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Indization and Derivation
of Abelian Categories

In this chapter we study the derived category Db(Ind(C)) of the category of
ind-objects of the abelian category C. The main difficulty comes from the fact
that, as we shall see, the category Ind(C) does not have enough injectives in
general. This difficulty is partly overcome by introducing the weaker notion
of “quasi-injective objects”, and these objects are sufficient to derive functors
on Ind(C) which are indization of functors on C.

As a byproduct, we shall give a sufficient condition which ensures that
the right derived functor of a left exact functor commutes with small filtrant
inductive limits.

Finally, we study the relations between Db(Ind(C)) and the category
Ind(Db(C)) of ind-objects of Db(C).

15.1 Injective Objects in Ind(C)

In this chapter, C is an abelian category and recall that by the hypothesis,
C is a U-category (see Convention 1.4.1). It follows that Ind(C) is again an
abelian U-category.

Recall that we denote by “
⊕

” the coproduct in Ind(C) (see Nota-
tion 8.6.1).

As in Chap. 6, we denote by ιC : C −→ Ind(C) the natural functor. This
functor is fully faithful and exact. By Proposition 6.3.1, if C admits small
inductive limits, the functor ιC admits a left adjoint, denoted by σC . It follows
from Proposition 8.6.6 that if the small filtrant inductive limits are exact in
C, then the functor σC is exact.

Proposition 15.1.1. Assume that C admits small inductive limits and that
small filtrant inductive limits are exact. Let X ∈ C. Then

(i) X is injective in C if and only if ιC(X) is injective in Ind(C),
(ii) X is projective in C if and only if ιC(X) is projective in Ind(C).
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Proof. (i) Let X be an injective object of C. For A ∈ Ind(C), we have
Hom Ind(C)(A, ιC(X)) � HomC(σC(A), X) and the result follows since σC is
exact. The converse statement is obvious.
(ii) Let X be a projective object of C, let f : A −→ B be an epimorphism
in Ind(C) and u : X −→ B a morphism. Let us show that u factors through
f . By Proposition 8.6.9, there exist an epimorphism f ′ : Y −→ X in C and a
morphism v : Y −→ A such that u ◦ f ′ = f ◦ v. Since X is projective, there
exists a section s : X −→ Y of f ′. Therefore, f ◦ (v ◦ s) = u ◦ f ′ ◦ s = u. This is
visualized by the diagram

Y
f ′ �� ��

v

��

X

u
��

s
��

A
f

�� �� B .

The converse statement is obvious. q.e.d.

In the simple case where C = Mod(k) with a field k, we shall show that the
category Ind(C) does not have enough injectives. In the sequel, we shall write
Ind(k) instead of Ind(Mod(k)), for short.

Proposition 15.1.2. Assume that k is a field. Let Z ∈ Ind(k). Then Z is
injective if and only if Z belongs to Mod(k).

Proof. Assume that Z ∈ Ind(k) is injective. Any object in Ind(k) is a quotient
of “

⊕
”

i
Mi with Mi ∈ Mod(k), and the natural morphism “

⊕
”

i
Mi −→⊕

i
Mi

is a monomorphism. Since Z is injective, “
⊕

”
i

Mi −→ Z factorizes through⊕
i

Mi . Hence we can assume from the beginning that

Z = X/Y with X ∈ Mod(k), Y ∈ Ind(k).

Since Y −→ X is a monomorphism, σC(Y ) is a sub-object of X . Hence, there
exits a decomposition X = X ′ ⊕ σC(Y ) in Mod(k). Then Z = X ′ ⊕ (σC(Y )/Y )
and σC(Y )/Y is injective. Thus we may assume from the beginning that

Z = X/Y with X ∈ Mod(k), Y ⊂ X and σC(Y ) = X .

Let κC : Mod(k) −→ Ind(k) be the functor introduced in Sect. 6.3, V 
→
“lim−→” W , where W ranges over the family of finite-dimensional vector sub-
spaces of V . Then we have κC(V ) ⊂ Y for any V ∈ Mod(k) with V ⊂ X .

Assuming Y �= X , we shall derive a contradiction. Set

K = {V ; V ∈ Mod(k) , V ⊂ Y } ,

N = k⊕K =
⊕

V∈K
keV ,

Φ = Hom k(N , X) .
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For ϕ ∈ Φ, let Nϕ be a copy of N and let aϕ : N ∼−→ Nϕ be the isomorphism.
We denote by cϕ : N −→ ⊕

ϕ′∈Φ

Nϕ′ the composition N ∼−→
aϕ

Nϕ −→ ⊕
ϕ′∈Φ

Nϕ′ . Set

T = “
⊕

”
V∈K

(⊕
ϕ∈Φ

kcϕ(eV )
) ⊂ ⊕

ϕ∈Φ

Nϕ .

Then, for any finite subset A of Φ, we have

T ∩ (⊕
ϕ∈A

Nϕ

)
= “

⊕
”

V∈K

(⊕
ϕ∈A

kcϕ(eV )
)

=
⊕
ϕ∈A

(
“
⊕

”
V∈K

kcϕ(eV )
)

=
⊕
ϕ∈A

κC(Nϕ) .

Hence, we have a monomorphism

“
⊕

”
ϕ∈Φ

(
Nϕ/κC(Nϕ)

)
↪→ (⊕

ϕ∈Φ

Nϕ

)
/T .

Let f :
⊕
ϕ∈Φ

Nϕ −→ X be the morphism defined by f ◦ cϕ(u) = ϕ(u) for u ∈ N .

It induces a morphism

f̃ : “
⊕

”
ϕ∈Φ

(Nϕ/κC(Nϕ)) −→ Z .

Since Z is injective, the morphism f̃ factors through (
⊕
ϕ∈Φ

Nϕ)/T . Note that

any object in Mod(k) is a projective object in Ind(k) by Proposition 15.1.1.
Hence

⊕
ϕ∈Φ

Nϕ is a projective object of Ind(k), and the composition
⊕
ϕ∈Φ

Nϕ −→
(
⊕
ϕ∈Φ

Nϕ)/T −→ Z factors through X . Thus we obtain the commutative diagram

“
⊕

”
ϕ∈Φ

Nϕ

���
��

��
��

��
�

""(((
(((

(((
(((

((

“
⊕

”
ϕ∈Φ

(
Nϕ/κC(Nϕ)

) �� ��

f̃
��&&

&&&
&&&

&&&
&

(⊕
ϕ∈Φ

Nϕ

)
/T

��

⊕
ϕ∈Φ

Nϕ
����

F

��
Z X.����

A

(15.1.1)

The morphism F :
⊕
ϕ∈Φ

Nϕ −→ X has the following properties:

• Fϕ := F ◦ cϕ : N −→ X satisfies the condition: for any V ∈ K, there exists
K (V ) ∈ K such that Fϕ(eV ) ∈ K (V ) for any ϕ ∈ Φ,

• Gϕ := (Fϕ − ϕ)(N) ⊂ X belongs to K for any ϕ ∈ Φ.
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Indeed, the first property follows from the fact that the composition⊕
ϕ∈Φ

kcϕ(eV ) −→ ⊕
ϕ∈Φ

Nϕ
F−→ X −→ Z = X/Y

vanishes by the commutativity of the square labeled by A in (15.1.1), and

the second follows from the fact that the two compositions N
ϕ ��
Fϕ

�� X �� Z
coincide.

Hence we have

ϕ(eV ) ∈ K (V ) + Gϕ for any V ∈ K and ϕ ∈ Φ .(15.1.2)

Since Y �= X , we have K (V ) + V �= X for any V ∈ K. Hence there exists
x(V ) ∈ X such that x(V ) /∈ K (V )+V . Define ϕ0 ∈ Φ by ϕ0(eV ) = x(V ). Then
for V = Gϕ0 , we have

ϕ0(eV ) = x(V ) �∈ K (V ) + V = K (V ) + Gϕ0 .

This contradicts (15.1.2). q.e.d.

Corollary 15.1.3. The category Ind(k) does not have enough injectives.

Proof. Let us take V ∈ Mod(k) with dim V = ∞ and let U = κC(V ). Define
W ∈ Ind(k) by the exact sequence

0 −→ U −→ V −→ W −→ 0 .

Then, we have σC(W ) � 0, but W does not vanish. Assume that there exists
a monomorphism W�Z with an injective object Z ∈ Ind(k). Then Z belongs
to Mod(k) by Proposition 15.1.2. The morphism of functors id −→ σC (we do
not write ιC) induces the commutative diagram in Ind(k)

W

��

�� �� Z

��
σC(W ) �� σC(Z).

Since Z −→ σC(Z) is an isomorphism, we get W � 0, which is a contradiction.
q.e.d.

15.2 Quasi-injective Objects

Let C be an abelian category. We have seen in Sect. 15.1 that the abelian
category Ind(C) does not have enough injectives in general. However, quasi-
injective objects, which we introduce below, are sufficient for many purposes.
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Definition 15.2.1. Let A ∈ Ind(C). We say that A is quasi-injective if the
functor

C −→ Mod(Z) ,

X 
→ A(X) = Hom Ind(C)(X, A),

is exact.

Clearly, a small filtrant inductive limit of quasi-injective objects is quasi-
injective.

Lemma 15.2.2. Let 0 −→ A′ f−→ A
g−→ A′′ −→ 0 be an exact sequence in Ind(C)

and assume that A′ is quasi-injective. Then

(i) the sequence 0 −→ A′(X) −→ A(X) −→ A′′(X) −→ 0 is exact for any X ∈ C,
(ii) A is quasi-injective if and only if A′′ is quasi-injective.

Proof. (i) It is enough to prove the surjectivity of A(X) −→ A′′(X). Let u ∈
A′′(X). Using Proposition 8.6.9, we get a commutative solid diagram with
exact rows and with Z , Y ∈ C

0 �� Z

w

��

f ′ �� Y

ϕ

��
v

��

g′ �� X ��

ψ

��
u

��

0

0 �� A′ f �� A
g �� A′′ �� 0 .

Since A′ is quasi-injective, there exists a morphism ϕ : Y −→ A′ such that
w = ϕ ◦ f ′. Therefore, (v− f ◦ϕ) ◦ f ′ = v ◦ f ′ − f ◦w = 0, and the morphism
v − f ◦ ϕ factors through Coker f ′ � X . Hence, there exists ψ : X −→ A such
that v − f ◦ ϕ = ψ ◦ g′. Then g ◦ ψ ◦ g′ = g ◦ (v − f ◦ ϕ) = u ◦ g′, and this
implies u = g ◦ ψ .

(ii) The proof is left as an easy exercise. q.e.d.

Proposition 15.2.3. Assume that C has enough injectives and let A ∈
Ind(C). Then the conditions below are equivalent.

(i) A is quasi-injective,
(ii) there exist a small and filtrant category J and a functor α : J −→ C such

that A � “lim−→” α and α( j) is injective in C for all j ∈ J ,
(iii) any morphism a : X −→ A with X ∈ C factorizes through an injective

object Y of C, (i.e., a = b ◦ f with X
f−→ Y

b−→ A).

Proof. Let I denote the full subcategory of C consisting of injective objects.
(i) ⇒ (iii). By the hypothesis, there exists a monomorphism X�Y with Y ∈ I.
Since A is quasi-injective, X −→ A factorizes through Y .
(iii) ⇒ (ii) follows from Exercise 6.11.
(ii) ⇒ (i). Let X ∈ C. We have A(X) � lim−→

j∈J

HomC(X, α( j)). Since α( j) is

injective and the functor lim−→ is exact, A is exact. q.e.d.
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Definition 15.2.4. We say that Ind(C) has enough quasi-injectives if the full
subcategory of quasi-injective objects is cogenerating in Ind(C).

Theorem 15.2.5. Let J be a cogenerating full subcategory of C. Then Ind(J )
is cogenerating in Ind(C).

In order to prove this result, we need a lemma.

Lemma 15.2.6. For any small subset S of Ob(C), there exists a small fully
abelian subcategory C0 of C such that

(i) S ⊂ Ob(C0),
(ii) C0 ∩ J is cogenerating in C0.

Proof. We shall define an increasing sequence {Sn}n≥0 of full subcategories of
C by induction on n. For any X ∈ S, let us take IX ∈ J and a monomorphism
X�IX . We define S0 as the full subcategory of C such that Ob(S0) = S. For
n > 0, let Sn be the full subcategory of C such that

Ob(Sn) = Ob(Sn−1) ∪ {IX ; X ∈ Sn−1} ∪ {X ⊕ Y ; X, Y ∈ Sn−1}
∪ {Ker u ; u ∈ Mor(Sn−1)

} ∪ {Coker u ; u ∈ Mor(Sn−1)
}

.

Then C0 =
⋃

n Sn satisfies the desired conditions. q.e.d.

Proof of Theorem 15.2.5. Let A ∈ Ind(C). There exist a small filtrant category
I and a functor α : I −→ C such that A � “lim−→” α. By Lemma 15.2.6, there
exists a small fully abelian subcategory C0 of C such that α(i) ∈ C0 for all i ∈ I
and J ∩C0 is cogenerating in C0. Then A ∈ Ind(C0), and Ind(C0) admits enough
injectives by Corollary 9.6.5. Hence, there exist an injective object B of Ind(C0)
and a monomorphism A�B. In order to prove that B ∈ Ind(C0 ∩ J ), it is
enough to check that any morphism Z −→ B with Z ∈ C0, factorizes through
an object of C0 ∩ J (see Exercise 6.11). Take a monomorphism Z −→ Y with
Y ∈ C0 ∩ J . Since B is injective, Z −→ B factors through Z −→ Y . q.e.d.

Corollary 15.2.7. Let C be an abelian category which admits enough injec-
tives. Then Ind(C) admits enough quasi-injectives.

15.3 Derivation of Ind-categories

As above, C denotes an abelian category.

Theorem 15.3.1. (i) The natural functor D∗(C) −→ D∗
C(Ind(C)) is an equiv-

alence for ∗ = b,−.
(ii) Assume that C admits small inductive limits and small filtrant inductive

limits are exact. Then D+(C) −→ D+
C (Ind(C)) is an equivalence.
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Proof. (i) By Theorem 13.2.8 (with the arrows reversed), it is enough to show
that for any epimorphism A�Y in Ind(C) with Y ∈ C, there exist X ∈ C and
a morphism X −→ A such that the composition X −→ Y is an epimorphism.
This follows from Proposition 8.6.9.
(ii) Let us apply Theorem 13.2.8 and consider a monomorphism X�A with
X ∈ C and A ∈ Ind(C). Then X � σC(X) −→ σC(A) is a monomorphism and
factors through X −→ A. (Recall that the functor σC is defined in Proposi-
tion 6.3.1.) q.e.d.

Let F : C −→ C ′ be a left exact functor, and let I F : Ind(C) −→ Ind(C ′) be
the associated left exact functor. We shall consider the following hypothesis:

there exists an F-injective subcategory J of C .(15.3.1)

Hypothesis (15.3.1) implies that the right derived functor R+F : D+(C) −→
D+(C ′) exists and Rk F : C −→ C ′ induces a functor I (Rk F) : Ind(C) −→ Ind(C ′).

Proposition 15.3.2. Let F : C −→ C ′ be a left exact functor of abelian cate-
gories and let J be an F-injective subcategory of C. Then

(a) Ind(J ) is I F-injective,
(b) the functor I F admits a right derived functor R+(I F) : D+(Ind(C)) −→

D+(Ind(C ′)),
(c) the diagram below commutes

D+(C)

��

R+F �� D+(C ′)

��
D+(Ind(C))

R+(I F) �� D+(Ind(C ′)),

(d) there is an isomorphism I (Rk F) � Rk(I F) for all k ∈ Z. In particular,
Rk(I F) commutes with small filtrant inductive limits.

Proof. (a) First, note that Ind(J ) is cogenerating by Theorem 15.2.5. Set

J̃ := {A ∈ Ind(C); I (Rk F)(A) � 0 for all k > 0} .

Since J̃ contains Ind(J ), it is cogenerating. Let us check that J̃ satisfies
the conditions (ii) and (iii) in Corollary 13.3.8. Consider an exact sequence
0 −→ A −→ B −→ C −→ 0 in Ind(C). By Proposition 8.6.6 (a), there exist a small
filtrant category I and an exact sequence of functors from I to C

0 −→ α −→ β −→ γ −→ 0(15.3.2)

such that the exact sequence in Ind(C) is obtained by applying the functor
“lim−→” to (15.3.2). Consider the long exact sequence for i ∈ I

0 −→ R0F(α(i)) −→ R0F(β(i)) −→ R0F(γ (i)) −→ R1F(α(i)) −→ · · · .
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Applying the functor “lim−→” , we obtain the long exact sequence

(15.3.3)
0 −→ I (R0F)(A) −→ I (R0F)(B) −→ I (R0F)(C) −→ I (R1F)(A) −→ · · · .

Assuming A, B ∈ J̃ , we deduce C ∈ J̃ . Assuming A ∈ J̃ , we deduce the exact
sequence 0 −→ I F(A) −→ I F(B) −→ I F(C) −→ 0. Therefore, J̃ is I F-injective
and it follows from Proposition 13.3.5 (ii) that Ind(J ) is itself I F-injective.

(b) follows from Proposition 13.3.5 (i).

(c) follows from Proposition 13.3.13. Indeed, R+(ιC′ ◦ F) � ιC′ ◦ R+F since
ιC′ is exact and R+(I F ◦ ιC) � R+(I F) ◦ ιC since Ind(J ) contains J and is
I F-injective.

(d) We construct a morphism I (Rk F) −→ Rk(I F) as follows. For A ∈ Ind(C),

I (Rk F)(A) � “lim−→”
(X−→A)∈CA

Rk F(X) � “lim−→”
(X−→A)∈CA

Rk(I F)(X) −→ Rk(I F)(A) .

The isomorphism in (d) obviously holds for k = 0. We shall prove that it holds
for k = 1, then for all k.
Consider an exact sequence 0 −→ A −→ B −→ C −→ 0 with B ∈ J̃ . Then
I (Rk F)(B) � 0 for all k > 0 by definition and Rk(I F)(B) � 0 for all k > 0
since J̃ is I F-injective. There exists an exact sequence

(15.3.4)
0 −→ R0(I F)(A) −→ R0(I F)(B) −→ R0(I F)(C) −→ R1(I F)(A) −→ · · · .

By comparing the exact sequences (15.3.3) and (15.3.4), we get the result for
k = 1.

We have the isomorphisms I (Rk F)(A) � I (Rk−1F)(C) and Rk(I F)(A) �
Rk−1(I F)(C) for k ≥ 2. By induction on k, we may assume I (Rk−1F)(C) �
Rk−1(I F)(C). Therefore, I (Rk F)(A) � Rk(I F)(A). q.e.d.

Proposition 15.3.3. Let C and C ′ be abelian categories admitting small in-
ductive limits and assume that small filtrant inductive limits are exact in C
and C ′. Let F : C −→ C ′ be a left exact functor commuting with small filtrant
inductive limits and let J be an F-injective additive subcategory of C closed
by small filtrant inductive limits. Then Rk F : C −→ C ′ commutes with small
filtrant inductive limits for all k ∈ Z.

Proof. The functor σC : Ind(C) −→ C is exact and induces a triangulated func-
tor D+(Ind(C)) −→ D+(C) that we still denote by σC , and similarly with C
replaced with C ′. Consider the diagram

D+(Ind(C))

σC

��

R+(I F) �� D+(Ind(C ′))
σC′

��
D+(C) R+F �� D+(C ′).

(15.3.5)
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We shall show that this diagram commutes. Note that σC′ ◦ I F � F ◦ σC by
the assumption, and σC′ ◦ R+(I F) � R+(σC′ ◦ I F). Hence, it is enough to show
that

(R+F) ◦ σC � R+(F ◦ σC) ,(15.3.6)

and this follows from Proposition 13.3.13 since σC sends Ind(J ) to J .
To conclude, consider a small filtrant inductive system {Xi }i∈I in C. We

have the chain of isomorphisms

lim−→
i

Rk F(Xi ) � σC′(“lim−→”
i

Rk F(Xi ))

� σC′ R
k(I F)(“lim−→”

i

Xi )

� (Rk F)σC(“lim−→”
i

Xi ) � Rk F(lim−→
i

Xi ) .

Here, the second isomorphism follows from Proposition 15.3.2 (d) and the
third one from the commutativity of (15.3.5). q.e.d.

Notation 15.3.4. We shall denote by Iqin j the full subcategory of Ind(C) con-
sisting of quasi-injective objects.

Consider the hypothesis

the category Iqin j is cogenerating in Ind(C) .(15.3.7)

This condition is a consequence of one of the following hypotheses

C has enough injectives,(15.3.8)
C is small .(15.3.9)

Indeed, (15.3.8) implies (15.3.7) by Corollary 15.2.7, and (15.3.9) implies
(15.3.7) by Theorem 9.6.2.

Proposition 15.3.5. Assume (15.3.7) and let F : C −→ C ′ be a left exact func-
tor. Then the category Iqin j of quasi-injective objects is I F-injective. In par-
ticular, R+(I F) : D+(Ind(C)) −→ D+(Ind(C ′)) exists.

Proof. (i) We shall verify the hypotheses (i)–(iii) of Corollary 13.3.8. The first
one is nothing but (15.3.7).
(ii) follows from Lemma 15.2.2 (ii).
(iii) Consider an exact sequence 0 −→ A −→ B −→ C −→ 0 in Ind(C) and assume
that A ∈ Iqin j . For any X ∈ C and any morphism u : X −→ C , Lemma 15.2.2
implies that u factors through X

w−→ B −→ C .
This defines a morphism F(w) : F(X) −→ I F(B) such that the composition

F(X) −→ I F(B) −→ I F(C) is the canonical morphism. Therefore, we get the
exact sequence
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I F(B)×I F(C) F(X) −→ F(X) −→ 0

Applying the functor “lim−→”
(X−→C)∈CC

, we find that I F(B) −→ I F(C) is an epimor-

phism by Lemma 3.3.9. q.e.d.

Corollary 15.3.6. Assume (15.3.7). Then for any A ∈ Ind(C) there is a nat-
ural isomorphism

“lim−→”
(X−→A)∈CA

Rk(I F)(X) ∼−→ Rk(I F)(A) .

In particular, Rk(I F) commutes with small filtrant inductive limits.

Proof. Consider the functor I F : Ind(C) −→ Ind(C ′). The subcategory Iqin j of
Ind(C) is closed by small filtrant inductive limits and is I F-injective. Hence,
the result follows from Proposition 15.3.3. q.e.d.

We consider now a right exact functor G : C −→ C ′ of abelian categories.

Proposition 15.3.7. Let G : C −→ C ′ be a right exact functor of abelian cate-
gories and let K be a G-projective additive subcategory of C. Then

(a) the category Ind(K) is I G-projective,
(b) the functor I G admits a left derived functor L−(I G) : D−(Ind(C)) −→

D−(Ind(C ′)),
(c) the diagram below commutes

D−(C)

��

L−G �� D−(C ′)

��
D−(Ind(C))

L−(I G) �� D−(Ind(C ′)),

(d) there is a natural isomorphism I (Lk G) � Lk(I G) for all k ∈ Z. In partic-
ular, Lk(I G) commutes with small filtrant inductive limits.

Proof. The proof is very similar to that of Proposition 15.3.2, but we partly
repeat it for the reader’s convenience.

(a) Set

K̃ = {A ∈ Ind(C); I (Lk G)(A) � 0 for all k < 0} .

Then K̃ contains Ob(Ind(K)). Let us show that K̃ satisfies the conditions
(i)–(iii) (with the arrows reversed) of Corollary 13.3.8.
(i) The category K̃ is generating. Indeed, if A ∈ Ind(C), there exists an epi-
morphism “

⊕
”

i∈I
Xi�A with a small set I and Xi ∈ C. For each i choose an

epimorphism Yi�Xi with Yi ∈ K. Then
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I (Lk G)(“
⊕

”
i

Yi ) � “
⊕

”
i

Lk G(Yi ) � 0

for all k < 0, hence “
⊕

”
i

Yi ∈ K̃.

(ii)–(iii) Consider an exact sequence 0 −→ A −→ B −→ C −→ 0 in Ind(C). We
may assume that this sequence is obtained by applying the functor “lim−→” to
(15.3.2). Consider the long exact sequences for i ∈ I

· · · −→ L−1G(γ (i)) −→ L0G(α(i)) −→ L0G(β(i)) −→ L0G(γ (i)) −→ 0 .

Applying the functor “lim−→” , we obtain the long exact sequence

(15.3.10)
· · · −→ I (L−1G)(C) −→ I (L0G)(A) −→ I (L0G)(B) −→ I (L0G)(C) −→ 0 .

Assuming B, C ∈ J̃ , we deduce A ∈ J̃ . Assuming C ∈ J̃ , we deduce the exact
sequence 0 −→ I G(A) −→ I G(B) −→ I G(C) −→ 0.
(b)–(c) go as in Proposition 15.3.2.
(d) The isomorphism in (d) clearly holds for k = 0. We shall prove that it
holds for k = 1, then for all k.
Consider an exact sequence 0 −→ A −→ B −→ C −→ 0 with B ∈ K̃. Then
I (Lk G)(B) � 0 for all k < 0 by definition and Lk(I G)(B) � 0 for all k < 0
since K̃ is I G-projective. There exists an exact sequence

(15.3.11)
· · · −→ L−1(I G)(C) −→ L0(I G)(A) −→ L0(I G)(B) −→ L0(I G)(C) −→ 0 .

By comparing the exact sequences (15.3.11) and (15.3.10), we get the result
for k = 1. Then the proof goes as in Proposition 15.3.2. q.e.d.

Theorem 15.3.8. Assume (15.3.7).

(i) The bifunctor Hom Ind(C) admits a right derived functor

R+Hom Ind(C) : D+(Ind(C))×D−(Ind(C))op −→ D+(Mod(Z)) .

(ii) Moreover, for X ∈ D−(Ind(C)) and Y ∈ D+(Ind(C)),

H0R+Hom Ind(C)(X, Y ) � HomD(Ind(C))(X, Y ) .

(iii) Db(C) and Db(Ind(C)) are U-categories.

Proof. Let P denote the full additive subcategory of Ind(C) defined by:

P = {A ∈ Ind(C); A � “
⊕

”
i∈I

Xi , I small, Xi ∈ C} .

Clearly, the category P is generating in Ind(C).
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We shall apply Proposition 13.4.4 and Theorem 13.4.1 to the subcategory
Iqin j × Pop of Ind(C)× Ind(C)op.
(A) For B ∈ P, the functor Hom Ind(C)(B, • ) is exact on Iqin j . Indeed, we have

Hom Ind(C)(“
⊕

”
i

Xi , A) �∏
i

Hom Ind(C)(Xi , A) ,

the functor
∏

i is exact on Mod(Z) and the functor Hom Ind(C)(Xi , • ) is exact
on the category Iqin j .
(B) Let A be quasi-injective. In order to see that Pop is injective with respect
to the functor Hom Ind(C)( • , A), we shall apply Theorem 13.3.7.
Consider an epimorphism B�P ′′ with P ′′ ∈ P. We shall show that there
exists an exact sequence 0 −→ P ′ −→ P −→ P ′′ −→ 0 in P such that P −→ P ′′
factorizes through B −→ P ′′. Let P ′′ = “

⊕
”

i
X ′′

i . By Proposition 8.6.9, there

exist an epimorphism Xi�X ′′
i and a morphism Xi −→ B making the diagram

below commutative
Xi

�� ��

��

X ′′
i

��
B �� �� “

⊕
”

i
X ′′

i .

Define X ′
i as the kernel of Xi −→ X ′′

i , and define P ′ = “
⊕

”
i

X ′
i , P = “

⊕
”

i
Xi .

Then the sequence 0 −→ P ′ −→ P −→ P ′′ −→ 0 is exact.
Let us apply the functor Hom Ind(C)( • , A) to this sequence. The formula

Hom(“
⊕

”
i

Xi , A) �∏
i

Hom(Xi , A)

and the fact that the functor
∏

is exact on Mod(Z) show that the sequence
0 −→ Hom Ind(C)(P ′′, A) −→ Hom Ind(C)(P, A) −→ Hom Ind(C)(P ′, A) −→ 0 re-
mains exact.

Hence we have proved (i). The other statements easily follow from (i).
q.e.d.

Corollary 15.3.9. Assume (15.3.7). For any X ∈ C and A ∈ Ind(C), there is
an isomorphism

lim−→
(Y−→A)∈CA

Extk
C(X, Y ) ∼−→Extk

Ind(C)
(X, A) .

Proof. For X ∈ C, let F : Ind(C) −→ Mod(Z) be the functor Hom Ind(C)(X, • ).
Then R+F : D+(Ind(C)) −→ D+(Z) exists and Extk

Ind(C)
(X, • ) � Rk F . On the

other hand, Iqin j being F-injective and closed by small filtrant inductive lim-
its, Proposition 15.3.3 implies the isomorphism lim−→

(Y−→A)∈CA

Rk F(Y ) ∼−→ Rk F(A).
Hence, we obtain
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Extk
Ind(C)

(X, A) � lim−→
(Y−→A)∈CA

Rk F(Y )

� lim−→
(Y−→A)∈CA

Extk
Ind(C)

(X, Y ) .

Finally, Theorem 15.3.1 (i) implies Extk
Ind(C)

(X, Y ) � Extk
C(X, Y ). q.e.d.

15.4 Indization and Derivation

In this section we shall study some links between the derived category
Db(Ind(C)) and the category Ind(Db(C)) associated with an abelian category
C. Notice that we do not know whether Ind(Db(C)) is a triangulated category.

Throughout this section we assume that C satisfies condition (15.3.7). Then
Db(Ind(C)) and Db(C) are U-categories by Theorem 15.3.8.

The shift automorphism [n] : Db(C) −→ Db(C) gives an automorphism of
Ind(Db(C)) that we denote by the same symbol [n].

Let τ≤a and τ≥b denote the truncation functors from Db(C) to itself. They
define functors I τ≤a and I τ≥b from Ind(Db(C)) to itself. If A � “lim−→”

i

Xi with
Xi ∈ Db(C), then I τ≤a A � “lim−→” τ≤a Xi and similarly for τ≥b.

Let Y ∈ Db(C) and let A � “lim−→”
i

Xi ∈ Ind(Db(C)). The distinguished
triangles in Db(C)

τ<a Xi −→ Xi −→ τ≥a Xi −→ (τ<a Xi )[1]

give rise to morphisms

τ<a A −→ A −→ τ≥a A −→ (τ<a A)[1]

and to a long exact sequence

· · · −→ Hom Ind(Db(C))(Y, I τ<a A) −→ Hom Ind(Db(C))(Y, A) −→(15.4.1)

Hom Ind(Db(C))(Y, I τ≥a A) −→ Hom Ind(Db(C))(Y, I τ<a A[1]) −→ · · · .

There are similar long exact sequences corresponding to the other distin-
guished triangles in Proposition 13.1.15.

Lemma 15.4.1. Let A be an additive category and let n0, n1 ∈ Z with n0 ≤
n1. There is a natural equivalence

Ind(C[n0,n1](A)) ∼−→C[n0,n1](Ind(A)) .

Proof. Let K be the category associated with the ordered set

{n ∈ Z ; n0 ≤ n ≤ n1} .
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The natural functors C[n0,n1](A) −→ Fct(K ,A) and C[n0,n1]
(
Ind(A)

) −→
Fct(K , Ind(A)) are fully faithful, and it follows from Proposition 6.4.1 that
Ind(C[n0,n1](A)) −→ C[n0,n1](Ind(A)) is fully faithful.

Let us show that this last functor is essentially surjective. Theorem 6.4.3
implies that Ind(Fct(K ,A)) −→ Fct(K , Ind(A)) is an equivalence of categories,
and we obtain the quasi-commutative diagram:

Ind(C[n0,n1](A))
� �

f.f.

��

� � f.f. �� Ind(Fct(K ,A))

∼
��

C[n0,n1]
(
Ind(A)

) � � f.f. �� Fct(K , Ind(A))

where the arrows labeled by f.f. are fully faithful functors.
Let A ∈ C[n0,n1](Ind(A)), and regard it as an object of Ind(Fct(K ,A)). By

Exercise 6.11, it is enough to show that for X ∈ Fct(K ,A), any morphism
u : X −→ A factors through an object of C[n0,n1](A).

We shall construct by induction on i an object Y = Y n0 −→ · · · −→ Y i in
C[n0,i](A) and a diagram σ≤i X

w−→ Y
v−→ σ≤i A whose composition is equal to

σ≤i (u). Assume that we have constructed the diagram of solid arrows

Xn0 ��

wn0

��

· · · �� Xi−1 ��

wi−1

��

Xi ��

wi

��

Xi+1

��
ui+1

��

Y n0 ��

vn0

��

· · · �� Y i−1

di−1
Y

��

vi−1

��

Y i ��

vi

��

Z

��
Xn0 �� · · · �� Ai−1

di−1
A

�� Ai
di

A

�� Ai+1.

Since the category AAi+1 is filtrant, the dotted arrows may be completed
making the diagram commutative. Since the composition di

A ◦di−1
A is zero, the

composition Y i−1 −→ Y i −→ Z −→ Ai+1 is zero. This implies that the morphism
Z −→ A factorizes through a morphism Z −→ Y i+1 such that the composition
Y i−1 −→ Y i −→ Y i+1 is zero. q.e.d.

Recall that Q : Cb(C) −→ Db(C) denotes the localization functor. We shall de-
note by the same letter Q the localization functor Cb(Ind(C)) −→ Db(Ind(C)).

Proposition 15.4.2. Assume (15.3.7). Consider integers n0, n1 ∈ Z with
n0 ≤ n1 and a small and filtrant inductive system {Xi }i∈I in C[n0,n1](C). Let
Y ∈ Db(C). Then:

lim−→
i

HomDb(C)(Y, Q(Xi )) ∼−→HomDb(Ind(C))(Y, Q(“lim−→”
i

Xi )) .(15.4.2)
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Proof. By dévissage, we may assume Y ∈ C. By using the truncation functors
we are reduced to prove the isomorphisms below for Y, Xi ∈ C:

Extk
Ind(C)

(Y, “lim−→”
i

Xi ) � lim−→
i

Extk
C(Y, Xi ) .(15.4.3)

These isomorphisms follow from Corollary 15.3.9. q.e.d.

We define the functor J : Db(Ind(C)) −→ (Db(C))∧ by setting for A ∈
Db(Ind(C)) and Y ∈ Db(C)

(15.4.4) J (A)(Y ) = HomDb(Ind(C))(Y, A) .

Hence,

J (A) � “lim−→”
(Y−→A)∈Db(C)A

Y .

Theorem 15.4.3. Assume (15.3.7).

(i) Consider integers n0, n1 ∈ Z with n0 ≤ n1 and a small and filtrant induc-
tive system {Xi }i∈I in C[n0,n1](C). Setting A := Q(“lim−→”

i

Xi ) ∈ Db(Ind(C)),

we have J (A) � “lim−→”
i

Q(Xi ).

(ii) The functor J takes its values in Ind(Db(C)). In particular, for any A ∈
Db(Ind(C)), the category Db(C)A is cofinally small and filtrant.

(iii) For each k ∈ Z, the diagram below commutes

Db(Ind(C))
J

��

H k
��99

999
999

99
Ind(Db(C))

I H k
$$:::

:::
:::

:

Ind(C).

Proof. (i) By Proposition 15.4.2, we have for Y ∈ Db(C)

Hom Ind(Db(C))(Y, J (A)) = HomDb(Ind(C))(Y, A)

� lim−→
i

HomDb(C)(Y, Q(Xi ))

� Hom Ind(Db(C))(Y, “lim−→”
i

Q(Xi )) .

Therefore, J (A) � “lim−→”
i

Q(Xi ).

(ii) Let A ∈ Db(Ind(C)). There exists A′ in C[n0,n1](Ind(C)) with A � Q(A′).
Using Lemma 15.4.1 we may write A′ = “lim−→”

i∈I

Xi with a small filtrant inductive

system {Xi }i∈I in C[n0,n1](C). Then J (A) � “lim−→”
i

Q(Xi ) by (i). This object
belongs to Ind(Db(C)).
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(iii) The morphism I H k◦J −→ H k is constructed by the sequence of morphisms

I H k ◦ J (A) � I H k( “lim−→”
(Y−→A)∈Db(C)A

Y )

� “lim−→”
(Y−→A)∈Db(C)A

H k(Y ) −→ H k(A) .

In order to see that it is an isomorphism, let us take an inductive system
{Xi }i∈I as above. By (i) we have J (A) � “lim−→”

i

Q(Xi ). Hence, I H k(J (A)) �
“lim−→”

i

H k(Q(Xi )) � “lim−→”
i

H k(Xi ). On the other hand, we have H k(A) �
H k(Q(“lim−→”

i

Xi )) � H k(“lim−→”
i

Xi ) � “lim−→”
i

H k(Xi ). q.e.d.

Corollary 15.4.4. Assume (15.3.7). Then the functor J : Db(Ind(C)) −→
Ind(Db(C)) is conservative.

Remark 15.4.5. The functor J : Db(Ind(C)) −→ Ind(Db(C)) is not faithful in
general (see Exercise 15.2).

Lemma 15.4.6. Assume (15.3.7). Let A, B ∈ Ind(Db(C)) and let ϕ : A −→ B
be a morphism in Ind(Db(C)) such that I H k(ϕ) : I H k(A) −→ I H k(B) is an
isomorphism for all k ∈ Z. Assume one of the conditions (a) and (b) below:

(a) A � I τ≥a A and B � I τ≥a B for some a ∈ Z,
(b) the homological dimension of C is finite.

Then ϕ is an isomorphism in Ind(Db(C)).

Proof. Let Y ∈ Db(C). It is enough to prove that ϕ induces an isomorphism
Hom Ind(Db(C))(Y, A) ∼−→Hom Ind(Db(C))(Y, B).
(i) Assume (a). By the hypothesis, it is enough to prove the isomorphisms

Hom Ind(Db(C))(Y, I τ≥k A) ∼−→Hom Ind(Db(C))(Y, I τ≥k B)(15.4.5)

for all k ∈ Z, all m ∈ Z and all Y ∈ D≤m(C). Fixing m, let us prove this result
by descending induction on k. If k > m, then both sides vanish. Assume that
Hom Ind(Db(C))(Y, I τ≥k A) −→ Hom Ind(Db(C))(Y, I τ≥k B) is an isomorphism for
all k > n and all Y ∈ D≤m(C). Applying the long exact sequence (15.4.1) we
find a commutative diagram (we shall write Hom instead of Hom Ind(Db(C))

for short)

Hom(Y [1], I τ>n A) ��

��

Hom(Y, I H n(A)[−n]) ��

��

Hom(Y, I τ≥n A)

��
Hom(Y [1], I τ>n B) �� Hom(Y, I H n(B)[−n]) �� Hom(Y, I τ≥n B)

�� Hom(Y, I τ>n A) ��

��

Hom(Y, I H n(A)[1− n])

��
�� Hom(Y, I τ>n B) �� Hom(Y, I H n(B)[1− n]) .
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Since Y [1] and Y belong to D≤m(C), the first and the fourth vertical arrows are
isomorphisms by the induction hypothesis. The second and the fifth vertical
arrows are isomorphisms by the hypothesis. Hence, the third vertical arrow is
an isomorphism, and the induction proceeds.
(ii) Assume (b) and let d denote the homological dimension of C. If Y ∈
D≥n0(C) then Hom Ind(Db(C))(Y, τ≤n A) � 0 for n < n0 − d. We get the isomor-
phism Hom Ind(Db(C))(Y, A) � Hom Ind(Db(C))(Y, τ≥n A), and similarly with A
replaced with B. Then the result follows from the case (i). q.e.d.

Proposition 15.4.7. Assume that C and C ′ satisfy (15.3.7). Consider a tri-
angulated functor ψ : Db(Ind(C)) −→ Db(Ind(C ′)) which satisfies:

H kψ : Ind(C)) −→ Ind(C ′) commutes with small filtrant inductive(15.4.6)
limits,
ψ sends D≥0(Ind(C)) ∩Db(Ind(C)) to D≥n(Ind(C)) for some n .(15.4.7)

Then there exists a unique functor λ : Ind(Db(C)) −→ Ind(Db(C ′)) which com-
mutes with small filtrant “lim−→” and such that the diagram below commutes:

Db(Ind(C))
ψ

��

J

��

Db(Ind(C ′))

J

��
Ind(Db(C)) λ �� Ind(Db(C ′)).

Proof. First, notice that (15.4.6) implies that, for n0, n1 ∈ Z with n0 ≤ n1

and for any small filtrant inductive system {Xi }i∈I in C[n0,n1](C), there is an
isomorphism

“lim−→”
i

H k(ψ ◦ Q(Xi )) � H k(ψ ◦ Q(“lim−→”
i

Xi )) .

Denote by ϕ : Db(C) −→ Ind(Db(C ′)) the restriction of J ◦ ψ to Db(C). The
functor ϕ naturally extends to a functor λ : Ind(Db(C)) −→ Ind(Db(C ′)) such
that λ commutes with small filtrant inductive limits. We construct a natural
morphism of functors

u : λ ◦ J −→ J ◦ ψ

as follows. For A ∈ Db(Ind(C)),

λ ◦ J (A) � λ( “lim−→”
(Y−→A)∈Db(C)A

Y ) � “lim−→”
(Y−→A)∈Db(C)A

J ◦ ψ(Y )

−→ J ◦ ψ(A) .

Let us show that u is an isomorphism. Consider a small filtrant inductive
system {Xi }i∈I in C[n0,n1](C) such that A � Q(“lim−→”

i

Xi ) ∈ Db(Ind(C)). We
have the chain of isomorphisms
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I H k(λ ◦ J (A)) � “lim−→”
i

H k(ψ(Q(Xi ))) � H k(ψ(A))

� I H k(J ◦ ψ(A)) .

Since λ ◦ J (A) � I τ≥a(λ ◦ J (A)) and J ◦ ψ(A) � I τ≥a(J ◦ ψ(A)) for a � 0,
the result follows by Lemma 15.4.6. q.e.d.

Let T be a full triangulated subcategory of Db(C). We identify Ind(T ) with a
full subcategory of Ind(Db(C)). For A ∈ Db(Ind(C)), we denote as usual by TA

the category of arrows Y −→ A with Y ∈ T . We know by Proposition 10.1.18
that TA is filtrant.

Notation 15.4.8. Let T be a full triangulated subcategory of Db(C). We denote
by J−1Ind(T ) the full subcategory of Db(Ind(C)) consisting of objects A ∈
Db(Ind(C)) such that J (A) is isomorphic to an object of Ind(T ).

Note that A ∈ Db(Ind(C)) belongs to J−1Ind(T ) if and only if any morphism
X −→ A with X ∈ Db(C) factors through an object of T by Exercise 6.11.

Proposition 15.4.9. Assume (15.3.7). The category J−1Ind(T ) is a trian-
gulated subcategory of Db(Ind(C)).

Proof. Let A
f−→ B

g−→ C −→ A[1] be a d.t. in Db(Ind(C)) with B, C in
J−1Ind(T ). Let us show that A ∈ J−1Ind(T ). Let u : X −→ A be a mor-
phism with X ∈ Db(C). Since B ∈ J−1Ind(T ), the composition X −→ A −→ B
factors through Y ∈ T . We have thus a commutative diagram

X ��

u

��

Y ��

��

Z ��

��

X [1]

��
A

f �� B
g �� C �� A[1]

in which the rows are d.t.’s and X, Z ∈ Db(C), Y ∈ T . Since C ∈ J−1Ind(T ),
the arrow Z −→ C factors through Z ′ ∈ T . Let us embed the composition
Y −→ Z −→ Z ′ into a d.t. X ′ −→ Y −→ Z ′ −→ X ′[1] in T . We thus have a
commutative diagram whose rows are d.t.’s

X ��

v

��

Y ��

id

��

Z ��

��

X [1]

v[1]

��
X ′ ��

w

��

Y ��

��

Z ′ ��

��

X ′[1]

w[1]

��
A

f �� B
g �� C �� A[1] .

Since x := u − w ◦ v satisfies x ◦ f = 0, it factors through C [−1] −→ A. Since
C [−1] ∈ J−1Ind(T ), the morphism X −→ C [−1] factors through X ′′ ∈ T . Thus
x : X −→ A factors through X ′′. It follows that u = x + w ◦ v factors through
X ′ ⊕ X ′′ ∈ T . q.e.d.
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Exercises

Exercise 15.1. Let C be an abelian category and assume that Db(C) is a
U-category. Let A ∈ Ind(Db(C)) which satisfies the two conditions
(a) there exist a, b ∈ Z such that I τ≤b A ∼−→ A ∼−→ I τ≥a A,
(b) I H n(A) ∈ C for any n ∈ Z.
Prove that A ∈ Db(C). (Hint: argue by induction on b − a and use Exer-
cise 10.14.)

Exercise 15.2. In this exercise, we shall give an example for Remark 15.4.5.
Let k be a field and set C = Mod(k). Let J : Db(Ind(C)) −→ Ind(Db(C)) be the
canonical functor.
(i) Prove that, for any X, Y ∈ Ind(C), Hom Ind(Db(C))

(
J (X), J (Y [n])

) � 0 for
any n �= 0. (Hint: any object of Db(C) is a finite direct sum of Z [m]’s where
Z ∈ C.)
(ii) Let Z ∈ C. Prove that the short exact sequence 0 −→ κC(Z) −→ Z −→
Z/(κC(Z)) −→ 0 splits in Ind(C) if and only if Z is a finite-dimensional vector
space.
(iii) Deduce that J is not faithful.


