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Summary. Several generalized state-space models arising from a semi-discretization
of a controlled heat transfer process for optimal cooling of steel profiles are pre-
sented. The model orders differ due to different levels of refinement applied to the
computational mesh.

19.1 The Model Equations

We consider the problem of optimal cooling of steel profiles. This problem
arises in a rolling mill when different steps in the production process require
different temperatures of the raw material. To achieve a high production rate,
economical interests suggest to reduce the temperature as fast as possible to
the required level before entering the next production phase. At the same
time, the cooling process, which is realized by spraying cooling fluids on the
surface, has to be controlled so that material properties, such as durability or
porosity, achieve given quality standards. Large gradients in the temperature
distributions of the steel profile may lead to unwanted deformations, brittle-
ness, loss of rigidity, and other undesirable material properties. It is therefore
the engineers goal to have a preferably even temperature distribution. For a
picture of a such cooling plant see Figure 19.1.

The scientific challenge here is to give the engineers a tool to pre-calculate
different control laws yielding different temperature distributions in order to
decide which cooling strategy to choose.

We can only briefly introduce the model here; for details we refer to [Saa03]
or [BS04]. We assume an infinitely long steel profile so that we may restrict
ourselves to a 2D model. Exploiting the symmetry of the workpiece, the com-
putational domain Ω ⊂ R

2 is chosen as the half of a cross section of the
rail profile. The heat distribution is modeled by the instationary linear heat
equation on Ω:
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c$∂tx(t, ξ)− λ∆x(t, ξ) = 0 in R>0 ×Ω,
x(0, ξ) = x0(ξ) in Ω,

λ∂νx(t, ξ) = gi on R>0 × Γi, ∂Ω =
⋃
i

Γi,
(19.1)

where x is the temperature distribution (x ∈ H1([0,∞], X) with X := H1(Ω)
being the state space), c the specific heat capacity, λ the heat conductivity
and $ the density of the rail profile. We split the boundary into several parts
Γi on which we have different boundary functions gi, allowing us to vary the
controls on different parts of the surface. By ν we denote the outer normal of
the boundary.
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Fig. 19.1. Initial mesh, partitioning of the boundary, and a picture of a cooling
plant.

We want to establish the control by a feedback law, i.e., we define the
boundary functions gi to be functions of the state x and the control ui, where
(ui)i =: u = Fy for a linear operator F which is chosen such that the cost
functional

J (x0, u) :=

∫ ∞

0

(Qy, y)Y + (Ru, u)Udt, with y = Cx (19.2)

is minimized. Here, Q and R are linear selfadjoint operators on the output
space Y and the control space U with Q ≥ 0, R > 0, and C ∈ L(X,Y ).

The variational formulation of (19.1) with gi(t, ξ) = qi(ui − x(ξ, t)) leads
to:

(∂tx, v) = −
∫

Ω

α∇x∇vdx+
∑

k

(
qkuk

∫
Γk

1

c$
v dσ −

∫
Γk

qk

c$
xv dσ

)
(19.3)

for all v ∈ C∞0 (Ω). Here the uk are the exterior (cooling fluid) temperatures
used as the controls, qk are constant heat transfer coefficients (i.e. parameters
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for the spraying intensity of the cooling nozzles) and α := λ
c� . Note that

q0 = 0 yields the Neumann isolation boundary condition on the artificial
inner boundary on the symmetry axis.

In view of (19.3), we can now apply a standard Galerkin approach for
discretizing the heat transfer model in space, resulting a first-order ordinary
differential equation. This is described in the following section.

19.2 The Discretized Mathematical Model

For the discretization we use the ALBERTA-1.2 fem-toolbox (see [SS00] for
details). We applied linear Lagrange elements and used a projection method
for the curved boundaries. The initial mesh (see Figure 19.1. on the left) was
produced by Matlabs pdetool which implements a Delaunay triangulation
algorithm. The finer discretizations were produce by global mesh refinement
using a bisection refinement method.

The discrete LQR problem is then: minimize (19.2) with respect to

Eẋ(t) = Ax(t) +Bu(t), with t > 0, x(0) = x0,
y(t) = Cx(t).

(19.4)

This benchmark includes four different mesh resolutions. The best approxi-
mation error of the finite element discretization that one can expect (under
suitable smoothness assumptions on the solution) is of order O(h2) where
h is the maximum edge size in the corresponding mesh. This order should
be matched in a model reduction approach. The following table lists some
relevant quantities for the provided models.

matrix dimension non-zeros in A non-zeros in E
maximum mesh
width (h)

1357 8985 8997 5.5280 10−2

5177 35185 35241 2.7640 10−2

20209 139233 139473 1.3820 10−2

79841 553921 554913 6.9100 10−3

Note that A is negative definite while E is positive definite, so that the
resulting linear time-invariant system is stable.

The data sets are named rail (problem dimension) C60.(matrix name).
Here C60 is a specific output matrix which is defined to minimize the tem-
perature in the node numbered 60 (see Figure 19.1) and to keep temperature
gradients small. The latter task is taken into account by the inclusion of
temperature differences between specific points in the interior and reference
points on the boundary, e.g. temperature difference between nodes 83 and 34.
Again refer to Figure 19.1. for the nodes used. The definitions of other output
matrices that we tested can be found in [Saa03].
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The problem resides at temperatures of approximately 1000℃ down to
about 500-700℃ depending on calculation time. The state values are scaled
to 1000℃ being equivalent to 1.000. This results in a scaling of the time line
with factor 100, meaning that calculated times have to be divided by 100 to
get the real time in seconds.
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[ET01a] K. Eppler and F. Tröltzsch. Discrete and continuous optimal control strate-
gies in the selective cooling of steel. Z. Angew. Math. Mech., 81(Suppl.
2):247–248, 2001.
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