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Preface

This volume is a result of the mini workshop Dimension Reduction of Large-
Scale Systems which took place at the Mathematisches Forschungsin-
stitut Oberwolfach, Germany, October 19–25, 2003. The purpose was to
bring together experts from different communities and application areas in an
attempt to synthesize major ideas in dimension reduction that have evolved
simultaneously but separately in several areas involving simulation and con-
trol of complex physical processes. The systems that inevitably arise in such
simulations are often too complex to meet the expediency requirements of
interactive design, optimization, or real time control. Model order reduction
has been devised as a means to reduce the dimensionality of these complex
systems to a level that is amenable to such requirements.

Model order reduction seeks to replace a large-scale system of differen-
tial or difference equations by a system of substantially lower dimension that
has nearly the same response characteristics. Dimension reduction is a com-
mon theme within the simulation and control of complex physical processes.
Generally, large systems arise due to accuracy requirements on the spatial
discretization of control problems for fluids or structures, in the context of
lumped-circuit approximations of distributed circuit elements, such as the
interconnect or package of VLSI chips. Dimension reduction is generally re-
quired for purposes of expediency and/or storage reduction. Applications can
be found in

• Simulation of conservative systems, e.g., in Molecular Dynamics,
• Control and regulation of fluid flow (CFD),
• Simulation and stabilization of large structures,
• Control design for (land, air, sea) vehicles,
• VLSI chip design,
• Simulation of micro-electro-mechanical systems (MEMS),
• Semiconductor simulations,
• Image processing,

and many other areas.
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Various reduction techniques have been devised, but many of these are
described in terms that are discipline-oriented or even application-specific
even though they share many common features and origins. This workshop was
aimed at bringing together specialists from several fields and application areas
in order to expose the similarities of these approaches, to identify common
features, to address application-specific challenges, and to investigate how
successful reduction methods for linear systems might be applied to nonlinear
dynamic systems and very large scale problems with state-space dimensions
of order in the millions.

The problems in dimension reduction are challenging from the mathemat-
ical and algorithmic points of view. For example, the selection of appropri-
ate basis functions in reduced-order basis approaches like proper orthogonal
decomposition (POD) is highly problem-specific and requires a deeper math-
ematical understanding. On the algorithmic side there is a clear need for
additional work in the area of large scale numerical linear algebra. Moreover,
it is of considerable interest to introduce some non-traditional techniques such
as wavelet bases.

Methods with global computable error bounds are missing in almost all
application areas except for medium-size control problems. Here, Gramian-
based methods (e.g., balanced truncation) have been successfully applied to
approximating the input-output behavior of linear systems and a posteriori
error bounds can be easily computed. For very large-scale problems or sys-
tems based on differential-algebraic equations (DAEs), it is not yet clear how
to apply these techniques. For very large scale problems, advanced numerical
linear algebra techniques are needed to address the huge matrix dimensions
and difficulties resulting, e.g., from irregular sparsity patterns as in circuit
simulation. For the special DAE systems arising, e.g., in circuit simulation,
methods based on partial realization (moment matching or Padé approxima-
tion) have been developed. Though they are successful in some areas, they still
lack global error bounds and have difficulties when special system properties
such as stability or passivity are to be preserved by the reduced-order model.

During the workshop there were presentations on a variety of theories and
methods associated with the above mentioned applications. With this book,
we wish to give an overview of the range of topics and to generate interest in

• analyzing the available methods and mathematical theory,
• extracting the best features from different methods,
• developing a deeper mathematical understanding of the methods and

application-specific challenges,
• combining good features and new mathematical ideas with the goal of

designing superior methods.

A goal of the workshop and this book is to describe some of the most promi-
nent approaches, to discuss common features and point out issues in need of
further investigation. We hope to stimulate a broader effort in the area of
order reduction for large-scale systems that will lead to new mathematical
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and algorithmic tools with the ability to tackle challenging problems in sci-
entific computing ranging from control of nonlinear PDEs to the DC analysis
of future generation VLSI chips.

An equally important aspect to this workshop is the collection and dis-
tribution of an extensive set of test problems and application specific bench-
marks. This should make it much easier to develop relevant methods and to
systematically test them.

The participants (in alphabetical order) were Athanasios C. Antoulas (Rice
University, Houston, USA), Zhaojun Bai (University of California at Davis,
USA), Peter Benner (TU Chemnitz, Germany), Roland W. Freund (Bell Lab-
oratories, Murray Hill, USA), Serkan Gugercin (Virginia Tech, Blacksburg,
USA), Michael Hinze (TU Dresden, Germany), Jing-Rebecca Li (INRIA,
Rocquencourt, France), Karl Meerbergen (FFT, Leuven, Belgium), Volker
Mehrmann (TU Berlin, Germany), Danny C. Sorensen (Rice University, Hous-
ton, USA), Tatjana Stykel (TU Berlin, Germany), Paul Van Dooren (Univer-
sité Catholique de Louvain, Belgium), Andras Varga (DLR Oberpfaffenhofen,
Germany), Stefan Volkwein (Universität Graz, Austria), and as a visitor for
one day, Jan Korvink (IMETK, University of Freiburg, Germany).

The lively discussions inside this group really inspired this effort to write
a collection of articles serving as tutorials to a general audience in the same
spirit of the talks as they were presented during the workshop. The decision
to provide a set of benchmark examples that should serve as test cases in
the development and evaluation of new algorithms for model and dimension
reduction was also a product of these discussions. We, the organizers, wish to
thank the participants and we hope that the wider research community will
find this effort useful.

We would like to thank the Mathematisches Forschungsinstitut
Oberwolfach for providing the possibility to organize this Mini-workshop
on Dimension Reduction. This opportunity and the fantastic research envi-
ronment has made this initiative possible.

Chemnitz, Berlin, Houston Peter Benner
February 2005 Volker L. Mehrmann

Danny C. Sorensen
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Part I

Papers



The first and main part of this book contains ten papers that are written by
the participants of the Oberwolfach mini-workshop Dimension Reduction of
Large-Scale Systems. In most parts, they are kept in a tutorial style in or-
der to allow non-experts to get an overview over some major ideas in current
dimension reduction methods. The first 4 papers (Chapters 1–4) discuss vari-
ous aspects of balancing-related techniques for large-scale systems, structured
systems, and descriptor systems. Model reduction techniques for time-varying
systems are presented in Chapter 5. The next three papers (Chapters 6–8)
treat model reduction for second- and higher-order systems, which can be
considered as one of the major research directions in dimension reduction
for linear systems. Chapter 9 discusses controller reduction techniques—here,
large-scale has a somewhat different meaning than in classical model reduction
as controllers are considered as “large” already when the number of states de-
scribing the controller’s dynamics exceeds 10. The last paper in this part
(Chapter 10) concentrates on proper orthogonal decomposition—currently
probably the mostly used and most successful model reduction technique for
nonlinear systems.

We hope that the surveys on current trends presented here can be used as
a starting point for research in dimension reduction methods and stimulates
discussions on improving and extending the currently available approaches.



1

Model Reduction Based on Spectral Projection
Methods

Peter Benner1 and Enrique S. Quintana-Ort́ı2

1 Fakultät für Mathematik, TU Chemnitz, 09107 Chemnitz, Germany;
benner@mathematik.tu-chemnitz.de.

2 Departamento de Ingenieŕıa y Ciencia de Computadores, Universidad Jaume I,
12.071-Castellón, Spain; quintana@icc.uji.es.

Summary. We discuss the efficient implementation of model reduction methods
such as modal truncation, balanced truncation, and other balancing-related trun-
cation techniques, employing the idea of spectral projection. Mostly, we will be
concerned with the sign function method which serves as the major computational
tool of most of the discussed algorithms for computing reduced-order models. Imple-
mentations for large-scale problems based on parallelization or formatted arithmetic
will also be discussed. This chapter can also serve as a tutorial on Gramian-based
model reduction using spectral projection methods.

1.1 Introduction

Consider the linear, time-invariant (LTI) system

ẋ(t) = Ax(t) +Bu(t), t > 0, x(0) = x0,
y(t) = Cx(t) +Du(t), t ≥ 0,

(1.1)

where A ∈ R
n×n is the state matrix, B ∈ R

n×m, C ∈ R
p×n, D ∈ R

p×m, and
x0 ∈ R

n is the initial state of the system. Here, n is the order (or state-space
dimension) of the system. The associated transfer function matrix (TFM)
obtained from taking Laplace transforms in (1.1) and assuming x0 = 0 is

G(s) = C(sI −A)−1B +D. (1.2)

In model reduction we are faced with the problem of finding a reduced-order
LTI system,

˙̂x(t) = Âx̂(t) + B̂û(t), t > 0 x̂(0) = x̂0,

ŷ(t) = Ĉx̂(t) + D̂û(t), t ≥ 0,
(1.3)
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of order r, r � n, and associated TFM Ĝ(s) = Ĉ(sI − Â)−1B̂ + D̂ which
approximates G(s). Model reduction of discrete-time LTI systems can be for-
mulated in an analogous manner; see, e.g., [OA01]. Most of the methods and
approaches discussed here carry over to the discrete-time setting as well. Here,
we will focus our attention on the continuous-time setting, the discrete-time
case being discussed in detail in [BQQ03a].

Balancing-related model reduction methods are based on finding an ap-
propriate coordinate system for the state-space in which the chosen Gramian
matrices of the system are diagonal and equal. In the simplest case of balanced
truncation, the controllability Gramian Wc and the observability Gramian Wo

are used. These Gramians are given by the solutions of the two dual Lyapunov
equations

AWc +WcA
T +BBT = 0, ATWo +WoA+ CTC = 0. (1.4)

After changing to the coordinate system giving rise to diagonal Gramians with
positive decreasing diagonal entries, which are called the Hankel singular val-
ues (HSVs) of the system, the reduced-order model is obtained by truncating
the states corresponding to the n− r smallest HSVs.

Balanced truncation and its relatives such as singular perturbation approx-
imation, stochastic truncation, etc., are the most popular model reduction
techniques used in control theory. The advantages of these methods, guar-
anteed preservation of several system properties like stability and passivity,
as well as the existence of computable error bounds that permit an adaptive
selection of the order of the reduced-order model, are unmatched by any other
approach. However, thus far, in many other engineering disciplines the use of
balanced truncation and other related methods has not been considered feasi-
ble due to its computational complexity. Quite often, these disciplines have a
preferred model reduction technique as modal analysis and Guyan reduction
in structural dynamics, proper orthogonal decomposition (POD) in computa-
tional fluid dynamics, Padé and Padé-like approximation techniques based on
Krylov subspace methods in circuit simulation and microsystem technology,
etc. A goal of this tutorial is to convince the reader that balanced truncation
and its relatives are viable alternatives in many of these areas if efficient algo-
rithms from numerical linear algebra are employed and/or basic level parallel
computing facilities are available.

The ideas presented in this paper are part of an ongoing effort to facilitate
the use of balancing-related model reduction methods in large-scale problems
arising in the control of partial differential equations, the simulation of VLSI
and ULSI circuits, the generation of compact models in microsystems, and
other engineering disciplines. This effort mainly involves breaking the O(n2)
memory and O(n3) flops (floating-point arithmetic operations) barriers. Sev-
eral issues related to this challenge are addressed in this paper. By working
with (approximations of) the full-rank factors of the system Gramians rather
than using Cholesky factors as in previous balanced truncation algorithms,
the complexity of all remaining calculations following the computation of the
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factors of the Gramians usually only grows linearly with the dimension of the
state-space. This idea is pursued in several approaches that essentially only
differ in the way the factors of the Gramians are computed. Approximation
methods suitable for sparse systems based mainly on Smith- and ADI-type
methods are discussed in Chapters 2 and 3. These allow the computation of the
factors at a computational cost and a memory requirement proportional to the
number of nonzeros in A. Thus, implementations of balanced truncation based
on these ideas are in the same complexity class as Padé-approximation and
POD. In this chapter, we focus on the computation of full-rank factors of the
Gramians by the sign function method which is based on spectral projection
techniques. This does not lead immediately to a reduced overall complexity of
the induced balanced truncation algorithm as we deal with general dense sys-
tems. However, for special classes of dense problems, a linear-polylogarithmic
complexity can be achieved by employing hierarchical matrix structures and
the related formatted arithmetic. For the general case, the O(n2) memory and
O(n3) flops complexity remains, but the resulting algorithms are perfectly
suited for parallel computations and are highly efficient on current desktops
or clusters of workstations. Provided efficient parallel computational kernels
for the necessary linear algebra operations are available, balanced truncation
can be applied to systems with state-space dimension n = O(104) and dense
A-matrix on commodity clusters. By re-using these efficient parallel kernels for
computing reduced-order models with a sign function-based implementation
of balanced truncation, the application of many other related model reduction
methods to large-scale, dense systems becomes feasible. We briefly describe
some of the related techniques in this chapter, particularly we discuss sign
function-based implementations of the following methods:

– balanced truncation,
– singular perturbation approximation,
– optimal Hankel norm approximation,
– balanced stochastic truncation, and
– truncation methods based on positive real, bounded real, and LQG bal-

ancing,

for stable systems. Using a specialized algorithm for the additive decomposi-
tion of transfer functions, again based on spectral projection techniques, all
the above balancing-related model reduction techniques can also be applied
to unstable systems. At this point, we would also like to mention that the
same ideas can be applied to balanced truncation for descriptor systems, as
described in Chapter 3—for preliminary results see [BQQ04c]—but we will
not elaborate on this as this is mostly work in progress.

This paper is organized as follows. In Section 1.2 we provide the nec-
essary background from system and realization theory. Spectral projection,
which is the basis for many of the methods described in this chapter, is pre-
sented in Section 1.3. Model reduction methods for stable systems of the
form (1.1) based on these ideas are described in Section 1.4, where we also in-
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clude modal truncation for historical reasons. The basic ideas needed to apply
balanced truncation and its relatives to large-scale systems are summarized
in Section 1.5. Conclusions and open problems are given in Section 1.6.

Throughout this paper, we will use In for the identity matrix in R
n×n

and I for the identity when the order is obvious from the context, Λ (A) will
denote the spectrum of the matrix A. Usually, capital letters will be used
for matrices; lower case letters will stand for vectors with the exception of t
denoting time, and i, j, k,m, n, p, r, s employed for integers such as indices and
dimensions; Greek letters will be used for other scalars; and calligraphic letters
will indicate vector and function spaces. Without further explanation, Π will
always denote a permutation matrix of a suitable dimension, usually resulting
from row or column pivoting in factorization algorithms. The left and right
(open) complex half planes will be denoted by C

− and C
+, respectively, and

we will write j for
√
−1.

1.2 System-Theoretic Background

In this section, we introduce some basic notation and properties of LTI systems
used throughout this paper. More detailed introductions to LTI systems can
be found in many textbooks [GL95, Son98, ZDG96] or handbooks [Lev96,
Mut99]. We essentially follow these references here without further citations,
but many other sources can be used for a good overview on the subjects
covered in this section.

1.2.1 Linear Systems, Frequency Domain, and Norms

An LTI system is (Lyapunov or exponentially) stable if all its poles are in
the left half plane. Sufficient for this is that A is stable (or Hurwitz ), i.e., the
spectrum of A, denoted by Λ (A), satisfies Λ (A) ⊂ C

−. It should be noted
that the relation between the controllability and observability Gramians of an
LTI system and the solutions of the Lyapunov equations in (1.4) only holds
if A is stable.

The particular model imposed by (1.1), given by a differential equation
describing the behavior of the states x and an algebraic equation describing
the outputs y is called a state-space representation. Alternatively, the relation
between inputs and outputs can also be described in the frequency domain by
an algebraic expression. Applying the Laplace transform to the two equations
in (1.1), and denoting the transformed arguments as x(s), y(s), u(s) where s
is the Laplace variable, we obtain

sx(s)− x(0) = Ax(s) +Bu(s),

y(s) = Cx(s) +Du(s).

By solving for x(s) in the first equation and inserting this into the second
equation, we obtain
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y(s) =
(
C(sIn −A)−1B +D

)
u(s) + C(sIn −A)−1x0.

For a zero initial state, the relation between inputs and outputs is therefore
completely described by the transfer function

G(s) := C(sIn −A)−1B +D. (1.5)

Many interesting characteristics of an LTI system are obtained by evaluating
G(s) on the positive imaginary axis, that is, setting s = jω. In this context,
ω can be interpreted as the operating frequency of the LTI system.

A stable transfer function defines a mapping

G : L2 → L2 : u→ y = Gu (1.6)

where the two function spaces denoted by L2 are actually different spaces and
should more appropriately be denoted by L2(C

m) and L2(C
p), respectively.

As the dimension of the underlying spaces will always be clear from the con-
text, i.e., the dimension of the transfer function matrix G(s) or the dimension
of input and output spaces, we allow ourselves the more sloppy notation used
in (1.6). The function space L2 contains the square integrable functions in
the frequency domain, obtained via the Laplace transform of the square in-
tegrable functions in the time domain, usually denoted as L2(−∞,∞). The
L2-functions that are analytic in the open right half plane C

+ form the Hardy
space H2. Note that H2 is a closed subspace of L2. Under the Laplace trans-
form L2 and H2 are isometric isomorphic to L2(−∞,∞) and L2[0,∞), respec-
tively. (This is essentially the Paley-Wiener Theorem which is the Laplace
transform analog of Parseval’s identity for the Fourier transform.) Therefore
it is clear that the frequency domain spaces H2 and L2 can be endowed with
the corresponding norms from their time domain counterparts. Due to this
isometry, our notation will not distinguish between norms for the different
spaces so that we will denote by ‖f‖2 the induced 2-norm on any of the
spaces L2(−∞,∞), L2, L2[0,∞), and H2. Using the definition (1.6), it is
therefore possible to define an operator norm for G by

‖G‖ := sup
‖u‖2≤1

‖Gu‖2.

It turns out that this operator norm equals the L∞-norm of the transfer
function G, which for rational transfer functions can be defined as

‖G‖∞ := sup
ω∈R

σmax(G(jω)). (1.7)

The p×m-matrix-valued functions G for which ‖G‖∞ is bounded, i.e., those
essentially bounded on the imaginary axis, form the function space L∞. The
subset of L∞ containing all p×m-matrix-valued functions that are analytical
and bounded in C

+ form the Hardy space H∞. As a consequence of the
maximum modulus theorem,H∞ functions must be bounded on the imaginary
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axis so that the essential supremum in (1.7) simplifies to a supremum for
rational functions G. Thus, the H∞-norm of the rational transfer function
G ∈ H∞ can be defined as

‖G‖∞ := sup
ω∈R

σmax(G(jω)). (1.8)

A fact that will be of major importance throughout this paper is that the
transfer function of a stable LTI system is rational with no poles in the closed
right-half plane. Thus, G ∈ H∞ for all stable LTI systems.

Although the notation is somewhat misleading, the H∞-norm is the 2-
induced operator norm. Hence the sub-multiplicativity condition

‖y‖2 ≤ ‖G‖∞‖u‖2 (1.9)

holds. This inequality implies an important way to tackle the model reduction
problem: suppose the original system and the reduced-order model (1.3) are
driven by the same input function u ∈ H2, so that

y(s) = G(s)u(s), ŷ(s) = Ĝ(s)u(s),

where Ĝ is the transfer function corresponding to (1.3); then we obtain the
error bound

‖y − ŷ‖2 ≤ ‖G− Ĝ‖∞‖u‖2. (1.10)

Due to the aforementioned Paley-Wiener theorem, this bound holds in the
frequency domain and the time domain. Therefore a goal of model reduction
is to compute the reduced-order model so that ‖G − Ĝ‖∞ is smaller than a
given tolerance threshold.

1.2.2 Balanced Realizations

A realization of an LTI system is the set of the four matrices

(A,B,C,D) ∈ R
n×n × R

n×m × R
p×n × R

p×m

corresponding to (1.1). In general, an LTI system has infinitely many realiza-
tions as its transfer function is invariant under state-space transformations,

T :

{
x → Tx,

(A,B,C,D) → (TAT−1, TB,CT−1, D),
(1.11)

as the simple calculation

D + (CT−1)(sI − TAT−1)−1(TB) = C(sIn −A)−1B +D = G(s)

demonstrates. But this is not the only non-uniqueness associated to LTI sys-
tem representations. Any addition of states that does not influence the input-
output relation, meaning that for the same input u the same output y is
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achieved, leads to a realization of the same LTI system. Two simple examples
are

d

dt

[
x
x1

]
=

[
A 0

0 A1

] [
x
x1

]
+

[
B
B1

]
u(t), y(t) =

[
C 0

] [ x
x1

]
+Du(t),

d

dt

[
x
x2

]
=

[
A 0

0 A2

] [
x
x2

]
+

[
B
0

]
u(t), y(t) =

[
C C2

] [ x
x2

]
+Du(t),

for arbitrary matrices Aj ∈ R
nj×nj , j = 1, 2, B1 ∈ R

n1×m, C2 ∈ R
p×n2 and

any n1, n2 ∈ N. An easy calculation shows that both of these systems have
the same transfer function G(s) as (1.1) so that

(A,B,C,D),

([
A 0

0 A1

]
,

[
B
B1

]
,
[
C 0

]
, D

)
,

([
A 0

0 A2

]
,

[
B
0

]
,
[
C C2

]
, D

)
are both realizations of the same LTI system described by the transfer function
G(s) in (1.5). Therefore, the order n of a system can be arbitrarily enlarged
without changing the input-output mapping. On the other hand, for each
system there exists a unique minimal number of states which is necessary
to describe the input-output behavior completely. This number n̂ is called
the McMillan degree of the system. A minimal realization is a realization
(Â, B̂, Ĉ, D̂) of the system with order n̂. Note that only the McMillan degree
is unique; any state-space transformation (1.11) leads to another minimal
realization of the same system. Finding a minimal realization for a given
system can be considered as a first step of model reduction as redundant
(non-minimal) states are removed from the system. Sometimes this is part of
a model reduction procedure, e.g. optimal Hankel norm approximation, and
can be achieved via balanced truncation.

Although realizations are highly non-unique, stable LTI systems have a
set of invariants with respect to state-space transformations that provide a
good motivation for finding reduced-order models. From Lyapunov stability
theory (see, e.g., [LT85, Chapter 13]) it is clear that for stable A, the Lya-
punov equations in (1.4) have unique positive semidefinite solutions Wc and
Wo. These solutions define the controllability Gramian (Wc) and observability
Gramian (Wo) of the system. If Wc is positive definite, then the system is
controllable and if Wo is positive definite, the system is observable. Control-
lability plus observability is equivalent to minimality of the system so that
for minimal systems, all eigenvalues of the product WcWo are strictly positive
real numbers. The square roots of these eigenvalues, denoted in decreasing
order by

σ1 ≥ σ2 ≥ . . . ≥ σn > 0,

are known as the Hankel singular values (HSVs) of the LTI system and are
invariants of the system: let

(Â, B̂, Ĉ,D) = (TAT−1, TB,CT−1, D)
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be the transformed realization with associated controllability Lyapunov equa-
tion

0 = ÂŴc + ŴcÂ
T + B̂B̂T = TAT−1Ŵc + ŴcT

−TATTT + TBBTTT .

This is equivalent to

0 = A(T−1ŴcT
−T ) + (T−1ŴcT

−T )AT +BBT .

The uniqueness of the solution of the Lyapunov equation (see, e.g., [LT85])
implies that Ŵc = TWcT

T and, analogously, Ŵo = T−TWoT
−1. Therefore,

ŴcŴo = TWcWoT
−1,

showing that Λ (ŴcŴo) = Λ (WcWo) = {σ2
1 , . . . , σ

2
n}. Note that extending

the state-space by non-minimal states only adds HSVs of magnitude equal to
zero, while the non-zero HSVs remain unchanged.

An important (and name-inducing) type of realizations are balanced real-
izations. A realization (A,B,C,D) is called balanced iff

Wc = Wo =

⎡⎢⎣σ1

. . .

σn

⎤⎥⎦ ;

that is, the controllability and observability Gramians are diagonal and equal
with the decreasing HSVs on their respective diagonal entries. For a minimal
realization there always exists a balancing state-space transformation of the
form (1.11) with nonsingular matrix Tb ∈ R

n×n; for non-minimal systems the
Gramians can also be transformed into diagonal matrices with the leading
n̂× n̂ submatrices equal to diag(σ1, . . . , σn̂), and

ŴcŴo = diag(σ2
1 , . . . , σ

2
n̂, 0, . . . , 0);

see, e.g., [TP87]. Using a balanced realization obtained via the transformation
matrix Tb, the HSVs allow an energy interpretation of the states; see also
[Van00] for a nice treatment of this subject. Specifically, the minimal energy
needed to reach x0 is

inf
u∈L2(−∞,0]

x(0)=x0

∫ 0

−∞
u(t)Tu(t) dt = (x0)TW−1

c x0 = (x̂0)T Ŵ−1
c x̂0 =

n∑
k=1

1

σk
x̂2

k,

where x̂0 :=

⎡⎢⎣ x̂1

...
x̂n

⎤⎥⎦ = Tbx
0; hence small HSVs correspond to states that are

difficult to reach. The output energy resulting from an initial state x0 and
u(t) ≡ 0 for t > 0 is given by
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‖y‖22 =

∫ ∞

0

y(t)T y(t) dt = xT
0 Wox0 = (x̂0)T Ŵox̂

0. =

n∑
k=1

σkx̂
2
j ;

hence large HSVs correspond to the states containing most of the energy in
the system. The energy transfer from past inputs to future outputs can be
computed via

E := sup
u∈L2(−∞,0]

x(0)=x0

‖y‖22
0∫

−∞
u(t)Tu(t) dt

=
(x0)TWox

0

(x0)TW−1
c x0

=
(x̄0)TW

1
2

c WoW
1
2

c x̄0

(x̄0)T x̄0
,

where x̄0 := W
− 1

2
c x0. Thus, the HSVs (Λ (WcWo))

1
2 =

(
Λ (W

1
2

c WoW
1
2

c )
) 1

2

measure how much the states are involved in the energy transfer from inputs
to outputs.

In summary, it seems reasonable to obtain a reduced-order model by re-
moving the least controllable states, keeping the states containing the major
part of the system energy as these are the ones which are most involved in
the energy transfer from inputs to outputs—that is, keeping the states corre-
sponding to the largest HSVs. This is exactly the idea of balanced truncation,
to be outlined in Section 1.4.2.

1.3 Spectral Projection Methods

In this section we will give the necessary background on spectral projection
methods and the related computational tools leading to easy-to-implement
and easy-to-parallelize iterative methods. These iterative methods will form
the backbone of all the model reduction methods discussed in the next section.

1.3.1 Spectral Projectors

First, we give some fundamental definitions and properties of projection ma-
trices.

Definition 1.3.1. A matrix P ∈ R
n×n is a projector (onto a subspace S ⊂

R
n) if range (P ) = S and P 2 = P .

Definition 1.3.2. Let Z ∈ R
n×n with Λ (Z) = Λ1 ∪ Λ2, Λ1 ∩ Λ2 = ∅, and let

S1 be the (right) Z-invariant subspace corresponding to Λ1. Then a projector
onto S1 is called a spectral projector.

From this definition we obtain the following properties of spectral projectors.

Lemma 1.3.3. Let Z ∈ R
n×n be as in Definition 1.3.2, and let P ∈ R

n×n be
a spectral projector onto the right Z-invariant subspace corresponding to Λ1.
Then
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a) rank (P ) = |Λ1| =: k,
b) range (P ) = range (ZP ),
c) ker(P ) = range (I − P ), range (P ) = ker(I − P ),
d) I − P is a spectral projector onto the right Z-invariant subspace corre-

sponding to Λ2.

Given a spectral projector P we can compute an orthogonal basis for the
corresponding Z-invariant subspace S1 and a spectral or block decomposition
of Z in the following way: let

P = QRΠ, R =

[
R11 R12

0 0

]
=

⎡⎣� ⎤⎦ , R11 ∈ R
k×k,

be a QR decomposition with column pivoting (or a rank-revealing QR decom-
position (RRQR)) [GV96] where Π is a permutation matrix. Then the first k
columns of Q form an orthonormal basis for S1 and we can transform Z to
block-triangular form

Z̃ := QTZQ =

[
Z11 Z12

0 Z22

]
, (1.12)

where Λ (Z11) = Λ1, Λ (Z22) = Λ2.
The block decomposition given in (1.12) will prove very useful in what

follows.

1.3.2 The Sign Function Method

Consider a matrix Z ∈ R
n×n with no eigenvalues on the imaginary axis, that

is, Λ (Z) ∩ jR = ∅, and let Z = S
[

J−

0
0

J+

]
S−1 be its Jordan decomposition.

Here, the Jordan blocks in J− ∈ R
k×k and J+ ∈ R

(n−k)×(n−k) contain, re-
spectively, the stable and unstable parts of Λ (Z). The matrix sign function

of Z is defined as sign (Z) := S
[
−Ik

0
0

In−k

]
S−1. Note that sign (Z) is unique

and independent of the order of the eigenvalues in the Jordan decomposition
of Z, see, e.g., [LR95]. Many other definitions of the sign function can be
given; see [KL95] for an overview. Some important properties of the matrix
sign function are summarized in the following lemma.

Lemma 1.3.4. Let Z ∈ R
n×n with Λ (Z) ∩ jR = ∅. Then:

a) (sign (Z))
2

= In, i.e., sign (Z) is a square root of the identity matrix;
b) sign

(
T−1ZT

)
= T−1 sign (Z)T for all nonsingular T ∈ R

n×n;

c) sign
(
ZT

)
= sign (Z)

T
.
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d) Let p+ and p− be the numbers of eigenvalues of Z with positive and neg-
ative real part, respectively. Then

p+ =
1

2
(n+ tr (sign (Z))), p− =

1

2
(n− tr (sign (Z))).

(Here, tr (M) denotes the trace of the matrix M .)
e) Let Z be stable, then

sign (Z) = −In, sign (−Z) = In.

Applying Newton’s root-finding iteration to Z2 = In, where the starting point
is chosen as Z, we obtain the Newton iteration for the matrix sign function:

Z0 ← Z, Zj+1 ←
1

2
(Zj + Z−1

j ), j = 0, 1, 2, . . . . (1.13)

Under the given assumptions, the sequence {Zj}∞j=0 converges with an ulti-
mately quadratic convergence rate and

sign (Z) = lim
j→∞

Zj ;

see [Rob80]. As the initial convergence may be slow, the use of acceleration
techniques is recommended. There are several acceleration schemes proposed
in the literature, a thorough discussion can be found in [KL92], and a survey
and comparison of different schemes is given in [BD93]. For accelerating (1.13),
in each step Zj is replaced by 1

γj
Zj , where the most prominent choices for γj

are briefly discussed in the sequel.

Determinantal scaling [Bye87]: here,

γj = |det (Zj)|
1
n .

This choice minimizes the distance of the geometric mean of the eigenval-
ues of Zj from 1. Note that the determinant det (Zj) is a by-product of
the computations required to implement (1.13).

Norm scaling [Hig86]: here

cj =

√
‖Zj‖2
‖Z−1

j ‖2
,

which has certain minimization properties in the context of computing
polar decompositions. It is also beneficial regarding rounding errors as
it equalizes the norms of the two addends in the finite-norm calculation
( 1

γj
Zj) + ( 1

γj
Zj)

−1.

Approximate norm scaling: as the spectral norm is expensive to calculate, it
is suggested in [Hig86, KL92] to approximate this norm by the Frobenius
norm or to use the bound (see, e.g., [GV96])

‖Zj‖2 ≤
√
‖Zj‖1‖Zj‖∞. (1.14)
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Numerical experiments and partial analytic considerations [BQQ04d] suggest
that norm scaling is to be preferred in the situations most frequently en-
countered in the sign function-based calculations discussed in the following;
see also Example 1.3.6 below. Moreover, the Frobenius norm approximation
usually yields a better approximation than the one given by (1.14). As the
computation of the Frobenius norm parallelizes very well, we will mostly use
the Frobenius norm scaling in the algorithms based on (1.13).

There are also plenty of other iterative schemes for computing the sign
function; many of those have good properties regarding convergence and
parallelization (see [KL95] for an overview). Nevertheless, the basic Newton
iteration (1.13) appears to yield the most robust implementation and the
fastest execution times, both in serial and parallel implementations. Imple-
menting (1.13) only requires computing matrix sums and inverses using LU
factorization or Gauß-Jordan elimination. These operations are efficiently im-
plemented in many software packages for serial and parallel computations;
efficient parallelization of the matrix sign function has been reported, e.g.,
in [BDD+97, HQOSW00].

Computations based on the matrix sign function can be considered as
spectral projection methods as they usually involve

P− :=
1

2
(In − sign (Z)), (1.15)

which is a spectral projector onto the stable Z-invariant subspace. Also,
P+ := (In + sign (Z))/2 is a spectral projector onto the Z-invariant sub-
space corresponding to the eigenvalues in the open right half plane. But note
that P− and P+ are not orthogonal projectors, but skew projectors along the
complementary Z-invariant subspace.

Remark 1.3.5. The matrix sign function is criticized for several reasons, the
most prominent one being the need to compute an explicit inverse in each step.
Of course, it is undefined for matrices with purely imaginary eigenvalues and
hence suffers from numerical problems in the presence of eigenvalues close to
the imaginary axis. But numerical instabilities basically only show up if there
exist eigenvalues with imaginary parts of magnitude less than the square root
of the machine precision. Hence, significant problems can be expected in dou-
ble precision arithmetic (as used in Matlab) for imaginary parts of magnitude
less than 10−8. (A thorough numerical analysis requires the condition of the
stable subspace which is given by the reciprocal of the separation of stable
and anti-stable invariant subspaces, though—the distance of eigenvalues to
the imaginary axis is only an upper bound for the separation!) Fortunately, in
the control applications considered here, poles are usually further apart from
the imaginary axis. On the other hand, if we have no problems with the spec-
tral dichotomy, then the sign function method solves a problem that is usually
better conditioned than the Schur vector approach as it only separates the sta-
ble from the anti-stable subspace while the Schur vector method essentially
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requires to separate n subspaces from each other. For a thorough analysis of
sign function-based computation of invariant subspaces, see [BD98, BHM97].
The difference in the conditioning of the Schur form and a block triangular
form (as computed by the sign function) is discussed in [KMP01]. Moreover,
in the applications considered here, mostly cond (sign (Z)) = 1 as Z is stable
or anti-stable, hence the computation of sign (Z) itself is a well-conditioned
problem!

Therefore, counter to intuition, it should not be surprising that often,
results computed by the sign function method are more accurate than those
obtained by using Schur-type decompositions; see, e.g., [BQO99].

Example 1.3.6. A typical convergence history (based on ‖Zj − sign (Z) ‖F ) is
displayed in Figure 1.1, showing the fast quadratic convergence rate. Here,
we computed the sign function of a dense matrix A coming from transform-
ing a generalized state-space system (the n = 1357 case of the steel cooling
problem described in Chapter 19 of this book) to standard state-space form.
We compare the determinantal scaling and the Frobenius norm scaling. Here,
the eigenvalue of A closest to jR is ≈ 6.7 · 10−6 and the eigenvalue of largest
magnitude is ≈ −5.8. Therefore the condition of A is about 106. Obviously,
norm scaling performs much better for this example. This is a typical be-
havior for problems with real spectrum. The computations were done using
Matlab 7.0.1 on a Intel Pentium M processor at 1.4 GHz with 512 MBytes
of RAM.
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Fig. 1.1. Example 1.3.6, convergence history for sign (Z) using (1.13).
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1.3.3 Solving Linear Matrix Equations with the Sign Function
Method

In 1971, Roberts [Rob80] introduced the matrix sign function and showed how
to solve Sylvester and Lyapunov equations. This was re-discovered several
times; see [BD75, DB76, HMW77]. We will briefly review the method for
Sylvester equations and will then discuss some improvements useful for model
reduction applications.

Consider the Sylvester equation

AX +XB +W = 0, A ∈ R
n×n, B ∈ R

m×m,W ∈ R
n×m, (1.16)

with Λ (A)∩Λ (−B) = ∅. The latter assumption is equivalent to (1.16) having
a unique solution [LT85]. Let X ∈ R

n×m be this unique solution. Then the
straightforward calculation[

In 0

X Im

][
A 0

W −B

][
In 0

−X Im

]
=

[
A 0

0 −B

]
(1.17)

reveals that the columns of
[

In

−X∗

]
span the invariant subspace of Z :=[

A
W

0
−B

]
corresponding to Λ (A). In principle, this subspace, and after an

appropriate change of basis, also the solution matrix X, can be computed
from a spectral projector onto this Z-invariant subspace. The sign function is
an appropriate tool for this whenever A,B are stable as in this case, P− from
(1.15) is the required spectral projector. A closer inspection of (1.13) applied
to Z shows that we do not even have to form P− in this case, as the solution
can be directly read off the matrix sign (Z): using (1.17) and Lemma 1.3.4
reveals that

sign (Z) = sign

([
A 0

W −B

])
=

[
−In 0

2X Im

]
so that the solution of (1.16) is given as the lower left block of the limit of
(1.13), divided by 2. Moreover, the block-triangular structure of Z allows to
decouple (1.13) as

A0 ← A, B0 ← B, W0 ← W,
for j = 0, 1, 2, . . .

Aj+1 ← 1

2γj

(
Aj + γ2

jA
−1
j

)
,

Bj+1 ← 1

2γj

(
Bj + γ2

jB
−1
j

)
,

Wj+1 ← 1

2γj

(
Wj + γ2

jA
−1
j WjB

−1
j

)
.

(1.18)

so that X∗ = 1
2 limj→∞Wj . As A,B are assumed to be stable, Aj tends to

−In and Bj tends to −Im so that we can base a stopping criterion on
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max{‖Aj + In‖, ‖Bj + Im‖} < τ, (1.19)

where τ is an error tolerance and ‖ . ‖ is an appropriate matrix norm.
For Lyapunov equations

AX +XAT +W = 0, A ∈ R
n×n,W = WT ∈ R

n×n, (1.20)

we simply replace B by AT in defining Z. Assuming again stability of A,
and observing that the iteration for Bj in (1.18) is redundant (see also
Lemma 1.3.4 c)), the sign function method for Lyapunov equation becomes

A0 ← A, W0 ← W,
for j = 0, 1, 2, . . .

Aj+1 ← 1

2γj

(
Aj + γ2

jA
−1
j

)
,

Wj+1 ← 1

2γj

(
Wj + γ2

jA
−1
j WjA

−T
j

)
.

(1.21)

with X∗ = 1
2 limj→∞Wj . Here, a reasonable stopping criterion is given by

‖Aj + In‖ < τ , see (1.19).

If we consider the Lyapunov equations (1.4) defining the controllability
and observability Gramians of stable LTI systems, we observe the following
facts which will be of importance for an efficient implementation of (1.21) in
the context of model reduction:

1. The right-hand side is given in factored form, that is, W = BBT or W =
CTC, and hence semidefinite. Thus, X is positive semidefinite [LT85],
and can therefore also be factored as X = SST . A possibility here is a
Cholesky factorization.

2. Usually, the number of states in (1.1) is much larger than the number
of inputs and outputs, that is, n � m, p. In many cases, this yields a
solution matrix with rapidly decaying eigenvalues so that its numerical
rank is small; see [ASZ02, Gra04, Pen00] for partial explanations of this
fact. Figure 1.2 demonstrates this behavior for the controllability Gramian
of a random stable LTI system with n = 500, m = 10, and stability margin
(minimum distance of Λ (A) to jR) ≈ 0.055. Hence, if nε is the numerical
rank of X, then there is a matrix Sε ∈ R

n×nε so that X ≈ SεS
T
ε at the

level of machine accuracy.

The second observation also serves as the basic idea of most algorithms for
large-scale Lyapunov equations; see [Pen00, AS01] as well as Chapters 2 and 3.
Storing Sε is much cheaper than storing X or S as instead of n2 only n · nε

real numbers need to be stored. In the example used above to illustrate the
eigenvalue decay, this leads already to a reduction factor of about 10 for storing
the solution of the controllability Gramian; in Example 1.3.6 this factor is close
to 100 so that 99% of the storage is saved. We will make use of this fact in
the method proposed for solving (1.4).
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Fig. 1.2. Eigenvalue decay rate for the controllability Gramian of a random LTI
system with n = 500, m = 10, and stability margin ≈ 0.055.

For the derivation of the proposed implementation of the sign function
method for computing system Gramians, we will use the Lyapunov equation
defining the observability Gramian,

ATY + Y A+ CTC = 0.

Re-writing the iteration for Wj in (1.21), we obtain with W0 = CT
0 C0 := CTC:

Wj+1 =
1

2γj

(
Wj + γ2

jA
−T
j WjA

−1
j

)
=

1

2γj

[
Cj

γjCjA
−1
j

]T [
Cj

γjCjA
−1
j

]
.

Thus, in order to compute a factor R of Y = RTR we can instead directly
iterate on the factors:

C0 ← C, Cj+1 ←
1√
2γj

[
Cj

γjCjA
−1
j

]
. (1.22)

A problem with this iteration is that the number of columns in Cj doubles in
each iteration step so that after j ≥ log2

n
p steps, the required workspace for Cj

becomes even larger than n2. There are several ways to limit this workspace.
The first one, initially suggested in [LA93], works with an n× n-matrix, sets

C0 to the Cholesky factor of CTC, computes a QR factorization of

[
Cj

γjCjA−1
j

]
in each iteration, and uses its R-factor as next Cj-iterate. A slightly cheaper
version of this is given in [BQO99], where (1.22) is used as long as j ≤ log2

n
p

and only then starts computing QR factorizations in each step. In both cases,
it can be shown that limj→∞ Cj is a Cholesky factor of the solution Y of
(1.20).
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In order to exploit the second observation from above, in [BQO99] it is
suggested to keep the number of rows in Cj less than or equal to the (nu-
merical) rank of Y by computing in each iteration step a rank-revealing QR
factorization

1√
2γj

[
Cj

γjCjA
−1
j

]
= Uj+1

[
Rj+1 Tj+1

0 Sj+1

]
Πj+1, (1.23)

where Rj+1 ∈ R
pj+1×pj+1 is nonsingular, pj+1 = rank

([
Cj

γjCjA−1
j

])
, and

‖Sj+1‖2 is “small enough” (with respect to a given tolerance threshold for
determining the numerical rank) to safely set Sj+1 = 0. Then, the next iterate
becomes

Cj+1 ← [Rj+1 Tj+1 ]Πj+1, (1.24)

and 1√
2

limj→∞ Cj is a (numerical) full-rank factor of the solution Y of (1.20).

The criterion that will be used to select the tolerance threshold for ‖Sj+1‖2
is based on the following considerations. Let

M =

[
M1 M2

E1 E2

]
, M̃ =

[
M1 M2

]
so that MTM and M̃T M̃ are approximations to a positive semidefinite matrix
K ∈ R

n×n. Assume

‖Ej‖2 ≤
√
ε‖M‖2, j = 1, 2,

for some 0 < ε < 1. Then

K −MTM = K −
[
MT

1 ET
1

MT
2 ET

2

][
M1 M2

E1 E2

]

= K − M̃T M̃ −
[
ET

1 E1 E
T
1 E2

ET
2 E1 E

T
2 E2

]

If M is a reasonable approximation with ‖M‖22 ≈ ‖K‖2, then the relative
error of the two approximations satisfies

‖K − M̃T M̃‖2
‖K‖2

<≈ ‖K −MTM‖2
‖K‖2

+O(ε). (1.25)

If ε ∼ u, where u is the machine precision, this shows that neglecting the
blocks E1, E2 in the factor of the approximation to K yields a relative error
of size O(u) which is negligible in the presence of roundoff errors. Therefore,
in our calculations we choose the numerical rank with respect to ε =

√
u.
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Example 1.3.7. For the same random LTI system as used in the illustration
of the eigenvalue decay in Figure 1.2, we computed a numerical full-rank
factor of the controllability Gramian. The computed rank is 31, and 10 itera-
tions are needed to achieve convergence in the sign function based iteration.
Figure 1.3 shows the development of pj = rank (Cj) during the iteration.
Comparing (1.24) with the currently best available implementation of Ham-
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Fig. 1.3. Example 1.3.7, number of columns in Cj in the full-rank iteration com-
posed of (1.22), (1.23), and (1.24).

marling’s method [Ham82] for computing the Cholesky factor of the solution
of a Lyapunov equation, contained in the SLICOT library [BMS+99], we note
that the sign function-based method (pure Matlab code) required 4.69 sec.
while the SLICOT function (compiled and optimized Fortran 77 code, called
via a mex file from Matlab) needed 7.75 sec., both computed using Mat-
lab 7.0.1 on a Intel Pentium M processor at 1.4 GHz with 512 MBytes of
RAM. The computed relative residuals

‖AX +XAT +BBT ‖F

2‖A‖F ‖X‖F + ‖BBT ‖F

are comparable, 4.6 · 10−17 for the sign function method and 3.1 · 10−17 for
Hammarling’s method.

It is already observed in [LL96] that the two sign function iterations needed
to solve both equations in (1.4) can be coupled as they contain essentially the
same iteration for the Aj-matrices (the iterates are transposes of each other),
hence only one of them is needed. This was generalized and combined with the
full-rank iteration (1.24) in [BCQO98, BQQ00a]. The resulting sign function-
based ”spectral projection method” for computing (numerical) full-rank fac-
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Algorithm 1 Coupled Newton Iteration for Dual Lyapunov Equations.

INPUT: Realization (A, B, C) ∈ R
n×n ×R

n×m ×R
p×n of an LTI system, tolerances

τ1 for convergence of (1.21) and τ2 for rank detection.
OUTPUT: Numerical full-rank factors of the controllability and observability

Gramians of the LTI system such that Wc = ST S, Wo = RT R.
1: while ‖A + In‖1 > τ1 do
2: Use the LU decomposition or the Gauß-Jordan elimination to compute A−1.

3: Set γ :=
q

‖A‖F

‖A−1‖F
and Z := γA−1.

4: Compute a rank-revealing LQ factorization

1√
2γ

ˆ
B ZB

˜
=: Π

"
L 0

T S

#
Q

with ‖S‖2 ≤ τ2‖ 1√
2γ

ˆ
B ZB

˜ ‖2.

5: Set B := Π

»
R
T

–
.

6: Compute a rank-revealing QR factorization

1√
2γ

»
C

CZ

–
=: Q

"
R T

0 S

#
Π

with ‖S‖2 ≤ τ2‖ 1√
2γ

»
C

CZ

–
‖2.

7: Set C := Π
ˆ
R T

˜
.

8: Set A := 1
2
( 1

γ
A + Z).

9: end while
10: Set S := BT , R := C.

tors of the controllability and observability Gramians of the LTI system (1.1)
is summarized in Algorithm 1.

1.3.4 Block-Diagonalization

In the last section we used the block-diagonalization properties of the sign
function method to derive an algorithm for solving linear matrix equations.
This feature will also turn out to be useful for other problems such as modal
truncation and model reduction of unstable systems. The important equation
in this context is (1.17), which allows us to eliminate the off-diagonal block
of a block-triangular matrix by solving a Sylvester equation.

A spectral projection method for the block-diagonalization of a matrix Z
having no eigenvalues on the imaginary axis is summarized in Algorithm 2. In
case of purely imaginary eigenvalues, it can still be used if applied to Z+αIn,
where α ∈ R is an appropriate spectral shift which is not the real part of
an eigenvalue of Z. Note that the computed transformation matrix is not
orthogonal, but its first n columns are orthonormal.
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Algorithm 2 Sign Function-based Spectral Projection Method for Block-
Diagonalization.

INPUT: Z ∈ R
n×n with Λ (Z) ∩ jR = ∅.

OUTPUT: U ∈ R
n×n nonsingular such that

U−1ZU =

"
Z11

Z22

#
, Λ (Z11) = Λ (Z) ∩ C

−, Λ (Z22) = Λ (Z) ∩ C
+.

1: Compute sign (Z) using (1.13).
2: Compute a rank-revealing QR factorization

In − sign (Z) =: URΠ.

3: Block-triangularize A as in (1.12); that is, set

Z := UT ZU =:

"
Z11 Z12

0 Z22

#
.

4: Solve the Sylvester equation Z11Y − Y Z22 + Z12 = 0 using (1.18).
{Note: Z11,−Z22 are stable!}

5: Set

Z :=

"
Ik −Y

0 In−k

# "
Z11 Z12

0 Z22

# "
Ik Y

0 In−k

#
=

"
Z11

Z22

#
, U := U

"
Ik Y

0 In−k

#
.

1.4 Model Reduction Using Spectral Projection Methods

1.4.1 Modal Truncation

Modal truncation is probably one of the oldest model reduction techniques
[Dav66, Mar66]. In some engineering disciplines, modified versions are still
in use, mainly in structural dynamics. In particular, the model reduction
method in [CB68] and its relatives, called nowadays substructuring methods,
which combine the modal analysis with a static compensation following Guyan
[Guy68], are frequently used. We will not elaborate on these type of methods,
but will only focus on the basic principles of modal truncation and how it can
be implemented using spectral projection ideas.

The basic idea of modal truncation is to project the dynamics of the LTI
system (1.1) onto an A-invariant subspace corresponding to the dominant
modes of the system (poles of G(s), eigenvalues of A that are not canceled by
zeros). In structural dynamics software as ANSYS [ANS] or Nastran [MSC],
usually an eigenvector basis of the chosen modal subspace is used. Employing
the block-diagonalization abilities of the sign function method described in
Subsection 1.3.4, it is easy to derive a spectral projection method for modal
truncation. This was first observed by Roberts in his original paper on the
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matrix sign function [Rob80]. It has the advantage that we avoid a possible
ill-conditioning in the eigenvector basis.

An obvious, though certainly not always optimal, choice of dominant
modes is to select those eigenvalues of A having nonnegative or small negative
real parts. Basically, these eigenvalues dominate the long-term dynamics of
the solution of the linear ordinary differential equation describing the dynam-
ics of (1.1)—solution components corresponding to large negative real parts
decay rapidly and mostly play a less important (negligible) role in vibration
analysis or control design. This viewpoint is rather naive as it neither takes
into account the transient behavior of the dynamical system nor the oscilla-
tions caused by large imaginary parts or the sensitivity of the eigenvalues with
respect to small perturbations. Nevertheless, this approach is often successful
when A comes from an FEM analysis of an elliptic operator such as those
arising in linear elasticity or heat transfer processes.

An advantage of modal truncation is that the poles of the reduced-order
system are also poles of the original system. This is important in applica-
tions such as vibration analysis since the modes correspond to the resonance
frequencies of the original system; the most important resonances are thus
retained in the reduced-order model.

In the sequel we will use the naive mode selection criterion described above
in order to derive a simple implementation of modal truncation employing a
spectral projector. The approach, essentially already contained in the original
work by Roberts [Rob80], is based on selecting a stability margin α > 0,
which determines the maximum modulus of the real parts of the modes to
be preserved in the reduced-order model. Now, the eigenvalues of A + αIn
are the eigenvalues of A, shifted by α to the right. That is, all eigenvalues
with stability margin less than α become unstable eigenvalues of A + αIn.
Then, applying the sign function to A + αIn yields the spectral projector
1
2 (In +sign (A+ αIn)) onto the unstable invariant subspace of A+αIn which
equals the A-invariant subspace corresponding to the modes that are dominant
with respect to the given stability margin. Block-triangularization of A using
(1.12), followed by block-diagonalization based on (1.17) give rise to the modal
truncation implementation outlined in Algorithm 3. In principle, Algorithm 2
could also be used here, but the variant in Algorithm 3 is adapted to the needs
of modal truncation and slightly cheaper.

The error of modal truncation can easily be quantified. It follows immedi-
ately that

G(s)− Ĝ(s) = C2(sI −A22)
−1B2;

see also (1.42) below or [GL95, Lemma 9.2.1]. As A22, B2, C2 are readily avail-
able, the L2-error for the outputs or H∞-error for the transfer function (see
(1.10)) is computable. For diagonalizable A22, we obtain the upper bound

‖G− Ĝ‖∞ ≤ cond2 (T ) ‖C2‖2‖B2‖2
1

minλ∈Λ (A22) |Re(λ)| , (1.26)
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Algorithm 3 Spectral Projection Method for Modal Truncation.

INPUT: Realization (A, B, C, D) ∈ R
n×n ×R

n×m ×R
p×n ×R

p×m of an LTI system
(1.1); a stability margin α > 0, α �= Re(λ) for all λ ∈ Λ (A).

OUTPUT: Realization (Â, B̂, Ĉ, D̂) of a reduced-order model.
1: Compute S := sign (A + αIn).
2: Compute a rank-revealing QR factorization S =: QRΠ.
3: Compute (see (1.12))

QT AQ =:

"
A11 A12

0 A22

#
, QT B =:

»
B1

B2

–
, CQ =:

»
C1

C2

–
.

4: Solve the Sylvester equation (A11−βIk)Y −Y (A22−βIk)+A12 = 0 using (1.18).
{Note: If A is stable, β = 0 can be chosen; otherwise set

β ≥ max
λ∈Λ (A11)∩C+

(Re(λ)),

e.g., β = 2‖A11‖F .}
5: The reduced-order model is then

Â := A11, B̂ := B1 − Y B2, Ĉ := C1, D̂ := D.

where T−1A22T = D is the spectral decomposition of A22 and cond2 (T ) is
the spectral norm condition number of its eigenvector matrix T .

As mentioned at the beginning of this section, several extensions and mod-
ifications of modal truncation are possible. In particular, static compensation
can account for the steady-state error inherent in the reduced-order model;
see, e.g., [Föl94] for an elaborate variant. This is related to singular pertur-
bation approximation; see also subsection 1.4.3 below.

1.4.2 Balanced Truncation

The basic idea of balanced truncation is to compute a balanced realization

(TAT−1, TB,CT−1, D) =

([
A11 A12

A21 A22

]
,

[
B1

B2

]
,
[
C1 C2

]
, D

)
, (1.27)

where A11 ∈ R
r×r, B1 ∈ R

r×m, C1 ∈ R
p×r, with r less than the McMil-

lan degree n̂ of the system, and then to use as the reduced-order model the
truncated realization

(Â, B̂, Ĉ, D̂) = (A11, B1, C1, D). (1.28)

This idea dates essentially back to [Moo81, MR76]. Collecting results from
[Moo81, Glo84, TP87], the following result summarizes the properties of bal-
anced truncation.
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Proposition 1.4.1. Let (A,B,C,D) be a realization of a stable LTI system
with McMillan degree n̂ and transfer function G(s) and let (Â, B̂, Ĉ, D̂) with
associated transfer function Ĝ be computed as in (1.27)–(1.28). Then the fol-
lowing holds:

a) The reduced-order system Ĝ is balanced, minimal, and stable. Its Grami-
ans are

P̂ = Q̂ = Σ̂ =

⎡⎢⎣σ1

. . .

σr

⎤⎥⎦ .
b) The absolute error bound

‖G− Ĝ‖∞ ≤ 2

n̂∑
k=r+1

σk. (1.29)

holds.
c) If r = n̂, then (1.28) is a minimal realization of G and G = Ĝ.

Of particular importance is the error bound (1.29) as it allows an adaptive
choice of the order of the reduced-order model based on a prescribed toler-
ance threshold for the approximation quality. (The error bound (1.29) can be
improved in the presence of Hankel singular values with multiplicity greater
than one—they need to appear only once in the sum on the right-hand side.)

It is easy to check that for a controllable and observable (minimal) system,
i.e., a system with nonsingular Gramians, the matrix

T = Σ
1
2UTR−T (1.30)

provides a balancing state-space transformation. Here Wc = RTR and
RWoR

T = UΣ2UT is a singular value decomposition. A nice observation
in [LHPW87, TP87] allows us to compute (1.28) also for non-minimal sys-
tems without the need to compute the full matrix T . The first part of this
observation is that for Wo = STS,

S−T (WcWo)S
T = (SRT )(SRT )T = (UΣV T )(V ΣUT ) = UΣ2UT

so that U,Σ can be computed from an SVD of SRT ,

SRT =
[
U1 U2

] [Σ1 0
0 Σ2

] [
V T

1

V T
2

]
, Σ1 = diag(σ1, . . . , σr). (1.31)

The second part needed is the fact that computing

Tl = Σ
−1/2
1 V T

1 R, Tr = STU1Σ
−1/2
1 , (1.32)

and
Â := TlATr, B̂ := TlB, Ĉ := CTr (1.33)
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Algorithm 4 Spectral Projection Method for Balanced Truncation.

INPUT: Realization (A, B, C, D) ∈ R
n×n ×R

n×m ×R
p×n ×R

p×m of an LTI system
(1.1); a tolerance τ for the absolute approximation error or the order r of the
reduced-order model.

OUTPUT: Stable reduced-order model, error bound δ.
1: Compute full-rank factors S,R of the system Gramians using Algorithm 1.
2: Compute the SVD

SRT =:
ˆ
U1 U2

˜ "
Σ1

Σ2

# »
V T

1

V T
2

–
,

such that Σ1 ∈ R
r×r is diagonal with the r largest Hankel singular values in

decreasing order on its diagonal. Here r is either the fixed order provided on
input or chosen as minimal integer such that 2

Pn̂
j=r+1 σj ≤ τ .

3: Set Tl := Σ
−1/2
1 V T

1 R, Tr = ST U1Σ
−1/2
1 .

4: Compute the reduced-order model,

Â := TlATr, B̂ := TlB, Ĉ := CTr, D̂ := D,

and the error bound δ := 2
Pn̂

j=r+1 σj .

is equivalent to first computing a minimal realization of (1.1), then balancing
the system as in (1.27) with T as in (1.30), and finally truncating the balanced
realization as in (1.28). In particular, the realizations obtained in (1.28) and
(1.33) are the same, Tl contains the first r rows of T and Tr the first r columns
of T−1—those parts of T needed to compute A11, B1, C1 in (1.27). Also note
that the product TrTl is a projector onto an r-dimensional subspace of the
state-space and model reduction via (1.33) can therefore be seen as projecting
the dynamics of the system onto this subspace.

The algorithm resulting from (1.33) is often referred to as the SR method
for balanced truncation. In [LHPW87, TP87] and all textbooks treating bal-
anced truncation, S andR are assumed to be the (square, triangular) Cholesky
factors of the system Gramians. In [BQQ00a] it is shown that everything de-
rived so far remains true if full-rank factors of the system Gramians are used
instead of Cholesky factors. This yields a much more efficient implementation
of balanced truncation whenever n̂ � n (numerically). Low numerical rank
of the Gramians usually signifies a rapid decay of their eigenvalues, as shown
in Figure 1.3, and implies a rapid decay of the Hankel singular values. The
resulting algorithm, derived in [BQQ00a], is summarized in Algorithm 4.

It is often stated that balanced truncation is not suitable for large-scale
problems as it requires the solution of two Lyapunov equations, followed by an
SVD, and that both steps require O(n2) storage and O(n3) flops. This is not
true for Algorithm 4 although it does not completely break the O(n2) storage
and O(n3) flops barriers. In Subsection 1.5.2 it will be shown that by reducing
the complexity of the first stage of Algorithm 4 down to O(n ·q(log n)), where
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q is a quadratic or cubic polynomial, it is possible to break this curse of
dimensionality for certain problem classes.

An analysis of Algorithm 4 reveals the following: assume that A is a full
matrix with no further structure to be exploited, and define

nco := max{rank (S) , rank (R)} � n,

where by abuse of notation “rank” denotes the numerical rank of the factors
of the Gramians. Then the storage requirements and computational cost are
as follows:

1. The solution of the dual Lyapunov equations splits into three separate
iterations:
a) The iteration for Aj requires the inversion of a full matrix and thus

needs O(n2) storage and O(n3) flops.
b) The iterations for Bj and Cj need an additional O(n ·nco) storage, all

computations can be performed in O(n2nco) flops. The n2 part in the
complexity comes from applying A−1

j using either forward and back-
ward substitution or matrix multiplication—if this can be achieved
in a cheaper way as in Subsection 1.5.2, the complexity reduces to
O(n · n2

co).
2. Computing the SVD of SRT only needs O(n2

co) workspace and O(n ·nco)
flops and therefore does not contribute significantly to the cost of the
algorithm.

3. The computation of the ROM via (1.32) and (1.33) requires O(r2) addi-
tional workspace and O(nncor+n2r) flops where the n2 part corresponds
to the cost of matrix-vector multiplication with A and is not present if
this is cheaper than the usual 2n2 flops.

An even more detailed analysis shows that the implementation of the SR
method of balanced truncation outlined in Algorithm 4 can be significantly
faster than the one using Hammarling’s method for computing Cholesky fac-
tors of the Gramians as used in SLICOT [BMS+99, Var01] and Matlab; see
[BQQ00a]. It is important to remember that if A has a structure that al-
lows to store A in less than O(n2), to solve linear systems in less than O(n3)
and to do matrix-vector multiplication in less than O(n2), the complexity of
Algorithm 4 is less than O(n2) in storage and O(n3) in computing time!

If the original system is highly unbalanced (and hence, the state-space
transformation matrix T in (1.27) is ill-conditioned), the balancing-free square-
root (BFSR) balanced truncation algorithm suggested in [Var91] may provide
a more accurate reduced-order model in the presence of rounding errors. It
combines the SR implementation from [LHPW87, TP87] with the balancing-
free model reduction approach in [SC89]. The BFSR algorithm only differs
from the SR implementation in the procedure to obtain Tl and Tr from the
SVD (1.31) of SRT , and in that the reduced-order model is not balanced. The
main idea is that in order to compute the reduced-order model it is sufficient
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to use orthogonal bases for range (Tl) and range (Tr). These can be obtained
from the following two QR factorizations:

STU1 = [P1 P2]

[
R̂
0

]
, RTV1 = [Q1 Q2]

[
R̄
0

]
, (1.34)

where P1, Q1 ∈ R
n×r have orthonormal columns, and R̂, R̄ ∈ R

r×r are upper
triangular. The reduced-order system is then given by (1.33) with

Tl = (QT
1 P1)

−1QT
1 , Tr = P1, (1.35)

where the (QT
1 P1)

−1 factor is needed to preserve the projector property of
TrTl.

The absolute error of a realization of order r computed by the BFSR
implementation of balanced truncation satisfies the same upper bound (1.29)
as the reduced-order model computed by the SR version.

Numerical Experiments

We compare modal truncation, implemented as Matlab function modaltrunc

following Algorithm 3 and balanced truncation, implemented as Matlab
function btsr following Algorithm 4 for some of the benchmark examples
presented in Part II of this book. The Matlab codes are available from

http://www.tu-chemnitz.de/∼benner/software.php

In the comparison we included several Matlab implementations of balanced
truncation based on using the Bartels-Stewart or Hammarling’s method for
computing the system Gramians:

– the SLICOT [BMS+99] implementation of balanced truncation, called via
a mex-function from the Matlab function bta [Var01],

– the Matlab Control Toolbox (Version 6.1 (R14SP1)) function balreal

followed by modred,
– the Matlab Robust Control Toolbox (Version 3.0 (R14SP1)) function
balmr.

The examples that we chose to compare the methods are:

ex-rand This is Example 1.3.7 from above.
rail1357 This is the steel cooling example described in Chapter 19. Here,

we chose the smallest of the provided test sets with n = 1357.
filter2D This is the optical tunable filter example described in Chapter 15.

For the comparison, we chose the 2D problem — the 3D problem is well
beyond the scope of the discussed implementations of modal or balanced
truncation.

iss-II This is a model of the extended service module of the International
Space Station, for details see Chapter 24.
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Fig. 1.4. Frequency response (pointwise absolute) error for the Examples ex-rand,
rail1357, filter2D, iss-II.

(For a more complete comparison of balanced truncation based on Algorithm 4
and the SLICOT model reduction routines see [BQQ03b].)

The frequency response errors for the chosen examples are shown in Fig-
ure 1.4. For the implementations of balanced truncation, we only plotted the
error curve for btsr as the graphs produced by the other implementations are
not distinguishable with the exception of filter2D where the Robust Con-
trol Toolbox function yields a somewhat bigger error for high frequencies (still
satisfying the error bound (1.29)). Note that the frequency response error here
is measured as the pointwise absolute error

‖G(jω)− Ĝ(jω)‖2 = σmax

(
G(jω)− Ĝ(jω)

)
,

where ‖.‖2 is the spectral norm (matrix 2-norm).
From Figure 1.4 it is obvious that for equal order of the reduced-order

model, modal truncation usually gives a much worse approximation than bal-
anced truncation. Note that the order r of the reduced-order models was
selected based on the reduced-order model computed via Algorithm 3 for a
specific, problem-dependent stability margin α. We chose α = 244 for ex-
rand, α = 0.01 for rail1357, α = 5 · 103 for filter2D, and α = 0.005 for
iss-II. That is, the reduced-order models computed by balanced truncation
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Table 1.1. CPU times needed in the comparison of modal truncation and different
balanced truncation implementations for the chosen examples.

Modal Trunc. Balanced Truncation
Example Alg. 3 Alg. 4 SLICOT balreal/modred balmr

ex-rand 11.36 5.35 14.24 21.44 34.78

rail1357 203.80 101.78 241.44 370.56 633.25

filter2D 353.27 152.85 567.46 351.26 953.54

iss-II 399.65 1402.13 247.21 683.72 421.69

used a fixed order rather than an adaptive selection of the order based on
(1.29).

The computation times obtained using Matlab 7.0.1 on a Intel Pentium
M processor at 1.4 GHz with 512 MBytes of RAM are given in Table 1.1.

Some peculiarities we found in the results:

– the error bound (1.29) for ex-rand as computed by the Robust Control
Toolbox function is 2.2 · 10−2; this compares unfavorably to the correct
bound 4.9 · 10−5, returned correctly by the other implementations of bal-
anced truncation. Similarly, for filter2D, the Robust Control Toolbox
function computes an error bound 10, 000 times larger than the other rou-
tines and the actual error. This suggests that the smaller Hankel singular
values computed by balmr are very incorrect.

– The behavior for the first 3 examples regarding computing time is very
much consistent while the iss-II example differs significantly. The reason is
that the sign function does converge very slowly for this particular example
and the full-rank factorization computed reveals a very high numerical
rank of the Gramians (roughly n/2). This results in fairly expensive QR
factorizations at later stages of the iteration in Algorithm 1.

Altogether, spectral projection-based balanced truncation is a viable alterna-
tive to other balanced truncation implementations in Matlab. If the Grami-
ans have low numerical rank, the execution times are generally much smaller
than for approaches based on solving the Lyapunov equations (1.4) employing
Hammarling’s method. On the other hand, Algorithm 4 suffers much from a
high numerical rank of the Gramians due to high execution times of Algo-
rithm 1 in that case. The accuracy of all implementations is basically the
same for all investigated examples—an observation in accordance to the tests
reported in [BQQ00a, BQQ03b]. Moreover, the efficiency of Algorithm 4 al-
lows an easy and highly scalable parallel implementation in contrast to ver-
sions based on Hammarling’s method, see Subsection 1.5.1. Thus, much larger
problems can be tackled using a spectral projection-based approach.
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1.4.3 Balancing-Related Methods

Singular Perturbation Approximation

In some situations, a reduced-order model with perfect matching of the trans-
fer function at s = 0 is desired. In technical terms, this means that the DC
gain is perfectly reproduced. In state-space, this can be interpreted as zero
steady-state error. In general this can not be achieved by balanced truncation
which performs particularly well at high frequencies (ω → ∞), with a per-
fect match at ω =∞. However, DC gain preservation is achieved by singular
perturbation approximation (SPA), which proceeds as follows: let (Ã, B̃, C̃,D)
denote a minimal realization of the LTI system (1.1), and partition

Ã =

[
A11 A12

A21 A22

]
, B̃ =

[
B1

B2

]
, C̃ = [ C1 C2],

according to the desired size r of the reduced-order model, that is, A11 ∈ R
r×r,

B1 ∈ R
r×m, and C1 ∈ R

p×r. Then the SPA reduced-order model is obtained
by the following formulae [LA86]:

Â := A11 +A12A
−1
22 A21, B̂ := B1 +A12A

−1
22 B2,

Ĉ := C1 + C2A
−1
22 A21, D̂ := D + C2A

−1
22 B2.

(1.36)

The resulting reduced-order model satisfies the absolute error bound in (1.29).
When computing the minimal realization with Algorithm 4 or its balancing-

free variant, followed by (1.36), we can consider the resulting model reduction
algorithm as a spectral projection method for SPA. Further details regarding
the parallelization of this implementation of SPA, together with several nu-
merical examples demonstrating its performance, can be found in [BQQ00b].

Cross-Gramian Methods

In some situations, the product WcWo of the system Gramians is the square
root of the solution of the Sylvester equation

AWco +WcoA+BC = 0. (1.37)

The solution Wco of (1.37) is called the cross-Gramian of the system (1.1). Of
course, for (1.37) to be well-defined, the system must be square, i.e., p = m.
Then we have W 2

co = WcWo if

• the system is symmetric, which is trivially the case if A = AT and C = BT

(in that case, both equations in (1.4) equal (1.37)) [FN84a];
• the system is a single-input/single-output (SISO) system, i.e., p = m = 1

[FN84b].
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In both cases, instead of solving (1.4) it is possible to use (1.37). Also note that
the cross-Gramian carries information of the LTI system and its internally bal-
anced realization if it is not the product of the controllability and observability
Gramian and can still be used for model reduction; see [Ald91, FN84b]. The
computation of a reduced-order model from the cross-Gramian is based on
computing the dominant Wco-invariant subspace which can again be achieved
using (1.13) and (1.12) applied to a shifted version of Wco.

For p,m � n, a factorized version of (1.18) can be used to solve (1.37).
This again can reduce significantly both the work space needed for saving
the cross-Gramian and the computation time in case Wco is of low numerical
rank; for details see [Ben04]. Also note that the Bj-iterates in (1.18) need not
be computed as they equal the Aj ’s. This further reduces the computational
cost of this approach significantly.

Stochastic Truncation

We assume here that 0 < p ≤ m, rank (D) = p, which implies that G(s) must
not be strictly proper. For strictly proper systems, the method can be applied
introducing an ε-regularization by adding an artificial matrix D = [εIp 0]
[Glo86].

Balanced stochastic truncation (BST) is a model reduction method based
on truncating a balanced stochastic realization. Such a realization is ob-
tained as follows; see [Gre88] for details. Define the power spectrum Φ(s) =
G(s)GT (−s), and let W be a square minimum phase right spectral factor of
Φ, satisfying Φ(s) = WT (−s)W (s). As D has full row rank, E := DDT is
positive definite, and a minimal state-space realization (AW , BW , CW , DW )
of W is given by (see [And67a, And67b])

AW := A, BW := BDT +WcC
T ,

CW := E− 1
2 (C −BT

WXW ), DW := E
1
2 ,

where Wc = STS is the controllability Gramian defined in (1.4), while XW is
the observability Gramian of W (s) obtained as the stabilizing solution of the
algebraic Riccati equation (ARE)

FTX +XF +XBWE−1BT
WX + CTE−1C = 0, (1.38)

with F := A − BWE−1C. Here, XW is symmetric positive (semi-)definite
and thus admits a decomposition XW = RTR. If a reduced-order model is
computed from an SVD of SRT as in balanced truncation, then the reduced-
order model (Â, B̂, Ĉ, D̂) is stochastically balanced. That is, the Gramians
Ŵc, X̂W of the reduced-order model satisfy

Ŵc = diag (σ1, . . . , σr) = X̂W , (1.39)

where 1 = σ1 ≥ σ2 ≥ . . . ≥ σr > 0. The BST reduced-order model satisfies
the following relative error bound:
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σr+1 ≤ ‖∆r‖∞ ≤
n∏

j=r+1

1 + σj

1− σj
− 1, (1.40)

where G∆r = G− Ĝ. From that we obtain

‖G− Ĝ‖∞
‖G‖∞

≤
n∏

j=r+1

1 + σj

1− σj
− 1. (1.41)

Therefore, BST is also a member of the class of relative error methods which
aim at minimizing ‖∆r‖ for some system norm.

Implementing BST based on spectral projection methods differs in several
ways from the versions proposed in [SC88, VF93], though they are mathemat-
ically equivalent. Specifically, the Lyapunov equation for Wc is solved using
the sign function iteration described in subsection 1.3.3, from which we obtain
a full-rank factorization Wc = STS. The same approach is used to compute a
full-rank factor R of XW from a stabilizing approximation X̃W to XW using

the technique described in [Var99]: let D =
[
D̂T 0

]
U be an LQ decomposi-

tion of D. Note that D̂ ∈ R
p×p is a square, nonsingular matrix as D has full

row rank. Now set

HW := D̂−TC, B̂W := BW D̂−1, Ĉ := (HW − B̂T
WX).

Then the ARE (1.38) is equivalent to ATX +XA+ ĈT Ĉ = 0. Using a com-
puted approximation X̃W of XW to form Ĉ, the Cholesky or full-rank factor
R of XW can be computed directly from the Lyapunov equation

A(RTR) + (RTR)A+ ĈT Ĉ = 0.

The approximation X̃W is obtained by solving (1.38) using Newton’s method
with exact line search as described in [Ben97] with the sign function method
used for solving the Lyapunov equations in each Newton step; see [BQQ01]
for details. The Lyapunov equation for R is solved using the sign function
iteration from subsection 1.3.3.

Further Riccati-Based Truncation Methods

There is a variety of other balanced truncation methods for different choices
of Gramians to be balanced; see, e.g., [GA03, Obe91]. Important methods are

positive-real balancing: here, passivity is preserved in the reduced-order model
which is an important task in circuit simulation;

bounded-real balancing: preserves the H∞ gain of the system and is therefore
useful for robust control design;

LQG balancing: a closed-loop model reduction technique that preserves closed-
loop performance in an LQG design.
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In all these methods, the Gramians are solutions of two dual Riccati equations
of a similar structure as the stochastic truncation ARE (1.38). The computa-
tion of full-rank factors of the system Gramians can proceed in an analogous
manner as in BST, and the subsequent computation of the reduced-order
system is analogous to the SR or BFSR method for balanced truncation.
Therefore, implementations of these model reduction approaches with the
computational approaches described so far can also be considered as spectral
projection methods. The parallelization of model reduction based on positive-
real balancing is described in [BQQ04b]; numerical results demonstrating the
accuracy of the reduced-order models and the parallel performance can also
be found there.

1.4.4 Unstable Systems

Model reduction for unstable systems can be performed in several ways. One
idea is based on the fact that unstable poles are usually important for the
dynamics of the system, hence they should be preserved. This can be achieved
via an additive decomposition of the transfer function as

G(s) = G−(s) +G+(s),

with G−(s) stable, G+(s) unstable, applying balanced truncation to G− to
obtain Ĝ−, and setting

Ĝ(s) := Ĝ−(s) +G+(s),

thereby preserving the unstable part of the system. Such a procedure can be
implemented using the spectral projection methods for block-diagonalization
and balanced truncation: first, apply Algorithm 2 to A and set

Ã := U−1AU =

[
A11 0

0 A22

]
,

B̃ := U−1B =:

[
B1

B2

]
, C̃ := CU =: [C1 C2 ] , D̃ := D.

This yields the desired additive decomposition as follows:

G(s) = C(sI −A)−1B +D = C̃(sI − Ã)−1B̃ + D̃

=
[
C1 C2

] [ (sIk −A11)
−1

(sIn−k −A22)
−1

] [
B1

B2

]
+D (1.42)

=
{
C1(sIk −A11)

−1B1 +D
}

+
{
C2(sIn−k −A22)

−1B2

}
=: G−(s) +G+(s).

Then apply Algorithm 4 to G− and obtain the reduced order model by adding
the transfer functions of the stable reduced and the unstable unreduced parts
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as summarized above. This approach is described in more detail in [BCQQ04]
where also some numerical examples are given. An extension of this approach
using balancing for appropriately defined Gramians of unstable systems is
discussed in [ZSW99]. This approach can also be implemented using sign
function-based spectral projection techniques similar to the ones used so far.

Alternative model reduction techniques for unstable systems based on
coprime factorization of the transfer function and application of balanced
truncation to the stable coprime factors are surveyed in [Var01]. Of course,
the spectral projection-based balanced truncation algorithm described in Sec-
tion 1.4.2 could be used for this purpose. The computation of spectral fac-
torizations of transfer functions purely based on spectral projection methods
requires further investigation, though.

1.4.5 Optimal Hankel Norm Approximation

BT and SPA model reduction methods aim at minimizing the H∞-norm of
the error system G − Ĝ. However, they usually do not succeed in finding
an optimal approximation; see [AA02]. If a best approximation is desired, a
different option is to use the Hankel norm of a stable rational transfer function,
defined by

‖G‖H := σ1(G), (1.43)

where σ1(G) is the largest Hankel singular value of G. Note that ‖G‖H is only
a semi-norm on the Hardy space H∞ as ‖G‖H = 0 does not imply G ≡ 0.
However, semi-norms are often easier to minimize than norms. In particular,
using the Hankel norm it is possible to compute a best order-r approximation
to a given transfer function in H∞. It is shown in [Glo84] that a reduced-order
transfer function Ĝ of order r can be computed that minimizes the Hankel
norm of the approximation error in the following sense:

‖G− Ĝ‖H = σr+1 ≤ ‖G− G̃‖H

for all stable transfer functions G̃ of McMillan degree less than or equal to
r. Moreover, there are explicit formulae to compute such a realization of Ĝ.
That is, we can compute a best approximation of the system for a given
McMillan degree of the reduced-order model which is usually not possible for
other system norms such as the H2- or H∞-norms.

The derivation of a realization of Ĝ is quite involved, see, e.g., [Glo84,
ZDG96]. Here, we only describe the essential computational tools required in
an implementation of the HNA method.

The computation of a realization (Â, B̂, Ĉ, D̂) of the reduced-order model
essentially consists of four steps.

In the first step, a balanced minimal realization of G is computed. This
can be done using the SR version of the BT method as given in Algorithm 4.
Next a transfer function
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G̃(s) = C̃(sI − Ã)−1B̃ + D̃

with the same McMillan degree as the original system (1.1) is computed as
follows: first, the order r of the reduced-order model is chosen such that the
Hankel singular values of G satisfy

σ1 ≥ σ2 ≥ . . . ≥ σr > σr+1 = . . . = σr+k > σr+k+1 ≥ . . . ≥ σn̂ > 0, k ≥ 1.

Then, by applying appropriate permutations, the minimal balanced realiza-
tion of G is re-ordered such that the Gramians become[

Σ̌

σr+1Ik

]
.

In a third step, the resulting balanced realization given by Ǎ, B̌, Č, Ď is par-
titioned according to the partitioning of the Gramians, that is,

Ǎ =

[
A11 A12

A21 A22

]
, B̌ =

[
B1

B2

]
, Č = [ C1 C2],

where A11 ∈ R
n−k×n−k, B1 ∈ R

n−k×m, C1 ∈ R
p×n−k. Then the following

formulae define a realization of G̃:

Ã = Γ−1(σ2
r+1A

T
11 + Σ̌A11Σ̌ + σr+1C

T
1 UB

T
1 ),

B̃ = Γ−1(Σ̌B1 − σr+1C
T
1 U),

C̃ = C1Σ̌ − σr+1UB
T
1 ,

D̃ = D + σr+1U.

(1.44)

Here, U := (CT
2 )†B2, where M† denotes the pseudoinverse of M , and Γ :=

Σ̌2 − σ2
r+1In−k.

Finally, we compute an additive decomposition of G̃ such that G̃(s) =
G̃−(s) + G̃+(s) where G̃− is stable and G̃+ is anti-stable. For this additive
decomposition we use exactly the same algorithm described in the last sub-
section. Then Ĝ := G̃− is an optimal r-th order Hankel norm approximation
of G.

Thus, the main computational tasks of a spectral projection implementa-
tion of optimal Hankel norm approximation is a combination of Algorithm 4,
the formulae (1.44), and Algorithm 2; see [BQQ04a] for further details.

1.5 Application to Large-Scale Systems

1.5.1 Parallelization

Model reduction algorithms based on spectral projection methods are com-
posed of basic matrix computations such as solving linear systems, matrix
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products, and QR factorizations. Efficient parallel routines for all these matrix
computations are provided in linear algebra libraries for distributed memory
computers such as PLAPACK and ScaLAPACK [BCC+97, van97]. The use of
these libraries enhances both the reliability and portability of the model reduc-
tion routines. The performance will depend on the efficiency of the underlying
serial and parallel computational linear algebra libraries and the communica-
tion routines.

Here we will employ the ScaLAPACK parallel library [BCC+97]. This is a
freely available library that implements parallel versions of many of the kernels
in LAPACK [ABB+99], using the message-passing paradigm. ScaLAPACK is
based on the PBLAS (a parallel version of the serial BLAS) for computation
and BLACS for communication. The BLACS can be ported to any (serial
and) parallel architecture with an implementation of the MPI or the PVM
libraries [GBD+94, GLS94].

In ScaLAPACK the computations are performed by a logical grid of
np = pr × pc processes. The processes are mapped onto the physical pro-
cessors, depending on the available number of these. All data (matrices) have
to be distributed among the process grid prior to the invocation of a ScaLA-
PACK routine. It is the user’s responsibility to perform this data distribution.
Specifically, in ScaLAPACK the matrices are partitioned into mb× nb blocks
and these blocks are then distributed (and stored) among the processes in
column-major order (see [BCC+97] for details).

Using the kernels in ScaLAPACK, we have implemented a library for model
reduction of LTI systems, PLiCMR3, in Fortran 77. The library contains a
few driver routines for model reduction and several computational routines
for the solution of related equations in control. The functionality and nam-
ing convention of the parallel routines closely follow analogous routines from
SLICOT. As part of PLiCMR, three parallel driver routines are provided for
absolute error model reduction, two parallel driver routines for relative er-
ror model reduction, and an expert driver routine capable of performing any
of the previous functions on stable and unstable systems. Table 1.2 lists all
the driver routines. The driver routines are based on several computational
routines included in PLiCMR and listed in Table 1.3. Note that the missing
routines in the discrete-time case are available in the Parallel Library in
Control (PLiC) [BQQ99], but are not needed in the PLiCMR codes for
model reduction of discrete-time systems.

A more detailed introduction to PLiCMR and numerical results showing
the model reduction abilities of the implemented methods and their parallel
performance can be found in [BQQ03b].

1.5.2 Data-Sparse Implementation of the Sign Function Method

The key to a balanced truncation implementation based on Algorithm 4 with
reduced complexity lies in reducing the complexity of storing A and of per-

3 Available from http://spine.act.uji.es/∼plicmr.html.
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Table 1.2. Driver routines in PLiCMR.

Purpose Routine

Expert driver pab09mr

SR/BFSR BT alg. pab09ax

SR/BFSR SPA alg. pab09bx

HNA alg. pab09cx

SR/BFSR BST alg. pab09hx

Continuous-time Discrete-time

SR/BFSR PRBT alg. pab09px –

Table 1.3. Computational routines in PLiCMR.

Purpose Routine

Solve dual Lyapunov equations and compute HSV pab09ah

Compute Tl, Tr from SR formulae pab09as

Compute Tl, Tr from BFSR formulae pab09aw

Obtain reduced-order model from Tl, Tr pab09at

Spectral division by sign function pmb05rd

Factorize TFM into stable/unstable parts ptb01kd

Continuous-time Discrete-time

ARE solver pdgecrny –
Sylvester solver psb04md –
Lyapunov solver pdgeclnw –

Lyapunov solver (for the full-rank factor) pdgeclnc –
Dual Lyapunov/Stein solver psb03odc psb03odd

forming the required computations with A. Recall that the solution of the
Lyapunov equation

ATX +XA+ CTC = 0 (1.45)

(or its dual in (1.4)) with the sign function method (1.21) involves the inver-
sion, addition and multiplication of n × n matrices. Using an approximation
of A in H-matrix format [GH03, GHK03] and formatted H-matrix arithmetic,
the complexity of storing A and the aforementioned computations reduces to
O(n log2 n).

We will briefly describe this approach in the following; for more details
and numerical examples see [BB04].

Hierarchical (H-)matrices are a data-sparse approximation of large, dense
matrices arising from the discretization of non-local integral operators oc-
curring in the boundary element method or as inverses of FEM discretized
elliptic differential operators, but can also be used to represent FEM matrices
directly.

Important properties of H-matrices are:

• only few data are needed for the representation of the matrix,
• matrix-vector multiplication can be performed in almost linear complexity

(O(n log n)),
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• sums, products, inverses of H-matrices are of “almost” linear complexity.

The basic construction principle of H-matrices can be described as follows:
consider matrices over a product index set I × I and partition I × I by an
H-tree TI×I , where a problem dependent admissibility condition is used to
decide whether a block t× s ⊂ I × I allows for a low rank approximation of
this block.

Definition 1.5.1. [GH03] The set of hierarchical matrices is defined by

H(TI×I , k) := {M ∈ R
I×I | rank (M |t×s) ≤ k for all

admissible leaves t× s of TI×I}.

Submatrices of M ∈ H(TI×I , k) corresponding to inadmissible leaves are
stored as dense blocks whereas those corresponding to admissible leaves are
stored in factorized form as rank-k matrices, called Rk-format. Figure 1.5
shows the H-matrix representation with k = 4 of the stiffness matrix of the
FEM discretization for a 2D heat equation with distributed control and isola-
tion boundary conditions using linear elements on a uniform mesh, resulting
in n = 1024.

Fig. 1.5. H-matrix representation of stiffness matrix for 2D heat equation with
distributed control and isolation boundary conditions. Here n = 1024 and k = 4.

The formatted arithmetic for H-matrices is not a usual arithmetic as
H(TI×I , k) is not a linear subspace of R

I×I , hence sums, products, and
inverses of H-matrices need to be projected into H(TI×I , k). In short, the
operations needed here are
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Formatted addition (⊕) with complexity NH⊕H = O(nk2 log n)); the com-
putedH-matrix is the best approximation ( with respect to the Frobenius-
norm) in H(TI×I , k) of the sum of two H-matrices.

Formatted multiplication (�) with complexity NH
H = O(nk2 log2 n);

Formatted inversion (Ĩnv) with complexity NH, fInv
= O(nk2 log2 n).

For the complexity results, some technical assumptions on the H-tree TI×I
are needed.

The sign function iteration (1.21) for (1.45) using formatted H-matrix
arithmetic with AH denoting the H-matrix representation in H(TI×I , k) then
becomes

A0 ← AH, C0 ← C,
for j = 0, 1, 2, . . .

Aj+1 ← 1

2γj

(
Aj ⊕ γ2

j Ĩnv(Aj)
)
,

C̃j+1 ← 1

2
√
γj

[
Cj , γjCj � Ĩnv(Aj)

]
,

Cj+1 ← R-factor of RRQR as in (1.24).

(1.46)

Using this method for solving the Lyapunov equations in the first step of
Algorithm 4, we obtain an implementation of balanced truncation requiring
only O(nconk log2 n) storage and O(rncok

2n log2 n) flops. Work on this topic
is in progress, first numerical results reported in [BB04] are promising that
this approach will lend itself to efficient model reduction methods for the
control of parabolic partial differential equations.

1.6 Conclusions and Open Problems

Spectral projection methods, in particular those based on the matrix sign
function, provide an easy-to-use and easy-to-implement framework for many
model reduction techniques. Using the implementations suggested here, bal-
anced truncation and related methods can easily be applied to systems of
order O(103) on desktop computers, of order O(104) using parallel program-
ming models, and to more or less unlimited orders if sparse implementations
based on matrix compression techniques and formatted arithmetic can be
used.

Further investigations could lead to a combination of spectral projection
methods based on the sign function with wavelet techniques for the discretiza-
tion of partial differential equations.

Open problems are the derivation of error bounds for several balancing-
related techniques that allow an adaptive choice of the order of the reduced-
order model for a given tolerance threshold. This would be particulary impor-
tant for positive-real balancing as this technique could be very useful in circuit
simulation and microsystem technology. The extension of the Riccati-based
truncation techniques related to stochastic, positive-real, bounded-real, and
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LQG balancing to descriptor systems is another topic for further investiga-
tions, both theoretically and computationally.
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2.1 Introduction

Many physical phenomena, such as heat transfer through various media, signal
propagation through electric circuits, vibration suppression of bridges, the
behavior of Micro-Electro-Mechanical Systems (MEMS), and flexible beams
are modelled with linear time invariant (LTI) systems

Σ :

{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

⇔ Σ :=

[
A B
C D

]
where x(t) ∈ R

n is the state, u(t) ∈ R
m is the input and y(t) ∈ R

p is the
output; moreover A ∈ R

n×n, B ∈ R
n×m, C ∈ R

p×n, D ∈ R
p×m are constant

matrices. The number of the states, n, is called the dimension or order of the
system Σ. Closely related to this system are two continuous-time Lyapunov
equations:

AP + PAT

+BB
T

= 0, A
TQ+QA+ C

T

C = 0. (2.1)

The matrices P ∈ R
n×n andQ ∈ R

n×n are called the reachability and observa-
bility Gramians, respectively. Under the assumptions that A is asymptotically
stable, i.e. λi(A) ∈ C− (the open left half-plane), and that Σ is minimal (that
is the pairs (A,B) and (C,A) are, respectively, reachable and observable), the
Gramians P, Q are unique and positive definite. In many applications, such
as circuit simulation or time dependent PDE control problems, the dimension,
n, of Σ is quite large, in the order of tens of thousands or higher, while the
number of inputs m and outputs p usually satisfy m, p � n. In these large-
scale settings, it is often desirable to approximate the given system with a
much lower dimensional system

Σr :

{
ẋr(t) = Arx(t) +Bru(t)
yr(t) = Crx(t) +Dru(t)

⇔ Σr :=

[
Ar Br

Cr Dr

]
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where Ar ∈ R
r×r, Br ∈ R

r×m, Cr ∈ R
p×r, Dr ∈ R

p×m, with r � n. The
problem of model reduction is to produce such a low dimensional system Σr

that has similar response characteristic as the original system Σ to any given
input u.

The Lyapunov matrix equations in (2.1) play an important role in model
reduction. One of the most effective model reduction approaches, called bal-
anced truncation [MOO81, MR76], requires solving (2.1) to obtain P and Q.
A state space transformation based on P and Q is then derived to balance the
system in the sense that the two Gramians become diagonal and equal. In this
new co-ordinate system, states that are difficult to reach are simultaneously
difficult to observe. Then, the reduced model is obtained by truncating the
states that are both difficult to reach and difficult to observe. When applied
to stable systems, balanced truncation preserves stability and provides an a
priori bound on the approximation error.

For small-to-medium scale problems, balanced truncation can be imple-
mented efficiently using the Bartels-Stewart [BS72] method, as modified by
Hammarling [HAM82], to solve the two Lyapunov equations in (2.1). How-
ever, the method requires computing a Schur decomposition and results in
O(n3) arithmetic operations and O(n2) storage; therefore, it is not appropri-
ate for large-scale problems.

For large-scale sparse problems, iterative methods are preferred since they
retain the sparsity of the problem and are much more suitable for paralleliza-
tion. The Smith method [SMI68], the alternating direction implicit (ADI)
iteration method [WAC88a], and the Smith(l) method [PEN00b] are the most
popular iterative schemes developed for large sparse Lyapunov equations. Un-
fortunately, even though the number of arithmetic operations is reduced, all
of these methods compute the solution in dense form and hence require O(n2)
storage.

It is well known that the Gramians P and Q often have low numerical
rank (i.e. the eigenvalues of P and Q decay rapidly). This phenomenon is
explained to a large extent in [ASZ02, PEN00a]. One must take advantage of
this low-rank structure to obtain approximate solutions in low-rank factored
form. In other words, one should construct a matrix Z ∈ R

n×r such that
P ≈ ZZT . The matrix Z is called the approximate low-rank Cholesky factor
of P. If the effective rank r is much smaller than n, i.e. r � n, then the storage
is reduced from O(n2) to O(nr). We note that such low-rank schemes are the
only existing methods that can effectively solve very large sparse Lyapunov
equations.

Most low-rank methods, such as [HPT96, HR92, JK94, SAA90], are Krylov
subspace methods. As stated in [PEN00b], even though these methods reduce
the memory requirement, they usually fail to yield approximate solutions of
high accuracy. To reach accurate approximate solutions, one usually needs
a large number of iterations, and therefore obtain approximations with rela-
tively high numerical ranks; see [PEN00b]. For large-scale sparse Lyapunov
equations, a more efficient low-rank scheme based on the ADI iteration was
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introduced, independently, by Penzl [PEN00b], and Li and White [LW02].
The method was called the low-rank ADI iteration (LR-ADI) in [PEN00b]
and the Cholesky factor ADI iteration (CF-ADI) in [LW02]. Even though
LR-ADI and CF-ADI are theoretically the same, CF-ADI is less expensive
and more efficient to implement. Indeed, LR-ADI can be considered as an in-
termediate step in deriving the CF-ADI algorithm. Another low-rank scheme
based on the ADI iteration was also introduced in [PEN00b]. The method is
called the cyclic low-rank Smith method (LR-Smith(l)) and is a special case
of LR-ADI where l number of shifts are re-used in a cyclic manner.

While solving the Lyapunov equation AP + PAT + BBT = 0 where B
has m columns, the LR-ADI and the LR-Smith(l) methods add m and m× l
columns respectively to the current solution at each step, where l is the number
of shifts. Therefore, for slowly converging iterations and for the case where
m is big, e.g. m = 10, the number of columns of the approximate low-rank
Cholesky factor can exceed manageable memory capacity. To overcome this,
Gugercin et. al. [GSA03] introduced a Modified LR-Smith(l) method that
prevents the number of columns from increasing arbitrarily at each step. In
fact, the method only requires the number of columns r which are needed
to meet the pre-specified balanced truncation tolerance. Due to the rapid
decay of the Hankel singular values, this r is usually quite small relative to n.
Consequently the memory requirements are drastically reduced.

This paper surveys Smith-type methods used for solving large-scale sparse
Lyapunov equations and consequently for balanced truncation of the underly-
ing large sparse dynamical system. Connections between different Smith-type
methods, convergence results, and upper bounds for the approximation er-
rors are presented. Moreover, numerical examples are given to illustrate the
performance of these algorithms.

2.2 Balancing and Balanced Truncation

One model reduction scheme that is well grounded in theory is Balanced Trun-
cation, first introduced by Mullis and Roberts [MR76] and later in the systems
and control literature by Moore [MOO81]. The approximation theory under-
lying this approach was developed by Glover [GLO84]. Several researchers
have recognized the importance of balanced truncation for model reduction
because of its theoretical properties. Computational schemes for small-to-
medium scale problems already exist. However, the development of computa-
tional methods for large-scale settings is still an active area of research; see
[GSA03, PEN99, BQQ01, AS02], and the references therein.

2.2.1 The Concept of Balancing

Let P and Q be the unique Hermitian positive definite solutions to equa-
tions (2.1). The square roots of the eigenvalues of the product PQ are the
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singular values of the Hankel operator associated with Σ and are called the
Hankel singular values, σi(Σ), of the system Σ:

σi(Σ) =
√
λi(PQ).

In most cases, the eigenvalues of P,Q as well as the Hankel singular val-
ues σi(Σ) decay very rapidly. This phenomena is explained to a large extent
in [ASZ02].

Define the two functionals Jr and Jo as follows:

Jr = min
x(−∞)=0, x(0)=x

‖u(t)‖2, t ≤ 0, (2.2)

Jo = ‖y(t)‖2, x(0) = xo, u(t) = 0, t ≥ 0. (2.3)

The quantity Jr is the minimal energy required to drive the system from the
zero state at t = −∞ to the state x at t = 0. On the other hand, Jo is the
energy obtained by observing the output with the initial state xo under no
input. The following lemma is crucial to the concept of balancing:

Lemma 2.2.1. Let P and Q be the reachability and observability Gramians
of the asymptotically stable and minimal system Σ and Jr and Jo be defined
as above. Then

Jr = xTP−1x

and
Jo = xT

oQxo.

It follows from the above lemma that the states which are difficult to reach,
i.e., require a large energy Jr, are spanned by the eigenvectors of P correspond-
ing to small eigenvalues. Moreover, the states which are difficult to observe,
i.e., yield small observation energy Jo, are spanned by the eigenvectors of Q
corresponding to small eigenvalues. Hence Lemma 2.2.1 yields a way to evalu-
ate the degree of reachability and the degree of observability for the states of
the given system. One can obtain a reduced model by eliminating the states
which are difficult to reach and observe. However, it is possible that the states
which are difficult to reach are not difficult to observe and vice-versa. See
[ANT05] for more details and examples. Hence the following question arises:
Given Σ, does there exist a basis where the states which are difficult to reach
are simultaneously difficult to observe? It is easy to see from the Lyapunov
equations in (2.1) that under a state transformation by a nonsingular matrix
T , the Gramians are transformed as

P̄ = TPT T

, Q̄ = T−TQT−1.

Hence, the answer to the above question reduces to finding a nonsingular state
transformation T such that, in the transformed basis, the Gramians P̄ and Q̄
are equal.
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Definition 2.2.2. The reachable, observable and stable system Σ is called
balanced if P = Q. Σ is called principal-axis-balanced if

P = Q = Σ = diag(σ1Im1
, · · · , σqImq

), (2.4)

where σ1 > σ2 > · · · > σq > 0, mi, i = 1, · · · , q, are the multiplicities of σi,
and m1 + · · ·+mq = n.

In the following, by balancing we mean principal-axis-balancing unless
otherwise stated. It follows from the above definition that balancing amounts
to the simultaneous diagonalization of the two positive definite matrices P
and Q.

Let U denote the Cholesky factor of P, i.e., P = UU
T

, and let U
TQU =

RΣ2R
T

be the eigenvalue decomposition of U
TQU . The following result ex-

plains how to compute the balancing transformation T :

Lemma 2.2.3. Principal-Axis-Balancing Transformation:
Given the minimal and asymptotically stable LTI system Σ with the corre-
sponding Gramians P and Q, a principal-axis-balancing transformation T is

T = Σ1/2R
T

U−1. (2.5)

The next result gives a generalization of all possible balancing transforma-
tions:

Corollary 2.2.4. Let there be q distinct Hankel singular values σi with mul-
tiplicities mi. Every principal-axis-balancing transformation T̂ has the form
T̂ = V T where T is given by (2.5) and V is a block diagonal unitary matrix
with an arbitrary mi ×mi unitary matrix as the ith block for i = 1, · · · , q.

2.2.2 Model Reduction by Balanced Truncation

The balanced basis has the property that the states which are difficult to reach
are simultaneously difficult to observe. Hence, a reduced model is obtained by
truncating the states which have this property, i.e., those which correspond
to small Hankel singular values σi.

Theorem 2.2.5. Let the asymptotically stable and minimal system Σ have
the following balanced realization:

Σ =

[
Ab Bb

Cb Db

]
=

⎡⎣ A11 A12

A21 A22

B1

B2

C1 C2 D

⎤⎦ ,
with P = Q = diag(Σ1, Σ2) where

Σ1 = diag(σ1Im1
, · · · , σkImk

) and Σ2 = diag(σk+1Imk+1
, · · · , σqImq

).
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Then the reduced order model Σr =

[
A11 B1

C1 D

]
obtained by balanced truncation

is asymptotically stable, minimal and satisfies

‖Σ−Σr‖H∞
≤ 2 (σk+1 + · · ·+ σq). (2.6)

The equality holds if Σ2 contains only σq.

The above theorem states that if the neglected Hankel singular values are
small, then the systems Σ and Σr are guaranteed to be close. Note that (2.6)
is an a priori error bound. Hence, given an error tolerance, one can decide
how many states to truncate without forming the reduced model.

The balancing method explained above is also called Lyapunov balanc-
ing since it requires solving two Lyapunov equations. Besides the Lyapunov
balancing method, other types of balancing exist such as stochastic balanc-
ing [DP84, GRE88a, GRE88b], bounded real balancing , positive real bal-
ancing [DP84], LQG balancing [OJ88], and frequency weighted balancing
[ENN84, LC92, SAM95, WSL99, ZHO95, VA01, GJ90, GA04]. For a recent
survey of balancing related model reduction, see [GA04].

2.2.3 A Numerically Robust Implementation of Balanced
Reduction

The above discussion on the balancing transformation and the balanced reduc-
tion requires balancing the whole system Σ followed by the truncation. This
approach is numerically inefficient and very ill-conditioned to implement. In-
stead, below we will give another implementation of the balanced reduction
which directly obtains a reduced balanced system without balancing the whole
system.

Let P = UU
T

and Q = LL
T

. This is always possible since both P and Q
are symmetric positive definite matrices. The matrices U and L are called the

Cholesky factors of the Gramians P and Q, respectively. Let U
T

L = ZSY
T

be a singular value decomposition (SVD). It is easy to show that the singular

values of U
T

L are indeed the Hankel singular values, hence, we have

U
T

L = ZΣY
T

where
Σ = diag(σ1Im1

, σ2Im2
, . . . , σqImq

),

q is the number of distinct Hankel singular values, with σi > σi+1 > 0, mi is
the multiplicity of σi, and m1 +m2 + · · ·+mq = n. Let

Σ1 = diag(σ1Im1
, σ2Im2

, . . . , σkImk
), k < q, r := m1 + · · ·+mk,

and define
W1 := LY1Σ

−1/2
1 and V1 := UZ1Σ

−1/2
1 ,
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where Z1 and Y1 are composed of the leading r columns of Z and Y , respec-

tively. It is easy to check that W
T

1 V1 = Ir and hence V1W
T

1 is an oblique
projector. We obtain a reduced model of order r by setting

Ar = W
T

1 AV1, Br = W
T

1 B, Cr = CV1.

Noting that PW1 = V1Σ1 and QV1 = W1Σ1 gives

W
T

1 (AP + PAT

+BB
T

)W1 = ArΣ1 +Σ1A
T

r +BrB
T

r

V
T

1 (A
TQ+QA+ C

T

C)V1 = A
T

r Σ1 +Σ1Ar + C
T

r Cr.

Thus, the reduced model is balanced and asymptotically stable (due to the
Lyapunov inertia theorem) for any k ≤ q. As mentioned earlier, the formulae
above provide a numerically stable scheme for computing the reduced or-
der model based on a numerically stable scheme for computing the Cholesky
factors U and L directly in upper triangular and lower triangular form, respec-
tively. It is important to truncate Z,Σ, Y to Z1, Σ1, Y1 prior to forming W1

or V1. It is also important to avoid formulae involving inversion of L or U as
these matrices are typically ill-conditioned due to the decay of the eigenvalues
of the Gramians.

2.3 Iterative ADI Type Methods for Solving Large-Scale
Lyapunov Equations

The numerically stable implementation of the balanced truncation method
described in Section 2.2.3 requires the solutions to two Lyapunov equations
of order n. For small-to-medium scale problems, the solutions can be ob-
tained through the Bartels-Stewart [BS72] method as modified by Hammar-
ling [HAM82]. This method requires the computation of a Schur decompo-
sition, and thus is not appropriate for large-scale problems. The problem of
obtaining the full-rank exact solution to a Lyapunov equation is a numerically
ill-conditioned problem in the large-scale setting.

As explained previously, P and Q often have numerically low-rank com-
pared to n. In most cases, the eigenvalues of P,Q as well as the Hankel singu-
lar values σi(Σ) decay very rapidly, see [ASZ02]. This low-rank phenomenon
leads to the idea of approximating the Gramians with low-rank approximate
Gramians.

In the following, we will focus on the approximate solution of the reacha-
bility Lyapunov equation

AP + PAT

+BB
T

= 0, (2.7)

where A ∈ R
n×n is asymptotically stable and diagonalizable and B ∈ R

n×m.
The discussion applies equally well to the observability Lyapunov equation
ATQ+QA+ CTC = 0.
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In this section we survey the ADI, Smith, and Smith(l) methods. In these
methods the idea is to transform a continuous time Lyapunov equation (2.7)
into a discrete time Stein equation using spectral transformations of the type
ω(λ) = µ∗−λ

µ+λ , where µ ∈ C− (the open left half-plane). Note that ω is a
bilinear transformation mapping the open left half-plane onto the open unit
disk with ω(∞) = −1. The number µ is called the shift or the ADI parameter .

2.3.1 The ADI Iteration

The alternating direction implicit (ADI) iteration was first introduced by
Peaceman and Rachford [PR55] to solve linear systems arising from the dis-
cretization of elliptic boundary value problems. In general, the ADI iteration
is used to solve linear systems of the form

My = b,

where M is symmetric positive definite and can be split into the sum of two
symmetric positive definite matrices M = M1 + M2 for which the following
iteration is efficient:

y0 = 0,

(M1 + µjI)yj−1/2 = b− (M2 − µjI)yj−1,

(M2 + ηjI)yj = b− (M1 − ηjI)yj−1/2, for j = 1, 2, · · · , J.

The ADI shift parameters µj and ηj are determined from spectral bounds on
M1 and M2 to increase the convergence rate. When M1 and M2 commute,
this is classified as a “model problem”.

One should notice that (2.7) is a model ADI problem in which there is a
linear system with the sum of two commuting operators acting on the unknown
P, which is a matrix in this case. Therefore, the iterates PA

i of the ADI
iteration are obtained through the iteration steps

(A+ µiI)PA
i−1/2 = −BBT − PA

i−1(A
T − µiI) (2.8)

(A+ µiI)PA
i = −BBT − (PA

i−1/2)
∗(A

T − µiI), (2.9)

where PA
0 = 0 and the shift parameters {µ1, µ2, µ3, . . .} are elements of C−

(here ∗ denotes complex conjugation followed by transposition). These two
equations are equivalent to the following single iteration step:

PA
i = (A− µ∗

i I)(A+ µiI)
−1PA

i−1[(A− µ∗
i I)(A+ µiI)

−1]∗

−2ρi(A+ µiI)
−1BB

T

(A+ µiI)
−∗, (2.10)

where ρi = Real(µi). Note that if Pi−1 is Hermitian positive semi-definite,
then so is Pi.
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The spectral radius of the matrix
(∏l

i=1(A− µ∗
i I)(A+ µiI)

−1
)
, denoted

by ρ
ADI

, determines the rate of convergence, where l is the number of shifts
used. Note that since A is asymptotically stable, ρ

ADI
< 1. Smaller ρ

ADI
yields

faster convergence. The minimization of ρ
ADI

with respect to shift parameters
µi is called the ADI minimax problem:

{µ1, µ2, . . . , µl} = arg min
{µ1,...,µl}∈C−

max
λ∈σ(A)

| (λ− µ∗
1) . . . (λ− µ∗

l ) |
| (λ+ µ1) . . . (λ+ µl) |

. (2.11)

We refer the reader to [EW91, STA91, WAC90, CR96, STA93, WAC88b,
PEN00b] for contributions to the solution of the ADI minimax problem. It
can be shown that if A is diagonalizable, the lth ADI iterate satisfies the
inequality ∥∥P − PA

l

∥∥
F
≤ ‖W‖22

∥∥W−1
∥∥2

2
ρ2

ADI
‖P‖F , (2.12)

where W is the matrix of eigenvectors of A.
The basic computational costs in the ADI iterations are that each indi-

vidual shift µi requires a sparse direct factorization of (A + µiI) and each
application of (A+ µiI)

−1 requires triangular solves from that factorization.
Moreover, in the case of complex shifts, these operations have to be done in
complex arithmetic. To keep the solution P real, complex conjugate pairs of
shifts have to be applied, one followed immediately by the other. However,
even with this, one would have to form (A+µiI)(A+µ∗

i I) = A2+2ρiA+|µi|2I
in order to keep the factorizations in real arithmetic. This matrix squaring
would most likely have an adverse effect on sparsity. In the following, we wish
to avoid the additional details required to discuss complex shifts. Therefore,
we will restrict our discussions to real shifts for the remainder of the paper.
If necessary, all of the operations can be made valid for complex shifts.

2.3.2 Smith’s Method

For every real scalar µ < 0, the continuous-time Lyapunov equation (2.7) is
equivalent to

P = (A−µI)(A+µI)−1P(A+µI)−
T

(A−µI)T−2µ(A+µI)−1BB
T

(A
T

+µI)−1.

Then one obtains the Stein equation

P = AµPA
T

µ − 2µBµB
T

µ , (2.13)

where

Aµ := (A− µI)(A+ µI)−1, Bµ := (A+ µI)−1B. (2.14)

Hence using the bilinear transformation ω(λ) = µ−λ
µ+λ , the problem has been

transformed into discrete time, where the Stein equation (2.13) has the same
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solution as the continuous time Lyapunov equation (2.7). SinceA is asymptot-
ically stable, ρ(Aµ) < 1 and the sequence {PS

i }∞i=0 generated by the iteration

PS
1 = −2µBµB

T

µ and PS
j+1 = AµPS

j A
T

µ + PS
1

converges to the solution P. Thus, the Smith iterates can be written as

PS
k = −2µ

k−1∑
j=0

Aj
µBµB

T

µ (Aj
µ)

T

. (2.15)

If one uses the same shift through out the ADI iteration, (µj = µ, j =
1, 2, . . . ), then the ADI iteration reduces to the Smith method. Generally,
the convergence of the Smith method is slower than ADI. An accelerated
version, the so called squared Smith method, has been proposed in [PEN00b]
to improve convergence. However, despite a better convergence, the squared
Smith methods destroys the sparsity of the problem which is not desirable in
large-scale settings.

2.3.3 Smith(l) Iteration

Penzl [PEN00b] illustrated that the ADI iteration with a single shift converges
very slowly, while a moderate increase in the number of shifts l accelerates the
convergence nicely. However, he also observed that the speed of convergence
is hardly improved by a further increase of l; see Table 2.1 in [PEN00b]. These
observations led to the idea of the cyclic Smith(l) iteration, a special case of
ADI where l different shifts are used in a cyclic manner, i.e. µi+jl = µi for
j = 1, 2, · · · .

The Smith(l) iterates are generated by

PSl
k =

k−1∑
j=0

Ak
dT (Ak

d)
T

, (2.16)

where

Ad =
l∏

i=1

(A− µiI)(A+ µiI)
−1 and T = PA

l , (2.17)

i.e., T is the lth ADI iterate with the shifts {µ1, · · · , µl}. As in Smith’s meth-

ods, P − AdPA
T

d = T is equivalent to (2.7), where Ad and T are defined in
(2.17).

2.4 Low-rank Iterative ADI-Type Methods

The original versions of the ADI, Smith, and Smith(l) methods outlined above
form and store the entire dense solution P explicitly, resulting in extensive
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storage requirement. In many cases the storage requirement is the limiting
factor rather than the amount of computation. The observation that P is
numerically low-rank compared to n leads to the low-rank formulations of
the ADI iterations, namely, LR-ADI [PEN00b], CF-ADI [LW02], LR-Smith(l)
[PEN00b], and Modified LR-Smith(l) [GSA03] where, instead of explicitly
forming the solution P, only the low-rank approximate Cholesky factors are
computed and stored, reducing the storage requirement to O(nr) where r is
the numerical rank of P.

2.4.1 LR-ADI and CF-ADI Iterations

Recall that the two steps in (2.8) and (2.9) of the ADI iteration can be com-
bined into the single iteration step in (2.10), as rewritten below:

PA
i = (A− µiI)(A+ µiI)

−1PA
i−1[(A− µiI)(A+ µiI)

−1]T

−2µi(A+ µiI)
−1BB

T

(A+ µiI)
−T . (2.18)

The key idea in the low-rank versions of the ADI method is to rewrite the
iterate PA

i in (2.18) as an outer product:

PA
i = ZA

i (ZA
i )

T

. (2.19)

This is always possible since starting with the initial guess PA
i = 0, the iterates

PA
i can be shown recursively to be positive definite and symmetric.

Using (2.19) in (2.18) results in

ZA
i (ZA

i )
T

= (A− µiI)(A+ µiI)
−1ZA

i−1[(A− µiI)(A+ µiI)
−1ZA

i−1]
T

−2µi(A+ µiI)
−1BB

T

(A+ µiI)
−T . (2.20)

Since the left-hand side of (2.20) is an outer product, and the right hand side
is the sum of two outer products, ZA

i can be rewritten as

ZA
i = [ (A− µiI)(A+ µiI)

−1ZA
i−1

√
−2µi(A+ µiI)

−1B ]. (2.21)

Therefore, the ADI algorithm (2.18) can be reformulated in terms of the
Cholesky factor ZA

i as

ZA
1 =

√
−2µ1(A+ µ1I)

−1B, (2.22)

ZA
i = [ (A− µiI)(A+ µiI)

−1ZA
i−1

√
−2µi(A+ µiI)

−1B ]. (2.23)

This low-rank formulation of the ADI iteration was independently devel-
oped in [PEN00b] and [LW02]. We will call this the LR-ADI iteration as
in [PEN00b] since it is the preliminary form of the final CF-ADI iteration
[LW02]. In the LR-ADI formulation (2.22) and (2.23), at the ith step, the
(i−1)st Cholesky factor ZA

i−1 is multiplied from left by (A−µiI)(A+µiI)
−1.
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Therefore, the number of columns to be modified at each step increases by m,
the number of columns in B. In [LW02], the steps (2.22) and (2.23) are re-
formulated to keep the number of columns modified at each step as constant.
The resulting algorithm, outlined below, is called the CF-ADI iteration.

The columns of kth LR-ADI iterate ZA
i can be written out explicitly as

ZA
k = [Sk

√
−2µkB, Sk(TkSk−1)

√
−2µk−1B, · · · , SkTk · · ·S2(T2S1)

√
−2µ1B]

where

Si := (A+ µiI)
−1, and Ti := (A− µiI) for i = 1, . . . , k.

Since Si and Tj commute, i.e.

SiSj = SjSi, TiTj = TjTi, SiTj = TjSi, ∀i, j,

ZA
k can be written as

ZA
k = [ zk Pk−1(zk), Pk−2(Pk−1zk), · · · · · · P1(P2 · · ·Pk−1zk)], (2.24)

where

zk :=
√
−2µk (A+ µkI)

−1B, (2.25)

Pi :=

√
−2µi√−2µi+1

[I − (µi+1 + µi)(A+ µiI)
−1]. (2.26)

Since the order of the ADI parameters µi is not important, the ordering of µi

can be reversed resulting in the CF-ADI iteration:

ZCFA
1 = z1 =

√
−2µ1 (A+ µ1I)

−1B, (2.27)

zi =

( √
−2µi√−2µi−1

) (
I − (µi + µi−1)(A+ µiI)

−1
)
zi−1, (2.28)

ZCFA
i = [ZCFA

i−1 zi], for i = 2, · · · , k. (2.29)

Unlike the LR-ADI iteration (2.22)-(2.23) where at the ith step (i − 1)m
number of columns need to be modified, the CF-ADI iteration (2.27)-(2.29)
requires only that a constant number of columns, namely, m, to be modified
at each step. Therefore, the implementation of CF-ADI is numerically more
efficient compared to LR-ADI.

Define PCFA
j := ZCFA

j (ZCFA
j )T . Clearly, the stopping criterion ‖PCFA

j −
PCFA

j−1 ‖2 ≤ tol2 can be implemented as ‖zj‖2 ≤ tol, since

‖ZCFA
j (ZCFA

j )T − ZCFA
j−1 (ZCFA

j−1 )T ‖2 = ‖zjz
T
j ‖2 = ‖zj‖22.

It is not necessarily true that a small zj implies that all further zj+k will be
small, but this has been observed in practice. Relative error can also be used,
in which case the stopping criterion is
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‖zj‖2
‖ZCFA

j−1 ‖2
≤ tol.

The 2-norm of ZCFA
j−1 , which is also its largest singular value, can be esti-

mated by performing power iterations to estimate the largest eigenvalue of
ZCFA

j−1 (ZCFA
j−1 )T , taking advantage of the fact that j � n. This cost is still

high, and this estimate should only be used after each segment of several
iterations.

The next result shows the relation between the ADI, LR-ADI and CF-ADI
iterations. For a proof, see the original source [LW02].

Theorem 2.4.1. Let PA
k be the approximation obtained by k steps of the ADI

iteration with shifts {µ1, µ2, . . . , µk}. Moreover, for the same shift selection,
let ZA

k and ZCFA
k be the approximations obtained by the LR-ADI and the

CF-ADI iterations as above, respectively. Then,

PA
k = ZA

k (ZA
k )T = ZCFA

k (ZCFA
k )T .

2.4.2 LR-Smith(l) Iteration

The ADI, LR-ADI, and CF-ADI iterations are of interest if a sequence {µi}k
i=1

of different shifts is available. When the number of shift parameters is limited,
the cyclic low-rank Smith method (LR-Smith(l)) is a more efficient alternative.
As in the LR-ADI formulation of the ADI iteration, the key idea is to write
the ith Smith(l) iterate as

PSl
i = ZSl

i (ZSl
i )

T

. (2.30)

Given the l cyclic-shifts {µ1, µ2, . . . , µl}, the LR-Smith(l) method consists of
two steps. First the iterate ZSl

1 is obtained by an l step low-rank ADI iteration;

i.e. PA
l = ZA

l (ZA
l )

T

is the low-rank l step ADI iterate. Then, the LR-Smith(l)
method is initialized by

ZSl
1 = Bd = ZA

l , (2.31)

followed by the actual LR-Smith(l) iteration:

Z(i+1) = AdZ
(i)

ZSl
i+1 = [ ZSl

i Z(i+1) ], (2.32)

where Ad is defined in (2.17). It then follows that

ZSl
k = [ Bd AdBd A2

dBd · · · Ak−1
d Bd ]. (2.33)

One should notice that while k step LR-ADI and CF-ADI iterations require k
matrix factorizations, a k step LR-Smith(l) iteration computes only l matrix
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factorizations. Moreover, the equality (2.33) reveals that similar to the CF-
ADI iteration, the number of columns to be modified at the ith step of the
LR-Smith(l) iteration is constant, equal to the number of columns of Bd,
namely l×m. If the shifts {µ1, · · · , µl} are used in a cyclic manner, the cyclic
LR-Smith(l) iteration gives the same approximation as the LR-ADI iteration.

Remark 2.4.2. A system theoretic interpretation of using l cyclic shifts (the
Smith(l) iteration) is that the continuous time system

Σ =

[
A B
C D

]
which has order n, m inputs, and p outputs is embedded into a discrete time
system

Σd =

[
Ad Bd

Cd Dd

]
which has order n, lm inputs, and lp outputs; they have the same reachability
and observability Gramians P and Q. Therefore, at the cost of increasing
the number of inputs and outputs, one reduces the spectral radius ρ(Ad) and
hence increases the convergence.

Remark 2.4.3. Assume that we know all the eigenvalues of A and the system

Σ =

[
A B
C D

]
is single input single output, i.e. B,CT ∈ R

n. Then choosing µi = λi(A) for
i = 1, · · · , n results in

Ad = 0 and P = PSl
1 = PA

l .

In other words, the exact solution P of (2.7) is obtained at the first step. The
resulting discrete time system has n inputs, and n outputs.

Convergence Results for the Cyclic LR-Smith(l) Iteration

In this section some convergence results for the Cyclic LR-Smith(l) iteration
are presented. For more details, we refer the reader to the original source
[GSA03].

Let ZSl
k be the kth LR-Smith(l) iterate as defined in (2.33) corresponding

to the Lyapunov equation

AP + PAT +BBT = 0.

Similar to ZSl
k , let Y Sl

k be the kth LR-Smith(l) iterate corresponding to the
observability Lyapunov equation
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ATQ+QA+ CTC = 0

for the same cyclic shift selection as used in computing ZSl
k .

Denote by PSl
k and QSl

k the k step LR-Smith(l) iterates for P and Q
respectively, i.e., PSl

k = ZSl
k (ZSl

k )T and QSl
k = Y Sl

k (Y Sl
k )T . Similar to (2.12),

the following result holds:

Proposition 2.4.4. Let Ekp := P − PSl
k and Ekq = Q − QSl

k and A =
W (Λ)W−1 be the eigenvalue decomposition of A. The k step LR-Smith(l)
iterates satisfy

0 ≤ trace (Ekp) = trace (P − PSl
k ) ≤ Kml (ρ(Ad))

2ktrace (P) (2.34)

0 ≤ trace (Ekq) = trace (Q−QSl
k ) ≤ K p l (ρ(Ad))

2ktrace (Q), (2.35)

where

K = κ(W )2, (2.36)

and κ(W ) denotes the 2-norm condition number of W .

Since the low-rank Cholesky factors ZSl
k and Y Sl

k will be used for balanced
truncation of the underlying dynamical system, it is important to see how
well the exact Hankel singular values are approximated. Let σi and σ̂i denote
the Hankel singular values resulting from the full-rank exact Gramians and
the low-rank approximate Gramians, respectively, i.e.,

σ2
i = λi(PQ) and σ̂2

i = λi(PSl
k QSl

k ). (2.37)

The following lemma holds:

Lemma 2.4.5. Let σi and σ̂i be given by (2.37). Define n̂ = klmin(m, p).
Then,

0 ≤
n∑

i=1

σ2
i −

n̂∑
i=1

σ̂2
i

≤ K l (ρ(Ad))
2k
(
K min(m, p)(ρ(Ad))

2ktrace (P)trace (Q)

+ m trace (P)
k−1∑
i=0

‖CdA
i
d‖22 + p trace (Q)

k−1∑
i=0

‖Ai
dBd‖22

)
(2.38)

where K is as defined in (2.36).

As mentioned in [GSA03], these error bounds critically depend on ρ(Ad) and
K. Hence when ρ(Ad) is almost 1 and/or A is highly non-normal, the bounds
may be pessimistic. On the other hand, when ρ(Ad) is small, for example less
than 0.9, the convergence of the iteration is extremely fast and also the error
bounds are tight.
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2.4.3 The Modified LR-Smith(l) Iteration

It follows from the implementations of the LR-ADI, the CF-ADI, and the LR-
Smith(l) iterations that at each step the number of columns of the current
iterates is increased by m for the LR-ADI and CD-ADI methods, and by
m × l for the LR-Smith(l) method. Hence, when m is large, i.e. for MIMO
systems, or when the convergence is slow, i.e., ρ(Ad) is close to 1, the number
of columns of ZA

k , ZCFA
k , and ZSl

k might exceed available memory. In light
of these observations, Gugercin et. al. [GSA03] introduced a modified LR-
Smith(l) iteration where the number of columns in the low-rank Cholesky
factor does not increase unnecessarily at each step. The idea is to compute
the singular value decomposition of the iterate at each step and, given a
tolerance τ , to replace the iterate with its best low-rank approximation as
outlined below.

Let ZSl
k be the kth LR-Smith(l) iterate as defined in (2.33) corresponding

to the Lyapunov equation AP+PAT +BBT = 0. Let the short singular value
decomposition (S-SVD) of ZSl

k be

ZSl
k = V ΦF

T

,

where V ∈ R
n×(mlk), Φ ∈ R

(mlk)×(mlk), and F ∈ R
(mlk)×(mlk). Then the S-

SVD of PSl
k = ZSl

k (ZSl
k )T is given by PSl

k = V Φ2V
T

. Therefore, it is enough
to store only V and Φ, and

Z̃k := V Φ

is also a low-rank Cholesky factor for PSl
k .

For a pre-specified tolerance value τ > 0, assume that until the kth step
of the algorithm all the iterates PSl

i satisfy

σmin(PSl
i )

σmax(PSl
i )

> τ2 or equivalently
σmin(ZSl

i )

σmax(ZSl
i )

=
σmin(Z̃i)

σmax(Z̃i)
> τ

for i = 1, 2, · · · , k, where σmin and σmax denote the minimum and maximum
singular values, respectively. It readily follows from the implementation of the
LR-Smith(l) method that at the (k + 1)st step, the approximants ZSl

k+1 and

PSl
k+1 are given by

ZSl
k+1 = [ZSl

k Ak
dBd] and PSl

k+1 = PSl
k +Ak

dBdB
T

d (Ak
d)

T

.

Decompose Ak
dBd into the two spaces Im(V ) and (Im(V ))⊥ ; i.e., write

Ak
dBd = V Γ + V̂ Θ, (2.39)

where Γ ∈ R
(mlk)×(ml), Θ ∈ R

(ml)×(ml), V
T

V̂ = 0 and V̂
T

V̂ = Iml. Define
the matrix
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Ẑk+1 = [ V V̂ ]

[
Φ Γ
0 Θ

]
︸ ︷︷ ︸

Ŝ

. (2.40)

Let Ŝ have the following SVD: Ŝ = T Φ̂Y
T

. Then it follows that Z̃k+1 is given
by

Z̃k+1 = Ṽ Φ̂, Ṽ = [ V V̂ ]T, (2.41)

where Ṽ ∈ R
n×((k+1)ml) and Φ̂ ∈ R

((k+1)ml)×((k+1)ml). Note that computation
of Z̃k+1 requires the knowledge of Z̃k, which is already available, and the SVD
of Ŝ, which is easy to compute. Next, partition Φ̂ and Ṽ conformally:

Z̃k+1 = [ Ṽ1 Ṽ2 ]

[
Φ̂1

Φ̂2

]
so that

Φ̂2(1, 1)

Φ̂1(1, 1)
< τ. (2.42)

Then, the (k + 1)st low-rank Cholesky factor is approximated by

Z̃k+1 ≈ Ṽ1Φ̂1. (2.43)

Z̃k+1 in (2.43) is the (k + 1)st modified LR-Smith(l) iterate. In computing
Z̃k+1, the singular values which are less than the given tolerance τ are trun-
cated. Hence, in going from the kth to the (k+1)st step, the number of columns
of Z̃k+1 generally does not increase. An increase will only occur if more than
r singular values of Z̃k+1 are above the tolerance τσ1. In the worst case, at
most ml additional columns will be added at any step which is the same as
the unmodified LR-Smith(l) iteration discussed in Section 2.4.1.

Using Z̃k+1 in (2.43), the (k + 1)
st

step modified low-rank Smith Gramian
is given by

P̃k+1 := Z̃k+1(Z̃k+1)
T

= Ṽ1Φ̂1Φ̂
T

1 Ṽ
T

1 .

Convergence Properties of the Modified LR-Smith(l) Iteration

Let P̃k and Q̃k be the k step modified LR-Smith(l) solutions to the two

Lyapunov equations AP + PAT

+ BB
T

= 0, A
TQ + QA + C

T

C = 0,
respectively, where A ∈ R

n×n, B ∈ R
n×m, and C ∈ R

p×n. Moreover let IP
denote the set of indices i for which some columns have been eliminated from
the ith step approximant during the modified Smith iteration:

IP = {i : such that in (2.42) Φ̂2 �= 0 for Z̃i, i = 1, 2, · · · , k}.

Then for each i ∈ IP , let nP
i denote the number of the neglected singular

values. Similarly define IQ and nQ
i . The following convergence result holds

[GSA03].
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Theorem 2.4.6. Let PSl
k be the kth step LR-Smith(l) iterate. ∆kp := PSl

k −
P̃k, the error between the LR-Smith(l) and Modified LR-Smith(l) iterates,
satisfies

‖∆kp‖ = ‖PSl
k − P̃k‖ ≤ τ2

∑
i∈IP

(σmax(Z̃i))
2, (2.44)

where τ is the tolerance value of the modified LR-Smith(l) algorithm. More-
over, define Ẽkp = P − P̃k, the error between the exact solution and the kth

Modified LR-Smith(l) iterates. Then,

0 ≤ trace (Ẽkp)

≤ Kml (ρ(Ad))
2ktrace (P) + τ2

∑
i∈IP

nP
i (σmax(Z̃i))

2, (2.45)

where K is given by (2.36).

Note that the error ‖∆kp‖ is in the order of O(τ2). This means with a
lower number of columns in the approximate Cholesky factor, the Modified
Smith method will yield almost the same accuracy as the exact Smith method.

The next result concerns the convergence of the computed Hankel singular
values in a way analogous to Lemma 2.4.5.

Lemma 2.4.7. Let σi and σ̃i denote Hankel singular values resulting from
the full-rank exact Gramians P and Q and from the modified LR-Smith(l)
approximants P̃k and Q̃k respectively: σi

2 = λi(PQ) and σ̃2
i = λi(P̃kQ̃k).

Define n̂ = klmin(m, p). Then,

0 ≤
n∑

i=1

σ2
i −

n̂∑
i=1

σ̃2
i

≤ K l (ρ(Ad))
2k
(
K min(m, p)(ρ(Ad))

2ktrace (P)trace (Q)

+ m trace (P)
k−1∑
i=0

‖CdA
j
d‖22 + p trace (Q)

k−1∑
i=0

‖Aj
dBd‖22

)
+τ2

P‖QSl
k ‖2

∑
i∈IP

nP
i (σmax(Z̃i))

2

+τ2
Q‖PSl

k ‖2
∑
i∈IQ

nQ
i (σmax(Ỹi))

2) (2.46)

where τP and τQ are the given tolerance values; and K is as defined in (2.36).

Once again the bounds in Lemma 2.4.5 and Lemma 2.4.7 differ only by the
summation of terms of O(τ2

P) and O(τ2
Q).
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2.4.4 ADI Parameter Selection

As the selection of good parameters is vitally important to the successful
application of the ADI and derived algorithms, in this section we discuss two
possible approaches. Both seek to solve the minimax problem (2.11), in other
words, minimizing the right hand side of the error bound in (2.12).

Because it is not practical to assume the knowledge of the complete spec-
trum of the matrix A, i.e., not practical to solve (2.11) over λ ∈ σ(A), the
first approach [WAC95] solves a different problem. It begins by bounding the
spectrum of A inside a domain R ⊂ C−, in other words,

λ1(A), · · · , λn(A) ∈ R ⊂ C−,

and then solves the following rational minimax problem:

min
µ1,µ2,··· ,µl

max
x∈R

∣∣∣∣∣∣
l∏

j=1

(µj − x)

(µj + x)

∣∣∣∣∣∣ , (2.47)

where the maximization is done over x ∈ R (rather than λ ∈ σ(A)). In this
general formulation, R can be any region in the open left half plane.

If the eigenvalues of A are strictly real, then one takes the domain R to
be a line segment, with the end points being the extremal eigenvalues of A.
In this case the solution to (2.47) is known (see [WAC95]). Power and inverse
iterations can be used to estimate the extremal eigenvalues of A at a low cost.

If A has complex eigenvalues, finding a good domain R which provides an
efficient covering of the spectrum of A can be involved, since the convex hull of
the spectrum of an arbitrary stable matrix can take on widely varying shapes.
Typically one estimates extremal values of the spectrum of A, along the real
and the imaginary axes, and then assumes that the spectrum is bounded
inside some region which can be simply defined by the extremal values one
has obtained.

However, even after a good R has been obtained, there remains the serious
difficulty of solving (2.47). The solution to (2.47) is not known when R is an
arbitrary region in the open left half plane. However, the problem of finding
optimal and near-optimal parameters for a few given shapes was investigated
in several papers [IT95, EW91, STA91, STA93, WAC62, WAC95] and we give
some of the useful results below.

In particular, we summarize a parameter selection procedure from [WAC95]
which defines the spectral bounds a, b, and α for the matrix A as

a = min
i

(Re{γi}), b = max
i

(Re{γi}), α = tan−1 max
i

∣∣∣∣Im{γi}
Re{γi}

∣∣∣∣ , (2.48)

where γ1, · · · , γn are the eigenvalues of −A. It is assumed that the spectrum of
−A lies entirely inside a region which was called in that reference the “elliptic
function domain” determined by the numbers a, b, α. The specific definition
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of the “elliptic function domain” can be found in [WAC95]. If this assumption
does not hold, one should try to apply a more general parameter selection
algorithm. If it does hold, then let

cos2 β =
2

1 + 1
2 (a

b + b
a )
,

m =
2 cos2 α

cos2β
− 1.

If m < 1, the parameters are complex, and are given in [EW91, WAC95]. If
m ≥ 1, the parameters are real, and we define

k′ =
1

m+
√
m2 − 1

, k =
√

1− k′2.

Note k′ = a
b if all the eigenvalues of A are real. Define the elliptic integrals K

and v as,

F [ψ, k] =

∫ ψ

0

dx√
1− k2 sin2 x

,

K = K(k) = F
[π
2
, k
]
, v = F

[
sin−1

√
a

bk′
, k′

]
.

The number of ADI iterations required to achieve ρ2
ADI ≤ ε1 is given by

l =
⌈

K
2vπ log 4

ε1

⌉
, and the ADI parameters are given by

µj = −
√
ab

k′
dn

[
(2j − 1)K

2l
, k

]
, j = 1, 2, · · · , l, (2.49)

where dn(u, k) is the elliptic function. It was noted in [LW91] that for many
practical problems ADI converges in a few iterations with these parameters.

A second approach to the problem of determining ADI parameters is a
heuristic one and was given in [PEN00b]. It chooses potential parameters
from a list S = {ρ1, ρ2, · · · , ρk} which is taken to be the union of the Ritz
values of A and the reciprocals of the Ritz values of A−1, obtained by two
Arnoldi processes, with A and A−1. From this list S, one chooses the list of l
ADI parameters, L, in the following way. First, we define the quantity

sM(x) :=
|(x− µ1)× · · · × (x− µm)|
|(x+ µ1)× · · · × (x+ µm)| ,

where M = {µ1, · · · , µm}. The algorithm proceeds as follows:

1. Find i such that max
x∈S

sρi
(x) = min

ρi∈S
max
x∈S

sρi
(x) and let

L :=

{
{ρi} if ρi real,

{ρi, ρ̄i} otherwise.
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2. While card(L) < l, find i such that sL(ρi) = max
x∈L

sL(x) and let

L :=

{
L ∪ {ρi} if ρi real,

L ∪ {ρi, ρ̄i} otherwise.

The procedure is easy to implement and good results have been obtained
[PEN00b].

2.5 Smith’s Method and Eigenvalue Decay Bounds for
Gramians

As discussed earlier, in most cases, the eigenvalues of the reachability and
observability Gramians P,Q, as well as the Hankel singular values, i.e.,√
λi(PQ), decay very rapidly. In this section, we briefly review the results

of [ASZ02, ZHO02] and reveal the connection to convergence of Smith-type
iterations. We will again consider the Lyapunov equation

AP + PAT +BBT = 0, (2.50)

where B ∈ R
n×m with m � n, A ∈ R

n×n is asymptotically stable, and the
pair (A,B) is reachable.

2.5.1 Eigenvalue Decay Bounds for the Solution P

Given the Lyapunov equation (2.50), let an l step ADI iteration be computed
using the shifts µi, with µi < 0 where i = 1, . . . , l and lm < n. Then it simply
follows from (2.10) that

rank(PA
i−1) ≤ rank(PA

i ) ≤ rank(PA
i−1) +m.

Hence, at the lth step, one has

rank(PA
l ) ≤ lm.

Then by Schmidt-Mirsky theorem and considering PA
l as a low-rank approx-

imation to P, one simply obtains

λlm+1(P)

λ1(P)
≤ ‖Ad‖22,

where Ad is given by (2.17). The following result holds:

Theorem 2.5.1. Given the above set-up, let A be diagonalizable. Then, eigen-
values of the solution P to the Lyapunov equation (2.50) satisfy

λlm+1(P)

λ1(P)
≤ K(ρ(Ad))

2, (2.51)

where lm < n, K is given by (2.36), ρADI = ρ(Ad) as before and the shifts µi

are chosen by solving the ADI minimax problem (2.11).

See the original source [ASZ02] and [ZHO02] for details and a proof.
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2.5.2 Connection Between Convergence of the Smith Iteration and
Theorem 2.5.1

Smith (or ADI) type iterations try to approximate the exact Gramian P
with a low-rank version in which the convergence of the iteration is given
by either (2.12) or Proposition (2.4.4). Hence, if ρ(Ad) is close to 1 and/or
K is big, we expect slow convergence. The slow convergence leads to more
steps in the Smith iteration, and, consequently, the rank of the approximant
is higher. Since P is positive definite, in turn, this means that eigenvalues
of P do not decay rapidly. Therefore ρ(Ad) ≈ 1 and/or K is big mean that
λi(P) might decay slowly. This final remark is consistent with the above decay
bound (2.51). These relations are expected since (2.51) is derived via the ADI
iteration.

As stated in [ZHO02] and [ASZ02], (2.51) yields the following remarks:

1. If λi(A) are clustered in the complex plane, choosing the shifts µi as
the clustered points yields a small ρ(Ad), and consequently fast decay of
λi(P). Hence, the convergence of an ADI-type iteration is fast.

2. If λi(A) have mostly dominant real parts, then the decay rate is again
fast. Hence, as above, the convergence of an ADI-type iteration is fast.

3. If λi(A) have mostly dominant imaginary parts, while the real parts are
relatively small, the decay rate λi(P) is slow. Then an ADI iteration con-
verges slowly.

These observations agree with the numerical simulations. In Example 2.7.2,
the Smith(l) method is applied to a CD player example, a system of order 120,
where the eigenvalues of A are scattered in the complex plane with dominant
complex parts. Even with a high number of shifts, ρ(Ad) cannot be reduced
less than 0.98, and the Smith methods converge very slowly. Indeed, an exact
computation of P reveals that P does not have rapidly decaying eigenvalues.
Also, it was shown in [ASG01] that the Hankel singular values of this system
decay slowly as well, and the CD player was among the hardest models to
approximate. These results are consistent with item 3. above.

Item 2. is encountered in Example 2.7.2, where the Smith method is ap-
plied to a model of order 1006. 1000 of the eigenvalues are real and only the
remaining 6 are complex. By choosing the shifts as the complex eigenvalues,
ρ(Ad) is reduced to a small value and convergence is extremely fast. Indeed,
using the modified Smith method, the exact Gramians are approximated very
well with low-rank Gramians having rank of only 19. We note that the shifts
are even not the optimal ones.

2.6 Approximate Balanced Truncation and its Stability

Recall the implementation of balanced truncation presented in Section 2.2.3.
An exact balanced truncation requires the knowledge of Cholesky factors U
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and L of the Gramians P and Q, i.e. P = UUT and Q = LLT where P and
Q are the solutions to the two Lyapunov equations

AP + PAT +BBT = 0 and ATQ+QA+ CTC = 0.

As mentioned earlier, in large-scale settings, obtaining U and L is a formidable
task. In this section, we will discuss approximate balanced truncation of large-
sparse dynamical systems, where the approximate low-rank Cholesky factors
are used in place of the exact Gramians in computing the reduced-order model.
Hence, we will replace the full-rank Cholesky factors U and L with the low-
rank ones, namely Ũ and L̃ which are obtained through a k step Smith-
type iteration. For details see [GSA03]. For simplicity, let us assume that

the original model is SISO. Proceeding similarly to Section 2.2.3, let Ũ
T

L̃ =

Z̃Σ̃Ỹ
T

be the singular value decomposition (SVD) with Σ̃ = diag(σ̃1, · · · , σ̃k)
where σ̃i are the approximate Hankel singular values with σ̃1 > σ̃2 > · · · > σ̃k.
Here we have assumed, for the brevity of the discussion, that the Hankel
singular values are distinct. Now define

W̃1 := L̃Ỹ1Σ̃
−1/2
1 and Ṽ1 := Ũ Z̃1Σ̃

−1/2
1 ,

where Z̃1 and Ỹ1 are composed of the leading r columns of Z̃ and Ỹ respec-

tively, and Σ̃1 = diag(σ̃1, · · · , σ̃r). We note that the equality W̃
T

1 Ṽ1 = Ir
still holds and hence that Ṽ1W̃

T

1 is an oblique projection. The approximately
balanced reduced model Σ̃r of order r is obtained as

Ãr = W̃
T

1 AṼr, B̃r = W̃
T

1 B, Cr = CṼ1, and D̃r = D.

To examine the stability of this reduced model, we first define the error term
in P. Define ∆ as

∆ := Ũ Ũ
T − UU

T

= P̃ − P.
Then one can show that

ÃrΣ̃1 + Σ̃1Ã
T

r + B̃B̃r
T = W̃

T

1 (A∆+∆AT )W̃1 (2.52)

We know that Σ̃1 > 0. Hence to apply Lyapunov’s inertia theorem, we need

B̃B̃r
T − W̃

T

1 (A∆+∆AT )W̃1 = W̃
T

1 (BB
T −A∆−∆A

T

)W̃1 ≥ 0. (2.53)

Unfortunately, this is not always satisfied, and therefore one cannot guarantee
the stability of the reduced system. However, we would like to note many
researchers have observed that this does not seem to be a difficulty in practice;
in most cases approximate balanced truncation via a Smith-type iteration
yields a stable reduced system and instability is not an issue; see, for example,
[GSA03], [GA01], [PEN99], [LW01], [LW99] and the references there in.

Let Σr =

[
Ar Br

Cr D

]
and Σ̃r =

[
Ãr B̃r

C̃r D

]
be the rth order reduced systems

obtained by exact and approximate balancing, respectively. Now we examine
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closeness of Σr to Σ̃r. Define ∆V := V1 − Ṽ1 and ∆W := W1 − W̃1, and let
‖∆V ‖ ≤ τ and ‖∆W ‖ ≤ τ where τ is a small number; in other words, we
assume that Ṽ1 and W̃1 are close to V1 and W1, respectively. Under certain
assumptions (see [GSA03]), one can show that

‖Σr − Σ̃r‖∞ ≤ τ ( ‖Cr‖ ‖Br‖ ‖Ar‖ ( ‖W1‖+ ‖V1‖ ) +

‖Σ1‖∞‖Br‖+ ‖Σ2‖∞‖Cr‖ ) +O(τ2) (2.54)

where Σ1 :=

[
Ar I
Cr

]
and Σ2 :=

[
Ar Br

I

]
. Hence for small τ , i.e., when Ṽ1

and W̃1 are, respectively, close to V1 and W1, we expect Σr to be close to Σ̃r.
Indeed as the examples in Section 2.7 show, Σ̃r behaves much better than the
above upper bound predicts and Σ̃r, the approximately balanced system using
low-rank Gramians, is almost the same as the exactly balanced system. These
observations reveal the effectiveness of the Smith-type methods for balanced
truncation of large-sparse dynamical systems.

2.7 Numerical Examples

In this section we give numerical results on the CF–ADI method as well as
the LR-Smith(l) and Modified LR-Smith(l) methods.

2.7.1 CF–ADI and the Spiral Inductor

We begin with the CF–ADI approximation to the Lyapunov equation

AX + XAT +BBT = 0.

The example in Figure 2.1 comes from the inductance extraction of an on-
chip planar square spiral inductor suspended over a copper plane [KWW98],
shown in Figure 1(a). (See Chapter 23 for a detailed description of the spiral
inductor.) The original order 500 system has been symmetrized according to
[SKEW96]. The matrix A is a symmetric 500 × 500 matrix, and the input
coefficient matrix B ∈ R

n has one column.
Because A is symmetric, the eigenvalues of A are real and good CF–ADI

parameters are easy to find. The procedure given in Section 2.4.4 was followed.
CF–ADI was run to convergence in this example, which took 20 iterations.

Figure 1(b) shows the relative 2-norm error of the CF–ADI approximation,
i.e.

‖X − X cfadi
j ‖2

‖X‖2
,

where X is the exact solution to AX + XAT + BBT = 0 and X cfadi
j is the

jth CF–ADI approximation, for j = 1, · · · , 20. To illustrate the quality of
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(a) Spiral inductor

0 5 10 15 20
10

−15

10
−10

10
−5

10
0

Iteration

||X
 −

 X
lr || 2/||

X|
| 2

CF−ADI approximation relative error.  (SYMM)

||X − Xcfadi
j

||
2
/||X||

2
||X − Xopt

j
||

2
/||X||

2
||zcfadi

j+1
||2

2
/||X||

2

(b) CF–ADI approximation

Fig. 2.1. Spiral inductor, a symmetric system.

the low-rank approximation, we compare it with the optimal 2-norm rank-j
approximation to X[GVL96], denoted Xopt

j , obtained from the singular value
decomposition of exact solutionX. At j = 20, the relative error of the CF–ADI
approximation has reached 10−8, which is about the same size as the error of
the optimal rank 11 approximation. The error estimate ‖zCFA

j+1 ‖22 approximates

the actual error ‖X − X cfadi
j ‖ closely for all j.
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2.7.2 LR-Smith(l) and Modified LR-Smith(l) Methods

In this section we apply LR-Smith(l) and Modified LR-Smith(l) methods to
two dynamical systems. In each example, both the LR-Smith(l) iterates PSl

k ,

and QSl
k ; and the modified LR-Smith(l) iterates P̃k, and Q̃k are computed.

Also balanced reduction is applied using the full rank Gramians P, Q and the
approximate Gramians PSl

k , QSl
k ; and P̃k, Q̃k. The resulting reduced order

systems are compared.

CD Player Model

This example is described in Chapter 24, Section 4, this volume. The full order
model (FOM) describes the dynamics of a portable CD player, is of order
120, and single-input single-output. The eigenvalues of A are scattered in the
complex plane with relatively large imaginary parts. This makes it harder to
obtain a low ρ(Ad). A single shift results in ρ(Ad) = 0.99985. Indeed, even
with a high number of multiple shifts, l = 40, ρ(Ad) could not be reduced to
less than 0.98. Hence only a single shift is considered. This observation agrees
with the discussion in Section 2.5 that when the eigenvalues of A are scattered
in the complex plane, ADI-type iterations converge slowly. LR-Smith(l) and
the modified LR-Smith(l) iterations are run for k = 70 iterations. For the
Modified Smith(l) iteration, the tolerance values are chosen to be

τP = 1× 10−6 and τQ = 8× 10−6.

The low-rank LR-Smith(l) yields Cholesky factors ZSl
k and Y Sl

k with 70
columns. On the other hand, the modified LR-Smith(l) yields low-rank
Cholesky factors Z̃k and Ỹk with only 25 columns. To check the closeness of
modified Smith iterates to the exact Smith iterates, we compute the following
relative error norms:

‖PSl
k − P̃k‖
‖PSl

k ‖
= 4.13× 10−10, and

‖QSl
k − Q̃k‖
‖QSl

k ‖
= 2.33× 10−10.

Although the number of columns of the Cholesky factor have been reduced
from 70 to 25, the Modified Smith method yields almost the same accuracy.
We also look at the error between the exact and approximate Gramians:

‖P − PSl
k ‖

‖P‖ =
‖P − P̃k‖
‖P‖ = 3.95× 10−3,

‖Q −QSl
k ‖

‖Q‖ =
‖Q − Q̃k‖
‖Q‖ = 8.24× 10−1.

Next, we reduce the order of the FOM to r = 12 by balanced truncation
using both the approximate and the exact solutions. Σk, ΣSl

k and Σ̃k denote
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the 12th order reduced systems obtained through balanced reduction using
the exact Cholesky factors Z and Y ; the LR-Smith(l) iterates ZSl

k and Y Sl
k ;

and the modified LR-Smith(l) iterates Z̃k and Ỹk respectively. Also Σ denotes
the FOM.

Figure 2.2 depicts the amplitude Bode plots of the FOM Σ and the reduced
balanced systems Σk, ΣSl

k and Σ̃k. As can be seen, although relative error
between the exact and the approximate Gramians are not very small, ΣSl

k and

Σ̃k show a very similar behavior to Σk. This observation reveals that even
if the relative error in the approximate Gramians are big, if the dominant
eigenspace of PQ, and hence the largest HSV are matched well, approximate
balanced truncation performs very closely to the exact balanced truncation.
Similar observations can be found in [GA01, GUG03]. The amplitude Bode
plots of the error systems Σ − Σk, Σ − ΣSl

k and Σ − Σ̃k are illustrated in

Figure 2.3. It is also important to note that since the errors between P̃k and
PSl

k , and Q̃k and QSl
k are small, ΣSl

k and Σ̃k are almost equal as expected.
The relative H∞ norms of the error systems are tabulated in Table 2.1.

Table 2.1. Numerical Results for CD Player Model

‖Σ − Σk‖H∞

‚‚Σ − ΣSl
k

‚‚
H∞

‚‚‚Σ − Σ̃k

‚‚‚
H∞

‚‚‚ΣSl
k − Σ̃k

‚‚‚
H∞

9.88 × 10−4 9.71 × 10−4 9.69 × 10−4 5.11 × 10−6

‚‚Σk − ΣSl
k

‚‚
H∞

‚‚‚Σk − Σ̃k

‚‚‚
H∞

1.47 × 10−4 1.47 × 10−4

A Random System

This model is from [PEN99] and the example from [GSA03, GUG03]. The
FOM is a dynamical system of order 1006. The state-space matrices of the

full-order model Σ =

[
A B
C 0

]
are given by

A = diag(A1, A2, A3, A4), B
T

= C = [ 10 · · · 10︸ ︷︷ ︸
6

1 · · · 1︸ ︷︷ ︸
1000

]

where

A1 =

[
−1 100
−100 −1

]
, A2 =

[
−1 200
−200 −1

]
, A3 =

[
−1 400
−400 −1

]
,

and A4 = diag(−1, · · · ,−1000). .
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Fig. 2.2. The amplitude Bode plots of the FOM Σ and the reduced systems Σk

(Exact Balancing), ΣSl
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for the CD Player Model
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The spectrum of A is

σ(A) = {−1,−2, · · · ,−1000,−1± 100j,−1± 200j,−1± 400j}.

LR-Smith(l) and modified LR-Smith(l) methods are applied using l = 10
cyclic shifts. Six of the shifts are chosen so that the 6 complex eigenvalues of
A are eliminated. This shift selection reduces the ADI spectral radius ρ(Ad)
to 0.7623, and results in a fast convergence. Once more, the numerical re-
sults support the discussion in Section 2.5. Since the eigenvalues are mostly
real, with an appropriate choice of shifts, the spectral radius can be easily
reduced to a small number yielding a fast convergence. Both LR-Smith(l) and
the modified LR-Smith(l) iterations are run for k = 30 iterations with the
tolerance values

τP = τQ = 3× 10−5

for the latter. The resulting LR-Smith(l) and modified LR-Smith(l) Cholesky
factors has 300 and 19 columns, respectively. Even though the number of
columns in the modified method is much less than the exact LR-Smith(l)
method, almost there is no lost of accuracy in the computed Gramian as the
following numbers show:

‖PSl
k − P̃k‖
‖PSl

k ‖
= 1.90× 10−8, and

‖QSl
k − Q̃k‖
‖QSl

k ‖
= 3.22× 10−8.

The errors between the exact and computed Gramians are as follows:

‖P − PSl
k ‖

‖P‖ = 4.98× 10−10,
‖P − P̃k‖
‖P‖ = 1.88× 10−8

‖Q −QSl
k ‖

‖Q‖ = 4.98× 10−10,
‖Q − Q̃k‖
‖Q‖ = 3.21× 10−8.

Unlike the CD Player model, since ρ(Ad) is small, the iterations converge fast,
and both PSl

k and P̃k ( QSl
k and Q̃k) are very close to the exact Gramian P (

to Q).
We reduce the order of the FOM to r = 11 using both exact and approx-

imate balanced truncation. As in the CD Player example, Σk, ΣSl
k and Σ̃k

denote the reduced systems obtained through balanced reduction using the
exact Cholesky factors Z and Y ; the LR-Smith(l) iterates ZSl

k and Y Sl
k ; and

the modified LR-Smith(l) iterates Z̃k and Ỹk respectively. Figure 2.4 depicts
the amplitude Bode plots of the FOM Σ and the reduced systems Σk, ΣSl

k and

Σ̃k. As Figure 2.4 illustrates, all the reduced models match the FOM quite
well. More importantly, the approximate balanced truncation using the low-
rank Gramians yields almost the same result as the exact balanced truncation.
These results once more prove the effectiveness of the Smith-type methods.
The amplitude Bode plots of the error systems Σ−Σk, Σ−ΣSl

k and Σ− Σ̃k
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are illustrated in Figure 2.5 and all the relative H∞ norms of the error sys-
tems are tabulated in Table 2.2. As in the previous example, ΣSl

k and Σ̃k are

almost identical. The relative H∞ norm of the error ΣSl
k − Σ̃k is O(10−9). We

note that ΣSl
k has been obtained using a Cholesky factor with 300 columns;

on the other hand Σ̃k has been obtained using a Cholesky factor with only
19 columns, which proves the effectiveness of the modified Smith’s method.
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Fig. 2.4. The amplitude Bode plots of the FOM Σ and the reduced systems Σk

(Exact Balancing), ΣSl
k (LR-Smith Balancing) and Σ̃k (Mod. LR-Smith Balancing)

for the Random Model

Table 2.2. Numerical Results for the Random Model

‖Σ − Σk‖H∞

‚‚Σ − ΣSl
k

‚‚
H∞

‚‚‚Σ − Σ̃k

‚‚‚
H∞

‚‚‚ΣSl
k − Σ̃k

‚‚‚
H∞

1.47 × 10−4 1.47 × 10−4 1.47 × 10−4 2.40 × 10−9

‖Σk − ΣSl
k ‖H∞ ‖Σk − Σ̃k‖H∞

7.25 × 10−11 7.25 × 10−11
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2.8 Conclusions

We have reviewed several low-rank methods to solve Lyapunov equations
which are based on Smith-type methods, with the goal of facilitating the
efficient model reduction of large-scale linear systems. The low-rank meth-
ods covered included the Low-Rank ADI method, the Cholesky Factor ADI
method, the Low-Rank Smith(l) method, and the modified Low-Rank Smith
(l) method. The low-rank factored versions of the ADI method reduced the
work required fromO(n3) toO(n) for sparse matrices and the required storage
from O(n2) to O(nr) where r is the numerical rank of the solution. Because
these low-rank methods produce the Cholesky factor of the solution to the
Lyapunov equation, they are especially well-suited to be used in conjunction
with approximate balanced truncation to reduce large-scale linear systems.
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Summary. In this paper we give a survey on balanced truncation model order
reduction for linear time-invariant continuous-time systems in descriptor form. We
first give a brief overview of the basic concepts from linear system theory and then
present balanced truncation model reduction methods for descriptor systems and
discuss their algorithmic aspects. The efficiency of these methods is demonstrated
by numerical experiments.

3.1 Introduction

We study model order reduction for linear time-invariant continuous-time sys-
tems

E ẋ(t) = Ax(t) +B u(t), x(0) = x0,
y(t) = C x(t),

(3.1)

where E,A ∈ R
n,n, B ∈ R

n,m, C ∈ R
p,n, x(t) ∈ R

n is the state vector,
u(t) ∈ R

m is the control input, y(t) ∈ R
p is the output and x0 ∈ R

n is the
initial value. The number of state variables n is called the order of system
(3.1). If I = E, then (3.1) is a standard state space system. Otherwise, (3.1)
is a descriptor system or generalized state space system. Such systems arise
in a variety of applications including multibody dynamics with constrains,
electrical circuit simulation and semidiscretization of partial differential equa-
tions, see [Ber90, BCP89, Cam80, Dai89, GF99, Sch95].

Modeling of complex physical and technical processes such as fluid flow,
very large system integrated (VLSI) chip design or mechanical systems simu-
lation, leads to descriptor systems of very large order n, while the number
m of inputs and the number p of outputs are typically small compared to n.
Despite the ever increasing computational speed, simulation, optimization or
real time controller design for such large-scale systems is difficult because of
storage requirements and expensive computations. In this case model order
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reduction plays an important role. It consists in approximating the descriptor
system (3.1) by a reduced-order system

Ẽ ˙̃x(t) = Ã x̃(t) + B̃ u(t), x̃(0) = x̃0,

ỹ(t) = C̃ x̃(t),
(3.2)

where Ẽ, Ã ∈ R
�,�, B̃ ∈ R

�,m, C̃ ∈ R
p,� and � � n. Note that systems (3.1)

and (3.2) have the same input u(t). We require the approximate model (3.2)
to preserve properties of the original system (3.1) like regularity, stability and
passivity. It is also desirable for the approximation error to be small. Moreover,
the computation of the reduced-order system should be numerically reliable
and efficient.

There exist various model reduction approaches for standard state space
systems such as balanced truncation [LHPW87, Moo81, SC89, TP84, Var87],
moment matching approximation [Bai02, FF95, Fre00, GGV94], singular per-
turbation approximation [LA89] and optimal Hankel norm approximation
[Glo84]. Surveys on standard state space system approximation and model
reduction can be found in [Ant04, ASG01, FNG92], see also Chapters 1 and
9 in this book.

A popular model reduction technique for large-scale standard state space
systems is moment matching approximation considered first in [FF95, GGV94].
This approach consists in projecting the dynamical system onto Krylov sub-
spaces computed by an Arnoldi or Lanczos process. Krylov subspace me-
thods are attractive for large-scale sparse systems, since only matrix-vector
multiplications are required, and they can easily be generalized for descrip-
tor systems, e.g., [BF01, Fre00, GGV96, Gri97]. Drawbacks of this tech-
nique are that stability and passivity are not necessarily preserved in the
reduced-order system and that there is no global approximation error bound,
see [Bai02, BF01, BSSY99, Bea04, Gug03] for recent contributions on this
topic.

Balanced truncation [LHPW87, Moo81, SC89, TP84, Var87] is another
well studied model reduction approach for standard state space systems. The
method makes use of the two Lyapunov equations

AP + PAT = −BBT , ATQ+QA = −CTC.

The solutions P and Q of these equations are called the controllability and
observability Gramians, respectively. The balanced truncation method con-
sists in transforming the state space system into a balanced form whose cont-
rollability and observability Gramians become diagonal and equal, together
with a truncation of those states that are both difficult to reach and to ob-
serve [Moo81]. An important property of this method is that the asymptotic
stability is preserved in the reduced-order system. Moreover, the existence
of a priory error bounds [Enn84, Glo84] allows an adaptive choice of the
state space dimension � of the reduced model depending on how accurate the
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approximation is needed. A difficulty in balanced truncation model reduc-
tion for large-scale problems is that two matrix Lyapunov equations have to
be solved. However, recent results on low rank approximations to the solu-
tions of Lyapunov equations [ASG03, Gra04, LW02, Pen99a, Pen00b] make
the balanced truncation model reduction approach attractive for large-scale
systems, see [Li00, LWW99, Pen99b]. The extension of balanced truncation
model reduction to descriptor systems has only recently been considered in
[LS00, PS94, Sty04a, Sty04b].

In this paper we briefly review some basic linear system concepts inclu-
ding fundamental solution matrix, transfer function, realizations, controllabi-
lity and observability Gramians, Hankel operators as well as Hankel singular
values that play a key role in balanced truncation. We also present generaliza-
tions of balanced truncation model reduction methods for descriptor systems
and discuss their numerical aspects.

Throughout the paper we will denote by R
n,m the space of n × m real

matrices. The complex plane is denoted by C, the open left half-plane is
denoted by C

−, and iR is the imaginary axis. Furthermore, R
− = (−∞, 0 )

and R
+
0 = [ 0, ∞ ). The matrix AT stands for the transpose of A ∈ R

n,m and
A−T = (A−1)T . We will denote by rank(A) the rank, by Im (A) the image
and by Ker (A) the null space of a matrix A. An identity matrix of order n is
denoted by In. We will use L

m
2 (I) to denote the Hilbert space of vector-valued

functions of dimension m whose elements are quadratically integrable on I,
where I ⊆ R or I = iR.

3.2 Descriptor Systems

In this section we give a brief overview of linear system concepts and discuss
the main differences between standard state space systems and systems in
descriptor form.

Consider the continuous-time descriptor system (3.1). Assume that the
pencil λE − A is regular, i.e., det(λE − A) �= 0 for some λ ∈ C. In this case
λE−A can be reduced to the Weierstrass canonical form [SS90]. There exist
nonsingular matrices W and T such that

E = W

[
Inf

0
0 N

]
T and A = W

[
J 0
0 In∞

]
T, (3.3)

where J and N are matrices in Jordan canonical form and N is nilpotent
with index of nilpotency ν. The numbers nf and n∞ are the dimensions of
the deflating subspaces of λE − A corresponding to the finite and infinite
eigenvalues, respectively, and ν is the index of the pencil λE−A and also the
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index of the descriptor system (3.1). The matrices

Pr = T−1

[
Inf

0
0 0

]
T and Pl = W

[
Inf

0
0 0

]
W−1 (3.4)

are the spectral projections onto the right and left deflating subspaces of the
pencil λE −A corresponding to the finite eigenvalues.

Using the Weierstrass canonical form (3.3), we obtain the following Lau-
rent expansion at infinity for the generalized resolvent

(λE −A)−1 =
∞∑

k=−∞
Fkλ

−k−1, (3.5)

where the coefficients Fk have the form

Fk =

⎧⎪⎪⎨⎪⎪⎩
T−1

[
Jk 0
0 0

]
W−1, k = 0, 1, 2 . . . ,

T−1

[
0 0
0 −N−k−1

]
W−1, k = −1,−2, . . . .

(3.6)

Let the matrices

W−1B =

[
B1

B2

]
and CT−1 = [C1, C2 ]

be partitioned in blocks conformally to E and A in (3.3). Under the coordinate

transformation Tx(t) =
[
zT
1 (t), zT

2 (t)
]T

, system (3.1) is decoupled in the slow
subsystem

ż1(t) = Jz1(t) +B1u(t), z1(0) = z0
1 , (3.7)

and the fast subsystem

Nż2(t) = z2(t) +B2u(t), z2(0) = z0
2 , (3.8)

with y(t) = C1z1(t) + C2z2(t) and Tx0 =
[
(z0

1)T , (z0
2)T

]T
.

Equation (3.7) has a unique solution for any integrable input u(t) and any
given initial value z0

1 ∈ R
nf , see [Kai80]. This solution has the form

z1(t) = etJz0
1 +

∫ t

0

e(t−τ)JB1u(τ) dτ.

The unique solution of (3.8) is given by

z2(t) = −
ν−1∑
k=0

NkB2u
(k)(t). (3.9)

We see from (3.9) that for the existence of a classical smooth solution z2(t), it
is necessary that the input function u(t) is sufficiently smooth and the initial



3 Balanced Truncation Model Reduction for Systems in Descriptor Form 87

value z0
2 satisfies

z0
2 = −

ν−1∑
k=0

NkB2u
(k)(0).

Therefore, unlike for standard state space systems, the initial value x0 of the
descriptor system (3.1) has to be consistent, i.e., it must satisfy the condition

(I − Pr)x0 =
ν−1∑
k=0

F−k−1Bu
(k)(0),

where Pr is the spectral projector as in (3.4) and the matrices Fk are given
in (3.6).

Thus, if the pencil λE−A is regular, u(t) is ν times continuously differen-
tiable and the initial value x0 is consistent, then system (3.1) has a unique,
continuously differentiable solution x(t) given by

x(t) = F(t)Ex0 +

∫ t

0

F(t− τ)Bu(τ) dτ +

ν−1∑
k=0

F−k−1Bu
(k)(t),

where

F(t) = T−1

[
etJ 0
0 0

]
W−1 (3.10)

is a fundamental solution matrix of system (3.1).
If the initial condition x0 is inconsistent or the input u(t) is not sufficiently

smooth, then the solution of the descriptor system (3.1) may have impulsive
modes [Cob84, Dai89].

3.2.1 The Transfer Function

Consider the Laplace transform of a function f(t), t ∈ R, given by

f(s) = L[f(t)] =

∫ ∞

0

e−stf(t) dt, (3.11)

where s is a complex variable called frequency. A discussion of the convergence
region of the integral (3.11) in the complex plane and properties of the Laplace
transform may be found in [Doe71]. Applying the Laplace transform to (3.1)
and taking into account that L[ẋ(t)] = sx(s)− x(0), we have

y(s) = C(sE −A)−1Bu(s) + C(sE −A)−1Ex(0), (3.12)

where x(s), u(s) and y(s) are the Laplace transforms of x(t), u(t) and y(t),
respectively. The rational matrix-valued function G(s) = C(sE − A)−1B is
called the transfer function of the continuous-time descriptor system (3.1).
Equation (3.12) shows that if Ex(0)=0, then G(s) gives the relation between
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the Laplace transforms of the input u(t) and the output y(t). In other words,
G(s) describes the input-output behavior of (3.1) in the frequency domain.

A frequency response of the descriptor system (3.1) is given by G(iω),
i.e., the values of the transfer function on the imaginary axis. For an input
function u(t) = eiωtu0 with ω ∈ R and u0 ∈ R

m, we get from (3.1) that

y(t) = G(iω)eiωtu0.

Thus, the frequency response G(iω) gives a transfer relation from the periodic
input u(t) = eiωtu0 into the output y(t).

Definition 3.2.1. The transfer function G(s) is proper if lim
s→∞

G(s) <∞,

and improper otherwise. If lim
s→∞

G(s) = 0, then G(s) is called strictly proper.

Using the generalized resolvent equation (3.5), the transfer function G(s)
can be expanded into a Laurent series at s =∞ as

G(s) =

∞∑
k=−∞

CFk−1Bs
−k,

where CFk−1B are the Markov parameters of (3.1). Note that CFk−1B = 0
for k ≤ −ν, where ν is the index of the pencil λE − A. One can see that the
transfer function G(s) can be additively decomposed as G(s) = Gsp(s)+P(s),
where

Gsp(s) =
∞∑

k=1

CFk−1Bs
−k and P(s) =

0∑
k=−ν+1

CFk−1Bs
−k (3.13)

are, respectively, the strictly proper part and the polynomial part of G(s). The
transfer function G(s) is strictly proper if and only if CFk−1B = 0 for k ≤ 0.
Moreover, G(s) is proper if and only if CFk−1B = 0 for k < 0. Obviously, if
the pencil λE −A is of index at most one, then G(s) is proper.

Let H∞ be a space of all proper rational transfer functions that are analytic
and bounded in the closed right half-plane. The H∞-norm of G(s) ∈ H∞ is
defined via

‖G‖H∞
= sup

u 
=0

‖Gu‖L
p
2(iR)

‖u‖Lm
2 (iR)

= sup
ω∈R

‖G(iω)‖2,

where ‖·‖2 denotes the spectral matrix norm. By the Parseval identity [Rud87]
we have ‖G‖H∞

= sup
u
=0

‖y‖L
p
2(R)/‖u‖Lm

2 (R), i.e., the H∞-norm of G(s) gives the

ratio of the output energy to the input energy of the descriptor system (3.1).

3.2.2 Controllability and Observability

In contrast to standard state space systems, for descriptor systems, there are
several different notions of controllability and observability, see [BBMN99,
Cob84, Dai89, YS81] and the references therein. We consider only complete
controllability and observability here.
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Definition 3.2.2. The descriptor system (3.1) is called completely control-
lable (C-controllable) if

rank [αE − βA, B ] = n for all (α, β) ∈ (C× C) \ {(0, 0)}.

C-controllability implies that for any given initial state x0 ∈ R
n and final

state xf ∈ R
n, there exists a control input u(t) that transfers the system from

x0 to xf in finite time. This notion follows [BBMN99, YS81] and is consistent
with the definition of controllability given in [Dai89].

Observability is the dual property of controllability.

Definition 3.2.3. The descriptor system (3.1) is called completely observ-
able (C-observable) if

rank [αET − βAT , CT ] = n for all (α, β) ∈ (C× C) \ {(0, 0)}.

C-observability implies that if the output is zero for all solutions of the
descriptor system (3.1) with a zero input, then this system has only the trivial
solution.

The following theorem gives equivalent conditions for system (3.1) to be
C-controllable and C-observable.

Theorem 3.2.4. [YS81] Consider a descriptor system (3.1), where λE − A
is regular.

1. System (3.1) is C-controllable if and only if rank [λE − A, B ] = n for
all finite λ ∈ C and rank [E, B ] = n.

2. System (3.1) is C-observable if and only if rank [λET −AT , CT ] = n for
all finite λ ∈ C and rank [ET , CT ] = n.

Other equivalent algebraic and geometric characterizations of controllabi-
lity and observability for descriptor systems can be found in [Cob84, Dai89].

3.2.3 Stability

In this subsection we present some results from [Dai89, Sty02a] on stability
for the descriptor system (3.1).

Definition 3.2.5. The descriptor system (3.1) is called asymptotically stable
if lim

t→∞
x(t) = 0 for all solutions x(t) of Eẋ(t) = Ax(t).

The following theorem collects equivalent conditions for system (3.1) to
be asymptotically stable.

Theorem 3.2.6. [Dai89, Sty02a] Consider a descriptor system (3.1) with
a regular pencil λE −A. The following statements are equivalent.

1. System (3.1) is asymptotically stable.
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2. All finite eigenvalues of the pencil λE −A lie in the open left half-plane.
3. The projected generalized continuous-time Lyapunov equation

ETXA+ATXE = −PT
r QPr, X = PT

l XPl

has a unique Hermitian, positive semidefinite solution X for every Her-
mitian, positive definite matrix Q.

In the sequel, the pencil λE −A will be called c-stable if it is regular and
all the finite eigenvalues of λE − A have negative real part. Note that the
infinite eigenvalues of λE −A do not affect the behavior of the homogeneous
system at infinity.

3.2.4 Gramians and Hankel Singular Values

Assume that the pencil λE −A is c-stable. Then the integrals

Gpc =

∫ ∞

0

F(t)BBTFT (t) dt and Gpo =

∫ ∞

0

FT (t)CTCF(t) dt

exist, where F(t) is as in (3.10). The matrix Gpc is called the proper controlla-
bility Gramian and the matrix Gpo is called the proper observability Gramian
of the continuous-time descriptor system (3.1), see [Ben97, Sty02a]. The im-
proper controllability Gramian and the improper observability Gramian of the
system (3.1) are defined by

Gic =

−1∑
k=−ν

FkBB
TFT

k and Gio =

−1∑
k=−ν

FT
k C

TCFk,

respectively. Here the matrices Fk are as in (3.6). If E = I, then Gpc and Gpo

are the usual controllability and observability Gramians for standard state
space systems [Glo84]. Using the Parseval identity [Rud87], the Gramians can
be rewritten in frequency domain as

Gpc =
1

2π

∫ ∞

−∞
(iωE −A)−1PlBB

TPT
l (−iωE −A)−T dω,

Gpo =
1

2π

∫ ∞

−∞
(−iωE −A)−TPT

r C
TCPr(iωE −A)−1dω,

Gic =
1

2π

∫ 2π

0

(eiωE −A)−1(I − Pl)BB
T (I − Pl)

T (e−iωE −A)−T dω,

Gio =
1

2π

∫ 2π

0

(e−iωE −A)−T (I − Pr)
TCTC(I − Pr)(e

iωE −A)−1dω.

It has been proven in [Sty02a] that the proper controllability and observability
Gramians are the unique symmetric, positive semidefinite solutions of the pro-
jected generalized continuous-time algebraic Lyapunov equations (GCALEs)
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E GpcA
T +AGpcE

T = −PlBB
TPT

l , Gpc = PrGpcP
T
r , (3.14)

ETGpoA+ATGpoE = −PT
r C

TCPr, Gpo = PT
l GpoPl. (3.15)

Furthermore, the improper controllability and observability Gramians are the
unique symmetric, positive semidefinite solutions of the projected generalized
discrete-time algebraic Lyapunov equations (GDALEs)

AGicA
T − E GicE

T = (I − Pl)BB
T (I − Pl)

T , PrGicP
T
r = 0, (3.16)

ATGioA− ETGioE = (I − Pr)
TCTC(I − Pr), PT

l GioPl = 0. (3.17)

Similarly as in standard state space systems [Glo84], the controllability
and observability Gramians can be used to define Hankel singular values for
the descriptor system (3.1) that are of great importance in model reduction
via balanced truncation.

Consider the matrices GpcE
TGpoE and GicA

TGioA. These matrices play the
same role for descriptor systems as the product of the controllability and ob-
servability Gramians for standard state space systems [Glo84, ZDG96]. It has
been shown in [Sty04b] that all the eigenvalues of GpcE

TGpoE and GicA
TGioA

are real and non-negative. The square roots of the largest nf eigenvalues of
the matrix GpcE

TGpoE, denoted by ςj , are called the proper Hankel singular
values of the continuous-time descriptor system (3.1). The square roots of the
largest n∞ eigenvalues of the matrix GicA

TGioA, denoted by θj , are called the
improper Hankel singular values of system (3.1). Recall that nf and n∞ are
the dimensions of the deflating subspaces of the pencil λE−A corresponding
to the finite and infinite eigenvalues, respectively.

We will assume that the proper and improper Hankel singular values are
ordered decreasingly, i.e., ς1 ≥ ς2 ≥ . . .≥ ςnf

≥ 0 and θ1 ≥ θ2 ≥ . . .≥ θn∞
≥ 0.

For E = I, the proper Hankel singular values are the classical Hankel singular
values of standard state space systems [Glo84, Moo81].

Since the proper and improper controllability and observability Gramians
are symmetric and positive semidefinite, there exist Cholesky factorizations

Gpc = RpR
T
p , Gpo = LpL

T
p ,

Gic = RiR
T
i , Gio = LiL

T
i ,

(3.18)

where the lower triangular matrices Rp, Lp, Ri, Li ∈ R
n,n are Cholesky factors

[GV96] of the Gramians. In this case the proper Hankel singular values of
system (3.1) can be computed as the nf largest singular values of the matrix
LT

p ERp, and the improper Hankel singular values of (3.1) are the n∞ largest

singular values of the matrix LT
i ARi, see [Sty04b].

For the descriptor system (3.1), we consider a proper Hankel operator Hp

that transforms the past inputs u−(t) (u−(t) = 0 for t ≥ 0) into the present
and future outputs y+(t) (y+(t) = 0 for t < 0) through the state x(0)∈ Im (Pr),
see [Sty03]. This operator is defined via

y+(t) = (Hpu−)(t) =

∫ 0

−∞
Gsp(t− τ)u−(τ) dτ, t ≥ 0, (3.19)
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where Gsp(t) = CF(t)B, t ≥ 0. If the pencil λE −A is c-stable, then Hp acts
from L

m
2 (R−) into L

p
2(R

+
0 ). In this case one can show that Hp is a Hilbert-

Schmidt operator and its non-zero singular values coincide with the non-zero
proper Hankel singular values of system (3.1).

Unfortunately, we do not know a physically meaningful improper Hankel
operator. We can only show that the non-zero improper Hankel singular values
of system (3.1) are the non-zero singular values of the improper Hankel matrix

Hi =

⎡⎢⎢⎢⎢⎣
CF−1B CF−2B · · · CF−νB

CF−2B . .
.

0
... . .

.

. .
. ...

CF−νB 0 · · · 0

⎤⎥⎥⎥⎥⎦
with the Markov parameters CFk−1B, see [Sty03].

3.2.5 Realizations

For any rational matrix-valued function G(s), there exist matrices E, A, B
and C such that G(s) = C(sE − A)−1B, see [Dai89]. A descriptor system
(3.1) with these matrices is called a realization of G(s). We will also denote
a realization of G(s) by G = [E, A, B, C ] or by

G =

[
sE −A B

C

]
.

Note that the realization of G(s) is, in general, not unique [Dai89]. Among
different realizations of G(s) we are interested only in particular realizations
that are useful for reduced-order modeling.

Definition 3.2.7. A realization [E, A, B, C] of the transfer function G(s)
is called minimal if the dimension of the matrices E and A is as small as
possible.

The following theorem gives necessary and sufficient conditions for a reali-
zation of G(s) to be minimal.

Theorem 3.2.8. [Dai89, Sty04b] Consider a descriptor system (3.1), where
the pencil λE −A is c-stable. The following statements are equivalent:

1. The realization [E, A, B, C ] is minimal.
2. The descriptor system (3.1) is C-controllable and C-observable.
3. The rank conditions rank(Gpc) = rank(Gpo) = rank(GpcE

TGpoE) = nf

and rank(Gic) = rank(Gio) = rank(GicA
TGioA) = n∞ hold.

4. The proper and improper Hankel singular values of (3.1) are positive.
5. The rank conditions rank(Hp) = nf and rank(Hi) = n∞ hold.
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Remark 3.2.9. So far we have considered only descriptor systems without
a feed-through term, i.e., D = 0 in the output equation y(t) = Cx(t)+Du(t).
However, if we allow for the matrixD to be non-zero, then the condition for the
realization of the transfer function G(s) = C(sE−A)−1B+D to be minimal
should be reformulated as follows: the realization [E, A, B, C, D ] is minimal
if and only if the descriptor system is C-controllable and C-observable, and
AKer (E) ⊆ Im (E), see [Sok03, VLK81]. The latter condition implies that
the nilpotent matrix N in the Weierstrass canonical form (3.3) does not have
any 1× 1 Jordan blocks.

Definition 3.2.10. A realization [E, A, B, C ] of the transfer function G(s)
is called balanced if

Gpc = Gpo =

[
Σ 0
0 0

]
and Gic = Gio =

[
0 0
0 Θ

]
,

where Σ = diag(ς1, . . . , ςnf
) and Θ = diag(θ1, . . . , θn∞

).

For a minimal realization [E,A,B,C ] with a c-stable pencil λE − A,
it is possible to find nonsingular transformation matrices Wb and Tb such
that the transformed realization [WT

b ETb, W
T
b ATb, W

T
b B, CTb ] is balanced,

see [Sty04a]. These matrices are given by

Wb =
[
LpUpΣ

−1/2, LiUiΘ
−1/2

]
,

Tb =
[
RpVpΣ

−1/2, RiVi Θ
−1/2

]
.

(3.20)

Observe that, as for standard state space systems [Glo84, Moo81], the ba-
lancing transformation for descriptor systems is not unique. It should also be
noted that for the matrices Wb and Tb as in (3.20), we have

Eb = WT
b ETb =

[
Inf

0
0 E2

]
, Ab = WT

b ATb =

[
A1 0
0 In∞

]
, (3.21)

where the matrix E2 = Θ−1/2UT
i L

T
i ERiViΘ

−1/2 is nilpotent and the matrix
A1 = Σ−1/2UT

p L
T
p ARpVpΣ

−1/2 is nonsingular. Thus, the pencil λEb − Ab

of a balanced descriptor system is in a form that resembles the Weierstrass
canonical form.

3.3 Balanced Truncation

In this section we present a generalization of balanced truncation model re-
duction to descriptor systems.

Note that computing the balanced realization may be an ill-conditioned
problem if the descriptor system (3.1) has small proper or improper Hankel
singular values. Moreover, if system (3.1) is not minimal, then it has states
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that are uncontrollable or/and unobservable. These states correspond to the
zero proper and improper Hankel singular values and can be truncated without
changing the input-output relation in the system. Note that the number of
non-zero improper Hankel singular values of (3.1) is equal to rank(GicA

TGioA),
which can in turn be bounded by

rank(GicA
TGioA) ≤ min(νm, νp, n∞),

where ν is the index of the pencil λE − A, m is the number of inputs, p is
the number of outputs and n∞ is the dimension of the deflating subspace of
λE −A corresponding to the infinite eigenvalues. This estimate shows that if
the number of inputs or outputs multiplied by the index ν is much smaller than
the dimension n∞, then the order of system (3.1) can be reduced significantly
by the truncation of the states corresponding to the zero improper Hankel
singular values.

Furthermore, we have the following theorem that gives an energy interpre-
tation of the proper controllability and observability Gramians.

Theorem 3.3.1. [Sty04b] Consider a descriptor system (3.1) that is asympto-
tically stable and C-controllable. Let Gpc and Gpo be the proper controllability
and observability Gramians of (3.1) and let

Ey := ‖y‖2
L

p
2(R+

0 )
=

∞∫
0

yT (t)y(t) dt, Eu := ‖u‖2
Lm
2 (R−) =

0∫
−∞

uT (t)u(t) dt

be a future output energy and a past input energy, respectively. If x0 ∈ Im (Pr)
and u(t) = 0 for t ≥ 0, then Ey = xT

0 E
TGpo E x0. Moreover, for

umin(t) = BTFT (−t)G−
pcx0, we have

Eumin
= min

u∈Lm
2 (R−)

Eu = xT
0 G−

pcx0,

where the matrix G−
pc is a solution of the three matrix equations

GpcG−
pcGpc = Gpc, G−

pcGpcG−
pc = G−

pc, (G−
pc)

T = G−
pc.

Theorem 3.3.1 implies that a large past input energy Eu is required to
reach the state x(0) = Prx0 which lies in an invariant subspace of Gpc corre-
sponding to its small non-zero eigenvalues from the state x(−∞) = 0. More-
over, if x0 is contained in an invariant subspace of the matrix ETGpoE cor-
responding to its small non-zero eigenvalues, then the initial state x(0) = x0

has a small effect on the future output energy Ey. For the balanced system,
we have

Gpc = ETGpoE =

[
Σ 0
0 0

]
.

In this case the states related to the small proper Hankel singular values are
difficult to reach and to observe at the same time. The truncation of these
states essentially does not change the system properties.
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Unfortunately, this does not hold for the improper Hankel singular va-
lues. If we truncate the states that correspond to the small non-zero improper
Hankel singular values, then the pencil of the reduced-order system may get
finite eigenvalues in the closed right half-plane, see [LS00]. In this case the
approximation may be inaccurate.

Remark 3.3.2. The equations associated with the improper Hankel singular
values describe constraints of the system, i.e., they define a manifold in which
the solution dynamics takes place. For this reason, a truncation of these equa-
tions corresponds to ignoring constraints and, hence, physically meaningless
results may be expected.

Note that to perform order reduction we do not need to transform the de-
scriptor system into a balanced form explicitly. It is sufficient to determine the
subspaces associated with dominant proper and non-zero improper Hankel sin-
gular values and project the descriptor system on these subspaces. To compute
a reduced-order system we can use the following algorithm which is a gener-
alization of the square root balanced truncation method [LHPW87, TP84] to
the descriptor system (3.1).

Algorithm 3.3.1. Generalized Square Root (GSR) method.

Input: A realization G = [E, A, B, C ] such that λE −A is c-stable.

Output: A reduced-order system G̃ = [ Ẽ, Ã, B̃, C̃ ].

1. Compute the Cholesky factors Rp and Lp of the proper Gramians
Gpc = RpR

T
p and Gpo = LpL

T
p that satisfy (3.14) and (3.15), respectively.

2. Compute the Cholesky factors Ri and Li of the improper Gramians
Gic = RiR

T
i and Gio = LiL

T
i that satisfy (3.16) and (3.17), respectively.

3. Compute the skinny singular value decomposition

LT
p ERp = [U1, U2 ]

[
Σ1 0
0 Σ2

]
[V1, V2 ]

T
, (3.22)

where the matrices [U1, U2 ] and [V1, V2 ] have orthonormal columns,
Σ1 = diag(ς1, . . . , ς�f

), Σ2 = diag(ς�f +1, . . . , ςrp
) with rp = rank(LT

p ERp).
4. Compute the skinny singular value decomposition

LT
i ARi = U3Θ3V

T
3 , (3.23)

where U3 and V3 have orthonormal columns, Θ3 = diag(θ1, . . . , θ�∞)
with �∞ = rank(LT

i ARi).
5. Compute the projection matrices

W� = [LpU1Σ
−1/2
1 , LiU3Θ

−1/2
3 ], T� = [RpV1Σ

−1/2
1 , RiV3Θ

−1/2
3 ].
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6. Compute the reduced-order system

[ Ẽ, Ã, B̃, C̃ ] = [WT
� ET�, W

T
� AT�, W

T
� B, CT� ].

This method has to be used with care, since if the original system (3.1) is
highly unbalanced or if the angle between the deflating subspaces of the pencil
λE −A corresponding to the finite and infinite eigenvalues is small, then the
projection matrices W� and T� will be ill-conditioned. To avoid accuracy loss
in the reduced-order model, a square root balancing free method has been
proposed in [Var87] for standard state space systems. This method can be
generalized to descriptor systems as follows.

Algorithm 3.3.2.Generalized Square Root Balancing Free (GSRBF)method.

Input: A realization G = [E, A, B, C ] such that λE −A is c-stable.

Output: A reduced-order system Ĝ = [ Ê, Â, B̂, Ĉ ].

1. Compute the Cholesky factors Rp and Lp of the proper Gramians
Gpc = RpR

T
p and Gpo = LpL

T
p that satisfy (3.14) and (3.15), respectively.

2. Compute the Cholesky factors Ri and Li of the improper Gramians
Gic = RiR

T
i and Gio = LiL

T
i that satisfy (3.16) and (3.17), respectively.

3. Compute the skinny singular value decomposition (3.22).
4. Compute the skinny singular value decomposition (3.23).
5. Compute the skinny QR decompositions

[RpV1, RiV3 ] = QRR0, [LpU1, LiU3 ] = QLL0,

where QR, QL ∈ R
n,� have orthonormal columns and R0, L0 ∈ R

�,� are
nonsingular.

6. Compute the reduced-order system

[ Ê, Â, B̂, Ĉ ] = [QT
LEQR, Q

T
LAQR, Q

T
LB, CQR ].

The GSR and GSRBF methods are formally equivalent in the sense that in
exact arithmetic they return reduced systems with the same transfer function.
However, since the projection matrices QL and QR computed by the GSRBF
method have orthonormal columns, they may be significantly less sensitive
to perturbations than the projection matrices W� and T� computed by the
GSR method. Observe that the realization [ Ê, Â, B̂, Ĉ ] is, in general, not

balanced and the pencil λÊ − Â is not in the block diagonal form (3.21).
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3.3.1 Stability and Approximation Error

Computing the reduced-order descriptor system via balanced truncation can
be interpreted as follows. At first we transform the asymptotically stable de-
scriptor system (3.1) to the block diagonal form[

W̌ (sE −A)Ť W̌B

CŤ

]
=

⎡⎣ sEf −Af 0 Bf

0 sE∞ −A∞ B∞
Cf C∞

⎤⎦ ,
where W̌ and Ť are nonsingular, the pencil λEf − Af has only those finite
eigenvalues that are the finite eigenvalues of λE − A, and all the eigenva-
lues of λE∞ − A∞ are infinite. Then we reduce the order of the subsystems
[Ef , Af , Bf , Cf ] and [E∞, A∞, B∞, C∞ ] separately. Clearly, the reduced-
order system (3.2) is asymptotically stable and minimal.

The described decoupling of system matrices is equivalent to the additive
decomposition of the transfer function as G(s) = Gsp(s) + P(s), where

Gsp(s) = Cf (sEf −Af )−1Bf and P(s) = C∞(sE∞ −A∞)−1B∞

are the strictly proper part and the polynomial part of G(s). The reduced-

order system (3.2) has the transfer function G̃(s) = G̃sp(s) + P̃(s), where

G̃sp(s) = C̃f (sẼf − Ãf )−1B̃f and P̃(s) = C̃∞(sẼ∞ − Ã∞)−1B̃∞

are the transfer functions of the reduced-order subsystems. For the subsystem
Gsp = [Ef , Af , Bf , Cf ] with nonsingular Ef , we have the following upper
bound on the H∞-norm of the absolute error

‖Gsp − G̃sp‖H∞
= sup

ω∈R

‖Gsp(iω)− G̃sp(iω)‖2 ≤ 2(ς�f+1 + . . .+ ςnf
)

that can be derived similarly as in [Enn84, Glo84] for the standard state space
case.

Reducing the order of the subsystem P = [E∞, A∞, B∞, C∞ ] is equiva-
lent to the balanced truncation model reduction of the discrete-time system

A∞ξk+1 = E∞ξk +B∞ηk,
wk = C∞ξk,

with a nonsingular matrix A∞. The Hankel singular values of this system
are just the improper Hankel singular values of (3.1). Since we truncate only
the states corresponding to the zero improper Hankel singular values, the
equality P(s) = P̃(s) holds and the index of the reduced-order system is
equal to deg(P)+1, where deg(P) denotes the degree of the polynomial P(s),
or, equivalently, the multiplicity of the pole at infinity of the transfer function
G(s). In this case the error system G(s)− G̃(s) = Gsp(s)− G̃sp(s) is strictly
proper, and we have the following H∞-norm error bound
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‖G− G̃‖H∞
≤ 2(ς�f +1 + . . .+ ςnf

).

Existence of this error bound is an important property of the balanced trun-
cation model reduction approach for descriptor systems. It makes this ap-
proach preferable compared, for instance, to moment matching techniques as
in [FF95, Fre00, GGV96, Gri97].

3.3.2 Numerical Aspects

To reduce the order of the descriptor system (3.1) we have to compute the
Cholesky factors of the proper and improper controllability and observability
Gramians that satisfy the projected generalized Lyapunov equations (3.14),
(3.15), (3.16) and (3.17). These factors can be determined using the generali-
zed Schur-Hammarling method [Sty02a, Sty02b] without computing the solu-
tions of Lyapunov equations explicitly. Combining this method with the GSR
method, we obtain the following algorithm for computing the reduced-order
descriptor system (3.2).

Algorithm 3.3.3. Generalized Schur-Hammarling Square Root method.

Input: A realization G = [E, A, B, C ] such that λE −A is c-stable.

Output: A reduced-order realization G̃ = [ Ẽ, Ã, B̃, C̃ ].
1. Compute the generalized Schur form

E = V

[
Ef Eu

0 E∞

]
UT and A = V

[
Af Au

0 A∞

]
UT , (3.24)

where U and V are orthogonal, Ef is upper triangular nonsingular, E∞ is
upper triangular nilpotent, Af is upper quasi-triangular and A∞ is upper
triangular nonsingular.

2. Compute the matrices V TB =

[
Bu

B∞

]
and CU = [Cf , Cu ].

3. Solve the system of generalized Sylvester equations

EfY − ZE∞ = −Eu,
AfY − ZA∞ = −Au.

(3.25)

4. Compute the Cholesky factors Rf , Lf , R∞ and L∞ of the solutions
Xpc = RfR

T
f , Xpo = LfL

T
f , Xic = R∞R

T
∞ and Xio = L∞L

T
∞ of the

generalized Lyapunov equations

EfXpcA
T
f +AfXpcE

T
f = −(Bu − ZB∞)(Bu − ZB∞)T , (3.26)

ET
f XpoAf +AT

f XpoEf = −CT
f Cf , (3.27)

A∞XicA
T
∞ − E∞XicE

T
∞ = B∞BT

∞, (3.28)

AT
∞XioA∞ − ET

∞XioE∞ = (CfY + Cu)T (CfY + Cu). (3.29)
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5. Compute the skinny singular value decompositions

LT
f EfRf = [U1, U2 ]

[
Σ1

Σ2

]
[V1, V2 ]T , LT

∞A∞R∞ = U3Θ3V
T
3 ,

where [U1, U2 ], [V1, V2 ], U3 and V3 have orthonormal columns,
Σ1 = diag(ς1, . . . , ς�f

), Σ2 = diag(ς�f+1, . . . , ςr), Θ3 = diag(θ1, . . . , θ�∞)
with r = rank(LT

f EfRf ) and �∞ = rank(LT
∞A∞R∞).

6. Compute Wf = LfU1Σ
−1/2
1 , W∞ = L∞U3Θ

−1/2
3 , Tf = RfV1Σ

−1/2
1 and

T∞=R∞V3Θ
−1/2
3 .

7. Compute the reduced-order system [ Ẽ, Ã, B̃, C̃ ] with

Ẽ =

[
I�f

0
0 WT

∞E∞T∞

]
, Ã =

[
WT

f AfTf 0

0 I�∞

]
,

B̃ =

[
WT

f (Bu − ZB∞)

WT
∞B∞

]
, C̃ = [CfTf , (CfY + Cu)T∞ ].

To compute the generalized Schur form (3.24) we can use the QZ algorithm
[GV96, Wat00], the GUPTRI algorithm [DK93a, DK93b], or algorithms pro-
posed in [BV88, Var98]. To solve the generalized Sylvester equation (3.25) one
can use the generalized Schur method [KW89] or its recursive blocked modi-
fication [JK02] that is more suitable for large problems. The upper triangular
Cholesky factors Rf , LT

f , R∞ and LT
∞ of the solutions of the generalized Lya-

punov equations (3.26)-(3.29) can be determined without computing the solu-
tions themselves using the generalized Hammarling method [Ham82, Pen98].
Furthermore, the singular value decomposition of LT

f EfRf and LT
∞A∞R∞,

where all three factors are upper triangular, can be computed without form-
ing these products explicitly, see [BELV91, Drm00, GSV00] and references
therein.

Algorithm 3.3.3 and its balancing free version have been implemented as
a MATLAB-based function gbta in the Descriptor Systems Toolbox1 [Var00].

Since the generalized Schur-Hammarling method is based on computing
the generalized Schur form (3.24), it costs O(n3) flops and has the memory
complexity O(n2). Thus, this method can be used for problems of small and
medium size. Unfortunately, it does not take into account the sparsity or any
structure of the system and is not attractive for parallelization. Recently, ite-
rative methods related to the alternating direction implicit (ADI) method
and the Smith method have been proposed to compute low rank approxi-
mations of the solutions of standard large-scale sparse Lyapunov equations
[Li00, LW02, Pen99a]. It was observed that the eigenvalues of the symmetric
solutions of Lyapunov equations with low rank right-hand side generally de-
cay very rapidly, and such solutions may be well approximated by low rank
matrices, see [ASZ02, Pen00a, SZ02]. A similar result holds for projected gen-
eralized Lyapunov equations. Consider, for example, the projected GCALE

1 http://www.robotic.dlr.de/control/num/desctool.html
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(3.14). If it is possible to find a matrix X with a small number of columns
such that XXT is an approximate solution of (3.14), then X is referred to
as the low rank Cholesky factor of the solution Gpc of the projected GCALE
(3.14). It can be computed by the following algorithm that is a generalization
of the low rank alternating direction implicit (LR-ADI) method for standard
Lyapunov equation as suggested in [Li00, LW02, Pen99a].

Algorithm 3.3.4. Generalized LR-ADI method.

Input: Matrices E,A∈R
n,n,Q=PlB ∈ R

n,m, shift parameters τ1,. . . ,τq∈C
−.

Output: A low rank Cholesky factor Xk of the Gramian Gpc ≈ XkX
T
k .

1. X(1) =
√
−2Re(τ1) (E + τ1A)−1Q, X1 = X(1),

2. FOR k = 2, 3, . . .

a. X(k) =

√
Re(τk)

Re(τk−1)

(
I − (τk−1 + τk)(E + τkA)−1A

)
X(k−1),

b. Xk = [Xk−1, X(k) ].
END FOR

If all the finite eigenvalues of the pencil λE − A lie in the open left half-
plane, then Xk converges to the solution of the projected GCALE (3.14). The
rate of convergence depends strongly on the choice of the shift parameters
τ1, . . . , τq. The optimal shift parameters satisfy the generalized ADI minimax
problem

{τ1, . . . , τq} = arg min
{τ1,...,τq}∈C−

max
t∈Spf(E,A)

|(1− τ1t) · . . . · (1− τ q t)|
|(1 + τ1t) · . . . · (1 + τq t)|

,

where Spf (E,A) denotes the finite spectrum of the pencil λE−A, see [Sty05].
The computation of the optimal shift parameters is a difficult problem, since
the finite eigenvalues of the pencil λE − A (in particular, if it is large and
sparse) are in general unknown and expensive to compute. Instead, sub-
optimal ADI shift parameters τ1, . . . , τq can be determined by a heuristic
procedure as in [Pen99a, Algorithm 5.1] from a set of largest and smallest
(in modulus) approximate finite eigenvalues of λE−A that may be computed
by an Arnoldi process.

As a stopping criterion one can use the condition ‖X(k)‖/‖Xk‖ ≤ tol with
some matrix norm ‖·‖ and a user-defined tolerance tol. The iteration can also
be stopped as soon as a normalized residual norm

η(E,A, PlB;Xk) =
‖EXkX

T
k A

T +AXkX
T
k E

T + PlBB
TPT

l ‖
‖PlBB

TPT
l ‖

satisfies η(E,A, PlB;Xk) ≤ tol or a stagnation of η(E,A, PlB;Xk) is ob-
served, see [Pen99a] for an efficient computation of the Frobenius norm based
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normalized residuals. Note that if the low rank ADI method needs more itera-
tions than the number of available ADI shift parameters, then we reuse these
parameters in a cyclic manner.

It should also be noted that the matrices (E + τkA)−1 in Algorithm 3.3.4
do not have to be computed explicitly. Instead, we solve linear systems
(E + τkA)x = Plb either by computing (sparse) LU factorizations and for-
ward/backward substitutions or by using iterative Krylov subspace methods
[Saa96]. In the latter case the generalized low rank ADI method has the me-
mory complexity O(kADImn) and costs O(klskADImn) flops, where kls is the
number of linear solver iterations and kADI is the number of ADI iterations.
This method becomes efficient for large-scale sparse Lyapunov equations only
if klskADIm is much smaller than n. Note that if the matrices E and A have
a particular structure for which the hierarchical matrix arithmetic can be
used, then also the methods proposed in [Hac00, HGB02] can be applied to
compute the inverse of E + τkA.

A major difficulty in the numerical solution of the projected Lyapunov
equations by the low rank ADI method is that we need to compute the spectral
projections Pl and Pr onto the left and right deflating subspaces of the pencil
λE−A corresponding to the finite eigenvalues. This is in general very difficult,
but in many applications, such as control of fluid flow, electrical circuit simu-
lation and constrained multibody systems, the matrices E and A have some
special block structure. This structure can be used to construct the projections
Pl and Pr explicitly and cheaply, see [ET00, Mar96, Sch95, Sty04a].

3.3.3 Remarks

We close this section with some concluding remarks.

Remark 3.3.3. The GSR and the GSRBF methods can also be used to reduce
the order of unstable descriptor systems. To do this we first compute the ad-
ditive decomposition [KV92] of the transfer function G(s) = G−(s) +G+(s),
where G−(s) = C−(sE− − A−)−1B− and G+(s) = C+(sE+ − A+)−1B+.
Here the matrix pencil λE− − A− is c-stable and all the eigenvalues of the
pencil λE+ − A+ are finite and have non-negative real part. Then we de-

termine the reduced-order system G̃−(s) = C̃−(sẼ− − Ã−)−1B̃− by ap-
plying the balanced truncation model reduction method to the subsystem
G− = [E−, A−, B−, C− ]. Finally, the reduced-order approximation of G(s)

is given by G̃(s) = G̃−(s) + G+(s), where G+(s) is included unmodified.

Remark 3.3.4. To compute a low order approximation to a large-scale descrip-
tor system of index one with dense matrix coefficients E and A we can apply
the spectral projection method [BQQ04]. This method is based on the disc
and sign function iterative procedures and can be efficiently implemented on
parallel computers.
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Remark 3.3.5. An alternative model reduction approach for descriptor sys-
tems is the moment matching approximation which can be formulated as
follows. Suppose that s0 ∈ C is not an eigenvalue of the pencil λE −A. Then
the transfer function G(s) = C(sE −A)−1B can be expanded into a Laurent
series at s0 as

G(s) = C
(
I − (s− s0)(s0E −A)−1E

)−1
(s0E −A)−1B

= M0 +M1(s− s0) +M2(s− s0)
2 + . . . ,

where the matrices Mj = −C
(
(s0E −A)−1E

)j
(s0E − A)−1B are called the

moments of the descriptor system (3.1) at s0. The moment matching ap-
proximation problem for the descriptor system (3.1) consists in determining a

rational matrix-valued function G̃(s) such that the Laurent series expansion

of G̃(s) at s0 has the form

G̃(s) = M̃0 + M̃1(s− s0) + M̃2(s− s0)
2 + . . . , (3.30)

where the moments M̃j satisfy the moment matching conditions

Mj = M̃j , j = 0, 1, . . . , k. (3.31)

If s0 = ∞, then Mj = CFj−1B are the Markov parameters of (3.1)
and the corresponding approximation problem is known as partial real-
ization [GL83]. Computation of the partial realization for descriptor sys-
tems is an open problem. For s0 = 0, the approximation problem (3.30),
(3.31) reduces to the Padé approximation problem [BG96]. Efficient algo-
rithms based on Arnoldi and Lanzcos procedures for solving this problem
have been presented in [FF95, GGV94]. For an arbitrary complex num-
ber s0 �= 0, the moment matching approximation is the problem of ratio-
nal interpolation or shifted Padé approximation that has been considered
in [Bai02, BF01, FF95, Fre00, GGV96]. Apart from a single interpolation
point one can construct a reduced-order system with the transfer function
G̃(s) that matches G(s) at multiple points {s0, s1, . . . , sk}. Such an approx-
imation is called a multi-point Padé approximation or a rational interpolant
[AA00, BG96]. It can be computed efficiently for descriptor systems by the
rational Krylov subspace method [GGV96, Gri97, Ruh84].

3.4 Numerical Examples

In this section we present some numerical examples to illustrate the effective-
ness of the described model reduction methods for descriptor systems. The
computations were done on IBM RS 6000 44P Modell 270 with machine pre-
cision ε = 2.22× 10−16 using MATLAB 6.5. We apply these methods to two
different models: a semidiscretized Stokes equation and a constrained damped
mass-spring system.
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Semidiscretized Stokes Equation

Consider the instationary Stokes equation describing the flow of an incom-
pressible fluid

∂v

∂t
= ∆v −∇ρ+ f, (ξ, t) ∈ Ω× (0, te),

0 = div v, (ξ, t) ∈ Ω× (0, te)
(3.32)

with appropriate initial and boundary conditions. Here v(ξ, t) ∈ R
d is

the velocity vector (d = 2 or 3 is the dimension of the spatial domain),
ρ(ξ, t) ∈ R is the pressure, f(ξ, t) ∈ R

d is the vector of external forces, Ω ⊂ R
d

is a bounded open domain and te > 0 is the endpoint of the time interval.
The spatial discretization of the Stokes equation (3.32) by the finite difference
method on a uniform staggered grid leads to a descriptor system

v̇h(t) = A11vh(t) +A12ρh(t) +B1u(t),
0 = AT

12vh(t) +B2u(t),
y(t) = C1vh(t) + C2ρh(t),

(3.33)

where vh(t) ∈ R
nv and ρh(t) ∈ R

nρ are the semidiscretized vectors of veloci-
ties and pressures, respectively, see [Ber90]. The matrix A11 ∈ R

nv,nv is the
discrete Laplace operator, −A12 ∈ R

nv,nρ and−AT
12 ∈ R

nρ,nv are, respectively,
the discrete gradient and divergence operators. Due to the non-uniqueness of
the pressure, the matrix A12 has a rank defect one. In this case, instead of A12

we can take a full column rank matrix obtained fromA12 by discarding the last
column. Therefore, in the following we will assume without loss of generality
that A12 has full column rank. In this case system (3.33) is of index 2. The
matrices B1 ∈ R

nv,m, B2 ∈ R
nρ,m and the control input u(t) ∈ R

m are
resulting from the boundary conditions and external forces, the output y(t) is
the vector of interest. The order n = nv +nρ of system (3.33) depends on the
level of refinement of the discretization and is usually very large, whereas the
number m of inputs and the number p of outputs are typically small. Note
that the matrix coefficients in (3.33) given by

E =

[
I 0
0 0

]
and A =

[
A11 A12

AT
12 0

]
are sparse and have a special block structure. Using this structure, the pro-
jections Pl and Pr onto the left and right deflating subspaces of the pencil
λE −A can be computed as

Pl =

[
Π −ΠA11A12(A

T
12A12)

−1

0 0

]
, Pr =

[
Π 0

−(AT
12A12)

−1AT
12A11Π 0

]
,

where Π = I−A12(A
T
12A12)

−1AT
12 is the orthogonal projection onto Ker (AT

12)
along Im (A12), see [Sty04a].
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The spatial discretization of the Stokes equation (3.32) on a square domain
Ω = [0, 1] × [0, 1] by the finite difference method on a uniform staggered
80 × 80 grid leads to a problem of order n = 19520. The dimensions of the
deflating subspaces of the pencil λE−A corresponding to the finite and infinite
eigenvalues are nf = 6400 and n∞ = 13120, respectively. In our experiments
B = [BT

1 , B
T
2 ]T ∈ R

n,1 is chosen at random and we are interested in the first
velocity component, i.e., C = [ 1, 0, . . . , 0 ] ∈ R

1,n.
To reduce the order of the semidiscretized Stokes equation (3.33), we use

the GSR and the GSRBF methods, where the exact Cholesky factors Rp and
Lp of the proper Gramians are replaced by low rank Cholesky factors Rk and
Lk, respectively, such that Gpc ≈ RkR

T
k and Gpo ≈ LkL

T
k . The matrices Rk and

Lk have been computed by the generalized low rank ADI method with 20 shift
parameters applied to (E,A, PlB) and (ET , AT , PT

r C
T ), respectively.
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Fig. 3.1. Convergence history for the normalized residuals η(Rk)=η(E, A, PlB; Rk)
and η(Lk) = η(ET , AT , P T

r CT ; Lk) for the semidiscretized Stokes equation.

In Figure 3.1 we present the convergence history for the normalized resi-
duals η(E,A, PlB;Rk) and η(ET, AT, PT

r C
T;Lk) versus the iteration step k.

Figure 3.2 shows the approximate dominant proper Hankel singular values
ς̃j computed from the singular value decomposition of the matrix LT

70ER39

with R39 ∈ R
n,39 and L70 ∈ R

n,70. Note the Cholesky factors Ri and Li of
the improper Gramians of (3.33) can be computed in explicit form without
solving the generalized Lyapunov equations (3.16) and (3.17) numerically,
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Fig. 3.2. Approximate proper Hankel singular values for the semidiscretized Stokes
equation.
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see [Sty04a]. System (3.33) has only one non-zero improper Hankel singular
value θ1 = 0.0049743.

We approximate the semidiscretized Stokes equation (3.33) by two mo-
dels of order � = 11 (�f = 10, �∞ = 1) computed by the approximate
GSR and GSRBF methods. The absolute values of the frequency responses
of the full order and the reduced-order systems are not presented, since they
were impossible to distinguish. In Figure 3.3 we display the absolute errors
‖G(iω)−G̃(iω)‖2 and ‖G(iω)−Ĝ(iω)‖2 for a frequency range ω ∈ [ 10−2, 106 ]
as well as the approximate error bound computed as twice the sum of the trun-
cated approximate Hankel singular values ς̃11, . . . ς̃39. One can see that over
the displayed frequency range the absolute errors are smaller than 2× 10−10

which is much smaller than the discretization error which is of order 10−4.

Constrained Damped Mass-Spring System

Consider the holonomically constrained damped mass-spring system illus-
trated in Figure 3.4.

k1 ki ki+1 kg−1

d1 di di+1 dg−1

m1 mi mg

κ1 κi κg

δ1 δi δg

u

Fig. 3.4. A damped mass-spring system with a holonomic constraint.

The ith mass of weight mi is connected to the (i+ 1)st mass by a spring
and a damper with constants ki and di, respectively, and also to the ground by
a spring and a damper with constants κi and δi, respectively. Additionally, the
first mass is connected to the last one by a rigid
bar and it is influenced by the control u(t). The vibration of this system
is described by a descriptor system

ṗ(t) = v(t),
M v̇(t) = K p(t) +Dv(t)−GT λ(t) +B2u(t),

0 = G p(t),
y(t) = C1p(t),

(3.34)

where p(t) ∈ R
g is the position vector, v(t) ∈ R

g is the velocity vec-
tor, λ(t) ∈ R is the Lagrange multiplier, M = diag(m1, . . . ,mg) is the
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mass matrix, D and K are the tridiagonal damping and stiffness matrices,
G = [ 1, 0, . . . , 0, −1 ] ∈ R

1,g is the constraint matrix, B2 = e1 and
C1 = [ e1, e2, eg−1 ]T . Here ei denotes the ith column of the identity matrix
Ig. The descriptor system (3.34) is of index 3 and the projections Pl and Pr

can be computed as

Pl =

⎡⎣ Π1 0 −Π1M
−1DG1

−ΠT
1 D(I −Π1) ΠT

1 −ΠT
1 (K +DΠ1M

−1D)G1

0 0 0

⎤⎦ ,

Pr =

⎡⎣ Π1 0 0
−Π1M

−1D(I −Π1) Π1 0
GT

1 (KΠ1 −DΠ1M
−1D(I −Π1)) GT

1 DΠ1 0

⎤⎦ ,
where G1 = M−1GT (GM−1GT )−1 and Π1 = I − G1G is a projection onto
Ker (G) along Im (M−1GT ), see [Sch95].

In our experiments we take m1 = . . . = mg = 100 and

k1 = . . . = kg−1 = κ2 = . . . = κg−1 = 2, κ1 = κg = 4,
d1 = . . . = dg−1 = δ2 = . . . = δg−1 = 5, δ1 = δg = 10.

For g = 6000, we obtain a descriptor system of order n = 12001 with m = 1
input and p = 3 outputs. The dimensions of the deflating subspaces of the
pencil corresponding to the finite and infinite eigenvalues are nf = 11998 and
n∞ = 3, respectively.

Figure 3.5 shows the normalized residual norms for the low rank Cholesky
factors Rk and Lk of the proper Gramians computed by the generalized ADI
method with 20 shift parameters. The approximate dominant proper Hankel
singular values presented in Figure 3.6 have been determined from the singular
value decomposition of the matrix LT

33ER31 with L33 ∈ R
n,99 andR31 ∈ R

n,31.
All improper Hankel singular values are zero. This implies that the transfer
function G(s) of (3.34) is proper. We approximate the descriptor system (3.34)
by a standard state space system of order � = �f = 10 computed by the
approximate GSR method. In Figure 3.7 we display the magnitude and phase
plots of the (3, 1) components of the frequency responses G(iω) and G̃(iω).
Note that there is no visible difference between the magnitude plots for the full
order and reduced-order systems. Similar results have been observed for other
components of the frequency response. Figure 3.8 shows the absolute error
‖G(iω)−G̃(iω)‖2 for a frequency range ω ∈ [ 10−4, 104 ] and the approximate
error bound computed as twice the sum of the truncated approximate proper
Hankel singular values. We see that the reduced-order system approximates
the original system satisfactorily.

3.5 Conclusions and Open Problems

In this paper we have presented a survey on balanced truncation model or-
der reduction for linear time-invariant continuous-time descriptor systems.
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This approach is related to the proper and improper controllability and ob-
servability Gramians that can be computed by solving projected generalized
Lyapunov equations.

The Gramians and Hankel singular values can also be generalized for
discrete-time descriptor systems, see [Sty03] for details. In this case an ex-
tension of balanced truncation model reduction methods to such systems is
straightforward.

More research in model reduction is needed. Here we collect some open
problems:

• extension of decay rate bounds on the eigenvalues of the solutions of stan-
dard Lyapunov equations [ASZ02, Pen00a, SZ02] to generalized Lyapunov
equations;

• development of more efficient algorithms for large-scale generalized Lya-
punov equations;

• development of efficient algorithms for computing the optimal ADI shift
parameters;

• extension of passivity preserving model reduction methods to descriptor
systems that arise in electrical circuit simulation;

• development of structure preserving model reduction methods for systems
of second order, for some work in this direction see Chapters 6, 7, and 8
in this book;

• development of model reduction methods for linear time-varying, nonlinear
and coupled systems.
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[VLK81] Verghese, G.C., Lévy, B.C., Kailath, T.: A generalized state-space for
singular systems. IEEE Trans. Automat. Control, 26, 811–831 (1981)

[Wat00] Watkins, D.S.: Performance of the QZ algorithm in the presence of
infinite eigenvalues. SIAM J. Matrix Anal. Appl., 22, 364–375 (2000)

[YS81] Yip, E.L., Sincovec, R.F.: Solvability, controllability and observability
of continuous descriptor systems. IEEE Trans. Automat. Control, 26,
702–707 (1981)

[ZDG96] Zhou, K., Doyle, J.C., Glover, K.: Robust and Optimal Control. Pren-
tice Hall, Upper Saddle River (1996)



4

On Model Reduction of Structured Systems

Danny C. Sorensen1 and Athanasios C. Antoulas2

1 Department of Computational and Applied Mathematics
Rice University
Houston, Texas 77251-1892, USA.

e-mail: sorensen@rice.edu
2 Department of Electrical and Computer Engineering Rice University

Houston, Texas 77251-1892, USA e-mail: sorensen@rice.edu, aca@rice.edu

Summary. A general framework for defining the reachability and controllability
Gramians of structured linear dynamical systems is proposed. The novelty is that
a formula for the Gramian is given in the frequency domain. This formulation is
surprisingly versatile and may be applied in a variety of structured problems. More-
over, this formulation enables a rather straightforward development of error bounds
for model reduction in the H2 norm. The bound applies to a reduced model derived
from projection onto the dominant eigenspace of the appropriate Gramian. The re-
duced models are structure preserving because they arise as direct reduction of the
original system in the reduced basis. A derivation of the bound is presented and
verified computationally on a second order system arising from structural analysis.

4.1 Introduction

The notion of reachability and observability Gramians is well established in
the theory of linear time invariant first order systems. However, there are
several competing definitions of these quantities for higher order or structured
systems. In particular, for second order systems, at least two different concepts
have been proposed (see [7, 8]).

One of the main interests in defining these Gramians is to develop a no-
tion that will be suitable for model reduction via projection onto dominant
invariant subspaces of the Gramians. The goal is to provide model reductions
that posses error bounds analogous to those for balanced truncation of first
order systems. The Gramian definitions proposed in [7] for second order sys-
tems attempt to achieve a balanced reduction that preserves the second order
structure of the system. The work reported in [8] and [9] is also concerned
with preservation of second order structure. While the definitions in these in-
vestigations are reasonable and reduction schemes based upon the proposed
Gramians have been implemented, none of them have provided the desired
error bounds.
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In this paper, a fairly standard notion of Gramian is proposed. The nov-
elty is that a formula for the Gramian is posed in the frequency domain. This
formulation is surprisingly versatile and may be applied in a variety of struc-
tured problems. Moreover, this formulation in the frequency domain leads to
error bounds in the H2 norm in a rather straightforward way.

The themes discussed here are the subject of a number of other contribu-
tions in this volume; we refer in particular to Chapters 5, 7 and 8.

In the remainder of this paper, we shall lay out the general framework and
show how the formulation leads to natural Gramian definitions for a variety of
structured problems. We then give a general derivation of an H2 norm error
bound for model reduction based upon projection onto the dominant invariant
subspace of the appropriate Gramian. An example of a structure preserving
reduction of a second order system is provided to experimentally verify the
validity of the bound. The numerical results indicate that the new bound is
rather tight for this example.

4.2 A Framework for Formulating Structured System
Gramians

Given is a system Σ described by the usual equations ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t), where u, x, y are the input, state, output and

Σ =

(
A B
C D

)
∈ R

(n+p)×(n+m). (4.1)

We will assume that the system is stable, that is, A has eigenvalues in the
left-half of the complex plane. The reachability Gramian of Σ is defined as

P =

∫ ∞

0

x(t)x(t)∗ dt, (4.2)

where x is the solution of the state equation for u(t) = δ(t), the unit impulse.
Using Parseval’s theorem, the Gramian can also be expressed in the frequency
domain as

P =
1

2π

∫ ∞

−∞
x(iω)x∗(−iω) dω, (4.3)

where x denotes the Laplace transform of the time signal x3 Since the state
due to an impulse is x(t) = eAtB and equivalently x(iω) = (iωI − A)−1B,
the Gramian of Σ in time and in frequency is:

P =

∫ ∞

0

eAtBB∗eA
∗t dt =

1

2π

∫ ∞

−∞
(iωI−A)−1BB∗(−iωI−A∗)−1 dω.

(4.4)

3 For simplicity of notation, quantities in the time and frequency domains will be
denoted by the same symbol.
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This Gramian has the following variational interpretation. Let J(u, t1, t2) =∫ t2
t1

u∗(t)u(t) dt, i.e. J is the norm of the input function u in the time interval

[t1, t2]. The following statement holds

min
u

J(u,−∞, 0) = x∗
0P−1x0 subject to ẋ = Ax + Bu, x(0) = x0;

That is, the minimal energy required to steer the system from rest at t = −∞,
to x0 at time t = 0 is given by x∗

0P−1x0.
By duality, we also define the observability Gramian as follows:

Q =

∫ ∞

0

eA
∗tC∗CeAt dt =

1

2π

∫ ∞

−∞
(−iωI−A∗)−1C∗ C(iωI−A)−1 dω.

A similar discussion of this observability Gramian will yield that the energy
released by observing an uncontrolled state evolving from an initial position
x0 at t = 0 and decaying to 0 at t = ∞ is given by x∗

0Qx0.

4.2.1 Gramians for Structured Systems

We will now turn our attention to the following types of structured systems,
namely: weighted, second-order, closed-loop and unstable systems. In terms
of their transfer functions, these systems are as follows.

Weighted systems: GW(s) = Wo(s)G(s)Wi(s)
Second order systems: G2(s) = (sC1 + C0)(s

2M + sD + K)−1B
Systems in closed loop: Gcl(s) = G(s)(I + K(s)G(s))−1

Unstable systems: G(s) with poles in C+.

4.2.2 Gramians for Structured Systems in Frequency Domain

In analogy with the case above, the reachability Gramian of these systems will
be defined as

∫
xx∗. In the case of input weighted systems with weight W, the

state of the system is txW(iω) = (iωI−A)−1BW(iω). Similarly for systems in
a closed loop the system state is xcl(iω) = (iωI−A)−1B(I+K(iω)G(iω))−1.
In the case of second-order systems where x is position and ẋ the velocity,
we can define two Gramians, namely the position and velocity reachability
Gramians. Let the system in this case be described as follows:

Mẍ(t) + Dẋ(t) + Kx(t) = Bu(t), y(t) = C0x(t) + C1ẋ(t),

where det(M) �= 0. In this case we can define the position Gramian

P0 =

∫ ∞

0

x(t)x∗(t) dt =
1

2π

∫ ∞

−∞
x(iω)x∗(−iω) dω,
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and the velocity Gramian P1 =
∫

ẋẋ∗

P1 =

∫ ∞

0

ẋ(t)ẋ∗(t) dt =

=
1

2π

∫ ∞

−∞
(iω)x(iω)x∗(−iω)(−iω) dω =

=
1

2π

∫ ∞

−∞
ω2x(iω)x∗(−iω) dω.

min
ẋ0

min
u

J(u,−∞, 0)

subject to
Mẍ(t) + Dẋ(t) + Kx(t) = Bu(t), x(0) = x0,

implies
Jmin = x∗

0P−1
0 x0,

and
min
x0

min
u

J(u,−∞, 0)

subject to
Mẍ(t) + Dẋ(t) + Kx(t) = Bu(t), ẋ(0) = ẋ0

implies
Jmin = ẋ∗

0P−1
1 ẋ0.

Finally, for systems which are unstable (i.e. their poles are both in the right-
and the left-half of the complex plane), the Gramian is the following expression
in the frequency domain

Punst =
1

2π

∫ ∞

−∞
x(iω)x∗(−iω) dω =

=
1

2π

∫ ∞

−∞
(iωI−A)−1BB∗(−iωI−A∗)−1 dω.

These Gramians are summarized in table 4.1.

4.2.3 Gramians in the Time Domain

Our next goal is to express these Gramians in the time domain as (part of
the) solutions of appropriately defined Lyapunov equations. Recall that if A
has eigenvalues in C−, the reachability Gramian defined by (4.4) satisfies the
following Lyapunov equation

AP(A,B) + P(A,B)A∗ + BB∗ = 0 (4.5)

where for clarity the dependence of the Gramian on A and B is shown explic-
itly. With this notation, given that the transfer function of the original system
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Table 4.1. Gramians of structured systems

PW = 1
2π

R ∞
−∞(iωI − A)−1BW(iω)W∗(−iω)B∗(−iωI − A∗)−1 dω

P2 = 1
2π

R ∞
−∞(−ω2M + iωD + K)−1BB∗(−ω2M∗ − iωD∗ + K∗)−1 dω

Pcl =
1
2π

R ∞
−∞(iωI − A)−1B (I + K(iω)G(iω))−1·

· (I + K∗(−iω)G∗(−iω))−1 B∗(−iωI − A∗)−1 dω

Punst = 1
2π

R ∞
−∞(iωI − A)−1BB∗(−iωI − A∗)−1 dω

is G, let the transfer function the weighted system be WoGWi, where Wo,
Wi are the input and output weights respectively. The transfer function of the
second-order system is G2(s) = (C0 + C1s)(Ms2 + Gs+ K)−1B, while that
of the closed loop system Gcl = G(I + KG)−1. Given the state space realiza-

tions for the three systems ΣW, Σ2, Σcl, collectively denoted as

(
At Bt

Ct Dt

)
,

the Gramians are as shown in Table 4.2.

Table 4.2. Gramians of structured systems in frequency domain

ΣW =

2664
Ao BoC 0 0
0 A BCi BDi

0 0 Ai Bi

Co DoC 0 0

3775 PW =
ˆ
0 I 0

˜P(At,Bt)

24 0
I
0

35,

QW = [Q(Ct,At)]11

Σ2 =

24 0 I 0
−M−1K −M−1D B

C1 C0 0

35 P0 =
ˆ
I 0

˜P(At,Bt)

»
I
0

–
,Q0 = [Q(Ct,At)]11

P1 =
ˆ
0 I

˜P(At,Bt)

»
0
I

–
,Q1 = [Q(Ct,At)]22

Σcl =

24 A −BCc B
BcC Ac 0

C 0 0

35 Pcl =
ˆ
I 0

˜P(At,Bt)

»
I
0

–
,Qcl = [Q(Ct,At)]11

Lyapunov equations for unstable systems. The Gramian defined above
for unstable systems satisfies a Lyapunov equation as well; for details see [4]:

AP + PA∗ = ΠBB∗Π − (I−Π)BB∗(I−Π)
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where Π is the projection onto the stable eigenspace of A. It turns out that
Π = 1

2I + S, where

S =
1

2π

∫ ∞

−∞
(iωI−A)−1 dω =

i

2π
ln [(iωI−A)−1(−iωI−A)]

∣∣
ω=∞ .

4.3 A Bound for the Approximation Error of Structured
Systems

In order to introduce the class of systems under consideration we need the
following notation. Let Q(s), P(s) be a polynomial matrices in s:

Q(s) =

r∑
j=1

Qjs
j , Qj ∈ R

n×n, P(s) =

r−1∑
j=1

Pjs
j , Pj ∈ R

n×m,

where Q is invertible and Q−1P is a strictly proper rational matrix. We will
denote by Q( d

dt ), P( d
dt ) the differential operators

Q(
d

dt
) =

r∑
j=1

Qj
dj

dtj
, P(

d

dt
) =

r−1∑
j=1

Pj
dj

dtj
.

The systems are now defined by the following equations:

Σ :

{
Q( d

dt )x = P( d
dt )u

y(t) = Cx(t)
(4.6)

where C ∈ R
p×n.

Here, we give a direct reduction of the above system based upon the domi-
nant eigenspace of a Gramian P that leads to an error bound in the H2 norm.
An orthogonal basis for the dominant eigenspace of dimension k is used to
construct a reduced model:

Σ̂ :

{
Q̂( d

dt )x̂(t) = P̂( d
dt )u(t),

ŷ(t) = Ĉx̂(t),
(4.7)

The Gramian is defined as the Gramian of x(t) when the input is an impulse:

P :=

∫ ∞

0

x(t)x(t)∗dt.

Let
P = VΛV∗ with V = [V1,V2] and Λ = diag(Λ1,Λ2),

be the eigensystem of P, where the diagonal elements of Λ are in decreasing
order, and V is orthogonal. The reduced model is derived from

Q̂j = V∗
1QjV1, P̂j = V∗

1Pj , Ĉ = CV1. (4.8)

Our main result is the following:
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Theorem 4.3.1. The reduced model Σ̂ derived from the dominant eigenspace
of the Gramian P for Σ as described above satisfies

‖Σ− Σ̂‖2H2
≤ trace {C2Λ2C

∗
2}+ κ trace {Λ2}

where κ is a modest constant depending on Σ, Σ̂, and the diagonal elements
of Λ2 are the neglected smallest eigenvalues of P.

The following discussion will establish this result.

4.3.1 Details

It is readily verified that the transfer function for (4.6) in the frequency domain
is

H(s) = CQ−1(s)P(s)

Moreover, in the frequency domain, the input-to-x and the input-to-output
maps are

x̂(s) = Q(s)−1P(s)û(s), ŷ(s) = H(s)û(s)

If the input is an impulse: u(t) = δ(t)I and u(s) = I,

x̂(s) = Q−1(s)P(s) and ŷ(s) = H(s).

In the time domain∫ ∞

0

y∗ydt = trace

{∫ ∞

0

yy∗dt
}

= trace

{∫ ∞

0

Cxx∗C∗dt
}

= trace (CPC∗).

Define F(s) := Q−1(s)P(s). From the Parseval theorem, the above expression
is equal to

trace

{∫ ∞

0

yy∗dt
}

= trace {C
(

1

2π

∫ ∞

−∞
F(iω)F(iω)∗dω

)
︸ ︷︷ ︸

P

C∗}.

Thus the Gramian in the frequency domain is

P =
1

2π

∫ ∞

−∞
F(iω)F(iω)∗dω.

Remark 4.3.2. Representation (4.6) is general as every system with a strictly
proper rational transfer function can be represented this way. In particular the
usual form of second-order systems introduced earlier falls into this category.
Key for our considerations is the fact that the (square of the)H2 norm is given
by trace (CPC∗). If instead of the output map, the input map is constant,
the same framework can be applied by considering the transpose (dual) of the
original system.
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4.3.2 Reduction via the Gramian

For model reduction, we consider again the eigen-decomposition of the sym-
metric positive definite matrix P. Let

P = VΛV∗ with V = [V1, V2] and Λ = diag(Λ1, Λ2),

where the diagonal elements of Λ are in decreasing order, and V is orthogonal.
The system is now transformed using V as in (4.8), to wit, Qj ← V∗QjV,
Pj ← V∗Pj , C← CV which implies F(s) ← V∗F(s). In this new coordinate
system the resulting Gramian is diagonal. We now partition

Q(s) =

[
Q11(s) Q12(s)
Q21(s) Q22(s)

]
, [C1, C2] = CV,

P(s) =

[
P1(s)
P2(s)

]
and F(s) =

[
F1(s)
F2(s)

]
.

Note the relationship Q(s)F(s) = P(s). Let Q̂(s) := Q11(s); since Λ =
1
2π

∫∞
−∞ F(iω)F(iω)∗dω, the following relationships hold

Λ1 =
1

2π

∫ ∞

−∞
F1(iω)F1(iω)∗dω,

Λ2 =
1

2π

∫ ∞

−∞
F2(iω)F2(iω)∗dω,

0 =
1

2π

∫ ∞

−∞
F2(iω)F1(iω)∗dω,

while

trace {Λ1} =
1

2π

∫ ∞

−∞
‖F1(iω)‖2F dω, trace {Λ2} =

1

2π

∫ ∞

−∞
‖F2(iω)‖2F dω.

The reduced system is now constructed as follows:

Q̂j = [Qj ]11, P̂j = [Pj ]11, Ĉ = C1.

Given Q̂(s) as above we define F̂ by means of the equation Q̂(s)F̂(s) = P1. As
a consequence of these definitions the Gramian corresponding to the reduced
system is

P̂ =
1

2π

∫ ∞

−∞
F̂(iω)F̂(iω)∗dω,

and from the defining equation for F(s) we have

F1(s) = Q11(s)
−1[P1(s)−Q12(s)F2(s)] = F̂(s)−Q11(s)

−1Q12(s)F2(s).

Let L(s) := Q11(s)
−1Q12(s); if the reduced system has no poles on the imag-

inary axis, supω ‖L(iω)‖2 is finite. Thus,

F̂(s) = F1(s) + L(s)F2(s).
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4.3.3 Bounding the H2 Norm of the Error System

Applying the same input u to both the original and the reduced systems, let
y = Cx, ŷ = Ĉx̂, be the resulting outputs. If we denote by He(s) the transfer

function of the error system E = Σ− Σ̂, we have

y(s)− ŷ(s) = He(s)u(s) =
[
CQ(s)−1P(s)− ĈQ̂(s)−1P̂(s)

]
u(s).

The H2-norm in the of the error system is therefore

‖E‖2H2
= trace { 1

2π

∫ ∞

−∞
He(iω)He(iω)∗dt}

=
1

2π

∫ ∞

−∞
trace {CF(iω)(CF(iω))∗}dt︸ ︷︷ ︸

η1

−

− 2
1

2π

∫ ∞

−∞
trace {CF(iω)(ĈF̂(iω))∗}dt︸ ︷︷ ︸

η2

+

+
1

2π

∫ ∞

−∞
trace {ĈF̂(iω)(ĈF̂(iω))∗}dt︸ ︷︷ ︸

η3

.

Each of the three terms in this expression can be simplified as follows:

η1 = trace {C1S1C
∗
1}+ trace {C2S2C

∗
2},

η2 = trace {C1S1C
∗
1}+

1

2π

∫ ∞

−∞
trace {CF(iω)F2(iω)∗L(iω)∗C∗

1}dt,

η3 = trace {C1S1C
∗
1}+

1

2π

∫ ∞

−∞
2trace {C1F1(iω)F2(iω)∗L(iω)∗C∗

1}dt+

+
1

2π

∫ ∞

−∞
trace {(C1L(iω)F2(iω))(C1L(iω)F2(iω))∗}dt.

Combining the above expressions we obtain

‖E‖2H2
= trace {C2S2C

∗
2}+

+
1

2π

∫ ∞

−∞
trace {(C1L(iω)− 2C2)F2(iω)(C1L(iω)F2(iω))∗}dt.

The first term in the above expression is the H2 norm of the neglected term.
The second term has the following upper bound

sup
ω
‖(C1L(iω))∗(C1L(iω)− 2C2)‖2 trace {Λ2}.

This leads to the main result
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‖E‖2H2
≤ trace {C2Λ2C

∗
2}+ κ trace {Λ2} (4.9)

where κ = sup
ω
‖(C1L(iω))∗(C1L(iω)− 2C2)‖2 (4.10)

4.3.4 Special Case: Second-Order Systems

We shall now consider second-order systems. These are described by equations
(4.7) where Q(s) = Ms2 + Ds+ K and P(s) = B:

Σ : Mẍ + Dẋ + Kx = Bu, y(t) = Cx(t), (4.11)

with M, D, K ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n.

It is standard to convert this system to an equivalent first order linear
time invariant (LTI) system and then to apply existing reduction techniques
to reduce the first order system. A difficulty with this approach is that the
second-order form is lost in the reduction process and there is a mixing of
the state variables and their first derivatives. Several researchers (see e.g. [8],
[9], [7]) have noted undesirable consequences and have endeavored to pro-
vide either direct reductions of the second-order form or structure preserving
reductions of the equivalent first order system. This has required several alter-
native definitions of a Gramian. However, while successful structure preserving
reductions have been obtained, none of these possess error bounds.

Here, we give a direct reduction of the second-order system based upon
the dominant eigenspace of a Gramian P that does lead to an error bound in
the H2 norm. An orthogonal basis for the dominant eigenspace of dimension
k is used to construct a reduced model in second-order form:

Σ̂ : M̂¨̂x(t) + D̂ ˙̂x(t) + K̂x̂(t) = B̂u(t), ŷ(t) = Ĉx̂(t).

The Gramian is defined as before, i.e. P =
∫∞
0

xx∗dt. Let P = VΛV∗, with
V = [V1,V2] and Λ = diag(Λ1,Λ2). The reduced model is derived by letting

M̂ = V∗
1MV1, D̂ = V∗

1DV1, K̂ = V∗
1KV1, B̂ = V∗

1B, Ĉ = CV1.

Remark 4.3.3. The above method applies equally to first-order systems, that
is systems described by the equations ẋ = Ax + Bu, y = Cx + Du. We will
not pursue the details in this case here.

An Illustrative Example

The bound derived in the previous section involves the computation of the
constant κ. The purpose of this section is to provide an example that will
demonstrate that this constant is likely to be of reasonable magnitude. Our
example is constructed to be representative of the structural analysis of a
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building under the assumption of proportional damping (D = αM + βK, for
specified positive scalars α and β). In this case the matrices M,D,K may
be simultaneously diagonalized. Moreover, since both M and K are positive
definite, the system can be transformed to an equivalent one where M = I
and K is a diagonal matrix with positive diagonal entries.

The example may then be constructed by specification of the diagonal
matrix K, the proportionality constants α and β, and the vectors B and C. We
constructed K to have its smallest 200 eigenvalues specified as the smallest 200
eigenvalues of an actual building model of dimension 26, 000. (For a description
of the model, see Chapter 24, Section 6, this volume.) These eigenvalues are
in the range [7.7, 5300]. We augmented these with equally spaced eigenvalues
[5400 : 2000 : 400000] to obtain a diagonal matrix K of order n = 398. We
chose the proportionality constants α = .67, β = .0033, to be consistent with
the original building model. We specified B = C∗ to be vectors with all ones
as entries. This is slightly inconsistent with the original building model but
still representative. The eigenvalues of the second-order system resulting from
this specification are shown in Figure 4.1

−800 −700 −600 −500 −400 −300 −200 −100

−300

−200

−100

0

100

200

300

Damped Evals alpha = 0.67 , beta = 0.0033

Fig. 4.1. Eigenvalues of a proportionally damped structure

The Gramian for Proportional Damping

To proceed we need to compute the Gramian of this system. Recall from table
4.1 that

P =
1

2π

∫ ∞

−∞
(−ω2M + iωD + K)−1BB∗(−ω2M∗ − iωD∗ + K∗)−1 dω.

Since M = I, D = diag (d1, · · · , dn) and K = diag (k1, · · · , kn), the (p, q)th

entry of the Gramian is

Ppq =
1

2π

∫ ∞

−∞
(−ω2 + iωdp + kp)

−1bpb
∗
q(−ω2 − iωd∗q + k∗q )−1 dω.
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In order to compute this integral, we make use of the following partial fraction
expansion:

bp
s2 + dps+ kp

=
αp

s+ γp
+

βp

s+ δp
.

Then

Ppq =

∫ ∞

0

[
αpe

−γpt + βpe
−δpt

] [
α∗

qe
−γ∗

q t + βqe
−δ∗

q t
]
dt

=
αpα

∗
q

γp + γ∗q
+

αpβ
∗
q

γp + δ∗q
+

βpα
∗
q

δp + γ∗q
+

βpβ
∗
q

δp + δ∗q
.

With this formula, it is possible to explicitly construct the required Gramian
and diagonalize it. We set a tolerance of τ = 10−5, and truncated the second-
order system to (a second-order system of) order k, such that σk+1(P) <
τ · σ1(P); the resulting reduced system has order k = 51.

‖Σ‖2H2
3.9303e+000

‖Σ̂‖2H2
3.9302e+000

H2 norm of neglected system C2Λ2C
∗
2 4.3501e-005

κ 2.8725e+002

κ trace (Λ2) 1.7936e-003

Relative error bound 4.6743e-004

Computed relative error
‖E‖2

H2

‖Σ‖2
H2

1.2196e-005

These results indicate that the constant κ in (4.9) is of moderate size and that
the bound gives a reasonable error prediction.

A graphical illustration of the frequency response of the reduced model
(order 51) compared to full system (order 398) is shown in Figure 4.2.

4.4 Summary

We have presented a unified way of defining Gramians for structured sys-
tems, in particular, weighted, second-order, closed loop and unstable systems.
The key is to start with the frequency domain. Consequently we examined
the reduction of a high-order (structured) system based upon the dominant
eigenspace of an appropriately defined Gramian, that preserves the high-order
form. An error bound in theH2 norm for this reduction was derived. An equiv-
alent definition of the Gramian was obtained through a Parseval relationship
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Fig. 4.2. Frequency response of reduced model (order 51) compared to full system
(order 398).

and this was key to the derivation of the bound. Here, we just sketched the
derivations. Full details and computational issues will be reported in the fu-
ture.
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Summary. This paper presents new recursive projection techniques to compute
reduced order models of time-varying linear systems. The methods produce a low-
rank approximation of the Gramians or of the Hankel map of the system and are
mainly based on matrix operations that can exploit sparsity of the model. We show
the practical relevance of our results with a few benchmark examples.

5.1 Introduction

The basic idea of model reduction is to represent a complex linear dynamical
system by a much simpler one. This may refer to many different techniques,
but in this paper we focus on projection-based model reduction of linear sys-
tems. It can be shown in the time-invariant case [GVV03] that projection
methods allow to generate almost all reduced order models and that they are
in that sense quite general. Here we construct the projection based on the
dominant invariant subspaces of products of the Gramians, which are energy
functions for ingoing and outgoing signals of the system. When the system ma-
trices are large and sparse, the Gramians are nevertheless dense and efficient
methods will therefore have to approximate these dominant spaces without
explicitly forming the Gramians themselves.

Balanced Truncation [Moo81] is probably the most popular projection-
based method. This is mainly due to its simplicity: the construction is based
on simple linear algebra decompositions and there is no need to first choose
a set of essential parameters. Moreover an a priori upper bound is given for
the H∞-norm of the error between the original plant and the reduced-order
model [Enn81].

An important issue in model reduction is the choice of the order of the ap-
proximation, since it affects the quality of the approximation. One would like
to be able to choose this during the construction of the reduced order model,
i.e. without having to evaluate in advance quality measures like the Hankel
singular values (computing them all would become prohibitive for large-scale
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systems). The use of iterative methods seem appealing in this context since
they may offer the possibility to perform order selection during the computa-
tion of the projection spaces and not in advance.

The approach that we propose in this paper is iterative and applies as well
to time-varying systems. Earlier work on model reduction of time-varying
systems was typically based on the explicit computation of the time-varying
solution of a matrix difference (or differential) equation [SSV83, IPM92, SR02]
and such results were mainly used to prove certain properties or bounds of the
reduced order model. They were in other words not presented as an efficient
computational tool. We propose to update at each step two sets of basis
vectors that allow to identify the dominant states. The updating equations
are cheap since they only require sparse matrix vector multiplications. The
ideas are explained in Chapter 24 and [CV03a, CV03b, Cha03], to which we
refer for proofs and additional details. Another recent approach is to use fast
matrix decomposition methods on matrices with particular structure such as
a Hankel structure. Such an approach is presented in [DV98] and could be
competitive with the methods presented here.

5.2 Linear Time-Varying Systems

Linear discrete time-varying systems are described by systems of difference
equations:

S :

{
xk+1 = Akxk +Bkuk

yk = Ckxk +Dkuk
(5.1)

with input uk ∈ R
m, state xk ∈ R

N and output yk ∈ R
p. In this paper

we will assume m, p � N , the input sequence to be square-summable (i.e.∑∞
−∞ uT

k uk ≤ ∞), Dk = 0, and the matrices {Ak}∞−∞, {Bk}∞−∞, and {Ck}∞−∞
to be bounded for all k. Using the recurrence (5.1) over several time steps,
one obtains the state at step k in function of past inputs over the interval
[ki, k − 1]:

xk = Φ(k, ki)xki
+

k−1∑
i=ki

Φ(k, i+ 1)Biui

where Φ(k, ki) := Ak−1 . . . Aki
is the discrete transition matrix over time

period [ki, k − 1]. The transition matrix has the following properties:{
Φ(k2, k0) = Φ(k2, k1)Φ(k1, k0), k0 ≤ k1 ≤ k2

Φ(k, k) = IN ∀k.

We will assume the time-varying system S to be asymptotically stable, mean-
ing

∀k ≥ ki ‖Φ(k, ki)‖ ≤ c · a(k−ki), with c > 0, 0 < a < 1.

The Gramians over intervals [ki, k − 1] and [k, kf ] are then defined as follows:
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Gc(k) =
k−1∑
i=ki

Φ(k, i+ 1)BiB
T
i Φ

T (k, i+ 1),

Go(k) =

kf∑
i=k

ΦT (i, k)CT
i CiΦ(i, k),

where ki may be −∞ and kf may be +∞. It follows from the identities

Φ(k1, k2) = Φ(k1, k2+1)Ak2
and Φ(k1+1, k2) = Ak1

Φ(k1, k2),

where k1 ≥ k2, that these Gramians can also be obtained from the Stein
recurrence formulas:

Gc(k + 1) = AkGc(k)A
T
k +BkB

T
k and Go(k) = AT

k Go(k + 1)Ak + CT
k Ck,

(5.2)
with respective initial conditions

Gc(ki) = 0, Go(kf + 1) = 0.

Notice that the first equation evolves “forward” in time, while the second one
evolves “backward” in time.

These Gramians can also be related to the input/output map in a partic-
ular window [ki, kf ]. Let us at each instant k (ki < k < kf ) restrict inputs
to be nonzero in the interval [ki, k) (i.e. “the past”) and let us consider the
outputs in the interval [k, kf ] (i.e. the “future”). The state-to-outputs and
inputs-to-state maps on this window are then given by :

⎡⎢⎢⎢⎣
yk

yk+1

...
ykf

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

Y

=

⎡⎢⎢⎢⎣
Ck

Ck+1Ak

...
Ckf

Φ(kf , k)

⎤⎥⎥⎥⎦ [Bk−1 Ak−1Bk−2 . . . Φ(k, ki + 1)Bki

]
⎡⎢⎢⎢⎣
uk−1

uk−2

...
uki

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

U︸ ︷︷ ︸
x(k)

.

The finite dimensional Hankel matrix H(kf , k, ki) mapping U to Y is defined
as
H(kf , k, ki) =⎡⎢⎢⎢⎣

CkBk−1 CkAk−1Bk−2 . . . CkΦ(k, ki + 1)Bki

Ck+1AkBk−1 Ck+1AkAk−1Bk−2 Ck+1Φ(k + 1, ki + 1)Bki

...
. . .

...
Ckf

Φ(kf , k)Bk−1 Ckf
Φ(kf , k − 1)Bk−2 . . . Ckf

Φ(kf , ki + 1)Bki

⎤⎥⎥⎥⎦ .
Notice that this matrix has at most rank N since x(k) ∈ R

N and that it
factorizes as
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H(kf , k, ki) =

⎡⎢⎢⎢⎣
Ck

Ck+1Ak

...
Ckf

Φ(kf , k)

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

O(kf ,k)

[
Bk−1 Ak−1Bk−2 . . . Φ(k, ki + 1)Bki

]︸ ︷︷ ︸
C(k,ki)

(5.3)

where O(kf , k) and C(k, ki) are respectively the observability and the control-
lability matrices at instant k over the finite window [ki, kf ]. They satisfy the
recurrences

O(kf , k) =

[
Ck

O(kf , k + 1)Ak

]
, C(k + 1, ki) =

[
Bk AkC(k, ki)

]
(5.4)

evolving forward and backward in time, respectively. From these matrices one
then constructs the Gramians and Hankel map via the identities

H(kf , k, ki) = O(kf , k)C(k, ki),

Gc(k) = C(k, ki)C(k, ki)
T ,

Go(k) = O(kf , k)
TO(kf , k).

Notice that in the time-invariant case the above matrices become function
only of the differences k − ki and kf − k. In this case one typically chooses
both quantities equal to τ := (kf − ki)/2, i.e. half the considered window
length. In the time-invariant case it is also typical to consider the infinite
window case, i.e. where kf = −ki = ∞.

5.3 Balanced Truncation

The method of Balanced Truncation is a very popular technique of model
reduction for stable linear time-invariant systems because it has several ap-
pealing properties related to sensitivity, stability and approximation error
[Moo81, ZDG95]. The extension to time-varying systems is again based on
the construction of a new state-space coordinate system in which both Grami-
ans are diagonal and equal [SSV83, VK83, SR02]. This is always possi-
ble when the system is uniformly controllable and observable over the con-
sidered interval [SSV83, VK83], meaning that the Gramians are uniformly
bounded and have uniformly bounded inverses. It is then known that there
exists a time-varying state space transformation Tk such that the Gramians
Ĝc(k) := T−1

k Gc(k)T
−T
k and Ĝo(k) := TT

k Go(k)Tk of the transformed system
{T−1

k+1AkTk, T
−1
k+1Bk, CkTk}, satisfy

T−1
k Gc(k)Go(k)Tk = Ĝc(k)Ĝo(k) = Σ2(k), 0 < Σ(k) <∞I.

One then partitions the matrix Σ(k) into diag{Σ+(k), Σ−(k)} where Σ+(k)
contains the n largest singular values of Σ(k) and Σ−(k) the smallest ones. In



5 Model Reduction of Time-Varying Systems 135

that coordinate system the truncated system {Âk, B̂k, Ĉk} is just the system
corresponding to the leading n columns and rows of the transformed system
{T−1

k+1AkTk, T
−1
k+1Bk, CkTk}. If we denote the first n columns of Tk by Xk and

the first n rows of T−1
k by Y T

k then Y T
k Xk = In and

{Âk, B̂k, Ĉk} := {Y T
k+1AkXk, Y

T
k+1Bk, CkXk}. (5.5)

If for all k there is also a gap between the singular values of Σ+(k) and those
of Σ−(k), then similar properties to the time-invariant case can be obtained,
namely asymptotic stability and uniform controllability and observability of
the truncated model [SSV83] and an error bound for the truncation error
between both input/output maps in terms of the neglected singular values
Σ−(k) or of related matrix inequalities (see [LB03, SR02] for a more detailed
formulation).

Rather than computing the complete transformations Tk, one only needs
to compute the matrices Xk, Yk ∈ R

N×n whose columns span the “dominant”
left and right eigenvector spaces of the product Gc(k)Go(k) and normalize
them such that Y T

k Xk = In to obtain the reduced model as given above. One
can show that both Gramians are no longer required to be non-singular, and
this can therefore be applied as well to the finite window case. In general, one
can not even guarantee the gap property of the eigenvalues of the product of
the Gramians.

In order to reduce the complexity of the model reduction procedure one
can try to approximate the dominant left invariant subspaces Xk and Yk

by an iterative procedure which possibly exploits the sparsity of the original
model {Ak, Bk, Ck}. The projection matrices will hopefully be close to in-
variant subspaces and one can hope to derive bounds for the approximation
error between both systems. Such a procedure is explained in the next two
sections and is inspired by efficient approximation techniques found in the
time-invariant case [GSA03]. Bounds will be derived for the time-invariant
version of this algorithm.

5.4 Recursive Low-Rank Gramian Algorithm (RLRG)

Large scale system models {Ak, Bk, Ck} are often sparse and since the con-
struction of a good approximate time-varying system model {Âk, B̂k, Ĉk} re-
quires an approximation at every time step k it seems crucial to find a method
that is of low complexity at every time step and therefore exploits the sparsity
of the original model.

If the Gramians Gc(k) and Go(k) of the system {Ak, Bk, Ck} were of rank
n << N , for all k ∈ [ki, kf ] then the system would be actually of degree n.
The idea is thus to replace

Gc(k) = C(k, ki)C(k, ki)
T and Go(k) = O(kf , k)

TO(kf , k)
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by semi-definite rank nk approximations

Pk := SkS
T
k and Qk := RkR

T
k ,

respectively (for simplicity, we will assume nk constant and equal to n). If
such a factorized approximation is available, then

Gc(k)Go(k) ≈ SkS
T
k RkR

T
k

and the right hand side has clearly Xk := Sk as right invariant subspace,
and Yk := Rk as left invariant subspace. Normalizing Xk and Yk such that
Y T

k Xk = In will then yield an appropriate projected system (5.5) at each step
k.

Note that the Gramian recurrences (5.2) evolve forward and backward in
time and so will the recurrences for the approximations. We introduce the
indices

l := ki + i, r := kf + 1− i

to simplify the indexing of the low-rank updating equations. At step i we
compute the singular value decompositions of the matrices

[
Bl−1 Al−1Sl−1

]
and

[
Cr

RT
r+1Ar

]
,

which yield transformation matrices U :=
[
U+ U−

]
and V :=

[
V+ V−

]
defin-

ing [
Sl Ec(l)

]
:=

[
Bl−1 Al−1Sl−1

] [
V+ V−

]
, (5.6)[

Rr Eo(r)
]

:=
[
CT

r AT
r Rr+1

] [
U+ U−

]
, (5.7)

where V+ ∈ R
(m+n)×n and U+ ∈ R

(p+n)×n. These iterations are initialized at
step i = 0 with

Ski
= 0 and Rkf+1 = 0.

A MATLAB-like procedure corresponding to these recurrences would be as
follows.

Algorithm RLRG
l = ki; r = kf + 1; τ = r − l − 1;Sl = 0;Rr = 0;
for i = 1 : τ ;

l = l + 1;M =
[
Bl−1 Al−1Sl−1

]
;

[U,Σ, V ] = svd(M, 0);Sl = M ∗ V (:, 1 : n);
r = r − 1;M =

[
CT

r AT
r Rr+1

]
;

[V,Σ,U ] = svd(M, 0);Rr = M ∗ U(:, 1 : n);
end

At each iteration, we need to multiply Al−1Sl−1 and RT
r+1Ar (which re-

quires 4Nnα flops, where α is the average number of nonzero elements in
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each row or column of the sparse matrices Ai) and perform the transforma-
tions U and V (which require O(N(n + m)2) flops and O(N(n + p)2) flops,
respectively [GV96]). When N � n > m, p, α this is altogether linear in the
largest dimension N . Notice that the matrices Sl−1 and Rr+1 are multiplied
at each step by time-varying matrices, which seems to preclude adaptive SVD
updating techniques such as those used in [GSA03].

At each iteration step, Ec(l) and Eo(r) are neglected, which corresponds
to the best rank n approximations at that step. But we would like to bound
the global errors

Ec(l) := Gc(l)−Pl = Gc(l)−SlS
T
l , and Eo(r) := Go(r)−Qr = Go(r)−RrR

T
r .

The following lemma [CV02] is proven in [Cha03] and leads to such bounds.

Lemma 5.4.1. At each iteration, there exists orthogonal matrices

V (i) ∈ R
(n+im)×(n+im) and U (i) ∈ R

(n+ip)×(n+ip),

satisfying:

C(l, ki)V
(i) =

[
Sl Ec(l) Al−1Ec(l − 1) . . . Φ(l, ki + 1)Ec(ki + 1)

]
,

and

O(kf , r)
TU (i) =

[
Rr Eo(r) A

T
r Eo(r + 1) . . . Φ(kf , r)

TEo(kf )
]
,

where Ec(i) and Eo(i) are the neglected parts at each iteration.

The above identities then lead to expressions for the errors:

Ec(l) =

i∑
j=1

Φ(l, ki + j)Ec(ki + j)Ec(ki + j)TΦ(l, ki + j)T , (5.8)

Eo(r) =

i−1∑
j=0

Φ(kf − j, r)TEo(kf − j)Eo(kf − j)TΦ(kf − j, r). (5.9)

It is shown in [CV02, Cha03] that the norms of Ec(l) and Eo(r) can then be
bounded in terms of

ηc(l) = max
ki+1≤j≤l

‖Ec(j)‖2, and ηo(r) = max
r≤j≤kf

‖Eo(j)‖2,

which we refer to as the “noise” levels ηc and ηo of the recursive singular value
decompositions (5.6,5.7).

Theorem 5.4.2. If the system (5.1) is stable, i.e.,

‖Φ(k, k0)‖ ≤ c · a(k−k0), with c > 0, 0 < a < 1,

then

‖Ec(l)‖2 ≤
η2

c (l)c2

1− a2
, and ‖Eo(r)‖2 ≤

η2
o(r)c2

1− a2
.
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5.4.1 Time-Invariant Case

It is interesting to note that for linear time-invariant systems {A,B,C}, the
differences Ec(l) and Eo(r) remain bounded for large i, and this shows the
strength of Theorem 5.4.2. We then have the following result, shown in [CV02,
Cha03].

Theorem 5.4.3. Let P and Q be the solutions of

P = APAT + I, and Q = ATQA+ I,

then
‖Ec(l)‖2 ≤ η2

c (l)‖P‖2 ≤ η2
c (l) κ(A)2

1−ρ(A)2 ,

‖Eo(r)‖2 ≤ η2
o(r)‖Q‖2 ≤ η2

o(r) κ(A)2

1−ρ(A)2 ,
(5.10)

‖Gc(l)Go(r)− PlQr‖2 ≤
κ(A)2

1− ρ(A)2
(
η2

c (l)‖Go(r)‖2 + η2
o(r)‖Gc(l)‖2

)
, (5.11)

where κ(A) is the condition number and ρ(A) is the spectral radius of A.

In [GSA03], bounds very similar to (5.10) were obtained but the results in
that paper only apply to the time-invariant case. The bound (5.11) says that
if one Gramian is not well approximated, the product of the Gramians, which
is related to the Hankel singular values, will not be well approximated. Notice
that this only makes sense when l = r. In the time-invariant case one can also
estimate the convergence to the infinite horizon Gramians, which we denote
by Gc and Go and are defined by he identities

Gc = AGcA
T +BBT , and Go = ATGoA+ CTC.

Theorem 5.4.4. At each step i of (5.6,5.7) we have the following error
bounds

‖Pi−1 − Gc‖2 ≤ ‖Pi − Pi−1 + Ec(i)E
T
c (i)‖2‖P‖2

≤ ‖Pi − Pi−1 + Ec(i)E
T
c (i)‖2

κ(A)2

1− ρ(A)2
,

‖Qi+1 − Go‖2 ≤ ‖Qi −Qi+1 + Eo(i)E
T
o (i)‖2‖Q‖2

≤ ‖Qi −Qi+1 + Eo(i)E
T
o (i)‖2

κ(A)2

1− ρ(A)2
,

where κ(A) is the condition number and ρ(A) is the spectral radius of A.

Proof. We prove the result only for Pi−1 since both results are dual. Start
from

Pi + Ec(i)E
T
c (i) = APi−1A

T +BBT ,

to obtain
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(Gc − Pi−1) = A(Gc − Pi−1)A
T + (Pi − Pi−1 + Ec(i)Ec(i)

T ).

Use the solution P of the linear system P = APAT + I and its growth factor
κ(A)2

1−ρ(A)2 to obtain from there the desired bound. �

This theorem says that when convergence is observed, we can bound the
accuracy of the current estimates of the Gramians in terms of quantities com-
puted in the last step only. Using very different arguments, is was mentioned
in [Cha03] that this in fact holds approximately for the time-varying case as
well.

5.4.2 Periodic Case

The simplest class of time-varying models is the class of periodic systems.
This is because every K-periodic system,

{AK+k, BK+k, CK+k} = {Ak, Bk, Ck}

is in fact equivalent [MB75] to K lifted time-invariant systems:{
x̂

(h)
k+1 = Â(h)x̂

(h)
k + B̂(h)û

(h)
k

ŷ
(h)
k = Ĉ(h)x̂

(h)
k + D̂(h)û

(h)
k

(5.12)

where the state x̂
(h)
k := xh+kK evolves over K time steps with state transition

matrix Â(h) := Φ(h + K,h), where û
(h)
k and ŷ

(h)
k are the stacked input and

output vectors:

û
(h)
k := [uT

h+kK , u
T
h+kK+1, . . . , u

T
h+kK+K−1]

T

ŷ
(h)
k := [yT

h+kK , y
T
h+kK+1, . . . , y

T
h+kK+K−1]

T

and where B̂(h), Ĉ(h) and D̂(h) are defined in terms of the matrices {Ak, Bk,
Ck} (see [MB75]). Obviously, there are K such time invariant liftings for
h = 1, . . . ,K, and each one has a transfer function. For such systems a theorem
similar to Theorem 5.4.3 was obtained in [CV02, Cha03].

Theorem 5.4.5. Let P and Q be the solutions of, respectively, P = ÃP ÃT +
IKN and Q = ÃTQÃ+ IKN , where

Ã :=

⎛⎜⎜⎝
0 . . . 0 AK

A1 0 . . . 0

0
. . .

. . .
...

0 . . . AK−1 0

⎞⎟⎟⎠ and
P := diag(P1, . . . , PK−1, PK)
Q := diag(Q1, . . . , QK−1, QK)

then
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‖Ec(l)‖2 ≤ η2
c (l)‖P‖2 ≤ η2

c (l)
κ(Ã)2

1− ρ(Ã)2
,

‖Eo(r)‖2 ≤ η2
c (r)‖Q‖2 ≤ η2

c (r)
κ(Ã)2

1− ρ(Ã)2
.

Using multirate sampling [TAS01], we constructed in [CV02] a time-
varying system model of period K = 2 and dimension N = 122 of the arm
of the CD player described in Chapter 24, Section 4 of this volume. We re-
fer to [CV02] for more details but we recall here some results illustrating
the convergence of the Gramian estimates Pk = SkS

T
k , which were chosen of

rank 20. Every two steps these should converge to the steady state solutions
corresponding to the even and odd infinite horizon controllability Gramians.

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

iteration 1 mod[K]
0 10 20 30 40
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Fig. 5.1. ◦: cos(�(Sk, Sk−2)), ∗: cos(�(Sk, S∞)) for odd and even k

Since only the spaces matter and not the actual matrices, we show in
Figure 5.1 (left) the cosine of the canonical angle between the dominant sub-
space of odd iterations (k−2) and k, i.e. cos(�(Sk−2, Sk)), and the canonical
angle with the exact dominant subspace, denoted as S∞, of the controlla-
bility Gramian of the lifted LTI system (5.12), i.e. (cos(�(Sk, S∞)). This is
repeated in Figure 5.1 (right) for the even iterates. The results for the ob-
servability Gramians are similar and are not shown here. Figure 5.1 shows
the convergence and the accuracy of our algorithm. It can be seen that con-
vergence is quick and is well predicted by the errors performed in the last
updating steps.



5 Model Reduction of Time-Varying Systems 141

10
−2

10
0

10
2

10
4

10
6

10
8

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
−2

10
0

10
2

10
4

10
6

10
8

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Fig. 5.2. –: full model, · · · : approx. errors (20 steps), -·- approx. errors (60 steps),
- - approx.errors (exact Gramian)

In Figure 5.2 we compare frequency responses of the time-invariant lifted
systems (5.12) for odd and even iterates. In each figure we give the amplitude
of the frequency response of the original model, the absolute errors in the
frequency response of the projected systems using projectors obtained after
20 steps and 60 steps, and the absolute errors in the frequency response of
the projected systems using the exact dominant subspace of the Gramians
of the lifted system. The graphs show that after 60 steps an approximation
comparable to Balanced Truncation is obtained.

5.5 Recursive Low-Rank Hankel Algorithm (RLRH)

The algorithm of the previous section yields an independent approximation
of the two Gramians. If the original system was poorly balanced, it often
happens that the approximation of the product of the two Gramians is far
less accurate than that of the individual Gramians. This will affect the quality
of the approximation of the reduced model since the product of the Gramians
plays an important role in the frequency domain error.

In [CV03a, CV03b] an algorithm is presented which avoids this problem.
The key idea is to use the underlying recurrences defining the time-varying
Hankel map
H(kf , k, ki) = O(kf , k)C(k, ki). Because the system order at each instant is
given by the rank of the Hankel matrix at that instant, it is a good idea to
approximate the system by approximating the Hankel matrix via a recursive
SVD performed at each step. The technique is very similar to that of the
previous section but now we perform at each step the singular value decom-
position of a product similar to the productsO(kf , k)C(k, ki). Consider indeed
the singular value decomposition of the matrix



142 Younes Chahlaoui and Paul Van Dooren[
Cr

RT
r+1Ar

]
.
[
Bl−1 Al−1Sl−1

]
= UΣV T (5.13)

and partition U :=
[
U+ U−

]
, V :=

[
V+ V−

]
where U+ ∈ R

(p+n)×n and

V+ ∈ R
(m+n)×n. Define then[

Sl Ec(l)
]

:=
[
Bl−1 Al−1Sl−1

] [
V+ V−

]
, (5.14)[

Rr Eo(r)
]

:=
[
CT

r AT
r Rr+1

] [
U+ U−

]
. (5.15)

It then follows that [
RT

r

ET
o (r)

] [
Sl Ec(l)

]
=

[
Σ+ 0
0 Σ−

]
, (5.16)

where Σ− contains the neglected singular values at this step. For the initial-
ization at step i = 0 we use again

Ski
= 0 and Rkf+1 = 0

and iterate for i = 1, . . . , τ where τ := (kf − ki)/2 is the half interval length.
The approximate factorizations that one obtains are those indicated in Fig-
ure 5.3 and the corresponding MATLAB-like algorithm is now as follows.

Fig. 5.3. Submatrix sequence approximated by low rank approximations

Algorithm RLRH
l = ki; r = kf + 1; τ = (r − l − 1)/2;Sl = 0;Rr = 0;
for i = 1 : τ ;

l = l + 1;M =
[
Bl−1 Al−1Sl−1

]
; r = r − 1;N =

[
CT

r AT
r Rr+1

]
;

[U,Σ, V ] = svd(NTM);Sl = M ∗ V (:, 1 : n);Rr = N ∗ U(:, 1 : n);
end
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The amount of work involved in this algorithm is comparable to the earlier
algorithm. We need to form the products Al−1Sl−1 and RT

r+1Ar, which re-
quires 4Nnα flops. The construction of the left hand side of (5.13) requires an
additional 2N(n+m)(n+p) flops and the application of the transformations U
and V requires
O((p+ n)(m+ n)(2n+ p+m)) flops, and so the complexity of this algorithm
is O(N(p+ n)(m+ n)) for each iteration if N � n > m, p, α.

As before we have a lemma, shown in [CV03a, CV03b, Cha03], linking the
intermediate error matrices and the matrices O(kf , r) and C(l, ki).

Theorem 5.5.1. At each iteration, there exist orthogonal matrices V (i) ∈
R

(n+im)×(n+im) and U (i) ∈ R
(n+ip)×(n+ip) satisfying:

C(l, ki)V
(i) =

[
Sl Ec(l) Al−1Ce(l, ki + 1)

]
O(kf , r)

TU (i) =
[
Rr Eo(r) A

T
r Oe(kf , r + 1)

]
where Ec(l) and Eo(r) are the neglected parts at each iteration, and the ma-
trices Ce(j, ki) and Oe(kf , j) are defined as follows:

Ce(j, ki) :=
[
Ec(j − 1) . . . Φ(j − 1, ki)Ec(ki)

]
,

Oe(kf , j)
T :=

[
Eo(j) . . . Φ(kf , j)

TEo(kf )
]
.

As a consequence of this theorem we show in [CV03a, CV03b, Cha03] the
following result which yields an approximation of the original Hankel map
H(kf , k, ki).

Theorem 5.5.2. There exist orthogonal matrices V (τ) ∈ R
(n+τm)×(n+τm)

and
U (τ) ∈ R

(n+τp)×(n+τp) such that U (τ)TH(kf , k, ki)V
(τ) is equal to⎡⎣ RT

τ Sτ 0 RT
τ Aτ−1Ce(τ, ki)

0 ET
o (τ)Ec(τ) ET

o (τ)Aτ−1Ce(τ, ki)
Oe(kf , τ+1)AτSτ Oe(kf , τ+1)AτEc(τ) Oe(kf , τ+1)AτAτ−1Ce(τ, ki)

⎤⎦ .
This result enables us to evaluate the quality of our approximations by us-
ing the Hankel map without passing via the Gramians, which is exploited in
[CV03a, CV03b, Cha03] to obtain bounds for the error. Notice also that since
we are defining projectors for finite time windows, these algorithms could be
applied to linear time-invariant systems that are unstable. One can then not
show any property of stability for the reduced order model, but the finite
horizon Hankel map will at least be well approximated.

5.5.1 Time-Invariant Case

As for the Gramian based approximation, we can analyze the quality of this
approach in the time-invariant case. Since all matrices A, B and C are then
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constant, all Hankel maps are time-invariant as well and only the interval
width plays a role in the obtained decomposition. We can e.g. run the RLRH
algorithm on an interval [ki, kf ] = [−τ, τ ] for τ ∈ N and approximate the
Gramians Gc(0) and Go(0) of the original model by S0S

T
0 and R0R

T
0 , respec-

tively, at the origin of the symmetric interval [−τ, τ ]. The differences between
the approximate low-rank Gramians and the exact Gramians

Ec(0) := Gc(0)− P0, Eo(0) := Go(0)−Q0

then remain bounded for intervals of growing length 2τ , as indicated in the
following theorem ([CV03a, CV03b, Cha03]).

Theorem 5.5.3. Let P and Q be respectively the solutions of P = APAT +I,
and Q = ATQA+ I, then

‖Ec(0)‖2 ≤ η2
c‖P‖2 ≤ η2

c

κ(A)2

1− ρ(A)2
, ‖Eo(0)‖2 ≤ η2

o‖Q‖2 ≤ η2
o

κ(A)2

1− ρ(A)2

where ηc := max
−τ≤k≤0

‖Ec(k)‖2 and ηo := max
0≤k≤τ

‖Eo(k)‖2.

Similarly, we obtain an approximation of the Hankel map as follows (see
[CV03a, CV03b, Cha03]).

Theorem 5.5.4. Using the first n columns U
(0)
+ of U (0) and V

(0)
+ of V (0), we

obtain a rank n approximation of the Hankel map:

H(τ, 0,−τ)− U
(0)
+ RT

0 · S0V
(0)T
+ = Eh(0),

for which we have the error bound:

‖Eh(0)‖2 ≤
κ(A)√

1− ρ(A)2
max{ηc‖RT

0 A‖2, ηo‖AS0‖2}+
κ(A)2

1− ρ(A)2
ηoηc.

An important advantage of the RLRH method is that the computed pro-
jectors are independent of the coordinate system used to describe the original
system {A,B,C}. This can be seen as follows. When performing a state-space
transformation T we obtain a new system {Â, B̂, Ĉ} := {T−1AT, T−1B,CT}.
It is easy to see that under such transformations the updating equations of
Rr and Sl transform to R̂k = TTRk and Ŝl = T−1Sl, and this is preserved
by the iteration. One shows that the constructed projector therefore follows
the same state-space transformation as the system model. Therefore, the con-
structed reduced order model does not depend on whether or not one starts
with a balanced realization for the original system. For the RLRG method, on
the other hand, one can lose a lot of accuracy when using a poorly balanced
realization to construct a reduced order model.
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5.6 Numerical Examples

In this section we apply our algorithm to discretizations of three different
dynamical systems: a Building model, a CD Player model, and the Interna-
tional Space Station model. These benchmarks are described in more details
in Chapter 24, Sections 4, 6, 7. It was shown in [CV03a, Cha03], that for the
same problem, the RLRG method gives less accurate results: as predicted by
the discussion of the previous section, the RLRG method deteriorates espe-
cially when the original system is poorly balanced. Since the RLRH method
is to be preferred over the RLRG method, we only compare here the RLRH
method with Balanced Truncation. The approximate system SBT for balanced
truncation and SRLRH for the recursive low rank Hankel method, are both
calculated for a same degree. We show the maximal singular value of the fre-
quency responses of the system and the maximal singular value of the two
error functions.

σmax-plot of the frequency responses.
full model, - - - BT error system, · · · RLRH error system.

cond(T ) ρ(A) cond(A) ‖S‖H∞ ‖S − SBT ‖H∞ ‖S − SRLRH‖H∞

40.7341 1 1.00705 2.3198.106 0.2040 6.1890

Fig. 5.4. CD-player model N = 120, m = p = 2, n = 24
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σmax-plot of the frequency responses.
full model, - - - BT error system, · · · RLRH error system.

cond(T ) ρ(A) cond(A) ‖S‖H∞ ‖S − SBT ‖H∞ ‖S − SRLRH‖H∞

347.078 0.9988 5.8264 0.0053 6.0251.10−4 6.7317.10−4

Fig. 5.5. Building model N = 48, m = p = 1, n = 10

σmax-plot of the frequency responses.
full model, - - - BT error system, · · · RLRH error system.

cond(T ) ρ(A) cond(A) ‖S‖H∞ ‖S − SBT ‖H∞ ‖S − SRLRH‖H∞

740178 0.9998 5.82405 0.1159 2.3630.10−4 0.0011

Fig. 5.6. ISS model N = 270, m = p = 3, n = 32

The corresponding H∞ norms are also given in the table following each
example. Each table also contains the condition number cond(T ) of the balanc-
ing state-space transformation T , the spectral radius ρ(A) and the condition
number cond(A) since they play a role in the error bounds obtained in this
paper. It can be seen from these examples that the RLRH method performs
reasonably well in comparison to the balanced truncation method, and this
independently from whether or not the original system was poorly balanced.
Even though these models are not large they are good benchmarks in the sense
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that their transfer functions are not easy to approximate. Larger experiments
are reported in [Cha03].

5.7 Conclusion

In this paper we show how to construct low-dimensional projected systems
of time-varying systems. The algorithms proposed are based on low-rank ap-
proximations of the Gramians and of the Hankel map which defines the input-
output mapping. Both methods have the advantage of exploiting sparsity in
the data to yield a complexity that is linear in the state dimension of the
original model.

The key idea is to compute only a finite window of the Gramians or Hankel
map of the time-varying system and to compute recursively projection matri-
ces that capture the dominant behavior of the Gramians or Hankel map. The
Recursive Low-Rank Hankel approximation method is to be preferred over
the Recursive Low-Rank Gramian approximation method because it is not
sensitive to the coordinate system in which the original system is described.

The two algorithms are mainly meant for time-varying systems but their
performance is illustrated using time-invariant and periodic systems because
the quality of the methods can then be assessed by the frequency responses
of the error functions.
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6.1 Introduction

In this chapter, the problem of constructing a reduced order system while
preserving the second-order structure of the original system is discussed. Af-
ter a brief introduction on second-order systems and a review of first order
model reduction techniques, two classes of second-order structure preserving
model reduction techniques – Krylov subspace-based and SVD-based – are
presented. For the Krylov techniques, conditions on the projectors that guar-
antee the reduced second-order system tangentially interpolates the original
system at given frequencies are derived and an algorithm is described. For
SVD-based techniques, a Second-Order Balanced Truncation method is de-
rived from second-order Gramians.

Second-order systems arise naturally in many areas of engineering (see, for
example, [Pre97, WJJ87]) and have the following form:{

Mq̈(t) +Dq̇(t) + Sq(t) = F in u(t),
y(t) = F out q(t).

(6.1)

We assume that u(t) ∈ R
m, y(t) ∈ R

p, q(t) ∈ R
N , F in ∈ R

N×m, F out ∈
R

p×N , and M,D,S ∈ R
N×N with M invertible. For mechanical systems the

matrices M , D and S represent, respectively, the mass (or inertia), damping
and stiffness matrices, u(t) corresponds to the vector of external forces, F in to
the input distribution matrix, y(t) to the output measurement vector, F out to
the output measurement matrix, and q(t) to the vector of internal generalized
coordinates.

The transfer function associated with the system (6.1) links the outputs
to the inputs in the Laplace domain and is given by

R(s) := F outP (s)−1F in, (6.2)

where
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P (s) := Ms2 +Ds+ S (6.3)

is the characteristic polynomial matrix. The zeros of det(P (s)) are also known
as the characteristic frequencies of the system and play an important role in
model reduction, e.g., the system is stable if these zeros lie in the open left
half plane.

Often, the original system is too large to allow the efficient solution of var-
ious control or simulation tasks. In order to address this problem, techniques
that produce a reduced system of size n � N that possesses the essential
properties of the full order model have been developed. Such a reduced model
can then be used effectively, e.g., in real-time, for controlling or simulating the
phenomena described by the original system under various types of external
forces u(t). We therefore need to build a reduced model,{

M̂ ¨̂q(t) + D̂ ˙̂q(t) + Ŝq̂(t) = F̂ inu(t)

ŷ(t) = F̂ outq̂(t)
(6.4)

where q̂(t) ∈ R
n, M̂ , D̂, Ŝ ∈ R

n×n, F̂ in ∈ R
n×m, F̂ out ∈ R

p×n, such that its
transfer function is “close” to the original transfer function.

In contrast with second-order systems, first order systems can be repre-
sented as follows: {

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(6.5)

where again u(t) ∈ R
m, y(t) ∈ R

p, x(t) ∈ R
N , C ∈ R

p×N , A ∈ R
N×N and

B ∈ R
N×m.

The transfer function associated with the system (6.5) is given by

R(s) := C(sIN −A)−1B. (6.6)

Second-order systems can be seen as a particular class of linear systems. In-
deed, since the mass matrix M is assumed to be invertible, we can rewrite the
system (6.1) as follows⎧⎪⎪⎨⎪⎪⎩

ẋ(t) =

[
0 IN

−SM −DM

]
x(t) +

[
0
F in

M

]
u(t)

y(t) =
[
F out

M 0
]
x(t)

(6.7)

where the state x(t) is
[
q(t)T q̇(t)T

]T
, and where SM = M−1S, DM =

M−1D, F in
M = M−1F in, F out

M = F out, which is of the form (6.5). We can
thus rewrite the transfer function defined in (6.2) as

R(s) = C(sI2N −A)−1B (6.8)

with

A :=

[
0 IN

−SM −DM

]
, B :=

[
0
F in

M

]
, C :=

[
F out

M 0
]
. (6.9)
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Note that if the dimension of the state q(t) of the original second-order sys-
tem (6.1) is equal to N , the order of its corresponding linearized state space
realization (6.9) (also called the McMillan degree of R(s) if the state space
realization (C,A,B) is minimal) is equal to 2N .

A reduced model for the second-order system (6.1) could be produced by
applying standard linear model reduction techniques to (C,A,B) in (6.9) to
yield a small linear system (Ĉ, Â, B̂). Unfortunately, there is no guarantee
that the matrices defining the reduced system (Ĉ, Â, B̂) have the block struc-
ture necessary to preserve the second-order form of the original system. Such
a guarantee requires the development of second-order structure-preserving
model reduction techniques.

This chapter is organized as follows. In Section 6.2, general results con-
cerning model reduction of first order systems are summarized. In Section
6.3, a simple sufficient condition for constructing reduced order systems that
preserve the second-order structure is developed. Generalizations of Balanced
Truncation and Krylov subspace-based methods that enforce this sufficient
condition for second-order systems are presented in Sections 6.4 and 6.5, re-
spectively. After some numerical experiments in Section 6.6, concluding re-
marks are given in Section 6.7.

6.2 Model Reduction of Linear Systems

Most popular model reduction techniques for linear systems can be put in one
of two categories [Ant05]: SVD-based and Krylov subspace-based techniques.
Perhaps the most popular model reduction technique for linear systems is the
Balanced Truncation method. This SVD-based technique has many advan-
tages: the stability of the original system is preserved and there exists an a
priori global bound on the error between the original and the reduced system.
The main drawback is that this technique cannot be applied to large-scale
systems of order N , i.e., those systems where O(N3) computations is an un-
acceptably large cost. On the other hand, Krylov subspace-based techniques
that are based on imposing moment matching conditions between the original
and the reduced transfer function, such as rational/tangential interpolation
methods, can be applied to large-scale systems but do not provide global error
bounds and depend significantly on the choice of certain parameters.

In this section, we present an overview of examples of each category applied
to a linear system described by (6.5). The corresponding transfer functions is
then strictly proper, i.e. lims→∞R(s) = 0. Since M is invertible, the transfer
function considered in (6.2) is also strictly proper.

6.2.1 Balanced Truncation

If A is stable, then the system (6.5) is also a linear (convolution) operator
mapping square integrable inputs u(t) ∈ L2[−∞,+∞] to square integrable
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outputs y(t) ∈ L2[−∞,+∞]. Following the development in [CLVV05], we re-
call the concept of a dual operator to discuss the Balanced Truncation method.

Definition 6.2.1. Let L be a linear operator acting from a Hilbert space U to
a Hilbert space Y equipped respectively with the inner products < , >U and
< , >Y . The dual of L, denoted by L∗, is defined as the linear operator acting
from Y to U such that < Lu, y >Y = < u,L∗y >U for all y ∈ Y and all
u ∈ U . ��

It is easily verified that the transfer function associated with the dual operator
of (6.6) is BT (sIN −AT )−1CT , (see [ZDG95]).

Now consider the input/output behavior of the system (6.5). If we apply
an input u(t) ∈ L2[−∞, 0] to the system for t < 0, the position of the state
at time t = 0, assuming the zero initial condition x(−∞) = 0, is equal to

x(0) =

∫ 0

−∞
e−AtBu(t)dt := Cou(t).

If a zero input is applied to the system for t > 0, then for all t ≥ 0, the output
y(t) ∈ L2[0,+∞] of the system (6.5) is equal to

y(t) = CeAtx(0) := Obx(0).

So the mapping of past inputs to future outputs is characterized by two
operators – the so-called controllability operator Co : L2[−∞, 0] �→ R

n

(mapping past inputs u(t) to the present state) and observability operator
Ob : R

n �→ L2[0,+∞] (mapping the present state to future outputs y(t)).
Both Co and Ob have dual operators, C∗o and O∗

b , respectively. The opera-
tors and their duals are related by two fundamental matrices associated with
the linear system (6.5). These are the “controllability Gramian” P and the
“observability Gramian” Q. If A is stable, they are the unique solutions of
the Lyapunov equations:

AP + PAT +BBT = 0 , ATQ+QA+ CTC = 0. (6.10)

It follows that Co and Ob are related to their dual operators by the identities
P = C∗oCo and Q = ObO∗

b [ZDG95].
Another physical interpretation of the Gramians results from two opti-

mization problems. Let

J(v(t), a, b) :=

∫ b

a

v(t)T v(t)dt

be the energy of the vector function v(t) in the interval [a, b]. It can be shown
that (see [ZDG95])

min
Cou(t)=x0

J(u(t),−∞, 0) = xT
0 P−1x0, (6.11)
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and, symmetrically, we have the dual property

min
O∗

b
y(t)=x0

J(y(t),−∞, 0) = xT
0Q−1x0. (6.12)

Two algebraic properties of Gramians P and Q are essential to the devel-
opment of Balanced Truncation. First, under a coordinate transformation
x(t) = T x̄(t), the new Gramians P̄ and Q̄ corresponding to the state-space
realization (C̄, Ā, B̄) := (CT, T−1AT, T−1B) undergo the following (so-called
contragradient) transformation:

P̄ = T−1PT−T , Q̄ = TTQT. (6.13)

This implies that the eigenvalues of the product P̄Q̄ = T−1PQT depend
only on the transfer function R(s) and not on a particular choice of state-
space realization. It implies also that there exists a state-space realization
(Cbal, Abal, Bbal) of R(s) such that the corresponding Gramians are equal and
diagonal P̄ = Q̄ = Σ [ZDG95].

Second, because the Gramians appear in the solutions of the optimization
problems (6.11) and (6.12), they give information about the energy that goes
through the system, more specifically, about the distribution of this energy
among the state variables. The smaller xT

0 P−1x0 is, the more “controllable”
the state x0 is, since it can be reached with a input of small energy. By
duality, the smaller xT

0Q−1x0 is, the more “observable” the state x0 is. Thus
when both Gramians are equal and diagonal, the order of magnitude of a
diagonal value of the product PQ is a good measure for the influence of the
corresponding state variable on the mapping y(t) = ObCou(t) that maps past
inputs u(t) ∈ L2[−∞, 0] to future outputs y(t) ∈ L2[0,+∞] passing via that
particular state at time t = 0.

Given a transfer function R(s), the Balanced Truncation model reduction
method consists of finding a state-space realization (Cbal, Abal, Bbal) of R(s)
such that the Gramians are equal and diagonal (this is the balanced realization
of the system) and then constructing the reduced model by keeping the states
corresponding to the largest eigenvalues of the product PQ and discarding
the others. In other words, the balanced truncation technique chooses Z and
V such that ZTV = I, and {

PQV = V Λ+

QPZ = ZΛ+
(6.14)

where Λ+ is a square diagonal matrix containing the largest eigenvalues of
PQ. A state-space realization of the reduced transfer function is given by
(CV,ZTAV,ZTB). The idea of the balanced truncation technique thus con-
sists in keeping those states that are most controllable and observable accord-
ing to the Gramians defined in (6.10).

Finally, we note that Balanced Truncation can be related to the Hankel
operator that maps the past inputs to the future outputs and is defined as
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H := ObCo. Since PQ = CoC∗oO∗
bOb and QP = O∗

bObCoC∗o , the dominant
eigenspaces V of PQ and Z of QP are linked with the dominant eigenspaces
X ofHH∗ and Y ofH∗H via the equalities X = ObV and Y = C∗oZ. Therefore,
projecting onto the spaces V and Z also approximates the Hankel map H well.
We refer the reader to [ZDG95], for a more detailed study and discussion of
the Balanced Truncation method.

Unfortunately, the Balanced Truncation method cannot be applied di-
rectly to the state-space realization (C,A,B) (6.7) of the second-order sys-
tem without destroying its second-order structure in the reduced realization.
An approach that solves this problem is discussed in Section 6.4. Also note
that, due to its dependence on transformations with O(N3) complexity, the
Balanced Truncation method cannot be applied, as described, to large-scale
systems. Recent work by Antoulas and Sorensen considers this problem and
describes an Approximate Balanced Truncation approach for large-scale linear
systems [SA02].

6.2.2 Krylov Subspace-Based Model Reduction

The Krylov subspace-based model reduction methods have been developed in
order to produce reduced order models of large-scale linear systems efficiently
and stably via projection onto subspaces that satisfy specific conditions. These
conditions are based on requiring the reduced order transfer function to match
selected moments of the transfer function R(s) of the original system.

A rational matrix function R(s) is said to be O(λ− s)k in s with k ∈ Z if
its Taylor expansion about the point λ can be written as

R(s) = O(λ− s)k ⇐⇒ R(s) =

+∞∑
i=k

Ri(λ− s)i, (6.15)

where the coefficients Ri are constant matrices. If Rk �= 0, then we say that
R(s) = Θ(λ − s)k. As a consequence, if R(s) = Θ(λ − s)k and k is strictly
negative, then λ is a pole of R(s) and if k is strictly positive, then λ is a zero
of R(s). Analogously, we say that R(s) is O(s−1)k if the following condition
is satisfied:

R(s) = O(s−1)k ⇐⇒ R(s) =

+∞∑
i=k

Ris
−i, (6.16)

where the coefficients Ri are constant matrices. It should be stressed that, in
general, R(s) being O(s)−k is not equivalent to R(s) being O(s−1)k.

Rational Interpolation

Krylov subspaces play an important role in the development of these methods
and are defined as follows:
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Definition 6.2.2. Let M ∈ C
n×n and X ∈ C

n×m. A Krylov subspace
Kk(M,X) of order k of the pair (M,X) is the image of the matrix[
M MX . . . Mk−1X

]
.

If A is stable, R(s) expanded about infinity gives

R(s) = C(sIN −A)−1B =

∞∑
i=0

CAiBs−i−1 :=

∞∑
i=0

R
(∞)
i s−i−1,

where the coefficients R∞
i are called the Markov parameters of the system.

One intuitive way to approximate R(s) is to construct a transfer function R̂(s)
of McMillan degree n� N ,

R̂(s) := Ĉ(sIn − Â)−1B̂ :=

∞∑
i=1

R̂
(∞)
i s−i (6.17)

such that R̂
(∞)
i = R

(∞)
i for 1 ≤ i ≤ r, where r is as large as possible and is

generically equal to 2n. The resulting reduced transfer function R̂(s) generally
approximates quite well the original transfer function for large values of s.

If a good approximation for low frequencies is desired, one can construct
a transfer function

R̂(s) = Ĉ(sIn − Â)−1B̂ =

∞∑
k=0

R̂
(λ)
k (λ− s)k,

such that
R̂

(λ)
k = R

(λ)
k for 1 ≤ k ≤ K, (6.18)

with
R

(λ)
k := C(λIN −A)−kB, R̂

(λ)
k := Ĉ(λIn − Â)−kB̂.

In short, (6.18) can be rewritten as follows:

R(s)− R̂(s) = O(λ− s)K .

More generally, one can choose a transfer function R̂(s) that interpolates
R(s) at several points in the complex plane, up to several orders. The main
results concerning this problem for MIMO standard state space systems are
summarized in the following theorem.

Theorem 6.2.3. Let the original system be

R(s) := C(sIN −A)−1B, (6.19)

and the reduced system be

R̂(s) := CV
(
ZT (sIN −A)V

)−1
ZTB, (6.20)
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with ZTV = In. If

K⋃
k=1

Kbk
((λkI −A)−1, (λkI −A)−1B) ⊆ Im(V ) (6.21)

and
K⋃

k=1

Kck
((λkI −A)−T , (λkI −A)−TCT ) ⊆ Im(Z) (6.22)

where the interpolation points λk are chosen such that the matrices λkIN −A
are invertible ∀k ∈ {1, . . . ,K} then the moments of the systems (6.19) and
(6.20) at the points λk satisfy

R(s)− R̂(s) = O(s− λk)bk+ck , (6.23)

provided these moments exist, i.e. provided the matrices λkIn − Â are invert-
ible.

For a proof, see [dVS87] and [Gri97]. A proof for MIMO generalized state
space systems is given in [GVV04b]. ��

Matching Markov parameters, i.e., λ =∞, is known as partial realization.
When λ = 0, the corresponding problem is known as Padé approximation. If
λ takes a finite number of points λi, it is called a multi-point Padé approxi-
mation. In the general case, the problem is known as rational interpolation.
Rational interpolation generally results in a good approximation of the orig-
inal transfer function in a region near the expansion points (and increasing
the order at a point tends to expand the region), but may not be accurate at
other frequencies (see for instance [Ant05]).

The advantage of these moment matching methods is that they can be
implemented in a numerically stable and efficient way for large-scale systems
with sparse coefficient matrices (see for example [GVV04b] and [Gri97]). Also,
the local approximation property means that good approximations can be
achieved in specific regions over a wide dynamic range, typically at the cost of
a larger global error. This requires however, that the interpolation points and
their corresponding order of approximation must be specified. For some appli-
cations, the user may have such information but for blackbox library software
a heuristic automatic selection strategy is needed (see [Gri97]) and the design
of such a strategy is still an open question. The other main drawback is the
lack of an error bound on the global quality of the approximation, e.g., the
H∞-norm of the difference between original and reduced transfer functions.
Recent research has begun to address the evaluation of the H∞-norm given a
reduced order model that may help in selecting points [CGV04].

One could apply these methods to the state space realization (6.9) of a
second-order transfer function. Unfortunately, if the methods are used in the
forms described, the resulting reduced order transfer function will generically
not be in second-order form. An approach to maintain second-order form is
discussed in Section 6.5.
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Tangential Interpolation

The Krylov subspace-based methods that produce reduced order models based
on rational interpolation can be applied to MIMO systems efficiently as long
as the number of inputs and outputs, m and p, stay suitably moderate in size.
For MIMO systems where m and p are too large, a more general tangential
interpolation problem has recently been considered (see [GVV04a]). Instead
of imposing interpolation condition of the form R(λi) = R̂(λi), one could
be interested, for example, in only imposing interpolation conditions of the
following form:

R̂(λi)xi = R(λi)xi , yiR̂(λi+n) = yiR(λi+n), 1 ≤ i ≤ n, (6.24)

where the n column vectors xi are called the right interpolation directions
and the n row vectors yi are called the left interpolation directions. As with
rational interpolation, higher order tangential interpolation conditions can be
imposed at each point to improve the approximation.

Stable and efficient methods for tangential interpolation of MIMO systems
can be developed using theorems and techniques similar to those used for
Krylov subspace-based rational interpolation. However, the problem of con-
structing a reduced transfer function that satisfies a set of tangential interpo-
lation conditions and that preserves the second-order structure of the original
transfer function requires additional consideration as discussed in Section 6.5.

6.3 Second-Order Structure Preserving Model Reduction

In this section, a simple sufficient condition for obtaining a second-order re-
duced system from a second-order system is presented. The following result
can be found in a slightly different form in [CLVV05].

Lemma 6.3.1. Let (C,A,B) be the state space realization defined in (6.9). If
one projects such a state space realization with 2N×2n bloc diagonal matrices

Z̄ :=

[
Z1 0
0 Z2

]
, V̄ :=

[
V1 0
0 V2

]
, Z̄T V̄ = I2n,

where Z1, V1, Z2, V2 ∈ C
N×n, then the reduced transfer function

R̂(s) := CV̄
(
Z̄T (sI2N −A)V̄

)−1
Z̄TB

is a second-order transfer function, provided the matrix ZT
1 V2 is invertible.

Proof. First, notice that the transfer function does not change under any
similarity transformation of the system matrices. Let us consider the similarity
transformation M ∈ C

2n×2n such that
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M :=

[
X
Y

]
,

with X,Y ∈ C
n×n verifying

X−1(ZT
1 V2)Y = In.

From the preceding results,

R̂(s) := CV̄ M
(
M−1Z̄T (sI2N −A)V̄ M

)−1
M−1Z̄TB

= F out
M V1X

(
s2In + sY −1ZT

2 DMV2Y + Y −1ZT
2 SMV1X

)−1
Y −1ZT

2 F
in
M .

This is clearly a second-order transfer function. ��

6.4 Second-Order Balanced Truncation

The earliest balanced truncation technique for second-order systems known
to the authors is described in [MS96]. Based on this work, an alternative
technique was developed in [CLVV05]. In this section an overview of the latter
method, called SOBT (Second-Order Balanced Truncation), is given.

The first step in the development of SOBT, based on a balance and trun-
cate process similar to that discussed in Section 6.2.1, involves the definition
of two pairs of N ×N Gramians (“second-order Gramians”) that change ac-
cording to contragradient transformations, and that have some energetic in-
terpretation. The first pair (Ppos,Qpos) corresponds to an energy optimization
problem depending only on the positions q(t) and not on the velocities q̇(t).
Reciprocally, the second pair (Pvel,Qvel) correspond to an optimization prob-
lem depending only on the velocities q̇(t) and not the on the positions q(t).
By analogy to the first order case, the Gramians Qpos and Qvel are defined
from the dual systems. Given the Gramians, a balancing step in the method
is defined by transforming to a coordinate system in which the second-order
Gramians are equal and diagonal: P̄pos = Q̄pos = Σpos, P̄vel = Q̄vel = Σvel.
Their diagonal values enable us to identify the important positions and the
important velocities, i.e. those with (hopefully) large effect on the I/O map.
Once identified, the reduced second-order model follows by truncation of all
variables not identified as important.

In order to define a pair of second-order Gramians measuring the contribu-
tion of the position coordinates (independently of the velocities) with respect
to the I/O map, consider an optimization problem naturally associated with
the second-order system (see [MS96]) of the form

min
q̇0∈Rn

min
u(t)

J(u(t),−∞, 0), (6.25)

subject to
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q̈(t) +DM q̇(t) + SMq(t) = F in
M u(t), q(0) = q0.

One easily sees that the optimum is qT
0 P11

−1q0, where P11 is the N ×N left
upper block of the controllability Gramian P satisfying equation (6.10) with
(C,A,B) given in (6.9). Starting with (6.11) we must solve

min
q̇0∈Rn

Jq0
(q̇0) =

[
qT
0 q̇T

0

]
P−1

[
q0
q̇0

]
.

Partitioning P−1 as follows

P−1 =

[
R1 R2

RT
2 R3

]
and annihilating the gradient of Jq0

(q̇0) gives the relation q̇0 = −R−1
3 RT

2 q0.
The value of Jq0

at this point is qT
0 (R1 − R2R

−1
3 RT

2 )q0. This is simply the
Schur complement of R3 which is P11

−1. Similarly, the solution of the dual
problem corresponds to qT

0 Q11
−1q0 , where Q11 is the N ×N left upper block

of the observability Gramian Q (6.10).
Note that the transfer function is seen as a linear operator acting between

two Hilbert spaces. The dual of such an operator is defined in Definition
6.2.1. It follows that the dual of a second-order transfer function might not
be a second-order transfer function. This has no consequences here since only
the energy transfer interpretation between the inputs, the outputs, the initial
positions and velocities is important. Under the change of coordinates q(t) =
T q̄(t), it is easy to verify that this pair of Gramians undergoes a contragradient
transformation:

(P̄11, Q̄11) = (T−1P11T
−T , TTQ11T ).

This implies that there exists a new coordinate system such that both P11

and Q11 are equal and diagonal. Their energetic interpretation is seen by con-
sidering the underlying optimization problem. In (6.25), the energy necessary
to reach the given position q0 over all past inputs and initial velocities is min-
imized. Hence, these Gramians describe the distribution of the I/O energy
among the positions.

A pair of second-order Gramians that gives the contribution of the veloc-
ities with respect to the I/O map can be defined analogously. The associated
optimization problem is

min
q0∈Rn

min
u(t)

J(u(t),−∞, 0) (6.26)

subject to

q̈(t) +DM q̇(t) + SMq(t) = F in
M u(t), q̇(0) = q̇0.

Following the same reasoning as before for the optimization problem (6.25),
one can show that the solution of (6.26) is q̇T

0 P22
−1q̇0, where P22 is the N×N
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right lower block of P. The solution of the dual problem is q̇T
0 Q22

−1q̇0 , where
Q22 is the N × N right lower block of Q. As before, under the change of
coordinates q(t) = T q̄(t) one can check that this pair of Gramians undergoes
a contragradient transformation and that the energetic interpretation is given
by considering the underlying optimization problem. In (6.26), the energy
necessary to reach the given velocity q̇0 over all past inputs and initial positions
is minimized. Hence, these Gramians describe the distribution of the I/O
energy among the velocities.

Given the interpretation above these second-order Gramians are good can-
didates for balancing and truncating. Therefore, we choose:

(Ppos, Qpos) = (P11, Q11) and (Pvel, Qvel) = (P22, Q22) . (6.27)

It is not possible to balance both pairs of second-order Gramians at the
same time with a single change of coordinates of the type q(t) = T q̄(t). A
change of coordinates is required for both positions and velocities (unlike the
approach in [MS96]). Therefore, we work in a state-space context, starting
with the system (6.9). The SOBT method, therefore, first computes both
pairs of second-order Gramians, (Ppos, Qpos) and (Pvel, Qvel). Given the
Gramians, the contragradient transformations that make Ppos = Qpos = Λpos

and Pvel = Qvel = Λvel, where Λpos and Λvel are positive definite diagonal
matrices, are computed. Finally, truncate the positions corresponding to the
smallest eigenvalues of Λpos and the velocities corresponding to the smallest
eigenvalues of Λvel.

At present, there exists no a priori global error bound for SOBT and the
stability of the reduced system is not guaranteed. Nevertheless, SOBT yields
good numerical results, providing reduced transfer functions with approxima-
tion error comparable with the traditional Balanced Truncation technique.

6.5 Second-Order Structure Preserving Krylov
Techniques

The Krylov subspace-based methods discussed in Section 6.2.2 do not preserve
second-order structure when applied to the linear system (6.9). It is possible
to modify them to satisfy the constraint presented in Section 6.3 and thereby
produce a second-order reduced system. Section 6.5.1 summarizes the earliest
Krylov subspace-based method for second-order systems [SC91]. The simple
technique constructs, via projection, a second-order reduced transfer function
that matches the Markov parameters (λ = ∞) of the original transfer function.
The limitation of the technique when applied to a complex interpolation point
is also discussed. Section 6.5.2, addresses this limitation using a generalization
that allows multipoint rational interpolation. Finally, the problem of second-
order structure preserving tangential interpolation is solved in 6.5.3.
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6.5.1 A Particular Case: Matching the Markov Parameters

Su and Craig proposed a Krylov subspace-based projection method that pre-
serves second-order structure while matching the Markov parameters of the
original transfer function [SC91]. The method is based on the observation that
the right Krylov subspace corresponding to interpolation at λ = ∞ for the
system (6.9) has the form[

B AB A2B . . .
]

=

[
0 F in

M −DMF in
M . . .

F in
M −DMF in

M −SMF in
M +D2

MF in
M . . .

]
(6.28)

=

[
0 Qv,0 Qv,1 . . .

Qv,0 Qv,1 Qv,2 . . .

]
. (6.29)

and that if we write

Kk(A,B) =

[
V1

V2

]
,

it follows that
Im(V1) ⊆ Im(V2).

So by projecting the state space realization (6.9) with

V̄ :=

[
V2 0
0 V2

]
, Z̄ :=

[
Z 0
0 Z

]
such that ZTV2 = In, we obtain an interpolating second-order transfer func-
tion of the form

R̂(s) = F out
M V2

(
ZT (s2IN + sDM + SM )−1V2

)
ZTF in

M . (6.30)

Hence, a second-order system with the same n first Markov parameters
as the original second-order system can be constructed by projecting with
Z, V ∈ C

N×n such that ZTV = In and the image of V contains the image of
Qv,0, . . . , Qv,n−1. Since Kn(A,B) ⊆ V̄ , it follows from Theorem 6.2.3 that the

first n Markov parameters of R(s) and R̂(s) are equal.
If we apply the construction for any interpolation point λ ∈ C, the corre-

sponding right Krylov space is such that

Kk((λI −A)−1, (λI −A)−1B) = Im

[
V1

V2

]
,

with A and B defined in (6.9) and

Im(V1) ⊆ Im(V2).

Unfortunately, a similar statement can not be made for the left Krylov sub-
spaces Kk((λI − A)−T , (λI − A)−TCT ). This implies that when the second-
order Krylov technique is extended to interpolation at arbitrary points in the
complex plane by projecting as in (6.30), only n interpolation conditions can
be imposed for a reduced second-order system of McMillan degree 2n.



162 Younes Chahlaoui et al.

6.5.2 Second-Order Rational Interpolation

The projection technique of Su and Craig has been generalized independently
by several authors (see [VV04, BS04] and also Chapter 7 and Chapter 8) to
solve the rational interpolation problem that produces a second-order transfer
function of order n, i.e., of McMillan degree 2n, R̂(s), that interpolates R(s) at
2n points in the complex plane. After some preliminary discussion of notation,
the conditions that determine the projections are given in Theorem 6.5.1 and
the associated algorithm is presented.

By combining the results of Sections 6.2 and 6.3, the following theorem
can be proven.

Theorem 6.5.1. Let R(s) := F out
M (s2IN + DMs + SM )−1F in

M = C(sI2N −
A)−1B, with

A :=

[
0 IN

−SM −DM

]
, B :=

[
0
F in

M

]
, C :=

[
F out

M 0
]
,

be a second-order transfer function of McMillan degree 2N , i.e. SM , DM ∈
C

N×N ). Let Z, V ∈ C
2N×n be defined as

V :=

[
V1

V2

]
, Z :=

[
Z1

Z2

]
,

with V1, V2, Z1 and Z2 ∈ C
N×n such that

ZT
1 V1 = ZT

2 V2 = In.

Let us define the 2N × 2n projecting matrices

V̄ :=

[
V1 0
0 V2

]
, Z̄ :=

[
Z1 0
0 Z2

]
.

Define the second-order transfer function R̂(s) of order n (and of McMillan
degree 2n) by

R̂(s) := CV̄
(
Z̄T (sI2N −A)V̄

)−1
Z̄TB

:= Ĉ(sI2n − Â)−1B̂. (6.31)

If
K⋃

k=1

Kbk
((λkI2N −A)−1, (λkI2N −A)−1B) ⊆ Im(V ) (6.32)

and
K⋃

k=1

Kck
((λkI2N −A)−T , (λkI2N −A)−TCT ) ⊆ Im(Z) (6.33)
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where the interpolation points λk are chosen such that the matrices λkI2N −A
are invertible ∀k ∈ {1, . . . ,K} then, if the matrix ZT

1 V2 is invertible,

R(s)− R̂(s) = O(s− λk)bk+ck (6.34)

for the finite points λk, provided these moments exist, i.e. provided the matri-
ces λkI2n − Â are invertible and

R(s)− R̂(s) = O(s−1)bk+ck (6.35)

if λk =∞.

Proof. Clearly, Z̄T V̄ = I2n. The second-order structure of R̂(s) follows from
Lemma 6.3.1. It is clear that

Im(V ) ⊂ Im(V̄ ) , Im(Z) ⊂ Im(Z̄).

The interpolation conditions are then satisfied because of Theorem 6.2.3. ��

The form of the projectors allows the development of an algorithm similar
to the Rational Krylov family of algorithms for first order systems [Gri97].
The algorithm, shown below, finds a second-order transfer function of order
n, i.e. of McMillan degree 2n, R̂(s), that interpolates R(s) at 2n interpolation
points λ1 up to λ2n, i.e.,

R(s)− R̂(s) = O(λi − s) for 1 ≤ i ≤ 2n. (6.36)

We assume for simplicity that the interpolation points are finite, distinct and
not poles of R(s). The algorithm is easily modified to impose higher order
conditions at the interpolation points.

Algorithm 1 1. Construct Z and V such that

V =
[
(λ1I2N −A)−1B . . . (λnI2N −A)−1B

]
=

[
V1

V2

]

ZT =

⎡⎢⎣C(λn+1I2N −A)−1

...
C(λ2nI2N −A)−1

⎤⎥⎦ =
[
ZT

1 ZT
2

]
,

where V1, V2 ∈ C
N×n are the first N rows and the last N rows of V

respectively and Z1, Z2 ∈ C
N×n are the first N rows and the last N rows

of Z respectively. Choose the matrices M1,M2, N1, N2 ∈ C
n×n such that

NT
1 Z

T
1 V1M1 = NT

2 Z
T
2 V2M2 = In.

2. Construct

V̄ :=

[
V1M1

V2M2

]
, Z̄ :=

[
Z1N1

Z2N2

]
.
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3. Construct the matrices

Ĉ := CV̄ , Â := Z̄TAV̄ , B̂ := Z̄TB.

and define the reduced transfer function

R̂(s) := Ĉ(sI2n − Â)−1B̂.

From Theorem 6.5.1, R̂(s) is a second-order transfer function of order n
that satisfies the interpolation conditions (6.36). The algorithm above has all
of the freedom in the method of forming the bases and selecting interpolation
points and their associated orders found in the Rational Krylov family of al-
gorithms [Gri97]. As a result, the second-order rational interpolation problem
can be solved while exploiting the sparsity of the matrices and parallelism of
the computing platform in a similar fashion.

6.5.3 Second-order Structure Preserving Tangential Interpolation

It is possible to generalize the earlier results for MIMO systems to perform
tangential interpolation and preserve second-order structure. This is accom-
plished by replacing Krylov subspaces at each interpolation point, λi, with
generalized Krylov subspaces as done in [GVV04a]. The spaces are defined as
follows:

Definition 6.5.2. Let M ∈ C
n×n, X ∈ C

n×m, y[i] ∈ C
m, i = 0, . . . , k − 1

and define Y ∈ C
km×k as

Y =

⎡⎢⎣ y
[0] . . . y[k−1]

. . .
...
y[0]

⎤⎥⎦ .
A generalized Krylov subspace of order k, denoted Kk(M,X, Y ), is the image
of the matrix

[
X MX . . . Mk−1X

]
Y .

For example, by using Algorithm 2 below to compute bases for generalized
Krylov subspaces and forming the appropriate projections, one can construct
a second-order transfer function R̂(s) of order n that satisfies the following
interpolation conditions with respect to the second-order transfer function
R(s) of order N :

xi

(
R(s)− R̂(s)

)
= O(λi − s) ,

(
R(s)− R̂(s)

)
xi+n = O(λi+n − s),

(6.37)
where x1, . . . , xn ∈ C

1×p and xn+1, . . . , x2n ∈ C
m×1.

Algorithm 2 1. Construct Z and V such that



6 Model Reduction of Second-Order Systems 165

V =
[
(λn+1I2N −A)−1Bxn+1 . . . (λ2nI2n −A)−1Bx2n

]
=

[
V1

V2

]

ZT =

⎡⎢⎣ x1C(λ1I2N −A)−1

...
xnC(λnI2N −A)−1

⎤⎥⎦ =
[
ZT

1 ZT
2

]
,

where Z1, Z2, V1, V2 ∈ C
N×n. Choose the matrices M1,M2, N1, N2 ∈

C
n×n such that NT

1 Z
T
1 V1M1 = NT

2 Z
T
2 V2M2 = In.

2. Construct

V̄ :=

[
V1M1

V2M2

]
, Z̄ :=

[
Z1N1

Z2N2

]
.

3. Construct the matrices

Ĉ := CV̄ , Â := Z̄TAV̄ , B̂ := Z̄TB.

and define the reduced transfer function

R̂(s) := Ĉ(sI2n − Â)−1B̂.

It can be shown that R̂(s) is a second-order transfer function of order n that
satisfies the interpolation conditions (6.37) (see [GVV04a]).

It is also possible to impose higher order conditions while preserving
the structure of the algorithm and the reduced order system. Consider,
for instance, right tangential interpolation conditions of higher order (sim-
ilar results hold for left tangential interpolation). Let the polynomial vector

x(s) :=
∑k−1

i=0 x
[i](s− λ)i. To impose the tangential interpolation condition(

R(s)− R̂(s)
)
x(s) = O(s− λ)k,

we construct R̂(s) as in Algorithm 2 using the generalized Krylov subspace
K((λI−A)−1, (λI−A)−1B,X) where X is formed from the x[i], i = 0, . . . , k−
1, i.e.,

Im

⎧⎪⎨⎪⎩[
(λI −A)−1B . . . (λI −A)−kB

] ⎡⎢⎣x
[0] . . . x[k−1]

. . .
...
x[0]

⎤⎥⎦
⎫⎪⎬⎪⎭ ⊆ Im

{[
V1

V2

]}
.

We refer to [GVV04a] for more details on this topic.

6.6 Numerical Experiments

In this section, model reduction techniques are applied to a large scale second-
order system representing the vibrating structure of a building. The objective
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is to compare the performance of second-order structure preserving model
reduction techniques, namely the SOBT technique introduced in Section 6.4
and the Second-Order Krylov technique introduced in Section 6.5, with respect
to the standard first order techniques, namely the Balanced Truncation and
the Multipoint Padé techniques.

The characteristics of the second-order system to be reduced are the fol-
lowing. The stiffness and mass matrix S and M are of dimension N = 26, 394.
(See Chapter 24, Section 4, this volume, for a description of the example.)
The mass matrix M is diagonal and the stiffness matrix S is symmetric and
sparse (S contains approximately 2×105 non zero elements). The input vector
is the transpose of the output vector:

C = BT =
[
1 . . . 1

]
.

The damping matrix is proportional, meaning it is a linear combination of the
mass matrix M and the stiffness matrix S:

D := αM + βS,

with α = 0.675 and β = 0.00315. The second-order transfer function of McMil-
lan degree 2N = 52788 to be reduced is

R(s) := BT (s2M + sD + S)−1B = BT (s2M + s(αM + βS) + S)−1B.

Given the structure of M we normalize the equation so that the mass matrix
is the identity as follows:

R(s) = BTM−1/2
(
s2I + s(αI + βM−1/2SM−1/2)+

M−1/2SM−1/2
)−1

M−1/2B

:= C̄
(
s2I + s(αI + βS̄) + S̄

)−1
B̄,

where S̄ := M−1/2SM−1/2 and B̄ := M−1/2B = C̄T .
One intermediate system and five reduced order systems will be con-

structed from R(s). Three reasons led us to construct an intermediate transfer
function. First, concerning the SVD techniques, it is not possible to apply the
Balanced Truncation or the Second-Order Balanced Truncation methods di-
rectly to the transfer function R(s) because its McMillan degree 2N is too
large for applying O(N3) algorithms. Second, the intermediate transfer func-
tion, assumed very close to R(s), will also be used to approximate of the error
bound between the different reduced transfer functions and the original trans-
fer function R(s). Finally, the intermediate transfer function will also be used
in order to choose interpolation points for the Krylov techniques.

For these reasons, an intermediate second-order transfer function of order
200 (i.e. of McMillan degree 400), called R200(s), is first constructed from R(s)
using Modal Approximation by projecting S̄ onto its eigenspace corresponding
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to its 200 eigenvalues of smallest magnitude. This corresponds to keeping the
400 eigenvalues of s2I+s(αI+βS̄)+ S̄ that are closest to the imaginary axis.
Let Vf200 ∈ R

26364×200 be the projection matrix corresponding to the 200
eigenvalues of S̄ the closest to the imaginary axis (with V T

f200Vf200 = I200)

(Vf200 is computed with the Matlab function eigs). The intermediate transfer
function is

R200(s) := C̄Vf200

“
s2I + s(αI + βV T

f200S̄Vf200) + V T
f200S̄Vf200

”−1

V T
f200B̄.

By checking the difference between R(s) and R200(s) at different points in the
complex plane, it has been verified that the transfer functions are very close
to each other. The Hankel singular values of R200(s) are shown in Figure 6.1.
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Fig. 6.1. Hankel singular values of R200(s)

From R200(s), we compute the first reduced transfer function of McMillan
degree 20 obtained by using balanced truncation (with the sysred Matlab
function of the Niconet library), called Rbt(s). Note that Rbt(s) is no longer
in second-order form. Another second order transfer function of order 20 (and
McMillan degree 40), called Rsobt(s), is constructed from R200(s) using the
SOBT algorithm [CLVV05].

For the Krylov techniques, the reduced order transfer functions are com-
puted directly from the original transfer function R(s). Three reduced order
systems are compared. The first one is constructed using the standard first
order Krylov procedure. The two other reduced systems (corresponding to
different choices of interpolation points) are constructed using a second-order
Krylov technique.
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In order to apply Krylov techniques, a first important step consists in
choosing the interpolation points. Indeed, the quality of the reduced order
system is very sensitive to the choice of interpolation points.

An interesting fact is that there are 42 interpolation points between
R200(s) and Rbt(s) that have a positive real part (among the 420 zeros of
R200(s)−Rbt(s)). From several experiments, it has been observed that when
using the standard Balanced Truncation technique, the number of interpo-
lation points in the right-half plane between the original and the reduced
transfer function is roughly equal to twice the McMillan degree of the re-
duced transfer function. The interpolation points in the right-half plane have
the advantage that they are neither close to the poles of the system to be
reduced nor to the poles of the Balanced Truncation reduced system because
both transfer functions are stable. This implies that both transfer functions
do not vary too much there and this is preferable in order to avoid numerical
difficulties.

Because the McMillan degree of Rbt(s) is equal to 20, it is well known that
40 points are sufficient in order to describe Rbt(s). In other words, the only
transfer function of Mc Millan degree smaller than 20 that interpolates Rbt(s)
at 40 points in the complex plane is Rbt(s) itself [GVV03]. So, we take the 40
interpolation points (these are 20 complex conjugate pairs of points) between
R200(s) and Rbt(s) with largest real part as our choice for computing the
transfer function of McMillan degree 20, denoted RKryl(s), that interpolates
the original transfer function R(s) at these points. The poles and interpolation
points are shown in Figure 6.2. Because R200(s) is very close to R(s), RKryl(s)
should be close to Rbt(s).

Using the second-order Krylov technique, a reduced second-order transfer
function Rsokryl(s) of McMillan degree 28 is also constructed. Its McMillan
degree was first chosen to be 20 but the resulting reduced transfer function
was not stable. For this reason, additional interpolation conditions were added
until the reduced transfer function was stable, resulting in a McMillan degree
equal to 28. The transfer function Rsokryl(s) interpolates R(s) at the 28 right-
most interpolation points between R200(s) and Rbt(s).

For comparison purposes a set of interpolation points randomly generated
(with symmetry with respect to the real axis in order to obtain a real inter-
polating transfer function) in a rectangle delimited by the extreme zeros in
the left half plane of R200(s)−Rbt(s) is also used in the second-order Krylov
method to generate Rrandsokryl(s). These two sets of interpolation points are
shown in Figure 6.3.

The Bode magnitude diagrams R200(s), Rbt(s), Rsobt(s), Rrandsokryl(s),
Rkryl(s) and Rsokryl(s) are plotted in Figure 6.4. Recall, that R200(s) is used
here as computationally tractable approximation of R(s). More can be learned
by considering the the H∞-norm errors relative to ‖R200(s)‖∞ shown in Ta-
ble 6.1.

As a first observation, it looks as if the six transfer functions are close to
each other, especially for frequencies smaller than 10 rad/sec (where the bode
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Fig. 6.3. Interpolation points for Rbt(s), Rsokryl(s) and Rrandsokryl(s)

magnitude diagrams are undistinguishable, see Figure 6.4). This is a good
news because they should all approximate well the same transfer function
R(s).

One observes from Table 6.1 that the SVD techniques perform better than
the Krylov techniques. Two remarks are in order. First, it should be kept in
mind that only the Krylov reduced transfer functions are directly computed
from the original data of R(s). Second, concerning the Krylov techniques,
the quality of the approximation depends strongly on the choice of the inter-



170 Younes Chahlaoui et al.

Bode Magnitude Diagram

Frequency (rad/sec)

M
ag

ni
tu

de
 (

ab
s)

10
0

10
1

10
2

10
2

10
3

10
4

10
5

10
6

10
7

R
200

(s)
R

bt
(s)

R
sobt

(s)
R

randsokryl
(s)

R
kryl

(s)
R

sokryl
(s)

Fig. 6.4. The six transfer functions

Table 6.1. Relative errors for reduced order models

Reduced Transfer Model Reduction McMillan ‖R200(s)−Rreduced(s)‖∞
‖R200(s)‖∞

function technique degree

Rbt(s) Balanced Truncation 20 4.3 10−4

Rsobt(s) Second-Order Bal. Trunc. 40 2.6 10−4

Rkryl(s) Krylov 20 8.3 10−4

Rsokryl(s) Second-Order Krylov 28 5.8 10−2

Rrandsokryl(s) Random Second-Order Krylov 20 7 10−2

polation points. Because for SISO systems, any transfer function can be con-
structed from Krylov subspaces from any transfer function of larger McMillan
degree, there should exist interpolation conditions that produce reduced order
transfer functions with smaller error bound than what can be obtained with
balanced techniques, but of course, it is not easy to find such interpolation
conditions.

A surprising fact concerning SVD techniques is that the best approxima-
tion is obtained with Rsobt(s) and not Rbt(s). Nevertheless, one should not
forget that the McMillan degree of Rsobt(s) is twice as large as the McMillan
degree of Rbt(s).

In contrast with SVD techniques, the error obtained with the first or-
der transfer function Rkryl(s) is 100 times smaller than for the second-order
transfer functions Rsokryl(s) and Rrandsokryl(s). This tends to indicate that
Second-Order Krylov techniques perform quite poorly compared to the first



6 Model Reduction of Second-Order Systems 171

order techniques, perhaps indicating that a more sophisticated algorithm for
choosing the interpolation points for these methods is needed.

Finally, by choosing random interpolation points, the error remains roughly
the same than by taking the balanced truncation interpolation points: 0.058
for Rsokryl(s) and 0.07 for Rrandsokryl(s). This is probably due to the fact
that the area chosen to generate the interpolation points for Rrandsokryl(s)
contains good information about the original transfer function.

6.7 Concluding Remarks

Concerning the second-order Krylov technique, the following observation is
worth mentioning. For SISO systems of pair Mc Millan degree, it has been
shown in [BSGL04] and [MS96] that for every first order system (c, A, b) such
that cb = 0, there exists a state space transformation that puts it into a
second-order form. In other words, every SISO system (with first Markov
parameter equal to zero) can be rewritten as a second-order system. This
implies that in the SISO case, it is possible to impose 4n − 1 interpolation
conditions for a reduced second-order system of McMillan degree 2n by first
using the standard Multipoint Padé technique of Theorem 6.2.3 and then
reconstructing a second-order form with an appropriate state space coordinate
transformation. Currently, no proof is available for the MIMO case.

As for generalized state space realizations of first order systems, it is also
possible to apply Krylov techniques to second-order systems without requir-
ing the mass matrix M to be equal to the identity. Concerning the SOBT
technique, special care must taken in deriving the second-order Gramians.

For second-order balanced truncation, numerical results are very encour-
aging, but many important questions remain open. For instance, does there
exist an a priori global error bound with SOBT, as for Balanced Truncation?
Even simpler, is stability of the reduced system always guaranteed? If the
answer to the preceding questions is negative, does there exist a better choice
of second-order Gramians? Also, the development of an approximate version
applicable to large scale systems is needed.
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7.1 Introduction

Consider the multi-input multi-output (MIMO) time-invariant second-order
problem

ΣN :

{
Mq̈(t) +Dq̇(t) +Kq(t) = F u(t)

y(t) = LT q(t)
(7.1)

with initial conditions q(0) = q0 and q̇(0) = q̇0. Here t is the time variable.
q(t) ∈ R

N is a vector of state variables. N is the state-space dimension. u(t)
and y(t) are the input force and output measurement functions, respectively.
M , D, K ∈ R

N×N are system matrices, such as mass, damping and stiffness
as known in structural dynamics, and acoustics. We have F ∈ R

N×p and L ∈
R

N×m are input distribution and output measurement matrices, respectively.
Second-order systems ΣN of the form (7.1) arise in the study of many

types of physical systems, with common examples being electrical, mechanical
and structural systems, electromagnetics and microelectromechanical systems
(MEMS) [Cra81, Bal82, CZB+00, BBC+00, RW00, Slo02, WMSW02].

We are concerned with the system ΣN of very large state-space dimen-
sion N . The analysis and design of large models becomes unfeasible with
reasonable computing resources and computation time. It is necessary to ob-
tain a reduced-order model which retains important properties of the original
system, and yet is efficient for practical use. A common approach for reduced-
order modeling is to first rewrite ΣN as a mathematically equivalent linear
system and then apply linear system dimension reduction techniques, such as
explicit and implicit moment-matching and balanced truncation. The reader
can find surveys of these methods, for example, in [Fre00, ASG01, Bai02].
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There are two major drawbacks with such a linearization approach: the corre-
sponding linear system has a state space of double dimension which increases
memory requirements, and the reduced system is typically linear and the
second-order structure of the original system is not preserved.

The preservation of the second-order structure is important for physical in-
terpretation of the reduced system in applications. In addition, respecting the
second-order structure also leads more stable, accurate and efficient reduced
systems. This book contains three chapters on second (or higher) order sys-
tems. Chapter 6 discusses Krylov-subspace based and SVD-based methods for
second-order structure preserving model reduction. For the Krylov-subspace
based techniques, conditions on the projectors that guarantee the reduced
second-order system tangentially interpolates the original system at given
frequencies are derived. For SVD-based techniques, a second-order balanced
truncation method is derived from second order gramians. Chapter 8 presents
Krylov methods based on projections onto a subspace which is spanned by
a properly partitioned Krylov basis matrices obtained by applying standard
Krylov-subspace techniques to an equivalent linearized system. In this chap-
ter, we present modified Arnoldi methods which are specifically designed for
the second-order system, without via linearization. We call them as second-
order Krylov subspace techniques. In a unified style, we will review recently
developed Arnoldi-like dimension reduction methods that preserve the second-
order structure. We will focus on the presentation of essential ideas behind
these methods, without going into details on elaborate issues on robustness
and stability of implementations and others.

For simplicity, we only consider the single-input single output (SISO) sys-
tem in this paper. Denote F = f and L = l, where f and l are column vectors
of dimension N . The extension to the MIMO case requires block Arnoldi-like
methods, which is beyond the scope this paper. The matrices M , D, and K
often have particular properties such as symmetry, skew-symmetry, and posi-
tive (semi-)definiteness. We do not exploit nor assume any of such properties.
We only assume that K is invertible. If this would not be the case, we assume
there is an s0 ∈ R so that s20M + s0D +K is nonsingular.

7.2 Second-Order System and Dimension Reduction

The second-order system ΣN of the form (7.1) is the representation of ΣN

in the time domain, or the state space. Equivalently, one can also represent
the system in the frequency domain via the Laplace transform. Under the
assumption of the initial conditions q(0) = q0 = 0 and q̇(0) = q̇0 = 0 and
u(0) = 0. Then the input U(s) and output Y (s) in the frequency domain are
related by the transfer function

H(s) = lT (s2M + sD +K)−1f, (7.2)
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where physically meaningful values of the complex variable s are s = iω,
ω ≥ 0 is referred to as the frequency. The power series expansion of H(s) is
formally given by

H(s) = m0 +m1s+m2s
2 + · · · =

∞∑
�=0

m�s
�,

where m� for � ≥ 0 are called moments. The moment m� can be expressed as
the inner product of the vectors l and r�:

m� = lT r� for � ≥ 0, (7.3)

where the vector sequence {r�} is defined by the following linear homogeneous
second-order recurrence relation

r0 = K−1b

r1 = −K−1Dr0 (7.4)

r� = −K−1(Dr�−1 +Mr�−2) for � = 2, 3, . . .

As mentioned above, we assume that K is nonsingular, otherwise, see the
discussion in section 5. The vector sequence {r�} is called a second-order
Krylov vector sequence. Correspondingly, the subspace spanned by the vector
sequence {r�} is called a second-order Krylov subspace:

Gn(A,B; r0) = span{r0, r1, r2, . . . rn−1}, (7.5)

where A = −K−1D and B = −K−1M . When the matrices A and B, i.e., the
matrices M , D and K, and r0 are known from the context, we will drop them
in our notation, and simply write Gn.

Let Qn be an orthonormal basis of Gn, i.e.,

Gn = span{Qn} and QT
nQn = I.

An orthogonal projection technique of dimension reduction onto the subspace
Gn seeks an approximation of q(t), constrained to stay in the subspace spanned
by the columns of Qn, namely

q(t) ≈ Qnz(t) .

This is often referred to as the change-of-state coordinates. Then by imposing
the so-called Galerkin condition:

MQnz̈(t) +DQnż(t) +KQnz(t)− f u(t) ⊥ Gn,

we obtain the following reduced-order system:

Σn :

{
Mnz̈n(t) +Dnżn(t) +Knz(t) = fn u(t)

ỹ(t) = lTn z(t)
, (7.6)
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where Mn = QT
nMQn, Dn = QT

nDQn, Kn = QT
nKQn, fn = QT

nf and ln =
QT

n l. We note that by explicitly formulating the matrices Mn, Dn and Kn

in Σn, essential structures of M , D and K are preserved. For example, if
M is symmetric positive definite, so is Mn. As a result, we can preserve the
stability, symmetry and physical meaning of the original second-order system
ΣN . This is in the same spirit of the widely used PRIMA algorithm for passive
reduced-order modeling of linear dynamical systems arising from interconnect
analysis in circuit simulations [OCP98].

The use of the second-order Krylov subspace Gn for structure-preserving
dimension reduction of the second-order system ΣN has been studied by Su
and Craig back to 1991 [SCJ91], although the subspace Gn is not explicitly
defined and exploited as presented here. It has been revisited in recent years
[RW00, Bai02, Slo02, BS04a, SL04, MR03]. It has been applied to very large
second-order systems from structural analysis and MEMS simulations. The
work of Meyer and Srinivasan [MS96] is an extension of balancing truncation
methods for the second-order system. Recent such effort includes [CLM+02].
Another structure-preserving model reduction technique is recently presented
in [GCFP03]. Those two approaches focus on the application of moderate size
second-order systems.

The transfer function hn(s) and moments m
(n)
� of the reduced second-order

system Σn in (7.6) are defined similar to the ones of the original system ΣN ,
namely,

hn(s) = lTn (s2Mn + sDn +Kn)−1fn

and
m

(n)
� = lTn r

(n)
� for � ≥ 0 ,

where r
(n)
� are the second-order Krylov vectors as defined in (7.4) associated

with the matrices Mn, Dn and Kn.
One way to assess the quality of the approximation is by comparing

the number of moments matched between the original system ΣN and the
reduced-order system Σn. The following theorem shows that the structure-
preserving reduced system Σn matches as many moments as the linearization
approach (see section 3). A rigorous proof of the theorem can be found in
[BS04a].

Moment-matching Theorem. The first n moments of the original system

ΣN in (7.1) and the reduced system Σn in (7.6) are matched, i.e., m� = m
(n)
�

for � = 0, 1, 2, . . . , n−1. Hence hn(s) is an n-th Padé-type approximant of the
transfer function h(s):

h(s) = hn(s) +O(sn).

Furthermore, if the original system ΣN is symmetric, i.e., M , D and K are
symmetric and f = l, then the first 2n moments of h(s) and hn(s) are equal
and hn(s) is an n-th Padé approximant of h(s):

h(s) = hn(s) +O(s2n).
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The gist of structure-preserving dimension reduction of the second-order
system ΣN is now on how to efficiently compute an orthonormal basis Qn of
the second-order Krylov subspace Gn. In section 4, we will discuss recently
developed Arnoldi-like procedures for computing such an orthonormal basis.

7.3 Linearization Method

In this section, we review the Arnoldi-based linearization approach for the
dimension reduction of ΣN . By exploiting the underlying second-order struc-
ture of this approach, it leads to the recently proposed structure-preserving
methods to be discussed in the following sections.

It is easy to see that the original second-order systemΣN is mathematically
equivalent to the following linear system:

ΣL
N :

{
Cẋ(t) +Gx(t) = f̂ u(t)

y(t) = l̂Tx(t)
, (7.7)

where

x(t) =

[
q(t)
q̇(t)

]
, C =

[
D M
−Z 0

]
, G =

[
K 0
0 Z

]
, f̂ =

[
f
0

]
, l̂ =

[
l
0

]
. (7.8)

Z is an arbitrary N ×N nonsingular matrix.
An alternative linear system can be defined by the following system ma-

trices

x(t) =

[
q(t)
q̇(t)

]
, C =

[
0 M
−Z 0

]
, G =

[
K D
0 Z

]
, f̂ =

[
f
0

]
, l̂ =

[
l
0

]
. (7.9)

Various linearizations have been proposed in the literature, see [TM01] for
a survey. We consider the above two, since they can be used in the methods we
discuss. The linearization discussed by [MW01] does not fit in this framework.

Note that both linearizations produce

−G−1C =

[
−K−1D K−1M

I 0

]
. (7.10)

The zero block in (7.10) is very important for Arnoldi-like methods discussed
in this paper.

Let Kn(−G−1C; r̂0) denote the Krylov subspace based on the matrix

−G−1C and the starting vector r̂0 = G−1f̂ :

Kn(−G−1C; r̂0) = span{r̂0, (−G−1C)r̂0, . . . , (−G−1C)n−1r̂0}.

The following Arnoldi procedure is a popular numerically stable procedure to
generate an orthonormal basis Vn of the Krylov subspace Kn(−G−1C; r̂0) ⊆
R

2N , namely,
span{Vn} = Kn(−G−1C; r̂0)

and V T
n Vn = I.
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Algorithm 1 Arnoldi procedure

Input: C,G, f̂ , n
Output: Vn

1. v1 = G−1f̂/‖G−1f̂‖2
2. for j = 1, 2, . . . , n do
3. r = −G−1Cvj

4. hj = V T
j r

5. r = r − Vjhj

6. hj+1,j = ‖r‖2
7. stop if hj+1,j = 0
8. vj+1 = r/hj+1,j

9. end for

The governing equation of the Arnoldi procedure is

(−G−1C)Vn = Vn+1Ĥn, (7.11)

where Ĥn = (hij) is an (n + 1) × n upper Hessenberg matrix and Vn+1 =
[Vn vn+1] is a 2N × (n+1) matrix with orthonormal columns. By making the
use of the orthonormality of the columns of Vn+1, it follows that

V T
n (−G−1C)Vn = Hn

where Hn is the n× n leading principal submatrix of Ĥn.
By the framework of an orthogonal projection dimension reduction tech-

nique, one seeks an approximation of x(t), constrained to the subspace
spanned by the columns of Vn, namely

x(t) ≈ Vnz(t).

Then by imposing the so-called Galerkin condition:

G−1CVnż(t) + Vnz(t)−G−1f̂ u(t) ⊥ span{Vn},

we obtain the following reduced-order system in linear form:

ΣL
n :

{
Cnż(t) +Gnz(t) = f̂n u(t)

ỹ(t) = l̂Tn z(t)
(7.12)

where Cn = −Hn, Gn = In, f̂n = e1‖G−1f̂‖2, and l̂n = V T
n l̂.

It can be shown that the reduced linear system ΣL
n matches the first n

moments of the original linear system ΣL
N , which are equal to the first n mo-

ments of the original second-order system ΣN . In finite precision arithmetic,
reorthogonalization may lead to a smaller order for the same precision, see
[Mee03]. The major disadvantages of this method include doubling the storage
requirement, and the loss of the second-order structure for the reduced-order
model.
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We note that the Arnoldi procedure breaks down when hj+1,j = 0 at
iteration j. This happens if and only if the starting vector r̂0 is a linear
combination of j eigenvectors of −G−1C. In addition, Kj(−G−1C; r̂0) is an
invariant subspace and Kk(−G−1C; r̂0) = Kj(−G−1C; r̂0) for all k ≥ j. It can
be shown that at the breakdown, the moments of the reduced-order system
are identical to those of the original system, i.e., h(s) ≡ hj(s). Therefore, the
breakdown is considered as a rare but lucky situation.

7.4 Modified Arnoldi Procedures

Define the Krylov matrix Kn by

Kn = [ r̂0, (−G−1C)r̂0, (−G−1C)2r̂0, . . . , (−G−1C)n−1r̂0 ].

It is easy to see that the Krylov matrix Kn can be rewritten in the following
form:

Kn =

[
r0 r1 r2 · · · rn−1

0 r0 r1 · · · rn−2

]
, (7.13)

where the vectors {r0, r1, r2, . . . , rn−1} are defined by the second-order recur-
rences (7.4). It is well-known, for example see [Ste01, section 5.1], that the
orthonormal basis Vn, generated by the Arnoldi procedure (Algorithm 1), is
the orthogonal Q-factor of the QR factorization of the Krylov matrix Kn:

Kn = VnRn, (7.14)

where Rn is some n× n upper triangular matrix. Partition Vn into the 2× 1
block matrix

Vn =

[
Un

Wn

]
,

then equation (7.14) can be written in the form[
r0 r1 r2 · · · rn−1

0 r0 r1 · · · rn−2

]
=

[
Un

Wn

]
Rn.

It shows that we can generate an orthonormal basis Qn of Gn by orthonormal-
izing the U -block vectors or the W -block vectors. The leads to the Q-Arnoldi
method to be described in §7.4.1. The SOAR in §7.4.2 is a procedure to com-
pute the orthonormal basis Qn directly, without computing the U - or W -block
first.

Before we present these procedures, we note that one can show that the
Krylov subspace Kn(−G−1C; r̂0) can be embedded in the second-order Krylov
subspace Gn(A,B; r0), namely

span{Vn} ⊆ span

{[
Qn 0
0 Qn

]}
.

This is a very useful observation and can be applied to a number of cases, for
example, to prove the moment-matching theorem. See [BS04a] for details.



180 Zhaojun Bai, Karl Meerbergen, and Yangfeng Su

7.4.1 Q-Arnoldi Procedure

Recall from (7.10) that

−G−1C =

[
−K−1D −K−1M

I 0

]
.

From the second block row of the governing equation (7.11) of the Arnoldi
procedure, we have

Un = Wn+1Ĥn. (7.15)

We can exploit this relation to avoid the storage of the U -vectors with a slight
increase of the computational cost. All products with Un are to be replaced by
the products of Wn+1 and Ĥn. This observation has been made in [MR03] for
the solution of the quadratic eigenvalue problem and parametrized equations.
With the motivation of constructing an orthonormal basis of the second-order
Krylov subspace Gn, we derive the following algorithm.

Algorithm 2 Q-Arnoldi procedure (W -version)

Input: M,D,K, r0, n
Output: Qn

1. u = r0/‖r0‖2 and w1 = 0
2. for j = 1, 2, . . . , n do
3. r = −K−1(Du+Mwj)
4. t = u

5. hj =

[
ĤT

j−1(W
T
j r) +WT

j−1t
uT r + wT

j t

]
6. r = r −

[
Wj u

]([ Ĥj−1 0
0 1

]
hj

)
7. t = t−Wjhj

8. hj+1,j = (‖r‖22 + ‖t‖22)1/2

9. stop if hj+1,j = 0
10. u = r/hj+1,j

11. wj+1 = t/hj+1,j

12. end for
13. Qn+1 = orth([Wn+1 u]) % orthogonalization

We note that the function orth(X) in step 13 stands for the modified
Gram-Schmidt process or QR decomposition for generating an orthonormal
basis for the range of X.

An alternative approach of the Q-Arnoldi method is to avoid the storage
of the W -vectors. By equation (7.15) and noting that w1 = 0, we have

Wn+1(:, 2 : n+ 1) = UnĤ(2 : n+ 1, 1 : n)−1 . (7.16)

Operations with Wn can then use the expression (7.16). We obtain another
modified Arnoldi procedure.
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Algorithm 3 Q-Arnoldi procedure (U -version)

Input: M,D,K, r0, n
Output: Qn

1. u1 = r0/‖r0‖2 and w = 0
2. for j = 1, 2, . . . , n do
3. r = −K−1(Duj +Mw)
4. t = uj

5. hj = UT
j r +

[
0

Ĥ(2 : j, 1 : j − 1)−TUT
j−1

]
t

6. r = r − Ujhj

7. t = t−
[
0 Uj−1Ĥ(2 : j, 1 : j − 1)−1

]
hj

8. hj+1,j = (‖r‖22 + ‖t‖22)1/2

9. stop if hj+1,j = 0
10. uj+1 = r/hj+1,j

11. w = t/hj+1,j

12. end for
13. Qn+1 = orth(Un+1) % orthogonalization

Note that both modified Arnoldi procedures 2 and 3 produce the same
Ĥn as the Arnoldi procedure in exact arithmetic. If we would compute the U
block using (7.15) after the execution of Algorithm 2, we would obtain exactly
the same U block as the one produced by Algorithm 3. The breakdown of both
Q-Arnoldi procedures happens in the same situation as the standard Arnoldi
procedure.

7.4.2 Second-Order Arnoldi Procedure

The Second-Order ARnoldi (SOAR) procedure computes an orthonormal ba-
sis of the second-order Krylov subspace Gn directly, without first computing
the U - or W -block. It is based on the observation that the elements of the
upper Hessenberg matrix Ĥn in the governing equation (7.11) of the Arnoldi
procedure can be chosen to enforce the orthonormality of the U -vectors di-
rectly. The procedure is first proposed by Su and Craig [SCJ91], and further
improved in the recent work of Bai and Su [BS04b]. The simplest version of
the procedure is as follows.
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Algorithm 4 SOAR procedure

Inputs: M,D,K, r0, n
Output: Qn

1. q1 = r0/‖r0‖
2. w = 0
3. for j = 1, 2, . . . , n do
4. r = −K−1(Dqj +Mw)
5. hj = QT

j r
6. r := r −Qjhj

7. hj+1 j = ‖r‖2
8. stop if hj+1 j = 0,
9. qj+1 = r/hj+1 j

10. solve Ĥj(2 : j + 1, 1 : j)g = ej for g
11. w = Qjg
12. end for

Special attention needs to be paid to the case of breakdown for the SOAR
procedure. This occurs when hj+1 j = 0 at iteration j. There are two possible

cases. One is that the vector sequence {ri}j−1
i=0 is linearly dependent, but the

double length vector sequence {[ rT
i rT

i−1 ]T }j−1
i=0 is linearly independent. We

call this situation deflation. With a proper treatment, the SOAR procedure
can continue. Deflation is regarded as an advantage of the SOAR procedure.
A modified SOAR procedure with the treatment of deflation is presented in
[BS04b]. Another possible case is that both vector sequences {ri}j−1

i=0 and

{[ rT
i rT

i−1 ]T }j−1
i=0 are linearly dependent, respectively. In this case, the SOAR

procedure terminates. We call this breakdown. At the breakdown of the SOAR,
one can prove that the transfer functions h(s) and hj(s) of the original system
ΣN and the reduced system Σj are identical, the same as in the linearization
method [BS04a].

7.4.3 Complexity

Table 7.1 summarizes the memory requirements and computational costs of
the Arnoldi and modified procedures discussed in this section.

Table 7.1. Complexity of Arnoldi procedure and modifications

Procedure memory flops

Arnoldi 2(n + 1)N 2Nn(n + 3)
Q-Arnoldi (W -version) (n + 1)N 2Nn(n + 1)
Q-Arnoldi (U -version) (n + 2)N 2Nn(n + 3)
SOAR (n + 2)N (3/2)Nn(n + 4/3)
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We only consider the storage of the Arnoldi vectors, since this is the dom-
inant factor. The storage of Qn+1 in W -version of the Q-Arnoldi procedure
(Algorithm 2) uses the same locations as Wn+1 and in U -version procedure
(Algorithm 3) the same locations as Un+1. The storage of w1 is not required
since it is zero. This explains the slightly lower cost for the W -version of
Q-Arnoldi procedure.

For the computational costs, first note that the matrix-vector products in-
volving matrices M , D and K are typically far more expensive than the other
operations. All three procedure use the same number of matrix-vector prod-
ucts. The remaining cost is dominated by the orthogonalization procedures.
For the Q-Arnoldi procedures, the cost is dominated by the inner products
with Wj and Uj respectively. The cost of the U -version is slightly higher, be-
cause w1 is zero. For SOAR, we assume that there are no zero columns in
Qn+1. These costs do not include the computation of Qn+1 in Step 13 of the
Q-Arnoldi procedures 2 and 3. This cost is of the order of Nn2.

7.5 Structure-Preserving Dimension Reduction
Algorithm

We now present the Q-Arnoldi or SOAR-based method for structure-preserving
dimension reduction of the second-order system ΣN .

In practice, we are often interested in the approximation of the original
system ΣN around a prescribed expansion point s0 �= 0. In this case, the
transfer function h(s) of ΣN can be written in the form:

h(s) = lT (s2M + sD +K)−1f

= lT ((s− s0)
2M + (s− s0)D̃ + K̃)−1f,

where
D̃ = 2s0M +D and K̃ = s20M + s0D +K.

Note that s0 can be an arbitrary, but fixed value such that the matrix K̃ is
nonsingular. The moments of h(s) about s0 can be defined in a similar way
as in (7.3).

By applying the Q-Arnoldi or SOAR procedure, we can generate an or-
thonormal basis Qn of the second-order Krylov subspace Gn(A,B; r0):

span{Qn} = Gn(A,B; r0)

with
A = −K̃−1D̃, B = −K̃−1M and r0 = K̃−1f.

Following the orthogonal projection technique as discussed in section 2,
the subspace spanned by the columns of Qn can be used as the projection
subspace, and subsequently, to define a reduced system Σn as in (7.6). The
transfer function hn(s) of Σn about the expansion point s0 is given by
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hn(s) = lTn ((s− s0)
2Mn + (s− s0)D̃n + K̃n)−1fn,

where Mn = QT
nMQn, D̃n = QT

n D̃Qn, K̃n = QT
n K̃Qn and lTn = QT

n l and
fT

n = QT
nf . By a straightforward algebraic manipulation, hn(s) can be simply

expressed as
hn(s) = lTn (s2Mn + sDn +Kn)−1fn, (7.17)

where

Mn = QT
nMQn, Dn = QT

nDQn, Kn = QT
nKQn, ln = QT

n l, fn = QT
nf.

In other words, the transformed matrix triplet (M, D̃, K̃) is used to generate
an orthonormal basisQn of the projection subspace Gn, but the original matrix
triplet (M,D,K) is directly projected onto the subspace Gn to define a reduced
system Σn about the selected expansion point s0.

The moment-matching theorem in section 2 is still applied here. We can
show that the first n moments about the expansion point s0 of h(s) and hn(s)
are the same. Therefore, hn(s) is an n-th Padé-type approximant of h(s) about
s0. Furthermore, if ΣN is a symmetric second-order system, then the first 2n
moments about s0 of h(s) and hn(s) are the same, which implies that hn(s)
is an n-th Padé approximant of h(s) about s0.

The following algorithm is a high-level description of the second-order
structure-preserving dimension reduction algorithm based on Q-Arnoldi or
SOAR procedure.

Algorithm 5 Structure-preserving dimension reduction algorithm

1. Select an order n for the reduced system, and an expansion point s0.
2. Run n steps of Q-Arnoldi or SOAR procedure to generate an orthonormal

basis Qn of Gn(A,B; r0), where A = −K̃−1D̃, B = −K̃−1M and r0 =

K̃−1f .
3. Compute Mn = QT

nMQn, Dn = QT
nDQn, Kn = QT

nKQn, ln = QT
n l, and

fn = QT
nf . This defines a reduced system Σn as in (7.6) about the selected

expansion point s0.

As we have noticed, by the definitions of the matrices Mn, Dn and Kn in
the reduced system Σn, essential properties of the matrices M , D and K of
the original system ΣN are preserved. For example, if M is symmetric positive
definite, so is Mn. Consequently, we can preserve stability, possible symmetry
and the physical meaning of the original second-order system ΣN .

The explicit formulation of the matrices Mn, Dn and Kn is done by using
first matrix-vector product operations Mq, Dq and Kq for an arbitrary vector
q and vector inner products. This is an overhead compared to the linearization
method discussed in section 7.3. In the linearization method as described in
section 3, the matrix Cn = −Hn and Gn = I in the reduced system ΣL

n is
obtained as a by-product of the Arnoldi procedure without additional cost.
However, we believe that the preservation of the structure of the underlying
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problem outweights the extra cost of floating point operations in a modern
computing environment. In fact, we observed that this step takes only a small
fraction of the total work, due to extreme sparsity of the matrices M and D
and K in practical problems we encountered. The bottleneck of the compu-
tational costs is often associated with the matrix-vector product operations
involving K̃−1.

7.6 Numerical Examples

In this section, we report our numerical experiments on the performance of
the structure-preserving dimension reduction algorithm based on Q-Arnoldi
and SOAR procedures. The superior numerical properties of the SOAR-based
method over the linearization approach as described in section 3 have been
reported in [BS04a] for examples from structural dynamics and MEMS sys-
tems. In this section, we focus on the performance of the Q-Arnoldi-based and
SOAR-based structure-preserving dimension reduction methods. All numeri-
cal examples do not use reorthogonalization.

Example 1. This example is from the simulation of a linear-drive multi-mode
resonator structure [CZP98]. This is a nonsymmetric second-order system.
The mass and damping matrices M and D are singular. The stiffness matrix
K is ill-conditioned due to the multi-scale of the physical units used to define
the elements of K, such as the beam’s length and cross sectional area, and its
moment of inertia and modulus of elasticity. (See Chapter 21 for more details
on this example.)

For this numerical experiment, the order of 1-norm condition number of
K is at O(1015). We use the expansion point s0 to approximate the bode plot
of interest, the same as in [CZP98]. The condition number of the transformed

stiffness matrix K̃ = s20M + s0D + K is is slightly improved to O(1013).
In Figure 7.1, the Bode plots of frequency responses of the original second-
order system ΣN of order N = 63, and the reduced-order systems of orders
n = 10 via the Q-Arnoldi (W -version) and SOAR methods are reported.
The corresponding relative errors are also shown over the frequency range
of interest. From the relative errors, we see that the SOAR-based method is
slightly more accurate than the Q-Arnoldi-based method.

Example 2. This is an example from an acoustic radiation problem discussed
in [PA91]. Consider a circular piston subtending a polar angle 0 < θ < θp

on a submerged massless and rigid sphere of radius δ. The piston vibrates
harmonically with a uniform radial acceleration. The surrounding acoustic
domain is unbounded and is characterized by its density ρ and sound speed
c. (See Chapter 21 for more details on this example.)

We denote by p and ar the prescribed pressure and normal acceleration
respectively. In order to have a steady state solution p̃(r, θ, t) verifying
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Fig. 7.1. Bode plots of h(jω) of the resonator, approximations by Q-Arnoldi and
SOAR, and relative errors.

p̃(r, θ, t) = Re
(
p(r, θ)eiωt

)
,

the transient boundary condition is chosen as:

ar =
−1

ρ

∂p(r, θ)

∂r

∣∣∣∣
r=a

=

{
a0 sin(ωt), 0 ≤ θ ≤ θp,
0, θ > θp.

The axisymmetric discrete finite-infinite element model relies on a mesh of
linear quadrangle finite elements for the inner domain (region between spher-
ical surfaces r = δ and r = 1.5δ). The numbers of divisions along radial and
circumferential directions are 5 and 80, respectively. The outer domain relies
on conjugated infinite elements of order 5. For this example we used δ = 1(m),
ρ = 1.225(kg/m3), c = 340(m/s), a0 = 0.001(m/s2) and ω = 1000(rad/s).

The matrices K, D, M and the right-hand side f are computed by AC-
TRAN [Fre03]. The dimension of the second-order system is N = 2025. For
numerical tests, an expansion point s0 = 2 × 102π is used. Figure 7.2 shows
the magnitudes (in log of base 10) of the exact transfer function h(s) and
approximate ones computed by the Q-Arnoldi (W -version) and SOAR-based
methods with the reduced dimension n = 100. For this example, the accuracy
of two methods are essentially the same.



7 Arnoldi Methods for Second-Order Systems 187

10
0

10
1

10
2

10
3

−5

−4.5

−4

−3.5

lo
g1

0(
m

ag
ni

tu
de

)

Bode plot

Exact
SOAR
Q−Arnoldi

10
0

10
1

10
2

10
3

10
−15

10
−10

10
−5

10
0

Frequency (Hz)

R
el

at
iv

e 
er

ro
r

SOAR
Q−Arnoldi

Fig. 7.2. Bode plot of h(jω) of ACTRAN2025, approximations by Q-Arnoldi and
SOAR, and relative errors.

7.7 Conclusions

In this paper, using a unified style, we discussed the recent progress in the
development of Arnoldi-like methods for structure-preserving dimension re-
duction of a second-order dynamical system ΣN . The reduced second-order
system Σn enjoys the same moment-matching properties as the Arnoldi-based
algorithm via linearization. The major difference between the Q-Arnoldi and
SOAR procedures lies in the orthogonalization.

We only focused on the basic schemes and the associated properties of
structure-preserving algorithms. There are a number of interesting research
issues for further study, such as numerical stability and the effect of reorthog-
onalization.
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Summary. A standard approach to reduced-order modeling of higher-order linear
dynamical systems is to rewrite the system as an equivalent first-order system and
then employ Krylov-subspace techniques for reduced-order modeling of first-order
systems. While this approach results in reduced-order models that are characterized
as Padé-type or even true Padé approximants of the system’s transfer function, in
general, these models do not preserve the form of the original higher-order system.
In this paper, we present a new approach to reduced-order modeling of higher-order
systems based on projections onto suitably partitioned Krylov basis matrices that
are obtained by applying Krylov-subspace techniques to an equivalent first-order
system. We show that the resulting reduced-order models preserve the form of the
original higher-order system. While the resulting reduced-order models are no longer
optimal in the Padé sense, we show that they still satisfy a Padé-type approximation
property. We also introduce the notion of Hermitian higher-order linear dynamical
systems, and we establish an enhanced Padé-type approximation property in the
Hermitian case.

8.1 Introduction

The problem of model reduction is to replace a given mathematical model of
a system or process by a model that is much smaller than the original model,
yet still describes—at least approximately—certain aspects of the system or
process. Model reduction involves a number of interesting issues. First and
foremost is the issue of selecting appropriate approximation schemes that
allow the definition of suitable reduced-order models. In addition, it is often
important that the reduced-order model preserves certain crucial properties
of the original system, such as stability or passivity. Other issues include
the characterization of the quality of the models, the extraction of the data
from the original model that is needed to actually generate the reduced-order
models, and the efficient and numerically stable computation of the models.

In recent years, there has been a lot of interest in model-reduction
techniques based on Krylov subspaces; see, for example, the survey pa-
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pers [Fre97, Fre00, Bai02, Fre03]. The development of these methods was
motivated mainly by the need for efficient reduction techniques in VLSI circuit
simulation. An important problem in that application area is the reduction
of very large-scale RCL subcircuits that arise in the modeling of the chip’s
wiring, the so-called interconnect. In fact, many of the Krylov-subspace reduc-
tion techniques that have been proposed in recent years are tailored to RCL
subcircuits.

Krylov-subspace techniques can be applied directly only to first-order lin-
ear dynamical systems. However, there are important applications that lead
to second-order, or even general higher-order, linear dynamical systems. For
example, RCL subcircuits are actually second-order linear dynamical systems.
The standard approach to employing Krylov-subspace techniques to the di-
mension reduction of a second-order or higher-order system is to first rewrite
the system as an equivalent first-order system and then apply Krylov-subspace
techniques for reduced-order modeling of first-order systems. While this ap-
proach results in reduced-order models that are characterized as Padé-type
or even true Padé approximants of the system’s transfer function, in general,
these models do not preserve the form of the original higher-order system.

In this paper, we describe an approach to reduced-order modeling of
higher-order systems based on projections onto suitably partitioned Krylov
basis matrices that are obtained by applying Krylov-subspace techniques to
an equivalent first-order system. We show that the resulting reduced-order
models preserve the form of the original higher-order system. While the re-
sulting reduced-order models are no longer optimal in the Padé sense, we
show that they still satisfy a Padé-type approximation property. We further
establish an enhanced Padé-type approximation property in the special case
of Hermitian higher-order linear dynamical systems.

The remainder of the paper is organized as follows. In Section 8.2, we
review the formulations of general RCL circuits as as first-order and second-
order linear dynamical systems. In Section 8.3, we present our general frame-
work for special second-order and higher-oder linear dynamical systems. In
Section 8.4, we consider the standard reformulation of higher-order systems
as equivalent first-order systems. In Section 8.5, we discuss some general con-
cepts of dimension reduction of special second-order and general higher-order
systems via dimension reduction of corresponding first-order systems. In Sec-
tion 8.6, we review the concepts of block-Krylov subspaces and Padé-type
reduced-order models. In Section 8.7, we introduce the notion of Hermitian
higher-order linear dynamical systems, and we establish an enhanced Padé-
type approximation property in the Hermitian case. In Section 8.8, we present
the SPRIM algorithm for special second-order systems. In Section 8.9, we re-
port the results of some numerical experiments with the SPRIM algorithm.
Finally, in Section 8.10, we mention some open problems and make some
concluding remarks.

Throughout this paper the following notation is used. Unless stated oth-
erwise, all vectors and matrices are allowed to have real or complex entries.
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For a complex number α or a complex matrix M , we denote its complex con-
jugate by α or M , respectively. For a matrix M =

[
mjk

]
, MT :=

[
mkj

]
is the

transpose of M , and MH := M
T

=
[
mkj

]
is the conjugate transpose of M .

For a square matrix P , we write P  0 if P = PH is Hermitian and if P is
positive semidefinite, i.e., xHPx ≥ 0 for all vectors x of suitable dimension.
We write P ! 0 if P = PH is positive definite, i.e., xHPx > 0 for all vectors
x, except x = 0. The n × n identity matrix is denoted by In and the zero
matrix by 0. If the dimension of In is apparent from the context, we drop the
index and simply use I. The actual dimension of 0 will always be apparent
from the context. The sets of real and complex numbers are denoted by R and
C, respectively.

8.2 RCL Circuits as First-Order and Second-Order
Systems

An important class of electronic circuits is linear RCL circuits that contain
only resistors, capacitors, and inductors. For example, such RCL circuits are
used to model the interconnect of VLSI circuits; see, e.g., [CLLC00, KGP94,
OCP98]. In this section, we briefly review the RCL circuit equations and their
formulations as first-order and second-order linear dynamical systems.

8.2.1 RCL Circuit Equations

General electronic circuits are usually modeled as networks whose branches
correspond to the circuit elements and whose nodes correspond to the inter-
connections of the circuit elements; see, e.g., [VS94]. Such networks are char-
acterized by Kirchhoff’s current law (KCL), Kirchhoff’s voltage law (KVL),
and the branch constitutive relations (BCRs). The Kirchhoff laws depend only
on the interconnections of the circuit elements, while the BCRs characterize
the actual elements. For example, the BCR of a linear resistor is Ohm’s law.
The BCRs are linear equations for simple devices, such as linear resistors,
capacitors, and inductors, and they are nonlinear equations for more complex
devices, such as diodes and transistors.

The connectivity of such a network can be captured using a directional
graph. More precisely, the nodes of the graph correspond to the nodes of the
circuit, and the edges of the graph correspond to each of the circuit elements.
An arbitrary direction is assigned to graph edges, so one can distinguish be-
tween the source and destination nodes. The adjacency matrix, A, of the
directional graph describes the connectivity of a circuit. Each row of A corre-
sponds to a graph edge and, therefore, to a circuit element. Each column of
A corresponds to a graph or circuit node. The column corresponding to the
datum (ground) node of the circuit is omitted in order to remove redundancy.
By convention, a row of A contains +1 in the column corresponding to the
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source node, −1 in the column corresponding to the destination node, and 0
everywhere else. Kirchhoff’s laws can be expressed in terms of A as follows:

KCL: AT ib = 0,

KVL: Avn = vb.
(8.1)

Here, the vectors ib and vb contain the branch currents and voltages, respec-
tively, and vn the non-datum node voltages.

We now restrict ourselves to linear RCL circuits, and for simplicity, we
assume that the circuit is excited only by current sources. In this case, A, vb,
and ib can be partitioned according to circuit-element types as follows:

A =

⎡⎢⎢⎣
Ai

Ag

Ac

Al

⎤⎥⎥⎦ , vb = vb(t) =

⎡⎢⎢⎣
vi

vg

vc

vl

⎤⎥⎥⎦ , ib = ib(t) =

⎡⎢⎢⎣
ii
ig
ic
il

⎤⎥⎥⎦ . (8.2)

Here, the subscripts i, g, c, and l stand for branches containing current sources,
resistors, capacitors, and inductors, respectively. Using (8.2), the KCL and
KVL equations (8.1) take on the following form:

AT
i ii +AT

g ig +AT
c ic +AT

l il = 0,

Aivn = vi, Agvn = vg, Acvn = vc, Alvn = vl.
(8.3)

Furthermore, the BCRs can be stated as follows:

ii = −I(t), ig = Gvg, ic = C
d

dt
vc, vl = L

d

dt
il. (8.4)

Here, I(t) is the vector of current-source values, G ! 0 and C ! 0 are diagonal
matrices whose diagonal entries are the conductance and capacitance values
of the resistors and capacitors, respectively, and L  0 is the inductance
matrix. In the absence of inductive coupling, L is also a diagonal matrix, but
in general, L is a full matrix. However, an important special case is inductance
matrices L whose inverse, the so-called susceptance matrix, S = L−1 is sparse;
see [ZKBP02, ZP02].

Equations (8.3) and (8.4), together with initial conditions for vn(t0) and
il(t0) at some initial time t0, provide a complete description of a given RCL
circuit. For simplicity, in the following we assume t0 = 0 with zero initial
conditions:

vn(0) = 0 and il(0) = 0. (8.5)

Instead of solving (8.3) and (8.4) directly, one usually first eliminates as many
variables as possible; this procedure is called modified nodal analysis [HRB75,
VS94]. More precisely, using the last three equations in (8.3) and the first three
equations in (8.4), one can eliminate vg, vc, vl, ii, ig, ic, and is left with the
coupled equations
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AT
i I(t) = AT

g GAgvn +AT
c CAc

d

dt
vn +AT

l il,

Alvn = L
d

dt
il

(8.6)

for vn and il. Note that the equations (8.6) are completed by the initial con-
ditions (8.5).

For later use, we remark that the energy supplied to the RCL circuit by
the current sources is given by

E(t) =

∫ t

0

(
vi(τ)

)T
I(τ) dτ. (8.7)

Recall that the entries of the vector vi are the voltages at the current sources.
In view of the second equation in (8.3), vi is connected to vn by the output
relation

vi = Aivn. (8.8)

8.2.2 RCL Circuits as First-Order Systems

The RCL circuit equations (8.6) and (8.8) can be viewed as a first-order time-
invariant linear dynamical system with state vector

z(t) :=

[
vn(t)
il(t)

]
,

and input and output vectors

u(t) := I(t) and y(t) := vi(t), (8.9)

respectively. Indeed, the equations (8.6) and (8.8) are equivalent to

E d

dt
z(t)−A z(t) = B u(t),

y(t) = BT z(t),

(8.10)

where

E :=

[
AT

c CAc 0
0 L

]
, A :=

[
−AT

g GAg −AT
l

Al 0

]
, B :=

[
AT

i

0

]
. (8.11)

Note that (8.10) is a system of differential-algebraic equations (DAEs) of first
order. Furthermore, in view of (8.9), the energy (8.7), which is supplied to the
RCL circuit by the current sources, is just the integral

E(t) =

∫ t

0

(
y(τ)

)T
u(τ) dτ (8.12)

of the inner product of the input and output vectors of (8.10). RCL circuits are
passive systems, i.e., they do not generate energy, and (8.12) is an important
formula for the proper treatment of passivity; see, e.g., [AV73, LBEM00].
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8.2.3 RCL Circuits as Second-Order Systems

In this subsection, we assume that the inductance matrix L of the RCL circuit
is nonsingular. In this case, the RCL circuit equations (8.6) and (8.8) can also
be viewed as a second-order time-invariant linear dynamical system with state
vector

x(t) := vn(t),

and the same input and output vectors (8.9) as before. Indeed, by integrating
the second equation of (8.6) and using (8.5), we obtain

L il(t) = Al

∫ t

0

vn(τ) dτ. (8.13)

Since L is assumed to be nonsingular, we can employ the relation (8.13) to
eliminate il in (8.6). The resulting equation, combined with (8.8), can be
written as follows:

P1
d

dt
x(t) + P0 x(t) + P−1

∫ t

0

x(τ) dτ = B u(t),

y(t) = BTx(t).

(8.14)

Here, we have set

P1 := AT
c CAc, P0 := AT

g GAg, P−1 := AT
l L

−1Al, B := AT
i . (8.15)

Note that the first equation in (8.14) is a system of integro-DAEs. We will refer
to (8.14) as a special second-order time-invariant linear dynamical system.
We remark that the input and output vectors of (8.14) are the same as in the
first-order formulation (8.10). In particular, the important formula (8.12) for
the energy supplied to the system remains valid for the special second-order
formulation (8.10).

If the input vector u(t) is differentiable, then by differentiating the first
equation of (8.14) we obtain the “true” second-order formulation

P1
d2

dt2
x(t) + P0

d

dt
x(t) + P−1 x(t) = B

d

dt
u(t),

y(t) = BTx(t).

(8.16)

However, besides the additional assumption on the differentiability of u(t),
the formulation (8.16) also has the disadvantage that the energy supplied to
the system is no longer given by the integral of the inner product of the input
and output vectors

û(t) :=
d

dt
u(t) and ŷ(t) := y(t)

of (8.16). Related to this lack of a formula of type (8.12) is the fact that
the transfer function of (8.16) is no longer positive real. For these reasons,
we prefer to use the special second-order formulation (8.14), rather than the
more common formulation (8.16).
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8.3 Higher-Order Linear Dynamical Systems

In this section, we discuss our general framework for special second-order and
higher-oder linear dynamical systems. We denote by m and p the number of
inputs and outputs, respectively, and by l the order of such systems. In the
following, the only assumption on m, p, and l is that m, p, l ≥ 1.

8.3.1 Special Second-Order Systems

A special second-order m-input p-output time-invariant linear dynamical sys-
tem of order l is a system of integro-DAEs of the following form:

P1
d

dt
x(t) + P0 x(t) + P−1

∫ t

t0

x(τ) dτ = B u(t),

y(t) = Du(t) + Lx(t),

x(t0) = x0.

(8.17)

Here, P−1, P0, P1 ∈ C
N×N , B ∈ C

N×m, D ∈ C
p×m, and L ∈ C

p×N are given
matrices, t0 ∈ R is a given initial time, and x0 ∈ C

N is a given vector of initial
values. We assume that the N ×N matrix

sP1 + P0 +
1

s
P−1

is singular only for finitely many values of s ∈ C.
The frequency-domain transfer function of (8.17) is given by

H(s) = D + L
(
sP1 + P0 +

1

s
P−1

)−1

B. (8.18)

Note that
H : C �→ (C ∪∞)

p×m

is a matrix-valued rational function.
In practical applications, such as the case of RCL circuits described in

Section 8.2, the matrices P0 and P1 are usually sparse. The matrix P−1,
however, may be dense, but has a sparse representation of the form

P−1 = F1GF
H
2 (8.19)

or
P−1 = F1G

−1FH
2 , with nonsingular G, (8.20)

where F1, F2 ∈ C
N×N0 and G ∈ C

N0×N0 are sparse matrices. We stress that in
the case (8.19), the matrix G is not required to be nonsingular. In particular,
for any matrix P−1 ∈ C

N×N , there is always the trivial factorization (8.19)
with F1 = F2 = I and G = P−1. Therefore, without loss of generality, in the
following, we assume that the matrix P−1 in (8.17) is given by a product of
the form (8.19) or (8.20).
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8.3.2 General Higher-Order Systems

An m-input p-output time-invariant linear dynamical system of order l is a
system of DAEs of the following form:

Pl
dl

dtl
x(t) + Pl−1

dl−1

dtl−1
x(t) + · · ·+ P1

d

dt
x(t) + P0 x(t) = B u(t),

y(t) = Du(t) + Ll−1
dl−1

dtl−1
x(t) + · · ·+ L1

d

dt
x(t) + L0 x(t).

(8.21)

Here, Pi ∈ C
N×N , 0 ≤ i ≤ l, B ∈ C

N×m, D ∈ C
p×m, and Lj ∈ C

p×N ,
0 ≤ j < l, are given matrices, and N is called the state-space dimension
of (8.21). Moreover, in (8.21), u : [t0,∞) �→ C

m is a given input function,
t0 ∈ R is a given initial time, the components of the vector-valued function
x : [t0,∞) �→ C

N are the so-called state variables, and y : [t0,∞) �→ C
p is the

output function. The system is completed by initial conditions of the form

di

dti
x(t)

∣∣∣∣
t=t0

= x
(i)
0 , 0 ≤ i < l, (8.22)

where x
(i)
0 ∈ C

n, 0 ≤ i < l, are given vectors.
The frequency-domain transfer function of (8.21) is given by

H(s) := D + L(s)
(
P (s)

)−1
B, s ∈ C, (8.23)

where
P (s) := slPl + sl−1Pl−1 + · · ·+ sP1 + P0 (8.24)

and
L(s) := sl−1Ll−1 + sl−2Ll−2 + · · ·+ sL1 + L0.

Note that
P : C �→ C

N×N and L : C �→ C
p×N

are matrix-valued polynomials, and that

H : C �→ (C ∪∞)
p×m

again is a matrix-valued rational function. We assume that the polyno-
mial (8.24), P , is regular, that is, the matrix P (s) is singular only for finitely
many values of s ∈ C; see, e.g., [GLR82, Part II]. This guarantees that the
transfer function (8.23) has only finitely many poles.

8.3.3 First-Order Systems

For the special case l = 1, systems of the form (8.21) are called first-order
systems. In the following, we use calligraphic letters for the data matrices and
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z for the vector of state-space variables of first-order systems. More precisely,
we always write first-order systems in the form

E d

dt
z(t)−A z(t) = B u(t),

y(t) = D u(t) + L z(t),

z(t0) = z0.

(8.25)

Note that the transfer function of (8.25) is given by

H(s) = D + L
(
s E − A

)−1B. (8.26)

8.4 Equivalent First-Order Systems

A standard approach to treat higher-order systems is to rewrite them as equiv-
alent first-order systems. In this section, we present such equivalent first-order
formulations of special second-order and general higher-order systems.

8.4.1 The Case of Special Second-Order Systems

We start with special second-order systems (8.17), and we distinguish the two
cases (8.19) and (8.20).

First assume that P−1 is given by (8.19). In this case, we set

z1(t) := x(t) and z2(t) := FH
2

∫ t

t0

x(τ) dτ. (8.27)

By (8.19) and (8.27), the first relation in (8.17) can be rewritten as follows:

P1
d

dt
z1(t) + P0 z1(t) + F1Gz2(t) = B u(t). (8.28)

Moreover, (8.27) implies that

d

dt
z2(t) = FH

2 z1(t). (8.29)

It follows from (8.27)–(8.29) that the special second-order system (8.17) (with
P−1 given by (8.19)) is equivalent to a first-order system (8.25) where

z(t) :=

[
z1(t)
z2(t)

]
, z0 :=

[
x0

0

]
, L :=

[
L 0

]
, B :=

[
B
0

]
,

D := D, A :=

[
−P0 −F1G
FH

2 0

]
, E :=

[
P1 0
0 IN0

]
.

(8.30)



200 Roland W. Freund

The state-space dimension of this first-order system is N1 := N +N0, where
N and N0 denote the dimensions of P1 ∈ C

N×N and G ∈ C
N0×N0 . Note

that (8.26) is the corresponding representation of the transfer function (8.18),
H, in terms of the data matrices defined in (8.30).

Next, we assume that P−1 is given by (8.20). We set

z1(t) := x(t) and z2(t) := G−1FH
2

∫ t

t0

x(τ) dτ .

The first relation in (8.17) can then be rewritten as

P1
d

dt
z1(t) + P0 z1(t) + F1 z2(t) = B u(t).

Moreover, we have

G
d

dt
z2(t) = FH

2 z1(t).

It follows that the special second-order system (8.17) (with P−1 given by (8.20))
is equivalent to a first-order system (8.25) where

z(t) :=

[
z1(t)
z2(t)

]
, z0 :=

[
x0

0

]
, L :=

[
L 0

]
, B :=

[
B
0

]
,

D := D, A :=

[
−P0 −F1

FH
2 0

]
, E :=

[
P1 0
0 G

]
.

(8.31)

The state-space dimension of this first-order system is again N1 := N + N0.
Note that (8.26) is the corresponding representation of the transfer func-
tion (8.18), H, in terms of the data matrices defined in (8.31).

8.4.2 The Case of General Higher-Order Systems

It is well known (see, e.g., [GLR82, Chapter 7]) that any l-th order system
with state-space dimension N is equivalent to a first-order system with state-
space dimension N1 := lN . Indeed, it is easy to verify that the l-th order
system (8.21) with initial conditions (8.22) is equivalent to the first-order
system (8.25) with
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z(t) :=

⎡⎢⎢⎢⎢⎣
x(t)
d
dtx(t)

...

dl−1

dtl−1x(t)

⎤⎥⎥⎥⎥⎦ , z0 :=

⎡⎢⎢⎢⎢⎢⎣
x

(0)
0

x
(1)
0
...

x
(l−1)
0

⎤⎥⎥⎥⎥⎥⎦ , B :=

⎡⎢⎢⎢⎣
0
...
0

B

⎤⎥⎥⎥⎦ ,
L :=

[
L0 L1 · · · Ll−1

]
, D := D,

E :=

⎡⎢⎢⎢⎢⎢⎣
I 0 0 · · · 0

0 I 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 I 0

0 · · · 0 0 Pl

⎤⎥⎥⎥⎥⎥⎦ , A := −

⎡⎢⎢⎢⎢⎢⎢⎣

0 −I 0 · · · 0

0 0 −I . . .
...

...
. . .

. . .
. . . 0

0 · · · 0 0 −I
P0 P1 P2 · · · Pl−1

⎤⎥⎥⎥⎥⎥⎥⎦ .

(8.32)

We remark that (8.26) is the corresponding representation of the l-order trans-
fer function (8.23), H, in terms of the data matrices defined in (8.32).

8.5 Dimension Reduction of Equivalent First-Order
Systems

In this section, we discuss some general concepts of dimension reduction of
special second-order and general higher-order systems via dimension reduction
of equivalent first-order systems.

8.5.1 General Reduced-Order Models

We start with general first-order systems (8.25). For simplicity, from now on
we always assume zero initial conditions, i.e., z0 = 0 in (8.25). We can then
drop the initial conditions in (8.25), and consider first-order systems (8.25) of
the following form:

E d

dt
z(t)−A z(t) = B u(t),

y(t) = D u(t) + L z(t).
(8.33)

Here, A, E ∈ C
N1×N1 , B1 ∈ C

N1×m, D ∈ C
p×m, and L ∈ C

p×N1 are given
matrices. Recall that N1 is the state-space dimension of (8.33). We assume
that the matrix pencil s E−A is regular, i.e., the matrix s E−A is singular only
for finitely many values of s ∈ C. This guarantees that the transfer function
of (8.33),

H(s) := D + L
(
s E − A

)−1B, (8.34)

exists.
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A reduced-order model of (8.33) is a system of the same form as (8.33),
but with smaller state-space dimension. More precisely, a reduced-order model
of (8.33) with state-space dimension n1 (< N1) is a system of the form

Ẽ d

dt
z̃(t)− Ã z(t) = B̃ u(t),

ỹ(t) = D̃ u(t) + L̃ z̃(t),
(8.35)

where Ã, Ẽ ∈ C
n1×n1 , B̃ ∈ C

n1×m, D̃ ∈ C
p×m, and L̃ ∈ C

p×n1 . Again, we
assume that the matrix pencil s Ẽ−Ã is regular. The transfer function of (8.35)
is then given by

H̃(s) := D̃ + L̃
(
s Ẽ − Ã

)−1B̃. (8.36)

Of course, (8.35) only provides a framework for model reduction. The real
problem, namely the choice of suitable matrices Ã, Ẽ , B̃, L̃, D̃, and sufficiently
large reduced state-space dimension n1 still remains to be addressed.

8.5.2 Reduction via Projection

A simple, yet very powerful (when combined with Krylov-subspace machinery)
approach for constructing reduced-order models is projection. Let

V ∈ C
N1×n1 (8.37)

be a given matrix, and set

Ã := VHAV , Ẽ := VHE V, B̃ := VHB L̃ := LV, D̃ := D. (8.38)

Then, provided that the matrix pencil s Ẽ−Ã is regular, the system (8.35) with
matrices given by (8.38) is a reduced-order model of (8.33) with state-space
dimension n1.

A more general approach employs two matrices,

V, W ∈ C
N1×n1 ,

and two-sided projections of the form

Ã :=WHAV , Ẽ :=WHE V, B̃ := VHB L̃ := LW, D̃ := D.

For example, the PVL algorithm [FF94, FF95] can be viewed as a two-sided
projection method, where the columns of the matrices V and W are the first
n1 right and left Lanczos vectors generated by the nonsymmetric Lanczos
process [Lan50].

All model-reduction techniques discussed in the remainder of this paper
are based on projections of the type (8.38).

Next, we discuss the application of projections (8.38) to first-order sys-
tems (8.33) that arise as equivalent formulations of special second-order and
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higher-oder linear dynamical systems. Recall from Section 8.4 that such
equivalent first-order systems exhibit certain structures. For general matri-
ces (8.37), V, the projected matrices (8.38) do not preserve these structures.
However, as we will show now, these structures are preserved for certain types
of matrices V.

8.5.3 Preserving Special Second-Order Structure

In this subsection, we consider special second-order systems (8.17), where
P−1 is either of the form (8.19) or (8.20). Recall that the data matrices of
the equivalent first-order formulations of (8.17) are defined in (8.30), respec-
tively (8.31).

Let V be any matrix of the block form

V =

[
V1 0
0 V2

]
, V1 ∈ C

N×n, V2 ∈ C
N0×n0 , (8.39)

such that the matrix

G̃ := V H
2 GV2 is nonsingular.

First, consider the case of matrices P−1 of the form (8.19). Using (8.30)
and (8.39), one readily verifies that in this case, the projected matrices (8.38)
are as follows:

Ã =

[
−P̃0 −F̃1G̃

F̃H
2 0

]
, Ẽ =

[
P̃1 0
0 In0

]
, B̃ =

[
B̃
0

]
,

L̃ =
[
L̃ 0

]
, D̃ = D.

(8.40)

Here, we have set

P̃0 := V H
1 P0V1, P̃1 := V H

1 P1V1, B̃ := V H
1 B, L̃ := LV1, (8.41)

and
F̃1 :=

(
V H

1 F1GV2

)
G̃−1, F̃2 := V H

1 F2V2.

Note that the matrices (8.40) are of the same form as the matrices (8.30) of the
first-order formulation (8.33) of the original special second-order system (8.17)
(with P−1 of the form (8.19). It follows that the matrices (8.40) define a
reduced-order model in special second-order form,

P̃1
d

dt
x̃(t) + P̃0 x̃(t) + P̃−1

∫ t

t0

x̃(τ) dτ = B̃ u(t),

ỹ(t) = D̃ u(t) + L̃ x̃(t),

(8.42)

where
P̃−1 := F̃1G̃F̃

H
2 .
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We remark that the state-space dimension of (8.42) is n, where n denotes the
number of columns of the submatrix V1 in (8.39).

Next, consider the case of matrices P−1 of the form (8.20). Using (8.31)
and (8.39), one readily verifies that in this case, the projected matrices (8.38)
are as follows:

Ã =

[
−P̃0 −F̃1

F̃H
2 0

]
, Ẽ =

[
P̃1 0

0 G̃

]
, B̃ =

[
B̃
0

]
,

L̃ =
[
L̃ 0

]
, D̃ = D.

(8.43)

Here, P̃0, P̃1, B̃, L̃ are the matrices defined in (8.41), and

F̃1 := V H
1 F1V2, F̃2 := V H

1 F2V2.

Again, the matrices (8.43) are of the same form as the matrices (8.31) of the
first-order formulation (8.33) of the original special second-order system (8.17)
(with P−1 of the form (8.20). It follows that the matrices (8.43) define a
reduced-order model in special second-order form (8.42), where

P̃−1 = F̃1G̃
−1F̃H

2 .

8.5.4 Preserving General Higher-Order Structure

We now turn to systems (8.33) that are equivalent first-order formulations of
general l-th order linear dynamical systems (8.21). More precisely, we assume
that the matrices in (8.33) are the ones defined in (8.32).

Let V be any lN × ln matrix of the block form

Vn =

⎡⎢⎢⎢⎢⎢⎢⎣

Sn 0 0 · · · 0
0 Sn 0 · · · 0

0 0
. . .

. . .
...

...
...

. . .
. . . 0

0 0 · · · 0 Sn

⎤⎥⎥⎥⎥⎥⎥⎦ , Sn ∈ C
N×n, SH

n Sn = In. (8.44)

Although such matrices appear to be very special, they do arise in connection
with block-Krylov subspaces and lead to Padé-type reduced-order models; see
Subsection 8.6.4 below. The block structure (8.44) implies that the projected
matrices (8.38) are given by
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Ã = −

⎡⎢⎢⎢⎢⎢⎢⎣

0 −I 0 · · · 0

0 0 −I . . .
...

...
. . .

. . .
. . . 0

0 · · · 0 0 −I
P̃0 P̃1 P̃2 · · · P̃l−1

⎤⎥⎥⎥⎥⎥⎥⎦ , Ẽ :=

⎡⎢⎢⎢⎢⎢⎢⎣
I 0 0 · · · 0

0 I 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 I 0

0 · · · 0 0 P̃l

⎤⎥⎥⎥⎥⎥⎥⎦ ,

B̃ =

⎡⎢⎢⎢⎣
0
...
0

B̃

⎤⎥⎥⎥⎦ , L̃ =
[
L̃0 L̃1 · · · L̃l−1

]
, D̃ = D,

(8.45)

where

P̃i := SH
n PiSn, 0 ≤ i ≤ l, B̃ := SH

n B, L̃j := LjSn, 0 ≤ j < l.

It follows that the matrices (8.45) define a reduced-order model in l-th order
form,

P̃l
dl

dtl
x̃(t) + P̃l−1

dl−1

dtl−1
x̃(t) + · · ·+ P̃1

d

dt
x̃(t) + P̃0 x̃(t) = B̃ u(t),

ỹ(t) = D̃ u(t) + L̃l−1
dl−1

dtl−1
x̃(t) + · · ·+ L̃1

d

dt
x̃(t) + L̃0 x̃(t),

(8.46)

of the original l-th order system (8.21). We remark that the state-space di-
mension of (8.46) is n, where n denotes the number of columns of the matrix
Sn in (8.44).

8.6 Block-Krylov Subspaces and Padé-type Models

In this section, we review the concepts of block-Krylov subspaces and Padé-
type reduced-order models.

8.6.1 Padé-Type Models

Let s0 ∈ C be any point such that the matrix s0 E −A is nonsingular. Recall
that the matrix pencil s E − A is assumed to be regular, and so the matrix
s0 E −A is nonsingular except for finitely many values of s0 ∈ C. In practice,
s0 ∈ C is chosen such that s0 E − A is nonsingular and at the same time, s0
is in some sense “close” to a problem-specific relevant frequency range in the
complex Laplace domain. Furthermore, for systems with real matrices A and
E one usually selects s0 ∈ R in order to avoid complex arithmetic.

We consider first-order systems of the form (8.33) and their reduced-order
models of the form (8.35). By expanding the transfer function (8.34), H, of
the original system (8.33) about s0, we obtain
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H(s) = L
(
s E − A

)−1B = L
(
I + (s− s0)M

)−1

R

=

∞∑
i=0

(−1)iLMiR (s− s0)
i,

(8.47)

where
M :=

(
s0 E − A

)−1E and R :=
(
s0 E − A

)−1B. (8.48)

Provided that the matrix s0 Ẽ − Ã is nonsingular, we can also expand the
transfer function (8.36), H̃, of the reduced-order model (8.35) about s0. This
gives

H̃(s) = L̃
(
s Ẽ − Ã

)−1B

=

∞∑
i=0

(−1)iL̃ M̃i R̃ (s− s0)
i,

(8.49)

where
M̃ :=

(
s0 Ẽ − Ã

)−1Ẽ and R :=
(
s0 Ẽ − Ã

)−1B̃.

We call the reduced-order model (8.35) a Padé-type model (with expan-
sion point s0) of the original system (8.33) if the Taylor expansions (8.47)
and (8.49) agree in a number of leading terms, i.e.,

H̃(s) = H(s) +O
(
(s− s0)

q
)

(8.50)

for some q = q(Ã, Ẽ , B̃, L̃, D̃) > 0.
Recall that the state-space dimension of the reduced-order model (8.35) is

n1. If for a given n1, the matrices Ã, Ẽ , B̃, L̃, D̃ in (8.35) are chosen such that
q = q(n1) in (8.50) is optimal, i.e., as large as possible, then the reduced-order
model (8.35) is called a Padé model. All the reduced-order models discussed
in the remainder of this paper are Padé-type models, but they are not optimal
in the Padé sense.

The (matrix-valued) coefficients in the expansions (8.47) and (8.49) are
often referred to as moments. Strictly speaking, the term “moments” should
only be used in the case s0 = 0; in this case, the Taylor coefficients of Laplace-
domain transfer functions directly correspond to the moments in time domain.
However, the use of the term “moments” has become common even in the case
of general s0. Correspondingly, the property (8.50) is now generally referred
to as “moment matching”.

We remark that the moment-matching property (8.50) is important for the
following two reasons. First, for large-scale systems, the matrices A and E are
usually sparse, and the dominant computational work for moment-matching
reduction techniques is the computation of a sparse LU factorization of the
matrix s0 E −A. Note that such a factorization is required already even if one
only wants to evaluate the transfer function H at the point s0. Once a sparse
LU factorization of s0 E − A has been generated, moments can be computed
cheaply. Indeed, in view of (8.47) and (8.48), only sparse back solves, sparse
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matrix products (with E), and vector operations are required. Second, the
moment-matching property (8.50) is inherently connected to block-Krylov
subspaces. In particular, Padé-type reduced-order models can be computed
easily be combining Krylov-subspace machinery and projection techniques. In
the remainder of the section, we describe this connection with block-Krylov
subspaces.

8.6.2 Block-Krylov Subspaces

In this subsection, we review the concept of block-Krylov subspaces induced
by the matrices M and R defined in (8.48). Recall that A, E ∈ C

N1×N1 and
B ∈ C

N1×m. Thus we have

M∈ C
N1×N1 and R ∈ C

N1×m. (8.51)

Next, consider the infinite block-Krylov matrix[
RMRM2R · · · Mj R . . .

]
. (8.52)

In view of (8.51), the columns of the matrix (8.52) are vectors in C
N1 , and so

only at most N1 of these vectors are linearly independent. By scanning the
columns of the matrix (8.52) from left to right and deleting each column that
is linearly dependent on columns to its left, one obtains the so-called deflated
finite block-Krylov matrix[

R(1) MR(2) M2R(3) · · · Mjmax−1Rjmax
]
, (8.53)

where each block R(j) is a subblock of R(j−1), j = 1, 2, . . . , jmax, and R(0) :=
R. Let mj denote the number of columns of the j-th block R(j). Note that by
construction, the matrix (8.53) has full column rank. The n-th block-Krylov
subspace (induced by M and R) Kn

(
M,R

)
is defined as the subspace of

C
N1 spanned by the first n columns of the matrix (8.53); see, [ABFH00] for

more details of this construction. We stress that our notion of block-Krylov
subspaces is more general than the standard definition, which ignores the need
for deflation; again, we refer the reader to [ABFH00] and the references given
there.

Here, we will only use those block-Krylov subspaces that correspond to
the end of the blocks in (8.53). More precisely, let n be of the form

n = n(j) := m1 +m2 + · · ·+mj , where 1 ≤ j ≤ jmax. (8.54)

In view of the above construction, the n-th block-Krylov subspace is given by

Kn

(
M,R

)
= range

[
R(1) MR(2) M2R(3) · · · Mj−1R(j)

]
. (8.55)
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8.6.3 The Projection Theorem Revisited

It is well known that the projection approach described in Subsection 8.5.2
generates Padé-type reduced-order models, provided that the matrix V in
(8.37) is chosen as a basis matrix for the block-Krylov subspaces induced by
the matrices M and R defined in (8.48). This result is called the projec-
tion theorem, and it goes back to at least [dVS87]. It was also established in
[Oda96, OCP97, OCP98] in connection with the PRIMA reduction approach;
see [Fre00] for more details. A more general result, which includes the case of
multi-point Padé-type approximations, can be found in [Gri97].

One key insight to obtain structure-preserving Padé-type reduced-order
models via block-Krylov subspaces and projection is the fact that the projec-
tion theorem remains valid when the above assumption on V is replaced by
the weaker condition

Kn

(
M,R

)
⊆ rangeVn. (8.56)

In this subsection, we present an extension of the projection theorem (as
stated in [Fre00]) to the case (8.56).

From now on, we always assume that n is an integer of the form (8.54)
and that

Vn ∈ C
N1×n1 (8.57)

is a matrix satisfying (8.56). Note that (8.56) implies n1 ≥ n. We stress that
we make no further assumptions about n1. We consider projected models given
by (8.38) with V = Vn. In order to indicate the dependence on the dimension
n of the block-Krylov subspace in (8.56), we use the notation

An := VH
n AVn, En := VH

n E Vn, Bn := VH
n B,

Ln := LVn, Dn := D
(8.58)

for the matrices defining the projected reduced-order model. In addition
to (8.56), we also assume that the matrix pencil s En − An is regular, and
that at the expansion point s0, the matrix s0 En − An is nonsingular. Then
the reduced-order transfer function

Hn(s) := Ln

(
s En −An

)−1Bn

= Ln

(
I + (s− s0)Mn

)−1

Rn

=

∞∑
i=0

(−1)iLnMi
nRn (s− s0)

i

(8.59)

is a well-defined rational function. Here, we have set

Mn :=
(
s0 En −An

)−1En and Rn :=
(
s0 En −An

)−1Bn. (8.60)

We remark that the regularity of the matrix pencil s En−An implies that the
matrix Vn must have full column rank.
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After these preliminaries, the extension of the projection theorem can be
stated as follows.

Theorem 8.6.1. Let n = n(j) be of the form (8.54), and let Vn be a matrix
satisfying (8.56). Then the reduced-order model defined by (8.58) is a Padé-
type model with

Hn(s) = H(s) +O
(
(s− s0)

j
)
. (8.61)

Proof. In view of (8.47) and (8.59), the claim (8.61) is equivalent to

MiR = VnMi
nRn for all i = 0, 1, . . . , j − 1, (8.62)

and thus we need to show (8.62).
By (8.55) and (8.56), for each i = 0, 1, . . . , j − 1, there exists a matrix ρi

such that
MiR = Vn ρi. (8.63)

Moreover, since Vn has full column rank, each matrix ρi is unique. In fact, we
will show that the matrices ρi in (8.63) are given by

ρi = Mi
nRn, i = 0, 1, . . . , j − 1. (8.64)

The claim (8.62) then follows by inserting (8.64) into (8.63).
We prove (8.64) by induction on i. Let i = 0. In view of (8.48) and (8.63),

we have
Vn ρ0 = R =

(
s0 E − A

)−1B. (8.65)

Multiplying (8.65) from the left by(
s0 En −An

)−1VH
n

(
s0 E − A

)
(8.66)

and using the definition of Rn in (8.60), it follows that ρ0 = Rn. This is just
the relation (8.64) for i = 0.

Now let 1 ≤ i ≤ j − 1, and assume that

ρi−1 = Mi−1
n Rn. (8.67)

Recall that ρi−1 satisfies the equation (8.63) (with i replaced by i − 1), and
thus we have Mi−1R = Vn ρi−1. Together with (8.63) and (8.67), it follows
that

Vn ρi = MiR =M
(
Mi−1R

)
=M

(
Vn ρi−1

)
=MVn

(
Mi−1

n Rn

)
. (8.68)

Note that, in view of the definition of M in (8.48), we have

VH
n

(
s0 E − A

)
MVn = VH

n E Vn = En. (8.69)

Multiplying (8.68) from the left by the matrix (8.66) and using (8.69) as well
as the definition of Mn in (8.60), we obtain

ρi =
(
s0 En −An

)−1En

(
Mi−1

n Rn

)
= Mi

nRn.

Thus the proof is complete.
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We remark that, for the single-input case m = 1, the result of Theo-
rem 8.6.1 is a special case of [Gri97, Lemma 3.2]. However, in [Gri97], the
extension ([Gri97, Corollary 3.1]) to the casem ≥ 1, is stated only for the stan-
dard notion of block-Krylov subspaces without deflation, and not for our more
general definition described in [ABFH00] and sketched in Subsection 8.6.2.
Therefore, for the sake of completeness, the short proof of Theorem 8.6.1 was
included in this paper.

8.6.4 Structure-Preserving Padé-Type Models

We now turn to structure-preserving Padé-type models. Recall that, in Sub-
sections 8.5.3 and 8.5.4, we have shown how special second-order and general
higher-order structure is preserved by choosing projection matrices of the
form (8.39) and (8.44), respectively. Moreover, in Subsection 8.6.3 we pointed
out that projected models are Padé-type models if (8.56) is satisfied. It follows
that the reduced-order models given by the projected data matrices (8.58) are
structure-preserving Padé-type models, provided that the matrix Vn in (8.57)
is of the form (8.39), respectively (8.44), and at the same time fulfills the
condition (8.56). Next we show how to construct such matrices Vn.

Let
V̂n ∈ C

N1×n (8.70)

be any matrix whose columns span the n-th block-Krylov subspaceKn

(
M,R

)
,

i.e.,
Kn

(
M,R

)
= range V̂n. (8.71)

First, consider the case of special second-order systems (8.17), where P−1 is
either of the form (8.19) or (8.20). In this case, we partition V̂n as follows:

V̂n =

[
V1

V2

]
, V1 ∈ C

N×n, V2 ∈ C
N0×n. (8.72)

Using the blocks in (8.72), we set

Vn :=

[
V1 0
0 V2

]
. (8.73)

Clearly, the matrix (8.73) is of the form (8.39), and thus the projected mod-
els generated with Vn preserve the special second-order structure. Moreover,
from (8.71)–(8.73), it follows that

Kn

(
M,R

)
= range V̂n ⊆ rangeVn,

and so condition (8.56) is satisfied. Thus, projected models are Padé-type
models and preserve second-order structure.

Next, we turn to the case of general higher-order systems (8.21). In
[Fre04b], we have shown that in this case, the block-Krylov subspaces induced
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by the matrices M and R, which are given by (8.32) and (8.48), exhibit a
very special structure. More precisely, the n-dimensional subspace Kn

(
M,R

)
of C

lN can be viewed as l copies of an n-dimensional subspace of C
N . Let

Sn ∈ C
N×n be a matrix whose columns form an orthonormal basis of this

n-dimensional subspace of C
N , and set

Vn :=

⎡⎢⎢⎢⎢⎢⎢⎣

Sn 0 0 · · · 0
0 Sn 0 · · · 0

0 0
. . .

. . .
...

...
...

. . .
. . . 0

0 0 · · · 0 Sn

⎤⎥⎥⎥⎥⎥⎥⎦ . (8.74)

From the above structure of the n-dimensional subspace Kn

(
M,R

)
, it follows

that Vn satisfies the condition (8.56). Furthermore, the matrix Vn is of the
form (8.44). Thus, projected models generated with Vn are Padé-type models
and preserve higher-order structure.

In the remainder of this paper, we assume that Vn are matrices given
by (8.73) in the case of special second-order systems, respectively (8.74) in
the case of higher-order systems, and we consider the corresponding structure-
preserving reduced-order models with data matrices given by (8.58).

8.7 Higher Accuracy in the Hermitian Case

For the structure-preserving Padé-type models introduced in Subsection 8.6.4,
the result of Theorem 8.6.1 can be improved further, provided the underlying
special second-order or higher-order linear dynamical system is Hermitian,
and the expansion point s0 is real, i.e.,

s0 ∈ R. (8.75)

More precisely, in the Hermitian case, the Padé-type models obtained via
Vn match 2j(n) moments, instead of just j(n) in the general case; see Theo-
rem 8.7.2 below. We remark that for the special case of real symmetric second-
order systems and expansion point s0 = 0, this result can be traced back
to [SC91].

In this section, we first give an exact definition of Hermitian special second-
order systems and higher-order systems, and then we prove the stronger
moment-matching property stated in Theorem 8.7.2.

8.7.1 Hermitian Special Second-Order Systems

We say that a special second-order system (8.17) is Hermitian if the matrices
in (8.17) and (8.19), respectively (8.20), satisfy the following properties:
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L = BH , P0 = PH
0 , P1 = PH

1 , F1 = F2, G = GH . (8.76)

Recall that RCL circuits are described by special second-order systems of the
form (8.14) with real matrices defined in (8.15). Clearly, these systems are
Hermitian.

We distinguish the two cases (8.19) and (8.20). First assume that P−1 is
of the form (8.19). Recall that the data matrices of the equivalent first-order
formulation (8.33) are defined in (8.30) in this case. Using (8.75), (8.76),
and (8.19), one readily verifies that the data matrices (8.30) satisfy the rela-
tions

J
(
s0 E − A

)
=
(
s0 E − A

)HJ , J E = E J , J = JH ,

LH = J B,
(8.77)

where

J :=

[
IN 0
0 −G

]
.

Since the reduced-order model is structure-preserving, the data matrices (8.58)
satisfy analogous relations. More precisely, we have

Jn

(
s0 En −An

)
=
(
s0 En −An

)HJn, Jn En = En Jn, Jn = JH
n ,

LH
n = Jn Bn,

(8.78)

where

Jn :=

[
In 0
0 −Gn

]
.

Now assume that P−1 is of the form (8.20). Recall that the data matri-
ces of the equivalent first-order formulation (8.33) are defined in (8.31) in
this case. Using (8.75), (8.76), and (8.20), one readily verifies that the data
matrices (8.31) again satisfy the relations (8.77), where now

J :=

[
IN 0
0 −IN0

]
.

Furthermore, since the reduced-order model is structure-preserving, the data
matrices (8.58) satisfy the relations (8.78), where

Jn :=

[
In 0
0 −In

]
.

8.7.2 Hermitian Higher-Order Systems

We say that a higher-order system (8.21) is Hermitian if the matrices in (8.21)
satisfy the following properties:

Pi = PH
i , 0 ≤ i ≤ l, L0 = BH , Lj = 0, 1 ≤ j ≤ l − 1. (8.79)
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In this case, we define matrices

P̂j :=

l−j∑
i=0

si
0Pj+i, j − 0, 1, . . . , l,

and set

J :=

⎡⎢⎢⎢⎢⎢⎢⎣

I −s0I 0 · · · 0

0 I −s0I
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 I −s0I
0 0 · · · 0 I

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

P̂1 P̂2 · · · P̂l−1 I

P̂2 . .
.

. .
.

P̂l 0
... . .

.
. .

.
0

...

P̂l−1 . .
.

. .
. ...

...

P̂l 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (8.80)

Note that, in view of (8.79), we have

P̂j = P̂H
j , j = 0, 1, . . . , l. (8.81)

Using (8.79)–(8.81), one can verify that the data matrices A, E , B, L given
in (8.32) satisfy the following relations:

J
(
s0 E − A

)
=
(
s0 E − A

)HJ , J E = EHJ , LH = J B. (8.82)

Since the reduced-order model is structure-preserving, the data matrices (8.58)
satisfy the same relations. More precisely, we have

Jn

(
s0 En −An

)
=
(
s0 En −An

)HJn, Jn En = EH
n Jn,

LH
n = Jn Bn,

(8.83)

where Jn is defined in analogy to J .

8.7.3 Key Relations

Our proof of the enhanced moment-matching property in the Hermitian case
is based on some key relations that hold true for both special second-order
and higher-order systems. In this subsection, we state these key relations.

Recall the definition of the matrix M in (8.48). The relations (8.77), re-
spectively (8.82), readily imply the following identity:

MHJ = J E
(
s0 E − A

)−1
. (8.84)

It follows from (8.84) that

(
MH

)i J = J
(
E
(
s0 E − A

)−1
)i

, i = 0, 1, . . . . (8.85)
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Similarly, the relations (8.78), respectively (8.83), imply

MH
n Jn = Jn En

(
s0 En −An

)−1
.

It follows that(
MH

n

)i J = Jn

(
En

(
s0 En −An

)−1
)i

, i = 0, 1, . . . . (8.86)

Also recall from (8.77), respectively (8.82), that

LH = J B, (8.87)

and from (8.78), respectively (8.83), that

LH
n = Jn Bn. (8.88)

Finally, one readily verifies the following relation:

VH
n J E Vn = Jn En. (8.89)

8.7.4 Matching Twice as Many Moments

In this subsection, we present our enhanced version of Theorem 8.6.1 for the
case of Hermitian special second-order or higher-order systems.

First, we establish the following proposition.

Proposition 8.7.1. Let n = n(j) be of the form (8.54). Then, the data ma-
trices (8.58) of the structure-preserving Padé-type model satisfy

LMi Vn = Ln M
i
n for all i = 0, 1, . . . , j. (8.90)

Proof. Recall that Ln = LVn. Thus (8.90) holds true for i = 0.
Let 1 ≤ i ≤ j. In view of (8.85), we have

(
MH

)i J = J
(
E
(
s0 E − A

)−1
)i

.

Together with (8.87), it follows that

(
MH

)i LH =
(
MH

)i J B = J
(
E
(
s0 E − A

)−1
)i

B.

Since
(
s0 E − A

)−1B = R, it follows that

(
MH

)i LH = J E
((
s0 E − A

)−1E
)i−1

R = J EMi−1R.

Using (8.62) (with i replaced by i− 1), (8.89), (8.86), and (8.88), we obtain
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VH
n

(
MH

)iLH = VH
n J E

(
Mi−1R

)
= VH

n J E VnMi−1
n Rn

=
(
VH

n J E Vn

)(
Mi−1

n Rn

)
= Jn EnMi−1

n Rn

= Jn EnMi−1
n

(
s0 E − A

)−1Bn

= Jn

(
En

(
s0 E − A

)−1
)i

Bn

=
(
MH

n

)iJn Bn =
(
MH

n

)iLH
n .

Thus the proof is complete.

The following theorem contains the main result of this section.

Theorem 8.7.2. Let n = n(j) be of the form (8.54). In the Hermitian case,
the structure-preserving Padé-type model defined by the data matrices (8.58)
satisfies:

Hn(s) = H(s) +O
(
(s− s0)

2j(n)
)
. (8.91)

Proof. Let j = j(n). We need to show that

LMiR = cnMi
nRn for all i = 0, 1, . . . , 2j − 1. (8.92)

By (8.62) and (8.90), we have

LMi1+i2 R =
(
LMi1

)(
Mi2 R

)
=
(
LMi1

)(
VnMi2

n Rn

)
=
(
LMi1 Vn

)(
Mi2

n Rn

)
=
(
LnMi1

n

)(
Mi2

n Rn

)
= LnMi1+i2

n Rn

for all i1 = 0, 1, . . . , j − 1 and i2 = 0, 1, . . . , j. This is just the desired rela-
tion (8.92), and thus the proof is complete.

8.8 The SPRIM Algorithm

In this section, we apply the machinery of structure-preserving Padé-type
reduced-order modeling to the class of Hermitian special second-order systems
that describe RCL circuits.

Recall from Section 8.2 that a first-order formulation of RCL circuit equa-
tions is given by (8.10) with data matrices defined in (8.11). Here, we consider
first-order systems (8.10) with data matrices of the slightly more general form

A =

[
−P0 −F
FH 0

]
, E =

[
P1 0
0 G

]
, B =

[
B
0

]
. (8.93)
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Here, it is assumed that the subblocks P0, P1, and B have the same number
of rows, and that the subblocks of A and E satisfy P0  0, P1  0, and G ! 0.
Note that systems (8.10) with matrices (8.93) are in particular Hermitian.
Furthermore, the transfer function of such systems is given by

H(s) = BH
(
s E − A

)−1B.

The PRIMA algorithm [OCP97, OCP98] is a reduction technique for first-
order systems (8.10) with matrices of the form (8.93). PRIMA is a projec-
tion method that uses suitable basis matrices for the block-Krylov subspaces
Kn

(
M,R

)
; see [Fre99]. More precisely, let V̂n be any matrix satisfying (8.70)

and (8.71). The corresponding n-th PRIMA model is then given by the pro-
jected data matrices

Ân := V̂H
n Â V̂n, Ên := V̂H

n Ê V̂n, B̂n := V̂H
n B̂.

The associated transfer function is

Ĥn(s) = B̂H
n

(
s Ên − Ân

)−1B̂n.

For n of the form (8.54), the PRIMA transfer function satisfies

Ĥ(s) = H(s) +O
(
(s− s0)

j(n)
)
. (8.94)

Recently, we introduced the SPRIM algorithm [Fre04a] as a structure-
preserving and more accurate version of PRIMA. SPRIM employs the matrix
Vn obtained from V̂n via the construction (8.72) and (8.73). The corresponding
n-th SPRIM model is then given by the projected data matrices

An := VH
n AVn, En := VH

n E Vn, Bn := VH
n B.

The associated transfer function is

Hn(s) = BH
n

(
s En −An

)−1Bn.

In view of Theorem 8.7.2, we have

H(s) = H(s) +O
(
(s− s0)

2j(n)
)
,

which suggests that SPRIM is “twice” as accurate as PRIMA.
An outline of the SPRIM algorithm is as follows.

Algorithm 1 (SPRIM algorithm for special second-order systems)

• Input: matrices

A =

[
−P0 −F
FH 0

]
, E =

[
P1 0
0 G

]
, B =

[
B
0

]
,

where the subblocks P0, P1, and B have the same number of rows, and the
subblocks of A and E satisfy P0  0, P1  0, and G ! 0;
an expansion point s0 ∈ R.
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• Formally set

M = (s0 E − A)
−1 C, R = (s0 E − A)

−1 B.

• Until n is large enough, run your favorite block Krylov subspace method
(applied to M and R) to construct the columns of the basis matrix

V̂n =
[
v1 v2 · · · vn

]
of the n-th block Krylov subspace Kn

(
M,R

)
, i.e.,

span V̂n = Kn

(
M,R

)
.

• Let

V̂n =

[
V1

V2

]
be the partitioning of V̂n corresponding to the block sizes of A and E.

• Set

P̃0 = V H
1 P1V1, F̃ = V H

1 FV2, P̃1 = V H
1 P1V1, G̃ = V H

2 GV2,

B̃ = V H
1 B,

and

An =

[
−P̃0 −F̃
F̃H 0

]
, En =

[
P̃1 0

0 G̃

]
, Bn =

[
B̃
0

]
, (8.95)

• Output: the reduced-order model H̃n in first-order form

Hn(s) = BH
n

(
s En −An

)−1Bn (8.96)

and in second-order form

Hn(s) = B̃H

(
s P̃1 + P̃0 +

1

s
F̃ G̃−1F̃H

)−1

B̃. (8.97)

We remark that the main computational cost of the SPRIM algorithm is
running the block Krylov subspace method to obtain V̂n. This is the same as
for PRIMA. Thus generating the PRIMA reduced-order model Ĥn and the
SPRIM reduced-order model Hn involves the same computational costs.

On the other hand, when written in first-order form (8.96), it would ap-
pear that the SPRIM model has state-space dimension 2n, and thus it would
be twice as large as the corresponding PRIMA model. However, unlike the
PRIMA model, the SPRIM model can always be represented in special second-
order form (8.97); see Subsection 8.5.3. In (8.97), the matrices P̃1, P̃0, and
P̃−1 := F̃ G̃−1F̃H are all of size n × n, and the matrix B̃ is of size n × m.
These are the same dimensions as in the PRIMA model (8.94). Therefore,
the SPRIM model Hn (written in second-order form (8.97)) and of the corre-
sponding PRIMA model Ĥn indeed have the same state-space dimension n.
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8.9 Numerical Examples

In this section, we present results of some numerical experiments with the
SPRIM algorithm for special second-order systems. These results illustrate the
higher accuracy of the SPRIM reduced-order models vs. the PRIMA reduced-
order models.

8.9.1 A PEEC Circuit

The first example is a circuit resulting from the so-called PEEC discretiza-
tion [Rue74] of an electromagnetic problem. The circuit is an RCL network
consisting of 2100 capacitors, 172 inductors, 6990 inductive couplings, and
a single resistive source that drives the circuit. See Chapter 22 for a more
detailed description of this example. The circuit is formulated as a 2-port.
We compare the PRIMA and SPRIM models corresponding to the same di-
mension n of the underlying block Krylov subspace. The expansion point
s0 = 2π× 109 was used. In Figure 8.1, we plot the absolute value of the (2, 1)
component of the 2 × 2-matrix-valued transfer function over the frequency
range of interest. The dimension n = 120 was sufficient for SPRIM to match
the exact transfer function. The corresponding PRIMA model of the same
dimension, however, has not yet converged to the exact transfer function in
large parts of the frequency range of interest. Figure 8.1 clearly illustrates the
better approximation properties of SPRIM due to matching of twice as many
moments as PRIMA.

8.9.2 A Package Model

The second example is a 64-pin package model used for an RF integrated cir-
cuit. Only eight of the package pins carry signals, the rest being either unused
or carrying supply voltages. The package is characterized as a 16-port com-
ponent (8 exterior and 8 interior terminals). The package model is described
by approximately 4000 circuit elements, resistors, capacitors, inductors, and
inductive couplings. See Chapter 22 for a more detailed description of this
example and its mathematical model.

We again compare the PRIMA and SPRIM models corresponding to the
same dimension n of the underlying block Krylov subspace. The expansion
point s0 = 5π × 109 was used. In Figure 8.2, we plot the absolute value of
one of the components of the 16×16-matrix-valued transfer function over the
frequency range of interest. The state-space dimension n = 80 was sufficient
for SPRIM to match the exact transfer function. The corresponding PRIMA
model of the same dimension, however, does not match the exact transfer
function very well near the high frequencies; see Figure 8.3.
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Fig. 8.3. The package model, high frequencies

8.9.3 A Mechanical System

Exploiting the equivalence (see, e.g., [LBEM00]) between RCL circuits and
mechanical systems, both PRIMA and SPRIM can also be applied to reduced-
order modeling of mechanical systems. Such systems arise for example in
the modeling and simulation of MEMS devices. In Figure 8.4, we show a
comparison of PRIMA and SPRIM for a finite-element model of a shaft. The
expansion point s0 = π×103 was used. The dimension n = 15 was sufficient for
SPRIM to match the exact transfer function in the frequency range of interest.
The corresponding PRIMA model of the same dimension, however, has not
converged to the exact transfer function in large parts of the frequency range
of interest. Figure 8.4 again illustrates the better approximation properties of
SPRIM due to the matching of twice as many moments as PRIMA.

8.10 Concluding Remarks

We have presented a framework for constructing structure-preserving Padé-
type reduced-order models of higher-order linear dynamical systems. The
approach employs projection techniques and Krylov-subspace machinery for
equivalent first-order formulations of the higher-order systems. We have shown
that in the important case of Hermitian higher-order systems, our structure-
preserving Padé-type model reduction is twice as accurate as in the general
case. Despite this higher accuracy, the models produced by our approach are
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Fig. 8.4. A mechanical system

still not optimal in the Padé sense. This can be seen easily by comparing
the degrees of freedom of general higher-order reduced models of prescribed
state-space dimension, with the number of moments matched by the Padé-
type models generated by our approach. Therefore, structure-preserving true
Padé model reduction remains an open problem.

Our approach generates reduced models in higher-order form via equiv-
alent first-order formulations. It would be desirable to have algorithms that
construct the same reduced-order models in a more direct fashion, without
the detour via first-order formulations. Another open problem is the most
efficient and numerically stable algorithm to construct basis vectors of the
structured Krylov subspaces that arise for the equivalent first-order formu-
lations. Some related work on this problem is described in the recent report
[Li04], but many questions remain open. Finally, the proposed approach is a
projection technique, and as such, it requires the storage of all the vectors
used in the projection. This clearly becomes an issue for systems with very
large state-space dimension.
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Summary. The efficient solution of several classes of controller approximation
problems by using frequency-weighted balancing related model reduction approaches
is considered. For certain categories of performance and stability enforcing frequency-
weights, the computation of the frequency-weighted controllability and observability
Gramians can be achieved by solving reduced order Lyapunov equations. All dis-
cussed approaches can be used in conjunction with square-root and balancing-free
accuracy enhancing techniques. For a selected class of methods robust numerical
software is available.

9.1 Introduction

The design of low order controllers for high order plants is a challenging prob-
lem both theoretically as well as from a computational point of view. The
advanced controller design methods like the LQG/LTR loop-shaping, H∞-
synthesis, µ and linear matrix inequalities based synthesis methods produce
typically controllers with orders comparable with the order of the plant. There-
fore, the orders of these controllers tend often to be too high for practical use,
where simple controllers are preferred over complex ones. To allow the practi-
cal applicability of advanced controller design methods for high order systems,
the model reduction methods capable to address controller reduction problems
are of primary importance. Comprehensive presentations of controller reduc-
tion methods and the reasons behind different approaches can be found in the
textbook [ZDG96] and in the monograph [OA00].

The goal of controller reduction is to determine a low order controller start-
ing from a high order one to ensure that the closed loop system formed from
the original (high order) plant and low order controller behaves like the origi-
nal plant with the original high order controller. Thus a basic requirement for
controller reduction is preserving the closed-loop stability and many controller
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reduction approaches have been derived to fulfil just this goal [AL89, LAL90].
However, to be useful, the low order controller resulting in this way must
provide an acceptable performance degradation of the closed loop behavior.
This led to methods which try to enforce also the preservation of closed-loop
performance [AL89, GG98, Gu95, WSL01, EJL01].

In our presentation we focus on controller reduction methods related to
balancing techniques. The balanced truncation (BT) based approach proposed
in [Moo81] is a general method to reduce the order of stable systems. Bounds
on the additive approximation errors have been derived in [Enn84, Glo84] and
they theoretically establish the remarkable approximation properties of this
approach. In a series of papers [LHPW87, TP87, SC89, Var91b] the under-
lying numerical algorithms for this method have been progressively improved
and accompanying robust numerical software is freely available [Var01a]. The
main computations in the so-called square-root and balancing-free accuracy
enhancing method of [Var91b] is the high-accuracy computation of the control-
lability/observability Gramians (using square-root techniques) and employing
well-conditioned truncation matrices (via a balancing-free approach). Note
that the BT method is able to handle the reduction of unstable systems either
via modal decomposition or coprime factorization techniques [Wal90, Var93].
A closely related approach is the singular perturbation approximation (SPA)
[LA89] which later has been turned into a reliable computational technique
in [Var91a].

Controller reduction problems are often formulated as frequency-weighted
model reduction problems [AL89]. An extension of balancing techniques to
address frequency-weighted model reduction (FWMR) problems has been pro-
posed in [Enn84] by defining so-called frequency-weighted controllability and
observability Gramians. The main difficulty with this method, is the lack of
guarantee of stability of the reduced models in the case of two-sided weight-
ing. To overcome this weakness, several improvements of the basic method of
[Enn84] have been suggested in [LC92, WSL99, VA03], by proposing alterna-
tive choices of the frequency-weighted controllability and observability Grami-
ans and/or employing the SPA approach instead of BT. Although still no a pri-
ory approximation error bounds for this method exist, the frequency-weighted
balanced truncation (FWBT) or frequency-weighted singular perturbation ap-
proximation (FWSPA) approaches with the proposed enhancements are well-
suited to solve many controller reduction problems. In contrast, Hankel-norm
approximation (HNA) related approaches [Glo84, LA85] appear to be less
suited for this class of problems due to special requirements to be fulfilled by
the weights (e.g., anti-stable and anti-minimum-phase).

The recent developments in computational algorithms for controller reduc-
tion focus on fully exploiting the structural features of the frequency-weighted
controller reduction (FWCR) problems [VA03, Var03b, Var03a]. In these pa-
pers it is shown that for several categories of performance and stability en-
forcing frequency-weights, the computation of the frequency-weighted cont-
rollability and observability Gramians can be done by solving reduced order
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Lyapunov equations. Moreover, all discussed approaches can be used in con-
junction with square-root and balancing-free accuracy enhancing techniques.
For a selected class of methods robust numerical software is available.

The paper is organized as follows. In Section 9.2 we describe shortly the
basic approaches to controller reduction. A general computational framework
using balancing-related frequency-weighted methods is introduced in Section
9.3 and the related main aspects are addressed like the definition of frequency-
weighted Gramians, using accuracy enhancing techniques, and algorithmic
performance issues. The general framework is specialized to several controller
reduction problems in Section 9.4, by addressing the reduction of both gen-
eral as well as state feedback and observer-based controllers, in conjunction
with various stability and performance preserving problem formulations. In
each case, we discuss the applicability of square-root techniques and show the
achievable computational effort saving by exploiting the problem structure.
In Section 9.5 we present an overview of existing software. In Section 9.6 we
present an example illustrating the typical controller reduction problematic.

Notation. Throughout the paper, the following notational convention is
used. The bold letter notation G is used to denote a state-space system G :=
(A,B,C,D) with the transfer-function matrix (TFM)

G(λ) = C(λI −A)−1B +D :=

[
A B
C D

]
.

Depending on the system type, λ is either the complex variable s appearing
in the Laplace transform in the case of a continuous-time system or the vari-
able z appearing in the Z-transform in the case of a discrete-time system.
Throughout the paper we denote G(λ) simply as G, when the system type is
not relevant. The bold-notation is used consistently to denote system realiza-
tions corresponding to particular TFMs: G1G2 denotes the series coupling of
two systems having the TFM G1(λ)G2(λ), G1 +G2 represents the (additive)
parallel coupling of two systems with TFM G1(λ) + G2(λ), G−1 represents
the inverse systems with TFM G−1, [G1 G2 ] represents the realization of the
compound TFM [G1 G2 ], etc.

9.2 Controller Reduction Approaches

Let K = (Ac, Bc, Cc, Dc) be a stabilizing controller of order nc for an n-th
order plant G = (A,B,C,D). We want to find Kr, an rc-th order approxi-
mation of K such that the reduced controller Kr is stabilizing and essentially
preserves the closed-loop system performances of the original controller. To
guarantee closed-loop stability, sometimes we would like to additionally pre-
serve the same number of unstable poles in Kr as in K.

To solve controller reduction problems, virtually any model reduction
method in conjunction with the modal separation approach (to preserve the
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unstable poles) can be employed. However, when employing general purpose
model reduction methods to perform controller order reduction, the closed-
loop stability and performance aspects are completely ignored and the result-
ing controllers are usually unsatisfactory.

To address stability and performance preserving issues, controller reduc-
tion problems are frequently formulated as FWMR problems with special
weights [AL89]. This amounts to find Kr, the rc-th order approximation of
K (having possibly the same number of unstable poles as K), such that a
weighted error of the form

‖Wo(K −Kr)Wi‖∞, (9.1)

is minimized, where Wo and Wi are suitably chosen weighting TFMs.
Commonly used frequency-weights (see Section 9.3 and [AL89]) have min-

imal state-space realizations of orders as large as n + nc and thus employ-
ing general FWMR techniques could be expensive for high order plants/con-
trollers, because they involve the computation of Gramians for systems of
order n+ 2nc. A possible approach to alleviate the situation is to reduce first
the weights using any of the standard methods (e.g., BT, SPA or HNA) and
then apply the general FWBT or FWSPA approach with the enhancements
proposed in [VA03]. Although apparently never discussed in the literature,
this approach could be effective in some cases.

The idea to apply frequency-weighted balancing techniques to reduce the
stable coprime factors of the controller has been discussed in several papers
[AL89, LAL90, ZC95]. For example, given a right coprime factorization (RCF)
K = UV −1 of the controller, we would like to find a reduced controller in the
RCF form Kr = UrV

−1
r such that∥∥∥∥Wo

[
U − Ur

V − Vr

]
Wi

∥∥∥∥
∞

= min . (9.2)

Similarly, given a left coprime factorization (LCF) K = V −1U of the con-
troller, we would like to find a reduced controller in the LCF formKr = V −1

r Ur

such that ∥∥∥W̃o[U − Ur V − Vr ]W̃i

∥∥∥
∞

= min . (9.3)

In (9.2) and (9.3) the weights have usually special forms to enforce either
closed-loop stability [AL89, LAL90] or to preserve the closed-loop performance
bounds for H∞ controllers [GG98, Gu95, WSL01, EJL01]. The main appeal
of coprime factorization based techniques is that in many cases (e.g., feedback
controllers resulting from LQG, H2 or H∞ designs) fractional representations
of the controller can be obtained practically without any computation from
the underlying synthesis approach. For example, this is the case for state
feedback and observer-based controllers as well as for H∞ controllers.

Interestingly, many stability/performance preserving controller reduction
problems have very special structure which can be exploited when develop-
ing efficient numerical algorithms for controller reduction. For example, it
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has been shown in [VA02] that for the frequency-weighted balancing related
approaches applied to several controller reduction problems with the special
stability/performance enforcing weights proposed in [AL89], the computation
of Gramians can be done by solving reduced order Lyapunov equations. Sim-
ilarly, it was recently shown in [Var03b] that this is also true for a class of
frequency-weighted coprime factor controller reduction methods.

The approach which we pursue in this paper is the specialization of the
FWMR methods to derive FWCR approaches which exploit all particular fea-
tures of the underlying frequency-weighted problem. The main benefit of such
a specialization in the case of arbitrary controllers is the cheaper computation
of frequency-weighted Gramians by solving reduced order Lyapunov equa-
tions (typically of order n+nc instead the expected order n+2nc). A further
simplification arises when considering reduction of controllers resulting from
LQG, H2 or H∞ designs. For such controllers, the Gramians can be computed
by solving Lyapunov equations only of order nc. In what follows, we present
an overview of recent enhancements obtained for different categories of prob-
lems. More details on each problem can be found in several recent works of
the author [VA02, VA03, Var03b, Var03a].

9.3 Frequency-Weighted Balancing Framework

In this section we describe the general computational framework to perform
FWCR using balancing-related approaches. The following procedure to solve
the frequency-weighted approximation problem (9.1), with a possible unstable
controller K, is applicable (with obvious replacements) to solve the coprime
factor approximation problems (9.2) and (9.3) as well, where obvious simpli-
fications arise because the factors are stable systems.

FWCR Procedure.

1. Compute the additive stable-unstable spectral decomposition

K = Ks + Ku,

where Ks, of order ncs, contains the stable poles of K and Ku, of order
nc − ncs, contains the unstable poles of K.

2. Compute the controllability Gramian of KsWi and the observability
Gramian of WoKs and define, according to [Enn84], [WSL99] or [VA03],
appropriate ncs order frequency-weighted controllability and observability
Gramians Pw and Qw, respectively.

3. Using Pw and Qw in place of standard Gramians of Ks, determine a
reduced order approximation Ksr by applying the BT or SPA methods.

4. Form Kr = Ksr + Ku.

This procedure originates from the works of Enns [Enn84] and automatically
ensures that the resulting reduced order controller Kr has exactly the same
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unstable poles as the original one, provided the approximation Ksr of the
stable part Ks is stable. To guarantee the stability of Ksr, specific choices of
frequency-weighted Gramians have been proposed in [VA03] to enhance the
original method proposed by Enns. In the following subsection, we present
shortly the possible choices of the frequency-weighted controllability and ob-
servability Gramians to be employed in the FWCR Procedure and indicate
the related computational aspects when employed in conjunction with square-
root techniques.

9.3.1 Frequency-Weighted Gramians

To simplify the discussions we temporarily assume that the controller K =
(Ac, Bc, Cc, Dc) is stable and the two weights Wo and Wi are also stable TFMs
having minimal realizations of orders no and ni, respectively. In the case of
an unstable controller, the discussion applies to the stable part Ks of the
controller.

Consider the minimal realizations of the frequency weights

Wo = (Ao, Bo, Co, Do), Wi = (Ai, Bi, Ci, Di)

and construct the realizations of KWi and WoK as

KWi =

[
Ai Bi

Ci Di

]
=:

⎡⎣Ac BcCi BcDi

0 Ai Bi

Cc DcCi DcDi

⎤⎦ , (9.4)

WoK =

[
Ao Bo

Co Do

]
=:

⎡⎣Ao BoCc BoDc

0 Ac Bc

Co DoCc DoDc

⎤⎦ . (9.5)

Let P i and Qo be the controllability Gramian of KWi and the observability
Gramian of WoK, respectively. Depending on the system type, continuous-
time (c) or discrete-time (d), P i and Qo satisfy the corresponding Lyapunov
equations

(c)

{
AiP i + P iA

T

i +BiB
T

i = 0

A
T

o Qo +QoAo + C
T

o Co = 0
, (d)

{
AiP iA

T

i +BiB
T

i = P i

A
T

o QoAo + C
T

o Co = Qo

. (9.6)

Partition P i and Qo in accordance with the structure of the matrices Ai and
Ao, respectively, i.e.

P i =

[
P11 P12

PT
12 P22

]
, Qo =

[
Q11 Q12

QT
12 Q22

]
, (9.7)

where PE := P11 and QE := Q22 are nc×nc matrices. The approach proposed
by Enns [Enn84] defines
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Pw = PE , Qw = QE (9.8)

as the frequency-weighted controllability and observability Gramians, respec-
tively. Although successfully employed in many applications, the stability of
the reduced controller is not guaranteed in the case of two-sided weighting,
unless either Wo = I or Wi = I. Occasionally, quite poor approximations
result even for one-sided weighting.

In the context of FWMR, alternative choices of frequency-weighted Grami-
ans guaranteeing stability have been proposed in [LC92] and [WSL99] (only
for continuous-time systems). The choice proposed in [LC92] assumes that
no pole-zero cancellations occur when forming KWi and WoK, a condition
which generally is not fulfilled by the special weights used in controller re-
duction problems. The alternative choice of [WSL99] has been improved in
[VA03] by reducing the gap to Enns’ choice and also extended to discrete-time
systems.

The Gramians Pw and Qw in the modified method of Enns proposed in
[VA03] are determined as

Pw = PV , Qw = QV , (9.9)

where PV and QV are the solutions of the appropriate pair of Lyapunov
equations

(c)

{
AcPV + PV A

T
c + B̃c B̃

T
c = 0

QV Ac +AT
c QV + C̃T

c C̃c = 0
, (d)

{
AcPV A

T
c + B̃cB̃

T
c = PV

AT
c QV Ac + C̃T

c C̃c = QV

. (9.10)

Here, B̃c and C̃c are fictitious input and output matrices determined from the
orthogonal eigendecompositions of the symmetric matrices X and Y defined
as

(c)

{
X = −AcPE − PEA

T
c

Y = −AT
c QE −QEAc

, (d)

{
X = −AcPEA

T
c + PE

Y = −AT
c QEAc +QE

. (9.11)

The eigendecompositions of X and Y are given by

X = UΘUT , Y = V ΓV T , (9.12)

where Θ and Γ are real diagonal matrices. Assume that Θ = diag (Θ1, Θ2)
and Γ = diag (Γ1, Γ2) are determined such that Θ1 > 0 and Θ2 ≤ 0, Γ1 > 0
and Γ2 ≤ 0. Partition U = [U1 U2 ] and V = [V1 V2 ] in accordance with the

partitioning of Θ and Γ , respectively. Then B̃ and C̃ are defined in [VA03] as

B̃c = U1Θ
1
2
1 , C̃c = Γ

1
2
1 V

T
1 . (9.13)

It is easy to see that with this choice of Gramians we have PV − PE ≥
0 and QV − QE ≥ 0, thus, the triple (Ac, B̃c, C̃c) is minimal provided the
original triple (Ac, Bc, Cc) is minimal. Note that any combination of Gramians
(PE , QV ), (PV , QE), or (PV , QV ) guarantees the stability of approximations
for two-sided weighting.
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9.3.2 Accuracy Enhancing Techniques

There are two main techniques to enhance the accuracy of computations in
model and controller reduction. One of them is the square-root technique intro-
duced in [TP87] and relies on computing exclusively with better conditioned
“square-root” quantities, namely, with the Cholesky factors of Gramians, in-
stead of the Gramians themselves. In the context of unweighted additive error
model reduction (e.g., employing BT, SPA or HNA methods), this involves
to solve the Lyapunov equations satisfied by the Gramians directly for their
Cholesky factors by using the well-know algorithms proposed by Hammarling
[Ham82]. This is not generally possible in the case of FWMR/FWCR since the
frequency-weighted Gramians Pw and Qw are “derived” quantities defined, for
example, via (9.8) or (9.9). In this subsection we show how square-root for-
mulas can be employed to compute the frequency-weighted Gramians for the
specific choices described in the previous subsection.

Assume Si and Ro are the Cholesky factors of P i and Qo in (9.7), re-

spectively, satisfying P i = Si S
T

i and Qo = R
T

o Ro. These factors are upper
triangular and can be computed using the method of Hammarling [Ham82]
to solve the Lyapunov equations (9.6) directly for the Cholesky factors. The
solution of these Lyapunov equations involves the reduction of each of the
matrices Ai and Ao to a real Schur form (RSF). For efficiency reasons the
reduction of A, Ai and Ao to RSF is preferably done independently and only
once. This ensures that Ai and Ao in the realizations (9.4) of KWi and (9.5)
of WoK are automatically in RSF.

If we partition Si and Ro in accordance with the partitioning of P i and
Qo in (9.7) as

Si =

[
S11 S12

0 S22

]
, Ro =

[
R11 R12

0 R22

]
we have immediately that the Cholesky factors of PE = SES

T
E and QE =

RT
ERE corresponding to Enns’ choice satisfy

SES
T
E = S11S

T
11 + S12S

T
12 = [S11 S12 ][S11 S12 ]T , (9.14)

RT
ERE = RT

12R12 +RT
22R22 =

[
R12

R22

]T [
R12

R22

]
. (9.15)

Thus, to obtain SE the RQ-factorization of the matrix [S11 S12 ] must be addi-
tionally performed, while for obtainingRE the QR-factorization of [RT

12 R
T
22 ]T

must be performed. Both these factorizations can be computed using well es-
tablished factorization updating techniques [GGMS74] which fully exploit the
upper triangular shapes of S11 and R22.

For the choice (9.9) of Gramians, the Cholesky factors of PV = SV S
T
V

and QV = RT
V RV result by solving (9.10) directly for these factors using the

algorithm of Hammarling [Ham82]. Note that for computing X and Y , we can
use the Cholesky factors SE and RE determined above for Enns’ choice.
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Assume that Pw = SwS
T
w and Qw = RT

wRw are the Cholesky factorizations
of the frequency weighted Gramians corresponding to one of the above choices
of the Gramians (9.8) or (9.9). To determine the reduced order controller we
determine two truncation matrices L and T such that the reduced controller
is given by

(Acr, Bcr, Ccr, Dcr) = (LAcT, LBc, CcT, Dc).

The computation of L and T can be done from the singular value decompo-
sition (SVD)

RwSw =
[
U1 U2

]
diag(Σ1, Σ2)

[
V1 V2

]T
, (9.16)

where
Σ1 = diag(σ1, . . . , σrc

), Σ2 = diag(σrc+1, . . . , σnc
),

and σ1 ≥ . . . ≥ σrc
> σrc+1 ≥ . . . ≥ σnc

≥ 0. To compute the SVD in (9.16),
instead of using standard algorithms as those described in [GV89], special
numerically stable algorithms for matrix products can be employed to avoid
the forming of the product RwSw [GSV00].

The so-called square-root (SR) methods determine L and T as [TP87]

L = Σ
−1/2
1 UT

1 Rw, T = SwV1Σ
−1/2
1 . (9.17)

A potential disadvantage of this choice is that accuracy losses can be induced
in the reduced controller if either of the truncation matrices L or T is ill-
conditioned (i.e., nearly rank deficient). Note that in the case of BT based
model reduction, the above choice leads, in the continuous-time, to balanced
reduced models (i.e., the corresponding Gramians are equal and diagonal).

The second technique to enhance accuracy is the computation of well-
conditioned truncation matrices L and T , by avoiding completely any kind of
balancing implied by using the (SR) formulas (9.17). This leads to a balancing-
free (BF) approach (originally proposed in [SC89]) in which L and T are al-
ways well-conditioned. A balancing-free square-root (BFSR) algorithm which
combines the advantages of the BF and SR approaches has been introduced
in [Var91b]. L and T are determined as

L = (Y TX)−1Y T , T = X,

where X and Y are nc× rc matrices with orthogonal columns computed from
two QR decompositions

SwV1 = XW, RT
wU1 = Y Z

with W and Z non-singular and upper-triangular. The reduced controller
obtained in this way is related to that one obtained by the SR approach
by a non-orthogonal state coordinate transformation. Since the accuracy of
the BFSR algorithm is usually better than either of SR or BF techniques,
this approach is the default option in high performance controller reduction
software (see Section 9.5).



234 Andras Varga

Assume now that the singular value decomposition of RwSw is

RwSw =
[
U1 U2 U3

]
diag(Σ1, Σ2, 0)

[
V1 V2 V3

]T
,

where
Σ1 = diag(σ1, . . . , σrc

), Σ2 = diag(σrc+1, . . . , σnc
),

and σ1 ≥ . . . ≥ σrc
> σrc+1 ≥ . . . ≥ σnc

> 0. Assume we employ the SR
formulas to compute a minimal realization of the controller of order nc as

[
LAcT LBc

CcT Dc

]
=

⎡⎣Ac,11 Ac,12 Bc,1

Ac,21 Ac,22 Bc,2

Cc,1 Cc,2 Dc

⎤⎦ ,
where the system matrices are compatibly partitioned with Ac,11 ∈ Rrc×rc .
The SPA method (see [LA89]) determines the reduced controller matrices as[

Acr Bcr

Ccr Dcr

]
=

[
Ac,11 −Ac,12A

−1
c,22Ac,21 Bc,1 −Ac,12A

−1
c,22Bc,2

Cc,1 − Cc,2A
−1
c,22Ac,21 Dc − Cc,2A

−1
c,22Bc,2

]
.

This approach has been termed the SR SPA method. Note that the result-
ing reduced controller is in a balanced state-space coordinate form both in
continuous- as well as in discrete-time cases.

A SRBF version of the SPA method has been proposed in [Var91a] to
combine the advantages of the BF and SR approaches. The truncation ma-
trices L and T are determined as

L =

[
(Y T

1 X1)
−1Y T

1

(Y T
2 X2)

−1Y T
2

]
, T = [X1 X2 ],

where X1 and Y1 are nc × rc matrices, and X2 and Y2 are nc × (nc − rc)
matrices. All these matrices with orthogonal columns are computed from the
QR decompositions

SwVi = XiWi, RT
wUi = YiZi, i = 1, 2

with Wi and Zi non-singular and upper-triangular.

9.3.3 Algorithmic Efficiency Issues

The two main computational problems of controller reduction by using the
frequency weighted BT or SPA approaches are the determination of frequency-
weighted Gramians and the computation of the corresponding truncation ma-
trices. All computation ingredients for these computations are available as
robust numerical implementations either in the LAPACK [ABB99] or SLI-
COT [BMSV99] libraries. To compare the effectiveness of different methods,
we roughly evaluate in what follows the required computational effort for
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the main computations in terms of required floating-point operations (flops).
Note that 1 flop corresponds to 1 addition/subtraction or 1 multiplication/di-
vision performed on the floating point processor. In our evaluations we tacitly
assume that the number of system inputs m and system outputs p satisfy
m, p� nc, thus many computations involving the input and output matrices
(e.g., products) are negligible.

The main computational ingredient for computing Gramians is the solution
of Lyapunov equations as those in (9.6). This involves the reduction of the
matrices Ai and Ao to the real Schur form (RSF) using the Francis’ QR-
algorithm [GV89]. By exploiting the block upper triangular structure of these
matrices, this reduction can be performed by reducing independently Ai, Ac

and Ao, which amounts to about 25n3
i , 25n3

c and 25n3
o flops, respectively. The

Cholesky factors Si and Ro of Gramians P i and Qo in (9.6) can be computed
using the method of Hammarling [Ham82] and this requires about 8(ni +nc)

3

and 8(no + nc)
3 flops, respectively. The computation of the Cholesky factors

SE and RE using the algorithm of [GGMS74] for the updating formulas (9.14)
and (9.15) requires additionally about 2nin

2
c and 2non

2
c flops, respectively.

Thus, the computation of the pair (SE , RE) requires

NE = 25(n3
i + n3

c + n3
o) + 8(ni + nc)

3 + 8(no + nc)
3 + 2(ni + no)n

2
c (9.18)

flops. Note that NE represents the cost of evaluating Gramians when applying
the FWBT or FWSPA approaches to solve the controller reduction problem
as a general FWMR problem, without any structure exploitation. In certain
problems with two-sided weights, the input and output weights share the same
state matrix. In this case ni = no and NE reduces with 25n3

i flops.
The computation of one of the factors SV (or RV ) corresponding to the

modified Lyapunov equations (9.10) requires up to 19.5n3
c flops, of which

about 9n3
c flops account for the eigendecomposition of X in (9.12) to form

the constant term of the Lyapunov equation satisfied by PV and 8n3
c flops

account to solve the Lyapunov equation (9.10) for the factor SV . Note that
the reduction of Ac to a RSF is performed only once, when computing the
factors SE and RE . The additional number of operations required by different
choices of the frequency-weighted Gramians is

NV =

⎧⎨⎩
0, (Sw, Rw) = (SE , RE)
19.5n3

c , (Sw, Rw) = (SV , RE) or (Sw, Rw) = (SE , RV )
39n3

c , (Sw, Rw) = (SV , RV )
.

The determination of the truncation matrices L and T involves the compu-
tation of the singular value decomposition of the nc×nc matrix RwSw, which
requires at least NT = 22n3

c flops. The rest of computations is negligible if
rc � nc.

From the above analysis it follows that for ni and no of comparable sizes
with nc, the term NE , which accounts for the computations of the Cholesky
factors for Enns’ choice of the frequency weighted Gramians, has the largest
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contribution to Ntot = NE +NV +NT , the total number of operations. Note
that NV + NT depends only on the controller order nc and the choice of
Gramian modification scheme, thus this part of Ntot appears as “constant”
in all evaluations of the computational efforts. It is interesting to see the
relative values of NE and Ntot for some typical cases. For an unweighted con-
troller reduction problem NE = 41n3

c and Ntot = 63n3
c , thus NE/Ntot = 0.65.

These values of NE and Ntot can be seen as lower limits for all controller
reduction problems using balancing related approaches. In the case when
ni, no � nc, NE ≈ 41n3

c and 63n3
c ≤ Ntot ≤ 102n3

c , thus in this case
0.40 ≤ NE/Ntot ≤ 0.65. At the other extreme, assuming the typical values of
nc = n, ni = no = 2n for a state feedback and observer-based controller, we
have NE = 865n3 and 887n3

c ≤ Ntot ≤ 926n3
c , and thus the ratio of NE/Ntot

satisfies 0.93 ≤ NE/Ntot ≤ 0.98. These figures show that solving FWCR prob-
lems can be tremendously expensive when employing general purpose model
reduction algorithms. In the following sections we show that for several classes
of controller reduction problems, structure exploitation can lead to significant
computation savings expressed by much smaller values of NE .

9.4 Efficient Solution of Controller Reduction Problems

To develop efficient numerical methods for controller reduction, the general
framework for controller reduction described in the previous section needs to
be specialized to particular classes of problems by fully exploiting the under-
lying problem structures. When deriving efficient specialized versions of the
FWCR Algorithm, the main computational saving arises in determining
the frequency-weighted Gramians for each particular case via the correspond-
ing Cholesky factors. In what follows we consider several controller reduction
problems with particular weights and give the main results concerning the
computation of Gramians. We focus only on Enns’ choice, since it enters also
in all other alternative choices discussed in the previous section.

9.4.1 Frequency-Weighted Controller Reduction

We consider the solution of the FWCR problem (9.1) for the specific stability
and performance preserving weights discussed in [AL89]. To enforce closed-
loop stability, one-sided weights of the form

SW1: Wo = (I +GK)−1G, Wi = I, (9.19)

or

SW2: Wo = I, Wi = G(I +KG)−1, (9.20)

can be used, while performance-preserving considerations lead to two-sided
weights
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PW: Wo = (I +GK)−1G, Wi = (I +GK)−1 , (9.21)

The unweighted reduction corresponds to the weights

UW: Wo = I, Wi = I. (9.22)

It can be shown (see [ZDG96]), that for the weights (9.19) and (9.20) the
stability of the closed-loop system is guaranteed if ‖Wo(K − Kr)Wi‖∞ <
1, provided K and Kr have the same number of unstable poles. Similarly,
minimizing ‖Wo(K − Kr)Wi‖∞ for the weights in (9.21) ensures the best
matching of the closed-loop TFM for a given order of Kr.

To solve the FWCR problems corresponding to the above weights, we
consider both the case of a general stabilizing controller as well as the case of
state feedback and observer-based controllers. In each case we show how to
compute efficiently the Cholesky factors of frequency-weighted Gramians in
order to apply the SR and SRBF accuracy enhancing techniques. Finally, we
give estimates of the necessary computational efforts and discuss the achieved
saving by using structure exploitation.

General Controller

Since the controller can be generally unstable, only the stable part of the
controller is reduced and a copy of the unstable part is kept in the reduced
controller. Therefore, we assume a state-space representation of the controller
with Ac already reduced to a block-diagonal form

K =

[
Ac Bc

Cc Dc

]
=

⎡⎣Ac1 0 Bc1

0 Ac2 Bc2

Cc1 Cc2 Dc

⎤⎦ , (9.23)

where Λ(Ac1) ⊂ C+ and Λ(Ac2) ⊂ C−. Here C− denotes the open left half
complex plane of C in a continuous-time setting or the interior of the unit
circle in a discrete-time setting, while C+ denotes the complement of C− in
C. The above form corresponds to an additive decomposition of the controller
TFM as K = Ku + Ks, where Ku = (Ac1, Bc1, Cc1, 0) contains the unstable
poles of K and Ks = (Ac2, Bc2, Cc2, Dc), of order ncs, contains the stable
poles of K.

For our developments, we build the state matrix of the realizations of the
weights in (9.19), (9.20), or (9.21) in the form

Aw =

[
A−BDcR

−1C BR̃−1Cc

−BcR
−1C Ac −BcR

−1DCc

]
,

where R = I +DDc and R̃ = I +DcD. Since the controller is stabilizing, Aw

has all its eigenvalues in C−.
The following theorem, proved in [VA02], extends the results of [LAL90,

SM96] to the case of an arbitrary stabilizing controller:
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Theorem 9.4.1 For a given n-th order system G = (A,B,C,D) assume
that K = (Ac, Bc, Cc, Dc) is an nc-th order stabilizing controller with I +
DDc nonsingular. Then the frequency-weighted Gramians for Enns’ method
[Enn84] applied to the frequency-weighted controller reduction problems with
weights defined in (9.19), (9.20), or (9.21) can be computed by solving the
corresponding Lyapunov equations of order at most n+ nc as follows:

1. For Wo = (I +GK)−1G and Wi = I, PE satisfies

(c) Ac2PE +PEA
T
c2 +Bc2B

T
c2 = 0, (d) Ac2PEA

T
c2 +Bc2B

T
c2 = PE (9.24)

and QE is the ncs × ncs trailing block of Qo satisfying

(c) AT
wQo +QoAw + CT

o Co = 0, (d) AT
wQoAw + CT

o Co = Qo (9.25)

with Co =
[
−R−1C −R−1DCc

]
.

2. For Wo = I and Wi = G(I +GK)−1, PE is the ncs × ncs trailing block of
Pi satisfying

(c) AwPi + PiA
T
w +BiB

T
i = 0, (d) AwPiA

T
w +BiB

T
i = Pi (9.26)

with Bi =

[
−BR̃−1

BcDR̃
−1

]
and QE satisfies

(c) AT
c2QE +QEAc2+CT

c2Cc2 = 0, (d) AT
c2QEAc2+CT

c2Cc2 = QE (9.27)

3. For Wo = (I+GK)−1G and Wi = (I+GK)−1, PE is the ncs×ncs trailing

block of Pi satisfying (9.26) with Bi =

[
BDcR

−1

BcR
−1

]
and QE is the ncs×ncs

trailing block of Qo satisfying (9.25).

State Feedback and Observer-Based Controller

Simplifications arise also in the case of a state feedback and full order observer-
based controller of the form

K =

[
A+BF + LC + LDF −L

F 0

]
. (9.28)

The following result extends Lemma 1 of [LAL90] to the case of possibly
unstable controllers.

Corollary 9.4.2 For a given n-th order system G = (A,B,C,D) suppose
that F is a state feedback gain and L is a state estimator gain, such that
A + BF and A + LC are stable. Then the frequency-weighted Gramians for
Enns’ method [Enn84] applied to the frequency-weighted controller reduction
problems with weights defined in (9.19), (9.20), or (9.21) can be computed by
solving Lyapunov equations of order at most 2n.
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In the case of state feedback and observer-based controllers important
computational effort saving results if we further exploit the problem structure.
In this case

Aw =

[
A BF
−LC A+BF + LC

]
and this matrix can be put in an upper block diagonal form using the trans-
formation matrix

T =

[
I 0
I I

]
.

We obtain the transformed matrices Ãw := T−1AwT , B̃i := T−1Bi, and
C̃o := CoT , where

Ãw =

[
A+BF BF

0 A+ LC

]
.

If P̃i and Q̃o satisfy

(c)

{
ÃwP̃i + P̃iÃ

T
w + B̃iB̃

T
i = 0

ÃT
wQ̃o + Q̃oÃw + C̃T

o C̃o = 0
, (d)

{
ÃwP̃iÃ

T
w + B̃iB̃

T
i = P̃i

ÃT
wQ̃oÃw + C̃T

o C̃o = Q̃o
, (9.29)

then Pi in (9.26) and Qo in (9.25) are given by Pi = T P̃iT
T and Qo =

T−T Q̃oT
−1, respectively. The computational saving arises from the need to

reduce Aw to a RSF when solving the Lyapunov equations (9.25) and (9.26).
Instead of reducing the 2n× 2n matrix Aw, we can reduce two n×n matrices
A+BF and A+ LC to obtain Ãw in a RSF. This means a 4 times speedup
of computations for this step.

Square-Root Techniques

We can employ the method of [Ham82] to solve (9.26) and (9.25) directly for
the Cholesky factors Si of Pi = SiS

T
i and Ro of Qo = RT

o Ro, respectively. In
the case of an unstable controller, we assume a state-space realization of K
as in (9.23) with the ncs × ncs matrix Ac2 containing the stable eigenvalues
of Ac. If we partition Si and Ro in the form

Si =

[
S11 S12

0 S22

]
, Ro =

[
R11 R12

0 R22

]
,

where both S22 and R22 are ncs × ncs, then the Cholesky factor of the trail-
ing block of Pi in (9.26) corresponding to the stable part of K is simply
SE = S22, while the Cholesky factor RE of the trailing block of Qo in (9.25)
satisfies RT

ERE = RT
22R22 + RT

12R12. Thus the computation of RE involves
an additional QR-decomposition of [RT

22 R
T
12 ]T and can be computed using

standard updating techniques [GGMS74]. Updating can be avoided in the case
of the one-sided weight Wo = (I +GK)−1G, by using alternative state-space
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realizations of Wo and K. For details, see [VA02]. Still in the case of two-
sided weighting with Wo = (I + GK)−1G and Wi = (I + GK)−1 we prefer
the approach of the Theorem 9.4.1 with Wi and Wo sharing the same state
matrix Aw, because the computation of both Gramians can be done with a
single reduction of this (n + nc) × (n + nc) matrix to the RSF. In this case
the cost to compute the two Gramians is only slightly larger than for one
Gramian.

For a state feedback and full order observer-based controller, let S̃i be the
Cholesky factor of P̃i in (9.29) partitioned as

S̃i =

[
S̃11 S̃12

0 S̃22

]
.

The ncs×ncs Cholesky factor SE corresponding to the trailing ncs×ncs part
of Pi is the trailing ncs × ncs block of an upper triangular matrix Ŝ22 which
satisfies

Ŝ22Ŝ
T
22 = S̃11S̃

T
11 + (S̃12 + S̃22)(S̃12 + S̃22)

T .

Ŝ22 can be computed easily from the RQ-decomposition of
[
S̃11 S̃12 + S̃22

]
using standard factorization updating formulas [GGMS74]. No difference ap-
pears in the computation of the Cholesky factor RE .

Efficiency Issues

In Table 9.1 we give for the different weights (assuming ncs = nc) the number

of operations ÑE necessary to determine the Cholesky factors of the frequency-
weighted Gramians and the achieved operation savings ∆E = NE − ÑE , (see
also (9.18) for NE) with respect to using standard FWMR techniques to
reduce a general controller:

Table 9.1. Operation counts: general controller

Weight eNE ∆E

SW1/SW2 33(n + nc)
3 + 33n3

c 24n2nc + 74nn2
c + 58n3

c

PW 41(n + nc)
3 + 2nn2

c 48n2nc + 146nn2
c + 141n3

c

In the case of a state feedback and observer-based controller (nc = n), the
corresponding values are shown in Table 9.2:
Observe the large computational effort savings obtained in all cases through
structure exploitation for both general as well as state feedback controllers.
For example, for the SW1/SW2 and PW problems with a state feedback
controller the effort to compute the Gramians is about 2.7 times less than
without structure exploitation.
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Table 9.2. Operation counts: observer-based controller

Weight eNE ∆E

SW1/SW2 122n3 331n3

PW 181n3 484n3

9.4.2 Stability Preserving Coprime Factor Reduction

In this subsection, we discuss the efficient solution of frequency-weighted
balancing-related coprime factor controller reduction problems for the spe-
cial stability preserving frequency-weights proposed in [LAL90]. We show that
for both general controllers as well as for state feedback and observer-based
controllers, the computation of frequency-weighted Gramians for the coprime
factor controller reduction can be done efficiently by solving lower order Lya-
punov equations. Further, we show that these factors can be directly obtained
in Cholesky factored forms allowing the application of the SRBF accuracy
enhancing technique.

The following stability enforcing one-sided weights are used: for the right
coprime factor reduction problem the weights are

SRCF: Wo = V −1(I +GK)−1[G I ], Wi = I, (9.30)

while for the left coprime factor reduction the weights are

SLCF: W̃o = I, W̃i =

[
G
I

]
(I +KG)−1Ṽ −1, (9.31)

All above weights are stable TFMs with realizations of order n+nc. It can be
shown (see for example [ZDG96]) that with the above weights, the stability

of the closed-loop system is guaranteed if

∥∥∥∥Wo

[
U − Ur

V − Vr

]∥∥∥∥
∞

< 1 or ‖[ Ũ −

Ũr Ṽ − Ṽr ]W̃i‖∞ < 1. These results justify the frequency-weighted coprime
factor controller reduction methods introduced in [LAL90] for the reduction of
state feedback and observer-based controllers. The case of arbitrary stabilizing
controllers has been considered in [ZDG96]. Both cases are addressed in what
follows. Note that in contrast to the approach of the previous subsection, the
reduction of coprime factors can be performed even for completely unstable
controllers.

RCF of a General Controller

We consider the efficient computation of the frequency-weighted controllabi-
lity Gramian for the weights defined in (9.30). Let Fc be any matrix such that
Ac +BcFc is stable (i.e., the eigenvalues of Ac +BcFc lie in the open left half
plane for a continuous-time system or in the interior of the unit circle for a
discrete-time system). Then, a RCF of K = UV −1 is given by
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[
U
V

]
=

⎡⎣Ac +BcFc Bc

Cc +DcFc Dc

Fc I

⎤⎦ .
The output weighting Wo is a stable TFM having a state-space realization
Wo = (Ao, ∗, Co, ∗) of order n+ nc [ZDG96, p.503], where

Ao =

[
Ac −BcR

−1DCc −BcR
−1C

BR̃−1Cc A−BDcR
−1C

]
,

Co = [R−1DCc − Fc −R−1C ] .

The solution of the controller reduction problem for the special weights
defined in (9.30) involves the solution of a Lyapunov equation of order nc

to compute the controllability Gramian PE and the solution of a Lyapunov
equation of order n + 2nc to determine the frequency-weighted observability
Gramian QE . The following theorem [Var03b] shows that it is always possible
to solve a Lyapunov equation of order n + nc to compute the frequency-
weighted observability Gramian for the special weights in (9.30).

Theorem 9.4.3 For a given n-th order system G = (A,B,C,D) assume
that K = (Ac, Bc, Cc, Dc) is an nc-th order stabilizing controller with I +
DDc nonsingular. Then the frequency-weighted Gramians for Enns’ method
[Enn84] applied to the frequency-weighted right coprime factorization based
controller reduction problem with weights defined in (9.30) can be computed
by solving the corresponding Lyapunov equations of order at most n + nc as
follows: PE satisfies

(c) (Ac +BcFc)PE + PE(Ac +BcFc)
T +BcB

T
c = 0

(d) (Ac +BcFc)PE(Ac +BcFc)
T +BcB

T
c = PE

,

while QE is the leading nc × nc diagonal block of Qo satisfying

(c) AT
o Qo +QoAo + CT

o Co = 0 , (d) AT
o QoAo + CT

o Co = Qo . (9.32)

RCF of a State Feedback and Observer-Based Controller

In the case of a state feedback and full order observer-based controller (9.28),
we obtain a significant reduction of computational costs. In this case, with
Fc = −(C +DF ) we get (see [ZDG96])

[
U
V

]
=

⎡⎣A+BF −L
F 0

C +DF I

⎤⎦
and the output weighting Wo has the following state-space realization of order
n [ZDG96, p.503]
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Wo =

[
A+ LC −B − LD L

C −D I

]
. (9.33)

The following is a dual result to Lemma 2 of [LAL90] to the case of nonzero
feedthrough matrix D and covers also the discrete-time case.

Corollary 9.4.4 For a given n-th order system G = (A,B,C,D) and the
observer-based controller K (9.28), suppose F is a state feedback gain and L
is a state estimator gain, such that A+BF and A+LC are stable. Then the
frequency-weighted Gramians for Enns’ method [Enn84] applied to frequency-
weighted right coprime factorization based controller reduction problem with
weights defined in (9.30) can be computed by solving the corresponding Lya-
punov equations of order n, as follows:

(c)
(A+BF )PE + PE(A+BF )T + LLT = 0
(A+ LC)TQE +QE(A+ LC) + CTC = 0

,

(d)
(A+BF )PE(A+BF )T + LLT = PE

(A+ LC)TQE(A+ LC) + CTC = QE
.

LCF of a General Controller

Let Lc be any matrix such that Ac+LcCc is stable. Then, a LCF ofK = Ṽ −1Ũ
is given by

[ Ũ Ṽ ] =

[
Ac + LcCc Bc + LcDc Lc

Cc Dc I

]
.

The input weight W̃i is a stable TFM having a state-space realization W̃i :=
(Ai, Bi, ∗, ∗) of order n+ nc [ZDG96, see p.503], where

Ai =

[
A−BR̃−1DcC BR̃−1Cc

−BcR
−1C Ac −BcDR̃

−1Cc

]
, Bi =

[
−BR̃−1

BcDR̃
−1 − Lc

]
, (9.34)

with R := I +DDc and R̃ = I +DcD.
We have a result similar to Theorem 9.4.3 showing that PE can be effi-

ciently determined by solving only a reduced order Lyapunov equation.

Theorem 9.4.5 For a given n-th order system G = (A,B,C,D) assume that
K = (Ac, Bc, Cc, Dc) is an nc-th order stabilizing controller with I+DDc non-
singular. Then the frequency-weighted Gramians for Enns’ method [Enn84]
applied to the frequency-weighted left coprime factorization based controller
reduction problem with weights defined in (9.31) can be computed by solving
the corresponding Lyapunov equations of order at most n+ nc as follows: PE

is the trailing nc × nc block of Pi satisfying

(c) AiPi + PiA
T
i +BiB

T
i = 0, (d) AiPiA

T
i +BiB

T
i = Pi , (9.35)
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while QE satisfies

(c) (Ac + LcCc)
TQE +QE(Ac + LcCc) + CT

c Cc = 0 ,

(d) (Ac + LcCc)
TQE(Ac + LcCc) + CT

c Cc = QE .

LCF of a State Feedback and Observer-Based Controller

Significant simplifications arise in the case of a state feedback and full order
observer-based controller (9.28), where it is assumed that A+BF and A+LC
are both stable. In this case (see [ZDG96]), with Lc = −(B + LD) we get

[ Ũ Ṽ ] =

[
A+ LC −L −(B + LD)

F 0 I

]
and the input weighting W̃i has the following state-space realization of order
n [ZDG96, p.503]

W̃i =

⎡⎣A+BF B
C +DF D

F I

⎤⎦ .
The following result is an extension of Lemma 2 of [LAL90] to the case of

a nonzero feedthrough matrix D and covers both the continuous- as well as
the discrete-time case.

Corollary 9.4.6 For a given n-th order system G = (A,B,C,D) and the
observer-based controller K (9.28), suppose F is a state feedback gain and L
is a state estimator gain, such that A + BF and A + LC are stable. Then
the frequency-weighted Gramians for Enns’ method [Enn84] applied to the
frequency-weighted left coprime factorization based controller reduction prob-
lem with weights defined in (9.31) can be computed by solving the correspond-
ing Lyapunov equations of order n as follows:

(c)
(A+BF )PE + PE(A+BF )T +BBT = 0
(A+ LC)TQE +QE(A+ LC) + FTF = 0

(d)
(A+BF )PE(A+BF )T +BBT = PE

(A+ LC)TQE(A+ LC) + FTF = QE

Square-Root Techniques

In the case of general right coprime factorized controllers, the method of
Hammarling [Ham82] can be employed to solve (9.32) directly for the (n +
nc) × (n + nc) Cholesky factor Ro of Qo = RT

o Ro. By partitioning Ro in the
form

Ro =

[
R11 R12

0 R22

]
,
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with R11 an nc × nc matrix, the Cholesky factor RE of the leading block of
Qo is RE = R11.

Similarly, in the case of general left coprime factorized controllers, (9.35)
can be solved directly for the (n+ nc)× (n+ nc) Cholesky factor Si of Pi =
SiS

T
i . By partitioning Si in the form

Si =

[
S11 S12

0 S22

]
,

with S22 an nc × nc matrix, the Cholesky factor of the trailing block of Pi is
SE = S22.

The Cholesky factors of Gramians for the remaining cases are directly
obtained by solving the appropriate Lyapunov equations using Hammarling’s
algorithm [Ham82].

Efficiency Issues

In Table 9.3 we give for the RCF and LCF based approaches the number of
operations ÑE necessary to determine the Cholesky factors of the frequency-
weighted Gramians and the achieved operation savings ∆E = NE − ÑE , (see
(9.18) for NE) with respect to using standard FWMR techniques to reduce
the coprime factors of the controller:

Table 9.3. Operation counts: general coprime factorized controller

Weight eNE ∆E

SRCF/SLCF 33(n + nc)
3 + 33n3

c 24n2nc + 74nn2
c + 58n3

c

To these figures we have to add the computational effort involved to com-
pute a stabilizing state feedback (output injection) gain to determine the RCF
(LCF) of the controller. When employing the Schur method of [Var81], it is
possible to arrange the computations such that the resulting closed-loop state
matrix Ac +BcFc (Ac +LcCc) is in a RSF. In this way it is possible to avoid
the reduction of this matrix to determine the unweighted Gramian PE (QE)
when solving the corresponding Lyapunov equation.

In the case of a state feedback and observer-based controller (nc = n), the
corresponding values are shown in Table 9.4.

Table 9.4. Operation counts: observer-based coprime factorized controller

Weight eNE ∆E

SRCF/SLCF 66n3 58n3
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Observe the substantial computational effort savings obtained through
structure exploitation for both general as well as state feedback controllers.

9.4.3 Performance Preserving Coprime Factors Reduction

In this subsection we consider the efficient computation of low order controllers
by using the coprime factors reduction procedures to solve the frequency-
weighted coprime factorization based H∞ controller reduction problems for-
mulated in [GG98]. Let

M =

[
M11 M12

M21 M22

]
(9.36)

be the TFM used to parameterize all admissible γ-suboptimal controllers
[ZDG96] in the form

K = M11 +M12Q(I −M22Q)−1M21,

where Q is a stable and proper rational matrix satisfying ‖Q‖∞ < γ. Since for
standard H∞ problems both M12 and M21 are invertible and minimum-phase
[ZDG96], a “natural” RCF of the central controller (Q = 0) as K0 = UV −1

can be obtained with

U = M11M
−1
21 , V = M−1

21 ,

while a “natural” LCF of the central controller asK0 = Ṽ −1Ũ can be obtained
with

Ũ = M−1
12 M11, Ṽ = M−1

12 .

These factorizations can be used to perform unweighted coprime factor con-
troller reduction using accuracy-enhanced model reduction algorithms [Var92].

A frequency-weighted right coprime factor reduction can be formulated
with the one sided weights [ZDG96, GG98]

PRCF: Wo =

[
γ−1I 0

0 I

]
Θ−1, Wi = I, (9.37)

where

Θ =

[
Θ11 Θ12

Θ21 Θ22

]
:=

[
M12 −M11M

−1
21 M22 M11M

−1
21

−M−1
21 M22 M−1

21

]
.

With the help of the submatrices of Θ it is possible to express K also as

K = (Θ12 +Θ11Q)(Θ22 +Θ21Q)−1

and thus the central controller is factorized as K0 = Θ12Θ
−1
22 .

Similarly, a frequency-weighted left coprime factor reduction formulated
in [GG98] is one sided with
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PLCF: W̃o = I, W̃i = Θ̃−1

[
γ−1I 0

0 I

]
, (9.38)

where

Θ̃ =

[
Θ̃11 Θ̃12

Θ̃21 Θ̃22

]
:=

[
M21 −M22M

−1
12 M11 −M22M

−1
12

M−1
12 M11 M−1

12

]
.

This time we have the alternative representation of K as

K = (Θ̃22 +QΘ̃12)
−1(Θ̃21 +QΘ̃11)

and the central controller is factorized as K0 = Θ̃−1
22 Θ̃21. Note that both Θ

and Θ̃ are stable, invertible and minimum-phase.
The importance of the above frequency-weighted coprime factor reduction

can be seen from the results of [GG98]. If K0 is a stabilizing continuous-
time γ-suboptimal H∞ central controller, and Kr is an approximation of K0

computed by applying the coprime factors reduction approach with the weight
defined above, then Kr stabilizes the closed-loop system and preserves the
γ-suboptimal performance, provided the weighted approximation error (9.2)
or (9.3) is less than 1/

√
2. We conjecture that this result holds also in the

discrete-time case, and can be proved along the lines of the proof provided in
[ZDG96].

RCF Controller Reduction

We consider the efficient computation of the frequency-weighted controllabi-
lity Gramian for the weights defined in (9.37). Let us consider a realization of
the parameterization TFM M (9.36) in the form

M =

⎡⎢⎣ Â B̂1 B̂2

Ĉ1 D̂11 D̂12

Ĉ2 D̂21 D̂22

⎤⎥⎦ .
Note that for the central controller we have (Ac, Bc, Cc, Dc) = (Â, B̂1, Ĉ1, D̂11).
Since M12 and M21 are stable, minimum-phase and invertible TFMs, it fol-
lows that D̂12 and D̂21 are invertible, Â, Â − B̂2D̂

−1
12 Ĉ1 and Â − B̂1D̂

−1
21 Ĉ2

are all stable matrices, i.e., have eigenvalues in the open left half plane for a
continuous-time controller and in the interior of the unit circle for a discrete-
time controller.

The realizations of Θ and Θ−1 can be computed as [ZDG96]

Θ =

[
AΘ BΘ

CΘ DΘ

]
=

⎡⎢⎣ Â− B̂1D̂
−1
21 Ĉ2 B̂2 − B̂1D̂

−1
21 D̂22 B̂1D̂

−1
21

Ĉ1 − D̂11D̂
−1
21 Ĉ2 D̂12 − D̂11D̂

−1
21 D̂22 D̂11D̂

−1
21

−D̂−1
21 Ĉ2 −D̂−1

21 D̂22 D̂−1
21

⎤⎥⎦,
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Θ−1 =

[
AΘ−1 BΘ−1

CΘ−1 DΘ−1

]
=

⎡⎢⎣ Â− B̂2D̂
−1
12 Ĉ1 B̂2D̂

−1
12 B̂1 − B̂2D̂

−1
12 D̂11

−D̂−1
12 Ĉ1 D̂−1

12 −D̂−1
12 D̂11

Ĉ2 − D̂22D̂
−1
12 Ĉ1 D̂22D̂

−1
12 D̂21 − D̂22D̂

−1
12 D̂11

⎤⎥⎦.
Since the realization of Wo

[
U
V

]
has apparently order 2nc, it follows that

the solution of the controller reduction problem for the special weights defined
in (9.37) involves the solution of a Lyapunov equation of order nc to determine
the frequency-weighted controllability Gramian PE and a Lyapunov equation
of order 2nc to compute the observability Gramian QE . The following result
[Var03a] shows that it is always possible to solve two Lyapunov equations of
order nc to compute the frequency-weighted Gramians for the special weights
in (9.37).

Theorem 9.4.7 The controllability Gramian PE and the frequency-weighted
observability Gramian QE according to Enns’ choice [Enn84] for the frequency-
weighted RCF controller reduction problem with weights (9.37) satisfy, accord-
ing to the system type, the corresponding Lyapunov equations

(c)

{
AΘPE + PEA

T
Θ + B̃ΘB̃

T
Θ = 0

AT
Θ−1QE +QEAΘ−1 + C̃T

Θ−1C̃Θ−1 = 0
,

(d)

{
AΘPEA

T
Θ + B̃ΘB̃

T
Θ = PE

AT
Θ−1QEAΘ−1 + C̃T

Θ−1C̃Θ−1 = QE
,

where B̃Θ = BΘ

[
0
I

]
= B̂1D̂

−1
21 and CΘ−1 = diag (γ−1I, I)CΘ−1 .

LCF Controller Reduction

We consider now the efficient computation of the frequency-weighted control-
lability Gramian for the weights defined in (9.38). The realizations of Θ̃ and

Θ̃−1 can be computed as [ZDG96]

Θ̃ =

[
A eΘ B eΘ

C eΘ D eΘ

]
=

⎡⎢⎣ Â− B̂2D̂
−1
12 Ĉ1 B̂1 − B̂2D̂

−1
12 D̂11 −B̂2D̂

−1
12

Ĉ2 − D̂22D̂
−1
12 Ĉ1 D̂21 − D̂22D̂

−1
12 D̂11 −D̂22D̂

−1
12

D̂−1
12 Ĉ1 D̂−1

12 D̂11 D̂−1
12

⎤⎥⎦,

Θ̃−1 =

[
A eΘ−1 B eΘ−1

C eΘ−1 D eΘ−1

]
=

⎡⎢⎣ Â− B̂1D̂
−1
21 Ĉ2 −B̂1D̂

−1
21 B̂2 − B̂1D̂

−1
21 D̂22

D̂−1
21 Ĉ2 D̂−1

21 D̂−1
21 D̂22

Ĉ1 − D̂11D̂
−1
21 Ĉ2 −D̂11D̂

−1
21 D̂12 − D̂11D̂

−1
21 D̂22

⎤⎥⎦.
Since the realization of [ Ũ Ṽ ]W̃i has apparently order 2nc, it follows

that the solution of the controller reduction problem for the special weights
defined in (9.38) involves the solution of a Lyapunov equation of order 2nc
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to determine the frequency-weighted controllability Gramian PE and a Lya-
punov equation of order nc to compute the observability Gramian QE . The
following result [Var03a] shows that it is always possible to solve two Lya-
punov equations of order nc to compute the frequency-weighted Gramians for
the special weights in (9.38).

Theorem 9.4.8 The frequency-weighted controllability Gramian PE and ob-
servability Gramian QE according to Enns’ choice [Enn84] for the frequency-
weighted LCF controller reduction problem with weights (9.38) satisfy the cor-
responding Lyapunov equations

(c)

{
A eΘ−1PE + PEA

T
eΘ−1

+ B̃ eΘ−1B̃
T
eΘ−1

= 0

AT
eΘ
QE +QEA eΘ + C̃T

eΘ
C̃ eΘ = 0

,

(d)

{
A eΘ−1PEA eΘ−1 + B̃ eΘ−1B̃

T
eΘ−1

= PE

AT
eΘ
QEA eΘ + C̃T

eΘ
C̃ eΘ = QE

,

where B̃ eΘ−1 = B eΘ−1diag (γ−1I, I) and C̃ eΘ = D̂−1
12 Ĉ1.

Efficiency Issues

In Table 9.5 we give for the RCF and LCF based approaches the number of
operations ÑE necessary to determine the Cholesky factors of the frequency-
weighted Gramians and the achieved operation savings ∆E = NE − ÑE , (see
(9.18) for NE) with respect to using standard FWMR techniques to reduce
the coprime factors of the controller.

Table 9.5. Operation counts: coprime factorized H∞-controller

Weight eNE ∆E

PRCF/PLCF 66n3
c 58n3

c

Observe the substantial (47%) computational effort savings obtained through
structure exploitation.

9.4.4 Relative Error Coprime Factors Reduction

An alternative approach to H∞ controller reduction uses the relative error
method as suggested in [Zho95]. Using this approach in conjunction with the
RCF reduction we can define the weights as

Wo = I, Wi =

[
U
V

]+

, (9.39)
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where

[
U
V

]+

denotes a stable left inverse of

[
U
V

]
. A variant of this approach

(see [ZDG96]) is to perform a relative error coprime factor reduction on an

invertible augmented minimum-phase system

[
Ua

Va

]
instead of

[
U
V

]
. In our

case, Θ can be taken as the augmented system. Thus this method essentially
consists of determining an approximation Θr of Θ by solving the relative error
minimization problems

‖(Θ −Θr)Θ
−1‖∞ = min (9.40)

or
‖Θ−1(Θ −Θr)‖∞ = min . (9.41)

These are a frequency-weighted problems with the corresponding weights

RCFR1: Wo = I, Wi = Θ−1 (9.42)

and respectively

RCFR2: Wo = Θ−1, Wi = I . (9.43)

The reduced controller is recovered from the sub-blocks (1,2) and (2,2) of Θr

as Kr = Θr,12Θ
−1
r,22. This method has been also considered in [EJL01] for the

case of normalized coprime factor H∞ controller reduction.
In the same way, a relative error LCF reduction can be formulated with

the weights
W̃o = [ Ũ Ṽ ]+, W̃i = I (9.44)

where [ Ũ Ṽ ]+ denotes a stable right inverse of [ Ũ Ṽ ]. Alternatively, an

augmented relative error problem can be solved by approximating Θ̃ by a
reduced order system Θ̃r by solving the relative error norm minimization
problems

‖Θ̃−1(Θ̃ − Θ̃r)‖∞ (9.45)

or
‖(Θ̃ − Θ̃r)Θ̃

−1‖∞ . (9.46)

These are frequency-weighted problems with weights

LCFR1: W̃o = Θ̃−1, W̃i = I (9.47)

and respectively

LCFR2: W̃o = I, W̃i = Θ̃−1 . (9.48)

The reduced controller is recovered from the sub-blocks (2,1) and (2,2) of Θ̃r

as Kr = Θ̃−1
r,22Θ̃r,21.
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Relative Error RCF Reduction

For the solution of the relative error approximation problems (9.40) and (9.41)
we have the following straightforward results [ZDG96, Theorem 7.5]:

Theorem 9.4.9 The frequency-weighted controllability Gramian PE and ob-
servability Gramian QE for Enns’ method [Enn84] applied to the frequency-
weighted approximation problems (9.40) and (9.41) satisfy, depending on the
system type, the corresponding Lyapunov equations, as follows:

1. For the problem (9.40)

(c)

{
AΘ−1PE + PEA

T
Θ−1 +BΘ−1BT

Θ−1 = 0
AT

ΘQE +QEAΘ + CT
ΘCΘ = 0

,

(d)

{
AΘ−1PEAΘ−1 +BΘ−1BT

Θ−1 = PE

AT
ΘQEAΘ + CT

ΘCΘ = QE
.

2. For the problem (9.41)

(c)

{
AΘPE + PEA

T
Θ +BΘB

T
Θ = 0

AT
Θ−1QE +QEAΘ−1 + CT

Θ−1CΘ−1 = 0
,

(d)

{
AΘPEA

T
Θ +BΘB

T
Θ = PE

AT
Θ−1QEAΘ−1 + CT

Θ−1CΘ−1 = QE
.

Relative Error LCF Reduction

For the solution of the relative error approximation problems (9.45) and (9.46)
we have the following straightforward results [ZDG96, Theorem 7.5]:

Theorem 9.4.10 The frequency-weighted controllability Gramian PE and
observability Gramian QE for Enns’ method [Enn84] applied to the frequency-
weighted approximation problem (9.45) and (9.46) satisfy, according to the
system type, the corresponding Lyapunov equations, as follows:

1. For the problem (9.45)

(c)

{
A eΘPE + PEA

T
eΘ

+B eΘB
T
eΘ

= 0

AT
eΘ−1

QE +QEA eΘ−1 + CT
eΘ−1

C eΘ−1 = 0
,

(d)

{
A eΘPEA eΘ +B eΘB

T
eΘ

= PE

AT
eΘ−1

QEA eΘ−1 + CT
eΘ−1

C eΘ−1 = QE
.

2. For the problem (9.46)

(c)

{
A eΘ−1PE + PEA

T
eΘ−1

+B eΘ−1B
T
eΘ−1

= 0

AT
eΘ
QE +QEA eΘ + CT

eΘ
C eΘ = 0

,

(d)

{
A eΘ−1PEA

T
eΘ−1

+B eΘ−1B
T
eΘ−1

= PE

AT
eΘ
QEA eΘ + CT

eΘ
C eΘ = QE

.
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Efficiency Issues

In Table 9.6 we give for the RCF and LCF based approaches the number of
operations ÑE necessary to determine the Cholesky factors of the frequency-
weighted Gramians and the achieved operation savings ∆E = NE − ÑE , with
respect to using standard FWMR techniques to reduce the coprime factors of
the controller.

Table 9.6. Operation counts: coprime factorized H∞-controller parametrizations

Weight eNE ∆E

RCFR1/RCFR2 66n3
c 58n3

c

LCFR1/LCFR2 66n3
c 58n3

c

Observe the substantial (47%) computational effort savings obtained through
structure exploitation.

9.5 Software for Controller Reduction

In this section we present an overview of available software tools to sup-
port controller reduction. We focus on tools developed within the NICONET
project. For details about other tools see Chapter 7 of [Var01a].

9.5.1 Tools for Controller Reduction in SLICOT

A powerful collection of Fortran 77 subroutines for model and controller re-
duction has been implemented within the NICONET project [Var01a, Var02b]
as part of the SLICOT library. The model and controller reduction software
in SLICOT implements the latest algorithmic developments for the following
approaches:

– absolute error model reduction using the balanced truncation [Moo81],
singular perturbation approximation [LA89], and Hankel-norm approxi-
mation [Glo84] methods;

– relative error model reduction using the balanced stochastic truncation
approach [DP84, SC88, VF93];

– frequency-weighted balancing related model reduction methods [Enn84,
LC92, WSL99, VA01, VA03] and frequency-weighted Hankel-norm approx-
imation methods [LA85, HG86, Var01b];

– controller reduction methods using frequency-weighted balancing related
methods [LAL90, VA02, VA03] and unweighed and frequency-weighted
coprime factorization based techniques [LAL90].
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The model and controller reduction routines in SLICOT are among the most
powerful and numerically most reliable software tools available for model and
controller reduction. All routines can be employed to reduce both stable and
unstable, continuous- or discrete-time models or controllers. The underly-
ing numerical algorithms rely on square-root (SR) [TP87] and balancing-free
square-root (BFSR) [Var91b] accuracy enhancing techniques. The Table 9.7
contains the list of the user callable subroutines available for controller reduc-
tion in SLICOT.

Table 9.7. User callable SLICOT controller reduction routines

Name Function

SB16AD FWBT/FWSPA-based controller reduction for closed-loop stability
and performance preserving weights

SB16BD state feedback/observer-based controller reduction using coprime fac-
torization in conjunction with FWBT and FWSPA techniques

SB16CD state feedback/observer-based controller reduction using frequency-
weighted coprime factorization in conjunction with FWBT technique

In implementing these routines, a special attention has been paid to en-
sure their numerical robustness. All implemented routines rely on the SR and
BFSR accuracy enhancing techniques [TP87, Var91b, Var91a]. Both tech-
niques substantially contribute to improve the numerical reliability of compu-
tations. Furthermore, all routines optionally perform the scaling of the original
system. When calling each routine, the order of the reduced controller can be
selected by the user or can be determined automatically on the basis of com-
puted quantities which can be assimilated to the usual Hankel singular values.
Each of routines can handle both continuous- and discrete-time controllers.
In what follows we shortly discuss some particular functionality provided by
these user callable routines.

The FWCR routine SB16AD is a specialization of a general purpose
FWMR routine, for the special one-sided weights (9.19) and (9.20) used to en-
force closed-loop stability as well as two-sided weights (9.21) for performance
preservation. This routine works on a general stabilizing controller. Unstable
controllers are handled by separating their stable and unstable parts and ap-
plying the controller reduction only to the stable parts. This routine has a
large flexibility in combining different choices of the Gramians (see subsection
9.3.1) and can handle the unweighted case as well.

The coprime factorization based controller reduction routines SB16BD and
SB16CD are specially adapted to reduce state feedback and observer-based
controllers. The routine SB16BD allows arbitrary combinations of BT and
SPA methods with “natural” left and right coprime factorizations of the con-
troller. The routine SB16CD, implementing the frequency-weighted coprime
factorization based stability preserving approach, can be employed only in
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conjunction with the BT technique. This routine allows to work with both
left and right coprime factorization based approaches.

In implementing the new controller reduction software, a special emphasis
has been put on an appropriate modularization of the routines by isolating
some basic computational tasks and implementing them in supporting compu-
tational routines. For example, the balancing related approach (implemented
in SB16AD) and the frequency-weighted coprime factorization based con-
troller reduction method (implemented in SB16CD), share a common two step
computational scheme: (1) compute two non-negative definite matrices called
generically “frequency-weighted Gramians”; (2) determine suitable truncation
matrices and apply them to obtain the matrices of the reduced model/con-
troller using the BT or SPA methods. For the first step, separate routines have
been implemented to compute appropriate Gramians according to the specifics
of each method. To employ the accuracy enhancing SR or BFSR techniques,
these routines compute in fact, instead of Gramians, their Cholesky factors.
For the second step, a unique routine has been implemented, which is called
by both above routines. For a detailed description of the controller reduction
related software available in SLICOT see [Var02a].

9.5.2 SLICOT Based User-Friendly Tools

One of the main objectives of the NICONET project was to provide, addition-
ally to standardized Fortran codes, high quality software embedded into user-
friendly environments for computer aided control system design. The popular
computational environment Matlab1 allows to easily add external functions
implemented in general purpose programming languages like C or Fortran.
The external functions are called mex -functions and have to be programmed
according to precise programming standards. Two mex -functions have been
implemented as main Matlab interfaces to the controller reduction routines
available in SLICOT. To provide a convenient interface to work with control
objects defined in the Matlab Control Toolbox, easy-to-use higher level con-
troller reduction m-functions have been additionally implemented. The list of
available mex - and m-functions is given in Table 9.8.

Table 9.8. mex - and m-functions for controller reduction

Name Function

mex : conred
m: fwbconred

frequency-weighted balancing related controller reduction
(based on SB16AD)

mex : sfored
m: sfconred

coprime factorization based reduction of state feedback con-
trollers (based on SB16BD and SB16CD)

1 Matlab is a registered trademark of The MathWorks, Inc.
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All these functions are able to reduce both continuous- and discrete-time,
stable as well as unstable controllers. The functions can be used for unweighted
reduction as well, without any significant computational overhead.

In the implementation of the mex - and m-functions, one main goal was
to allow the access to the complete functionality provided by the underlying
Fortran routines. To manage the multitude of possible user options, a so-called
SYSRED structure has been defined. The controller reduction relevant fields
which can be set in the SYSRED structure are shown below:

BalredMethod: [ {bta} | spa ]

AccuracyEnhancing: [ {bfsr} | sr ]

Tolred: [ positive scalar {0} ]

TolMinreal: [ positive scalar {0} ]

Order: [ integer {-1} ]

FWEContrGramian: [ {standard} | enhanced ]

FWEObservGramian: [ {standard} | enhanced ]

CoprimeFactor: [ left | {right} ]

OutputWeight: [ {stab} | perf | none]

InputWeight: [ {stab} | none]

CFConredMethod: [ {fwe} | nofwe ]

FWEConredMethod: [ none | outputstab | inputstab | {performance} ]

This structure is created and managed via special functions. For more details
on this structure see [Var02a].

Functionally equivalent user-friendly tools can be also implemented in the
Matlab-like environment Scilab [Gom99]. In Scilab, external functions can
be similarly implemented as in Matlab and only several minor modifications
are necessary to the Matlab mex -functions to adapt them to Scilab.

9.6 Controller Reduction Example

We consider the standard H∞ optimization setup for the four-disk control
system [ZDG96] described by

ẋ = Ax+ b1w + b2u

z =

[
10−3h

0

]
x+

[
0
1

]
u

y = c2x+ [ 0 1 ]w

where u and w are the control and disturbance inputs, respectively, z and y
are the performance and measurement outputs, respectively, and x ∈ R

7 is
the state vector. For completeness, we give the matrices of the model
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A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.161 −6.004 −0.58215 −9.9835 −0.40727 −3.982 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, b2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
b1 =

[
b2 0

]
, h =

[
0 0 0 0 0.55 11 1.32 18

]
c2 =

[
0 0 0.00064432 0.0023196 0.071252 1.0002 0.10455 0.99551

]
Using the hinf function of the Robust Control Toolbox [CS02], we com-

puted theH∞ controller K(s) and the controller parameterization M(s) using
the loop-shifting formulae of [SLC89]. The optimal H∞-norm of the TFM Tzw

from the disturbance input w to performance output z is γopt = 1.1272. We
employed the same value γ = 1.2 as in [ZDG96] to determine an 8th order γ-
suboptimal controller and the corresponding parameterization. The resulting
controller is itself stable and has been reduced to orders between 0 and 7 using
the methods presented in this paper. Provided the corresponding closed-loop
system was stable, we computed for each reduced order controller the value
of the H∞-norm of the TFM Tzw. The results are presented in the Table 9.9,
where U signifies that the closed-loop system with the resulting reduced order
controller is unstable.

For each controller order, the bolded numbers indicate the best achieved
approximation of the closed-loop TFM Tzw in terms of the correspondingH∞-
norms. Observe that the FWSPA approach is occasionally superior for this
example to the FWBT method. Several methods were able to obtain very
good approximations until orders as low as 4. Even the best second order
approximation appears to be still satisfactory. Interestingly, this controller
provides a better approximation of the closed-loop TFM than the best third
order controller. None of the employed methods was able to produce a stabi-
lizing first order controller, although such a controller apparently exists (see
results reported for the frequency-weighted HNA in [ZDG96]). As a curiosity,
the standard unweighted SPA provided a stabilizing constant output feedback
gain controller albeit this exhibits a very poor closed-loop performance.

9.7 Conclusions

We discussed recent enhancements of several frequency-weighted balancing
related controller reduction methods. These enhancements are in three main
directions: (1) enhancing the capabilities of underlying approximation meth-
ods by employing new choices of Gramians guaranteeing stability for two-sided
weights or by employing alternatively the SPA approach instead of tradition-
ally employed BT method; (2) improving the accuracy of computations by
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Table 9.9. H∞-norm of the closed-loop TFM Tzw

Order of Kr 7 6 5 4 3 2 1 0

UW (BT) U 1.318 U U U U U U
UW (SPA) 1.200 1.200 U U U U U 6490.9
RCF (BT) 1.198 1.196 1.198 1.196 385.99 494.1 U U
RCF (SPA) 1.196 1.196 U 1.196 U 34.99 U 6490.9
LCF (BT) 2.061 1.260 33.810 5.197 U U U U
LCF (SPA) 1.196 1.196 1.588 2.045 U U U 6490.9
SW1 (BT) 1.321 1.199 2.287 1.591 23.381 U U U
SW1 (SPA) 1.196 1.196 1.196 1.484 3.218 U U 6490.9
SRCF (BT) 1.232 1.197 1.254 1.202 13.514 1.413 U U
SRCF (SPA) 1.196 1.196 16.274 1.196 U U U 6490.9
SLCF (BT) 1.418 1.216 37.647 3.062 U U U U
SLCF (SPA) 1.196 1.196 1.197 1.799 15.151 U U 6490.9
PRCF (BT) 1.199 1.196 1.207 1.196 2.760 1.734 U U
PRCF (SPA) 1.196 1.196 1.542 1.196 U U U 6490.9
PLCF (BT) 1.196 1.196 U 1.197 U U U U
PLCF (SPA) 1.196 1.196 1.196 1.196 7.609 U U 6490.9
PW (BT) 1.334 1.198 U 1.212 U U U U
PW (SPA) 1.196 1.196 1.196 1.196 3.465 U U 6490.9
RCFR1 (BT) U 1.197 U 4.1233 U U U U
RCFR1 (SPA) 1.195 1.196 U U U U U 6490.9
LCFR1 (BT) U 1.197 U 4.1233 U U U U
LCFR1 (SPA) 1.195 1.196 U U U U U 6490.9
RCFR2 (BT) 1.195 1.196 1.199 1.196 2.758 1.6811 U U
RCFR2 (SPA) 1.196 1.196 U 1.196 U U U 6490.9
LCFR2 (BT) U 1.197 U 4.1233 U U U U
LCFR2 (SPA) 1.195 1.196 U U U U U 6490.9

extending the SR and BFSR accuracy enhancing techniques to frequency-
weighted balancing; and (3) improving the computational efficiency of several
balancing related controller reduction approaches by fully exploiting the un-
derlying problem structure when computing frequency-weighted Gramians.
To ease the implementation of these approaches, we provide complete directly
implementable formulas for frequency-weighted Gramian computations.

As can be seen clearly from Table 9.9, none of existing methods seems to be
universally applicable and their performances are very hard to predict. How-
ever, having several alternative approaches at our disposal certainly increases
the chance of obtaining acceptable low order controller approximations. For
several approaches, ready to use controller reduction software is freely avail-
able in the Fortran 77 library SLICOT, together with user friendly interfaces
to the computational environments Matlab and Scilab. For the rest of meth-
ods described in this paper, similar software can be easily implemented using
standard computational tools provided in SLICOT.
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10.1 Motivation

Optimal control problems for nonlinear partial differential equations are often
hard to tackle numerically so that the need for developing novel techniques
emerges. One such technique is given by reduced order methods. Recently
the application of reduced-order models to optimal control problems for par-
tial differential equations has received an increasing amount of attention. The
reduced-order approach is based on projecting the dynamical system onto
subspaces consisting of basis elements that contain characteristics of the ex-
pected solution. This is in contrast to, e.g., finite element techniques, where
the elements of the subspaces are uncorrelated to the physical properties of
the system that they approximate. The reduced basis method as developed,
e.g., in [IR98] is one such reduced-order method with the basis elements cor-
responding to the dynamics of expected control regimes.

Proper orthogonal decomposition (POD) provides a method for deriving
low order models of dynamical systems. It was successfully used in a variety
of fields including signal analysis and pattern recognition (see [Fuk90]), fluid
dynamics and coherent structures (see [AHLS88, HLB96, NAMTT03, RF94,
Sir87]) and more recently in control theory (see [AH01, AFS00, LT01, SK98,
TGP99]) and inverse problems (see [BJWW00]). Moreover, in [ABK01] POD
was successfully utilized to compute reduced-order controllers. The relation-
ship between POD and balancing was considered in [LMG, Row04, WP01].
Error analysis for nonlinear dynamical systems in finite dimensions were car-
ried out in [RP02].

In our application we apply POD to derive a Galerkin approximation in
the spatial variable, with basis functions corresponding to the solution of the
physical system at pre-specified time instances. These are called the snap-
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shots. Due to possible linear dependence or almost linear dependence, the
snapshots themselves are not appropriate as a basis. Rather a singular value
decomposition (SVD) is carried out and the leading generalized eigenfunctions
are chosen as a basis, referred to as the POD basis.

The paper is organized as follows. In Section 10.2 the POD method and
its relation to SVD is described. Furthermore, the snapshot form of POD for
abstract parabolic equations is illustrated. Section 10.3 deals with reduced
order modeling of nonlinear dynamical systems. Among other things, error
estimates for reduced order models of a general equation in fluid mechanics
obtained by the snapshot POD method are presented. Section 10.4 deals with
suboptimal control strategies based on POD. For optimal open-loop control
problems an adaptive optimization algorithm is presented which in every it-
eration uses a surrogate model obtained by the POD method instead of the
full dynamics. In particular, in Section 10.4.2 first steps towards error estima-
tion for optimal control problems are presented whose discretization is based
on POD. The practical behavior of the proposed adaptive optimization algo-
rithm is illustrated for two applications involving the time-dependent Navier-
Stokes system in Section 10.5. For closed-loop control we refer the reader to
[Gom02, KV99, KVX04, LV03], for instance. Finally, we draw some conclu-
sions and discuss future research perspectives in Section 10.6.

10.2 The POD Method

In this section we propose the POD method and its numerical realization. In
particular, we consider both POD in Cn (finite-dimensional case) and POD in
Hilbert spaces; see Sections 10.2.1 and 10.2.2, respectively. For more details
we refer to, e.g., [HLB96, KV99, Vol01a].

10.2.1 Finite-Dimensional POD

In this subsection we concentrate on POD in the finite dimensional setting
and emphasize the close connection between POD and the singular value
decomposition (SVD) of rectangular matrices; see [KV99]. Furthermore, the
numerical realization of POD is explained.

POD and SVD

Let Y be a possibly complex valued n ×m matrix of rank d. In the context
of POD it will be useful to think of the columns {Y·,j}m

j=1 of Y as the spatial
coordinate vector of a dynamical system at time tj . Similarly we consider the
rows {Yi,·}n

i=1 of Y as the time-trajectories of the dynamical system evaluated
at the locations xi.

From SVD (see, e.g., [Nob69]) the existence of real numbers σ1 ≥ σ2 ≥
. . . ≥ σd > 0 and unitary matrices U ∈ Cn×n with columns {ui}n

i=1 and
V ∈ Cm×m with columns {vi}m

i=1 such that
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UHY V =

(
D 0
0 0

)
=: Σ ∈ Cn×m, (10.1)

where D = diag (σ1, . . . , σd) ∈ IRd×d, the zeros in (10.1) denote matrices of
appropriate dimensions, and the superindex H stands for complex conjuga-
tion. Moreover, the vectors {ui}d

i=1 and {vi}d
i=1 satisfy

Y vi = σiui and Y Hui = σivi for i = 1, . . . , d. (10.2)

They are eigenvectors of Y Y H and Y HY with eigenvalues σ2
i , i = 1, . . . , d. The

vectors {ui}m
i=d+1 and {vi}m

i=d+1 (if d < n respectively d < m) are eigenvectors

of Y Y H and Y HY , respectively, with eigenvalue 0. If Y ∈ IRn×m then U and
V can be chosen to be real-valued.

From (10.2) we deduce that Y = UΣV H . It follows that Y can also be
expressed as

Y = UdD(V d)H , (10.3)

where Ud ∈ Cn×d and V d ∈ Cm×d are given by

Ud
i,j = Ui,j for 1 ≤ i ≤ n, 1 ≤ j ≤ d,

V d
i,j = Vi,j for 1 ≤ i ≤ m, 1 ≤ j ≤ d.

It will be convenient to express (10.3) as

Y = UdB with B = D(V d)H ∈ Cd×m.

Thus the column space of Y can be represented in terms of the d linearly
independent columns of Ud. The coefficients in the expansion for the columns
Y·,j , j = 1, . . . ,m, in the basis {Ud

·,i}d
i=1 are given by the B·,j . Since U is

Hermitian we easily find that

Y·,j =
d∑

i=1

Bi,jU
d
·,i =

d∑
i=1

〈U·,i, Y·,j〉CnU
d
·,i,

where 〈· , ·〉Cn denotes the canonical inner product in Cn. In terms of the
columns yj of Y we express the last equality as

yj =
d∑

i=1

Bi,jui =
d∑

i=1

〈ui, yj〉Cnui, j = 1, . . . ,m.

Let us now interpret singular value decomposition in terms of POD. One
of the central issues of POD is the reduction of data expressing their ”essential
information” by means of a few basis vectors. The problem of approximating
all spatial coordinate vectors yj of Y simultaneously by a single, normalized
vector as well as possible can be expressed as
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max

m∑
j=1

∣∣〈yj , u〉Cn

∣∣2 subject to (s.t.) |u|Cn = 1. (P)

Here, | · |Cn denotes the Euclidean norm in Cn. Utilizing a Lagrangian frame-
work a necessary optimality condition for (P) is given by the eigenvalue prob-
lem

Y Y Hu = σ2u. (10.4)

Due to singular value analysis u1 solves (P) and argmax (P) = σ2
1 . If we were

to determine a second vector, orthogonal to u1 that again describes the data
set {yi}m

i=1 as well as possible then we need to solve

max

m∑
j=1

∣∣〈yj , u〉Cn

∣∣2 s.t. |u|Cn = 1 and 〈u, u1〉Cn = 0. (P2)

Rayleigh’s principle and singular value decomposition imply that u2 is a solu-
tion to (P2) and argmax (P2) = σ2

2 . Clearly this procedure can be continued
by finite induction so that uk, 1 ≤ k ≤ d, solves

max

m∑
j=1

∣∣〈yj , u〉Cn

∣∣2 s.t. |u|Cn = 1 and 〈u, ui〉Cn = 0, 1 ≤ i ≤ k− 1. (Pk)

The following result which states that for every � ≤ k the approximation of
the columns of Y by the first � singular vectors {ui}�

i=1 is optimal in the mean
among all rank � approximations to the columns of Y is now quite natural.
More precisely, let Û ∈ Cn×d denote a matrix with pairwise orthonormal
vectors ûi and let the expansion of the columns of Y in the basis {ûi}d

i=1 be
given by

Y = Û B̂, where B̂i,j = 〈ûi, yj〉Cn for 1 ≤ i ≤ d, 1 ≤ j ≤ m.

Then for every � ≤ k we have

‖Y − Û �B̂�‖F ≥ ‖Y − U �B�‖F . (10.5)

Here, ‖ · ‖F denotes the Frobenius norm, U � denotes the first � columns of U ,
B� the first � rows of B and similarly for Û � and B̂�. Note that the j-th column
of U �B� represents the Fourier expansion of order � of the j-th column yj of Y

in the orthonormal basis {ui}�
i=1. Utilizing the fact that Û B̂� has rank � and

recalling that B� = (D(V k)H)� estimate (10.5) follows directly from singular
value analysis [Nob69]. We refer to U � as the POD-basis of rank �. Then we
have

d∑
i=�+1

σ2
i =

d∑
i=�+1

( m∑
j=1

|Bi,j |2
)
≤

d∑
i=�+1

( m∑
j=1

|B̂i,j |2
)
. (10.6)

and
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�∑
i=1

σ2
i =

�∑
i=1

( m∑
j=1

|Bi,j |2
)
≥

�∑
i=1

( m∑
j=1

|B̂i,j |2
)
. (10.7)

Inequalities (10.6) and (10.7) establish that for every 1 ≤ � ≤ d the POD-basis
of rank � is optimal in the sense of representing in the mean the columns of
Y as a linear combination by a basis of rank �. Adopting the interpretation
of the Yi,j as the velocity of a fluid at location xi and at time tj , inequality
(10.7) expresses the fact that the first � POD-basis functions capture more
energy on average than the first � functions of any other basis.

The POD-expansion Y � of rank � is given by

Y � = U �B� = U �
(
D(V d)H

)�
,

and hence the ”t-average” of the coefficients satisfies

〈B�
i,·, B

�
j,·〉Cm = σ2

i δij for 1 ≤ i, j ≤ �.

This property is referred to as the fact that the POD-coefficients are uncor-
related.

Computational Issues

Concerning the practical computation of a POD-basis of rank � let us note that
if m < n then one can choose to determine m eigenvectors vi corresponding to
the largest eigenvalues of Y HY ∈ Cm×m and by (10.2) determine the POD-
basis from

ui =
1

σi
Y vi, i = 1, . . . , �. (10.8)

Note that the square matrix Y HY has the dimension of number of ”time-
instances” tj . For historical reasons [Sir87] this method of determine the POD-
basis is sometimes called the method of snapshots.

For the application of POD to concrete problems the choice of � is certainly
of central importance, as is also the number and location of snapshots. It
appears that no general a-priori rules are available. Rather the choice of � is
based on heuristic considerations combined with observing the ratio of the
modeled to the total information content contained in the system Y , which is
expressed by

E(�) =

∑�
i=1 σ

2
i∑d

i=1 σ
2
i

for � ∈ {1, . . . , d}. (10.9)

For a further discussion, also of adaptive strategies based e.g. on this term we
refer to [MM03] and the literature cited there.
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Application to Discrete Solutions to Dynamical Systems

Let us now assume that Y ∈ IRn×m, n ≥ m, arises from discretization of
a dynamical system, where a finite element approach has been utilized to
discretize the state variable y = y(x, t), i.e.,

yh(x, tj) =

n∑
i=1

Yi,jϕi(x) for x ∈ Ω,

with ϕi, 1 ≤ i ≤ n, denoting the finite element functions and Ω be-
ing a bounded domain in IR2 or IR3. The goal is to describe the ensem-
ble {yh(· , tj)}m

j=1 of L2-functions simultaneously by a single normalized L2-
function ψ as well as possible:

max
m∑

j=1

∣∣〈yh(·, tj), ψ〉L2(Ω)

∣∣2 s.t. ‖ψ‖L2(Ω) = 1, (P̃)

where 〈· , ·〉L2(Ω) is the canonical inner product in L2(Ω). Since yh(· , tj) ∈
span {ϕ1, . . . , ϕn} holds for 1 ≤ j ≤ n, we have ψ ∈ span {ϕ1, . . . , ϕn}. Let v
be the vector containing the components vi such that

ψ(x) =

n∑
i=1

viϕi(x)

and let S ∈ IRn×n denote the positive definite mass matrix with the elements
〈ϕi, ϕj〉L2(Ω). Instead of (10.4) we obtain that

Y Y TSv = σ2v. (10.10)

The eigenvalue problem (10.10) can be solved by utilizing singular value anal-
ysis. Multiplying (10.10) by the positive square root S1/2 of S from the left
and setting u = S1/2v we obtain the n× n eigenvalue problem

Ỹ Ỹ Tu = σ2u, (10.11)

where Ỹ = S1/2Y ∈ IRn×m. We mention that (10.11) coincides with (10.4)
when {ϕi}n

i=1 is an orthonormal set in L2(Ω). Note that if Y has rank k the
matrix Ỹ has also rank d. Applying the singular value decomposition to the
rectangular matrix Ỹ we have

Ỹ = UΣV T

(see (10.1)). Analogous to (10.3) it follows that

Ỹ = UdD(V d)T , (10.12)
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where again Ud and V d contain the first k columns of the matrices U and V ,
respectively. Using (10.12) we determine the coefficient matrix Ψ = S−1/2Ud ∈
IRn×d, so that the first k POD-basis functions are given by

ψj(x) =

n∑
i=1

Ψi,jϕi(x), j = 1, . . . , d.

Due to (10.11) and Ψ·,j = S−1/2Ud
·,j , 1 ≤ j ≤ d, the vectors Ψ·,j are eigenvec-

tors of problem (10.10) with corresponding eigenvalues σ2
j :

Y Y TSΨ·,j = Y Y TSS−1/2Uk
·,j = S−1/2Ỹ Ỹ TUk

·,j = σ2
jS

−1/2Uk
·,j = σ2

jΨ·,j .

Therefore, the function ψ1 solves (P̃) with argmax (P̃) = σ2
1 and, by finite

induction, the function ψk, k ∈ {2, . . . , d}, solves

max
m∑

j=1

∣∣〈yh(·, tj), ψ〉L2(Ω)

∣∣2 s.t. ‖ψ‖L2(Ω) = 1, 〈ψ,ψi〉L2(Ω) = 0, i < d, (P̃k)

with argmax (P̃k) = σ2
k. Since we have Ψ·,j = S−1/2Ud

·,j , the functions

ψ1, . . . , ψd are orthonormal with respect to the L2-inner product:

〈ψi, ψj〉L2(Ω) = 〈Ψ·,i, SΨ·,j〉Cn = 〈ui, uj〉Cn = δij , 1 ≤ i, j ≤ d.

Note that the coefficient matrix Ψ can also be computed by using generalized
singular value analysis. If we multiply (10.10) with S from the left we obtain
the generalized eigenvalue problem

SY Y TSu = σ2Su.

From generalized SVD [GL89] there exist orthogonal V ∈ IRm×m and U ∈
IRn×n and an invertible R ∈ IRn×n such that

V (Y TS)R =

(
E 0
0 0

)
=: Σ1 ∈ IRm×n, (10.13a)

US1/2R = Σ2 ∈ IRn×n, (10.13b)

where E = diag (e1, . . . , ed) with ei > 0 and Σ2 = diag (s1, . . . , sn) with
si > 0. From (10.13b) we infer that

R = S−1/2UTΣ2. (10.14)

Inserting (10.14) into (10.13a) we obtain that

Σ−1
2 ΣT

1 = Σ−1
2 RTSY V T = US1/2Y V T ,

which is the singular value decomposition of the matrix S1/2Y with σi =
ei/si > 0 for i = 1, . . . , d. Hence, Ψ is again equal to the first k columns of
S1/2U .
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If m ≤ n we proceed to determine the matrix Ψ as follows. From uj =
(1/σj)S

1/2Y vj for 1 ≤ j ≤ d we infer that

Ψ·,j =
1

σj
Y vj ,

where vj solves the m×m eigenvalue problem

Y TSY vj = σ2
i vj , 1 ≤ j ≤ d.

Note that the elements of the matrix Y TSY are given by the integrals

〈y(·, ti), y(·, tj)〉L2(Ω), 1 ≤ i, j ≤ n, (10.15)

so that the matrix Y TSY is often called a correlation matrix.

10.2.2 POD for Parabolic Systems

Whereas in the last subsection POD has been motivated by rectangular ma-
trices and SVD, we concentrate on POD for dynamical (non-linear) systems
in this subsection.

Abstract Nonlinear Dynamical System

Let V and H be real separable Hilbert spaces and suppose that V is dense
in H with compact embedding. By 〈· , ·〉H we denote the inner product in H.
The inner product in V is given by a symmetric bounded, coercive, bilinear
form a : V × V → IR:

〈ϕ,ψ〉V = a(ϕ,ψ) for all ϕ,ψ ∈ V (10.16)

with associated norm given by ‖ · ‖V =
√
a(· , ·). Since V is continuously

injected into H, there exists a constant cV > 0 such that

‖ϕ‖H ≤ cV ‖ϕ‖V for all ϕ ∈ V. (10.17)

We associate with a the linear operator A:

〈Aϕ,ψ〉V ′,V = a(ϕ,ψ) for all ϕ,ψ ∈ V,

where 〈· , ·〉V ′,V denotes the duality pairing between V and its dual. Then, by
the Lax-Milgram lemma, A is an isomorphism from V onto V ′. Alternatively,
A can be considered as a linear unbounded self-adjoint operator in H with
domain

D(A) = {ϕ ∈ V : Aϕ ∈ H}.

By identifying H and its dual H ′ it follows that
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D(A) ↪→ V ↪→ H = H ′ ↪→ V ′,

each embedding being continuous and dense, when D(A) is endowed with the
graph norm of A.

Moreover, let F : V × V → V ′ be a bilinear continuous operator mapping
D(A) × D(A) into H. To simplify the notation we set F (ϕ) = F (ϕ,ϕ) for
ϕ ∈ V . For given f ∈ C([0, T ];H) and y0 ∈ V we consider the nonlinear
evolution problem

d

dt
〈y(t), ϕ〉H + a(y(t), ϕ) + 〈F (y(t)), ϕ〉V ′,V = 〈f(t), ϕ〉H (10.18a)

for all ϕ ∈ V and t ∈ (0, T ] a.e. and

y(0) = y0 in H. (10.18b)

Assumption (A1). For every f ∈ C([0, T ];H) and y0 ∈ V there exists a
unique solution of (10.18) satisfying

y ∈ C([0, T ];V ) ∩ L2(0, T ;D(A)) ∩H1(0, T ;H). (10.19)

Computation of the POD Basis

Throughout we assume that Assumption (A1) holds and we denote by y the
unique solution to (10.18) satisfying (10.19). For given n ∈ IN let

0 = t0 < t1 < . . . < tn ≤ T (10.20)

denote a grid in the interval [0, T ] and set δtj = tj− tj−1, j = 1, . . . , n. Define

∆t = max (δt1, . . . , δtn) and δt = min (δt1, . . . , δtn). (10.21)

Suppose that the snapshots y(tj) of (10.18) at the given time instances tj ,
j = 0, . . . , n, are known. We set

V = span {y0, . . . , y2n},

where yj = y(tj) for j = 0, . . . , n, yj = ∂ty(tj−n) for j = n + 1, . . . , 2n with
∂ty(tj) = (y(tj)−y(tj−1))/δtj , and refer to V as the ensemble consisting of the
snapshots {yj}2n

j=0, at least one of which is assumed to be nonzero. Further-
more, we call {tj}n

j=0 the snapshot grid. Notice that V ⊂ V by construction.
Throughout the remainder of this section we let X denote either the space V
or H.
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Remark 10.2.1 (compare [KV01, Remark 1]). It may come as a surprise at
first that the finite difference quotients ∂ty(tj) are included into the set V of
snapshots. To motivate this choice let us point out that while the finite dif-
ference quotients are contained in the span of {yj}2n

j=0, the POD bases differ

depending on whether {∂ty(tj)}n
j=1 are included or not. The linear depen-

dence does not constitute a difficulty for the singular value decomposition
which is required to compute the POD basis. In fact, the snapshots them-
selves can be linearly dependent. The resulting POD basis is, in any case,
maximally linearly independent in the sense expressed in (P�) and Proposi-
tion 10.2.5. Secondly, in anticipation of the rate of convergence results that
will be presented in Section 10.3.3 we note that the time derivative of y in
(10.18) must be approximated by the Galerkin POD based scheme. In case
the terms {∂ty(tj)}n

j=1 are included in the snapshot ensemble, we are able to
utilize the estimate

n∑
j=1

αj

∥∥∥∂ty(tj)−
�∑

i=1

〈∂ty(tj), ψi〉Xψi

∥∥∥2

X
≤

d∑
i=�+1

λi. (10.22)

Otherwise, if only the snapshots yj = y(tj) for j = 0, . . . , n, are used, we
obtain instead of (10.37) the error formula

n∑
j=0

αj

∥∥∥y(tj)− �∑
i=1

〈y(tj), ψi〉Xψi

∥∥∥2

X
=

d∑
i=�+1

λi,

and (10.22) must be replaced by

n∑
j=1

αj

∥∥∥∂ty(tj)−
�∑

i=1

〈∂ty(tj), ψi〉Xψi

∥∥∥2

X
≤ 2

(δt)2

d∑
i=�+1

λi, (10.23)

which in contrast to (10.22) contains the factor (δt)−2 on the right-hand side.
In [HV03] this fact was observed numerically. Moreover, in [LV03] it turns out
that the inclusion of the difference quotients improves the stability properties
of the computed feedback control laws. Let us mention the article [AG03],
where the time derivatives were also included in the snapshot ensemble to get
a better approximation of the dynamical system. ♦

Let {ψi}d
i=1 denote an orthonormal basis for V with d = dimV. Then each

member of the ensemble can be expressed as

yj =

d∑
i=1

〈yj , ψi〉Xψi for j = 0, . . . , 2n. (10.24)

The method of POD consists in choosing an orthonormal basis such that for
every � ∈ {1, . . . , d} the mean square error between the elements yj , 0 ≤ j ≤
2n, and the corresponding �-th partial sum of (10.24) is minimized on average:
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min J(ψ1, . . . , ψ�) =
2n∑

j=0

αj

∥∥∥yj −
�∑

i=1

〈yj , ψi〉Xψi

∥∥∥2

X

s.t. 〈ψi, ψj〉X = δij for 1 ≤ i ≤ �, 1 ≤ j ≤ i.

(P�)

Here {αj}2n
j=0 are positive weights, which for our purposes are chosen to be

α0 =
δt1
2
, αj =

δtj + δtj+1

2
for j = 1, . . . , n− 1, αn =

δtn
2

and αj = αj−n for j = n+ 1, . . . , 2n.

Remark 10.2.2. 1) Note that

In(y) = J(ψ1, . . . , ψ�)

can be interpreted as a trapezoidal approximation for the integral

I(y) =

∫ T

0

∥∥∥y(t)− �∑
i=1

〈y(t), ψi〉Xψi

∥∥∥2

X
+
∥∥∥yt(t)−

�∑
i=1

〈yt(t), ψi〉Xψi

∥∥∥2

X
dt.

For all y ∈ C1([0, T ];X) it follows that limn→∞ In(y) = I(y). In Sec-
tion 10.4.2 we will address the continuous version of POD (see, in partic-
ular, Theorem 10.4.3).

2) Notice that (P�) is equivalent with

max
�∑

i=1

2n∑
j=0

αj

∣∣〈yj , ψi〉X
∣∣2 s.t. 〈ψi, ψj〉X = δij , 1 ≤ j ≤ i ≤ �. (10.25)

For X = Cn, � = 1 and αj = 1 for 1 ≤ j ≤ n and αj = 0 otherwise,
(10.25) is equivalent with (P). ♦

A solution {ψi}�
i=1 to (P�) is called POD basis of rank �. The subspace

spanned by the first � POD basis functions is denoted by V �, i.e.,

V � = span {ψ1, . . . , ψ�}. (10.26)

The solution of (P�) is characterized by necessary optimality conditions,
which can be written as an eigenvalue problem; compare Section 10.2.1. For
that purpose we endow IR2n+1 with the weighted inner product

〈v, w〉α =
2n∑

j=0

αjvjwj (10.27)

for v = (v0, . . . , v2n)T , w = (w0, . . . , w2n)T ∈ IR2n+1 and the induced norm.
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Remark 10.2.3. Due to the choices for the weights αj ’s the weighted inner
product 〈· , ·〉α can be interpreted as the trapezoidal approximation for the
H1-inner product

〈v, w〉H1(0,T ) =

∫ T

0

vw + vtwt dt for v, w ∈ H1(0, T )

so that (10.27) is a discrete H1-inner product (compare Section 10.4.2). ♦

Let us introduce the bounded linear operator Yn : IR2n+1 → X by

Ynv =
2n∑

j=0

αjvjyj for v ∈ IR2n+1. (10.28)

Then the adjoint Y∗
n : X → IR2n+1 is given by

Y∗
nz =

(
〈z, y0〉X , . . . , 〈z, y2n〉X

)T
for z ∈ X. (10.29)

It follows that Rn = YnY∗
n ∈ L(X) and Kn = Y∗

nYn ∈ IR(2n+1)×(2n+1) are
given by

Rnz =

2n∑
j=0

αj〈z, yj〉Xyj for z ∈ X and
(
Kn

)
ij

= αj 〈yj , yi〉X (10.30)

respectively. By L(X) we denote the Banach space of all linear and bounded
operators from X into itself and the matrix Kn is again called a correlation
matrix; compare (10.15).

Using a Lagrangian framework we derive the following optimality condi-
tions for the optimization problem (P�):

Rnψ = λψ, (10.31)

compare e.g. [HLB96, pp. 88-91] and [Vol01a, Section 2]. Thus, it turns out
that analogous to finite-dimensional POD, we obtain an eigenvalue problem;
see (10.4).

Note that Rn is a bounded, self-adjoint and nonnegative operator. More-
over, since the image of Rn has finite dimension, Rn is also compact. By
Hilbert-Schmidt theory (see e.g. [RS80, p. 203]) there exist an orthonormal
basis {ψi}i∈IN for X and a sequence {λi}i∈IN of nonnegative real numbers so
that

Rnψi = λiψi, λ1 ≥ . . . ≥ λd > 0 and λi = 0 for i > d. (10.32)

Moreover, V = span {ψi}d
i=1. Note that {λi}i∈IN as well as {ψi}i∈IN depend

on n.
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Remark 10.2.4. a) Setting σi =
√
λi, i = 1, . . . , d, and

vi =
1

σi
Y∗

nψi for i = 1, . . . , d (10.33)

we find

Knvi = λivi and 〈vi, vj〉α = δij , 1 ≤ i, j ≤ d. (10.34)

Thus, {vi}d
i=1 is an orthonormal basis of eigenvectors of Kn for the image

of Kn. Conversely, if {vi}d
i=1 is a given orthonormal basis for the image of

Kn, then it follows that the first d eigenfunctions of Rn can be determined
by

ψi =
1

σi
Ynvi for i = 1, . . . , d, (10.35)

see (10.8). Hence, we can determine the POD basis by solving either the
eigenvalue problem for Rn or the one for Kn. The relationship between
the eigenfunctions of Rn and the eigenvectors for Kn is given by (10.33)
and (10.35), which corresponds to SVD for the finite-dimensional POD.

b) Let us introduce the matrices

D = diag (α0, . . . , α2n) ∈ IR(2n+1)×(2n+1),

K̃n =
((
〈yj , yi〉X

))
0≤i,j≤2n

∈ IR(2n+1)×(2n+1).

Note that the matrix K̃n is symmetric and positive semi-definite with
rank K̃n = d. Then the eigenvalue problem (10.34) can be written in
matrix-vector-notation as follows:

K̃nDvi = λivi and vT
i Dvj = δij , 1 ≤ i, j ≤ d. (10.36)

Multiplying the first equation in (10.36) with D1/2 from the left and set-
ting wi = D1/2vi, 1 ≤ i ≤ d, we derive

D1/2K̃nD
1/2wi = λiwi and wT

i wj = δij , 1 ≤ i, j ≤ d.

where the matrix K̂n = D1/2K̃nD
1/2 is symmetric and positive semi-

definite with rank K̂n = d. Therefore, it turns out that (10.34) can be
expressed as a symmetric eigenvalue problem. ♦

The sequence {ψi}�
i=1 solves the optimization problem (P�). This fact as

well as the error formula below were proved in [HLB96, Section 3], for example.

Proposition 10.2.5. Let λ1 ≥ . . . ≥ λd > 0 denote the positive eigenvalues
of Rn with the associated eigenvectors ψ1, . . . , ψd ∈ X. Then, {ψn

i }�
i=1 is a

POD basis of rank � ≤ d, and we have the error formula

J(ψ1, . . . , ψ�) =

2n∑
j=0

αj

∥∥∥yj −
�∑

i=1

〈yj , ψi〉Xψi

∥∥∥2

X
=

d∑
i=�+1

λi. (10.37)
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10.3 Reduced-Order Modeling for Dynamical Systems

In the previous section we have described how to compute a POD basis. In
this section we focus on the Galerkin projection of dynamical systems utilizing
the POD basis functions. We obtain reduced-order models and present error
estimates for the POD solution compared to the solution of the dynamical
system.

10.3.1 A General Equation in Fluid Dynamics

In this subsection we specify the abstract nonlinear evolution problem that
will be considered in this section and present an existence and uniqueness
result, which ensures Assumption (A1) introduced in Section 10.2.2.

We introduce the continuous operator R : V → V ′, which maps D(A) into
H and satisfies

‖Rϕ‖H ≤ cR ‖ϕ‖1−δ1

V ‖Aϕ‖δ1

H for all ϕ ∈ D(A),

|〈Rϕ,ϕ〉V ′,V | ≤ cR ‖ϕ‖1+δ2

V ‖ϕ‖1−δ2

H for all ϕ ∈ V

for a constant cR > 0 and for δ1, δ2 ∈ [0, 1). We also assume that A + R is
coercive on V , i.e., there exists a constant η > 0 such that

a(ϕ,ϕ) + 〈Rϕ,ϕ〉V ′,V ≥ η ‖ϕ‖2V for all ϕ ∈ V. (10.38)

Moreover, let B : V × V → V ′ be a bilinear continuous operator mapping
D(A) ×D(A) into H such that there exist constants cB > 0 and δ3, δ4, δ5 ∈
[0, 1) satisfying

〈B(ϕ,ψ), ψ〉V ′,V = 0,∣∣〈B(ϕ,ψ), φ〉V ′,V

∣∣ ≤ cB ‖ϕ‖δ3

H‖ϕ‖
1−δ3

V ‖ψ‖V ‖φ‖
δ3

V ‖φ‖
1−δ3

H ,

‖B(ϕ, χ)‖H + ‖B(χ, ϕ)‖H ≤ cB ‖ϕ‖V ‖χ‖
1−δ4

V ‖Aχ‖δ4

H ,

‖B(ϕ, χ)‖H ≤ cB ‖ϕ‖δ5

H‖ϕ‖
1−δ5

V ‖χ‖1−δ5

V ‖Aχ‖δ5

H ,

for all ϕ,ψ, φ ∈ V , for all χ ∈ D(A).
In the context of Section 10.2.2 we set F = B + R. Thus, for given f ∈

C(0, T ;H) and y0 ∈ V we consider the nonlinear evolution problem

d

dt
〈y(t), ϕ〉H + a(y(t), ϕ) +

〈
F (y(t)), ϕ

〉
V ′,V

= 〈f(t), ϕ〉H (10.39a)

for all ϕ ∈ V and almost all t ∈ (0, T ] and

y(0) = y0 in H. (10.39b)

The following theorem guarantees (A1).
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Theorem 10.3.1. Suppose that the operators R and B satisfy the assump-
tions stated above. Then, for every f ∈ C(0, T ;H) and y0 ∈ V there exists a
unique solution of (10.39) satisfying

y ∈ C([0, T ];V ) ∩ L2(0, T ;D(A)) ∩H1(0, T ;H). (10.40)

Proof. The proof is analogous to that of Theorem 2.1 in [Tem88, p. 111],
where the case with time-independent f was treated. �

Example 10.3.2. Let Ω denote a bounded domain in IR2 with boundary Γ and
let T > 0. The two-dimensional Navier-Stokes equations are given by

$
(
ut + (u · ∇)u

)
− ν∆u+∇p = f in Q = (0, T )×Ω, (10.41a)

div u = 0 in Q, (10.41b)

where $ > 0 is the density of the fluid, ν > 0 is the kinematic viscosity, f
represents volume forces and

(u · ∇)u =
(
u1
∂u1

∂x1
+ u2

∂u1

∂x2
, u1

∂u2

∂x1
+ u2

∂u2

∂x2

)T

.

The unknowns are the velocity field u = (u1, u2) and the pressure p. Together
with (10.41) we consider nonslip boundary conditions

u = ud on Σ = (0, T )× Γ (10.41c)

and the initial condition
u(0, ·) = u0 in Ω. (10.41d)

In [Tem88, pp. 104-107, 116-117] it was proved that (10.41) can be written in
the form (10.18) and that (A1) holds provided the boundary Γ is sufficiently
smooth. $

10.3.2 POD Galerkin Projection of Dynamical Systems

Given a snapshot grid {tj}n
j=0 and associated snapshots y0, . . . , yn the space

V � is constructed as described in Section 10.2.2. We obtain the POD-
Galerkin surrogate of (10.39) by replacing the space of test functions V by
V � = span {ψ1, . . . , ψ�}, and by using the ansatz

Y (t) =
�∑

i=1

αi(t)ψi (10.42)

for its solution. The result is a �-dimensional nonlinear dynamical system of
ordinary differential equations for the functions αi (i = 1, . . . , �) of the form

Mα̇+Aα+ n(α) = F , Mα(0) = (〈y0, ψj〉H)�
j=1, (10.43)
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where M = (〈ψi, ψj〉H)�
i,j=1 and A = (a(ψi, ψj))

�
i,j=1 denote the POD mass

and stiffness matrices, n(α) = (〈F (Y ), ψj〉V ′,V )�
j=1 the nonlinearity, and F =

(〈f, ψj〉H)�
j=1. We note that M is the identity matrix if in (P�) X = H is

chosen.
For the time discretization we choose m ∈ IN and introduce the time grid

0 = τ0 < τ1 < . . . < τm = T, δτj = τj − τj−1 for j = 1, . . . ,m,

and set

δτ = min{δτj : 1 ≤ j ≤ m} and ∆τ = max{δτj : 1 ≤ j ≤ m}.

Notice that the snapshot grid and the time grid usually does not coincide.
Throughout we assume that ∆τ/δτ is bounded uniformly with respect to m.
To relate the snapshot grid {tj}n

j=0 and the time grid {τj}m
j=0 we set for every

τk, 0 ≤ k ≤ m, an associated index k̄ = argmin {|τk − tj | : 0 ≤ j ≤ n} and
define σn ∈ {1, . . . , n} as the maximum of the occurrence of the same value
tk̄ as k ranges over 0 ≤ k ≤ m.

The problem consists in finding a sequence {Yk}m
k=0 in V � satisfying

〈Y0, ψ〉H = 〈y0, ψ〉H for all ψ ∈ V � (10.44a)

and

〈∂τYk, ψ〉H + a(Yk, ψ) + 〈F (Yk), ψ〉V ′,V = 〈f(τk), ψ〉H (10.44b)

for all ψ ∈ V � and k = 1, . . . ,m, where we have set ∂τYk = (Yk − Yk−1)/δτk.
Note that (10.44) is a backward Euler scheme for (10.39).

For every k = 1, . . . ,m there exists at least one solution Yk of (10.44). If
∆τ is sufficiently small, the sequence {Yk}m

k=1 is uniquely determined. A proof
was given in [KV02, Theorem 4.2].

10.3.3 Error Estimates

Our next goal is to present an error estimate for the expression

m∑
k=0

βk ‖Yk − y(τk)‖2H ,

where y(τk) is the solution of (10.39) at the time instances t = τk, k =
1, . . . ,m, and the positive weights βj are given by

β0 =
δτ1
2
, βj =

δτj + δτj+1

2
for j = 1, . . . ,m− 1, and βm =

δτm
2
.

Let us introduce the orthogonal projection P�
n of X onto V � by

P�
nϕ =

�∑
i=1

〈ϕ,ψi〉Xψi for ϕ ∈ X. (10.45)

In the context of finite element discretizations, P�
n is called the Ritz projection.
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Estimate for the Choice X = V

Let us choose X = V in the context of Section 10.2.2. Since the Hilbert space
V is endowed with the inner product (10.16), the Ritz-projection P�

n is the
orthogonal projection of V on V �.

We make use of the following assumptions:

(H1) y ∈ W 2,2(0, T ;V ), where W 2,2(0, T ;V ) = {ϕ ∈ L2(0, T ;V ) : ϕt, ϕtt ∈
L2(0, T ;V )} is a Hilbert space endowed with its canonical inner product.

(H2) There exists a normed linear space W continuously embedded in V and
a constant ca > 0 such that y ∈ C([0, T ];W ) and

a(ϕ,ψ) ≤ ca ‖ϕ‖H‖ψ‖W for all ϕ ∈ V and ψ ∈W. (10.46)

Example 10.3.3. For V = H1
0 (Ω), H = L2(Ω), with Ω a bounded domain in

IRl and

a(ϕ,ψ) =

∫
Ω

∇ϕ · ∇ψ dx for all ϕ,ψ ∈ H1
0 (Ω),

choosing W = H2(Ω) ∩H1
0 (Ω) implies a(ϕ,ψ) ≤ ‖ϕ‖W ‖ψ‖H for all ϕ ∈ W ,

ψ ∈ V , and (10.46) holds with ca = 1. $

Remark 10.3.4. In the case X = V we infer from (10.16) that

a(P�
nϕ,ψ) = a(ϕ,ψ) for all ψ ∈ V �,

where ϕ ∈ V . In particular, we have ‖P�
n‖L(V ) = 1. Moreover, (H2) yields

‖P�
n‖L(H) ≤ cP for all 1 ≤ � ≤ d

where cP = c�/λ� (see [KV02, Remark 4.4]) and c > 0 depends on y, ca, and
T , but is independent of � and of the eigenvalues λi. ♦

The next theorem was proved in [KV02, Theorem 4.7 and Corollary 4.11].

Theorem 10.3.5. Assume that (H1), (H2) hold and that ∆τ is sufficiently
small. Then there exists a constant C depending on T , but independent of the
grids {tj}n

j=0 and {τj}m
j=0, such that

m∑
k=0

βk ‖Yk − y(τk)‖2H ≤ Cσn∆τ(∆τ +∆t)‖ytt‖2L2(0,T ;V )

+ C

( d∑
i=�+1

(∣∣〈ψi, y0〉V
∣∣2 +

σn∆τ

δt
λi

)
+ σn∆τ∆t‖yt‖2L2(0,T ;V )

)
.

(10.47)

Remark 10.3.6. a) If we take the snapshot set

Ṽ = span {y(t0), . . . , y(tn)}
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instead of V, we obtain instead of (10.47) the following estimate:

m∑
k=0

βk ‖Yk − y(τk)‖2H

≤ C

d∑
i=�+1

(∣∣〈ψi, y0〉V
∣∣2 +

σn

δt

( 1

δτ
+∆τ

)
λi

)
+ Cσn∆τ∆t ‖yt‖2L2(0,T ;V )

+ Cσn∆τ(∆τ +∆t)‖ytt‖2L2(0,T ;H)

(compare [KV02, Theorem 4.7]). As we mentioned in Remark 10.2.1 the
factor (δt δτ)−1 arises on the right-hand of the estimate. While computa-

tions for many concrete situations show that
∑d

i=�+1 λi is small compared
to ∆τ , the question nevertheless arises whether the term 1/(δτδt) can be
avoided in the estimates. However, we refer the reader to [HV03, Sec-
tion 4], where significantly better numerical results were obtained using
the snapshot set V instead of Ṽ. We refer also to [LV04], where the com-
puted feedback gain was more stabilizing providing information about the
time derivatives was included.

b) If the number of POD elements for the Galerkin scheme coincides with
the dimension of V then the first additive term on the right-hand side
disappears. ♦

Asymptotic Estimate

Note that the terms {λi}d
i=1, {ψi}d

i=1 and σn depend on the time discretization
of [0, T ] for the snapshots as well as the numerical integration. We address this
dependence next. To obtain an estimate that is independent of the spectral
values of a specific snapshot set {y(tj)}n

j=0 we assume that y ∈W 2,2(0, T ;V ),
so that in particular (H1) holds, and introduce the operator R ∈ L(V ) by

Rz =

∫ T

0

〈z, y(t)〉V y(t) + 〈z, yt(t)〉V yt(t) dt for z ∈ V. (10.48)

Since y ∈ W 2,2(0, T ;V ) holds, it follows that R is compact, see, e.g., [KV02,
Section 4]. From the Hilbert-Schmidt theorem it follows that there exists
a complete orthonormal basis {ψ∞

i }i∈IN for X and a sequence {λ∞i }i∈IN of
nonnegative real numbers so that

Rψ∞
i = λ∞i ψ∞

i , λ∞1 ≥ λ∞2 ≥ . . . , and λ∞i → 0 as i→∞.

The spectrum ofR is a pure point spectra except for possibly 0. Each non-zero
eigenvalue of R has finite multiplicity and 0 is the only possible accumulation
point of the spectrum of R, see [Kat80, p. 185]. Let us note that∫ T

0

‖y(t)‖2X dt =
∞∑

i=1

λi and ‖y◦‖2X =
∞∑

i=1

∣∣〈y◦, ψi〉X
∣∣2.
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Due to the assumption y ∈W 2,2(0, T ;V ) we have

lim
∆t→0

‖Rn −R‖L(V ) = 0,

where the operator Rn was introduced in (10.30). The following theorem was
proved in [KV02, Corollary 4.12].

Theorem 10.3.7. Let all hypothesis of Theorem 10.3.5 be satisfied. Let us
choose and fix � such that λ∞� �= λ∞�+1. If ∆t = O(δτ) and ∆τ = O(δt) hold,
then there exists a constant C > 0, independent of � and the grids {tj}n

j=0

and {τj}m
j=0, and a ∆t > 0, depending on �, such that

m∑
k=0

βk ‖Yk − y(τk)‖2H ≤ C

∞∑
i=�+1

(∣∣〈y0, ψ
∞
i 〉V

∣∣2 + λ∞i
)

+ C
(
∆τ∆t ‖yt‖2L2(0,T ;V ) +∆τ(∆τ +∆t) ‖ytt‖2L2(0,T ;V )

) (10.49)

for all ∆t ≤ ∆t.

Remark 10.3.8. In case of X = H the spectral norm of the POD stiffness
matrix with the elements 〈ψj , ψi〉V , 1 ≤ i, j,≤ d, arises on the right-hand
side of the estimate (10.47); see [KV02, Theorem 4.16]. For this reason, no
asymptotic analysis can be done for X = H. ♦

10.4 Suboptimal Control of Evolution Problems

In this section we propose a reduced-order approach based on POD for op-
timal control problems governed by evolution problems. For linear-quadratic
optimal control problems we among other things present error estimates for
the suboptimal POD solutions.

10.4.1 The Abstract Optimal Control Problem

For T > 0 the space W (0, T ) is defined as

W (0, T ) =
{
ϕ ∈ L2(0, T ;V ) : ϕt ∈ L2(0, T ;V ′)

}
,

which is a Hilbert space endowed with the common inner product (see, for
example, in [DL92, p. 473]). It is well-known that W (0, T ) is continuously
embedded into C([0, T ];H), the space of continuous functions from [0, T ] to
H, i.e., there exists an embedding constant ce > 0 such that

‖ϕ‖C([0;T ];H) ≤ ce ‖ϕ‖W (0,T ) for all ϕ ∈W (0, T ). (10.50)

We consider the abstract problem introduced in Section 10.2.2. Let U be a
Hilbert space which we identify with its dual U ′, and let Uad ⊂ U a closed and
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convex subset. For y0 ∈ H and u ∈ Uad we consider the nonlinear evolution
problem on [0, T ]

d

dt
〈y(t), ϕ〉H + a(y(t), ϕ) + 〈F (y(t)), ϕ〉V ′,V = 〈(Bu)(t)), ϕ〉V ′,V (10.51a)

for all ϕ ∈ V and
y(0) = y0 in H, (10.51b)

where B : U → L2(0, T ;V ′) is a continuous linear operator. We suppose that
for every u ∈ Uad and y0 ∈ H there exists a unique solution y of (10.51) in
W (0, T ). This is satisfied for many practical situations, including, e.g., the
controlled viscous Burgers and two-dimensional incompressible Navier-Stokes
equations, see, e.g., [Tem88, Vol01b].

Next we introduce the cost functional J : W (0, T )× U → IR by

J(y, u) =
α1

2
‖Cy − z1‖2W1

+
α2

2
‖Dy(T )− z2‖2W2

+
σ

2
‖u‖2U , (10.52)

where W1, W2 are Hilbert spaces and C : L2(0, T ;H) →W1 and D : H →W2

are bounded linear operators, z1 ∈ W1 and z2 ∈ W2 are given desired states
and α1, α2, σ > 0.

The optimal control problem is given by

min J(y, u) s.t. (y, u) ∈W (0, T )× Uad solves (10.51). (CP)

In view of Example 10.3.2 a standard discretization (based on, e.g., finite
elements) of (CP) may lead to a large-scale optimization problem which can
not be solved with the currently available computer power. Here we propose a
suboptimal solution approach that utilizes POD. The associated suboptimal
control problem is obtained by replacing the dynamical system (10.51) in
(CP) through the POD surrogate model (10.43), using the Ansatz (10.42) for
the state. With F replaced by (〈(Bu)(t), ψj〉H)l

j=1 it reads

min J(α, u) s.t. (α, u) ∈ H1(0, T )� × Uad solves (10.43). (SCP)

At this stage the question arises which snapshots to use for the POD surrogate
model, since it is by no means clear that the POD model computed with snap-
shots related to a control u1 is also able to resolve the presumably completely
different dynamics related to a control u2 �= u1. To cope with this difficulty
we present the following adaptive pseudo-optimization algorithm which is pro-
posed in [AH00, AH01]. It successively updates the snapshot samples on which
the the POD surrogate model is to be based upon. Related ideas are presented
in [AFS00, Rav00].

Choose a sequence of increasing numbers Nj .

Algorithm 10.4.1 (POD-based adaptive control)

1. Let a set of snapshots y0
i , i = 1, . . . , N0 be given and set j=0.
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2. Set (or determine) l, and compute the POD modes and the space V l.
3. Solve the reduced optimization problem (SCP) for uj .
4. Compute the state yj corresponding to the current control uj and add the

snapshots yj+1
i , i = N j +1, . . . , Nj+1 to the snapshot set yj

i , i = 1, . . . , Nj .
5. If |uj+1 − uj | is not sufficiently small, set j = j+1 and goto 2.

We note that the term snapshot here may also refer to difference quotients of
snapshots, compare Remark 10.2.1. We note further that it is also possible to
replace its step 4. by

4.’ Compute the state yj corresponding to the current control uj and store
the snapshots yj+1

i , i = N j + 1, . . . , Nj+1 while the snapshot set yj
i , i =

1, . . . , Nj is neglected.

Many numerical investigations on the basis of Algorithm 10.4.1 with step 4’
can be found in [Afa02]. This reference also contains a numerical comparison
of POD to other model reduction techniques, including their applications to
optimal open-loop control.

To anticipate discussion we note that the number Nj of snapshots to be
taken in the j-th iteration ideally should be determined during the adaptive
optimization process. We further note that the choice of � in step 2 might be
based on the information content E defined in (10.9), compare Section 10.5.2.
We will pick up these items again in Section 10.6.

Remark 10.4.1. It is numerically infeasible to compute an optimal closed-loop
feedback control strategy based on a finite element discretization of (10.51),
since the resulting nonlinear dynamical system in general has large dimension
and numerical solution of the related Hamilton-Jacobi-Bellman (HJB) equa-
tion is infeasible. In [KVX04] model reduction techniques involving POD are
used to numerically construct suboptimal closed-loop controllers using the
HJB equations of the reduced order model, which in this case only is low
dimensional. ♦

10.4.2 Error Estimates for Linear-Quadratic Optimal Control
Problems

It is still an open problem to estimate the error between solutions of (CP) and
the related suboptimal control problem (SCP), and also to prove convergence
of Algorithm 10.4.1. As a first step towards we now present error estimates for
discrete solutions of linear-quadratic optimal control problems with a POD
model as surrogate. For this purpose we combine techniques of [KV01, KV02]
and [DH02, DH04, Hin05].

We consider the abstract control problem (CP) with F ≡ 0 and Uad ≡ U .
We note that J from (10.52) is twice continuously Fréchet-differentiable. In
particular, the second Fréchet-derivative of J at a given point x = (y, u) ∈
W (0, T )× U in a direction δx = (δy, δu) ∈W (0, T )× U is given by
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∇2J(x)(δx, δx) = α1 ‖Cδy‖2W1
+ α2 ‖Dδy(T )‖2W2

+ σ‖δu‖2U ≥ 0.

Thus, ∇2J(x) is a non-negative operator.
The goal is to minimize the cost J subject to (y, u) solves the linear evo-

lution problem

〈yt(t), ϕ〉H + a(y(t), ϕ) = 〈(Bu)(t), ϕ〉H (10.53a)

for all ϕ ∈ V and almost all t ∈ (0, T ) and

y(0) = y0 in H. (10.53b)

Here, y0 ∈ H is a given initial condition. It is well-known that for every u ∈ U
problem (10.53) admits a unique solution y ∈W (0, T ) satisfying

‖y‖W (0,T ) ≤ C
(
‖y0‖H + ‖u‖U

)
for a constant C > 0; see, e.g., [DL92, pp. 512-520]. If, in addition, y0 ∈ V
and if there exist two constants c1, c2 > 0 with

〈Aϕ,−∆ϕ〉H ≥ c1 ‖ϕ‖2D(A) − c2 ‖ϕ‖2H for all ϕ ∈ D(A) ∩ V,

then we have
y ∈ L2(0, T ;D(A) ∩ V ) ∩H1(0, T ;H), (10.54)

compare [DL92, p. 532]. From (10.54) we infer that y is almost everywhere
equal to an element of C([0, T ];V ).

The minimization problem, which is under consideration, can be written
as a linear-quadratic optimal control problem

min J(y, u) s.t. (y, u) ∈W (0, T )× U solves (10.53). (LQ)

Applying standard arguments one can prove that there exists a unique optimal
solution x̄ = (ȳ, ū) to (LQ).

There exists a unique Lagrange-multiplier p̄ ∈W (0, T ) satisfying together
with x̄ = (ȳ, ū) the first-order necessary optimality conditions, which consist
in the state equations (10.53), in the adjoint equations

−〈p̄t(t), ϕ〉H + a(p̄(t), ϕ) = −α1 〈C∗(Cȳ(t)− z1(t)), ϕ〉H (10.55a)

for all ϕ ∈ V and almost all t ∈ (0, T ) and

p̄(T ) = −α2D∗(Dȳ(T )− z2) in H, (10.55b)

and in the optimality condition

σū− B∗p̄ = 0 in U . (10.56)
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Here, the linear and bounded operators C∗ : W1 → L2(0, T ;H), D∗ : W2 → H,
and B∗ : L2(0, T ;H) → U stand for the Hilbert space adjoints of C, D, and B,
respectively.

Introducing the reduced cost functional

Ĵ(u) = J(y(u), u),

where y(u) solves (10.53) for the control u ∈ U , we can express (LQ) as the
reduced problem

min Ĵ(u) s.t. u ∈ U . (P̂)

From (10.56) it follows that the gradient of Ĵ at ū is given by

Ĵ ′(ū) = σū− B∗p̄. (10.57)

Let us define the operator G : U → U by

G(u) = σu− B∗p, (10.58)

where y = y(u) solves the state equations with the control u ∈ U and p =
p(y(u)) satisfies the adjoint equations for the state y. As a consequence of
(10.56) it follows that the first-order necessary optimality conditions for (P̂)
are

G(u) = 0 in U . (10.59)

In the POD context the operatorG will be replaced by an operatorG� : U → U
which then represents the optimality condition of the optimal control problem
(SCP). The construction of G� is described in the following.

Computation of the POD Basis

Let u ∈ U be a given control for (LQ) and y = y(u) the associated state
satisfying y ∈ C1([0, T ];V ). To keep the notation simple we apply only a
spatial discretization with POD basis functions, but no time integration by,
e.g., an implicit Euler method. Therefore, we apply a continuous POD, where
we choose X = V in the context of Section 10.2.2. Let us mention the work
[HY02], where estimates for POD Galerkin approximations were derived uti-
lizing also a continuous version of POD.

We define the bounded linear Y : H1(0, T ; IR) → V by

Yϕ =

∫ T

0

ϕ(t)y(t) + ϕt(t)yt(t) dt for ϕ ∈ H1(0, T ; IR).

Notice that the operator Y is the continuous variant of the discrete operator
Yn introduced in (10.28). The adjoint Y∗ : V → H1(0, T ; IR) is given by(

Y∗z
)
(t) = 〈z, y(t) + yt(t)〉V for z ∈ V.

(compare (10.29)). The operator R = YY∗ ∈ L(V ) is already introduced in
(10.48).
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Remark 10.4.2. Analogous to the theory of singular value decomposition for
matrices, we find that the operator K = Y∗Y ∈ L(H1(0, T ; IR)) given by

(
Kϕ

)
(t) =

∫ T

0

〈y(s), y(t)〉V ϕ(s)+〈yt(s), yt(t)〉V ϕt(s) ds for ϕ ∈ H1(0, T ; IR)

has the eigenvalues {λ∞i }∞i=1 and the eigenfunctions

v∞i (t) =
1√
λ∞i

(
Y∗ψ∞

i

)
(t) =

1√
λ∞i

〈ψ∞
i , y(t) + yt(t)〉V

for i ∈ {j ∈ IN : λ∞j > 0} and almost all t ∈ [0, T ]. ♦

In the following theorem we formulate properties of the eigenvalues and
eigenfunctions of R. For a proof we refer to [HLB96], for instance.

Theorem 10.4.3. For every � ∈ N the eigenfunctions ψ∞
1 , . . . , ψ∞

� ∈ V solve
the minimization problem

min J(ψ1, . . . , ψ�) s.t. 〈ψj , ψi〉X = δij for 1 ≤ i, j ≤ �, (10.60)

where the cost functional J is given by

J(ψ, . . . , ψ�)

=

∫ T

0

∥∥∥y(t)− �∑
i=1

〈y(t), ψi〉V ψi

∥∥∥2

X
+
∥∥∥yt(t)−

�∑
i=1

〈yt(t), ψi〉V ψi

∥∥∥2

V
dt.

Moreover, the eigenfunctions {λ∞i }i∈IN and eigenfunctions {ψ∞
i }i∈IN of R

satisfy the formula

J(ψ∞
1 , . . . , ψ∞

� ) =
∞∑

i=�+1

λ∞i . (10.61)

Proof. The proof of the theorem relies on the fact that the eigenvalue problem

Rψ∞
i = λ∞i ψ∞

i for i = 1, . . . , �

is the first-order necessary optimality condition for (10.60). For more details
we refer the reader to [HLB96].

Galerkin POD Approximation

Let us introduce the set V � = span {ψ∞
1 , . . . , ψ∞

� } ⊂ V . To study the POD
approximation of the operator G we introduce the orthogonal projection P�

of V onto V � by

P�ϕ =
�∑

i=1

〈ϕ,ψ∞
i 〉V ψ∞

i for ϕ ∈ V. (10.62)
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(compare (10.45)). Note that

J(ψ, . . . , ψ�)

=

∫ T

0

∥∥∥y(t)− P�y(t)
∥∥∥2

V
+
∥∥∥yt(t)− P�yt(t)

∥∥∥2

V
dt =

∞∑
i=�+1

λ∞i .
(10.63)

From (10.16) it follows directly that

a(P�ϕ,ψ) = a(ϕ,ψ) for all ψ ∈ V �,

where ϕ ∈ V . Clearly, we have ‖P�‖L(V ) = 1.
Next we define the approximation G� : U → U of the operator G by

G�(u) = σu− B∗p�, (10.64)

where p� ∈W (0, T ) is the solution to

−〈p�
t(t), ψ〉H + a(p�(t), ψ) = −α1 〈C∗(Cy� − z1), ψ〉H (10.65a)

for all ψ ∈ V � and t ∈ (0, T ) a.e. and

p�(T ) = −α2 P�
(
D∗(Dy�(T )− z2)

)
(10.65b)

and y� ∈W (0, T ), which solves

〈y�
t (t), ψ〉H + a(y�(t), ψ) = 〈(Bu)(t), ψ〉H (10.66a)

for all ψ ∈ V � and almost all t ∈ (0, T ) and

y�(0) = P�y0 (10.66b)

Notice that G�(u) = 0 are the first-order optimality conditions for the optimal
control problem

min Ĵ�(u) s.t. u ∈ U ,
where Ĵ�(u) = J(y�(u), u) and y�(u) denotes the solution to (10.66).

It follows from standard arguments (Lax-Milgram lemma) that the oper-
ator G� is well-defined. Furthermore we have

Theorem 10.4.4. The equation

G�(u) = 0 in U (10.67)

admits a unique solution u� ∈ U which together with the unique solution u of
(10.59) satisfies the estimate

‖u− u�‖U ≤
1

σ

(
‖B∗(P − P �)Bu‖U + ‖B∗(S∗ − S∗

� )C∗z1‖U
)
. (10.68)

Here, P := S∗C∗CS, P � := S∗
� C∗CS�, with S, Sl denoting the solution operators

in (10.53) and (10.66), respectively.
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A proof of this theorem immediately follows from the fact, that ul is a ad-
missible test function in (10.59), and u in (10.67). Details will be given in
[HV05].

Remark 10.4.5. We note, that Theorem 10.4.4 remains also valid in the situa-
tion where admissible controls are taken from a closed convex subset Uad ⊂ U .
The solutions u, ul in this case satisfy the variational inequalities

〈G(u), v − u〉U ≥ 0 for all v ∈ Uad,

and
〈G�(u

�), v − u�〉U ≥ 0 for all v ∈ Uad,

so that adding the first inequality with v = u� and the second with v = u
and straightforward estimation finally give (10.68) also in the present case.
The crucial point here is that the set of admissible controls is not discretized
a-priori. The discretization of the optimal control u� is determined by that of
the corresponding Lagrange multiplier p�. For details of this discrete concept
we refer to [Hin05].

It follows from the structure of estimate (10.68), that error estimates for
y − y� and p− pl directly lead to an error estimate for u− u�.

Proposition 10.4.6. Let � ∈ IN with λ∞� > 0 be fixed, u ∈ U and y = y(u)
and p = p(y(u)) the corresponding solutions of the state equations (10.53) and
adjoint equations (10.55) respectively. Suppose that the POD basis of rank � is
computed by using the snapshots {y(tj)}n

j=0 and its difference quotients. Then
there exist constants cy, cp > 0 such that

‖y� − y‖2L∞(0,T ;H) + ‖y� − y‖2L2(0,T ;V ) ≤ cy

∞∑
i=�+1

λ∞i (10.69)

and

‖p� − p‖2L2(0,T ;V )

≤ cp

( ∞∑
i=�+1

λ∞i + ‖P�p− p‖2L2(0,T ;V ) + ‖P�pt − pt‖
2

L2(0,T ;V )

)
,

(10.70)
where y� and p� solve (10.66) and (10.65), respectively, for the chosen u in-
serted in (10.66a).

Proof. Let

y�(t)− y(t) = y�(t)− P�y(t) + P�y(t)− y(t) = ϑ(t) + $(t),

where ϑ = y� − P�y and $ = P�y − y. From (10.16), (10.62), (10.63) and the
continuous embedding H1(0, T ;V ) ↪→ L∞(0, T ;H) we find
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‖$‖2L∞(0,T ;H) + ‖$‖2L2(0,T ;V ) ≤ cE

∞∑
i=�+1

λ∞i (10.71)

with an embedding constant cE > 0. Utilizing (10.53) and (10.66) we obtain

〈ϑt(t), ψ〉H + a(ϑ(t), ψ) = 〈yt(t)− P�yt(t), ψ〉H
for all ψ ∈ V � and almost all t ∈ (0, T ). From (10.16), (10.17) and Young’s
inequality it follows that

d

dt
‖ϑ(t)‖2H + ‖ϑ(t)‖2V ≤ c2V ‖yt(t)− P�yt(t)‖

2

V . (10.72)

Due to (10.66b) we have ϑ(0) = 0. Integrating (10.72) over the interval (0, t),
t ∈ (0, T ], and utilizing (10.37), (10.45) and (10.63) we arrive at

‖ϑ(t)‖2H +

∫ t

0

‖ϑ(s)‖2V ds ≤ c2V

∞∑
i=�+1

λ∞i

for almost all t ∈ (0, T ). Thus,

esssup
t∈[0,T ]

‖ϑ(t)‖2H +

∫ T

0

‖ϑ(s)‖2V ds ≤ c2V

∞∑
i=�+1

λ∞i . (10.73)

Estimates (10.71) and (10.73) imply the existence of a constant cy > 0 such
that (10.69) holds. We proceed by estimating the error arising from the dis-
cretization of the adjoint equations and write

p�(t)− p(t) = p�(t)− P�p(t) + P�p(t)− p(t) = θ(t) + ρ(t),

where θ = p� −P�p and ρ = P�p− p. From (10.16), (10.50), and (10.65b) we
get

‖θ(T )‖2H ≤ α2
2 ‖D‖

2
L(H,W1)

‖y�(T )− y(T )‖2H
≤ α2

2 ‖D‖
2
L(H,W1)

‖y� − y‖2C([0,T ];H).

Thus, applying (10.50), (10.69) and the techniques used above for the state
equations, we obtain

esssup
t∈[0,T ]

‖θ(t)‖2H +

∫ T

0

‖θ(s)‖2V ds

≤ 2c2V

(
c2V c

2
ecy ‖D‖

4
L(H,W1)

∞∑
i=�+1

λ∞i + ‖pt − P�pt‖
2

L2(0,T ;V )

)
.

Hence, there exists a constant cp > 0 satisfying (10.70).



288 Michael Hinze and Stefan Volkwein

Remark 10.4.7.

a) The error in the discretization of the state variable is only bounded by
the sum over the not modeled eigenvalues λ∞i for i > �. Since the POD
basis is not computed utilizing adjoint information, the term P�p−p in the
H1(0, T ;V )-norm arises in the error estimate for the adjoint variables. For
POD based approximation of partial differential equations one cannot rely
on results clarifying the approximation properties of the POD-subspaces
to elements in function spaces as e.g. Lp or C. Such results are an essential
building block for e.g. finite element approximations to partial differential
equations.

b) If we have already computed a second POD basis of rank �̃ ∈ IN for the
adjoint variable, then we can express the term involving the difference

P �̃p− p by the sum over the eigenvalues corresponding to eigenfunctions,
which are not used as POD basis functions in the discretization.

c) Recall that {ψ∞
i }i∈IN is a basis of V . Thus we have∫ T

0

‖p(t)− P�p(t)‖2V dt ≤
∫ T

0

∞∑
i=�+1

|a(p(t), ψ∞
i )|2 dt.

The sum on the right-hand side converges to zero as � tends to ∞. How-
ever, usually we do not have a rate of convergence result available. In
numerical applications we can evaluate ‖p− P�p‖L2(0,T ;V ). If the term is
large then we should increase � and include more eigenfunctions in our
POD basis.

d) For the choice X = H we have instead of (10.71) the estimate

‖$‖2L∞(0,T ;H) + ‖$‖2L2(0,T ;V ) ≤ C ‖S‖2
∞∑

i=�+1

λ∞i ,

where C is a positive constant, S denotes the stiffness matrix with the
elements Sij = 〈ψ∞

j , ψ∞
i 〉V , 1 ≤ i, j ≤ �, and ‖ · ‖2 stands the spectral

norm for symmetric matrices, see [KV02, Lemma 4.15]. ♦

Applying (10.58), (10.64), and Proposition 10.4.6 we obtain for every u ∈ U

‖G�(u)−G(u)‖2U

≤ cG

( ∞∑
i=�+1

λ∞i + ‖P�p− p‖2L2(0,T ;H) + ‖P�pt − pt‖
2

L2(0,T ;H)

)
(10.74)

for a constant cG > 0 depending on cλ and B.
Suppose that u1, u2 ∈ U are given and that y�

1 = y�
1(u1) and y�

2 = y�
2(u2)

are the corresponding solutions of (10.66). Utilizing Young’s inequality it fol-
lows that there exists a constant cV > 0 such that
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‖y�
1 − y�

2‖
2

L∞(0,T ;H) + ‖y�
1 − y�

2‖
2

L2(0,T ;V )

≤ c2V ‖B‖
2
L(U,L2(0,T ;H)) ‖u1 − u2‖2U .

(10.75)

Hence, we conclude from (10.65) and (10.75) that

‖p�
1 − p�

2‖
2

L∞(0,T ;H) + ‖p�
1 − p�

2‖
2

L2(0,T ;V )

≤ max
(
α1c

2
V ‖C‖

2
L(L2(0,T ;H),W1)

, α2 ‖D‖2L(H,W2)

)
·

·
(
‖y�

1 − y�
2‖

2

L∞(0,T ;H) + ‖y�
1 − y�

2‖
2

L2(0,T ;V )

)
≤ C ‖u1 − u2‖2U .

(10.76)

where

C =
c4V
2
‖B‖2L(U,L2(0,T ;H)) max

(
α2

1c
2
V ‖C‖

2
L(L2(0,T ;H),W1)

, α2 ‖D‖2L(H,W2)

)
.

If the POD basis of rank � is computed for the control u1, then (10.64), (10.74)
and (10.76) lead to the existence of a constant Ĉ > 0 satisfying

‖G�(u2)−G(u1)‖2U ≤ 2 ‖G�(u2)−G�(u1)‖2U + 2 ‖G�(u1)−G(u1)‖2U

≤ Ĉ ‖u2 − u1‖2U

+ Ĉ

( ∞∑
i=�+1

λ∞i + ‖P�p1 − p1‖
2

L2(0,T ;V ) + ‖P�(p1)t − (p1)t‖
2

L2(0,T ;V )

)
.

Hence, G�(u2) is close to G(u1) in the U-norm provided the terms ‖u1−u2‖U
and

∑∞
i=�+1 λ

∞
i are small and provided the � POD basis functions ψ∞

1 , . . . , ψ∞
�

leads to a good approximation of the adjoint variable p1 in the H1(0, T ;V )-
norm. In particular, G�(u) in this case is small, if u denotes the unique optimal
control of the continuous control problem, i.e., the solution of G(u) = 0.

We further have that both, G and G� are Fréchet differentiable with con-
stant derivatives G′ ≡ σId − B∗p′ and G′

� ≡ σId − B∗(p�)′. Moreover, since
−B∗p′ and −B∗p′ are selfadjoint positive operators, G′ and G′

� are invertible,
satisfying

‖(G′)−1‖L(U), ‖(G′
�)

−1‖L(U) ≤
1

σ
.

Since Gl also is Lipschitz continuous with some positive constant K we now
may argue with a Newton-Kantorovich argument [D85, Theorem 15.6] that
the equation

G�(v) = 0 in U

admits a unique solution in u� ∈ B2ε(u), provided

‖(G′
�)

−1G�(u)‖U ≤ ε and
2Kε

σ
< 1.
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Thus, we in a different fashion again proved existence of a unique solution ul

of (10.67), compare Theorem 10.4.4, and also provided an error estimate for
u−ul in terms of

∑∞
i=�+1 λ

∞
i +‖P�p1−p1‖2L2(0,T ;V )+‖P�(p1)t−(p1)t‖2L2(0,T ;V ).

We close this section with noting that existence and local uniqueness of
discrete solutions u� may be proved following the lines above also in the non-
linear case , i.e., in the case F �= 0 in (10.51).

10.5 Navier-Stokes Control Using POD Surrogate
Models

In the present section we demonstrate the potential of the POD method ap-
plied as suboptimal open-loop control method for the example of the Navier-
Stokes system in (10.41a)-(10.41d) as subsidiary condition in control problem
(CP).

10.5.1 Setting

We present two numerical examples. The flow configuration is taken as flow
around a circular cylinder in 2 spatial dimensions and is depicted in Fig-
ure 10.1 for Example 10.5.2, compare the benchmark of Schäfer and Turek
in [ST96], and in Figure 10.8 for Example 10.5.3. At the inlet and at the up-

Fig. 10.1. Flow configuration for Example 10.5.2

per and lower boundaries inhomogeneous Dirichlet conditions are prescribed,
and at the outlet the so called ’do-nothing’ boundary conditions are used
[HRT96]. As a consequence the boundary conditions for the Navier-Stokes
equations have to be suitably modified. The control objective is to track the
Navier Stokes flow to some pre-specified flow field z, which in our numerical
experiments is either taken as Stokes flow or mean of snapshots. As control
we take distributed forces in the spatial domain. Thus, the optimal control
problem in the primitive setting is given by



10 POD: Error Estimates and Suboptimal Control 291

min
(y,u)∈W×U

J(y, u) :=
1

2

∫ T

0

∫
Ω

|y − z|2 dxdt+
α

2

∫ T

0

∫
Ω

|u|2 dxdt

subject to

yt + (y · ∇)y − ν∆y +∇p = Bu in Q = (0, T )×Ω,

div y = 0 in Q,

y(t, ·) = yd on (0, T )× Γd,

ν∂ηy(t, ·) = pη on (0, T )× Γout,

y(0, ·) = y0 in Ω,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10.77)

where Q := Ω×(0, T ) denotes the time-space cylinder, Γd the Dirichlet bound-
ary at the inlet and Γout the outflow boundary. In this example the volume
for the flow measurements and the control volume for the application of the
volume forces each cover the whole spatial domain, i.e. B denotes the injec-
tion from L2(Q) into L2(0, T ;V ′), W1 := L2(Q) and C ≡ Id. Further we have
Uad = U = L2(Q), α1 = 1

2 , α2 = 0, and σ = α. Since we are interested in
open-loop control strategies it is certainly feasible to use the whole of Q as ob-
servation domain (use as much information as attainable). Furthermore, from
the practical point of view distributed control in the whole domain may be
realized by Lorentz forces if the fluid is a electro-magnetically conductive, say
[BGGBW97]. From the numerical standpoint this case can present difficulties,
since the inhomogeneities in the primal and adjoint equations are large.

We note that it is an open problem to prove existence of global smooth
solutions in two space dimensions for the instationary Navier-Stokes equations
with do-nothing boundary conditions [Ran00].

The weak formulation of the Navier-Stokes system in (10.77) in primitive
variables reads: Given u ∈ U and y0 ∈ H, find p(t) ∈ L2(Ω), y(t) ∈ H1(Ω)2

such that y(0) = y0, and

ν 〈∇y,∇φ〉H + 〈yt + y · ∇y, φ〉H − 〈p,div φ〉 = 〈Bu, φ〉H for all φ ∈ V,
〈χ,div y〉H = 0 for all χ ∈ L2(Ω),

(10.78)
holds a.e. in (0, T ), where V := {φ ∈ H1(Ω)2, φΓD

= 0}, compare [HRT96].
The Reynolds number Re= 1/ν for the configurations used in our numer-

ical studies is determined by

Re =
Ūd

µ
,

with Ū denoting the bulk velocity at the inlet, d the diameter of the cylinder,
µ the molecular viscosity of the fluid and ρ = 1.

We now present two numerical examples. The first example presents a de-
tailed description of the POD method as suboptimal control strategy in flow
control. In the first step, the POD model for a particular control is validated
against the full Navier-Stokes dynamics, and in the second step Algorithm
10.4.1 successfully is applied to compute suboptimal open-loop controls. The
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flow configuration is taken from [ST96]. The second example presents opti-
mization results of Algorithm 10.4.1 for an open flow.

10.5.2 Example 1

In the first numerical experiment to be presented we choose a parabolic inflow
profile at the inlet, homogeneous Dirichlet boundary conditions at upper and
lower boundary, d = 1, Re=100 and the channel length is l = 20d. For the
spatial discretization the Taylor-Hood finite elements on a grid with 7808
triangles, 16000 velocity and 4096 pressure nodes are used. As time interval
in (10.77) we use [0, T ] with T = 3.4 which coincides with the length of one
period of the wake flow. The time discretization is carried out by a fractional
step Θ-scheme [Bän91] or a semi-implicit Euler-scheme on a grid containing
n = 500 points. This corresponds to a time step size of δt = 0.0068. The total
number of variables in the optimization problem (10.77) therefore is of order
5.4 × 107 (primal, adjoint and control variables). Subsequently we present a
suboptimal approach based on POD in order to obtain suboptimal solutions
to (10.77).

Construction and Validation of the POD Model

The reduced-order approach to optimal control problems such as (CP) or,
in particular, (10.77) is based on approximating the nonlinear dynamics by a
Galerkin technique utilizing basis functions that contain characteristics of the
controlled dynamics. Since the optimal control is unknown, we apply a heuris-
tic (see [AH01, AFS00]), which is well tested for optimal control problems, in
particular for nonlinear boundary control of the heat equation, see [DV01].

Here we use the snapshot variant of POD introduced by Sirovich in [Sir87]
to obtain a low-dimensional approximation of the Navier-Stokes equations. To
describe the model reduction let y1, . . . , ym denote an ensemble of snapshots
of the flow corresponding to different time instances which for simplicity are
taken on an equidistant snapshot grid over the time horizon [0, T ]. For the
approximated flow we make the ansatz

y = ȳ +

m∑
i=1

αiΦi (10.79)

with modes Φi that are obtained as follows (compare Section 10.2.2):

1. Compute the mean ȳ = 1
m

m∑
i=1

yi.

2. Build the correlation matrix K = kij , kij =
∫

Ω
(yi − ȳ)(yj − ȳ) dx.

3. Compute the eigenvalues λ1, . . . , λm and eigenvectors v1, . . . , vm of K.

4. Set Φi :=
m∑

j=1

vi
j(y

j − ȳ), 1 ≤ i ≤ d.
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5. Normalize Φi = Φi

‖Φi‖L2(Ω)
, 1 ≤ i ≤ d.

The modes Φi are pairwise orthonormal and are optimal with respect to the
L2 inner product in the sense that no other basis ofD := span{y1−ȳ, . . . , ym−
ȳ} can contain more energy in fewer elements, compare Proposition 10.2.5 with
X = H. We note that the term energy is meaningful in this context, since the
vectors y are related to flow velocities. If one would be interested in modes
which are optimal w.r.t. enstrophy, say, the H1-norm should be used instead
of the L2-norm in step 2 above.

The Ansatz (10.79) is commonly used for model reduction in fluid dynam-
ics. The theory of Sections 10.2,10.3 also applies to this situation.

In order to obtain a low-dimensional basis for the Galerkin Ansatz modes
corresponding to small eigenvalues are neglected. To make this idea more
precise let DM := span{Φ1, . . . , ΦM} (1 ≤ M ≤ N :=dimD) and define the
relative information content of this basis by

I(M) :=

M∑
k=1

λk /

N∑
k=1

λk,

compare (10.9). If the basis is required to describe γ% of the total information
contained in the space D, then the dimension M of the subspace DM is
determined by

M = argmin
{

I(M) : I(M) ≥ γ

100

}
. (10.80)

The reduced dynamical system is obtained by inserting (10.79) into the
Navier-Stokes system and using a subspace DM containing sufficient infor-
mation as test space. Since all functions Φi are solenoidal by construction this
results in

〈yt, Φj〉H + ν 〈∇y,∇Φj〉H + 〈(y · ∇)y, Φj〉H = 〈Bu, Φj〉 (1 ≤ j ≤M),

which may be rewritten as

α̇+Aα = n(α) + β + r, α(0) = a0, (10.81)

compare (10.43). Here, 〈· , ·〉 denotes the L2 × L2 inner product. The compo-

nents of a0 are computed from ȳ +
∑M

k=1(y0 − ȳ, Φk)Φk. The matrix A is the
POD stiffness matrix and the inhomogeneity r results from the contribution
of the mean ȳ to the ansatz in (10.79). For the entries of β we obtain

βj = 〈Bu, Φj〉,

i.e. the control variable is not discretized. However, we note that it is also
feasible to make an Ansatz for the control.

To validate the model in (10.81) we set u ≡ 0 and take as initial condition
y0 the uncontrolled wake flow at Re=100. In Figure 10.2 a comparison of the



294 Michael Hinze and Stefan Volkwein

full Navier-Stokes dynamics and the reduced order model based on 50 (left) as
well as on 100 snapshots (right) is presented. As one can see the reduced order
model based on 50 snapshots already provides a very good approximation of
the full Navier-Stokes dynamics. In Figure 10.3 the long-term behavior of
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Fig. 10.2. Evolution of αi(t) compared to that of (y(t)− ȳ, Φi) for i = 1, . . . , 4. Left
50 snapshots, right 100 snapshots

the reduced order model based on 100 snapshots for different dimensions of
the reduced order model are presented. Graphically the dynamics are already
recovered utilizing eight modes. Note, that the time horizon shown in this
figure is [34, 44] while the snapshots are taken only in the interval [0, 3.4].
Finally, in Figure 10.4 the vorticities of the first ten modes generated from the
uncontrolled snapshots are presented. Thus, the reduced order model obtained
by snapshot POD captures the essential features of the full Navier-Stokes
system, and in a next step may serve as surrogate of the full Navier-Stokes
system in the optimization problem (10.77).

Optimization with the POD Model

The reduced optimization problem corresponding to (10.77) is obtained by
plugging (10.79) into the cost functional and utilizing the reduced dynamical
system (10.81) as constraint in the optimization process. Altogether we obtain

(ROM)

⎧⎨⎩min J̃(α, u) = J(y, u)
s.t.
α̇+Aα = n(α) + β + r, α(0) = a0.

(10.82)

At this stage we recall that the flow dynamics strongly depends on the control
u, and it is not clear at all from which kind of dynamics snapshots should be
taken in order to compute an approximation of a solution u∗ of (10.77). For



10 POD: Error Estimates and Suboptimal Control 295

34.0 36.0 38.0 40.0 42.0 44.0
time

-4.0

-2.0

0.0

2.0

4.0

am
pli

tu
de

N=4
N=8
N=10
N=16
N=20

Fig. 10.3. Development of amplitude α1(t) for varying number N of snapshots

the present examples we apply Algorithms 10.4.1 with a sequence of increasing
numbers Nj , where in step 2 the dimension of the space DM , i.e. the value of
M , for a given value γ ∈ (0, 1] is chosen according to (10.80).

In the present application the value for α in the cost functional is chosen
to be α = 2.10−2. For the POD method we add 100 snapshots to the snapshot
set in every iteration of Algorithm 10.4.1. The relative information content
of the basis formed by the modes is required to be larger than 99.99%, i.e.
γ = 99.99. We note that within this procedure a storage problem pops up
with increasing iteration number of Algorithm 10.4.1. However, in practice it
is sufficient to keep only the modes of the previous iteration while adding to
this set the snapshots of the current iteration. An application of Algorithm
10.4.1 with step 4’ instead of step 4 is presented in Example 10.5.3 below.

The suboptimal control u is sought in the space of deviations from the
mean, i.e we make the ansatz

u =

M∑
i=1

βiΦi, (10.83)

and the control target is tracking of the Stokes flow whose streamlines are
depicted in Figure 10.5 (bottom). The same figure also shows the vorticity
and the streamlines of the uncontrolled flow (top). For the numerical solution
of the reduced optimization problems the Schur-complement SQP-algorithm
is used, in the optimization literature frequently referred to as dual or range-
space approach [NW99].
We first present a comparison between the optimal open-loop control strategy
computed by Newton’s method, and Algorithm 10.4.1. For details of the the
implementation of Newton’s method and further numerical results we refer
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Fig. 10.4. First 10 modes generated from uncontrolled snapshots, vorticity
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Fig. 10.5. Uncontrolled flow (top) and Stokes flow (bottom)

the reader to [Hin99, HK00, HK01]. In Figure 10.6 selected iterates of the
evolution of the cost in [0, T ] for both approaches are given. The adaptive
algorithm 10.4.1 terminates after 5 iterations to obtain the suboptimal control
ũ∗. The termination criterium of step 5 in Algorithm 10.4.1 here is replaced
by

|Ĵ(ui+1)− Ĵ(ui)|
Ĵ(ui)

≤ 10−2, (10.84)

where
Ĵ(u) = J(y(u), u)

denotes the so-called reduced cost functional and y(u) stands for the solution
to the Navier-Stokes equations for given control u. The algorithm achieves a
remarkable cost reduction decreasing the value of the cost functional for the
uncontrolled flow Ĵ(u0) = 22.658437 to Ĵ(ũ∗) = 6.440180. It is also worth
recording that to recover 99.99% of the energy stored in the snapshots in the
first iteration 10 modes have to be taken, 20 in the second iteration, 26 in the
third, 30 in the fourth, and 36 in the final iteration.

The computation of the optimal control with the Newton method takes
approximately 17 times more cpu than the suboptimal approach. This in-
cludes an initialization process with a step-size controlled gradient algorithm.
To obtain a relative error |∇Ĵ(un)|/|∇Ĵ(u0)| lower than 10−2, 32 gradient
iterations are needed with Ĵ(u32) = 1.138325. As initial control u0 = 0 is
taken. Note that every gradient step amounts to solving the non-linear Navier-
Stokes equations in (10.77), the the corresponding adjoint equations, and a
further Navier-Stokes system for the computation of the step-size in the gra-
dient algorithm, compare [HK01]. Newton’s algorithm then is initialized with
u32 and 3 Newton steps further reduce the value of the cost functional to
Ĵ(u∗) = 1.090321. The controlled flow based on the Newton method is graph-
ically almost indistinguishable from the Stokes flow in Figure 10.5. Figure 10.7
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Fig. 10.6. Evolution of cost

shows the streamlines and the vorticity of the flow controlled by the adaptive
approach at t = 3.4 (top) and the mean flow ȳ (bottom), the latter formed
with the snapshots of all 5 iterations. The controlled flow no longer contains
vortex sheddings and is approximately stationary. Recall that the controls
are sought in the space of deviations from the mean flow. This explains the
remaining recirculations behind the cylinder. We expect that they can be
reduced if the Ansatz for the controls in (10.83) is based on a POD of the
snapshots themselves rather than on a POD of the deviation from their mean.

10.5.3 Example 2

The numerical results of the second application are taken from [AH00], com-
pare also [Afa02]. The computational domain is given by [−5, 15]× [−5, 5] and
is depicted in Figure 10.8. At the inflow a block-profile is prescribed, at the
outflow do-nothing boundary conditions are used, and at the top and bot-
tom boundary the velocity of the block profile is prescribed, i.e. the flow is
open. The Reynolds number is chosen to be Re=100, so that the period of
the flow covers the time horizon [0, T ] with T = 5.8. The numerical simula-
tions are performed on an equidistant grid over this time interval containing
500 gridpoints. The control target z is given by the mean of the uncontrolled
flow simulation, the regularization parameter in the cost functional is taken as
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Fig. 10.7. Example 1: POD controlled flow (top) and mean flow ȳ (bottom)

α = 1
10 . The termination criterion in Algorithm 10.4.1 is chosen as in (10.84),

the initial control is taken as u0 ≡ 0. The iteration history for the value of the
cost functional is shown in Figure 10.9, Figure 10.10 contains the iteration
history for the control cost.

Fig. 10.8. Computational domain for the second application, 15838 velocity nodes.

The convergence criterium in Algorithm 10.4.1 is met after 7 iterations,
where step 4 is replaced with step 4’. The value of the cost functional is
Ĵ(ũ∗) = 0.941604. Newton’s method (without initialization by a gradient
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Fig. 10.9. Iteration history of functional values for Algorithm 10.4.1, second appli-
cation
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Fig. 10.10. Iteration history of control costs for Algorithm 10.4.1, second applica-
tion

method) met the convergence criterium after 11 iterations with Ĵ(u∗N ) =

0.642832, the gradient method needs 29 iterations with Ĵ(u∗G) = 0.798193.
The total numerical amount for the computation of the suboptimal control
ũ∗ for this numerical example is approximately 25 times smaller than that for
the computation of u∗N . The resulting open-loop control strategies are visually
nearly indistinguishable. For a further discussion of the approach presented
in this section we refer the reader to [Afa02, AH01].
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We close this section with noting that the basic numerical ingredient in
Algorithm 10.4.1 is the flow solver. The optimization with the surrogate model
can be performed with MATLAB. Therefore, it is not necessary to develop
numerical integration techniques for adjoint systems, which are one of the
major ingredients of Newton- and gradient-type algorithms when applied to
the full optimization problem (10.77).

10.6 Future Work and Conclusions

10.6.1 Future Research Directions

To the authors knowledge it is an open problem in many applications

1) to estimate how many snapshots to take, and
2) where to take them.

In this context goal-oriented concepts should be a future research direction.
For an overview of goal oriented concepts in a-posteriori error analysis for
finite elements we refer the reader to [BR01].

To report on first attempts for 1) and 2) we now sketch the idea of the
goal-oriented concept. Denoting by J(y) the quantity of interest, frequently
called the goal (for example the drag or lift of the wake flow) and by J(yh)
the response of the discrete model, the difference J(y) − J(yh) can be ex-
pressed approximately in terms of the residual of the state equation ρ and an
appropriate adjoint variable z, i.e.

J(y)− J(yh) = 〈ρ(y), z〉, (10.85)

where 〈·, ·〉 denotes an appropriate pairing.
With regard to 1) above, it is proposed in [HH04] to substitute y, z in

(10.85) by their discrete counterparts yh, zh obtained from the POD model,
and, starting on a coarse snapshot grid, to refine the snapshot grid and forming
new POD models as long as the difference J(y)− J(yh) is larger than a given
tolerance.

With regard to 2) a goal-oriented concept for the choice of modes out
of a given set is presented in [MM03]. In [HH05] a goal-oriented adaptive
time-stepping method for time-dependent pdes is proposed which uses POD
models to compute the adjoint variables. In view of optimization of complex
time dependent systems based on POD models adaptive goal oriented time
stepping here serves a dual purpose; it provides a time-discrete model of min-
imum complexity in the full spatial setting w.r.t. the goal, and the time grid
suggested by the approach may be considered as ideal snapshot grid upon
which the model reduction should be based.

Let us also refer to [AG03], where the authors presented a technique to
choose a fixed number of snapshots from a fine snapshot grid.
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A further research area is the development of robust and efficient sub-
optimal feedback strategies for nonlinear partial differential equations. Here,
we refer to the [KV99, KVX04, LV03, LV04]. However, the development of
feedback laws based on partial measurement information still remains a chal-
lenging research area.

10.6.2 Conclusions

In the first part of this paper we present a mathematical introduction to finite-
and infinite dimensional POD. It is shown that POD is closely related to the
singular value decomposition for rectangular matrices. Of particular interest
is the case when the columns of such matrices are snapshots of dynamical
systems, such as parabolic equations, or the Navier-Stokes system. In this
case POD allows to compute coherent structures, frequently called modes,
which cary the relevant information of the underlying dynamical process. It
then is a short step to use these modes in a Galerkin method to construct low
order surrogate models for the full dynamics. The major contribution in the
first part consists in presenting error estimates for solutions of these surrogate
models.

In the second part we work out how POD surrogate models might be used
to compute suboptimal controls for optimal control problems involving com-
plex, nonlinear dynamics. Since controls change the dynamics, POD surrogate
models need to be adaptively modified during the optimization process. With
Algorithm 10.4.1 we present a method to cope with this difficulty. This al-
gorithm in combination with the snapshot form of POD then is successfully
applied to compute suboptimal controls for the cylinder flow at Reynolds
number 100. It is worth noting that the numerical ingredients for this subop-
timal control concept are a forward solver for the Navier-Stokes system, and
an optimization environment for low-dimensional dynamical systems, such as
MATLAB. As a consequence coding of adjoints, say is not necessary. As a fur-
ther consequence the number of functional evaluations to compute suboptimal
controls in essence is given by the number of iterations needed by Algorithm
10.4.1. The suboptimal concept therefore is certainly a candidate to obey the
rule

effort of optimization

effort of simulation
≤ constant,

with a constant of moderate size. We emphasize that obeying this rule should
be regarded as one of the major goals for every algorithm developed for opti-
mal control problems with PDE-constraints.

Finally, we present first steps towards error estimation of suboptimal con-
trols obtained with POD surrogate models. For linear-quadratic control prob-
lems the size of the error in the controls can be estimated in terms of the error
of the states, and of the adjoint states. We note that for satisfactory estimates
also POD for the adjoint system needs to be performed.
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Part II

Benchmarks



This part contains a collection of models that can be used for evaluating
the properties and performance of new model reduction techniques and new
implementations of existing techniques. The first paper (Chapter 11) describes
the main features of the Oberwolfach Benchmark Collection, which is
maintained at

http://www.imtek.de/simulation/benchmark.

It should be noted that this is an open project, so new additions are always
welcome. The submission procedure is also described in this first paper. The
data for linear-time invariant systems in all benchmarks are provided in the
common Matrix Market format, see

http://math.nist.gov/MatrixMarket/.

In order to have a common format to deal with nonlinear models, in Chap-
ter 12, a data exchange format for nonlinear systems is proposed. Most of the
remaining papers describe examples in the Oberwolfach Benchmark Col-
lection, where the first six entries (Chapters 13–18) come from microsystem
technology applications, then Chapter 19 presents an optimal control problem
for partial differential equations, and an example from computational fluid dy-
namics is contained in Chapter 20. Chapter 21 describes second-order models
in vibration and acoustics while Chapters 22 and 23 present models arising in
circuit simulation.

Also included (see Chapter 24) is a revised version of SLICOT’s model
reduction benchmark collection, see

http://www.win.tue.nl/niconet/NIC2/benchmodred.html.

For integration in the Oberwolfach Benchmark Collection only those
examples from the SLICOT collection are chosen that exhibit interesting
model features and that are not covered otherwise. It should also be noted that
the SLICOT benchmark collection merely focuses on control applications and
not all examples are large-scale as understood in the context of the Oberwol-
fach mini-workshop. Therefore, only those examples considered appropriate
are included in Chapter 24.
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Oberwolfach Benchmark Collection

Jan G. Korvink and Evgenii B. Rudnyi

Institute for Microsystem Technology, Albert Ludwig University
Georges Köhler Allee 103, 79110 Freiburg, Germany
{korvink,rudnyi}@imtek.uni-freiburg.de

Summary. A Web-site to store benchmarks for model reduction is described. The
site structure, submission rules and the file format are presented.

11.1 Introduction

Model order reduction is a multi-disciplinary area of research. The driving
force from industry are engineering design requirements. The development of
theory to solve these problems remains clearly in the hands of mathematicians.
Numerical analysts and programmers are solving issues of an efficient, reliable
and scalable implementation.

A benchmark is a natural way to allow different groups to communicate
results with each other. Engineers convert a physical problem into a system
of ordinary differential equations (ODEs) and specify requirements. Provided
the system is written in a computer-readable format, this supplies an easy-
to-use problem in order to try different algorithms for model reduction and
compare different software packages.

During the Oberwolfach mini-Workshop on Dimensional Reduction of
Large-Scale Systems, IMTEK agreed to host as well as develop rules for
a related benchmark Web site. The site is running since spring of 2004
at http://www.imtek.uni-freiburg.de/simulation/benchmark/ and the
rules are described below.

The file format to represent a nonlinear system of ODEs has been devel-
oped during the joint DFG project between IMTEK, Freiburg University and
Institute of Automation, University of Bremen: The Dynamic System Inter-
change Format (DSIF, http://www.imtek.uni-freiburg.de/simulation/
mstkmpkt/). It is presented in Chapter 12 where also the background for
model reduction benchmarks is described in more detail.

Unfortunately, there are two problems with the DSIF format. First, it does
not scale well to high-dimensional systems. For example, when a benchmark
for a system of linear ODEs of dimension of about 70 000 with sparse system
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matrices containing about 4 000 000 nonzeros has been written in the DSIF
format, Matlab 6 crashed while reading the file. Second, it is not easy to
parse it outside of Matlab. As result, we present an alternative format to
store linear ODEs based on the Matrix Market format [BPR96]. For nonlinear
ODE systems, the DSIF format seems to be the only alternative and we highly
recommend its use in this case.

11.2 Documents

The collection consists of documents, benchmarks and reports. A benchmark
and a related report may be written by different authors.

Each document is written according to conventional scientific practice,
that is, it describes matters in such a way that, at least in principle, anyone
could reproduce the results presented. The authors should understand that
the document may be read by people from quite different disciplines. Hence,
abbreviations should be avoided or at least explained and references to the
background ideas should be made.

11.2.1 Benchmark

The goal of a benchmark document is to describe the origin of the dynamic
system and its relevance to the application area. It is important to present the
mathematical model, the meaning of the inputs and outputs and the desired
behavior from the application viewpoint.

A few points to be addressed:

• The purpose of the model should be explained clearly. (For instance, sim-
ulation, iterative system design, feedback control design, ...)

• Why should the model be reduced at all? (For instance, reducing simula-
tion time, reducing implementation effort in observers, controllers...)

• What are the QUALITATIVE requirements of the reduced model? What
variables are to be approximated well? Is the step response to be approx-
imated or is it the Bode plot? What are typical input signals? (Some
systems are driven by a step function and nothing else, others are driven
by a wide variety of input signals, others are used in closed loop and can
cause instability, although being stable themselves).

• What are the QUANTITATIVE requirements of the reduced model? Best
would be if the authors of any individual model can suggest some cost
functions (performance indices) to be used for comparison. These can be in
the time domain, or in the frequency domain (including special frequency
band), or both.

• Are there limits of input and state variables known? (Application related
or generally)? What are the physical limits where the model becomes use-
less/false? If known a-priori: Out of the technically typical input signals,
which one will cause ”the most nonlinear” behavior?
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If the dynamic system is obtained from partial differential equations,
then the information about material properties, geometrical data, initial and
boundary conditions should be given. The exception to this rule is the case
when the original model came from industry. In this case, if trade secrets are
tied with the information mentioned, it may be kept hidden.

The authors are encouraged to produce several dynamic models of different
dimensions in order to provide an opportunity to apply different software and
to research scalability issues. If an author has an interactive page on his/her
server to generate benchmarks, a link to this page is welcomed.

The dynamic system may be obtained by means of compound matrices,
for example, when the second-order system is converted to first-order. In this
case, the document should describe such a transformation but in the datafile
the original and not the compound matrices should be given. In this way,
this will allow users to research other ways of model reduction of the original
system.

11.2.2 Report

A report document may contain:
a) The solution of the original benchmark that contains sample outputs

for the usual input signals. Plots and numerical values of time and frequency
response. Eigenvalues and eigenvectors, singular values, poles, zeros, etc.

b) Model reduction and its results as compared to the original system.
c) Description of any other related results.
We stress the importance to describe the software employed as well as its

related options.

11.2.3 Document Format

Any document is considered as a Web-page. As such it should have a main
page in the HTML format and all other objects linked to the main page such
as pictures and plots (GIF, JPEG), additional documents (PDF, HTML). In
particular, a document can have just a small introductory part written in
HTML and the main part as a linked PDF document.

The authors are advised to keep the layout simple.
Scripts included in the Web-page should be avoided, or at least they should

not be obligatory to view the page.
Numerical data including the original dynamic system and the simulation

results should be given in a special format described below.

11.3 Publishing Method

A document is submitted to IMTEK in the electronic form as an archive of all
the appropriate files (tar.gz or zip) at http://www.imtek.uni-freiburg.de/
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simulation/benchmark/. Then it is placed in a special area and enters a re-
viewing stage. Information about the new document is posted to a benchmark
mailing list benchmark@elmo.imtek.uni-freiburg.de and send to reviewers
chosen by a chief editor. Depending on the comments, the document is pub-
lished, rejected or sent to authors to make corrections. The decision is taken
by an editorial board.

11.3.1 Rules for Online Submission

• Only ZIP or TAR.GZ archives are accepted for the submission.
• The archive should contain at least one HTML file, named index.html.

This file represents the main document file.
• The archive must only contain files of the following types: *.html, *.htm,

*.pdf, *.gif, *.jpg, *.png, *.zip, *.tar.gz
• After the submission, the files are post-processed:

– File types not specified above are deleted.
– Only the body part of every HTML file is kept.
– All the format/style/css information, like style=.., class=.. are re-

moved from the body part.
• If you decide to use PDF documents, use the index.html to include links

to them.
• There are three states of the submission:

– Submitted: The author and the chief editor receive a notification mail.
The submission is only accessible for the chief editor to accept the
submission.

– Opened for review: The submission is open for users to post their com-
ments and reviews. After that the chief editor can accept the paper.

– Accepted: The submission is open for everybody.

11.4 Datafiles

Below we suggest a format for linear dynamic systems. The development of
a scalable data format for time-dependent and nonlinear dynamic systems
is considered to be a challenge to be solved later on. At present, for time-
dependent and nonlinear systems, we suggest to use the Dynamic System
Interchange Format described in Chapter 12.

All the numerical data for the collection can be considered as a list of
matrices, a vector being an m× 1 matrix. As a result, first one should follow
a naming convention for the matrices, second one should write each matrix in
the format described below.
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11.4.1 Naming Convention

For the two cases of a linear dynamic system of the first and second orders,
the naming convention is as follows

Eẋ = Ax+Bu
y = Cx+Du

(11.1)

Mẍ+ Eẋ+Kx = Bu
y = Cx+Du

(11.2)

An author can use another notation in the case when the convention above
is not appropriate. This should be clearly specified in the benchmark docu-
ment.

11.4.2 Matrix Format for Linear Systems

A matrix should be written in the the Matrix Market format [BPR96].
A file with a matrix should be named as problem name.matrix name.
If there is no file for a matrix, it is assumed to be identity for the M, E,

K, A matrices and 0 for the D matrix.
All matrix files for a given problem should be compressed in a single zip

or tar.gz archive.
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Summary. We propose an ASCII file format for the exchange of large systems
of nonlinear ordinary differential matrix equations, e.g., from a finite element dis-
cretization. The syntax of the format is similar to a Matlab [Mat] .m file. It supports
both dense and sparse matrices as well as certain macros for special matrices like
zero and unity matrices. The main feature is that nonlinear functions are allowed,
and that nonlinear coupling between the state variables or to an external input can
be represented.

12.1 Introduction

In many fields of physics and engineering, computer simulation of complex
devices has become an important tool for device designers. When building
prototypes is expensive or takes a long time, or when design optimizations
require the testing of a device with a large number of small changes, simulation
becomes an absolute prerequisite for an efficient design process.

As this process continues, the models get more detailed, and a larger num-
ber of coupling effects is included. Unfortunately, this often leads to a large
increase in computational effort, in particular if transient behavior is to be
optimized.

Another challenge is that a device is usually a part of a larger system,
which the designer wishes to simulate as a whole. This requires to couple a
considerable number of devices and simulate them simultaneously, leading to
an immense growth of computational complexity.

Therefore, there is an urgent need to find methods to reduce the compu-
tational effort for transient and harmonic simulation. Fortunately at present,
there is large interest of the scientific community in Model order reduction
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(MOR). The promise of MOR is to replace the large system of equations oc-
curring from detailed models with a much smaller system, whose results are
still “good enough” (by a certain measure) to be able to draw conclusions
from the simulation results. There is a number of results available; for linear
systems, one could even say that the problem is almost solved. However for
nonlinear systems, a lot of research still needs to be done.

In order to accelerate and facilitate this research, it is important to have a
standard set of benchmarks to be able to compare different algorithms based
on real life applications. Such a collection must be in a common format, else
the scientist needs to waste too much time on file format conversion issues.

We therefore discuss a file format which we called Dynamic System In-
terchange Format (DSIF), and which we want to encourage others to use for
their benchmarks of nonlinear dynamic systems.

12.2 PDEs and their Discretization

We first discuss the physical origins of the ODEs, their linear approximation
and where nonlinear systems come from.

12.2.1 Linear PDEs and Discretization

In many fields, the underlying equations are linear, or at least can be linearized
within sufficient accuracy. Examples are structures with small displacements,
heat transfer for small temperature changes (i.e., the material properties do
not change with temperature), and the flow of electric current. They are de-
scribed by partial differential equations. One example is the heat transfer
equation

∇ · (κ(r)∇T (r, t)) +Q(r, t)− ρ(r)Cp(r)
∂T (r, t)

∂t
= 0 (12.1)

with r the position, t the time, κ the thermal conductivity of the material,
Cp the specific heat capacity, ρ the mass density, Q the heat generation rate,
and T is the unknown temperature distribution to be determined.

For numerical solution, this equation has to be discretized, e.g., with the
finite element method [HU94]. As long as κ, Q, ρ and Cp are constant in
time and temperature, the resulting system of equations can be written in
matrix-vector notation in the form

EṪ(t) = AT(t) + Q(t). (12.2)

12.2.2 Nonlinear Equations

For many applications, the linear approximation does not hold any more. In
the example above the dependence of material properties on temperature may
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not be neglected for large temperature changes. In other cases, the equation
itself is already nonlinear. One important example is the Navier–Stokes equa-
tion for fluid dynamics:

ρ

(
∂u(r, t)

∂t
+ u(r, t) · ∇u(r, t)

)
= −∇p(r, t) +∇ · τ(r, t) + ρf(r, t), (12.3)

where u is the velocity of the fluid, ρ is the density of the fluid, and p is
pressure. τ is the viscous stress tensor, which can be calculated from the
derivatives of u. f is an external force like gravity. The term u · ∇u intro-
duces a nonlinearity which is the cause of many surprising effects, but also of
difficulties solving the equation.

It is still possible to perform a discretization of this problem. However,
the resulting equations contain a nonlinear part. Using x for the system state,
e.g., the searched coefficient values for the FEM basis functions, those systems
can be expressed by the following matrix equation:

Eẋ(t) = Ax(t) + Bu(t) + b + Ff(t,x(t),u(t)). (12.4)

Here, u stands for a number of inputs or loads to the system which are
distributed by the matrix B, b provides constant loads (e.g., for Dirichlet
boundary conditions), f is a vector of all nonlinear parts of the equations, and
E and A are constant matrices with material and geometry parameters. The
matrix F serves only a practical purpose: it allows us to decrease the size of f
and use linear combinations of only a few common nonlinear functions, with
the weights given by the entries of F.

The main reason to separate linear and nonlinear parts in the equation is
that the linear parts are much easier to handle. It is thus easy to retrieve an
linearized version of the system. This means that f should not include linear
parts.

12.2.3 Outputs

In many applications, engineers are not interested in the complete field solu-
tion; especially the interior is often of minor interest. MOR algorithms can
take this into account and optimize their result to be accurate mostly at cer-
tain computational nodes. Hence, it is useful to allow a method to pick only a
small number of states. A general description should also include a possibility
to apply a nonlinear function to these states. We then end up with the system
of equations

Eẋ(t) = Ax(t) + Bu(t) + b + Ff(t,x(t),u(t))

y(t) = Cx(t) + Du(t) + d + Gg(t,x(t),u(t)), (12.5)

where y is called the output of the system.
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12.2.4 Higher Order Systems

Systems considered so far feature only first order time derivatives. Higher
order time derivatives are in principle not a problem, since methods exist to
transfer these systems to the first order by introducing velocity state variables,
resulting in double the number of equations.

However, it may be useful to preserve the higher order term explicitly.
Therefore, another notation is introduced:

Mẍ + Eẋ(t) + Kx(t) = Bu(t) + b + Ff(t,x(t), ẋ(t),u(t))

y(t) = Cx(t) + Du(t) + d + Gg(t,x(t),u(t)). (12.6)

Both forms (12.5) and (12.6) follow the conventional notations in many engi-
neering fields.

12.2.5 Initial Conditions

Time dependant PDEs (i.e., hyperbolic and parabolic PDEs) need the system
state at the beginning of the simulation. The simulation is assumed to start
at time t = 0. For (12.5), giving the value of the current state vector x(0) is
sufficient; we will denote this vector by x0. For (12.6), it is necessary also to
give the time derivatives (velocities) ẋ(0), which will be denoted by v0.

12.3 The Dynamic System Interchange Format

In order to put these equations to a computer readable format, we use the
Matlab format as starting point. Matlab is a computer algebra system used
by many scientists and engineers for numerical computations. One advantage
is that a file describing a linear system can be read into Matlab and is thus
ready for immediate processing. Since the file might also be read in by custom
parsers, we do not use the full capabilities of Matlab command files, but limit
the acceptable input as follows.

12.3.1 General

The file is a plain ASCII text. All numbers are real numbers in floating point
or scientific exponential notation (e.g., 5, 0.1, 8.8542e-12). Comments start
with a “%” character; they are allowed everywhere in the file, also in the middle
of a line. They stop at the next line break:

% This is a comment
a = 1 % + 2
% a will be 1
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The file format is sensitive to line breaks; to continue a line, use “�...”
at its end (note the leading whitespace):

a = 1 ...

+ 2

% a will be 3

If there is a “%” on the line before the continuation, the latter will be ignored.
Statements are ended by linebreaks or by “;”.

Matrices are enclosed by “[ ]”. Elements in a row are separated by either
“,” or whitespace (space or tab). Matrix rows are separated by either “;” or
line breaks:

a = [1, 2 ...

3; 4 5 6

7 8 9]

% a will be
% 1 2 3
% 4 5 6
% 7 8 9

Vectors are matrices where one dimension is 1.
Functions are written in lower case letters, with their argument between

round parentheses:

a = sin(3.14159265)
a = sin(x(3)+u(1))

We recommend the use of the functions in Table 12.1; the list is essentially
based on the ISO C99 standard [ISO]. If necessary, own functions may be
introduced, but their implementation and properties must be documented
elsewhere. Only functions from R

n �→ R or subsets thereof are possible. All
identifiers are case sensitive.

The functions may take the time t, elements of the state vector x(i), the
time derivatives (velocities) v(i) and the input vector u(i) as argument, with
i the index of the element.
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Table 12.1. Recommended mathematical functions for the DSIF file format

a+b a + b (addition)
a-b a − b (subtraction; missing a means negation)
a*b a × b (multiplication)
a/b a ÷ b (division)

a^b or a**b ab (power)
(cond)?a:b If cond is true, return a else b
abs(a) |a| (absolute value)
acos(a) cos−1 a ∈ [0, π] (inverse cosine)
acosh(a) cosh−1 a ∈ [0,∞] (inverse hyperbolic cosine)
asin(a) sin−1 a ∈ [−π/2, π/2] (inverse sine)
asinh(a) sinh−1 a (inverse hyperbolic cosine)
atan(a) tan−1 a ∈ [−π/2, π/2] (inverse tangent)
atan2(y,x) tan−1(y/x) ∈ [−π, π] (inverse tangent: returns the angle

whose tangent is y/x. Full angular range)
cbrt(a) 3

√
a ∈ [−∞,∞] (real cubic root)

ceil(a) 
a� (smallest integer ≥ a)
cos(a) cos a (cosine)
cosh(a) cosh a (hyperbolic cosine)
erf(a) erf a (error function)
erfc(a) erfc a (complementary error function)
exp(a) ea (exponential)
floor(a) �a� (largest integer ≤ a)
lgamma(a) ln |Γ (a)| (natural logarithm of the absolute value of the

gamma function)
log(a) ln a (natural logarithm)
log10(a) log10 a (base-10 logarithm)
log2(a) log2 a (base-2 logarithm)
max(a,b,...) the largest of a, b, etc.
min(a,b,...) the smallest of a, b, etc.
mod(a,b) a − �a/b�b (the remainder of the integer division of a by b)

pow(a,b) ab (power)
round(a,b) nearest integer, or value with larger magnitude if a is exactly

in between two integers, i.e., n + 0.5, n ∈ N

sign(a) sign of a or 0 if a = 0
sin(a) sin a (sine)
sinh(a) sinh a (hyperbolic sine)
sqrt(a)

√
a (square root)

tan(a) tan a (tangent)
tanh(a) tanh a (hyperbolic tangent)
tgamma(a) Γ (a) (gamma function)
trunc(a) nearest integer not larger in magnitude (towards zero)
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12.3.2 File Header

The first line of the file is a version string to distinguish between the different
versions having occurred during the development:

DSIF_version=’0.1.0’

This is followed by a few lines describing the dimensions of the system:

n = 3

m = 2

p = 1

r = 2

s = 1

q = 3

o = 2

The parameters have the following meaning:
n State space size

(number of components of state vector x)
m Number of control input signals

(number of components of input vector u)
p Number of output variables

(number of components of output vector y)
r Number of state nonlinearities

(number of components of vector f)
s Number of output nonlinearities

(number of components of vector g)
q Number of equations

(most times q=n)
o Maximum order of time derivatives; 1 for a system of form (12.5),

2 for a system of form (12.6), 0 if no time derivative occurs at all.

12.3.3 System Matrices and Vectors

Following the header, the actual system data is given. Depending on the order
of the system the nomenclature and number of matrices to be given changes.
Matrices and vectors not given take default values; matrices with zero size in
one dimension should also be not specified. The matrices required for (12.5)
and (12.6) and the default values are shown in Table 12.2. E, A, B, b, F, C, D,
d, G, M, K, x0 and v0 should be constant, i.e. with explicitly given values. f
and g can contain functions of time, states, velocities and input. They should
not contain any linear part to simplify linearization.

A number of macros can be used to facilitate entering some special matri-
ces. The macros are described in Table 12.3.
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Table 12.2. Matrices required to describe a system of first order in time (left) and
second order in time (right)

Matrix Dimensions Default

E q×n eye(q,n)

A q×n eye(q,n)

B q×m eye(q,m)

b q×1 zeros(q,1)

F q×r eye(q,r)

C p×n eye(p,n)

D p×m zeros(p,m)

d p×1 zeros(p,1)

G p×s eye(p,s)

f r×1 zeros(r,1)

g s×1 zeros(s,1)

x0 n×1 zeros(n,1)

Matrix Dimensions Default
M q×n eye(q,n)

E q×n eye(q,n)

K q×n eye(q,n)

B q×m eye(q,m)

b q×1 zeros(q,1)

F q×r eye(q,r)

C p×n eye(p,n)

D p×m zeros(p,m)

d p×1 zeros(p,1)

G p×s eye(p,s)

f r×1 zeros(r,1)

g s×1 zeros(s,1)

x0 n×1 zeros(n,1)

v0 n×1 zeros(n,1)

12.4 Example

Assume we have the following system of equations:⎡⎣ 1 0.2 0
0.2 1 0.2
0 0.2 1

⎤⎦ẍ +

⎡⎣0.1 0 0
0 0.1 0
0 0 0.1

⎤⎦ ẋ +

⎡⎣ 1 0 0
−1 2 0
0 −1 2

⎤⎦x

=

⎡⎣1 0
0 1
0 0

⎤⎦u +

⎡⎣1 0
1 0
0 1

⎤⎦( sin(u1 + x2)
exp(u2/x1)

) (12.7)

y =
[
0 1 0

]
x + (%exp(x3t)u1&) . (12.8)

A possible file describing this system could look like the following:

DSIF_version=’0.1.0’

n = 3

m = 2

p = 1

r = 2

s = 1

q = 3

o = 2

M = [ 1 0.2 0; 2e-1 1 2E-1; 0 0.2 1 ]

E = veye( 0.1, 3 )

% could also be E = diag( [0.1 0.1 0.1] )
K = ndiag( [-1 -1 0; 1 2 2], [-1 0] )

B = eye( 3, 2 )
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F = sparse( [ 1 2 3 ], [ 1 1 2 ], [ 1 1 1 ] )

C = sparse( [ 1 ], [ 2 ], [ 1 ], 1, 3 )

D = [ 1 ]

f = [ sin( u(1) + x(2) ); exp( u(2) / x(1) ) ]

g = [ floor( exp( x(3) * t ) * u(1) ) ]

x0 = zeros( 3, 1 )

v0 = [ 0 0 0 ]’

Table 12.3. Macros for entering matrices in a DSIF file. All forms with both N

and M in their arguments return a possibly rectangular matrix with N rows and M

columns; with N only, a square matrix is returned. In the following, N, M and D are
scalars, V, R and C are row vectors, and A is matrix

eye(N,M)

eye(N)

Returns the identity matrix

veye(D,N,M)

veye(D,N)

Returns a matrix with D on the diagonal and 0 elsewhere

zeros(N,M)

zeros(N)

Returns a matrix whose elements are all 0

ones(N,M)

ones(N)

Returns a matrix whose elements are all 1

rep(D,N,M)

rep(D,N)

Returns a matrix whose elements are all D

repmat(A,N,M)

repmat(A,N)

Returns a block matrix with a copy of matrix A as each
element.

diag(V,D,N,M)

diag(V,D,N)

diag(V,D)

diag(V)

Returns a diagonal matrix with vector V on diagonal D (D > 0
is above the main diagonal, D < 0 below). If N and M are
omitted, the matrix size is the minimal size to contain V. If
D is omitted, it is assumed to be 0.

ndiag(A,V,N,M)

ndiag(A,V,N)

ndiag(A,V)

The first argument of this function is a matrix of row vectors
to be included as diagonals to the final matrix. Trailing un-
used places must be filled with zeros. The second argument
is a row vector, whose elements specify at which diagonal
to include them. Returns a matrix with each of the vectors
in matrix A at the corresponding diagonal represented by
the entry in vector V. If the matrix size is omitted, it is the
minimal size to contain the diagonals.

sparse(R,C,V,N,M)

sparse(R,C,V,N)

sparse(R,C,V)

This function allows to specify a sparse matrix. R, C and V list
the row and column numbers and the corresponding nonzero
value such that the resulting matrix m is mR(k),C(k) = Vk.

A’

V’

Transpose of a matrix or vector
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12.5 Conclusions

We have specified a file format for the exchange of a nonlinear system of ODEs.
The format is similar to the Matlab file format, allowing to read in the linear
parts to Matlab; it features a number of nonlinear functions and macros
for matrix creation. We hope that it will serve the model order reduction
community by promoting the creation of a large number of benchmarks to
test MOR algorithms for the nonlinear case.
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Summary. The simulation of heat transport for a single device is easily tackled
by current computational resources, even for a complex, finely structured geometry;
however, the calculation of a multi-scale system consisting of a large number of
those devices, e.g., assembled printed circuit boards, is still a challenge. A further
problem is the large change in heat conductivity of many semiconductor materials
with temperature. We model the heat transfer along a 1D beam that has a nonlinear
heat capacity which is represented by a polynomial of arbitrary degree as a function
of the temperature state. For accurate modeling of the temperature distribution,
the resulting model requires many state variables to be described adequately. The
resulting complexity, i.e., number of first order differential equations and nonlinear
parts, is such that a simplification or model reduction is needed in order to perform
a simulation in an acceptable amount of time for the applications at hand.

In this paper, we describe the modeling considerations leading to a large nonlin-
ear system of equations. Sample results from this model and examples of successful
model order reduction can be found in [YLLK04] and the corresponding bench-
mark document, available online on the Oberwolfach Model Reduction Benchmark
Collection website [OBC] (“Nonlinear heat transfer modeling”).

13.1 Modeling

We model the heat transfer along a 1D beam with length L, cross sectional
area A and nonlinear heat conductivity κ. The heat conductivity is represented
by a polynomial in temperature T (x, t) of arbitrary degree n

κ(T ) = a0 + a1T + · · ·+ anT
n =

n∑
i=0

aiT
i. (13.1)

The right end of the beam (at x = L) is fixed at ambient temperature. The
model features two inputs, a time-dependent uniform heat flux f at the left
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Fig. 13.1. The modeled beam with heat flux inputs and heat sink.

end (at x = 0) and a time dependant heat source Q along the beam. We
denote the beam volume where we wish to solve the equations by Ω.

By including (13.1) in the differential form of the heat transfer equation,

−∇ · (κ(T )∇T ) + ρcpṪ = Q, (13.2)

we obtain the following expression,

−
n∑

i=0

ai∇ ·
(
T i∇T

)
+ ρcpṪ = Q, (13.3)

where ρ is the density and cp is the heat capacity, which are both assumed to
be constant for the considered temperature range. This approximation can be
justified from measurements of semiconductors, which show that the temper-
ature dependency of cp is much smaller than that of κ. This rapid change is a
result of the special band structure of the material. It follows an exponential
law:

κ = κ0e
α(T−T0). (13.4)

The heat capacity for silicon changes from 1.3 to 2 in the temperature range
of 200 to 600 Kelvin, while κ changes from 280 W/m K to 60 W/m K.

13.1.1 Finite Element Discretization

Following the Ritz-Galerkin finite element formulation, we require orthogo-
nality with respect to a set of test functions Nk(x), k = 1, . . . , N :

−
n∑

i=0

ai

∫
Ω

Nk∇ ·
(
T i∇T

)
dΩ +

∫
Ω

NkρcpṪdΩ =

∫
Ω

NkQdΩ ∀N. (13.5)

By using the Green-Gauß theorem, we get the weak form

n∑
i=0

ai

∫
Ω

∇NkT
i∇TdΩ −

∫
∂Ω

κ(T )∇T · n︸ ︷︷ ︸
J

Nkd∂Ω +

∫
Ω

NkρcpṪdΩ

=

∫
Ω

NkQdΩ,

(13.6)

where a positive J denotes a heat flux into one end of the beam. We approx-
imate the temperature profile by shape functions

Heat Source (Q = u1)

Heat flux

(κ dT/dx = u2)

Heat sink (T = 0)
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T (x) =

N∑
j=1

TjNj(x), (13.7)

which are the same as the test functions Nk and, after moving all inputs to
the right side, obtain

n∑
i=0

ai

N∑
j=1

Tj

∫
Ω

∇NkT
i∇NjdΩ + ρcp

N∑
j=1

Ṫj

∫
Ω

NkNjdΩ

= Q

∫
Ω

NkdΩ + J

∫
∂Ω

Nkd∂Ω.

(13.8)

T1 Tn

Fig. 13.2. Linear shape functions for FEM discretization

The second, third and fourth term in this equation are linear and yield
a constant mass matrix M and a scattering matrix B on the right side to
distribute the two inputs J and Q to the load vector. For a linear 1D beam
element e of length l with nodes m and m+ 1, we have the element contribu-
tions

Me =

[
2/3 1/6
1/6 2/3

]
, Be =

[
0 Al/2
0 Al/2

]
(13.9a)

except for the leftmost element, where

B1 =

[
A Al/2
0 Al/2

]
. (13.9b)

When using linear shape functions, the gradients are constant. The element
stiffness matrix then reads

Ae =

n∑
i=0

ai
A

l2

∫ l

0

(Tm(1− x/l) + Tm+1x/l)
i
dx

[
1 −1
−1 1

]
(13.10a)

=
n∑

i=0

ai
A

l

T i+1
m+1 − T i+1

m

(i+ 1)(Tm+1 − Tm)

[
1 −1
−1 1

]
. (13.10b)

For i > 0, this yields a nonlinear stiffness matrix, while for i = 0 after perform-
ing the multiplication of the matrix A with x, the denominator is constant.
We introduce a vector f(T ) on the right side which collects all nonlinear parts
of the discretized equation:

AlinearT + ρcpMṪ = B
(

J
Q

)
+ f(T). (13.11)
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To move the nonlinear terms in (13.10b) to the right side, we multiply them
with Tm − Tm+1 and subtract them from both sides of the equation. Every
element e contributes two entries to the vector f(T ):

fe =

n∑
i=1

ai
A

l

T i+1
m+1 − T i+1

m

i+ 1

(
1
−1

)
. (13.12)

We observe that the nonlinearities are polynomial.
We then denote E = ρcpM and introduce a gather matrix C which returns

some linear combinations of the degrees of freedom (or more often, selects
some single DOFs) which are the most interesting for the application. In this
particular example, C is a row vector with 1 at the first position, 1 at the entry
in the middle ('n/2() and 0 everywhere else. This returns the temperatures
at the leftmost end (where the heat flux is applied) and in the middle of the
beam.

After renaming T to x to comply with the DSI file format specifications
described in Chapter 12, we end up with the following system of equations:

Eẋ + Ax = Bu + Ff(x, u) (13.13)

y = Cx (13.14)

13.1.2 Implementation

The scheme above was implemented in the computer algebra system Math-
ematica [Mat]. Mathematica’s symbolic capabilities allow for an easy imple-
mentation of vectors of nonlinear functions. The data is then exported to a
file in the DSI format; see Chapter 12. We have also created an interactive
web application which allows one to specify the parameters of the model for
customized matrix generation, available on [Mst].

A number of linear and nonlinear precomputed examples are available from
the benchmark.

13.2 Discussion and Conclusion

A general model for the heat conduction with temperature dependent heat
conductivity in a 1D beam was developed. It is possible to include polynomial
nonlinearities with an arbitrary polynomial degree. The effects of nonlineari-
ties are clearly visible from simulation results.
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Summary. A benchmark for the heat transfer problem, related to modeling of a
microhotplate gas sensor, is presented. It can be used to apply model reduction algo-
rithms to a linear first-order problem as well as when an input function is nonlinear.

14.1 Modeling

The goal of European project Glassgas (IST-99-19003) was to develop a novel
metal oxide low power microhotplate gas sensor [WBP03]. In order to assure a
robust design and good thermal isolation of the membrane from the surround-
ing wafer, the silicon microhotplate is supported by glass pillars emanating
from a glass cap above the silicon wafer, as shown in Figure 14.1. In present
design, four different sensitive layers can be deposited on the membrane. The
thermal management of a microhotplate gas sensor is of crucial importance.

The benchmark contains a thermal model of a single gas sensor device
with three main components: a silicon rim, a silicon hotplate and glass struc-
ture [Hil03]. It allows us to simulate important thermal issues, such as the
homogeneous temperature distribution over gas sensitive regions or thermal
decoupling between the hotplate and the silicon rim. The original model is
the heat transfer partial differential equation

∇ · (κ(r)∇T (r, t)) +Q(r, t)− ρ(r)Cp(r)
∂T (r, t)

∂t
= 0 (14.1)

where r is the position, t is the time, κ is the thermal conductivity of the
material, Cp is the specific heat capacity, ρ is the mass density, Q is the heat
generation rate, that is nonzero only within the heater, and T is the unknown
temperature distribution to be determined.



334 Jürgen Hildenbrand, Tamara Bechtold, and Jürgen Wöllenstein

Fig. 14.1. Micromachined metal oxide gas sensor array; Bottom view (left), top
view (right).

14.2 Discretization

The device solid model has been made and then meshed and discretized in
ANSYS 6.1 by means of the finite element method (SOLID70 elements were
used). It contains 68000 elements and 73955 nodes. Material properties were
considered as temperature independent. Temperature is assumed to be in
degree Celsius with the initial state of 0◦C. The Dirichlet boundary conditions
of T = 0◦C is applied at the top and bottom of the chip (at 7038 nodes).

The output nodes are described in Table 14.1. In Figure 14.2 the nodes
2 to 7 are positioned on the silicon rim. Their temperature should be close
to the initial temperature in the case of good thermal decoupling between
the membrane and the silicon rim. Other nodes are placed on the sensitive
layers above the heater and are numbered from left to right row by row, as
schematically shown in Fig 14.2. They allow us to prove whether the tem-
perature distribution over the gas sensitive layers is homogeneous (maximum
difference of 10◦C is allowed by design).

Table 14.1. Outputs for the gas sensor model

Number Code Comment

1 aHeater within a heater, to be used for nonlinear input
2-7 SiRim1 to SiRim7 silicon rim
8-28 Memb1 to Memb21 gas sensitive layer

The benchmark contains a constant load vector. The input function equal
to 1 corresponds to the constant input power of 340mW. One can insert a
weak input nonlinearity related to the dependence of heater’s resistivity on
temperature given as:
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R(T ) = R0(1 + αT ) (14.2)

where α = 1.469× 10−3K−1. To this end, one has to multiply the load vector
by a function:

U2274.94(1 + αT )

0.34(274.94(1 + αT ) + 148.13)2
(14.3)

where U is a desired constant voltage. The temperature in (14.3) should be
replaced by the temperature at the output 1.

The linear ordinary differential equations of the first order are written as:

Eẋ = Ax+Bu
y = Cx

(14.4)

where E and A are the symmetric sparse system matrices (heat capacity and
heat conductivity matrix), B is the load vector, C is the output matrix, and x
is the vector of unknown temperatures. The dimension of the system is 66917,
the number of nonzero elements in matrix E is 66917, in matrix A is 885141.

The outputs of the transient simulation at output 18 (Memb11) over the
rise time of the device of 5 s for the original linear (with constant input power
of 340 mW) and nonlinear (with constant voltage of 14 V) model are placed

Fig. 14.2. Masks disposition (left) and the schematical position of the chosen output
nodes (right).
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in files LinearResults and NonlinearResults, respectively. The results can
be used to compare the solution of a reduced model with the original one.
The time integration has been performed in ANSYS with accuracy of about
0.001. The results are given as matrices where the first row is made of times,
the second of the temperatures.

The discussion of electro-thermal modeling related to the benchmark in-
cluding the nonlinear input function can be found in [BHWK04].
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Summary. A benchmark for the heat transfer problem, related to modeling of a
tunable optical filter, is presented. It can be used to apply model reduction algo-
rithms to a linear first-order problem.

15.1 Modeling

The DFG project AFON aimed at the development of an optical filter, which
is tunable by thermal means. The thin-film filter is configured as a membrane
(see Figure 15.1) in order to improve thermal isolation. Fabrication is based
on silicon technology. Wavelength tuning is achieved through thermal modu-
lation of resonator optical thickness, using metal resistor deposited onto the
membrane. The devices features low power consumption, high tuning speed
and excellent optical performance [HZ03].

The benchmark contains a simplified thermal model of a filter device. It
helps designers to consider important thermal issues, such as what electrical
power should be applied in order to reach the critical temperature at the
membrane or homogeneous temperature distribution over the membrane. The
original model is the heat transfer partial differential equation

∇ · (κ(r)∇T (r, t)) +Q(r, t)− ρ(r)Cp(r)
∂T (r, t)

∂t
= 0 (15.1)

where r is the position, t is the time, κ is the thermal conductivity of the
material, Cp is the specific heat capacity, ρ is the mass density, Q is the heat
generation rate that is nonzero only within the heater, and T is the unknown
temperature distribution to be determined. There are two different bench-
marks, 2D model and 3D model (see Table 15.1). Due to modeling differences,
their simulation results cannot be compared with each other directly.
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Fig. 15.1. Tunable optical filter.

Table 15.1. Tunable optical filter benchmarks

Code comment dimension nnz(A) nnz(E)

filter2D 2D, linear elements, PLANE55 1668 6209 1668
filter3D 3D, linear elements, SOLID90 108373 1406808 1406791

15.2 Discretization

The device solid models have been made, meshed and discretized in ANSYS
6.1 by the finite element method. All material properties are considered as
temperature independent. Temperature is assumed to be in Celsius with the
initial state of 0◦C. The Dirichlet boundary conditions of T = 0◦C have
been applied at the bottom of the chip. The output nodes for the models are
described in Table 15.2 and schematically displayed in Figure 15.2. Output 1
is located at the very center of the membrane. By simulating its temperature
one can prove what input power is needed to reach the critical membrane
temperature for each wavelength. Furthermore, the output 2 to 5 must be
very close to output 1 (homogenous temperature distribution) in order to
provide the same optical properties across the complete diameter of the laser
beam.

The benchmark contains a constant load vector. The input function equal
to 1 corresponds to the constant input power of of 1 mW for 2D model and
10 mW for 3D model. The linear ordinary differential equations of the first
order are written as:

Eẋ = Ax+Bu
y = Cx

(15.2)
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Table 15.2. Outputs for the optical filter model

Number Code Comment

1 Memb1 Membrane center
2 Memb2 Membrane node with radius 25E-6, theta 90◦

3 Memb3 Membrane node with radius 50E-6 theta 90◦

4 Memb4 Membrane node with radius 25E-6, theta 135◦

5 Memb5 Membrane node with radius 50E-6 theta 135◦

Fig. 15.2. Schematic position of the chosen output nodes.

where E and A are the symmetric sparse system matrices (heat capacity and
heat conductivity matrix), B is the load vector, C is the output matrix, and
x is the vector of unknown temperatures.

The output of the transient simulation for node 1 over the rise time of
the device (0.25 s) for 3D model can be found in Filter3DTransResults.
The results can be used to compare the solution of a reduced model with
the original one. The time integration has been performed in ANSYS with
accuracy of about 0.001. The results are given as matrices where the first row
is made of times, the second of the temperatures.

The discussion of electro-thermal modeling related to the benchmark can
be found in [Bec05].
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Summary. A benchmark for the convective heat transfer problem, related to mod-
eling of a anemometer and a chip cooled by forced convection, is presented. It can
be used to apply model reduction algorithms to a linear first-order problem.

16.1 Modeling

Many thermal problems require simulation of heat exchange between a solid
body and a fluid flow. The most elaborate approach to this problem is compu-
tational fluid dynamics (CFD). However, CFD is computationally expensive.
A popular solution is to exclude the flow completely from the computational
domain and to use convection boundary conditions for the solid model. How-
ever, caution has to be taken to select the film coefficient.

An intermediate level is to include a flow region with a given velocity
profile, that adds convective transport to the model. The partial differential
equation for the temperature T in this case reads:

ρc

(
∂T

∂t
+ v∇T

)
+∇ · (−κ∇T ) = q̇ (16.1)

where ρ is the mass density, c is the specific heat of the fluid, v is the fluid
speed, κ is the thermal conductivity, q̇ is the heat generation rate.

Compared to convection boundary conditions this approach has the advan-
tage that the film coefficient does not need to be specified and that information
about the heat profile in the flow can be obtained. A drawback of the method
is the greatly increased number of elements needed to perform a physically
valid simulation, because the solution accuracy when employing upwind fi-
nite element schemes depends on the element size. While this problem still is
linear, due to the forced convection, the conductivity matrix changes from a
symmetric matrix to an un-symmetric one. So this problem type can be used
as a benchmark for problems containing un-symmetric matrices.
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Fig. 16.1. Convective heat flow examples: 2D anemometer model (left), 3D cooling
structure (right)

16.2 Discretization

Two different designs are tested: a 2D model of an anemometer-like struc-
ture mainly consisting of a tube and a small heat source (Figure 16.1 left)
[Ern01]. The solid model has been generated and meshed in ANSYS. Trian-
gular PLANE55 elements have been used for meshing and discretizing by the
finite element method, resulting in 19 282 elements and 9710 nodes. The sec-
ond design is a 3D model of a chip cooled by forced convection (Figure 16.1
right) [Har97]. In this case the tetrahedral element type SOLID70 was used,
resulting in 107 989 elements and 20542 nodes. Since the implementation
of the convective term in ANSYS does not allow for definition of the fluid
speed on a per element, but on a per region basis, the flow profile has to be
approximated by piece-wise step functions. The approximation used for this
benchmarks is shown in figure 16.1.

The Dirichlet boundary conditions are applied to the original system. In
both models the reference temperature is set to 300 K, Dirichlet boundary
conditions as well as initial conditions are set to 0 with respect to the reference.
The specified Dirichlet boundary conditions are in both cases the inlet of the
fluid and the outer faces of the solids. Matrices are supplied for the symmetric
case (fluid speed is zero; no convection), and the unsymmetric case (with
forced convection). Table 16.1 shows the output nodes specified for the two
benchmarks, table 16.2 shows the filenames according to the different cases.

Further information on the models can be found in [MRGK04] where model
reduction by means of the Arnoldi algorithm is also presented.
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Table 16.1. Output nodes for the two models

Model Number Code Comment

Flow Meter 1 out1 outlet position
2 out2 outlet position
3 SenL left sensor position
4 Heater within the heater
5 SenR right sensor position

cooling Structure 1 out1 outlet position
2 out2 outlet position
3 out3 outlet position
4 out4 outlet position
5 Heater within the heater

Table 16.2. Provided files

Model fluid speed (m/s) Filenames

Flow Meter 0 flow meter model v0.*
0.5 flow meter model v0.5.*

cooling Structure 0 chip cooling model v0.*
0.1 chip cooling model v0.1.*
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Summary. A benchmark for the heat transfer problem with variable film coeffi-
cients is presented. It can be used to apply parametric model reduction algorithms
to a linear first-order problem.

17.1 Modeling

One of important requirements for a compact thermal model is that it should
be boundary condition independent. This means that a chip producer does
not know conditions under which the chip will be used and hence the chip
compact thermal model must allow an engineer to research on how the change
in the environment influences the chip temperature. The chip benchmarks
representing boundary condition independent requirements are described in
[Las01].

Let us briefly describe the problem mathematically. The thermal problem
can be modeled by the heat transfer partial differential equation

∇ · (κ(r)∇T (r, t)) +Q(r, t)− ρ(r)Cp(r)
∂T (r, t)

∂t
= 0 (17.1)

with r is the position, t is the time, κ is the thermal conductivity of the
material, Cp is the specific heat capacity, ρ is the mass density, Q is the
heat generation rate, and T is the unknown temperature distribution to be
determined. The heat exchange through device interfaces is usually modeled
by convection boundary conditions

q = hi(T − Tbulk) (17.2)

where q is the heat flow through a given point, hi is the film coefficient to
describe the heat exchange for the i-th interface, T is the local temperature
at this point and Tbulk is the bulk temperature in the neighboring phase (in
most cases Tbulk = 0).
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After the discretization of Equations (17.1) and (17.2) one obtains a system
of ordinary differential equations as follows

Eẋ = (A−
∑

i

hiAi)x+Bu (17.3)

where E, A are the device system matrices, Ai is the matrix resulting from
the discretization of Equation (17.2) for the i-th interface, x is the vector with
unknown temperatures.

In terms of Equation (17.3), the engineering requirements specified above
read as follows. A chip producer specifies the system matrices but the film
coefficient, hi, is controlled later on by another engineer. As such, any reduced
model to be useful should preserve hi in the symbolic form. This problem
can be mathematically expressed as parametric model reduction [WMGG99,
GKN03, DSC04].

Unfortunately, the benchmark from [Las01] is not available in the computer
readable format. For research purposes, we have modified a microthruster
benchmark [LRK04] (see Figure 17.1). In the context of the present work,
the model is as a generic example of a device with a single heat source when
the generated heat dissipates through the device to the surroundings. The ex-
change between surrounding and the device is modeled by convection bound-
ary conditions with different film coefficients at the top, htop, bottom, hbottom,
and the side, hside. From this viewpoint, it is quite similar to a chip model
used as a benchmark in [Las01]. The goal of parametric model reduction in
this case is to preserve htop, hbottom, and hside in the reduced model in the
symbolic form.

Fig. 17.1. A 2D-axisymmetrical model of the micro-thruster unit (not scaled). The
axis of the symmetry on the left side. A heater is shown by a red spot.
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17.2 Discretization

We have used a 2D-axisymmetric microthruster model (T2DAL in [LRK04]).
The model has been made in ANSYS and system matrices have been extracted
by means of mor4ansys [RK04]. The benchmark contains a constant load
vector. The input function equal to one corresponds to the constant input
power of 15 mW.

The linear ordinary differential equations of the first order are written as:

Eẋ = (A− htopAtop − hbottomAbottom − hsideAside)x+Bu
y = Cx

(17.4)

where E and A are the symmetric sparse system matrices (heat capacity and
heat conductivity matrix), B is the load vector, C is the output matrix, Atop,
Abottom, and Aside are the diagonal matrices from the discretization of the
convection boundary conditions and x is the vector of unknown temperatures.

The numerical values of film coefficients can be from 1 to 109. Typical
important sets of film coefficients can be found in [Las01]. The allowable
approximation error is 5 % [Las01].

The benchmark has been used in [FRK04a, FRK04b] where the problem
is also described in more detail.
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Summary. A benchmark for structural mechanics, related to modeling of a micr-
ogyroscope, is presented. It can be used to apply model reduction algorithms to a
linear second-order problem.

18.1 Brief Project Overview

The Butterfly gyro is developed at the Imego Institute in an ongoing project
with Saab Bofors Dynamics AB. The Butterfly is a vibrating micro-mechanical
gyro that has sufficient theoretical performance characteristics to make it a
promising candidate for use in inertial navigation applications. The goal of
the current project is to develop a micro unit for inertial navigation that can
be commercialized in the high-end segment of the rate sensor market. This
project has reached the final stage of a three-year phase where the develop-
ment and research efforts have ranged from model based signal processing, via
electronics packaging to design and prototype manufacturing of the sensor el-
ement. The project has also included the manufacturing of an ASIC, named
µSIC, that has been especially designed for the sensor (Figure 18.1).

The gyro chip consists of a three-layer silicon wafer stack, in which the
middle layer contains the sensor element. The sensor consists of two wing pairs
that are connected to a common frame by a set of beam elements (Figure 18.2
and 18.3); this is the reason the gyro is called the Butterfly. Since the structure
is manufactured using an anisotropic wet-etch process, the connecting beams
are slanted. This makes it possible to keep all electrodes, both for capacitive
excitation and detection, confined to one layer beneath the two wing pairs.
The excitation electrodes are the smaller dashed areas shown in Figure 18.2.
The detection electrodes correspond to the four larger ones.

By applying DC-biased AC-voltages to the four pairs of small electrodes,
the wings are forced to vibrate in anti-phase in the wafer plane. This is the
excitation mode. As the structure rotates about the axis of sensitivity (Fig-
ure 18.2), each of the masses will be affected by a Coriolis acceleration. This
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Fig. 18.1. The Butterfly and µSIC mounted together.

acceleration can be represented as an inertial force that is applied at right
angles with the external angular velocity and the direction of motion of the
mass. The Coriolis force induces an anti-phase motion of the wings out of the
wafer plane. This is the detection mode. The external angular velocity can
be related to the amplitude of the detection mode, which is measured via the
large electrodes.

The partial differential equation for the displacement field of the gyro is
governed by the standard linear equations of three-dimensional elastodynam-
ics:

σij,j + fi = ρüi, (18.1)

where ρ is the mass density, σij is the stress tensor, fi represents external loads
(such as Coulomb forces) and ui are the components of the displacement field.
The constitutive stress-strain relation of a linear, anisotropic solid is given by

σij =
1

2
Cijkl (ui,j + uj,i) , (18.2)

where Cijkl is the elastic moduli tensor.

18.2 The Benefits of Model Order Reduction

When planning for and making decisions on future improvements of the But-
terfly, it is of importance to improve the efficiency of the gyro simulations.
Repeated analyses of the sensor structure have to be conducted with respect to
a number of important issues. Examples of such are sensitivity to shock, linear
and angular vibration sensitivity, reaction to large rates and/or acceleration,
different types of excitation load cases and the effect of force-feedback.

The use of model order reduction indeed decreases runtimes for repeated
simulations. Moreover, the reduction technique enables a transformation of
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Fig. 18.2. Schematic layout of the Butterfly design.

the FE representation of the gyro into a state space equivalent formulation.
This will prove helpful in testing the model based Kalman signal processing
algorithms that are being designed for the Butterfly gyro.

The structural model of the gyroscope has been done in ANSYS using
quadratic tetrahedral elements (SOLID187, Figure 18.3). The model shown is
a simplified one with a coarse mesh as it is designed to test the model reduction
approaches. It includes the pure structural mechanics problem only. The load
vector is composed from time-varying nodal forces applied at the centers of
the excitation electrodes (Figure 18.2). The amplitude and frequency of each
force is equal to 0.055 µN and 2384 Hz, respectively. The Dirichlet boundary
conditions have been applied to all DOFs of the nodes belonging to the top
and bottom surfaces of the frame. The output nodes are listed in Table 18.2
and correspond to the centers of the detection electrodes.

Fig. 18.3. Finite element mesh of the gyro with a background photo of the gyro
wafer pre-bonding.

The discretized structural model

Mẍ+ Eẋ+Kx = Bu
y = Cx

(18.3)
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contains the mass and stiffness matrices. The damping matrix is modeled as
αM + βK, where the typical values are α = 0 and β = 10−6, respectively.
The nature of the damping matrix is in reality more complex (squeeze film
damping, thermo-elastic damping, etc.) but this simple approach has been
chosen with respect to the model reduction benchmark.

The dynamic model has been converted to Matrix Market format by means
of mor4ansys. The statistics for the matrices is shown in Table 18.1.

Table 18.1. System matrices for the gyroscope.

matrix m n nnz Is symmetric?

M 17361 17361 178896 yes
K 17361 17361 519260 yes
B 17361 1 8 no
C 12 17361 12 no

Table 18.2. Outputs for the Butterfly Gyro Model.

# Code Comment

1-3 det1m Ux, det1m Uy, det1m Uz Displ. of det. elect. 1, hardpoint #601
4-6 det1p Ux, det1p Uy, det1p Uz Displ. of det. elect. 2, hardpoint #602
7-9 det2m Ux, det2m Uy, det2m Uz Displ. of det. elect. 3, hardpoint #603

10-12 det2p Ux, det2p Uy, det2p Uz Displ. of det. elect. 4, hardpoint #604

The benchmark has been used in [LDR04] where the problem is also de-
scribed in more detail.
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Summary. Several generalized state-space models arising from a semi-discretization
of a controlled heat transfer process for optimal cooling of steel profiles are pre-
sented. The model orders differ due to different levels of refinement applied to the
computational mesh.

19.1 The Model Equations

We consider the problem of optimal cooling of steel profiles. This problem
arises in a rolling mill when different steps in the production process require
different temperatures of the raw material. To achieve a high production rate,
economical interests suggest to reduce the temperature as fast as possible to
the required level before entering the next production phase. At the same
time, the cooling process, which is realized by spraying cooling fluids on the
surface, has to be controlled so that material properties, such as durability or
porosity, achieve given quality standards. Large gradients in the temperature
distributions of the steel profile may lead to unwanted deformations, brittle-
ness, loss of rigidity, and other undesirable material properties. It is therefore
the engineers goal to have a preferably even temperature distribution. For a
picture of a such cooling plant see Figure 19.1.

The scientific challenge here is to give the engineers a tool to pre-calculate
different control laws yielding different temperature distributions in order to
decide which cooling strategy to choose.

We can only briefly introduce the model here; for details we refer to [Saa03]
or [BS04]. We assume an infinitely long steel profile so that we may restrict
ourselves to a 2D model. Exploiting the symmetry of the workpiece, the com-
putational domain Ω ⊂ R

2 is chosen as the half of a cross section of the
rail profile. The heat distribution is modeled by the instationary linear heat
equation on Ω:
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c$∂tx(t, ξ)− λ∆x(t, ξ) = 0 in R>0 ×Ω,
x(0, ξ) = x0(ξ) in Ω,

λ∂νx(t, ξ) = gi on R>0 × Γi, ∂Ω =
⋃
i

Γi,
(19.1)

where x is the temperature distribution (x ∈ H1([0,∞], X) with X := H1(Ω)
being the state space), c the specific heat capacity, λ the heat conductivity
and $ the density of the rail profile. We split the boundary into several parts
Γi on which we have different boundary functions gi, allowing us to vary the
controls on different parts of the surface. By ν we denote the outer normal of
the boundary.
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Fig. 19.1. Initial mesh, partitioning of the boundary, and a picture of a cooling
plant.

We want to establish the control by a feedback law, i.e., we define the
boundary functions gi to be functions of the state x and the control ui, where
(ui)i =: u = Fy for a linear operator F which is chosen such that the cost
functional

J (x0, u) :=

∫ ∞

0

(Qy, y)Y + (Ru, u)Udt, with y = Cx (19.2)

is minimized. Here, Q and R are linear selfadjoint operators on the output
space Y and the control space U with Q ≥ 0, R > 0, and C ∈ L(X,Y ).

The variational formulation of (19.1) with gi(t, ξ) = qi(ui − x(ξ, t)) leads
to:

(∂tx, v) = −
∫

Ω

α∇x∇vdx+
∑

k

(
qkuk

∫
Γk

1

c$
v dσ −

∫
Γk

qk

c$
xv dσ

)
(19.3)

for all v ∈ C∞0 (Ω). Here the uk are the exterior (cooling fluid) temperatures
used as the controls, qk are constant heat transfer coefficients (i.e. parameters
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for the spraying intensity of the cooling nozzles) and α := λ
c� . Note that

q0 = 0 yields the Neumann isolation boundary condition on the artificial
inner boundary on the symmetry axis.

In view of (19.3), we can now apply a standard Galerkin approach for
discretizing the heat transfer model in space, resulting a first-order ordinary
differential equation. This is described in the following section.

19.2 The Discretized Mathematical Model

For the discretization we use the ALBERTA-1.2 fem-toolbox (see [SS00] for
details). We applied linear Lagrange elements and used a projection method
for the curved boundaries. The initial mesh (see Figure 19.1. on the left) was
produced by Matlabs pdetool which implements a Delaunay triangulation
algorithm. The finer discretizations were produce by global mesh refinement
using a bisection refinement method.

The discrete LQR problem is then: minimize (19.2) with respect to

Eẋ(t) = Ax(t) +Bu(t), with t > 0, x(0) = x0,
y(t) = Cx(t).

(19.4)

This benchmark includes four different mesh resolutions. The best approxi-
mation error of the finite element discretization that one can expect (under
suitable smoothness assumptions on the solution) is of order O(h2) where
h is the maximum edge size in the corresponding mesh. This order should
be matched in a model reduction approach. The following table lists some
relevant quantities for the provided models.

matrix dimension non-zeros in A non-zeros in E
maximum mesh
width (h)

1357 8985 8997 5.5280 10−2

5177 35185 35241 2.7640 10−2

20209 139233 139473 1.3820 10−2

79841 553921 554913 6.9100 10−3

Note that A is negative definite while E is positive definite, so that the
resulting linear time-invariant system is stable.

The data sets are named rail (problem dimension) C60.(matrix name).
Here C60 is a specific output matrix which is defined to minimize the tem-
perature in the node numbered 60 (see Figure 19.1) and to keep temperature
gradients small. The latter task is taken into account by the inclusion of
temperature differences between specific points in the interior and reference
points on the boundary, e.g. temperature difference between nodes 83 and 34.
Again refer to Figure 19.1. for the nodes used. The definitions of other output
matrices that we tested can be found in [Saa03].
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The problem resides at temperatures of approximately 1000℃ down to
about 500-700℃ depending on calculation time. The state values are scaled
to 1000℃ being equivalent to 1.000. This results in a scaling of the time line
with factor 100, meaning that calculated times have to be divided by 100 to
get the real time in seconds.
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für die Abkühlung von Stahlprofilen. Diplomarbeit, Fachbereich 3/Math-
ematik und Informatik, Universität Bremen, D-28334 Bremen, Septem-
ber 2003. Available from http://www-user.tu-chemnitz.de/∼saak/Data/
index.html.

[SS00] A. Schmidt and K. Siebert. ALBERT: An adaptive hierarchical finite
element toolbox. Preprint 06/2000 / Institut für Angewandte Mathe-
matik, Albert-Ludwigs-Universität Freiburg, edition: albert-1.0 edition,
2000. Available from http://www.mathematik.uni-freiburg.de/IAM/

ALBERT/doc.html.
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Summary. A model reduction test case is presented, which considers flow through
an actively controlled supersonic diffuser. The problem setup and computational
fluid dynamic (CFD) model are described. Sample model reduction results for two
transfer functions of interest are then presented.

20.1 Supersonic Inlet Flow Example

20.1.1 Overview and Motivation

This example considers unsteady flow through a supersonic diffuser as shown
in Figure 20.1. The diffuser operates at a nominal Mach number of 2.2, how-
ever it is subject to perturbations in the incoming flow, which may be due (for
example) to atmospheric variations. In nominal operation, there is a strong
shock downstream of the diffuser throat, as can be seen from the Mach con-
tours plotted in Figure 20.1. Incoming disturbances can cause the shock to
move forward towards the throat. When the shock sits at the throat, the inlet
is unstable, since any disturbance that moves the shock slightly upstream will
cause it to move forward rapidly, leading to unstart of the inlet. This is ex-
tremely undesirable, since unstart results in a large loss of thrust. In order to
prevent unstart from occurring, one option is to actively control the position
of the shock. This control may be effected through flow bleeding upstream
of the diffuser throat. In order to derive effective active control strategies, it
is imperative to have low-order models which accurately capture the relevant
dynamics.

20.1.2 Active Flow Control Setup

Figure 20.2 presents the schematic of the actuation mechanism. Incoming
flow with possible disturbances enters the inlet and is sensed using pressure
sensors. The controller then adjusts the bleed upstream of the throat in order
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Fig. 20.1. Steady-state Mach contours inside diffuser. Freestream Mach number is
2.2.

to control the position of the shock and to prevent it from moving upstream. In
simulations, it is difficult to automatically determine the shock location. The
average Mach number at the diffuser throat provides an appropriate surrogate
that can be easily computed.

Fig. 20.2. Supersonic diffuser active flow control problem setup.

There are several transfer functions of interest in this problem. The shock
position will be controlled by monitoring the average Mach number at the
diffuser throat. The reduced-order model must capture the dynamics of this
output in response to two inputs: the incoming flow disturbance and the bleed
actuation. In addition, total pressure measurements at the diffuser wall are
used for sensing. The response of this output to the two inputs must also be
captured.

20.1.3 CFD Formulation

The unsteady, two-dimensional flow of an inviscid, compressible fluid is gov-
erned by the Euler equations. The usual statements of mass, momentum, and
energy can be written in integral form as

∂

∂t

∫∫
ρ dV +

∮
ρQ · dA = 0 (20.1)

∂

∂t

∫∫
ρQ dV +

∮
ρQ (Q · dA) +

∮
p dA = 0 (20.2)

∂

∂t

∫∫
ρE dV +

∮
ρH (Q · dA) +

∮
pQ · dA = 0, (20.3)
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where ρ, Q, H, E, and p denote density, flow velocity, total enthalpy, energy,
and pressure, respectively.

The CFD formulation for this problem uses a finite volume method and
is described fully in [Las02, LW03]. The unknown flow quantities used are
the density, streamwise velocity component, normal velocity component, and
enthalpy at each point in the computational grid. Note that the local flow
velocity components q and q⊥ are defined using a streamline computational
grid that is computed for the steady-state solution. q is the projection of the
flow velocity on the meanline direction of the grid cell, and q⊥ is the normal-
to-meanline component. To simplify the implementation of the integral energy
equation, total enthalpy is also used in place of energy. The vector of unknowns
at each node i is therefore

xi =
[
ρi , qi , q

⊥
i , Hi

]T
(20.4)

Two physically different kinds of boundary conditions exist: inflow/outflow
conditions, and conditions applied at a solid wall. At a solid wall, the usual
no-slip condition of zero normal flow velocity is easily applied as q⊥ = 0.
In addition, we will allow for mass addition or removal (bleed) at various
positions along the wall. The bleed condition is also easily specified. We set

q⊥ =
ṁ

ρ
, (20.5)

where ṁ is the specified mass flux per unit length along the bleed slot. At
inflow boundaries, Riemann boundary conditions are used. For the diffuser
problem considered here, all inflow boundaries are supersonic, and hence we
impose inlet vorticity, entropy and Riemann’s invariants. At the exit of the
duct, we impose outlet pressure.

20.1.4 Linearized CFD Matrices

The two-dimensional integral Euler equations are linearized about the steady-
state solution to obtain an unsteady system of the form

E
dx

dt
= Ax +Bu y = Cx (20.6)

The descriptor matrix E arises from the particular CFD formulation. In ad-
dition, the matrix E contains some zero rows that are due to implementation
of boundary conditions.

For the results given here, the CFD model has 3078 grid points and 11,730
unknowns.

20.2 Model Reduction Results

Model reduction results are presented using the Fourier model reduction
(FMR) method. A description of this method and more detailed discussion of
its application to this test case can be found in [WM04].
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The first transfer function of interest is that between bleed actuation and
average Mach number at the throat. Bleed occurs through small slots located
on the lower wall between 46% and 49% of the inlet overall length. Frequencies
of practical interest lie in the range f/f0 = 0 to f/f0 = 2, where f0 = a0/h, a0

is the freestream speed of sound and h is the height of the diffuser. Figure 20.3
shows the magnitude and phase of this transfer function as calculated by the
CFD model and FMR reduced-order models with five and ten states. While
the model with five states has some error, with just ten states the results are
almost indistinguishable.
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Fig. 20.3. Transfer function from bleed actuation to average throat Mach number
for supersonic diffuser. Results from CFD model (n = 11, 730) are compared to
reduced-order models with five and ten states derived from an FMR model using
200 Fourier coefficients to derive a Hankel matrix that is further reduced via balanced
truncation.

FMR is also applied to the transfer function between an incoming density
perturbation and the average Mach number at the diffuser throat. This trans-
fer function represents the dynamics of the disturbance to be controlled and is
shown in Figure 20.4. As the figure shows, the dynamics contain a delay, and
are thus more difficult for the reduced-order model to approximate. Results
are shown for FMR with using 200 Fourier coefficients. The parameter ω0 is
used to define the bilinear transformation to the discrete frequency domain.
Results are shown for two values of ω0 = 5 and ω0 = 10. With ω0 = 5, the
model has significant error for frequencies above f/f0 = 2. Choosing a higher
value of ω0 improves the fit, although some discrepancy remains. These higher
frequencies are unlikely to occur in typical atmospheric disturbances, however
if they are thought to be important, the model could be further improved by
either evaluating more Fourier coefficients, or by choosing a higher value of
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ω0. The ω0 = 10 model is further reduced via balanced truncation to a system
with thirty states without a noticeable loss in accuracy.
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Fig. 20.4. Transfer function from incoming density perturbation to average throat
Mach number for supersonic diffuser. Results from CFD model (n = 11, 730) are
compared to 200th-order FMR models with ω0 = 5, 10. The ω0 = 10 model is further
reduced to k = 30 via balanced truncation.
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21.1 Introduction

Second order systems take the form

Mẍ+ Cẋ+Kx = f . (21.1)

Equations of this form typically arise in vibrating systems in structures and
acoustics. The number of equations in (21.1) varies from a few thousands to
a few million. In this section, we present two small test cases.

21.2 Linear-Drive Multi-Mode Resonator

This example is from the simulation of a linear-drive multi-mode resonator
structure [CZP98]. This is a nonsymmetric second-order system. The mass
and damping matrices M and D are singular. The stiffness matrix K is ill-
conditioned due to the multi-scale of the physical units used to define the
elements of K, such as the beam’s length and cross sectional area, and its
moment of inertia and modulus of elasticity.

Padé type methods usually require linear solves with K. The 1-norm con-
dition number of K is of the order of O(1015). Therefore, we suggest the use
of the expansion point s0 = 2 × 105π, which is the same as in [CZP98]. The

condition number of the transformed stiffness matrix K̃ = s20M + s0D+K is
slightly improved to O(1013). The unreduced problem has dimension N = 63.
The frequency range of interest of this problem is [102, 106]Hz.
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21.3 Axi Symmetric Model of Circular Piston

The numerical simulation of large-size acoustic problems is a major concern
in many industrial sectors. Such simulations can rely on various techniques
(boundary elements, finite elements, finite differences). Exterior acoustic prob-
lems are characterized by unbounded acoustic domains. In this context, the
above numerical techniques have particular features that could affect com-
putational performances. Boundary element methods (BEM) are based on a
suitable boundary integral representation and allow for a preliminary reduc-
tion of the problem to be solved (use of a surface mesh instead of a volume
mesh) and for the automatic handling of the Sommerfeld radiation condi-
tion. Related matrices are however dense and non-uniqueness issues require
an appropriate treatment (overdetermination procedure, combined integral
form). Domain-based methods, on the other hand, do not provide direct ca-
pabilities for handling exterior acoustics. This is why finite elements (FEM)
should be combined with non-reflecting boundary conditions (as the Dirichlet-
to-Neumann technique) or infinite elements in order to address the problem
properly. The resulting matrices are generally sparse but involve more un-
knowns. A more complete description and comparison of numerical techniques
for exterior acoustics can be found in [Giv92] [HH92] [SB98].

This is an example from an acoustic radiation problem discussed in [PA91].
Consider a circular piston subtending a polar angle 0 < θ < θp on a submerged
massless and rigid sphere of radius δ. The piston vibrates harmonically with
a uniform radial acceleration. The surrounding acoustic domain is unbounded
and is characterized by its density ρ and sound speed c.

We denote by p and ar the prescribed pressure and normal acceleration
respectively. In order to have a steady state solution p̃(r, θ, t) verifying

p̃(r, θ, t) = Re
(
p(r, θ)eiωt

)
,

the transient boundary condition is chosen as:

ar =
−1

ρ

∂p(r, θ)

∂r

∣∣∣∣
r=a

=

{
a0 sin(ωt), 0 ≤ θ ≤ θp,
0, θ > θp.

The axisymmetric discrete finite-infinite element model relies on a mesh of
linear quadrangle finite elements for the inner domain (region between spher-
ical surfaces r = δ and r = 1.5δ). The numbers of divisions along radial and
circumferential directions are 5 and 80, respectively. The outer domain relies
on conjugated infinite elements of order 5. For this example we used δ = 1(m),
ρ = 1.225(kg/m3), c = 340(m/s), a0 = 0.001(m/s2) and ω = 1000(rad/s).

This example is a model of the form (21.1) with M , C, and K non-
symmetric matrices and M singular. This is thus a differential algebraic equa-
tion. It is shown that it has index one [CMR03]. The input of the system is f ,
the output is the state vector x. The motivation for using model reduction for
this type of problems is the reduction of the computation time of a simulation.
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The matrices K, C, M and the right-hand side f are computed by
MSC.Actran [FFT04]. The dimension of the second-order system is N = 2025.

References

[CMR03] Coyette, J.-P., Meerbergen, K., Robbé, M.: Time integration for spherical
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Summary. RCL networks are widely used for the modeling and simulation of the
interconnect of today’s complex VLSI circuits. In realistic simulations, the number
of these RCL networks and the number of circuit elements of each of these networks
is so large that model reduction has become indispensable. We describe the general
class of descriptor systems that arise in the simulation of RCL networks, and mention
two particular benchmark problems.

22.1 Motivation

Today’s state-of-the-art VLSI circuits contain hundreds of millions of tran-
sistors on a single chip, together with a complex network of “wires”, the
so-called interconnect. In fact, many aspects of VLSI circuits, such as timing
behavior, signal integrity, energy consumption, and power distribution, are
increasingly dominated by the chip’s interconnect. For simulation of the inter-
connect’s effects, the standard approach is to stay within the well-established
lumped-circuit paradigm [VS94] and model the interconnect by simple, but
large subcircuits that consist of only resistors, capacitors, and inductors; see,
e.g., [CLLC00, KGP94, OCP98]. However, realistic simulations require a very
large number of such RCL subcircuits, and each of these subcircuits usually
consists of a very large number of circuit elements. In order to handle these
large subcircuits, model-order reduction methods have become standard tools
in VLSI circuit simulation. In fact, many of the Krylov subspace-based re-
duction techniques for large-scale linear dynamical systems were developed in
the context of VLSI circuit simulation; see, e.g., [FF94, Fre00, Fre03] and the
references given there.

In this brief note, we describe the general class of descriptor systems that
arise in the simulation of RCL subcircuits, and mention two particular bench-
mark problems.
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22.2 Modeling

We consider general linear RCL circuits that consist of only resistors, capaci-
tors, inductors, voltage sources, and current sources. The voltage and current
sources drive the circuit, and the voltages and currents of these sources are
viewed as the inputs and outputs of the circuit. Such RCL circuits are mod-
eled as directed graphs whose edges correspond to the circuit elements and
whose nodes correspond to the interconnections of the circuit elements; see,
e.g., [VS94]. For current sources, the direction of the corresponding edge is
chosen as the direction of the current flow, and for voltages sources, the direc-
tion of the corresponding edge is chosen from “+” to “-” of the source. For the
resistors, capacitors, and inductors, the direction of the currents through these
elements is not known beforehand, and so arbitrary directions are assigned to
the edges corresponding to these elements. The directed graph is described
by its incidence matrix A =

[
ajk

]
. The rows and columns of A correspond to

the nodes and edges of the directed graph, respectively, where ajk = 1 if edge
k leaves node j, ajk = −1 if edge k enters node j, and ajk = 0 otherwise.

We denote by vn the vector of nodal voltages, i.e., the j-th entry of vn is
the voltage at node j. We denote by ve and ie the vectors of edge voltages and
currents, respectively, i.e., the k-th entry of ve is the voltage across the circuit
element corresponding to edge k, and the k-th entry of ie is the current through
the circuit element corresponding to edge k. Finally, we use subscripts r, c,
l, v, and i to denote edge quantities that correspond to resistors, capacitors,
inductors, voltage sources, and current sources of the RCL circuit, respectively,
and we assume that the edges are ordered such that we have the following
partitionings:

A =
[
Ar Ac Al Av Ai

]
, ve =

⎡⎢⎢⎢⎢⎣
vr

vc

vl

vv

vi

⎤⎥⎥⎥⎥⎦ , ie =

⎡⎢⎢⎢⎢⎣
ir
ic
il
iv
ii

⎤⎥⎥⎥⎥⎦ . (22.1)

The RCL circuit is described completely by three types of equations: Kirch-
hoff’s current laws (KCLs), Kirchhoff’s voltage laws (KVLs), and the branch
constitutive relations (BCRs); see, e.g., [VS94]. Using the partitionings (22.1),
these equations can be written compactly as follows. The KCLs state that

Arir +Acic +Alil +Aviv +Aiii = 0, (22.2)

the KVLs state that

AT
r vn = vr, AT

c vn = vc, AT
l vn = vl, AT

v vn = vv, AT
i vn = vi, (22.3)

and the BCRs state that

ir = R−1vr, ic = C
d

dt
vc, vl = L

d

dt
il. (22.4)
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Here, R and C are positive definite diagonal matrices whose diagonal entries
are the resistances and capacitances of the resistors and capacitors, respec-
tively. The diagonal entries of the symmetric positive definite matrix L are
the inductances of the inductors. Often L is also diagonal, but in general,
when mutual inductances are included, L is not diagonal. In (22.2)–(22.4),
the known vectors are the time-dependent functions vv = vv(t) and ii = ii(t)
the entries of which are the voltages and currents of the voltage and current
sources, respectively. All other vectors are unknown time-dependent functions.

22.3 Formulation as First-Order Descriptor Systems

The circuit equations (22.2)–(22.4) can be rewritten in a number of different
ways. For example, for the special case of RCL circuits driven only by volt-
age sources, a formulation as systems of first-order integro-DAEs is given in
Chapter 8.

Here, we present a formulation of (22.2)–(22.4) as a structured descriptor
system. Recall that the currents ii(t) of the current sources, and the voltages
vv(t) of the voltage sources are known functions of time. In the setting of a
descriptor system, these quantities are the entries of the system’s input vector
u(t) as follows:

u(t) =

[
−ii(t)
vv(t)

]
. (22.5)

The voltages vi(t) across the current sources, and the currents iv(t) through
the voltage sources, are unknown functions of time, and these quantities are
the entries of the system’s output vector y(t) as follows:

y(t) =

[
vi(t)
−iv(t)

]
. (22.6)

Note that we can use the first three equations in (22.3) and the BCRs (22.4)
to readily eliminate the parts vr, vc, vl of the edge voltages and the parts ir,
ic of the edge currents. Therefore, in addition to the input and output vari-
ables (22.5) and (22.6), only the nodal voltages vn and the inductor currents
il remain as unknowns, and we define the system’s state vector x(t) as follows:

x(t) =

⎡⎣vn(t)
il(t)
iv(t)

⎤⎦ . (22.7)

Performing the above eliminations of vr, vc, vl, ir, ic and using (22.5)–(22.7),
one easily verifies that the RCL circuit equations (22.2)–(22.4) are equivalent
to the descriptor system,

E d

dt
x(t) = Ax(t) + B u(t),

y(t) = BTx(t),

(22.8)
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where

A := −

⎡⎣ArR
−1AT

r Al Av

−AT
l 0 0

−AT
v 0 0

⎤⎦ , E :=

⎡⎣AcCA
T
c 0 0

0 L 0
0 0 0

⎤⎦ ,

B :=

⎡⎣Ai 0
0 0
0 −I

⎤⎦ ,
(22.9)

and I denotes the identity matrix. Moreover, the block sizes in (22.9) corre-
spond to the partitionings of the input, output, and state vectors in (22.5)–
(22.7).

22.4 Two Particular Benchmark Problems

The first benchmark problem, called the PEEC problem, is a circuit resulting
from the so-called PEEC discretization [Rue74] of an electromagnetic problem.
The circuit is an RCL circuit consisting of 2100 capacitors, 172 inductors, 6990
inductive couplings, and a resistive source that drives the circuit.

Table 22.1. System matrices for the PEEC problem.

matrix n m nnz Is symmetric?

A 306 306 696 no
E 306 306 18290 yes
B 306 2 2 no

The second example, called the package problem, is a 64-pin package model
used for an RF integrated circuit. Only eight of the package pins carry signals,
the rest being either unused or carrying supply voltages. The package is char-
acterized as a 16-port component (8 exterior and 8 interior terminals). The
package model is described by approximately 4000 circuit elements, resistors,
capacitors, inductors, and inductive couplings.

Table 22.2. System matrices for the package problem.

matrix n m nnz Is symmetric?

A 1841 1841 5881 no
E 1841 1841 5196 yes
B 1841 16 24 no



22 RCL circuit equations 371

22.5 Acknowledgment

The author is indebted to Peter Feldmann for first introducing him to VLSI
circuit simulation, and also for providing the two benchmark problems men-
tioned in this paper.

References

[CLLC00] C.-K. Cheng, J. Lillis, S. Lin, and N. H. Chang. Interconnect analysis
and synthesis. John Wiley & Sons, Inc., New York, New York, 2000.

[FF94] P. Feldmann and R. W. Freund. Efficient linear circuit analysis by Padé
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Summary. A symmetric generalized state-space model of a spiral inductor is ob-
tained by the inductance extraction software package Fasthenry.

23.1 Fasthenry

Fasthenry[KTW94] is a software program which computes the frequency-
dependent resistances and inductances of complicated three-dimensional pack-
ages and interconnect, assuming operating frequencies up to the multi-
gigahertz range. Specifically, it computes the complex frequency-dependent
impedance matrix Zp(ω) ∈ C

p×p of a p-terminal set of conductors, such as an
electrical package or a connector, where Zp(ω) satisfies

Zp(ω)Ip(ω) = V p(ω).

The quantities Ip, V p ∈ C
p are the vectors of terminal current and voltage

phasors, respectively. The frequency-dependent resistance and inductance ma-
trices Rp(ω) and Lp(ω) are related to Zp(ω) by:

Zp(ω) = Rp(ω) + iωLp(ω), (23.1)

and are important physical quantities to be preserved in reduced models.
To compute Zp(ω), Fasthenry generates an equivalent circuit for the struc-

ture to be analyzed from the magneto-quasistatic Maxwell equations via the
mesh-formulated partial element equivalent circuit (PEEC) approach using
multipole acceleration. To model current flow, the interior of the conductors
is divided into volume filaments, each of which carries a constant current den-
sity along its length. In order to capture skin and proximity effects, the cross
section of each conductor is divided into bundles of filaments. In fact, many
thin filaments are needed near the surface of the conductors to capture the
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current crowding near the conductor surfaces at high frequencies (the skin
effect). The interconnection of the filaments, plus the sources at the terminal
pairs, generates a “circuit” whose solution gives the desired inductance and
resistance matrices. For complicated structures, filaments numbering in the
tens of thousands are not uncommon.

To derive a system of equations for the circuit of filaments, sinusoidal
steady-state is assumed, and following the partial inductance approach in
[Rue72], the filament current phasors can be related to the filament voltage
phasors by

ZIb = V b, (23.2)

where V b, Ib ∈ C
b, b is the number of filaments (number of branches in the

circuit), and Z ∈ C
b×b is the complex impedance matrix given by

Z = R+ iωL, (23.3)

where ω is the excitation frequency. The entries of the diagonal matrix R ∈
R

b×b represent the dc resistance of each current filament, and L ∈ R
b×b is the

dense matrix of partial inductances. The partial inductance matrix is dense
since every filament is magnetically coupled to every other filament in the
problem.

To apply the circuit analysis technique known as Mesh Analysis, Kirch-
hoff’s voltage law is explicitly enforced, which implies that the sum of the
branch voltages around each mesh in the network is zero (a mesh is any loop
of branches in the graph which does not enclose any other branches). This
relation is represented by

MV b = V s MT Im = Ib, (23.4)

where V s ∈ C
m is the mostly zero vector of source branch voltages, Im ∈ C

m

is the vector of mesh currents, M ∈ R
m×b is the mesh matrix. Here, m is

the number of meshes, which is typically somewhat less than b, the number of
filaments. The terminal source currents and voltages of the p-conductor system
Ip and V p are related to the mesh quantities by Ip = NT Im, V s = NV p, where
N ∈ R

m×p is a terminal incidence matrix determined by the mesh formulation.
Combining (23.4) and (23.2) yields

MZMT Im = V s,

from which we obtain

Ip = NT (MZMT )−1NV p,

which gives the desired complex impedance matrix

Zp(ω) = (NT (R̃+ iωL̃)−1N)−1,

where L̃ = MLMT ∈ R
m×m is the dense mesh inductance matrix, R̃ =

MRMT ∈ R
m×m is the sparse mesh resistance matrix.
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Finally, we can write the mesh analysis circuit equations in the generalized
state-space form:

E
dx

dt
= Ax+Bu, (23.5)

y = BTx, (23.6)

where E := L̃ and A := −R̃ are both symmetric matrices, B = N , and u and
y are the time-domain transforms of V p and Ip, respectively. The transfer
function of (23.5-23.6) evaluated on the imaginary axis gives the inverse of
Zp(ω):

Zp(ω) = (G(iω))−1.

23.2 Spiral Inductor

This inductor which first appeared in [KWW00] is intended as an integrated
RF passive inductor. To make it also a proximity sensor, a 0.1µm plane of
copper is added 45µm above the spiral. The spiral is also copper with turns
40µm wide, 15µm thick, with a separation of 40µm. The spiral is suspended
55µm over the substrate by posts at the corners and centers of the turns
in order to reduce the capacitance to the substrate. (Note that neither the
substrate nor the capacitance is modeled in this example.) The overall extent
of the suspended turns is 1.58mm × 1.58mm. The spiral inductor, including
part of the overhanging plane, is shown in Figure 23.1. In Figures 2(a) and
2(b), we show the resistance and impedance responses (the Rp(ω) and Lp(ω)
matrices from (23.1)) of the spiral inductor corresponding to a PEEC model
using 2117 filaments (state-space matrices of order 1434, single-input single-
output). The frequency dependence of the resistance shows two effects, first
a rise due to currents induced in the copper plane and then a much sharper
rise due to the skin effect. Capturing the rise due to the skin effect while
also maintaining the low frequency response is a challenge for many model
reduction algorithms.

23.3 Symmetric Standard State-Space System

For certain applications one may prefer to change the generalized state-space
model (23.5-23.6) to the standard state-space form. The following is a way
of effecting the transformation while preserving symmetry and follows the
approach used in [MSKEW96].

The mesh inductance matrix L̃ is symmetric and positive definite. Hence,
it has a unique symmetric positive definite square root, L̃

1
2 , satisfying L̃

1
2 L̃

1
2 =

L̃. Then we use the coordinate transformation x̃ = L̃
1
2x to obtain the standard

state-space system:
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Fig. 23.1. Spiral inductor with part of overhanging copper plane
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Fig. 23.2. PEEC model of spiral inductor using 2117 filaments

dx̃

dt
= Ãx̃+ B̃u, (23.7)

y = B̃T x̃, (23.8)

where Ã = −L̃− 1
2 R̃L̃− 1

2 is symmetric (L̃− 1
2 is symmetric) and B̃ = BL̃− 1

2 .
If the original matrices are too large for testing purposes when comparing

with methods requiring O(n3) work, applying the Prima[OCP98] algorithm
to the generalized state-space model in (23.5-23.6) with a reduction order of
around 100 will produce a smaller system with virtually the same frequency
response. Indeed this is what has been done when this example was used
previously in numerous papers, including [LWW99].

Note

We make a note here that the example first used in [LWW99] and subsequently
in other papers comes from a finer discretization of the spiral inductor than
shown here. That example started with state-spaces matrices of order 1602
(compared to order 1434 here). The order 500 system was obtained by running
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Prima with a reduction order of 503. Due to the loss of orthogonality of the
Arnoldi vectors the reduced matrix Er has three zero eigenvalues. The modes
corresponding to the zero eigenvalues were simply removed to give a new
positive definite Er matrix and a system of order 500. The frequency response
of the resulting system is indistinguishable from the original.
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Summary. We present a benchmark collection containing some useful real world
examples, which can be used to test and compare numerical methods for model
reduction. All systems can be downloaded from the web and we describe here the
relevant characteristics of the benchmark examples.

24.1 Introduction

In this paper we describe a number of benchmark examples for model reduction
of linear time-invariant systems of the type{

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(24.1)

with an associated transfer function matrix

G(s) = C(sIN −A)−1B +D. (24.2)

The matrices of these models are all real and have the following dimensions :
A ∈ R

N×N , B ∈ R
N×m, C ∈ R

p×N , and D ∈ R
p×m. The systems are all

stable and minimal and the number of state variables N is thus the order of
the system. In model reduction one tries to find a reduced order model,{

˙̂x(t) = Âx̂(t) + B̂û(t)

ŷ(t) = Ĉx̂(t) + D̂û(t)
(24.3)

of order n � N , such that the transfer function matrix Ĝ(s) = Ĉ(sIn −
Â)−1B̂ + D̂ approximates G(s) in a particular sense, and model reduction
methods differ typically in the error measure that is being minimized. In as-
sessing the quality of the reduced order model, one often looks at the following
characteristics of the system to be approximated
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• the eigenvalues of A (or at least the closest ones to the jω axis), which
are also the poles of G(s)

• the controllability Gramian Gc and observability Gramian Go of the system,
which are the solutions of the Lyapunov equations

AGc + GcA
T +BBT = 0, ATGo + GoA+ CTC = 0

• the singular values of the Hankel map – called the Hankel singular values
(HSV) – which are also the square-roots of the eigenvalues of GcGo

• the largest singular value of the transfer function as function of frequency
– called the frequency response –

σ(ω) = ‖G(jω)‖2.

These characteristics can be compared with those of the reduced order model
Ĝ(s). Whenever they are available, we give all of the above properties for the
benchmark examples we discuss in this paper. The data files for the examples
can be recovered from http://www.win.tue.nl/niconet/niconet.html. For each
example we provide the matrix model {A,B,C,D}, and (when available) the
poles, the Gramians, the Hankel singular values, a frequency vector and the
corresponding frequency response. For more examples and additional details
of the examples of this paper, we refer to [CV02]. Some basic parameters of
the benchmarks discussed in the paper are given below.

Section Example (Acronym) Sparsity N m p
2 Earth Atmosphere (ATMOS) no 598 1 1
3 Orr-Sommerfeld (ORR-S) no 100 1 1
4 Compact Disc player (C-DISC) yes 120 2 2
5 Random (RAND) yes 200 1 1
6 Building (BUILD-I) yes 48 1 1
6 Building (BUILD-II) yes 52788 1 1
6 Clamped Beam (BEAM) yes 348 1 1
7 Intern. Space Station (ISS-I) yes 270 3 3
7 Intern. Space Station (ISS-II) yes 1412 3 3

24.2 Earth Atmospheric Example (ATMOS)

This is a model of an atmospheric storm track [FI95]. In order to simulate the
lack of coherence of the cyclone waves around the Earth’s atmosphere, linear
damping at the storm track’s entry and exit region is introduced. The per-
turbation variable is the perturbation geopotential height. The perturbation
equations for single harmonic perturbations in the meridional (y) direction of
the form φ(x, z, t)eily are :

∂φ

∂t
= ∇−2

[
− z∇2Dφ− r(x)∇2φ

]
,
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Fig. 24.1. Frequency response (ATMOS)
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Fig. 24.2. Eigenvalues of A (ATMOS)
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where ∇2 is the Laplacian ∂2

∂x2 + ∂2

∂z2 − l2 and D = ∂
∂x . The linear damping

rate r(x) is taken to be r(x) = h(2− tanh[(x− π
4 )/δ]+ tanh[(x− 7π

2 )/δ]). The
boundary conditions are expressing the conservation of potential temperature
(entropy) along the solid surfaces at the ground and tropopause:

∂2φ

∂t∂z
= −zD∂φ

∂z
+Dφ− r(x)

∂φ

∂z
at z = 0,

∂2φ

∂t∂z
= −zD∂φ

∂z
+Dφ− r(x)

∂φ

∂z
at z = 1.

The dynamical system is written in generalized velocity variables ψ =
(−∇2)

1
2φ so that the dynamical system is governed by the dynamical op-

erator:
A = (−∇2)

1
2∇−2

(
− zD∇2 + r(x)∇2

)
(−∇2)−

1
2 .

where the boundary equations have rendered the operators invertible. We refer
to [FI95] for more details, including the type of discretization that was used.
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24.3 Orr-Sommerfeld Equation (ORR-S)

The Orr-Sommerfeld operator for the Couette flow in perturbation velocity
variables is given by :

A = (−D2)
1
2D−2

(
− ijkD2 +

1

Re
D4

)
(−D2)−

1
2

where D := d
dy and appropriate boundary conditions have been introduced so

that the inverse operator is defined. Here, Re is the Reynolds number and k is
the wave-number of the perturbation. This operator governs the evolution of 2-
dimensional perturbations. The considered matrix is a 100×100 discretization
for a Reynolds number Re = 800 and for k = 1. We refer to [FI01] for more
details, including the type of discretization that was used.
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24.4 Compact Disc Player Example (C-DISC)

The CD player control task is to achieve track following, which amounts to
pointing the laser spot to the track of pits on a CD that is rotating. The mech-
anism that is modeled consists of a swing arm on which a lens is mounted by
means of two horizontal leaf springs. The rotation of the arm in the horizontal
plane enables reading of the spiral-shaped disc-tracks, and the suspended lens
is used to focus the spot on the disc. Since the disc is not perfectly flat and
since there are irregularities in the spiral of pits on the disc, the challenge is
to find a low-cost controller that can make the servo-system faster and less
sensitive to external shocks. We refer to [DSB92, WSB96] for more details.

It is worth mentioning here that this system is already a reduced order
model obtained via modal approximation from a larger rigid body model
(which is a second order model).
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Fig. 24.7. Frequency response (C-DISC)
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Fig. 24.8. Eigenvalues of A (C-DISC)

0 20 40 60 80 100 120
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

Fig. 24.9. · · · svd(Gc), o svd(Go), − hsv

0 20 40 60 80 100 120

0

20

40

60

80

100

120

nz = 240

Fig. 24.10. Sparsity of A (C-DISC)



384 Younes Chahlaoui and Paul Van Dooren

1st input / 1st output

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−4

10
−2

10
0

10
2

10
4

10
6

frequency  (rad/sec)

ab
s(

g(
j.w

))
1st input / 2nd output

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

frequency  (rad/sec)

ab
s(

g(
j.w

))

2nd input / 1st output

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

frequency  (rad/sec)

ab
s(

g(
j.w

))

2nd input / 2nd output

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

frequency  (rad/sec)

ab
s(

g(
j.w

))

Fig. 24.11. Frequency responses of the 2-input 2-output system (C-DISC)
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24.5 Random Example (RAND)

This is a randomly generated example with an A matrix that is sparse and
stable, and has a prescribed percentage of nonzero elements. This is a simple
example to approximate but it is useful to compare convergence rates of iter-
ative algorithms. It is extracted from the Engineering thesis of V. Declippel
[DeC97].
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Fig. 24.13. Eigenvalues of A (RAND)
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24.6 Building Model

Mechanical systems are typically modeled as second order differential equa-
tions {

Mq̈(t) +Dq̇(t) + Sq(t) = Bqu(t),
y(t) = Cqq(t)

where u(t) is the input or forcing function, q(t) is the position vector, and
where the output vector y(t) is typically a function of the position vector.
Here M is the (positive definite) mass matrix, D is the damping matrix and
S is the stiffness matrix of the mechanical system. Since M is invertible, one
can use the extended state

x(t)T =
[
q(t)T q̇(t)T

]
to derive a linearized state space realization

A :=

[
0 I

−M−1S −M−1D

]
, B :=

[
0

M−1Bq

]
, C :=

[
Cq 0

]
or a weighted extended state

x(t)T =
[
q(t)TM− 1

2 q̇(t)TM− 1
2

]
yielding a more “symmetric” model

A :=

[
0 I

−Ŝ −D̂

]
, B :=

[
0

B̂q

]
, C :=

[
Ĉq 0

]
and where D̂ = M− 1

2DM− 1
2 , Ŝ = M− 1

2SM− 1
2 , B̂ = M− 1

2B and Ĉ = CM− 1
2 .

When M is the identity matrix, one can recover the original matrices from
the linearized model. If this is not the case, those matrices are also provided
in the benchmark data.

24.6.1 Simple Building Model (BUILD-I)

This is a small model of state dimension N = 48. It is borrowed from [ASG01].

24.6.2 Earth Quake Model (BUILD-II)

This is a model of a building for which the effect of earthquakes is to be
analyzed (it is provided by Professor Mete Sozen of Purdue University). The
mass matrix M is diagonal and of dimension N = 26394. The stiffness matrix
S is symmetric and has the sparsity pattern given in Figure 24.19.

The damping matrix is chosen to be D = αM + βS, with α = 0.675 and
β = 0.00315. The matrix Bq is a column vector of all ones and Cq = BT

q . No
exact information is available on the frequency response and on the Gramians
of this large scale system.
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Fig. 24.16. Eigenvalues of A (BUILD-I)
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24.6.3 Clamped Beam Model (BEAM)

The clamped beam model has 348 states, it is obtained by spatial discretiza-
tion of an appropriate partial differential equation. The input represents the
force applied to the structure at the free end, and the output is the resulting
displacement. The data were obtained from [ASG01].
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Fig. 24.20. Frequency response (BEAM)
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Fig. 24.21. Eigenvalues of A (BEAM)
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24.7 International Space Station

This is a structural model of the International Space Station being assembled
in various stages. The aim is to model vibrations caused by a docking of
an incoming spaceship. The required control action is to dampen the effect of
these vibrations as much as possible. The system is lightly damped and control
actions will be constrained. Two models are given, which relate to different
stages of completion of the Space Station [SAB01]. The sparsity pattern of A
shows that it is in fact derived from a mechanical system model.

24.7.1 Russian Service Module (ISS-I)

This consists of a first assembly stage (the so-called Russian service module 1R
[SAB01]) of the International Space Station. The state dimension is N = 270.

24.7.2 Extended Service Module (ISS-II)

This consists of a second assembly stage (the so-called 12A model [SAB01])
of the International Space Station. The state dimension is N = 1412.
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Fig. 24.23. Frequency response (ISS-I)
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Fig. 24.27. Frequency response of the 3-input 3-output system (ISS-II)
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Fig. 24.32. Frequency response of the ISS12A model (ith input/jth output).
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puter Science, Wuppertal University, August 1999. 2000. VIII, 184 pp. Softcover.
3-540-67732-1

Vol. 16 J. Lang, Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems.
Theory, Algorithm, and Applications. 2001. XII, 157 pp. Softcover. 3-540-67900-6

Vol. 17 B. I. Wohlmuth, Discretization Methods and Iterative Solvers Based on
Domain Decomposition. 2001. X, 197 pp. Softcover. 3-540-41083-X

Vol. 18 U. van Rienen, M. Günther, D. Hecht (eds.), Scientific Computing in Elec-
trical Engineering. Proceedings of the 3rd International Workshop, August 20-23,
2000, Warnemünde, Germany. 2001. XII, 428 pp. Softcover. 3-540-42173-4
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