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2.1 Introduction

Many physical phenomena, such as heat transfer through various media, signal
propagation through electric circuits, vibration suppression of bridges, the
behavior of Micro-Electro-Mechanical Systems (MEMS), and flexible beams
are modelled with linear time invariant (LTI) systems

Σ :

{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

⇔ Σ :=

[
A B
C D

]
where x(t) ∈ R

n is the state, u(t) ∈ R
m is the input and y(t) ∈ R

p is the
output; moreover A ∈ R

n×n, B ∈ R
n×m, C ∈ R

p×n, D ∈ R
p×m are constant

matrices. The number of the states, n, is called the dimension or order of the
system Σ. Closely related to this system are two continuous-time Lyapunov
equations:

AP + PAT

+BB
T

= 0, A
TQ+QA+ C

T

C = 0. (2.1)

The matrices P ∈ R
n×n andQ ∈ R

n×n are called the reachability and observa-
bility Gramians, respectively. Under the assumptions that A is asymptotically
stable, i.e. λi(A) ∈ C− (the open left half-plane), and that Σ is minimal (that
is the pairs (A,B) and (C,A) are, respectively, reachable and observable), the
Gramians P, Q are unique and positive definite. In many applications, such
as circuit simulation or time dependent PDE control problems, the dimension,
n, of Σ is quite large, in the order of tens of thousands or higher, while the
number of inputs m and outputs p usually satisfy m, p � n. In these large-
scale settings, it is often desirable to approximate the given system with a
much lower dimensional system

Σr :

{
ẋr(t) = Arx(t) +Bru(t)
yr(t) = Crx(t) +Dru(t)

⇔ Σr :=

[
Ar Br

Cr Dr

]
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where Ar ∈ R
r×r, Br ∈ R

r×m, Cr ∈ R
p×r, Dr ∈ R

p×m, with r � n. The
problem of model reduction is to produce such a low dimensional system Σr

that has similar response characteristic as the original system Σ to any given
input u.

The Lyapunov matrix equations in (2.1) play an important role in model
reduction. One of the most effective model reduction approaches, called bal-
anced truncation [MOO81, MR76], requires solving (2.1) to obtain P and Q.
A state space transformation based on P and Q is then derived to balance the
system in the sense that the two Gramians become diagonal and equal. In this
new co-ordinate system, states that are difficult to reach are simultaneously
difficult to observe. Then, the reduced model is obtained by truncating the
states that are both difficult to reach and difficult to observe. When applied
to stable systems, balanced truncation preserves stability and provides an a
priori bound on the approximation error.

For small-to-medium scale problems, balanced truncation can be imple-
mented efficiently using the Bartels-Stewart [BS72] method, as modified by
Hammarling [HAM82], to solve the two Lyapunov equations in (2.1). How-
ever, the method requires computing a Schur decomposition and results in
O(n3) arithmetic operations and O(n2) storage; therefore, it is not appropri-
ate for large-scale problems.

For large-scale sparse problems, iterative methods are preferred since they
retain the sparsity of the problem and are much more suitable for paralleliza-
tion. The Smith method [SMI68], the alternating direction implicit (ADI)
iteration method [WAC88a], and the Smith(l) method [PEN00b] are the most
popular iterative schemes developed for large sparse Lyapunov equations. Un-
fortunately, even though the number of arithmetic operations is reduced, all
of these methods compute the solution in dense form and hence require O(n2)
storage.

It is well known that the Gramians P and Q often have low numerical
rank (i.e. the eigenvalues of P and Q decay rapidly). This phenomenon is
explained to a large extent in [ASZ02, PEN00a]. One must take advantage of
this low-rank structure to obtain approximate solutions in low-rank factored
form. In other words, one should construct a matrix Z ∈ R

n×r such that
P ≈ ZZT . The matrix Z is called the approximate low-rank Cholesky factor
of P. If the effective rank r is much smaller than n, i.e. r � n, then the storage
is reduced from O(n2) to O(nr). We note that such low-rank schemes are the
only existing methods that can effectively solve very large sparse Lyapunov
equations.

Most low-rank methods, such as [HPT96, HR92, JK94, SAA90], are Krylov
subspace methods. As stated in [PEN00b], even though these methods reduce
the memory requirement, they usually fail to yield approximate solutions of
high accuracy. To reach accurate approximate solutions, one usually needs
a large number of iterations, and therefore obtain approximations with rela-
tively high numerical ranks; see [PEN00b]. For large-scale sparse Lyapunov
equations, a more efficient low-rank scheme based on the ADI iteration was



2 Smith-Type Methods for Balanced Truncation of Large Sparse Systems 51

introduced, independently, by Penzl [PEN00b], and Li and White [LW02].
The method was called the low-rank ADI iteration (LR-ADI) in [PEN00b]
and the Cholesky factor ADI iteration (CF-ADI) in [LW02]. Even though
LR-ADI and CF-ADI are theoretically the same, CF-ADI is less expensive
and more efficient to implement. Indeed, LR-ADI can be considered as an in-
termediate step in deriving the CF-ADI algorithm. Another low-rank scheme
based on the ADI iteration was also introduced in [PEN00b]. The method is
called the cyclic low-rank Smith method (LR-Smith(l)) and is a special case
of LR-ADI where l number of shifts are re-used in a cyclic manner.

While solving the Lyapunov equation AP + PAT + BBT = 0 where B
has m columns, the LR-ADI and the LR-Smith(l) methods add m and m× l
columns respectively to the current solution at each step, where l is the number
of shifts. Therefore, for slowly converging iterations and for the case where
m is big, e.g. m = 10, the number of columns of the approximate low-rank
Cholesky factor can exceed manageable memory capacity. To overcome this,
Gugercin et. al. [GSA03] introduced a Modified LR-Smith(l) method that
prevents the number of columns from increasing arbitrarily at each step. In
fact, the method only requires the number of columns r which are needed
to meet the pre-specified balanced truncation tolerance. Due to the rapid
decay of the Hankel singular values, this r is usually quite small relative to n.
Consequently the memory requirements are drastically reduced.

This paper surveys Smith-type methods used for solving large-scale sparse
Lyapunov equations and consequently for balanced truncation of the underly-
ing large sparse dynamical system. Connections between different Smith-type
methods, convergence results, and upper bounds for the approximation er-
rors are presented. Moreover, numerical examples are given to illustrate the
performance of these algorithms.

2.2 Balancing and Balanced Truncation

One model reduction scheme that is well grounded in theory is Balanced Trun-
cation, first introduced by Mullis and Roberts [MR76] and later in the systems
and control literature by Moore [MOO81]. The approximation theory under-
lying this approach was developed by Glover [GLO84]. Several researchers
have recognized the importance of balanced truncation for model reduction
because of its theoretical properties. Computational schemes for small-to-
medium scale problems already exist. However, the development of computa-
tional methods for large-scale settings is still an active area of research; see
[GSA03, PEN99, BQQ01, AS02], and the references therein.

2.2.1 The Concept of Balancing

Let P and Q be the unique Hermitian positive definite solutions to equa-
tions (2.1). The square roots of the eigenvalues of the product PQ are the
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singular values of the Hankel operator associated with Σ and are called the
Hankel singular values, σi(Σ), of the system Σ:

σi(Σ) =
√
λi(PQ).

In most cases, the eigenvalues of P,Q as well as the Hankel singular val-
ues σi(Σ) decay very rapidly. This phenomena is explained to a large extent
in [ASZ02].

Define the two functionals Jr and Jo as follows:

Jr = min
x(−∞)=0, x(0)=x

‖u(t)‖2, t ≤ 0, (2.2)

Jo = ‖y(t)‖2, x(0) = xo, u(t) = 0, t ≥ 0. (2.3)

The quantity Jr is the minimal energy required to drive the system from the
zero state at t = −∞ to the state x at t = 0. On the other hand, Jo is the
energy obtained by observing the output with the initial state xo under no
input. The following lemma is crucial to the concept of balancing:

Lemma 2.2.1. Let P and Q be the reachability and observability Gramians
of the asymptotically stable and minimal system Σ and Jr and Jo be defined
as above. Then

Jr = xTP−1x

and
Jo = xT

oQxo.

It follows from the above lemma that the states which are difficult to reach,
i.e., require a large energy Jr, are spanned by the eigenvectors of P correspond-
ing to small eigenvalues. Moreover, the states which are difficult to observe,
i.e., yield small observation energy Jo, are spanned by the eigenvectors of Q
corresponding to small eigenvalues. Hence Lemma 2.2.1 yields a way to evalu-
ate the degree of reachability and the degree of observability for the states of
the given system. One can obtain a reduced model by eliminating the states
which are difficult to reach and observe. However, it is possible that the states
which are difficult to reach are not difficult to observe and vice-versa. See
[ANT05] for more details and examples. Hence the following question arises:
Given Σ, does there exist a basis where the states which are difficult to reach
are simultaneously difficult to observe? It is easy to see from the Lyapunov
equations in (2.1) that under a state transformation by a nonsingular matrix
T , the Gramians are transformed as

P̄ = TPT T

, Q̄ = T−TQT−1.

Hence, the answer to the above question reduces to finding a nonsingular state
transformation T such that, in the transformed basis, the Gramians P̄ and Q̄
are equal.
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Definition 2.2.2. The reachable, observable and stable system Σ is called
balanced if P = Q. Σ is called principal-axis-balanced if

P = Q = Σ = diag(σ1Im1
, · · · , σqImq

), (2.4)

where σ1 > σ2 > · · · > σq > 0, mi, i = 1, · · · , q, are the multiplicities of σi,
and m1 + · · ·+mq = n.

In the following, by balancing we mean principal-axis-balancing unless
otherwise stated. It follows from the above definition that balancing amounts
to the simultaneous diagonalization of the two positive definite matrices P
and Q.

Let U denote the Cholesky factor of P, i.e., P = UU
T

, and let U
TQU =

RΣ2R
T

be the eigenvalue decomposition of U
TQU . The following result ex-

plains how to compute the balancing transformation T :

Lemma 2.2.3. Principal-Axis-Balancing Transformation:
Given the minimal and asymptotically stable LTI system Σ with the corre-
sponding Gramians P and Q, a principal-axis-balancing transformation T is

T = Σ1/2R
T

U−1. (2.5)

The next result gives a generalization of all possible balancing transforma-
tions:

Corollary 2.2.4. Let there be q distinct Hankel singular values σi with mul-
tiplicities mi. Every principal-axis-balancing transformation T̂ has the form
T̂ = V T where T is given by (2.5) and V is a block diagonal unitary matrix
with an arbitrary mi ×mi unitary matrix as the ith block for i = 1, · · · , q.

2.2.2 Model Reduction by Balanced Truncation

The balanced basis has the property that the states which are difficult to reach
are simultaneously difficult to observe. Hence, a reduced model is obtained by
truncating the states which have this property, i.e., those which correspond
to small Hankel singular values σi.

Theorem 2.2.5. Let the asymptotically stable and minimal system Σ have
the following balanced realization:

Σ =

[
Ab Bb

Cb Db

]
=

⎡⎣ A11 A12

A21 A22

B1

B2

C1 C2 D

⎤⎦ ,
with P = Q = diag(Σ1, Σ2) where

Σ1 = diag(σ1Im1
, · · · , σkImk

) and Σ2 = diag(σk+1Imk+1
, · · · , σqImq

).
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Then the reduced order model Σr =

[
A11 B1

C1 D

]
obtained by balanced truncation

is asymptotically stable, minimal and satisfies

‖Σ−Σr‖H∞
≤ 2 (σk+1 + · · ·+ σq). (2.6)

The equality holds if Σ2 contains only σq.

The above theorem states that if the neglected Hankel singular values are
small, then the systems Σ and Σr are guaranteed to be close. Note that (2.6)
is an a priori error bound. Hence, given an error tolerance, one can decide
how many states to truncate without forming the reduced model.

The balancing method explained above is also called Lyapunov balanc-
ing since it requires solving two Lyapunov equations. Besides the Lyapunov
balancing method, other types of balancing exist such as stochastic balanc-
ing [DP84, GRE88a, GRE88b], bounded real balancing , positive real bal-
ancing [DP84], LQG balancing [OJ88], and frequency weighted balancing
[ENN84, LC92, SAM95, WSL99, ZHO95, VA01, GJ90, GA04]. For a recent
survey of balancing related model reduction, see [GA04].

2.2.3 A Numerically Robust Implementation of Balanced
Reduction

The above discussion on the balancing transformation and the balanced reduc-
tion requires balancing the whole system Σ followed by the truncation. This
approach is numerically inefficient and very ill-conditioned to implement. In-
stead, below we will give another implementation of the balanced reduction
which directly obtains a reduced balanced system without balancing the whole
system.

Let P = UU
T

and Q = LL
T

. This is always possible since both P and Q
are symmetric positive definite matrices. The matrices U and L are called the

Cholesky factors of the Gramians P and Q, respectively. Let U
T

L = ZSY
T

be a singular value decomposition (SVD). It is easy to show that the singular

values of U
T

L are indeed the Hankel singular values, hence, we have

U
T

L = ZΣY
T

where
Σ = diag(σ1Im1

, σ2Im2
, . . . , σqImq

),

q is the number of distinct Hankel singular values, with σi > σi+1 > 0, mi is
the multiplicity of σi, and m1 +m2 + · · ·+mq = n. Let

Σ1 = diag(σ1Im1
, σ2Im2

, . . . , σkImk
), k < q, r := m1 + · · ·+mk,

and define
W1 := LY1Σ

−1/2
1 and V1 := UZ1Σ

−1/2
1 ,
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where Z1 and Y1 are composed of the leading r columns of Z and Y , respec-

tively. It is easy to check that W
T

1 V1 = Ir and hence V1W
T

1 is an oblique
projector. We obtain a reduced model of order r by setting

Ar = W
T

1 AV1, Br = W
T

1 B, Cr = CV1.

Noting that PW1 = V1Σ1 and QV1 = W1Σ1 gives

W
T

1 (AP + PAT

+BB
T

)W1 = ArΣ1 +Σ1A
T

r +BrB
T

r

V
T

1 (A
TQ+QA+ C

T

C)V1 = A
T

r Σ1 +Σ1Ar + C
T

r Cr.

Thus, the reduced model is balanced and asymptotically stable (due to the
Lyapunov inertia theorem) for any k ≤ q. As mentioned earlier, the formulae
above provide a numerically stable scheme for computing the reduced or-
der model based on a numerically stable scheme for computing the Cholesky
factors U and L directly in upper triangular and lower triangular form, respec-
tively. It is important to truncate Z,Σ, Y to Z1, Σ1, Y1 prior to forming W1

or V1. It is also important to avoid formulae involving inversion of L or U as
these matrices are typically ill-conditioned due to the decay of the eigenvalues
of the Gramians.

2.3 Iterative ADI Type Methods for Solving Large-Scale
Lyapunov Equations

The numerically stable implementation of the balanced truncation method
described in Section 2.2.3 requires the solutions to two Lyapunov equations
of order n. For small-to-medium scale problems, the solutions can be ob-
tained through the Bartels-Stewart [BS72] method as modified by Hammar-
ling [HAM82]. This method requires the computation of a Schur decompo-
sition, and thus is not appropriate for large-scale problems. The problem of
obtaining the full-rank exact solution to a Lyapunov equation is a numerically
ill-conditioned problem in the large-scale setting.

As explained previously, P and Q often have numerically low-rank com-
pared to n. In most cases, the eigenvalues of P,Q as well as the Hankel singu-
lar values σi(Σ) decay very rapidly, see [ASZ02]. This low-rank phenomenon
leads to the idea of approximating the Gramians with low-rank approximate
Gramians.

In the following, we will focus on the approximate solution of the reacha-
bility Lyapunov equation

AP + PAT

+BB
T

= 0, (2.7)

where A ∈ R
n×n is asymptotically stable and diagonalizable and B ∈ R

n×m.
The discussion applies equally well to the observability Lyapunov equation
ATQ+QA+ CTC = 0.
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In this section we survey the ADI, Smith, and Smith(l) methods. In these
methods the idea is to transform a continuous time Lyapunov equation (2.7)
into a discrete time Stein equation using spectral transformations of the type
ω(λ) = µ∗−λ

µ+λ , where µ ∈ C− (the open left half-plane). Note that ω is a
bilinear transformation mapping the open left half-plane onto the open unit
disk with ω(∞) = −1. The number µ is called the shift or the ADI parameter .

2.3.1 The ADI Iteration

The alternating direction implicit (ADI) iteration was first introduced by
Peaceman and Rachford [PR55] to solve linear systems arising from the dis-
cretization of elliptic boundary value problems. In general, the ADI iteration
is used to solve linear systems of the form

My = b,

where M is symmetric positive definite and can be split into the sum of two
symmetric positive definite matrices M = M1 + M2 for which the following
iteration is efficient:

y0 = 0,

(M1 + µjI)yj−1/2 = b− (M2 − µjI)yj−1,

(M2 + ηjI)yj = b− (M1 − ηjI)yj−1/2, for j = 1, 2, · · · , J.

The ADI shift parameters µj and ηj are determined from spectral bounds on
M1 and M2 to increase the convergence rate. When M1 and M2 commute,
this is classified as a “model problem”.

One should notice that (2.7) is a model ADI problem in which there is a
linear system with the sum of two commuting operators acting on the unknown
P, which is a matrix in this case. Therefore, the iterates PA

i of the ADI
iteration are obtained through the iteration steps

(A+ µiI)PA
i−1/2 = −BBT − PA

i−1(A
T − µiI) (2.8)

(A+ µiI)PA
i = −BBT − (PA

i−1/2)
∗(A

T − µiI), (2.9)

where PA
0 = 0 and the shift parameters {µ1, µ2, µ3, . . .} are elements of C−

(here ∗ denotes complex conjugation followed by transposition). These two
equations are equivalent to the following single iteration step:

PA
i = (A− µ∗

i I)(A+ µiI)
−1PA

i−1[(A− µ∗
i I)(A+ µiI)

−1]∗

−2ρi(A+ µiI)
−1BB

T

(A+ µiI)
−∗, (2.10)

where ρi = Real(µi). Note that if Pi−1 is Hermitian positive semi-definite,
then so is Pi.
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The spectral radius of the matrix
(∏l

i=1(A− µ∗
i I)(A+ µiI)

−1
)
, denoted

by ρ
ADI

, determines the rate of convergence, where l is the number of shifts
used. Note that since A is asymptotically stable, ρ

ADI
< 1. Smaller ρ

ADI
yields

faster convergence. The minimization of ρ
ADI

with respect to shift parameters
µi is called the ADI minimax problem:

{µ1, µ2, . . . , µl} = arg min
{µ1,...,µl}∈C−

max
λ∈σ(A)

| (λ− µ∗
1) . . . (λ− µ∗

l ) |
| (λ+ µ1) . . . (λ+ µl) |

. (2.11)

We refer the reader to [EW91, STA91, WAC90, CR96, STA93, WAC88b,
PEN00b] for contributions to the solution of the ADI minimax problem. It
can be shown that if A is diagonalizable, the lth ADI iterate satisfies the
inequality ∥∥P − PA

l

∥∥
F
≤ ‖W‖22

∥∥W−1
∥∥2

2
ρ2

ADI
‖P‖F , (2.12)

where W is the matrix of eigenvectors of A.
The basic computational costs in the ADI iterations are that each indi-

vidual shift µi requires a sparse direct factorization of (A + µiI) and each
application of (A+ µiI)

−1 requires triangular solves from that factorization.
Moreover, in the case of complex shifts, these operations have to be done in
complex arithmetic. To keep the solution P real, complex conjugate pairs of
shifts have to be applied, one followed immediately by the other. However,
even with this, one would have to form (A+µiI)(A+µ∗

i I) = A2+2ρiA+|µi|2I
in order to keep the factorizations in real arithmetic. This matrix squaring
would most likely have an adverse effect on sparsity. In the following, we wish
to avoid the additional details required to discuss complex shifts. Therefore,
we will restrict our discussions to real shifts for the remainder of the paper.
If necessary, all of the operations can be made valid for complex shifts.

2.3.2 Smith’s Method

For every real scalar µ < 0, the continuous-time Lyapunov equation (2.7) is
equivalent to

P = (A−µI)(A+µI)−1P(A+µI)−
T

(A−µI)T−2µ(A+µI)−1BB
T

(A
T

+µI)−1.

Then one obtains the Stein equation

P = AµPA
T

µ − 2µBµB
T

µ , (2.13)

where

Aµ := (A− µI)(A+ µI)−1, Bµ := (A+ µI)−1B. (2.14)

Hence using the bilinear transformation ω(λ) = µ−λ
µ+λ , the problem has been

transformed into discrete time, where the Stein equation (2.13) has the same
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solution as the continuous time Lyapunov equation (2.7). SinceA is asymptot-
ically stable, ρ(Aµ) < 1 and the sequence {PS

i }∞i=0 generated by the iteration

PS
1 = −2µBµB

T

µ and PS
j+1 = AµPS

j A
T

µ + PS
1

converges to the solution P. Thus, the Smith iterates can be written as

PS
k = −2µ

k−1∑
j=0

Aj
µBµB

T

µ (Aj
µ)

T

. (2.15)

If one uses the same shift through out the ADI iteration, (µj = µ, j =
1, 2, . . . ), then the ADI iteration reduces to the Smith method. Generally,
the convergence of the Smith method is slower than ADI. An accelerated
version, the so called squared Smith method, has been proposed in [PEN00b]
to improve convergence. However, despite a better convergence, the squared
Smith methods destroys the sparsity of the problem which is not desirable in
large-scale settings.

2.3.3 Smith(l) Iteration

Penzl [PEN00b] illustrated that the ADI iteration with a single shift converges
very slowly, while a moderate increase in the number of shifts l accelerates the
convergence nicely. However, he also observed that the speed of convergence
is hardly improved by a further increase of l; see Table 2.1 in [PEN00b]. These
observations led to the idea of the cyclic Smith(l) iteration, a special case of
ADI where l different shifts are used in a cyclic manner, i.e. µi+jl = µi for
j = 1, 2, · · · .

The Smith(l) iterates are generated by

PSl
k =

k−1∑
j=0

Ak
dT (Ak

d)
T

, (2.16)

where

Ad =
l∏

i=1

(A− µiI)(A+ µiI)
−1 and T = PA

l , (2.17)

i.e., T is the lth ADI iterate with the shifts {µ1, · · · , µl}. As in Smith’s meth-

ods, P − AdPA
T

d = T is equivalent to (2.7), where Ad and T are defined in
(2.17).

2.4 Low-rank Iterative ADI-Type Methods

The original versions of the ADI, Smith, and Smith(l) methods outlined above
form and store the entire dense solution P explicitly, resulting in extensive
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storage requirement. In many cases the storage requirement is the limiting
factor rather than the amount of computation. The observation that P is
numerically low-rank compared to n leads to the low-rank formulations of
the ADI iterations, namely, LR-ADI [PEN00b], CF-ADI [LW02], LR-Smith(l)
[PEN00b], and Modified LR-Smith(l) [GSA03] where, instead of explicitly
forming the solution P, only the low-rank approximate Cholesky factors are
computed and stored, reducing the storage requirement to O(nr) where r is
the numerical rank of P.

2.4.1 LR-ADI and CF-ADI Iterations

Recall that the two steps in (2.8) and (2.9) of the ADI iteration can be com-
bined into the single iteration step in (2.10), as rewritten below:

PA
i = (A− µiI)(A+ µiI)

−1PA
i−1[(A− µiI)(A+ µiI)

−1]T

−2µi(A+ µiI)
−1BB

T

(A+ µiI)
−T . (2.18)

The key idea in the low-rank versions of the ADI method is to rewrite the
iterate PA

i in (2.18) as an outer product:

PA
i = ZA

i (ZA
i )

T

. (2.19)

This is always possible since starting with the initial guess PA
i = 0, the iterates

PA
i can be shown recursively to be positive definite and symmetric.

Using (2.19) in (2.18) results in

ZA
i (ZA

i )
T

= (A− µiI)(A+ µiI)
−1ZA

i−1[(A− µiI)(A+ µiI)
−1ZA

i−1]
T

−2µi(A+ µiI)
−1BB

T

(A+ µiI)
−T . (2.20)

Since the left-hand side of (2.20) is an outer product, and the right hand side
is the sum of two outer products, ZA

i can be rewritten as

ZA
i = [ (A− µiI)(A+ µiI)

−1ZA
i−1

√
−2µi(A+ µiI)

−1B ]. (2.21)

Therefore, the ADI algorithm (2.18) can be reformulated in terms of the
Cholesky factor ZA

i as

ZA
1 =

√
−2µ1(A+ µ1I)

−1B, (2.22)

ZA
i = [ (A− µiI)(A+ µiI)

−1ZA
i−1

√
−2µi(A+ µiI)

−1B ]. (2.23)

This low-rank formulation of the ADI iteration was independently devel-
oped in [PEN00b] and [LW02]. We will call this the LR-ADI iteration as
in [PEN00b] since it is the preliminary form of the final CF-ADI iteration
[LW02]. In the LR-ADI formulation (2.22) and (2.23), at the ith step, the
(i−1)st Cholesky factor ZA

i−1 is multiplied from left by (A−µiI)(A+µiI)
−1.
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Therefore, the number of columns to be modified at each step increases by m,
the number of columns in B. In [LW02], the steps (2.22) and (2.23) are re-
formulated to keep the number of columns modified at each step as constant.
The resulting algorithm, outlined below, is called the CF-ADI iteration.

The columns of kth LR-ADI iterate ZA
i can be written out explicitly as

ZA
k = [Sk

√
−2µkB, Sk(TkSk−1)

√
−2µk−1B, · · · , SkTk · · ·S2(T2S1)

√
−2µ1B]

where

Si := (A+ µiI)
−1, and Ti := (A− µiI) for i = 1, . . . , k.

Since Si and Tj commute, i.e.

SiSj = SjSi, TiTj = TjTi, SiTj = TjSi, ∀i, j,

ZA
k can be written as

ZA
k = [ zk Pk−1(zk), Pk−2(Pk−1zk), · · · · · · P1(P2 · · ·Pk−1zk)], (2.24)

where

zk :=
√
−2µk (A+ µkI)

−1B, (2.25)

Pi :=

√
−2µi√−2µi+1

[I − (µi+1 + µi)(A+ µiI)
−1]. (2.26)

Since the order of the ADI parameters µi is not important, the ordering of µi

can be reversed resulting in the CF-ADI iteration:

ZCFA
1 = z1 =

√
−2µ1 (A+ µ1I)

−1B, (2.27)

zi =

( √
−2µi√−2µi−1

) (
I − (µi + µi−1)(A+ µiI)

−1
)
zi−1, (2.28)

ZCFA
i = [ZCFA

i−1 zi], for i = 2, · · · , k. (2.29)

Unlike the LR-ADI iteration (2.22)-(2.23) where at the ith step (i − 1)m
number of columns need to be modified, the CF-ADI iteration (2.27)-(2.29)
requires only that a constant number of columns, namely, m, to be modified
at each step. Therefore, the implementation of CF-ADI is numerically more
efficient compared to LR-ADI.

Define PCFA
j := ZCFA

j (ZCFA
j )T . Clearly, the stopping criterion ‖PCFA

j −
PCFA

j−1 ‖2 ≤ tol2 can be implemented as ‖zj‖2 ≤ tol, since

‖ZCFA
j (ZCFA

j )T − ZCFA
j−1 (ZCFA

j−1 )T ‖2 = ‖zjz
T
j ‖2 = ‖zj‖22.

It is not necessarily true that a small zj implies that all further zj+k will be
small, but this has been observed in practice. Relative error can also be used,
in which case the stopping criterion is
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‖zj‖2
‖ZCFA

j−1 ‖2
≤ tol.

The 2-norm of ZCFA
j−1 , which is also its largest singular value, can be esti-

mated by performing power iterations to estimate the largest eigenvalue of
ZCFA

j−1 (ZCFA
j−1 )T , taking advantage of the fact that j � n. This cost is still

high, and this estimate should only be used after each segment of several
iterations.

The next result shows the relation between the ADI, LR-ADI and CF-ADI
iterations. For a proof, see the original source [LW02].

Theorem 2.4.1. Let PA
k be the approximation obtained by k steps of the ADI

iteration with shifts {µ1, µ2, . . . , µk}. Moreover, for the same shift selection,
let ZA

k and ZCFA
k be the approximations obtained by the LR-ADI and the

CF-ADI iterations as above, respectively. Then,

PA
k = ZA

k (ZA
k )T = ZCFA

k (ZCFA
k )T .

2.4.2 LR-Smith(l) Iteration

The ADI, LR-ADI, and CF-ADI iterations are of interest if a sequence {µi}k
i=1

of different shifts is available. When the number of shift parameters is limited,
the cyclic low-rank Smith method (LR-Smith(l)) is a more efficient alternative.
As in the LR-ADI formulation of the ADI iteration, the key idea is to write
the ith Smith(l) iterate as

PSl
i = ZSl

i (ZSl
i )

T

. (2.30)

Given the l cyclic-shifts {µ1, µ2, . . . , µl}, the LR-Smith(l) method consists of
two steps. First the iterate ZSl

1 is obtained by an l step low-rank ADI iteration;

i.e. PA
l = ZA

l (ZA
l )

T

is the low-rank l step ADI iterate. Then, the LR-Smith(l)
method is initialized by

ZSl
1 = Bd = ZA

l , (2.31)

followed by the actual LR-Smith(l) iteration:

Z(i+1) = AdZ
(i)

ZSl
i+1 = [ ZSl

i Z(i+1) ], (2.32)

where Ad is defined in (2.17). It then follows that

ZSl
k = [ Bd AdBd A2

dBd · · · Ak−1
d Bd ]. (2.33)

One should notice that while k step LR-ADI and CF-ADI iterations require k
matrix factorizations, a k step LR-Smith(l) iteration computes only l matrix
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factorizations. Moreover, the equality (2.33) reveals that similar to the CF-
ADI iteration, the number of columns to be modified at the ith step of the
LR-Smith(l) iteration is constant, equal to the number of columns of Bd,
namely l×m. If the shifts {µ1, · · · , µl} are used in a cyclic manner, the cyclic
LR-Smith(l) iteration gives the same approximation as the LR-ADI iteration.

Remark 2.4.2. A system theoretic interpretation of using l cyclic shifts (the
Smith(l) iteration) is that the continuous time system

Σ =

[
A B
C D

]
which has order n, m inputs, and p outputs is embedded into a discrete time
system

Σd =

[
Ad Bd

Cd Dd

]
which has order n, lm inputs, and lp outputs; they have the same reachability
and observability Gramians P and Q. Therefore, at the cost of increasing
the number of inputs and outputs, one reduces the spectral radius ρ(Ad) and
hence increases the convergence.

Remark 2.4.3. Assume that we know all the eigenvalues of A and the system

Σ =

[
A B
C D

]
is single input single output, i.e. B,CT ∈ R

n. Then choosing µi = λi(A) for
i = 1, · · · , n results in

Ad = 0 and P = PSl
1 = PA

l .

In other words, the exact solution P of (2.7) is obtained at the first step. The
resulting discrete time system has n inputs, and n outputs.

Convergence Results for the Cyclic LR-Smith(l) Iteration

In this section some convergence results for the Cyclic LR-Smith(l) iteration
are presented. For more details, we refer the reader to the original source
[GSA03].

Let ZSl
k be the kth LR-Smith(l) iterate as defined in (2.33) corresponding

to the Lyapunov equation

AP + PAT +BBT = 0.

Similar to ZSl
k , let Y Sl

k be the kth LR-Smith(l) iterate corresponding to the
observability Lyapunov equation
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ATQ+QA+ CTC = 0

for the same cyclic shift selection as used in computing ZSl
k .

Denote by PSl
k and QSl

k the k step LR-Smith(l) iterates for P and Q
respectively, i.e., PSl

k = ZSl
k (ZSl

k )T and QSl
k = Y Sl

k (Y Sl
k )T . Similar to (2.12),

the following result holds:

Proposition 2.4.4. Let Ekp := P − PSl
k and Ekq = Q − QSl

k and A =
W (Λ)W−1 be the eigenvalue decomposition of A. The k step LR-Smith(l)
iterates satisfy

0 ≤ trace (Ekp) = trace (P − PSl
k ) ≤ Kml (ρ(Ad))

2ktrace (P) (2.34)

0 ≤ trace (Ekq) = trace (Q−QSl
k ) ≤ K p l (ρ(Ad))

2ktrace (Q), (2.35)

where

K = κ(W )2, (2.36)

and κ(W ) denotes the 2-norm condition number of W .

Since the low-rank Cholesky factors ZSl
k and Y Sl

k will be used for balanced
truncation of the underlying dynamical system, it is important to see how
well the exact Hankel singular values are approximated. Let σi and σ̂i denote
the Hankel singular values resulting from the full-rank exact Gramians and
the low-rank approximate Gramians, respectively, i.e.,

σ2
i = λi(PQ) and σ̂2

i = λi(PSl
k QSl

k ). (2.37)

The following lemma holds:

Lemma 2.4.5. Let σi and σ̂i be given by (2.37). Define n̂ = klmin(m, p).
Then,

0 ≤
n∑

i=1

σ2
i −

n̂∑
i=1

σ̂2
i

≤ K l (ρ(Ad))
2k
(
K min(m, p)(ρ(Ad))

2ktrace (P)trace (Q)

+ m trace (P)
k−1∑
i=0

‖CdA
i
d‖22 + p trace (Q)

k−1∑
i=0

‖Ai
dBd‖22

)
(2.38)

where K is as defined in (2.36).

As mentioned in [GSA03], these error bounds critically depend on ρ(Ad) and
K. Hence when ρ(Ad) is almost 1 and/or A is highly non-normal, the bounds
may be pessimistic. On the other hand, when ρ(Ad) is small, for example less
than 0.9, the convergence of the iteration is extremely fast and also the error
bounds are tight.
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2.4.3 The Modified LR-Smith(l) Iteration

It follows from the implementations of the LR-ADI, the CF-ADI, and the LR-
Smith(l) iterations that at each step the number of columns of the current
iterates is increased by m for the LR-ADI and CD-ADI methods, and by
m × l for the LR-Smith(l) method. Hence, when m is large, i.e. for MIMO
systems, or when the convergence is slow, i.e., ρ(Ad) is close to 1, the number
of columns of ZA

k , ZCFA
k , and ZSl

k might exceed available memory. In light
of these observations, Gugercin et. al. [GSA03] introduced a modified LR-
Smith(l) iteration where the number of columns in the low-rank Cholesky
factor does not increase unnecessarily at each step. The idea is to compute
the singular value decomposition of the iterate at each step and, given a
tolerance τ , to replace the iterate with its best low-rank approximation as
outlined below.

Let ZSl
k be the kth LR-Smith(l) iterate as defined in (2.33) corresponding

to the Lyapunov equation AP+PAT +BBT = 0. Let the short singular value
decomposition (S-SVD) of ZSl

k be

ZSl
k = V ΦF

T

,

where V ∈ R
n×(mlk), Φ ∈ R

(mlk)×(mlk), and F ∈ R
(mlk)×(mlk). Then the S-

SVD of PSl
k = ZSl

k (ZSl
k )T is given by PSl

k = V Φ2V
T

. Therefore, it is enough
to store only V and Φ, and

Z̃k := V Φ

is also a low-rank Cholesky factor for PSl
k .

For a pre-specified tolerance value τ > 0, assume that until the kth step
of the algorithm all the iterates PSl

i satisfy

σmin(PSl
i )

σmax(PSl
i )

> τ2 or equivalently
σmin(ZSl

i )

σmax(ZSl
i )

=
σmin(Z̃i)

σmax(Z̃i)
> τ

for i = 1, 2, · · · , k, where σmin and σmax denote the minimum and maximum
singular values, respectively. It readily follows from the implementation of the
LR-Smith(l) method that at the (k + 1)st step, the approximants ZSl

k+1 and

PSl
k+1 are given by

ZSl
k+1 = [ZSl

k Ak
dBd] and PSl

k+1 = PSl
k +Ak

dBdB
T

d (Ak
d)

T

.

Decompose Ak
dBd into the two spaces Im(V ) and (Im(V ))⊥ ; i.e., write

Ak
dBd = V Γ + V̂ Θ, (2.39)

where Γ ∈ R
(mlk)×(ml), Θ ∈ R

(ml)×(ml), V
T

V̂ = 0 and V̂
T

V̂ = Iml. Define
the matrix
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Ẑk+1 = [ V V̂ ]

[
Φ Γ
0 Θ

]
︸ ︷︷ ︸

Ŝ

. (2.40)

Let Ŝ have the following SVD: Ŝ = T Φ̂Y
T

. Then it follows that Z̃k+1 is given
by

Z̃k+1 = Ṽ Φ̂, Ṽ = [ V V̂ ]T, (2.41)

where Ṽ ∈ R
n×((k+1)ml) and Φ̂ ∈ R

((k+1)ml)×((k+1)ml). Note that computation
of Z̃k+1 requires the knowledge of Z̃k, which is already available, and the SVD
of Ŝ, which is easy to compute. Next, partition Φ̂ and Ṽ conformally:

Z̃k+1 = [ Ṽ1 Ṽ2 ]

[
Φ̂1

Φ̂2

]
so that

Φ̂2(1, 1)

Φ̂1(1, 1)
< τ. (2.42)

Then, the (k + 1)st low-rank Cholesky factor is approximated by

Z̃k+1 ≈ Ṽ1Φ̂1. (2.43)

Z̃k+1 in (2.43) is the (k + 1)st modified LR-Smith(l) iterate. In computing
Z̃k+1, the singular values which are less than the given tolerance τ are trun-
cated. Hence, in going from the kth to the (k+1)st step, the number of columns
of Z̃k+1 generally does not increase. An increase will only occur if more than
r singular values of Z̃k+1 are above the tolerance τσ1. In the worst case, at
most ml additional columns will be added at any step which is the same as
the unmodified LR-Smith(l) iteration discussed in Section 2.4.1.

Using Z̃k+1 in (2.43), the (k + 1)
st

step modified low-rank Smith Gramian
is given by

P̃k+1 := Z̃k+1(Z̃k+1)
T

= Ṽ1Φ̂1Φ̂
T

1 Ṽ
T

1 .

Convergence Properties of the Modified LR-Smith(l) Iteration

Let P̃k and Q̃k be the k step modified LR-Smith(l) solutions to the two

Lyapunov equations AP + PAT

+ BB
T

= 0, A
TQ + QA + C

T

C = 0,
respectively, where A ∈ R

n×n, B ∈ R
n×m, and C ∈ R

p×n. Moreover let IP
denote the set of indices i for which some columns have been eliminated from
the ith step approximant during the modified Smith iteration:

IP = {i : such that in (2.42) Φ̂2 �= 0 for Z̃i, i = 1, 2, · · · , k}.

Then for each i ∈ IP , let nP
i denote the number of the neglected singular

values. Similarly define IQ and nQ
i . The following convergence result holds

[GSA03].
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Theorem 2.4.6. Let PSl
k be the kth step LR-Smith(l) iterate. ∆kp := PSl

k −
P̃k, the error between the LR-Smith(l) and Modified LR-Smith(l) iterates,
satisfies

‖∆kp‖ = ‖PSl
k − P̃k‖ ≤ τ2

∑
i∈IP

(σmax(Z̃i))
2, (2.44)

where τ is the tolerance value of the modified LR-Smith(l) algorithm. More-
over, define Ẽkp = P − P̃k, the error between the exact solution and the kth

Modified LR-Smith(l) iterates. Then,

0 ≤ trace (Ẽkp)

≤ Kml (ρ(Ad))
2ktrace (P) + τ2

∑
i∈IP

nP
i (σmax(Z̃i))

2, (2.45)

where K is given by (2.36).

Note that the error ‖∆kp‖ is in the order of O(τ2). This means with a
lower number of columns in the approximate Cholesky factor, the Modified
Smith method will yield almost the same accuracy as the exact Smith method.

The next result concerns the convergence of the computed Hankel singular
values in a way analogous to Lemma 2.4.5.

Lemma 2.4.7. Let σi and σ̃i denote Hankel singular values resulting from
the full-rank exact Gramians P and Q and from the modified LR-Smith(l)
approximants P̃k and Q̃k respectively: σi

2 = λi(PQ) and σ̃2
i = λi(P̃kQ̃k).

Define n̂ = klmin(m, p). Then,

0 ≤
n∑

i=1

σ2
i −

n̂∑
i=1

σ̃2
i

≤ K l (ρ(Ad))
2k
(
K min(m, p)(ρ(Ad))

2ktrace (P)trace (Q)

+ m trace (P)
k−1∑
i=0

‖CdA
j
d‖22 + p trace (Q)

k−1∑
i=0

‖Aj
dBd‖22

)
+τ2

P‖QSl
k ‖2

∑
i∈IP

nP
i (σmax(Z̃i))

2

+τ2
Q‖PSl

k ‖2
∑
i∈IQ

nQ
i (σmax(Ỹi))

2) (2.46)

where τP and τQ are the given tolerance values; and K is as defined in (2.36).

Once again the bounds in Lemma 2.4.5 and Lemma 2.4.7 differ only by the
summation of terms of O(τ2

P) and O(τ2
Q).
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2.4.4 ADI Parameter Selection

As the selection of good parameters is vitally important to the successful
application of the ADI and derived algorithms, in this section we discuss two
possible approaches. Both seek to solve the minimax problem (2.11), in other
words, minimizing the right hand side of the error bound in (2.12).

Because it is not practical to assume the knowledge of the complete spec-
trum of the matrix A, i.e., not practical to solve (2.11) over λ ∈ σ(A), the
first approach [WAC95] solves a different problem. It begins by bounding the
spectrum of A inside a domain R ⊂ C−, in other words,

λ1(A), · · · , λn(A) ∈ R ⊂ C−,

and then solves the following rational minimax problem:

min
µ1,µ2,··· ,µl

max
x∈R

∣∣∣∣∣∣
l∏

j=1

(µj − x)

(µj + x)

∣∣∣∣∣∣ , (2.47)

where the maximization is done over x ∈ R (rather than λ ∈ σ(A)). In this
general formulation, R can be any region in the open left half plane.

If the eigenvalues of A are strictly real, then one takes the domain R to
be a line segment, with the end points being the extremal eigenvalues of A.
In this case the solution to (2.47) is known (see [WAC95]). Power and inverse
iterations can be used to estimate the extremal eigenvalues of A at a low cost.

If A has complex eigenvalues, finding a good domain R which provides an
efficient covering of the spectrum of A can be involved, since the convex hull of
the spectrum of an arbitrary stable matrix can take on widely varying shapes.
Typically one estimates extremal values of the spectrum of A, along the real
and the imaginary axes, and then assumes that the spectrum is bounded
inside some region which can be simply defined by the extremal values one
has obtained.

However, even after a good R has been obtained, there remains the serious
difficulty of solving (2.47). The solution to (2.47) is not known when R is an
arbitrary region in the open left half plane. However, the problem of finding
optimal and near-optimal parameters for a few given shapes was investigated
in several papers [IT95, EW91, STA91, STA93, WAC62, WAC95] and we give
some of the useful results below.

In particular, we summarize a parameter selection procedure from [WAC95]
which defines the spectral bounds a, b, and α for the matrix A as

a = min
i

(Re{γi}), b = max
i

(Re{γi}), α = tan−1 max
i

∣∣∣∣Im{γi}
Re{γi}

∣∣∣∣ , (2.48)

where γ1, · · · , γn are the eigenvalues of −A. It is assumed that the spectrum of
−A lies entirely inside a region which was called in that reference the “elliptic
function domain” determined by the numbers a, b, α. The specific definition



68 Serkan Gugercin and Jing-Rebecca Li

of the “elliptic function domain” can be found in [WAC95]. If this assumption
does not hold, one should try to apply a more general parameter selection
algorithm. If it does hold, then let

cos2 β =
2

1 + 1
2 (a

b + b
a )
,

m =
2 cos2 α

cos2β
− 1.

If m < 1, the parameters are complex, and are given in [EW91, WAC95]. If
m ≥ 1, the parameters are real, and we define

k′ =
1

m+
√
m2 − 1

, k =
√

1− k′2.

Note k′ = a
b if all the eigenvalues of A are real. Define the elliptic integrals K

and v as,

F [ψ, k] =

∫ ψ

0

dx√
1− k2 sin2 x

,

K = K(k) = F
[π
2
, k
]
, v = F

[
sin−1

√
a

bk′
, k′

]
.

The number of ADI iterations required to achieve ρ2
ADI ≤ ε1 is given by

l =
⌈

K
2vπ log 4

ε1

⌉
, and the ADI parameters are given by

µj = −
√
ab

k′
dn

[
(2j − 1)K

2l
, k

]
, j = 1, 2, · · · , l, (2.49)

where dn(u, k) is the elliptic function. It was noted in [LW91] that for many
practical problems ADI converges in a few iterations with these parameters.

A second approach to the problem of determining ADI parameters is a
heuristic one and was given in [PEN00b]. It chooses potential parameters
from a list S = {ρ1, ρ2, · · · , ρk} which is taken to be the union of the Ritz
values of A and the reciprocals of the Ritz values of A−1, obtained by two
Arnoldi processes, with A and A−1. From this list S, one chooses the list of l
ADI parameters, L, in the following way. First, we define the quantity

sM(x) :=
|(x− µ1)× · · · × (x− µm)|
|(x+ µ1)× · · · × (x+ µm)| ,

where M = {µ1, · · · , µm}. The algorithm proceeds as follows:

1. Find i such that max
x∈S

sρi
(x) = min

ρi∈S
max
x∈S

sρi
(x) and let

L :=

{
{ρi} if ρi real,

{ρi, ρ̄i} otherwise.
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2. While card(L) < l, find i such that sL(ρi) = max
x∈L

sL(x) and let

L :=

{
L ∪ {ρi} if ρi real,

L ∪ {ρi, ρ̄i} otherwise.

The procedure is easy to implement and good results have been obtained
[PEN00b].

2.5 Smith’s Method and Eigenvalue Decay Bounds for
Gramians

As discussed earlier, in most cases, the eigenvalues of the reachability and
observability Gramians P,Q, as well as the Hankel singular values, i.e.,√
λi(PQ), decay very rapidly. In this section, we briefly review the results

of [ASZ02, ZHO02] and reveal the connection to convergence of Smith-type
iterations. We will again consider the Lyapunov equation

AP + PAT +BBT = 0, (2.50)

where B ∈ R
n×m with m � n, A ∈ R

n×n is asymptotically stable, and the
pair (A,B) is reachable.

2.5.1 Eigenvalue Decay Bounds for the Solution P

Given the Lyapunov equation (2.50), let an l step ADI iteration be computed
using the shifts µi, with µi < 0 where i = 1, . . . , l and lm < n. Then it simply
follows from (2.10) that

rank(PA
i−1) ≤ rank(PA

i ) ≤ rank(PA
i−1) +m.

Hence, at the lth step, one has

rank(PA
l ) ≤ lm.

Then by Schmidt-Mirsky theorem and considering PA
l as a low-rank approx-

imation to P, one simply obtains

λlm+1(P)

λ1(P)
≤ ‖Ad‖22,

where Ad is given by (2.17). The following result holds:

Theorem 2.5.1. Given the above set-up, let A be diagonalizable. Then, eigen-
values of the solution P to the Lyapunov equation (2.50) satisfy

λlm+1(P)

λ1(P)
≤ K(ρ(Ad))

2, (2.51)

where lm < n, K is given by (2.36), ρADI = ρ(Ad) as before and the shifts µi

are chosen by solving the ADI minimax problem (2.11).

See the original source [ASZ02] and [ZHO02] for details and a proof.
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2.5.2 Connection Between Convergence of the Smith Iteration and
Theorem 2.5.1

Smith (or ADI) type iterations try to approximate the exact Gramian P
with a low-rank version in which the convergence of the iteration is given
by either (2.12) or Proposition (2.4.4). Hence, if ρ(Ad) is close to 1 and/or
K is big, we expect slow convergence. The slow convergence leads to more
steps in the Smith iteration, and, consequently, the rank of the approximant
is higher. Since P is positive definite, in turn, this means that eigenvalues
of P do not decay rapidly. Therefore ρ(Ad) ≈ 1 and/or K is big mean that
λi(P) might decay slowly. This final remark is consistent with the above decay
bound (2.51). These relations are expected since (2.51) is derived via the ADI
iteration.

As stated in [ZHO02] and [ASZ02], (2.51) yields the following remarks:

1. If λi(A) are clustered in the complex plane, choosing the shifts µi as
the clustered points yields a small ρ(Ad), and consequently fast decay of
λi(P). Hence, the convergence of an ADI-type iteration is fast.

2. If λi(A) have mostly dominant real parts, then the decay rate is again
fast. Hence, as above, the convergence of an ADI-type iteration is fast.

3. If λi(A) have mostly dominant imaginary parts, while the real parts are
relatively small, the decay rate λi(P) is slow. Then an ADI iteration con-
verges slowly.

These observations agree with the numerical simulations. In Example 2.7.2,
the Smith(l) method is applied to a CD player example, a system of order 120,
where the eigenvalues of A are scattered in the complex plane with dominant
complex parts. Even with a high number of shifts, ρ(Ad) cannot be reduced
less than 0.98, and the Smith methods converge very slowly. Indeed, an exact
computation of P reveals that P does not have rapidly decaying eigenvalues.
Also, it was shown in [ASG01] that the Hankel singular values of this system
decay slowly as well, and the CD player was among the hardest models to
approximate. These results are consistent with item 3. above.

Item 2. is encountered in Example 2.7.2, where the Smith method is ap-
plied to a model of order 1006. 1000 of the eigenvalues are real and only the
remaining 6 are complex. By choosing the shifts as the complex eigenvalues,
ρ(Ad) is reduced to a small value and convergence is extremely fast. Indeed,
using the modified Smith method, the exact Gramians are approximated very
well with low-rank Gramians having rank of only 19. We note that the shifts
are even not the optimal ones.

2.6 Approximate Balanced Truncation and its Stability

Recall the implementation of balanced truncation presented in Section 2.2.3.
An exact balanced truncation requires the knowledge of Cholesky factors U
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and L of the Gramians P and Q, i.e. P = UUT and Q = LLT where P and
Q are the solutions to the two Lyapunov equations

AP + PAT +BBT = 0 and ATQ+QA+ CTC = 0.

As mentioned earlier, in large-scale settings, obtaining U and L is a formidable
task. In this section, we will discuss approximate balanced truncation of large-
sparse dynamical systems, where the approximate low-rank Cholesky factors
are used in place of the exact Gramians in computing the reduced-order model.
Hence, we will replace the full-rank Cholesky factors U and L with the low-
rank ones, namely Ũ and L̃ which are obtained through a k step Smith-
type iteration. For details see [GSA03]. For simplicity, let us assume that

the original model is SISO. Proceeding similarly to Section 2.2.3, let Ũ
T

L̃ =

Z̃Σ̃Ỹ
T

be the singular value decomposition (SVD) with Σ̃ = diag(σ̃1, · · · , σ̃k)
where σ̃i are the approximate Hankel singular values with σ̃1 > σ̃2 > · · · > σ̃k.
Here we have assumed, for the brevity of the discussion, that the Hankel
singular values are distinct. Now define

W̃1 := L̃Ỹ1Σ̃
−1/2
1 and Ṽ1 := Ũ Z̃1Σ̃

−1/2
1 ,

where Z̃1 and Ỹ1 are composed of the leading r columns of Z̃ and Ỹ respec-

tively, and Σ̃1 = diag(σ̃1, · · · , σ̃r). We note that the equality W̃
T

1 Ṽ1 = Ir
still holds and hence that Ṽ1W̃

T

1 is an oblique projection. The approximately
balanced reduced model Σ̃r of order r is obtained as

Ãr = W̃
T

1 AṼr, B̃r = W̃
T

1 B, Cr = CṼ1, and D̃r = D.

To examine the stability of this reduced model, we first define the error term
in P. Define ∆ as

∆ := Ũ Ũ
T − UU

T

= P̃ − P.
Then one can show that

ÃrΣ̃1 + Σ̃1Ã
T

r + B̃B̃r
T = W̃

T

1 (A∆+∆AT )W̃1 (2.52)

We know that Σ̃1 > 0. Hence to apply Lyapunov’s inertia theorem, we need

B̃B̃r
T − W̃

T

1 (A∆+∆AT )W̃1 = W̃
T

1 (BB
T −A∆−∆A

T

)W̃1 ≥ 0. (2.53)

Unfortunately, this is not always satisfied, and therefore one cannot guarantee
the stability of the reduced system. However, we would like to note many
researchers have observed that this does not seem to be a difficulty in practice;
in most cases approximate balanced truncation via a Smith-type iteration
yields a stable reduced system and instability is not an issue; see, for example,
[GSA03], [GA01], [PEN99], [LW01], [LW99] and the references there in.

Let Σr =

[
Ar Br

Cr D

]
and Σ̃r =

[
Ãr B̃r

C̃r D

]
be the rth order reduced systems

obtained by exact and approximate balancing, respectively. Now we examine
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closeness of Σr to Σ̃r. Define ∆V := V1 − Ṽ1 and ∆W := W1 − W̃1, and let
‖∆V ‖ ≤ τ and ‖∆W ‖ ≤ τ where τ is a small number; in other words, we
assume that Ṽ1 and W̃1 are close to V1 and W1, respectively. Under certain
assumptions (see [GSA03]), one can show that

‖Σr − Σ̃r‖∞ ≤ τ ( ‖Cr‖ ‖Br‖ ‖Ar‖ ( ‖W1‖+ ‖V1‖ ) +

‖Σ1‖∞‖Br‖+ ‖Σ2‖∞‖Cr‖ ) +O(τ2) (2.54)

where Σ1 :=

[
Ar I
Cr

]
and Σ2 :=

[
Ar Br

I

]
. Hence for small τ , i.e., when Ṽ1

and W̃1 are, respectively, close to V1 and W1, we expect Σr to be close to Σ̃r.
Indeed as the examples in Section 2.7 show, Σ̃r behaves much better than the
above upper bound predicts and Σ̃r, the approximately balanced system using
low-rank Gramians, is almost the same as the exactly balanced system. These
observations reveal the effectiveness of the Smith-type methods for balanced
truncation of large-sparse dynamical systems.

2.7 Numerical Examples

In this section we give numerical results on the CF–ADI method as well as
the LR-Smith(l) and Modified LR-Smith(l) methods.

2.7.1 CF–ADI and the Spiral Inductor

We begin with the CF–ADI approximation to the Lyapunov equation

AX + XAT +BBT = 0.

The example in Figure 2.1 comes from the inductance extraction of an on-
chip planar square spiral inductor suspended over a copper plane [KWW98],
shown in Figure 1(a). (See Chapter 23 for a detailed description of the spiral
inductor.) The original order 500 system has been symmetrized according to
[SKEW96]. The matrix A is a symmetric 500 × 500 matrix, and the input
coefficient matrix B ∈ R

n has one column.
Because A is symmetric, the eigenvalues of A are real and good CF–ADI

parameters are easy to find. The procedure given in Section 2.4.4 was followed.
CF–ADI was run to convergence in this example, which took 20 iterations.

Figure 1(b) shows the relative 2-norm error of the CF–ADI approximation,
i.e.

‖X − X cfadi
j ‖2

‖X‖2
,

where X is the exact solution to AX + XAT + BBT = 0 and X cfadi
j is the

jth CF–ADI approximation, for j = 1, · · · , 20. To illustrate the quality of
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(a) Spiral inductor
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Fig. 2.1. Spiral inductor, a symmetric system.

the low-rank approximation, we compare it with the optimal 2-norm rank-j
approximation to X[GVL96], denoted Xopt

j , obtained from the singular value
decomposition of exact solutionX. At j = 20, the relative error of the CF–ADI
approximation has reached 10−8, which is about the same size as the error of
the optimal rank 11 approximation. The error estimate ‖zCFA

j+1 ‖22 approximates

the actual error ‖X − X cfadi
j ‖ closely for all j.
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2.7.2 LR-Smith(l) and Modified LR-Smith(l) Methods

In this section we apply LR-Smith(l) and Modified LR-Smith(l) methods to
two dynamical systems. In each example, both the LR-Smith(l) iterates PSl

k ,

and QSl
k ; and the modified LR-Smith(l) iterates P̃k, and Q̃k are computed.

Also balanced reduction is applied using the full rank Gramians P, Q and the
approximate Gramians PSl

k , QSl
k ; and P̃k, Q̃k. The resulting reduced order

systems are compared.

CD Player Model

This example is described in Chapter 24, Section 4, this volume. The full order
model (FOM) describes the dynamics of a portable CD player, is of order
120, and single-input single-output. The eigenvalues of A are scattered in the
complex plane with relatively large imaginary parts. This makes it harder to
obtain a low ρ(Ad). A single shift results in ρ(Ad) = 0.99985. Indeed, even
with a high number of multiple shifts, l = 40, ρ(Ad) could not be reduced to
less than 0.98. Hence only a single shift is considered. This observation agrees
with the discussion in Section 2.5 that when the eigenvalues of A are scattered
in the complex plane, ADI-type iterations converge slowly. LR-Smith(l) and
the modified LR-Smith(l) iterations are run for k = 70 iterations. For the
Modified Smith(l) iteration, the tolerance values are chosen to be

τP = 1× 10−6 and τQ = 8× 10−6.

The low-rank LR-Smith(l) yields Cholesky factors ZSl
k and Y Sl

k with 70
columns. On the other hand, the modified LR-Smith(l) yields low-rank
Cholesky factors Z̃k and Ỹk with only 25 columns. To check the closeness of
modified Smith iterates to the exact Smith iterates, we compute the following
relative error norms:

‖PSl
k − P̃k‖
‖PSl

k ‖
= 4.13× 10−10, and

‖QSl
k − Q̃k‖
‖QSl

k ‖
= 2.33× 10−10.

Although the number of columns of the Cholesky factor have been reduced
from 70 to 25, the Modified Smith method yields almost the same accuracy.
We also look at the error between the exact and approximate Gramians:

‖P − PSl
k ‖

‖P‖ =
‖P − P̃k‖
‖P‖ = 3.95× 10−3,

‖Q −QSl
k ‖

‖Q‖ =
‖Q − Q̃k‖
‖Q‖ = 8.24× 10−1.

Next, we reduce the order of the FOM to r = 12 by balanced truncation
using both the approximate and the exact solutions. Σk, ΣSl

k and Σ̃k denote
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the 12th order reduced systems obtained through balanced reduction using
the exact Cholesky factors Z and Y ; the LR-Smith(l) iterates ZSl

k and Y Sl
k ;

and the modified LR-Smith(l) iterates Z̃k and Ỹk respectively. Also Σ denotes
the FOM.

Figure 2.2 depicts the amplitude Bode plots of the FOM Σ and the reduced
balanced systems Σk, ΣSl

k and Σ̃k. As can be seen, although relative error
between the exact and the approximate Gramians are not very small, ΣSl

k and

Σ̃k show a very similar behavior to Σk. This observation reveals that even
if the relative error in the approximate Gramians are big, if the dominant
eigenspace of PQ, and hence the largest HSV are matched well, approximate
balanced truncation performs very closely to the exact balanced truncation.
Similar observations can be found in [GA01, GUG03]. The amplitude Bode
plots of the error systems Σ − Σk, Σ − ΣSl

k and Σ − Σ̃k are illustrated in

Figure 2.3. It is also important to note that since the errors between P̃k and
PSl

k , and Q̃k and QSl
k are small, ΣSl

k and Σ̃k are almost equal as expected.
The relative H∞ norms of the error systems are tabulated in Table 2.1.

Table 2.1. Numerical Results for CD Player Model

‖Σ − Σk‖H∞

‚‚Σ − ΣSl
k

‚‚
H∞

‚‚‚Σ − Σ̃k

‚‚‚
H∞

‚‚‚ΣSl
k − Σ̃k

‚‚‚
H∞

9.88 × 10−4 9.71 × 10−4 9.69 × 10−4 5.11 × 10−6

‚‚Σk − ΣSl
k

‚‚
H∞

‚‚‚Σk − Σ̃k

‚‚‚
H∞

1.47 × 10−4 1.47 × 10−4

A Random System

This model is from [PEN99] and the example from [GSA03, GUG03]. The
FOM is a dynamical system of order 1006. The state-space matrices of the

full-order model Σ =

[
A B
C 0

]
are given by

A = diag(A1, A2, A3, A4), B
T

= C = [ 10 · · · 10︸ ︷︷ ︸
6

1 · · · 1︸ ︷︷ ︸
1000

]

where

A1 =

[
−1 100
−100 −1

]
, A2 =

[
−1 200
−200 −1

]
, A3 =

[
−1 400
−400 −1

]
,

and A4 = diag(−1, · · · ,−1000). .
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The spectrum of A is

σ(A) = {−1,−2, · · · ,−1000,−1± 100j,−1± 200j,−1± 400j}.

LR-Smith(l) and modified LR-Smith(l) methods are applied using l = 10
cyclic shifts. Six of the shifts are chosen so that the 6 complex eigenvalues of
A are eliminated. This shift selection reduces the ADI spectral radius ρ(Ad)
to 0.7623, and results in a fast convergence. Once more, the numerical re-
sults support the discussion in Section 2.5. Since the eigenvalues are mostly
real, with an appropriate choice of shifts, the spectral radius can be easily
reduced to a small number yielding a fast convergence. Both LR-Smith(l) and
the modified LR-Smith(l) iterations are run for k = 30 iterations with the
tolerance values

τP = τQ = 3× 10−5

for the latter. The resulting LR-Smith(l) and modified LR-Smith(l) Cholesky
factors has 300 and 19 columns, respectively. Even though the number of
columns in the modified method is much less than the exact LR-Smith(l)
method, almost there is no lost of accuracy in the computed Gramian as the
following numbers show:

‖PSl
k − P̃k‖
‖PSl

k ‖
= 1.90× 10−8, and

‖QSl
k − Q̃k‖
‖QSl

k ‖
= 3.22× 10−8.

The errors between the exact and computed Gramians are as follows:

‖P − PSl
k ‖

‖P‖ = 4.98× 10−10,
‖P − P̃k‖
‖P‖ = 1.88× 10−8

‖Q −QSl
k ‖

‖Q‖ = 4.98× 10−10,
‖Q − Q̃k‖
‖Q‖ = 3.21× 10−8.

Unlike the CD Player model, since ρ(Ad) is small, the iterations converge fast,
and both PSl

k and P̃k ( QSl
k and Q̃k) are very close to the exact Gramian P (

to Q).
We reduce the order of the FOM to r = 11 using both exact and approx-

imate balanced truncation. As in the CD Player example, Σk, ΣSl
k and Σ̃k

denote the reduced systems obtained through balanced reduction using the
exact Cholesky factors Z and Y ; the LR-Smith(l) iterates ZSl

k and Y Sl
k ; and

the modified LR-Smith(l) iterates Z̃k and Ỹk respectively. Figure 2.4 depicts
the amplitude Bode plots of the FOM Σ and the reduced systems Σk, ΣSl

k and

Σ̃k. As Figure 2.4 illustrates, all the reduced models match the FOM quite
well. More importantly, the approximate balanced truncation using the low-
rank Gramians yields almost the same result as the exact balanced truncation.
These results once more prove the effectiveness of the Smith-type methods.
The amplitude Bode plots of the error systems Σ−Σk, Σ−ΣSl

k and Σ− Σ̃k
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are illustrated in Figure 2.5 and all the relative H∞ norms of the error sys-
tems are tabulated in Table 2.2. As in the previous example, ΣSl

k and Σ̃k are

almost identical. The relative H∞ norm of the error ΣSl
k − Σ̃k is O(10−9). We

note that ΣSl
k has been obtained using a Cholesky factor with 300 columns;

on the other hand Σ̃k has been obtained using a Cholesky factor with only
19 columns, which proves the effectiveness of the modified Smith’s method.
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Table 2.2. Numerical Results for the Random Model

‖Σ − Σk‖H∞

‚‚Σ − ΣSl
k

‚‚
H∞

‚‚‚Σ − Σ̃k

‚‚‚
H∞

‚‚‚ΣSl
k − Σ̃k

‚‚‚
H∞

1.47 × 10−4 1.47 × 10−4 1.47 × 10−4 2.40 × 10−9

‖Σk − ΣSl
k ‖H∞ ‖Σk − Σ̃k‖H∞

7.25 × 10−11 7.25 × 10−11
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2.8 Conclusions

We have reviewed several low-rank methods to solve Lyapunov equations
which are based on Smith-type methods, with the goal of facilitating the
efficient model reduction of large-scale linear systems. The low-rank meth-
ods covered included the Low-Rank ADI method, the Cholesky Factor ADI
method, the Low-Rank Smith(l) method, and the modified Low-Rank Smith
(l) method. The low-rank factored versions of the ADI method reduced the
work required fromO(n3) toO(n) for sparse matrices and the required storage
from O(n2) to O(nr) where r is the numerical rank of the solution. Because
these low-rank methods produce the Cholesky factor of the solution to the
Lyapunov equation, they are especially well-suited to be used in conjunction
with approximate balanced truncation to reduce large-scale linear systems.
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