
10

Proper Orthogonal Decomposition Surrogate
Models for Nonlinear Dynamical Systems:
Error Estimates and Suboptimal Control

Michael Hinze1 and Stefan Volkwein2

1 Institut für Numerische Mathematik, TU Dresden, D-01069 Dresden, Germany
hinze@math.tu-dresden.de

2 Institut für Mathematik und Wissenschaftliches Rechnen, Karl-Franzens
Universität Graz, Heinrichstrasse 36, A-8010 Graz, Austria
stefan.volkwein@uni-graz.at

10.1 Motivation

Optimal control problems for nonlinear partial differential equations are often
hard to tackle numerically so that the need for developing novel techniques
emerges. One such technique is given by reduced order methods. Recently
the application of reduced-order models to optimal control problems for par-
tial differential equations has received an increasing amount of attention. The
reduced-order approach is based on projecting the dynamical system onto
subspaces consisting of basis elements that contain characteristics of the ex-
pected solution. This is in contrast to, e.g., finite element techniques, where
the elements of the subspaces are uncorrelated to the physical properties of
the system that they approximate. The reduced basis method as developed,
e.g., in [IR98] is one such reduced-order method with the basis elements cor-
responding to the dynamics of expected control regimes.

Proper orthogonal decomposition (POD) provides a method for deriving
low order models of dynamical systems. It was successfully used in a variety
of fields including signal analysis and pattern recognition (see [Fuk90]), fluid
dynamics and coherent structures (see [AHLS88, HLB96, NAMTT03, RF94,
Sir87]) and more recently in control theory (see [AH01, AFS00, LT01, SK98,
TGP99]) and inverse problems (see [BJWW00]). Moreover, in [ABK01] POD
was successfully utilized to compute reduced-order controllers. The relation-
ship between POD and balancing was considered in [LMG, Row04, WP01].
Error analysis for nonlinear dynamical systems in finite dimensions were car-
ried out in [RP02].

In our application we apply POD to derive a Galerkin approximation in
the spatial variable, with basis functions corresponding to the solution of the
physical system at pre-specified time instances. These are called the snap-
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shots. Due to possible linear dependence or almost linear dependence, the
snapshots themselves are not appropriate as a basis. Rather a singular value
decomposition (SVD) is carried out and the leading generalized eigenfunctions
are chosen as a basis, referred to as the POD basis.

The paper is organized as follows. In Section 10.2 the POD method and
its relation to SVD is described. Furthermore, the snapshot form of POD for
abstract parabolic equations is illustrated. Section 10.3 deals with reduced
order modeling of nonlinear dynamical systems. Among other things, error
estimates for reduced order models of a general equation in fluid mechanics
obtained by the snapshot POD method are presented. Section 10.4 deals with
suboptimal control strategies based on POD. For optimal open-loop control
problems an adaptive optimization algorithm is presented which in every it-
eration uses a surrogate model obtained by the POD method instead of the
full dynamics. In particular, in Section 10.4.2 first steps towards error estima-
tion for optimal control problems are presented whose discretization is based
on POD. The practical behavior of the proposed adaptive optimization algo-
rithm is illustrated for two applications involving the time-dependent Navier-
Stokes system in Section 10.5. For closed-loop control we refer the reader to
[Gom02, KV99, KVX04, LV03], for instance. Finally, we draw some conclu-
sions and discuss future research perspectives in Section 10.6.

10.2 The POD Method

In this section we propose the POD method and its numerical realization. In
particular, we consider both POD in Cn (finite-dimensional case) and POD in
Hilbert spaces; see Sections 10.2.1 and 10.2.2, respectively. For more details
we refer to, e.g., [HLB96, KV99, Vol01a].

10.2.1 Finite-Dimensional POD

In this subsection we concentrate on POD in the finite dimensional setting
and emphasize the close connection between POD and the singular value
decomposition (SVD) of rectangular matrices; see [KV99]. Furthermore, the
numerical realization of POD is explained.

POD and SVD

Let Y be a possibly complex valued n ×m matrix of rank d. In the context
of POD it will be useful to think of the columns {Y·,j}m

j=1 of Y as the spatial
coordinate vector of a dynamical system at time tj . Similarly we consider the
rows {Yi,·}n

i=1 of Y as the time-trajectories of the dynamical system evaluated
at the locations xi.

From SVD (see, e.g., [Nob69]) the existence of real numbers σ1 ≥ σ2 ≥
. . . ≥ σd > 0 and unitary matrices U ∈ Cn×n with columns {ui}n

i=1 and
V ∈ Cm×m with columns {vi}m

i=1 such that
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UHY V =

(
D 0
0 0

)
=: Σ ∈ Cn×m, (10.1)

where D = diag (σ1, . . . , σd) ∈ IRd×d, the zeros in (10.1) denote matrices of
appropriate dimensions, and the superindex H stands for complex conjuga-
tion. Moreover, the vectors {ui}d

i=1 and {vi}d
i=1 satisfy

Y vi = σiui and Y Hui = σivi for i = 1, . . . , d. (10.2)

They are eigenvectors of Y Y H and Y HY with eigenvalues σ2
i , i = 1, . . . , d. The

vectors {ui}m
i=d+1 and {vi}m

i=d+1 (if d < n respectively d < m) are eigenvectors

of Y Y H and Y HY , respectively, with eigenvalue 0. If Y ∈ IRn×m then U and
V can be chosen to be real-valued.

From (10.2) we deduce that Y = UΣV H . It follows that Y can also be
expressed as

Y = UdD(V d)H , (10.3)

where Ud ∈ Cn×d and V d ∈ Cm×d are given by

Ud
i,j = Ui,j for 1 ≤ i ≤ n, 1 ≤ j ≤ d,

V d
i,j = Vi,j for 1 ≤ i ≤ m, 1 ≤ j ≤ d.

It will be convenient to express (10.3) as

Y = UdB with B = D(V d)H ∈ Cd×m.

Thus the column space of Y can be represented in terms of the d linearly
independent columns of Ud. The coefficients in the expansion for the columns
Y·,j , j = 1, . . . ,m, in the basis {Ud

·,i}d
i=1 are given by the B·,j . Since U is

Hermitian we easily find that

Y·,j =
d∑

i=1

Bi,jU
d
·,i =

d∑
i=1

〈U·,i, Y·,j〉CnU
d
·,i,

where 〈· , ·〉Cn denotes the canonical inner product in Cn. In terms of the
columns yj of Y we express the last equality as

yj =
d∑

i=1

Bi,jui =
d∑

i=1

〈ui, yj〉Cnui, j = 1, . . . ,m.

Let us now interpret singular value decomposition in terms of POD. One
of the central issues of POD is the reduction of data expressing their ”essential
information” by means of a few basis vectors. The problem of approximating
all spatial coordinate vectors yj of Y simultaneously by a single, normalized
vector as well as possible can be expressed as



264 Michael Hinze and Stefan Volkwein

max

m∑
j=1

∣∣〈yj , u〉Cn

∣∣2 subject to (s.t.) |u|Cn = 1. (P)

Here, | · |Cn denotes the Euclidean norm in Cn. Utilizing a Lagrangian frame-
work a necessary optimality condition for (P) is given by the eigenvalue prob-
lem

Y Y Hu = σ2u. (10.4)

Due to singular value analysis u1 solves (P) and argmax (P) = σ2
1 . If we were

to determine a second vector, orthogonal to u1 that again describes the data
set {yi}m

i=1 as well as possible then we need to solve

max

m∑
j=1

∣∣〈yj , u〉Cn

∣∣2 s.t. |u|Cn = 1 and 〈u, u1〉Cn = 0. (P2)

Rayleigh’s principle and singular value decomposition imply that u2 is a solu-
tion to (P2) and argmax (P2) = σ2

2 . Clearly this procedure can be continued
by finite induction so that uk, 1 ≤ k ≤ d, solves

max

m∑
j=1

∣∣〈yj , u〉Cn

∣∣2 s.t. |u|Cn = 1 and 〈u, ui〉Cn = 0, 1 ≤ i ≤ k− 1. (Pk)

The following result which states that for every � ≤ k the approximation of
the columns of Y by the first � singular vectors {ui}�

i=1 is optimal in the mean
among all rank � approximations to the columns of Y is now quite natural.
More precisely, let Û ∈ Cn×d denote a matrix with pairwise orthonormal
vectors ûi and let the expansion of the columns of Y in the basis {ûi}d

i=1 be
given by

Y = Û B̂, where B̂i,j = 〈ûi, yj〉Cn for 1 ≤ i ≤ d, 1 ≤ j ≤ m.

Then for every � ≤ k we have

‖Y − Û �B̂�‖F ≥ ‖Y − U �B�‖F . (10.5)

Here, ‖ · ‖F denotes the Frobenius norm, U � denotes the first � columns of U ,
B� the first � rows of B and similarly for Û � and B̂�. Note that the j-th column
of U �B� represents the Fourier expansion of order � of the j-th column yj of Y

in the orthonormal basis {ui}�
i=1. Utilizing the fact that Û B̂� has rank � and

recalling that B� = (D(V k)H)� estimate (10.5) follows directly from singular
value analysis [Nob69]. We refer to U � as the POD-basis of rank �. Then we
have

d∑
i=�+1

σ2
i =

d∑
i=�+1

( m∑
j=1

|Bi,j |2
)
≤

d∑
i=�+1

( m∑
j=1

|B̂i,j |2
)
. (10.6)

and



10 POD: Error Estimates and Suboptimal Control 265

�∑
i=1

σ2
i =

�∑
i=1

( m∑
j=1

|Bi,j |2
)
≥

�∑
i=1

( m∑
j=1

|B̂i,j |2
)
. (10.7)

Inequalities (10.6) and (10.7) establish that for every 1 ≤ � ≤ d the POD-basis
of rank � is optimal in the sense of representing in the mean the columns of
Y as a linear combination by a basis of rank �. Adopting the interpretation
of the Yi,j as the velocity of a fluid at location xi and at time tj , inequality
(10.7) expresses the fact that the first � POD-basis functions capture more
energy on average than the first � functions of any other basis.

The POD-expansion Y � of rank � is given by

Y � = U �B� = U �
(
D(V d)H

)�
,

and hence the ”t-average” of the coefficients satisfies

〈B�
i,·, B

�
j,·〉Cm = σ2

i δij for 1 ≤ i, j ≤ �.

This property is referred to as the fact that the POD-coefficients are uncor-
related.

Computational Issues

Concerning the practical computation of a POD-basis of rank � let us note that
if m < n then one can choose to determine m eigenvectors vi corresponding to
the largest eigenvalues of Y HY ∈ Cm×m and by (10.2) determine the POD-
basis from

ui =
1

σi
Y vi, i = 1, . . . , �. (10.8)

Note that the square matrix Y HY has the dimension of number of ”time-
instances” tj . For historical reasons [Sir87] this method of determine the POD-
basis is sometimes called the method of snapshots.

For the application of POD to concrete problems the choice of � is certainly
of central importance, as is also the number and location of snapshots. It
appears that no general a-priori rules are available. Rather the choice of � is
based on heuristic considerations combined with observing the ratio of the
modeled to the total information content contained in the system Y , which is
expressed by

E(�) =

∑�
i=1 σ

2
i∑d

i=1 σ
2
i

for � ∈ {1, . . . , d}. (10.9)

For a further discussion, also of adaptive strategies based e.g. on this term we
refer to [MM03] and the literature cited there.
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Application to Discrete Solutions to Dynamical Systems

Let us now assume that Y ∈ IRn×m, n ≥ m, arises from discretization of
a dynamical system, where a finite element approach has been utilized to
discretize the state variable y = y(x, t), i.e.,

yh(x, tj) =

n∑
i=1

Yi,jϕi(x) for x ∈ Ω,

with ϕi, 1 ≤ i ≤ n, denoting the finite element functions and Ω be-
ing a bounded domain in IR2 or IR3. The goal is to describe the ensem-
ble {yh(· , tj)}m

j=1 of L2-functions simultaneously by a single normalized L2-
function ψ as well as possible:

max
m∑

j=1

∣∣〈yh(·, tj), ψ〉L2(Ω)

∣∣2 s.t. ‖ψ‖L2(Ω) = 1, (P̃)

where 〈· , ·〉L2(Ω) is the canonical inner product in L2(Ω). Since yh(· , tj) ∈
span {ϕ1, . . . , ϕn} holds for 1 ≤ j ≤ n, we have ψ ∈ span {ϕ1, . . . , ϕn}. Let v
be the vector containing the components vi such that

ψ(x) =

n∑
i=1

viϕi(x)

and let S ∈ IRn×n denote the positive definite mass matrix with the elements
〈ϕi, ϕj〉L2(Ω). Instead of (10.4) we obtain that

Y Y TSv = σ2v. (10.10)

The eigenvalue problem (10.10) can be solved by utilizing singular value anal-
ysis. Multiplying (10.10) by the positive square root S1/2 of S from the left
and setting u = S1/2v we obtain the n× n eigenvalue problem

Ỹ Ỹ Tu = σ2u, (10.11)

where Ỹ = S1/2Y ∈ IRn×m. We mention that (10.11) coincides with (10.4)
when {ϕi}n

i=1 is an orthonormal set in L2(Ω). Note that if Y has rank k the
matrix Ỹ has also rank d. Applying the singular value decomposition to the
rectangular matrix Ỹ we have

Ỹ = UΣV T

(see (10.1)). Analogous to (10.3) it follows that

Ỹ = UdD(V d)T , (10.12)
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where again Ud and V d contain the first k columns of the matrices U and V ,
respectively. Using (10.12) we determine the coefficient matrix Ψ = S−1/2Ud ∈
IRn×d, so that the first k POD-basis functions are given by

ψj(x) =

n∑
i=1

Ψi,jϕi(x), j = 1, . . . , d.

Due to (10.11) and Ψ·,j = S−1/2Ud
·,j , 1 ≤ j ≤ d, the vectors Ψ·,j are eigenvec-

tors of problem (10.10) with corresponding eigenvalues σ2
j :

Y Y TSΨ·,j = Y Y TSS−1/2Uk
·,j = S−1/2Ỹ Ỹ TUk

·,j = σ2
jS

−1/2Uk
·,j = σ2

jΨ·,j .

Therefore, the function ψ1 solves (P̃) with argmax (P̃) = σ2
1 and, by finite

induction, the function ψk, k ∈ {2, . . . , d}, solves

max
m∑

j=1

∣∣〈yh(·, tj), ψ〉L2(Ω)

∣∣2 s.t. ‖ψ‖L2(Ω) = 1, 〈ψ,ψi〉L2(Ω) = 0, i < d, (P̃k)

with argmax (P̃k) = σ2
k. Since we have Ψ·,j = S−1/2Ud

·,j , the functions

ψ1, . . . , ψd are orthonormal with respect to the L2-inner product:

〈ψi, ψj〉L2(Ω) = 〈Ψ·,i, SΨ·,j〉Cn = 〈ui, uj〉Cn = δij , 1 ≤ i, j ≤ d.

Note that the coefficient matrix Ψ can also be computed by using generalized
singular value analysis. If we multiply (10.10) with S from the left we obtain
the generalized eigenvalue problem

SY Y TSu = σ2Su.

From generalized SVD [GL89] there exist orthogonal V ∈ IRm×m and U ∈
IRn×n and an invertible R ∈ IRn×n such that

V (Y TS)R =

(
E 0
0 0

)
=: Σ1 ∈ IRm×n, (10.13a)

US1/2R = Σ2 ∈ IRn×n, (10.13b)

where E = diag (e1, . . . , ed) with ei > 0 and Σ2 = diag (s1, . . . , sn) with
si > 0. From (10.13b) we infer that

R = S−1/2UTΣ2. (10.14)

Inserting (10.14) into (10.13a) we obtain that

Σ−1
2 ΣT

1 = Σ−1
2 RTSY V T = US1/2Y V T ,

which is the singular value decomposition of the matrix S1/2Y with σi =
ei/si > 0 for i = 1, . . . , d. Hence, Ψ is again equal to the first k columns of
S1/2U .
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If m ≤ n we proceed to determine the matrix Ψ as follows. From uj =
(1/σj)S

1/2Y vj for 1 ≤ j ≤ d we infer that

Ψ·,j =
1

σj
Y vj ,

where vj solves the m×m eigenvalue problem

Y TSY vj = σ2
i vj , 1 ≤ j ≤ d.

Note that the elements of the matrix Y TSY are given by the integrals

〈y(·, ti), y(·, tj)〉L2(Ω), 1 ≤ i, j ≤ n, (10.15)

so that the matrix Y TSY is often called a correlation matrix.

10.2.2 POD for Parabolic Systems

Whereas in the last subsection POD has been motivated by rectangular ma-
trices and SVD, we concentrate on POD for dynamical (non-linear) systems
in this subsection.

Abstract Nonlinear Dynamical System

Let V and H be real separable Hilbert spaces and suppose that V is dense
in H with compact embedding. By 〈· , ·〉H we denote the inner product in H.
The inner product in V is given by a symmetric bounded, coercive, bilinear
form a : V × V → IR:

〈ϕ,ψ〉V = a(ϕ,ψ) for all ϕ,ψ ∈ V (10.16)

with associated norm given by ‖ · ‖V =
√
a(· , ·). Since V is continuously

injected into H, there exists a constant cV > 0 such that

‖ϕ‖H ≤ cV ‖ϕ‖V for all ϕ ∈ V. (10.17)

We associate with a the linear operator A:

〈Aϕ,ψ〉V ′,V = a(ϕ,ψ) for all ϕ,ψ ∈ V,

where 〈· , ·〉V ′,V denotes the duality pairing between V and its dual. Then, by
the Lax-Milgram lemma, A is an isomorphism from V onto V ′. Alternatively,
A can be considered as a linear unbounded self-adjoint operator in H with
domain

D(A) = {ϕ ∈ V : Aϕ ∈ H}.

By identifying H and its dual H ′ it follows that



10 POD: Error Estimates and Suboptimal Control 269

D(A) ↪→ V ↪→ H = H ′ ↪→ V ′,

each embedding being continuous and dense, when D(A) is endowed with the
graph norm of A.

Moreover, let F : V × V → V ′ be a bilinear continuous operator mapping
D(A) × D(A) into H. To simplify the notation we set F (ϕ) = F (ϕ,ϕ) for
ϕ ∈ V . For given f ∈ C([0, T ];H) and y0 ∈ V we consider the nonlinear
evolution problem

d

dt
〈y(t), ϕ〉H + a(y(t), ϕ) + 〈F (y(t)), ϕ〉V ′,V = 〈f(t), ϕ〉H (10.18a)

for all ϕ ∈ V and t ∈ (0, T ] a.e. and

y(0) = y0 in H. (10.18b)

Assumption (A1). For every f ∈ C([0, T ];H) and y0 ∈ V there exists a
unique solution of (10.18) satisfying

y ∈ C([0, T ];V ) ∩ L2(0, T ;D(A)) ∩H1(0, T ;H). (10.19)

Computation of the POD Basis

Throughout we assume that Assumption (A1) holds and we denote by y the
unique solution to (10.18) satisfying (10.19). For given n ∈ IN let

0 = t0 < t1 < . . . < tn ≤ T (10.20)

denote a grid in the interval [0, T ] and set δtj = tj− tj−1, j = 1, . . . , n. Define

∆t = max (δt1, . . . , δtn) and δt = min (δt1, . . . , δtn). (10.21)

Suppose that the snapshots y(tj) of (10.18) at the given time instances tj ,
j = 0, . . . , n, are known. We set

V = span {y0, . . . , y2n},

where yj = y(tj) for j = 0, . . . , n, yj = ∂ty(tj−n) for j = n + 1, . . . , 2n with
∂ty(tj) = (y(tj)−y(tj−1))/δtj , and refer to V as the ensemble consisting of the
snapshots {yj}2n

j=0, at least one of which is assumed to be nonzero. Further-
more, we call {tj}n

j=0 the snapshot grid. Notice that V ⊂ V by construction.
Throughout the remainder of this section we let X denote either the space V
or H.
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Remark 10.2.1 (compare [KV01, Remark 1]). It may come as a surprise at
first that the finite difference quotients ∂ty(tj) are included into the set V of
snapshots. To motivate this choice let us point out that while the finite dif-
ference quotients are contained in the span of {yj}2n

j=0, the POD bases differ

depending on whether {∂ty(tj)}n
j=1 are included or not. The linear depen-

dence does not constitute a difficulty for the singular value decomposition
which is required to compute the POD basis. In fact, the snapshots them-
selves can be linearly dependent. The resulting POD basis is, in any case,
maximally linearly independent in the sense expressed in (P�) and Proposi-
tion 10.2.5. Secondly, in anticipation of the rate of convergence results that
will be presented in Section 10.3.3 we note that the time derivative of y in
(10.18) must be approximated by the Galerkin POD based scheme. In case
the terms {∂ty(tj)}n

j=1 are included in the snapshot ensemble, we are able to
utilize the estimate

n∑
j=1

αj

∥∥∥∂ty(tj)−
�∑

i=1

〈∂ty(tj), ψi〉Xψi

∥∥∥2

X
≤

d∑
i=�+1

λi. (10.22)

Otherwise, if only the snapshots yj = y(tj) for j = 0, . . . , n, are used, we
obtain instead of (10.37) the error formula

n∑
j=0

αj

∥∥∥y(tj)− �∑
i=1

〈y(tj), ψi〉Xψi

∥∥∥2

X
=

d∑
i=�+1

λi,

and (10.22) must be replaced by

n∑
j=1

αj

∥∥∥∂ty(tj)−
�∑

i=1

〈∂ty(tj), ψi〉Xψi

∥∥∥2

X
≤ 2

(δt)2

d∑
i=�+1

λi, (10.23)

which in contrast to (10.22) contains the factor (δt)−2 on the right-hand side.
In [HV03] this fact was observed numerically. Moreover, in [LV03] it turns out
that the inclusion of the difference quotients improves the stability properties
of the computed feedback control laws. Let us mention the article [AG03],
where the time derivatives were also included in the snapshot ensemble to get
a better approximation of the dynamical system. ♦

Let {ψi}d
i=1 denote an orthonormal basis for V with d = dimV. Then each

member of the ensemble can be expressed as

yj =

d∑
i=1

〈yj , ψi〉Xψi for j = 0, . . . , 2n. (10.24)

The method of POD consists in choosing an orthonormal basis such that for
every � ∈ {1, . . . , d} the mean square error between the elements yj , 0 ≤ j ≤
2n, and the corresponding �-th partial sum of (10.24) is minimized on average:
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min J(ψ1, . . . , ψ�) =
2n∑

j=0

αj

∥∥∥yj −
�∑

i=1

〈yj , ψi〉Xψi

∥∥∥2

X

s.t. 〈ψi, ψj〉X = δij for 1 ≤ i ≤ �, 1 ≤ j ≤ i.

(P�)

Here {αj}2n
j=0 are positive weights, which for our purposes are chosen to be

α0 =
δt1
2
, αj =

δtj + δtj+1

2
for j = 1, . . . , n− 1, αn =

δtn
2

and αj = αj−n for j = n+ 1, . . . , 2n.

Remark 10.2.2. 1) Note that

In(y) = J(ψ1, . . . , ψ�)

can be interpreted as a trapezoidal approximation for the integral

I(y) =

∫ T

0

∥∥∥y(t)− �∑
i=1

〈y(t), ψi〉Xψi

∥∥∥2

X
+
∥∥∥yt(t)−

�∑
i=1

〈yt(t), ψi〉Xψi

∥∥∥2

X
dt.

For all y ∈ C1([0, T ];X) it follows that limn→∞ In(y) = I(y). In Sec-
tion 10.4.2 we will address the continuous version of POD (see, in partic-
ular, Theorem 10.4.3).

2) Notice that (P�) is equivalent with

max
�∑

i=1

2n∑
j=0

αj

∣∣〈yj , ψi〉X
∣∣2 s.t. 〈ψi, ψj〉X = δij , 1 ≤ j ≤ i ≤ �. (10.25)

For X = Cn, � = 1 and αj = 1 for 1 ≤ j ≤ n and αj = 0 otherwise,
(10.25) is equivalent with (P). ♦

A solution {ψi}�
i=1 to (P�) is called POD basis of rank �. The subspace

spanned by the first � POD basis functions is denoted by V �, i.e.,

V � = span {ψ1, . . . , ψ�}. (10.26)

The solution of (P�) is characterized by necessary optimality conditions,
which can be written as an eigenvalue problem; compare Section 10.2.1. For
that purpose we endow IR2n+1 with the weighted inner product

〈v, w〉α =
2n∑

j=0

αjvjwj (10.27)

for v = (v0, . . . , v2n)T , w = (w0, . . . , w2n)T ∈ IR2n+1 and the induced norm.
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Remark 10.2.3. Due to the choices for the weights αj ’s the weighted inner
product 〈· , ·〉α can be interpreted as the trapezoidal approximation for the
H1-inner product

〈v, w〉H1(0,T ) =

∫ T

0

vw + vtwt dt for v, w ∈ H1(0, T )

so that (10.27) is a discrete H1-inner product (compare Section 10.4.2). ♦

Let us introduce the bounded linear operator Yn : IR2n+1 → X by

Ynv =
2n∑

j=0

αjvjyj for v ∈ IR2n+1. (10.28)

Then the adjoint Y∗
n : X → IR2n+1 is given by

Y∗
nz =

(
〈z, y0〉X , . . . , 〈z, y2n〉X

)T
for z ∈ X. (10.29)

It follows that Rn = YnY∗
n ∈ L(X) and Kn = Y∗

nYn ∈ IR(2n+1)×(2n+1) are
given by

Rnz =

2n∑
j=0

αj〈z, yj〉Xyj for z ∈ X and
(
Kn

)
ij

= αj 〈yj , yi〉X (10.30)

respectively. By L(X) we denote the Banach space of all linear and bounded
operators from X into itself and the matrix Kn is again called a correlation
matrix; compare (10.15).

Using a Lagrangian framework we derive the following optimality condi-
tions for the optimization problem (P�):

Rnψ = λψ, (10.31)

compare e.g. [HLB96, pp. 88-91] and [Vol01a, Section 2]. Thus, it turns out
that analogous to finite-dimensional POD, we obtain an eigenvalue problem;
see (10.4).

Note that Rn is a bounded, self-adjoint and nonnegative operator. More-
over, since the image of Rn has finite dimension, Rn is also compact. By
Hilbert-Schmidt theory (see e.g. [RS80, p. 203]) there exist an orthonormal
basis {ψi}i∈IN for X and a sequence {λi}i∈IN of nonnegative real numbers so
that

Rnψi = λiψi, λ1 ≥ . . . ≥ λd > 0 and λi = 0 for i > d. (10.32)

Moreover, V = span {ψi}d
i=1. Note that {λi}i∈IN as well as {ψi}i∈IN depend

on n.
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Remark 10.2.4. a) Setting σi =
√
λi, i = 1, . . . , d, and

vi =
1

σi
Y∗

nψi for i = 1, . . . , d (10.33)

we find

Knvi = λivi and 〈vi, vj〉α = δij , 1 ≤ i, j ≤ d. (10.34)

Thus, {vi}d
i=1 is an orthonormal basis of eigenvectors of Kn for the image

of Kn. Conversely, if {vi}d
i=1 is a given orthonormal basis for the image of

Kn, then it follows that the first d eigenfunctions of Rn can be determined
by

ψi =
1

σi
Ynvi for i = 1, . . . , d, (10.35)

see (10.8). Hence, we can determine the POD basis by solving either the
eigenvalue problem for Rn or the one for Kn. The relationship between
the eigenfunctions of Rn and the eigenvectors for Kn is given by (10.33)
and (10.35), which corresponds to SVD for the finite-dimensional POD.

b) Let us introduce the matrices

D = diag (α0, . . . , α2n) ∈ IR(2n+1)×(2n+1),

K̃n =
((
〈yj , yi〉X

))
0≤i,j≤2n

∈ IR(2n+1)×(2n+1).

Note that the matrix K̃n is symmetric and positive semi-definite with
rank K̃n = d. Then the eigenvalue problem (10.34) can be written in
matrix-vector-notation as follows:

K̃nDvi = λivi and vT
i Dvj = δij , 1 ≤ i, j ≤ d. (10.36)

Multiplying the first equation in (10.36) with D1/2 from the left and set-
ting wi = D1/2vi, 1 ≤ i ≤ d, we derive

D1/2K̃nD
1/2wi = λiwi and wT

i wj = δij , 1 ≤ i, j ≤ d.

where the matrix K̂n = D1/2K̃nD
1/2 is symmetric and positive semi-

definite with rank K̂n = d. Therefore, it turns out that (10.34) can be
expressed as a symmetric eigenvalue problem. ♦

The sequence {ψi}�
i=1 solves the optimization problem (P�). This fact as

well as the error formula below were proved in [HLB96, Section 3], for example.

Proposition 10.2.5. Let λ1 ≥ . . . ≥ λd > 0 denote the positive eigenvalues
of Rn with the associated eigenvectors ψ1, . . . , ψd ∈ X. Then, {ψn

i }�
i=1 is a

POD basis of rank � ≤ d, and we have the error formula

J(ψ1, . . . , ψ�) =

2n∑
j=0

αj

∥∥∥yj −
�∑

i=1

〈yj , ψi〉Xψi

∥∥∥2

X
=

d∑
i=�+1

λi. (10.37)
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10.3 Reduced-Order Modeling for Dynamical Systems

In the previous section we have described how to compute a POD basis. In
this section we focus on the Galerkin projection of dynamical systems utilizing
the POD basis functions. We obtain reduced-order models and present error
estimates for the POD solution compared to the solution of the dynamical
system.

10.3.1 A General Equation in Fluid Dynamics

In this subsection we specify the abstract nonlinear evolution problem that
will be considered in this section and present an existence and uniqueness
result, which ensures Assumption (A1) introduced in Section 10.2.2.

We introduce the continuous operator R : V → V ′, which maps D(A) into
H and satisfies

‖Rϕ‖H ≤ cR ‖ϕ‖1−δ1

V ‖Aϕ‖δ1

H for all ϕ ∈ D(A),

|〈Rϕ,ϕ〉V ′,V | ≤ cR ‖ϕ‖1+δ2

V ‖ϕ‖1−δ2

H for all ϕ ∈ V

for a constant cR > 0 and for δ1, δ2 ∈ [0, 1). We also assume that A + R is
coercive on V , i.e., there exists a constant η > 0 such that

a(ϕ,ϕ) + 〈Rϕ,ϕ〉V ′,V ≥ η ‖ϕ‖2V for all ϕ ∈ V. (10.38)

Moreover, let B : V × V → V ′ be a bilinear continuous operator mapping
D(A) ×D(A) into H such that there exist constants cB > 0 and δ3, δ4, δ5 ∈
[0, 1) satisfying

〈B(ϕ,ψ), ψ〉V ′,V = 0,∣∣〈B(ϕ,ψ), φ〉V ′,V

∣∣ ≤ cB ‖ϕ‖δ3

H‖ϕ‖
1−δ3

V ‖ψ‖V ‖φ‖
δ3

V ‖φ‖
1−δ3

H ,

‖B(ϕ, χ)‖H + ‖B(χ, ϕ)‖H ≤ cB ‖ϕ‖V ‖χ‖
1−δ4

V ‖Aχ‖δ4

H ,

‖B(ϕ, χ)‖H ≤ cB ‖ϕ‖δ5

H‖ϕ‖
1−δ5

V ‖χ‖1−δ5

V ‖Aχ‖δ5

H ,

for all ϕ,ψ, φ ∈ V , for all χ ∈ D(A).
In the context of Section 10.2.2 we set F = B + R. Thus, for given f ∈

C(0, T ;H) and y0 ∈ V we consider the nonlinear evolution problem

d

dt
〈y(t), ϕ〉H + a(y(t), ϕ) +

〈
F (y(t)), ϕ

〉
V ′,V

= 〈f(t), ϕ〉H (10.39a)

for all ϕ ∈ V and almost all t ∈ (0, T ] and

y(0) = y0 in H. (10.39b)

The following theorem guarantees (A1).
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Theorem 10.3.1. Suppose that the operators R and B satisfy the assump-
tions stated above. Then, for every f ∈ C(0, T ;H) and y0 ∈ V there exists a
unique solution of (10.39) satisfying

y ∈ C([0, T ];V ) ∩ L2(0, T ;D(A)) ∩H1(0, T ;H). (10.40)

Proof. The proof is analogous to that of Theorem 2.1 in [Tem88, p. 111],
where the case with time-independent f was treated. �

Example 10.3.2. Let Ω denote a bounded domain in IR2 with boundary Γ and
let T > 0. The two-dimensional Navier-Stokes equations are given by

$
(
ut + (u · ∇)u

)
− ν∆u+∇p = f in Q = (0, T )×Ω, (10.41a)

div u = 0 in Q, (10.41b)

where $ > 0 is the density of the fluid, ν > 0 is the kinematic viscosity, f
represents volume forces and

(u · ∇)u =
(
u1
∂u1

∂x1
+ u2

∂u1

∂x2
, u1

∂u2

∂x1
+ u2

∂u2

∂x2

)T

.

The unknowns are the velocity field u = (u1, u2) and the pressure p. Together
with (10.41) we consider nonslip boundary conditions

u = ud on Σ = (0, T )× Γ (10.41c)

and the initial condition
u(0, ·) = u0 in Ω. (10.41d)

In [Tem88, pp. 104-107, 116-117] it was proved that (10.41) can be written in
the form (10.18) and that (A1) holds provided the boundary Γ is sufficiently
smooth. $

10.3.2 POD Galerkin Projection of Dynamical Systems

Given a snapshot grid {tj}n
j=0 and associated snapshots y0, . . . , yn the space

V � is constructed as described in Section 10.2.2. We obtain the POD-
Galerkin surrogate of (10.39) by replacing the space of test functions V by
V � = span {ψ1, . . . , ψ�}, and by using the ansatz

Y (t) =
�∑

i=1

αi(t)ψi (10.42)

for its solution. The result is a �-dimensional nonlinear dynamical system of
ordinary differential equations for the functions αi (i = 1, . . . , �) of the form

Mα̇+Aα+ n(α) = F , Mα(0) = (〈y0, ψj〉H)�
j=1, (10.43)
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where M = (〈ψi, ψj〉H)�
i,j=1 and A = (a(ψi, ψj))

�
i,j=1 denote the POD mass

and stiffness matrices, n(α) = (〈F (Y ), ψj〉V ′,V )�
j=1 the nonlinearity, and F =

(〈f, ψj〉H)�
j=1. We note that M is the identity matrix if in (P�) X = H is

chosen.
For the time discretization we choose m ∈ IN and introduce the time grid

0 = τ0 < τ1 < . . . < τm = T, δτj = τj − τj−1 for j = 1, . . . ,m,

and set

δτ = min{δτj : 1 ≤ j ≤ m} and ∆τ = max{δτj : 1 ≤ j ≤ m}.

Notice that the snapshot grid and the time grid usually does not coincide.
Throughout we assume that ∆τ/δτ is bounded uniformly with respect to m.
To relate the snapshot grid {tj}n

j=0 and the time grid {τj}m
j=0 we set for every

τk, 0 ≤ k ≤ m, an associated index k̄ = argmin {|τk − tj | : 0 ≤ j ≤ n} and
define σn ∈ {1, . . . , n} as the maximum of the occurrence of the same value
tk̄ as k ranges over 0 ≤ k ≤ m.

The problem consists in finding a sequence {Yk}m
k=0 in V � satisfying

〈Y0, ψ〉H = 〈y0, ψ〉H for all ψ ∈ V � (10.44a)

and

〈∂τYk, ψ〉H + a(Yk, ψ) + 〈F (Yk), ψ〉V ′,V = 〈f(τk), ψ〉H (10.44b)

for all ψ ∈ V � and k = 1, . . . ,m, where we have set ∂τYk = (Yk − Yk−1)/δτk.
Note that (10.44) is a backward Euler scheme for (10.39).

For every k = 1, . . . ,m there exists at least one solution Yk of (10.44). If
∆τ is sufficiently small, the sequence {Yk}m

k=1 is uniquely determined. A proof
was given in [KV02, Theorem 4.2].

10.3.3 Error Estimates

Our next goal is to present an error estimate for the expression

m∑
k=0

βk ‖Yk − y(τk)‖2H ,

where y(τk) is the solution of (10.39) at the time instances t = τk, k =
1, . . . ,m, and the positive weights βj are given by

β0 =
δτ1
2
, βj =

δτj + δτj+1

2
for j = 1, . . . ,m− 1, and βm =

δτm
2
.

Let us introduce the orthogonal projection P�
n of X onto V � by

P�
nϕ =

�∑
i=1

〈ϕ,ψi〉Xψi for ϕ ∈ X. (10.45)

In the context of finite element discretizations, P�
n is called the Ritz projection.
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Estimate for the Choice X = V

Let us choose X = V in the context of Section 10.2.2. Since the Hilbert space
V is endowed with the inner product (10.16), the Ritz-projection P�

n is the
orthogonal projection of V on V �.

We make use of the following assumptions:

(H1) y ∈ W 2,2(0, T ;V ), where W 2,2(0, T ;V ) = {ϕ ∈ L2(0, T ;V ) : ϕt, ϕtt ∈
L2(0, T ;V )} is a Hilbert space endowed with its canonical inner product.

(H2) There exists a normed linear space W continuously embedded in V and
a constant ca > 0 such that y ∈ C([0, T ];W ) and

a(ϕ,ψ) ≤ ca ‖ϕ‖H‖ψ‖W for all ϕ ∈ V and ψ ∈W. (10.46)

Example 10.3.3. For V = H1
0 (Ω), H = L2(Ω), with Ω a bounded domain in

IRl and

a(ϕ,ψ) =

∫
Ω

∇ϕ · ∇ψ dx for all ϕ,ψ ∈ H1
0 (Ω),

choosing W = H2(Ω) ∩H1
0 (Ω) implies a(ϕ,ψ) ≤ ‖ϕ‖W ‖ψ‖H for all ϕ ∈ W ,

ψ ∈ V , and (10.46) holds with ca = 1. $

Remark 10.3.4. In the case X = V we infer from (10.16) that

a(P�
nϕ,ψ) = a(ϕ,ψ) for all ψ ∈ V �,

where ϕ ∈ V . In particular, we have ‖P�
n‖L(V ) = 1. Moreover, (H2) yields

‖P�
n‖L(H) ≤ cP for all 1 ≤ � ≤ d

where cP = c�/λ� (see [KV02, Remark 4.4]) and c > 0 depends on y, ca, and
T , but is independent of � and of the eigenvalues λi. ♦

The next theorem was proved in [KV02, Theorem 4.7 and Corollary 4.11].

Theorem 10.3.5. Assume that (H1), (H2) hold and that ∆τ is sufficiently
small. Then there exists a constant C depending on T , but independent of the
grids {tj}n

j=0 and {τj}m
j=0, such that

m∑
k=0

βk ‖Yk − y(τk)‖2H ≤ Cσn∆τ(∆τ +∆t)‖ytt‖2L2(0,T ;V )

+ C

( d∑
i=�+1

(∣∣〈ψi, y0〉V
∣∣2 +

σn∆τ

δt
λi

)
+ σn∆τ∆t‖yt‖2L2(0,T ;V )

)
.

(10.47)

Remark 10.3.6. a) If we take the snapshot set

Ṽ = span {y(t0), . . . , y(tn)}
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instead of V, we obtain instead of (10.47) the following estimate:

m∑
k=0

βk ‖Yk − y(τk)‖2H

≤ C

d∑
i=�+1

(∣∣〈ψi, y0〉V
∣∣2 +

σn

δt

( 1

δτ
+∆τ

)
λi

)
+ Cσn∆τ∆t ‖yt‖2L2(0,T ;V )

+ Cσn∆τ(∆τ +∆t)‖ytt‖2L2(0,T ;H)

(compare [KV02, Theorem 4.7]). As we mentioned in Remark 10.2.1 the
factor (δt δτ)−1 arises on the right-hand of the estimate. While computa-

tions for many concrete situations show that
∑d

i=�+1 λi is small compared
to ∆τ , the question nevertheless arises whether the term 1/(δτδt) can be
avoided in the estimates. However, we refer the reader to [HV03, Sec-
tion 4], where significantly better numerical results were obtained using
the snapshot set V instead of Ṽ. We refer also to [LV04], where the com-
puted feedback gain was more stabilizing providing information about the
time derivatives was included.

b) If the number of POD elements for the Galerkin scheme coincides with
the dimension of V then the first additive term on the right-hand side
disappears. ♦

Asymptotic Estimate

Note that the terms {λi}d
i=1, {ψi}d

i=1 and σn depend on the time discretization
of [0, T ] for the snapshots as well as the numerical integration. We address this
dependence next. To obtain an estimate that is independent of the spectral
values of a specific snapshot set {y(tj)}n

j=0 we assume that y ∈W 2,2(0, T ;V ),
so that in particular (H1) holds, and introduce the operator R ∈ L(V ) by

Rz =

∫ T

0

〈z, y(t)〉V y(t) + 〈z, yt(t)〉V yt(t) dt for z ∈ V. (10.48)

Since y ∈ W 2,2(0, T ;V ) holds, it follows that R is compact, see, e.g., [KV02,
Section 4]. From the Hilbert-Schmidt theorem it follows that there exists
a complete orthonormal basis {ψ∞

i }i∈IN for X and a sequence {λ∞i }i∈IN of
nonnegative real numbers so that

Rψ∞
i = λ∞i ψ∞

i , λ∞1 ≥ λ∞2 ≥ . . . , and λ∞i → 0 as i→∞.

The spectrum ofR is a pure point spectra except for possibly 0. Each non-zero
eigenvalue of R has finite multiplicity and 0 is the only possible accumulation
point of the spectrum of R, see [Kat80, p. 185]. Let us note that∫ T

0

‖y(t)‖2X dt =
∞∑

i=1

λi and ‖y◦‖2X =
∞∑

i=1

∣∣〈y◦, ψi〉X
∣∣2.
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Due to the assumption y ∈W 2,2(0, T ;V ) we have

lim
∆t→0

‖Rn −R‖L(V ) = 0,

where the operator Rn was introduced in (10.30). The following theorem was
proved in [KV02, Corollary 4.12].

Theorem 10.3.7. Let all hypothesis of Theorem 10.3.5 be satisfied. Let us
choose and fix � such that λ∞� �= λ∞�+1. If ∆t = O(δτ) and ∆τ = O(δt) hold,
then there exists a constant C > 0, independent of � and the grids {tj}n

j=0

and {τj}m
j=0, and a ∆t > 0, depending on �, such that

m∑
k=0

βk ‖Yk − y(τk)‖2H ≤ C

∞∑
i=�+1

(∣∣〈y0, ψ
∞
i 〉V

∣∣2 + λ∞i
)

+ C
(
∆τ∆t ‖yt‖2L2(0,T ;V ) +∆τ(∆τ +∆t) ‖ytt‖2L2(0,T ;V )

) (10.49)

for all ∆t ≤ ∆t.

Remark 10.3.8. In case of X = H the spectral norm of the POD stiffness
matrix with the elements 〈ψj , ψi〉V , 1 ≤ i, j,≤ d, arises on the right-hand
side of the estimate (10.47); see [KV02, Theorem 4.16]. For this reason, no
asymptotic analysis can be done for X = H. ♦

10.4 Suboptimal Control of Evolution Problems

In this section we propose a reduced-order approach based on POD for op-
timal control problems governed by evolution problems. For linear-quadratic
optimal control problems we among other things present error estimates for
the suboptimal POD solutions.

10.4.1 The Abstract Optimal Control Problem

For T > 0 the space W (0, T ) is defined as

W (0, T ) =
{
ϕ ∈ L2(0, T ;V ) : ϕt ∈ L2(0, T ;V ′)

}
,

which is a Hilbert space endowed with the common inner product (see, for
example, in [DL92, p. 473]). It is well-known that W (0, T ) is continuously
embedded into C([0, T ];H), the space of continuous functions from [0, T ] to
H, i.e., there exists an embedding constant ce > 0 such that

‖ϕ‖C([0;T ];H) ≤ ce ‖ϕ‖W (0,T ) for all ϕ ∈W (0, T ). (10.50)

We consider the abstract problem introduced in Section 10.2.2. Let U be a
Hilbert space which we identify with its dual U ′, and let Uad ⊂ U a closed and
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convex subset. For y0 ∈ H and u ∈ Uad we consider the nonlinear evolution
problem on [0, T ]

d

dt
〈y(t), ϕ〉H + a(y(t), ϕ) + 〈F (y(t)), ϕ〉V ′,V = 〈(Bu)(t)), ϕ〉V ′,V (10.51a)

for all ϕ ∈ V and
y(0) = y0 in H, (10.51b)

where B : U → L2(0, T ;V ′) is a continuous linear operator. We suppose that
for every u ∈ Uad and y0 ∈ H there exists a unique solution y of (10.51) in
W (0, T ). This is satisfied for many practical situations, including, e.g., the
controlled viscous Burgers and two-dimensional incompressible Navier-Stokes
equations, see, e.g., [Tem88, Vol01b].

Next we introduce the cost functional J : W (0, T )× U → IR by

J(y, u) =
α1

2
‖Cy − z1‖2W1

+
α2

2
‖Dy(T )− z2‖2W2

+
σ

2
‖u‖2U , (10.52)

where W1, W2 are Hilbert spaces and C : L2(0, T ;H) →W1 and D : H →W2

are bounded linear operators, z1 ∈ W1 and z2 ∈ W2 are given desired states
and α1, α2, σ > 0.

The optimal control problem is given by

min J(y, u) s.t. (y, u) ∈W (0, T )× Uad solves (10.51). (CP)

In view of Example 10.3.2 a standard discretization (based on, e.g., finite
elements) of (CP) may lead to a large-scale optimization problem which can
not be solved with the currently available computer power. Here we propose a
suboptimal solution approach that utilizes POD. The associated suboptimal
control problem is obtained by replacing the dynamical system (10.51) in
(CP) through the POD surrogate model (10.43), using the Ansatz (10.42) for
the state. With F replaced by (〈(Bu)(t), ψj〉H)l

j=1 it reads

min J(α, u) s.t. (α, u) ∈ H1(0, T )� × Uad solves (10.43). (SCP)

At this stage the question arises which snapshots to use for the POD surrogate
model, since it is by no means clear that the POD model computed with snap-
shots related to a control u1 is also able to resolve the presumably completely
different dynamics related to a control u2 �= u1. To cope with this difficulty
we present the following adaptive pseudo-optimization algorithm which is pro-
posed in [AH00, AH01]. It successively updates the snapshot samples on which
the the POD surrogate model is to be based upon. Related ideas are presented
in [AFS00, Rav00].

Choose a sequence of increasing numbers Nj .

Algorithm 10.4.1 (POD-based adaptive control)

1. Let a set of snapshots y0
i , i = 1, . . . , N0 be given and set j=0.
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2. Set (or determine) l, and compute the POD modes and the space V l.
3. Solve the reduced optimization problem (SCP) for uj .
4. Compute the state yj corresponding to the current control uj and add the

snapshots yj+1
i , i = N j +1, . . . , Nj+1 to the snapshot set yj

i , i = 1, . . . , Nj .
5. If |uj+1 − uj | is not sufficiently small, set j = j+1 and goto 2.

We note that the term snapshot here may also refer to difference quotients of
snapshots, compare Remark 10.2.1. We note further that it is also possible to
replace its step 4. by

4.’ Compute the state yj corresponding to the current control uj and store
the snapshots yj+1

i , i = N j + 1, . . . , Nj+1 while the snapshot set yj
i , i =

1, . . . , Nj is neglected.

Many numerical investigations on the basis of Algorithm 10.4.1 with step 4’
can be found in [Afa02]. This reference also contains a numerical comparison
of POD to other model reduction techniques, including their applications to
optimal open-loop control.

To anticipate discussion we note that the number Nj of snapshots to be
taken in the j-th iteration ideally should be determined during the adaptive
optimization process. We further note that the choice of � in step 2 might be
based on the information content E defined in (10.9), compare Section 10.5.2.
We will pick up these items again in Section 10.6.

Remark 10.4.1. It is numerically infeasible to compute an optimal closed-loop
feedback control strategy based on a finite element discretization of (10.51),
since the resulting nonlinear dynamical system in general has large dimension
and numerical solution of the related Hamilton-Jacobi-Bellman (HJB) equa-
tion is infeasible. In [KVX04] model reduction techniques involving POD are
used to numerically construct suboptimal closed-loop controllers using the
HJB equations of the reduced order model, which in this case only is low
dimensional. ♦

10.4.2 Error Estimates for Linear-Quadratic Optimal Control
Problems

It is still an open problem to estimate the error between solutions of (CP) and
the related suboptimal control problem (SCP), and also to prove convergence
of Algorithm 10.4.1. As a first step towards we now present error estimates for
discrete solutions of linear-quadratic optimal control problems with a POD
model as surrogate. For this purpose we combine techniques of [KV01, KV02]
and [DH02, DH04, Hin05].

We consider the abstract control problem (CP) with F ≡ 0 and Uad ≡ U .
We note that J from (10.52) is twice continuously Fréchet-differentiable. In
particular, the second Fréchet-derivative of J at a given point x = (y, u) ∈
W (0, T )× U in a direction δx = (δy, δu) ∈W (0, T )× U is given by
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∇2J(x)(δx, δx) = α1 ‖Cδy‖2W1
+ α2 ‖Dδy(T )‖2W2

+ σ‖δu‖2U ≥ 0.

Thus, ∇2J(x) is a non-negative operator.
The goal is to minimize the cost J subject to (y, u) solves the linear evo-

lution problem

〈yt(t), ϕ〉H + a(y(t), ϕ) = 〈(Bu)(t), ϕ〉H (10.53a)

for all ϕ ∈ V and almost all t ∈ (0, T ) and

y(0) = y0 in H. (10.53b)

Here, y0 ∈ H is a given initial condition. It is well-known that for every u ∈ U
problem (10.53) admits a unique solution y ∈W (0, T ) satisfying

‖y‖W (0,T ) ≤ C
(
‖y0‖H + ‖u‖U

)
for a constant C > 0; see, e.g., [DL92, pp. 512-520]. If, in addition, y0 ∈ V
and if there exist two constants c1, c2 > 0 with

〈Aϕ,−∆ϕ〉H ≥ c1 ‖ϕ‖2D(A) − c2 ‖ϕ‖2H for all ϕ ∈ D(A) ∩ V,

then we have
y ∈ L2(0, T ;D(A) ∩ V ) ∩H1(0, T ;H), (10.54)

compare [DL92, p. 532]. From (10.54) we infer that y is almost everywhere
equal to an element of C([0, T ];V ).

The minimization problem, which is under consideration, can be written
as a linear-quadratic optimal control problem

min J(y, u) s.t. (y, u) ∈W (0, T )× U solves (10.53). (LQ)

Applying standard arguments one can prove that there exists a unique optimal
solution x̄ = (ȳ, ū) to (LQ).

There exists a unique Lagrange-multiplier p̄ ∈W (0, T ) satisfying together
with x̄ = (ȳ, ū) the first-order necessary optimality conditions, which consist
in the state equations (10.53), in the adjoint equations

−〈p̄t(t), ϕ〉H + a(p̄(t), ϕ) = −α1 〈C∗(Cȳ(t)− z1(t)), ϕ〉H (10.55a)

for all ϕ ∈ V and almost all t ∈ (0, T ) and

p̄(T ) = −α2D∗(Dȳ(T )− z2) in H, (10.55b)

and in the optimality condition

σū− B∗p̄ = 0 in U . (10.56)
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Here, the linear and bounded operators C∗ : W1 → L2(0, T ;H), D∗ : W2 → H,
and B∗ : L2(0, T ;H) → U stand for the Hilbert space adjoints of C, D, and B,
respectively.

Introducing the reduced cost functional

Ĵ(u) = J(y(u), u),

where y(u) solves (10.53) for the control u ∈ U , we can express (LQ) as the
reduced problem

min Ĵ(u) s.t. u ∈ U . (P̂)

From (10.56) it follows that the gradient of Ĵ at ū is given by

Ĵ ′(ū) = σū− B∗p̄. (10.57)

Let us define the operator G : U → U by

G(u) = σu− B∗p, (10.58)

where y = y(u) solves the state equations with the control u ∈ U and p =
p(y(u)) satisfies the adjoint equations for the state y. As a consequence of
(10.56) it follows that the first-order necessary optimality conditions for (P̂)
are

G(u) = 0 in U . (10.59)

In the POD context the operatorG will be replaced by an operatorG� : U → U
which then represents the optimality condition of the optimal control problem
(SCP). The construction of G� is described in the following.

Computation of the POD Basis

Let u ∈ U be a given control for (LQ) and y = y(u) the associated state
satisfying y ∈ C1([0, T ];V ). To keep the notation simple we apply only a
spatial discretization with POD basis functions, but no time integration by,
e.g., an implicit Euler method. Therefore, we apply a continuous POD, where
we choose X = V in the context of Section 10.2.2. Let us mention the work
[HY02], where estimates for POD Galerkin approximations were derived uti-
lizing also a continuous version of POD.

We define the bounded linear Y : H1(0, T ; IR) → V by

Yϕ =

∫ T

0

ϕ(t)y(t) + ϕt(t)yt(t) dt for ϕ ∈ H1(0, T ; IR).

Notice that the operator Y is the continuous variant of the discrete operator
Yn introduced in (10.28). The adjoint Y∗ : V → H1(0, T ; IR) is given by(

Y∗z
)
(t) = 〈z, y(t) + yt(t)〉V for z ∈ V.

(compare (10.29)). The operator R = YY∗ ∈ L(V ) is already introduced in
(10.48).
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Remark 10.4.2. Analogous to the theory of singular value decomposition for
matrices, we find that the operator K = Y∗Y ∈ L(H1(0, T ; IR)) given by

(
Kϕ

)
(t) =

∫ T

0

〈y(s), y(t)〉V ϕ(s)+〈yt(s), yt(t)〉V ϕt(s) ds for ϕ ∈ H1(0, T ; IR)

has the eigenvalues {λ∞i }∞i=1 and the eigenfunctions

v∞i (t) =
1√
λ∞i

(
Y∗ψ∞

i

)
(t) =

1√
λ∞i

〈ψ∞
i , y(t) + yt(t)〉V

for i ∈ {j ∈ IN : λ∞j > 0} and almost all t ∈ [0, T ]. ♦

In the following theorem we formulate properties of the eigenvalues and
eigenfunctions of R. For a proof we refer to [HLB96], for instance.

Theorem 10.4.3. For every � ∈ N the eigenfunctions ψ∞
1 , . . . , ψ∞

� ∈ V solve
the minimization problem

min J(ψ1, . . . , ψ�) s.t. 〈ψj , ψi〉X = δij for 1 ≤ i, j ≤ �, (10.60)

where the cost functional J is given by

J(ψ, . . . , ψ�)

=

∫ T

0

∥∥∥y(t)− �∑
i=1

〈y(t), ψi〉V ψi

∥∥∥2

X
+
∥∥∥yt(t)−

�∑
i=1

〈yt(t), ψi〉V ψi

∥∥∥2

V
dt.

Moreover, the eigenfunctions {λ∞i }i∈IN and eigenfunctions {ψ∞
i }i∈IN of R

satisfy the formula

J(ψ∞
1 , . . . , ψ∞

� ) =
∞∑

i=�+1

λ∞i . (10.61)

Proof. The proof of the theorem relies on the fact that the eigenvalue problem

Rψ∞
i = λ∞i ψ∞

i for i = 1, . . . , �

is the first-order necessary optimality condition for (10.60). For more details
we refer the reader to [HLB96].

Galerkin POD Approximation

Let us introduce the set V � = span {ψ∞
1 , . . . , ψ∞

� } ⊂ V . To study the POD
approximation of the operator G we introduce the orthogonal projection P�

of V onto V � by

P�ϕ =
�∑

i=1

〈ϕ,ψ∞
i 〉V ψ∞

i for ϕ ∈ V. (10.62)
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(compare (10.45)). Note that

J(ψ, . . . , ψ�)

=

∫ T

0

∥∥∥y(t)− P�y(t)
∥∥∥2

V
+
∥∥∥yt(t)− P�yt(t)

∥∥∥2

V
dt =

∞∑
i=�+1

λ∞i .
(10.63)

From (10.16) it follows directly that

a(P�ϕ,ψ) = a(ϕ,ψ) for all ψ ∈ V �,

where ϕ ∈ V . Clearly, we have ‖P�‖L(V ) = 1.
Next we define the approximation G� : U → U of the operator G by

G�(u) = σu− B∗p�, (10.64)

where p� ∈W (0, T ) is the solution to

−〈p�
t(t), ψ〉H + a(p�(t), ψ) = −α1 〈C∗(Cy� − z1), ψ〉H (10.65a)

for all ψ ∈ V � and t ∈ (0, T ) a.e. and

p�(T ) = −α2 P�
(
D∗(Dy�(T )− z2)

)
(10.65b)

and y� ∈W (0, T ), which solves

〈y�
t (t), ψ〉H + a(y�(t), ψ) = 〈(Bu)(t), ψ〉H (10.66a)

for all ψ ∈ V � and almost all t ∈ (0, T ) and

y�(0) = P�y0 (10.66b)

Notice that G�(u) = 0 are the first-order optimality conditions for the optimal
control problem

min Ĵ�(u) s.t. u ∈ U ,
where Ĵ�(u) = J(y�(u), u) and y�(u) denotes the solution to (10.66).

It follows from standard arguments (Lax-Milgram lemma) that the oper-
ator G� is well-defined. Furthermore we have

Theorem 10.4.4. The equation

G�(u) = 0 in U (10.67)

admits a unique solution u� ∈ U which together with the unique solution u of
(10.59) satisfies the estimate

‖u− u�‖U ≤
1

σ

(
‖B∗(P − P �)Bu‖U + ‖B∗(S∗ − S∗

� )C∗z1‖U
)
. (10.68)

Here, P := S∗C∗CS, P � := S∗
� C∗CS�, with S, Sl denoting the solution operators

in (10.53) and (10.66), respectively.
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A proof of this theorem immediately follows from the fact, that ul is a ad-
missible test function in (10.59), and u in (10.67). Details will be given in
[HV05].

Remark 10.4.5. We note, that Theorem 10.4.4 remains also valid in the situa-
tion where admissible controls are taken from a closed convex subset Uad ⊂ U .
The solutions u, ul in this case satisfy the variational inequalities

〈G(u), v − u〉U ≥ 0 for all v ∈ Uad,

and
〈G�(u

�), v − u�〉U ≥ 0 for all v ∈ Uad,

so that adding the first inequality with v = u� and the second with v = u
and straightforward estimation finally give (10.68) also in the present case.
The crucial point here is that the set of admissible controls is not discretized
a-priori. The discretization of the optimal control u� is determined by that of
the corresponding Lagrange multiplier p�. For details of this discrete concept
we refer to [Hin05].

It follows from the structure of estimate (10.68), that error estimates for
y − y� and p− pl directly lead to an error estimate for u− u�.

Proposition 10.4.6. Let � ∈ IN with λ∞� > 0 be fixed, u ∈ U and y = y(u)
and p = p(y(u)) the corresponding solutions of the state equations (10.53) and
adjoint equations (10.55) respectively. Suppose that the POD basis of rank � is
computed by using the snapshots {y(tj)}n

j=0 and its difference quotients. Then
there exist constants cy, cp > 0 such that

‖y� − y‖2L∞(0,T ;H) + ‖y� − y‖2L2(0,T ;V ) ≤ cy

∞∑
i=�+1

λ∞i (10.69)

and

‖p� − p‖2L2(0,T ;V )

≤ cp

( ∞∑
i=�+1

λ∞i + ‖P�p− p‖2L2(0,T ;V ) + ‖P�pt − pt‖
2

L2(0,T ;V )

)
,

(10.70)
where y� and p� solve (10.66) and (10.65), respectively, for the chosen u in-
serted in (10.66a).

Proof. Let

y�(t)− y(t) = y�(t)− P�y(t) + P�y(t)− y(t) = ϑ(t) + $(t),

where ϑ = y� − P�y and $ = P�y − y. From (10.16), (10.62), (10.63) and the
continuous embedding H1(0, T ;V ) ↪→ L∞(0, T ;H) we find



10 POD: Error Estimates and Suboptimal Control 287

‖$‖2L∞(0,T ;H) + ‖$‖2L2(0,T ;V ) ≤ cE

∞∑
i=�+1

λ∞i (10.71)

with an embedding constant cE > 0. Utilizing (10.53) and (10.66) we obtain

〈ϑt(t), ψ〉H + a(ϑ(t), ψ) = 〈yt(t)− P�yt(t), ψ〉H
for all ψ ∈ V � and almost all t ∈ (0, T ). From (10.16), (10.17) and Young’s
inequality it follows that

d

dt
‖ϑ(t)‖2H + ‖ϑ(t)‖2V ≤ c2V ‖yt(t)− P�yt(t)‖

2

V . (10.72)

Due to (10.66b) we have ϑ(0) = 0. Integrating (10.72) over the interval (0, t),
t ∈ (0, T ], and utilizing (10.37), (10.45) and (10.63) we arrive at

‖ϑ(t)‖2H +

∫ t

0

‖ϑ(s)‖2V ds ≤ c2V

∞∑
i=�+1

λ∞i

for almost all t ∈ (0, T ). Thus,

esssup
t∈[0,T ]

‖ϑ(t)‖2H +

∫ T

0

‖ϑ(s)‖2V ds ≤ c2V

∞∑
i=�+1

λ∞i . (10.73)

Estimates (10.71) and (10.73) imply the existence of a constant cy > 0 such
that (10.69) holds. We proceed by estimating the error arising from the dis-
cretization of the adjoint equations and write

p�(t)− p(t) = p�(t)− P�p(t) + P�p(t)− p(t) = θ(t) + ρ(t),

where θ = p� −P�p and ρ = P�p− p. From (10.16), (10.50), and (10.65b) we
get

‖θ(T )‖2H ≤ α2
2 ‖D‖

2
L(H,W1)

‖y�(T )− y(T )‖2H
≤ α2

2 ‖D‖
2
L(H,W1)

‖y� − y‖2C([0,T ];H).

Thus, applying (10.50), (10.69) and the techniques used above for the state
equations, we obtain

esssup
t∈[0,T ]

‖θ(t)‖2H +

∫ T

0

‖θ(s)‖2V ds

≤ 2c2V

(
c2V c

2
ecy ‖D‖

4
L(H,W1)

∞∑
i=�+1

λ∞i + ‖pt − P�pt‖
2

L2(0,T ;V )

)
.

Hence, there exists a constant cp > 0 satisfying (10.70).
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Remark 10.4.7.

a) The error in the discretization of the state variable is only bounded by
the sum over the not modeled eigenvalues λ∞i for i > �. Since the POD
basis is not computed utilizing adjoint information, the term P�p−p in the
H1(0, T ;V )-norm arises in the error estimate for the adjoint variables. For
POD based approximation of partial differential equations one cannot rely
on results clarifying the approximation properties of the POD-subspaces
to elements in function spaces as e.g. Lp or C. Such results are an essential
building block for e.g. finite element approximations to partial differential
equations.

b) If we have already computed a second POD basis of rank �̃ ∈ IN for the
adjoint variable, then we can express the term involving the difference

P �̃p− p by the sum over the eigenvalues corresponding to eigenfunctions,
which are not used as POD basis functions in the discretization.

c) Recall that {ψ∞
i }i∈IN is a basis of V . Thus we have∫ T

0

‖p(t)− P�p(t)‖2V dt ≤
∫ T

0

∞∑
i=�+1

|a(p(t), ψ∞
i )|2 dt.

The sum on the right-hand side converges to zero as � tends to ∞. How-
ever, usually we do not have a rate of convergence result available. In
numerical applications we can evaluate ‖p− P�p‖L2(0,T ;V ). If the term is
large then we should increase � and include more eigenfunctions in our
POD basis.

d) For the choice X = H we have instead of (10.71) the estimate

‖$‖2L∞(0,T ;H) + ‖$‖2L2(0,T ;V ) ≤ C ‖S‖2
∞∑

i=�+1

λ∞i ,

where C is a positive constant, S denotes the stiffness matrix with the
elements Sij = 〈ψ∞

j , ψ∞
i 〉V , 1 ≤ i, j ≤ �, and ‖ · ‖2 stands the spectral

norm for symmetric matrices, see [KV02, Lemma 4.15]. ♦

Applying (10.58), (10.64), and Proposition 10.4.6 we obtain for every u ∈ U

‖G�(u)−G(u)‖2U

≤ cG

( ∞∑
i=�+1

λ∞i + ‖P�p− p‖2L2(0,T ;H) + ‖P�pt − pt‖
2

L2(0,T ;H)

)
(10.74)

for a constant cG > 0 depending on cλ and B.
Suppose that u1, u2 ∈ U are given and that y�

1 = y�
1(u1) and y�

2 = y�
2(u2)

are the corresponding solutions of (10.66). Utilizing Young’s inequality it fol-
lows that there exists a constant cV > 0 such that
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‖y�
1 − y�

2‖
2

L∞(0,T ;H) + ‖y�
1 − y�

2‖
2

L2(0,T ;V )

≤ c2V ‖B‖
2
L(U,L2(0,T ;H)) ‖u1 − u2‖2U .

(10.75)

Hence, we conclude from (10.65) and (10.75) that

‖p�
1 − p�

2‖
2

L∞(0,T ;H) + ‖p�
1 − p�

2‖
2

L2(0,T ;V )

≤ max
(
α1c

2
V ‖C‖

2
L(L2(0,T ;H),W1)

, α2 ‖D‖2L(H,W2)

)
·

·
(
‖y�

1 − y�
2‖

2

L∞(0,T ;H) + ‖y�
1 − y�

2‖
2

L2(0,T ;V )

)
≤ C ‖u1 − u2‖2U .

(10.76)

where

C =
c4V
2
‖B‖2L(U,L2(0,T ;H)) max

(
α2

1c
2
V ‖C‖

2
L(L2(0,T ;H),W1)

, α2 ‖D‖2L(H,W2)

)
.

If the POD basis of rank � is computed for the control u1, then (10.64), (10.74)
and (10.76) lead to the existence of a constant Ĉ > 0 satisfying

‖G�(u2)−G(u1)‖2U ≤ 2 ‖G�(u2)−G�(u1)‖2U + 2 ‖G�(u1)−G(u1)‖2U

≤ Ĉ ‖u2 − u1‖2U

+ Ĉ

( ∞∑
i=�+1

λ∞i + ‖P�p1 − p1‖
2

L2(0,T ;V ) + ‖P�(p1)t − (p1)t‖
2

L2(0,T ;V )

)
.

Hence, G�(u2) is close to G(u1) in the U-norm provided the terms ‖u1−u2‖U
and

∑∞
i=�+1 λ

∞
i are small and provided the � POD basis functions ψ∞

1 , . . . , ψ∞
�

leads to a good approximation of the adjoint variable p1 in the H1(0, T ;V )-
norm. In particular, G�(u) in this case is small, if u denotes the unique optimal
control of the continuous control problem, i.e., the solution of G(u) = 0.

We further have that both, G and G� are Fréchet differentiable with con-
stant derivatives G′ ≡ σId − B∗p′ and G′

� ≡ σId − B∗(p�)′. Moreover, since
−B∗p′ and −B∗p′ are selfadjoint positive operators, G′ and G′

� are invertible,
satisfying

‖(G′)−1‖L(U), ‖(G′
�)

−1‖L(U) ≤
1

σ
.

Since Gl also is Lipschitz continuous with some positive constant K we now
may argue with a Newton-Kantorovich argument [D85, Theorem 15.6] that
the equation

G�(v) = 0 in U

admits a unique solution in u� ∈ B2ε(u), provided

‖(G′
�)

−1G�(u)‖U ≤ ε and
2Kε

σ
< 1.
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Thus, we in a different fashion again proved existence of a unique solution ul

of (10.67), compare Theorem 10.4.4, and also provided an error estimate for
u−ul in terms of

∑∞
i=�+1 λ

∞
i +‖P�p1−p1‖2L2(0,T ;V )+‖P�(p1)t−(p1)t‖2L2(0,T ;V ).

We close this section with noting that existence and local uniqueness of
discrete solutions u� may be proved following the lines above also in the non-
linear case , i.e., in the case F �= 0 in (10.51).

10.5 Navier-Stokes Control Using POD Surrogate
Models

In the present section we demonstrate the potential of the POD method ap-
plied as suboptimal open-loop control method for the example of the Navier-
Stokes system in (10.41a)-(10.41d) as subsidiary condition in control problem
(CP).

10.5.1 Setting

We present two numerical examples. The flow configuration is taken as flow
around a circular cylinder in 2 spatial dimensions and is depicted in Fig-
ure 10.1 for Example 10.5.2, compare the benchmark of Schäfer and Turek
in [ST96], and in Figure 10.8 for Example 10.5.3. At the inlet and at the up-

Fig. 10.1. Flow configuration for Example 10.5.2

per and lower boundaries inhomogeneous Dirichlet conditions are prescribed,
and at the outlet the so called ’do-nothing’ boundary conditions are used
[HRT96]. As a consequence the boundary conditions for the Navier-Stokes
equations have to be suitably modified. The control objective is to track the
Navier Stokes flow to some pre-specified flow field z, which in our numerical
experiments is either taken as Stokes flow or mean of snapshots. As control
we take distributed forces in the spatial domain. Thus, the optimal control
problem in the primitive setting is given by
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min
(y,u)∈W×U

J(y, u) :=
1

2

∫ T

0

∫
Ω

|y − z|2 dxdt+
α

2

∫ T

0

∫
Ω

|u|2 dxdt

subject to

yt + (y · ∇)y − ν∆y +∇p = Bu in Q = (0, T )×Ω,

div y = 0 in Q,

y(t, ·) = yd on (0, T )× Γd,

ν∂ηy(t, ·) = pη on (0, T )× Γout,

y(0, ·) = y0 in Ω,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10.77)

where Q := Ω×(0, T ) denotes the time-space cylinder, Γd the Dirichlet bound-
ary at the inlet and Γout the outflow boundary. In this example the volume
for the flow measurements and the control volume for the application of the
volume forces each cover the whole spatial domain, i.e. B denotes the injec-
tion from L2(Q) into L2(0, T ;V ′), W1 := L2(Q) and C ≡ Id. Further we have
Uad = U = L2(Q), α1 = 1

2 , α2 = 0, and σ = α. Since we are interested in
open-loop control strategies it is certainly feasible to use the whole of Q as ob-
servation domain (use as much information as attainable). Furthermore, from
the practical point of view distributed control in the whole domain may be
realized by Lorentz forces if the fluid is a electro-magnetically conductive, say
[BGGBW97]. From the numerical standpoint this case can present difficulties,
since the inhomogeneities in the primal and adjoint equations are large.

We note that it is an open problem to prove existence of global smooth
solutions in two space dimensions for the instationary Navier-Stokes equations
with do-nothing boundary conditions [Ran00].

The weak formulation of the Navier-Stokes system in (10.77) in primitive
variables reads: Given u ∈ U and y0 ∈ H, find p(t) ∈ L2(Ω), y(t) ∈ H1(Ω)2

such that y(0) = y0, and

ν 〈∇y,∇φ〉H + 〈yt + y · ∇y, φ〉H − 〈p,div φ〉 = 〈Bu, φ〉H for all φ ∈ V,
〈χ,div y〉H = 0 for all χ ∈ L2(Ω),

(10.78)
holds a.e. in (0, T ), where V := {φ ∈ H1(Ω)2, φΓD

= 0}, compare [HRT96].
The Reynolds number Re= 1/ν for the configurations used in our numer-

ical studies is determined by

Re =
Ūd

µ
,

with Ū denoting the bulk velocity at the inlet, d the diameter of the cylinder,
µ the molecular viscosity of the fluid and ρ = 1.

We now present two numerical examples. The first example presents a de-
tailed description of the POD method as suboptimal control strategy in flow
control. In the first step, the POD model for a particular control is validated
against the full Navier-Stokes dynamics, and in the second step Algorithm
10.4.1 successfully is applied to compute suboptimal open-loop controls. The
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flow configuration is taken from [ST96]. The second example presents opti-
mization results of Algorithm 10.4.1 for an open flow.

10.5.2 Example 1

In the first numerical experiment to be presented we choose a parabolic inflow
profile at the inlet, homogeneous Dirichlet boundary conditions at upper and
lower boundary, d = 1, Re=100 and the channel length is l = 20d. For the
spatial discretization the Taylor-Hood finite elements on a grid with 7808
triangles, 16000 velocity and 4096 pressure nodes are used. As time interval
in (10.77) we use [0, T ] with T = 3.4 which coincides with the length of one
period of the wake flow. The time discretization is carried out by a fractional
step Θ-scheme [Bän91] or a semi-implicit Euler-scheme on a grid containing
n = 500 points. This corresponds to a time step size of δt = 0.0068. The total
number of variables in the optimization problem (10.77) therefore is of order
5.4 × 107 (primal, adjoint and control variables). Subsequently we present a
suboptimal approach based on POD in order to obtain suboptimal solutions
to (10.77).

Construction and Validation of the POD Model

The reduced-order approach to optimal control problems such as (CP) or,
in particular, (10.77) is based on approximating the nonlinear dynamics by a
Galerkin technique utilizing basis functions that contain characteristics of the
controlled dynamics. Since the optimal control is unknown, we apply a heuris-
tic (see [AH01, AFS00]), which is well tested for optimal control problems, in
particular for nonlinear boundary control of the heat equation, see [DV01].

Here we use the snapshot variant of POD introduced by Sirovich in [Sir87]
to obtain a low-dimensional approximation of the Navier-Stokes equations. To
describe the model reduction let y1, . . . , ym denote an ensemble of snapshots
of the flow corresponding to different time instances which for simplicity are
taken on an equidistant snapshot grid over the time horizon [0, T ]. For the
approximated flow we make the ansatz

y = ȳ +

m∑
i=1

αiΦi (10.79)

with modes Φi that are obtained as follows (compare Section 10.2.2):

1. Compute the mean ȳ = 1
m

m∑
i=1

yi.

2. Build the correlation matrix K = kij , kij =
∫

Ω
(yi − ȳ)(yj − ȳ) dx.

3. Compute the eigenvalues λ1, . . . , λm and eigenvectors v1, . . . , vm of K.

4. Set Φi :=
m∑

j=1

vi
j(y

j − ȳ), 1 ≤ i ≤ d.
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5. Normalize Φi = Φi

‖Φi‖L2(Ω)
, 1 ≤ i ≤ d.

The modes Φi are pairwise orthonormal and are optimal with respect to the
L2 inner product in the sense that no other basis ofD := span{y1−ȳ, . . . , ym−
ȳ} can contain more energy in fewer elements, compare Proposition 10.2.5 with
X = H. We note that the term energy is meaningful in this context, since the
vectors y are related to flow velocities. If one would be interested in modes
which are optimal w.r.t. enstrophy, say, the H1-norm should be used instead
of the L2-norm in step 2 above.

The Ansatz (10.79) is commonly used for model reduction in fluid dynam-
ics. The theory of Sections 10.2,10.3 also applies to this situation.

In order to obtain a low-dimensional basis for the Galerkin Ansatz modes
corresponding to small eigenvalues are neglected. To make this idea more
precise let DM := span{Φ1, . . . , ΦM} (1 ≤ M ≤ N :=dimD) and define the
relative information content of this basis by

I(M) :=

M∑
k=1

λk /

N∑
k=1

λk,

compare (10.9). If the basis is required to describe γ% of the total information
contained in the space D, then the dimension M of the subspace DM is
determined by

M = argmin
{

I(M) : I(M) ≥ γ

100

}
. (10.80)

The reduced dynamical system is obtained by inserting (10.79) into the
Navier-Stokes system and using a subspace DM containing sufficient infor-
mation as test space. Since all functions Φi are solenoidal by construction this
results in

〈yt, Φj〉H + ν 〈∇y,∇Φj〉H + 〈(y · ∇)y, Φj〉H = 〈Bu, Φj〉 (1 ≤ j ≤M),

which may be rewritten as

α̇+Aα = n(α) + β + r, α(0) = a0, (10.81)

compare (10.43). Here, 〈· , ·〉 denotes the L2 × L2 inner product. The compo-

nents of a0 are computed from ȳ +
∑M

k=1(y0 − ȳ, Φk)Φk. The matrix A is the
POD stiffness matrix and the inhomogeneity r results from the contribution
of the mean ȳ to the ansatz in (10.79). For the entries of β we obtain

βj = 〈Bu, Φj〉,

i.e. the control variable is not discretized. However, we note that it is also
feasible to make an Ansatz for the control.

To validate the model in (10.81) we set u ≡ 0 and take as initial condition
y0 the uncontrolled wake flow at Re=100. In Figure 10.2 a comparison of the
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full Navier-Stokes dynamics and the reduced order model based on 50 (left) as
well as on 100 snapshots (right) is presented. As one can see the reduced order
model based on 50 snapshots already provides a very good approximation of
the full Navier-Stokes dynamics. In Figure 10.3 the long-term behavior of
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Fig. 10.2. Evolution of αi(t) compared to that of (y(t)− ȳ, Φi) for i = 1, . . . , 4. Left
50 snapshots, right 100 snapshots

the reduced order model based on 100 snapshots for different dimensions of
the reduced order model are presented. Graphically the dynamics are already
recovered utilizing eight modes. Note, that the time horizon shown in this
figure is [34, 44] while the snapshots are taken only in the interval [0, 3.4].
Finally, in Figure 10.4 the vorticities of the first ten modes generated from the
uncontrolled snapshots are presented. Thus, the reduced order model obtained
by snapshot POD captures the essential features of the full Navier-Stokes
system, and in a next step may serve as surrogate of the full Navier-Stokes
system in the optimization problem (10.77).

Optimization with the POD Model

The reduced optimization problem corresponding to (10.77) is obtained by
plugging (10.79) into the cost functional and utilizing the reduced dynamical
system (10.81) as constraint in the optimization process. Altogether we obtain

(ROM)

⎧⎨⎩min J̃(α, u) = J(y, u)
s.t.
α̇+Aα = n(α) + β + r, α(0) = a0.

(10.82)

At this stage we recall that the flow dynamics strongly depends on the control
u, and it is not clear at all from which kind of dynamics snapshots should be
taken in order to compute an approximation of a solution u∗ of (10.77). For
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Fig. 10.3. Development of amplitude α1(t) for varying number N of snapshots

the present examples we apply Algorithms 10.4.1 with a sequence of increasing
numbers Nj , where in step 2 the dimension of the space DM , i.e. the value of
M , for a given value γ ∈ (0, 1] is chosen according to (10.80).

In the present application the value for α in the cost functional is chosen
to be α = 2.10−2. For the POD method we add 100 snapshots to the snapshot
set in every iteration of Algorithm 10.4.1. The relative information content
of the basis formed by the modes is required to be larger than 99.99%, i.e.
γ = 99.99. We note that within this procedure a storage problem pops up
with increasing iteration number of Algorithm 10.4.1. However, in practice it
is sufficient to keep only the modes of the previous iteration while adding to
this set the snapshots of the current iteration. An application of Algorithm
10.4.1 with step 4’ instead of step 4 is presented in Example 10.5.3 below.

The suboptimal control u is sought in the space of deviations from the
mean, i.e we make the ansatz

u =

M∑
i=1

βiΦi, (10.83)

and the control target is tracking of the Stokes flow whose streamlines are
depicted in Figure 10.5 (bottom). The same figure also shows the vorticity
and the streamlines of the uncontrolled flow (top). For the numerical solution
of the reduced optimization problems the Schur-complement SQP-algorithm
is used, in the optimization literature frequently referred to as dual or range-
space approach [NW99].
We first present a comparison between the optimal open-loop control strategy
computed by Newton’s method, and Algorithm 10.4.1. For details of the the
implementation of Newton’s method and further numerical results we refer
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Fig. 10.4. First 10 modes generated from uncontrolled snapshots, vorticity
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Fig. 10.5. Uncontrolled flow (top) and Stokes flow (bottom)

the reader to [Hin99, HK00, HK01]. In Figure 10.6 selected iterates of the
evolution of the cost in [0, T ] for both approaches are given. The adaptive
algorithm 10.4.1 terminates after 5 iterations to obtain the suboptimal control
ũ∗. The termination criterium of step 5 in Algorithm 10.4.1 here is replaced
by

|Ĵ(ui+1)− Ĵ(ui)|
Ĵ(ui)

≤ 10−2, (10.84)

where
Ĵ(u) = J(y(u), u)

denotes the so-called reduced cost functional and y(u) stands for the solution
to the Navier-Stokes equations for given control u. The algorithm achieves a
remarkable cost reduction decreasing the value of the cost functional for the
uncontrolled flow Ĵ(u0) = 22.658437 to Ĵ(ũ∗) = 6.440180. It is also worth
recording that to recover 99.99% of the energy stored in the snapshots in the
first iteration 10 modes have to be taken, 20 in the second iteration, 26 in the
third, 30 in the fourth, and 36 in the final iteration.

The computation of the optimal control with the Newton method takes
approximately 17 times more cpu than the suboptimal approach. This in-
cludes an initialization process with a step-size controlled gradient algorithm.
To obtain a relative error |∇Ĵ(un)|/|∇Ĵ(u0)| lower than 10−2, 32 gradient
iterations are needed with Ĵ(u32) = 1.138325. As initial control u0 = 0 is
taken. Note that every gradient step amounts to solving the non-linear Navier-
Stokes equations in (10.77), the the corresponding adjoint equations, and a
further Navier-Stokes system for the computation of the step-size in the gra-
dient algorithm, compare [HK01]. Newton’s algorithm then is initialized with
u32 and 3 Newton steps further reduce the value of the cost functional to
Ĵ(u∗) = 1.090321. The controlled flow based on the Newton method is graph-
ically almost indistinguishable from the Stokes flow in Figure 10.5. Figure 10.7
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Fig. 10.6. Evolution of cost

shows the streamlines and the vorticity of the flow controlled by the adaptive
approach at t = 3.4 (top) and the mean flow ȳ (bottom), the latter formed
with the snapshots of all 5 iterations. The controlled flow no longer contains
vortex sheddings and is approximately stationary. Recall that the controls
are sought in the space of deviations from the mean flow. This explains the
remaining recirculations behind the cylinder. We expect that they can be
reduced if the Ansatz for the controls in (10.83) is based on a POD of the
snapshots themselves rather than on a POD of the deviation from their mean.

10.5.3 Example 2

The numerical results of the second application are taken from [AH00], com-
pare also [Afa02]. The computational domain is given by [−5, 15]× [−5, 5] and
is depicted in Figure 10.8. At the inflow a block-profile is prescribed, at the
outflow do-nothing boundary conditions are used, and at the top and bot-
tom boundary the velocity of the block profile is prescribed, i.e. the flow is
open. The Reynolds number is chosen to be Re=100, so that the period of
the flow covers the time horizon [0, T ] with T = 5.8. The numerical simula-
tions are performed on an equidistant grid over this time interval containing
500 gridpoints. The control target z is given by the mean of the uncontrolled
flow simulation, the regularization parameter in the cost functional is taken as
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Fig. 10.7. Example 1: POD controlled flow (top) and mean flow ȳ (bottom)

α = 1
10 . The termination criterion in Algorithm 10.4.1 is chosen as in (10.84),

the initial control is taken as u0 ≡ 0. The iteration history for the value of the
cost functional is shown in Figure 10.9, Figure 10.10 contains the iteration
history for the control cost.

Fig. 10.8. Computational domain for the second application, 15838 velocity nodes.

The convergence criterium in Algorithm 10.4.1 is met after 7 iterations,
where step 4 is replaced with step 4’. The value of the cost functional is
Ĵ(ũ∗) = 0.941604. Newton’s method (without initialization by a gradient
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Fig. 10.9. Iteration history of functional values for Algorithm 10.4.1, second appli-
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Fig. 10.10. Iteration history of control costs for Algorithm 10.4.1, second applica-
tion

method) met the convergence criterium after 11 iterations with Ĵ(u∗N ) =

0.642832, the gradient method needs 29 iterations with Ĵ(u∗G) = 0.798193.
The total numerical amount for the computation of the suboptimal control
ũ∗ for this numerical example is approximately 25 times smaller than that for
the computation of u∗N . The resulting open-loop control strategies are visually
nearly indistinguishable. For a further discussion of the approach presented
in this section we refer the reader to [Afa02, AH01].
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We close this section with noting that the basic numerical ingredient in
Algorithm 10.4.1 is the flow solver. The optimization with the surrogate model
can be performed with MATLAB. Therefore, it is not necessary to develop
numerical integration techniques for adjoint systems, which are one of the
major ingredients of Newton- and gradient-type algorithms when applied to
the full optimization problem (10.77).

10.6 Future Work and Conclusions

10.6.1 Future Research Directions

To the authors knowledge it is an open problem in many applications

1) to estimate how many snapshots to take, and
2) where to take them.

In this context goal-oriented concepts should be a future research direction.
For an overview of goal oriented concepts in a-posteriori error analysis for
finite elements we refer the reader to [BR01].

To report on first attempts for 1) and 2) we now sketch the idea of the
goal-oriented concept. Denoting by J(y) the quantity of interest, frequently
called the goal (for example the drag or lift of the wake flow) and by J(yh)
the response of the discrete model, the difference J(y) − J(yh) can be ex-
pressed approximately in terms of the residual of the state equation ρ and an
appropriate adjoint variable z, i.e.

J(y)− J(yh) = 〈ρ(y), z〉, (10.85)

where 〈·, ·〉 denotes an appropriate pairing.
With regard to 1) above, it is proposed in [HH04] to substitute y, z in

(10.85) by their discrete counterparts yh, zh obtained from the POD model,
and, starting on a coarse snapshot grid, to refine the snapshot grid and forming
new POD models as long as the difference J(y)− J(yh) is larger than a given
tolerance.

With regard to 2) a goal-oriented concept for the choice of modes out
of a given set is presented in [MM03]. In [HH05] a goal-oriented adaptive
time-stepping method for time-dependent pdes is proposed which uses POD
models to compute the adjoint variables. In view of optimization of complex
time dependent systems based on POD models adaptive goal oriented time
stepping here serves a dual purpose; it provides a time-discrete model of min-
imum complexity in the full spatial setting w.r.t. the goal, and the time grid
suggested by the approach may be considered as ideal snapshot grid upon
which the model reduction should be based.

Let us also refer to [AG03], where the authors presented a technique to
choose a fixed number of snapshots from a fine snapshot grid.
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A further research area is the development of robust and efficient sub-
optimal feedback strategies for nonlinear partial differential equations. Here,
we refer to the [KV99, KVX04, LV03, LV04]. However, the development of
feedback laws based on partial measurement information still remains a chal-
lenging research area.

10.6.2 Conclusions

In the first part of this paper we present a mathematical introduction to finite-
and infinite dimensional POD. It is shown that POD is closely related to the
singular value decomposition for rectangular matrices. Of particular interest
is the case when the columns of such matrices are snapshots of dynamical
systems, such as parabolic equations, or the Navier-Stokes system. In this
case POD allows to compute coherent structures, frequently called modes,
which cary the relevant information of the underlying dynamical process. It
then is a short step to use these modes in a Galerkin method to construct low
order surrogate models for the full dynamics. The major contribution in the
first part consists in presenting error estimates for solutions of these surrogate
models.

In the second part we work out how POD surrogate models might be used
to compute suboptimal controls for optimal control problems involving com-
plex, nonlinear dynamics. Since controls change the dynamics, POD surrogate
models need to be adaptively modified during the optimization process. With
Algorithm 10.4.1 we present a method to cope with this difficulty. This al-
gorithm in combination with the snapshot form of POD then is successfully
applied to compute suboptimal controls for the cylinder flow at Reynolds
number 100. It is worth noting that the numerical ingredients for this subop-
timal control concept are a forward solver for the Navier-Stokes system, and
an optimization environment for low-dimensional dynamical systems, such as
MATLAB. As a consequence coding of adjoints, say is not necessary. As a fur-
ther consequence the number of functional evaluations to compute suboptimal
controls in essence is given by the number of iterations needed by Algorithm
10.4.1. The suboptimal concept therefore is certainly a candidate to obey the
rule

effort of optimization

effort of simulation
≤ constant,

with a constant of moderate size. We emphasize that obeying this rule should
be regarded as one of the major goals for every algorithm developed for opti-
mal control problems with PDE-constraints.

Finally, we present first steps towards error estimation of suboptimal con-
trols obtained with POD surrogate models. For linear-quadratic control prob-
lems the size of the error in the controls can be estimated in terms of the error
of the states, and of the adjoint states. We note that for satisfactory estimates
also POD for the adjoint system needs to be performed.
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Elektrochemie, located at the Technische Universität Dresden and granted by
the German Research Foundation.

The second author has been supported in part by Fonds zur Förderung

des wissenschaftlichen Forschung under Special Research Center Optimization

and Control, SFB 03.

References

[AG03] Adrover, A., Giona, M.: Modal reduction of PDE models by means
of snapshot archetypes. Physica D, 182, 23–45 (2003).
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Part II

Benchmarks



This part contains a collection of models that can be used for evaluating
the properties and performance of new model reduction techniques and new
implementations of existing techniques. The first paper (Chapter 11) describes
the main features of the Oberwolfach Benchmark Collection, which is
maintained at

http://www.imtek.de/simulation/benchmark.

It should be noted that this is an open project, so new additions are always
welcome. The submission procedure is also described in this first paper. The
data for linear-time invariant systems in all benchmarks are provided in the
common Matrix Market format, see

http://math.nist.gov/MatrixMarket/.

In order to have a common format to deal with nonlinear models, in Chap-
ter 12, a data exchange format for nonlinear systems is proposed. Most of the
remaining papers describe examples in the Oberwolfach Benchmark Col-
lection, where the first six entries (Chapters 13–18) come from microsystem
technology applications, then Chapter 19 presents an optimal control problem
for partial differential equations, and an example from computational fluid dy-
namics is contained in Chapter 20. Chapter 21 describes second-order models
in vibration and acoustics while Chapters 22 and 23 present models arising in
circuit simulation.

Also included (see Chapter 24) is a revised version of SLICOT’s model
reduction benchmark collection, see

http://www.win.tue.nl/niconet/NIC2/benchmodred.html.

For integration in the Oberwolfach Benchmark Collection only those
examples from the SLICOT collection are chosen that exhibit interesting
model features and that are not covered otherwise. It should also be noted that
the SLICOT benchmark collection merely focuses on control applications and
not all examples are large-scale as understood in the context of the Oberwol-
fach mini-workshop. Therefore, only those examples considered appropriate
are included in Chapter 24.




