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Generators and Representability

The aim of this chapter is to give various criteria for a functor with values in
Set to be representable, and as a by-product, criteria for a functor to have
an adjoint.

For that purpose, we need to introduce two important notions. The first
one is that of a strict morphism for a category C which admits finite inductive
and finite projective limits. In such a category, there are natural definitions
of the coimage and of the image of a morphism, and the morphism is strict if
the coimage is isomorphic to the image. A crucial fact for our purpose here is
that if C admits a generator (see below), then the family of strict quotients of
any object is a small set.

The second important notion is that of a system of generators (and in
particular, a generator) in a category C. If C admits small inductive limits and
G is a generator, then any object X ∈ C is a quotient of a small coproduct of
copies of G, similarly as any module over a ring A is a quotient of A⊕I for a
small set I .

With these tools in hands, it is then possible to state various theorems
of representability. For example, we prove that if C admits small inductive
limits, finite projective limits, a generator and small filtrant inductive limits
are stable by base change, then any contravariant functor from C to Set is
representable as soon as it sends small inductive limits to projective limits
(Theorem 5.3.9).

Many of these results are classical and we refer to [64].

5.1 Strict Morphisms

Definition 5.1.1. Let C be a category which admits finite inductive and finite
projective limits and let f : X −→ Y be a morphism in C.

(i) The coimage of f , denoted by Coim f , is given by

Coim f = Coker(X ×Y X ⇒ X) .
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(ii) The image of f , denoted by Im f , is given by

Im f = Ker(Y ⇒ Y �X Y ) .

Note that the natural morphism X −→ Coim f is an epimorphism and the
natural morphism Im f −→ Y is a monomorphism.

Proposition 5.1.2. Let C be a category which admits finite inductive and
finite projective limits and let f : X −→ Y be a morphism in C.

(i) There is an isomorphism X �
X×Y X

X ∼−→Coim f .

(ii) There is an isomorphism Im f ∼−→ Y ×
Y�X Y

Y .

(iii) There is a unique morphism

u : Coim f −→ Im f(5.1.1)

such that the composition X −→ Coim f
u−→ Im f −→ Y is f .

(iv) The following three conditions are equivalent:
(a) f is an epimorphism,
(b) Im f −→ Y is an isomorphism,
(c) Im f −→ Y is an epimorphism.

Proof. (ii) Set Z = Y �X Y . We shall prove the isomorphism Ker(i1, i2 : Y ⇒
Z) � Y ×Z Y . For any U ∈ C, we have

HomC(U, Y ×Z Y ) =
{
(y1, y2) ; y1, y2 ∈ Y (U), i1(y1) = i2(y2)

}
.

The codiagonal morphism σ : Z −→ Y satisfies σ ◦ i1 = σ ◦ i2 = idY . Hence,
i1(y1) = i2(y2) implies y1 = σ ◦ i1(y1) = σ ◦ i2(y2) = y2. Therefore we obtain

HomC(U, Y ×Z Y ) � {
y ∈ Y (U) ; i1(y) = i2(y)

}
� HomC(U,Ker(i1, i2 : Y ⇒ Z)) .

(i) follows from (ii) by reversing the arrows.
(iii) Consider the diagram

X ×Y X
p1 ��
p2

�� X
f ��

s

��

Y
i1 ��
i2

�� Y �X Y .

Coim f

f̃

��

u �� Im f





Since f ◦ p1 = f ◦ p2, f factors uniquely as X
s−→ Coim f

f̃−→ Y . Since
i1 ◦ f = i1 ◦ f̃ ◦ s and i2 ◦ f = i2 ◦ f̃ ◦ s are equal and s is an epimorphism,
we obtain i1 ◦ f̃ = i2 ◦ f̃ . Hence f̃ factors through Im f .
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The uniqueness follows from the fact that X −→ Coim f is an epimorphism
and Im f −→ Y is a monomorphism.
(iv) Assume that f is an epimorphism. By the construction, the two mor-
phisms i1, i2 : Y −→ Y �X Y satisfy i1 ◦ f = i2 ◦ f . Since f is an epimorphism,
it follows that i1 = i2. Therefore, Ker(i1, i2) � Y .
Conversely, assume that w : Im f −→ Y is an epimorphism. Since i1◦w = i2◦w,
we have i1 = i2. Consider two morphisms g1, g2 : Y ⇒ Z such that g1 ◦ f =
g2◦ f . These two morphisms define g : Y�X Y −→ Z and g1 = i1◦g = i2◦g = g2.

q.e.d.

Examples 5.1.3. (i) Let C = Set. In this case, the morphism (5.1.1) is an
isomorphism, and Im f � f (X), the set-theoretical image of f .
(ii) Let C denote the category of topological spaces and let f : X −→ Y be a
continuous map. Then, Coim f is the space f (X) endowed with the quotient
topology of X and Im f is the space f (X) endowed with topology induced by
Y . Hence, (5.1.1) is not an isomorphism in general.

Definition 5.1.4. Let C be a category which admits finite inductive limits
and finite projective limits. A morphism f is strict if Coim f −→ Im f is an
isomorphism.

Proposition 5.1.5. Let C be a category which admits finite inductive limits
and finite projective limits and let f : X −→ Y be a morphism in C.

(i) The following five conditions are equivalent
(a) f is a strict epimorphism,
(b) Coim f ∼−→ Y ,
(c) the sequence X ×Y X ⇒ X −→ Y is exact,
(d) there exists a pair of parallel arrows g, h : Z ⇒ X such that f ◦ g =

f ◦ h and Coker(g, h) −→ Y is an isomorphism,
(e) for any Z ∈ C, HomC(Y, Z) is isomorphic to the set of morphisms

u : X −→ Z satisfying u ◦v1 = u ◦v2 for any pair of parallel morphisms
v1, v2 : W ⇒ X such that f ◦ v1 = f ◦ v2.

(ii) If f is both a strict epimorphism and a monomorphism, then f is an
isomorphism.

(iii) The morphism X −→ Coim f is a strict epimorphism.

Proof. (i) (a) ⇒ (b) since Im f ∼−→ Y by Proposition 5.1.2 (iv).

(i) (b) ⇒ (a) is obvious.

(i) (b) ⇔ (c) is obvious.

(i) (d) ⇒ (b). Assume that the sequence Z ⇒ X
f−→ Y is exact. Consider the

solid diagram
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Z

��

���� X

��

�� Y

��
X ×Y X ���� X �� Coim f .

We get a morphism Y −→ Coim f which is inverse to the natural morphism
Coim f −→ Y .

(i) (c) ⇒ (d) is obvious.

(i) (c) ⇔ (e). The condition on u in (e) is equivalent to saying that the two
compositions X ×Y X ⇒ X

u−→ Z coincide.

(ii) The morphism f decomposes as X −→ Coim f −→ Y . The first arrow is
an isomorphism by Proposition 5.1.2 (iv) (with the arrows reversed) and the
second arrow is an isomorphism by (i).

(iii) follows from (i) (d) by the definition of Coim f . q.e.d.

Remark that in Proposition 5.1.5, it is not necessary to assume that C admits
finite inductive and projective limits to formulate condition (i) (e).

Definition 5.1.6. Let C be a category. A morphism f : X −→ Y is a strict
epimorphism if condition (i) (e) in Proposition 5.1.5 is satisfied.

Note that condition (i) (e) in Proposition 5.1.5 is equivalent to saying that
the map

HomC(Y, Z) −→ HomC∧(Im hC( f ),hC(Z))

is an isomorphism for any Z ∈ C.
The notion of a strict monomorphism is defined similarly.

Proposition 5.1.7. Let C be a category which admits finite inductive limits
and finite projective limits. Assume that any epimorphism in C is strict. Let
f : X −→ Y be a morphism in C.

(i) The morphism Coim f −→ Y is a monomorphism.
(ii) If f decomposes as X

u−→ I
v−→ Y with an epimorphism u and a monomor-

phism v, then I is isomorphic to Coim f .

Proof. (i) Set I = Coim f and let X
u−→ I

v−→ Y be the canonical morphisms.
Let w denote the composition X −→ I −→ Coim v. Since w is a strict epi-
morphism, Coim w is isomorphic to Coim v. For a pair of parallel arrows
ϕ,ψ : W ⇒ X , the condition u ◦ ϕ = u ◦ ψ is equivalent to the condition
f ◦ ϕ = f ◦ ψ . Indeed, if f ◦ ϕ = f ◦ ψ , then (ϕ,ψ) gives a morphism
W −→ X ×Y X , and the two compositions W −→ X ×Y X ⇒ X −→ I are equal
and coincide with u ◦ ϕ and u ◦ ψ .

Hence, these two conditions are also equivalent to w ◦ ϕ = w ◦ ψ . This
implies X ×Coim v X � X ×Y X , and hence
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I � Coker(X ×Y X ⇒ X) � Coker(X ×Coim v X ⇒ X)
� Coim w � Coim v .

Then Proposition 5.1.2 (iv) (with the arrows reversed) implies that v is a
monomorphism.
(ii) Since v is a monomorphism, the canonical morphism X ×I X −→ X ×Y X
is an isomorphism. Hence,

Coim f � Coker(X ×Y X ⇒ X) � Coker(X ×I X ⇒ X)
� Coim(X −→ I ) � I ,

where the last isomorphism follows from the fact that u is a strict epimor-
phism. q.e.d.

Similarly as in Definition 1.2.18, we set:

Definition 5.1.8. Let C be a category and let X ∈ C.

(i) An isomorphism class of a strict epimorphism with source X is called a
strict quotient of X .

(ii) An isomorphism class of a strict monomorphism with target X is called
a strict subobject of X .

5.2 Generators and Representability

Recall that, unless otherwise specified, a category means a U-category. In
particular, we denote by Set the category of U-sets.

Definition 5.2.1. Let C be a category.

(i) A system of generators in C is a family of objects {Gi }i∈I of C such that
I is small and the functor C −→ Set given by X 
→∏

i∈I HomC(Gi , X) is
conservative, that is, a morphism f : X −→ Y is an isomorphism as soon
as HomC(Gi , X) −→ HomC(Gi , Y ) is an isomorphism for all i ∈ I .
If the family {Gi }i∈I consists of a single object G, G is called a generator.

(ii) A system of cogenerators (resp. a cogenerator) in C is a system of gen-
erators (resp. is a generator) in Cop.

Note that if C admits small coproducts and a system of generators {Gi }i∈I ,
then it admits a generator, namely

∐
i Gi .

Examples 5.2.2. (i) The object {pt} is a generator in Set, and a set consisting
of two elements is a cogenerator in Set.
(ii) Let A be a ring. Then A is a generator in Mod(A).
(iii) Let C be a small category. Then Ob(C) is a system of generators in C∧,
by Corollary 1.4.7.
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We shall concentrate our study on categories having a generator. By revers-
ing the arrows, the reader will deduce the corresponding results for categories
having a cogenerator.

For G ∈ C, we shall denote by ϕG the functor

ϕG := HomC(G, • ) : C −→ Set .

Note that for X ∈ C, the identity element of

HomSet(HomC(G, X),HomC(G, X)) � HomC∨(G
∐

Hom (G,X)
, X)

defines a canonical morphism in C∨

G
∐

Hom (G,X) −→ X .(5.2.1)

Proposition 5.2.3. Assume that C admits finite projective limits, small co-
products and a generator G. Then:

(i) the functor ϕG = HomC(G, • ) is faithful,
(ii) a morphism f : X −→ Y in C is a monomorphism if and only if ϕG( f ) :

HomC(G, X) −→ HomC(G, Y ) is injective,
(iii) a morphism f : X −→ Y in C is an epimorphism if ϕG( f ) : HomC(G, X)

−→ HomC(G, Y ) is surjective,
(iv) for any X ∈ C the canonical morphism G

∐
Hom (G,X) −→ X defined in

(5.2.1) is an epimorphism in C,
(v) for any X ∈ C, the family of subobjects (see Definition 1.2.18) of X is a

small set.

Proof. (i) follows from Proposition 2.2.3 and the fact that HomC(G, • ) is left
exact.
(ii)–(iii) follow from (i) and Proposition 1.2.12.
(iv) By (iii) it is enough to check that HomC(G, G

∐
Hom (G,X)) −→ HomC(G, X)

is an epimorphism, which is obvious.
(v) We have a map from the family of subobjects of X to the set of subsets
of ϕG(X). Since ϕG(X) is a small set, it is enough to show that this map is
injective. For two subobjects Y1 ↪→ X and Y2 ↪→ X , Y1 ×X Y2 is a subobject
of X . Assuming that Im(ϕG(Y1) −→ ϕG(X)) = Im(ϕG(Y2) −→ ϕG(X)), we find

ϕG(Y1 ×X Y2) � ϕG(Y1)×ϕG(X) ϕG(Y2) � ϕG(Y1) � ϕG(Y2) .

Hence, Y1×X Y2
∼−→ Yi for i = 1, 2. Therefore, Y1 and Y2 are isomorphic. q.e.d.

Proposition 5.2.4. Let C be a category which admits finite projective limits
and small coproducts, and assume that any morphism which is both an epi-
morphism and a monomorphism is an isomorphism. For an object G of C, the
following conditions are equivalent.

(i) G is a generator,
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(ii) ϕG is faithful,
(iii) for any X ∈ C, there exist a small set I and an epimorphism G

∐
I −→ X .

Proof. We know by Proposition 5.2.3 that (i) ⇒ (ii) & (iii).
(ii) ⇒ (i). Let f : X −→ Y and assume that ϕG( f ) is an isomorphism. By
Proposition 1.2.12, f is a monomorphism and an epimorphism. We conclude
that f is an isomorphism by the third hypothesis.
(iii) ⇒ (ii). Let f, g : X ⇒ Y and assume that ϕG( f ) = ϕG(g). For any small
set I and any morphism u : G

∐
I −→ X , the two compositions G

∐
I −→ X ⇒ Y

are equal. If u is an epimorphism, this implies f = g. q.e.d.

Theorem 5.2.5. Let C be a category which admits small inductive limits and
let F : Cop −→ Set be a functor. Then F is representable if and only if the two
conditions below are satisfied:

(a) F commutes with small projective limits (i.e., F sends inductive limits in
C to projective limits in Set),

(b) the category CF is cofinally small. (The category CF is associated with
F ∈ C∧ and hC : C −→ C∧ as in Definition 1.2.16. In particular, its objects
are the pairs (X, u) of X ∈ C and u ∈ F(X).)

Proof. (i) Condition (a) is obviously necessary. Moreover, if F is representable,
let us say by Y ∈ C, then the category CF � CY admits a terminal object,
namely (Y, idY ).
(ii) Conversely, assume that F satisfies (a) and (b).

By hypothesis (a) and Lemma 2.1.13, CF admits small inductive limits.
By hypothesis (b), CF is cofinally small. Hence the inductive limit of the

identity functor is well-defined in CF . Denote this object of CF by X0:

X0 = lim−→
X∈CF

X .

Since X0 is a terminal object of CF by Lemma 2.1.11, X0 is a representative
of F by Lemma 1.4.10. q.e.d.

We shall give a condition in order that the condition (b) of Theorem 5.2.5
is satisfied.

Theorem 5.2.6. Let C be a category satisfying:

(i) C admits a generator G,
(ii) C admits small inductive limits,
(iii) for any X ∈ C the family of quotients of X is a small set.

Then any functor F : Cop −→ Set which commutes with small projective limits
is representable.

Remark 5.2.7. The hypotheses (iii) is not assumed in [64], but the authors
could not follow the argument of loc. cit.
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Proof. By Theorem 5.2.5, it is enough to check that the category CF is cofi-
nally small. Note that F being left exact, this category is filtrant by Proposi-
tion 3.3.13.

Set Z0 = G
∐

F(G). By the assumption on F , we have

F(Z0) � F(G)F(G) � HomSet(F(G), F(G)) .

Denote by u0 ∈ F(Z0) the image of idF(G). Hence, (Z0, u0) belongs to CF . Let
(X, u) ∈ CF and set X1 = G

∐
Hom (G,X). Then the natural morphism X1 −→ X

is an epimorphism by Proposition 5.2.3 (iv).
Consider the maps HomC(G, X) −→ HomSet(F(X), F(G)) −→ F(G) where

the second one is associated with u ∈ F(X). They define the morphism X1 =
G
∐

Hom (G,X) −→ Z0 = G
∐

F(G) and the commutative diagram in C∧

X1

��

�� Z0

��
X u

�� F .

Define X ′ as X
∐

X1
Z0 and consider the diagram below in which the square

is co-Cartesian:

X1 = G
∐

Hom (G,X) ��

����

Z0

����

''+
++
++
++
++
++
++
++

X ��

u

		���
����

����
����

����
��� X ′

u′

((
F.

Since F commutes with projective limits, the dotted arrow may be completed.
Since X1 −→ X is an epimorphism, Z0 −→ X ′ is an epimorphism by Exercise
2.22. Hence, for any (X, u) ∈ CF we have found a morphism (X, u) −→ (X ′, u′)
in CF such that there exists an epimorphism Z0�X ′. By hypothesis (iii) and
Proposition 3.2.6, CF is cofinally small. q.e.d.

Proposition 5.2.8. Let C be a category which admits small inductive limits.
Assume that any functor F : Cop −→ Set is representable if it commutes with
small projective limits. Then:

(i) C admits small projective limits,
(ii) a functor F : C −→ C ′ admits a right adjoint if and only if it commutes

with small inductive limits.

Proof. (i) Let β : I op −→ C be a projective system indexed by a small category
I . Consider the object F ∈ C∧ given by
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F(X) = lim←−
i

HomC(X, β(i)) .

This functor from Cop to Set commutes with small projective limits in Cop,
and hence it is representable.
(ii) For any Y ∈ C ′, the functor X 
→ HomC′(F(X), Y ) commutes with small
projective limits, and hence it is representable. q.e.d.

Proposition 5.2.9. Assume that C admits finite inductive limits, finite pro-
jective limits, and a generator. Then the family of strict quotients of an object
X ∈ C is a small set.

Proof. Recall that f : X −→ Y is a strict epimorphism if and only if the se-
quence X ×Y X ⇒ X −→ Y is exact. Hence, we may identify the family of strict
quotients of X with a family of subobjects of X × X , and this is a small set
by Proposition 5.2.3 (v).

q.e.d.

Corollary 5.2.10. Assume that the category C admits small inductive limits,
finite projective limits and a generator. Assume moreover that any epimor-
phism in C is strict. Then a functor F : Cop −→ Set is representable if and
only if it commutes with small projective limits.

Examples 5.2.11. The hypotheses of Corollary 5.2.10 are satisfied by the cat-
egory Set as well as by the category Mod(R) of modules over a ring R.

5.3 Strictly Generating Subcategories

In Sect. 5.2 we obtained representability results in a category C when assuming
either that the family of quotients of any object is small or that any epimor-
phism is strict. In this section, we shall get rid of this kind of hypotheses.

Let C be a category and F a small full subcategory of C. Then we have
the natural functor

ϕ : C −→ F∧,(5.3.1)

which associates with X ∈ C the functor F � Y 
→ HomC(Y, X). By the
Yoneda Lemma, we have

HomF∧(ϕ(X), ϕ(Y )) � HomC(X, Y )

for X ∈ F and Y ∈ C.
By the definition, ϕ is conservative if and only if Ob(F) is a system of

generators. If moreover C admits finite projective limits, then ϕ is faithful by
Proposition 2.2.3.
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Definition 5.3.1. Let C be a category and F an essentially small full sub-
category of C. We say that F is strictly generating in C if the functor ϕ in
(5.3.1) is fully faithful.

Note that if F is a strictly generating full subcategory, then Ob(F) is a
system of generators.

Lemma 5.3.2. Let C be a category, and let F and G be small full subcategories
of C. Assume that F ⊂ G and F is strictly generating. Then G is also strictly
generating.

Proof. Let ϕF : C −→ F∧ and ϕG : C −→ G∧ be the natural functors. Then ϕF
is fully faithful and it decomposes as

C ϕG−−→ G∧ ι−→ F∧.

Hence ϕG is faithful. Let us show that the map

HomC(X, Y ) −→ HomG∧(ϕG(X), ϕG(Y ))

is surjective for any X , Y ∈ C. Let ξ ∈ HomG∧(ϕG(X), ϕG(Y )). Since ϕF is
fully faithful, there exists f ∈ HomC(X, Y ) such that

ι(ξ) = ϕF ( f ) as elements of HomF∧(ϕF (X), ϕF (Y )).(5.3.2)

Let us show that ξ = ϕG( f ). It is enough to show that, for any Z ∈ G, the
map induced by ξ

ξZ : HomC(Z , X)−−→HomC(Z , Y )

coincides with the map v 
→ f ◦ v.
Let v ∈ HomC(Z , X). Then for any S ∈ F and s : S −→ Z :

ξZ (v) ◦ s = ξS(v ◦ s) = ι(ξ)S(v ◦ s) = f ◦ v ◦ s ,

where the last equality follows from (5.3.2). Hence ϕF (ξZ (v)) = ϕF ( f ◦ v) as
elements of HomF∧(ϕF (Z), ϕF (Y )), and the faithfulness of ϕF implies ξZ (v) =
f ◦ v. q.e.d.

Lemma 5.3.3. Let C be a category which admits small inductive limits and
let F be a small full subcategory of C. Then the functor ϕ : C −→ F∧ admits a
left adjoint ψ : F∧ −→ C and for F ∈ F∧, we have

ψ(F) � lim−→
(Y−→F)∈FF

Y .
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Proof. For X ∈ C and F ∈ F∧, we have the chain of isomorphisms

HomC( lim−→
(Y−→F)∈FF

Y, X) � lim←−
(Y−→F)∈FF

HomC(Y, X)

� lim←−
(Y−→F)∈FF

HomF∧(ϕ(Y ), ϕ(X))

� HomF∧( lim−→
(Y−→F)∈FF

ϕ(Y ), ϕ(X)) ,

and lim−→
(Y−→F)∈FF

ϕ(Y ) � F by Proposition 2.6.3. q.e.d.

Proposition 5.3.4. Let C be a category which admits small inductive limits
and let F be a small strictly generating full subcategory of C. Let E denote
the full subcategory of F∧ consisting of objects F ∈ F∧ such that the functor
C � X 
→ HomF∧(ϕ(X), F) ∈ Set commutes with small projective limits.
Then C is equivalent to E by ϕ.

Proof. It is obvious that ϕ sends C to E . Hence, it is enough to show that any
F ∈ E is isomorphic to the image of an object of C by ϕ. Let ψ denote the left
adjoint to ϕ constructed in Lemma 5.3.3. By Proposition 4.1.4, it is enough
to prove the isomorphism

HomF∧(ϕψ(G), F) ∼−→HomF∧(G, F)

for any G ∈ F∧ and F ∈ E . We have the chain of isomorphisms

HomF∧(ϕψ(G), F) � HomF∧(ϕ( lim−→
(X−→G)∈FG

X), F)

� lim←−
(X−→G)∈FG

HomF∧(ϕ(X), F)

� HomF∧( lim−→
(X−→G)∈FG

ϕ(X), F)

� HomF∧(G, F) ,

where the second isomorphism follows from the hypothesis F ∈ E and the last
isomorphism follows from Proposition 2.6.3 (i). q.e.d.

Proposition 5.3.5. Let C be a category which admits small inductive limits
and assume that there exists a small strictly generating full subcategory of C.
Let F : Cop −→ Set be a functor. If F commutes with small projective limits,
then F is representable.

Proof. Let F be a small strictly generating full subcategory of C. Let F̃ ∈ F∧
be the restriction of F to F . For X ∈ C, we have
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HomF∧(ϕ(X), F̃) � HomF∧( lim−→
(Y−→X)∈FX

ϕ(Y ), F̃)

� lim←−
(Y−→X)∈FX

HomF∧(ϕ(Y ), F̃)

� lim←−
(Y−→X)∈FX

F(Y ) � F( lim−→
(Y−→X)∈FX

Y ) .

Since ϕ is fully faithful, we have lim−→
(Y−→X)∈FX

Y � ψϕ(X) � X . Hence, we obtain

F(X) ∼−→HomF∧(ϕ(X), F̃) for any X ∈ C .(5.3.3)

It follows that the functor C � X 
→ HomF∧(ϕ(X), F̃) sends small inductive
limits to projective limits, and by Proposition 5.3.4 there exists X0 ∈ C such
that F̃ � ϕ(X0). Then (5.3.3) implies that

F(X) � HomF∧(ϕ(X), F̃)
� HomF∧(ϕ(X), ϕ(X0)) � HomC(X, X0)

for any X ∈ C. q.e.d.

We shall give several criteria for a small full subcategory F to be strictly
generating.

Theorem 5.3.6. Let C be a category satisfying the conditions (i)–(iii) below:

(i) C admits small inductive limits and finite projective limits,
(ii) small filtrant inductive limits are stable by base change (see Defini-

tion 2.2.6),
(iii) any epimorphism is strict.

Let F be an essentially small full subcategory of C such that

(a) Ob(F) is a system of generators,
(b) F is closed by finite coproducts in C.

Then F is strictly generating.

Proof. We may assume from the beginning that F is small.
(i) As already mentioned, the functor ϕ in (5.3.1) is conservative and faithful.
(ii) By Proposition 1.2.12, a morphism f in C is an epimorphism as soon as
ϕ( f ) is an epimorphism.
(iii) Let us fix X ∈ C. For a small filtrant inductive system {Yi }i∈I in CX , we
have

lim−→
i

Coim(Yi −→ X) ∼−→Coim(lim−→
i

Yi −→ X) .(5.3.4)
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Indeed, setting Y∞ = lim−→
i

Yi , we have

lim−→
i

(Yi ×X Yi ) � lim−→
i1, i2

(Yi1 ×X Yi2) � lim−→
i1

lim−→
i2

(Yi1 ×X Yi2)

� lim−→
i1

(Yi1 ×X Y∞) � Y∞ ×X Y∞ .

Here the first isomorphism follows from Corollary 3.2.3 (ii), and the last two
isomorphisms follow from hypothesis (ii). Hence we obtain

Coim(Y∞ −→ X) � Coker(Y∞ ×X Y∞ ⇒ Y∞)
� Coker

(
lim−→

i

(Yi ×X Yi ) ⇒ lim−→
i

Yi
)

� lim−→
i

Coker(Yi ×X Yi ⇒ Yi )

� lim−→
i

Coim(Yi −→ X) .

(iv) For Z ∈ FX , set

η(Z) = Coim(Z −→ X) := Coker(Z ×X Z ⇒ Z) .

Then η defines a functor FX −→ CX . For any Y ∈ C, we have

HomC(η(Z), Y ) � Ker
(
HomC(Z , Y ) ⇒ HomC(Z ×X Z , Y )

)
.

We have HomC(Z , Y ) � HomF∧(ϕ(Z), ϕ(Y )) by the Yoneda Lemma. On
the other hand, the map HomC(Z ×X Z , Y ) −→ HomF∧(ϕ(Z ×X Z), ϕ(Y )) �
HomF∧(ϕ(Z)×ϕ(X)ϕ(Z), ϕ(Y )) is injective since ϕ is faithful. Hence we obtain

HomC(η(Z), Y )
� Ker

(
HomF∧(ϕ(Z), ϕ(Y )) ⇒ HomF∧(ϕ(Z)×ϕ(X) ϕ(Z), ϕ(Y ))

)
� HomF∧

(
Coker(ϕ(Z)×ϕ(X) ϕ(Z) ⇒ ϕ(Z)), ϕ(Y )

)
� HomF∧

(
Im(ϕ(Z) −→ ϕ(X)), ϕ(Y )

)
.

(v) Let us denote by I the set of finite subsets of Ob(FX ), ordered by inclusion.
Regarding I as a category, it is small and filtrant. For A ∈ I , ξ(A) := �Z∈A Z
belongs to FX by (b), and ξ defines a functor I −→ FX . Then

lim−→
A∈I

ϕ(ξ(A)) −→ ϕ(X) is an epimorphism .(5.3.5)

Indeed, for any S ∈ F and u ∈ ϕ(X)(S) = HomC(S, X), u is in the image of
ϕ(ξ(A))(S) with A = {(S, u)}.
(vi) Since lim−→

A∈I

ϕ(ξ(A)) −→ ϕ(X) factors through ϕ(lim−→
A∈I

ξ(A)), the morphism

ϕ(lim−→
A∈I

ξ(A)) −→ ϕ(X) is an epimorphism, and (ii) implies that lim−→
A∈I

ξ(A) −→ X
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is an epimorphism, hence a strict epimorphism by the hypothesis. Proposi-
tion 5.1.5 (i) implies Coim(lim−→

A∈I

ξ(A) −→ X) � X . By (iii), we have

lim−→
A∈I

η(ξ(A)) = lim−→
A∈I

Coim(ξ(A) −→ X)

� Coim(lim−→
A∈I

ξ(A) −→ X) � X .

(vii) For any Y ∈ C, we obtain the chain of isomorphisms

HomC(X, Y ) � HomC(lim−→
A∈I

η(ξ(A)), Y )

� lim←−
A∈I

HomC(η(ξ(A)), Y )

� lim←−
A∈I

HomF∧(Im(ϕ(ξ(A)) −→ ϕ(X)), ϕ(Y ))

� HomF∧
(
lim−→
A∈I

(
Im(ϕ(ξ(A)) −→ ϕ(X))

)
, ϕ(Y )

)
� HomF∧(ϕ(X), ϕ(Y )) ,

where the last isomorphism follows from (5.3.5). q.e.d.

Remark 5.3.7. See Exercises 5.5–5.8 which show that it is not possible to drop
conditions (ii), (iii) or (b) in Theorem 5.3.6.

Theorem 5.3.8. Let C be a category and consider the conditions below:

(i) C admits small inductive limits and finite projective limits,
(ii) small inductive limits in C are stable by base change,
(ii)’ small filtrant inductive limits in C are stable by base change.

Let us consider the conditions on an essentially small full subcategory F of C:

(a) Ob(F) is a system of generators,
(b) the inclusion functor F ↪→ C is right exact.

Assume either (i), (ii) and (a) or (i), (ii)’, (a) and (b). Then F is strictly
generating.

Proof. We already know that ϕ : C −→ F∧ is conservative and faithful.
Assuming (i), let ψ : F∧ −→ C be the functor

F∧ � F 
→ lim−→
(X−→F)∈FF

X ∈ C .

Then ψ is left adjoint to ϕ by Lemma 5.3.3. By Proposition 1.5.6 (i), it is
enough to show that ψ ◦ ϕ −→ idC is an isomorphism.

(A) First, we assume (i), (ii) and (a).
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(A1) We begin by proving that⎧⎪⎨⎪⎩
for any X ∈ C and any small inductive system {Xi }i∈I in FX , if
lim−→

i

ϕ(Xi ) −→ ϕ(X) is an isomorphism, then lim−→
i

Xi −→ X is an iso-

morphism.

(5.3.6)

Set X0 = lim−→
i

Xi ∈ C and let u : X0 −→ X be the canonical morphism. Since the

composition lim−→
i

ϕ(Xi ) −→ ϕ(X0) −→ ϕ(X) is an isomorphism, ϕ(u) : ϕ(X0) −→
ϕ(X) is an epimorphism. Since ϕ is conservative by (a), it remains to show
that ϕ(u) is a monomorphism.

For i1, i2 ∈ I , the two compositions Xi1 ×X Xi2 −→ Xiν −→ X0 (ν = 1, 2)
give two morphisms ξ1, ξ2 : Xi1 ×X Xi2 ⇒ X0. Then we have a diagram

ϕ(Xi1 ×X Xi2)
�� �� lim−→

i

ϕ(Xi ) ��

∼
��

ϕ(X0) �� ϕ(X).

Hence, the two arrows ϕ(Xi1 ×X Xi2) ⇒ lim−→
i

ϕ(Xi ) coincide, which implies

ϕ(ξ1) = ϕ(ξ2). Thus we obtain ξ1 = ξ2. It means that

Xi1 ×X0 Xi2 −→ Xi1 ×X Xi2

is an isomorphism for any i1, i2 ∈ I .
On the other hand, the condition (ii) implies that

lim−→
i1,i2

(Xi1 ×X0 Xi2) � lim−→
i1

(Xi1 ×X0 lim−→
i2

Xi2)

� (lim−→
i1

Xi1)×X0 (lim−→
i2

Xi2) ,
(5.3.7)

and similarly,

lim−→
i1,i2

(Xi1 ×X Xi2) � (lim−→
i1

Xi1)×X (lim−→
i2

Xi2) .(5.3.8)

Hence, we obtain the isomorphisms

lim−→
i1,i2

(Xi1 ×X0 Xi2) � X0 ,

lim−→
i1,i2

(Xi1 ×X Xi2) � X0 ×X X0 .

Hence, X0 −→ X0 ×X X0 is an isomorphism, and this means that X0 −→ X is a
monomorphism by Exercise 2.4.

We have proved that ϕ(X0) −→ ϕ(X) is a monomorphism and this com-
pletes the proof of (5.3.6).
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(A2) Finally we shall show that ψ ◦ ϕ −→ idC is an isomorphism. For any
X ∈ C, we have lim−→

(Y−→X)∈FX

ϕ(Y ) ∼−→ϕ(X) by Proposition 2.6.3 (i), and (5.3.6)

implies that ψϕ(X) � lim−→
(Y−→X)∈FX

Y � X .

(B) Now, we assume (i), (ii)’, (a) and (b). The proof is similar to the former
case (A). For X ∈ C, FX is filtrant by (b). Hence, in step (A2), we only
need (5.3.6) when I is filtrant. On the other hand, (5.3.6) in the filtrant case
follows from (ii)’ by the same argument as in (A1). Note that, in case (A),
the condition (ii) is used only in proving (5.3.7) and (5.3.8). q.e.d.

Theorem 5.3.9. Let C be a category satisfying:

(i) C admits small inductive limits and finite projective limits,
(ii) small filtrant inductive limits in C are stable by base change,
(iii) C admits a generator.

Then any functor F : Cop −→ Set which commutes with small projective limits
is representable.

Proof. Let ∅C be an initial object of C and let G be a generator of C. We con-
struct by induction an increasing sequence {Fn}n≥0 of small full subcategories
as follows.

Ob(F0) = {∅C, G}
Ob(Fn) = Ob(Fn−1)

⊔{Y1 �X Y2 ; X −→ Y1 and X −→ Y2 are morphisms

in Fn−1} for n > 0.

Let F be the full subcategory of C with Ob(F) =
⋃

n Ob(Fn). Then F is a
small category, Ob(F) is a system of generators, and F is closed by finite in-
ductive limits. Hence, Proposition 3.3.3 implies that F −→ C is right exact, and
F is strictly generating by Theorem 5.3.8. It remains to apply Corollary 5.3.5.

q.e.d.

Note that if small filtrant inductive limits in C are exact, then such limits
are stable by base change by Lemma 3.3.9.

Exercises

Exercise 5.1. Let C be one of the categories C = Set, C = Mod(R) for a ring
R, or C = D∧ for a small category D. Prove that any morphism in C is strict.
Also prove that, when C = D∧ and f is a morphism in C, Im f is the functor
D � Z 
→ Im( f (Z)).

Exercise 5.2. Assume that a category C admits finite projective limits and
finite inductive limits. Let f : X −→ Y be a morphism in C. Prove the isomor-
phism HomC

(
Coim( f ), Z

) � HomC∧
(
Im(hC( f )),hC(Z)

)
for any Z ∈ C.
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Exercise 5.3. Let C be a category which admits finite inductive limits and
finite projective limits. Consider the following conditions on C:

(a) any morphism is strict,
(b) any epimorphism is strict,
(c) for any morphism f : X −→ Y , Coim f −→ Y is a monomorphism,
(d) any morphism which is both an epimorphism and a monomorphism is an

isomorphism,
(e) for any strict epimorphisms f : X −→ Y and g : Y −→ Z , their composition

g ◦ f is a strict epimorphism.

Prove that (a) ⇒ (b) ⇔ (c) + (d) and that (c) ⇔ (e).
(Hint: (e) ⇒ (c). Adapt the proof of Proposition 5.1.7.
(c) ⇒ (e). Consider W = Coim(g ◦ f ). Using the fact that W −→ Z is a
monomorphism, deduce that Y ×W Y −→ Y ×Z Y is an isomorphism.)

Exercise 5.4. Let C be a category which admits finite inductive limits and
finite projective limits. Let f : X −→ Y be the composition X

g−→ Z
h−→ Y where

g is a strict epimorphism. Prove that h factors uniquely through Coim f −→ Y
such that the composition X −→ Z −→ Coim f coincides with the canonical
morphism.

Exercise 5.5. Let k be a field and set F := Modf(k), the full subcategory of
Mod(k) consisting of finite-dimensional vector spaces. For V ∈ Mod(k), set
V ∗ = Hom k(V, k).
(i) Prove that the functor V 
→ V ∗ induces an equivalence of categories F �
Fop.
(ii) Let V ∈ Mod(k). Prove the isomorphism lim←−

(V−→W)∈FV

W � V ∗∗.

(iii) Prove that F is a strictly generating full subcategory of Mod(k).
(iv) Prove that Mod(k)op and Fop satisfy all hypotheses of Theorem 5.3.6
except condition (ii).
(v) Prove that the functor ϕ : Mod(k)op −→ (Fop)∧ defined in (5.3.1) decom-
poses as Mod(k)op

∗−→ Mod(k) −→ F∧ ∼−→(Fop)∧.
(vi) Prove that the functor ϕ : Mod(k)op −→ (Fop)∧ is not fully faithful.

Exercise 5.6. Let k be a field and denote by F the full subcategory of Mod(k)
consisting of the single object {k}. Prove that Mod(k) −→ F∧ is not fully
faithful.

Exercise 5.7. Let A be a ring and denote by F the full subcategory of
Mod(A) consisting of the two objects {A, A⊕2}. Prove that Mod(A) −→ F∧
is fully faithful.

Exercise 5.8. Let k be a field, let A = k[x, y] and let C = Mod(A). Let a
denote the ideal a = Ax + Ay. (See also Exercises 8.27–8.29.) Let C0 be the full
subcategory of C consisting of objects X such that there exists an epimorphism
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a⊕I �X for some small set I . Let F be the full subcategory of C0 consisting
of the objects

{
a⊕n ; n ≥ 0

}
. Let G be the full subcategory of C consisting of

the objects
{

A⊕n ; n ≥ 0
}
.

(i) Prove that F and G are equivalent.
(ii) Prove that the functor ϕ : C0 −→ F∧ given by

C0 � X 
→ (F � Y 
→ HomC(Y, X))

decomposes as C0
ξ−→ Mod(A)

η−→ F∧ where ξ(X) = Hom A(a, X) and
η(M)(Y ) = Hom A(Y, a) ⊗A M for Y ∈ F . (In other words, η(M) ∈ F∧ is
the functor F � a⊕n 
→ M⊕n.)
(iii) Prove that η is fully faithful. (Hint: use (i) and Theorem 5.3.6.)
(iv) Prove that ϕ is not fully faithful.
(v) Prove that (C0,F) satisfies all the conditions in Theorem 5.3.6 except
condition (iii).
(vi) Prove that any functor F : Cop

0 −→ Set commuting with small projective
limits is representable. (Hint: use Theorem 5.2.6 or Theorem 5.3.9.)

Exercise 5.9. Let C be a category with a generator and satisfying the con-
ditions (i) and (ii) in Theorem 5.3.8. Prove that for any X, Y ∈ C, there
exists an object Hom (X, Y ) in C which represents the functor C � Z 
→
HomC(Z × X, Y ).

Exercise 5.10. (i) Let Arr be the category given in Notations 1.2.8 (iii),
with two objects a and b and one morphism from a to b. Prove that Arr
satisfies the conditions (i) and (ii) in Theorem 5.3.8, and b is a generator.
(ii) Conversely, let C be a category which satisfies the conditions (i) and (ii)
in Theorem 5.3.8. Moreover assume that there exists a generator G such that
EndC(G) = {idG}. Prove that C is equivalent to either Set, or Arr or Pt.
(Hint: apply Theorem 5.3.8.)

Exercise 5.11. Prove that a functor F : Set −→ Set is representable if F
commutes with small projective limits.


