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Triangulated Categories

Triangulated categories play an increasing role in mathematics and this sub-
ject deserves a whole book.

In this chapter we define and give the main properties of triangulated cat-
egories and cohomological functors and prove in particular that the localiza-
tion of a triangulated category is still triangulated. We also show that under
natural hypotheses, the Kan extension of a cohomological functor remains
cohomological.

Then we study triangulated categories admitting small direct sums. Such
categories are studied by many authors, in particular [6] and [53]. Here, we
prove the so-called “Brown representability theorem” [11] in the form due to
Neeman [53], more precisely, a variant due to [44], which asserts that any coho-
mological contravariant functor defined on a triangulated category admitting
small direct sums and a suitable system of generators is representable as soon
as it sends small direct sums to products. (The fact that Brown’s theorem
could be adapted to triangulated categories was also noticed by Keller [42].)

There also exist variants of the Brown representability theorem for trian-
gulated categories which do not admit small direct sums. For results in this
direction, we refer to [8].

We ask the reader to wait until Chap. 11 to encounter examples of tri-
angulated categories. In fact, it would have been possible to formulate the
important Theorem 11.3.8 below before defining triangulated categories, by
listing the properties which become the axioms of these categories. We have
chosen to give the axioms first in order to avoid repetitions, and also because
the scope of triangulated categories goes much beyond the case of complexes
in additive categories.

We do not treat here t-structures on triangulated categories and refer to
the original paper [4] (see also [38] for an exposition). Another important
closely related subject which is not treated here is the theory of A∞-algebras
(see [41, 43]).
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10.1 Triangulated Categories

Definition 10.1.1. (i) A category with translation (D, T ) is a category D
endowed with an equivalence of categories T : D ∼−→D. The functor T is
called the translation functor.

(ii) A functor of categories with translation F : (D, T ) −→ (D′, T ′) is a functor
F : D −→ D′ together with an isomorphism F ◦ T � T ′ ◦ F. If D and D′
are additive categories and F is additive, we say that F is a functor of
additive categories with translation.

(iii) Let F, F ′ : (D, T ) −→ (D′, T ′) be two functors of categories with transla-
tion. A morphism θ : F −→ F ′ of functors of categories with translation
is a morphism of functors such that the diagram below commutes:

F ◦ T

∼
��

θ◦T �� F ′ ◦ T

∼
��

T ′ ◦ F
T ′◦θ �� T ′ ◦ F ′ .

(iv) A subcategory with translation (D′, T ′) of (D, T ) is a category with trans-
lation such that D′ is a subcategory of D and the translation functor T ′
is the restriction of T .

(v) Let (D, T ), (D′, T ′) and (D′′, T ′′) be additive categories with translation.
A bifunctor of additive categories with translation F : D×D′ −→ D′′ is an
additive bifunctor endowed with functorial isomorphisms

θX,Y : F(T X, Y ) ∼−→ T ′′F(X, Y ) and θ ′X,Y : F(X, T ′Y ) ∼−→ T ′′F(X, Y )

for (X, Y ) ∈ D × D′ such that the diagram below anti-commutes (see
Definition 8.2.20):

F(T X, T ′Y )
θX,T ′Y ��

θ ′T X,Y

��
ac

T ′′F(X, T ′Y )

T ′′θ ′X,Y

��
T ′′F(T X, Y )

T ′′θX,Y

�� T ′′2F(X, Y ) .

Remark 10.1.2. The anti-commutativity of the diagram above will be justified
in Chapter 11 (see Proposition 11.2.11 and Lemma 11.6.3).

Notations 10.1.3. (i) We shall denote by T−1 a quasi-inverse of T . Then T n is
well defined for n ∈ Z. These functors are unique up to unique isomorphism.
(ii) If there is no risk of confusion, we shall write D instead of (D, T ) and T X
instead of T (X).
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Definition 10.1.4. Let (D, T ) be an additive category with translation. A
triangle in D is a sequence of morphisms

X
f−→ Y

g−→ Z
h−→ T X .(10.1.1)

A morphism of triangles is a commutative diagram:

X
f ��

α

��

Y

β

��

g �� Z

γ

��

h �� T X

T (α)

��
X ′ f ′ �� Y ′ g′ �� Z ′ h′ �� T X ′ .

Remark 10.1.5. For ε1, ε2, ε3 = ±1, the triangle X
ε1 f−−→ Y

ε2g−→ Z
ε3h−→ T X is

isomorphic to the triangle (10.1.1) if ε1ε2ε3 = 1, but if ε1ε2ε3 = −1, it is not
isomorphic to the triangle (10.1.1) in general.

Definition 10.1.6. A triangulated category is an additive category (D, T )
with translation endowed with a family of triangles, called distinguished tri-
angles (d.t. for short), this family satisfying the axioms TR0 – TR5 below.

TR0 A triangle isomorphic to a d.t. is a d.t.
TR1 The triangle X

idX−→ X −→ 0 −→ T X is a d.t.

TR2 For all f : X −→ Y , there exists a d.t. X
f−→ Y −→ Z −→ T X .

TR3 A triangle X
f−→ Y

g−→ Z
h−→ T X is a d.t. if and only if Y

−g−→ Z
−h−→

T X
−T ( f )−−−→ T Y is a d.t.

TR4 Given two d.t.’s X
f−→ Y

g−→ Z
h−→ T X and X ′ f ′−→ Y ′ g′−→ Z ′ h′−→ T X ′ and

morphisms α : X −→ X ′ and β : Y −→ Y ′ with f ′ ◦ α = β ◦ f , there exists
a morphism γ : Z −→ Z ′ giving rise to a morphism of d.t.’s:

X
f ��

α

��

Y

β

��

g �� Z

γ

��

h �� T X

T (α)

��
X ′ f ′ �� Y ′ g′ �� Z ′ h′ �� T X ′.

TR5 Given three d.t.’s

X
f−→ Y

h−→ Z ′ −→ T X ,

Y
g−→ Z

k−→ X ′ −→ T Y ,

X
g◦ f−−→ Z

l−→ Y ′ −→ T X,

there exists a d.t. Z ′ u−→ Y ′ v−→ X ′ w−→ T Z ′ making the diagram below
commutative:
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(10.1.2) X
f ��

id

��

Y
h ��

g

��

Z ′

u

��

�� T X

id

��
X

g◦ f ��

f

��

Z

id

��

l �� Y ′

v

��

�� T X

T ( f )

��
Y

g ��

h

��

Z
k ��

l

��

X ′

id

��

�� T Y

T (h)

��
Z ′ u �� Y ′ v �� X ′ w �� T Z ′ .

Diagram (10.1.2) is often called the octahedron diagram. Indeed, it can be
written using the vertices of an octahedron.

Y ′

4522
22
22
22
22
22
22
22
22 v

��
Z ′
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Here, for example, X ′ +1−−→ Y means a morphism X ′ −→ T Y .

Notation 10.1.7. The translation functor T is called the suspension functor by
the topologists.

Remark 10.1.8. The morphism γ in TR4 is not unique and this is the origin
of many troubles. See the paper [7] for an attempt to overcome this difficulty.

Definition 10.1.9. (i) A triangulated functor of triangulated categories F :
(D, T ) −→ (D′, T ′) is a functor of additive categories with translation
sending distinguished triangles to distinguished triangles. If moreover F
is an equivalence of categories, F is called an equivalence of triangulated
categories.

(ii) Let F, F ′ : (D, T ) −→ (D′, T ′) be triangulated functors. A morphism
θ : F −→ F ′ of triangulated functors is a morphism of functors of ad-
ditive categories with translation.

(iii) A triangulated subcategory (D′, T ′) of (D, T ) is an additive subcategory
with translation of D (i.e., the functor T ′ is the restriction of T ) such
that it is triangulated and that the inclusion functor is triangulated.
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Remark 10.1.10. (i) A triangle X
f−→ Y

g−→ Z
h−→ T X is anti-distinguished if

the triangle X
f−→ Y

g−→ Z
−h−→ T X is distinguished. Then (D, T ) endowed

with the family of anti-distinguished triangles is triangulated. If we denote by
(Dant, T ) this triangulated category, then (Dant, T ) and (D, T ) are equivalent
as triangulated categories (see Exercise 10.10).
(ii) Consider the contravariant functor op: D −→ Dop, and define T op = op ◦
T−1 ◦ op−1. Let us say that a triangle X

f−→ Y
g−→ Z

h−→ T op(X) in Dop

is distinguished if its image Zop gop−−→ Y op f op−−→ Xop T (hop)−−−−→ T Zop by op is
distinguished. (Here, we write op instead of op−1 for short.) Then (Dop, T op)
is a triangulated category.

Proposition 10.1.11. If X
f−→ Y

g−→ Z −→ T X is a d.t. then g ◦ f = 0.

Proof. Applying TR1 and TR4 we get a commutative diagram:

X
id ��

id

��

X

f

��

�� 0

��

�� T X

id

��
X

f �� Y
g �� Z �� T X .

Then g ◦ f factorizes through 0. q.e.d.

Definition 10.1.12. Let (D, T ) be a triangulated category and C an abelian
category. An additive functor F : D −→ C is cohomological if for any d.t.
X −→ Y −→ Z −→ T X in D, the sequence F(X) −→ F(Y ) −→ F(Z) is exact in C.

Proposition 10.1.13. For any W ∈ D, the two functors HomD(W, • ) and
HomD( • , W ) are cohomological.

Proof. Let X −→ Y −→ Z −→ T X be a d.t. and let W ∈ D. We want to show
that

Hom(W, X)
f ◦−→ Hom(W, Y )

g◦−→ Hom(W, Z)

is exact, i.e. : for all ϕ : W −→ Y such that g ◦ ϕ = 0, there exists ψ : W −→ X
such that ϕ = f ◦ ψ . This means that the dotted arrows below may be
completed, and this follows from the axioms TR4 and TR3.

W
id ��

��

W

ϕ

��

�� 0

��

�� T W

��
X

f �� Y
g �� Z �� T X .

By replacing D with Dop, we obtain the assertion for Hom( • , W ). q.e.d.

Remark 10.1.14. By TR3, a cohomological functor gives rise to a long exact
sequence:

· · · −→ F(T−1Z) −→ F(X) −→ F(Y ) −→ F(Z) −→ F(T X) −→ · · · .(10.1.3)
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Proposition 10.1.15. Consider a morphism of d.t.’s:

X
f ��

α

��

Y

β

��

g �� Z

γ

��

h �� T X

T (α)

��
X ′ f ′ �� Y ′ g′ �� Z ′ h′ �� T X ′ .

If α and β are isomorphisms, then so is γ .

Proof. Apply Hom(W, • ) to this diagram and write X̃ instead of Hom(W, X),
α̃ instead of Hom(W, α), etc. We get the commutative diagram:

X̃

α̃

��

f̃ �� Ỹ

β̃

��

g̃ �� Z̃

γ̃

��

h̃ �� T̃ X

T̃ (α)

��

T̃ ( f ) �� T̃ Y

T̃ (β)

��
X̃ ′ f̃ ′ �� Ỹ ′ g̃′ �� Z̃ ′ h̃′ �� T̃ X ′ T̃ ( f ) �� T̃ Y ′ .

The rows are exact in view of the Proposition 10.1.13, and α̃, β̃, T̃ (α) and T̃ (β)
are isomorphisms. Therefore γ̃ = Hom(W, γ ) : Hom(W, Z) −→ Hom(W, Z ′) is
an isomorphism by Lemma 8.3.13. This implies that γ is an isomorphism by
Corollary 1.4.7. q.e.d.

Corollary 10.1.16. Let D′ be a full triangulated subcategory of D.

(i) Consider a triangle X
f−→ Y −→ Z −→ T X in D′ and assume that this

triangle is distinguished in D. Then it is distinguished in D′.
(ii) Consider a d.t. X −→ Y −→ Z −→ T X in D with X and Y in D′. Then Z

is isomorphic to an object of D′.

Proof. There exists a d.t. X
f−→ Y −→ Z ′ −→ T X in D′. Then X

f−→ Y −→
Z −→ T X is isomorphic to X

f−→ Y −→ Z ′ −→ T X in D by TR4 and Proposi-
tion 10.1.15. q.e.d.

By Proposition 10.1.15, we obtain that the object Z given in TR2 is unique
up to isomorphism. As already mentioned, the fact that this isomorphism is
not unique is the source of many difficulties (e.g., gluing problems in sheaf
theory). Let us give a criterion which ensures, in some very special cases, the
uniqueness of the third term of a d.t.

Proposition 10.1.17. In the situation of TR4 assume that HomD(Y, X ′) = 0
and HomD(T X, Y ′) = 0. Then γ is unique.

Proof. We may replace α and β by the zero morphisms and prove that in this
case, γ is zero.
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X
f ��

0

��

Y

0

��

g �� Z

γ

��

h �� T X

0

��
X ′ f ′ �� Y ′ g′ �� Z ′ h′ �� T X ′ .

We shall apply Proposition 10.1.13. Since h′ ◦ γ = 0, γ factorizes through g′,
i.e., there exists u : Z −→ Y ′ with γ = g′ ◦ u. Similarly, since γ ◦ g = 0, γ

factorizes through h, i.e., there exists v : T X −→ Z ′ with γ = v ◦ h.
By TR4, there exists a morphism w defining a morphism of d.t.’s:

Y
g �� Z

u

��55
55
55
55

h �� T X
v

./��
��
��
��

−T ( f ) �� T Y
w

&&***
**
**
**

Y ′ g′ �� Z ′ h′ �� T X ′ �� T Y ′ .

By the hypothesis, w = 0. Hence v factorizes through Y ′, and by the hypoth-
esis this implies that v = 0. Therefore, γ = 0. q.e.d.

Proposition 10.1.18. Let T and D be triangulated categories and let F : T −→
D be a triangulated functor. Then F is exact (see Definition 3.3.1).

Proof. (i) Let us show that F is right exact, that is, for any X ∈ D, the
category TX is filtrant.
(a) The category TX is non empty since it contains the object 0 −→ X .
(b) Let (Y0, s0) and (Y1, s1) be two objects in TX with Yi ∈ T and si : F(Yi ) −→
X , i = 0, 1. The morphisms s0 and s1 define s : F(Y0 ⊕ Y1) −→ X . Hence, we
obtain morphisms (Yi , si ) −→ (Y0 ⊕ Y1, s) for i = 0, 1.
(c) Consider a pair of parallel arrows f, g : (Y0, s0) ⇒ (Y1, s1) in TX . Let us

embed f − g : Y0 −→ Y1 in a d.t. Y0
f−g−−→ Y1

h−→ Y −→ T Y0. Since s1 ◦ F( f ) =
s1 ◦ F(g), Proposition 10.1.13 implies that the morphism s1 : F(Y1) −→ X

factorizes as F(Y1) −→ F(Y )
t−→ X . Hence, the two compositions (Y0, s0) ⇒

(Y1, s1) −→ (Y, t) coincide.
(ii) Replacing F : T −→ D with Fop : T op −→ Dop, we find that F is left exact.

q.e.d.

Proposition 10.1.19. Let D be a triangulated category which admits direct
sums indexed by a set I . Then direct sums indexed by I commute with the
translation functor T , and a direct sum of distinguished triangles indexed by
I is a distinguished triangle.

Proof. The first assertion is obvious since T is an equivalence of categories.
Let Di : Xi −→ Yi −→ Zi −→ T Xi be a family of d.t.’s indexed by i ∈ I . Let

D be the triangle

⊕i∈I Di : ⊕i Xi −→ ⊕i Yi −→ ⊕i Zi −→ ⊕i T Xi .
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By TR2 there exists a d.t. D′ : ⊕i Xi −→ ⊕i Yi −→ Z −→ T (⊕i Xi ). By TR3
there exist morphisms of triangles Di −→ D′ and they induce a morphism
D −→ D′. Let W ∈ D and let us show that the morphism HomD(D′, W ) −→
HomD(D, W ) is an isomorphism. This will imply the isomorphism D ∼−→ D′
by Corollary 1.4.7. Consider the commutative diagram of complexes

HomD(T (⊕i Yi ), W ) ��

��

HomD(T (⊕i Xi ), W ) ��

��

HomD(Z , W )

��
HomD(⊕i T Yi , W ) �� HomD(⊕i T Xi , W ) �� HomD(⊕i Zi , W )

�� HomD(⊕i Yi , W ) ��

��

HomD(⊕i Xi , W )

��
�� HomD(⊕i Yi , W ) �� HomD(⊕i Xi , W ).

The first row is exact since the functor HomD is cohomological. The second
row is isomorphic to∏

i
HomD(T Yi , W ) −→∏

i
HomD(T Xi , W ) −→∏

i
HomD(Zi , W )

−→∏
i

HomD(Yi , W ) −→∏
i

HomD(Xi , W ) .

Since the functor
∏

i is exact on Mod(Z), this complex is exact. Since the
vertical arrows except the middle one are isomorphisms, the middle one is an
isomorphism by Lemma 8.3.13. q.e.d.

As particular cases of Proposition 10.1.19, we get:

Corollary 10.1.20. Let D be a triangulated category.

(i) Let X1 −→ Y1 −→ Z1 −→ T X1 and X2 −→ Y2 −→ Z2 −→ T X2 be two d.t.’s.
Then X1 ⊕ X2 −→ Y1 ⊕ Y2 −→ Z1 ⊕ Z2 −→ T X1 ⊕ T X2 is a d.t.

(ii) Let X, Y ∈ D. Then X −→ X ⊕ Y −→ Y
0−→ T X is a d.t.

10.2 Localization of Triangulated Categories

Let D be a triangulated category, N a full saturated subcategory. (Recall that
N is saturated if X ∈ D belongs to N whenever X is isomorphic to an object
of N .)

Lemma 10.2.1. (a) Let N be a full saturated triangulated subcategory of D.
Then Ob(N ) satisfies conditions N1–N3 below.
N1 0 ∈ N ,
N2 X ∈ N if and only if T X ∈ N ,
N3 if X −→ Y −→ Z −→ T X is a d.t. in D and X, Z ∈ N then Y ∈ N .
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(b) Conversely, let N be a full saturated subcategory of D and assume that
Ob(N ) satisfies conditions N1–N3 above. Then the restriction of T and
the collection of d.t.’s X −→ Y −→ Z −→ T X in D with X, Y, Z in N make
N a full saturated triangulated subcategory of D. Moreover it satisfies
N’3 if X −→ Y −→ Z −→ T X is a d.t. in D and two objects among X, Y, Z

belong to N , then so does the third one.

Proof. (a) Assume that N is a full saturated triangulated subcategory of
D. Then N1 and N2 are clearly satisfied. Moreover N3 follows from Corol-
lary 10.1.16 and the hypothesis that N is saturated.
(b) Let N be a full subcategory of D satisfying N1–N3. Then N’3 follows from
N2 and N3.
(i) Let us prove that N is saturated. Let f : X ∼−→ Y be an isomorphism with

X ∈ N . The triangle X
f−→ Y −→ 0 −→ T X being isomorphic to the d.t.

X
idX−→ X −→ 0 −→ T X , it is itself a d.t. Hence, Y ∈ N .

(ii) Let X, Y ∈ N . Since X −→ X ⊕Y −→ Y
0−→ T X is a d.t., we find that X ⊕Y

belongs to N , and it follows that N is a full additive subcategory of D.
(iii) The axioms of triangulated categories are then easily checked. q.e.d.

Definition 10.2.2. A null system in D is a full saturated subcategory N such
that Ob(N ) satisfies the conditions N1–N3 in Lemma 10.2.1 (a).

We associate a family of morphisms to a null system as follows. Define:

(10.2.1)
N Q := { f : X −→ Y ; there exists a d.t. X −→ Y −→ Z −→ T X with Z ∈ N }.
Theorem 10.2.3. (i) N Q is a right and left multiplicative system.
(ii) Denote by DN Q the localization of D by N Q and by Q : D −→ DN Q the

localization functor. Then DN Q is an additive category endowed with an
automorphism (the image of T , still denoted by T ).

(iii) Define a d.t. in DN Q as being isomorphic to the image of a d.t. in D by
Q. Then DN Q is a triangulated category and Q is a triangulated functor.

(iv) If X ∈ N , then Q(X) � 0.
(v) Let F : D −→ D′ be a triangulated functor of triangulated categories such

that F(X) � 0 for any X ∈ N . Then F factors uniquely through Q.

One shall be aware that DN Q is a big category in general.

Notation 10.2.4. We will write D/N instead of DN Q .

Proof. (i) Since the opposite category of D is again triangulated and N op is
a null system in Dop, it is enough to check that N Q is a right multiplicative
system. Let us check the conditions S1–S4 in Definition 7.1.5.

S1: if f : X −→ Y is an isomorphism, the triangle X
f−→ Y −→ 0 −→ T X is a d.t.

and we deduce f ∈ N Q.
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S2: Let f : X −→ Y and g : Y −→ Z be in N Q. By TR3, there are d.t.’s

X
f−→ Y −→ Z ′ −→ T X , Y

g−→ Z −→ X ′ −→ T Y , and X
g◦ f−−→ Z −→ Y ′ −→ T X . By

TR5, there exists a d.t. Z ′ −→ Y ′ −→ X ′ −→ T Z ′. Since Z ′ and X ′ belong to N ,
so does Y ′.
S3: Let f : X −→ Y and s : X −→ X ′ be two morphisms with s ∈ N Q. By
the hypothesis, there exists a d.t. W

h−→ X
s−→ X ′ −→ T W with W ∈ N . By

TR2, there exists a d.t. W
f ◦h−−→ Y

t−→ Z −→ T W , and by TR4, there exists a
commutative diagram

W
h ��

id

��

X
s ��

f

��

X ′

��

�� T W

��
W

f ◦h
�� Y t

�� Z �� T W .

Since W ∈ N , we get t ∈ N Q.
S4: Replacing f by f − g, it is enough to check that if there exists s ∈ N Q
with f ◦ s = 0, then there exists t ∈ N Q with t ◦ f = 0. Consider the diagram

X ′ s �� X

f ���
��

��
��

�
k �� Z

h

��

�� T X ′

Y

t

��
Y ′ .

Here, the row is a d.t. with Z ∈ N . Since s ◦ f = 0, the arrow h, making
the diagram commutative, exists by Proposition 10.1.13. There exists a d.t.
Z −→ Y

t−→ Y ′ −→ T Z by TR2. We thus obtain t ∈ N Q since Z ∈ N . Finally,
t ◦ h = 0 implies that t ◦ f = t ◦ h ◦ k = 0.
(ii) follows from the result of Exercise 8.4.
(iii) Axioms TR0–TR3 are obviously satisfied. Let us prove TR4. With the
notations of TR4, and using the result of Exercise 7.4, we may assume that
there exists a commutative diagram in D of solid arrows, with s and t in N Q

X
f ��

α′

��

Y

β ′

��

g �� Z ��

γ ′

��

T X

T (α′)
��

X1
f1 �� Y1

g1 �� Z1
�� T X1

X ′ f ′ ��

s





Y ′

t





g′ ��

A

Z ′ ��

Bu





T X ′ .

T (s)
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After having embedded f1 : X1 −→ Y1 in a d.t., we construct the commutative
squares labeled by A and B with u ∈ N Q by using the result of Exercise 10.6.
(In diagram (10.5.5) of this exercise, if Z0 and Z1 are in N , then so is Z2.)
Then we construct the morphism γ ′ using TR4.

Let us prove TR5. Consider two morphisms in D/N : f : X −→ Y and
g : Y −→ Z . We may represent them by morphisms in D: f̃ : X̃ −→ Ỹ and
g̃ : Ỹ −→ Z̃ . Then apply TR5 (in D) and take the image in D/N of the octa-
hedron diagram (10.1.2).
(iv) Consider a d.t. 0 −→ X −→ X −→ T (0). The morphism 0 −→ X belongs to
N Q. Hence, Q(0) −→ Q(X) is an isomorphism.
(v) is obvious. q.e.d.

Let N be a null system and let X ∈ D. The categories N Q X and N Q X

attached to the multiplicative system N Q (see Sect. 7.1) are given by:

Ob(N Q X ) = {s : X −→ X ′; s ∈ N Q} ,(10.2.2)
HomN Q X ((s : X −→ X ′), (s ′ : X −→ X ′′)) = {h : X ′ −→ X ′′; h ◦ s = s ′}(10.2.3)

and similarly for N Q X .

Remark 10.2.5. It follows easily from TR5 that the morphism h in (10.2.3)
belongs to N Q. Therefore, by considering N Q as a subcategory of D, the
category N Q X is the category given by Definition 1.2.16 (with respect to the
identity functor id : N Q −→ N Q). The same result holds for N Q X .

By Lemma 7.1.10 the categories (N Q X )op and N Q X are filtrant, and by
the definition of the localization functor we get

HomD/N (X, Y ) � lim−→
(Y−→Y ′)∈N Q

HomD(X, Y ′)

� lim−→
(X ′−→X)∈N Q

HomD(X ′, Y )

� lim−→
(Y−→Y ′)∈N Q,(X ′−→X)∈N Q

HomD(X ′, Y ′) .

Now consider a full triangulated subcategory I of D. We shall write N ∩I
for the full subcategory whose objects are Ob(N ) ∩ Ob(I). This is clearly a
null system in I.

Proposition 10.2.6. Let D be a triangulated category, N a null system, I a
full triangulated subcategory of D. Assume condition (i) or (ii) below:

(i) any morphism Y −→ Z with Y ∈ I and Z ∈ N factorizes as Y −→ Z ′ −→ Z
with Z ′ ∈ N ∩ I,

(ii) any morphism Z −→ Y with Y ∈ I and Z ∈ N factorizes as Z −→ Z ′ −→ Y
with Z ′ ∈ N ∩ I.

Then I/(N ∩ I) −→ D/N is fully faithful.
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Proof. We may assume (ii), the case (i) being deduced by considering Dop. We
shall apply Proposition 7.2.1. Let f : X −→ Y is a morphism in N Q with X ∈ I.
We shall show that there exists g : Y −→ W with W ∈ I and g ◦ f ∈ N Q. The
morphism f is embedded in a d.t. X −→ Y −→ Z −→ T X with Z ∈ N . By the
hypothesis, the morphism Z −→ T X factorizes through an object Z ′ ∈ N ∩ I.
We may embed Z ′ −→ T X in a d.t. in I and obtain a commutative diagram of
d.t.’s by TR4:

X
f ��

id

��

Y ��

g

��

Z ��

��

T X

id

��
X

g◦ f �� W �� Z ′ �� T X .

Since Z ′ belongs to N , we get that g ◦ f ∈ N Q ∩Mor(I). q.e.d.

Proposition 10.2.7. Let D be a triangulated category, N a null system, I a
full triangulated subcategory of D, and assume conditions (i) or (ii) below:

(i) for any X ∈ D, there exists a morphism X −→ Y in N Q with Y ∈ I,
(ii) for any X ∈ D, there exists a morphism Y −→ X in N Q with Y ∈ I.

Then I/(N ∩ I) −→ D/N is an equivalence of categories.

Proof. Apply Corollary 7.2.2. q.e.d.

Proposition 10.2.8. Let D be a triangulated category admitting direct sums
indexed by a set I and let N be a null system closed by such direct sums. Let
Q : D −→ D/N denote the localization functor. Then D/N admits direct sums
indexed by I and the localization functor Q : D −→ D/N commutes with such
direct sums.

Proof. Let {Xi }i∈I be a family of objects in D. It is enough to show that
Q(⊕i Xi ) is the direct sum of the family Q(Xi ), i.e., the map

HomD/N (Q(
⊕
i∈I

Xi ), Y ) −→ ∏
i∈I

HomD/N (Q(Xi ), Y )

is bijective for any Y ∈ D.
(i) Surjectivity. Let ui ∈ HomD/N (Q(Xi ), Y ). The morphism ui is represented

by a morphism u′i : X ′
i −→ Y in D together with a d.t. X ′

i
vi−→ Xi

wi−→ Zi −→ T X ′
i

in D with Zi ∈ N . We get a morphism ⊕i X ′
i −→ Y and a d.t. ⊕i X ′

i −→ ⊕i Xi −→
⊕i Zi −→ T (⊕i X ′

i ) in D with ⊕i Zi ∈ N .

(ii) Injectivity. Assume that the composition Q(Xi ) −→ Q(⊕i ′ Xi ′)
u−→ Q(Y )

is zero for every i ∈ I . By the definition, the morphism u is represented

by morphisms u′ : ⊕i Xi
u′−→ Y ′ s←− Y with s ∈ N Q. Using the result of

Exercise 10.11, we can find Zi ∈ N such that v′i : Xi −→ Y ′ factorizes as
Xi −→ Zi −→ Y ′. Then ⊕i Xi −→ Y ′ factorizes as ⊕i Xi −→ ⊕i Zi −→ Y ′. Since
⊕i Zi ∈ N , Q(u) = 0. q.e.d.
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10.3 Localization of Triangulated Functors

Let F : D −→ D′ be a functor of triangulated categories, N and N ′ null systems
in D and D′, respectively. The right or left localization of F (when it exists)
is defined by mimicking Definition 7.3.1, replacing “functor” by “triangulated
functor”.

In the sequel, D (resp. D′, D′′) is a triangulated category and N (resp.
N ′, N ′′) is a null system in this category. We denote by Q : D −→ D/N (resp.
Q′ : D′ −→ D′/N ′, Q′′ : D′′ −→ D′′/N ′′) the localization functor and by N ′Q
(resp. N ′′Q) the family of morphisms in D′ (resp. D′′) defined in (10.2.1).

Definition 10.3.1. We say that a triangulated functor F : D −→ D′ is right
(resp. left) localizable with respect to (N ,N ′) if Q′ ◦ F : D −→ D′/N ′ is uni-
versally right (resp. left) localizable with respect to the multiplicative sys-
tem N Q (see Definition 7.3.1). Recall that it means that, for any X ∈ D,

“lim−→”
(X−→Y )∈N Q X

Q′F(Y ) (resp. “lim←−”
(Y−→X)∈N Q X

Q′F(Y )) is representable in D′/N ′. If

there is no risk of confusion, we simply say that F is right (resp. left) local-
izable or that RF exists.

Definition 10.3.2. Let F : D −→ D′ be a triangulated functor of triangulated
categories, N and N ′ null systems in D and D′, and I a full triangulated
subcategory of D. Consider the conditions (i), (ii), (iii) below.

(i) For any X ∈ D, there exists a morphism X −→ Y in N Q with Y ∈ I.
(ii) For any X ∈ D, there exists a morphism Y −→ X in N Q with Y ∈ I.
(iii) For any Y ∈ N ∩ I, F(Y ) ∈ N ′.

Then

(a) if conditions (i) and (iii) are satisfied, we say that the subcategory I is
F-injective with respect to N and N ′,

(b) if conditions (ii) and (iii) are satisfied, we say that the subcategory I is
F-projective with respect to N and N ′.

If there is no risk of confusion, we omit “with respect to N and N ′”.

Note that if F(N ) ⊂ N ′, then D is both F-injective and F-projective.

Proposition 10.3.3. Let F : D −→ D′ be a triangulated functor of triangulated
categories, N and N ′ null systems in D and D′, and I a full triangulated
category of D.

(a) If I is F-injective with respect to N and N ′, then F is right localizable
and its right localization is a triangulated functor.

(b) If I is F-projective with respect to N and N ′, then F left localizable and
its left localization is a triangulated functor.

Proof. Apply Proposition 7.3.2. q.e.d.
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Notation 10.3.4. (i) We denote by RN ′
N F : D/N −→ D′/N ′ the right localiza-

tion of F with respect to (N ,N ′). If there is no risk of confusion, we simply
write RF instead of RN ′

N F .
(ii) We denote by LN ′

N F : D/N −→ D′/N ′ the left localization of F with respect
to (N ,N ′). If there is no risk of confusion, we simply write L F instead of
LN ′
N F .

If I is F-injective, RN ′
N F may be defined by the diagram:

D �� D/N

RN ′
N F

��

I

������������� ��

		$$$
$$$$

$$$$
$$$$

$$$$
$$ I/(I ∩N )

∼
34'''''''''

��..
...

...
.

D′/N ′

and

RN ′
N F(X) � F(Y ) for (X −→ Y ) ∈ N Q with Y ∈ I .(10.3.1)

Similarly, if I is F-projective, the diagram above defines LN ′
N F and

LN ′
N F(X) � F(Y ) for (Y −→ X) ∈ N Q with Y ∈ I .(10.3.2)

Proposition 10.3.5. Let F : D −→ D′ and F ′ : D′ −→ D′′ be triangulated func-
tors of triangulated categories and let N , N ′ and N ′′ be null systems in D,
D′ and D′′, respectively.

(i) Assume that RN ′
N F, RN ′′

N ′ F ′ and RN ′′
N (F ′ ◦F) exist. Then there is a canon-

ical morphism in Fct(D/N ,D′′/N ′′):

RN ′′
N (F ′ ◦ F) −→ RN ′′

N ′ F ′ ◦ RN ′
N F .(10.3.3)

(ii) Let I and I ′ be full triangulated subcategories of D and D′, respectively.
Assume that I is F-injective with respect to N and N ′, I ′ is F ′-injective
with respect to N ′ and N ′′, and F(I) ⊂ I ′. Then I is (F ′ ◦ F)-injective
with respect to N and N ′′, and (10.3.3) is an isomorphism.

Proof. (i) By Definition 7.3.1, there are a bijection

Hom(RN ′′
N (F ′ ◦ F), RN ′′

N ′ F ′ ◦ RN ′
N F)

� Hom(Q′′ ◦ F ′ ◦ F, RN ′′
N ′ F ′ ◦ RN ′

N F ◦ Q) ,

and natural morphisms of functors

Q′′ ◦ F ′ −→ RN ′′
N ′ F ′ ◦ Q′, Q′ ◦ F −→ RN ′

N F ◦ Q .
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We deduce the canonical morphisms

Q′′ ◦ F ′ ◦ F −→ RN ′′
N ′ F ′ ◦ Q′ ◦ F −→ RN ′′

N ′ F ′ ◦ RN ′
N F ◦ Q

and the result follows.
(ii) The fact that I is (F ′ ◦ F)-injective follows immediately from the def-
inition. Let X ∈ D and consider a morphism X −→ Y in N Q with Y ∈ I.
Then RN ′

N F(X) � F(Y ) by (10.3.1) and F(Y ) ∈ I ′ by the hypothesis. Hence
(RN ′′

N ′ F ′)(F(Y )) � F ′F(Y ) by (10.3.1) and we find

(RN ′′
N ′ F ′)(RN ′

N F(X)) � F ′F(Y ) .

On the other hand, RN ′′
N (F ′ ◦ F)(X) � F ′F(Y ) by (10.3.1) since I is (F ′ ◦ F)-

injective. q.e.d.

Triangulated Bifunctors

Definition 10.3.6. Let (D, T ), (D′, T ′) and (D′′, T ′′) be triangulated cate-
gories. A triangulated bifunctor F : D × D′ −→ D′′ is a bifunctor of additive
categories with translation (see Definition 10.1.1 (v)) which sends d.t.’s in
each argument to d.t.’s.

Definition 10.3.7. Let D, D′ and D′′ be triangulated categories, N , N ′ and
N ′′ null systems in D, D′ and D′′, respectively. We say that a triangulated
bifunctor F : D × D′ −→ D′′ is right (resp. left) localizable with respect to
(N×N ′,N ′′) if Q′′◦F : D×D′ −→ D′′/N ′′ is universally right (resp. left) local-
izable with respect to the multiplicative system N Q×N ′Q (see Remark 7.4.5).
If there is no risk of confusion, we simply say that F is right (resp. left) lo-
calizable.

Notation 10.3.8. We denote by RN ′′
N×N ′ F : D/N × D′/N ′ −→ D′′/N ′′ the right

localization of F with respect to (N × N ′,N ′′), if it exists. If there is no
risk of confusion, we simply write RF . We use similar notations for the left
localization.

Definition 10.3.9. Let D, D′ and D′′ be triangulated categories, N , N ′ and
N ′′ null systems in D, D′ and D′′, respectively, and I, I ′ full triangulated
subcategories of D and D′, respectively. Let F : D×D′ −→ D′′ be a triangulated
bifunctor. The pair (I, I ′) is F-injective with respect to (N ,N ′,N ′′) if

(i) I ′ is F(Y, · )-injective with respect to N ′ and N ′′ for any Y ∈ I,
(ii) I is F( · , Y ′)-injective with respect to N and N ′′ for any Y ′ ∈ I ′.

These two conditions are equivalent to saying that

(a) for any X ∈ D, there exists a morphism X −→ Y in N Q with Y ∈ I,
(b) for any X ′ ∈ D′, there exists a morphism X ′ −→ Y ′ in N ′Q with Y ′ ∈ I ′,
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(c) F(X, X ′) belongs to N ′′ for X ∈ I, X ′ ∈ I ′ as soon as X belongs to N or
X ′ belongs to N ′.

The property for (I, I ′) of being F-projective is defined similarly.

Proposition 10.3.10. Let D,N , I, D′,N ′, I ′, D′′,N ′′ and F be as in Defi-
nition 10.3.9. Assume that (I, I ′) is F-injective with respect to (N ,N ′). Then
F is right localizable, its right localization RN ′′

NN ′ F is a triangulated bifunctor

RN ′′
NN ′ F : D/N ×D′/N ′ −→ D′′/N ′′ ,

and moreover

RN ′′
NN ′ F(X, X ′) � F(Y, Y ′) for (X −→ Y ) ∈ N Q and(10.3.4)

(X ′ −→ Y ′) ∈ N ′Q with Y ∈ I, Y ′ ∈ I ′.

Of course, there exists a similar result by replacing “injective” with “projec-
tive” and reversing the arrows in (10.3.4).

Corollary 10.3.11. Let D, N , I, D′, N ′, and D′′, N ′′ be as in Proposi-
tion 10.3.10. Let F : D ×D′ −→ D′′ be a triangulated bifunctor. Assume that

(i) F(I,N ′) ⊂ N ′′,
(ii) for any X ′ ∈ D′, I is F( · , X ′)-injective with respect to N .

Then F is right localizable. Moreover,

RN ′′
NN ′ F(X, X ′) � RN ′′

N F( • , X ′)(X) .

Here again, there is a similar statement by replacing “injective” with “projec-
tive”.

10.4 Extension of Cohomological Functors

In this section, we consider two triangulated categories T and D, a triangu-
lated functor ϕ : T −→ D, an abelian category A, and a cohomological functor
F : T −→ A. For X ∈ D, we denote as usual by TX the category whose objects
are the pairs (Y, u) of objects Y ∈ T and morphisms u : ϕ(Y ) −→ X .

We make the hypotheses:{A admits small filtrant inductive limits and such limits are exact ,

TX is cofinally small for any X ∈ D .
(10.4.1)

Note that the functor ϕ : T −→ D is exact by Proposition 10.1.18. Hence,
Theorem 3.3.18 asserts that the functor ϕ∗ : Fct(D,A) −→ Fct(T ,A) admits
a left adjoint ϕ† such that for F : D −→ A we have

ϕ†F(X) = lim−→
(ϕ(Y )−→X)∈TX

F(Y ) ,(10.4.2)
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and there is a natural morphism of functors

F −→ (ϕ†F) ◦ ϕ .(10.4.3)

Theorem 10.4.1. Let ϕ : T −→ D be a triangulated functor of triangulated
categories, let A be an abelian category, and assume (10.4.1). Let F : T −→ A
be a cohomological functor. Then the functor ϕ†F is additive and cohomolog-
ical.

Proof. (i) Let us first show that ϕ†F is additive. By Proposition 8.2.15, it is
enough to show that ϕ†F(X1⊕ X2) −→ ϕ†F(X1)⊕ϕ†F(X2) is an isomorphism
for any X1, X2 ∈ D. Let ξ : TX1 × TX2 −→ TX1⊕X2 be the functor given by(
(ϕ(Y1) −→ X1), (ϕ(Y2) −→ X2)

) 
→ (ϕ(Y1 ⊕ Y2) −→ X1 ⊕ X2). Then ξ has a
left adjoint η : TX1⊕X2 −→ TX1 × TX2 given by (ϕ(Y ) −→ X1 ⊕ X2) 
→

(
(ϕ(Y ) −→

X1 ⊕ X2 −→ X1), (ϕ(Y ) −→ X1 ⊕ X2 −→ X2)
)
. Hence ξ is a cofinal functor by

Lemma 3.3.10. Moreover, the canonical functor TX1 × TX2 −→ TXi (i = 1, 2) is
cofinal. Hence we obtain

ϕ†F(X1 ⊕ X2) � lim−→
Y∈TX1⊕X2

F(Y )

� lim−→
(Y1,Y2)∈TX1⊕TX2

F(Y1 ⊕ Y2)

� lim−→
(Y1,Y2)∈TX1⊕TX2

F(Y1)⊕ F(Y2)

� (
lim−→

Y1∈TX1

F(Y1)
)⊕ (

lim−→
Y2∈TX2

F(Y2)
)

� ϕ†F(X1)⊕ ϕ†F(X2) .

(ii) Let us show that ϕ†F is cohomological. We shall denote by X, Y, Z objects
of D and by X0, Y0, Z0 objects of T .

By Proposition 10.1.18, the functor ϕ is exact. This result together with
Corollary 3.4.6 implies that:

(a) for X ∈ D the category TX is filtrant and cofinally small,
(b) for a morphism g : Y −→ Z in D, the category Mor(T )g is filtrant, cofinally

small, and the two natural functors from Mor(T )g to TY and TZ are cofinal.

By (b), for a morphism g : Y −→ Z in D, we get

ϕ†F(Y ) � lim−→
(Y0−→Z0)∈Mor(T )g

F(Y0), ϕ†F(Z) � lim−→
(Y0−→Z0)∈Mor(T )g

F(Z0) .

Moreover, since small filtrant inductive limits are exact in A,

Ker ϕ†F(g) � Ker
(

lim−→
g0∈Mor(T )g

F(g0)
) � lim−→

g0∈Mor(T )g

(Ker F(g0)).(10.4.4)

Now consider a d.t. X
f−→ Y

g−→ Z −→ T X in D. Let (Y0
g0−→ Z0) ∈ Mor(T )g.

Embed g0 in a d.t. X0
f0−→ Y0

g0−→ Z0 −→ T X0. In the diagram below, we may
complete the dotted arrows in order to get a morphism of d.t.’s:
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ϕ(X0)
ϕ( f0) ��

��

ϕ(Y0)

��

ϕ(g0) �� ϕ(Z0)

��

�� T (ϕ(X0))

��
X

f �� Y
g �� Z �� T X .

Applying the functor ϕ†F , and using the morphism of functors F −→ ϕ†F ◦ ϕ

(see (10.4.3)), we get a commutative diagram in A in which the row in the
top is exact

F(X0)

��

F( f0) �� F(Y0)

��

F(g0) �� F(Z0)

��
ϕ†F(X)

ϕ†F( f )�� ϕ†F(Y )
ϕ†F(g)�� ϕ†F(Z) .

We have a morphism Coker(F( f0)) −→ Coker(ϕ†F( f )). Since F(X0) −→
F(Y0) −→ F(Z0) is exact, the morphism Ker(F(g0)) −→ Coker(F( f0)) van-
ishes and hence Ker(F(g0)) −→ Coker(ϕ†F( f )) vanishes. By (10.4.4), the
morphism Ker(ϕ†F(g)) −→ Coker(ϕ†F( f )) vanishes, which means that the

sequence ϕ†F(X)
ϕ†F( f )−−−−→ ϕ†F(Y )

ϕ†F(g)−−−−→ ϕ†F(Z) is exact. q.e.d.

10.5 The Brown Representability Theorem

In this section we shall give a sufficient condition for the representability
of contravariant cohomological functors on triangulated categories admitting
small direct sums. Recall (Proposition 10.1.19) that in such categories, a small
direct sum of d.t.’s is a d.t.

Definition 10.5.1. Let D be a triangulated category admitting small direct
sums. A system of t-generators F in D is a small family of objects of D
satisfying conditions (i) and (ii) below.

(i) F is a system of generators (see Definition 5.2.1), or equivalently, F is a
small family of objects of D such that for any X ∈ D with HomD(C, X) �
0 for all C ∈ F , we have X � 0.

(ii) For any countable set I and any family {ui : Xi −→ Yi }i∈I of morphisms
in D, the map HomD(C,⊕i Xi )

⊕i ui−−→ HomD(C,⊕i Yi ) vanishes for every
C ∈ F as soon as HomD(C, Xi )

ui−→ HomD(C, Yi ) vanishes for every i ∈ I
and every C ∈ F .

Note that the equivalence in (i) follows from the fact that, for a d.t. X
f−→

Y −→ Z −→ T X , f is an isomorphism if and only if Z � 0 (see Exercise 10.1).

Theorem 10.5.2. [The Brown representability Theorem] Let D be a trian-
gulated category admitting small direct sums and a system of t-generators F .
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(i) Let H : Dop −→ Mod(Z) be a cohomological functor which commutes with
small products (i.e., for any small family {Xi }i∈I in Ob(D), we have
H(⊕i Xi ) ∼−→∏

i H(Xi )). Then H is representable.
(ii) Let K be a full triangulated subcategory of D such that F ⊂ Ob(K) and

K is closed by small direct sums. Then the natural functor K −→ D is an
equivalence.

Similarly to the other representability theorems (see e.g. §5.2), this theo-
rem implies the following corollary.

Corollary 10.5.3. Let D be a triangulated category admitting small direct
sums and a system of t-generators.

(i) D admits small products.
(ii) Let F : D −→ D′ be a triangulated functor of triangulated categories. As-

sume that F commutes with small direct sums. Then F admits a right
adjoint G, and G is triangulated.

Proof. (i) For a small family {Xi }i∈I of objects in D, the functor

Z 
→∏
i

HomD(Z , Xi )

is cohomological and commutes with small products. Hence it is representable.
(ii) For each Y ∈ D′, the functor X 
→ HomD′(F(X), Y ) is representable by
Theorem 10.5.2. Hence F admits a right adjoint. Finally G is triangulated by
the result of Exercise 10.3. q.e.d.

Remark 10.5.4. Condition (ii) in Definition 10.5.1 can be reformulated in
many ways. Each of the following conditions is equivalent to (ii):

(ii)′ for any countable set I and any family {ui : Xi −→ Yi }i∈I of morphisms in
D, the map HomD(C,⊕i Xi )

⊕i ui−−→ HomD(C,⊕i Yi ) is surjective for every
C ∈ F as soon as HomD(C, Xi )

ui−→ HomD(C, Yi ) is surjective for every
i ∈ I and every C ∈ F .

(ii)′′ for any countable set I and any family {ui : Xi −→ Yi }i∈I of morphisms in
D, the map HomD(C,⊕i Xi )

⊕i ui−−→ HomD(C,⊕i Yi ) is injective for every
C ∈ F as soon as HomD(C, Xi )

ui−→ HomD(C, Yi ) is injective for every
i ∈ I and every C ∈ F .

Indeed if we take a d.t. X −→ Y −→ Z −→ T X , then we have an equivalence

HomD(C, X) −→ HomD(C, Y ) vanishes
⇐⇒ HomD(C, Y ) −→ HomD(C, Z) is injective
⇐⇒ HomD(C, T−1Z) −→ HomD(C, X) is surjective .

Condition (ii) is also equivalent to the following condition:
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(iii) for any countable set I , any family {Xi }i∈I in D, any C ∈ F and any
morphism f : C −→ ⊕i∈I Xi , there exists a family of morphisms ui : Ci −→
Xi such that f decomposes into C −→ ⊕i Ci

⊕ui−−→ ⊕i Xi and each Ci is a
small direct sum of objects in F .

Indeed, let S be the full subcategory of D consisting of small direct sums
of objects in F . If a morphism X −→ Y in D satisfies the condition that
HomD(C, X) −→ HomD(C, Y ) vanishes for every C ∈ F , then the same con-
dition holds for every C ∈ S. Hence it is easy to see that (iii) implies (ii).
Conversely assume that (ii)′ is true. For a countable family of objects Xi in
D set Ci = ⊕

C∈F
C⊕Xi (C). Then Ci ∈ S, and the canonical morphism Ci −→ Xi

satisfies the condition that any morphism C −→ Xi with C ∈ F factors through
Ci −→ Xi . Hence (ii)′ implies that HomD(C,⊕i Ci ) −→ HomD(C,⊕i Xi ) is sur-
jective. Hence any morphism C −→ ⊕i Xi factors through ⊕i Ci −→ ⊕i Xi .

Note that condition (iii) is a consequence of the following condition (iii)′,
which is sufficient in most applications.

(iii)′ for any countable set I , any family {Xi }i∈I in D, any C ∈ F and any
morphism f : C −→ ⊕i∈I Xi , there exists a family of morphisms ui : Ci −→
Xi with Ci ∈ F such that f decomposes into C −→ ⊕i Ci

⊕ui−−→ ⊕i Xi .

Summing up, for a small family F of objects of D, we have

(ii) ⇔ (ii)′ ⇔ (ii)′′ ⇔ (iii) ⇐ (iii)′ .

The Brown representability theorem was proved by Neeman [53] under
condition (iii)′, and later by Krause [44] under the condition (ii).

The rest of the section is devoted to the proof of the theorem.

Functors Commuting with Small Products

Let S be an additive U-category which admits small direct sums. Let S∧,add

be the category of additive functors from Sop to Mod(Z). The category S∧,add

is a big abelian category. By Proposition 8.2.12, S∧,add is regarded as a full
subcategory of S∧.

A complex F ′ −→ F −→ F ′′ in S∧,add is exact if and only if F ′(X) −→
F(X) −→ F ′′(X) is exact for every X ∈ S. Let S∧,prod be the full subcategory
of S∧,add consisting of additive functors F commuting with small products,
namely the canonical map F(⊕i Xi ) −→ ∏

i F(Xi ) is bijective for any small
family {Xi }i of objects in S.

Lemma 10.5.5. The full category S∧,prod is a fully abelian subcategory of
S∧,add closed by extension.

Proof. It is enough to show that, for an exact complex F1 −→ F2 −→ F3 −→
F4 −→ F5 in S∧,add, if Fj belongs to S∧,prod for j �= 3, then F3 also belongs to



10.5 The Brown Representability Theorem 261

S∧,prod (see Remark 8.3.22). For a small family {Xi } of objects in S, we have
an exact diagram in Mod(Z)

F1(⊕i Xi ) ��

∼
��

F2(⊕i Xi ) ��

∼
��

F3(⊕i Xi ) ��

��

F4(⊕i Xi ) ��

∼
��

F5(⊕i Xi )

∼
��∏

i F1(Xi ) �� ∏
i F2(Xi ) �� ∏

i F3(Xi ) �� ∏
i F4(Xi ) �� ∏

i F5(Xi ) .

Since the vertical arrows are isomorphisms except the middle one, the five
lemma (Lemma 8.3.13) implies that the middle arrow is an isomorphism.
q.e.d.

Now assume that

there exists a small full subcategory S0 of S such that any
object of S is a small direct sum of objects of S0.

(10.5.1)

Hence a complex F ′ −→ F −→ F ′′ in S∧,prod is exact if and only if F ′(X) −→
F(X) −→ F ′′(X) is exact for every X ∈ S0. In particular the restriction functor
S∧,prod −→ S∧,add

0 is exact, faithful and conservative. Hence, the category
S∧,prod is a U-category.

Let ϕ : S −→ S∧,prod be the functor which associates to X ∈ S the functor
S � C 
→ HomS(C, X). This functor commutes with small products. Since
S∧,prod −→ S∧ is fully faithful, ϕ is a fully faithful additive functor by the
Yoneda lemma.

Lemma 10.5.6. Assume (10.5.1). Then, for any F ∈ S∧,prod we can find an
object X ∈ S and an epimorphism ϕ(X)�F.

Proof. For any C ∈ S0, set XC = C⊕F(C). Then we have

F(XC) � F(C)F(C) = HomSet(F(C), F(C)) .

Hence idF(C) gives an element sC ∈ F(XC) � HomS∧,prod(ϕ(XC), F). Since the
composition

F(C) −→ HomS(C, C)× F(C) −→ HomS(C, XC) � ϕ(XC)(C) −→ F(C)

is the identity, the map ϕ(XC)(C) −→ F(C) is surjective. Set X = ⊕C∈S0 XC .
Then (sC)C ∈ ∏

C F(XC) � F(X) gives a morphism ϕ(X) −→ F and
ϕ(X)(C) −→ F(C) is surjective for any C ∈ S0. Hence ϕ(X) −→ F is an
epimorphism. q.e.d.

Lemma 10.5.7. Assume (10.5.1).

(i) The functor ϕ : S −→ S∧,prod commutes with small direct sums.
(ii) The abelian category S∧,prod admits small direct sums, and hence it ad-

mits small inductive limits.
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Proof. (i) For a small family {Xi }i of objects in S and F ∈ S∧,prod, we have

HomS∧,prod(ϕ(⊕i Xi ), F) � F(⊕i Xi )
� ∏

i
F(Xi ) �∏

i
HomS∧,prod(ϕ(Xi ), F) .

(ii) For a small family {Fi }i of objects in S∧,prod, there exists an exact sequence
ϕ(Xi ) −→ ϕ(Yi ) −→ Fi −→ 0 with Xi , Yi ∈ S by Lemma 10.5.6. Since ϕ is
fully faithful, there is a morphism ui : Xi −→ Yi which induces the morphism
ϕ(Xi ) −→ ϕ(Yi ). Then we have

Coker(ϕ(⊕i Xi )
⊕i ui−−→ ϕ(⊕i Yi )) � Coker(⊕iϕ(Xi ) −→ ⊕iϕ(Yi ))

� ⊕i Coker(ϕ(Xi ) −→ ϕ(Yi )) � ⊕i Fi .

q.e.d.

Note that, for a small family {Fi }i of objects in S∧,prod and X ∈ S, the map
⊕i (Fi (X)) −→ (⊕i Fi )(X) may be not bijective.

Proof of Theorem 10.5.2

Now let us come back to the original situation. Let D be a triangulated cate-
gory admitting small direct sums and a system of t-generators F . By replacing
F with

⋃
n∈Z T nF , we may assume from the beginning that TF = F . Let S

be the full subcategory of D consisting of small direct sums of objects in
F . Then S is an additive category which admits small direct sums. More-
over, TS = S, and T induces an automorphism T : S∧,prod −→ S∧,prod by
(T F)(C) = F(T−1C) for F ∈ S∧,prod and C ∈ S. By its construction, S
satisfies condition (10.5.1), and hence S∧,prod is an abelian U-category and
Lemmas 10.5.5–10.5.7 hold. Note that a complex F ′ −→ F −→ F ′′ in S∧,prod is
exact if and only if F ′(C) −→ F(C) −→ F ′′(C) is exact for any C ∈ F .

We shall extend the functor ϕ : S −→ S∧,prod to the functor ϕ̃ : D −→ S∧,prod

defined by ϕ̃(X)(C) = HomD(C, X) for X ∈ D and C ∈ S. Then ϕ̃ commutes
with T . Note that although ϕ : S −→ S∧,prod is fully faithful, the functor
ϕ̃ : D −→ S∧,prod is not faithful in general.

In the proof of the lemma below, we use the fact that F satisfies the
condition (ii) in Definition 10.5.1.

Lemma 10.5.8. (i) The functor ϕ̃ : D −→ S∧,prod is a cohomological functor.
(ii) The functor ϕ̃ : D −→ S∧,prod commutes with countable direct sums.
(iii) Let {Xi −→ Yi } be a countable family of morphisms in D. If ϕ̃(Xi ) −→ ϕ̃(Yi )

is an epimorphism for all i , then ϕ̃(⊕i Xi ) −→ ϕ̃(⊕i Yi ) is an epimorphism.

Proof. (i) is obvious.
Let us first prove (iii). For all C ∈ F , the map HomD(C, Xi ) −→ HomD(C, Yi )
is surjective. Hence Remark 10.5.4 (ii)′ implies that HomD(C,⊕i Xi ) −→
HomD(C,⊕i Yi ) is surjective.
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Finally let us prove (ii). Let {Xi }i be a countable family of objects of
D. Then we can find an epimorphism ϕ(Yi )�ϕ̃(Xi ) in S∧,prod with Yi ∈ S
by Lemma 10.5.6. Let Wi −→ Yi −→ Xi −→ T Wi be a d.t. Then take an
epimorphism ϕ(Zi )�ϕ̃(Wi ) with Zi ∈ S. Hence ϕ(⊕i Zi ) −→ ϕ̃(⊕i Wi ) and
ϕ(⊕i Yi ) −→ ϕ̃(⊕i Xi ) are epimorphisms by (iii). On the other hand, ⊕i Wi −→
⊕i Yi −→ ⊕i Xi −→ T (⊕i Wi ) is a d.t., and hence ϕ̃(⊕i Wi ) −→ ϕ(⊕i Yi ) −→ ϕ̃(⊕i Xi )
is exact by (i). Hence, ϕ(⊕i Zi ) −→ ϕ(⊕i Yi ) −→ ϕ̃(⊕i Xi ) −→ 0 is exact. By
Lemma 10.5.7, we have ϕ(⊕i Zi ) � ⊕iϕ(Zi ) and similarly for Yi . Since ϕ(Zi ) −→
ϕ(Yi ) −→ ϕ̃(Xi ) −→ 0 is exact for all i , ⊕iϕ(Zi ) −→ ⊕iϕ(Yi ) −→ ⊕i ϕ̃(Xi ) −→ 0 is
also exact, from which we conclude that ϕ̃(⊕i Xi ) � ⊕i ϕ̃(Xi ). q.e.d.

Let H : Dop −→ Mod(Z) be a cohomological functor commuting with small
products. The restriction of H to Sop defines H0 ∈ S∧,prod.

In the lemma below, we regard D as a full subcategory of D∧.

Lemma 10.5.9. Let H and K be as in Theorem 10.5.2. Then there exists a
commutative diagram in D∧

X0
��

##66666
66666

66666
66666

66666
66666

66 X1
��

		$$$
$$$$

$$$$
$$$$

$$$$
$$$$

$ · · · �� Xn
��

���
��

��
��

� · · ·

H

(10.5.2)

such that Xn ∈ K and Im
(
ϕ̃(Xn) −→ ϕ̃(Xn+1)

) ∼−→ H0 in S∧,prod.

Proof. We can take X0 ∈ S and an epimorphism ϕ(X0)�H0 in S∧,prod by
Lemma 10.5.6. We shall construct Xn ∈ K inductively as follows. Assume
that X0 −→ X1 −→ · · · −→ Xn −→ H has been constructed and Im

(
ϕ̃(Xi ) −→

ϕ̃(Xi+1)
) ∼−→ H0 for 0 ≤ i < n. Let us take an exact sequence ϕ(Zn) −→

ϕ̃(Xn) −→ H0 −→ 0 with Zn ∈ S. Then take a d.t. Zn −→ Xn −→ Xn+1 −→ T Zn.
Since Zn and Xn belong to K, Xn+1 also belongs to K. Since Zn −→ Xn −→ H
vanishes and H is cohomological, Xn −→ H factors through Xn −→ Xn+1. Since
ϕ̃(Zn) −→ ϕ̃(Xn) −→ ϕ̃(Xn+1) is exact, we obtain that Im

(
ϕ̃(Xn) −→ ϕ̃(Xn+1)

) �
Coker

(
ϕ̃(Zn) −→ ϕ̃(Xn)

) � H0. q.e.d.

Notation 10.5.10. Consider a functor X : N −→ D, that is, a sequence of mor-

phisms X0
f0−→ X1 −→ · · · −→ Xn

fn−→ Xn+1 −→ · · · in D. Denote by

shX : ⊕n≥0 Xn −→ ⊕n≥0Xn(10.5.3)

the morphism obtained as the composition

⊕n≥0Xn
⊕ fn−−→ ⊕n≥0Xn+1 � ⊕n≥1Xn ↪→⊕n≥0Xn .

Consider a d.t.



264 10 Triangulated Categories

⊕n≥0Xn
id−shX−−−−→ ⊕n≥0Xn −→ Z −→ T (⊕n≥0Xn) .(10.5.4)

In the literature, Z is called the homotopy colimit of the inductive system
{Xn, fn}n and denoted by hocolim(X). Note that this object is unique up to
isomorphism, but not up to unique isomorphism. Hence, {Xn, fn}n 
→ Z is not
a functor.

Consider the functor X : N −→ D given by Lemma 10.5.9 and let shX be as
in (10.5.3). Since H(⊕n≥0Xn) � ∏

n≥0 H(Xn), the morphisms Xn −→ H define
the morphism ⊕n≥0Xn −→ H . The commutativity of (10.5.2) implies that the

composition ⊕n≥0Xn
id−shX−−−−→ ⊕n≥0Xn −→ H vanishes.

Lemma 10.5.11. The sequence

0 −→ ϕ̃(⊕n≥0Xn)
id−shX−−−−→ ϕ̃(⊕n≥0Xn) −→ H0 −→ 0 .

is exact in S∧,prod.

Proof. Note that we have ϕ̃(⊕n≥0Xn) � ⊕n≥0ϕ̃(Xn) by Lemma 10.5.8. Since
Im
(
ϕ̃(Xn) −→ ϕ̃(Xn+1)

) � H0, we have “lim−→”
n

ϕ̃(Xn) � H0. Then lim−→
n

ϕ̃(Xn) �
H0 and the the above sequence is exact by Exercise 8.37. q.e.d.

Lemma 10.5.12. There exist Z ∈ K and a morphism Z −→ H which induces
an isomorphism Z(C) ∼−→ H(C) for every C ∈ F .

Proof. Let Z be as in (10.5.4). Since H is cohomological, ⊕n≥0Xn −→ H factors
through Z . Set X = ⊕n≥0Xn. Since ϕ̃ is cohomological, we have an exact
sequence in S∧,prod:

ϕ̃(X)
id−shX �� ϕ̃(X) �� ϕ̃(Z) �� ϕ̃(T X)

ϕ̃(T (id−shX )) ��

∼
��

ϕ̃(T X)

∼
��

T (ϕ̃(X))
T (ϕ̃(id−shX )) �� T (ϕ̃(X)) .

Applying Lemma 10.5.11, we find that the last right arrows are monomor-
phisms. Hence we have

ϕ̃(Z) � Coker(ϕ̃(X)
id−shX−−−−→ ϕ̃(X)) � H0 ,

where the last isomorphism follows from Lemma 10.5.11. q.e.d.

Lemma 10.5.13. The natural functor K −→ D is an equivalence.

Proof. This functor being fully faithful, it remains to show that it is es-
sentially surjective. Let X ∈ D. Applying Lemma 10.5.12 to the functor
H = HomD( • , X), we get Z ∈ K and a morphism Z −→ X which induces
an isomorphism Z(C) ∼−→ X(C) for all C ∈ F . Since F is a system of genera-
tors, Z ∼−→ X . q.e.d.
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Lemma 10.5.14. Let Z be as in Lemma 10.5.12. Then Z −→ H is an isomor-
phism.

Proof. Let K denote the full subcategory of D consisting of objects Y such
that Z(T nY ) −→ H(T nY ) is an isomorphism for any n ∈ Z. Then K contains
F , is closed by small direct sums and is a triangulated subcategory of D.
Therefore K = D by Lemma 10.5.13. q.e.d.

The proof of Theorem 10.5.2 is complete.

Exercises

Exercise 10.1. Let X
f−→ Y −→ Z −→ T X be a d.t. in a triangulated category.

Prove that f is an isomorphism if and only if Z is isomorphic to 0.

Exercise 10.2. Let D be a triangulated category and consider a commutative
diagram in D:

X
f ��

α

��

Y

β

��

g �� Z

γ

��

h �� T X

T (α)

��
X ′ f ′ �� Y ′ g′ �� Z ′ h′ �� T X ′ .

Assume that α and β are isomorphisms, T ( f ′) ◦ h′ = 0, and the first row is a
d.t. Prove that the second row is also a d.t. under one of the hypotheses:
(i) for any P ∈ D, the sequence below is exact:

Hom(P, X ′) −→ Hom(P, Y ′) −→ Hom(P, Z ′) −→ Hom(P, T X ′) ,

(ii) for any P ∈ D, the sequence below is exact:

Hom(T X ′, P) −→ Hom(Z ′, P) −→ Hom(Y ′, P) −→ Hom(X ′, P) .

Exercise 10.3. Let F : D −→ D′ be a triangulated functor and assume that F
admits an adjoint G. Prove that G is triangulated. (Hint: use Exercise 10.2.)

Exercise 10.4. Let X
f−→ Y

g−→ Z
h−→ T X be a d.t. in a triangulated category.

(i) Prove that if h = 0, this d.t. is isomorphic to X −→ X ⊕ Z −→ Z
0−→ T X .

(ii) Prove the same result by assuming now that there exists k : Y −→ X with
k ◦ f = idX .

Exercise 10.5. Let f : X −→ Y be a monomorphism in a triangulated cate-
gory D. Prove that there exist Z ∈ D and an isomorphism h : Y ∼−→ X ⊕ Z
such that the composition X −→ Y −→ X ⊕ Z is the canonical morphism.
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Exercise 10.6. In a triangulated category D consider the diagram of solid
arrows

X0
u ��

f

��

X1 v ��

��

X2 w ��

��

T X0

T ( f )

��
Y 0 ��

g

��

Y 1 ��

��

Y 2 ��

��

T Y 0

T (g)

��
Z0 ��

h

��

Z1 ��

��

Z2 ��

��

T Z0

−T (h)

��
T X0

T (u)
�� T X1

T (v)
�� T X2

−T (w)
�� T 2X0 .

ac

(10.5.5)

Assume that the two first rows and columns are d.t.’s. Show that the dotted
arrows may be completed in order that all squares are commutative except the
one labeled “ac” which is anti-commutative (see Definition 8.2.20), all rows
and all columns are d.t.’s. (Hint: see [4], Proposition 1.1.11.)

Exercise 10.7. Let D be a triangulated category, C an abelian category,
F, G : D −→ C two cohomological functors and θ : F −→ G a morphism of
functors. Define the full subcategory T of D consisting of objects X ∈ D such
that θ(T k(X)) : F(T k(X)) −→ G(T k(X)) is an isomorphism for all k ∈ Z. Prove
that T is triangulated. (Hint: use Lemma 8.3.13.)

Exercise 10.8. Let D be a triangulated category, A an abelian category and
F : D −→ A a cohomological functor. Prove that F is exact.

Exercise 10.9. Let D be a triangulated category. Denote by F : D −→ D
the translation functor T . By choosing a suitable isomorphism of functors
F ◦T � T ◦ F , prove that F induces an equivalence of triangulated categories.

Exercise 10.10. Let D be a triangulated category and define the triangulated

category Dant as follows: a triangle X
f−→ Y

g−→ Z
h−→ T X is distinguished in

Dant if and only if X
f−→ Y

g−→ Z
−h−→ T X is distinguished in D. Prove that D

and Dant are equivalent as triangulated categories.

Exercise 10.11. Let D be a triangulated category, N a null system, and let
Q : D −→ D/N be the canonical functor.
(i) Let f : X −→ Y be a morphism in D and assume that Q( f ) = 0 in D/N .
Prove that there exists Z ∈ N such that f factorizes as X −→ Z −→ Y .
(ii) For X ∈ D, prove that Q(X) � 0 if and only if there exists Y such that
X ⊕ Y ∈ N and this last condition is equivalent to X ⊕ T X ∈ N .

Exercise 10.12. Let F : D −→ D′ be a triangulated functor of triangulated
categories. Let N be the full subcategory of D consisting of objects X ∈ D
such that F(X) � 0.
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(i) Prove that N is a null system and F factorizes uniquely as D −→ D/N −→
D′.
(ii) Prove that if X ⊕ Y ∈ N , then X ∈ N and Y ∈ N .

Exercise 10.13. Let D be a triangulated category admitting countable direct
sums, let X ∈ D and let p : X −→ X be a projector (i.e., p2 = p). Define the
functor α : N −→ D by setting α(n) = X and α(n −→ n + 1) = p.
(i) Prove that lim−→α exists in D and is isomorphic to hocolim(α). (See Nota-
tion 10.5.10.)
(ii) Deduce that D is idempotent complete. (See [53].)

Exercise 10.14. Let D be a triangulated category and let I be a filtrant

category. Let α
f−→ β

g−→ γ
h−→ T ◦ α be morphisms of functors from I to D

such that α(i)
f (i)−−→ β(i)

g(i)−−→ γ (i)
h(i)−−→ T (α(i)) is a d.t. for all i ∈ I . Prove

that if “lim−→” α and “lim−→” β are representable by objects of D, then so is “lim−→” γ

and the induced triangle “lim−→” α −→ “lim−→” β −→ “lim−→” γ −→ T (“lim−→” α) is a d.t.
(Hint: construct a morphism of d.t.’s

“lim−→” α ��

��

“lim−→” β ��

��

Z ��

��

T (“lim−→” α)

��
α(i) �� β(i) �� γ (i) �� T (α(i))

for some i ∈ I .)

Exercise 10.15. Let D be a triangulated category, N a null system, and let
N⊥r (resp. N⊥l) be the full subcategory of D consisting of objects Y such that
HomD(Z , Y ) � 0 (resp. HomD(Y, Z) � 0) for all Z ∈ N .
(i) Prove that N⊥r and N⊥l are null systems in D.
(ii) Prove that HomD(X, Y ) ∼−→HomD/N (X, Y ) for any X ∈ D and any Y ∈
N⊥r .

In the sequel, we assume that X ⊕ Y ∈ N implies X ∈ N and Y ∈ N .
(iii) Prove that the following conditions are equivalent:

(a) N⊥r −→ D/N is an equivalence,
(b) D −→ D/N has a right adjoint,
(c) ι : N −→ D has a right adjoint R,
(d) for any X ∈ D, there exist X ′ ∈ N , X ′′ ∈ N⊥r and a d.t. X ′ −→ X −→ X ′′ −→

T X ′,
(e) N −→ D/N⊥r is an equivalence,
(f) D −→ D/N⊥r has a left adjoint and N � (N⊥r )⊥l ,
(g) ι′ : N⊥r −→ D has a left adjoint L and N � (N⊥r )⊥l .

(iv) Assume that the equivalent conditions (a)–(g) in (iii) are satisfied. Let
L : D −→ N⊥r , R : D −→ N , ι : N −→ D and ι′ : N⊥r −→ D be as above.
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(a) Prove that there exists a morphism of functors ι′ ◦ L −→ T ◦ ι ◦ R such that
ιR(X) −→ X −→ ι′L(X) −→ T (ιR(X)) is a d.t. for all X ∈ D.
(b) Let D̃ be the category whose objects are the triplets (X ′, X ′′, u) with
X ′ ∈ N , X ′′ ∈ N⊥r and u is a morphism X ′′ −→ T X ′ in D. A morphism
(X ′, X ′′, u) −→ (Y ′, Y ′′, v) in D̃ is a pair (w′ : X ′ −→ Y ′, w′′ : X ′′ −→ Y ′′) making
the diagram below commutative

X ′′ u ��

w′′

��

T X ′

T (w′)
��

Y ′′ v �� T Y ′ .

Define an equivalence of categories D ∼−→ D̃.

Exercise 10.16. (i) Let D be a triangulated category. Assume that D is
abelian.

(a) Prove that D is a semisimple abelian category (see Definition 8.3.16).
(Hint: use Exercise 10.5.)

(b) Prove that any triangle in D is a direct sum of three triangles

X
idX−−→ X −→ 0 −→ T X ,

0 −→ Y
idY−−→ Y −→ T (0), and

T−1Z −→ 0 −→ Z
idZ−−→ T (T−1Z).

(ii) Conversely let (C, T ) be a category with translation and assume that C is
a semisimple abelian category. We say that a triangle in C is distinguished if
it is a direct sum of three triangles as in (i) (b). Prove that C is a triangulated
category.


