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Summary. This paper presents new recursive projection techniques to compute
reduced order models of time-varying linear systems. The methods produce a low-
rank approximation of the Gramians or of the Hankel map of the system and are
mainly based on matrix operations that can exploit sparsity of the model. We show
the practical relevance of our results with a few benchmark examples.

5.1 Introduction

The basic idea of model reduction is to represent a complex linear dynamical
system by a much simpler one. This may refer to many different techniques,
but in this paper we focus on projection-based model reduction of linear sys-
tems. It can be shown in the time-invariant case [GVV03] that projection
methods allow to generate almost all reduced order models and that they are
in that sense quite general. Here we construct the projection based on the
dominant invariant subspaces of products of the Gramians, which are energy
functions for ingoing and outgoing signals of the system. When the system ma-
trices are large and sparse, the Gramians are nevertheless dense and efficient
methods will therefore have to approximate these dominant spaces without
explicitly forming the Gramians themselves.

Balanced Truncation [Moo81] is probably the most popular projection-
based method. This is mainly due to its simplicity: the construction is based
on simple linear algebra decompositions and there is no need to first choose
a set of essential parameters. Moreover an a priori upper bound is given for
the H∞-norm of the error between the original plant and the reduced-order
model [Enn81].

An important issue in model reduction is the choice of the order of the ap-
proximation, since it affects the quality of the approximation. One would like
to be able to choose this during the construction of the reduced order model,
i.e. without having to evaluate in advance quality measures like the Hankel
singular values (computing them all would become prohibitive for large-scale
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systems). The use of iterative methods seem appealing in this context since
they may offer the possibility to perform order selection during the computa-
tion of the projection spaces and not in advance.

The approach that we propose in this paper is iterative and applies as well
to time-varying systems. Earlier work on model reduction of time-varying
systems was typically based on the explicit computation of the time-varying
solution of a matrix difference (or differential) equation [SSV83, IPM92, SR02]
and such results were mainly used to prove certain properties or bounds of the
reduced order model. They were in other words not presented as an efficient
computational tool. We propose to update at each step two sets of basis
vectors that allow to identify the dominant states. The updating equations
are cheap since they only require sparse matrix vector multiplications. The
ideas are explained in Chapter 24 and [CV03a, CV03b, Cha03], to which we
refer for proofs and additional details. Another recent approach is to use fast
matrix decomposition methods on matrices with particular structure such as
a Hankel structure. Such an approach is presented in [DV98] and could be
competitive with the methods presented here.

5.2 Linear Time-Varying Systems

Linear discrete time-varying systems are described by systems of difference
equations:

S :

{
xk+1 = Akxk +Bkuk

yk = Ckxk +Dkuk
(5.1)

with input uk ∈ R
m, state xk ∈ R

N and output yk ∈ R
p. In this paper

we will assume m, p � N , the input sequence to be square-summable (i.e.∑∞
−∞ uT

k uk ≤ ∞), Dk = 0, and the matrices {Ak}∞−∞, {Bk}∞−∞, and {Ck}∞−∞
to be bounded for all k. Using the recurrence (5.1) over several time steps,
one obtains the state at step k in function of past inputs over the interval
[ki, k − 1]:

xk = Φ(k, ki)xki
+

k−1∑
i=ki

Φ(k, i+ 1)Biui

where Φ(k, ki) := Ak−1 . . . Aki
is the discrete transition matrix over time

period [ki, k − 1]. The transition matrix has the following properties:{
Φ(k2, k0) = Φ(k2, k1)Φ(k1, k0), k0 ≤ k1 ≤ k2

Φ(k, k) = IN ∀k.

We will assume the time-varying system S to be asymptotically stable, mean-
ing

∀k ≥ ki ‖Φ(k, ki)‖ ≤ c · a(k−ki), with c > 0, 0 < a < 1.

The Gramians over intervals [ki, k − 1] and [k, kf ] are then defined as follows:
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Gc(k) =
k−1∑
i=ki

Φ(k, i+ 1)BiB
T
i Φ

T (k, i+ 1),

Go(k) =

kf∑
i=k

ΦT (i, k)CT
i CiΦ(i, k),

where ki may be −∞ and kf may be +∞. It follows from the identities

Φ(k1, k2) = Φ(k1, k2+1)Ak2
and Φ(k1+1, k2) = Ak1

Φ(k1, k2),

where k1 ≥ k2, that these Gramians can also be obtained from the Stein
recurrence formulas:

Gc(k + 1) = AkGc(k)A
T
k +BkB

T
k and Go(k) = AT

k Go(k + 1)Ak + CT
k Ck,

(5.2)
with respective initial conditions

Gc(ki) = 0, Go(kf + 1) = 0.

Notice that the first equation evolves “forward” in time, while the second one
evolves “backward” in time.

These Gramians can also be related to the input/output map in a partic-
ular window [ki, kf ]. Let us at each instant k (ki < k < kf ) restrict inputs
to be nonzero in the interval [ki, k) (i.e. “the past”) and let us consider the
outputs in the interval [k, kf ] (i.e. the “future”). The state-to-outputs and
inputs-to-state maps on this window are then given by :

⎡⎢⎢⎢⎣
yk

yk+1

...
ykf

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

Y

=

⎡⎢⎢⎢⎣
Ck

Ck+1Ak

...
Ckf

Φ(kf , k)

⎤⎥⎥⎥⎦ [Bk−1 Ak−1Bk−2 . . . Φ(k, ki + 1)Bki

]
⎡⎢⎢⎢⎣
uk−1

uk−2

...
uki

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

U︸ ︷︷ ︸
x(k)

.

The finite dimensional Hankel matrix H(kf , k, ki) mapping U to Y is defined
as
H(kf , k, ki) =⎡⎢⎢⎢⎣

CkBk−1 CkAk−1Bk−2 . . . CkΦ(k, ki + 1)Bki

Ck+1AkBk−1 Ck+1AkAk−1Bk−2 Ck+1Φ(k + 1, ki + 1)Bki

...
. . .

...
Ckf

Φ(kf , k)Bk−1 Ckf
Φ(kf , k − 1)Bk−2 . . . Ckf

Φ(kf , ki + 1)Bki

⎤⎥⎥⎥⎦ .
Notice that this matrix has at most rank N since x(k) ∈ R

N and that it
factorizes as
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H(kf , k, ki) =

⎡⎢⎢⎢⎣
Ck

Ck+1Ak

...
Ckf

Φ(kf , k)

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

O(kf ,k)

[
Bk−1 Ak−1Bk−2 . . . Φ(k, ki + 1)Bki

]︸ ︷︷ ︸
C(k,ki)

(5.3)

where O(kf , k) and C(k, ki) are respectively the observability and the control-
lability matrices at instant k over the finite window [ki, kf ]. They satisfy the
recurrences

O(kf , k) =

[
Ck

O(kf , k + 1)Ak

]
, C(k + 1, ki) =

[
Bk AkC(k, ki)

]
(5.4)

evolving forward and backward in time, respectively. From these matrices one
then constructs the Gramians and Hankel map via the identities

H(kf , k, ki) = O(kf , k)C(k, ki),

Gc(k) = C(k, ki)C(k, ki)
T ,

Go(k) = O(kf , k)
TO(kf , k).

Notice that in the time-invariant case the above matrices become function
only of the differences k − ki and kf − k. In this case one typically chooses
both quantities equal to τ := (kf − ki)/2, i.e. half the considered window
length. In the time-invariant case it is also typical to consider the infinite
window case, i.e. where kf = −ki = ∞.

5.3 Balanced Truncation

The method of Balanced Truncation is a very popular technique of model
reduction for stable linear time-invariant systems because it has several ap-
pealing properties related to sensitivity, stability and approximation error
[Moo81, ZDG95]. The extension to time-varying systems is again based on
the construction of a new state-space coordinate system in which both Grami-
ans are diagonal and equal [SSV83, VK83, SR02]. This is always possi-
ble when the system is uniformly controllable and observable over the con-
sidered interval [SSV83, VK83], meaning that the Gramians are uniformly
bounded and have uniformly bounded inverses. It is then known that there
exists a time-varying state space transformation Tk such that the Gramians
Ĝc(k) := T−1

k Gc(k)T
−T
k and Ĝo(k) := TT

k Go(k)Tk of the transformed system
{T−1

k+1AkTk, T
−1
k+1Bk, CkTk}, satisfy

T−1
k Gc(k)Go(k)Tk = Ĝc(k)Ĝo(k) = Σ2(k), 0 < Σ(k) <∞I.

One then partitions the matrix Σ(k) into diag{Σ+(k), Σ−(k)} where Σ+(k)
contains the n largest singular values of Σ(k) and Σ−(k) the smallest ones. In
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that coordinate system the truncated system {Âk, B̂k, Ĉk} is just the system
corresponding to the leading n columns and rows of the transformed system
{T−1

k+1AkTk, T
−1
k+1Bk, CkTk}. If we denote the first n columns of Tk by Xk and

the first n rows of T−1
k by Y T

k then Y T
k Xk = In and

{Âk, B̂k, Ĉk} := {Y T
k+1AkXk, Y

T
k+1Bk, CkXk}. (5.5)

If for all k there is also a gap between the singular values of Σ+(k) and those
of Σ−(k), then similar properties to the time-invariant case can be obtained,
namely asymptotic stability and uniform controllability and observability of
the truncated model [SSV83] and an error bound for the truncation error
between both input/output maps in terms of the neglected singular values
Σ−(k) or of related matrix inequalities (see [LB03, SR02] for a more detailed
formulation).

Rather than computing the complete transformations Tk, one only needs
to compute the matrices Xk, Yk ∈ R

N×n whose columns span the “dominant”
left and right eigenvector spaces of the product Gc(k)Go(k) and normalize
them such that Y T

k Xk = In to obtain the reduced model as given above. One
can show that both Gramians are no longer required to be non-singular, and
this can therefore be applied as well to the finite window case. In general, one
can not even guarantee the gap property of the eigenvalues of the product of
the Gramians.

In order to reduce the complexity of the model reduction procedure one
can try to approximate the dominant left invariant subspaces Xk and Yk

by an iterative procedure which possibly exploits the sparsity of the original
model {Ak, Bk, Ck}. The projection matrices will hopefully be close to in-
variant subspaces and one can hope to derive bounds for the approximation
error between both systems. Such a procedure is explained in the next two
sections and is inspired by efficient approximation techniques found in the
time-invariant case [GSA03]. Bounds will be derived for the time-invariant
version of this algorithm.

5.4 Recursive Low-Rank Gramian Algorithm (RLRG)

Large scale system models {Ak, Bk, Ck} are often sparse and since the con-
struction of a good approximate time-varying system model {Âk, B̂k, Ĉk} re-
quires an approximation at every time step k it seems crucial to find a method
that is of low complexity at every time step and therefore exploits the sparsity
of the original model.

If the Gramians Gc(k) and Go(k) of the system {Ak, Bk, Ck} were of rank
n << N , for all k ∈ [ki, kf ] then the system would be actually of degree n.
The idea is thus to replace

Gc(k) = C(k, ki)C(k, ki)
T and Go(k) = O(kf , k)

TO(kf , k)



136 Younes Chahlaoui and Paul Van Dooren

by semi-definite rank nk approximations

Pk := SkS
T
k and Qk := RkR

T
k ,

respectively (for simplicity, we will assume nk constant and equal to n). If
such a factorized approximation is available, then

Gc(k)Go(k) ≈ SkS
T
k RkR

T
k

and the right hand side has clearly Xk := Sk as right invariant subspace,
and Yk := Rk as left invariant subspace. Normalizing Xk and Yk such that
Y T

k Xk = In will then yield an appropriate projected system (5.5) at each step
k.

Note that the Gramian recurrences (5.2) evolve forward and backward in
time and so will the recurrences for the approximations. We introduce the
indices

l := ki + i, r := kf + 1− i

to simplify the indexing of the low-rank updating equations. At step i we
compute the singular value decompositions of the matrices

[
Bl−1 Al−1Sl−1

]
and

[
Cr

RT
r+1Ar

]
,

which yield transformation matrices U :=
[
U+ U−

]
and V :=

[
V+ V−

]
defin-

ing [
Sl Ec(l)

]
:=

[
Bl−1 Al−1Sl−1

] [
V+ V−

]
, (5.6)[

Rr Eo(r)
]

:=
[
CT

r AT
r Rr+1

] [
U+ U−

]
, (5.7)

where V+ ∈ R
(m+n)×n and U+ ∈ R

(p+n)×n. These iterations are initialized at
step i = 0 with

Ski
= 0 and Rkf+1 = 0.

A MATLAB-like procedure corresponding to these recurrences would be as
follows.

Algorithm RLRG
l = ki; r = kf + 1; τ = r − l − 1;Sl = 0;Rr = 0;
for i = 1 : τ ;

l = l + 1;M =
[
Bl−1 Al−1Sl−1

]
;

[U,Σ, V ] = svd(M, 0);Sl = M ∗ V (:, 1 : n);
r = r − 1;M =

[
CT

r AT
r Rr+1

]
;

[V,Σ,U ] = svd(M, 0);Rr = M ∗ U(:, 1 : n);
end

At each iteration, we need to multiply Al−1Sl−1 and RT
r+1Ar (which re-

quires 4Nnα flops, where α is the average number of nonzero elements in
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each row or column of the sparse matrices Ai) and perform the transforma-
tions U and V (which require O(N(n + m)2) flops and O(N(n + p)2) flops,
respectively [GV96]). When N � n > m, p, α this is altogether linear in the
largest dimension N . Notice that the matrices Sl−1 and Rr+1 are multiplied
at each step by time-varying matrices, which seems to preclude adaptive SVD
updating techniques such as those used in [GSA03].

At each iteration step, Ec(l) and Eo(r) are neglected, which corresponds
to the best rank n approximations at that step. But we would like to bound
the global errors

Ec(l) := Gc(l)−Pl = Gc(l)−SlS
T
l , and Eo(r) := Go(r)−Qr = Go(r)−RrR

T
r .

The following lemma [CV02] is proven in [Cha03] and leads to such bounds.

Lemma 5.4.1. At each iteration, there exists orthogonal matrices

V (i) ∈ R
(n+im)×(n+im) and U (i) ∈ R

(n+ip)×(n+ip),

satisfying:

C(l, ki)V
(i) =

[
Sl Ec(l) Al−1Ec(l − 1) . . . Φ(l, ki + 1)Ec(ki + 1)

]
,

and

O(kf , r)
TU (i) =

[
Rr Eo(r) A

T
r Eo(r + 1) . . . Φ(kf , r)

TEo(kf )
]
,

where Ec(i) and Eo(i) are the neglected parts at each iteration.

The above identities then lead to expressions for the errors:

Ec(l) =

i∑
j=1

Φ(l, ki + j)Ec(ki + j)Ec(ki + j)TΦ(l, ki + j)T , (5.8)

Eo(r) =

i−1∑
j=0

Φ(kf − j, r)TEo(kf − j)Eo(kf − j)TΦ(kf − j, r). (5.9)

It is shown in [CV02, Cha03] that the norms of Ec(l) and Eo(r) can then be
bounded in terms of

ηc(l) = max
ki+1≤j≤l

‖Ec(j)‖2, and ηo(r) = max
r≤j≤kf

‖Eo(j)‖2,

which we refer to as the “noise” levels ηc and ηo of the recursive singular value
decompositions (5.6,5.7).

Theorem 5.4.2. If the system (5.1) is stable, i.e.,

‖Φ(k, k0)‖ ≤ c · a(k−k0), with c > 0, 0 < a < 1,

then

‖Ec(l)‖2 ≤
η2

c (l)c2

1− a2
, and ‖Eo(r)‖2 ≤

η2
o(r)c2

1− a2
.
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5.4.1 Time-Invariant Case

It is interesting to note that for linear time-invariant systems {A,B,C}, the
differences Ec(l) and Eo(r) remain bounded for large i, and this shows the
strength of Theorem 5.4.2. We then have the following result, shown in [CV02,
Cha03].

Theorem 5.4.3. Let P and Q be the solutions of

P = APAT + I, and Q = ATQA+ I,

then
‖Ec(l)‖2 ≤ η2

c (l)‖P‖2 ≤ η2
c (l) κ(A)2

1−ρ(A)2 ,

‖Eo(r)‖2 ≤ η2
o(r)‖Q‖2 ≤ η2

o(r) κ(A)2

1−ρ(A)2 ,
(5.10)

‖Gc(l)Go(r)− PlQr‖2 ≤
κ(A)2

1− ρ(A)2
(
η2

c (l)‖Go(r)‖2 + η2
o(r)‖Gc(l)‖2

)
, (5.11)

where κ(A) is the condition number and ρ(A) is the spectral radius of A.

In [GSA03], bounds very similar to (5.10) were obtained but the results in
that paper only apply to the time-invariant case. The bound (5.11) says that
if one Gramian is not well approximated, the product of the Gramians, which
is related to the Hankel singular values, will not be well approximated. Notice
that this only makes sense when l = r. In the time-invariant case one can also
estimate the convergence to the infinite horizon Gramians, which we denote
by Gc and Go and are defined by he identities

Gc = AGcA
T +BBT , and Go = ATGoA+ CTC.

Theorem 5.4.4. At each step i of (5.6,5.7) we have the following error
bounds

‖Pi−1 − Gc‖2 ≤ ‖Pi − Pi−1 + Ec(i)E
T
c (i)‖2‖P‖2

≤ ‖Pi − Pi−1 + Ec(i)E
T
c (i)‖2

κ(A)2

1− ρ(A)2
,

‖Qi+1 − Go‖2 ≤ ‖Qi −Qi+1 + Eo(i)E
T
o (i)‖2‖Q‖2

≤ ‖Qi −Qi+1 + Eo(i)E
T
o (i)‖2

κ(A)2

1− ρ(A)2
,

where κ(A) is the condition number and ρ(A) is the spectral radius of A.

Proof. We prove the result only for Pi−1 since both results are dual. Start
from

Pi + Ec(i)E
T
c (i) = APi−1A

T +BBT ,

to obtain
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(Gc − Pi−1) = A(Gc − Pi−1)A
T + (Pi − Pi−1 + Ec(i)Ec(i)

T ).

Use the solution P of the linear system P = APAT + I and its growth factor
κ(A)2

1−ρ(A)2 to obtain from there the desired bound. �

This theorem says that when convergence is observed, we can bound the
accuracy of the current estimates of the Gramians in terms of quantities com-
puted in the last step only. Using very different arguments, is was mentioned
in [Cha03] that this in fact holds approximately for the time-varying case as
well.

5.4.2 Periodic Case

The simplest class of time-varying models is the class of periodic systems.
This is because every K-periodic system,

{AK+k, BK+k, CK+k} = {Ak, Bk, Ck}

is in fact equivalent [MB75] to K lifted time-invariant systems:{
x̂

(h)
k+1 = Â(h)x̂

(h)
k + B̂(h)û

(h)
k

ŷ
(h)
k = Ĉ(h)x̂

(h)
k + D̂(h)û

(h)
k

(5.12)

where the state x̂
(h)
k := xh+kK evolves over K time steps with state transition

matrix Â(h) := Φ(h + K,h), where û
(h)
k and ŷ

(h)
k are the stacked input and

output vectors:

û
(h)
k := [uT

h+kK , u
T
h+kK+1, . . . , u

T
h+kK+K−1]

T

ŷ
(h)
k := [yT

h+kK , y
T
h+kK+1, . . . , y

T
h+kK+K−1]

T

and where B̂(h), Ĉ(h) and D̂(h) are defined in terms of the matrices {Ak, Bk,
Ck} (see [MB75]). Obviously, there are K such time invariant liftings for
h = 1, . . . ,K, and each one has a transfer function. For such systems a theorem
similar to Theorem 5.4.3 was obtained in [CV02, Cha03].

Theorem 5.4.5. Let P and Q be the solutions of, respectively, P = ÃP ÃT +
IKN and Q = ÃTQÃ+ IKN , where

Ã :=

⎛⎜⎜⎝
0 . . . 0 AK

A1 0 . . . 0

0
. . .

. . .
...

0 . . . AK−1 0

⎞⎟⎟⎠ and
P := diag(P1, . . . , PK−1, PK)
Q := diag(Q1, . . . , QK−1, QK)

then



140 Younes Chahlaoui and Paul Van Dooren

‖Ec(l)‖2 ≤ η2
c (l)‖P‖2 ≤ η2

c (l)
κ(Ã)2

1− ρ(Ã)2
,

‖Eo(r)‖2 ≤ η2
c (r)‖Q‖2 ≤ η2

c (r)
κ(Ã)2

1− ρ(Ã)2
.

Using multirate sampling [TAS01], we constructed in [CV02] a time-
varying system model of period K = 2 and dimension N = 122 of the arm
of the CD player described in Chapter 24, Section 4 of this volume. We re-
fer to [CV02] for more details but we recall here some results illustrating
the convergence of the Gramian estimates Pk = SkS

T
k , which were chosen of

rank 20. Every two steps these should converge to the steady state solutions
corresponding to the even and odd infinite horizon controllability Gramians.

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

iteration 1 mod[K]
0 10 20 30 40

0

0.2

0.4

0.6

0.8

1

iteration 0 mod[K]

Fig. 5.1. ◦: cos(�(Sk, Sk−2)), ∗: cos(�(Sk, S∞)) for odd and even k

Since only the spaces matter and not the actual matrices, we show in
Figure 5.1 (left) the cosine of the canonical angle between the dominant sub-
space of odd iterations (k−2) and k, i.e. cos(�(Sk−2, Sk)), and the canonical
angle with the exact dominant subspace, denoted as S∞, of the controlla-
bility Gramian of the lifted LTI system (5.12), i.e. (cos(�(Sk, S∞)). This is
repeated in Figure 5.1 (right) for the even iterates. The results for the ob-
servability Gramians are similar and are not shown here. Figure 5.1 shows
the convergence and the accuracy of our algorithm. It can be seen that con-
vergence is quick and is well predicted by the errors performed in the last
updating steps.
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Fig. 5.2. –: full model, · · · : approx. errors (20 steps), -·- approx. errors (60 steps),
- - approx.errors (exact Gramian)

In Figure 5.2 we compare frequency responses of the time-invariant lifted
systems (5.12) for odd and even iterates. In each figure we give the amplitude
of the frequency response of the original model, the absolute errors in the
frequency response of the projected systems using projectors obtained after
20 steps and 60 steps, and the absolute errors in the frequency response of
the projected systems using the exact dominant subspace of the Gramians
of the lifted system. The graphs show that after 60 steps an approximation
comparable to Balanced Truncation is obtained.

5.5 Recursive Low-Rank Hankel Algorithm (RLRH)

The algorithm of the previous section yields an independent approximation
of the two Gramians. If the original system was poorly balanced, it often
happens that the approximation of the product of the two Gramians is far
less accurate than that of the individual Gramians. This will affect the quality
of the approximation of the reduced model since the product of the Gramians
plays an important role in the frequency domain error.

In [CV03a, CV03b] an algorithm is presented which avoids this problem.
The key idea is to use the underlying recurrences defining the time-varying
Hankel map
H(kf , k, ki) = O(kf , k)C(k, ki). Because the system order at each instant is
given by the rank of the Hankel matrix at that instant, it is a good idea to
approximate the system by approximating the Hankel matrix via a recursive
SVD performed at each step. The technique is very similar to that of the
previous section but now we perform at each step the singular value decom-
position of a product similar to the productsO(kf , k)C(k, ki). Consider indeed
the singular value decomposition of the matrix
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Cr

RT
r+1Ar

]
.
[
Bl−1 Al−1Sl−1

]
= UΣV T (5.13)

and partition U :=
[
U+ U−

]
, V :=

[
V+ V−

]
where U+ ∈ R

(p+n)×n and

V+ ∈ R
(m+n)×n. Define then[

Sl Ec(l)
]

:=
[
Bl−1 Al−1Sl−1

] [
V+ V−

]
, (5.14)[

Rr Eo(r)
]

:=
[
CT

r AT
r Rr+1

] [
U+ U−

]
. (5.15)

It then follows that [
RT

r

ET
o (r)

] [
Sl Ec(l)

]
=

[
Σ+ 0
0 Σ−

]
, (5.16)

where Σ− contains the neglected singular values at this step. For the initial-
ization at step i = 0 we use again

Ski
= 0 and Rkf+1 = 0

and iterate for i = 1, . . . , τ where τ := (kf − ki)/2 is the half interval length.
The approximate factorizations that one obtains are those indicated in Fig-
ure 5.3 and the corresponding MATLAB-like algorithm is now as follows.

Fig. 5.3. Submatrix sequence approximated by low rank approximations

Algorithm RLRH
l = ki; r = kf + 1; τ = (r − l − 1)/2;Sl = 0;Rr = 0;
for i = 1 : τ ;

l = l + 1;M =
[
Bl−1 Al−1Sl−1

]
; r = r − 1;N =

[
CT

r AT
r Rr+1

]
;

[U,Σ, V ] = svd(NTM);Sl = M ∗ V (:, 1 : n);Rr = N ∗ U(:, 1 : n);
end
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The amount of work involved in this algorithm is comparable to the earlier
algorithm. We need to form the products Al−1Sl−1 and RT

r+1Ar, which re-
quires 4Nnα flops. The construction of the left hand side of (5.13) requires an
additional 2N(n+m)(n+p) flops and the application of the transformations U
and V requires
O((p+ n)(m+ n)(2n+ p+m)) flops, and so the complexity of this algorithm
is O(N(p+ n)(m+ n)) for each iteration if N � n > m, p, α.

As before we have a lemma, shown in [CV03a, CV03b, Cha03], linking the
intermediate error matrices and the matrices O(kf , r) and C(l, ki).

Theorem 5.5.1. At each iteration, there exist orthogonal matrices V (i) ∈
R

(n+im)×(n+im) and U (i) ∈ R
(n+ip)×(n+ip) satisfying:

C(l, ki)V
(i) =

[
Sl Ec(l) Al−1Ce(l, ki + 1)

]
O(kf , r)

TU (i) =
[
Rr Eo(r) A

T
r Oe(kf , r + 1)

]
where Ec(l) and Eo(r) are the neglected parts at each iteration, and the ma-
trices Ce(j, ki) and Oe(kf , j) are defined as follows:

Ce(j, ki) :=
[
Ec(j − 1) . . . Φ(j − 1, ki)Ec(ki)

]
,

Oe(kf , j)
T :=

[
Eo(j) . . . Φ(kf , j)

TEo(kf )
]
.

As a consequence of this theorem we show in [CV03a, CV03b, Cha03] the
following result which yields an approximation of the original Hankel map
H(kf , k, ki).

Theorem 5.5.2. There exist orthogonal matrices V (τ) ∈ R
(n+τm)×(n+τm)

and
U (τ) ∈ R

(n+τp)×(n+τp) such that U (τ)TH(kf , k, ki)V
(τ) is equal to⎡⎣ RT

τ Sτ 0 RT
τ Aτ−1Ce(τ, ki)

0 ET
o (τ)Ec(τ) ET

o (τ)Aτ−1Ce(τ, ki)
Oe(kf , τ+1)AτSτ Oe(kf , τ+1)AτEc(τ) Oe(kf , τ+1)AτAτ−1Ce(τ, ki)

⎤⎦ .
This result enables us to evaluate the quality of our approximations by us-
ing the Hankel map without passing via the Gramians, which is exploited in
[CV03a, CV03b, Cha03] to obtain bounds for the error. Notice also that since
we are defining projectors for finite time windows, these algorithms could be
applied to linear time-invariant systems that are unstable. One can then not
show any property of stability for the reduced order model, but the finite
horizon Hankel map will at least be well approximated.

5.5.1 Time-Invariant Case

As for the Gramian based approximation, we can analyze the quality of this
approach in the time-invariant case. Since all matrices A, B and C are then
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constant, all Hankel maps are time-invariant as well and only the interval
width plays a role in the obtained decomposition. We can e.g. run the RLRH
algorithm on an interval [ki, kf ] = [−τ, τ ] for τ ∈ N and approximate the
Gramians Gc(0) and Go(0) of the original model by S0S

T
0 and R0R

T
0 , respec-

tively, at the origin of the symmetric interval [−τ, τ ]. The differences between
the approximate low-rank Gramians and the exact Gramians

Ec(0) := Gc(0)− P0, Eo(0) := Go(0)−Q0

then remain bounded for intervals of growing length 2τ , as indicated in the
following theorem ([CV03a, CV03b, Cha03]).

Theorem 5.5.3. Let P and Q be respectively the solutions of P = APAT +I,
and Q = ATQA+ I, then

‖Ec(0)‖2 ≤ η2
c‖P‖2 ≤ η2

c

κ(A)2

1− ρ(A)2
, ‖Eo(0)‖2 ≤ η2

o‖Q‖2 ≤ η2
o

κ(A)2

1− ρ(A)2

where ηc := max
−τ≤k≤0

‖Ec(k)‖2 and ηo := max
0≤k≤τ

‖Eo(k)‖2.

Similarly, we obtain an approximation of the Hankel map as follows (see
[CV03a, CV03b, Cha03]).

Theorem 5.5.4. Using the first n columns U
(0)
+ of U (0) and V

(0)
+ of V (0), we

obtain a rank n approximation of the Hankel map:

H(τ, 0,−τ)− U
(0)
+ RT

0 · S0V
(0)T
+ = Eh(0),

for which we have the error bound:

‖Eh(0)‖2 ≤
κ(A)√

1− ρ(A)2
max{ηc‖RT

0 A‖2, ηo‖AS0‖2}+
κ(A)2

1− ρ(A)2
ηoηc.

An important advantage of the RLRH method is that the computed pro-
jectors are independent of the coordinate system used to describe the original
system {A,B,C}. This can be seen as follows. When performing a state-space
transformation T we obtain a new system {Â, B̂, Ĉ} := {T−1AT, T−1B,CT}.
It is easy to see that under such transformations the updating equations of
Rr and Sl transform to R̂k = TTRk and Ŝl = T−1Sl, and this is preserved
by the iteration. One shows that the constructed projector therefore follows
the same state-space transformation as the system model. Therefore, the con-
structed reduced order model does not depend on whether or not one starts
with a balanced realization for the original system. For the RLRG method, on
the other hand, one can lose a lot of accuracy when using a poorly balanced
realization to construct a reduced order model.
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5.6 Numerical Examples

In this section we apply our algorithm to discretizations of three different
dynamical systems: a Building model, a CD Player model, and the Interna-
tional Space Station model. These benchmarks are described in more details
in Chapter 24, Sections 4, 6, 7. It was shown in [CV03a, Cha03], that for the
same problem, the RLRG method gives less accurate results: as predicted by
the discussion of the previous section, the RLRG method deteriorates espe-
cially when the original system is poorly balanced. Since the RLRH method
is to be preferred over the RLRG method, we only compare here the RLRH
method with Balanced Truncation. The approximate system SBT for balanced
truncation and SRLRH for the recursive low rank Hankel method, are both
calculated for a same degree. We show the maximal singular value of the fre-
quency responses of the system and the maximal singular value of the two
error functions.

σmax-plot of the frequency responses.
full model, - - - BT error system, · · · RLRH error system.

cond(T ) ρ(A) cond(A) ‖S‖H∞ ‖S − SBT ‖H∞ ‖S − SRLRH‖H∞

40.7341 1 1.00705 2.3198.106 0.2040 6.1890

Fig. 5.4. CD-player model N = 120, m = p = 2, n = 24
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σmax-plot of the frequency responses.
full model, - - - BT error system, · · · RLRH error system.

cond(T ) ρ(A) cond(A) ‖S‖H∞ ‖S − SBT ‖H∞ ‖S − SRLRH‖H∞

347.078 0.9988 5.8264 0.0053 6.0251.10−4 6.7317.10−4

Fig. 5.5. Building model N = 48, m = p = 1, n = 10

σmax-plot of the frequency responses.
full model, - - - BT error system, · · · RLRH error system.

cond(T ) ρ(A) cond(A) ‖S‖H∞ ‖S − SBT ‖H∞ ‖S − SRLRH‖H∞

740178 0.9998 5.82405 0.1159 2.3630.10−4 0.0011

Fig. 5.6. ISS model N = 270, m = p = 3, n = 32

The corresponding H∞ norms are also given in the table following each
example. Each table also contains the condition number cond(T ) of the balanc-
ing state-space transformation T , the spectral radius ρ(A) and the condition
number cond(A) since they play a role in the error bounds obtained in this
paper. It can be seen from these examples that the RLRH method performs
reasonably well in comparison to the balanced truncation method, and this
independently from whether or not the original system was poorly balanced.
Even though these models are not large they are good benchmarks in the sense
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that their transfer functions are not easy to approximate. Larger experiments
are reported in [Cha03].

5.7 Conclusion

In this paper we show how to construct low-dimensional projected systems
of time-varying systems. The algorithms proposed are based on low-rank ap-
proximations of the Gramians and of the Hankel map which defines the input-
output mapping. Both methods have the advantage of exploiting sparsity in
the data to yield a complexity that is linear in the state dimension of the
original model.

The key idea is to compute only a finite window of the Gramians or Hankel
map of the time-varying system and to compute recursively projection matri-
ces that capture the dominant behavior of the Gramians or Hankel map. The
Recursive Low-Rank Hankel approximation method is to be preferred over
the Recursive Low-Rank Gramian approximation method because it is not
sensitive to the coordinate system in which the original system is described.

The two algorithms are mainly meant for time-varying systems but their
performance is illustrated using time-invariant and periodic systems because
the quality of the methods can then be assessed by the frequency responses
of the error functions.
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Communauté Française, Belgium).

References

[Cha03] Chahlaoui, Y.: Recursive low rank Hankel approximation and model reduc-
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