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11.1 Introduction

The previous chapters highlighted the many ways by which nutrient acqui-
sition can regulate plant response to the environment. Today, ecosystems and
ecological processes are impacted by a suite of anthropogenic agents that
will define plant ecology in ways that were not imagined even as little as five
decades ago. Changes in land use and anthropogenic production of environ-
mental pollutants have all but devastated many native systems of the world
and will remain a growing danger to the health of the remaining native sys-
tems. Ecologists, particularly those working with plants and ecosystems,
bear the intellectual task of reliably predicting the potential consequences of
global change. Such knowledge will be critical in management and policy
measures designed to halt further deterioration of native systems. In this
chapter, we argue that reliable predictions of the fate of terrestrial plant
communities, and thereby the policy and management choices of the future,
will require a clear understanding of plant nutrient uptake in a changing cli-
mate.

By the end of this century, most of the globe will be experiencing atmos-
pheric CO2 concentrations twice as high as those encountered during the
mid-20th century, while the global temperature is likely to rise by as much as
5 °C during the same period. In addition to their direct effects, the higher con-
centration of CO2 and other greenhouse gasses will impact terrestrial ecosys-
tems via dramatic changes in climate pattern, including the occurrence of
extreme drought and flooding. Major biomes of the earth will also experience
above-average input of atmospheric N, ozone (stratospheric ozone will
decrease and tropospheric levels increase), and UV-B radiation. Either indi-
vidually or collectively, alterations in these environmental factors will change
plant nutrient demand. Unless these demands are met via adjustments in
nutrient availability and/or uptake, the productivity and composition of plant
communities may change irreversibly.
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Obviously, we will not be able to cover all the components of global change
in this chapter. Chapter 10 (this Vol.) has covered soil temperature as a com-
ponent of global change. Here, we will focus on the impacts of three major
components of global change, and examine the state of the knowledge on how
these factors affect plant nutrient uptake. The components of global change
focused on here are elevated tropospheric ozone, increased incident UV-B
radiation, and elevated atmospheric CO2 concentration.

11.2 Elevated Tropospheric Ozone 
or Elevated UV-B Radiation

11.2.1 Extent of the Problem and Relevance to Nutrient Uptake

At first consideration, elevated levels of tropospheric ozone (O3) and elevated
levels of UV-B solar radiation would appear to have little similarity. Nonethe-
less, these topics will be considered together because of the shared themes
that emerge from the literature: both have direct effects upon aboveground
plant organs, both have the potential to generate oxidative damage, and both
have the potential to alter biomass accumulation and partitioning. Funda-
mentally, however, little is known about the effect of either of these stresses on
nutrient acquisition from the soil environment.

Tropospheric O3 is the major phytotoxic constituent of photochemical
smog, and was first identified as damaging to plants in the 1950s (Richards et
al. 1958). Large areas of Asia, Africa, Australia, and the Americas have high
potential for the production of elevated tropospheric O3, based on predicted
energy use patterns and global solar radiation patterns (Kickert and Krupa
1990). Ozone reduces photosynthesis, growth, and yield, increases respiration,
causes accelerated foliar senescence, reduces root:shoot ratios, and can
increase plant susceptibility to pathogens (Runeckles and Krupa 1994).

Elevated UV-B, resulting from stratospheric O3 depletion, has the potential
to affect a wide range of ecosystems and plant types. In some sensitive
species, laboratory experiments have demonstrated that UV-B can reduce
photosynthesis, leaf area, water use efficiency, growth, and yield as well as
altering many aspects of plant morphology (Runeckles and Krupa 1994).
However, these impacts of UV-B exposure are minimal in many plant species,
and by and large the evidence available to date predicts no impact for most
species at UV-B levels that reflect realistic environmental dosages (Searles et
al. 2001).
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11.2.2 Direct Effects on Nutrient Uptake

11.2.2.1 Changes in Root-to-Shoot Ratios, Morphology and Architecture

A shift in biomass allocation to the shoots (a decrease in root-to-shoot ratios,
RSR) has been observed in a wide range of plant species in response to O3
exposure (Cooley and Manning 1987). The shift in partitioning to the shoot is
generally ascribed to increased use of carbohydrates for repair of O3-induced
damage in the leaves, and O3-induced disruption of phloem loading (Cooley
and Manning 1987). However, when assessing the effects of environmental
treatments upon RSR shifts, it is important to evaluate the impact of changes
in plant size as a causal factor in altered RSR (Ledig et al. 1970; Coleman et al.
1994). Coleman and McConnaughay (1995) emphasized the need for caution
with their reexamination of a study of biomass partitioning involving the air
pollutant SO2. When they accounted for treatment-induced changes in plant
size, they eliminated differences in RSR that previously appeared to support a
conclusion of altered biomass partitioning. Similarly, when Bielenberg et al.
(2002) investigated the effects of O3 on biomass partitioning in hybrid poplar,
shifts in RSR occurred as a result of treatment-induced changes in plant size,
and not from specific alterations in biomass partitioning.

The root:shoot ratio can also be affected by UV-B exposure (Sullivan 1997),
although the results from different experiments have been variable. In-
creased, decreased and unchanged RSR have all been reported in response to
UV-B exposure (Sullivan 1997; Weih et al. 1998). Alterations in RSR induced
by UV-B can be subtle and sometimes transient. UV-B increased RSR in the
first year of a 2-year study by Sullivan et al. (1994). No differences in RSR were
detected in the second year of the study (Sullivan et al. 1994). Ziska et al.
(1993) reported a strong reduction of RSR in cassava by UV-B, without
changes in whole-plant biomass. Reduced biomass allocation to roots may
decrease nutrient uptake, as well as reducing the yield of economically impor-
tant plant parts (Ziska et al. 1993). It remains to be determined whether most
UV-B-induced changes in RSR result from altered ontogeny or from altered
partitioning priorities.

Root system architecture is also affected by exposure to O3, although spe-
cific changes in architecture appear variable and highly species-specific. In
an O3-sensitive loblolly pine selection, O3 was shown to decrease both total
root surface area and root surface area per unit root mass (Qiu et al. 1992).
Reduced root surface area may limit nutrient uptake. However, Taylor and
Davies (1990) noted an increase in specific root length (length per unit
mass) in response to O3 in beech seedlings. Temple et al. (1993) reported an
increase in fine root mass, and a decrease in coarse root mass in a field 
study with ponderosa pine. Nutrient acquisition is facilitated by increased
specific root length and increased fine root numbers. Finally, no impact of
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O3 on the proportion of coarse and fine root biomass, or the specific root
length of the coarse and fine fractions was reported in birch (Maurer and
Matyssek 1997).

11.2.2.2 Changes in Root Respiration and Carbohydrate Supply 
to the Roots

Root respiration is generally reduced by O3 stress. Theoretically, such reduc-
tion can limit the energy supply required for active nutrient uptake. In some
cases,decreases in total root system respiration are attributable to decreases in
total root mass (Coleman et al. 1996), while in other cases a reduction in respi-
ration on a specific root mass basis has been suggested (Edwards 1991).A large
fraction of total root respiration is related to nutrient uptake (Lambers 1987),
but nutrient uptake was not measured in either of these studies.

A number of studies using isotopic tracers have shown that proportion-
ately less photosynthate is translocated from leaves to roots in O3-stressed
plants (Nouchi et al. 1995; Pausch et al. 1996a; Samuelson and Kelly 1996). The
decrease in translocation of C to the roots is viewed as the cause of decreased
root mass (Cooley and Manning 1987). By decreasing both root growth and
root respiration, it is likely that O3 also limits nutrient acquisition from the
soil environment.

11.2.2.3 Changes in Root Uptake Kinetics

The preceding sections indicate O3 has the potential to alter nutrient uptake
by reducing carbohydrate availability, decreasing root biomass, and altering
root architecture. Direct investigations of the effect of O3 on nutrient uptake
are few, and indicate species-specific differences in response. Nouchi et al.
(1991) reported a specific reduction in ammonium uptake in roots excised
from O3-treated rice plants. Pausch et al. (1996b) showed a shift in N acquisi-
tion away from N-fixing nodules to N acquisition from the root zone in O3-
exposed soybean, and ascribed this reduction to reduced photosynthate
translocation to roots from the shoots (Pausch et al. 1996a). However, Bielen-
berg et al. (2002) showed no O3 impact on labeled N uptake by hybrid poplars
on a whole-plant basis at two levels of N availability. Similarly, in one of the
few studies that included other mineral nutrients besides N, chronic O3 expo-
sure did not affect tissue concentrations or shoot uptake of a number of these
(N, P, K, S, Ca, Mg, Fe, Mn, and Zn) in spring wheat (Fangmeier et al. 1997).
However, a later study in potato found that tuber concentrations of N and Mg
significantly increased in response to O3 exposure, but this effect may be
attributable to reduced biomass, rather than increased nutrient uptake (Fang-
meier et al. 2002).
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Few studies to date have addressed the effect of UV-B exposure on root sys-
tem uptake of nutrients from the soil environment (Baker and Allen 1994; Sul-
livan 1997; Caldwell et al. 1998; Zepp et al. 1998). A small number of studies
have investigated the effect of UV-B on whole-plant accumulation of nutri-
ents. These studies have used nutrient content (mass nutrient per plant or
plant part; Murali and Teramura 1985; Yue et al. 1998) or concentration (mass
nutrient per dry weight of plant or plant part; Elawad et al. 1985; Larsson et al.
1998; Moorthy and Kathiresan 1998; de la Rosa et al. 2001; Shukula and
Kakkar 2002) in the standing biomass (shoot, leaves, or whole plant) as an
indication of whole-plant uptake. Nutrients increase in concentration (Lars-
son et al. 1998), or remain unchanged (de la Rosa et al. 2001) in plant tissues
in response to UV-B exposure. In the studies where nutrient content was mea-
sured along with concentration (Murali and Teramura 1985; Yue et al. 1998),
plant content was usually unaffected or very slightly reduced in response to
UV-B exposure. Therefore, UV-B appears to have very little or no affect on
nutrient accumulation on a whole-plant basis. Plant nutrient concentration
changes appear to result from UV-B-induced biomass reductions, rather than
changes in the physiology of nutrient acquisition.

11.2.2.4 Changes in Foliar Uptake/Leaching

Solutes, particularly cations and small-molecular weight molecules, can be
taken up by the leaf through the waxy cuticle that forms the outer boundary
of the leaf surface. Atmospheric deposition of nitrogen and sulfur onto leaf
surfaces can result in significant foliar uptake of these nutrients (Lambers et
al. 1998). The ease with which uptake occurs is inversely related to cuticle
thickness. UV-B has been shown to increase the thickness of the cuticle layer
surrounding the leaf (Grammatikopoulos et al. 1998), potentially limiting the
uptake of nutrients such as N and S deposited from the atmosphere.

Similarly, UV-B-induced thickening of leaf cuticles may reduce leaching of
foliar nutrients. Foliar leaching can result in considerable loss of nutrients,
particularly Ca and Mg, in moist climates (Marschner 1995). Foliar leaching
may negatively impact the plant by removing essential nutrients, but also may
increase the soil availability of nutrients for new growth that are inefficiently
remobilized from older leaves (Marschner 1995). In areas of acidic deposition,
however, foliar leaching and pH-induced soil leaching may result in signifi-
cant losses of cations from the plant–soil system (Edwards et al. 1995).

11.2.3 Indirect Effects on Nutrient Uptake

Chronic O3 stress has been demonstrated to cause accelerated senescence of
leaves in many species of plants (Reich and Lassoie 1985; Sanders et al. 1992;
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Wiltshire et al. 1993; Sicher and Bunce 1998; Pell et al. 1999). UV-B has also
been shown to trigger early senescence of cotyledons and leaves (Ambler et
al. 1975; Ernst et al. 1997). Additionally, UV-B impaired remobilization of Zn
(Ambler et al. 1975), and Fe, Mg, and Mn (Ernst et al. 1997) from cotyledons of
seedlings. Early leaf loss will alter the schedule of litter-fall availability to the
decomposer community, and may change temporal patterns of soil nutrient
cycling and availability.

In addition to altering the timing of leaf fall, O3 affects the tissue quality
and decomposition of abscised foliage (Kickert and Krupa 1990). In a study of
the effect of O3 on leaf loss and decomposition in poplar, Jones et al. (1994)
demonstrated that leaf litter resulting from O3-induced accelerated senes-
cence contained greater amounts of N and bound phenolic compounds. Con-
trary to the expectation that increased N would speed decomposition, this
change in litter quality resulted in slowed decomposition, presumably as a
result of phenolic-N complexation. Additionally, naturally senescing leaves
from the same O3-exposed plants had reduced N content, compared to leaves
abscised from non-O3-exposed plants (Jones et al. 1994).

UV-B exposure frequently induces the synthesis of UV-absorbing phenyl-
propanoid compounds (Zepp et al. 1998). Grammatikopoulos et al. (1998)
reported increased phenolics and tannins, and decreased N content in leaves
of Laurus nobilis and Ceratonia siliqua. In contrast, no effects of UV-B expo-
sure upon leaf litter quality (nutrient or phenolic contents) were found in a
study of Quercus robur (Newsham et al. 2001). These compounds can affect
nutrient cycling by retarding the rate of decomposition and/or affecting the
availability of other nutrients in leaf litter (Zepp et al. 1998). A slowed rate of
decomposition could result in lower turnover of organic matter and mineral
nutrients in the soil, potentially reducing productivity as more and more
nutrients are sequestered. However, no direct effects of UV-B exposure on lit-
ter decomposition were found in a dune grassland system (Verhoef et al.
2000).

Far more attention has been paid to the effects of O3 than of UV-B on root
characteristics and function. Much of the O3 literature is contradictory and
indicates that, depending upon species, there may be a wide range of
responses to elevated tropospheric O3. Additional studies involving a wider
range of functional types are needed to predict possible community and
ecosystem alterations resulting from O3-impaired nutrient acquisition. The
little UV-B literature that exists indicates that only limited, if any, effects on
direct nutrient uptake can be expected. Both stresses have potential for indi-
rect effects upon ecosystem nutrient cycling in the long term. More studies
are needed to assess the potential for species- and community-level feedbacks
of elevated O3 or UV-B on nutrient cycling that result from alterations in phe-
nology, litter quality, or decomposition processes.
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11.3 Elevated Atmospheric CO2 Concentration

11.3.1 Extent of the Problem and Relevance to Nutrient Uptake

The advent of the industrial revolution, increased combustion of fossil fuel,
and deforestation have substantially accelerated the rate of CO2 production
on earth, and thereby its accumulation in the atmosphere. Data from ice-core
gasses indicate that between 1750 and the pre-industrial revolution, the
atmospheric CO2 concentration remained constant at roughly 280 ppm
(Houghton et al. 2001). Since then, however, the average CO2 concentration
has risen to 370 ppm. More importantly, direct atmospheric CO2 measure-
ments from Mauna Loa, Hawaii, indicate that more than 60 % of this dramatic
rise in CO2 has occurred in the last 40 years (Keeling and Whorf 2002). At this
rate, it is expected that by the end of this century, the CO2 concentration of the
atmosphere will be double the current levels.

One of the most common plant responses to increased CO2 concentration
is the reduction in foliage N and many other nutrients (BassiriRad et al. 2001).
This is perhaps why most researchers in this field suggest that while short-
term exposure to CO2 enrichment stimulates growth and photosynthetic C
fixation, in most managed and natural ecosystems long-term growth and
photosynthetic responses may be confined by the limited availability of min-
eral nutrients, particularly nitrogen (N) and phosphorus (P; Kramer 1981;
Eamus and Jarvis 1989; Bazzaz 1990; Conroy 1992; Sinclair 1992; McKee and
Woodward 1994; Wolfenden and Diggle 1995; Lloyd and Farquhar 1996).
Therefore, factors that may affect the availability and uptake of nutrients are
critical in determining plant and ecosystem responses to high CO2. Here, we
distinguish between responses in plant ability to take up nutrients (direct
effects), as opposed to ecosystem availability of nutrients (indirect effects).

11.3.2 Direct Effects of CO2 on Plant Nutrient Uptake

11.3.2.1 Changes in Root-to-Shoot Ratios

Most of the early work in this area was based on the assumption that plant
responses to high CO2 would be driven by the functional balanced model.
Such theoretical underpinning predicts that at high availability of C, biomass
allocation to the roots should increase. Over the past three decades, consider-
able debate has emerged as to whether high CO2 stimulates root biomass allo-
cation (Stulen and den Hertog 1993).Although earlier literature indicated that
elevated CO2 almost universally increased root-to-shoot ratios (Eamus and
Jarvis 1989; Bazzaz 1990; Poorter 1993), more recent literature reveals a less
pronounced effect (Norby 1994; Rogers et al. 1994). Ceulemans and Mousseau
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(1994) reviewed the literature between 1989 and 1993 for woody plants, and
confirmed the earlier conclusions that more biomass is allocated to roots in
response to high CO2, but such a shift in biomass was less likely when supple-
mental N was added to the experimental plants. In contrast, in a survey of 224
observations of woody plants grown at high CO2, Wullschleger et al. (1995)
found a significant increase in root-to-shoot ratio in only 6 % of the cases.
Norby (1994) also concluded that elevated CO2 does not lead to a significant
shift in biomass allocation, regardless of soil N availability. The conclusion
that elevated CO2 will not alter biomass allocation to roots is further con-
firmed by results of a meta-analysis by Curtis and Wang (1998), and the ear-
lier review by McGuire et al. (1995). More recently, Poorter and Nagel (2000)
reviewed 170 observations from 80 publications, and concluded that there
would be no significant changes in response to a doubling of CO2 concentra-
tion.

The survey by Poorter and Nagel (2000) is particularly relevant to our dis-
cussion here, because they highlighted the importance of other environmen-
tal factors, e.g., light, water and nutrients, in regulating plant biomass alloca-
tion responses to CO2. Therefore, caution must be exercised when the results
of experiments with dissimilar protocols are compared. When comparable
experiments are considered, it is often observed that changes in root-to-shoot
ratio in response to CO2 enrichment depend on soil nutrient availability, i.e.,
increased root-to-shoot ratio is often associated with nutrient limitation
(McDonald et al. 1991; Ericsson et al. 1992) – a response that could be sup-
pressed when nutrient limitation is avoided (Bazzaz 1990; Pettersson and
McDonald 1992; Ceulemans and Mousseau 1994). In their survey of more
than 40 tree species, McGuire et al. (1995) reported that as N availability
increased, the CO2-induced increase in biomass allocation to roots was sub-
stantially decreased, and overall the effect was not statistically significant.
However, they attributed the lack of a statistical difference in root-to-shoot
ratio at high vs. low N availability to an inadequate sample size.

In addressing the effects of elevated CO2 on root growth, particularly as
it relates to plant nutrient uptake, the relative distribution of biomass
between fine and coarse roots may be particularly important. For example,
a mere increase in root-to-shoot ratio may not be highly informative in
terms of plant nutrient acquisition, although it is an important parameter in
terms of plant C allocation, particularly if biomass is allocated into taproots
or other highly suberized components of the root system not involved in
nutrient uptake. Even when it is used to evaluate C partitioning in response
to CO2, root-to-shoot ratio may be a poor indicator of root carbon allocation
since it does not take into account biomass lost by fine root turnover (Pre-
gitzer et al. 1995) or root exudation. Therefore, a more relevant indicator of
root characteristics that could potentially enhance plant nutrient capture is
the proportion of biomass allocated to fine roots (BassiriRad et al. 1996a,
1997a, b). The fine root ratio, defined as fine roots relative to total plant bio-
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mass, is sensitive to nutrient availability (Körner and Renhardt 1987), but
depending upon the species, it may or may not be sensitive to CO2 levels
(BassiriRad et al. 1997b).

Fine root biomass allocation responses to high CO2 provide a robust esti-
mate of plant nutrient acquisition only if it is complimented with information
about root turnover. In many deciduous forest species, fine root turnover can
account for as much as 80 % of annual NPP (Ceulemans and Mousseau 1994).
Pregitzer et al. (1995) showed that growth in high CO2 increased root turnover
in Populus tremuloides. Elevated CO2 has also been shown to increase root
turnover in a number of grassland species (Fitter et al. 1996, 1997; Hungate et
al. 1997). Matamala and Schlesinger (2000) distinguished between live fine
root (LFR) and dead fine root (DFR) in a loblolly pine stand under ambient
and elevated CO2, and found that after one season of fumigation LFR
increased by 86 % in response to CO2 enrichment, but DFR was relatively
unaffected by the CO2 treatment. In the same system, Pritchard et al. (2001)
used mini-rhizotron observations and reported only modest changes in root
turnover, but found a significant CO2 by depth interaction on root mortality.
It is therefore necessary that biomass allocation studies consider spatial and
temporal dynamics of root growth responses to elevated CO2.

11.3.2.2 Changes in Root Morphology and Architecture

Alterations in root morphology (e.g., root length and radius) and architec-
ture (e.g., branching pattern) are also effective mechanisms that influence
plant nutrient acquisition (Caldwell 1987; Fitter and Hay 1987). Finer roots
can confer greater nutrient uptake per unit root mass. Quantitative assess-
ments of such root characteristics, particularly in natural ecosystems, are
difficult, which is perhaps why very little information is available as to how
these parameters change in response to high CO2. In a growth chamber
study, Rogers et al. (1992) demonstrated that elevated CO2 doubled root
length and increased root diameter by 27 %, but had no effect on the num-
ber of first-order laterals. Ferris and Taylor (1995) found that elevated CO2
had contrasting effects on root morphological and architectural characteris-
tics among four native chalk grassland species. After 100 days of treatment,
the root-to-shoot ratio was unchanged but root length was significantly
higher in three out of four species grown at high vs. ambient CO2. In con-
trast, specific root length (m/g) significantly increased in response to CO2
enrichment in only one of the four species. Berntson and Woodward (1992)
examined the root branching pattern of Senecio vulgaris, a common fast-
growing annual in Britain, and found that elevated CO2 resulted in longer
roots and increased root branching. However, they found that root density
(root length per volume of soil) was unaffected by growth at high CO2. More
recently, Berntson and Bazzaz (1997) examined a number of architectural
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parameters in roots of yellow birch, and found no elevated CO2 effects on
specific root length and specific root number.

It is also clear that mycorrhizal associations will be an important compo-
nent of the root system responses to CO2 that may regulate nutrient acquisi-
tion capacity of the whole plant.We have not discussed this topic here, but the
reader is encouraged to consult the following works for a more comprehen-
sive treatment of that topic: O’Neill (1994), Fitter et al. (2000), and BassiriRad
et al. (2001). The growth and morphological characteristics discussed here are
all important factors in plant nutrient acquisition, and many of them appear
to respond to CO2 enrichment. However, studies of root morphology and
architecture have seldom, if ever, shown a direct link between these structural
characteristics and nutrient uptake responses to high CO2. Future studies in
this field must make such linkages in order to establish a clear cause-and-
effect relationship between form and function.

11.3.2.3 Changes in Root Uptake Kinetics

There are at least three theoretical reasons why kinetics of root nutrient
uptake should respond to changes in atmospheric CO2 concentration. First,
given the energy requirement for the active transport of nutrients, one
would expect that higher availability of carbohydrates under CO2 would
result in up-regulation of root nutrient transporters. Second, elevated CO2, at
least in the short term, has been shown to accelerate growth. Higher growth
rate should then increase plant nutrient demand and uptake capacity (Lee
1982; Clarkson 1985). Third, models of whole-plant carbon nutrient balance
(Bloom et al. 1985; Johnson 1985; Robinson 1986; Luo et al. 1994; Gutschick
and Kay 1995) predict that resources of abundant availability – C – must be
allocated to increase the uptake of the most limiting resource – nutrients. A
large number of CO2 studies have demonstrated both a short-term stimula-
tion of growth and an increased supply of root respiratory substrates (Cruz
et al. 1993; Tschplinski et al. 1993; Norby et al. 1995). Yet to date, the data on
root uptake kinetics show no consistent pattern of uptake response to high
CO2.

The earliest direct measurements of root uptake responses to CO2 enrich-
ment were reported by Newbery et al. (1995) who examined the rates of N, P
and K uptake in Agrostis capallaris, at three different external concentrations,
and found no significant CO2 effect. Using field-grown loblolly pine saplings
that had been exposed to 18 months of CO2 treatment, BassiriRad et al.
(1996b) found no significant changes in Vmax of NH4

+ uptake, but elevated CO2
significantly enhanced Vmax for NO3

– uptake. Jackson and Reynolds (1996)
also found no effect of elevated CO2 on NH4

+ uptake rates of six grassland
annuals, but NO3

– uptake rate was inhibited in response to CO2 enrichment.
Other studies (see BassiriRad 2000; BassiriRad et al. 2001) also produced
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equally inconsistent patterns. Even in cases where similar species are exam-
ined, the effect of CO2 on the kinetics of NH4

+ varies from one experiment to
the other (BassiriRad et al. 1996a, b).

The observed variability in root nutrient uptake responses to high CO2 is
consistent with that observed in other plant characteristics such as root
growth (Tingey et al. 2000), shoot growth (Norby et al. 1999) as well as water
use efficiency, photosynthetic rate, tissue N concentration, and nonstructural
carbohydrates (Luo et al. 1999). Until we find a unified mechanism to explain
such variability, our predictive capacity for plant and ecosystem responses to
elevated CO2 will remain limited. Some of the variations in response to high
CO2 may simply result from differences in experimental protocols. However,
Zerihun and BassiriRad (2001) examined NH4

+ and NO3
– uptake kinetic

responses of six broad-leaf and conifer tree species grown under identical
conditions, and found that root NH4

+ uptake kinetic responses to high CO2
are clearly species-dependent.

Interspecific variation in root physiological characteristics may explain
why some species do not exhibit a commonly observed decline in tissue nutri-
ent concentration at high CO2. In a study of three desert species, BassiriRad et
al. (1997b) showed that elevated CO2 decreased foliar N and P concentrations
in Larrea tridentata and Prosopis glandulosa, but not in Bouteloua eriopoda
that was the only species that had up-regulated its root uptake rate for both N
and P. Species-specific responses of N uptake kinetics can also be one of the
potential mechanisms by which elevated CO2 may affect competitive balance
among co-occurring species, thereby affecting ecosystem productivity and
composition (Berntson et al. 1998).

It is important to note that on their own, changes in root uptake kinetics
will not be a meaningful index of plant nutrient acquisition responses to ele-
vated CO2. Often, in cases where kinetics of uptake are severely down-regu-
lated, the overall plant growth response to CO2 is still positive. This is partly
because root uptake kinetic response is only one potential mechanism that
can lead to changes in nutrient uptake. Compensatory adjustments in other
root characteristics, such as morphology and life span, along with increased
nutrient use efficiency, can prevent the need for a positive adjustment in
uptake kinetics. Jackson and Reynolds (1996) examined root physiological
uptake capacity for N, and root biomass responses of a mixed community of
annual grasses and forbs. They reported that N uptake responses to elevated
CO2 were more closely correlated with root physiological capacity under low
N availability, but correlated more strongly with root biomass under relatively
high N availability. Zerihun et al. (2000) reported that the relative contribution
of root physiological uptake capacity in determining the overall plant
responses to CO2 enrichment must be evaluated in conjunction with other
root mechanisms that can also influence nutrient acquisition. Therefore,
future studies addressing the relative contribution of active ion uptake to
plant nutrient status and growth responses to high CO2 will require experi-
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mental designs that monitor changes in these mechanisms simultaneously
(Berntson and Bazzaz 1996, 1997; Berntson et al. 1998).

11.3.3 Indirect Effects of CO2 on Nutrient Availability 
at the Root Surface

Indirectly, elevated CO2 can alter nutrient availability at the root surface via a
number of mechanisms. Increased C supply to the soil can enhance microbial
activities (Dhillion et al. 1996), accompanied by higher mineralization and
plant uptake (Zak et al. 1993; Rice et al. 1994), although this effect is not uni-
versally observed (Diaz et al. 1993). A higher microbial activity was also
reported for a grassland system by Hungate et al. (1997), but they argued that
this enhancement was caused by reduced transpiration and improved soil
moisture, rather than improved C supply to the soil. Reduced transpiration
response to high CO2 has also been invoked as a possible indirect mechanism
that suppressed mass flow of K+ to the root surface in wheat, but this effect
was offset by a higher diffusion rate (Van Vuuren et al. 1997). Finally, availabil-
ity of nutrients such as N in many ecosystems could also increase due to
chronic deposition of atmospheric N (Ollinger et al. 1993; Lovett 1994; Gal-
loway et al. 1995; Vitousek et al. 1997; Norby 1998). Whether ecosystem avail-
ability of nutrients in response to rising CO2 concentration will keep pace
with increased plant nutrient demand is not the focus of this chapter. How-
ever, such information is important for models designed to reliably predict
CO2 responses in natural ecosystems.

11.4 Summary

There are many facets of global climate change that could synergistically
affect native vegetation. Whenever possible, experimental approaches must
consider the consequences for plants under realistic, multiple stress condi-
tions. Models designed to predict plant and ecosystem responses to global
change should integrate more thoroughly the role of plant nutrient acquisi-
tion, and how it may respond to a changing climate. Our current mechanistic
models are largely based on plant gas-exchange parameters. We can signifi-
cantly improve the robustness of these models by incorporating parameters
of nutrient uptake, e.g., root system characteristics.We also highlight the need
to examine the root system controllers of nutrient uptake collectively, rather
than individually. It is not reasonable to assume that the knowledge of
changes in just one parameter, e.g., root-to-shoot ratio, can elucidate the
mechanism and/or the extent of the effects of global change on plant nutrient
uptake, much the same way that we do not expect that the knowledge of
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changes in leaf area alone will be sufficient to reliably predict canopy gas-
exchange in response to climate change. Within this context, we recommend
that future studies should pay more attention to the collective effects of root
morphology, mycorrhizal association (Chap. 9, this Vol.), kinetics (Chap. 6,
this Vol.) and architecture (Chap. 7, this Vol.), as well as life span (Chap. 8, this
Vol.) in determining whole-plant nutrient responses to global change.
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