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Summary. The simulation of heat transport for a single device is easily tackled
by current computational resources, even for a complex, finely structured geometry;
however, the calculation of a multi-scale system consisting of a large number of
those devices, e.g., assembled printed circuit boards, is still a challenge. A further
problem is the large change in heat conductivity of many semiconductor materials
with temperature. We model the heat transfer along a 1D beam that has a nonlinear
heat capacity which is represented by a polynomial of arbitrary degree as a function
of the temperature state. For accurate modeling of the temperature distribution,
the resulting model requires many state variables to be described adequately. The
resulting complexity, i.e., number of first order differential equations and nonlinear
parts, is such that a simplification or model reduction is needed in order to perform
a simulation in an acceptable amount of time for the applications at hand.

In this paper, we describe the modeling considerations leading to a large nonlin-
ear system of equations. Sample results from this model and examples of successful
model order reduction can be found in [YLLK04] and the corresponding bench-
mark document, available online on the Oberwolfach Model Reduction Benchmark
Collection website [OBC] (“Nonlinear heat transfer modeling”).

13.1 Modeling

We model the heat transfer along a 1D beam with length L, cross sectional
area A and nonlinear heat conductivity κ. The heat conductivity is represented
by a polynomial in temperature T (x, t) of arbitrary degree n

κ(T ) = a0 + a1T + · · ·+ anT
n =

n∑
i=0

aiT
i. (13.1)

The right end of the beam (at x = L) is fixed at ambient temperature. The
model features two inputs, a time-dependent uniform heat flux f at the left
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Fig. 13.1. The modeled beam with heat flux inputs and heat sink.

end (at x = 0) and a time dependant heat source Q along the beam. We
denote the beam volume where we wish to solve the equations by Ω.

By including (13.1) in the differential form of the heat transfer equation,

−∇ · (κ(T )∇T ) + ρcpṪ = Q, (13.2)

we obtain the following expression,

−
n∑

i=0

ai∇ ·
(
T i∇T

)
+ ρcpṪ = Q, (13.3)

where ρ is the density and cp is the heat capacity, which are both assumed to
be constant for the considered temperature range. This approximation can be
justified from measurements of semiconductors, which show that the temper-
ature dependency of cp is much smaller than that of κ. This rapid change is a
result of the special band structure of the material. It follows an exponential
law:

κ = κ0e
α(T−T0). (13.4)

The heat capacity for silicon changes from 1.3 to 2 in the temperature range
of 200 to 600 Kelvin, while κ changes from 280 W/m K to 60 W/m K.

13.1.1 Finite Element Discretization

Following the Ritz-Galerkin finite element formulation, we require orthogo-
nality with respect to a set of test functions Nk(x), k = 1, . . . , N :

−
n∑

i=0

ai

∫
Ω

Nk∇ ·
(
T i∇T

)
dΩ +

∫
Ω

NkρcpṪdΩ =

∫
Ω

NkQdΩ ∀N. (13.5)

By using the Green-Gauß theorem, we get the weak form

n∑
i=0

ai

∫
Ω

∇NkT
i∇TdΩ −

∫
∂Ω

κ(T )∇T · n︸ ︷︷ ︸
J

Nkd∂Ω +

∫
Ω

NkρcpṪdΩ

=

∫
Ω

NkQdΩ,

(13.6)

where a positive J denotes a heat flux into one end of the beam. We approx-
imate the temperature profile by shape functions

Heat Source (Q = u1)

Heat flux

(κ dT/dx = u2)

Heat sink (T = 0)
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T (x) =

N∑
j=1

TjNj(x), (13.7)

which are the same as the test functions Nk and, after moving all inputs to
the right side, obtain

n∑
i=0

ai

N∑
j=1

Tj

∫
Ω

∇NkT
i∇NjdΩ + ρcp

N∑
j=1

Ṫj

∫
Ω

NkNjdΩ

= Q

∫
Ω

NkdΩ + J

∫
∂Ω

Nkd∂Ω.

(13.8)

T1 Tn

Fig. 13.2. Linear shape functions for FEM discretization

The second, third and fourth term in this equation are linear and yield
a constant mass matrix M and a scattering matrix B on the right side to
distribute the two inputs J and Q to the load vector. For a linear 1D beam
element e of length l with nodes m and m+ 1, we have the element contribu-
tions

Me =

[
2/3 1/6
1/6 2/3

]
, Be =

[
0 Al/2
0 Al/2

]
(13.9a)

except for the leftmost element, where

B1 =

[
A Al/2
0 Al/2

]
. (13.9b)

When using linear shape functions, the gradients are constant. The element
stiffness matrix then reads

Ae =

n∑
i=0

ai
A

l2

∫ l

0

(Tm(1− x/l) + Tm+1x/l)
i
dx

[
1 −1
−1 1

]
(13.10a)

=
n∑

i=0

ai
A

l

T i+1
m+1 − T i+1

m

(i+ 1)(Tm+1 − Tm)

[
1 −1
−1 1

]
. (13.10b)

For i > 0, this yields a nonlinear stiffness matrix, while for i = 0 after perform-
ing the multiplication of the matrix A with x, the denominator is constant.
We introduce a vector f(T ) on the right side which collects all nonlinear parts
of the discretized equation:

AlinearT + ρcpMṪ = B
(

J
Q

)
+ f(T). (13.11)
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To move the nonlinear terms in (13.10b) to the right side, we multiply them
with Tm − Tm+1 and subtract them from both sides of the equation. Every
element e contributes two entries to the vector f(T ):

fe =

n∑
i=1

ai
A

l

T i+1
m+1 − T i+1

m

i+ 1

(
1
−1

)
. (13.12)

We observe that the nonlinearities are polynomial.
We then denote E = ρcpM and introduce a gather matrix C which returns

some linear combinations of the degrees of freedom (or more often, selects
some single DOFs) which are the most interesting for the application. In this
particular example, C is a row vector with 1 at the first position, 1 at the entry
in the middle ('n/2() and 0 everywhere else. This returns the temperatures
at the leftmost end (where the heat flux is applied) and in the middle of the
beam.

After renaming T to x to comply with the DSI file format specifications
described in Chapter 12, we end up with the following system of equations:

Eẋ + Ax = Bu + Ff(x, u) (13.13)

y = Cx (13.14)

13.1.2 Implementation

The scheme above was implemented in the computer algebra system Math-
ematica [Mat]. Mathematica’s symbolic capabilities allow for an easy imple-
mentation of vectors of nonlinear functions. The data is then exported to a
file in the DSI format; see Chapter 12. We have also created an interactive
web application which allows one to specify the parameters of the model for
customized matrix generation, available on [Mst].

A number of linear and nonlinear precomputed examples are available from
the benchmark.

13.2 Discussion and Conclusion

A general model for the heat conduction with temperature dependent heat
conductivity in a 1D beam was developed. It is possible to include polynomial
nonlinearities with an arbitrary polynomial degree. The effects of nonlineari-
ties are clearly visible from simulation results.
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