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Continuous-Time Models

This chapter has three objectives. The first is to introduce the concept of a
Brownian motion. A Brownian motion is a random process (a variable that
changes randomly over time) that evolves continuously in time and has the
property that its change over any time period is normally distributed with
mean zero and variance equal to the length of the time period. The “mean
zero” feature means that a Brownian motion is a martingale. We will also
give a different characterization (Levy’s theorem) emphasizing the “quadratic
variation” process, which is a property of the paths (how the variable evolves
over time, in a given state of the world) of the process.

The second objective is to explain Itô’s formula, which is the chain rule
for stochastic calculus. In the Black-Scholes model, the stock price is assumed
to satisfy

dS

S
= µdt + σ dB ,

where B is a Brownian motion. In the case that the stock pays no dividend,
the rate of return is its price change dS divided by the initial price S, so the
model states that the expected rate of return in each instant dt is µdt (of
course, t denotes time, so dt is the change in time). The variance of the rate
of return depends on σ. This model can be equivalently written in terms of
the natural logarithm of S, which we will write as log S. The above equation
for the rate of return is equivalent to

d log S =
(

µ − 1
2
σ2

)
dt + σ dB .

We will explain this equivalence and other similar calculations that are useful
for pricing derivatives.

The third objective is to explain how, when we change numeraires, as
described in the previous chapter, we can calculate the expectation in the
fundamental pricing formula (1.17). The question is what effect does changing
the numeraire (and hence the probability measure) have on the distribution
of an asset price.
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Everything in the remainder of the book is based on the mathematics
presented in this chapter. For easy reference, the essential formulas have been
highlighted in boxes.

2.1 Simulating a Brownian Motion

We begin with the fact that changes in the value of a Brownian motion are
normally distributed with mean zero and variance equal to the length of the
time period. Let B(t) denote the value of a Brownian motion at time t. Then
for any date u > t, given the information at time t, the random variable
B(u) − B(t) is normally distributed with mean zero and variance equal to
u− t. Unless stated otherwise, our convention will be that a Brownian motion
starts at B(0) = 0.

We can generate an approximate Brownian motion in Excel. To do so, we
take a small time period ∆t and define the value at the end of the period
to be the value of the Brownian motion at the beginning plus a normally
distributed variable with mean 0 and variance ∆t. In the following procedure,
the user is prompted to input the length T of the entire time period over
which the Brownian motion is to be simulated and to input the number N
of time periods of length ∆t within the full interval [0, T ]. The length ∆t of
each individual time period is then calculated as T/N . The quality of the
approximation of this simulation to a true Brownian motion will be always be
improved by increasing the number N . Plotting the output of the procedure
creates a picture of what we call a “path” of the Brownian motion, which
means that it shows the value taken at each time in one state of the world.
Running the procedure again (for the same T and N) will create a different
plot, which can be interpreted as the values of the Brownian motion in another
state of the world. In other words, the path of the Brownian motion is itself
random, depending in this approximation on the numbers produced by Excel’s
random number generating function.1

Sub Simulating_Brownian_Motion()

Dim T, dt, Sqrdt, BrownianMotion, i, N

T = InputBox("Enter the length of the time period (T)")

N = InputBox("Enter the number of periods (N)")

dt = T / N

Sqrdt = Sqr(dt)

1 The generation of normally distributed random numbers in Excel is discussed
in Appendix A. The function RandN() here is user-created (to simplify typing)
to equal the function Application.NormSInv(Rnd()) supplied in VBA. The con-
struction sqrtdt ∗ z scales the standard normal z so that its standard deviation is√

∆t and hence its variance is ∆t, as desired. The subroutine creates two columns
of data below the active cell in the Excel worksheet with headings “Time” and
“Brownian Motion.” To plot the path of the Brownian motion, select the two
columns and insert an “XY (Scatter)” chart, with data points connected by lines.
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ActiveCell.Value = "Time"

ActiveCell.Offset(0, 1) = "Brownian Motion"

ActiveCell.Offset(1, 0) = 0 ’ beginning time

ActiveCell.Offset(1, 1) = 0 ’ beginning value of Brownian motion

BrownianMotion = 0

For i = 1 To N

ActiveCell.Offset(i + 1, 0) = i * dt ’ next time

BrownianMotion = BrownianMotion + Sqrdt * RandN()

ActiveCell.Offset(i + 1, 1) = BrownianMotion ’ next value

Next i

End Sub

2.2 Quadratic Variation

If we take a large number N of time steps in the simulation of the preceding
section, we will see the distinctive characteristic of a Brownian motion: it jig-
gles rapidly, moving up and down in a very erratic way. The name “Brownian
motion” derives from the botanist Robert Brown’s observations of the erratic
behavior of particles suspended in a fluid. This has long been thought to be a
reasonable model for the behavior of a stock price. The plot of other functions
with which we may be familiar will be much smoother. This is captured in
the concept of quadratic variation.

Consider a discrete partition

0 = t0 < t1 < t2 < · · · < tN = T

of the time interval [0, T ]. Let B be a Brownian motion and calculate the sum
of squared changes

N∑
i=1

[∆B(ti)]2 ,

where ∆B(ti) denotes the change B(ti) − B(ti−1). If we consider finer parti-
tions with the length of each time interval ti − ti−1 going to zero, the limit
of the sum is called the “quadratic variation” of the process. For a Brown-
ian motion, the quadratic variation over an interval [0, T ] is equal to T with
probability one.

The functions with which we are normally familiar are continuously dif-
ferentiable. If X is a continuously differentiable function of time (in each
state of the world), then the quadratic variation of X will be zero. A simple
example is a linear function: X(t) = at for some constant a. Then, taking
ti − ti−1 = ∆t = T/N for each i, the sum of squared changes is

N∑
i=1

[∆X(ti)]2 =
N∑

i=1

[a∆t]2 = Na2(∆t)2 = Na2

(
T

N

)2

=
a2T 2

N
→ 0
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as N → ∞. Essentially the same argument shows that the quadratic variation
of any continuously differentiable function is zero, because such a function is
approximately linear at each point.

Thus, the jiggling of a Brownian motion, which leads to the nonzero
quadratic variation, is quite unusual. To explain exactly how unusual it is,
it is helpful to introduce the concept of “total variation,” which is defined in
the same way as quadratic variation but with the squared changes [∆B(ti)]2

replaced by the absolute value of the changes |∆B(ti)|. If the quadratic varia-
tion of a continuous function is nonzero, then its total variation is necessarily
infinite, so each path of a Brownian motion has infinite total variation (with
probability one). It was mentioned above that, with a large number of time
steps in the simulation of the preceding section, one could see the distinc-
tive jiggling property of a Brownian motion. This is not quite right. Any plot
drawn by a pencil (or a laser printer, for that matter) must have finite total
variation, because the total variation is the total distance traveled by the pen-
cil. Hence, no matter how many time steps one uses, one will never create a
continuous plot with the nonzero quadratic variation (and infinite total varia-
tion) that a Brownian path has. Another way to understand this is to consider
focusing on a small segment of a plot and viewing it with a magnifying glass.
If the segment is small enough, and excluding the finite number of kinks that
a pencil can draw in the plot of a function, it will look approximately like a
straight line under the magnifying glass (with slope equal to the derivative
of the function). However, if one could view a segment of a path of a true
Brownian motion under a magnifying glass, it would look much the same as
the entire picture does to the naked eye—no matter how small the segment,
one would still see the characteristic jiggling.

One may well question why we should be interested in this curious mathe-
matical object. The reason is that asset pricing inherently involves martingales
(variables that evolve randomly over time in such a way that their expected
changes are always zero), as our fundamental pricing equation (1.17) estab-
lishes. Furthermore, continuous processes (variables whose paths are contin-
uous functions of time) are much more tractable mathematically than are
processes that can jump at some instants. More importantly, it is possible
in a mathematical model with continuous processes to define perfect hedges
much more readily than it is in a model involving jump processes. So, we
are led to a study of continuous martingales. An important fact is that any
non-constant continuous martingale must have infinite total variation! So, the
normal functions with which we are familiar are left behind once we enter the
study of continuous martingales.

There remains perhaps the question of why we focus on Brownian motion
within the world of continuous martingales. The answer here is that any con-
tinuous martingale is really just a transformation of a Brownian motion. This
is a consequence of the following important fact, which is known as Levy’s
theorem:
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A continuous martingale is a Brownian motion if and only if its quadratic
variation over each interval [0, T ] equals T .

Thus, among continuous martingales, a Brownian motion is defined by the
condition that the quadratic variation over each interval [0, T ] is equal to T .
This is really just a normalization. A different continuous martingale may have
a different quadratic variation, but it can be converted to a Brownian motion
just by deforming the time scale. Furthermore, many continuous martingales
can be constructed as “stochastic integrals” with respect to a Brownian mo-
tion. We take up this topic in the next section.

2.3 Itô Processes

An Itô process is a variable X that changes over time as

dX(t) = µ(t) dt + σ(t) dB(t) , (2.1)

where B is a Brownian motion, and µ and σ can also be random processes.
Some regularity conditions are needed on µ and σ which we will omit, except
for noting that µ(t) and σ(t) should be known at time t. In particular, constant
µ and σ are certainly acceptable. When we add the changes over time, we get

X(T ) = X(0) +
∫ T

0

µ(t) dt +
∫ T

0

σ(t) dB(t)

for any T > 0. There are other types of random processes, in particular,
processes that can jump, but we will not consider them in this book.

We will not formally define the integral
∫ T

0
σ(t) dB(t), but it should be

understood as being approximately equal to a discrete sum of the form

N∑
i=1

σ(ti−1)∆B(ti) ,

where 0 = t0 < · · · tN = T and the time periods ti−ti−1 are small. Given that
we can simulate the changes ∆B(ti) as random normals, we can approximately
simulate the random variable

∫ T

0
σ(t) dB(t) and hence we can approximately

simulate X(T ).
An Itô process evolves continuously over time. We interpret µ(t) dt as the

expected change in X in an instant dt. The quantity µ(t) is also called the
“drift” of the process X at time t. The coefficient σ(t) is called the “diffusion”
coefficient of X at time t.

If µ and σ are constant, it is standard to refer to an Itô process X as a
(µ, σ)–Brownian motion. Of course, it is not a martingale when µ �= 0. For
example, when µ > 0, X tends to increase over time. However, it has the
jiggling property of a Brownian motion, scaled by the diffusion coefficient σ.
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A very important fact is that an Itô process such as (2.1) can be a mar-
tingale only if µ = 0. This should seem sensible, because µdt is the expected
change in X, and a process is a martingale only if its expected change is zero.2

This observation plays a fundamental role in deriving asset pricing formulas,
as we will begin to see in Sect. 2.9. Conversely, if µ = 0 and

E

[∫ T

0

σ2(t) dt

]
< ∞ (2.2)

for each T , then the Itô process is a continuous martingale and the variance
of its date–T value, calculated with the information available at date 0, is:

var[X(T )] = E

[∫ T

0

σ2(t) dt

]
.

Whether µ is zero or not, and independently of the assumption (2.2), the
quadratic variation of the Itô process X is

lim
N→∞

N∑
i=1

[∆X(ti)]2 =
∫ T

0

σ2(t) dt (2.3)

with probability one. Thus we obtain (when µ = 0 and (2.2) holds) a contin-
uous martingale with a different quadratic variation than a Brownian motion
via the diffusion function σ.

To “compute” the quadratic variation of an Itô process, we use the fol-
lowing simple and important rules (for the sake of brevity, we drop the “(t)”
notation from B(t) here and sometimes later):

(dt)2 = 0 , (2.4a)
(dt)(dB) = 0 , (2.4b)

(dB)2 = dt . (2.4c)

We apply these rules to “compute” the quadratic variation of X as follows:
2 If the sources of uncertainty in the market can be modeled as Brownian motions,

then in fact every martingale is an Itô process with µ = 0. This is some justification
for the assumption we will make in this book, when studying continuous-time
models, that all martingales are Itô processes.
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If dX = µdt + σ dB for a Brownian motion B, then

(dX)2 = (µdt + σ dB)2

= µ2(dt)2 + 2µσ(dt)(dB) + σ2(dB)2

= 0 + 0 + σ2 dt .

We integrate this from 0 to T to obtain the quadratic variation (2.3) over
that time period:3 ∫ T

0

(dX(t))2 =
∫ T

0

σ2(t) dt . (2.5)

2.4 Itô’s Formula

First we recall some facts of the ordinary calculus. If y = g(x) and x = f(t)
with f and g being continuously differentiable functions, then

dy

dt
=

dy

dx
× dx

dt
= g′(x(t))f ′(t) .

Over a time period [0, T ], this implies that

y(T ) = y(0) +
∫ T

0

dy

dt
dt = y(0) +

∫ T

0

g′(x(t))f ′(t) dt .

Substituting dx(t) = f ′(t) dt, we can also write this as

y(T ) = y(0) +
∫ T

0

g′(x(t)) dx(t) . (2.6)

We can contrast (2.6) with a special case of Itô’s formula for the calcu-
lus of Itô processes (the more general formula will be discussed in the next
section). If B is a Brownian motion and Y = g(B) for a twice-continuously
differentiable function g, then

Y (T ) = Y (0) +
∫ T

0

g′(B(t)) dB(t) +
1
2

∫ T

0

g′′(B(t)) dt . (2.7)

3 In a more formal mathematical presentation, one normally writes d〈X, X〉 for
what we are writing here as (dX)2. This is the differential of the quadratic vari-
ation process, and the quadratic variation through date T is

〈X, X〉(T ) =

∫ T

0

d〈X, X〉(t) =

∫ T

0

σ2(t) dt .
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Thus, relative to the ordinary calculus, Itô’s formula has an “extra term”
involving the second derivative g′′. We can write (2.7) in differential form as

dY (t) =
1
2
g′′(B(t)) dt + g′(B(t)) dB(t).

Thus, Y = g(B) is an Itô process with drift g′′(B(t))/2 and diffusion coefficient
g′(B(t)).

To gain some intuition for the “extra term” in Itô’s formula, we return
to the ordinary calculus. Given dates t < u, the derivative defines a linear
approximation of the change in y over this time period; i.e., setting ∆x =
x(u) − x(t) and ∆y = y(u) − y(t), we have the approximation

∆y ≈ g′(x(t))∆x .

A better approximation is given by the second-order Taylor series expansion

∆y ≈ g′(x(t))∆x +
1
2
g′′(x(t)) [∆x]2 .

An interpretation of (2.6) is that the linear approximation works perfectly for
infinitesimal time periods dt, because we can compute the change in y over the
time period [0, T ] by “summing up” the infinitesimal changes g′(x(t)) dx(t).
In other words, the second-order term 1

2g′′(x(t)) [∆x]2 “vanishes” when we
consider very small time periods.

The second-order Taylor series expansion in the case of Y = g(B) is

∆Y ≈ g′(B(t))∆B +
1
2
g′′(B(t)) [∆B]2 .

For example, given a partition 0 = t0 < t1 < · · · < tN = T of the time interval
[0, T ], we have, with the same notation we have used earlier,

Y (T ) = Y (0) +
N∑

i=1

∆Y (ti)

≈ Y (0) +
N∑

i=1

g′(B(ti−1))∆B(ti) +
1
2

N∑
i=1

g′′(B(ti−1)) [∆B(ti)]2 . (2.8)

If we make the time intervals ti − ti−1 shorter, letting N → ∞, we cannot
expect that the “extra” term here will disappear, leading to the result (2.6)
of the ordinary calculus, because we know that

lim
N→∞

N∑
i=1

[∆B(ti)]2 = T ,

whereas for the continuously differentiable function x(t) = f(t), the same limit
is zero. In fact it seems sensible to interpret the limit of [∆B]2 as (dB)2 = dt.
This is perfectly consistent with Itô’s formula: if we take the limit in (2.8),
replacing the limit of [∆B(ti)]2 with (dB)2 = dt, we obtain (2.7).
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2.5 Multiple Itô Processes

Now consider two Itô processes

dX(t) = µx(t) dt + σx(t) dBx(t) , (2.9a)
dY (t) = µy(t) dt + σy(t) dBy(t) , (2.9b)

where Bx and By can be different Brownian motions. The relation between the
two Brownian motions is determined by their covariance or correlation. Given
dates t < u, we know that both changes Bx(u)−Bx(t) and By(u)−By(t) are
normally distributed with mean 0 and variance equal to u− t. There will exist
a (possibly random) process ρ such that the covariance of these two normally
distributed random variables, given the information at date t, is

Et

[∫ u

t

ρ(s) ds

]
.

The process ρ is called the correlation coefficient of the two Brownian motions,
because when it is constant the correlation of the changes Bx(u)−Bx(t) and
By(u) − By(t) is

covariance
product of standard deviations

=

∫ u

t
ρds√

u − t
√

u − t
=

(u − t)ρ
u − t

= ρ .

Moreover, given increasingly fine partitions 0 = t0 < · · · < tN = T of an
interval [0, T ] as before, we will have

N∑
i=1

∆Bx(ti) × ∆By(ti) →
∫ T

0

ρ(t) dt

as N → ∞, with probability one.
We know that

N∑
i=1

[∆X(ti)]2 →
∫ T

0

σ2
x(t) dt and

N∑
i=1

[∆Y (ti)]2 →
∫ T

0

σ2
y(t) dt . (2.10)

Furthermore, it can be shown that the sum of products satisfies

N∑
i=1

∆X(ti) × ∆Y (ti) →
∫ T

0

σx(t)σy(t)ρ(t) dt . (2.11)
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By adding the rule
(dBx)(dBy) = ρdt (2.4d)

to the rules (2.4a)–(2.4c), we can “compute” the limit in (2.11) as

lim
N→∞

N∑
i=1

∆X(ti) × ∆Y (ti) =
∫ T

0

(dX)(dY )

=
∫ T

0

(µx dt + σx dBx)(µy dt + σy dBy)

=
∫ T

0

σx(t)σy(t)ρ(t) dt . (2.12)

The most general case of Itô’s formula that we will need is for a function
Z(t) = g(t,X(t), Y (t)) where X and Y are Itô processes as in (2.9). In this
case, Itô’s formula is4

Z(T ) = Z(0) +
∫ T

0

∂g

∂t
dt +

∫ T

0

∂g

∂x
dX(t) +

∫ T

0

∂g

∂y
dY (t)

+
1
2

∫ T

0

∂2g

∂x2
(dX(t))2 +

1
2

∫ T

0

∂2g

∂y2
(dY (t))2

+
∫ T

0

∂2g

∂x∂y
(dX(t))(dY (t)) . (2.13)

In this equation, we apply the rules (2.4a)–(2.4d) to compute

(dX(t))2 = σ2
x(t) dt ,

(dY (t))2 = σ2
y(t) dt ,

(dX(t))(dY (t)) = σx(t)σy(t)ρ(t) dt .

Itô’s formula (2.13) appears a bit simpler (and easier to remember) if we write
it in “differential form.” We have:

If Z(t) = g(t,X(t), Y (t)) where X and Y are Itô processes as in (2.9), then

dZ =
∂g

∂t
dt +

∂g

∂x
dX +

∂g

∂y
dY +

1
2

∂2g

∂x2
(dX)2 +

1
2

∂2g

∂y2
(dY )2

+
∂2g

∂x∂y
(dX)(dY ) . (2.14)

4 We need to assume g(t, x, y) is continuously differentiable in t and twice contin-
uously differentiable in (x, y) for (2.13) and (2.14) to be valid. Note also that we
are using a short-hand notation here. The partial derivatives of g will generally
depend on t, X(t) and Y (t) just as g does.
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2.6 Examples of Itô’s Formula

The following are the applications of Itô’s formula that will be used most
frequently in the book. They follow from the boxed formula at the end of
the previous section by taking g(x, y) = xy or g(x, y) = y/x or g(x) = ex or
g(x) = log x.

Products. If Z = XY , then dZ = X dY +Y dX+(dX)(dY ). We can write
this as

dZ

Z
=

dX

X
+

dY

Y
+
(

dX

X

)(
dY

Y

)
. (2.15)

Ratios. If Z = Y/X, then

dZ

Z
=

dY

Y
− dX

X
−
(

dY

Y

)(
dX

X

)
+
(

dX

X

)2

. (2.16)

Exponentials. If Z = eX , then

dZ

Z
= dX +

(dX)2

2
. (2.17)

Logarithms. If Z = log X, then

dZ =
dX

X
− 1

2

(
dX

X

)2

. (2.18)
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Compounding/Discounting. Let

Y (t) = exp
(∫ t

0

q(s) ds

)

for some (possibly random) process q and define Z = XY for any Itô
process X. The usual calculus gives us dY (t) = q(t)Y (t) dt, and the product
rule above implies

dZ

Z
= q dt +

dX

X
. (2.19)

This is the same as in the usual calculus.

2.7 Reinvesting Dividends

Frequently, we will assume that the asset underlying a derivative security
pays a “constant dividend yield,” which we will denote by q. This means, for
an asset with price S(t), that the dividend “in an instant dt” is qS(t) dt. If
the dividends are reinvested in new shares, the number of shares will grow
exponentially at rate q. To see this, consider the portfolio starting with a
single share of the asset and reinvesting dividends until some date T . Let
X(t) denote the number of shares resulting from this strategy at any time
t ≤ T . Then the dividend received at date t is qS(t)X(t) dt, which can be
used to purchase qX(t) dt new shares. This implies that dX(t) = qX(t) dt, or
dX(t)/dt = qX(t), and it is easy to check (and very well known) that this
equation is solved by X(t) = eqtX(0). In our case, with X(0) = 1, we have
X(t) = eqt.

The dollar value of the trading strategy just described will be X(t)S(t) =
eqtS(t). Denote this by V (t). This is the value of a non-dividend-paying portfo-
lio, because all dividends are reinvested. From the Compounding/Discounting
example in Sect. 2.6, we know that

dV

V
= q dt +

dS

S
. (2.20)

This means that the rate of return on the portfolio is the dividend yield q dt
plus the return dS/S due to capital gains.
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2.8 Geometric Brownian Motion

Let
S(t) = S(0) exp

(
µt − σ2t/2 + σB(t)

)
(2.21)

for constants µ and σ, where B is a Brownian motion. Using the product rule
and the rule for exponentials, we obtain

dS

S
= µdt + σ dB . (2.22)

When we see an equation of the form (2.22), we should recognize (2.21) as
the solution.

The process S is called a “geometric Brownian motion.” In keeping with
the discussion of Sect. 2.3, we interpret (2.22) as stating that µdt is the
expected rate of change of S and σ2 dt is the variance of the rate of change
in an instant dt. We call µ the “drift” and σ the “volatility.” The geometric
Brownian motion will grow at the average rate of µ, in the sense that E[S(t)] =
eµtS(0).

Taking the natural logarithm of (2.21) gives an equivalent form of the
solution:

log S(t) = log S(0) +
(

µ − 1
2
σ2

)
t + σB(t) . (2.23)

This shows that log S(t)− log S(0) is a (µ−σ2/2, σ)–Brownian motion. Given
information at time t, the logarithm of S(u) for u > t is normally distributed
with mean (u − t)(µ − σ2/2) and variance (u − t)σ2. Because S is the expo-
nential of its logarithm, S can never be negative. For this reason, a geometric
Brownian motion is a better model for stock prices than is a Brownian motion.

The differential of (2.23) is

d log S(t) =
(

µ − 1
2
σ2

)
dt + σ dB(t) . (2.24)

We conclude:

The equation
dS

S
= µdt + σ dB

is equivalent to the equation

d log S(t) =
(

µ − 1
2
σ2

)
dt + σ dB(t) .

The solution of both equations is (2.21) or the equivalent formula (2.23).
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Over a discrete time interval ∆t, equation (2.24) implies that the change
in the logarithm of S is

∆ log S =
(

µ − 1
2
σ2

)
∆t + σ ∆B . (2.25)

If S is the price of a non-dividend-paying asset, then over the time period ti−1

to ti, with ti − ti−1 = ∆t, we have

∆ log S = ri ∆t , (2.26)

where ri is the continuously compounded annualized rate of return during the
period ∆t. This follows from the definition of the continuously compounded
rate of return as the constant rate over the time period ∆t that would cause S
to grow (or fall) from S(ti−1) to S(ti). To be precise, ri is defined by

S(ti)
S(ti−1)

= eri∆t ,

which is equivalent to (2.26). Thus, the geometric Brownian motion model
(2.22) implies that the continuously compounded annualized rate of return
over a period of length ∆t is given by

ri = µ − 1
2
σ2 +

σ∆B

∆t
.

This means that ri is normally distributed with mean µ − σ2/2 and variance
σ2/∆t. Given historical data on the rates of return, the parameters µ and σ
can be estimated by standard methods (see Chap. 4).

We can simulate a path of S by simulating the changes ∆ log S. The ran-
dom variable σ∆B in (2.25) has a normal distribution with zero mean and
variance equal to σ2∆t. We simulate it as σ

√
∆t multiplied by a standard

normal.

Sub Simulating_Geometric_Brownian_Motion()

Dim T, S, mu, sigma, dt, SigSqrdt, LogS, drift, i, N

T = InputBox("Enter the length of the time period (T)")

N = InputBox("Enter the number of periods (N)")

S = InputBox("Enter the initial stock price (S)")

mu = InputBox("Enter the expected rate of return (mu)")

sigma = InputBox("Enter the volatility (sigma)")

dt = T / N

SigSqrdt = sigma * Sqr(dt)

drift = (mu - 0.5 * sigma * sigma) * dt

LogS = Log(S)

ActiveCell.Value = "Time"

ActiveCell.Offset(0, 1) = "Stock Price"

ActiveCell.Offset(1, 0) = 0 ’ beginning time

ActiveCell.Offset(1, 1) = S ’ beginning stock price
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For i = 1 To N

ActiveCell.Offset(i + 1, 0) = i * dt ’ next time

LogS = LogS + SigSqrdt * RandN()

ActiveCell.Offset(i + 1, 1) = Exp(LogS) ’ next stock price

Next i

End Sub

2.9 Numeraires and Probabilities

When we change probability measures, we cannot expect a process B that
was a Brownian motion to remain a Brownian motion. The expected change
in a Brownian motion must always be zero, but when we change probabilities,
the expected change of B is likely to become nonzero. (Likewise, a martingale
is unlikely to remain a martingale when we change probabilities.) However,
the Brownian motion B will still be an Itô process under the new probability
measure. In fact, every Itô process under one probability measure will still be
an Itô process under the new probability measure, and the diffusion coefficient
of the Itô process will be unaffected by the change in probabilities.5 Changing
probabilities only changes the drift of an Itô process.

In a sense, this should not be surprising. It was noted in Sect. 2.2 that
a Brownian motion B can be defined as a continuous martingale with paths
that jiggle in such a way that the quadratic variation over any interval [0, T ]
is equal to T . Changing the probabilities will change the probabilities of the
various paths (so it may affect the expected change in B) but it will not affect
how each path jiggles. So, under the new probability measure, B should still
be like a Brownian motion but it may have a nonzero drift. If we consider
a general Itô process, the reasoning is the same. The diffusion coefficient σ
determines how much each path jiggles, and this is unaffected by changing the
probability measure. Furthermore, instantaneous covariances—the (dX)(dY )
terms—between Itô processes are unaffected by changing the probability mea-
sure. Only the drifts are affected.

As explained in Sect. 1.5, we need to know the distribution of the un-
derlying under probability measures corresponding to different numeraires.
Let S be the price of an asset that has a constant dividend yield q, and, as
in Sect. 2.7, let V (t) = eqtS(t). This is the price of the portfolio in which all
dividends are reinvested, and we have

dV

V
= q dt +

dS

S
.

Let Y be the price of another another asset that does not pay dividends.
Let r(t) denote the instantaneous risk-free rate at date t and let R(t) =
5 To be a little more precise, this is true provided sets of states of the world hav-

ing zero probability continue to have zero probability when the probabilities are
changed. Because of the way we change probability measures when we change
numeraires (cf. (1.11)) this will always be true for us.
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exp
(∫ t

0
r(s) ds

)
. Assume

dS

S
= µs dt + σs dBs ,

dY

Y
= µy dt + σy dBy ,

where Bs and By are Brownian motions under the actual probability measure
with correlation ρ, and where µs, µy, σs, σy and ρ can be quite general random
processes. We consider the dynamics of the asset price S under three different
probability measures. In each case, we follow the same steps: (i) we note that
the ratio of an asset price to the numeraire asset price must be a martingale,
(ii) we use Itô’s formula to calculate the drift of this ratio, and (iii) we use
the fact that the drift of a martingale must be zero to compute the drift of
dS/S.

Risk-Neutral Probabilities

Under the risk-neutral measure, Z(t) defined as

Z(t) =
V (t)
R(t)

= exp
(
−
∫ t

0

r(s) ds

)
V (t)

is a martingale. Using the compounding/discounting rule, we have

dZ

Z
= −r dt +

dV

V
= (q − r) dt +

dS

S
.

For Z to be a martingale, the drift (dt part) of dZ/Z must be zero. Therefore,
the drift of dS/S must be (r − q) dt under the risk-neutral measure. Because
the change of measure does not affect the volatility, this implies:

dS

S
= (r − q) dt + σs dB∗

s , (2.27)

where B∗
s is a Brownian motion under the risk-neutral measure.

Underlying as the Numeraire

When V is the numeraire, the process Z(t) defined as

Z(t) =
R(t)
V (t)

=
exp

(∫ t

0
r(s) ds

)
V (t)

is a martingale. Using the rule for ratios, we have
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dZ

Z
= r dt − dV

V
+
(

dV

V

)2

= (r − q + σ2
s) dt − dS

S
.

Because the drift of dZ/Z must be zero, this implies that the drift of dS/S is
(r − q + σ2

s) dt. We conclude that:

dS

S
= (r − q + σ2

s) dt + σs dB∗
s , (2.28)

where now B∗
s denotes a Brownian motion when V (t) = eqtS(t) is the nu-

meraire.

Another Risky Asset as the Numeraire

When Y is the numeraire, Z(t) defined as

Z(t) =
V (t)
Y (t)

must be a martingale. Using again the rule for ratios, we have

dZ

Z
=

dV

V
− dY

Y
−
(

dV

V

)(
dY

Y

)
+
(

dY

Y

)2

=
dV

V
− dY

Y
− ρσsσy dt + σ2

y dt

=
dS

S
− dY

Y
+ (q − ρσsσy dt + σ2

y) dt .

We can apply our previous example to compute the dynamics of Y when Y is
the numeraire. This shows that the drift of dY/Y is (r + σ2

y) dt. Because the
drift of dZ/Z must be zero, it follows that the drift of dS/S is (r−q+ρσsσy) dt.
We conclude that:

dS

S
= (r − q + ρσsσy) dt + σs dB∗

s , (2.29)

where B∗
s denotes a Brownian motion under the probability measure cor-

responding to the non-dividend-paying risky asset Y being the numeraire,
and where ρ is the correlation of S and Y .

Notice that the formula (2.29), while more complicated, is also more gen-
eral than the others. In fact, it includes the formulas (2.27) and (2.28) as
special cases: (i) if Y is the price of the instantaneously risk-free asset, then
σy = 0 and (2.29) simplifies to (2.27), and (ii) if Y = V , then σy = σs and
ρ = 1, so (2.29) simplifies to (2.28).
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Further Discussion

It would be natural for one to ask at this point: “what is the Brownian motion
B∗

s and where did it come from?” We have argued that once we know the
drift, and the fact that the volatility does not change, we can immediately
write down, for example,

dS

S
= (r − q) dt + σs dB∗

s

for a Brownian motion B∗
s under the risk-neutral measure. To answer this

question, we will give here the definition of B∗
s under the risk-neutral measure.

The definition shows that we are justified in writing down (2.27)–(2.29), but
we will not repeat the definition each time we make a statement of this sort.

We showed that Z is a martingale under the risk-neutral measure, where Z
satisfies

dZ

Z
= (q − r) dt +

dS

S
= (q − r + µs) dt + σs dBs . (2.30)

Define B∗
s (0) = 0 and

dB∗
s =

(
q − r + µs

σs

)
dt + dBs . (2.31)

Then

dB∗
s =

1
σs

(
dZ

Z

)
and hence is a continuous martingale under the risk-neutral measure. We can
compute its quadratic variation as

(dB∗
s )2 =

(
q − r + µs

σs

)2

(dt)2 + 2
(

q − r + µs

σs

)
(dt)(dBs) + (dBs)2 = dt .

Therefore, by Levy’s theorem (Sect. 2.2), B∗
s is a Brownian motion under the

risk-neutral measure. From (2.30) and (2.31) we have

(q − r) dt +
dS

S
= σs dB∗

s ⇐⇒ dS

S
= (r − q) dt + σs dB∗

s ,

as in (2.27).

2.10 Tail Probabilities of Geometric Brownian Motions

For each of the numeraires discussed in the previous section, we have

d log S = α dt + σ dB , (2.32)

for some α and σ, where B is a Brownian motion under the probability mea-
sure associated with the numeraire. Specifically, σ = σs, B = B∗

s , and
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(1) for the risk-neutral measure, α = r − q − σ2
s/2,

(2) when eqtS(t) is the numeraire, α = r − q + σ2
s/2,

(3) when another risky asset price Y is the numeraire, α = r−q+ρσsσy−σ2
s/2.

We will assume in this section that α and σ are constants. The essential
calculation in pricing options, as we will see in the next chapter and in Chap. 8,
is to compute prob(S(T ) > K) and prob(S(T ) < K) for a constant K (the
strike price of an option), where prob denotes the probabilities at date 0 (the
date we are pricing an option) associated with a particular numeraire.

Equation (2.32) gives us

log S(T ) = log S(0) + αT + σB(T ) .

Given this, we deduce

S(T ) > K ⇐⇒ log S(T ) > log K

⇐⇒ σB(T ) > log K − log S(0) − αT

⇐⇒ B(T )√
T

>
log K − log S(0) − αT

σ
√

T

⇐⇒ −B(T )√
T

<
log S(0) − log K + αT

σ
√

T

⇐⇒ −B(T )√
T

<
log

(
S(0)
K

)
+ αT

σ
√

T
. (2.33)

The random variable on the left-hand side of (2.33) has the standard normal
distribution—it is normally distributed with mean equal to zero and variance
equal to one. As is customary, we will denote the probability that a standard
normal is less than some number d as N(d). We conclude:

Assume d log S = α dt+σ dB, where B is a Brownian motion. Then, for any
number K,

prob(S(T ) > K) = N(d) , (2.34)

where

d =
log

(
S(0)
K

)
+ αT

σ
√

T
. (2.35)

The probability prob(S(T ) < K) can be calculated similarly, but the sim-
plest way to derive it is to note that the events S(T ) > K and S(T ) < K
are “complementary”—their probabilities sum to one (the event S(T ) = K
having zero probability). Therefore prob(S(T ) < K) = 1 − N(d). This is the
probability that a standard normal is greater than d, and by virtue of the
symmetry of the standard normal distribution, it equals the probability that
a standard normal is less than −d. Therefore, we have:



46 2 Continuous-Time Models

Assume d log S = α dt+σ dB, where B is a Brownian motion. Then, for any
number K,

prob(S(T ) < K) = N(−d) , (2.36)

where d is defined in (2.35).

2.11 Volatilities

As mentioned in Sect. 2.8, when we encounter an equation of the form
dS

S
= µdt + σ dB

where B is a Brownian motion, we will say “σ is the volatility of S.” For
example, in the Black-Scholes model, the most important assumption is that
the volatility of the underlying asset price is constant. We will occasionally
need to compute the volatilities of products or ratios of random processes.
These computations follow directly from Itô’s formula.

Suppose
dX

X
= µx dt + σx dBx and

dY

Y
= µy dt + σy dBy ,

where Bx and By are Brownian motions with correlation ρ, and µx, µy, σx,
σy, and ρ may be quite general random processes.

Products

If Z = XY , then (2.15) gives us

dZ

Z
= (µx + µy + ρσxσy) dt + σx dBx + σy dBy . (2.37)

The instantaneous variance of dZ/Z is calculated, using the rules for products
of differentials, as (

dZ

Z

)2

= (σx dBx + σy dBy)2

= (σ2
x + σ2

y + 2ρσxσy) dt .

As will be explained below, the volatility is the square root of the instanta-
neous variance (dropping the dt). This implies:

The volatility of XY is √
σ2

x + σ2
y + 2ρσxσy . (2.38)
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Ratios

If Z = Y/X, then (2.16) gives us

dZ

Z
= (µy − µx − ρσxσy + σ2

x) dt + σy dBy − σx dBx . (2.39)

The instantaneous variance of dZ/Z is therefore(
dZ

Z

)2

= (σy dBy − σx dBx)2

= (σ2
x + σ2

y − 2ρσxσy) dt .

This implies:

The volatility of Y/X is √
σ2

x + σ2
y − 2ρσxσy . (2.40)

Further Discussion

To understand why taking the square root of (dZ/Z)2 (dropping the dt) gives
the volatility, consider for example the product case Z = XY . Define a random
process B by B(0) = 0 and

dB =
σx

σ
dBx +

σy

σ
dBy , (2.41)

where σ is the volatility defined in (2.38). Then we can write (2.37) as

dZ

Z
= (µx + µy + ρσxσy) dt + σ dB . (2.42)

From the discussion in Sect. 2.3, we know that B is a continuous martingale.
We can compute its quadratic variation from

(dB)2 =
(

σx dBx + σs dBs

σ

)2

=
(σ2

x + σ2
s + 2ρσxσs) dt

σ2
,

= dt .

By Levy’s theorem (see Sect. 2.2), any continuous martingale with this
quadratic variation is necessarily a Brownian motion. Therefore, (2.42) shows
that σ is the volatility of Z as defined at the beginning of the section.



48 2 Continuous-Time Models

Problems

2.1. Consider a discrete partition 0 = t0 < t1 < · · · tN = T of the time
interval [0, T ] with ti − ti−1 = ∆t = T/N for each i. Consider the function

X(t) = et .

Create a VBA subroutine, prompting the user to input T and N , which com-
putes and prints

∑N
i=1[∆X(ti)]2, where

∆X(ti) = X(ti) − X(ti−1) = eti − eti−1 .

Hint: The sum can be computed as follows.

sum = 0

For i = 1 To N

DeltaX = Exp(i/N)-Exp((i-1)/N)

sum = sum + DeltaX * DeltaX

Next i

2.2. Repeat the previous problem for the function X(t) = t3. In both this
and the previous problem, what happens to

∑N
i=1[∆X(ti)]2 as N → ∞?

2.3. Repeat the previous problem to compute
∑N

i=1[∆B(ti)]2, where B is
a simulated Brownian motion. For a given T , what happens to the sum as
N → ∞?

2.4. Repeat the previous problem, computing instead
∑N

i=1 |∆B(ti)| where
| · | denotes the absolute value. What happens to this sum as N → ∞?

2.5. Consider a discrete partition 0 = t0 < t1 < · · · tN = T of the time
interval [0, T ] with ti − ti−1 = ∆t = T/N for each i. Consider a geometric
Brownian motion

dZ

Z
= µdt + σ dB .

An approximate path Z̃(t) of the geometric Brownian motion can be simulated
as

∆Z̃(ti) = Z̃(ti−1)
[
µ∆t + σ ∆B

]
. (2.43)

The subroutine Simulating_Geometric_Brownian_Motion simulates a path Z
of a geometric Brownian motion. Modify the subroutine to prompt the user to
input T , N , σ, µ, and Z(0) and to generate both a path Z(t) and an approx-
imate path Z̃(t) according to (2.43), using the same ∆B for both paths and
taking Z̃(0) = Z(0). Plot both paths in the same figure. How well does the
approximation work for large N? Warning: For N larger than about 100T ,
the approximation will look perfect—you won’t be able to tell that there are
two plots in the figure.




