurements. Messaoud et al. (2004b) considered an EWMA chart based on
sequential ranks of data depth measures to monitor multivariate processes.
The proposed chart is a generalization of the nonparametric EWMA for in-
dividual observations proposed by Hackl and Ledolter (1992).

For this chart, the depth of Xt is calculated w.r.t. a reference sample
considered as the m > 1 most recent observations taken from the process
Xt−m+1, Xt−m+2, . . . , Xt. That is, this sample will be used to decide whether
or not the process is still in control at time t.

The sequential rank S∗
t is the rank of Dm(Xt) among Dm(Xt−m), . . . ,

Dm(Xt−1). That is,

S∗
t = 1 +

t−1∑
i=t−m

I(Dm(Xt) > Dm(Xi)),

where I(.) is the indicator function. For tied observations, the authors used
the midrank, see Gibbons and Chakraborti (1992). In fact, the simplicial
depth is a discrete measure and ties may occur. Especially, there always exist
at least (d + 1) extreme points that share the minimum simplicial depth of
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(d + 1)/m, see Stoumbos and Reynolds (2001). The standardized sequential
rank S

(m)
t is defined as

S
(m)
t =

2
m

(
S∗

t − m + 1
2

)
.

The control statistic Tt is the exponentially weighted moving averages
(EWMA) of standardized ranks, computed as follows

Tt = min{B, (1 − λ)Tt−1 + λS
(m)
t },

t = 1, 2, . . . , where B > 0 is a reflection boundary, T0 is a starting value,
usually set equal to zero, and 0 < λ < 1 is a smoothing parameter. The
reflection boundary is included to prevent the EWMA from drifting to the
upper side indefinitely. The process is considered in-control as long as Tt > h,
where h < 0 is a lower control limit. In fact, we consider a lower one sided
EWMA chart because S(m)

t is “higher the better”. For more details, see Hackl
and Ledolter (1992) and Messaoud et al. (2004b).

4 Application

The proposed monitoring procedures are used to jointly monitor the ampli-
tudes of frequencies 234 Hz and 703 Hz, which are among the eigenfrequencies
of the boring bar, in an experiment with feed f = 0.185 mm, cutting speed
vc = 90 m/min and amount of oil V̇oil = 300 l/min. For more details, see
Weinert et al. (2002).

4.1 Choice of the control charts parameters

Traditionally, a reference sample of 100-200 observations is used in SPC ap-
plications, see Montgomery (1996). In this work, the m = 100 recent obser-
vations Rt−m, . . . , Rt−1, where Rt = (Rt,234, Rt,703)′ are used to estimate
the parameters of the two AR(1) models and to calculate the residuals. Fur-
thermore, they are used to calculate the data depth. Rt,234 and Rt,703 are the
actual amplitudes of frequencies 234 Hz and 703 Hz, respectively. A larger
sample cannot be used because the monitoring procedures should start before
depth 35 mm (observation 120). In fact, chatter may be observed after that
depth because the guiding pads of the BTA tool leave the starting bush, see
section 4.2.

Usually, the performance of control charts are evaluated by the average
run length (ARL). The run length is defined as the number of observations
that are needed to exceed the control limit for the first time. The ARL should
be large when the process is statistically in-control (in-control ARL) and
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small when a shift has occurred (out-of-control ARL).

The parameters of the different control charts are selected so that all the
charts have the same in-control ARL equal to 370. This choice should not
give a lot of false alarm signals because all control charts are applied to 900
observations. A value k = 3.205 is used for the two residual Shewhart control
charts. Note that the probability that the two charts generate a false alarm
is given by

P0 = 1 − (1 − p1)(1 − p2),

where pi, i = 1, 2, is the probability that the ith chart produces a false alarm.
The resulting in-control ARL is equal to 1/P0. For this formulation it is as-
sumed that R234 and R703 are mutually independent, which may be not the
case in practice.

For the EWMA chart, we used B = −h. Typical values of λ are in the
range of 0.1 < λ < 0.3, see Hackl and Ledolter (1992). In this work, we used
λ = 0.1, 0.2 and 0.3. The corresponding values for h are respectively −0.314,
−0.475 and −0.591. Messaoud et al. (2004b) used an integral equation to
approximate the in-control ARL. The simplicial depth is computed using the
FORTRAN algorithm developed by Rousseeuw and Ruts (1992).

4.2 Results

Table 1 shows the results for depth ≤ 270 mm. The EWMA charts based
on MDF produces more out-of-control signals than the EWMA charts based
on SDF . This is due to the sensitivity of the MDF measure to the extreme
values. Table 1 shows that all control charts signal at 32 ≤ depth ≤ 35 mm.
In fact, it is known that approximately at depth=35 mm the guiding pads of
the BTA tool leave the starting bush, which induces a change in the dynam-
ics of the process. From previous experiments, the process has been observed
to either stay stable or start with chatter vibration. A great number of out
of control signals occur at 35 ≤ depth ≤ 45 mm. Indeed, the new physical
state of the process is represented in the reference sample after depth 45 mm.

All control charts signal at depth 110 ≤ depth ≤ 120 mm and it is known
that depth 110 mm is approximately the position where the tool enters the
bore hole completely. Theis (2004) noted that this might lead to changes in
the dynamic process because the boring bar is slightly thinner than the tool
and therefore the pressures in the hole may change. The important out-of-
control signals are produced at 250 ≤ depth ≤ 255 mm. Messaoud et al.
(2004a) showed that a change occurred in the process at depth=252.19 mm
and they concluded that this change may indicate the presence of chatter or
that chatter will start in a few seconds. Therefore, in this experiment chatter
may be avoided if corrective actions are taken after these signals.
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Table 1. Out of control signals of the different control charts applied to the am-
plitude of frequencies 234 Hz and 703 Hz (m=100)

Hole Depth Observation Residual EWMA
(mm) number Shewharts λ = 0.1 λ = 0.2 λ = 0.3

MDF SDF MDF SDF MDF SDF

≤32 ≤107 0 0 0 0 0 0 0
32-35 108-117 2 1 1 3 1 3 1
35-45 118-150 9 29 27 21 15 13 6
45-70 151-249 2 1 0 0 0 0 0
70-110 250-366 2 9 5 3 1 1 0
110-125 370-416 1 9 10 4 4 1 1
125-200 417-665 3 3 0 2 0 2 2
200-250 666-832 6 7 8 3 2 2 1
250-255 833-849 1 4 3 4 2 4 2
255-260 850-865 0 8 7 3 3 1 1
260-270 866-898 1 4 2 0 0 0 0

Total 27 75 63 43 28 27 14

4.3 Discussion

In this experiment, the EWMA chart with λ=0.3 is the best, and should
be chosen among the three EWMA charts considered in this work. Indeed,
only 14 out-of-control signals are produced and all changes of the physical
conditions of the process are detected. In practice, a procedure to choose the
smoothing parameter λ is required.

For the process adjustment, once the EWMA chart has produced a signal,
a procedure to estimate the shift magnitude and to identify the time point
at which the shift occurred is required, see Messaoud et al. (2004b).
Moreover, the future research should focus on the out-of-control interpreta-
tion. In fact, when the control chart indicates an out-of-control condition, it
is important to determine which frequency, or combination of frequencies, of
the multivariate process caused the process to go out-of-control. In practice,
the identification of the type of chatter (i.e., chatter at the beginning of the
drilling process, low-high frequency chatter) will usually make it easier for
engineers to adjust the process.

5 Conclusion

A main objective of this work is to investigate whether multivariate control
charts can be used to monitor the drilling process. The results showed that
the different control charts can detect chatter and that some out-of-control
signals are related to changing physical conditions of the process (i.e., guiding
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pads leave the starting bush, the tool is completely in the hole).
Multiple residual Shewhart charts assume independence and normality of the
residuals, see Messaoud et al. (2004a), and in practice it is difficult to interpret
multiple control charts. Multivariate control charts based on data depth are
“distribution-free” control charts and are easy to visualize and interpret.
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Determination of Relevant Frequencies and

Modeling Varying Amplitudes of Harmonic
Processes

Winfried Theis and Claus Weihs

University of Dortmund�

Department of Statistics
44221 Dortmund, Germany

Abstract. When a process is dominated by few important frequencies the obser-
vations of this process can be modelled by a harmonic process (Bloomfield (2000)).
If the amplitudes of these dominating frequencies vary over time their dominance
may not be apparent during the whole process.

To discriminate between frequencies relevant for such a process we determine
the distribution of the periodogram ordinates, and use this distribution to derive
a procedure to assess the relevance of the frequencies. This procedure uses the
standardized median (Gather and Schultze (1999)) to determine the variance of the
error process. In a simulation study we show that this procedure is very efficient even
under difficult conditions such as a low signal-to-noise ratio or AR(1) disturbances.
Furthermore, we show that the necessary transformation to estimate the amplitudes
from periodogram ordinates leads to a good normality approximation which makes
it especially easy to model the development of the amplitudes from these estimates.

1 Introduction

Many processes dominated by few frequencies with varying amplitudes are
well-known, e.g. music, resonance, etc.. When such a non-stationary process
is observed in a noisy environment or the oscillating part of the process is
obscured by an inherent stochastic process it becomes of interest to deter-
mine the really relevant frequencies. We encountered such a difficulty when
investigating the BTA deep-hole drilling process and one process disturbance
– called chatter – observed in this process. It turned out that chatter can
be described by specific eigen-frequencies of the drilling tool bar and the
development of the amplitudes of these frequencies (Weinert et al. (2002)).
As long as the process stays stable the harmonic process is obscured by the
noise in the process which led to the question how to determine the relevant
frequencies from such data and how to model the time development of the
amplitudes on these frequencies.

� This work has been supported by the Deutsche Forschungsgemeinschaft, Sonder-
forschungsbereich 475.
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In this paper we first determine the distribution of periodogram ordinates
of a harmonic process with only a few relevant frequencies, show how to incor-
porate this distribution to find the relevant frequencies and that there exists
a normality approximation which readily facilitated constructing a model for
time varying amplitudes. Finally we demonstrate the practical value of the
procedure by results from an extensive simulation study.

2 Determination of the distribution of periodogram
ordinates

Gallant et al. (1974) consider analysis of variance (ANOVA) models on pe-
riodograms. Their argument – based on a Taylor series extension of the dis-
tribution function – is to transform the observed ordinates with g(x) = x

1
4

to increase the convergence of the χ2
2-distributed measurements to a normal

distribution and thereby make a common ANOVA sensible in this situation.
The periodogram ordinate at frequency f equals n times the squared

absolute value of the Fourier-transform F of the time series yt at frequency
f , that is

I[yt](f) = n|F [yt](f)|2,
where n is the number of observations in the series.

If yt is a Gaussian process with distribution N (0, σ2), F [yt](f) as a
linear transformation of yt has again a normal distribution. |F [yt](f)|2 =
(Re(F [yt](f))2 + (Im(F [yt](f))2 is therefore χ2 distributed with 2 degrees
of freedom, which equals an exponential distribution (cf. e.g. Fisz (1970))
with E(|F [yt](f)|2) = 2σ2

y. On the basis of this argument and using the fact
that the Fourier-transform is a linear operator it follows that periodogram
ordinates of AR(p) processes are χ2

2p-distributed.
When the amplitudes at the relevant frequencies fk , k = 1, . . . ,K, of a

harmonic process are influenced by some input variables x and possibly time
t, it is of interest to investigate the form of this influence. So the following
model is considered:

Ht(x) =
K∑

k=1

hk(x, t) cos 2π(fkt + ϕ) + εt, (1)

for t ∈ {0, . . . , n − 1} and K � n. The functions of the amplitudes of the
relevant frequencies are possibly time-dependent. Since only discrete time
is considered, they are defined by hk : Rd × N → [0,∞). For hk only the
existence of a Fourier-transform is assumed.

When all hk are time constant it is clear that the expected value of the
periodogram ordinates at the relevant frequencies is

E
(
IHt(x)(f)

)
= n(|eiπϕ|hk(x)2 + 2σ2

ε) for f = fk , k = 1, . . . ,K. (2)
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Note that the phase is of no interest in this model because it contributes only
a constant factor in the complex Fourier transform equal to eiπϕ of which
the absolute value is 1. So the phase does not contribute to the estimates
described above.

If the amplitudes are slowly time-varying (i.e. slower than the smallest
estimated frequency), the corresponding model in frequency domain is in
terms of the complex Fourier-transform:

F [Ht(x)](f) =
{

F [ε](f) + Bf for f �= fk,
F [hk(x, t) cos 2π(fkt + ϕ)](f) + F [ε](f) for f = fk

, (3)

where k = 1, . . . ,K, and Bf �= 0 is only true for frequencies near to one of
fk , k = 1, . . . ,K and possible harmonics.

Again a result on the distribution of the periodogram ordinates is readily
gained by the same arguments as above: they are χ2-distributed. It is only
close to the relevant frequencies that you get non-central χ2-distribution with
non-centrality parameter ν = n(hk(x)2 + 2σ2

ε).
A more general determination of the distribution of periodogram ordinates

can be found in Wittwer (1986). In her paper G. Wittwer determines the
moment generating function and the general properties of the distribution of
the periodogram ordinates for stationary sequences.

3 Regression models on periodogram ordinates

3.1 Modelling varying amplitudes

The periodogram is only able to estimate the amplitudes of Fourier frequen-
cies, so it is of interest to know what happens when the relevant frequencies
are Fourier frequencies. When the amplitudes are varying over time, we want
to estimate the form of this variation. This is done by dividing the time se-
ries into sections of equal length and calculating the periodogram on these
sections. Then the estimates of the amplitudes on each relevant frequency
are used as objective in a – linear or nonlinear – regression to fit a proposed
functional form. It can be easily proved that a linear trend in the amplitudes
is transformed into a linear trend in the periodogram ordinates. When cal-
culating the fourier transformations it turns out that using the periodogram
to estimate a function of the amplitudes over time possibly underestimates
the values of the function (cf. Theis (2004)).

When fk is a non-Fourier frequency the finite Fourier transform intro-
duces additional non-zero terms to the periodogram because it only considers
Fourier frequencies. This comes from the fact that ei2π(fk−f) is not only non-
zero at the nearest Fourier frequencies but also in a neighbourhood. This has
to be taken into account when deciding how many significant appearances of
a frequency in an experiment are necessary to make that frequency a relevant
frequency.
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3.2 Estimating the variance of ε (σ2
ε)

The Fourier-transform of a harmonic process with a small number of rele-
vant frequencies K compared to the number of observations n can be viewed
as a sample from a χ2-distribution contaminated by some non-central χ2-
distributed observations, where the distributions have the same degrees of
freedom. As remarked before the expected value of the majority of observa-
tions is 2σ2

ε , i.e. proportional to the variance of the disturbance process. A
robust estimator of the expected value of this distribution is thus propor-
tional to an estimator for the variance of the disturbance process with known
proportionality factor.

Since it is assumed that in a regression situation the error processes are
independent between experiments and identically distributed over all exper-
iments, the following procedure looks promising:

1. Estimate the periodogram I [Ht(xl)] for all input values xl , l ∈ {1, . . . , L}
2. Merge all I [Ht(xl)](f) into one sample
3. Calculate a robust estimator for the expected value of I [Ht(xl)](f), e.g. the

standardized median medst.(X) = 1
log(2)

med(X) on the merged sample

Step 2 enlarges the database for the robust estimate, because it is assumed,
that the observations with different input values are independent and the
realisations of IHt(xl)(f) for different Fourier frequencies are independent
due to the orthogonality relations of the Fourier transform. If K � n and
K
n is lower than breakdown point of the robust estimator, which equals 1

2 for
the standardized median (Gather and Schulze (1999)), one gets an estimator
– in the case of Gaussian white noise – for 2σ2

ε .

Transforming Periodogram Ordinates

Given that the goal of the regression on periodogram ordinates is to estimate
the influences on the amplitudes, the observations have to be transformed in
the following way to get an estimator for hk(x) (cf. (2)):

ĥk(x) =

√
I[Ht(x)](fk) − 2nσ2

ε

n
,

Johnson et al. (1994) state that this square-root of the non-central χ2-
distributed variable is a normal approximation. It depends on the value of
the non-centrality parameter, which in return depends here on the value of
the functions hk , k = 1, . . . ,K, and the number of observations. The impact
of this approximation is tested in a simulation study.

4 Simulation study on time-varying amplitudes

4.1 Design considerations

We chose a full factorial 27 design to compare the effects on the Normality
assumption, the frequency detection, and the goodness of fits of the following



660 Theis and Weihs

influences: the signal-to-noise ratio, the number of frequencies, number of
observations, Fourier or non-Fourier frequencies, and the distance between
the relevant frequencies. Additionally the effect of AR(1)-disturbances was
checked.

For the influences the following values for treatment low, high, respectively
were chosen: Number of frequencies (1 / 5), Fourier Frequencies (no/yes), Dis-
tance of frequencies δf (3 / 10 Fourier frequencies), Length of series (2560 /
102400), and Signal-to-Noise ratio (1.1 / 100). The frequencies considered are
5+δf k−1

n with, in the case of non-Fourier frequencies, addition of 1√
2

in the
numerator.

The following functions were chosen as ‘true’ models for the variation of
the amplitudes:

hlin(t) = 2 + 0.001t or hnonlin(t) = 2 +
2

(1 + exp
(

m−t
d

)
)

(4)

The parameters m, d in equation (4) are changed for each frequency if 5
frequencies are included in the model. This is done by setting m = 5 l or mi =
(2 + i) l and d = l or di = l

i where i = 1, . . . , 5. These different values for the
parameters in the nonlinear function were chosen to test whether differing
functions on the frequencies can be found in the data.

The choice of these functions had the following reasons: the first slow
linear trend may be useful as an approximation for a slow nonlinear trend in
the amplitude. Generally it can be assumed that amplitudes have an upper
bound because oscillating systems break down when the amplitude becomes
too large. This is the reason for the chosen logistic function. The inclusion of
a mean intercept of 2 in both cases is done to ensure a true harmonic process
right from the start of the observations.

For all settings 100 repetitions were evaluated. The function nls from R
(R Core Team (2003)) was used to fit the nonlinear models. Since it is well
known that nonlinear regressions tend to fail with some starting values, ten
randomly chosen starting values were tested and the first successful set was
used for the fit.

4.2 Results

First we checked whether the procedure to find the relevant frequencies was
influenced by the time varying amplitudes, or the AR(1) disturbances. Both
influences did not show an effect on the performance of the method in the
sense that the correct frequencies are always found. This becomes obvious
from the histograms of the found relevant frequencies in Figure 1.

The left panel in Figure 1 shows the results on relevant frequencies for ex-
periments with the high level of observations, 10240, and high signal-to-noise
ratio of 100 and five non-Fourier frequencies with a distance of ten Fourier
frequencies in the simulated model that is, the true values of the frequen-
cies are: 0.00557 0.0251 0.03487 0.04463 0.0544. That there are more
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frequencies found than just the highest peaks, is due to leakage (Bloomfield
(2000)) and does not present a serious problem since it is easily possible
to narrow the relevant frequencies by e.g. using higher significance levels or
adding a further step where the peak(s) of the amplitudes of the found rele-
vant frequencies is determined.

Fig. 1. The histograms of the found relevant frequencies f show clearly that at least
the true frequencies (black vertical lines) are found and only a few others besides.

The right panel in Figure 1 gives an impression of the more difficult
situation with only 2560 observations and AR(1) disturbances but Fourier
frequencies. From this panels it is clear that at least the true frequencies are
found by the method for the detection of relevant frequencies. In this case
the true frequencies are: 0.0195 0.0977 0.1367 0.1758 0.2148

The proposed normality approximation was checked for appropriateness.
First we applied a Shapiro-Wilk test (Shapiro et al. (1968)) to the obser-
vations. For each true relevant frequency and each of the ten observations
the 100 repetitions were collected and tested for normality on the 5%−level.
The test rejected the hypothesis only in 4.86% of the cases for hlin., and
in 5.82% of the cases for hnonlin.. The number of rejections of normality
of the observations for the normal disturbances is slightly higher than with
AR(1) disturbances (linear case: 5.21% vs. 4.51%; nonlinear case: 6.04% vs.
5.63%). This was expected by the theoretical model because the goodness
of the approximation is influenced by the number of stochastic components,
i.e. the order of the disturbance process and the value of the non-centrality
parameter. No assignable pattern was found in the rejections.

The distribution of the parameter estimates was also investigated. In the
linear case the parameters displayed an even greater degree of normality. The
Shapiro-Wilk test rejected only in 3.47% of the situations. In the nonlinear
case it cannot be expected to find normality in the parameters. It is hard to
define a distribution for the parameters in nonlinear regression, only when
a linear approximation approach is chosen as fitting procedure normality is
expected (cf. e.g. Ratkowski (1990, p. 20)).
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Figures 2 gives an insight into the goodness of the fits of the functions
on the truely relevant frequencies. In all cases it was obvious that the ob-
servations lie below the values of the true functions and therefore the fitted
functions underestimate the true values as well.

Fig. 2. Left: fitted linear functions (true: dashed line) on varying amplitudes, with
AR(1) disturbances on a non-Fourier frequency, therefore two lines on the neigh-
bouring Fourier frequencies. Right: non-linear functions of five non-Fourier frequen-
cies, marked by numbers. True functions are again in the upper half of the graphic.

The left panel of Figure 2 shows a fit for the case of non-Fourier frequency
and linear time dependence of the amplitude. This graphic gives the impres-
sion that the underestimation may be cured by summing over neighbouring
frequencies in an appropriate way. This is emphasized by the dotted line
which is the sum of the fitted values.

The right panel in Figure 2 underlines the previous impression as well.
Furthermore, it is obvious that the general form of the influences on the
amplitudes is found even if they are different for the different frequencies.
This is also not influenced by the number of observations or the kind of
disturbances. All fits show that the general fit of the regressions is very good
which was also found when checking for the goodness of fit over all situations
in the simulation study.

Studying the effect of the varying amplitudes on the performance of the
proposed variance estimator, a slight overestimation of the true standard
deviation σ occured. The two most important influences on the difference
between the true and the estimated σ are the signal-to-noise ratio followed by
the number of observations. It turns out that a high signal-to-noise ratio also
leads to better estimates of the standard deviation of the disturbance term.
Of course a higher number of observations leads to a better estimation since
then there are more observations following the distribution of the Fourier
transformation of the AR(1) or white noise normally distributed disturbances.
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5 Conclusions

We introduced a method for the identification of relevant frequencies of a
harmonic process with error processes based on the normal distribution. The
crucial idea for this method is to look at the estimates of the periodogram
ordinates as a contaminated sample of a χ2 distribution and use this to get an
estimate of the variance of the error process. Additionally we showed that the
necessary transformation of the periodogram ordinates to get an estimator
for the amplitude leads to a normal approximation. Finally, we established
the fact that the linearity of the Fourier transformation makes it possible to
evaluate time trends in the amplitude by regression methods.

Our simulation proved all theoretical results to work even in difficult sit-
uations, i.e. low signal-to-noise ratio, non-Fourier frequencies and differing
influences on the relevant frequencies. The only significant drawback of the
method is the underestimation of the true amplitudes which may be tack-
led by summing over an approprate neighbourhood of the found relevant
frequencies.
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Abstract. Goal and data of the contest “Social Milieus in Dortmund” are intro-
duced.

1 Contest goal and data

Many cities have problems characterizing the social milieus of the different
city districts. A correct classification of these milieus enables the cities to
monitor changes and be able to react, if a milieu change of a district might
be undesirable, or to detect positive developments. These information are
valuable for example in determining the value of buildings and for the devel-
opment of micro locations.

Therefore, the goal of this contest is to develop a statistical model and cri-
teria for the classification of the social milieus of the city, using the following
variables provided by the city of Dortmund (for a full list see table 1):

• population structure,
• unemployment,
• no. of employees,
• no. of welfare recipients,
• motoring, and
• buildings.

Participants were even allowed to add other relevant data. The data is avail-
able for 170 statistical sub-districts of Dortmund.

Table 1. Variables available for the contest provided by the city of Dortmund

Shortcut Description

Alosaus Unemployed foreigners
Alosdeut Unemployed Germans
Alosf Unemployed women
Alosins Unemployed overall
Alosm Unemployed men
Anhänger Trailers
Auflieger Semitrailers
BJ01bis18 Year of construction 1901 to 1918
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BJ19bis48 Year of construction 1919 to 1948
BJ49bis57 Year of construction 1949 to 1957
BJ58bis62 Year of construction 1958 to 1962
BJ63bis72 Year of construction 1963 to 1972
BJ73bis82 Year of construction 1973 to 1982
BJ83bis92 Year of construction 1983 to 1992
BJ93bis01 Year of construction 1993 to 2001
BJbis1900 Year of construction until 1900
Bus Buses
Dreirad Tricycles
F26bis35 Women 26 to 35 years
F36bis45 Women 36 to 45 years
F46bis55 Women 46 to 55 years
F55bis65 Women 55 to 65 years
Fins Women overall
Flächeha Area in ha
Fu25 Women under 25 years
Fü66 Women 66 years and older
Gebäufläche Rebuilt building with housing space - living area
Gebäuins Rebuilt building with housing space - overall
Gebäusonsteinh Rebuilt building with housing space - other residential

units
Gebäuwohn Rebuilt building with housing space - apartments
GebBest10fläche R.b.w.l.s.1 10 and more apartments - living area
GebBest10ins R.b.w.l.s.1 10 and more apartments - overall
GebBest10raum R.b.w.l.s.1 10 and more apartments - rooms
GebBest10wohnung R.b.w.l.s.1 10 and more apartments - apartments
GebBest1u2fläche R.b.w.l.s.1 1 and 2 apartments - living area
GebBest1u2raum R.b.w.l.s.1 1 and 2 apartments - rooms
GebBest1u2wohnung R.b.w.l.s.1 1 and 2 apartments - apartments
GebBest1und2ins R.b.w.l.s.1 1 and 2 apartments - overall
GebBest3fläche R.b.w.l.s.1 3 and more apartments - living area
GebBest3ins R.b.w.l.s.1 3 and more apartments - overall
GebBest3raum R.b.w.l.s.1 3 and more apartments - rooms
GebBest3wohnung R.b.w.l.s.1 3 and more apartments - apartments
GebBestfläche R.b.w.l.s.1 - living area
GebBestins R.b.w.l.s.1 - overall
GebBestraum R.b.w.l.s.1 - rooms
GebBestwohnung R.b.w.l.s.1 - apartments
Gebm Births male
GebSterbBilm Birth/death balance male
GebSterbBilw Birth/death balance female
GebSterbBilzus Birth/death balance both
Gebw Births female
Gebzus Births both
GenNeu10fläche R.b.w.l.s.1 10 and more apartments - living area -

building permits

1 Residential building with living space
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GenNeu10ins R.b.w.l.s.1 10 and more apartments - overall -
building permits

GenNeu10raum R.b.w.l.s.1 10 and more apartments - rooms -
building permits

GenNeu10wohnung R.b.w.l.s.1 10 and more apartments - apartments -
building permits

GenNeu1u2fläche R.b.w.l.s.1 1 and 2 apartments - living area -
building permits

GenNeu1u2raum R.b.w.l.s.1 1 and 2 apartments - rooms - building permits
GenNeu1u2wohnung R.b.w.l.s.1 1 and 2 apartments - apartments -

building permits
GenNeu1und2ins R.b.w.l.s.1 1 and 2 apartments - overall -

building permits
GenNeu3fläche R.b.w.l.s.1 3 and more apartments - living area -

building permits
GenNeu3ins R.b.w.l.s.1 3 and more apartments - overall -

building permits
GenNeu3raum R.b.w.l.s.1 3 and more apartments - rooms -

building permits
GenNeu3wohnung R.b.w.l.s.1 3 and more apartments - apartments - build-

ing permits
GenNeufläche R.b.w.l.s.1 living area - building permits
GenNeuins R.b.w.l.s.1 Overall - building permits
GenNeuraum R.b.w.l.s.1 Rooms - building permits
GenNeuwohnung R.b.w.l.s.1 apartments - building permits
GenUm10fläche R.b.w.l.s.1 10 and more apartments - living area -

rebuilding permits
GenUM10ins R.b.w.l.s.1 10 and more apartments - overall -

rebuilding permits
GenUm10raum R.b.w.l.s.1 10 and more apartments - rooms -

rebuilding permits
GenUm10wohnung R.b.w.l.s.1 10 and more apartments - apartments -

rebuilding permits
GenUm1u2fläche R.b.w.l.s.1 1 and 2 apartments - living area -

rebuilding permits
GenUm1u2wohnung R.b.w.l.s.1 1 and 2 apartments - rooms -

rebuilding permits
GenUm3fläche R.b.w.l.s.1 1 and 2 apartments - apartments -

rebuilding permits
GenUm3ins R.b.w.l.s.1 1 and 2 apartments - overall -

rebuilding permits
GenUm3raum R.b.w.l.s.1 3 and more apartments - living area -

rebuilding permits
GenUm3wohnung R.b.w.l.s.1 3 and more apartments - overall -

rebuilding permits
GenUmfläche R.b.w.l.s.1 3 and more apartments - rooms -

rebuilding permits

1 Residential building with living space
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GenUmraum R.b.w.l.s.1 3 and more apartments - apartments -
rebuilding permits

GenUmt1u2raum R.b.w.l.s.1 living area - rebuilding permits
GenUmt1und2ins R.b.w.l.s.1 Overall - rebuilding permits
GenUmtins R.b.w.l.s.1 Rooms - rebuilding permits
GenUmwohnung R.b.w.l.s.1 apartments - rebuilding permits
HBWins Overall population classified by site of major apartment

(PMA)
HBWins0bis6 Overall PMA younger than 6 years
HBWins10bis13 Overall PMA 10 to 12 years
HBWins13bis16 Overall PMA 13 to 15 years
HBWins16bis18 Overall PMA 16 to 17 years
HBWins18bis26 Overall PMA 18 to 25 years
HBWins26bis30 Overall PMA 26 to 29 years
HBWins30bis40 Overall PMA 30 to 39 years
HBWins40bis50 Overall PMA 40 to 49 years
HBWins50bis60 Overall PMA 50 to 59 years
HBWins5bis6 Overall PMA older than 5 and younger than 6 years
HBWins60bis65 Overall PMA 60 to 64 years
HBWins6bis10 Overall PMA 6 to 9 years
HBWinsü65 Overall PMA 65 years and older
Hh10K Households with 10 children
Hh11K Households with 11 children
Hh1K Households with 1 child
Hh2K Households with 2 children
Hh3K Households with 3 children
Hh4K Households with 4 children
Hh5K Households with 5 children
Hh6K Households with 6 children
Hh7K Households with 7 children
Hh8K Households with 8 children
Hh9K Households with 9 children
Hhins Households overall
HWBins Overall population classified by site of major apartment

(PMA)
HWBins0bis1 Overall PMA under 1 year
HWBins1bis2 Overall PMA older than 1 and younger than 2 years
HWBins2bis3 Overall PMA older than 2 and younger than 3 years
HWBins3bis4 Overall PMA older than 3 and younger than 4 years
HWBins4bis5 Overall PMA older than 4 and younger than 5 years
HWBinsA Overall PMA foreigners
HWBinsaF Overall PMA foreigners women
HWBinsaM Overall PMA foreigners men
HWBinsD Overall PMA Germans
HWBinsdF Overall PMA German women
HWBinsdM Overall PMA German men
HWBinsF Overall PMA women

1 Residential building with living space
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HWBinsM Overall PMA men
ID Running identification number
InstdtUmBilm Balance of moves within city male
InstdtUmBilw Balance of moves within city female
InstdtUmBilzus Balance of moves within city both
InstdtUmFortm Move−outs within city male
InstdtUmFortw Move−outs within city female
InstdtUmFortzus Move−outs within city both
InstdtUmZum Move−ins within city male
InstdtUmZuw Move−ins within city female
InstdtUmZuzus Move−ins within city both
Kins Children overall
Kombi Estate cars
LKW Trucks
M26bis36 Men 26 to 35 years
M36bis45 Men 36 to 45 years
M46bis55 Men 46 to 55 years
M55bis65 Men 55 to 65 years
Mins Men overall
Motorrad Motorcycles
Mu25 Men under 25 years
Mü66 Men 66 years and older
NameRaum Name of area unit
NumBezRaum Identification number of area unit
ohneAng Vehicles without specifications
PKW Cars
Sonder Special−purpose vehicles
sonstGfläche Rebuilt other building with living space - living area
sonstGins Rebuilt other building with living space - overall
sonstGsonsteinh Rebuilt other building with living space - other residen-

tial units
sonstGwohn Rebuilt other building with living space - apartments
SozempfausF Welfare recipients - foreigners women
SozempfausM Welfare recipients - foreigners men
SozempfdF Welfare recipients - Germans women
SozempfdM Welfare recipients - Germans men
sozvpflBeschAus Subjects to social insurance contribution - foreigners
sozvpflBeschDeut Subjects to social insurance contribution - Germans
sozvpflBeschF Subjects to social insurance contribution - women
sozvpflBeschins Subjects to social insurance contribution - overall
sozvpflBeschM Subjects to social insurance contribution - men
Sterbm Deaths male
Sterbw Deaths female
Sterbzus Deaths both
Wanbilm Migration balance male
Wanbilw Migration balance female
Wanbilzus Migration balance both
WanFortm Emigration male
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WanFortw Emigration female
WanFortzus Emigration both
WanUmGesbilm Migration/moves overall balance male
WanUmGesbilw Migration/moves overall balance female
WanUmGesbilzus Migration/moves overall balance both
WanZum Immigration male
WanZuw Immigration female
WanZuzus Immigration both
Wgeb10fläche New r.b.w.l.s.1 10 and more apartments - living area
Wgeb10ins New r.b.w.l.s.1 10 and more apartments - overall
Wgeb10raum New r.b.w.l.s.1 10 and more apartments - rooms
Wgeb10wohnung New r.b.w.l.s.1 10 and more apartments - apartments
Wgeb1u2fläche New r.b.w.l.s.1 1 and 2 apartments - living area
Wgeb1u2ins New r.b.w.l.s.1 1 and 2 apartments - overall
Wgeb1u2raum New r.b.w.l.s.1 1 and 2 apartments - rooms
Wgeb1u2wohnung New r.b.w.l.s.1 1 and 2 apartments - apartments
Wgeb3fläche New r.b.w.l.s.1 3 and more apartments - living area
Wgeb3ins New r.b.w.l.s.1 3 and more apartments - overall
Wgeb3raum New r.b.w.l.s.1 3 and more apartments - rooms
Wgeb3wohnung New r.b.w.l.s.1 3 and more apartments - apartments
Wgebäufläche Rebuilt r.b.w.l.s.1 - living area
WGebäuins Rebuilt r.b.w.l.s.1 - overall
WGebäusonsteinh Rebuilt r.b.w.l.s.1 - other residential units
WGebäuwohn Rebuilt r.b.w.l.s.1 - apartments
Wgebfläche New r.b.w.l.s.1 - living area
Wgebins New r.b.w.l.s.1 - overall
Wgebraum New r.b.w.l.s.1 - rooms
Wgebwohn New r.b.w.l.s.1 - apartments
Wheimfläche Dormitories - living area
Wheimins Dormitories - overall
Wheimsonsteinh Dormitories - other residential units
Wheimwohn Dormitories - apartments
Zugmaschine Tractors

The map of Dortmund together with the Identification number of the area
unit is shown in figure 1.

Steps suggested for the data analysis include:

1. Clustering of sub-districts (unsupervised learning). The geographical re-
lationship of the clusters should be taken into account (see the map of
Dortmund). Spatial smoothing may be necessary.

2. Interpretation of the clusters and assignment of milieu types.
3. Deriving a classification rule for the milieu types.
4. Characterization of classes (i.e. milieu types) by the measured variables.

Other steps leading to comparable results were welcome.

1 residential building with living space
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Abstract. In order to group the observations of a data set into a given number
of clusters, an ‘optimal’ subset out of a greater number of explanatory variables is
to be selected. The problem is approached by maximizing a quality measure under
certain restrictions that are supposed to keep the subset most representative of the
whole data. The restrictions may either be set manually, or generated from the
data. A genetic optimization algorithm is developed to solve this problem.
The procedure is then applied to a data set describing features of sub-districts of
the city of Dortmund, Germany, to detect different social milieus and investigate
the variables making up the differences between these.

1 The problem

Before the observations are clustered, the data need to be reduced. A reduc-
tion is necessary to

1. avoid overfitting,
2. exclude noise and redundant variables and
3. keep the data perceptible and interpretable.

To achieve these goals, we would like to use a subset of the original variables
rather than, for example, linear combinations (like principal components)
that are harder to interpret.
To determine an ‘optimal’ subset of variables, some measure of cluster quality
needs to be optimized; this measure should return comparable values regard-
less of the number or scale of variables in the subset. Also, some restrictions
should be met to make sure that, for example, the subset has more than one
element and, in some sense, most data features are reflected in the subset.

2 Tackling the problem

We focused on fuzzy clustering methods, that is, methods that do not assign
fixed clusters to each observation, but that return posterior probabilities of
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cluster membership instead. These methods are often a more appropriate ap-
proach to clustering problems.
Validity measures are then computed from the membership matrix that is
yielded by clustering with a specific variable set, and thus independently
from the underlying variables themselves. In particular, they do not depend
directly on the number or scales of variables. Assessment of clusterings with
different variable sets can then be based on such measures.

Basing variable selection on the membership matrix alone still may lead to
in some sense ‘optimal’, but still useless solutions. The final variable set may
consist of a single, or some highly correlated variables, for example.
Instead, we try to keep the selected subset of variables as representative as
possible of the complete data set. In order to achieve this, we are introducing
subgroups of variables that have to be represented in the selected subset.
These subgroups are either arranged ‘by hand’ (groups of variables with sim-
ilar meaning or representing a certain aspect of the data set) or automatically
(groups of correlated variables).

The selection itself is then performed by a genetic algorithm that can pretty
easily be adapted to handle a parameter space of this kind (that is, a re-
stricted space with varying dimension).

All computations will be performed using R, a free software for data analysis
(Ihaka and Gentleman (1996)).

3 Methods

3.1 Fuzzy clustering

Usually, a clustering procedure returns specific assignments of clusters to all
observations. Fuzzy clustering methods instead are those methods, that for
each observation provide indices measuring the potential affiliation to all of
the clusters.
The result of a fuzzy clustering then is a (N × k) membership matrix U ,
whith uij denoting the probability that observation i belongs to cluster j; or
in other words: each row of U corresponds to one observation (i) and is the
distribution of membership over clusters 1, . . . , k. An example with 3 clusters:

U =

⎛⎜⎝0.95 0.02 0.03
0.50 0.30 0.20

...
...

...

⎞⎟⎠
Both observations would be assigned to cluster 1, while the second assign-
ment is not as clear as the first one.
We considered two different clustering methods, the cmeans-procedure from
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the e1071 package, which is a fuzzy version of the known k-means cluster-
ing, and the EMclust-procedure from the package mclust. ‘EMclust’ fits a
Gaussian mixture model with k components to the data; in this case the com-
ponents have the same covariance structure and differ by their means and a-
priori-probabilities. The data is then clustered by assigning each observation
to one of the k mixture components. We eventually decided in favour of the
second method, mostly for interpretability reasons: while k-means-clustering
by its nature carves the data into sphere-shaped clusters, model-based clus-
tering is able to handle clusters with covariance structures even different to
spheric shapes and does not require (and depend on) normalization (Fraley
and Raftery (2002)).

3.2 Measuring the clustering quality

Let U be a (N ×k) membership matrix, as above. All the uij should be close
to one or zero, so the clustering yields distinct assignments. A measure of
this feature is the classification entropy:

CE(U) = − 1
N

N∑
i=1

k∑
j=1

(uij · log2 uij)

CE(U) is zero, if all elements of U are either 1 or 0 (a most crisp partition-
ing), and takes its maximum if all of them are = 1

k (the fuzziest partitioning)
(Hall (1999)).
The classification entropy allows comparison of clusterings based on different
variable sets with different numbers of variables, but is sensitive to the num-
ber of clusters (k), so this quantity needs to be fixed beforehand.

While a most fuzzy clustering pretty obviously is a bad clustering, a crisp
clustering does not necessarily have to be a good clustering. A variable subset
leading to low entropy may in some sense not represent the data appropri-
ately. In order to force some structure into the subset selection process, the
concept of subgroups is introduced in the following section. This allows for
the injection of expert knowledge or of further information on the data (cor-
relations) into the procecedure.

3.3 Defining subgroups of variables

Subgroups can be defined manually, or they are constructed systematically as
groups of correlated variables. These subgroups are generated by agglomera-
tive hierarchical clustering (Kaufman and Rousseeuw (1990)); the variables
are clustered, and to do so, the ‘distance’ between two variables X1 and X2

is defined as:
d(X1, X2) = 1 − |Cor(X1, X2)|
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Thus, variables with a high (absolute) correlation are ‘close’ to each other,
while uncorrelated variables are ‘farther’ from each other. With this defini-
tion, the correlation matrix can directly be transformed into a distance ma-
trix, which is the only basis needed for the clustering. Using either complete
or single linkage yields groups of variables with different interpretations:

complete linkage: the (absolute) correlation of variables from the same group
is bounded below.

single linkage: the (absolute) correlation of variables from different groups
is bounded above.

In both cases, the groups may be interpreted as variable sets with some
common source of variability; and by picking variables from different groups,
the intention is to cover these different sources.

3.4 Genetic optimization algorithms

Optimization problems, in general, are problems of finding the minimum of
some function f : M → IR that projects from some space M to the real line.
Genetic algorithms are stochastic optimization algorithms to solve these kinds
of problems by making use of evolutionary principles as known from biology,
namely mutation, recombination and selection (‘survival of the fittest’).
In nature, the fitness of individuals depends on their genes. Individuals with
a greater fitness have a greater chance of survival and also the wider range
of mating partners to choose between. ‘New’ individuals are generated by

mutation: single genes of an individual are changed, or
recombination: two genomes are combined to a new one.

Again, new individuals have to compete with the current population for part-
ners and survival. The competitiveness of each individual is determined by
its fitness.
Analogously, in genetic algorithms the goal function to be optimized corre-
sponds to the fitness, and the individuals are parameter sets for the function.
To start the algorithm, a starting population is generated. Then, generation
by generation, the population is multiplied by mutating and breeding indi-
viduals and only the ‘fittest’ ones (as judged by the goal function) survive
until the next generation. At some point, the procedure stops and the (so far)
best parameter set is returned.
An advantage of genetic algorithms is, that the parameter space (M) can lit-
erally be any space, as long as the mutation- and recombination procedures
can be defined reasonably. Restrictions are implemented pretty easily as well
(Goldberg (1989)).
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3.5 Implementation

Parameters to be defined beforehand are: the subgroups of variables, the min-
imum numbers of representatives for each group that have to be in a variable
subset (≥ 0), the (total) maximum number of variables in a subset, the ‘pop-
ulation size’ and the number of generations.
A ‘genome’ (an ‘individual’) is a vector of variable indices; its minimum length
depends on the sum of minimum numbers for each variable group, and the
maximum length is defined explicitly. The population is made up by a set of
these individuals. The fitness of each individual is determined by clustering
the data using the corresponding subset of variables and then computing the
classification entropy as the measure of clustering quality that is achieved
with this subset (the smaller the entropy, the greater the fitness).
In the beginning, a random starting population (of the given size) is created,
and the fitness of each individual is determined. In each generation, indi-
viduals are mutated (a new individual is generated by changing, adding or
deleting single indices from a given individual), and pairs of individuals are
crossed (a new set of indices is selected from the union of parental indices).
The chance of being mutated or crossed is proportional to the individuals’ fit-
ness. In each step (creation of starting population, mutation, recombination)
it is made sure that the resulting individuals comply with the restrictions
(given by the pre-defined subsets and referring minimum numbers). After
each generation, the population is cut down again to the former population
size (fittest individuals are kept).
After a given number of generations the fittest individual (the best subset of
variables) is returned.

4 Applying the procedure

4.1 The Dortmund data

The data consisted of 170 observations of 200 variables, referring to 170 sub-
districts of the city. All variables were total numbers (of inhabitants, females,
births,. . . ), so in order to make them comparable across districts, we first
constructed normalized variables like ‘fraction of female inhabitants’, ‘birth
rate’ and so on. The result was a set of 57 variables describing features like

i. age distribution
ii. births, deaths, migration
iii. motoring
iv. buildings, housing
v. employment, welfare
vi. some of the above broken down by sex or citizen/alien status

12 out of the 170 observations were considered as outliers; they showed ex-
treme values in some variables, and by checking the corresponding district



A Genetic Algorithm for Variable Selection in Clustering 679

on a city map, one could see that these were either extremely sparsely popu-
lated or contained some special feature like a boarding school, an old people’s
home, etc. These were then ignored in the further analysis.
The four groups that we considered should be represented are described by
points i, ii, iv and v of the above enumeration. The remaining variables form
a group that does not necessarily have to appear.
Grouping the variables by correlations in this case resulted in either huge
numbers of subgroups, most of which containing only one variable, or the re-
spective lower/upper correlation bound would be of insignificant order, lead-
ing to rather meaningless groupings. So we eventually dropped the automatic
grouping approach and only used the subgroups arranged by variable mean-
ings.
Each of the 4 groups should be represented by 1 variable in the final vari-
able subset. In order to keep the data comprehensible, we set the maximum
number of variables to 6. That forces the algorithm to choose 1 variable from
each of the 4 groups, the remaining variables can then be picked arbitrarily.
Another quantity to be defined beforehand is the number of clusters. After
some data exploration, repeated application of the procedure for different
values and inspection of the resulting clusterings we found that the different
city districts indicated the presence of 4 clusters that repeatedly showed up
with a variety of variable sets.

4.2 Results

The ‘optimal’ set of variables, with respect to the clustering quality measure
and restrictions, that we found, is shown in Table 1.

Table 1. Clustering variables and their means.

Cluster
Variable Group 1 2 3 4

fraction of population of age 60–65 i. 0.057 0.065 0.064 0.083
moves to district per inhabitant ii. 0.075 0.054 0.035 0.025
apartments per house iv. 7.831 5.331 3.367 2.524
people per apartment iv. 1.877 1.676 2.216 2.029
fraction of welfare recipients v. 0.129 0.031 0.066 0.023
fraction of aliens of employed people vi. 0.274 0.073 0.086 0.032

Figure 1 displays the distribution of the clusters across the city map. Clus-
ters 1 and 2 roughly cover the city center, subdividing it into north (1)
and south (2), while clusters 3 and 4 cover the remaining suburbs (roughly
northwest and southeast).
The greatest differences are between clusters 1 (center north) and 4 (southeast
suburbs). Cluster 1 has a low fraction of older inhabitants, great fractions of
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Fig. 1. Map of Dortmund showing the 4 clusters (from Cluster 1=darkgrey to
Cluster 4=lightgrey; white districts are the outliers that were omitted).

aliens and welfare recipients, more migration and many apartments per house
while cluster 4 takes the opposite extreme values. Clusters 2 and 3 are both
more or less between these two extremes and differ by their buildings/housing
structure: cluster 2 (center south) has more apartments per house and the
fewest people per apartment while cluster 3 (northwest suburbs) has the most
people per apartment.

4.3 Comparing the results

Clustering the data by all variables instead of a subset leads to pretty similar
maps, for both the traditional k-means-algorithm and EM clustering based
on gaussian mixture models.
Differences become evident when it comes to interpretation. When clustering
with all variables, the different variable types (as indicated in the table in
section 4.1) are weighted by the number of variables in each of the groups,
which are rather random. In contrast, in the approach presented here these
proportions are set manually. Also, a selection of necessary variables and
elimination of noise variables does not take place. Using only a subset of
variables, clusters can thus be easily characterized by the distribution of the
(far fewer) variables that were actually used.
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5 Summary

The variable selection problem was approached by introducing a quality mea-
sure for clusterings and certain restrictions to retain as many information as
possible from the complete data set in the variable subset. The optimal vari-
able selection was then performed by a genetic optimization algorithm.
For the Dortmund data, the attempt to define variable subgroups based on
correlations proved to be impractical, so the variables were only grouped
manually by their respective meanings. Data exploration suggested the pres-
ence of 4 clusters. The application of the developed procedure resulted in
a plausible set of discriminating variables and a reasonable distribution of
the clustered districts across the map. While actual clustering results are
similar to those of traditional methods, the necessary data was reduced to a
minimum on which to focus any possible further investigation.
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Christin Schäfer and Julian Laub

Fraunhofer Institute FIRST, Intelligent Data Analysis Group
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Abstract. This paper describes a contribution to the GfKl 2004 Contest. The
contest task is to cluster, classify and interpret the 170 districts of the city of
Dortmund with respect to their ‘social milieux’. A data set containing 204 variables
measured for every district is given.

We apply annealed k-means clustering to the preprocessed contest data. Super-
paramagnetic clustering is used to foster insight into the natural partitions of the
data. A stable and interpretable solution is obtained with k = 3 clusters, dividing
Dortmund into three social milieux. A decision tree is deduced from this cluster
solution and is used for interpretation and rule generation. The tree offers the
possibility to monitor and predict future assessments. To gain information about
cluster solutions with k > 3 a stability analysis based on a resampling approach is
performed resulting in further interesting insights.

1 Introduction

Unsupervised grouping or clustering aims at extracting hidden structure from
data (see e.g. Duda et al. (2001)). However, because of the absence of labels
giving a ground truth, clustering is an inherently ill-defined problem. There
is no natural measure of goodness, or cost function. The cluster solution must
be evaluated and interpreted by the experimenter.

Furthermore, with regard to the present problem, the notion of the very
goal, clustering social milieux, is ill defined too, thus impairing the necessary
intuition of the experimenter judging the clustering result.

Dortmund is subdivided into 170 districts. Since the districts are admin-
istrative subdivisions and do not occur as abrupt, physical disruptions (akin
the former Wall of Berlin) we assume smooth continuity at the respective
borders of the (theoretical) surface spanned by the measured data. Therefore
the short-range geographical relationship among the districts is not further
taken into account. As to the long-range correlation between districts, they
are expected to vanish quickly beyond a given district as we assume that
Dortmund is a very heterogenous city.

In section 2 the preprocessing and reduction of the data is described. The
subsequent clustering procedure is delineated in section 3. From the resulting
cluster solution a decision tree is derived in section 4 and the interpretation
of the result is given in section 5. Finally section 6 presents an outlook to
solutions with a larger number of clusters.
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Table 1. Remaining variables after preprocessing. The abbreviations in the brack-
ets are used in text and figures.

Unemployed Germans (Alosdeut)
Migration balance both (Wanbilzus)
Balance of moves within city both (InStdtUmBilzus)
Car (PKW)
Bus (Bus)
Tricycle (Dreirad)
Children overall (Kins)
Men overall (Mins)
Women overall (Fins)
Subjects to social insurance contribution Germans (sozvpflBeschDeut)

2 Preprocessing

The data set of the GfKl 2004 Contest is provided by the Amt für Statistik und
Wahlen of Dortmund and consists of 204 variables for the 170 sub-districts of
the city measured in 2002. The data set offers a description of Dortmund from
the view of official social statistics. The variables themselves form semantic
groups like population structure, unemployment, number of employees, wel-
fare recipients etc. All variables are measured in absolute frequencies, only
the area of districts is measured in square meters.

The variables forming a semantic group exhibit high mutual correlations.
For the purpose of dimension reduction we eliminate those groups with in-
tragroup correlation > 0.7 and use one single hand-chosen group member
as representative. For example, the semantic group ‘unemployment’ is rep-
resented through Alosdeut. This preprocessing step reduces noticeably the
number of variables. The only semantic group which cannot be represented
by a single variable is the ‘motoring’. The variables HWB and Flaeche are kept
aside and used for normalization only. The remaining variables are analyzed
with respect to the discrimination information they contain: a variable with
measurements all at the same level for every district is useless for clustering
and classification. Only those variables are kept, which are informative. The
final set of variables is depicted in table 1.

3 Clustering

3.1 Annealed k-means

One of the most popular clustering methods is k-means clustering. It derives a
set of k prototype vectors which quantize the data set with minimal quadratic
quantization error. However, the iterative optimization of the cost function,
starting from a random initial distribution of k vectors, is prone to local
minima – especially in the case where the dimensionality p of the data is of
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Fig. 1. Cluster size and number (y-axis) versus temperature (x-axis).

the same order or even larger than the number of samples n – resulting in poor
stability. A common workaround consists of using deterministic annealing for
optimization, which grant better optima. See e.g. Hofmann and Buhmann
(1997) for annealing techniques in unsupervised learning.

3.2 Learning about k

Solutions for a large number k of clusters pose serious problems for interpre-
tation. Therefore, in order to assess methodological validity of our technique
and gain intuition for the data, we first will choose k = 3.

This choice is far from being arbitrary. It can be justified by an analysis us-
ing super-paramagnetic clustering (Blatt et al. (1996)). Super-paramagnetic
clustering is based upon the physical analogy of Pott spins with k states.
Initially one starts from n points at zero temperature with identical spin. By
successively increasing the temperature, the points break into separate do-
mains (‘clusters’) of different spin. Finally, at high temperature, every point
forms a single cluster.

Figure 1 shows the size of the ten largest clusters as the temperature in-
creases. At the 6th time-step (t = 6) the n-data block splits into two clusters.
Further splits occurs at t = 9, creating beside the two large clusters a myr-
iad of very small clusters, which we may reunite into a third, bulk-cluster.
As temperature increases, the bulk-cluster increases at the expense of the
two main clusters. In spite of this decrease, we see that the overall struc-
ture of three clusters is preserved over a wide temperature range. It is only
above t = 30 that the second cluster becomes so small that it is no longer
distinguishable from the bulk-cluster. At t = 55 this happens for the first
cluster.



Annealed k-Means Clustering and Decision Trees 685

Fig. 2. Visualization of the super-paramagnetic clustering solution. The black areas
corresponds to cluster 1 in figure 1, the grey areas refers to cluster 2 and therefore,
cluster 3 consists of the white districts.

The cluster solution is obtained by choosing a temperature in a range
in which the solution does not change much. k = 3 thus appears to be a
very sensible choice, however, leaving us quite a range to choose a solution
from. We choose t = 15 – indicated in figure 1 by a solid line – yielding the
clustering depicted in figure 2.

3.3 Solution

The cluster solution given through the super-paramagnetic clustering can
be seen as a byproduct of the model selection. However our aim is to use
annealed k-means clustering, that is k-means clustering optimized by deter-
ministic annealing. Consequentially we present the cluster solution for k = 3
for annealed k-means clustering in figure 3. The overlap of the two solu-
tions is remarkable and corroborates the validity of our procedure, as well as
the underlying stability of the result. The sizes of the three clusters for the
super-paramagnetic solution are 68, 65 and 37, and for the annealed k-means
solution 53, 79, 38. Note that migration of districts between clusters from
one solution to the other cannot be summarized in an easy way.

4 Classification

The next step is to deduce a classification rule from the initially unsupervised
problem. This is done by using the cluster-assignments induced by annealed
k-means clustering for k = 3 to learn a decision tree. We derive a classification
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Fig. 3. Visualization of the solution obtained through annealed k-means clustering.
Similarly as in figure 2, we label the black areas as cluster 1, the grey one as cluster
2, and the white one as cluster 3.

tree by using the well known algorithm C4.5 of Quinlan (1993). For the
problem the use of decision trees offers several advantages: first, the rules
generated to build the tree are helpful for labeling, describing and interpreting
the clusters, especially for the interpretation with respect to ‘social milieu’. A
second advantage of decision trees is, that monitoring as well as predicting the
‘social milieu’ of a district, can be done easily. Figure 4 shows the decision tree
derived by C4.5. One has to keep in mind that the depicted variables are only
representatives of their semantic group. The variable PKW contains the largest
amount of information with respect to the given classification. Splitting the
districts using their values of PKW separates the cluster 2 from the others.
Noting that the leaves at the second level of the tree cover more than 90% of
the districts (depicted as rectangles in figure 4). Hence, to separate cluster 2
from cluster 1 and 3 mainly only one split of PKW is needed. To distinguish
between cluster 1 and 3 only one further split by Kins must be conducted.
The elongated sub-tree at the right hand side of the tree illustrates the cost
to classify the remaining 10% of districts.

Figure 5 shows the classification solution if one uses only the information
of the first two splits, combining the remaining not yet classified districts to
a fourth cluster. This cluster is depicted by white areas. One may criticize
that the derived rules for the classification of the three clusters are rough
and simple. It turns out that even if one uses for learning the whole data set
instead of the reduced one, the resulting set of rules will be the same, both
in numbers as in semantic structure.
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Fig. 4. Classification Tree for the clusters from annealed k-mean clustering. ‘Cluster
1’ refers to the black cluster in figure 3, ‘cluster 3’ is given through the white cluster
and therefore ‘cluster 2’ is depicted by the grey cluster.

5 Interpretation

The results provided by the cluster solutions in figures 2, 3, and 5 and the
decision tree in figure 4 allow for the following interpretation: It is possible
to cluster the 170 sub-districts of Dortmund into 3 clusters. The resulting
cluster solution is very stable. The most important variable is PKW. Cluster 2
is characterized through a high level of PKW. From the figures 2, 3, and 5 we
derived a label for cluster 2, that is ‘Dörferrunde’, ring of small villages. In
fact, cluster 2 contains the outer parts of Dortmund, especially in the south,
that are villages suburbanized to Dortmund. The ‘Dörferrunde’ may suffer
from an underdeveloped public transportation system and therefore cars are
important in daily life. This explanation approach may be valid for districts
like Salingen (district number 643) and Kruckel (662). On the other hand, a
large number of cars may indicate prosperity of the habitants, which prefer
to live in nice houses with garden. This explanation may be true for districts
like Höchsten (541), Syburg (551) and parts of Aplerbeck (e.g. 416, 417, 451,
452). Summarizing, we associate carefully a ‘social milieu’ to cluster 2: young
families, countryside middle class and upper class.

In contrast, cluster 1 and 3 are characterized by a lower level of PKW and
separated by their level of the variable Kins. Cluster 1 is characterized by the
higher level of Kins and when incorporating the geographical information it
can be denoted as ‘north city’ and ‘harbor’. One can conclude that cluster 1
is a living area for workers. A district falls into cluster 3 if both PKW and Kins
are realized on their lower levels. Therefore, this cluster can be assumed to
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Fig. 5. White areas show districts which are not yet classified through the first two
levels of the tree, whereas the colored clusters are defined through three easy rules
containing only two constraints.[cluster 1 (gray), cluster 2 (light gray), cluster 3
(black)]

be real urban districts with a population consisting of elderly people, young
couples without kids and young singles. From figure 3 it is noticeable that the
cluster is mainly build from the southern part of the inner city and the region
around the university. More precisely, Universität (642), Eichlinghofen (641),
Hombruch (651), Westfalenhalle (11) and Westfalendamm (81,83), Ruhrallee
West (91) and Ost (92) are members of cluster 3. To summarize we may
denote the ‘social milieu’ of cluster 3 with urban middle class and students.

6 Outlook

The preceding section highlights that the derived cluster solution can be
interpreted in a meaningful way. But inside the interpretation-attempts it
becomes obvious that the multifariousness of a society and therefore of ‘so-
cial milieux’ can not be comprised with only 3 main groups. Thus, we are
interested in cluster solutions with k > 3 classes. The question arises which
k to choose. A criterion for a stability based choice of k is given in Roth et
al. (2002). It is based upon evaluating over a certain range of k an instability
index related to the comparison of two cluster solutions obtained by resam-
pling the initial data set. The k for which this instability index is (locally)
minimal is stable, and hence, for lack of extrinsic criteria, is a suitable choice.

For the contest data there are three potentially interesting local minima:
k = 9, k = 12 and k = 22. Figure 6 shows the situation for k = 9. Note
that the assignment of colors inside the figure is arbitrary. Therefore, one has
to resist the temptation to interpret clusters with similar colors as similar
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Fig. 6. Solution obtained for 9 clusters.

with respect to their ‘social milieu’. However, this gives evidence of the issue
of interpretation for large k’s. This problem of interpretation increases with
the number of clusters k. Another drawback of this kind of visualization is
that within the black-to-white coloring scheme the clusters become indistin-
guishable for large k. Therefore we do not show the solutions for k = 12 and
k = 22. The resulting decision trees can not be properly depicted on a paper
of size Din A4. On request, the decision trees for k = 9, k = 12 and k = 22
can be obtained from the authors. Notice, that especially the tree for k = 22
is a refinement of the solution for k = 3 shown in figure 4.
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Abstract. We combine correspondence analysis (CA) and K-means clustering to
divide Dortmund’s districts into groups that are associated to particular variables
and thus represent a social cluster. CA visualizes associations between rows and
columns of a frequency matrix and can be used for dimension reduction. Based on
the first three dimensions after CA mapping we find a stable partition into five
clusters. We further identify variables that are highly associated with the cluster
centroids and thus represent a cluster’s social condition.

1 Introduction

The city of Dortmund is regarded as a highly heterogeneous urban area.
The 170 districts comprise the city center, the ancient Dortmund, and in-
corporated suburbs that are nowadays either connected to the city center or
maintained as village-like entities. The city covers industrial areas as well as
fields and forests.

The City of Dortmund provides data of 200 variables for each district.
The question is whether the city’s heterogeneity is reflected in the data and
whether it is possible to classify the districts with respect to their social
environment. Since the definition of “social environment” is wide, we do not
only regard typical social variables like amount of unemployed adults. By
defining general preselection rules based on correlation and variability, we
arrive at a set of variables that does not only represent social but general
residential information.

The reduced data set is submitted to correspondence analysis (CA). CA
is a useful tool to visualize associations between rows and columns of a fre-
quency matrix, that is between districts and variables. Row and column vec-
tors are simultaneously mapped into a space where the similar direction of
vectors reflects their association. Proximity of districts alone reflects close
relationship with respect to similar associated variables. We apply K-means
clustering after mapping to CA space. We derive a stable cluster pattern of
districts that can be interpreted with regard to the corresponding variables.

Both CA and K-means clustering are standard classification techniques.
However, it is possible to analyse the given data set with various classification
tools. The solution presented in this paper was chosen because of the conve-
nient visualization and interpretation features of CA and the availability of
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Table 1. List of remaining variables after variable selection.

Alosaus Alosdeut BJ01bis19 BJ19bis48
BJ49bis57 BJ58bis62 BJ63bis72 BJ73bis82
BJ83bis92 BJ93bis01 BJbis1900 Fins
GebBest10ins GebBest1und2ins GebBest3ins Gebzus
GenNeuins Hhins HWBinsA HWBinsD
InstdtUmZuzus Kins LKW Mins
PKW Sozempfzus sozvpflBeschAus sozvpflBeschDeut
Sterbzus WanZuzus WGebäuins Zugmaschine

K-means as a standard tool with regard to future application by the City of
Dortmund.

2 Material and methods

Material. The data set consists of 170 districts covering Dortmund and 200
variables collected in 2002. The variables give complete inventory of popu-
lation (German, foreign, births, deaths, movements), unemployment, social
welfare, buildings (stock, construction, covered area) and motor vehicles. All
variables are measured as absolute frequencies except those representing ar-
eas. Area variables are given in square meters, the total area is given in
hectares. We exclude the variables “total population” (HBWins) and “total
area” (Flächeha) and use them for scaling. The data set is accompanied by
geographical information. For each district a planar polygonal representation
is given to account for spatial relations.

Variable selection and scaling. Many variables are related to each
other by linear combination or high correlation. We scan variables belonging
to one topic separately. For each group of variables with mutual correlation
coefficients exceeding ±0.7, one representative is selected manually. If pos-
sible, the variable containing a grand total is preferred. The four variables
regarding welfare recipients are merged into one variable (Sozempfzus). The
remaining variables are scaled by their median absolute deviation. Variables
with median absolute deviation of zero are removed since these do not con-
tain a considerable amount of information. The preselection process results
in 32 variables shown in Table 1.

The remaining variables are measured in absolute frequencies scaled by
median absolute deviation per variable. Since the city districts differ with
respect to population and area, the variables are not comparable between
districts. To correct for district densities, for example small areas with high
population or large areas with low population, each district is scaled by its
density, that is overall district population (HBWins) divided by overall district
area (Flächeha). After variable selection and scaling, the remaining data
matrix contains informative variables on comparable scale.

Correspondence analysis. Given a matrix of absolute frequencies, we
can compute the χ2 test statistic for homogeneity. Similar to principal com-
ponent analysis, CA provides the mapping of variables into a lower space
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while preserving a considerable percentage of χ2. CA maps row and column
vectors simultaneously into the same space. A row and a column vector are
positively associated if they point to the same direction, that is they share
a small angle. The more remote they are from the origin, the more associ-
ated they are. Row and column vectors pointing to opposite directions can
be interpreted as negatively associated. In the following, we recall the main
concepts of CA. For detailed theory and further concepts see for example
Mirkin (1996, chap. 2.3.3) and Nakayama (2001).

Let N be a matrix of absolute frequencies with r rows, c columns, entries
nij and grand total n. Hence, F = n−1N is the matrix of corresponding
relative frequencies. We further define Dr as the r × r diagonal matrix of
mean row profile (n1./n, . . . , nr./n) and Dc as the c × c diagonal matrix of
mean column profile (n.1/n, . . . , n.c/n), where ni. and n.j are row and column
sums of N. The distance between two columns j and j′ of N can be measured
in χ2 distance d2 as

d2(j, j′) =
r∑

i=1

n

ni.

(
nij

n.j
− nij′

n.j′

)2

.

The χ2 distance is related to the Euclidean distance: If we apply the trans-
formation F̃ = D−1/2

r FD−1
c , then d(j, j′) is the Euclidean distance between

columns j and j′ of F̃.
The objective of CA is to find a mapping of the columns of N from

space Rr to a lower dimensional space Rm with m < r. The relative po-
sitions of two columns in χ2 distance before mapping and Euclidean dis-
tance after mapping are preserved. A suitable mapping is found by singular
value decomposition of the matrix S = D−1/2

r FD−1/2
c −D1/2

r 1r1T
c D1/2

c . Sin-
gular value decomposition decomposes S into S = VΛWT . The matrices
V and W contain left and right singular vectors respectively. Matrix Λ is
the diagonal matrix of positive singular values λ1 ≥ · · · ≥ λk > 0 with
k ≤ min(r, c). The columns of N can be presented in space Rk as columns
of C = (λ1D

−1/2
c w1, . . . , λkD

−1/2
c wk), where ws denotes the sth column of

W. Applying the same considerations to the rows of N it follows that rows
can be presented as columns of R = (λ1D

−1/2
r v1, . . . , λkD

−1/2
r vk), where vs

denotes the sth column of V.
The total sum of squares of S is equal to the χ2 statistic of N divided by

n. The value χ2/n is called inertia, a term that interprets relative frequency
as mass. Due to singular value decomposition, the total inertia is equal to the
sum of squared singular values of S. The proportion of inertia explained by
the first singular value is then λ2

1/
∑k

s=1 λ
2
s. Regarding a chosen proportion

of explained inertia, we represent the data in a lower dimensional space Rm

by only considering the first m columns of C and R.
K-means clustering. The K-means algorithm of Hartigan and Wong

(1979) divides data points into K clusters. Initially, K data points are chosen
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randomly as cluster centroids. In an iterative process, the algorithm assigns a
data point to a cluster if this minimizes the within-cluster sum of squares of
Euclidean distances to the corresponding cluster centroid. After reallocation
of data points, cluster centroids are updated by replacing them with the
centroid of within-cluster points. The iteration stops in a local minimum
where no further reallocation of data points by this rule reduces the within-
cluster sum of squares.

The number of clusters K is chosen such that the resulting partition
of data points into clusters C1, . . . , CK is optimal with respect to a clus-
ter validation index. A suitable index can be derived from silhouette scores,
Rousseeuw (1987). For data point xi assigned to cluster Ck, the average
Euclidean distance ai between point xi and its within-cluster points xj ∈
Ck, j �= i, is defined as ai = |Ck|−1

∑
xj∈Ck

‖xi − xj‖2, where ‖ · ‖2 denotes
the Euclidean norm. For all clusters not containing point xi, the average
Euclidean distance between xi and within-cluster points is computed. The
minimum bi of these values, that is the average distance of xi to its nearest
neighboring cluster, is defined as bi = minl�=k |Cl|−1

∑
xj∈Cl

‖xi − xj‖2. The
silhouette score si of point xi is then given as si = (bi−ai)/(max{ai, bi}) and
ranges from -1 to 1. A score near 1 supports the allocation of xi to an appro-
priate cluster. A point allocated to an inadequate cluster has a score near -1.
A general validation index for a specific K-means partition is given by the
global silhouette score, that is silhouette scores averaged over all points. The
optimal number of clusters is then chosen from the partition with highest
observed global silhouette score.

Two runs of K-means can lead to different partitions if the initial cluster
centroids were chosen with random seeds. The process is considered to be sta-
ble if a reasonable percentage of several runs with K random centroids results
in identical partitions. Therefore, we do not only consider the global silhou-
ette score as a criterion for an optimal number of clusters but also the stability
of the process under reruns. A process is stable if the resulting partitions are
highly concentrated, that is, a small number of non-identical partitions is
observed with high frequency when several runs are conducted. We allow a
difference in one point to call two partitions identical. Given l non-identical
partitions with observed relative frequencies π̂j , j = 1, . . . , l, we measure
concentration via normalized entropy NEK = −∑l

j=1 π̂j · log π̂j/ log l. A low
value of normalized entropy corresponds to high concentration. We base the
final decision about the optimal number of clusters on a two-step combination
of global silhouette scores and normalized entropy.

The K-means clustering is performed on the transformed district points
after application of CA. District points that cluster together are considered
to be associated to the same set of variable points, thus allowing for the
interpretation that district points within a cluster share a common frequency
profile on a set of variables. For data analysis, we use the statistical software
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Fig. 1. Biplot of districts (circles) and variables (squares) on first two dimensions
after CA mapping. Background arrows denote main directions of association.

R, version 1.7.1, with incorporated functions kmeans and silhouette, Ihaka
and Gentleman (1996). Source code is available on request.

3 Results

After variable selection, the scaled data matrix containing 170 districts and
32 variables is submitted to CA. Figure 1 shows the two-dimensional biplot
of districts and variables after mapping. Districts and variables that point
to the same direction are positively associated. From this low dimensional
plot we can guess at least three clusters of districts which are associated
with the same variables. Many districts scatter around the origin and are not
associated with a particular variable.

We apply K-means clustering on the districts after CA transformation. As
each additional CA dimension explains a smaller percentage of inertia than
those before, we first maximize the global silhouette score with respect to the
number of CA dimensions m and the number of clusters K. For K = 2, . . . , 10
and m = 3, . . . , 11, we conduct 1 000 partitions each and compute the average
global silhouette score for each combination. The maximal average score is
reached for partitions with 4 clusters on 3 dimensions followed closely by 5
clusters on 3 dimensions. The latter has a three times lower standard error.
Regarding the combination of mean score and standard error we choose 5
clusters on 3 dimensions which explain 58.5% of total inertia.

The 5-means clustering on 3 dimensions is optimal regarding its con-
centration. We conduct 10 000 runs for each combination of dimensions and
clusters as above. The minimal normalized entropy is reached for 5 clusters
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Fig. 2. Maps of inner city cluster (21 districts), western circle (57 districts) and
eastern circle (59 districts).

Fig. 3. Maps of northern suburbs (22 districts) and small cluster (11 districts).

and 3 dimensions where the algorithm converges in 69% of all runs to the
cluster pattern shown in Figures 2 and 3. Of all partitions with K = 5 and
m = 3 found in 10 000 runs, the presented pattern has not the highest global
silhouette score. However, only two other partitions were found with conver-
gence rates higher than 3% (12% and 11%), and those partitions with global
silhouette scores higher than the presented one were found in a total of only
5% of all runs.

In addition, a randomization test for spatial correlation is performed to
test whether neighboring districts in CA are also near in reality. A spatial cor-
relation test compares two distance matrices corresponding to the same vari-
ables by correlation coefficient and assigns a randomization p-value, Manly
(2001, chap. 9). One distance matrix contains the mutual Euclidean distances
based on the first three CA dimensions. The entries of the second matrix are
1 if two districts are real neighbors, that is, if they share at least one point
in their polygonal representation, and 0 if not. The two matrices are weakly
negatively correlated with a correlation coefficient of −0.10 but show a signif-
icant p-value < 0.0001 based on 10 000 randomizations. Thus, clustering on
CA mapping corresponds to the simple neighboring relationship of districts.

Dortmund is divided into a small, two mediate and two large clusters
of districts. As suggested by the spatial correlation analysis, most members
of a cluster are geographically neighboring. The inner city districts cluster
together and are surrounded by the two large clusters. The latter span a
circle of outer city districts, accumulating the western and eastern districts
respectively. A fourth cluster contains mostly northern rural suburbs but also
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Fig. 4. Two-dimensional biplot of cluster centroids (circles) and variables (squares).
Colors correspond to clusters in Figures 2 and 3. Labeled variables are positively
associated to nearest cluster centroid based on first three CA dimensions.

eastern industrial areas and a part of the city center. The smallest cluster is
scattered over Dortmund with emphasis on southern districts. Figures 2 and
3 show maps of each cluster versus the others.

Finally, we identify those variables that are highly associated with the
cluster centroids. In three-dimensional space we compute the lengths of vari-
able vectors and the angles between centroids and variables. The smaller the
angle and the further apart from the origin the variable point is, the higher
is the association to the corresponding cluster. We select variables with an
angle smaller than 0.3 radian and a vector length greater than 0.4.

The analysis shows that all clusters are associated with one or more vari-
ables except the western circle which is simply not associated with any vari-
able. Figure 4 shows a biplot similar to Figure 1 but with districts represented
by their cluster centroids. Variables that are highly associated with the near-
est cluster centroid are labeled.

Six variables are positively associated to the inner city cluster: Social
welfare recipients (Sozempfzus), unemployed foreigners (Alosaus), foreign
population (HWBinsA), foreigners subjected to social insurance contribution
(sozvpflBeschAus), immigration (WanZuzus) and residential building stock
with 10 and more apartments (GebBest10ins). Districts of the inner city
cluster are separable from other districts with respect to similar high relative
frequencies of these variables. For interpreting these variables in a social
context one has to keep in mind that all remaining variables were selected as
representatives of their group.

The eastern circle is associated to building stock variables spanning the
sixties and eighties as years of construction (BJ58bis62, BJ63bis72 and
BJ82bis92). Districts in this cluster have similar high relative frequencies
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of postwar building stock. The cluster of northern suburbs shows high fre-
quencies of very old houses (BJbis1900) and tractors (Zugmaschine).

The small cluster is positively associated with the variable GenNeuins,
that is total building permits for residential buildings with living space. The
interpretation of building permits with respect to social environment is dif-
ficult: Large numbers of new buildings either represent development areas
that usually attract young families or represent dense housing areas of lower
social level.

4 Conclusion

After variable selection and preprocessing, the remaining data set was sub-
mitted to correspondence analysis. Examination of the first two dimensions
after mapping already suggested that the districts do not form a homoge-
neous entity. Considering the first three new dimensions, a stable partition
into five clusters was found: The inner city and adjacent districts, a western
and an eastern circle, a cluster of northern suburbs and industrial areas and
a small cluster scattered over the outer city area.

For four clusters we identified highly associated variables which represent
population structure and building stocks. However, the interpretation regard-
ing the social environment is restricted to the available variables. The western
city cluster is not particularly associated with any variable and represents the
cluster of remaining districts after separation of other clusters.

The analysis reflects Dortmund’s social conditions in 2002. To monitor
changes in social or residential conditions, next year’s data can be submitted
to the same procedures with reduced variables as in 2002. Few changes in
2003 will probably result in a similar partition, whereas dramatic changes
may lead to another number of clusters and other associated variables.
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