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A Brief Survey of Term Structure Models

This chapter presents very brief descriptions of several important models. The
list of models is certainly not exhaustive, and our descriptions will be far from
complete. As mentioned previously, there are many good references for this
material in book form already, and our goal here is merely to provide a short
introduction.

14.1 Ho-Lee

The Ho-Lee [36] model is a binomial version of the Vasicek model without
mean reversion, in which the one-period interest rate is assumed to have a
deterministic drift. This was the first widely-used model that enabled one to
fit the current yield curve.

Consider discrete times 0 = t0 < t1 < · · · tN with ti − ti−1 = ∆t for
each i. We denote the one-period interest rate from date ti to ti+1 by r(ti).
We express the rate as an annualized continuously compounded rate, so the
one-period discount factor from date ti to ti+1 is e−r(ti)∆t. We could put this in
a continuous-time framework by assuming the short rate is constant (= r(ti))
during each time interval (ti, ti+1). As always, the risk-neutral measure is the
probability measure corresponding to the numeraire

R(t) = exp
(∫ t

0

r(s) ds

)
. (14.1)

However, we will only be doing valuation at the discrete dates t0, . . . , tN and
at date ti the accumulation factor (14.1) is

R(ti) = exp

⎛
⎝i−1∑

j=0

r(tj)∆t

⎞
⎠ .

Thus, the continuous-time framework is not necessary.



296 14 A Brief Survey of Term Structure Models

The model assumes that over each time period ti−ti−1 the change ∆r(ti) =
r(ti) − r(ti−1) in the one-period rate is

∆r(ti) = θ(ti)∆t ± σ
√

∆t ,

where the risk-neutral probability of “+” and “−” is 1/2 each and θ is a non-
random function. As in the discussion of the extended Vasicek model, it is
convenient to define a random process r̂ by r̂(0) = r(0) and

∆r̂(ti) = ±σ
√

∆t

for each i. Also, define φ(ti) =
∑i

j=1 θ(ti) for i ≥ 1. Then we have, for i > 0,

r(ti) = φ(ti) + r̂(ti) .

The following illustrates a three-period tree with initial one-period rate
r0 =5%, ∆t = 1, θ(ti) = 0 for all i, and σ =1%.
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To value a fixed-income derivative, we discount the terminal value back-
wards through the tree as in Chaps. 5 and 9. The new feature is that the
discount rate is changing over time. So, we now have three trees to consider:
the tree for the underlying, the tree for the one-period interest rate, and the
tree for the derivative value. However, the tree for the underlying can be cre-
ated from the interest-rate tree, so the interest-rate tree is the basic input
instead of the tree for the underlying.

To clarify this, we will start with the simplest example: valuing a discount
bond. Consider the above interest-rate tree and a discount bond that matures
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at date 3. The value of the bond is 1 at maturity. Because we are using
continuous compounding, the discount factor is e−.07 = 0.932 at the top node
at date 2. This is also the value of the discount bond at that node. Likewise,
the value of the bond at the middle node at date 2 is e−.05 = 0.951. This
implies that the value of the bond at the top node at date 1 is

e−.06

(
1
2
× 0.932 +

1
2
× 0.951

)
= 0.887 .

Continuing in this way, we derive the following tree for the discount bond,
concluding that its price at date 0 should be $0.861.
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In general, the price at date 0 of a discount bond maturing at date tn is

P (0, tn) = ER

[
exp

(
−

n−1∑
i=0

r(ti)∆t

)]

= ER

[
exp

(
−r(t0)∆t −

n−1∑
i=1

[r̂(ti) + φ(ti)]∆t

)]

= exp

(
−r(t0)∆t −

n−1∑
i=1

φ(ti)∆t

)
ER

[
exp

(
−

n−1∑
i=1

r̂(ti)∆t

)]
.

(14.2)

Given the parameter σ, the expectation in the last line of the above can easily
be computed.
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The parameters φ(tn) can be chosen to equate model prices of discount
bonds maturing at t1, . . . , tN to market prices. This is done simply by choosing
φ(tn) to satisfy the following equation, which we will derive below:

e−φ(tn) ∆t =
2er(0) ∆t

enσ
√

∆t ∆t + e−nσ
√

∆t ∆t
× Pmkt(0, tn+1)

Pmkt(0, tn)
. (14.3)

Because the ratio of market prices Pmkt(0, ti+1)/Pmkt(0, ti) is the reciprocal
of one plus the market forward rate at date 0 for loans from date ti to ti+1, this
formula for the parameters φ(ti) is equivalent to equating model forward rates
to market forward rates, as was discussed for the Hull-White and continuous-
time Ho-Lee models in Sect. 13.6. In fact, the fitting of the Ho-Lee model
to market bond prices is often expressed by saying “the market forward rate
curve is an input to the model.” This idea was developed further by Heath,
Jarrow and Morton [33]—see Sect. 14.6.

As for options on equities and currencies, the binomial model for interest
rates is especially useful for valuing early exercise features. However, it should
be noted that, even though this model is very easy to use, it has important
limitations. The assumption of a constant volatility for the one-period rate
and no mean reversion implies excessive uncertainty about the level of the
one-period rate at long horizons, as discussed in Sect. 13.1. To offset this, one
could use a smaller volatility when valuing long-maturity options. However,
for options with early exercise features, this would imply too little uncertainty
about the level of the one-period rate at short horizons and thereby undervalue
the early exercise option.

We will conclude this section with a proof of formula (14.3). Let ε(ti) denote
independent random variables that equal ±σ

√
∆t with probability 1/2 each under

the risk-neutral measure. Then we can write

r̂(ti) = r(0) +

i∑
j=1

ε(tj) .

This implies that

n−1∑
i=0

r̂(ti) = (n − 1)r(0) +

n−1∑
i=1

i∑
j=1

ε(tj)

= (n − 1)r(0) + (n − 1)ε(t1) + (n − 2)ε(t2) + · · · + ε(tn−1)

= (n − 1)r(0) +

n−1∑
i=1

(n − i)ε(ti) .

Therefore, (14.2) gives us

P (0, tn) = exp

(
−nr(0) ∆t −

n−1∑
i=1

φ(ti) ∆t

)
ER

[
exp

(
−

n−1∑
i=1

(n − i)ε(ti)∆t

)]
.

Moreover,
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ER

[
exp

(
−

n−1∑
i=1

(n − i)ε(ti) ∆t

)]
= ER

[
n−1∏
i=1

exp (−(n − i)ε(ti)∆t)

]

=

n−1∏
i=1

ER [exp (−(n − i)ε(ti) ∆t)]

=

n−1∏
i=1

(
1

2
exp

(
(n − i)σ

√
∆t ∆t

)
+

1

2
exp

(
−(n − i)σ

√
∆t ∆t

))
.

Thus,

P (0, tn) = exp

(
−nr(0) ∆t −

n−1∑
i=1

φ(ti) ∆t

)

×
n−1∏
i=1

(
1

2
exp

(
(n − i)σ

√
∆t ∆t

)
+

1

2
exp

(
−(n − i)σ

√
∆t ∆t

))
.

Likewise,

P (0, tn+1) = exp

(
−(n + 1)r(0) ∆t −

n∑
i=1

φ(ti) ∆t

)

×
n∏

i=1

(
1

2
exp

(
(n + 1 − i)σ

√
∆t ∆t

)
+

1

2
exp

(
−(n + 1 − i)σ

√
∆t ∆t

))
,

which we can write as

exp

(
−(n + 1)r(0) ∆t −

n∑
i=1

φ(ti)∆t

)

×
n−1∏
i=0

(
1

2
exp

(
(n − i)σ

√
∆t ∆t

)
+

1

2
exp

(
−(n − i)σ

√
∆t ∆t

))

= exp (−r(0) ∆t − φ(tn) ∆t)

×
(

1

2
exp

(
nσ

√
∆t ∆t

)
+

1

2
exp

(
−nσ

√
∆t ∆t

))
P (0, tn) .

Thus, the ratio of model prices is

P (0, tn+1)

P (0, tn)
= exp (−r(0) ∆t − φ(tn) ∆t)

×
(

1

2
exp

(
nσ

√
∆t ∆t

)
+

1

2
exp

(
−nσ

√
∆t ∆t

))
.

Equating this to the ratio of market prices Pmkt(0, tn+1)/Pmkt(0, tn) gives the for-
mula (14.3).
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14.2 Black-Derman-Toy

The Black-Derman-Toy [4] model is, like the Ho-Lee model and the Black-
Karasinski model discussed in the next section, a binomial model of the one-
period interest rate. The model assumes that

∆ log r(ti) = η(ti)∆t ± σ(ti)
√

∆t, (14.4)

where “+” and “−” have probability one-half each under the risk-neutral
measure. The volatility σ(ti) has the interpretation of the percentage volatility
of the one-period rate (rather than the absolute volatility, as in the Vasicek
and Ho-Lee models). The model implies that the one-period rate will always
be nonnegative.

A significant feature of the model is that the volatility is allowed to be time-
varying. This would produce a non-recombining tree except that the drift η(ti)
is allowed to vary across the date–ti−1 nodes, i.e., to be a random variable,
depending on the level of the one-period rate at date ti−1. To understand
this, consider the following two-period tree. For convenience, we write ai for
η(ti)∆t and bi for σ(ti)

√
∆t.

log r(0) �
��

�
��

�
��

�
��

�
��

�
��

log r(0) + a1 + b1

log r(0) + a1 − b1

log r(0) + a1 − b1 + a2d − b2

?

log r(0) + a1 + b1 + a2u + b2

We have written a2u and a2d to demonstrate that the drift between date 1
and date 2 can vary, depending on whether we are at the top or bottom node
at date 1. If we arrive at the node marked with a question mark via a down
move from the top node at date 1, the value will be

log r(0) + a1 + b1 + a2u − b2 .

On the other hand, if we arrive at it via an up move from the bottom node
at date 1, the value will be

log r(0) + a1 − b1 + a2d + b2 .

For the tree to be recombining, these values must be the same, which implies

a2d = a2u + 2b1 − 2b2 .
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In general, at each date there are two free parameters: the volatility and the
drift at one of the nodes, the drifts at the other nodes then being determined
by the requirement that the tree be recombining.

The dependence of the drift on the node can be expressed as a linear
dependence on the logarithm of the one-period rate. In other words, it is
possible (and convenient) to write the Black-Derman-Toy model (14.4) as

∆ log r(ti) = κ(ti)[θ(ti) − log r(ti−1)]∆t ± σ(ti)
√

∆t, (14.5)

where now the functions κ(ti), θ(ti), and σ(ti) are deterministic—i.e., depend-
ing on time but constant across nodes at each date.

In the two-period example above, we have

a2u = κ(t2)[θ(t2) − {log r(t0) + a1 + b1}]∆t ,

and
a2d = κ(t2)[θ(t2) − {log r(t0) + a1 − b1}]∆t ,

so the relation a2d = a2u + 2b1 − 2b2 is equivalent to

κ(t2) =
b1 − b2

b1 ∆t
= − 1

σ(t1)
× σ(t2) − σ(t1)

∆t
= − 1

σ(t1)
× ∆σ(t2)

∆t
. (14.6)

This same relationship holds at each node at each date (just consider the two-
period example as two periods extending from any node in the tree); thus, in
general, we have

κ(ti) = − 1
σ(ti−1)

× ∆σ(ti)
∆t

. (14.7)

Equations (14.5) and (14.7) define the Black-Derman-Toy model. The free
parameters at each date are σ(ti) and θ(ti), and the parameter κ(ti) is defined
by (14.7). Alternatively, one can view κ(ti) and θ(ti) as free parameters and
define σ(ti) from (14.7). Note that κ(ti) can be interpreted as a mean-reversion
parameter for log r(ti), at least when it is positive (i.e., when ∆σ(ti) < 0).
Because there are two free parameters at each date rather than one (as in the
Ho-Lee model) it is possible to match both market bond prices and market
yield volatilities or cap prices.

In continuous time, we would write (14.7) as

κ(t) = −d log σ(t)
dt

.

Therefore, the continuous-time version of the Black-Derman-Toy model is

d log r(t) = −d log σ(t)
dt

[θ(t) − log r(t)] dt + σ(t) dB(t) ,

with B being a Brownian motion under the risk-neutral measure.
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14.3 Black-Karasinski

The Black-Karasinski [5] model is similar to the Black-Derman-Toy model—it
assumes (14.5) for the changes in the logarithm of the one-period rate—but
it removes the linkage (14.7) between the mean-reversion parameter and the
volatility. It does this by allowing the lengths of the time steps to vary. Denote
the length of the time-step ti − ti−1 by τi. Consider again the two-period
example of the previous section. As a necessary condition for the tree to be
recombining, we deduced (in (14.6)) that

κ(t2) =
b1 − b2

b1 τ2
.

In this model, we have bi = σ(ti)
√

τi. Making this substitution, we obtain

κ(t2) =
σ(t1)

√
τ1 − σ(t2)

√
τ2

σ(t1)
√

τ1τ2
,

which we can rewrite as

κ(t2)σ(t1)
√

τ1τ2 + σ(t2)
√

τ2 − σ(t1)
√

τ1 = 0 .

This is a quadratic equation in the unknown
√

τ2 with the unique positive
solution (assuming κ(t2) > 0)

√
τ2 =

√
σ(t2)2 + 4κ(t2)σ(t1)2

√
τ1 − σ(t2)

2κ(t2)σ(t1)
√

τ1
.

This relation must hold at each date. Thus, squaring both sides, we obtain
the general formula

τi =

[√
σ(ti)2 + 4κ(ti)σ(ti−1)2

√
τi−1 − σ(ti)

]2
4κ(ti)2σ(ti−1)2τi−1

. (14.8)

To summarize, the Black-Karasinski model is given by (14.5) with three
free parameters—κ(ti), θ(ti), and σ(ti)—at each date. It is implemented in a
recombining tree by defining the length of each time step τi = ti − ti−1 for
i ≥ 2 according to the formula (14.8). The length of the first time step τ1 can
be chosen arbitrarily.

14.4 Cox-Ingersoll-Ross

Cox, Ingersoll, and Ross [19] introduced a continuous-time model1 in which
the short rate satisfies
1 Cox, Ingersoll and Ross (hereafter CIR) also discuss a variety of other continuous-

time models, but this particular model is so well known that it is often simply
called the CIR model.
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dr(t) = κ[θ − r(t)] dt + σ
√

r(t) dB(t), (14.9)

where κ, θ, and σ are positive constants and B is a Brownian motion under
the risk-neutral measure. Like the Vasicek model, this short rate process has
a long-run mean of θ. The difference between the CIR model and the Vasicek
model is that the volatility in the CIR model is proportional to the square
root of the short rate rather than being constant. Because of this fact, the
short rate can never be negative. Intuitively, the reason is that the volatility
σ
√

r(t) is very small if r(t) is near zero, so the drift will dominate the change
in r(t), pushing it upwards towards θ. This interest rate model was mimicked
by Heston [34] in his stochastic volatility model discussed in Chap. 4. We
will briefly discuss three topics in connection with this model: discount bond
prices, calibrating the model to the current market, and pricing fixed-income
derivatives.

Discount Bond Prices in the CIR Model

Discount bond prices can be most easily computed in the CIR model by solving
the fundamental partial differential equation (pde) discussed in Chap. 10. Let
P (t, u) denote the price at date t of a discount bond maturing at date u,
having remaining time to maturity of τ = u − t. The discount bond price
will depend on the remaining time to maturity and the short rate at date t,
because, as in the Vasicek model, the short rate is the only random factor
in this model. Thus, there must be some deterministic function f such that
P (t, u) = f(r(t), τ). As in Chap. 10, the fundamental pde is obtained by
applying Itô’s formula to f to compute df in terms of the partial derivatives
of f and then using the fact that the expected return of the discount bond
(hence the drift of df/f) must equal the short rate under the risk-neutral
measure.

From Itô’s formula and the definition (14.9) of dr, we have

df =
∂f

∂τ
dτ +

∂f

∂r
dr +

1
2

∂2f

∂r2
(dr)2

= −∂f

∂τ
dt +

∂f

∂r

{
κ[θ − r] dt + σ

√
r dB

}
+

1
2

∂2f

∂r2
σ2r dt

=
(
−∂f

∂τ
+

∂f

∂r
κ[θ − r] +

1
2

∂2f

∂r2
σ2r

)
dt +

∂f

∂r
σ
√

r dB . (14.10)

Equating the drift to rf dt gives us the fundamental pde:

−∂f

∂τ
+

∂f

∂r
κ[θ − r] +

1
2

∂2f

∂r2
σ2r = rf . (14.11)

This equation should be solved for the function f subject to the boundary
condition that the value of the discount bond is one at maturity; i.e., f(r, 0) =
1 for all r.
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The solution can be obtained by “guessing” a solution of the same form
as the Vasicek bond pricing formula (13.6a), namely2

f(r, τ) = exp (−a(τ) − b(τ)r) (14.12)

for deterministic functions a and b. The boundary condition

f(r, 0) = exp (−a(0) − b(0)r) = 1

for all r implies a(0) = b(0) = 0, and it can easily be checked that the
fundamental pde is equivalent to

b′(τ) = 1 − κb(τ) − 1
2
σ2b2(τ) , (14.13a)

and
a′(τ) = κθb(τ) , (14.13b)

where the “primes” denote derivatives. By differentiating, one can verify that
the solution of (14.13a) (which is called a “Riccati equation”) with the bound-
ary condition b(0) = 0 is

b(τ) =
2 (eγτ − 1)

c(τ)
, (14.14a)

where

γ =
√

κ2 + 2σ2 and c(τ) = (κ + γ) (eγτ − 1) + 2γ . (14.14b)

Integrating (14.13b) then gives

a(τ) = −2κθ

σ2

[
(κ + γ)τ

2
+ log

2γ

c(τ)

]
. (14.14c)

To summarize,

The price at date t of a discount bond maturing at u > t in the CIR model
is

P (t, u) = exp (−a(τ) − b(τ)r(t)) , (14.15)

where τ = u − t and a(τ) and b(τ) are defined in (14.14).

Note that (14.12) implies ∂f/∂r = −b(τ)f . Substituting this into (14.10)
gives us the discount bond return as

dP (t, u)
P (t, u)

=
df

f
= r(t) dt − b(τ)σ

√
r(t) dB(t) . (14.16)

2 This guess works because the CIR model, like the Vasicek model, is an “affine
model.” See Sect. 14.5.
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This is again similar to the Vasicek model except for the appearance of the
√

r
factor in the volatility. Because of this factor, the volatility is random. Thus,
the option pricing formulas of previous chapters cannot be directly applied to
price discount bond options (and hence caps, floors, coupon bond options, and
swaptions). Nevertheless, the ideas underlying those formulas can be applied
to obtain similar valuation formulas.

Hedge ratios depend on relative volatilities, so they are determined by the
function b, just as discussed in Sect. 13.4 for the Vasicek model.

Calibrating the CIR Model to the Yield Curve

The CIR model can be calibrated to current market conditions by taking one
or more of the parameters κ, θ and σ to be time-varying, as in the extended
Vasicek model. This was suggested by Cox, Ingersoll and Ross. However, the
simplest way to calibrate the model to discount bond prices, which was also
suggested by Cox, Ingersoll and Ross, is to take the short rate to be the sum of
a non-random function of time and a square-root process as defined in (14.9).
Specifically, let

r(t) = φ(t) + r̂(t) ,

where φ is a non-random function and r̂ satisfies

dr̂(t) = κ[θ − r̂(t)] dt + σ
√

r̂(t) dB(t) , (14.17)

with r̂(0) = r(0). Then, as in the Hull-White model, discount bond prices are
given by

P (t, u) = exp
(
−
∫ u

t

φ(s) ds

)
ER

t

[
exp

(
−
∫ u

t

r̂(s) ds

)]
.

Moreover, the expectation in this equation is the discount bond pricing func-
tion calculated in the previous subsection, so we have

P (t, u) = exp
(
−
∫ u

t

φ(s) ds

)
exp (−a(τ) − b(τ)r̂(t)) . (14.18)

In particular, discount bond prices at date 0 are

P (0, u) = exp
(
−
∫ u

0

φ(s) ds

)
exp (−a(u) − b(u)r(0)) ,

so the model can be calibrated to market prices Pmkt(0, u) by setting

exp
(
−
∫ u

0

φ(s) ds

)
= exp (a(u) + b(u)r(0)) Pmkt(0, u) (14.19)

for each u. Note that the calibration does not affect discount bond returns:
the expected return under the risk-neutral measure must still be the short
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rate and the volatility is unaffected by a deterministic factor. Therefore, we
have, as in (14.16),

dP (t, u)
P (t, u)

= r(t) dt − b(τ)σ
√

r̂(t) dB(t) . (14.20)

This can be verified by applying Itô’s formula to (14.18).

Pricing Fixed-Income Derivatives in the CIR Model

In the previous chapter, it was shown for the extended Vasicek model that
pricing formulas for caps, floors, coupon bond options, and swaptions can be
derived from a pricing formula for discount bond options. The same is true
in the CIR model — caps and floors are of course portfolios of discount bond
options and, in a single-factor model such as the Vasicek or CIR model, coupon
bond options and swaptions can also be priced as portfolios of discount bond
options. Here we will explain briefly how to price discount bond options in
the CIR model.

Consider a call option maturing at date T with the underlying being a
discount bond maturing at u > T . Let K denote the strike price. From our
fundamental pricing formula (1.17), the value at date 0 of the option is

P (0, u) × probu
(
P (T, u) > K

)− P (0, T ) × probT
(
P (T, u) > K

)
, (14.21)

where probu denotes the probability measure using the discount bond matur-
ing at u as numeraire and probT denotes the probability measure using the
discount bond maturing at T as the numeraire. Using the calibration of the
previous subsection, the price of the underlying at date T will be, according
to the model,

P (T, u) = exp
(
−
∫ u

T

φ(s) ds − a(u − T ) − b(u − T )r̂(T )
)

.

Therefore, the option will finish in the money if and only if

− ∫ u

T
φ(s) ds − a(u − T ) − log K

b(u − T )
> r̂(T ) . (14.22)

Thus, to price discount bond options, we need to compute the probabilities
that r̂(T ) is less than a given number, using discount bonds as numeraires.

Consider the discount bond maturing at u. The calculation for the discount
bond maturing at T can be done in the same way. We use the fact that

e
∫ t
0 r(s) ds

P (t, u)

is a martingale, when P (t, u) is used as the numeraire, for t ≤ u. Let Z(t)
denote this ratio and apply Itô’s formula for ratios to derive
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dZ(t)
Z(t)

= r(t) dt − dP (t, u)
P (t, u)

+
(

dP (t, u)
P (t, u)

)2

.

Substituting from (14.20) now gives us

dZ(t)
Z(t)

= b(τ)σ
√

r̂(t) dB(t) + b(τ)2σ2r̂(t) dt

= b(τ)σ
√

r̂(t)
[
dB(t) + b(τ)σ

√
r̂(t) dt

]
.

Given that Z is a martingale, dZ/Z cannot have a drift, so it must be that B∗

defined by B∗(0) = 0 and

dB∗(t) = dB(t) + b(τ)σ
√

r̂(t) dt

is a martingale, and hence a Brownian motion, when P (t, u) is used as the
numeraire. Substituting this into the definition (14.17) of r̂, we have

dr̂(t) = κ[θ − r̂(t)] dt + σ
√

r̂(t)
[
dB∗(t) − b(τ)σ

√
r̂(t) dt

]
= κ[θ − r̂(t)] dt + σ

√
r̂(t) dB∗(t) − σ2b(τ)r̂(t) dt

= κ∗(t)[θ∗(t) − r̂(t)] dt + σ
√

r̂(t) dB∗(t) , (14.23)

where we define

κ∗(t) = κ + σ2b(u − t) and θ∗(t) =
κθ

κ∗(t)
.

Thus, using a discount bond as numeraire, the process r̂ is still a square root
process, but now with a time-dependent long-run mean and mean-reversion
rate.

The random variable r̂(T ) defined by r̂(0) = 0 and equation (14.23) for
t ≤ T is a transformation of a random variable having what is called a “non-
central chi-square” distribution. See Appendix B.3 for further discussion and
calculation of the probabilities probu

(
P (T, u) > K

)
and probT

(
P (T, u) > K

)
.

14.5 Longstaff-Schwartz

Cox, Ingersoll and Ross suggest adding two independent square-root processes
to obtain a two-factor model. This means that we would take r(t) = x1(t) +
x2(t), where

dxi(t) = κi[θi − xi(t)] dt + σi

√
xi(t) dBi(t) , (14.24)

where B1 and B2 are independent Brownian motions under the risk-neutral
measure and κi, θi and σi are positive constants for i = 1, 2. Longstaff and
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Schwartz [47] investigate this model further, including providing an “equilib-
rium” foundation, deriving discount bond option prices, and estimating the
coefficients. The model is usually called the Longstaff-Schwartz model.

An important observation made by Longstaff and Schwartz is that the
model can be rewritten so that the short rate and its volatility are the fac-
tors (rather than the unobservable x1 and x2).3 Note that the instantaneous
variance of r = x1 + x2 is(

σ1

√
x1(t) dB1(t) + σ2

√
x2(t) dB2(t)

)2

=
(
σ2

1x1(t) + σ2
2x2(t)

)
dt .

Define V (t) = σ2
1x1(t) + σ2

2x2(t). We can solve for x1 and x2 in terms of r
and V as

x1 =
σ2

2r − V

σ2
2 − σ2

1

(14.25a)

x2 =
V − σ2

1r

σ2
2 − σ2

1

, (14.25b)

provided σ1 �= σ2. Making these substitutions for x1 and x2 on the right-hand
side of (14.24) and noting that dr = dx1 +dx2 and dV = σ2

1 dx1 +σ2
2 dx2, we

obtain the following equations presented by Longstaff and Schwartz:

dr =
(

αγ + βη − βδ − αξ

β − α
r − ξ − δ

β − α
V

)
dt

+ α

√
βr − V

α(β − α)
dB1 + β

√
V − αr

β(β − α)
dB2 , (14.26a)

dV =
(

α2γ + β2η − αβ(δ − ξ)
β − α

r − βξ − αδ

β − α
V

)
dt

+ α2

√
βr − V

α(β − α)
dB1 + β2

√
V − αr

β(β − α)
dB2 , (14.26b)

where δ = κ1, ξ = κ2, α = σ2
1 , β = σ2

2 , γ = κ1θ1/σ2
1 , and η = κ2θ2/σ2

2 .
Thus, this can be regarded as a two-factor model in which the factors are the
short rate and its instantaneous variance, with the six parameters δ, ξ, α, β,
γ, and η.

The simplest way to compute discount bond prices in this model is to
return to the definition r = x1 + x2. Discount bond prices are
3 Of course, the volatility is also not directly observable. Longstaff and Schwartz

use a GARCH model to estimate it and then use the time series of estimated
volatilities and the time series of short rates to estimate the parameters of the
model.
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P (t, u) = Et

[
exp

(
−
∫ u

t

r(s) ds

)]

= Et

[
exp

(
−
∫ u

t

x1(s) ds

)
exp

(
−
∫ u

t

x2(s) ds

)]

= Et

[
exp

(
−
∫ u

t

x1(s) ds

)]
Et

[
exp

(
−
∫ u

t

x2(s) ds

)]
,

due to the independence of x1 and x2. Moreover, these expectations have the
same form as discount bond prices in the CIR model, namely

Et

[
exp

(
−
∫ u

t

xi(s) ds

)]
= exp (−ai(τ) − bi(τ)xi(t)) , (14.27)

where the functions ai and bi are defined in (14.14), using the parameters κi,
θi and σi. The expectations (14.27) can be written in terms of r(t) and V (t)
by substituting from (14.25).

The Vasicek, CIR and Longstaff-Schwartz models are examples of “affine
models.” An affine model is defined by a set of factors x1, . . . , xn, where

• The short rate is an affine function of the factors;4 i.e., r(t) = α0 +∑n
i=1 αixi(t) for constants αi,

• The drift of each factor is an affine function of the factors.
• The instantaneous variance of each factor is an affine function of the fac-

tors.
• The instantaneous covariance of each pair of factors is an affine function

of the factors.

In any affine model, discount bond prices are of the form

P (t, u) = exp

(
−a(τ) −

n∑
i=1

bi(τ)xi(t)

)
(14.28)

for deterministic functions a and bi for i = 1, . . . , n, as we have seen is true
for the Vasicek, CIR, and Longstaff-Schwartz models. Most, but certainly not
all, of the continuous-time models studied in the finance literature are affine.

In any single-factor affine model, the short rate can be used as the factor.
Thus, the general affine one-factor model is of the form

dr = κ(θ − r) dt +
√

α + βr dB ,

for constants κ, θ, α and β, where B is a Brownian motion under the risk-
neutral measure. The Vasicek model is the special case β = 0 (α being the
same as the parameter σ2). The CIR model is the special case α = 0 (β being
the same as the parameter σ2).
4 An affine function of a real variable x is a function f(x) = a + bx for constants a

and b. This is often called a linear function, but technically a linear function is of
the form f(x) = bx. Thus, an affine function is a constant plus a linear function.
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Because yields of discount bonds are affine functions of the factors in an
affine model, as (14.28) shows, the short rate and yields at n− 1 fixed times-
to-maturity τi can be chosen to be the n factors (except in the rare case
that the linear transformation from factors to the short rate and yields fails
to be invertible). The transformation from factors to yields is analogous to
the transformation from (x1, x2) to (r, V ) in the Longstaff-Schwartz model.
Important papers on affine models include Duffie and Kan [24] and Dai and
Singleton [22].

14.6 Heath-Jarrow-Morton

Heath, Jarrow and Morton [33] propose an alternative framework for mod-
elling. Rather than modelling the evolution of the short rate (and possibly
other factors such as the volatility of the short rate or other yields), Heath,
Jarrow and Morton (hereafter, HJM) propose modelling the evolution of in-
stantaneous forward rates. They derive a formula for the drifts of instanta-
neous forward rates under the risk-neutral measure, in terms of the volatilities
of the forward rates. A model is therefore completely defined by specifying the
volatilities of forward rates. A model of this type is easily fit to market dis-
count bond prices by simply using the initial term structure of forward rates
as an input. By calibrating the volatility structure, the model can also be fit
to other market prices. Any of the continuous-time models we have discussed
can be written in the HJM form. The virtue of the HJM approach is that
it facilitates the construction of new models. The disadvantage of the HJM
approach is that models of this form will generally be path-dependent—bond
prices and the prices of other fixed-income instruments at any point in time
depend on the entire history of the forward rate processes, rather than de-
pending only on the values of a small set of factors. This makes computation
quite difficult, just as computation with non-recombining binomial trees is
much more difficult than with recombining trees.

As discussed in Sect. 13.6, the forward rate at date t for an instantaneous
loan at date u ≥ t is f(t, u) defined by

f(t, u) = −d log P (t, u)
du

. (14.29)

The short rate at time t is the forward rate for maturity date t; i.e.,
r(t) = f(t, t). By integrating (14.29), one can see that discount bond prices
are written in terms of forward rates as:

P (t, u) = exp
(
−
∫ u

t

f(t, s) ds

)
. (14.29′)

Heath, Jarrow and Morton use the definition (14.29′) and the fact that the
expected return of a discount bond under the risk-neutral measure must be
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the short rate to derive a formula for the drifts of forward rates under the
risk-neutral measure.

Assume, for the sake of simplicity, that there is only a single source of
uncertainty (i.e., a single Brownian motion) driving the yield curve. Then, for
each fixed u, the forward rate f(t, u) at date t < u will evolve as

df(t, u) = µ(t, u) dt + σ(t, u) dB(t) , (14.30)

for some µ and σ, where B is a Brownian motion under the risk-neutral
measure. In general µ(t, u) and σ(t, u) could depend on the entire history of
the Brownian motion through date t. Heath, Jarrow and Morton show that

µ(t, u) = σ(t, u)
∫ u

t

σ(t, s) ds . (14.31)

One can show that
∫ u

t
σ(t, s) ds is the volatility of P (t, u). Therefore, (14.31)

states that the drift of the forward rate is the product of the volatilities of the
forward rate and the discount bond return. A model is fully specified by spec-
ifying initial forward rates—i.e., f(0, u) for all u—and the volatility processes
σ(t, u) for each u and t ≤ u. The generalization to multiple Brownian motions
is straightforward and allows for forward rates that are not instantaneously
perfectly correlated. An important application of the HJM modelling frame-
work is work by Brace, Gatarek and Musiela [9] and Miltersen, Sandmann,
and Sondermann [52], who derive conditions on the volatility processes σ(t, u)
that guarantee forward LIBOR rates of a fixed maturity (e.g., quarterly or
semi-annual rates) have deterministic volatilities, thus justifying the use of
Black’s formula in Sect. 12.4 for valuing caps and floors.

To see how some of the models we have discussed can be written in the
HJM form, let us re-examine the Hull-White model. From the Hull-White
bond price formula (13.14), the instantaneous forward rate in the Hull-White
model is

f(t, u) = φ(u) +
∂

∂u
a(u − t) + r̂(t)

∂

∂u
b(u − t)

= φ(u) − σ2

2κ2

(
1 + e−2κ(u−t) − 2e−κ(u−t)

)
+ e−κ(u−t)r̂(t) .

Applying Itô’s formula yields

df(t, u) = −σ2

κ

(
e−2κ(u−t) − e−κ(u−t)

)
dt + σe−κ(u−t) dB .

Therefore, in the HJM notation,

µ(t, u) = −σ2

κ

(
e−2κ(u−t) − e−κ(u−t)

)
and σ(t, u) = σe−κ(u−t) .

A direct calculation shows that these functions µ and σ satisfy the HJM
equation (14.31), as we knew they must, given that the HJM equation is
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based only on the assumption that expected returns of discount bonds equal
the short rate under the risk-neutral measure. The initial forward rate curve
in the Hull-White model is f(0, u) = φ(u) which is chosen to fit the market
forward rate curve, as discussed in Sect. 13.6. Thus, rather than defining the
Hull-White model as we did in Chap. 13, it could be defined alternatively as
an HJM model in which the volatility process is the deterministic function
σ(t, u) = σe−κ(u−t) for positive constants σ and κ. The normal distribution
of the short rate in the Hull-White model is a consequence of the volatility
σ(t, u) being non-random.

Likewise, the Cox-Ingersoll-Ross model fit to market bond prices as we
discussed in Sect. 14.4 could be described as an HJM model. Calculations of
the sort we have just done show that the volatility process in the CIR model is
σ(t, u) = σb′(τ)

√
r̂(t), where τ = u− t and the function b is defined in (14.14).

In this case, the volatility is random, but it depends only on the short rate at
date t. Similarly, in any factor model, such as the Longstaff-Schwartz model,
the volatilities σ(t, u) of the forward rates will depend only on the factors
at each date t. As mentioned at the beginning of this section, such a factor
structure simplifies calculations considerably.

HJM models are sometimes written in a slightly different fashion than we
have done here. If we define

Σ(t, u) =
∫ u

t

σ(t, s) ds

then we have dΣ(t, u)/du = σ(t, u), and the HJM equation (14.31) can be
written as

µ(t, u) = Σ(t, u)
dΣ(t, u)

du
,

so the evolution of forward rates can be written as

df(t, u) = Σ(t, u)
dΣ(t, u)

du
dt +

dΣ(t, u)
du

dB(t) .

For example, in the Hull-White model we have Σ(t, u) = σb(τ) where b is
defined in (13.14), and in the CIR model, we have Σ(t, u) = σb(τ)

√
r̂(t),

where b is defined in (14.14).

14.7 Market Models Again

Many fixed-income derivatives (e.g., caps, floors, and swaps) have cash flows
that depend on simple interest rates (e.g., LIBOR). In this chapter and the
preceding chapter, we discussed valuation formulas for fixed-income deriva-
tives based on (i) models of the short rate or one-period rate and possibly
other factors, or (ii) models of instantaneous forward rates. However, it is
possible, and simpler for many purposes, to model simple interest rates di-
rectly. For example, we observed in Chap. 12 that Black’s formula can be
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applied to value caps and floors when the underlying simple interest rates
have nonrandom volatilities. Models of this type are called “market models”
or “LIBOR models” or, sometimes, “BGM models,” the last name referring
to the paper of Brace, Gatarek and Musiela [9].5 This class of models has
become quite popular in recent years. A thorough and very readable account
is given by Rebonato [56].

As in Chap. 12, we will use “LIBOR” as a generic name for simple in-
terest rates. One important fact about forward LIBOR rates that we have
already essentially derived is that they are martingales under the correspond-
ing forward measures. As was discussed in Sect. 7.7, a probability measure
corresponding to a discount bond being the numeraire is called a “forward
measure,” because the forward price of any contract maturing at the same
time as the discount bond is a martingale under that measure. We showed
in Sect. 12.3 that forward LIBOR rates are forward prices of portfolios that
pay spot rates. Specifically, considering a LIBOR rate of term (also called
“tenor”) ∆t and the forward LIBOR rate corresponding to loans over a pe-
riod u to u + ∆t, the forward LIBOR rate is a martingale under the measure
corresponding to the discount bond maturing at u + ∆t.

To price derivatives other than caps and floors (e.g., swaptions), it is im-
portant to know the dynamics of forward LIBOR rates under other probability
measures as well—for example, it is useful to know the dynamics under the for-
ward measures corresponding to discount bonds maturing at dates T �= u+∆t,
or under the risk-neutral measure, or under the measure that uses as numeraire
the portfolio consisting of rolling over an investment at spot LIBOR rates.6

We will derive here the dynamics under different forward measures.
Consider dates t1 < t2 < · · · < tN with ti − ti−1 = ∆t for each i. At

dates t ≤ ti, we denote the forward LIBOR rate for the time period (ti, ti+1)
by Ri(t). The forward LIBOR rate satisfies equation (12.2), which we repeat
here:

P (t, ti)
P (t, ti+1)

= 1 + Ri(t)∆t . (14.32)

Fix a date tn. We will compute the drift of each rate Ri(t) when we use the
discount bond maturing at tn as the numeraire.

Let σi(t) denote the volatility of rate Ri(t) at date t. This means that

dRi(t)
Ri(t)

= µi(t) dt + σi(t) dBi(t) , (14.33)

5 Other important work on this topic includes Miltersen, Sandmann, and Sonder-
mann [52] and Jamshidian [43].

6 Actually, for this theory, it is not even necessary that the short rate exist, so the
risk-neutral measure may not even be defined. The risk-neutral measure uses as
numeraire the portfolio that consists of continuously rolling over an investment at
the instantaneously risk-free rate, and the more natural object in a market model
is the portfolio that consists of rolling over an investment at spot LIBOR rates.
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for some µi, where the Bi are Brownian motions when P (t, tn) is used as the
numeraire. The different rates should be correlated, so the Brownian motions
will be correlated. Let ρij denote the correlation of Bi and Bj . We will show
that the drifts µi are determined by the volatilities and correlations, in analogy
to the HJM result for instantaneous forward rates. Specifying the volatilities
and correlations of forward rates, and inputting initial forward rates, must
therefore determine the value of any security whose cash flows depend on
the LIBOR rates of term ∆t at the dates t1, . . . , tN . Of course, this does not
mean that there are simple formulas. Obviously, the easiest case is when the
volatilities and correlations are nonrandom. In this case, we can use Black’s
formula to price caps and floors as in Chap. 12. However, even when the σi are
nonrandom, forward swap rates will have random volatilities, as mentioned in
Sect. 12.6.

If i = n − 1, then (14.32) implies

Ri(t) =
P (t, tn−1) − P (t, tn)

P (t, tn)∆t
.

Hence, it is the ratio of a non-dividend-paying asset (portfolio) price to the
price of the numeraire asset. Consequently, it is a martingale, and we have
µn−1 = 0. This is the case discussed in the second paragraph of this section.
Consider now i �= n − 1.

Define

Y (t) =
P (t, ti+1)
P (t, tn)

, (14.34)

and
Z(t) = Ri(t)Y (t) . (14.35)

Note that Y is the ratio of a non-dividend-paying asset price to the price of
the numeraire asset and hence is a martingale. Furthermore, (14.32) gives us

Z(t) =
P (t, ti) − P (t, ti+1)

P (t, tn)∆t
,

and hence Z is also the ratio of a non-dividend-paying asset (portfolio) price to
the price of the numeraire asset and consequently a martingale. Itô’s formula
applied to (14.35) yields

dZ

Z
=

dRi

Ri
+

dY

Y
+
(

dRi

Ri

)(
dY

Y

)
.

Because both Z and Y are martingales, the drift of dRi/Ri must cancel the
product (covariance) term in this equation, implying

µi dt = −
(

dRi

Ri

)(
dY

Y

)
. (14.36)

To compute the covariance, it is helpful to define
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Xj(t) = 1 + Rj(t)∆t (14.37)

for j = 1, . . . , N . Then we have

dXj

Xj
=
( Rj ∆t

1 + Rj ∆t

)(
µj dt + σj dBj

)
. (14.38)

We distinguish two cases. If i < n − 1, then the definitions (14.32), (14.34)
and (14.37) imply

Y (t) =
P (t, ti+1)
P (t, ti+2)

× P (t, ti+2)
P (t, ti+3)

· · · × P (t, tn−1)
P (t, tn)

= Xi+1(t) × Xi+2(t) × · · · × Xn−1(t) .

In this case, (14.33) and (14.38) yield(
dRi

Ri

)(
dY

Y

)
=

n−1∑
j=i+1

(
dRi

Ri

)(
dXj

Xj

)

=
n−1∑

j=i+1

( Rj ∆t

1 + Rj ∆t

)
σiσjρij dt .

On the other hand, if i > n − 1, then the definitions (14.32), (14.34) and
(14.37) imply

1
Y (t)

=
P (t, tn)

P (t, tn+1)
× P (t, tn+1)

P (t, tn+2)
× · · · × P (t, ti)

P (t, ti+1)
= Xn(t) × Xn+1(t) × · · · × Xi(t) .

In this case, (14.33) and (14.38) yield(
dRi

Ri

)(
dY

Y

)
= −

i∑
j=n

(
dRi

Ri

)(
dXj

Xj

)

= −
i∑

j=n

( Rj ∆t

1 + Rj ∆t

)
σiσjρij dt .

We conclude:

When we use the discount bond maturing at tn as the numeraire, the drift
of (expected percentage change in) the forward rate Ri is

µi(t) =

⎧⎪⎪⎨
⎪⎪⎩
∑n−1

j=i+1

( Rj(t) ∆t
1+Rj(t) ∆t

)
σiσjρij if i < n − 1 ,

0 if i = n − 1 ,

−∑i
j=n

( Rj(t) ∆t
1+Rj(t) ∆t

)
σiσjρij if i > n − 1 .

(14.39)
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Problems

14.1. Create an Excel worksheet demonstrating a four-period Ho-Lee model.
Allow the user to input σ, ∆t, and Pmkt(tn) for n = 1, . . . , 5. Compute φ(tn)
from (14.3) for n = 1, . . . , 4. Create the one-period interest rate tree (starting
from r(0) = − log Pmkt(t1)/∆t) and the valuation tree for a discount bond
maturing at t5. Verify that the tree gives the price Pmkt(t5). Note: to create
a binomial tree in a spreadsheet, it is probably easiest to put the topmost (or
bottommost) nodes along one row and the other nodes in a triangle below (or
above).

14.2. Modify the preceding exercise to include the valuation tree for a caplet
with t4 as its reset date and t5 as its payment date. Note that the payoff of
the caplet at date t5 is

max
(
0,R(t4) − R̄)∆t,

where
R(t4) =

1
P (t4, t5)

− 1.

Allow the user to input R̄.

14.3. Create a function Ho_Lee_Caplet that values a caplet in the Ho-
Lee model. Look up market discount bond prices from a function such as
DiscountBondPrice in Prob. 12.1 and calibrate to the market from (14.3).
The inputs to the function should be R̄, σ, T1, T2, N1 and N2, where T1 is
the reset date for the caplet, T2 is the payment date for the caplet, N1 is the
number of periods between date 0 and T1, and N2 is the number of periods
between T1 and T2. Note that the payoff of the caplet at date T2 is

max
(
0,R(T1) − R̄)× (T2 − T1),

where
R(T1) =

1
P (T1, T2)

− 1.

14.4. Create an Excel worksheet demonstrating a four-period Black-Derman-
Toy model. Allow the user to input ∆t, r(0), and σ(ti) and θ(ti) for i =
1, . . . , 4. Create the one-period interest rate and the valuation tree for a dis-
count bond maturing at t5.

14.5. Modify the preceding exercise by including the valuation tree for a
caplet with reset date t4 and payment date t5, as in Prob. 14.2.

14.6. Repeat Probs. 14.4 and 14.5 for the Black-Karasinski model, allowing
the user to also input κ(ti) for i = 1, . . . , 4.
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14.7. Create a VBA function CIR_Caplet_MC that values a caplet in the CIR
model using Monte Carlo, without calibrating the model to the current yield
curve. Simulate the CIR process as described in Sect. 4.5 for the Heston model.
The inputs should be R̄, r(0), κ, θ, σ, T1, T2, N and M , where T1 is the reset
date for the caplet, T2 is the payment date for the caplet, N is the number
of periods between 0 and T1, and M is the number of simulations. The payoff
of the caplet is as in Prob. 14.3, where P (T1, T2) is the function of r(T1) and
T2 − T1 given in (14.18) with φ = 0.

14.8. Modify the function in the preceding exercise to create a function
CIR_Calibrated_Caplet_MC that values a caplet in the CIR model using
Monte Carlo, with the model calibrated to the market. Look up market dis-
count bond prices from a function such as DiscountBondPrice in Prob. 12.1.
To compute φ(ti) for i = 1, . . . , N from market bond prices, use (14.19) for
dates ti and ti+1 as in Sect. 13.8.




