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Summary. A standard approach to reduced-order modeling of higher-order linear
dynamical systems is to rewrite the system as an equivalent first-order system and
then employ Krylov-subspace techniques for reduced-order modeling of first-order
systems. While this approach results in reduced-order models that are characterized
as Padé-type or even true Padé approximants of the system’s transfer function, in
general, these models do not preserve the form of the original higher-order system.
In this paper, we present a new approach to reduced-order modeling of higher-order
systems based on projections onto suitably partitioned Krylov basis matrices that
are obtained by applying Krylov-subspace techniques to an equivalent first-order
system. We show that the resulting reduced-order models preserve the form of the
original higher-order system. While the resulting reduced-order models are no longer
optimal in the Padé sense, we show that they still satisfy a Padé-type approximation
property. We also introduce the notion of Hermitian higher-order linear dynamical
systems, and we establish an enhanced Padé-type approximation property in the
Hermitian case.

8.1 Introduction

The problem of model reduction is to replace a given mathematical model of
a system or process by a model that is much smaller than the original model,
yet still describes—at least approximately—certain aspects of the system or
process. Model reduction involves a number of interesting issues. First and
foremost is the issue of selecting appropriate approximation schemes that
allow the definition of suitable reduced-order models. In addition, it is often
important that the reduced-order model preserves certain crucial properties
of the original system, such as stability or passivity. Other issues include
the characterization of the quality of the models, the extraction of the data
from the original model that is needed to actually generate the reduced-order
models, and the efficient and numerically stable computation of the models.

In recent years, there has been a lot of interest in model-reduction
techniques based on Krylov subspaces; see, for example, the survey pa-
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pers [Fre97, Fre00, Bai02, Fre03]. The development of these methods was
motivated mainly by the need for efficient reduction techniques in VLSI circuit
simulation. An important problem in that application area is the reduction
of very large-scale RCL subcircuits that arise in the modeling of the chip’s
wiring, the so-called interconnect. In fact, many of the Krylov-subspace reduc-
tion techniques that have been proposed in recent years are tailored to RCL
subcircuits.

Krylov-subspace techniques can be applied directly only to first-order lin-
ear dynamical systems. However, there are important applications that lead
to second-order, or even general higher-order, linear dynamical systems. For
example, RCL subcircuits are actually second-order linear dynamical systems.
The standard approach to employing Krylov-subspace techniques to the di-
mension reduction of a second-order or higher-order system is to first rewrite
the system as an equivalent first-order system and then apply Krylov-subspace
techniques for reduced-order modeling of first-order systems. While this ap-
proach results in reduced-order models that are characterized as Padé-type
or even true Padé approximants of the system’s transfer function, in general,
these models do not preserve the form of the original higher-order system.

In this paper, we describe an approach to reduced-order modeling of
higher-order systems based on projections onto suitably partitioned Krylov
basis matrices that are obtained by applying Krylov-subspace techniques to
an equivalent first-order system. We show that the resulting reduced-order
models preserve the form of the original higher-order system. While the re-
sulting reduced-order models are no longer optimal in the Padé sense, we
show that they still satisfy a Padé-type approximation property. We further
establish an enhanced Padé-type approximation property in the special case
of Hermitian higher-order linear dynamical systems.

The remainder of the paper is organized as follows. In Section 8.2, we
review the formulations of general RCL circuits as as first-order and second-
order linear dynamical systems. In Section 8.3, we present our general frame-
work for special second-order and higher-oder linear dynamical systems. In
Section 8.4, we consider the standard reformulation of higher-order systems
as equivalent first-order systems. In Section 8.5, we discuss some general con-
cepts of dimension reduction of special second-order and general higher-order
systems via dimension reduction of corresponding first-order systems. In Sec-
tion 8.6, we review the concepts of block-Krylov subspaces and Padé-type
reduced-order models. In Section 8.7, we introduce the notion of Hermitian
higher-order linear dynamical systems, and we establish an enhanced Padé-
type approximation property in the Hermitian case. In Section 8.8, we present
the SPRIM algorithm for special second-order systems. In Section 8.9, we re-
port the results of some numerical experiments with the SPRIM algorithm.
Finally, in Section 8.10, we mention some open problems and make some
concluding remarks.

Throughout this paper the following notation is used. Unless stated oth-
erwise, all vectors and matrices are allowed to have real or complex entries.
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For a complex number α or a complex matrix M , we denote its complex con-
jugate by α or M , respectively. For a matrix M =

[
mjk

]
, MT :=

[
mkj

]
is the

transpose of M , and MH := M
T

=
[
mkj

]
is the conjugate transpose of M .

For a square matrix P , we write P  0 if P = PH is Hermitian and if P is
positive semidefinite, i.e., xHPx ≥ 0 for all vectors x of suitable dimension.
We write P ! 0 if P = PH is positive definite, i.e., xHPx > 0 for all vectors
x, except x = 0. The n × n identity matrix is denoted by In and the zero
matrix by 0. If the dimension of In is apparent from the context, we drop the
index and simply use I. The actual dimension of 0 will always be apparent
from the context. The sets of real and complex numbers are denoted by R and
C, respectively.

8.2 RCL Circuits as First-Order and Second-Order
Systems

An important class of electronic circuits is linear RCL circuits that contain
only resistors, capacitors, and inductors. For example, such RCL circuits are
used to model the interconnect of VLSI circuits; see, e.g., [CLLC00, KGP94,
OCP98]. In this section, we briefly review the RCL circuit equations and their
formulations as first-order and second-order linear dynamical systems.

8.2.1 RCL Circuit Equations

General electronic circuits are usually modeled as networks whose branches
correspond to the circuit elements and whose nodes correspond to the inter-
connections of the circuit elements; see, e.g., [VS94]. Such networks are char-
acterized by Kirchhoff’s current law (KCL), Kirchhoff’s voltage law (KVL),
and the branch constitutive relations (BCRs). The Kirchhoff laws depend only
on the interconnections of the circuit elements, while the BCRs characterize
the actual elements. For example, the BCR of a linear resistor is Ohm’s law.
The BCRs are linear equations for simple devices, such as linear resistors,
capacitors, and inductors, and they are nonlinear equations for more complex
devices, such as diodes and transistors.

The connectivity of such a network can be captured using a directional
graph. More precisely, the nodes of the graph correspond to the nodes of the
circuit, and the edges of the graph correspond to each of the circuit elements.
An arbitrary direction is assigned to graph edges, so one can distinguish be-
tween the source and destination nodes. The adjacency matrix, A, of the
directional graph describes the connectivity of a circuit. Each row of A corre-
sponds to a graph edge and, therefore, to a circuit element. Each column of
A corresponds to a graph or circuit node. The column corresponding to the
datum (ground) node of the circuit is omitted in order to remove redundancy.
By convention, a row of A contains +1 in the column corresponding to the
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source node, −1 in the column corresponding to the destination node, and 0
everywhere else. Kirchhoff’s laws can be expressed in terms of A as follows:

KCL: AT ib = 0,

KVL: Avn = vb.
(8.1)

Here, the vectors ib and vb contain the branch currents and voltages, respec-
tively, and vn the non-datum node voltages.

We now restrict ourselves to linear RCL circuits, and for simplicity, we
assume that the circuit is excited only by current sources. In this case, A, vb,
and ib can be partitioned according to circuit-element types as follows:

A =

⎡⎢⎢⎣
Ai

Ag

Ac

Al

⎤⎥⎥⎦ , vb = vb(t) =

⎡⎢⎢⎣
vi

vg

vc

vl

⎤⎥⎥⎦ , ib = ib(t) =

⎡⎢⎢⎣
ii
ig
ic
il

⎤⎥⎥⎦ . (8.2)

Here, the subscripts i, g, c, and l stand for branches containing current sources,
resistors, capacitors, and inductors, respectively. Using (8.2), the KCL and
KVL equations (8.1) take on the following form:

AT
i ii +AT

g ig +AT
c ic +AT

l il = 0,

Aivn = vi, Agvn = vg, Acvn = vc, Alvn = vl.
(8.3)

Furthermore, the BCRs can be stated as follows:

ii = −I(t), ig = Gvg, ic = C
d

dt
vc, vl = L

d

dt
il. (8.4)

Here, I(t) is the vector of current-source values, G ! 0 and C ! 0 are diagonal
matrices whose diagonal entries are the conductance and capacitance values
of the resistors and capacitors, respectively, and L  0 is the inductance
matrix. In the absence of inductive coupling, L is also a diagonal matrix, but
in general, L is a full matrix. However, an important special case is inductance
matrices L whose inverse, the so-called susceptance matrix, S = L−1 is sparse;
see [ZKBP02, ZP02].

Equations (8.3) and (8.4), together with initial conditions for vn(t0) and
il(t0) at some initial time t0, provide a complete description of a given RCL
circuit. For simplicity, in the following we assume t0 = 0 with zero initial
conditions:

vn(0) = 0 and il(0) = 0. (8.5)

Instead of solving (8.3) and (8.4) directly, one usually first eliminates as many
variables as possible; this procedure is called modified nodal analysis [HRB75,
VS94]. More precisely, using the last three equations in (8.3) and the first three
equations in (8.4), one can eliminate vg, vc, vl, ii, ig, ic, and is left with the
coupled equations
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AT
i I(t) = AT

g GAgvn +AT
c CAc

d

dt
vn +AT

l il,

Alvn = L
d

dt
il

(8.6)

for vn and il. Note that the equations (8.6) are completed by the initial con-
ditions (8.5).

For later use, we remark that the energy supplied to the RCL circuit by
the current sources is given by

E(t) =

∫ t

0

(
vi(τ)

)T
I(τ) dτ. (8.7)

Recall that the entries of the vector vi are the voltages at the current sources.
In view of the second equation in (8.3), vi is connected to vn by the output
relation

vi = Aivn. (8.8)

8.2.2 RCL Circuits as First-Order Systems

The RCL circuit equations (8.6) and (8.8) can be viewed as a first-order time-
invariant linear dynamical system with state vector

z(t) :=

[
vn(t)
il(t)

]
,

and input and output vectors

u(t) := I(t) and y(t) := vi(t), (8.9)

respectively. Indeed, the equations (8.6) and (8.8) are equivalent to

E d

dt
z(t)−A z(t) = B u(t),

y(t) = BT z(t),

(8.10)

where

E :=

[
AT

c CAc 0
0 L

]
, A :=

[
−AT

g GAg −AT
l

Al 0

]
, B :=

[
AT

i

0

]
. (8.11)

Note that (8.10) is a system of differential-algebraic equations (DAEs) of first
order. Furthermore, in view of (8.9), the energy (8.7), which is supplied to the
RCL circuit by the current sources, is just the integral

E(t) =

∫ t

0

(
y(τ)

)T
u(τ) dτ (8.12)

of the inner product of the input and output vectors of (8.10). RCL circuits are
passive systems, i.e., they do not generate energy, and (8.12) is an important
formula for the proper treatment of passivity; see, e.g., [AV73, LBEM00].
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8.2.3 RCL Circuits as Second-Order Systems

In this subsection, we assume that the inductance matrix L of the RCL circuit
is nonsingular. In this case, the RCL circuit equations (8.6) and (8.8) can also
be viewed as a second-order time-invariant linear dynamical system with state
vector

x(t) := vn(t),

and the same input and output vectors (8.9) as before. Indeed, by integrating
the second equation of (8.6) and using (8.5), we obtain

L il(t) = Al

∫ t

0

vn(τ) dτ. (8.13)

Since L is assumed to be nonsingular, we can employ the relation (8.13) to
eliminate il in (8.6). The resulting equation, combined with (8.8), can be
written as follows:

P1
d

dt
x(t) + P0 x(t) + P−1

∫ t

0

x(τ) dτ = B u(t),

y(t) = BTx(t).

(8.14)

Here, we have set

P1 := AT
c CAc, P0 := AT

g GAg, P−1 := AT
l L

−1Al, B := AT
i . (8.15)

Note that the first equation in (8.14) is a system of integro-DAEs. We will refer
to (8.14) as a special second-order time-invariant linear dynamical system.
We remark that the input and output vectors of (8.14) are the same as in the
first-order formulation (8.10). In particular, the important formula (8.12) for
the energy supplied to the system remains valid for the special second-order
formulation (8.10).

If the input vector u(t) is differentiable, then by differentiating the first
equation of (8.14) we obtain the “true” second-order formulation

P1
d2

dt2
x(t) + P0

d

dt
x(t) + P−1 x(t) = B

d

dt
u(t),

y(t) = BTx(t).

(8.16)

However, besides the additional assumption on the differentiability of u(t),
the formulation (8.16) also has the disadvantage that the energy supplied to
the system is no longer given by the integral of the inner product of the input
and output vectors

û(t) :=
d

dt
u(t) and ŷ(t) := y(t)

of (8.16). Related to this lack of a formula of type (8.12) is the fact that
the transfer function of (8.16) is no longer positive real. For these reasons,
we prefer to use the special second-order formulation (8.14), rather than the
more common formulation (8.16).
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8.3 Higher-Order Linear Dynamical Systems

In this section, we discuss our general framework for special second-order and
higher-oder linear dynamical systems. We denote by m and p the number of
inputs and outputs, respectively, and by l the order of such systems. In the
following, the only assumption on m, p, and l is that m, p, l ≥ 1.

8.3.1 Special Second-Order Systems

A special second-order m-input p-output time-invariant linear dynamical sys-
tem of order l is a system of integro-DAEs of the following form:

P1
d

dt
x(t) + P0 x(t) + P−1

∫ t

t0

x(τ) dτ = B u(t),

y(t) = Du(t) + Lx(t),

x(t0) = x0.

(8.17)

Here, P−1, P0, P1 ∈ C
N×N , B ∈ C

N×m, D ∈ C
p×m, and L ∈ C

p×N are given
matrices, t0 ∈ R is a given initial time, and x0 ∈ C

N is a given vector of initial
values. We assume that the N ×N matrix

sP1 + P0 +
1

s
P−1

is singular only for finitely many values of s ∈ C.
The frequency-domain transfer function of (8.17) is given by

H(s) = D + L
(
sP1 + P0 +

1

s
P−1

)−1

B. (8.18)

Note that
H : C �→ (C ∪∞)

p×m

is a matrix-valued rational function.
In practical applications, such as the case of RCL circuits described in

Section 8.2, the matrices P0 and P1 are usually sparse. The matrix P−1,
however, may be dense, but has a sparse representation of the form

P−1 = F1GF
H
2 (8.19)

or
P−1 = F1G

−1FH
2 , with nonsingular G, (8.20)

where F1, F2 ∈ C
N×N0 and G ∈ C

N0×N0 are sparse matrices. We stress that in
the case (8.19), the matrix G is not required to be nonsingular. In particular,
for any matrix P−1 ∈ C

N×N , there is always the trivial factorization (8.19)
with F1 = F2 = I and G = P−1. Therefore, without loss of generality, in the
following, we assume that the matrix P−1 in (8.17) is given by a product of
the form (8.19) or (8.20).
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8.3.2 General Higher-Order Systems

An m-input p-output time-invariant linear dynamical system of order l is a
system of DAEs of the following form:

Pl
dl

dtl
x(t) + Pl−1

dl−1

dtl−1
x(t) + · · ·+ P1

d

dt
x(t) + P0 x(t) = B u(t),

y(t) = Du(t) + Ll−1
dl−1

dtl−1
x(t) + · · ·+ L1

d

dt
x(t) + L0 x(t).

(8.21)

Here, Pi ∈ C
N×N , 0 ≤ i ≤ l, B ∈ C

N×m, D ∈ C
p×m, and Lj ∈ C

p×N ,
0 ≤ j < l, are given matrices, and N is called the state-space dimension
of (8.21). Moreover, in (8.21), u : [t0,∞) �→ C

m is a given input function,
t0 ∈ R is a given initial time, the components of the vector-valued function
x : [t0,∞) �→ C

N are the so-called state variables, and y : [t0,∞) �→ C
p is the

output function. The system is completed by initial conditions of the form

di

dti
x(t)

∣∣∣∣
t=t0

= x
(i)
0 , 0 ≤ i < l, (8.22)

where x
(i)
0 ∈ C

n, 0 ≤ i < l, are given vectors.
The frequency-domain transfer function of (8.21) is given by

H(s) := D + L(s)
(
P (s)

)−1
B, s ∈ C, (8.23)

where
P (s) := slPl + sl−1Pl−1 + · · ·+ sP1 + P0 (8.24)

and
L(s) := sl−1Ll−1 + sl−2Ll−2 + · · ·+ sL1 + L0.

Note that
P : C �→ C

N×N and L : C �→ C
p×N

are matrix-valued polynomials, and that

H : C �→ (C ∪∞)
p×m

again is a matrix-valued rational function. We assume that the polyno-
mial (8.24), P , is regular, that is, the matrix P (s) is singular only for finitely
many values of s ∈ C; see, e.g., [GLR82, Part II]. This guarantees that the
transfer function (8.23) has only finitely many poles.

8.3.3 First-Order Systems

For the special case l = 1, systems of the form (8.21) are called first-order
systems. In the following, we use calligraphic letters for the data matrices and
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z for the vector of state-space variables of first-order systems. More precisely,
we always write first-order systems in the form

E d

dt
z(t)−A z(t) = B u(t),

y(t) = D u(t) + L z(t),

z(t0) = z0.

(8.25)

Note that the transfer function of (8.25) is given by

H(s) = D + L
(
s E − A

)−1B. (8.26)

8.4 Equivalent First-Order Systems

A standard approach to treat higher-order systems is to rewrite them as equiv-
alent first-order systems. In this section, we present such equivalent first-order
formulations of special second-order and general higher-order systems.

8.4.1 The Case of Special Second-Order Systems

We start with special second-order systems (8.17), and we distinguish the two
cases (8.19) and (8.20).

First assume that P−1 is given by (8.19). In this case, we set

z1(t) := x(t) and z2(t) := FH
2

∫ t

t0

x(τ) dτ. (8.27)

By (8.19) and (8.27), the first relation in (8.17) can be rewritten as follows:

P1
d

dt
z1(t) + P0 z1(t) + F1Gz2(t) = B u(t). (8.28)

Moreover, (8.27) implies that

d

dt
z2(t) = FH

2 z1(t). (8.29)

It follows from (8.27)–(8.29) that the special second-order system (8.17) (with
P−1 given by (8.19)) is equivalent to a first-order system (8.25) where

z(t) :=

[
z1(t)
z2(t)

]
, z0 :=

[
x0

0

]
, L :=

[
L 0

]
, B :=

[
B
0

]
,

D := D, A :=

[
−P0 −F1G
FH

2 0

]
, E :=

[
P1 0
0 IN0

]
.

(8.30)
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The state-space dimension of this first-order system is N1 := N +N0, where
N and N0 denote the dimensions of P1 ∈ C

N×N and G ∈ C
N0×N0 . Note

that (8.26) is the corresponding representation of the transfer function (8.18),
H, in terms of the data matrices defined in (8.30).

Next, we assume that P−1 is given by (8.20). We set

z1(t) := x(t) and z2(t) := G−1FH
2

∫ t

t0

x(τ) dτ .

The first relation in (8.17) can then be rewritten as

P1
d

dt
z1(t) + P0 z1(t) + F1 z2(t) = B u(t).

Moreover, we have

G
d

dt
z2(t) = FH

2 z1(t).

It follows that the special second-order system (8.17) (with P−1 given by (8.20))
is equivalent to a first-order system (8.25) where

z(t) :=

[
z1(t)
z2(t)

]
, z0 :=

[
x0

0

]
, L :=

[
L 0

]
, B :=

[
B
0

]
,

D := D, A :=

[
−P0 −F1

FH
2 0

]
, E :=

[
P1 0
0 G

]
.

(8.31)

The state-space dimension of this first-order system is again N1 := N + N0.
Note that (8.26) is the corresponding representation of the transfer func-
tion (8.18), H, in terms of the data matrices defined in (8.31).

8.4.2 The Case of General Higher-Order Systems

It is well known (see, e.g., [GLR82, Chapter 7]) that any l-th order system
with state-space dimension N is equivalent to a first-order system with state-
space dimension N1 := lN . Indeed, it is easy to verify that the l-th order
system (8.21) with initial conditions (8.22) is equivalent to the first-order
system (8.25) with
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z(t) :=

⎡⎢⎢⎢⎢⎣
x(t)
d
dtx(t)

...

dl−1

dtl−1x(t)

⎤⎥⎥⎥⎥⎦ , z0 :=

⎡⎢⎢⎢⎢⎢⎣
x

(0)
0

x
(1)
0
...

x
(l−1)
0

⎤⎥⎥⎥⎥⎥⎦ , B :=

⎡⎢⎢⎢⎣
0
...
0

B

⎤⎥⎥⎥⎦ ,
L :=

[
L0 L1 · · · Ll−1

]
, D := D,

E :=

⎡⎢⎢⎢⎢⎢⎣
I 0 0 · · · 0

0 I 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 I 0

0 · · · 0 0 Pl

⎤⎥⎥⎥⎥⎥⎦ , A := −

⎡⎢⎢⎢⎢⎢⎢⎣

0 −I 0 · · · 0

0 0 −I . . .
...

...
. . .

. . .
. . . 0

0 · · · 0 0 −I
P0 P1 P2 · · · Pl−1

⎤⎥⎥⎥⎥⎥⎥⎦ .

(8.32)

We remark that (8.26) is the corresponding representation of the l-order trans-
fer function (8.23), H, in terms of the data matrices defined in (8.32).

8.5 Dimension Reduction of Equivalent First-Order
Systems

In this section, we discuss some general concepts of dimension reduction of
special second-order and general higher-order systems via dimension reduction
of equivalent first-order systems.

8.5.1 General Reduced-Order Models

We start with general first-order systems (8.25). For simplicity, from now on
we always assume zero initial conditions, i.e., z0 = 0 in (8.25). We can then
drop the initial conditions in (8.25), and consider first-order systems (8.25) of
the following form:

E d

dt
z(t)−A z(t) = B u(t),

y(t) = D u(t) + L z(t).
(8.33)

Here, A, E ∈ C
N1×N1 , B1 ∈ C

N1×m, D ∈ C
p×m, and L ∈ C

p×N1 are given
matrices. Recall that N1 is the state-space dimension of (8.33). We assume
that the matrix pencil s E−A is regular, i.e., the matrix s E−A is singular only
for finitely many values of s ∈ C. This guarantees that the transfer function
of (8.33),

H(s) := D + L
(
s E − A

)−1B, (8.34)

exists.
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A reduced-order model of (8.33) is a system of the same form as (8.33),
but with smaller state-space dimension. More precisely, a reduced-order model
of (8.33) with state-space dimension n1 (< N1) is a system of the form

Ẽ d

dt
z̃(t)− Ã z(t) = B̃ u(t),

ỹ(t) = D̃ u(t) + L̃ z̃(t),
(8.35)

where Ã, Ẽ ∈ C
n1×n1 , B̃ ∈ C

n1×m, D̃ ∈ C
p×m, and L̃ ∈ C

p×n1 . Again, we
assume that the matrix pencil s Ẽ−Ã is regular. The transfer function of (8.35)
is then given by

H̃(s) := D̃ + L̃
(
s Ẽ − Ã

)−1B̃. (8.36)

Of course, (8.35) only provides a framework for model reduction. The real
problem, namely the choice of suitable matrices Ã, Ẽ , B̃, L̃, D̃, and sufficiently
large reduced state-space dimension n1 still remains to be addressed.

8.5.2 Reduction via Projection

A simple, yet very powerful (when combined with Krylov-subspace machinery)
approach for constructing reduced-order models is projection. Let

V ∈ C
N1×n1 (8.37)

be a given matrix, and set

Ã := VHAV , Ẽ := VHE V, B̃ := VHB L̃ := LV, D̃ := D. (8.38)

Then, provided that the matrix pencil s Ẽ−Ã is regular, the system (8.35) with
matrices given by (8.38) is a reduced-order model of (8.33) with state-space
dimension n1.

A more general approach employs two matrices,

V, W ∈ C
N1×n1 ,

and two-sided projections of the form

Ã :=WHAV , Ẽ :=WHE V, B̃ := VHB L̃ := LW, D̃ := D.

For example, the PVL algorithm [FF94, FF95] can be viewed as a two-sided
projection method, where the columns of the matrices V and W are the first
n1 right and left Lanczos vectors generated by the nonsymmetric Lanczos
process [Lan50].

All model-reduction techniques discussed in the remainder of this paper
are based on projections of the type (8.38).

Next, we discuss the application of projections (8.38) to first-order sys-
tems (8.33) that arise as equivalent formulations of special second-order and
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higher-oder linear dynamical systems. Recall from Section 8.4 that such
equivalent first-order systems exhibit certain structures. For general matri-
ces (8.37), V, the projected matrices (8.38) do not preserve these structures.
However, as we will show now, these structures are preserved for certain types
of matrices V.

8.5.3 Preserving Special Second-Order Structure

In this subsection, we consider special second-order systems (8.17), where
P−1 is either of the form (8.19) or (8.20). Recall that the data matrices of
the equivalent first-order formulations of (8.17) are defined in (8.30), respec-
tively (8.31).

Let V be any matrix of the block form

V =

[
V1 0
0 V2

]
, V1 ∈ C

N×n, V2 ∈ C
N0×n0 , (8.39)

such that the matrix

G̃ := V H
2 GV2 is nonsingular.

First, consider the case of matrices P−1 of the form (8.19). Using (8.30)
and (8.39), one readily verifies that in this case, the projected matrices (8.38)
are as follows:

Ã =

[
−P̃0 −F̃1G̃

F̃H
2 0

]
, Ẽ =

[
P̃1 0
0 In0

]
, B̃ =

[
B̃
0

]
,

L̃ =
[
L̃ 0

]
, D̃ = D.

(8.40)

Here, we have set

P̃0 := V H
1 P0V1, P̃1 := V H

1 P1V1, B̃ := V H
1 B, L̃ := LV1, (8.41)

and
F̃1 :=

(
V H

1 F1GV2

)
G̃−1, F̃2 := V H

1 F2V2.

Note that the matrices (8.40) are of the same form as the matrices (8.30) of the
first-order formulation (8.33) of the original special second-order system (8.17)
(with P−1 of the form (8.19). It follows that the matrices (8.40) define a
reduced-order model in special second-order form,

P̃1
d

dt
x̃(t) + P̃0 x̃(t) + P̃−1

∫ t

t0

x̃(τ) dτ = B̃ u(t),

ỹ(t) = D̃ u(t) + L̃ x̃(t),

(8.42)

where
P̃−1 := F̃1G̃F̃

H
2 .
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We remark that the state-space dimension of (8.42) is n, where n denotes the
number of columns of the submatrix V1 in (8.39).

Next, consider the case of matrices P−1 of the form (8.20). Using (8.31)
and (8.39), one readily verifies that in this case, the projected matrices (8.38)
are as follows:

Ã =

[
−P̃0 −F̃1

F̃H
2 0

]
, Ẽ =

[
P̃1 0

0 G̃

]
, B̃ =

[
B̃
0

]
,

L̃ =
[
L̃ 0

]
, D̃ = D.

(8.43)

Here, P̃0, P̃1, B̃, L̃ are the matrices defined in (8.41), and

F̃1 := V H
1 F1V2, F̃2 := V H

1 F2V2.

Again, the matrices (8.43) are of the same form as the matrices (8.31) of the
first-order formulation (8.33) of the original special second-order system (8.17)
(with P−1 of the form (8.20). It follows that the matrices (8.43) define a
reduced-order model in special second-order form (8.42), where

P̃−1 = F̃1G̃
−1F̃H

2 .

8.5.4 Preserving General Higher-Order Structure

We now turn to systems (8.33) that are equivalent first-order formulations of
general l-th order linear dynamical systems (8.21). More precisely, we assume
that the matrices in (8.33) are the ones defined in (8.32).

Let V be any lN × ln matrix of the block form

Vn =

⎡⎢⎢⎢⎢⎢⎢⎣

Sn 0 0 · · · 0
0 Sn 0 · · · 0

0 0
. . .

. . .
...

...
...

. . .
. . . 0

0 0 · · · 0 Sn

⎤⎥⎥⎥⎥⎥⎥⎦ , Sn ∈ C
N×n, SH

n Sn = In. (8.44)

Although such matrices appear to be very special, they do arise in connection
with block-Krylov subspaces and lead to Padé-type reduced-order models; see
Subsection 8.6.4 below. The block structure (8.44) implies that the projected
matrices (8.38) are given by
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Ã = −

⎡⎢⎢⎢⎢⎢⎢⎣

0 −I 0 · · · 0

0 0 −I . . .
...

...
. . .

. . .
. . . 0

0 · · · 0 0 −I
P̃0 P̃1 P̃2 · · · P̃l−1

⎤⎥⎥⎥⎥⎥⎥⎦ , Ẽ :=

⎡⎢⎢⎢⎢⎢⎢⎣
I 0 0 · · · 0

0 I 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 I 0

0 · · · 0 0 P̃l

⎤⎥⎥⎥⎥⎥⎥⎦ ,

B̃ =

⎡⎢⎢⎢⎣
0
...
0

B̃

⎤⎥⎥⎥⎦ , L̃ =
[
L̃0 L̃1 · · · L̃l−1

]
, D̃ = D,

(8.45)

where

P̃i := SH
n PiSn, 0 ≤ i ≤ l, B̃ := SH

n B, L̃j := LjSn, 0 ≤ j < l.

It follows that the matrices (8.45) define a reduced-order model in l-th order
form,

P̃l
dl

dtl
x̃(t) + P̃l−1

dl−1

dtl−1
x̃(t) + · · ·+ P̃1

d

dt
x̃(t) + P̃0 x̃(t) = B̃ u(t),

ỹ(t) = D̃ u(t) + L̃l−1
dl−1

dtl−1
x̃(t) + · · ·+ L̃1

d

dt
x̃(t) + L̃0 x̃(t),

(8.46)

of the original l-th order system (8.21). We remark that the state-space di-
mension of (8.46) is n, where n denotes the number of columns of the matrix
Sn in (8.44).

8.6 Block-Krylov Subspaces and Padé-type Models

In this section, we review the concepts of block-Krylov subspaces and Padé-
type reduced-order models.

8.6.1 Padé-Type Models

Let s0 ∈ C be any point such that the matrix s0 E −A is nonsingular. Recall
that the matrix pencil s E − A is assumed to be regular, and so the matrix
s0 E −A is nonsingular except for finitely many values of s0 ∈ C. In practice,
s0 ∈ C is chosen such that s0 E − A is nonsingular and at the same time, s0
is in some sense “close” to a problem-specific relevant frequency range in the
complex Laplace domain. Furthermore, for systems with real matrices A and
E one usually selects s0 ∈ R in order to avoid complex arithmetic.

We consider first-order systems of the form (8.33) and their reduced-order
models of the form (8.35). By expanding the transfer function (8.34), H, of
the original system (8.33) about s0, we obtain
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H(s) = L
(
s E − A

)−1B = L
(
I + (s− s0)M

)−1

R

=

∞∑
i=0

(−1)iLMiR (s− s0)
i,

(8.47)

where
M :=

(
s0 E − A

)−1E and R :=
(
s0 E − A

)−1B. (8.48)

Provided that the matrix s0 Ẽ − Ã is nonsingular, we can also expand the
transfer function (8.36), H̃, of the reduced-order model (8.35) about s0. This
gives

H̃(s) = L̃
(
s Ẽ − Ã

)−1B

=

∞∑
i=0

(−1)iL̃ M̃i R̃ (s− s0)
i,

(8.49)

where
M̃ :=

(
s0 Ẽ − Ã

)−1Ẽ and R :=
(
s0 Ẽ − Ã

)−1B̃.

We call the reduced-order model (8.35) a Padé-type model (with expan-
sion point s0) of the original system (8.33) if the Taylor expansions (8.47)
and (8.49) agree in a number of leading terms, i.e.,

H̃(s) = H(s) +O
(
(s− s0)

q
)

(8.50)

for some q = q(Ã, Ẽ , B̃, L̃, D̃) > 0.
Recall that the state-space dimension of the reduced-order model (8.35) is

n1. If for a given n1, the matrices Ã, Ẽ , B̃, L̃, D̃ in (8.35) are chosen such that
q = q(n1) in (8.50) is optimal, i.e., as large as possible, then the reduced-order
model (8.35) is called a Padé model. All the reduced-order models discussed
in the remainder of this paper are Padé-type models, but they are not optimal
in the Padé sense.

The (matrix-valued) coefficients in the expansions (8.47) and (8.49) are
often referred to as moments. Strictly speaking, the term “moments” should
only be used in the case s0 = 0; in this case, the Taylor coefficients of Laplace-
domain transfer functions directly correspond to the moments in time domain.
However, the use of the term “moments” has become common even in the case
of general s0. Correspondingly, the property (8.50) is now generally referred
to as “moment matching”.

We remark that the moment-matching property (8.50) is important for the
following two reasons. First, for large-scale systems, the matrices A and E are
usually sparse, and the dominant computational work for moment-matching
reduction techniques is the computation of a sparse LU factorization of the
matrix s0 E −A. Note that such a factorization is required already even if one
only wants to evaluate the transfer function H at the point s0. Once a sparse
LU factorization of s0 E − A has been generated, moments can be computed
cheaply. Indeed, in view of (8.47) and (8.48), only sparse back solves, sparse
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matrix products (with E), and vector operations are required. Second, the
moment-matching property (8.50) is inherently connected to block-Krylov
subspaces. In particular, Padé-type reduced-order models can be computed
easily be combining Krylov-subspace machinery and projection techniques. In
the remainder of the section, we describe this connection with block-Krylov
subspaces.

8.6.2 Block-Krylov Subspaces

In this subsection, we review the concept of block-Krylov subspaces induced
by the matrices M and R defined in (8.48). Recall that A, E ∈ C

N1×N1 and
B ∈ C

N1×m. Thus we have

M∈ C
N1×N1 and R ∈ C

N1×m. (8.51)

Next, consider the infinite block-Krylov matrix[
RMRM2R · · · Mj R . . .

]
. (8.52)

In view of (8.51), the columns of the matrix (8.52) are vectors in C
N1 , and so

only at most N1 of these vectors are linearly independent. By scanning the
columns of the matrix (8.52) from left to right and deleting each column that
is linearly dependent on columns to its left, one obtains the so-called deflated
finite block-Krylov matrix[

R(1) MR(2) M2R(3) · · · Mjmax−1Rjmax
]
, (8.53)

where each block R(j) is a subblock of R(j−1), j = 1, 2, . . . , jmax, and R(0) :=
R. Let mj denote the number of columns of the j-th block R(j). Note that by
construction, the matrix (8.53) has full column rank. The n-th block-Krylov
subspace (induced by M and R) Kn

(
M,R

)
is defined as the subspace of

C
N1 spanned by the first n columns of the matrix (8.53); see, [ABFH00] for

more details of this construction. We stress that our notion of block-Krylov
subspaces is more general than the standard definition, which ignores the need
for deflation; again, we refer the reader to [ABFH00] and the references given
there.

Here, we will only use those block-Krylov subspaces that correspond to
the end of the blocks in (8.53). More precisely, let n be of the form

n = n(j) := m1 +m2 + · · ·+mj , where 1 ≤ j ≤ jmax. (8.54)

In view of the above construction, the n-th block-Krylov subspace is given by

Kn

(
M,R

)
= range

[
R(1) MR(2) M2R(3) · · · Mj−1R(j)

]
. (8.55)
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8.6.3 The Projection Theorem Revisited

It is well known that the projection approach described in Subsection 8.5.2
generates Padé-type reduced-order models, provided that the matrix V in
(8.37) is chosen as a basis matrix for the block-Krylov subspaces induced by
the matrices M and R defined in (8.48). This result is called the projec-
tion theorem, and it goes back to at least [dVS87]. It was also established in
[Oda96, OCP97, OCP98] in connection with the PRIMA reduction approach;
see [Fre00] for more details. A more general result, which includes the case of
multi-point Padé-type approximations, can be found in [Gri97].

One key insight to obtain structure-preserving Padé-type reduced-order
models via block-Krylov subspaces and projection is the fact that the projec-
tion theorem remains valid when the above assumption on V is replaced by
the weaker condition

Kn

(
M,R

)
⊆ rangeVn. (8.56)

In this subsection, we present an extension of the projection theorem (as
stated in [Fre00]) to the case (8.56).

From now on, we always assume that n is an integer of the form (8.54)
and that

Vn ∈ C
N1×n1 (8.57)

is a matrix satisfying (8.56). Note that (8.56) implies n1 ≥ n. We stress that
we make no further assumptions about n1. We consider projected models given
by (8.38) with V = Vn. In order to indicate the dependence on the dimension
n of the block-Krylov subspace in (8.56), we use the notation

An := VH
n AVn, En := VH

n E Vn, Bn := VH
n B,

Ln := LVn, Dn := D
(8.58)

for the matrices defining the projected reduced-order model. In addition
to (8.56), we also assume that the matrix pencil s En − An is regular, and
that at the expansion point s0, the matrix s0 En − An is nonsingular. Then
the reduced-order transfer function

Hn(s) := Ln

(
s En −An

)−1Bn

= Ln

(
I + (s− s0)Mn

)−1

Rn

=

∞∑
i=0

(−1)iLnMi
nRn (s− s0)

i

(8.59)

is a well-defined rational function. Here, we have set

Mn :=
(
s0 En −An

)−1En and Rn :=
(
s0 En −An

)−1Bn. (8.60)

We remark that the regularity of the matrix pencil s En−An implies that the
matrix Vn must have full column rank.
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After these preliminaries, the extension of the projection theorem can be
stated as follows.

Theorem 8.6.1. Let n = n(j) be of the form (8.54), and let Vn be a matrix
satisfying (8.56). Then the reduced-order model defined by (8.58) is a Padé-
type model with

Hn(s) = H(s) +O
(
(s− s0)

j
)
. (8.61)

Proof. In view of (8.47) and (8.59), the claim (8.61) is equivalent to

MiR = VnMi
nRn for all i = 0, 1, . . . , j − 1, (8.62)

and thus we need to show (8.62).
By (8.55) and (8.56), for each i = 0, 1, . . . , j − 1, there exists a matrix ρi

such that
MiR = Vn ρi. (8.63)

Moreover, since Vn has full column rank, each matrix ρi is unique. In fact, we
will show that the matrices ρi in (8.63) are given by

ρi = Mi
nRn, i = 0, 1, . . . , j − 1. (8.64)

The claim (8.62) then follows by inserting (8.64) into (8.63).
We prove (8.64) by induction on i. Let i = 0. In view of (8.48) and (8.63),

we have
Vn ρ0 = R =

(
s0 E − A

)−1B. (8.65)

Multiplying (8.65) from the left by(
s0 En −An

)−1VH
n

(
s0 E − A

)
(8.66)

and using the definition of Rn in (8.60), it follows that ρ0 = Rn. This is just
the relation (8.64) for i = 0.

Now let 1 ≤ i ≤ j − 1, and assume that

ρi−1 = Mi−1
n Rn. (8.67)

Recall that ρi−1 satisfies the equation (8.63) (with i replaced by i − 1), and
thus we have Mi−1R = Vn ρi−1. Together with (8.63) and (8.67), it follows
that

Vn ρi = MiR =M
(
Mi−1R

)
=M

(
Vn ρi−1

)
=MVn

(
Mi−1

n Rn

)
. (8.68)

Note that, in view of the definition of M in (8.48), we have

VH
n

(
s0 E − A

)
MVn = VH

n E Vn = En. (8.69)

Multiplying (8.68) from the left by the matrix (8.66) and using (8.69) as well
as the definition of Mn in (8.60), we obtain

ρi =
(
s0 En −An

)−1En

(
Mi−1

n Rn

)
= Mi

nRn.

Thus the proof is complete.
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We remark that, for the single-input case m = 1, the result of Theo-
rem 8.6.1 is a special case of [Gri97, Lemma 3.2]. However, in [Gri97], the
extension ([Gri97, Corollary 3.1]) to the casem ≥ 1, is stated only for the stan-
dard notion of block-Krylov subspaces without deflation, and not for our more
general definition described in [ABFH00] and sketched in Subsection 8.6.2.
Therefore, for the sake of completeness, the short proof of Theorem 8.6.1 was
included in this paper.

8.6.4 Structure-Preserving Padé-Type Models

We now turn to structure-preserving Padé-type models. Recall that, in Sub-
sections 8.5.3 and 8.5.4, we have shown how special second-order and general
higher-order structure is preserved by choosing projection matrices of the
form (8.39) and (8.44), respectively. Moreover, in Subsection 8.6.3 we pointed
out that projected models are Padé-type models if (8.56) is satisfied. It follows
that the reduced-order models given by the projected data matrices (8.58) are
structure-preserving Padé-type models, provided that the matrix Vn in (8.57)
is of the form (8.39), respectively (8.44), and at the same time fulfills the
condition (8.56). Next we show how to construct such matrices Vn.

Let
V̂n ∈ C

N1×n (8.70)

be any matrix whose columns span the n-th block-Krylov subspaceKn

(
M,R

)
,

i.e.,
Kn

(
M,R

)
= range V̂n. (8.71)

First, consider the case of special second-order systems (8.17), where P−1 is
either of the form (8.19) or (8.20). In this case, we partition V̂n as follows:

V̂n =

[
V1

V2

]
, V1 ∈ C

N×n, V2 ∈ C
N0×n. (8.72)

Using the blocks in (8.72), we set

Vn :=

[
V1 0
0 V2

]
. (8.73)

Clearly, the matrix (8.73) is of the form (8.39), and thus the projected mod-
els generated with Vn preserve the special second-order structure. Moreover,
from (8.71)–(8.73), it follows that

Kn

(
M,R

)
= range V̂n ⊆ rangeVn,

and so condition (8.56) is satisfied. Thus, projected models are Padé-type
models and preserve second-order structure.

Next, we turn to the case of general higher-order systems (8.21). In
[Fre04b], we have shown that in this case, the block-Krylov subspaces induced



8 Model Reduction of Higher-Order Linear Dynamical Systems 211

by the matrices M and R, which are given by (8.32) and (8.48), exhibit a
very special structure. More precisely, the n-dimensional subspace Kn

(
M,R

)
of C

lN can be viewed as l copies of an n-dimensional subspace of C
N . Let

Sn ∈ C
N×n be a matrix whose columns form an orthonormal basis of this

n-dimensional subspace of C
N , and set

Vn :=

⎡⎢⎢⎢⎢⎢⎢⎣

Sn 0 0 · · · 0
0 Sn 0 · · · 0

0 0
. . .

. . .
...

...
...

. . .
. . . 0

0 0 · · · 0 Sn

⎤⎥⎥⎥⎥⎥⎥⎦ . (8.74)

From the above structure of the n-dimensional subspace Kn

(
M,R

)
, it follows

that Vn satisfies the condition (8.56). Furthermore, the matrix Vn is of the
form (8.44). Thus, projected models generated with Vn are Padé-type models
and preserve higher-order structure.

In the remainder of this paper, we assume that Vn are matrices given
by (8.73) in the case of special second-order systems, respectively (8.74) in
the case of higher-order systems, and we consider the corresponding structure-
preserving reduced-order models with data matrices given by (8.58).

8.7 Higher Accuracy in the Hermitian Case

For the structure-preserving Padé-type models introduced in Subsection 8.6.4,
the result of Theorem 8.6.1 can be improved further, provided the underlying
special second-order or higher-order linear dynamical system is Hermitian,
and the expansion point s0 is real, i.e.,

s0 ∈ R. (8.75)

More precisely, in the Hermitian case, the Padé-type models obtained via
Vn match 2j(n) moments, instead of just j(n) in the general case; see Theo-
rem 8.7.2 below. We remark that for the special case of real symmetric second-
order systems and expansion point s0 = 0, this result can be traced back
to [SC91].

In this section, we first give an exact definition of Hermitian special second-
order systems and higher-order systems, and then we prove the stronger
moment-matching property stated in Theorem 8.7.2.

8.7.1 Hermitian Special Second-Order Systems

We say that a special second-order system (8.17) is Hermitian if the matrices
in (8.17) and (8.19), respectively (8.20), satisfy the following properties:
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L = BH , P0 = PH
0 , P1 = PH

1 , F1 = F2, G = GH . (8.76)

Recall that RCL circuits are described by special second-order systems of the
form (8.14) with real matrices defined in (8.15). Clearly, these systems are
Hermitian.

We distinguish the two cases (8.19) and (8.20). First assume that P−1 is
of the form (8.19). Recall that the data matrices of the equivalent first-order
formulation (8.33) are defined in (8.30) in this case. Using (8.75), (8.76),
and (8.19), one readily verifies that the data matrices (8.30) satisfy the rela-
tions

J
(
s0 E − A

)
=
(
s0 E − A

)HJ , J E = E J , J = JH ,

LH = J B,
(8.77)

where

J :=

[
IN 0
0 −G

]
.

Since the reduced-order model is structure-preserving, the data matrices (8.58)
satisfy analogous relations. More precisely, we have

Jn

(
s0 En −An

)
=
(
s0 En −An

)HJn, Jn En = En Jn, Jn = JH
n ,

LH
n = Jn Bn,

(8.78)

where

Jn :=

[
In 0
0 −Gn

]
.

Now assume that P−1 is of the form (8.20). Recall that the data matri-
ces of the equivalent first-order formulation (8.33) are defined in (8.31) in
this case. Using (8.75), (8.76), and (8.20), one readily verifies that the data
matrices (8.31) again satisfy the relations (8.77), where now

J :=

[
IN 0
0 −IN0

]
.

Furthermore, since the reduced-order model is structure-preserving, the data
matrices (8.58) satisfy the relations (8.78), where

Jn :=

[
In 0
0 −In

]
.

8.7.2 Hermitian Higher-Order Systems

We say that a higher-order system (8.21) is Hermitian if the matrices in (8.21)
satisfy the following properties:

Pi = PH
i , 0 ≤ i ≤ l, L0 = BH , Lj = 0, 1 ≤ j ≤ l − 1. (8.79)
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In this case, we define matrices

P̂j :=

l−j∑
i=0

si
0Pj+i, j − 0, 1, . . . , l,

and set

J :=

⎡⎢⎢⎢⎢⎢⎢⎣

I −s0I 0 · · · 0

0 I −s0I
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 I −s0I
0 0 · · · 0 I

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

P̂1 P̂2 · · · P̂l−1 I

P̂2 . .
.

. .
.

P̂l 0
... . .

.
. .

.
0

...

P̂l−1 . .
.

. .
. ...

...

P̂l 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (8.80)

Note that, in view of (8.79), we have

P̂j = P̂H
j , j = 0, 1, . . . , l. (8.81)

Using (8.79)–(8.81), one can verify that the data matrices A, E , B, L given
in (8.32) satisfy the following relations:

J
(
s0 E − A

)
=
(
s0 E − A

)HJ , J E = EHJ , LH = J B. (8.82)

Since the reduced-order model is structure-preserving, the data matrices (8.58)
satisfy the same relations. More precisely, we have

Jn

(
s0 En −An

)
=
(
s0 En −An

)HJn, Jn En = EH
n Jn,

LH
n = Jn Bn,

(8.83)

where Jn is defined in analogy to J .

8.7.3 Key Relations

Our proof of the enhanced moment-matching property in the Hermitian case
is based on some key relations that hold true for both special second-order
and higher-order systems. In this subsection, we state these key relations.

Recall the definition of the matrix M in (8.48). The relations (8.77), re-
spectively (8.82), readily imply the following identity:

MHJ = J E
(
s0 E − A

)−1
. (8.84)

It follows from (8.84) that

(
MH

)i J = J
(
E
(
s0 E − A

)−1
)i

, i = 0, 1, . . . . (8.85)
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Similarly, the relations (8.78), respectively (8.83), imply

MH
n Jn = Jn En

(
s0 En −An

)−1
.

It follows that(
MH

n

)i J = Jn

(
En

(
s0 En −An

)−1
)i

, i = 0, 1, . . . . (8.86)

Also recall from (8.77), respectively (8.82), that

LH = J B, (8.87)

and from (8.78), respectively (8.83), that

LH
n = Jn Bn. (8.88)

Finally, one readily verifies the following relation:

VH
n J E Vn = Jn En. (8.89)

8.7.4 Matching Twice as Many Moments

In this subsection, we present our enhanced version of Theorem 8.6.1 for the
case of Hermitian special second-order or higher-order systems.

First, we establish the following proposition.

Proposition 8.7.1. Let n = n(j) be of the form (8.54). Then, the data ma-
trices (8.58) of the structure-preserving Padé-type model satisfy

LMi Vn = Ln M
i
n for all i = 0, 1, . . . , j. (8.90)

Proof. Recall that Ln = LVn. Thus (8.90) holds true for i = 0.
Let 1 ≤ i ≤ j. In view of (8.85), we have

(
MH

)i J = J
(
E
(
s0 E − A

)−1
)i

.

Together with (8.87), it follows that

(
MH

)i LH =
(
MH

)i J B = J
(
E
(
s0 E − A

)−1
)i

B.

Since
(
s0 E − A

)−1B = R, it follows that

(
MH

)i LH = J E
((
s0 E − A

)−1E
)i−1

R = J EMi−1R.

Using (8.62) (with i replaced by i− 1), (8.89), (8.86), and (8.88), we obtain
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VH
n

(
MH

)iLH = VH
n J E

(
Mi−1R

)
= VH

n J E VnMi−1
n Rn

=
(
VH

n J E Vn

)(
Mi−1

n Rn

)
= Jn EnMi−1

n Rn

= Jn EnMi−1
n

(
s0 E − A

)−1Bn

= Jn

(
En

(
s0 E − A

)−1
)i

Bn

=
(
MH

n

)iJn Bn =
(
MH

n

)iLH
n .

Thus the proof is complete.

The following theorem contains the main result of this section.

Theorem 8.7.2. Let n = n(j) be of the form (8.54). In the Hermitian case,
the structure-preserving Padé-type model defined by the data matrices (8.58)
satisfies:

Hn(s) = H(s) +O
(
(s− s0)

2j(n)
)
. (8.91)

Proof. Let j = j(n). We need to show that

LMiR = cnMi
nRn for all i = 0, 1, . . . , 2j − 1. (8.92)

By (8.62) and (8.90), we have

LMi1+i2 R =
(
LMi1

)(
Mi2 R

)
=
(
LMi1

)(
VnMi2

n Rn

)
=
(
LMi1 Vn

)(
Mi2

n Rn

)
=
(
LnMi1

n

)(
Mi2

n Rn

)
= LnMi1+i2

n Rn

for all i1 = 0, 1, . . . , j − 1 and i2 = 0, 1, . . . , j. This is just the desired rela-
tion (8.92), and thus the proof is complete.

8.8 The SPRIM Algorithm

In this section, we apply the machinery of structure-preserving Padé-type
reduced-order modeling to the class of Hermitian special second-order systems
that describe RCL circuits.

Recall from Section 8.2 that a first-order formulation of RCL circuit equa-
tions is given by (8.10) with data matrices defined in (8.11). Here, we consider
first-order systems (8.10) with data matrices of the slightly more general form

A =

[
−P0 −F
FH 0

]
, E =

[
P1 0
0 G

]
, B =

[
B
0

]
. (8.93)
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Here, it is assumed that the subblocks P0, P1, and B have the same number
of rows, and that the subblocks of A and E satisfy P0  0, P1  0, and G ! 0.
Note that systems (8.10) with matrices (8.93) are in particular Hermitian.
Furthermore, the transfer function of such systems is given by

H(s) = BH
(
s E − A

)−1B.

The PRIMA algorithm [OCP97, OCP98] is a reduction technique for first-
order systems (8.10) with matrices of the form (8.93). PRIMA is a projec-
tion method that uses suitable basis matrices for the block-Krylov subspaces
Kn

(
M,R

)
; see [Fre99]. More precisely, let V̂n be any matrix satisfying (8.70)

and (8.71). The corresponding n-th PRIMA model is then given by the pro-
jected data matrices

Ân := V̂H
n Â V̂n, Ên := V̂H

n Ê V̂n, B̂n := V̂H
n B̂.

The associated transfer function is

Ĥn(s) = B̂H
n

(
s Ên − Ân

)−1B̂n.

For n of the form (8.54), the PRIMA transfer function satisfies

Ĥ(s) = H(s) +O
(
(s− s0)

j(n)
)
. (8.94)

Recently, we introduced the SPRIM algorithm [Fre04a] as a structure-
preserving and more accurate version of PRIMA. SPRIM employs the matrix
Vn obtained from V̂n via the construction (8.72) and (8.73). The corresponding
n-th SPRIM model is then given by the projected data matrices

An := VH
n AVn, En := VH

n E Vn, Bn := VH
n B.

The associated transfer function is

Hn(s) = BH
n

(
s En −An

)−1Bn.

In view of Theorem 8.7.2, we have

H(s) = H(s) +O
(
(s− s0)

2j(n)
)
,

which suggests that SPRIM is “twice” as accurate as PRIMA.
An outline of the SPRIM algorithm is as follows.

Algorithm 1 (SPRIM algorithm for special second-order systems)

• Input: matrices

A =

[
−P0 −F
FH 0

]
, E =

[
P1 0
0 G

]
, B =

[
B
0

]
,

where the subblocks P0, P1, and B have the same number of rows, and the
subblocks of A and E satisfy P0  0, P1  0, and G ! 0;
an expansion point s0 ∈ R.
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• Formally set

M = (s0 E − A)
−1 C, R = (s0 E − A)

−1 B.

• Until n is large enough, run your favorite block Krylov subspace method
(applied to M and R) to construct the columns of the basis matrix

V̂n =
[
v1 v2 · · · vn

]
of the n-th block Krylov subspace Kn

(
M,R

)
, i.e.,

span V̂n = Kn

(
M,R

)
.

• Let

V̂n =

[
V1

V2

]
be the partitioning of V̂n corresponding to the block sizes of A and E.

• Set

P̃0 = V H
1 P1V1, F̃ = V H

1 FV2, P̃1 = V H
1 P1V1, G̃ = V H

2 GV2,

B̃ = V H
1 B,

and

An =

[
−P̃0 −F̃
F̃H 0

]
, En =

[
P̃1 0

0 G̃

]
, Bn =

[
B̃
0

]
, (8.95)

• Output: the reduced-order model H̃n in first-order form

Hn(s) = BH
n

(
s En −An

)−1Bn (8.96)

and in second-order form

Hn(s) = B̃H

(
s P̃1 + P̃0 +

1

s
F̃ G̃−1F̃H

)−1

B̃. (8.97)

We remark that the main computational cost of the SPRIM algorithm is
running the block Krylov subspace method to obtain V̂n. This is the same as
for PRIMA. Thus generating the PRIMA reduced-order model Ĥn and the
SPRIM reduced-order model Hn involves the same computational costs.

On the other hand, when written in first-order form (8.96), it would ap-
pear that the SPRIM model has state-space dimension 2n, and thus it would
be twice as large as the corresponding PRIMA model. However, unlike the
PRIMA model, the SPRIM model can always be represented in special second-
order form (8.97); see Subsection 8.5.3. In (8.97), the matrices P̃1, P̃0, and
P̃−1 := F̃ G̃−1F̃H are all of size n × n, and the matrix B̃ is of size n × m.
These are the same dimensions as in the PRIMA model (8.94). Therefore,
the SPRIM model Hn (written in second-order form (8.97)) and of the corre-
sponding PRIMA model Ĥn indeed have the same state-space dimension n.
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8.9 Numerical Examples

In this section, we present results of some numerical experiments with the
SPRIM algorithm for special second-order systems. These results illustrate the
higher accuracy of the SPRIM reduced-order models vs. the PRIMA reduced-
order models.

8.9.1 A PEEC Circuit

The first example is a circuit resulting from the so-called PEEC discretiza-
tion [Rue74] of an electromagnetic problem. The circuit is an RCL network
consisting of 2100 capacitors, 172 inductors, 6990 inductive couplings, and
a single resistive source that drives the circuit. See Chapter 22 for a more
detailed description of this example. The circuit is formulated as a 2-port.
We compare the PRIMA and SPRIM models corresponding to the same di-
mension n of the underlying block Krylov subspace. The expansion point
s0 = 2π× 109 was used. In Figure 8.1, we plot the absolute value of the (2, 1)
component of the 2 × 2-matrix-valued transfer function over the frequency
range of interest. The dimension n = 120 was sufficient for SPRIM to match
the exact transfer function. The corresponding PRIMA model of the same
dimension, however, has not yet converged to the exact transfer function in
large parts of the frequency range of interest. Figure 8.1 clearly illustrates the
better approximation properties of SPRIM due to matching of twice as many
moments as PRIMA.

8.9.2 A Package Model

The second example is a 64-pin package model used for an RF integrated cir-
cuit. Only eight of the package pins carry signals, the rest being either unused
or carrying supply voltages. The package is characterized as a 16-port com-
ponent (8 exterior and 8 interior terminals). The package model is described
by approximately 4000 circuit elements, resistors, capacitors, inductors, and
inductive couplings. See Chapter 22 for a more detailed description of this
example and its mathematical model.

We again compare the PRIMA and SPRIM models corresponding to the
same dimension n of the underlying block Krylov subspace. The expansion
point s0 = 5π × 109 was used. In Figure 8.2, we plot the absolute value of
one of the components of the 16×16-matrix-valued transfer function over the
frequency range of interest. The state-space dimension n = 80 was sufficient
for SPRIM to match the exact transfer function. The corresponding PRIMA
model of the same dimension, however, does not match the exact transfer
function very well near the high frequencies; see Figure 8.3.
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Fig. 8.3. The package model, high frequencies

8.9.3 A Mechanical System

Exploiting the equivalence (see, e.g., [LBEM00]) between RCL circuits and
mechanical systems, both PRIMA and SPRIM can also be applied to reduced-
order modeling of mechanical systems. Such systems arise for example in
the modeling and simulation of MEMS devices. In Figure 8.4, we show a
comparison of PRIMA and SPRIM for a finite-element model of a shaft. The
expansion point s0 = π×103 was used. The dimension n = 15 was sufficient for
SPRIM to match the exact transfer function in the frequency range of interest.
The corresponding PRIMA model of the same dimension, however, has not
converged to the exact transfer function in large parts of the frequency range
of interest. Figure 8.4 again illustrates the better approximation properties of
SPRIM due to the matching of twice as many moments as PRIMA.

8.10 Concluding Remarks

We have presented a framework for constructing structure-preserving Padé-
type reduced-order models of higher-order linear dynamical systems. The
approach employs projection techniques and Krylov-subspace machinery for
equivalent first-order formulations of the higher-order systems. We have shown
that in the important case of Hermitian higher-order systems, our structure-
preserving Padé-type model reduction is twice as accurate as in the general
case. Despite this higher accuracy, the models produced by our approach are
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Fig. 8.4. A mechanical system

still not optimal in the Padé sense. This can be seen easily by comparing
the degrees of freedom of general higher-order reduced models of prescribed
state-space dimension, with the number of moments matched by the Padé-
type models generated by our approach. Therefore, structure-preserving true
Padé model reduction remains an open problem.

Our approach generates reduced models in higher-order form via equiv-
alent first-order formulations. It would be desirable to have algorithms that
construct the same reduced-order models in a more direct fashion, without
the detour via first-order formulations. Another open problem is the most
efficient and numerically stable algorithm to construct basis vectors of the
structured Krylov subspaces that arise for the equivalent first-order formu-
lations. Some related work on this problem is described in the recent report
[Li04], but many questions remain open. Finally, the proposed approach is a
projection technique, and as such, it requires the storage of all the vectors
used in the projection. This clearly becomes an issue for systems with very
large state-space dimension.
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approximation via the Lanczos process. IEEE Trans. Computer-Aided
Design, 14:639–649, 1995.

[Fre97] R. W. Freund. Circuit simulation techniques based on Lanczos-type al-
gorithms. In C. I. Byrnes, B. N. Datta, D. S. Gilliam, and C. F. Martin,
editors, Systems and Control in the Twenty-First Century, pages 171–
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