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Forward, Futures, and Exchange Options

In this chapter, we will derive three important generalizations of the Black-
Scholes formula. We will derive them from the Black-Scholes formula, which
shows that all of the formulas are equivalent. We will start with Margrabe’s
[50] formula for an option to exchange one asset for another. Standard calls
and puts are special cases, involving the exchange of cash for an asset or an
asset for cash. From Margrabe’s formula, we will derive Black’s [3] formulas
for options on forward and futures contracts. Then, from Black’s formulas,
we will derive Merton’s [51] formulas for calls and puts in the absence of a
constant risk-free rate.

Unless explicitly stated otherwise, we will not assume in this chapter the
existence of a risk-free asset (or even an instantaneously risk-free asset as de-
scribed in Sect. 1.1). This implies that the market is incomplete and there
are many risk-neutral measures. Nevertheless, we can price exchange options,
forward and futures options, and stock options by arbitrage. Understanding
this issue is not essential for deriving the formulas in this chapter—as men-
tioned, they will all be derived from the Black-Scholes formula—but the issue
is nonetheless important. It is discussed in the final section of the chapter.

Naturally, all of the option-pricing formulas discussed in this chapter are
quite similar. The similarity can be seen from the Black-Scholes formula for
a call option, which we can write as follows (replacing d1 by x and d2 by y):

e−qT S(0)N(x) − e−rT K N(y) , (7.1a)

where

x =
log

(
S(0)
K

)
+
(
r − q + 1

2σ2
)
T

σ
√

T
(7.1b)

y = x − σ
√

T . (7.1c)

Note that e−qT S(0) is the present value at date 0 of the stock that would be
acquired if the option is exercised, because it is the cost that one must pay
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at date 0 to have one share of the stock at date T with no withdrawal of
dividends in the interim. Obviously, e−rT K is the present value of the cash
that is paid if the option is exercised. Moreover, x is equal to

log
(

e−qT S(0)
e−rT K

)
+ 1

2σ2T

σ
√

T
,

and the logarithm in the numerator is of the ratio of present values. All of
the option pricing formulas in this chapter have the same form: the present
value of the asset to be acquired multiplied by N(x) minus the present value
of the asset to be delivered multiplied by N(y). Moreover in each case x is the
logarithm of the ratio of present values plus one-half σ2T all divided by σ

√
T ,

and in each case y is defined by (7.1c). Notice that the Black-Scholes put
option formula has this structure also. The Black-Scholes put option formula
is

e−rT K N(x) − e−qT S(0)N(y) , (7.2a)

where

x = −d2

= −
log
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K

)
+
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2σ2
)
T

σ
√

T

=
log

(
e−rT K

e−qT S(0)

)
+ 1

2σ2T

σ
√

T
, (7.2b)

y = −d1

= −
log

(
S(0)
K

)
+
(
r − q + 1

2σ2
)
T

σ
√

T

= x − σ
√

T . (7.2c)

This similarity is discussed further in Sect. 7.5, where the pricing formulas
are implemented in VBA.

7.1 Margrabe’s Formula

Consider two assets with prices S1 and S2 and a European option to exchange
asset 2 for asset 1 at date T . The value of the option at maturity is

max(0, S1(T ) − S2(T )) .

Note that there is no real difference between a put and a call: the exchange
option can be viewed as a call on the first asset with random strike S2(T ) or
as a put on the second asset with random strike S1(T ).



7.1 Margrabe’s Formula 131

Assume the assets pay constant dividend yields qi and assume the prices
satisfy

dSi

Si
= µi dt + σi dBi

where each Bi is a Brownian motion under the actual probability measure.
As before, the drifts µi can be quite general random processes. We also allow
the volatilities σi and the correlation ρ of the Brownian motions to be random
processes; however, we make the assumption that σ defined as

σ =
√

σ2
1 + σ2

2 − 2ρσ1σ2 (7.3)

is a constant. As shown in (2.40), σ is the volatility of S1/S2 (and also S2/S1).
So, the assumption we are making is that the volatility of the ratio of the asset
prices is constant. In Sect. 7.9, we will relax this assumption to allow σ to be
time-varying (though still non-random).

The following is the formula of Margrabe [50]:

The value of a European option to exchange two assets at date T is

e−q1T S1(0)N(d1) − e−q2T S2(0)N(d2) , (7.4a)

where

d1 =
log

(
S1(0)
S2(0)

)
+
(
q2 − q1 + 1

2σ2
)
T

σ
√

T
, (7.4b)

d2 = d1 − σ
√

T . (7.4c)

Margrabe’s derivation is a very simple argument based on the Black-
Scholes formula. We noted in Chap. 6 that the Black-Scholes formula does
not depend on the currency—if the underlying asset and risk-free asset are
dollar denominated, the formula gives the dollar value of an option; if they
are yen denominated, the formula gives the yen value of an option, etc. So we
can take the “currency” to be units of the second asset; i.e., we will use the
second asset as numeraire. With this numeraire, the value of the first asset is
S1/S2. The value of the exchange option at maturity is

max(0, S1(T ) − S2(T )) = S2(T )max
(

0,
S1(T )
S2(T )

− 1
)

.

This is the value in the natural currency (e.g., dollars). The value using the
second asset as numeraire is obtained by dividing by S2(T ), so it is

max
(

0,
S1(T )
S2(T )

− 1
)

.
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This is the value of a standard call option, the underlying being the first asset
measured in units of the second. We can apply the Black-Scholes formula to
obtain the value of the option (in units of the second asset) at date 0. Multi-
plying this value by S2(0) will give the option value in the natural currency.

The risk-free rate when the second asset is the numeraire is the dividend
yield on the second asset q2. To see this, note that the price of the second
asset is always equal to one; moreover, an investment in the second asset will
accumulate at the rate q2 via reinvestment of dividends. Therefore, q2 is a
risk-free rate of return.

The dividend yield on the first asset remains q1. To see this, note that the
dividend paid in the natural currency is q1S1(t) dt in an instant dt and the
value of this dividend using the second asset as numeraire is [q1S1(t)/S2(t)] dt,
which is the fraction q1 dt of the value S1(t)/S2(t) of the first asset using the
second asset as numeraire.

The volatility of the first asset using the second as numeraire is the volatil-
ity of the ratio S1(t)/S2(t), which is σ defined in (7.3). Applying the Black-
Scholes formula with these inputs yields Margrabe’s formula directly.1

7.2 Black’s Formula

Black [3] gives formulas for the values of options on futures contracts when
interest rates are deterministic (i.e., non-random). It is well known (and we
will establish this in Sect. 7.7) that, when interest rates are deterministic,
futures prices should equal forward prices, so Black’s formulas also yield for-
mulas for the values of options on forward contracts when interest rates are
deterministic. However, the formulas for options on forwards are valid more
generally (even when interest rates vary randomly) and now a mention of
Black’s formulas is more likely to be referring to the formulas for options on
forwards, instead of the formulas for options on futures. In any case, we will
start with the formulas for options on forwards and then in Sect. 7.8 derive
the formulas for options on futures when interest rates are deterministic.

We consider a forward contract that matures at some date T ′ and a call
or put option on the forward that matures at T ≤ T ′. The meaning of a call
option on a forward is that exercise of the call creates a long position in the
forward contract with forward price equal to the strike price of the option.
The long forward contract means that the investor will receive the underlying
asset at T ′ and pay the forward price (the strike of the option) at T ′. Thus,
the strike price is not paid at the date of exercise but instead is paid when
the underlying asset is delivered. Symmetrically, the exercise of a put creates
a short position in the forward contract with forward price equal to the strike
of the put, which means that the exerciser must deliver the underlying at T ′

and will receive the strike price at T ′.
1 Of course, it is possible to give a direct proof, without relying on the Black-Scholes

formula. A sketch is given in Sect. 7.11.



7.2 Black’s Formula 133

We will denote the market forward price by F (t). We assume the forward
price satisfies

dF

F
= µdt + σ dB , (7.5)

where B is a Brownian motion. As before, µ can be a quite general random
process. We will assume in this section that the volatility σ is a constant
and generalize to a time-varying (but non-random) volatility in Sect. 7.9. In
Sect. 7.3, we will discuss the relations of the forward price and its volatility
to the price and volatility of the underlying.

Black’s formulas are particularly useful when interest rates are assumed to
be random, as we will see in Part III of the book when we study fixed income
derivatives. Therefore, we do not assume here that there is a constant risk-free
rate. Instead we will assume that there is a “discount bond” that pays $1 at
date T ′. It is called a “discount bond” because its price is the appropriate
discount factor for computing the present value of nonrandom cash flows at
date T ′. Such a bond is also called a “zero coupon” bond because it does not
pay any cash flows until T ′, when it pays its face value (which we take simply
for convenience to be $1). We will let P (t, T ′) denote the price of the bond at
date t.2

Black’s formulas are:

The values at date 0 of European options with strike K and maturity T on
a forward contract with maturity T ′ are

Call Price = P (0, T ′)F (0)N(d1) − P (0, T ′)K N(d2) , (7.6a)
Put Price = P (0, T ′)K N(−d2) − P (0, T ′)F (0)N(−d1) , (7.6b)

where

d1 =
log

(
F (0)
K

)
+ 1

2σ2T

σ
√

T
, (7.6c)

d2 = d1 − σ
√

T . (7.6d)

Black’s formulas are a simple consequence of Margrabe’s formula. To see
this, we first need to describe the value of an option on a forward at the
maturity date T of the option. Consider a call option. Exercise of the call
results in a long forward position with forward price K. The value of the long
forward is given by its market price F (T ), but we must keep in mind that
the forward price is not paid until the underlying is delivered at date T ′. So
2 In this section we could drop the T ′ in P (t, T ′) and simply write P (t), because

we only consider one maturity date, but we will use the same notation when
discussing multiple maturities in Part III.
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suppose that you exercise the call and then sell a forward contract at the
market forward price F (T ). The delivery/receipt obligations of the long and
short forwards cancel, leaving you with the obligation to pay K dollars at
date T ′ and with an asset of F (T ) dollars to be received at date T ′. The value
of the net cash flow at date T is P (T, T ′)[F (T ) − K]. This is the value if
exercised, so the value of the call at date T is

max
(
0, P (T, T ′)[F (T ) − K]

)
= max

(
0, P (T, T ′)F (T ) − P (T, T ′)K

)
. (7.7)

We can write this as
max(0, S1(T ) − S2(T )) (7.8)

if we define

S1(t) = P (t, T ′)F (t) and S2(t) = P (t, T ′)K (7.9)

for t = T (and more generally for t ≤ T ). Thus, the value at maturity of a call
option on a forward is the value at maturity of an option to exchange the two
assets with prices S1 and S2 (we will establish in a moment that S1 and S2

are actually asset prices). It follows that the value at date 0 of a call option
on a forward is the value at date 0 of an option to exchange the two assets.

Now consider a put option on a forward. Exercising the put and unwinding
the short forward position by buying a forward at the market price F (T ) will
leave one with a net cash flow of K − F (T ) to be received at the maturity
date T ′ of the forward. Therefore the value of the put at maturity is

max(0, P (T, T ′)[K − F (T )]) = max(S2(T ) − S1(T )) . (7.10)

Therefore, the value at date 0 of the put option on a forward must be the
value at date 0 of an exchange option, where asset one in (7.9) is exchanged
for asset two.

The key assumption in deriving Margrabe’s formula is that the volatility
of the ratio of asset prices is a constant. For a call option on a forward, the
relevant ratio is S1/S2 = F/K. Because K is a constant, the volatility of the
ratio is the volatility σ of the forward price F , which we have assumed to be
constant. For a put option on a forward, the relevant ratio is S2/S1 = K/F .
Itô’s formula implies

d(K/F )
K/F

= −dF

F
+
(

dF

F

)2

,

= (−µ + σ2) dt − σ dB

= (−µ + σ2) dt + σ(−dB),

The purpose of the last equality displayed here is to emphasize that we should
take the volatility of K/F to be the positive number σ. We can do this by using
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−B as the Brownian motion instead of B.3 Thus, we can apply Margrabe’s
formula to value calls and puts on forwards (once we verify that S1 and S2

are indeed asset prices).
To obtain Black’s formula (7.6a) for a call on a forward from Mar-

grabe’s formula (7.4a), we simply substitute S1(0) = P (0, T ′)F (0), S2(0) =
P (0, T ′)K, q1 = 0 and q2 = 0 in Margrabe’s formula. A put option is the
reverse exchange, so Margrabe’s formula gives

P (0, T ′)K N(dm
1 ) − P (0, T ′)F (0)N(dm

2 ) , (7.11)

where

dm
1 =

log
(

P (0,T ′)K
P (0,T ′)F (0)

)
+ 1

2σ2T

σ
√

T
,

dm
2 = dm

1 − σ
√

T .

We introduce the superscript m here to distinguish these numbers in Mar-
grabe’s formula from the d1 and d2 defined in (7.6c) and (7.6d). Notice that

dm
1 = −

log
(

F (0)
K

)
− 1

2σ2T

σ
√

T
= −d2

dm
2 = −

log
(

F (0)
K

)
+ 1

2σ2T

σ
√

T
= −d1,

so Margrabe’s formula (7.11) is the same as Black’s formula (7.6b) for a put
option on a forward.

We still need to explain why S1 and S2 defined in (7.9) are asset prices, in
fact the prices of non-dividend-paying assets since we have taken q1 = q2 = 0
in applying Margrabe’s formula. The case of S2 should be clear: it is the price
of K units of the discount bond maturing at T ′. The case of S1 is more subtle.
It is the price of the following portfolio constructed at date 0 and held until
date T : go long one forward contract and buy F (0) units of the discount
bond maturing at T ′. The value at date t of the bonds in the portfolio is
F (0)P (t, T ′). The value at date t of the long forward contract can be seen
by considering unwinding it by selling a forward at date t at the market
price F (t). This cancels the delivery/receipt obligations on the underlying
and results in a net cash flow of F (t) − F (0) to be received at date T ′. The
value at date t of this future cash flow is P (t, T ′)[F (t) − F (0)] and when we
add this to the value of the bonds we obtain P (t, T ′)F (t) = S1(t).

Put-call parity for options on forwards is

Call Price + P (0, T ′)K = Put Price + P (0, T ′)F (0) .

3 This is really nothing more than the usual convention of defining the standard
deviation of a random variable to be the positive square root of the variance.
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The left-hand side is the cost of the call and K units of the discount bond,
which have value max(F (T ),K)P (T, T ′) at time T . The right-hand side is
the cost of the put option and F (0) units of the discount bond, which,
together with a long forward contract initiated at date 0, also have value
max(F (T ),K)P (T, T ′) at time T .

7.3 Merton’s Formula

Now we reconsider the Black-Scholes model but without assuming there is
a constant risk-free rate. We assume instead that there is a discount bond
maturing at the same date as the option. Letting T denote the maturity date
of the option and discount bond, we write the price of the discount bond at
dates t ≤ T as P (t, T ). We continue to assume that the stock has a constant
dividend yield q but we make a different assumption about volatility—instead
of assuming that the volatility of the stock is constant, we assume that the
volatility of its forward price is constant. We relax this to allow time-varying
but non-random volatility of the forward price in Sect. 7.9.

The forward contract we consider is a forward contract for the stock matur-
ing at the date T that the option matures. Let F (t) denote the forward price
for this contract at dates 0 ≤ t ≤ T . Because the forward price must equal
the spot price at the maturity of a forward contract, we have F (T ) = S(T ).
Consider a call option on the forward, with the call maturing at T also. In
the notation of the previous section, we have T ′ = T and hence P (T, T ′) = 1
(the discount bond is worth $1 at maturity). Therefore the value (7.7) of the
call on the forward at its maturity T is

max(0, F (T ) − K) = max(0, S(T ) − K) ,

which is the same as the value of the call on the stock. Therefore, the value
at date 0 of the call on the stock must equal the value at date 0 of the call
on the forward, and we can use Black’s formula (7.6a) for a call option on a
forward to price a call option on the stock, assuming the forward price has a
constant volatility.

Likewise, the value at the maturity date T of a put option on the same
forward contract is, from (7.10),

max(0,K − F (T )) = max(0,K − S(T )) .

Hence, we can use Black’s formula (7.6b) to price a put option on the stock,
assuming the forward price has a constant volatility.

It is not necessary that the forward contract be traded, because we can
create a synthetic forward using the stock. To create a synthetic forward at
date t we buy e−q(T−t) shares of the stock at cost e−q(T−t)S(t). With reinvest-
ment of dividends, this will accumulate to one share at date T . We finance the
purchase of the stock by shorting e−q(T−t)S(t)/P (t, T ) units of the discount
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bond. This results in a liability of e−q(T−t)S(t)/P (t, T ) dollars at date T , so
the forward purchase is arranged by promising to pay e−q(T−t)S(t)/P (t, T )
dollars at the delivery date; i.e., the forward price is4

F (t) =
e−q(T−t)S(t)

P (t, T )
. (7.12)

The assumption we need to apply Black’s formulas is that

dF

F
= µdt + σ dB , (7.13)

where B is a Brownian motion, µ can be a quite general random process,
and σ is a constant. At the end of this section, we will discuss the meaning
of this assumption in terms of the volatilities of the stock and bond and their
correlation.

Under this assumption, the following formulas originally due to Merton
[51] follow immediately from Black’s formulas (7.6) by substituting F (0) =
e−qT S(0)/P (0, T ).

Assuming the forward price has a constant volatility σ, the values at date 0
of European calls and puts maturing at date T on a stock with a constant
dividend yield q are

Call Price = e−qT S(0)N(d1) − P (0, T )K N(d2) , (7.14a)

Put Price = P (0, T )K N(−d2) − e−qT S(0)N(−d1) , (7.14b)

where

d1 =
log

(
S(0)

KP (0,T )

)
− qT + 1

2σ2T

σ
√

T
, (7.14c)

d2 = d1 − σ
√

T . (7.14d)

These formulas are clearly similar to the Black-Scholes formulas. The sim-
ilarities are made more apparent by writing the discount bond price in terms
of its yield. The yield y of the discount bond is defined as

y =
− log P (0, T )

T
⇐⇒ P (0, T ) = e−yT .

4 If there is a constant risk-free rate r, then it must be that P (t, T ) = e−r(T−t), so
(7.12) becomes

F (t) = e(r−q)(T−t)S(t) ,

which is the same as the covered interest parity condition (6.2)—recall that we
interpret the exchange rate as the price of an asset with dividend yield q = rf .
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Substituting this into the expressions above, we have:

Assuming the forward price has a constant volatility σ, the values at date 0
of European calls and puts maturing at date T on a stock with a constant
dividend yield q are

Call Price = e−qT S(0)N(d1) − e−yT K N(d2) , (7.15a)

Put Price = e−yT K N(−d2) − e−qT S(0)N(−d1), (7.15b)

d1 =
log

(
S(0)
K

)
+
(
y − q + 1

2σ2
)
T

σ
√

T
, (7.15c)

d2 = d1 − σ
√

T . (7.15d)

This shows that the Merton call and put formulas can be calculated from the
Black-Scholes call and put functions given in Chap. 3 by inputting the yield
of the discount bond as the risk-free rate and by inputting the volatility of
the forward price as σ.

If one wants to assume that there is a constant risk-free rate, then the dis-
count bond price will have to be e−rT and its yield will be the risk-free rate r.
In this case, the forward price is e(r−q)T S(0) and it has the same volatility
as S. Making these substitutions, the Merton formulas (7.15) are the same as
the Black-Scholes formulas. However, the Merton formulas are an important
generalization. It is common practice to use the yield of the discount bond as
the risk-free rate that is input into the Black-Scholes formulas. The Merton
formulas justify this practice. It is less common to attempt to estimate the
volatility of the forward price and use this (as one should since the risk-free
rate really is not constant) as the volatility in the Black-Scholes-Merton formu-
las. However, this does little damage for pricing short-term options, because
the volatility of the forward price—see (7.16) below—will be approximately
the same as the volatility of the underlying for short-term options, due to
the low volatility of short-term bond prices. Moreover, when one computes
an implied volatility from the Black-Scholes formula (using the discount bond
yield as the risk-free rate), it should be regarded as the market’s view of the
forward price volatility, and it is perfectly appropriate to input it into the
Black-Scholes-Merton formulas to price another option (assuming of course
that the forward price volatility can be regarded as constant).

The volatility of the forward price can be computed in terms of the volatil-
ities and correlation of the stock and discount bond as follows. Assume that

dS

S
= µs dt + σs dBs ,

dP

P
= µp dt + σp dBp,
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where Bs and Bp are Brownian motions with correlation ρ. Then (2.38) and
(2.40) show that the volatility of F (t) = e−q(T−t)S(t)/P (t, T ) is σ defined as

σ =
√

σ2
s + σ2

p − 2ρσsσp . (7.16)

As mentioned before, we will consider in Sect. 7.9 that the the volatility (7.16)
may vary over time in a non-random way.

7.4 Deferred Exchange Options

A call option on a forward can be viewed as an option to exchange K dollars
(or, equivalently, K units of the discount bond maturing at the maturity date
of the forward) for the underlying asset, with the exchange taking place at the
maturity date of the forward. Therefore, it is an exchange option in which the
exchange takes place at a fixed date after the option matures. We can easily
extend Margrabe’s formula to value options to exchange other assets when
the option maturity precedes the date of the exchange.

As in Sect. 7.1, consider two assets with prices Si and constant dividend
yields qi and assume the prices satisfy

dSi

Si
= µi dt + σi dBi ,

where the drifts µi, the volatilities σi and the correlation ρ of the two Brownian
motions can be general random processes. However, also as in Sect. 7.1, assume
that the volatility

σ =
√

σ2
1 + σ2

2 − 2ρσ1σ2

of the ratio of asset prices is constant.
Consider an option maturing at date T to exchange the second asset for

the first asset at date T ′ ≥ T . To understand the value of the option at date T ,
suppose it is exercised. To unwind the positions in the two assets, one can sell
a forward contract on the asset to be received and buy a forward contract on
the asset to be delivered, with the forward contracts maturing at the date of
the exchange. Then the difference F1(T ) − F2(T ) in the forward prices is a
cash flow to be received/paid at the exchange date T ′ and its value at date T
is P (T, T ′)[F1(T )−F2(T )]. Therefore, the value of the option at its maturity T
is

max(0, P (T, T ′)F1(T ) − P (T, T ′)F2(T )) .

As in Sect. 7.2, this valuation does not require the existence of traded forward
contracts, because synthetic forwards can be created. Also as in Sect. 7.2 we
know that

S∗
1 (t) = P (t, T ′)F1(t) and S∗

2 (t) = P (t, T ′)F2(t)
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are the prices of non-dividend-paying assets. Therefore, the option to exchange
the assets at date T ′ must have the same value as an option to exchange at
date T the assets with prices S∗

i .
We recall here the arbitrage formula (7.12) for the forward prices (making

the change that here the forwards mature at T ′):

Fi(t) =
e−qi(T

′−t)Si(t)
P (t, T ′)

.

Thus,
S∗

i (t) = e−qi(T
′−t)Si(t) .

This implies that the volatility of the ratio S∗
1/S∗

2 is the same as the volatility
of the ratio S1/S2. Therefore, we can price a deferred exchange option from
Margrabe’s formula, inputting the prices S∗

i (0) = e−qiT
′
Si(0) as the initial

asset prices and zero as their dividend yields. This formula is:

The value of a European option maturing at date T to exchange two assets
at date T ′ is

e−q1T ′
S1(0)N(d1) − e−q2T ′

S2(0)N(d2) , (7.17a)

where

d1 =
log

(
S1(0)
S2(0)

)
+ (q2 − q1)T ′ + 1

2σ2T

σ
√

T
, (7.17b)

d2 = d1 − σ
√

T , (7.17c)

7.5 Calculations in VBA

We could of course write entirely separate programs for the options discussed
so far in this chapter but it seems useful to emphasize their common structure.
As discussed in the introduction to this chapter, each is the present value of
what is received upon exercise multiplied by N(x) minus the present value of
what is delivered upon exercise multiplied by N(y) and x in each case is the
logarithm of the ratio of present values plus one-half σ2T , all divided by σ

√
T .

In the case of options on forwards, the present values are the present values
of what is received or delivered at the maturity of the forward contract. We
can do this calculation in the following program.

Function Generic_Option(P1, P2, sigma, T)

’

’ Inputs are P1 = present value of asset to be received

’ P2 = present value of asset to be delivered
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’ sigma = volatility

’ T = time to maturity

’

Dim x, y, N1, N2

x = (Log(P1 / P2) + 0.5 * sigma * sigma * T) / (sigma * Sqr(T))

y = x - sigma * Sqr(T)

N1 = Application.NormSDist(x)

N2 = Application.NormSDist(y)

Generic_Option = P1 * N1 - P2 * N2

End Function

Now we can use the following one-line programs to value exchange and forward
options. We will explain in Sect. 7.8 why (and in what circumstance) the Black
call and put functions are appropriate for options on futures.

Function Margrabe(S1, S2, sigma, q1, q2, T)

’

’ Inputs are S1 = price of asset to be received

’ S2 = price of asset to be delivered

’ sigma = volatility of ratio of prices

’ q1 = dividend yield of asset to be received

’ q2 = dividend yield of asset to be delivered

’ T = time to maturity

’

Margrabe = Generic_Option(Exp(-q1*T)*S1,Exp(-q2*T)*S2,sigma,T)

End Function

Function Black_Call(F, K, P, sigma, T)

’

’ Inputs are F = forward price

’ K = strike price

’ P = price of bond maturing when forward matures

’ sigma = volatility of forward price

’ T = time to maturity

’

’ To value a futures option, input F = futures price and

’ P = price of bond maturing when option matures.

’

Black_Call = Generic_Option(P * F, P * K, sigma, T)

End Function

Function Black_Put(F, K, P, sigma, T)

’

’ Inputs are F = forward price

’ K = strike price

’ P = price of bond maturing when forward matures

’ sigma = volatility of forward price

’ T = time to maturity

’
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’ To value a futures option, input F = futures price and

’ P = price of bond maturing when option matures.

’

Black_Put = Generic_Option(P * K, P * F, sigma, T)

End Function

Function Margrabe_Deferred(S1, S2, sigma, q1, q2, Tm, Te)

’

’ Inputs are S1 = price of asset to be received

’ S2 = price of asset to be delivered

’ sigma = volatility of ratio of prices

’ q1 = dividend yield of asset to be received

’ q2 = dividend yield of asset to be delivered

’ Tm = time to maturity of option

’ Te = time until exchange >= Tm

’

Margrabe_Deferred = _

Generic_Option(Exp(-q1*Te)*S1,Exp(-q2*Te)*S2,sigma,Tm)

End Function

We could also have calculated the Black-Scholes call formula as

Generic_Option(Exp(-q*T)*S, Exp(-r*T)*K, sigma, T)

and the Black-Scholes put formula as

Generic_Option(Exp(-r*T)*K, Exp(-q*T)*S, sigma, T).

7.6 Greeks and Hedging

The Greeks for the Margrabe and Black formulas can be calculated in the
same way that we calculated them in Chap. 3 for the Black-Scholes formula.
In analogy with (3.8), it can be shown for the Margrabe formula that

e−q1T S1(0) n(d1) = e−q2T S2(0) n(d2) ,

and again this simplifies the calculations. This equation applies to the Black
call formula by taking q1 = q2 = 0, S1(0) = P (0, T ′)F (0), and S2(0) =
P (0, T ′)K, leading to

F (0) n(d1) = K n(d2) .

The Greeks for the Black call formula and the Margrabe formula are:
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Black Call Margrabe

∂

∂F
= P (0, T ′) N(d1)

∂

∂S1
= e−q1T N(d1)

∂

∂P
= F (0) N(d1) − K N(d2)

∂

∂S2
= −e−q2T N(d2)

∂2

∂F 2
=

P (0, T ′) n(d1)

σ
√

TF (0)

∂2

∂S2
1

=
e−q1T n(d1)

σ
√

TS1(0)

∂2

∂P 2
= 0

∂2

∂S2
2

=
e−q2T n(d2)

σ
√

TS2(0)

∂2

∂F∂P
= N(d1)

∂2

∂S1∂S2
= −e−q1T n(d1)

σ
√

TS2(0)

− ∂

∂T
= −σP (0, T ′)F (0) n(d1)

2
√

T
− ∂

∂T
= q1e

−q1T S1(0) N(d1)

− q2e
−q2T S2(0) N(d2)

− σe−q1T S1(0) n(d1)

2
√

T
∂

∂σ
=

√
TP (0, T ′)F (0) n(d1)

∂

∂σ
=

√
T e−q1T S1(0) n(d1)

Hedging for the Margrabe formula is much the same as for the Black-
Scholes formula. We would delta-hedge a written exchange option by holding
δ1 = e−q1T N(d1) shares of the first asset and δ2 = −e−q2T N(d2) shares of
the second asset (which means shorting the second asset). Note that selling
the option will exactly finance the hedge, so the overall portfolio has zero
cost. The same argument that we used in Sect. 3.5 shows that this zero-cost
portfolio will have a zero return if continuously rebalanced.

Because the Black formulas are a special case of the Margrabe formula, we
can delta-hedge options on forwards in the same way. Putting q1 = q2 = 0,
S1(0) = P (0, T ′)F (0) and S2(0) = P (0, T ′)K, we would delta-hedge a written
call option by buying N(d1) shares of the first asset and shorting N(d2) shares
of the second, where d1 and d2 are defined in the Margrabe formulas (7.4b)
and (7.4c) and equivalently in the Black formulas (7.6c) and (7.6d). The first
asset here consists of a long forward contract plus F (0) units of the discount
bond, and the second asset is K units of the discount bond. Therefore, we
should buy N(d1)F (0)−N(d2)K units of the discount bond and go long N(d1)
forward contracts.

A more direct analysis of hedging options on forwards is possible and
instructive. We will consider that topic further in Sect. 7.10.
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7.7 The Relation of Futures Prices to Forward Prices

The difference between futures and forward contracts is that futures are
marked to market, which means that daily gains and losses are posted to
the investor’s margin account. Thus, there are interim cash flows on a futures
contract, whereas the only cash flows on a forward contract are at the matu-
rity of the forward. We will establish three useful facts in this section, the last
of which follows from the first two:

(1) Futures prices are martingales under the risk-neutral measure.
(2) Forward prices are martingales when we use the discount bond with the

same maturity as the forward as the numeraire.
(3) When interest rates are non-random, futures prices equal forward prices.

We consider the idealized case in which the futures contract is continuously
marked to market. Assume there is an instantaneously risk-free asset with rate
of return r, which could vary randomly over time, and define, as in Sect. 1.1,

R(t) = exp
(∫ t

0

r(s) ds

)
,

which is the value at date t of a $1 investment in the asset at date 0, with
interest continuously reinvested. Let T ′ denote the maturity of the futures
contract, and let F ∗(t) denote the futures price at dates t ≤ T ′ (the ∗ notation
is to distinguish the futures price from the forward price F ). Consider the
portfolio strategy that starts with zero dollars and one long futures contract
at price F ∗(0) and which continuously invests and withdraws from the risk-
free asset the gains and losses on the futures contract. Let V (t) denote the
value of this portfolio at date t. The change in the value of the portfolio at
any instant is the interest earned (or paid, if V < 0) on the risk-free asset
plus the gain/loss on the futures. This means that

dV = rV dt + dF ∗ .

Because all gains and losses on this portfolio are reinvested, V is the price of
a non-dividend-paying asset. Therefore, under the risk-neutral measure (i.e.,
using R as the numeraire), the ratio V/R must be a martingale and hence
have zero drift. From Itô’s formula,

d(V/R)
V/R

=
dV

V
− dR

R

=
rV dt + dF ∗

V
− r dt

=
dF ∗

V
.

Thus, the drift of V/R being zero implies the drift of F ∗ is zero. We need
to assume (and can assume) that F ∗ is an Itô process with finite expected
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quadratic variation—cf. condition (2.2)—in which case the absence of a drift
implies that it is a martingale.

Now we turn to fact (2). Consider a forward contract with maturity T ′

and a discount bond also maturing at T ′. Let F (t) denote the forward price
and let P (t, T ′) denote the price of the discount bond at dates t ≤ T ′. We
observed in Sect. 7.2 that there is a non-dividend paying asset with price
P (t, T ′)F (t). When we use the discount bond as the numeraire, the ratio
P (t, T ′)F (t)/P (t, T ′) = F (t) must be a martingale, which is fact (2). Because
of this fact, a probability measure corresponding to a discount bond being the
numeraire is called a “forward measure.”

Suppose now that interest rates are deterministic, that is, even if r varies
over time, it does so in a non-random way. Then the discount bond price at
date 0 must be the discount factor

P (0, T ′) = exp

(
−
∫ T ′

0

r(t) dt

)
.

Equation (1.11) gives the probability of any event A when the discount bond
is used as the numeraire as

probP [A] = E

[
1Aφ(T ′)

P (T ′, T ′)
P (0, T ′)

]
= exp

(
−
∫ T ′

0

r(t) dt

)
E[1Aφ(T ′)] ,

where φ denotes the state prices. On the other hand, the same equation gives
the probability of A when R is used as the numeraire as

probR[A] = E

[
1Aφ(T ′)

R(T ′)
R(0)

]
= exp

(
−
∫ T ′

0

r(t) dt

)
E[1Aφ(T ′)] .

Therefore, the two probability measures are the same, and consequently the
expectations EP and ER are the same. Now using the fact that both the
futures price and the forward price must equal the spot price at maturity, we
have F ∗(T ′) = F (T ′), and, from the martingale properties,

F ∗(t) = EP
t [F ∗(T ′)] = EP

t [F (T ′)] = ER
t [F (T ′)] = F (t) ,

which is fact (3).

7.8 Futures Options

Now we consider options on futures contracts, assuming that interest rates
are deterministic. We just showed that in this circumstance the futures price
will equal the forward price for a contract of the same maturity. However, the
values of options on a futures contract do not equal the values of options on
the corresponding forward contract.
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The difference is due to marking to market. Consider futures and forward
contracts with maturity T ′ and options maturing at T ≤ T ′. Exercise of
a call option on a futures contract will roll the investor into a long futures
contract with futures price equal to the market futures price at that date. The
difference F ∗(T )−K between the market futures price and the strike price of
the option is immediately credited to the investor’s margin account. On the
other hand, exercise of an option on a forward and sale of the forward results
in a cash flow of F (T ) − K that is received at the maturity date T ′ of the
forward. Therefore, the value at maturity of a call option on a futures contract
is max(0, F ∗(T )− K), whereas, as noted before, the value of a call option on
a forward at the maturity of the option is P (T, T ′) max(0, F (T ) − K)

As in the analysis of options on forwards, an options on a futures contract
can be viewed as an exchange option, where one exchanges the asset with price
S2(t) = P (t, T )K at date t ≤ T for the asset with price S1(t) = P (t, T )F ∗(t).
The asset with price S2 is of course K units of the discount bond maturing
at T . Assuming interest rates are deterministic, we have F ∗(t) = F (t), and
we noted in Sect. 7.2 that P (t, T )F (t) is the price of a non-dividend-paying
asset. Thus, we can apply Margrabe’s formula to price call (and put) options
on futures when interest rates are deterministic. Compared to options on for-
wards, the difference is that the discount bonds defining the prices S1 and S2

mature at the maturity date of the option rather than at the maturity date
of the futures or forward contract. The result is Black’s formula:

When interest rates are deterministic and the futures price F ∗ has a constant
volatility σ, the values of European calls and puts on a futures contract are

Call Price = P (0, T )F ∗(0)N(d1) − P (0, T )K N(d2) , (7.18a)
Put Price = P (0, T )K N(−d2) − P (0, T )F ∗(0)N(−d1) , (7.18b)

where

d1 =
log

(
F∗(0)

K

)
+ 1

2σ2T

σ
√

T
, (7.18c)

d2 = d1 − σ
√

T . (7.18d)

We can calculate these values from the Black_Call and Black_Put functions
by inputting the price of the discount bond maturing when the option matures
rather than the price of the discount bond maturing when the forward/futures
matures. We will derive delta hedges for futures options in Sect. 7.10.
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7.9 Time-Varying Volatility

All of the option pricing formulas in this chapter were derived from Margrabe’s
formula, the main assumption of which is that the logarithm of the ratio of
asset prices at date T is normally distributed with variance equal to σ2T . As
in Sect. 3.8 regarding the Black-Scholes formulas, the formulas in this chapter
can easily be adapted to allow a time-varying but non-random volatility. If
the volatility is a non-random function σ(t) of time, then we define σavg to be
the number such that

σ2
avg =

1
T

∫ T

0

σ2(t) dt . (7.19)

We should input σavg as (i) the volatility of the ratio of asset prices in Mar-
grabe’s formula and the deferred exchange option formula if σ(t) is the volatil-
ity of the ratio at date t or as (ii) the volatility of the forward price in Black’s
and Merton’s formulas if σ(t) is the volatility of the forward price at date t.

As in Sect. 3.8, equation (7.19) enables one to interpret and apply different
implied volatilities computed at different maturities. Another circumstance in
which it can be useful is in conjunction with bond price models such as the
Vasicek and extended Vasicek models described in Chap. 13 that imply a
time-varying non-random volatility for discount bond prices.5 If we assume a
constant volatility for the price of the underlying and a constant correlation
between the underlying and the discount bond, then we will have a time-
varying non-random forward price volatility via (7.16), and we should input
the “average volatility” σavg defined in (7.19) for the forward price volatility
in Black’s and Merton’s formulas. As mentioned in Sect. 7.3, this will be more
important for long-term options than for short-term options.

7.10 Hedging with Forwards and Futures

In Chap. 6, we considered hedging quanto contracts with currency forwards.
In Sect. 7.6, we considered hedging options on forwards with forwards. To
present a more complete analysis of these topics, we need to discuss the gains
and losses that accrue from trading forwards.

Consider dates t < u and a forward contract with maturity T . Suppose we
purchase x(t) forwards at date t and then change our position in forwards to
x(u) at time u. The purchase/sale of x(u)−x(t) new contracts does not affect
the portfolio value, so the change in the value of the portfolio is the change in
the value of the x(t) contracts purchased at date t. These contracts were worth
zero at date t, because forward contracts have zero value at initiation. Selling
them at date u cancels the obligation to deliver/receive the underlying, leaving
one with a cash flow of x(t)[F (u)−F (t)] dollars to be received at date T . The

5 The volatility of a discount bond price cannot be constant because it must go to
zero as the bond approaches maturity.



148 7 Forward, Futures, and Exchange Options

value of this cash flow at date u is x(t)P (u, T )[F (u) − F (t)]. We can write
this as

x(t)P (u, T )[F (u) − F (t)]

= x(t)
[
P (t, T )[F (u) − F (t)] + [P (u, T ) − P (t, T )][F (u) − F (t)]

]
= x(t)

[
P (t, T )∆F + (∆P )(∆F )

]
.

This motivates the following definition:

The change in the value of a portfolio of forward contracts at date t is

x(t)
[
P (t, T ) dF (t) + dP (t, T ) × dF (t)] , (7.20)

where x(t) denotes the number of forward contracts held, F (t) denotes the
forward price, P (t, T ) denotes the price of a discount bond maturing at T ,
and T is the maturity of the forward contract.

Hedging with futures is a bit simpler, because the gains and losses are
received instantaneously (daily, at least) rather than being deferred to the
contract maturity. Letting x(t) denote the number of futures contracts held
at date t and F ∗(t) the futures price, the cash flow from the contracts is
x(t) dF ∗(t). This is also the change in the value of the portfolio, because
marking to market means that the contracts always have zero value.

To compare hedging with futures and forwards, assume there is a constant
risk-free rate r. Let T denote the maturity of the futures and forward con-
tracts. Because there is a constant risk-free rate, we have P (t, T ) = e−r(T−t),
which implies (dP )(dF ) = 0. Moreover, futures prices equal forward prices.
Thus,

If there is a constant risk-free rate r, the change in the value of a portfolio
of forward contracts at date t is

x(t)e−r(T−t) dF (t) (7.21)

and the change in the value of a portfolio of futures contracts is

x(t) dF (t) , (7.22)

where x(t) denotes the number of futures/forward contracts held at date t, T
is the maturity of the futures and forward contracts and F (t) is the futures
(= forward) price at date t.

Comparing (7.21) and (7.22), we see that if x(t) is the number of forward
contracts that should be held in a hedge, then
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y(t) = e−r(T−t)x(t) (7.23)

is the number of futures contracts that should be held, because with this
number of contracts we have

Change in Forward Portfolio = x(t)e−r(T−t) dF (t)
= y(t) dF (t)
= Change in Futures Portfolio .

In short, we don’t require as many futures contracts as forward contracts, and
the scaling factor to convert from forwards to futures is just the present value
factor e−r(T−t).

For example, the result of Sect. 6.6 on replicating the payoff X̄S(T ) with
forward contracts leads to the following:

To replicate the payoff X̄S(T ) at date T , where X̄ is a fixed exchange rate
and S is the foreign currency price of an asset, one should invest V (t) units
of domestic currency in the foreign asset and be short e(rf−r)(T−t)V (t)/X(t)
currency futures at date t, where V (t) is defined in (6.7) and X(t) is the
spot exchange rate.

We can use (7.23) to determine how to delta hedge futures options. As
explained in Sect. 7.8, assuming non-random interest rates, futures options are
more valuable than options on forwards because futures are marked to market
upon exercise of an option. Specifically, Black’s formulas (7.6) for options on
forwards and (7.18) for options on futures show that the values are the same
except for the maturity of the discount bond appearing in the equations.
With a constant risk-free rate r, options maturing at T and futures/forwards
maturing at T ′, the relation is

Value of Futures Option = er(T ′−T ) × Value of Forward Option .

Because the scaling factor er(T ′−T ) does not change as time passes, this implies
that as time passes we have

Change in Futures Option Value

= er(T ′−T ) × Change in Forward Option Value . (7.24)

We can combine (7.23) and (7.24) to convert from a hedge of a forward option
using forward contracts, which we discussed in Sect. 7.6, to a hedge of a futures
option using futures contracts. For example, we concluded in Sect. 7.6 that
we should be long N(d1) forwards to hedge a short call option on a forward
contract. Consequently, (7.23) shows that we can hedge a short call option on
a forward by being long e−r(T ′−t) N(d1) futures, and then we see from (7.24)
that the hedge for a short call on a futures is being long
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er(T ′−T )e−r(T ′−t) N(d1) = e−r(T−t) N(d1)

futures contracts.
In Sect. 7.6, we derived the hedges for forward options by considering

them as exchange options. We can use the definition (7.20) to confirm that
our calculations were correct. Consider hedging a short call maturing at T on a
forward contract maturing at T ′. We can assume interest rates vary randomly
and use discount bonds in the hedge. We stated in Sect. 7.6 that we should
hold F (0)N(d1) − K N(d2) units of the discount bond maturing at T ′ and
we should go long N(d1) forwards to hedge the short call. This is a zero-cost
portfolio when we include the proceeds from selling the call. Using (7.20), we
see that the change in the value of the portfolio will be

−dC + [F (0)N(d1) − K N(d2)]dP + N(d1)[P (0, T ′) dF + (dP )(dF )] . (7.25)

The value of the call at date t will be a function of t, P (t, T ′) and F (t), which
we write as C(t, P, F ). From Itô’s formula,

dC =
∂C

∂t
dt +

∂C

∂P
dP +

∂C

∂F
dF

+
1
2

∂2C

∂P 2
(dP )2 +

1
2

∂2C

∂F 2
(dF )2 +

∂2C

∂F∂P
(dP )(dF ) .

= Θ dt + δP dP + δF dF +
1
2
ΓPP (dP )2 +

1
2
ΓFF (dF )2 + ΓFP (dP )(dF ) ,

where the δ’s and Γ ’s denote the first and second partial derivatives indicated
by the subscripts. Inserting this formula into (7.25) and making use of the
formulas in the table in Sect. 7.6, we see that the dP terms cancel because
δP = F (0)N(d1)−K N(d2). Furthermore, the dF terms cancel because δF =
N(d1)P (0, T ′). Thus, there is no exposure in the portfolio to the two risky
asset prices P and F . Furthermore, ΓPP = 0 and the (dP )(dF ) terms cancel
because ΓFP = N(d1). These substitutions simplify the change (7.25) in the
value of the portfolio to

−Θ dt − 1
2
ΓFF (dF )2 =

σP (0, T ′)F (0) n(d1)
2
√

T
dt − P (0, T ′) n(d1)

2σ
√

TF (0)
(dF )2 ,

which we can see to be zero because (dF )2 = σ2F 2 dt. Thus, the hedge is
perfect when continuously rebalanced.

7.11 Market Completeness

A formal definition of market completeness must specify which state-contin-
gent claims (random variables depending on the history of prices) can be
replicated by trading the marketed assets—for example, one might want all



7.11 Market Completeness 151

of the claims with finite means to be replicable, or only all of the claims with
finite variances, etc. A formal analysis of market completeness is not presented
in this book, except for the binomial and trinomial models in Chap. 1. How-
ever, we have stated that stochastic volatility models are incomplete. This
follows intuitively from the fact that a portfolio containing only one risky
asset (the underlying) cannot be perfectly correlated with the two Brownian
motions that determine the value of a derivative asset (the Brownian motions
driving the price of the underlying and its volatility). In general, a market
must include an instantaneously risk-free asset and as many risky assets as
there are Brownian motions in order to be complete.

The exchange-option model of Margrabe—with two risky assets, two
Brownian motions, and no risk-free asset—is obviously incomplete. For ex-
ample, it is impossible to have exactly $100 at date T . With no risk-free
asset, there is simply no way to store money. This may seem far-fetched, but
we might be interested in payoffs in “real” (i.e., inflation-adjusted) dollars,
in which case the absence of a risk-free asset may be a normal situation. In
any case, we have not assumed a risk-free asset exists, but we have priced
options without appealing to “equilibrium” arguments. This deserves some
clarification.

As mentioned above, a formal definition of market completeness must spec-
ify which contingent claims are to be replicable. The Margrabe model is com-
plete for a certain set of contingent claims. Contingent claims of the form
S2(T )X(T ) where X(T ) is a random variable depending on the relative prices
S1(t)/S2(t) for 0 ≤ t ≤ T can be replicated. Likewise, contingent claims of
the form S1(T )X(T ) can be replicated. The payoffs of exchange options are of
this form, so they can be priced by arbitrage, even though there are other con-
tingent claims (for example, receiving exactly $100 at date T ) that cannot be
replicated and hence cannot be priced by arbitrage. Likewise, the Black and
Merton models in which there is a zero-coupon bond but no instantaneously
risk-free asset are examples of incomplete markets that are still sufficiently
complete to price options by arbitrage (the options can be replicated). The
proof that the Margrabe model is complete in the sense stated here follows
from the change of numeraire argument used to derive Margrabe’s formula
from the Black-Scholes formula (recall that the second asset is risk-free when
we use it as the numeraire, so there is a risk-free asset under the new nu-
meraire) and a proof that the Black-Scholes model is complete (which we
have omitted, except to show that European options can be replicated).

We will conclude with a proof of the Margrabe formula that does not depend on
the Black-Scholes formula. Let x denote the random variable taking the value 1 when
S1(T ) > S2(T ) and which is 0 otherwise. Then the value of the exchange option at
maturity is xS1(T ) − xS2(T ). Let Vi denote the value of the portfolio beginning
with e−qiT units of asset i at date 0 and reinvesting dividends, to accumulate to
one share at date T . Then Vi(T ) = Si(T ) and from the fundamental pricing formula
(1.17) the value at date 0 of receiving xSi(T ) at date T is
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Vi(0)EVi

[
x

Si(T )

Vi(T )

]
= e−qiT Si(0)EVi [x]

= e−qiT Si(0) × probVi
(
V1(T ) > V2(T )

)
.

We can write the value of receiving xS1(T ) as

e−q1T S1(0) × probV1

(
V2(T )

V1(T )
< 1

)

and the value of receiving xS2(T ) as

e−q2T S2(0) × probV2

(
V1(T )

V2(T )
> 1

)
.

Note that V2/V1 is a martingale when we use V1 as the numeraire and V1/V2 is a
martingale when we use V2 as the numeraire. Because they are martingales, they
have no drifts. The volatility of the ratios is given in (7.3). Therefore, we have

d(V2/V1)

V2/V1
= σ dB∗

1 ,

d(V1/V2)

V1/V2
= σ dB∗

2 ,

where B∗
i is a Brownian motion when Vi is used as the numeraire. Margrabe’s

formula now follows from the tail probability formulas (2.34)–(2.36).

Problems

7.1. Derive the Greeks of a call option on a futures contract.

7.2. Using the results of the previous exercise, show that the delta hedge of a
written call on a futures contract that consists of e−r(T−t) N(d1) long futures
contracts and the value of the call invested in the risk-free asset is a riskless
hedge.

7.3. Derive a formula (like put-call parity) for the value of an option to ex-
change asset 1 for asset 2 in terms of the value of an option to do the reverse
exchange.

7.4. Create a VBA function Black_Call_ImpliedVol that uses bisection to
compute an implied forward price volatility from Black’s formula and the
market price of a call option on a forward.

7.5. Using a “synthetic forward” argument, derive the forward price for a
forward contract on a stock, where the forward matures at T ′ and the stock
pays a single known cash dividend D at date T < T ′.

7.6. Using the result of the previous exercise and Black’s formula, derive a
formula for the value of a European call option on a stock that pays a single
known cash dividend before the option matures.
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7.7. Modify the function Simulated_Delta_Hedge_Profits to compute the
percentiles of gains and losses for an investor who writes a call option on a
forward contract and uses a discretely-rebalanced delta hedge. As in Prob. 6.6,
you will need to create a variable to keep track of the net asset/liability from
trading forwards and include it in the valuation at date T .

7.8. Consider the portfolio that promises to pay X̄S(T ) at date T and repli-
cates the payoff using currency forwards described in Sect. 6.6, where X̄ is
a fixed exchange rate and S is the foreign currency price of an asset. Using
the definition (7.20) of gains and losses from trading forwards, verify that the
portfolio is riskless.

7.9. Repeat the previous exercise using the futures hedge described in Sect.
7.10.

7.10. It has been observed empirically that implied volatilities of stocks are
upward biased estimates of future volatility. Given that there is not really a
constant risk-free rate, implied volatilities should be interpreted as implied
forward-price volatilities, whereas the empirical literature has measured “fu-
ture volatility” as the subsequent volatility of the stock. What assumptions
about bond volatilities and the correlation of bonds and stocks could explain
the empirical finding; i.e., what assumptions imply that the volatility of the
forward price exceeds the volatility of the stock?

7.11. In the continuous-time Ho-Lee model described in Chap. 13, the volatil-
ity of a discount bond with time τ to maturity is σrτ for a constant σr. Under
this assumption, calculate the average volatility of the forward price of a stock
from date 0 to date T , where T is the maturity of the forward contract. As-
sume the stock has a constant volatility σs and the correlation between the
stock and bond is a constant ρ.

7.12. Making the same assumptions as in the previous exercise, and using
the result of that exercise and Merton’s formula, write a VBA function to
calculate the value of a call option on a stock. The inputs should be S, K, P ,
σs, σr, ρ, q, and T .




