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Summary. A benchmark for structural mechanics, related to modeling of a micr-
ogyroscope, is presented. It can be used to apply model reduction algorithms to a
linear second-order problem.

18.1 Brief Project Overview

The Butterfly gyro is developed at the Imego Institute in an ongoing project
with Saab Bofors Dynamics AB. The Butterfly is a vibrating micro-mechanical
gyro that has sufficient theoretical performance characteristics to make it a
promising candidate for use in inertial navigation applications. The goal of
the current project is to develop a micro unit for inertial navigation that can
be commercialized in the high-end segment of the rate sensor market. This
project has reached the final stage of a three-year phase where the develop-
ment and research efforts have ranged from model based signal processing, via
electronics packaging to design and prototype manufacturing of the sensor el-
ement. The project has also included the manufacturing of an ASIC, named
µSIC, that has been especially designed for the sensor (Figure 18.1).

The gyro chip consists of a three-layer silicon wafer stack, in which the
middle layer contains the sensor element. The sensor consists of two wing pairs
that are connected to a common frame by a set of beam elements (Figure 18.2
and 18.3); this is the reason the gyro is called the Butterfly. Since the structure
is manufactured using an anisotropic wet-etch process, the connecting beams
are slanted. This makes it possible to keep all electrodes, both for capacitive
excitation and detection, confined to one layer beneath the two wing pairs.
The excitation electrodes are the smaller dashed areas shown in Figure 18.2.
The detection electrodes correspond to the four larger ones.

By applying DC-biased AC-voltages to the four pairs of small electrodes,
the wings are forced to vibrate in anti-phase in the wafer plane. This is the
excitation mode. As the structure rotates about the axis of sensitivity (Fig-
ure 18.2), each of the masses will be affected by a Coriolis acceleration. This
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Fig. 18.1. The Butterfly and µSIC mounted together.

acceleration can be represented as an inertial force that is applied at right
angles with the external angular velocity and the direction of motion of the
mass. The Coriolis force induces an anti-phase motion of the wings out of the
wafer plane. This is the detection mode. The external angular velocity can
be related to the amplitude of the detection mode, which is measured via the
large electrodes.

The partial differential equation for the displacement field of the gyro is
governed by the standard linear equations of three-dimensional elastodynam-
ics:

σij,j + fi = ρüi, (18.1)

where ρ is the mass density, σij is the stress tensor, fi represents external loads
(such as Coulomb forces) and ui are the components of the displacement field.
The constitutive stress-strain relation of a linear, anisotropic solid is given by

σij =
1

2
Cijkl (ui,j + uj,i) , (18.2)

where Cijkl is the elastic moduli tensor.

18.2 The Benefits of Model Order Reduction

When planning for and making decisions on future improvements of the But-
terfly, it is of importance to improve the efficiency of the gyro simulations.
Repeated analyses of the sensor structure have to be conducted with respect to
a number of important issues. Examples of such are sensitivity to shock, linear
and angular vibration sensitivity, reaction to large rates and/or acceleration,
different types of excitation load cases and the effect of force-feedback.

The use of model order reduction indeed decreases runtimes for repeated
simulations. Moreover, the reduction technique enables a transformation of
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Fig. 18.2. Schematic layout of the Butterfly design.

the FE representation of the gyro into a state space equivalent formulation.
This will prove helpful in testing the model based Kalman signal processing
algorithms that are being designed for the Butterfly gyro.

The structural model of the gyroscope has been done in ANSYS using
quadratic tetrahedral elements (SOLID187, Figure 18.3). The model shown is
a simplified one with a coarse mesh as it is designed to test the model reduction
approaches. It includes the pure structural mechanics problem only. The load
vector is composed from time-varying nodal forces applied at the centers of
the excitation electrodes (Figure 18.2). The amplitude and frequency of each
force is equal to 0.055 µN and 2384 Hz, respectively. The Dirichlet boundary
conditions have been applied to all DOFs of the nodes belonging to the top
and bottom surfaces of the frame. The output nodes are listed in Table 18.2
and correspond to the centers of the detection electrodes.

Fig. 18.3. Finite element mesh of the gyro with a background photo of the gyro
wafer pre-bonding.

The discretized structural model

Mẍ+ Eẋ+Kx = Bu
y = Cx

(18.3)
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contains the mass and stiffness matrices. The damping matrix is modeled as
αM + βK, where the typical values are α = 0 and β = 10−6, respectively.
The nature of the damping matrix is in reality more complex (squeeze film
damping, thermo-elastic damping, etc.) but this simple approach has been
chosen with respect to the model reduction benchmark.

The dynamic model has been converted to Matrix Market format by means
of mor4ansys. The statistics for the matrices is shown in Table 18.1.

Table 18.1. System matrices for the gyroscope.

matrix m n nnz Is symmetric?

M 17361 17361 178896 yes
K 17361 17361 519260 yes
B 17361 1 8 no
C 12 17361 12 no

Table 18.2. Outputs for the Butterfly Gyro Model.

# Code Comment

1-3 det1m Ux, det1m Uy, det1m Uz Displ. of det. elect. 1, hardpoint #601
4-6 det1p Ux, det1p Uy, det1p Uz Displ. of det. elect. 2, hardpoint #602
7-9 det2m Ux, det2m Uy, det2m Uz Displ. of det. elect. 3, hardpoint #603

10-12 det2p Ux, det2p Uy, det2p Uz Displ. of det. elect. 4, hardpoint #604

The benchmark has been used in [LDR04] where the problem is also de-
scribed in more detail.
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