
4

Tensor Categories

This chapter is devoted to tensor categories which axiomatize the properties
of tensor products of vector spaces. Its importance became more evident when
quantum groups produced rich examples of non commutative tensor categories
and this notion is now used in many areas, mathematical physics, knot theory,
computer sciences, etc. Tensor categories and their applications deserve at
least a whole book, and we shall be extremely superficial and sketchy here.
Among the vast literature on this subject, let us only quote [15, 40].

We begin this chapter by introducing projectors in categories. Then we
define and study tensor categories, dual pairs, braidings and the Yang-Baxter
equations. We also introduce the notions of a ring in a tensor category and a
module over this ring in a category on which the tensor category operates. As
a particular case we treat monads, and finally we prove the Bar-Beck theorem.

Most of the notions introduced in this Chapter (with the exception of
§4.1) are not necessary for the understanding of the rest of the book, and this
chapter may be skipped.

4.1 Projectors

The notion of a projector in linear algebra has its counterpart in Category
Theory.

Definition 4.1.1. Let C be a category. A projector (P, ε) on C is the data of a
functor P : C −→ C and a morphism ε : idC −→ P such that the two morphisms
of functors ε ◦ P, P ◦ ε : P ⇒ P2 are isomorphisms. Here, P2 := P ◦ P.

Lemma 4.1.2. If (P, ε) is a projector, then ε ◦ P = P ◦ ε.

Proof. For any X ∈ C, we have a commutative diagram with solid arrows:
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X
εX ��

εX

��

P(X)

P(εX )

��

u

!!
P(X) ∼

εP(X)
�� P2(X).

(4.1.1)

Since εP(X) is an isomorphism, we can find a morphism u : P(X) −→ P(X) such
that εP(X) ◦ u = P(εX ). Then u ◦ εX = εX and the commutative diagram

P(X)
P(εX ) ��

P(εX )

��

P2(X)

P(u)!!!!!
!!
!!
!!

P2(X)

implies that P(u) = idP2(X). Since εP(X) is an isomorphism, we conclude that
u = idP(X) by the commutative diagram

P(X)

εP(X)

��

u �� P(X)

εP(X)

��
P2(X)

P(u) �� P2(X) .

q.e.d.

Proposition 4.1.3. Let (P, ε) be a projector on C.

(i) For any X, Y ∈ C, the map

HomC(P(X), P(Y ))
◦εX−→ HomC(X, P(Y ))

is bijective.
(ii) The following three conditions on X ∈ C are equivalent:

(a) εX : X −→ P(X) is an isomorphism,
(b) HomC(P(Y ), X)

◦εY−→ HomC(Y, X) is bijective for any Y ∈ C,
(c) the map in (b) is surjective for Y = X .

(iii) Let C0 be the full subcategory of C consisting of objects X ∈ C satisfying
the equivalent conditions in (ii). Then P(X) ∈ C0 for any X ∈ C and P
induces a functor C −→ C0 which is left adjoint to the inclusion functor
ι : C0 −→ C.

Proof. (i) The composition

θ : HomC(X, P(Y )) −→ HomC(P(X), P2(Y )) ∼←−HomC(P(X), P(Y )) ,

where the second map is given by εP(Y ), is an inverse of the map ◦εX . Indeed,
θ ◦ ( • ◦ εX ) and ( • ◦ εX ) ◦ θ are the identities, as seen by the commutative
diagrams below.
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P(X) u ��

εP(X)

��

P(Y )

εP(Y)∼
��

P(X)

idP(X)

�����������

P(εX )
�� P2(X)

P(u)
�� P2(Y ),

X
v ��

εX

��

P(Y )

εP(Y)∼
��

P(X)
P(v)

��

θ(v)

��

P2(Y ).

(ii) (a) ⇒ (b) follows from (i).
(b) ⇒ (c) is obvious.
(c) ⇒ (a). There exists a morphism u : P(X) −→ X such that u ◦ εX = idX .
Since (εX ◦ u) ◦ εX = εX ◦ idX = idP(X) ◦εX , we have εX ◦ u = idP(X) by (i) with
Y = X . Hence, εX is an isomorphism.

(iii) Since εP(X) is an isomorphism, P(X) ∈ C0 for any X ∈ C and P induces
a functor C −→ C0. This functor is a left adjoint to ι : C0 −→ C by (i). q.e.d.

Proposition 4.1.4. Let R : C ′ −→ C be a fully faithful functor and assume that
R admits a left adjoint L : C −→ C ′. Let ε : idC −→ R ◦ L and η : L ◦ R −→ idC′
be the adjunction morphisms. Set P = R ◦ L : C −→ C. Then

(i) (P, ε) is a projector,
(ii) for any X ∈ C, the following conditions are equivalent:

(a) εX : X −→ RL(X) is an isomorphism,
(b) HomC(RL(Y ), X)

◦εY−→ HomC(Y, X) is bijective for any Y ∈ C.
(iii) Let C0 be the full subcategory of C consisting of objects X satisfying the

equivalent conditions in (ii). Then C ′ is equivalent to C0.

Proof. Since R is fully faithful, η is an isomorphism.
(i) The two compositions

P
ε◦P ��
P◦ε

�� P2
RηL �� P

are equal to idP . Since R ◦ η ◦ L : RL RL −→ RL is an isomorphism, it follows
that P ◦ ε and ε ◦ P are isomorphisms.
(ii) follows from Proposition 4.1.3.
(iii) For X ∈ C ′, the morphism R(ηX ) : P R(X) = RL R(X) −→ R(X) is an
isomorphism. Since the composition

R(X)
εR(X)−−−→ P R(X)

R(ηX )−−−→ R(X)

is idR(X), εR(X) is an isomorphism. Hence, R sends C ′ to C0. This functor is
fully faithful, and it is essentially surjective since Y � RL(Y ) for any Y ∈ C0.

q.e.d.
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4.2 Tensor Categories

Definition 4.2.1. A tensor category is the data of a category T , a bifunctor
• ⊗ • : T ×T −→ T and an isomorphism of functors a ∈ Mor(Fct(T ×T ×T , T )),

a(X, Y, Z) : (X ⊗ Y )⊗ Z ∼−→ X ⊗ (Y ⊗ Z)

such that the diagram below is commutative for any X, Y, Z , W ∈ T :

((X ⊗ Y )⊗ Z)⊗W

a(X,Y,Z)⊗W

��

a(X⊗Y,Z ,W)
�� (X ⊗ Y )⊗ (Z ⊗W )

a(X,Y,Z⊗W)

��

(X ⊗ (Y ⊗ Z))⊗W

a(X,Y⊗Z ,W)

��
X ⊗ ((Y ⊗ Z)⊗W )

X⊗a(Y,Z ,W)
�� X ⊗ (Y ⊗ (Z ⊗W )).

(4.2.1)

Examples 4.2.2. The following (T ,⊗, a) (with a the obvious one) are tensor
categories.
(i) k is a commutative ring, T = Mod(k) and ⊗= ⊗k .
(ii) M is a monoid, T is the discrete category with Ob(T ) = M , a ⊗ b = ab
for a, b ∈ M .
(iii) A is a k-algebra, T = Mod(A ⊗k Aop) and ⊗= ⊗A.
(iv) C is a category, T = Fct(C, C) and ⊗= ◦.
(v) T is a category which admits finite products and ⊗= ×.
(vi) T is a category which admits finite coproducts and ⊗= �.
(vii) G is a group, k is a field, T is the category of G-modules over k, that is, the
category whose objects are the pairs (V, ϕ), V ∈ Mod(k), ϕ : G −→ Aut k(V ) is
a morphism of groups, and the morphisms are the natural ones. For V, W ∈ T ,
V ⊗W is the tensor product in Mod(k) endowed with the diagonal action of
G given by g(v ⊗w) = gv ⊗ gw.
(viii) I is a category, T = S(I ) is the category defined as follows. The objects of
S(I ) are the finite sequences of objects of I of length ≥ 1. For X = (x1, . . . , xn)
and Y = (y1, . . . , yp) in S(I ),

HomS(I)(X, Y ) =

{∏n
i=1 Hom I (xi , yi ) if n = p ,

∅ otherwise .

Hence, S(I ) �⊔
n≥1 I n.

For two objects X = (x1, . . . , xn) and Y = (y1, . . . , yp) of S(I ), define X ⊗ Y
as the sequence (x1, . . . , xn, y1, . . . , yp).
(ix) k is a commutative ring and, with the notations of Chap. 11, T =
Cb(Mod(k)) is the category of bounded complexes of k-modules and X ⊗Y is
the simple complex associated with the double complex X ⊗k Y .
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Let (T ,⊗, a) be a tensor category. Then T op has a structure of a ten-
sor category in an obvious way. Another tensor category structure on T is
obtained as follows. For X, Y ∈ T , define

X
r⊗Y := Y ⊗ X .

For X, Y, Z ∈ T , define

ar (X, Y, Z) : (X
r⊗Y )

r⊗Z ∼−→ X
r⊗(Y

r⊗Z)

by

(X
r⊗Y )

r⊗Z = Z ⊗ (Y ⊗ X)
a(Z ,Y,X)−1

−−−−−−→ (Z ⊗ Y )⊗ X = X
r⊗(Y

r⊗Z) .

Then (T ,
r⊗, ar ) is a tensor category. We call it the reversed tensor category

of (T ,⊗, a).

Tensor Functors

Definition 4.2.3. Let T and T ′ be two tensor categories. A functor of tensor
categories (or, a tensor functor) is a pair (F, ξF) where F : T −→ T ′ is a
functor and ξF is an isomorphism of bifunctors

ξF : F( • ⊗ • ) ∼−→ F( • )⊗ F( • )

such that the diagram below commutes for all X, Y, Z ∈ T :

F((X ⊗ Y )⊗ Z)
F(a(X,Y,Z)) ��

ξF (X⊗Y,Z)

��

F(X ⊗ (Y ⊗ Z))

ξF (X,Y⊗Z)

��
F(X ⊗ Y )⊗ F(Z)

ξF (X,Y )⊗F(Z)

��

F(X)⊗ F(Y ⊗ Z)

F(X)⊗ξF (Y,Z)

��
(F(X)⊗ F(Y ))⊗ F(Z)

a(F(X),F(Y ),F(Z))
�� F(X)⊗ (F(Y )⊗ F(Z)).

(4.2.2)

In practice, we omit to write ξF .
For two tensor functors F , G : T −→ T ′, a morphism of tensor functors

θ : F −→ G is a morphism of functors such that the diagram below commutes
for all X, Y ∈ T :

F(X ⊗ Y )
ξF (X,Y ) ��

θX⊗Y

��

F(X)⊗ F(Y )

θX⊗θY

��
G(X ⊗ Y )

ξG(X,Y ) �� G(X)⊗G(Y ) .

Recall that to a category I we have associated a tensor category S(I ) in
Example 4.2.2 (viii). Let us denote by ι : I −→ S(I ) the canonical functor.
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Lemma 4.2.4. let T be a tensor category, let I be a category and let ϕ : I −→
T be a functor. There exists a functor of tensor categories Φ : S(I ) −→ T such
that Φ ◦ ι � ϕ. Moreover, Φ is unique up to unique isomorphism.

Proof. We define by induction on n

Φ
(
(i1, . . . , in)

)
= Φ

(
(i1, . . . , in−1)

)⊗ ϕ(in) .

We define the isomorphism

ξΦ : Φ
(
(i1, . . . , in)⊗ ( j1, . . . , jm)

) ∼−→Φ
(
(i1, . . . , in)

)⊗Φ
(
( j1, . . . , jm)

)
by the induction on m as follows:

Φ
(
(i1, . . . , in)⊗ ( j1, . . . , jm)

)
� Φ

(
(i1, . . . , in, j1, . . . , jm)

)
� Φ

(
(i1, . . . , in, j1, . . . , jm−1)

)⊗ ϕ( jm)
� Φ

(
(i1, . . . , in)⊗ ( j1, . . . , jm−1)

)⊗ ϕ( jm)

�
(
Φ
(
(i1, . . . , in)

)⊗Φ
(
( j1, . . . , jm−1)

))⊗ ϕ( jm)

� Φ
(
(i1, . . . , in)

)⊗ (Φ(( j1, . . . , jm−1)
)⊗ ϕ( jm)

)
� Φ

(
(i1, . . . , in)

)⊗Φ
(
( j1, . . . , jm)

)
.

It is left to the reader to check that this defines a functor of tensor categories.
q.e.d.

Hence, in a tensor category T , it is possible to define the tensor product
X1 ⊗ · · · ⊗ Xn for X1, . . . , Xn ∈ T by the formula

X1 ⊗ · · · ⊗ Xn = (· · · ((X1 ⊗ X2)⊗ X3)⊗ · · · )⊗ Xn

and this does not depend on the order of the parentheses, up to a unique
isomorphism.

In the sequel, we shall often omit the parentheses.

Unit Object

Definition 4.2.5. A unit object of a tensor category T is an object 1 of T
endowed with an isomorphism � : 1⊗1 ∼−→1 such that the functors from T
to T given by X 
→ X ⊗ 1 and X 
→ 1⊗X are fully faithful.

Lemma 4.2.6. Let (1, �) be a unit object of T . Then there exist unique func-
torial isomorphisms α(X) : X ⊗ 1 ∼−→ X and β(X) : 1⊗X ∼−→ X satisfying the
following properties
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(a) α(1) = β(1) = � ,

(b) the two morphisms X ⊗ Y ⊗ 1
α(X⊗Y ) ��
X⊗α(Y )

�� X ⊗ Y coincide,

(c) the two morphisms 1⊗X ⊗ Y
β(X⊗Y ) ��
β(X)⊗Y

�� X ⊗ Y coincide,

(d) the two morphisms X ⊗ 1⊗Y
α(X)⊗Y ��
X⊗β(Y )

�� X ⊗ Y coincide,

(e) the diagram 1⊗X ⊗ 1
1⊗α(X) ��

β(X)⊗1

��

1⊗X

β(X)

��
X ⊗ 1

α(X) �� X

commutes .

Proof. If such α and β exist, then (a) and (d) imply α(X)⊗ 1 = X ⊗ β(1) =
X ⊗ �, α(X) is uniquely determined because X 
→ X ⊗ 1 is fully faithful, and
similarly with β.

Proof of the existence of α, β. Since X 
→ X ⊗1 is fully faithful, there exists a
unique morphism α(X) : X ⊗ 1 −→ X such that α(X)⊗ 1 : X ⊗ 1⊗1 −→ X ⊗ 1
coincides with X ⊗�. Since X ⊗� is an isomorphism, α(X) is an isomorphism.
The morphism β is constructed similarly by 1⊗β(X) = � ⊗ X .

Proof of (b)–(c). The morphism X⊗Y⊗� : X⊗Y⊗1⊗1 −→ X⊗Y⊗1 coincides
with α(X ⊗ Y )⊗1 and also with X ⊗α(Y )⊗1. Hence, α(X ⊗ Y ) = X ⊗α(Y ).
The proof of (c) is similar.

Proof of (e). By the functoriality of α, the diagram in (e) commutes when
replacing 1⊗α(X) in the top row with α(1⊗X). Since α(1⊗X) = 1⊗α(X)
by (b), we conclude.

Proof of (d). Consider the diagram

X ⊗ 1⊗1⊗Y
α(X)⊗1⊗Y

"""""
"""

"""
"""

"
X⊗1⊗β(Y )

��##
###

###
###

##

X ⊗ � ⊗ Y

��
X ⊗ 1⊗Y

X⊗β(Y ) ��##
###

###
###

##
X ⊗ 1⊗Y

id�� id �� X ⊗ 1⊗Y

α(X)⊗Y"""""
"""

"""
"""

"

X ⊗ Y.

Since the upper two triangles commute as well as the big square, we obtain
X ⊗ β(Y ) = α(X)⊗ Y .

Proof of (a). By (d), one has α(1)⊗1 = 1⊗β(1). On the other hand, α(1)⊗1 =
1⊗� by the construction of α. Hence, 1⊗β(1) = 1⊗�. This implies that
β(1) = �. The proof for α is similar. q.e.d.
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Remark 4.2.7. If (1, �) and (1′, �′) are unit objects, then there exists a unique
isomorphism ι : 1 −→ 1′ compatible with � and �′, that is, the diagram

1⊗1

�

��

ι⊗ι
�� 1′ ⊗1′

�′

��
1

ι �� 1′

commutes. Indeed, 1 ∼←−1⊗1′ ∼−→1′ gives ι which satisfies the desired prop-
erties.

Remark that all tensor categories in Examples 4.2.2 except (viii) admit a
unit object.

Definition 4.2.8. Let T be a tensor category with a unit object (1, �). A
tensor functor F : T −→ T ′ is called unital if (F(1), F(�)) is a unit object of
T ′.

More precisely, F(1) ⊗ F(1) ∼−→ F(1) is given as the composition F(1) ⊗
F(1) ∼←−−−−

ξF (1,1)
F(1⊗1) ∼−−→

F(�)
F(1).

Definition 4.2.9. Let T be a tensor category. An action of T on a category
C is a tensor functor F : T −→ Fct(C, C). If T has a unit object and T −→
Fct(C, C) is unital, the action is called unital.

For X ∈ T and W ∈ C, set X ⊗ W := F(X)(W ). To give isomorphisms
ξF(X, Y ) : F(X ⊗ Y ) ∼−→ F(X) ◦ F(Y ) is thus equivalent to give isomorphisms
(X⊗Y )⊗W ∼−→ X⊗(Y⊗W ). Hence, to give an action of T on C is equivalent to
giving a bifunctor ⊗ : T ×C −→ C and isomorphisms a(X, Y, W ) : (X⊗Y )⊗W �
X ⊗ (Y ⊗W ) functorial in X, Y ∈ T and W ∈ C such that the diagram (4.2.1)
commutes for X, Y, Z ∈ T and W ∈ C. In this language, the action is unital
if there exists an isomorphism η(X) : 1⊗X ∼−→ X functorially in X ∈ C such
that the diagram

1⊗1⊗X
�⊗X ��

1⊗η(X)

��

1⊗X

η(X)

��
1⊗X

η(X) �� X

commutes. (See Exercise 4.8.)

Examples 4.2.10. (i) For a category C, the tensor category Fct(C, C) acts on
C.
(ii) If T is a tensor category, then T acts on itself.
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Dual Pairs

We shall now introduce the notion of a dual pair and the reader will notice
some similarities with that of adjoint functors (see Sect. 4.3).

Definition 4.2.11. Let T be a tensor category with a unit object 1. Let X, Y ∈
T be two objects and ε : 1 −→ Y ⊗ X and η : X ⊗ Y −→ 1 two morphisms. We
say that (X, Y ) is a dual pair or that X is a left dual to Y or Y is a right dual
to X if the conditions (a) and (b) below are satisfied:

(a) the composition X � X ⊗1
X⊗ε−−→ X ⊗Y ⊗ X

η⊗X−−→ 1⊗X � X is the identity
of X ,

(b) the composition Y � 1⊗Y
ε⊗Y−−→ Y ⊗ X ⊗ Y

Y⊗η−−→ Y ⊗ 1 � Y is the identity
of Y .

Lemma 4.2.12. If (X, Y ) is a dual pair, then for any Z , W ∈ T , there is an
isomorphisms HomT (Z , W ⊗X) � HomT (Z⊗Y, W ) and HomT (X⊗ Z , W ) �
HomT (Z , Y ⊗ W ).

Proof. We shall only prove the first isomorphism.
First, we construct a map A : HomT (Z , W ⊗ X) −→ HomT (Z ⊗ Y, W ) as

follows. Let u ∈ HomT (Z , W ⊗ X). Then A(u) is the composition Z ⊗ Y
u⊗Y−−→

W ⊗ X ⊗ Y
W⊗η−−→ W ⊗ 1 � W .

Next, we construct a map B : HomT (Z⊗Y, W ) −→ HomT (Z , W⊗X) as follows.

Let v ∈ HomT (Z ⊗ Y, W ). Then B(v) is the composition Z ∼−→ Z ⊗ 1
Z⊗ε−−→

Z ⊗ Y ⊗ X
v⊗X−−→ W ⊗ X .

It is easily checked that A and B are inverse to each other. q.e.d.

Remark 4.2.13. (i) Y is a representative of the functor Z 
→ HomT (X ⊗ Z ,1)
as well as a representative of the functor W 
→ HomT (1, W ⊗ X).
(ii) ( • ⊗ Y, • ⊗ X) is a pair of adjoint functors, as well as (X ⊗ • , Y ⊗ • ).

Braiding

Definition 4.2.14. A braiding, also called an R-matrix, is an isomorphism
X ⊗ Y ∼−→ Y ⊗ X functorially in X, Y ∈ T , such that the diagrams

X ⊗ Y ⊗ Z
R(X,Y )⊗Z ��

R(X,Y⊗Z) ##$$$$
$$$$$

$$$$$
$$$$$

Y ⊗ X ⊗ Z

Y⊗R(X,Z)

��
Y ⊗ Z ⊗ X

(4.2.3)

and
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X ⊗ Y ⊗ Z
X⊗R(Y,Z) ��

R(X⊗Y,Z) ##$$$$
$$$$$

$$$$$
$$$$$

X ⊗ Z ⊗ Y

R(X,Z)⊗Y

��
Z ⊗ X ⊗ Y

(4.2.4)

commute for all X, Y, Z ∈ T .

Consider the diagram

X ⊗ Y ⊗ Z
R(X,Y )⊗Z

"""""
"""

"""
""" X⊗R(Y,Z)

��##
###

###
###

#

R(X,Y⊗Z)

��

Y ⊗ X ⊗ Z

Y⊗R(X,Z)

��

X ⊗ Z ⊗ Y

R(X,Z)⊗Y

��R(X,Z⊗Y )

��

Y ⊗ Z ⊗ X

R(Y,Z)⊗X ��##
###

###
###

# Z ⊗ X ⊗ Y

Z⊗R(X,Y )"""""
"""

"""
"""

Z ⊗ Y ⊗ X.

(4.2.5)

Lemma 4.2.15. If R is a braiding, then the solid diagram (4.2.5) commutes.

The commutativity of this diagram may be translated by the so-called “Yang-
Baxter equation”

(R(Y, Z)⊗ X) ◦ (Y ⊗ R(X, Z)) ◦ (R(X, Y )⊗ Z)
= (Z ⊗ R(X, Y )) ◦ (R(X, Z)⊗ Y ) ◦ (X ⊗ R(Y, Z)) .

(4.2.6)

Proof. Consider the diagram (4.2.5) with the dotted arrows. The triangles
(X ⊗Y ⊗ Z , Y ⊗ X ⊗ Z , Y ⊗ Z ⊗ X) and (X ⊗ Z ⊗Y, Z ⊗ X ⊗Y, Z ⊗Y ⊗ X)
commute by the definition of a braiding. The square (X ⊗ Y ⊗ Z , X ⊗ Z ⊗
Y, Y ⊗ X ⊗ Z , Z ⊗ Y ⊗ X) commutes by the functoriality of R. q.e.d.

Note that if R is a braiding, then

R(Y, X)−1 : X ⊗ Y ∼−→ Y ⊗ X

is also a braiding. We denote it by R−1.

Definition 4.2.16. A tensor category with a braiding R is called a com-

mutative tensor category if R = R−1, i.e., the composition X ⊗ Y
R(X,Y )−−−−→

Y ⊗ X
R(Y,X)−−−−→ X ⊗ Y is equal to idX⊗Y .

Remark 4.2.17. Commutative tensor categories are called “tensor categories”
by some authors and tensor categories are then called monoidal categories.
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4.3 Rings, Modules and Monads

By mimicking the definition of a monoid in the tensor category Set (by Exam-
ple 4.2.2 (v)), or of a ring in the tensor category Mod(Z) (see Example 4.2.2
(i)), we introduce the following notion.

Definition 4.3.1. Let T be a tensor category with a unit 1. A ring in T is
a triplet (A, µA, εA) of an object A ∈ T and two morphisms µA : A ⊗ A −→ A
and εA : 1 −→ A such that the diagrams below commute:

A ⊗ 1
A⊗εA ��

α(A)

∼
��%%

%%%
%%%

%%
A ⊗ A

µA

��
A,

1⊗A
εA⊗A ��

β(A)

∼
��%%

%%%
%%%

%%
A ⊗ A

µA

��
A,

A ⊗ A ⊗ A
µA⊗A ��

A⊗µA

��

A ⊗ A

µA

��
A ⊗ A

µA �� A .

Note that εA is a unit and µA is a composition in the case of rings in Mod(k).

Remark 4.3.2. Some authors call (A, µA, εA) a monoid.

Definition 4.3.3. Let T be a tensor category with a unit 1 acting unitally on
a category C (see Definition 4.2.9). Let (A, µA, εA) be a ring in T .

(i) An A-module in C is a pair (M, µM) of an object M ∈ C and a morphism
µM : A ⊗ M −→ M such that the diagrams below in C commute:

1⊗M
εA⊗M ��

��&&
&&&

&&&
&&&

&&&
A ⊗ M

µM

��
M,

A ⊗ A ⊗ M
µA⊗M ��

A⊗µM

��

A ⊗ M

µM

��
A ⊗ M

µM �� M.

(ii) For two A-modules (M, µM) and (N , µN ), a morphism u : (M, µM) −→
(N , µN ) is a morphism u : M −→ N making the diagram below commuta-
tive:

A ⊗ M
A⊗u ��

µM

��

A ⊗ N

µN

��
M

u �� N .

Clearly, the family of A-modules in C forms a category Mod(A, C) and the
forgetful functor for : Mod(A, C) −→ C is faithful.

Lemma 4.3.4. Let T and C be as in Definition 4.3.3, let (A, µA, εA) be a ring
in T and let (M, µM) be an A-module in C. Then the diagram below is exact
in C∧:

A ⊗ A ⊗ M
µA⊗M ��
A⊗µM

�� A ⊗ M
µM �� M .
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Proof. The morphisms s : M � 1⊗M
εA⊗M−−−→ A ⊗ M and u : A ⊗ M � 1⊗A ⊗

M
εA⊗A⊗M−−−−−→ A ⊗ A ⊗ M satisfy

µM ◦ s = idM , (A ⊗ µM) ◦ u = s ◦ µM , (µA ⊗ M) ◦ u = idA⊗M .

Hence, it is enough to apply the result of Exercise 2.25. q.e.d.

Recall that, for a category C, the tensor category Fct(C, C) acts on C.

Definition 4.3.5. Let C be a category. A ring in the tensor category Fct(C, C)
is called a monad in C.

The following lemma gives examples of monads and A-modules.

Lemma 4.3.6. Let C
L �� C ′
R

�� be functors such that (L , R) is a pair of ad-

joint functors. Let ε : idC −→ R ◦ L and η : L ◦ R −→ idC′ be the adjunction
morphisms.

(a) Set A:=R◦L, εA :=ε and µA :=R◦η◦L. (Hence, µA : A◦A = R◦L◦R◦L −→
R ◦ L = A.) Then (A, µA, εA) is a monad in C.

(b) Let Y ∈ C ′. Set X = R(Y ) ∈ C and µX = R(ηY ) : A(X) = R ◦ L ◦
R(Y )

R(η(Y ))−−−−→ R(Y ) = X . Then (X, µX ) is an A-module and the corre-
spondence Y 
→ (X, µX ) defines a functor Φ : C ′ −→ Mod(A, C).

Proof. Leaving the rest of the proof to the reader, we shall only prove the
associativity of µA, that is, the commutativity of the diagram

A ◦ A ◦ A(X)

A(µA(X))

��

µA(A(X)) �� A ◦ A(X)

µA(X)

��
A ◦ A(X)

µA(X) �� A(X).

We have A(µA(X)) = R ◦L ◦ R(η(L(X))), µA(A(X)) = R(η(L ◦ R ◦L(X))) and
µA(X) = R(η(L(X))). Setting B := L ◦ R and Y := L(X), the above diagram
is the image by R of the diagram below

B ◦ B(Y )

B(η(Y ))

��

η(B(Y )) �� B(Y )

η(Y )

��
B(Y )

η(Y ) �� Y.

The commutativity of this diagram follows from the fact that η : B −→ idC′ is
a morphism of functors. q.e.d.
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Lemma 4.3.7. Let (A, µA, εA) be a monad in C.

(a) For any X ∈ C, (A(X), µA(X)) is an A-module.
(b) The functor C −→ Mod(A, C) given by X 
→ (A(X), µA(X)) is a left adjoint

of the forgetful functor for : Mod(A, C) −→ C.

Proof. (i) is left to the reader.
(ii) We define maps

HomMod(A,C)((A(Y ), µA(Y )), (X, µX ))
α �� HomC(Y, X)
β

��

as follows. To v : (A(Y ), µA(Y )) −→ (X, µX ) we associate α(v), the composition

Y
εA(Y )−−−→ A(Y )

v−→ X .

To u : Y −→ X , we associate β(u), the composition A(Y )
A(u)−−→ A(X)

µX−→ X .
It is easily checked that α and β are well defined and inverse to each other.

q.e.d.

The next theorem is due to Barr and Beck.

Theorem 4.3.8. Let C
L �� C ′
R

�� be functors such that (L , R) is a pair of

adjoint functors. Let (A = R ◦ L , εA, µA) and Φ : C ′ −→ Mod(A, C) be as in
Lemma 4.3.6. Then the following conditions are equivalent.

(i) Φ is an equivalence of categories,
(ii) the following two conditions hold:

(a) R is conservative,
(b) for any pair of parallel arrows f, g : X ⇒ Y in C ′, if Coker(R( f ), R(g))

exists in C and R(X)
R( f ) ��
R(g)

�� R(Y ) �� Coker(R( f ), R(g)) is exact in

C∧ (see Exercise 2.25), then Coker( f, g) exists and Coker
(
R( f ), R(g)

) ∼−→
R(Coker( f, g)).

In particular, if C ′ admits finite inductive limits and R is conservative and
exact, then Φ : C ′ −→ Mod(A, C) is an equivalence of categories.

Proof. (i) ⇒ (ii). We may assume that A is a monad in C and R is the forgetful
functor C ′ = Mod(A, C) −→ C. Hence, L is the functor X 
→ (A(X), µA(X))
by Lemma 4.3.7. Then (a) is obvious. Let us show (b). Let f, g : (X, µX ) ⇒
(Y, µY ) be a pair of parallel arrows and assume that X ⇒ Y −→ Z is exact in
C∧. Then A(X) ⇒ A(Y ) −→ A(Z) as well as A2(X) ⇒ A2(Y ) −→ A2(Z) are
exact by Proposition 2.6.4. By the commutativity of the solid diagram with
exact rows
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A(X) ����

µX

��

A(Y ) ��

µY

��

A(Z)

w

��
X

���� Y �� Z ,

we find the morphism w : A(Z) −→ Z . It is easily checked that (Z , w) is an
A-module and (Z , w) � Coker( f, g) in Mod(A, C).

(ii) ⇒ (i). Let us construct a quasi-inverse Ψ : Mod(A, C) −→ C ′ of Φ. Let
(X, µX ) ∈ Mod(A, C). Applying L to µX : A(X) −→ X , we obtain

L ◦ R ◦ L(X)
L(µX ) ��

η(L(X))
�� L(X).(4.3.1)

Applying R to this diagram we get

R ◦ L ◦ R ◦ L(X)
R◦L(µX ) ��

R(η(L(X)))
�� R ◦ L(X)

which is equal to the diagram A ◦ A(X)
A(µX ) ��
µA(X)

�� A(X) .
The sequence

A ◦ A(X)
A(µX ) ��
µA(X)

�� A(X)
µX �� X(4.3.2)

is exact in C∧ by Lemma 4.3.4. Therefore, (b) implies that (4.3.1) has a cok-
ernel

L ◦ R ◦ L(X)
L(µX ) ��

η(L(X))
�� L(X)

ϕ �� Y,(4.3.3)

and there exists a commutative diagram

A(X) = R ◦ L(X)

R(ϕ)

��

µX �� X

ψ

∼

$$'''
'''

'''
'''

R(Y ).

We set Φ((X, µX )) = Y . Since the following diagram commutes

X
εA(X)=ε(X)

��

idX

##A(X)
µX

��

R(ϕ)

��

X

ψ
""(((

(((
(((

(((
(

R(Y ),
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ϕ and ψ correspond by the adjunction isomorphism HomC′(L(X), Y ) �
HomC(X, R(Y )). This implies that the diagram

A(X)

µX

��

RL(ψ)

∼ ��

R(ϕ)
����

���

�����
����

R ◦ L ◦ R(Y )

R(η(Y ))

��
X

ψ

∼ �� R(Y )

commutes. Hence, ΦΨ ((X, µX )) � (X, µX ).
Conversely, for Y ∈ C ′, let us set (X, µX ) = Φ(Y ) =

(
R(Y ), R(η(Y ))

) ∈
Mod(A, C). Then the two compositions coincide:

L ◦ R ◦ L ◦ R(Y )
L◦R(η(Y )) ��
η(L◦R(Y ))

�� L ◦ R(Y )
η(Y ) �� Y.(4.3.4)

Applying R to this diagram, we find the sequence A ◦ A(X) ⇒ A(X) −→ X
which is exact in C∧ by Lemma 4.3.4. Hence, (b) implies that

R(Y ) = X � R
(
Coker(L ◦ R ◦ L ◦ R(Y ) ⇒ L ◦ R(Y ))

)
.

Then (a) implies that Y � Coker(L ◦ R ◦ L ◦ R(Y ) ⇒ L ◦ R(Y )). Hence,
Ψ (Φ(Y )) � Y . q.e.d.

Exercises

Exercise 4.1. Let Pr be the category given in Notations 1.2.8 (v). Let
F : Pr −→ Pr be the functor given by F(u) = idc for any u ∈ Mor(Pr).
Let ε : idPr −→ F be the morphism of functors given by εc = p.
(i) Prove that F and ε are well-defined.
(ii) Prove that F ◦ ε : F −→ F2 is an isomorphism but ε ◦ F : F −→ F2 is not
an isomorphism.

Exercise 4.2. Let T be a tensor category with a unit object 1. Let X ∈ T
and α : 1 −→ X . Prove that if the compositions X � 1⊗X

α⊗X−−→ X ⊗ X and
X � X ⊗1

X⊗α−−→ X ⊗ X are isomorphisms, then they are equal and the inverse
morphism µ : X ⊗ X −→ X gives a ring structure on X .

Exercise 4.3. Prove that if a tensor category has a unit object, then this ob-
ject is unique up to unique isomorphism. More precisely, prove the statement
in Remark 4.2.7. Also prove that if (1, �) is a unit object, then �⊗1 = 1⊗�.

Exercise 4.4. Let T be a tensor category with a unit 1 and a braiding R.
(i) Prove that the diagram below commutes:
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1⊗ X

β(X) %%)
))

))
))

)
R(1,X) �� X ⊗ 1

α(X)&&**
**
**
**

X.

(ii) Prove that R(1,1) = id1⊗1.

Exercise 4.5. Let k be a field and recall that k× denotes the group of its
invertible elements. Let L be an additive group and denote by C the category
whose objects are the families

Ob(C) = {X = {Xl}l∈L ; Xl ∈ Mod(k), Xl = 0 for all but finitely many l},
the morphisms in C being the natural ones. For X = {Xl}l∈L and Y = {Yl}l∈L ,
define X ⊗ Y by (X ⊗ Y )l = ⊕l=l ′+l ′′ Xl ′ ⊗ Yl ′′ .
(i) Let c : L × L × L −→ k× be a function. For X, Y, Z ∈ C, let

ac(X, Y, Z) : (X ⊗ Y )⊗ Z −→ X ⊗ (Y ⊗ Z)

be the isomorphism induced by

(Xl1 ⊗ Yl2)⊗ Zl3
c(l1,l2,l3)−−−−−→ Xl1 ⊗ (Yl2 ⊗ Zl3) .

Prove that (C,⊗, ac) is a tensor category if and only if c satisfies the cocycle
condition:

c(l1 + l2, l3, l4)c(l1, l2, l3 + l4) = c(l1, l2, l3)c(l1, l2 + l3, l4)c(l2, l3, l4) .(4.3.5)

If c satisfies the cocycle condition (4.3.5), we shall denote by ⊗c the tensor
product in the tensor category (C,⊗, ac).
(ii) Let b and c be two functions from L × L × L to k× both satisfying (4.3.5).
Let ϕ : L×L −→ k× be a function and for X, Y ∈ C, let ξ(X, Y ) : X⊗Y −→ X⊗Y
be the isomorphism in C given by

Xl ⊗ Yl ′
ϕ(l,l ′)−−−→ Xl ⊗ Yl ′ .

Prove that (idC, ξ) is a tensor functor from (C,⊗b, ab) to (C,⊗c, ac) if and only
if

c(l1, l2, l3) =
ϕ(l2, l3)ϕ(l1, l2 + l3)
ϕ(l1, l2)ϕ(l1 + l2, l3)

b(l1, l2, l3) .(4.3.6)

(iii) Assume that c satisfies the cocycle condition (4.3.5) and let ρ : L×L −→ k×
be a function. Let

R(X, Y ) : X ⊗c Y −→ Y ⊗c X

be the isomorphism induced by

Xl ⊗ Yl ′
ρ(l,l ′)−−−→ Yl ′ ⊗ Xl .
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(a) Prove that R satisfies the Yang-Baxter equation (4.2.6) if

c(l1, l2, l3)c(l2, l3, l1)c(l3, l1, l2) = c(l1, l3, l2)c(l3, l2, l1)c(l2, l1, l3) .

(b) Prove that R is a braiding if and only if

c(l1, l2, l3)c(l2, l3, l1)
c(l2, l1, l3)

=
ρ(l1, l2)ρ(l1, l3)

ρ(l1, l2 + l3)
=

ρ(l2 + l3, l1)
ρ(l2, l1)ρ(l3, l1)

.(4.3.7)

(iv) Let ψ : L −→ k be a function. Define θ : idC −→ idC by setting θX |Xl =
ψ(l) idXl . Prove that θ is a morphism of tensor functors if and only if

ψ(l1 + l2) = ψ(l1)ψ(l2) .

(v) Let L = Z/2Z.

(a) Prove that the function c given by

c(l1, l2, l3) =

{
−1 if l1 = l2 = l3 = 1 mod 2 ,

1 otherwise
(4.3.8)

satisfies the cocycle condition (4.3.5).
(b) Assume that there exists an element i ∈ k× such that i2 = −1 and let c

be as in (4.3.8). Prove that the solutions of (4.3.7) are given by

ρ(l, l ′) =

{
±i if l = l ′ = 1 mod 2 ,

1 otherwise.

(vi) Let L = Z/2Z. Prove that two tensor categories (C,⊗c, ac) and (C,⊗b, ab)
with c as in (4.3.8) and b(l1, l2, l3) = 1, are not equivalent when k is a field of
characteristic different from 2.
(vii) Let L = Z/2Z, and b as in (vi). Let R be the braiding given by ρ(l, l ′) =
−1 or 1 according that l = l ′ = 1 mod 2 or not. Prove that (C,⊗b, ab) is a
commutative tensor category. (The objects of C are called super vector spaces.)

Exercise 4.6. Let T be a tensor category with a unit object 1. Prove that if
θ : idT −→ idT is an isomorphism of tensor functors, then θ1 = id1.

Exercise 4.7. Let T be a tensor category with a unit object. Prove that if
(X, Y ) and (X, Y ′) are dual pairs, then Y and Y ′ are isomorphic.

Exercise 4.8. Let T be a tensor category with a unit object 1 and acting
on a category C. Prove that this action is unital if and only if the functor
C � X 
→ 1⊗X ∈ C is fully faithful.

Exercise 4.9. Let ∆ be the category of finite totally ordered sets and order-
preserving maps (see Definition 11.4.1 and Exercise 1.21).
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(i) For σ, τ ∈ ∆, define σ ⊗ τ as the set σ � τ endowed with the total order
such that i < j for any i in the image of σ and j in the image of τ and
σ −→ σ � τ and τ −→ σ � τ are order-preserving. Prove that ∆ is a tensor
category with a unit object.
(ii) Let R(σ, τ ) : σ ⊗ τ −→ τ ⊗ σ denote the unique isomorphism of these two
objects in ∆. Prove that R defines a commutative tensor category structure
on ∆.
(iii) Let T be a tensor category with a unit object. Prove that the category
of rings in T is equivalent to the category of unital tensor functors from ∆ to
T .

Exercise 4.10. Let G be a group and let us denote by G the associated
discrete category. A structure of a tensor category on G is defined by setting
g1 ⊗ g2 = g1g2 (g1, g2 ∈ G). Let C be a category. An action of G on C is a
unital action ψ : G −→ Fct(C, C) of the tensor category G on C.
(i) Let T : C −→ C be an auto-equivalence. Show that there exists an action ψ

of Z on C such that ψ(1) = T .
(ii) Let T1 and T2 be two auto-equivalences of S and let ϕ12 : T1 ◦T2

∼−→ T2 ◦T1

be an isomorphism of functors. Show that there exists an action ψ of Z2 on
C such that ψ((1, 0)) = T1 and ψ((0, 1)) = T2.
(iii) More generally, let T1, . . . , Tn be n auto-equivalences of C for a non-
negative integer n, and let ϕi j : Ti ◦ Tj

∼−→ Tj ◦ Ti be isomorphisms of functors
for 1 ≤ i < j ≤ n. Assume that for any 1 ≤ i < j < k ≤ n, the diagram below
commutes

Ti ◦ Tj ◦ Tk

Ti◦ϕ jk

""(((
(((

(((
(( ϕi j◦Tk

����
���

���
���

Ti ◦ Tk ◦ Tj

ϕik◦Tj

��

Tj ◦ Ti ◦ Tk

Tj◦ϕik

��
Tk ◦ Ti ◦ Tj

Tk◦ϕi j ����
���

���
���

Tj ◦ Tk ◦ Ti

ϕ jk◦Ti""(((
(((

(((
((

Tk ◦ Tj ◦ Ti .

Denote by u1, . . . , un the canonical basis of Zn. Prove that there exists an
action ψ of Zn on C such that ψ(ui ) = Ti and the composition Ti ◦ Tj �
ψ(ui ⊗ u j ) = ψ(u j ⊗ ui ) ∼−→ Tj ◦ Ti coincides with ϕi j .

Exercise 4.11. Let T be a tensor category with a unit object (1, �). Let
a ∈ EndT (1).
(i) Prove that the diagram
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1⊗1
1⊗a ��

�

��

1⊗1

�

��
1

a �� 1

commutes and that 1⊗a = a ⊗ 1.
(ii) Prove that EndT (1) is commutative.
(iii) Define

R : EndT (1) −→ End Fct(T ,T )( • ⊗ 1) ∼←−End Fct(T ,T )(idT ) ,

L : EndT (1) −→ End Fct(T ,T )(1⊗ • ) ∼←−End Fct(T ,T )(idT ) ,

where R(a)X ⊗ 1 = X ⊗ a and 1⊗L(a)X = a ⊗ X . Prove that if T has a
braiding, then R = L.

Exercise 4.12. Let T be a tensor category with a unit object (1, �). Let
X, Y ∈ T and assume that X ⊗ Y � 1 and Y ⊗ X � 1. Prove that there exist
isomorphisms ξ : X⊗Y ∼−→1 and η : Y ⊗X ∼−→1 such that the diagrams below
commute.

X ⊗ Y ⊗ X

X⊗η

��

ξ⊗X �� 1⊗X

��
X ⊗ 1 �� X,

Y ⊗ X ⊗ Y

η⊗Y

��

Y⊗ξ �� Y ⊗ 1

��
1⊗Y �� Y.

Exercise 4.13. Let T be a tensor category with a unit object (1, �). Assume
to be given X ∈ T , a positive integer n and an isomorphism λ : X⊗n ∼−→1.
Consider the diagram

X⊗(n+1)

λ⊗X

��

X⊗λ �� X ⊗ 1

��
1⊗X �� X.

(4.3.9)

(i) Assume that (4.3.9) commutes. Prove that there exists a unital functor
ϕ : Z/nZ −→ T such that ϕ(1) = X . Here, the group Z/nZ is regarded as a
tensor category as in Exercise 4.10.
(ii) Prove that if T has a braiding, the fact that the diagram (4.3.9) commutes
does not depend on the choice of the isomorphism λ : X⊗n ∼−→1. (Hint: use
Exercise 4.11 (iii).)
(iii) Give an example of a braided tensor category T and (X , λ) such that
(4.3.9) does not commute. (Hint: use Exercise 4.5 (v).)


