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Unbounded Derived Categories

In this chapter we study the unbounded derived categories of Grothendieck
categories, using the results of Chap. 9. We prove the existence of enough
homotopically injective objects in order to define unbounded right derived
functors, and we prove that these triangulated categories satisfy the hypothe-
ses of the Brown representability theorem. We also study unbounded derived
functors in particular for pairs of adjoint functors. We start this study in the
framework of abelian categories with translation, then we apply it to the case
of the categories of unbounded complexes in abelian categories.

Many of the results in this Chapter are not new and many authors have
contributed to the results presented here, in particular, Spaltenstein [65] who
first considered unbounded complexes and unbounded derived functors. Other
contributions are due to [2, 6, 21, 41, 44], [53]. Note that many of the ideas
encountered here come from Topology, and the names of Adams, Bousfield,
Kan, Thomason, and certainly many others, should be mentioned.

14.1 Derived Categories of Abelian Categories
with Translation

Let (A, T ) be an abelian category with translation. Recall (Definition 13.1.1)
that, denoting by N the triangulated subcategory of the homotopy category
Kc(A) consisting of objects X qis to 0, the derived category Dc(A) of (A, T ) is

the localization Kc(A)/N . Recall that X is qis to 0 if and only if T−1X
T−1dX−−−−→

X
dX−−→ T X is exact.
For X ∈ Ac, the differential dX : X −→ T X is a morphism in Ac. Hence its

cohomology H(X) is regarded as an object of Ac and similarly for Ker dX and
Im dX . Note that their differentials vanish.

Proposition 14.1.1. Assume that A admits direct sums indexed by a set I
and that such direct sums are exact. Then Ac, Kc(A) and Dc(A) admit such
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direct sums and the two functors Ac −→ Kc(A) and Kc(A) −→ Dc(A) commute
with such direct sums.

Proof. The result concerning Ac and Kc(A) is obvious, and that concerning
Dc(A) follows from Proposition 10.2.8. q.e.d.

For an object X of A, we denote by M(X) the mapping cone of idT−1 X ,
regarding T−1X as an object of Ac with the zero differential. Hence M(X) is
the object X ⊕ T−1X of Ac with the differential

dM(X) =
(

0 0
idX 0

)
: X ⊕ T−1X −→ T X ⊕ X .

Therefore M : A −→ Ac is an exact functor. Moreover M is a left adjoint functor
to the forgetful functor Ac −→ A as seen by the following lemma.

Lemma 14.1.2. For Z ∈ A and X ∈ Ac, we have the isomorphism

HomAc
(M(Z), X) ∼−→HomA(Z , X).(14.1.1)

Proof. The morphism (u, v) : M(Z) −→ X in Ac satisfies dX ◦ (u, v) = T (u, v)◦
dM(X) which reads as dX ◦ u = T v and dX ◦ v = 0. Hence it is determined by
u : Z −→ X . q.e.d.

Proposition 14.1.3. Let A be a Grothendieck category. Then Ac is again a
Grothendieck category.

Proof. The category Ac is abelian and admits small inductive limits, and small
filtrant inductive limits in Ac are clearly exact. Moreover, if G is a generator
in A, then M(G) is a generator in Ac by Lemma 14.1.2. q.e.d.

Definition 14.1.4. (i) An object I ∈ Kc(A) is homotopically injective if
HomKc(A)(X, I ) � 0 for all X ∈ Kc(A) that is qis to 0.

(ii) An object P ∈ Kc(A) is homotopically projective if P is homotopically
injective in Kc(Aop), that is, if HomKc(A)(P, X) � 0 for all X ∈ Kc(A)
that is qis to 0.

We shall denote by Kc,hi(A) the full subcategory of Kc(A) consisting of ho-
motopically injective objects and by ι : Kc,hi(A) −→ Kc(A) the embedding
functor. We denote by Kc,hp(A) the full subcategory of Kc(A) consisting of
homotopically projective objects.

Note that Kc,hi(A) is obviously a full triangulated subcategory of Kc(A).

Lemma 14.1.5. Let (A, T ) be an abelian category with translation. If I ∈
Kc(A) is homotopically injective, then

HomKc(A)(X, I ) ∼−→HomDc(A)(X, I )

for all X ∈ Kc(A).
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Proof. Let X ∈ Kc(A) and let X ′ −→ X be a qis. Then for I ∈ Kc,hi(A), the
morphism HomKc(A)(X, I ) −→ HomKc(A)(X ′, I ) is an isomorphism, since there
exists a d.t. X ′ −→ X −→ N −→ T X with N qis to 0 and HomKc(A)(N , I ) �
HomKc(A)(T−1N , I ) � 0. Therefore, for any X ∈ Kc(A) and I ∈ Kc,hi(A), we
have

HomDc(A)(X, I ) � lim−→
(X ′−→X)∈Qis

HomKc(A)(X ′, I ) � HomKc(A)(X, I ) .

q.e.d.

Let us introduce the notation

QM =
{

f ∈ Mor(Ac) ; f is both a qis and a monomorphism
}

.(14.1.2)

Recall (see Definition 9.5.1) that an object I ∈ Ac is QM-injective if, for

any morphism f : X −→ Y in QM, HomAc
(Y, I )

◦ f−→ HomAc
(X, I ) is surjective.

Proposition 14.1.6. Let I ∈ Ac. Then I is QM-injective if and only if it
satisfies the following two conditions:

(a) I is homotopically injective,
(b) I is injective as an object of A.

Proof. (i) Assume that I is QM-injective.
(a) Recall that for a morphism f : X −→ Y in Ac, we have constructed a
natural monomorphism α( f ) : Y −→ Mc( f ) in Ac. Let X ∈ Ac be qis to 0. Then
u := α(idX ) is a monomorphism and it is also a qis since both X and Mc(idX )
are qis to 0. Hence u ∈ QM, and it follows that any morphism f : X −→ I
factorizes through Mc(idX ). Since Mc(idX ) � 0 in Kc(A), the morphism f
vanishes in Kc(A).
(b) Consider a monomorphism v : U −→ V in A. The morphism v defines the
morphism M(v) : M(U) −→ M(V ) in Ac and M(v) belongs to QM. Consider
the commutative diagram

HomAc
(M(V ), I )

∼
��

�� HomAc
(M(U), I )

∼
��

HomA(V, I ) �� HomA(U, I ).

Since M(v) belongs to QM and I is QM-injective, the horizontal arrow on the
top is surjective. Hence, the horizontal arrow in the bottom is also surjective,
and we conclude that I is injective.

(ii) Assume that I satisfies conditions (a) and (b). Let f : X −→ Y be a mor-
phism in Ac belonging to QM and let ϕ : X −→ I be a morphism in Ac. Since
I is injective as an object of A, there exists a morphism ψ : Y −→ I in A such
that ϕ = ψ ◦ f . Let h : T−1Y −→ I be the morphism in A given by
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h = T−1dI ◦ T−1ψ − ψ ◦ T−1dY

= T−1dI ◦ T−1ψ + ψ ◦ dT−1Y .

Then h : T−1Y −→ I is a morphism in Ac and h ◦ T−1 f = 0.

Let us consider an exact sequence 0 −→ X
f−→ Y

g−→ Z −→ 0 in Ac. Then, Z
is qis to 0. Since h ◦ T−1 f = 0, there exists a morphism h̃ : T−1Z −→ I in Ac

such that h = h̃ ◦ T−1g. Since Z is exact and I is homotopically injective, h̃
is homotopic to zero, i.e., there exists a morphism ξ : Z −→ I in A such that

h̃ = T−1dI ◦ T−1ξ + ξ ◦ dT−1Z .

Then the morphism ψ̃ = ψ − ξ ◦ g gives a morphism ψ̃ : Y −→ I in Ac which
satisfies ψ̃ ◦ f = ϕ. q.e.d.

Now we shall prove the following theorem.

Theorem 14.1.7. Let (A, T ) be an abelian category with translation and as-
sume that A is a Grothendieck category. Then, for any X ∈ Ac, there exists
u : X −→ I such that u ∈ QM and I is QM-injective.

Applying Proposition 14.1.6, we get:

Corollary 14.1.8. Let (A, T ) be an abelian category with translation and as-
sume that A is a Grothendieck category. Then for any X ∈ Ac, there exists a
qis X −→ I such that I is homotopically injective.

The proof of Theorem 14.1.7 decomposes into several steps.

Define a subcategory Ac,0 of Ac as follows:

Ob(Ac,0) = Ob(Ac), Mor(Ac,0) = QM .

We shall apply Theorems 9.5.4 and 9.5.5 to the categories Ac and Ac,0 (de-
noted by C and C0 in these theorems).

Let us check that hypothesis (9.5.2) is satisfied. Hypothesis (9.5.2) (i) is
satisfied since small filtrant inductive limits are exact and hence H : Ac −→ A
commutes with such limits. Hypothesis (9.5.2) (ii) follows from{

if u : X −→ Y belongs to QM and X −→ X ′ is a morphism in Ac,
then u′ : X ′ −→ X ′ ⊕X Y belongs to QM.

(14.1.3)

Set Y ′ = X ′⊕X Y . Then u′ : X ′ −→ Y ′ is a monomorphism. Note that u (resp. u′)
is a qis if and only if Coker(u) (resp. Coker(u′)) is qis to zero. Hence (14.1.3)
follows from Coker(u) � Coker(u′) (Lemma 8.3.11 (b)).

Since Ac is a Grothendieck category by Proposition 14.1.3, Theorem 9.6.1
implies that there exists an essentially small full subcategory S of Ac such
that
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(i) S contains a generator of Ac,
(ii) S is closed by subobjects and quotients in Ac,

(iii) for any solid diagram Y ′ g �� ��

��

Y

��
X ′ f �� �� X

in which f : X ′ −→ X is

an epimorphism in Ac and Y ∈ S, the dotted arrow may be
completed to a commutative diagram with Y ′ ∈ S and g an
epimorphism,

(iv) S is closed by countable direct sums.

(14.1.4)

In particular, S is a fully abelian subcategory of Ac closed by countable in-
ductive limits.

Define the set

F ′ = {u : X −→ Y ; u ∈ QM, X, Y ∈ S} ,

and take F ⊂ F ′ by collecting a representative of each isomorphism class in F ′
(i.e., for the relation of being isomorphic in Mor(Ac)). Since S is essentially
small, F is a small subset of F ′ such that any u ∈ F ′ is isomorphic to an
element of F .

By Theorem 9.6.1, there exists an infinite cardinal π such that if u : X −→ Y
belongs to F , then X ∈ (Ac)π . Applying Theorem 9.5.4, we find that for
any X ∈ Ac there exists a morphism u : X −→ I such that u ∈ QM and
I is F-injective. In order to prove that I is QM-injective, we shall apply
Theorem 9.5.5.

For X ∈ Ac,0, an object of (Ac,0)X is given by a monomorphism Y�X .
Therefore (Ac,0)X is essentially small by Corollary 8.3.26, and hence hypoth-
esis (9.5.6) is satisfied.

Let us check (9.5.7). We have an exact sequence 0 −→ X ′ −→ X ⊕ Y ′ w−→ Y .
Then Im w � X ⊕X ′ Y ′ and h : Imw −→ Y is a monomorphism. Hence (9.5.7)
follows from (14.1.3).

Hypothesis (9.5.8) will be checked in Lemmas 14.1.9–14.1.11 below.

Lemma 14.1.9. Let X ∈ Ac and let j : V �X be a monomorphism with
V ∈ S. Then there exist V ′ ∈ S and a monomorphism V ′�X such that j
decomposes as V �V ′�X and Ker

(
H(V ) −→ H(X)

) −→ H(V ′) vanishes.

Proof. Since V ∩ Im(T−1dX ) belongs to S, there exists W ⊂ T−1X such that
W ∈ S and (T−1dX )(W ) = V ∩ Im(T−1dX ). Set V ′ = V + T W . Then V ′ is a
subobject of X , it belongs to S and satisfies the desired condition. q.e.d.

Lemma 14.1.10. Let X ∈ Ac and let j : V �X be a monomorphism with
V ∈ S. Then there exist V ′ ∈ S and a monomorphism V ′�X such that j
decomposes as V �V ′�X and H(V ′) −→ H(X) is a monomorphism.
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Proof. Set V0 = V . Using Lemma 14.1.9, we construct by induction Vn ∈ S
such that Vn−1 ⊂ Vn ⊂ X and the morphism

Ker
(
H(Vn−1) −→ H(X)

) −→ Ker
(
H(Vn) −→ H(X)

)
vanishes.

Take V ′ = lim−→
n

Vn ⊂ X . Then V ′ ∈ S and

Ker
(
H(V ′) −→ H(X)

) � lim−→
n

Ker
(
H(Vn) −→ H(X)

) � 0 .

q.e.d.

Lemma 14.1.11. Let f : X −→ Y be in QM. If f satisfies (9.5.5), then f is
an isomorphism.

Proof. Let Z = Coker f . We get an exact sequence in Ac

0 −→ X
f−→ Y

g−→ Z −→ 0

and Z is qis to 0.
Since S contains a generator of Ac, it is enough to show that HomAc

(W, Z)
� 0 for any W ∈ S. Moreover, replacing W with its image in Z , it is enough
to check that any W ⊂ Z with W ∈ S vanishes.

For W ⊂ Z with W ∈ S, there exists W ′ ∈ S such that W ⊂ W ′ ⊂ Z and
H(W ′) � 0 by Lemma 14.1.10. Let us take V ⊂ Y with V ∈ S and g(V ) = W ′.
Set U = f −1(V ). Thus we obtain a Cartesian square U

s ��
��
��

V
��
��

X
f �� Y

. We have an

exact sequence 0 −→ U
s−→ V −→ W ′ −→ 0. Since W ′ is qis to zero, U

s−→ V
belongs to F . Since f satisfies (9.5.5), V −→ Y factors through X −→ Y and
hence W ′ = g(V ) � 0. This shows that W � 0. q.e.d.

Thus we have proved hypothesis (9.5.8), and the proof of Theorem 14.1.7
is now complete.

Corollary 14.1.12. Let (A, T ) be an abelian category with translation and
assume that A is a Grothendieck category. Then:

(i) the localization functor Q : Kc(A) −→ Dc(A) induces an equivalence
Kc,hi(A) ∼−→Dc(A),

(ii) the category Dc(A) is a U-category,
(iii) the functor Q : Kc(A) −→ Dc(A) admits a right adjoint Rq : Dc(A) −→

Kc(A), Q ◦ Rq � id, and Rq is the composition of ι : Kc,hi(A) −→ Kc(A)
and a quasi-inverse of Q ◦ ι,

(iv) for any triangulated category D, any triangulated functor F : Kc(A) −→ D
admits a right localization RF : Dc(A) −→ D, and RF � F ◦ Rq .
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Proof. (i) The functor Q : Kc,hi(A) −→ Dc(A) is fully faithful by Lemma 14.1.5
and essentially surjective by Corollary 14.1.8.
(ii)–(iii) follow immediately.
(iv) follows from Proposition 7.3.2. q.e.d.

14.2 The Brown Representability Theorem

We shall show that the hypotheses of the Brown representability theorem
(Theorem 10.5.2) are satisfied for Dc(A) when A is a Grothendieck abelian
category with translation. Note that Dc(A) admits small direct sums and the
localization functor Q : Kc(A) −→ Dc(A) commutes with such direct sums by
Proposition 14.1.1.

Theorem 14.2.1. Let (A, T ) be an abelian category with translation and as-
sume that A is a Grothendieck category. Then the triangulated category Dc(A)
admits small direct sums and a system of t-generators.

Applying Theorem 10.5.2, we obtain

Corollary 14.2.2. Let (A, T ) be an abelian category with translation and as-
sume that A is a Grothendieck category. Let G : (Dc(A))op −→ Mod(Z) be a
cohomological functor which commutes with small products (i.e., G(

⊕
i

Xi ) �∏
i G(Xi ) for any small family {Xi }i in Dc(A)). Then G is representable.

Applying Corollary 10.5.3, we obtain:

Corollary 14.2.3. Let (A, T ) be an abelian category with translation and as-
sume that A is a Grothendieck category. Let D be a triangulated category and
let F : Dc(A) −→ D be a triangulated functor. Assume that F commutes with
small direct sums. Then F admits a right adjoint.

We shall prove a slightly more general statement than Theorem 14.2.1. Let
I be a full subcategory of A closed by subobjects, quotients and extensions in
A, and also by small direct sums. Similarly to Definition 13.2.7, let us denote
by Dc,I(A) the full subcategory of Dc(A) consisting of objects X ∈ Dc(A)
such that H(X) ∈ I. Then Dc,I(A) is a full triangulated subcategory of Dc(A)
closed by small direct sums.

Proposition 14.2.4. The triangulated category Dc,I(A) admits a system of
t-generators.

In proving Proposition 14.2.4, we need preliminary lemmas. Recall that
there exists an essentially small fully abelian subcategory S of Ac satisfying
(14.1.4).

Lemma 14.2.5. Assume that X ∈ Ac satisfies H(X) ∈ S. Then there exists
a morphism j : Y −→ X with Y ∈ S and j ∈ QM.



354 14 Unbounded Derived Categories

Proof. There exists S ∈ S such that S ⊂ Ker dX and that the composition
S −→ Ker dX −→ H(X) is an epimorphism. Since the differential of S van-
ishes, H(S) is isomorphic to S and H(S) −→ H(X) is an epimorphism. By
Lemma 14.1.10, there exists Y ∈ S such that S ⊂ Y ⊂ X and H(Y ) −→ H(X)
is a monomorphism. Hence, H(Y ) −→ H(X) is an isomorphism. q.e.d.

Lemma 14.2.6. Let X ∈ Ac with H(X) ∈ I. If HomDc,I(A)(Y, X) � 0 for all
Y ∈ S such that H(Y ) ∈ I, then X is qis to zero.

Proof. It is enough to show that HomAc
(S, H(X)) � 0 for all S ∈ S. Let

us show that any u : S −→ H(X) vanishes. Replacing S with the image of
u, we may assume that u is a monomorphism. Since Ker dX −→ H(X) is an
epimorphism, there exists S′ ∈ S such that S′ ⊂ Ker dX and that the image of
the composition S′ −→ Ker dX −→ H(X) is equal to S. By Lemma 14.1.10, there
exists V ∈ S such that S′ ⊂ V ⊂ X and H(V ) −→ H(X) is a monomorphism.
Hence H(V ) belongs to I. Since HomDc,I(A)(V, X) � 0 by the assumption,
the morphism V −→ X vanishes in Dc(A). Taking the cohomology, we find that
H(V ) −→ H(X) vanishes. Since the differentials of S′ and S vanish, we have
H(S′) � S′ and H(S) � S. Since the composition H(S′) −→ H(V ) −→ H(X)
vanishes, the composition S′�S

u−→ H(X) vanishes. Hence u = 0. q.e.d.

Proof of Proposition 14.2.4. Denote by T the subset of Dc,I(A) consisting of
the image of objects Y ∈ S such that H(Y ) ∈ I. We shall show that T is a
system of t-generators in Dc,I(A).
(i) T is a system of generators. Indeed, HomDc,I(A)(Y, X) � 0 for all Y ∈ T
implies that X � 0 by Lemma 14.2.6.
(ii) We shall check condition (iii)′ in Remark 10.5.4. Consider a small set I and
a morphism C −→⊕

i∈I
Xi in Dc,I(A), with C ∈ T . This morphism is represented

by morphisms in Ac:

C
u←− Y −→⊕

i∈I
Xi

where Y ∈ Ac and u is a qis. By Lemma 14.2.5, there exists a qis C ′ −→ Y
with C ′ ∈ S. Replacing C with C ′, we may assume from the beginning that we
have a morphism C −→ ⊕

i∈I
Xi in Ac. Set Yi = Im(C −→ Xi ). Then Yi belongs

to S. By Lemma 14.1.10, there exists Ci ∈ S such that Yi ⊂ Ci ⊂ Xi and that
H(Ci ) −→ H(Xi ) is a monomorphism. Then H(Ci ) belongs to I. By the result
of Exercise 8.35, the morphism C −→⊕

i
Xi factorizes through

⊕
i

Yi −→⊕
i

Xi ,

and hence through
⊕

i
Ci −→⊕

i
Xi . q.e.d.

14.3 Unbounded Derived Category

From now on and until the end of this chapter, C, C ′, etc. are abelian categories.
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We shall apply the results in the preceding Sects. 14.1 and 14.2 to the
abelian category with translation A := Gr(C). Then we have Ac � C(C),
Kc(A) � K(C) and Dc(A) � D(C). Assume that C admits direct sums indexed
by a set I and that such direct sums are exact. Then, clearly, Gr(C) has the
same properties. It then follows from Proposition 14.1.1 that C(C), K(C) and
D(C) also admit such direct sums and the two functors C(C) −→ K(C) and
K(C) −→ D(C) commute with such direct sums.

We shall write Khi(C) for Kc,hi(A). Hence Khi(C) is the full subcate-
gory of K(C) consisting of homotopically injective objects. Let us denote by
ι : Khi(C) −→ K(C) the embedding functor. Similarly we denote by Khp(C) the
full subcategory of K(C) consisting of homotopically projective objects. Recall
that I ∈ K(C) is homotopically injective if and only if HomK(C)(X, I ) � 0 for
all X ∈ K(C) that is qis to 0.

Note that an object I ∈ K+(C) whose components are all injective is
homotopically injective in view of Lemma 13.2.4.

Let C be a Grothendieck abelian category. Then A := Gr(C) is also a
Grothendieck category. Applying Corollary 14.1.8 and Theorem 14.2.1, we
get the following theorem.

Theorem 14.3.1. Let C be a Grothendieck category.

(i) if I ∈ K(C) is homotopically injective, then we have an isomorphism

HomK(C)(X, I ) ∼−→HomD(C)(X, I ) for any X ∈ K(C) ,

(ii) for any X ∈ C(C), there exists a qis X −→ I such that I is homotopically
injective,

(iii) the localization functor Q : K(C) −→ D(C) induces an equivalence

Khi(C) ∼−→D(C) ,

(iv) the category D(C) is a U-category,
(v) the functor Q : K(C) −→ D(C) admits a right adjoint Rq : D(C) −→ K(C),

Q ◦ Rq � id, and Rq is the composition of ι : Khi(C) −→ K(C) and a
quasi-inverse of Q ◦ ι,

(vi) for any triangulated category D, any triangulated functor F : K(C) −→ D
admits a right localization RF : D(C) −→ D and RF � F ◦ Rq ,

(vii) the triangulated category D(C) admits small direct sums and a system
of t-generators,

(viii) any cohomological functor G : (D(C))op −→ Mod(Z) is representable as
soon as G commutes with small products (i.e., G(

⊕
i

Xi ) �∏
i G(Xi ) for

any small family {Xi }i in D(C)),
(ix) for any triangulated category D, any triangulated functor F : D(C) −→ D

admits a right adjoint as soon as F commutes with small direct sums.
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Corollary 14.3.2. Let k be a commutative ring and let C be a Grothendieck
k-abelian category. Then

(
Khi(C),K(C)op

)
is HomC-injective, and the functor

HomC admits a right derived functor RHomC : D(C)×D(C)op −→ D(k).
Moreover, H0(RHomC(X, Y )) � HomD(C)(X, Y ) for X, Y ∈ D(C).

Proof. (i) The functor HomC defines a functor Hom•
C : K(C)×K(C)op −→ K(k)

and H0(Hom•
C) � HomK(C) by Proposition 11.7.3. Let I ∈ Khi(C). If X ∈ K(C)

is qis to 0, we find HomK(C)(X, I ) � 0. Moreover, if I ∈ Khi(C) is qis to 0,
then I is isomorphic to 0. Therefore

(
Khi(C),K(C)op

)
is HomC-injective, and

we can apply Corollary 10.3.11 to the functor Hom•
C : K(C)×K(C)op −→ K(k)

and conclude.

(ii) The last assertion follows from Theorem 13.4.1. q.e.d.

Remark 14.3.3. Let I be a full subcategory of a Grothendieck category C
and assume that I is closed by subobjects, quotients and extensions in C,
and also by small direct sums. Then by Proposition 14.2.4, the triangulated
category DI(C) admits small direct sums and a system of t-generators. Hence
DI(C) −→ D(C) has a right adjoint.

We shall now give another criterion for the existence of derived functors
in the unbounded case, when the functor has finite cohomological dimension.

Proposition 14.3.4. Let C and C ′ be abelian categories and F : C −→ C ′ a left
exact functor. Let J be an F-injective full additive subcategory of C satisfying
the finiteness condition (13.2.1). Then

(i) K(J ) is K(F)-injective. In particular, the functor F admits a right de-
rived functor RF : D(C) −→ D(C ′) and

RF(X) � K(F)(Y ) for (X −→ Y ) ∈ Qis with Y ∈ K(J ) .

(ii) Assume that C and C ′ admit direct sums indexed by a set I and such
direct sums are exact. (Hence, D(C) and D(C ′) admit such direct sums by
Proposition 10.2.8.) If F commutes with direct sums indexed by I and
J is closed by such direct sums, then RF : D(C) −→ D(C ′) commutes with
such direct sums.

Note that by Proposition 13.3.5, the conditions on the full additive subcate-
gory J are equivalent to the conditions (a)–(c) below:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) J is cogenerating in C,
(b) there exists a non-negative integer d such that if Y 0 −→

Y 1 −→ · · · −→ Y d −→ 0 is an exact sequence and Y j ∈ J
for j < d, then Y d ∈ J ,

(c) for any exact sequence 0 −→ X ′ −→ X −→ X ′′ −→ 0 in C
with X ′, X ∈ J , the sequence 0 −→ F(X ′) −→ F(X) −→
F(X ′′) −→ 0 is exact.

(14.3.1)
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Proof. (i) By Proposition 13.2.6, it remains to prove that if X ∈ C(J ) is exact,
then F(X) is exact. Consider the truncated complex

Xi−d −→ · · · −→ Xi−1 −→ Coker di−1
X −→ 0 .

By the assumption, Coker di−1
X belongs to J . Hence,

τ≥i X := 0 −→ Coker di−1
X −→ Xi+1 −→ · · ·

belongs to K+(J ) and is an exact complex. Therefore,

0 −→ F(Coker di−1
X ) −→ F(Xi+1) −→ · · ·

is exact.
(ii) Let {Xi }i∈I be a family of objects in C(C). For each i ∈ I , choose a qis
Xi −→ Yi with Yi ∈ C(J ). Since direct sums indexed by I are exact in C(C),⊕
i

Xi −→ ⊕
i

Yi is a qis, and by the hypothesis,
⊕

i
Yi belongs to C(J ). Then

Q(
⊕

i
Xi ) �⊕

i
Q(Xi ) by Proposition 14.1.1 and

RF(
⊕

i
Xi ) � F(

⊕
i

Yi ) �⊕
i

F(Yi ) �⊕
i

RF(Xi )

in D(C ′). q.e.d.

Corollary 14.3.5. Let C and C ′ be abelian categories and let F : C −→ C ′ and
F ′ : C ′ −→ C ′′ be left exact functors of abelian categories. Let J and J ′ be full
additive subcategories of C and C ′ respectively, and assume that J satisfies the
conditions (a)–(c) of (14.3.1) and similarly for J ′ with respect to C ′, C ′′, F ′.
Assume moreover that F(J ) ⊂ J ′. Then R(F ′ ◦ F) � RF ′ ◦ RF.

Remark 14.3.6. Applying Proposition 14.3.4 and Corollary 14.3.5 with C, C ′
and C ′′ replaced with the opposite categories, we obtain similar results for left
derived functors of right exact functors.

By Proposition 14.3.4 together with Theorem 14.3.1, we obtain the follow-
ing corollary.

Corollary 14.3.7. Let C be a Grothendieck category and let F : C −→ C ′ be
a left exact functor of abelian categories which commutes with small direct
sums. Let J be a full additive subcategory of C satisfying the conditions (a)–
(c) of (14.3.1). Assume moreover that J is closed by small direct sums. Then
RF : D(C) −→ D(C ′) admits a right adjoint.

14.4 Left Derived Functors

In this section, we shall give a criterion for the existence of the left derived
functor LG : D(C) −→ D(C ′) of an additive functor G : C −→ C ′ of abelian
categories, assuming that G admits a right adjoint.
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Let C be an abelian category. We shall assume

C admits small direct sums and small direct sums are exact in C.(14.4.1)

Hence, by Proposition 14.1.1, C(C), K(C) and D(C) admit small direct sums.
Note that Grothendieck categories satisfy (14.4.1).

Lemma 14.4.1. Assume (14.4.1) and let P be a full additive generating sub-
category of C. For any X ∈ C(C), there exists a quasi-isomorphism X ′ −→ X
such that X ′ is the mapping cone of a morphism Q −→ P, where P and Q are
countable direct sums of objects of C−(P).

Proof. By Lemma 13.2.1 (with the arrows reversed), for each n ∈ Z, there
exists a quasi-isomorphism pn : Pn −→ τ≤n X with Pn ∈ C−(P). Then there
exists a quasi-isomorphism

Qn −→ Mc
(
Pn
⊕

Pn+1
(pn ,−pn+1)−−−−−−→ τ≤n+1X

)
[−1]

with Qn ∈ C−(P). Hence, we have a commutative diagram in K−(C):

Qn
��

��%%
%%%

%%
Pn

�� τ≤n X

��
Pn+1

�� τ≤n+1X .

By the octahedral axiom of triangulated categories, there exists a d.t. in K(C)

Mc(Pn+1 −→ Pn
⊕

Pn+1) −→ Mc(Pn+1 −→ τ≤n+1X)

−→ Mc(Pn
⊕

Pn+1 −→ τ≤n+1X)
+1−→ .

Since Pn+1 −→ τ≤n+1X is a qis, the morphism

Mc(Pn
⊕

Pn+1 −→ τ≤n+1X
)
[−1] −→ Mc(Pn+1 −→ Pn

⊕
Pn+1)

is an isomorphism in D(C). Hence, Qn −→ Pn is a qis.
Set Q =

⊕
n∈Z

Qn and P =
⊕
n∈Z

Pn. Then Qn −→ Pn and Qn −→ Pn+1 define

morphisms u0, u1 : Q −→ P. Set

R := Mc(Q
u0−u1−−−→ P) .

There is a d.t. Q −→ P −→ R −→ Q[1]. Since the composition Q
u0−u1−−−→ P −→ X

is zero in K(C), P −→ X factors as P −→ R −→ X in K(C). Let us show that
R −→ X is a qis. For i ∈ Z, set ϕi := Hi (u0 − u1). We have an exact sequence

Hi (Q)
ϕi−→ Hi (P) −→ Hi (R) −→ Hi+1(Q)

ϕi+1−−→ Hi+1(P) .

The hypothesis (14.4.1) implies
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Hi (Q) � ⊕
n∈Z

Hi (Qn) �⊕
i≤n

Hi (X) ,

Hi (P) � ⊕
n∈Z

Hi (Pn) �⊕
i≤n

Hi (X) .

Hence, ϕi+1 is a monomorphism by Exercise 8.37. Note that id−σ in Exer-

cise 8.37 corresponds to ϕi and X0 −→ X1 −→ · · · corresponds to Hi (X)
id−→

Hi (X) −→ · · · . Therefore, Coker ϕi � lim−→
n

Hi (Pn)−→ Hi (X) is an isomorphism.

Hence, Hi (R) −→ Hi (X) is an isomorphism. q.e.d.

Lemma 14.4.2. Assume (14.4.1). Let P be the full subcategory of C consisting
of projective objects and let P̃ be the smallest full triangulated subcategory of
K(C) closed by small direct sums and containing K−(P). Then any object of
P̃ is homotopically projective.

Proof. The full subcategory Khp(C) of K(C) consisting of homotopically pro-
jective objects is closed by small direct sums and contains K−(P). Hence, it
contains P̃. q.e.d.

Theorem 14.4.3. Let C be an abelian category satisfying (14.4.1) and admit-
ting enough projectives. Then,

(i) for any X ∈ K(C), there exist P ∈ Khp(C) and a qis P −→ X ,
(ii) for any additive functor G : C −→ C ′, the left derived functor LG : D(C) −→

D(C ′) exists, and LG(X) � G(X) if X is homotopically projective.

Proof. Apply Lemmas 14.4.1 and 14.4.2. q.e.d.

By reversing the arrows in Theorem 14.4.3, we obtain

Theorem 14.4.4. Let C be an abelian category. Assume that C admits enough
injectives, small products exist in C and such products are exact in C. Then

(i) for any X ∈ K(C), there exist I ∈ Khi(C) and a qis X −→ I ,
(ii) for any additive functor F : C −→ C ′, the right derived functor RF : D(C)−→

D(C ′) exists, and RF(X) � F(X) if X is homotopically injective.

Note that Grothendieck categories always admit small products, but small
products may not be exact.

Theorem 14.4.5. Let k be a commutative ring and let G : C −→ C ′ and
F : C ′ −→ C be k-additive functors of k-abelian categories such that (G, F)
is a pair of adjoint functors. Assume that C ′ is a Grothendieck category and
C satisfies (14.4.1). Let P be a G-projective full subcategory of C.

(a) Let P̃ be the smallest full triangulated subcategory of K(C) closed by small
direct sums and containing K−(P). Then P̃ is K(G)-projective.

(b) The left derived functor LG : D(C) −→ D(C ′) exists and (LG, RF) is a pair
of adjoint functors.
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(c) We have an isomorphism in D(k), functorial with respect to X ∈ D(C) and
Y ∈ D(C ′) :

RHomC(X, RF(Y )) � RHomC′(LG(X), Y ) .

Proof. (i) Let us denote by P̃ ′ the full subcategory of K(C) consisting of
objects X such that

HomK(C)(X, F(I )) −→ HomD(C)(X, F(I ))(14.4.2)

is bijective for any homotopically injective object I ∈ C(C ′). Then P̃ ′ is a
triangulated subcategory of K(C) closed by small direct sums.
(ii) Let us show that P̃ ′ contains K−(P). If X ∈ K−(P), then QisX ∩K−(P)X

is co-cofinal to QisX , and hence we have

HomD(C)(X, F(I )) � lim−→
(X ′−→X)∈Qis,X ′∈K−(P)

HomK(C)(X ′, F(I )) .

Let X ′ −→ X be a qis with X ′ ∈ K−(P). Let X ′′ be the mapping cone of
X ′ −→ X . Then X ′′ is an exact complex in K−(P). Hence

HomK(C)(X ′′, F(I )) � HomK(C′)(G(X ′′), I ) � 0 ,

where the second isomorphism follows from the fact that P being G-projective,
G(X ′′) is an exact complex. Hence, for X, X ′ ∈ K−(P) and for a qis X ′ −→ X ,
the map HomK(C)(X, F(I )) −→ HomK(C)(X ′, F(I )) is bijective. It follows that
the map in (14.4.2) is bijective.
(iii) By (ii), P̃ ′ contains P̃.
(iv) We shall prove that if X ∈ P̃ ′ is exact, then G(X) � 0 in D(C ′). Indeed,
for any homotopically injective object I in C(C ′), we have

HomD(C′)(G(X), I ) � HomK(C′)(G(X), I ) � HomK(C)(X, F(I ))

� HomD(C)(X, F(I )) � 0 .

(v) By Lemma 14.4.1, for every X ∈ C(C), there exists a quasi-isomorphism
P −→ X with P ∈ P̃. Hence P̃ is K(G)-projective and LG exists. Moreover,
we have LG(X) � G(X) for any X ∈ P̃. For a homotopically injective object
I ∈ C(C ′) and X ∈ P̃, we have

RHomC(X, RF(I )) � Hom•
C(X, F(I ))

� Hom•
C′(G(X), I ) � RHomC′(LG(X), I ) .

Hence we obtain (c). By taking the cohomologies, we obtain (b). q.e.d.

Corollary 14.4.6. Let C and C ′ be Grothendieck categories and let G : C −→ C ′
be an additive functor commuting with small inductive limits. Assume that
there exists a G-projective subcategory P of C. Then
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(i) LG : D(C) −→ D(C ′) exists and commutes with small direct sums,
(ii) for any small filtrant inductive system α : I −→ C, lim−→ H n(LG(α)) −→

H n(LG(lim−→α)) is an isomorphism for all n ∈ Z.

Proof. (i) By Theorem 8.3.27, G admits a right adjoint functor and we may
apply Theorem 14.4.5.
(ii) Let P ′ be the full subcategory of C consisting of left G-acyclic objects (see
Remark 13.3.6). Then P ′ is also G-projective by Lemma 13.3.12 and closed by
small direct sums by (i). For each i ∈ I , let us take an epimorphism Pi�α(i)
with Pi ∈ P ′. Set p0(i) =

⊕
i ′−→i

Pi ′ . Then p0 : I −→ C is a functor and p0 −→ α

is an epimorphism in Fct(I, C). It is easily checked that lim−→ p0 � ⊕
i∈I

Pi (see

Exercise 2.21). By this procedure, we construct an exact sequence in Fct(I, C)

· · · −→ pn+1 −→ pn −→ · · · −→ p0 −→ α −→ 0(14.4.3)

such that any pk(i) as well as lim−→
i

pk(i) belongs to P ′.

Define the complex in Fct(I, C)

p• := · · · −→ pn+1 −→ pn −→ · · · −→ p0 −→ 0 .

Hence we have

H n(LG(lim−→α)) � H n(G(lim−→ p•)) � lim−→ H n(G(p•)) � lim−→ H n(LG(α)) .

q.e.d.

Proposition 14.4.7. Let C, C ′, C ′′ be Grothendieck categories and let F : C −→
C ′, F ′ : C ′ −→ C ′′, G : C ′ −→ C, G ′ : C ′′ −→ C ′ be additive functors such that
(G, F) and (G ′, F ′) are pairs of adjoint functors. Assume that there exist a
G-projective subcategory P ′ of C ′ and a G ′-projective subcategory P ′′ of C ′′ such
that G ′(P ′′) ⊂ P ′. Then R(F ′ ◦ F) −→ RF ′ ◦ RF and LG ◦ LG ′ −→ L(G ◦ G ′)
are isomorphisms of functors.

Proof. Since R(F ′ ◦ F), RF ′, RF are left adjoint functors to L(G ◦ G ′), LG ′,
LG, it is enough to prove the isomorphism LG◦LG ′ ∼−→ L(G◦G ′). Let P̃ ′′ (resp.
P̃ ′) denote the smallest full triangulated subcategory of K(C ′′) (resp. K(C ′))
closed by small direct sums and containing K−(P ′′) (resp. K−(P ′)). Then
P̃ ′′ (resp. P̃ ′) is projective with respect to the functor K(G ′) (resp. K(G)).
Moreover, K(G ′)(P̃ ′′) ⊂ P̃ ′. Hence LG ◦ LG ′ −→ L(G ◦ G ′) is an isomorphism
by Proposition 10.3.5. q.e.d.

Theorem 14.4.8. Let k be a commutative ring and let C1, C2 and C3 be k-
abelian categories. We assume that C3 is a Grothendieck category and that
C1 and C2 satisfy (14.4.1). Let G : C1 × C2 −→ C3, F1 : Cop

2 × C3 −→ C1 and
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F2 : Cop
1 ×C3 −→ C2 be k-additive functors. Assume that there are isomorphisms,

functorial with respect to Xi ∈ Ci (i = 1, 2, 3):

HomC3
(G(X1, X2), X3) � HomC1

(X1, F1(X2, X3))
� HomC2

(X2, F2(X1, X3)) .
(14.4.4)

Let K(G) : K(C1)×K(C2) −→ K(C3) be the triangulated functor associated with
tot⊕G(X1, X2), and let K(F1) : K(C2)op ×K(C3) −→ K(C1) be the triangulated
functor associated with totπ F1(X2, X3) and similarly for K(F2).
Let Pi ⊂ Ci (i = 1, 2) be a full subcategory such that (P1,P2) is K(G)-
projective. Denote by P̃i the smallest full triangulated subcategory of K(Ci )
that contains K−(Pi ) and is closed by small direct sums (i = 1, 2).

Then:

(i) (P̃1, P̃2) is K(G)-projective. In particular LG : D(C1) × D(C2) −→ D(C3)
exists and LG(X1, X2) � K(G)(X1, X2) for X1 ∈ P̃1 and X2 ∈ P̃2.

(ii) (P̃op
2 ,Khi(C3)) is K(F1)-injective. In particular, RF1 : D(C2)op×D(C3) −→

D(C1) exists and RF1(X2, X3) � K(F1)(X2, X3) for X2 ∈ P̃2 and X3 ∈
Khi(C3). Similar statements hold for F2.

(iii) There are isomorphisms, functorial with respect to Xi ∈ D(Ci ) (i =
1, 2, 3)

HomD(C3)
(LG(X1, X2), X3) � HomD(C1)

(X1, RF1(X2, X3))(14.4.5)

� HomD(C2)
(X2, RF2(X1, X3)),

and

RHomC3
(LG(X1, X2), X3) � RHomC1

(X1, RF1(X2, X3))(14.4.6)
� RHomC2

(X2, RF2(X1, X3)) .

(iv) Moreover, if Pi = Ci for i = 1 or i = 2, we can take P̃i = K(Ci ) in (i)
and (ii).

Proof. In the sequel, we shall write for short G and Fi instead of K(G) and
K(Fi ), respectively. The isomorphism (14.4.4) gives rise to an isomorphism

HomK(C3)
(G(X1, X2), X3) � HomK(C1)

(X1, F1(X2, X3))(14.4.7)

functorial with respect to Xi ∈ K(Ci ) (i = 1, 2, 3).
Note also that for any X2 ∈ C2, the functor X1 → G(X1, X2) com-

mutes with small direct sums. Indeed this functor has a right adjoint X3 →
F1(X2, X3).

(a) Let us first prove the following statement:

if X1 ∈ K−(P1) is an exact complex and X2 ∈ P̃2 ,
then G(X1, X2) is exact.

(14.4.8)
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Indeed, for such an X1, the category

P̃ ′
2 =

{
Y ∈ K(C2) ; G(X1, Y ) is exact

}
is a triangulated subcategory of K(C2) which contains K−(P2) and is closed
by small direct sums. Hence, P̃ ′

2 contains P̃2.

(b) Set

P̃ ′
1 = {X1 ∈ K(C1); HomK(C1)

(X1, F1(X2, X3))−→HomD(C1)
(X1, F1(X2, X3))

is an isomorphism for all X2 ∈ P̃2, X3 ∈ Khi(C3)} .

Let us show that P̃1 ⊂ P̃ ′
1.

Since the category P̃ ′
1 is a full triangulated subcategory of K(C1) closed by

small direct sums, it is enough to show that K−(P1) ⊂ P̃ ′
1. If Y1 ∈ K−(P1) is

exact, then

HomK(C1)
(Y1, F1(X2, X3)) � HomK(C3)

(G(Y1, X2), X3) � 0 ,(14.4.9)

where the last isomorphism follows from (14.4.8) and X3 ∈ Khi(C3). Hence, if
X ′

1 −→ X1 is a qis in K−(P1), then

HomK(C1)
(X1, F1(X2, X3)) ∼−→HomK(C1)

(X ′
1, F1(X2, X3)) .

Hence we obtain for any X1 ∈ K−(P1)

HomD(C1)
(X1, F1(X2, X3))

� lim−→
(X ′

1−→X1)∈Qis∩K−(P1)

HomK(C1)
(X ′

1, F1(X2, X3))

� HomK(C1)
(X1, F1(X2, X3)) .

(14.4.10)

Thus K−(P1) ⊂ P̃ ′
1 and hence P̃1 ⊂ P̃ ′

1.

(c) Next let us show

for Xi ∈ P̃i (i = 1, 2) and X3 ∈ Khi(C3), we have
HomD(C3)

(G(X1, X2), X3) � HomD(C1)
(X1, F1(X2, X3)) .

(14.4.11)

There are isomorphisms

HomD(C3)
(G(X1, X2), X3) � HomK(C3)

(G(X1, X2), X3)

� HomK(C1)
(X1, F1(X2, X3))

� HomD(C1)
(X1, F1(X2, X3)) .

Here the first isomorphism follows from X3 ∈ Khi(C3) and the last isomorphism
follows from P̃1 ⊂ P̃ ′

1.
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(d) Let us prove (i). It is enough to show that for Xi ∈ P̃i (i = 1, 2), G(X1, X2)
is exact as soon as X1 or X2 is exact. Assume that X1 is exact. Then, for any
X3 ∈ Khi(C3), we have by (14.4.11)

HomD(C3)
(G(X1, X2), X3) � HomD(C1)

(X1, F1(X2, X3)) � 0 .

This implies that G(X1, X2) is exact. The proof in the case where X2 is exact
is similar.

(e) Let us prove (ii). It is enough to show that for X2 ∈ P̃2 and X3 ∈ Khi(C3),
F1(X2, X3) is exact as soon as X2 or X3 is exact.
(e1) Assume that X2 is exact. For any X1 ∈ P̃1, G(X1, X2) is exact by (i), and
hence HomD(C1)

(X1, F1(X2, X3)) � HomD(C3)
(G(X1, X2), X3) vanishes. This

implies that F1(X2, X3) is exact.
(e2) Assume that X3 ∈ Khi(C3) is exact. Then X3 � 0 in K(C3) and F1(X2, X3)
is exact.

(f) Let us show (iii). The isomorphisms (14.4.5) immediately follow from
(14.4.11). The adjunction morphism X1 −→ RF1(X2, LG(X1, X2)) induces the
morphisms

RHomC3
(LG(X1, X2), X3) −→ RHomC1

(
RF1(X2, LG(X1, X2)), RF1(X2, X3)

)
−→ RHomC1

(X1, RF1(X2, X3)) .

By taking the cohomologies, it induces isomorphisms by (14.4.5) and Theo-
rem 13.4.1.

(g) Let us prove (iv). Assume P1 = K−(C1).
(g1) Let us show that (K(C1), P̃2) is K(G)-projective. For that purpose it is
enough to show that G(X1, X2) is exact for X1 ∈ K(C1) and X2 ∈ P̃2 as soon as
X1 or X2 is exact. Since τ≤n X1 or X2 is exact and (P̃1, P̃2) is K(G)-projective,
G(τ≤n X1, X2) is exact. Hence G(X1, X2) � lim−→

n

G(τ≤n X1, X2) is exact.

(g2) Let us show that (K(C1)op,Khi(C3)) is K(F2)-injective. Let X1 ∈ K(C1)
and X3 ∈ Khi(C3). If X3 is exact, then X3 � 0, and hence F2(X1, X3) is exact.
If X1 ∈ K(C1) is exact, then for any X2 ∈ P̃2 we have

HomK(C2)
(X2, F2(X1, X3)) � HomK(C3)

(G(X1, X2), X3) � 0 ,

where the last isomorphism follows from the fact that G(X1, X2) is exact by
(g1). Hence F2(X1, X3) is exact. q.e.d.

Corollary 14.4.9. Let C1, C2 and C3 be Grothendieck categories. Let G : C1×
C2 −→ C3 be an additive functor which commutes with small inductive limits
with respect to each variable. Let Pi ⊂ Ci (i = 1, 2) be a full subcategory
such that (P1,P2) is G-projective. Denote by P̃i the smallest full triangulated
subcategory of K(Ci ) that contains K−(Pi ) and is closed by small direct sums
(i = 1, 2). Let K(G) : K(C1) × K(C2) −→ K(C3) be the functor associated with
tot⊕G(X1, X2). Then
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(i) (P̃1, P̃2) is K(G)-projective. In particular LG : D(C1) × D(C2) −→ D(C3)
exists and LG(X1, X2) � G(X1, X2) for X1 ∈ P̃1 and X2 ∈ P̃2.

(ii) LG commutes with small direct sums.
(iii) Moreover, if Pi = Ci for i = 1 or i = 2, we can take P̃i = K(Ci ).

Proof. By Theorem 8.3.27, the two functors X1 → G(X1, X2) and X2 →
G(X1, X2) have right adjoints. q.e.d.

Example 14.4.10. Let R denote a k-algebra. The functor • ⊗R
• : Mod(Rop)×

Mod(R) −→ Mod(k) defines a functor

• ⊗R
• : K(Mod(Rop))×K(Mod(R)) −→ K(Mod(k)) ,(14.4.12)

(X•, Y •) → tot⊕(X• ⊗R Y •) .

Then

Hom k(N ⊗R M, L) � Hom Rop(N ,Hom k(M, L))
� Hom R(M,Hom k(N , L))

for any N ∈ Mod(Rop), M ∈ Mod(R) and L ∈ Mod(k).
Let Pproj denote the full additive subcategory of Mod(R) consisting of

projective modules and P̃proj the smallest full triangulated subcategory of
K(Mod(R)) closed by small direct sums and containing K−(Pproj ). We may
apply Theorem 14.4.8 with C1 = Mod(Rop), C2 = Mod(R) and C3 = Mod(k).
Then (K(Mod(Rop)), P̃proj ) is ( • ⊗R

• )-projective and the functor in (14.4.12)
admits a left derived functor

•
L⊗R

• : D(Rop)×D(R) −→ D(k) ,

and

N
L⊗R M � tot⊕(N ⊗R P) for P ∈ P̃proj , (P −→ M) ∈ Qis .

Moreover, the functor

Hom k( • , • ) : K(Mod(R))op ×K(Mod(k)) −→ K(Mod(Rop))

admits a right adjoint functor and we have

RHom k(N
L⊗R M, L) � RHom Rop(N ,RHom k(M, L))

� RHom R(M,RHom k(N , L))

for any N ∈ D(Rop), M ∈ D(R) and L ∈ D(k).
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Exercises

Exercise 14.1. Let C be an abelian category and let a ≤ b be integers.
(i) Prove that for X ∈ D≥b(C) and Y ∈ D≤a(C), any morphism f : X −→ Y in
D(C) decomposes as X −→ U [−b] −→ V [−a] −→ Y for some U, V ∈ C. (Hint: to
prove the existence of V , represent X by an object of C≥b(C) and use σ≥a .)
(ii) Assume that hd(C) < b−a. Prove that HomD(C)(X, Y ) � 0 for X ∈ D≥b(C)
and Y ∈ D≤a(C).

Exercise 14.2. Let C be an abelian category with enough projectives and
which satisfies (14.4.1). Let P denote the full subcategory of C consisting of
projective objects. Denote by P̃ the smallest full triangulated category of K(C)
that contains K−(P) and is closed by small direct sums. Prove that the derived
functor RHomC : D(C)×D(C)op −→ D(Z) exists and prove that if P −→ X is a
qis in K(C) with P ∈ P̃, then RHomC(X, Y ) � totπ (Hom•,•

C (P, Y )).

Exercise 14.3. Let C be an abelian category which admits countable direct
sums and assume that such direct sums are exact. Let X ∈ D(C).
(i) Prove that there is a d.t. in D(C):⊕

n≥0

τ≤n X
id−σ−−−−→ ⊕

n≥0

τ≤n X
w−→ X

v−→ ⊕
n≥0

τ≤n X [1] ,(14.4.13)

where σ is defined in Notation 10.5.10 and w is induced by the canonical
morphisms τ≤n X −→ X .
(ii) Assume further that the cohomological dimension of C is less than or equal
to 1. Prove that any X ∈ D(C) is isomorphic to

⊕
n∈Z

H n(X)[−n]. (Hint: applying

Exercise 14.1 to τ<n X −→ X −→ τ≥n X
+1−→, construct H n(X)[−n] −→ X .)

Exercise 14.4. Let k be a field, A = k[x, y], C = Mod(A) and denote by
Db

coh(C) the full triangulated subcategory of D(C) consisting of objects X
such that H j (X) is finitely generated over A for any j ∈ Z. Let L0 = A,

L = A
⊕

A, and consider the exact sequence 0 −→ L0
ϕ−→ L

ψ−→ L0 −→ k −→ 0 in
Exercise 13.21. Let p := ϕ ◦ ψ : L −→ L and denote by X the object of K(C):

X := 0 −→ L0
ϕ−→ L

p−→ L
p−→ L −→ · · ·

where L0 stands in degree −2.
(i) For Z ∈ Db

coh(C) and Yn ∈ D(C) (n ∈ Z), prove the isomorphism⊕
n

HomD(C)(Z , Yn) ∼−→HomD(C)(Z ,
⊕

n
Yn) .

(ii) Prove that

(a) Hi (X) � k for i ≥ 0 and Hi (X) � 0 for i < 0,
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(b) for i ≥ 0 and the d.t. in D(C)

Hi (X)[−i ] −→ τ≤i+1τ≥i (X) −→ Hi+1(X)[−i − 1]
ui−→ Hi (X)[−i + 1] ,

the morphism ui does not vanish in D(C).

(iii) Prove that the object τ≤n X of K(C) is isomorphic to the complex

0 −→ L0
ϕ−→ L

p−→ L
p−→ L −→ · · · p−→ L −→ L0 −→ 0

where L0 on the right stands in degree n and L0 on the left in degree −2.
(iv) Prove the isomorphism τ≥n X � X [−n] in D(C) for n ≥ 0.
(v) Prove that for any n > 0 and any morphism f : X −→ X [n] in D(C), Hi ( f )
vanishes for all i ∈ Z. (Hint: use the commutative diagram

H k(X)

H k( f )

��

�� H k−1(X)[2]

H k−1( f )

��
H k(X [n]) �� H k−1(X [n])[2]

deduced from (ii) (b).)
(vi) Prove that the morphism v in (14.4.13) does not vanish in D(C) using the
following steps.

(a) If v = 0, then there exists s : X −→⊕
n

τ≤n X such that w ◦ s = idX .

(b) For any a > 0, there exists b such that the composition τ<a X −→ X
s−→⊕

n
τ≤n X factors through

⊕
n<b

τ≤n X −→⊕
n

τ≤n X . (Hint: use (i).)

(c) For any a > 0, there exist b > 0 and morphisms τ≥a X −→ X and X −→ τ≤b X
such that the composition X −→ τ≥a X

⊕
τ≤b X −→ X is idX . (Hint: s is the

sum of two morphisms X −→ ⊕
n<b

τ≤n X and X −→ ⊕
n≥b

τ≤n X .)

(d) For any a > 0, there exists a morphism τ≥a X −→ X such that the compo-
sition τ≥a X −→ X −→ τ≥b X is the canonical morphism for some b > a.

(e) Using (v) and (iv), conclude.

(vii) Prove that τ≤nv = 0 in D(C) for all n ∈ Z.
(viii) Prove that the natural functor D+(C) −→ Ind(Db(C)), given by X →
“lim−→”

n

τ≤n X , is not faithful.

Exercise 14.5. Let C be an abelian category and let Gr(C) be the associated
graded category (see Definition 11.3.1). Consider the functor

Θ : Gr(C) −→ D(C)
{Xn}n∈Z → ⊕

n
Xn[−n] .

(i) Prove that Θ is an equivalence if and only if C is semisimple.
(ii) Prove that Θ is essentially surjective if and only if C is hereditary.
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Exercise 14.6. Let C be an abelian category which has enough injectives and
denote by IC the full additive subcategory of injective objects of C. Assume
moreover that C has finite homological dimension (see Exercise 13.8). Prove
that any X ∈ K(IC) is homotopically injective.

Exercise 14.7. Let k be a commutative ring and C = Mod(k). Let x ∈ k be a
non-zero-divisor. Consider the additive functor F : C −→ C given by M → x ·M
(see Example 8.3.19). Prove that RF � idD(C), L F � idD(C) and the canonical
morphism L F −→ RF (see (7.3.3)) is given by the multiplication by x .

Exercise 14.8. Let C be a Grothendieck category. Prove that an object I of
C(C) is an injective object if and only if I is homotopic to zero and all I n are
injective objects of C. (Hint: consider I −→ Mc(idI ).)


