
Introduction

The aim of this book is to describe the topics outlined in the preface, cat-
egories, homological algebra and sheaves. We also present the main features
and key results in related topics which await a similar full-scale treatment
such as, for example, tensor categories, triangulated categories, stacks.

The general theory of categories and functors, with emphasis on inductive
and projective limits, tensor categories, representable functors, ind-objects
and localization is dealt with in Chaps. 1–7.

Homological algebra, including additive, abelian, triangulated and derived
categories, is treated in Chaps. 8–15. Chapter 9 provides the tools (using trans-
finite induction) which will be used later for presenting unbounded derived
categories.

Sheaf theory is treated in Chaps. 16–19 in the general framework of Gro-
thendieck topologies. In particular, the results of Chap. 14 are applied to the
study of the derived category of the category of sheaves on a ringed site. We
also sketch an approach to the more sophisticated subject of stacks (roughly
speaking, sheaves with values in the 2-category of categories) and introduce
the important notion of twisted sheaves.

Of necessity we have excluded many exciting developments and applications
such as n-categories, operads, A∞-categories, model categories, among others.
Without doubt these new areas will soon be intensively treated in the liter-
ature, and it is our hope that the present work will provide a basis for their
understanding.

We now proceed to a more detailed outline of the contents of the book.

Chapter 1. We begin by defining the basic notions of categories and func-
tors, illustrated with many classical examples. There are some set–theoretical
dangers and to avoid contradictions, we work in a given universe. Universes
are presented axiomatically, referring to [64] for a more detailed treatment.
Among other concepts introduced in this chapter are morphisms of functors,
equivalences of categories, representable functors, adjoint functors and so on.
We introduce in particular the category Fct(I, C) of functors from a small
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category I to a category C in a universe U , and look briefly at the 2-category
U-Cat of all U-categories.

Here, the key result is the Yoneda lemma showing that a category C may
be embedded in the category C∧ of all contravariant functors from C to Set,
the category of sets. This allows us in a sense to reduce category theory to
set theory and leads naturally to the notion of a representable functor. The
category C∧ enjoys most of the properties of the category Set, and it is often
extremely convenient, if not necessary, to replace C by C∧, just as in analysis,
we are lead to replace functions by generalized functions.

Chapters 2 and 3. Inductive and projective limits are the most important
concepts dealt with in this book. They can be seen as the essential tool of
category theory, corresponding approximately to the notions of union and
intersection in set theory. Since students often find them difficult to master,
we provide many detailed examples. The category Set is not equivalent to
its opposite category, and projective and inductive limits in Set behave very
differently. Note that inductive and projective limits in a category are both
defined as representable functors of projective limits in the category Set.

Having reached this point we need to construct the Kan extension of func-
tors. Consider three categories J, I, C and a functor ϕ : J −→ I . The functor ϕ

defines by composition a functor ϕ∗ from Fct(I, C) to Fct(J, C), and we can
construct a right or left adjoint for this functor by using projective or induc-
tive limits. These constructions will systematically be used in our presentation
of sheaf theory and correspond to the operations of direct or inverse images
of sheaves.

Next, we cover two essential tools for the study of limits in detail: cofinal
functors (roughly analogous to the notion of extracted sequences in analysis)
and filtrant1 categories (which generalizes the notion of a directed set). As we
shall see in this book, filtrant categories are of fundamental importance.

We define right exact functors (and similarly by reversing the arrows, left
exact functors). Given that finite inductive limits exist, a functor is right exact
if and only if it commutes with such limits.

Special attention is given to the category Set and to the study of filtrant
inductive limits in Set. We prove in particular that inductive limits in Set
indexed by a small category I commute with finite projective limits if and
only if I is filtrant.

Chapter 4. Tensor categories axiomatize the properties of tensor products
of vector spaces. Nowadays, tensor categories appear in many areas, mathe-
matical physics, knot theory, computer science among others. They acquired
popular attention when it was found that quantum groups produce rich exam-
ples of non-commutative tensor categories. Tensor categories and their appli-
cations in themselves merit an extended treatment, but we content ourselves

1 Some authors use the terms “filtered” or “filtering”. We have chosen to keep the
French word.
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here with a rapid treatment referring the reader to [15, 40] and [59] from the
vast literature on this subject.

Chapter 5. We give various criteria for a functor with values in Set to be
representable and, as a by-product, obtain criteria under which a functor will
have an adjoint. This necessitates the introduction of two important notions:
strict morphisms and systems of generators (and in particular, a generator)
in a category C. References are made to [64].

Chapter 6. The Yoneda functor, which sends a category C to C∧, enjoys
many pleasing properties, such as that of being fully faithful and commuting
with projective limits, but it is not right exact.

The category Ind(C) of ind-objects of C is the subcategory of C∧ consisting
of small and filtrant inductive limits of objects in C. This category has many
remarkable properties: it contains C as a full subcategory, admits small filtrant
inductive limits, and the functor from C to Ind(C) induced by the Yoneda
functor is now right exact. On the other hand, we shall show in Chap. 15 that
in the abelian case, Ind(C) does not in general have enough injective objects
when we remain in a given universe.

This theory, introduced in [64] (see also [3] for complementary material)
was not commonly used until recently, even by algebraic geometers, but mat-
ters are rapidly changing and ind-objects are increasingly playing an impor-
tant role.

Chapter 7. The process of localization appears everywhere and in many
forms in mathematics. Although natural, the construction is not easy in a
categorical setting. As usual, it is easier to embed than to form quotient.

If a category C is localized with respect to a family of morphisms S, the
morphisms of S become isomorphisms in the localized category CS and if
F : C −→ A is a functor which sends the morphisms in S to isomorphisms in
A, then F will factor uniquely through the natural functor Q : C −→ CS . This
is the aim of localization. We construct the localization of C when S satisfies
suitable conditions, namely, when S is a (right or left) multiplicative system.

Interesting features appear when we try to localize a functor F that is
defined on C with values in some category A, and does not map the arrows
in S to isomorphisms in A. Even in this case, we can define the right or left
localization of the functor F under suitable conditions. We interpret the right
localization functor as a left adjoint to the composition with the functor Q,
and this adjoint exists if A admits inductive limits. It is then a natural idea to
replace the category A with that of ind-objects of A, and check whether the
localization of F at X ∈ C is representable in A. This is the approach taken
by Deligne [17] which we follow here.

Localization is an essential step in constructing derived categories. A clas-
sical reference for localization is [24].

Chapter 8. The standard example of abelian categories is the category
Mod(R) of modules over a ring R. Additive categories present a much weaker
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structure which appears for example when considering special classes of mod-
ules (e.g. the category of projective modules over the ring R is additive but
not abelian).

The concept of abelian categories emerged in the early 1950s (see [13]).
They inherit all the main properties of the category Mod(R) and form a nat-
ural framework for the development of homological algebra, as is shown in
the subsequent chapters. Of particular importance are the Grothendieck cate-
gories, that is, abelian categories which admit (exact) small filtrant inductive
limits and a generator. We prove in particular the Gabriel-Popescu theorem
(see [54]) which asserts that a Grothendieck category may be embedded into
the category of modules over the ring of endomorphisms of a generator.

We also study the abelian category Ind(C) of ind-objects of an abelian
category C and show in particular that the category Ind(C) is abelian and that
the natural functor C −→ Ind(C) is exact. Finally we prove that under suitable
hypotheses, the Kan extension of a right (or left) exact functor defined on an
additive subcategory of an abelian category is also exact. Classical references
are the book [14] by Cartan-Eilenberg, and Grothendieck’s paper [28] which
stresses the role of abelian categories, derived functors and injective objects.

An important source of historical information on this period is given in [16]
by two of the main contributors.

Chapter 9. In this chapter we extend many results on filtrant inductive
limits to the case of π -filtrant inductive limits, for an infinite cardinal π . An
object X is π -accessible if HomC(X, • ) commutes with π -filtrant inductive
limits. We specify conditions which ensure that the category Cπ of π -accessible
objects is small and that the category of its ind-objects is equivalent C. These
techniques are used to prove that, under suitable hypotheses, given a family
F of morphisms in a category C, there are enough F-injective objects.

Some arguments developed here were initiated in Grothendieck’s paper
[28] and play an essential role in the theory of model categories (see [56]
and [32]). They are used in Chap. 14 in proving that the derived category of
a Grothendieck category admits enough homotopically injective objects.

Here, we give two important applications. The first one is the fact that
a Grothendieck category possesses enough injective objects. The second one
is the Freyd-Mitchell theorem which asserts that any small abelian category
may be embedded in the category of modules over a suitable ring. References
are made to [64]. Accessible objects are also discussed in [1, 23] and [49].

Chapter 10. Triangulated categories first appeared implicitly in papers on
stable homotopy theory after the work of Puppe [55], until Verdier axiomatized
the properties of these categories (we refer to the preface by L. Illusie of [69] for
more historical comments). Triangulated categories are now very popular and
are part of the basic language in various branches of mathematics, especially
algebraic geometry (see e.g. [57, 70]), algebraic topology and representation
theory (see e.g. [35]). They appeared in analysis in the early 1970s under the
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influence of Mikio Sato (see [58]) and more recently in symplectic geometry
after Kontsevich expressed mirror symmetry (see [43]) using this language.

A category endowed with an automorphism T is called here a category
with translation. In such a category, a triangle is a sequence of morphisms
X −→ Y −→ Z −→ T (X). A triangulated category is an additive category with
translation endowed with a family of so-called distinguished triangles satisfying
certain axioms. Although the first example of a triangulated category only
appears in the next chapter, it seems worthwhile to develop this very elegant
and easy formalism here for its own sake.

In this chapter, we study the localization of triangulated categories and
the construction of cohomological functors in some detail. We also give a
short proof of the Brown representability theorem [11], in the form due to
Neeman [53], which asserts that, under suitable hypotheses, a contravariant
cohomological functor defined on a triangulated category which sends small
direct sums to products is representable.

We do not treat t-structures here, referring to the original paper [4] (see [38]
for an expository treatment).

Chapter 11. It is perhaps the main idea of homological algebra to replace an
object in a category C by a complex of objects of C, the components of which
have “good properties”. For example, when considering the tensor product
and its derived functors, we replace a module by a complex of projective (or
flat) modules and, when considering the global-section functor and its derived
functors, we replace a sheaf by a complex of flabby sheaves.

It is therefore natural to study the category C(C) of complexes of objects
of an additive category C. This category inherits an automorphism, the shift
functor, called the “suspension” by algebraic topologists. Other basic con-
structions borrowed from algebraic topology are that of the mapping cone of
a morphism and that of homotopy of complexes. In fact, in order to be able
to work, i.e., to form commutative diagrams, we have to make morphisms
in C(C) which are homotopic to zero, actually isomorphic to zero. This de-
fines the homotopy category K(C) and the main result (stated in the slightly
more general framework of additive categories with translation) is that K(C)
is triangulated.

Many complexes, such as Čech complexes in sheaf theory (see Chap. 18
below), are obtained naturally by simplicial construction. Here, we construct
complexes associated with simplicial objects and give a criterion for these
complexes to be homotopic to zero.

When considering bifunctors on additive categories, we are rapidly lead to
consider the category C(C(C)) of complexes of complexes (i.e., double com-
plexes), and so on. We explain here how a diagonal procedure allows us, un-
der suitable hypotheses, to reduce a double complex to a simple one. Delicate
questions of signs arise and necessitate careful treatment.

Chapter 12. When C is abelian, we can define the j-th cohomology ob-
ject H j (X) of a complex X . The main result is that the functor H j is
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cohomological, that is, sends distinguished triangles in K(C) to long exact
sequences in C.

When a functor F with values in C is defined on the category of finite sets,
it is possible to attach to F a complex in C, generalizing the classical notion of
Koszul complexes. We provide the tools needed to calculate the cohomology
of such complexes and treat some examples such as distributive families of
subobjects.

We also study the cohomology of a double complex, replacing the Leray’s
traditional spectral sequences by an intensive use of the truncation functors.
We find this approach much easier and perfectly adequate in practice.

Chapter 13. Constructing the derived category of an abelian category is easy
with the tools now at hand. It is nothing more than the localization of the
homotopy category K(C) with respect to exact complexes.

Here we give the main constructions and results concerning derived cate-
gories and functors, including some new results.

Despite their popularity, derived categories are sometimes supposed diffi-
cult. A possible reason for this reputation is that to date there has been no
systematic, pedagogical treatment of the theory. The classical texts on de-
rived categories are the famous Hartshorne Notes [31], or Verdier’s résumé
of his thesis [68] (of which the complete manuscript has been published re-
cently [69]). Apart from these, there are a few others which may be found
in particular in the books [25, 38] and [71]. Recall that the original idea of
derived categories goes back to Grothendieck.

Chapter 14. Using the results of Chap. 9, we study the (unbounded) derived
category D(C) of a Grothendieck category C. First, we show that any complex
in a Grothendieck category is quasi-isomorphic to a homotopically injective
complex and we deduce the existence of right derived functors in D(C). We
then prove that the Brown representability theorem holds in D(C) and discuss
the existence of left derived functors, as well as the composition of (right or
left) derived functors and derived adjunction formulas.

Spaltenstein [65] was the first to consider unbounded complexes and the
corresponding derived functors. The (difficult) result which asserts that the
Brown representability theorem holds in the derived category of a Grothen-
dieck category seems to be due to independently to [2] and [21] (see also [6,
42, 53] and [44]). Note that most of the ideas presented here come from topol-
ogy, in which context the names of Adams, Bousfield, Kan, Thomason among
others should be mentioned.

Chapter 15. We study here the derived category of the category Ind(C) of
ind-objects of an abelian category C. Things are not easy since in the simple
case where C is the category of vector spaces over a field k, the category Ind(C)
does not have enough injective objects. In order to overcome this difficulty, we
introduce the notion of quasi-injective objects. We show that under suitable
hypotheses, there are enough such objects and that they allow us to derive
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functors. We also study some links between the derived category of Ind(C)
and that of ind-objects of the derived category of C. Note that the category
of ind-objects of a triangulated category does not seem to be triangulated.

Most of the results in this chapter are new and we hope that they may be
useful. They are so when applied to the construction of ind-sheaves, for which
we refer to [39].

Chapter 16. The notion of sheaves relies on that of coverings and a Gro-
thendieck topology on a category is defined by axiomatizing the notion of
coverings.

In this chapter we give the axioms for Grothendieck topologies using sieves
and then introduce the notions of local epimorphisms and local isomorphisms.
We give several examples and study the properties of the family of local iso-
morphisms in detail, showing in particular that this family is stable under
inductive limits. The classical reference is [64].

Chapter 17. A site X is a category CX endowed with a Grothendieck topology.
A presheaf F on X with values in a category A is a contravariant functor on
CX with values in A, and a presheaf F is a sheaf if, for any local isomorphism
A −→ U , F(U) −→ F(A) is an isomorphism. When CX is the category of open
subsets of a topological space X , we recover a familiar notion.

Here, we construct the sheaf Fa associated with a presheaf F with values
in a category A satisfying suitable properties. We also study restriction and
extension of sheaves, direct and inverse images, and internal Hom . However,
we do not enter the theory of Topos, referring to [64] (see also [48] for further
exciting developments).

Chapter 18. When OX is a sheaf of rings on a site X , we define the category
Mod(OX ) of sheaves of OX -modules. This is a Grothendieck category to which
we may apply the tools obtained in Chap. 14.

In this Chapter, we construct the unbounded derived functors RHom OX

of internal hom,
L⊗OX

of tensor product, R f ∗ of direct image and L f ∗ of
inverse image (these two last functors being associated with a morphism f of
ringed sites) and we study their relations. Such constructions are well-known
in the case of bounded derived categories, but the unbounded case, initiated
by Spaltenstein [65], is more delicate.

We do not treat proper direct images and duality for sheaves. Indeed, there
is no such theory for sheaves on abstract sites, where the construction in the
algebraic case for which we refer to [17], differs from that in the topological
case for which we refer to [38].

Chapter 19. The notion of constant functions is not local and it is more
natural (and useful) to consider locally constant functions. The presheaf of
such functions is in fact a sheaf, called a constant sheaf. There are however
sheaves which are locally, but not globally, isomorphic to this constant sheaf,
and this leads us to the fundamental notion of locally constant sheaves, or



8 Introduction

local systems. The orientation sheaf on a real manifold is a good example of
such a sheaf. We consider similarly categories which are locally equivalent to
the category of sheaves, which leads us to the notions of stacks and twisted
sheaves.

A stack on a site X is, roughly speaking, a sheaf of categories, or, more
precisely, a sheaf with values in the 2-category of all U-categories of a given
universe U . Indeed, it would be possible to consider higher objects (n-stacks),
but we do not pursue this matter here. This new field of mathematics was first
explored in the sixties by Grothendieck and Giraud (see [26]) and after having
been long considered highly esoteric, it is now the object of intense activity
from algebraic geometry to theoretical physics. Note that 2-categories were
first introduced by Bénabou (see [5]), a student of an independent-minded
category theorist, Charles Ehresmann.

This last chapter should be understood as a short presentation of possible
directions in which the theory may develop.


