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A Multiobjective Simplex Method

An MOLP with two objectives can be conveniently solved using the paramet-

ric Simplex method presented in Algorithm 6.2. With three or more objec-

tives, however, this is no longer possible because we deal with at least two

parameters in the objective function c(λ).

7.1 Algebra of Multiobjective Linear Programming

In this section we consider the general MOLP

min Cx

subject to Ax = b

x � 0.

(7.1)

For λ ∈ Rp
> we denote by LP(λ) the weighted sum linear program

min
{
λT Cx : Ax = b, x � 0

}
. (7.2)

We use the notation C̄ = C − CBA−1
B A for the reduced cost matrix with

respect to basis B and R := C̄N for the nonbasic part of the reduced cost

matrix. Note that C̄B = 0 according to (6.15) and is therefore uninterest-

ing. Proofs in this section will make use of Theorem 6.11. These results are

multicriteria analogies of well known linear programming results, or necessary

extensions to cope with the increased complexity of multiobjective compared

to single objective linear programming.

Lemma 7.1. If XE 	= ∅ then X has an efficient basic feasible solution.

Proof. By Theorem 6.11 there is some λ ∈ Rp
> such that minx∈X λT Cx has

an optimal solution. But by Theorem 6.13 the LP(λ) minx∈X λT Cx has a

optimal basic feasible solution solution, which is an efficient solution of the

MOLP by Theorem 6.6. ��
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Lemma 7.1 justifies the definition of an efficient basis.

Definition 7.2. A feasible basis B is called efficient basis if B is an optimal

basis of LP(λ) for some λ ∈ Rp
>.

We now look at pivoting among efficient bases. We say that a pivot is a

feasible pivot if the solution obtained after the pivot step is feasible, even if

the pivot element Ãrs < 0.

Definition 7.3. Two bases B and B̂ are called adjacent if one can be obtained

from the other by a single pivot step.

Definition 7.4. 1. Let B be an efficient basis. Variable xj , j ∈ N is called

efficient nonbasic variable at B if there exists a λ ∈ Rp
> such that λT R � 0

and λT rj = 0, where rj is the column of R corresponding to variable xj .

2. Let B be an efficient basis and let xj be an efficient nonbasic variable. Then

a feasible pivot from B with xj entering the basis is called an efficient pivot

with respect to B and xj.

The system λT R � 0, λT rj = 0 is the general form of the equations we

used to compute the critical λ values in parametric linear programming that

were used to derive (6.23): We chose s such that c̄(λ) ≥ 0, c̄(λ)s = 0.

Proposition 7.5. Let B be an efficient basis. There exists an efficient non-

basic variable at B.

Proof. Because B is an efficient basis there exists λ > 0 such that λT R � 0.

Thus the set L := {λ > 0 : λT R � 0} is not empty. We have to show that

there is λ ∈ L and j ∈ N such that λT rj = 0.

First we observe that there is no column r of R such that r ≤ 0. There

also must be at least one column with positive and negative elements, because

of the general assumption (6.2). Now let λ∗ ∈ L. In particular λ∗T � 0. Let

λ′ ∈ Rp
> be such that I := {i ∈ N : λ′T rj < 0} 	= ∅. Such a λ must exist,

because R contains at least one negative entry.

We define φ : R → R|N | by

φi(t) := (tλ∗T + (1 − t)λ′T )ri, i ∈ N .

Thus, φ(0) = λ′T R and φ(1) = λ∗T R � 0. For each i ∈ N \ I we have that

φi(t) ≥ 0 for all t ∈ [0, 1]. For all i ∈ I there exists some ti ∈ [0, 1] such that

φi(t)

⎧⎨
⎩

< 0, t ∈ [0, ti)

= 0, t = ti
≥ 0, t ∈ [ti, 1].

With t∗ := max{ti : i ∈ I} we have that φi(t
∗) � 0 and φi(t

∗) = 0 for some

i ∈ I. Thus λ̂ := tλ∗ + (1 − t)λ′ ∈ L and the proof is complete. ��
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Example 7.6. It might appear that any nonbasic variable such that rj contains

positive and negative entries is an efficient nonbasic variable. This is not the

case, as the following example shows. Let

R =

(
−4 1

−2 1

)
.

Then there is no λ ∈ R2
> such that λT R � 0 and λT r2 = 0. The latter equation

means λ2 = 2λ1. Then λT r1 ≥ 0 would require −2λ2 ≥ 0, an impossibility.

��

Lemma 7.7. Let B be an efficient basis and xj be an efficient nonbasic vari-

able. Then any efficient pivot from B leads to an adjacent efficient basis B̂.

Proof. Let xj be the entering variable at basis B. Because xj is an efficient

nonbasic variable, we have λ ∈ Rp
> with λT R � 0 and λT rj = 0. Thus xj

is a nonbasic variable with reduced cost 0 in LP(λ). This means that the

reduced costs of LP(λ) do not change after a pivot with xj entering. Let B̂
be the resulting basis with any feasible pivot and entering variable xj . Then

λT R � 0 and λT rj = 0 at B̂, i.e. B̂ is an optimal basis for LP(λ) and therefore

an adjacent efficient basis. ��

We need a method to check whether a nonbasic variable xj at an efficient

basis B is efficient. This can be done by performing a test that consists in

solving an LP.

Theorem 7.8 (Evans and Steuer (1973)). Let B be an efficient basis and

let xj be a nonbasic variable. Variable xj is an efficient nonbasic variable if

and only if the LP

max etv

subject to Rz − rjδ + Iv = 0

z, δ, v � 0

(7.3)

has an optimal value of 0.

Proof. By Definition 7.4 xj is an efficient nonbasic variable if the LP

min 0T λ = 0

subject to RT λ � 0

(rj)T λ = 0

Iλ � e

λ � 0

(7.4)
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has an optimal objective value of 0, i.e. if it is feasible. The first two

constraints of (7.4) together are equivalent to RT λ � 0, (rj)T λ ≤ 0, or

RT λ � 0, (−rj)T λ ≥ 0, which gives the LP

min 0T λ = 0

subject to RT λ � 0

−(rj)T λ ≥ 0

Iλ � e

λ � 0.

(7.5)

The dual of (7.5) is

max eT v

subject to Rz − rjδ + Iv + It = 0

z, δ, v, t � 0.

(7.6)

Since an optimal solution of (7.6) will always contain t at value zero, this

is equivalent to
max eT v

subject to Rz − rjδ + Iv = 0

z, δ, v � 0,

which is (7.3). ��

It is important to note that the test problem (7.3) is always feasible since

(z, δ, v) = 0 can be chosen. The proof also 7.8 also shows that (7.3) can only

have either an optimal solution with v = 0 (the objective value of (7.4) is

zero), or be unbounded. With this observation we conclude that

• xj is an efficient nonbasic variable if and only if (7.3) is bounded and has

optimal value 0,

• xj is an “inefficient” nonbasic variable if and only if (7.3) is unbounded.

The Simplex algorithm works by moving along adjacent bases until an

optimal one is found. We want to make use of this principle to identify all

efficient bases, i.e. we want to move from efficient basis to efficient basis.

Therefore we must prove that it is indeed possible to restrict ourselves to

adjacent bases only, i.e. that the efficient bases are connected in terms of

adjacency.

Definition 7.9. Two efficient bases B and B̂ are called connected if one can

be obtained from the other by performing only efficient pivots.

We prove that all efficient bases are connected using parametric program-

ming. Note that single objective optimal pivots (i.e. the entering variable is
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xs with c̄s = 0) as well as parametric pivots are efficient pivots (one of the

two reduced costs is negative, the other positive) according to (6.23). These

cases are also covered by Proposition 7.5. Theorem 7.10 is the foundation for

the multicriteria Simplex algorithm. We present a proof by Steuer (1985).

Theorem 7.10 (Steuer (1985)). All efficient bases are connected.

Proof. Let B and B̂ be two efficient bases. Let λ, λ̂ ∈ Rp
> be the positive

weighting vectors for which B and B̂ are optimal bases for LP(λ) and LP(λ̂),

respectively. We consider the parametric LP with objective function

c(Φ) = Φλ̂T C + (1 − Φ)λT C (7.7)

with Φ ∈ [0, 1].

Let B̂ be the first basis (for Φ = 1). After several parametric programming

or optimal pivots we get a basis B̃ which is optimal for LP(λ). Since λ∗ =

Φλ̂ + (1 − Φ)λ ∈ Rp
> for all Φ ∈ [0, 1] all intermediate bases are optimal for

LP(λ∗) for some λ∗ ∈ Rp
>, i.e. they are efficient bases. All parametric and

optimal pivots are efficient pivots as explained above. If B̃ = B we are done.

Otherwise B can be obtained from B̃ by efficient pivots (i.e. optimal pivots

for LP(λ)), because both B and B̃ are optimal bases for this LP. ��
It is now possible to explain why the nontriviality assumption is necessary.

Without it, the existence of efficient nonbasic variables is not guaranteed, and

therefore Theorem 7.10 may fail. Example 7.11 also demonstrates a problem

with degenerate MOLPs.

Example 7.11 (Steuer (2002)). We want to solve the following MOLP

min − 2x2 + x3

min −x1 + 2x2 + x3

subject to x2 + 4x3 ≤ 8

x1 + x2 ≤ 8

x1, x2, x3 ≥ 0.

We introduce slack variables x4, x5 to write the LP in equality form. It is

clear that both objective functions are minimized at the same solution, x̂ =

(0, 4, 0, 0, 0). Thus XE = {x̂}. Because the only nonzero variable at x̂ is x̂2 =

2, there are four different bases that define the same efficient basic feasible

solution, namely {1, 2}, {2, 3}, {2, 4}, and {2, 5} (the problem is degenerate).

Below we show the Simplex tableaus for these four bases.

c̄1 0 0 7 2 0 16

c̄2 0 0 8 9
4 - 1

4 16

x1 1 0 -1 - 1
4

1
4 0

x2 0 1 4 1 0 8
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c̄1 7 0 0 1
4

7
4 16

c̄2 8 0 0 1
4

7
4 16

x3 -1 0 1 1
4 - 1

4 0

x2 4 1 0 0 1 8

c̄1 8 0 -1 0 2 16

c̄2 9 0 -1 0 2 16

x4 -4 0 4 1 -1 0

x2 4 1 0 0 1 8

c̄1 0 0 7 2 0 16

c̄2 1 0 7 2 0 16

x2 0 1 4 1 0 8

x5 4 0 -4 -1 1 0

Bases {1, 2} and {2, 4} are not efficient according to Definition 7.2 because

R contains columns that do not have positive entries. This is due to degener-

acy, which makes the negative reduced cost values possible, despite the BFS

being efficient/optimal.

Furthermore, bases {2, 3} and {2, 5} are efficient. The definition is satisfied

for all λ ∈ R2
>. However, for these bases R has no negative entries at all, hence

no efficient nonbasic variable according to Definition 7.3 exist. The example

therefore shows, that the assumption (6.2) is necessary to guarantee existence

of efficient nonbasic variables, and the validity of Theorem 7.10. ��

From Theorem 7.8 we know that we must consider negative pivot elements,

i.e. Ãrj < 0. What happens if nonbasic variable xj is efficient and column j of

Ã contains no positive elements at all? Then the increase of xj is unbounded,

a fact that indicated an unbounded LP in the single objective case. However,

since λT rj = 0 this is not the case in the multiobjective LP. Rather, unbound-

edness of XE is detected in direction d given by the vector with components

−b̃i/Ãij , i ∈ B, xj = 1. Of course, this is not a feasible pivot, as it does not

lead to another basis.

The results so far allow us to move from efficient basis to efficient basis. To

formulate a multiobjective Simplex algorithm we now need an efficient basis

to start with.

For the MOLP

min{Cx : Ax = b, x � 0}

one and only one of the following cases can occur:
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• The MOLP is infeasible, i.e. X = ∅,
• it is feasible (X 	= ∅) but has no efficient solutions (XE = ∅), or

• it is feasible and has efficient solutions, i.e. XE 	= ∅.
The multicriteria Simplex algorithm deals with these situations in three

phases as follows.

Phase I: Determine an initial basic feasible solution or stop with the con-

clusion that X = ∅. This phase does not involve the objective function

matrix C, and the usual auxiliary LP (6.18) can be used.

Phase II: Determine an initial efficient efficient basis or stop with the con-

clusion that XE = ∅.
Phase III: Pivot among efficient bases to determine all efficient bases and

directions of unboundedness of XE .

In Phase II, the solution of a weighted sum LP(λ) with λ > 0 will yield an

efficient basis, provided LP(λ) is bounded. If we do not know that in advance it

is necessary to come up with a procedure that either concludes that XE = ∅ or

returns an appropriate λ for which LP(λ) has an optimal solution. Assuming

that X 	= ∅ Phase I returns a basic feasible solution x0 ∈ X , which may or

may not be efficient. We proceed in two steps: First, the auxiliary LP (6.8)

is solved to check whether XE = ∅. Proposition 6.12 and duality imply that

XE 	= ∅ if and only if (6.8) has an optimal solution. In this case the optimal

solution of (6.8) returns an appropriate weighting vector ŵ, analogously to

the argument we have used in the proof of Theorem 6.11.

From Proposition 6.12 the MOLP min{Cx : Ax = b, x � 0} has an efficient

solution if and only if the LP 7.8

max
{
eT z : Ax = b, Cx + Iz = Cx0, x, z � 0

}
(7.8)

has an optimal solution. Moreover x̂ in an optimal solution of (6.7) is efficient.

However, we do not know if x̂ is a basic feasible solution of the MOLP and

we can in general not choose x̂ to start Phase III of the algorithm.

Instead we apply linear programming duality (Theorem 6.8): (7.8) has an

optimal solution if and only if its dual (7.9)

min
{
uT b + wT Cx0 : uT A + wT C � 0, w � e

}
(7.9)

has an optimal solution (û, ŵ) with ûT b + ŵT Cx0 = eT ẑ. Then û is also an

optimal solution of the LP (7.10)

min
{
uT b : uT A, � −ŵTC

}
(7.10)

which is just (7.9) for w = ŵ fixed. As in the proof of Theorem 6.11 the

dual of (7.10) has an optimal solution, and therefore an optimal basic feasible
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solution, which is efficient. The dual of (7.10) is equivalent to the weighted

sum LP(ŵ)

min
{
ŵT Cx : Ax = b, x � 0.

}
It follows that the LPs (7.9) and LP(ŵ) are the necessary tools in Phase

II. If (7.9) is infeasible, XE = ∅. Otherwise an optimal solution of (7.9) yields

an appropriate weighting vector λ = ŵ for which LP(λ) has an optimal basic

feasible solution, which is an initial efficient basic feasible solution of the

MOLP.

In the following description of the multiobjective Simplex algorithm, which

finds all efficient bases and all efficient basic feasible solutions, we need to store

a list L1 of efficient bases to be processed and a list of efficient bases L2 for

output, as well as a list EN of efficient nonbasic variables.

Algorithm 7.1 (Multicriteria Simplex algorithm.)

Input: Data A, b, C of an MOLP.

Initialization: Set L1 := ∅, L2 := ∅.
Phase I: Solve the LP min{eT z : Ax + Iz = b, x, z � 0}. If the optimal value

of this LP is nonzero, STOP, X = ∅. Otherwise let x0 be a basic feasible

solution x0 of the MOLP.

Phase II: Solve the LP min{uT b + wT Cx0 : uT A + wT C � 0, w � e}. If this

problem is infeasible, STOP, XE = ∅. Otherwise let (û, ŵ) be an optimal

solution.

Find an optimal basis B of the LP min{ŵT Cx : Ax = b, x � 0}.
L1 := {B}, L2 := ∅.

Phase III:

While L1 	= ∅
Choose B in L1, set L1 := L1 \ {B}, L2 := L2 ∪ {B}.
Compute Ã, b̃, and R according to B.

EN := N .

For all j ∈ N .

Solve the LP max{eT v : Ry − rjδ + Iv = 0; y, δ, v � 0}.
If this LP is unboundedEN := EN \ {j}.

End for

For all j ∈ EN .

For all i ∈ B.

If B′ = (B \ {i}) ∪ {j} is feasible and B′ 	∈ L1 ∪ L2

then L1 := L1 ∪ B′.

End for.

End for.
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End while.

Output: L2.

We have formulated the algorithm only using bases. It is clear that efficient

basic feasible solutions can be computed form the list L2 after completion of

the algorithm, or during the algorithm. It is of course necessary to update Ã

and b̃ when moving from one basis to the next. Since this has been described in

Algorithm 6.1, we omitted details. It is also possible to get directions in which

XE is unbounded. As mentioned before, these are characterized by columns

of Ã that do not contain positive entries.

Is Algorithm 7.1 an efficient algorithm? While we only introduce computa-

tional complexity in Section 8.1 we comment on the performance of multicrite-

ria Simplex algorithms here. Because the (single objective) Simplex algorithm

may require an exponential number of pivot steps (in terms of problem size

m, n, p, see e.g. Dantzig and Thapa (1997) for a famous example), the same

is true for our multicriteria Simplex algorithm.

The question, whether a polynomial time algorithm for multicriteria linear

programming (e.g. a generalization of Karmarkar’s interior point algorithm

Karmarkar (1984)) is possible depends on the number of efficient extreme

points. Unfortunately, it is easy to construct examples with exponentially

many.

Example 7.12. Consider a multicriteria linear program, the feasible set of

which is a hypercube in Rn, i.e. X = [0, 1]n and which has objectives to

minimize xi as well as −xi. Formally,

min xi i = 1, . . . , n

min −xi i = 1, . . . , n

subject to xi ≤ 1 i = 1, . . . , n

−xi ≤ 1 i = 1, . . . , n.

This problem has n variables, m = 2n constraints and p = 2n objective

functions. It is obvious, that all 2n extreme points of the feasible set are

efficient. ��
Some investigations show that the average number of efficient extreme

points can be huge. Benson (1998c) reports on such numerical tests. Results on

three problem classes (with inequality constraints) with 10 random examples

each are summarized in Table 7.1.

However, Küfer (1998) did a probabilistic analysis and found that the

expected number of efficient extreme points for a certain family of randomly

generated MOLPs is polynomial in n, m, and p.
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Table 7.1. Number of efficient extreme points.

n m Q Number of efficient extreme points

30 25 4 7,245.9 on average

50 50 4 83,780.6 on average

60 50 4 more than 200,000 in each problem

We close this section with an example for the multicriteria Simplex algo-

rithm.

Example 7.13 (Wiecek (1995)). We solve an MOLP with three objectives,

three variables, and three constraints:

min −x1 −2x2

min −x1 +2x3

min x1 −x3

subject to x1 +x2 ≤ 1

x2 ≤ 2

x1 −x2 +x3 ≤ 4.

Slack variables x4, x5, x6 are introduced to write the constraints in equality

form Ax = b.

Phase I: It is clear that B = {4, 5, 6} is a feasible basis and x0 = (0, 0, 0, 1, 2, 4)

is a basic feasible solution.

Phase II: We solve (7.9) with x0 from Phase I:

min u1 + 2u2 + 4u3

subject to uT

⎛
⎝1 1 0 1 0 0

0 1 0 0 1 0

1 −1 1 0 0 1

⎞
⎠+ wT

⎛
⎝−1 −2 0 0 0 0

−1 0 2 0 0 0

1 0 −1 0 0 0

⎞
⎠ � 0

w � e

The w component of the optimal solution is ŵ = (1, 1, 1).

We now solve min{ŵT Cx : x ∈ X}. x0 is an initial basic feasible solution

for this problem. An optimal basis is B1 = {2, 5, 6} with optimal basic fea-

sible solution x1 = (0, 1, 0, 0, 1, 5). Therefore we initialize L1 = {{2, 5, 6}}
and move to Phase III.

Phase III:

Iteration 1: We choose basis B1 = {2, 5, 6} and set L1 = ∅, L2 =

{{2, 5, 6}}. The tableau for this basis is given below.
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c̄1 1 0 0 2 0 0 2

c̄2 -1 0 2 0 0 0 0

c̄3 1 0 -1 0 0 0 0

x2 1 1 0 1 0 0 1

x5 -1 0 0 -1 1 0 1

x6 2 0 1 1 0 1 5

EN := {1, 3, 4}.
The LP to check if x1 is an efficient nonbasic variable is given in tableu

form, where the objective coefficients of 1 for variables v have been

eliminated by subtracting all constraint rows from the objective row

to obtain a basic feasible solution with basic variables v = 0. This LP

does have an optimal solution that is found after only one pivot. Pivot

elements are highlighted by square frames.

1 1 2 -1 0 0 0 0

1 0 2 -1 1 0 0 0

-1 2 0 1 0 1 0 0

1 -1 0 -1 0 0 1 0

The LP to check if variable x3 is an efficient nonbasic variable is shown

below. The problem has an optimal solution, proved by performing the

indicated pivot.

1 1 2 -1 0 0 0 0

1 0 2 0 1 0 0 0

-1 2 0 -2 0 1 0 0

1 -1 0 1 0 0 1 0

Finally, we check nonbasic variable x4. In the tableau displayed be-

low, column three indicates that the LP is unbounded, and x4 is not

efficient.

1 1 2 -2 0 0 0 0

1 0 2 -2 1 0 0 0

-1 2 0 0 0 1 0 0

1 -1 0 0 0 0 1 0

As a result of these checks we have that EN = {1, 3}. Checking in the

tableau for B1 = {2, 5, 6}, we find that the feasible pivots are 1) x1

enters and x2 leaves, giving basis B2 = {1, 5, 6} and 2) x3 enters and

x6 leaves, yielding basis B3 = {2, 3, 5}.
L1 := {{1, 5, 6}, {2, 3, 5}}.
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Iteration 2: Choose B2 = {1, 5, 6} with BFS x2 = (1, 0, 0, 0, 2, 3).

L1 = {{2, 3, 5}}, L2 = {{2, 5, 6}, {2, 3, 5}}.
The tableau for the basis is as follows.

c̄1 0 -1 0 1 0 0 1

c̄2 0 1 2 1 0 0 1

c̄3 0 -1 -1 -1 0 0 -1

x2 1 1 0 1 0 0 1

x5 0 1 0 0 1 0 2

x6 0 -2 1 -1 0 1 3

EN = {2, 3, 4}.
If x2 enters the basis, x1 leaves, which leads to basis (2, 5, 6) which is

the previous one. Therefore x2 need not be checked.

The tableau for checking x3 is displayed below. After one pivot column

3 shows that the LP is unbounded and x3 is not efficient.

-1 1 1 -1 0 0 0 0

-1 0 1 0 1 0 0 0

1 2 1 -2 0 1 0 0

-1 -1 -1 1 0 0 1 0

We check nonbasic variable x4. One iteration is again enough to ex-

hibit unboundedness, and x4, too, is not efficient.

-1 1 1 -1 0 0 0 0

-1 0 1 -1 1 0 0 0

1 2 1 -1 0 1 0 0

-1 -1 -1 1 0 0 1 0

These checks show that there are no new bases and BFSs to add,

therefore EN = ∅ and we proceed to the next iteration.

Iteration 3: We choose B3 = {2, 3, 5} with BFS x3 = (0, 1, 5, 0, 1, 0).

L1 = ∅, L2 = {{2, 5, 6}, {1, 5, 6}, {2, 3, 5}}.
The tableau for the basis is shown below.

c̄1 1 0 0 2 0 0 2

c̄2 -5 0 0 -2 0 -2 -10

c̄3 3 0 0 1 0 1 5

x2 1 1 0 1 0 0 1

x5 -1 0 0 -1 1 0 1

x3 2 0 1 1 0 1 5

EN = {1, 4, 6}.
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We test nonbasic variable x1. After one pivot column 4 in the tableau

shows that the LP is unbounded.

-1 1 -1 1 0 0 0 0

1 2 0 -1 1 0 0 0

-5 -2 -2 5 0 1 0 0

3 1 1 -3 0 0 1 0

The test of nonbasic variable x4 yields the following tableau, and again

one pivot is enough to determine unboundedness.

-1 1 -1 -1 0 0 0 0

1 2 0 -2 1 0 0 0

-5 -2 -2 2 0 1 0 0

3 1 1 -1 0 0 1 0

Since EN = ∅ the iteration is finished.

Iteration 4: Since L1 = ∅ the algorithm terminates.

Output: List of efficient bases B1 = {2, 5, 6},B2 = {1, 5, 6},B3 = {2, 3, 5}.

During the course of the algorithm, we identified three efficient bases and

three corresponding efficient basic feasible solutions. Their adjacency structure

is shown in Figure 7.1. A line indicates that bases are adjacent. Note that bases

{1, 5, 6} and {2, 3, 5} are not adjacent, because at least two pivots are needed

to obtain one from the other. They are, however, connected via basis {2, 5, 6}

{2, 5, 6}

{1, 5, 6}

{2, 3, 5}

x1

x2

x3

.........
.........
.........
.........
.........
.........
.........
.........
.........
........

.........................................................................................

Fig. 7.1. Adjacency of efficient bases and corresponding BFSs.

The problem is displayed in decision space in Figure 7.2. The efficient set

consists of the edges connecting x1 and x2 and x1 and x3.

��

In the following section we study the geometry of multiobjective linear

programming. Amongst other things we shall see, how the results from the
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x0

x1

x2

x3

x4

x5

−c1

−c2

−c3

x1

x2

x3

XE

x0 = (0, 0, 0)

x1 = (0, 1, 0)

x2 = (1, 0, 0)

x3 = (0, 1, 5)

x4 = (1, 0, 3)

x5 = (0, 0, 4)

Fig. 7.2. Feasible and efficient set in Example 7.13.

multicriteria Simplex algorithm (i.e. the list of efficient bases and their adja-

cency structure) is exploited to identify the maximal efficient faces.

7.2 The Geometry of Multiobjective Linear

Programming

First we observe that efficient BFS correspond to extreme points of XE .

Lemma 7.14. 1. Let B be an efficient basis and (xB, 0) be the corresponding

basic feasible solution. Then (xB, 0) is an extreme point of XE .

2. Let x ∈ XE be an extreme point. Then there is an efficient basis B such

that x = (xB, 0).

Proof. This result follows from Theorem 6.11, the definition of an efficient

basis and the single objective counterpart in Theorem 6.17. ��

Note that, as in the single objective case, several efficient bases might

identify the same efficient extreme point, if the MOLP is degenerate.

If (xB , 0) and (xB̂, 0) are the efficient basic feasible solutions defined by

adjacent efficient bases B and B̂, we see from the proof of Lemma 7.7 that
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both (xB, 0) and (xB̂, 0) are optimal solutions of the same LP(λ). Therefore,

due to linearity, the edge conv((xB , 0), (xB̂, 0)) is contained in XE .

Lemma 7.15. Let B and B̂ be optimal bases for LP(λ). Then the edge

conv((xB , 0), (xB̂, 0)) is contained in XE .

We also have to take care of efficient unbounded edges: XE may contain

some unbounded edges E = {x : x = xi +µdj , µ ≥ 0}, where dj is an extreme

ray and xi is an extreme point of X . This can happen even if the LP(λ)

is bounded if c(λ) is parallel to dj . An unbounded edge always starts at an

extreme point, which must therefore be efficient.

Let B be an efficient basis associated with that extreme point. Then the un-

bounded efficient edge is detected by an efficient nonbasic variable, in which

the column Ãj contains only nonpositive elements, showing that X is un-

bounded in that direction. Because λT rj = 0 this does not constitute un-

boundedness of the objective function.

Definition 7.16. Let F ⊂ X be a face of X . F is called efficient face, if

F ⊂ XE. It is called maximal efficient face, if there is no efficient face F ′ of

higher dimension with F ⊂ F ′.

Lemma 7.17. If there is a λ ∈ Rp
> such that λT Cx = γ is constant for all

x ∈ X then XE = X . Otherwise

XE ⊂
T⋃

t=1

Ft, (7.11)

where {Ft : t = 1, . . . , T} is the set of all proper faces of X and T is the

number of proper faces of X .

Proof. The first case is obvious, because if λT Cx = γ for all x ∈ X then the

whole feasible set is optimal for this particular LP(λ). Then from Theorem

6.6 X ⊂ XE .

The second part follows from the fact that optimal solutions of LP(λ) are

on the boundary of X (Theorem 6.17) and, once more, Theorem 6.11. Of

course bdX = ∪T
t=1Ft. ��

Thus, in order to describe the complete efficient set XE , we need to identify

the maximally efficient faces of X . We will need the representation of a point x

in a face F as a convex combination of the extreme points and a nonnegative

combination of the extreme rays of F . This result is know as Minkowski’s

theorem. A proof can be found in Nemhauser and Wolsey (1999, Chapter I.4,

Theorem 4.8).
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Theorem 7.18 (Minkowski’s Theorem). Let X be a polyhedron and x ∈
X . Let x1, . . . , xk be the extreme points and let d1, . . . , dl be the extreme rays of

X , then there are nonnegative real numbers αi, i = 1, . . . , k and µj , j = 1, . . . , l

such that 0 ≤ αi ≤ 1, i = 1, . . . , k,
∑k

i=1 αi = 1, and

x =

k∑
i=1

αix
i +

l∑
j=1

µjd
j . (7.12)

Furthermore, if x ∈ riX the numbers αi and µj can be chosen to be positive.

Example 7.19. Consider the polyhedron X defined as follows:

X := {x ∈ R2 : x � 0, 2x1 + x2 ≥ 2,−x1 + x2 ≤ 2}

shown in Figure 7.3. Clearly, X has two extreme points x1 = (0, 2) and x2 =

(1, 0). The two extreme rays are d1 = (1, 1) and d2 = (1, 0).
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Fig. 7.3. A polyhedron with extreme points and extreme rays.

The point x = (2, 1) ∈ riX can be written as

x =
1

4

(
0

2

)
+

3

4

(
1

0

)
+

1

2

(
1

1

)
+

3

4

(
1

0

)
=

(
2

1

)
.

��

Suppose that ∅ 	= XE 	= X . Using Minkowski’s theorem, applied to a face

F , we prove that the whole face is efficient if and only if it contains an efficient

solution in its relative interior.

Theorem 7.20. A face F ⊂ X is an efficient face if and only if it has an

efficient solution x̂ in its relative interior.
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Proof. “=⇒” If F is an efficient face all its relative interior points are efficient

by definition.

“⇐=” Let x̂ ∈ XE belong to the relative interior of F . We show that there is

a λ̂ ∈ Rp
> such that the whole face F is optimal for LP(λ̂).

First, by Theorem 6.11 we can find a λ̂ ∈ Rp
> such that x̂ is an optimal

solution of LP(λ̂). In particular LP(λ̂) is bounded. Therefore

λ̂T Cxi ≥ λ̂T Cx̂ (7.13)

for all extreme points xi, i = 1, . . . , k of F and

λ̂T Cdj ≥ 0 (7.14)

for all extreme rays dj , j = 1, . . . , l of F . Note that whenever λ̂T Cdj < 0

for some extreme ray dj LP(λ̂) will be unbounded. Assume there is an

extreme point xi, i ∈ {1, . . . , k} which is not optimal for LP(λ̂), i.e.

λ̂T Cxi > λ̂T Cx0. (7.15)

Then from Theorem 7.18 there are positive αi and µj such that with (7.12)

x̂ =
∑k

i=1 αix
i +
∑l

j=1 µjd
j and

λ̂T Cx̂ =
k∑

i=1

αiλ̂
T Cxi +

l∑
j=1

µj λ̂
T Cdj

>
k∑

i=1

αiλ̂
T Cx0 = λ̂T Cx̂.

(7.16)

We have used positivity of αi, nonnegativity of µi, (7.13), (7.14), and

(7.15) for the inequality, and
∑k

i=1 αi = 1 for the second equality. The

impossibility (7.16) means that

λ̂T Cxi = λ0T
Cx0. (7.17)

for all extreme points xi, which are thus optimal solutions of LP(λ̂). To

complete the proof, consider (7.16) again, using (7.17) this time to get

that λ0T
Cdj = 0 for all extreme rays dj , because µj > 0 since x̂ is a

relative interior point of F . ��

We state to further results about efficient edges and efficient faces, which

we leave as exercises for the reader, see Exercises 7.5 and 7.6.

Proposition 7.21. Assume that the MOLP is not degenerate. Let x1 and x2

be efficient extreme points of X and assume that the corresponding bases are

adjacent (i.e. one can be obtained from the other by an efficient pivot). Then

conv(x1, x2) is an efficient edge.
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Theorem 7.22. A face F of X is efficient if and only if there is a λ > 0 such

that all extreme points of F are optimal solutions of LP(λ) and λT d = 0 for

all extreme rays of F .

With Theorem 7.20 and Lemma 7.17 we know that XE is the union of

maximally efficient faces, each of which is the set of optimal solutions of

LP(λ), for some λ ∈ Rp
>. If we combine this with the fact that the set of

efficient extreme points is connected by efficient edges, (as follows again from

Theorem 7.10 and Theorem 7.20, see also page 185) we get the connectedness

result for the efficient set of multicriteria linear programs.

Theorem 7.23. XE is connected and, therefore, YN is connected.

Proof. The result for XE follows from Theorem 7.10 and Lemma 7.17 together

with Theorem 7.20. Thus, YN is connected because XE is and C is linear, i.e.

continuous. ��

Example 7.24. Figure 7.4 shows the feasible set of a biobjective LP, with the

two maximal efficient faces indicated by bold lines.
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c2 = (0,−2, 1)

Fig. 7.4. XE in Example 7.24.
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To check that XE is correct we can use Theorem 6.11, i.e x ∈ XE if and only

if there is c(λ) = λc1 + (1− λ)c2 such that x is an optimal solution of LP(λ),

and apply it graphically in this case. The negative gradient of the objective

c(λ) for different values of λ can be used to graphically determine the optimal

faces. In this example, XE has a 2-dimensional face and a 1-dimensional face

as the only maximal efficient faces. However, the three edges of the efficient

triangle and the four efficient extreme points are not maximal efficient faces.

The example clearly shows that – even for linear multicriteria optimization

problems – the efficient set is in general not convex. ��

In the proof of Theorem 7.20 we have seen that for each efficient face F
there exists a λ ∈ Rp

> such that F is the set of optimal solutions of LP(λ).

Suppose we know efficient face F , how can we find all λ with that property?

Essentially, we want to subdivide the set Λ = {λ ∈ Rp
> :
∑p

k=1 λk = 1} into

regions that correspond to those weighting vectors λ, which make a certain

face efficient. That is, for each efficient face F we want to find ΛF ⊂ Λ such

that F is optimal for LP(λ) for all λ ∈ ΛF .

Let us first assume that X is nonempty and bounded, so that in particular

XE is nonempty. Let F be an efficient face, and xi, i = 1, . . . , k be the set

of all extreme points of F . Because F is an efficient face, from the proof of

Theorem 7.20 there is some λF ∈ Λ such that F = conv(x1, . . . , xk) is optimal

for LP(λF ). In particular, x1, . . . , xk are optimal solutions of LP(λF).

Hence we can apply the optimality condition for linear programs. Let Ri

be the reduced cost matrix of a basis associated with xi. Then xi is optimal if

and only if λT Ri � 0 (note that we assume nondegeneracy here, see Lemma

6.14). Therefore, the face F is optimal if and only if λT Ri � 0, i = 1, . . . , k.

Proposition 7.25. The set of all λ for which efficient face F is the optimal

solution set of LP(λ) is defined by the linear system

λT e = 1

λT Ri � 0 i = 1, . . . , k

λ � 0,

where Ri is the reduced cost matrix of a basis associated with extreme point

xi of F .

Example 7.26. Let us consider the efficient face conv(x1, x2) in Example 7.13.

Extreme point x1 corresponds to basis {2, 5, 6} with

R1 =

⎛
⎝ 1 0 2

−1 2 0

1 −1 0

⎞
⎠
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and extreme point x2 corresponds to basis {1, 5, 6}

R2 =

⎛
⎝−1 0 1

1 2 1

−1 −1 −1

⎞
⎠ .

The linear system of Proposition 7.25 is λT R1 � 0, λT R2 � 0, λT e =

1, λ ≥ 0, which we write as

λ1 − λ2 + λ3 ≥ 0

2λ2 − λ3 ≥ 0

2λ1 ≥ 0

−λ1 + λ2 − λ3 ≥ 0

2λ2 − λ3 ≥ 0

λ1 + λ2 − λ3 ≥ 0

λ1 + λ2 + λ3 = 1

λ1, λ2, λ3 ≥ 0

or

λ1 − λ2 + λ3 = 0

2λ2 − λ3 ≥ 0

λ1 + λ2 − λ3 ≥ 0

λ1 + λ2 + λ3 = 1

λ1, λ2, λ3 ≥ 0.

Eliminating λ3 we obtain λ2 = 0.5, 0 ≤ λ1 ≤ 0.5. Proceeding in the

same way for the efficient face conv(x1, x2) and the efficient extreme points,

we obtain the subdivision of Λ depicted in Figure 7.5. For the efficient ex-

treme points xi there are two-dimensional regions, for the edges, there are

line segments that yield the respective face as optimal solutions of LP(λ).
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Fig. 7.5. Weights to obtain efficient faces in Example 7.13.
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If X is unbounded, it may happen that XE contains unbounded efficient

faces . In this case an efficient face F contains unbounded edges, i.e. we must
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take care of extreme rays in the linear system of Proposition 7.25. We extend it

by λtCdj = 0 for the extreme rays d1, . . . , dl of face F . The proof of Theorem

7.20 shows that this condition has to be satisfied.

If there is some λ ∈ Λ such that LP(λ) is unbounded, there is, in addition

to the sets ΛF ⊂ Λ for all efficient faces F , a subset Λ0 ⊂= {λ ∈ Λ :

LP(λ) is unbounded}. This set is the remainder of Λ, which is not associated

with any of the efficient faces. Note that this case can only occur if there is a

λ > 0 and an extreme ray d of X such that λT Cd < 0.

Let us finally turn to the determination of maximal efficient faces. The

method we present is from Isermann (1977). Let B be an efficient basis and

let N f ⊂ N be the set of nonbasic variables, which allow feasible pivots. Let

J ⊂ N f . Then we have the following proposition.

Proposition 7.27. All variables in J are efficient nonbasic variables if and

only if the LP
max eT v

subject to Rz − RJ δ + Iv = e

z, δ, v � 0

(7.18)

has an optimal solution. Here RJ denotes the columns of R pertaining to

variables in J .

Proof. The proof is similar to the proof of Theorem 7.8 and is left to the

reader, see Exercise 7.1. ��

Let us call J ⊂ N f a maximal set of efficient nonbasic variables , if there is

no J ′ ⊂ N f such that J ⊂ J ′ and (7.18) has an optimal solution for J ′. Now

let Bτ , τ = 1, . . . , t be the efficient bases and J τ,ρ, τ = 1, . . . , t, ρ = 1, . . . , r

be all maximal index sets of efficient nonbasic variables at efficient basis Bτ .

Furthermore, let Eν = (Bτ , dν), ν = 1, . . . , v denote unbounded efficient edges,

where dν is an extreme ray of X .

We define Qτ,ρ := Bτ ∪ J τ,ρ. Qτ,ρ contains bases adjacent to Bτ , and

the convex hull of the extreme points associated with all bases found in Qτ,ρ

plus the conical hull of any unbounded edges attached to any of these bases

constitutes a candidate for an efficient face.

As we are only interested in identifying maximal efficient faces, we select a

minimal number of index sets representing all Qτ,ρ, i.e. we choose index sets

U1, . . . ,Uo with the following properties:

1. For each Qτ,ρ there is a set Us such that Qτ,ρ ⊂ Us.

2. For each Us there is a set Qτ,ρ such that Us = Qτ,ρ.

3. There are no two sets Us,Us′

with s 	= s′ and Us ⊂ Us′

.
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Now we determine which extreme points and which unbounded edges are

associated with bases in the sets Us. For s ∈ {1, . . . , o} let

Is
b := {τ ∈ {1, . . . , t} : Bτ ⊂ Us} ,

Is
u := {ν ∈ {1, . . . , v} : Bτ ⊂ Us}

and define

Xs =

⎧⎨
⎩x ∈ X : x =

∑
τ∈Is

b

ατxτ +
∑
ν∈Is

u

µνdν ,
∑
τ∈Is

b

ατ = 1, ατ ≥ 0, µν ≥ 0

⎫⎬
⎭ .

(7.19)

The sets Xs are faces of X and efficient (Theorem 7.28) and in fact they are

the maximal efficient faces (Theorem 7.29), if the MOLP is not degenerate.

Theorem 7.28 (Isermann (1977)). Xs ⊂ XE for s = 1, . . . , o.

Proof. By definition of Us there is a set Qτ,ρ such that Qτ,ρ = Us. Therefore

the linear program (7.18) with J = Qτ,ρ \ Bτ in Proposition 7.27 has an

optimal solution. Thus, the dual of this LP

min eT λ

subject to RT λ � 0

(−RJ)T λ � 0

λ � e

has an optimal solution λ̂. But the constraints of the LP above are the opti-

mality conditions for LP (λ), where in particular (RJ)T λ = 0. Therefore all

x ∈ Xs are optimal solutions of LP(λ̂) and Xs ⊂ XE . ��
Theorem 7.29 (Isermann (1977)). If x ∈ XE there is an s ∈ {1, . . . , o}
such that x ∈ Xs.

Proof. Let x ∈ XE . Then x is contained in a maximal efficient face F , which is

optimal for some LP(λ). Let Ib be the index set of efficient bases corresponding

to the extreme points of F and Iu be the index set of extreme rays of face F .

Then, according to (7.12), x can be written as

x =
∑
i∈Ib

αix
i +
∑
j∈Iu

µjd
j .

We choose any extreme point xi of F and let Bi be a corresponding basis.

Furthermore, we let J 0 := {∪τ∈Ib
Bτ} \ Bi. Because all Bτ are efficient, J 0 is

a set of efficient nonbasic variables at Bi.

Therefore (7.18) has an optimal solution and there exists a maximal index

set of efficient nonbasic variables J with J 0 ⊂ J . During the further con-

struction of index sets, none of the indices of extreme points in J 0 is lost, and

Bi ∪ J 0 ⊂ Us for some s. Therefore x ∈ Xs for some s ∈ {1, . . . , o}. ��
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The proofs show that if all efficient bases are nondegenerate, Xs are exactly

the maximal efficient faces of X . Otherwise some Xs may not be maximal,

because there is a choice of bases representing an efficient extreme point, and

the maximal sets of efficient nonbasic variables need not be the same for all

of them.

Example 7.30. We apply this method to Example 7.13. X does not contain

unbounded edges. The computation of the index sets is summarized in Table

7.2.

Table 7.2. Criteria and alternatives in Example 7.30.

Efficient basis Bτ Maximal index set J τ,ρ Qτ,ρ

B1 = {2, 5, 6} J 1,1 = {1} Q1,1 = {1, 2, 5, 6}
J 1,2 = {3} Q1,2 = {3, 2, 5, 6}

B2 = {1, 5, 6} J 2,1 = {2} Q2,1 = {1, 2, 5, 6}

B3 = {2, 3, 5} J 3,1 = {6} Q3,1 = {2, 3, 5, 6}

The sets Us are U1 = {1, 2, 5, 6} and U2 = {2, 3, 5, 6} and checking, which

bases are contained in these sets, we get I1
b = {1, 2} and I2

b = {1, 3}. From

(7.19) we get

X1 = {x = α1x
1 + α2x

2 : α1 + α2 = 1, αi ≥ 0} = conv(x1, x2),

X2 = {x = α1x
1 + α2x

3 : α1 + α2 = 1, αi ≥ 0} = conv(x1, x3),

and confirm XE = X1 ∪ X2, as expected. ��

7.3 Notes

A number of multicriteria Simplex algorithms have been published. Their gen-

eral structure follows the three phase scheme presented above. For pivoting

among efficient bases it is necessary to identify efficient nonbasic variables.

Other than those of Theorems 7.8 and 7.27 tests for nonbasic variable ef-

ficiency have been proposed by Ecker and Kouada (1978) and Zionts and

Wallenius (1980). An alternative method to find an initial efficient extreme

point is given in Benson (1981). Several proofs of the connectedness result of

Theorem 7.10 are known, see e.g. Zeleny (1974), Yu and Zeleny (1975), and

Isermann (1977). More on connectedness of efficient basic feasible solutions

for degenerate MOLPs can be found in Schechter and Steuer (2005).
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Algorithms based on the Simplex method are proposed by Armand (1993);

Armand and Malivert (1991), Evans and Steuer (1973), Ecker et al. (1980);

Ecker and Kouada (1978), Isermann (1977), Gal (1977), Philip (1972, 1977),

Schönfeld (1964), Strijbosch et al. (1991), Yu and Zeleny (1975, 1976), Zeleny

(1974). The algorithm by Steuer (1985) is implemented in the ADBASE Steuer

(2000) code.

While all these algorithms identify efficient bases and extreme points, an

algorithm by Sayin (1996) a top-down approach instead, that starts by finding

the highest dimensional efficient faces first and then proceeds down to extreme

points (zero dimensional faces).

In Proposition 7.25 we have shown how to decompose the weight space Λ to

identify those weighting vectors that have an efficient face as optimal solutions

of LP(λ). Such a partition can be attempted with respect to efficient bases of

the MOLP or with respect to extreme points of XE or YN . Benson and Sun

(2000) investigates the decomposition of the weight space according to the

extreme points of YN .

Interior point methods have revolutionized linear programming since the

1980’s. However, they are not easily adaptable to multiobjective linear pro-

gramming. Most methods proposed in the literature find one efficient solution,

and involve the the elicitation of the decision makers preferences in an inter-

active fashion, see the work of Arbel (1997) and references therein. The only

interior point method that is not interactive is Abhyankar et al. (1990).

The observation that the feasible set in objective space Y is usually of

much smaller dimension than X has lead to a stream of research work on

solving MOLPs in objective space. Publications on this topic include Dauer

and Liu (1990); Dauer and Saleh (1990); Dauer (1993); Dauer and Gallagher

(1990) and Benson (1998c,a,b).



Exercises 195

Exercises

7.1 (Isermann (1977)). Let J ⊂ N be an index set of nonbasic variables

at efficient basis B. Show that each variable xj , j ∈ J is efficient if and only

if the linear program

max eT v

subject to Rz − RJ δ + Iv = e

z, δ, v � 0

has an optimal solution. Here RJ is the part of R pertaining to variables

xj , j ∈ J . Hint: Use the definition of efficient nonbasic variable and look at

the dual of the above LP.

7.2. A basis B is called weakly efficient, if B is an optimal basis of LP(λ) for

some λ ∈ Rp
≥. A feasible pivot with nonbasic variable xj entering the basis

is called weakly efficient if the basis obtained is weakly efficient. Prove the

following theorem.

Let xj be nonbasic at weakly efficient basis B. Then all feasible pivots with

xj as entering variable are weakly efficient if and only if the linear program

max v

subject to Rz − rjδ + ev � 0

z, δ, v � 0

has an optimal objective value of zero.

7.3. Solve the MOLP

min −3x1 − x2

min x1 − 2x2

subject to 3x1 + 2x2 ≥ 6

x1 ≤ 10

x2 ≤ 3

x1, x2 ≥ 0

using the multicriteria Simplex algorithm 7.1.

7.4. Determine, for each efficient extreme point xi of the MOLP in Exercise

7.3, the set of all λ for which xi is an optimal solution of LP(λ) and determine

all maximal efficient faces.

7.5. Assume that the MOLP is not degenerate. Let x1 and x2 be efficient

extreme points of X and assume that the corresponding bases are adjacent

(i.e. one can be obtained from the other by an efficient pivot). Show that

conv(x1, x2) is an efficient edge.
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7.6. Prove that a face F of X is efficient if and only if there is a λ > 0 such

that all extreme points of F are optimal solutions of LP(λ) and λT d = 0 for

all extreme rays of F .

7.7. Let X = {x ∈ Rn : Ax = b, x � 0} and consider the MOLP minx∈X Cx.

An improving direction d direction at x0 ∈ X is a vector d ∈ Rn such that

Cd ≤ 0 and there is some t > 0 such that x0 + τd ∈ X for all τ ∈ [0, t].

Let D := {d ∈ Rn : Cd ≤ 0} and x0 ∈ X . Prove that x0 ∈ XE if and only

if (x0 + D)∩X = {x0}, i.e. if there is no improving direction at x0. Illustrate

the result for the problem of Exercise 7.3.




