
10

Multiobjective Versions of Some NP-Hard

Problems

10.1 The Knapsack Problem and Branch and Bound

As for the assignment problem in the previous section, we consider only finding

efficient solutions. And we also restrict ourselves to the bicriterion case. The

bicriterion knapsack problem is the binary integer program

max f1(x) =

n∑
i=1

c1
i xi (10.1)

max f2(x) =
n∑

i=1

c2
i xi (10.2)

subject to
∑

wixi ≤ W (10.3)

xi ∈ {0, 1}; j = 1, . . . , n. (10.4)

The problem is obviously NP-hard, as a counterpart of an NP-hard single

objective problem (see Lemma 8.11). Whether the problem is #P-complete

or intractable is yet unknown.

We will present a branch and bound algorithm. To avoid trivial solutions

and to have a meaningful problem we make some basic assumptions on the

parameters of the knapsack problem. We assume that all values ck
i , all weights

wi as well as the capacity W are nonnegative. Furthermore, no single weight

exceeds capacity, i.e. wi ≤ W for all i = 1, . . . , n, but the total weight of all

items is bigger than W,
∑n

i=1 wi > W.

For the solution of knapsack problems the value to weight ratios ck
i /wi

are of essential importance. In the single objective linear knapsack problem

(where xi ∈ {0, 1} is replaced by 0 ≤ xi ≤ 1),

272 10 Multiobjective Versions of Some NP-Hard Problems

max
n∑

i=1

cixi

subject to

n∑
i=1

wixi ≤ W

xi ≤ 1 i = 1, . . . , n

xi ≥ 0 i = 1, . . . , n

they are used to easily find an optimal solution.

Assume that items 1, . . . , n are ordered such that

c1

w1
≥ c2

w2
≥ . . . ≥ cn

wn
. (10.5)

Let i∗ := min{i :
∑i

j=1 wj > W} be the smallest index such that the

weight of items 1 to i exceeds the total capacity. Item i∗ is called the critical

item. The solution of the continuous knapsack problem is simply given by

taking all items 1 to i∗ − 1 and a fraction of the critical item, that is xi = 1

for i = 1, . . . , i∗ − 1 and

xi∗ =

(
W −

i∗−1∑
i=1

wi

)
wj∗

.

Good algorithms for the single objective problem use this fact and focus on

optimization of items around i∗, see e.g. Martello and Toth (1990); Pisinger

(1997); Kellerer et al. (2004). Ideas of such algorithms have been adapted to

the bicriterion case by Ulungu and Teghem (1997).

The two criteria induce two different sequences of value to weight ratios.

Let Ok be the ordering (10.5) according to ck
i /wi, k = 1, 2. Let rk

i be the

rank or position of item i in order Ok and let O be the order according to

increasing values of (r1
i + r2

i)/2, the average rank of an item.

The branch and bound method will create partial solutions by assigning

zeros and ones to subsets of variables denoted B0 and B1, respectively. These

partial solutions constitute nodes of the search tree. Variables not assigned

either zero or one are called free variables for a partial solution and define a

set F ⊆ {1, . . . , n} such that {1, . . . , n} = B1 ∪ B0 ∪ F . A solution formed by

assigning all free variables a value is called completion of a partial solution.

Variables of a partial solution will be assigned a value according to the order

O. It is convenient to number the items in that order so that we will have

B1 ∪ B0 = {1, . . . , l − 1},F = {l, . . . , n}

for some l. Furthermore we shall denote rk the index of the first variable in

F according to order Ok, for k = 1, 2.

10.1 The Knapsack Problem and Branch and Bound 273

Vector valued bounds will be used to fathom a node of the tree when

no completion of the partial solution (B1,B0) can possibly yield an efficient

solution. A lower bound (z1, z2) at a partial solution is simply given by the

value of the variables which have already been assigned value 1,

(z1, z2) =

⎛
⎝∑

i∈B1

c1
i ,
∑
j∈B1

c2
i

⎞
⎠ . (10.6)

For the computation of upper bounds we define

W := W −
∑
i∈B1

wi ≥ 0,

the remaining free capacity of the knapsack after fixing variables in B1. Fur-

thermore, we denote

sk := max

⎧⎨
⎩lk ∈ F :

lk∑
jk=rk

wjk
< W

⎫⎬
⎭

to be the last item that can be chosen to be added to a partial solution

according to Ok. Thus, sk + 1 is in fact the critical item in order Ok, taking

the already fixed variables in B0 and B1 into account.

The upper bound for each objective value at a partial solution is computed

according to the rule of Martello and Toth (1990).

zk = zk +

sk∑
jk=rk

ck
jk

+ max

{[
W k

ck
sk+2

wsk+2

]
,

[
ck
sk+1 − (wsk+1 − W k)

ck
sk

wsk

]}
,

(10.7)

where W k = W−∑sk

jk=rk
wjk

. The bound can be justified from the observation

that xsk+1
cannot assume fractional values. Therefore it must be either zero or

one. It is computed from the value of the already assigned variables (zk), plus

the value of those items that fit entirely, in order Ok, plus the maximum term.

The first term in the maximum in (10.7) comes from setting xsk+1
= 0 and

filling remaining capacity with xsk+2
, while the second means setting xsk+1

= 1

and removing part of xsk
to satisfy the capacity of the knapsack. Another way

of computing an upper bound using (10.7) is indicated in Exercise 10.1.

Given a partial solution, an assignment of zeros and ones to the free vari-

ables is sought, to find potentially efficient solutions of the whole problem.

This problem related to the partial solution (B1,B0) is again a bicriterion

knapsack problem:

274 10 Multiobjective Versions of Some NP-Hard Problems

max
∑
i∈F

c1
i xi +

∑
i∈B1

c1
i

max
∑
i∈F

c2
i xi +

∑
i∈B1

c2
i

subject to
∑
i∈F

wixi ≤ W

xi ∈ {0, 1}.

We now have all prerequisites to formulate the algorithm. The algorithm

pursues a depth first strategy. That is, movement down a branch of the search

tree, and therefore having more variables fixed in B1 or B0, is preferred to

investigating partial solutions with fewer fixed variables. Successors of a node

in a tree (branching) are distinguished by different sizes of B1 and B0. Actually,

the tree can be drawn so that the sets B1 of successors of a node will be become

smaller, as variables are moved from B1 to B0, see Figure 10.1. The idea is

that by fixing many variables first according to their value to weight ratios, a

good feasible solution is obtained fast, so that many branches of the tree can

be fathomed early.

Throughout, we keep a list L of potentially nondominated points identified

so far (note that due to maximization y1 dominating y2 means y1 > y2 here),

and a list of nodes N still to be processed.

The list N is maintained as a last-in-first-out queue. Nodes are fathomed

if the bounds show that they can only lead to dominated solutions, if they

have been completely investigated (they represent a complete solution), or if

no further succeeding node can be constructed.

When a node is fathomed, the algorithm backtracks and creates a new

node by moving the last item of B1 to B0, removing all items after this new

item from B0. If, however, the last item in B1 was n then the algorithm chooses

the smallest v such that all items {v, . . . , n} were in B1, removes them all, and

defines B0 to be all previous elements of B0 up to v − 1 and to include v.

When a node is not fathomed, the algorithm proceeds deeper down the

tree in that it creates a new successor node. This may again be done in two

ways. If B1 allows addition of the first item l of F , as many items as possible

are included in B1, according to order O, i.e. as they appear in F . If, on the

other hand, the remaining capacity W does not allow item l to be added to

B1, the first possible item r of F , which can be added to B1 is sought and

item r is added to B1. Of course all items i, . . . , r − 1 must be added to B0.

Since the current node has not been fathomed such an r must exist.

10.1 The Knapsack Problem and Branch and Bound 275

Algorithm 10.1 (Branch and bound for the knapsack problem.)

Input: Values c1
i and c2

i , weights wi for i = 1, . . . , n and capacity W.

Initialization: Create root node N0 as follows.

Set B1 := ∅, B0 := ∅, F := {1, . . . , n},
Set z :=

(
0
0

)
, z :=

(
∞
∞

)
, L := ∅, N := {N0}.

While N 	= ∅
Choose the last node N ∈ N .

Compute W and z.

Add z to L if it is not dominated.

Compute z.

If {i ∈ F : wi ≤ W} = ∅ or z is dominated by some y ∈ L
Fathom node N . N := N \ {N}.
Create a new node N ′ as follows.

Let t := max{i : i ∈ B1}.
If t < n do

B1 := B1\{t}, B0 := (B0∩{1, . . . , t−1})∪{t}, F := {t+1, . . . , n}
End if.

If t = n do

Let u be min{j : {j, j + 1, . . . , t − 1, t} ⊂ B1}.
Let v be max{j : | ∈ B1 \ {u, . . . , t}}.
B1 := B1\{v, u, u+1, . . . , t−1, t}, B0 := (B0∩{1, . . . , v−1})∪{v},
F := {v + 1, . . . , n}

End if. N := N ∪ {N}
If set B1 of N ′ is smaller than B1 of predecessor nodes of N , which

are not predecessors of N ′ then fathom these nodes.

If no new node can be created (B1 = ∅), STOP.

Otherwise

Create a new node N ′ as follows.

Let s := max

{
t ∈ F :

t∑
j=1

wj < W

}
according to order O.

If wl > W let s := l − 1.

If s ≥ l do

B1 := B1 ∪ {i, . . . , s} , B0 := B0, F := F \ {i, . . . , s}.
End if

If s = i − 1 do

Let r := min{j : j ∈ F , wj < W} according to order O.

B1 := B1 ∪ {r}, B0 := B0 ∪ {i, . . . , r − 1}, F := F \ {i, . . . , r}

276 10 Multiobjective Versions of Some NP-Hard Problems

End if

N := N ∪ {N}
End otherwise.

End while.

Output: All efficient solutions.

We illustrate Algorithm 10.1 with an example also used in Ulungu and

Teghem (1997). Following the iterations along the branch and bound tree of

Figure 10.1 will make clear how the algorithm works.

Example 10.1 (Ulungu and Teghem (1997)). We consider the problem

max 11x1 + 5x2 + 7x3 + 13x4 + 3x5

max 9x1 + 2x2 + 16x3 + 5x4 + 4x5

subject to 4x1 + 2x2 + 8x3 + 7x4 + 5x5 ≤ 16

xj ∈ {0, 1}, j = 1, . . . , 5

The orders are

O1 = {x1, x2, x4, x3, x5}
O2 = {x1, x3, x2, x5, x4}
O = {x1, x2, x3, x4, x5}.

First, node N0 is created with B1 = ∅, B0 = ∅, F = {1, 2, 3, 4, 5} and the

bounds are initialized as z =
(
0
0

)
, z =

(
∞
∞

)
and L := ∅, N = {N0}

1. Node N0 is selected and a new node N1 is created with B1 = {1, 2, 3},
B0 = ∅, F = {4, 5}. Thus N = {N0, N1}.

2. Node N1 is selected. We compute W = 2, z = z =
(
23
27

)
and add this to L.

L = {
(
23
27

)
}.

Since {j ∈ F : wj < W} = ∅, node N1 is fathomed and we create node

N2. Sincet = 3 we get B1 = {1, 2}, B0 = {3}, F = {4, 5}.
N = {N0, N2}.

3. Node N2 is selected. We compute W = 10, z =
(
16
11

)
, check that {j ∈ F :

wj < W} = {4, 5} 	= ∅. The upper bound is z =
(
29
18

)
.

Node N3 is created with s = 4 and B1 = {1, 2, 4}, B0 = {3}, F = {5}.
N = {N0, N2, N3}

4. N3 is selected. W = 3 and z = z =
(
29
16

)
is added to L so that L =

{
(
23
27

)
,
(
29
16

)
}. Since {j ∈ F : wj < W} = ∅ node N3 is fathomed.

Node N4 is created with t = 4, B1 = {1, 2}, B0 = {3, 4}, and F = {5}.
N = {N0, N2, N4}.

10.1 The Knapsack Problem and Branch and Bound 277

5. We select N4 and compute W = 10, z =
(
16
11

)
and z =

(
16+3
11+4

)
=
(
19
15

)
. z is

dominated, so node N4 fathomed.

Node N5 is created with t = 2, B1 = {1}, B0 = {2}, and F = {3, 4, 5}.
B1 at N5 is smaller than B1 at node N2 and N2 is fathomed.

N = {N0, N5}.
6. Node N5 is selected. At this node W = 12, z = 119. Since {j ∈ F : wj <

W} 	= ∅, z =
(
27
27

)
is not dominated.

Node N6 is created with s = 3, B1 = {1, 3}, B0 = {2}, and F = {4, 5}.
N = {N0, N5, N6}.

7. Select N6. W = 4 and z = z =
(
18
25

)
Because {j ∈ F : wj < W} = ∅ node

N6 is fathomed.

We create N7 with t = 3, B1 = {1}, B0 = {2, 3}, F = {4, 5}.
N = {N0, N5, N7}.

8. Select N7. W = 12, z =
(
11
9

)
. {j ∈ F : wj < W} 	= ∅. Upper bound

z =
(
27
18

)
is not dominated.

We create N8 with s = 5, B1 = {1, 4, 5}, B0 = {2, 3}, and F = ∅.
N = {N0, N5, N7, N8}

9. Node N8 is selected. W = 0 and z = z =
(
27
18

)
is added to L to give

L = {
(
23
27

)
,
(
29
16

)
,
(
27
18

)
}. Since obviously {j ∈ F : wj < W} = ∅ node N8

fathomed.

Node N9 is created with t = 5, u = 4, v = 1, and B1 = ∅, B0 = {1},
F = {2, 3, 4, 5}.
B1 at N9 is smaller than B1 at N7 and N5 so that N5, N7 are fathomed.

N = {N0, N9}.
10. Select N9. W = 16, z =

(
0
0

)
. To compute z use s1 = 4, s2 = 5 so that

z =

(
0 + 5 + 13 + max{[7 3

5], [7 − (8 − 7)13
7]}

0 + 16 + 2 + 4 + max{[0], [5 − (7 − 1)4
5]}

)
=

(
23

22

)
.

The upper bound z is dominated, N9 is fathomed. Because B1 = ∅ at N9,

N0 can be fathomed. Thus N = ∅ and the algorithm stops.

Graphically, the solution process can be depicted as in Figure 10.1. Each

node shows the node number and the sets B1 and B0. L is shown for a node

whenever it is updated at that node.

There are three efficient solutions, x1 with x1 = x2 = x3 = 1, x2 with

x1 = x2 = x4 = 1, and x3 with x1 = x4 = x5 = 1. ��

Algorithm 10.1 finds a complete set of efficient solutions. If no duplicates of

nondominated points are kept in L it will be a minimal complete set, otherwise

the maximal complete set.

278 10 Multiobjective Versions of Some NP-Hard Problems

N0

∅
∅

N1

1, 2, 3

∅

N2

1, 2

3

N5

1

2

N9

∅
1

N3

1, 2, 4

3

N4

1, 2

3, 4

N6

1, 3

2

N7

1

2, 3

N8

1, 4, 5

2, 3

L =
{(

23
27

)}

L =
{(

23
27

)
,
(
29
16

)}

L =
{(

23
27

)
,
(
29
16

)
,
(
27
18

)}
Fig. 10.1. Branch and bound tree in Example 10.1.

10.2 The Travelling Salesperson Problem and Heuristics 279

10.2 The Travelling Salesperson Problem and Heuristics

The travelling salesperson problem (TSP) consists in finding a shortest tour

through n cities. Given a distance matrix C = (cij), find a cyclic permutation

π of {1, . . . , n} such that π(n) = 1 and
∑n

i=1 ciπ(i) is minimal. It can also be

formulated as an optimization problem on a complete graph. Let Kn = (V , E)

be a graph and C : E → R� be a cost (or distance) function on the edges. The

TSP is to find a simple cycle that visits every vertex exactly once and has

the smallest possible total cost (distance). Such cycles are called Hamiltonian

cycles, and we shall use the notation HC.

In the multicriteria case we have p distance matrices Ck, k = 1, . . . , p

and the problem is to find cyclic permutations of {1, . . . , n} that minimize

(f1(π), . . . , fp(π)), where fk(π) =
∑n

i=1 ck
iπ(i). The problem is NP-hard for

one objective, so also in the multicriteria case. #P-completeness is open, but

we can prove intractability.

Proposition 10.2 (Emelichev and Perepelitsa (1992)). The multicri-

teria TSP is intractable, even if p = 2.

Proof. We consider the TSP on the graph G = Kn with edge set {e1, . . . ,

en(n−1)/2} and assign the costs c(ei) = (2i, 2n2 − 2i). As shown earlier (Theo-

rem 9.37) all feasible solutions have incomparable weights. Because there are

(n − 1)! feasible solutions, the claim follows. ��

Methods for finding efficient solutions usually imply solving many single

objective TSPs, i.e. NP-hard problems. The TSP is therefore well suited to

establish and exemplify results on approximation algorithms for multiobjec-

tive combinatorial optimization problems. The results discussed in this section

have been obtained in Ehrgott (2000).

To illustrate the idea of approximation algorithms, we first review briefly

approximation algorithms for single objective combinatorial optimization

problems minx∈X f(x).

Let x ∈ X be any feasible solution and x̂ ∈ X be an optimal solution. Then

R(x, x̂) := f(x)/f(x̂) ≥ 1 is called the performance ratio of x with respect to

x̂.

A polynomial time algorithm A for the problem is called an r(n)-appro-

ximation algorithm, if R(A(I), x̂) ≤ r(|I|) for all instances I of the problem,

where A(I) is the solution found by A, |I| denotes the size of the problem

instance and r : N → [1,∞] is a function. r(n) ≡ 1 means that the problem

is solvable in polynomial time by algorithm A. Note that R(x, x̂) = � is

equivalent to

f(x) − f(x̂)

f(x̂)
= � − 1.

280 10 Multiobjective Versions of Some NP-Hard Problems

We will investigate if it is possible to find one solution that is a good

approximation for all efficient solutions of a multiobjective combinatorial op-

timization problem. In order to generalize the definition of approximation

ratios, we will use norms. Let ‖ · ‖ : Rp → R� be a norm. We say that ‖ · ‖
is monotone, if for y1, y2 ∈ Rp with |y1

k| ≤ |y2
k| for all k = 1, . . . , p we have

‖y1‖ ≤ ‖y2‖ (see Definition 4.19).

Now consider a multiobjective combinatorial optimization problem.

Definition 10.3. Let x ∈ X , and x̂ ∈ XE.

1. The performance ratio R1 of x with respect to x∗ is

R1(x, x̂) :=
| ‖f(x)‖ − ‖f(x̂)‖ |

‖f(x̂)‖ .

Algorithm A that finds a feasible solution of the MOCO problem is an

r1(n)-approximation algorithm if

R1(A(I), x̂) ≤ r1(|I|)

for all instances I of the problem and for all efficient solutions of that

instance of the MOCO problem.

2. The performance ratio R2 of x with respect to x̂ is

R2(x, x̂) :=
| ‖f(x) − f(x∗)‖ |

‖f(x∗)‖ .

Algorithm A that finds a feasible solution of the MOCO problem is an

r2(n)-approximation algorithm if

R2(A(I), x̂) ≤ r2(|I|)

for all instances I of the problem and for all efficient solutions of that

instance of the MOCO problem.

We have some general results on approximation of efficient solutions.

Corollary 10.4. An r(n)-approximation algorithm according to R2 is an

r(n)-approximation algorithm according to R1.

Proof. If R2(x, x̂) ≤ � then also R1(x, x̂) ≤ �. ��

Since we actually compare the norms of the objective vectors of a heuristic

solution x and efficient solutions x̂, a straightforward idea is to use a feasible

solution whose objective vector has minimal norm as an approximate solution.

This approach gives a performance ratio of at most 1.

10.2 The Travelling Salesperson Problem and Heuristics 281

Theorem 10.5. Let xn ∈ X be such that ‖f(xn)‖ = minx∈X ‖f(x)‖ and let

x̂ be efficient. Then

R1(x
n, x̂) ≤ 1.

Proof.

R1(x
n, x̂) =

| ‖f(xn)‖ − ‖f(x̂)‖ |
‖f(x̂)‖ =

‖f(x̂)‖ − ‖f(xn)‖
‖f(x̂)‖ ≤ 1.

��

Note that there always exists some xn with minimal norm ‖f(xn)‖, which

is also efficient optimal. This can be seen from Theorem 4.20, using yU = 0

as reference point, which is possible because distances cp
ij are nonnegative.

With Theorem 10.5 two questions arise: Is the bound tight and can xn be

computed efficiently? The answer to the first question is given by an example.

Example 10.6. Let E = {e1, e2, e3, 34} and X = {x ⊂ E : |x| = 2}. The costs

of all e ∈ E are c(e1) = (M, 0), c(e2) = (0, M), c(e3) = c(e4) = (1, 1), where

M is a large number.

The efficient solutions are {e1, e3}, {e1, e4}, {e2, e3}, {e2, e4}, and {e3, e4}.
The solution with minimal norm is xn = {e3, e4}. Computing performance

ratios we obtain

R1({e3, e4}, {e1, e3}) =
| ‖(2, 2)‖ − ‖(M + 1, 1)‖ |

‖(M + 1, 1)‖ → 1

as M → ∞ and

R2({e3, e4}, {e1, e3}) =
| ‖(2, 2) − (M + 1, 1)‖ |

‖(M + 1, 1)‖ → 1

as M → ∞. This example shows that the bound of 1 for the approximation

ratio cannot be improved in general. ��

For the second question, we can state two sufficient conditions which guar-

antee the existence of polynomial time algorithms to compute xn.

Proposition 10.7. The problem minx∈X ‖f(x)‖ can be solved in polynomial

time if one of the two conditions below is satisfied.

1. (X , 1-
∑

, Z)/ id /(Z, <) can be solved in polynomial time and ‖ · ‖ = ‖ ‖1.

2. (X , 1-max, Z)/ id /(Z, <) can be solved in polynomial time and ‖ · ‖ =

‖ · ‖∞.

282 10 Multiobjective Versions of Some NP-Hard Problems

Proof. 1. In the first case,

min
x∈X

‖f(x)‖ = min
x∈X

p∑
k=1

fk(x)

= min
x∈X

p∑
k=1

∑
e∈x

ck(e)

= min
x∈X

∑
e∈x

p∑
k=1

ck(e)

= min
x∈X

∑
e∈x

ĉ(e)

where ĉ(e) =
∑p

k=1 ck(e).

2. In the second case,

min
x∈X

‖f(x)‖ = min
x∈X

max
k=1,...,p

fk(x)

= min
x∈X

max
k=1,...,p

max
e∈x

ck(e)

= min
x∈X

max
e∈x

max
k=1,...,p

ck(e)

= min
x∈X

max
e∈x

ĉ(e),

where ĉ(e) = maxp
k=1 ck(e).

Under the assumptions of the proposition, these problems are solvable in

polynomial time. ��

After these general results on approximability, we turn attention to the

multicriteria TSP again. We consider two well known heuristic methods for the

single objective problem, and analyze their performance for the multiobjective

TSP. To apply these methods, we have to assume that the distances satisfy

the triangle inequality and are symmetric, i.e. ck
ij ≤ ck

il + ck
lj and ck

ij = ck
ji for

all i, j, k, l.

The first heuristic generalizes the tree heuristic, which generates a tour

from a spanning tree via an Eulerian tour. A Eulerian tour of a graph G is

an alternating sequence of nodes and edges with identical first and last node,

which contains each edge of G exactly once. It is well known that a graph G
is Eulerian (i.e. has a Eulerian tour) if and only if each node has even degree,

see e.g. (Papadimitriou and Steiglitz, 1982, p. 412) for a proof.

Algorithm 10.2 (Tree heuristic for the TSP.)

Input: Distance matrices Ck, k = 1, . . . , p.

Find ST ∈ argmin{‖f(T)‖ : T is a spanning tree of Kn}.
Define G := (V(Kn), E), where E consists of two copies of every e ∈ E(ST)

Find a Eulerian tour embedded in G, and the corresponding TSP tour HC

by eliminating duplicate nodes in the Eulerian tour.

10.2 The Travelling Salesperson Problem and Heuristics 283

Output: A TSP tour HC.

Note that the graph G, which has two copies of each edge of the span-

ning tree ST is Eulerian because each node is incident to an even number of

edges. From the Eulerian tour a TSP tour HC can be constructed through

“shortcuts”. This is where the triangle inequality for the cost functions is

important.

Example 10.8. We apply the algorithm to a TSP with three objectives. The

distance matrices are

C1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

− 1 6 5 5 5

1 − 5 4 6 4

6 5 − 5 6 1

5 4 5 − 6 8

5 6 6 6 − 2

5 4 1 8 2 −

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

C2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

− 57 55 24 19 46

57 − 151 126 121 137

55 151 − 121 90 117

24 126 121 − 34 61

19 121 90 34 − 27

46 137 117 61 27 −

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

C3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

− 39 173 6 249 45

39 − 354 348 430 25

173 354 − 511 76 404

6 348 511 − 251 39

249 430 76 251 − 328

45 25 404 39 328 −

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Using either the l2- or the l1-norm, we get the tree of Figure 10.2 with

objective vector f(ST) = (23, 272, 339). Its l1-norm is 634, the l2-norm is

435.24. So G is the graph shown in Figure 10.3.

One possible TSP tour HC, (1, 2, 4, 3, 5, 6, 1) is indicated by the broken

lines. The objective function value is f(HC) = (18, 467, 1879) and HC is

indeed efficient, which can be verified in this small example by complete enu-

meration. ��

The multicriteria tree heuristic has the theoretically best performance ratio

of 1.

Proposition 10.9. Algorithm 10.2 is a 1-approximation algorithm according

to performance ratio R1.

284 10 Multiobjective Versions of Some NP-Hard Problems

� �

� �

�

�

Fig. 10.2. Minimum norm spanning tree ST of K6.

� �

� 	

�

Fig. 10.3. G is obtained by duplicating all edges of ST .

Proof. Let HC be the tour found by Algorithm 10.2 and let ĤC be an efficient

tour. We show that

−‖f(ĤC)‖ ≤ ‖f(HC)‖ − ‖f(ĤC)‖ ≤ ‖f(ĤC)‖. (10.8)

The left inequality is trivial. To prove the right hand one, we first apply

the the triangle inequality, which gives

10.2 The Travelling Salesperson Problem and Heuristics 285

f(HC) ≤ 2f(ST) = f(G).

From monotonicity of the norm ‖ · ‖ we now conclude

‖f(C)‖ ≤ 2‖f(ST)‖. (10.9)

By the choice of ST and since deleting an edge from ĤC gives a spanning

tree we also have

‖f(ST)‖ ≤ ‖f(ĤC)‖. (10.10)

Combining (10.9) and (10.10) we conclude

‖f(HC)‖ ≤ 2‖f(ĤC)‖.

��

We can improve Algorithm 10.2 by adding copies of fewer edges in ST

when creating G. All we need is to add as many edges as necessary to be sure

that all edges in G have even degree. Thus, we get a multiobjective version of

Christofides’ algorithm (Papadimitriou and Steiglitz, 1982).

Algorithm 10.3 (Christofides’ heuristic for the TSP.)

Input: Distance matrices Ck, k = 1, . . . , p.

Find ST ∈ argmin{‖f(T)‖ : T is a spanning tree of Kn}.
Let G∗ = (V∗, E∗), where V∗ = {v : v has odd degree in ST }, and E∗ =

{[u, v] : u, v ∈ V∗}.
Find PM ∈ argmin{‖f(M)‖ : M is a perfect matching in G∗}.
G = (V , E(ST) ∪ E(PM)).

Find a Eulerian tour of G, and the embedded TSP tour HC.

Output: A TSP tour HC.

Instead of duplicating all edges of ST only additional edges between those

nodes that have odd degree in ST are added. There is always an even number

of nodes with odd degree in a spanning tree (because the sum of the degrees

of all nodes is even). Therefore G∗ is a complete graph on an even number of

nodes. Thus G∗ has a perfect matching with |V∗|/2 edges.

Example 10.10. We apply Algorithm 10.3 to the instance presented in Ex-

ample 10.8. With the same spanning tree of minimal norm as before (Figure

10.2) nodes 2, 4, 5, and 6 have odd degree. The (unique) perfect matching with

286 10 Multiobjective Versions of Some NP-Hard Problems

� �

� �

�

�

Fig. 10.4. Eulerian graph G obtained by Algorithm 10.3.

minimal norm for both the l1 and l2 norm is PM = {[2, 6], [4, 5]}. We get G
as shown in Figure 10.4.

A TSP tour that can be extracted from G is (1, 2, 6, 3, 5, 4, 1) with objective

function values (23, 459, 801), which is also an efficient TSP tour. ��

The Christofides’ heuristic has a performance ratio of 1/2 in the single

objective case. This can no longer hold for multiple criteria. But it should not

come as a surprise, that it also has the performance ratio 1.

Proposition 10.11. Algorithm 10.3 is a 1-approximation algorithm for the

multicriteria TSP according to performance ratio R1.

Proof. Let HC be the TSP tour found by Algorithm 10.3 and let ĤC be an

efficient TSP tour. We show (10.8) again.

Let {i1, . . . , i2m} be the odd degree nodes in ST in the order they appear

in ĤC, i.e.

ĤC = (α0, i1, α1, i2, . . . , α2m−1, i2m, α2m),

where αi are sequences of other nodes.

M1 = {[i1, i2], [i3, i4], . . . , [i2m−1, i2m]} and M2 = {[i2, i3], . . . , [i2m, i1]} are

two perfect matchings on the nodes {i1, . . . , i2m}. By the triangle inequality we

get f(ĤC) ≥ f(M1) + f(M2) and by definition of PM ‖f(Mi)‖ ≥ ‖f(PM)‖
for i = 1, 2. Therefore

‖f(ĤC)‖ ≥ ‖f(M1) + f(M2)‖
≥ max{‖f(M1)‖, ‖f(M2)‖} ≥ ‖f(PM)‖. (10.11)

10.2 The Travelling Salesperson Problem and Heuristics 287

On the other hand

‖f(C)‖ ≤ ‖f(G)‖ = ‖f(ST) + f(PM)‖
≤ ‖f(ST)‖ + ‖f(PM)‖. (10.12)

Putting (10.11) and (10.12) together we obtain

‖f(HC)‖ ≤ ‖f(ST)‖+ ‖f(PM)‖ ≤ ‖f(ST)‖+ ‖f(ĤC)‖ ≤ 2‖f(ĤC‖,

because, as in the proof of Proposition 10.11,

‖f(ĤC)‖ ≥ ‖f(ST)‖.

��

Note that if p = 1, ‖f(x)‖ = f(x), and (10.11) can be strengthened to

f(ĤC) ≥ 2f(PM) which gives f(HC) ≤ 3f(ĤC) and R1(HC, ĤC) = 1/2.

The reason why no better result is obtained in the multicriteria case is the

maximum of ‖f(M1)‖ and ‖f(M2‖. We cannot replace this by the sum of the

two terms in general.

To prove the approximation result for approximation ratio R2, we restrict

ourselves to lp-norms

‖y‖p =

(
p∑

k=1

|yk|p
) 1

p

.

Theorem 10.12 (Ehrgott (2000)). Algorithms 10.2 and 10.3 are (2p+1)
1
p -

approximation algorithms according to performance ratio R2.

Proof. Let HC be the TSP tour found by either Algorithm 10.2 or Algorithm

10.3 and let ĤC be an efficient TSP tour.

288 10 Multiobjective Versions of Some NP-Hard Problems

‖f(HC) − f(ĤC)‖
‖f(ĤC)‖

=

(
p∑

k=1

|fk(HC) − fk(ĤC)|p
) 1

p

(
p∑

k=1

(fk(ĤC))p
) 1

p

≤

(
p∑

k=1

((fk(HC))p + (fk(ĤC))p)

) 1
p

(
p∑

k=1

(fk(ĤC))p
) 1

p

(10.13)

=

(
‖f(HC)‖p + ‖f(ĤC)‖p

‖f(ĤC)‖p

) 1
p

≤
(

2p‖f(ĤC)‖p + ‖f(ĤC)‖p

‖f(ĤC)‖p

) 1
p

(10.14)

= (2p + 1)
1
p (10.15)

For inequality (10.13) we used the crude estimate(
p∑

k=1

|y1
k − y2

k|p
) 1

p

≤
(

p∑
k=1

((y1
k)p + (y2

k)p)

) 1
p

.

Inequality (10.14) follows from the fact ‖f(HC)‖ ≤ 2‖f(ĤC)‖ from the

proofs of Proposition (10.9) and 10.11, which are true for any monotone norm.

��

Even though the theoretical bounds for Algorithms 10.2 and 10.3 are the

same, 10.3 will often yield better results in practice, see Exercise 10.4, which

continues Examples 10.8 and 10.10. A more detailed analysis of Algorithms

10.2 and 10.3 can be found in Ehrgott (2000). For instance, the bound of

Theorem 10.12 can be improved, when the l1-norm is used. The reader is

asked to obtain this better bound in Exercise 10.3

10.3 Notes

References on multiobjective versions of NP-hard combinatorial optimization

problems are fewer than for polynomially solvable ones.

The most popular is the knapsack problem. Apart from the branch and

bound algorithm presented here algorithms based on dynamic programming

are known (e.g. Eben-Chaime (1996); Klamroth and Wiecek (2000)). Heuris-

tics and metaheuristics to approximate XE are found in Gandibleux and

10.3 Notes 289

Fréville (2000); Hansen (1998); Safer and Orlin (1995); Salman et al. (1999).

Metaheuristics have also been used to solve multi-constraint knapsack prob-

lems (Jaszkiewicz, 2001; Zitzler and Thiele, 1999).

Some further references on the TSP are Fischer and Richter (1982); Hansen

(2000); Melamed and Sigal (1997). A few references must suffice to indicate

that other problems have also been addressed, e.g. set partitioning prob-

lems in Ehrgott and Ryan (2002) and location problems in Fernández and

Puerto (2003). For scheduling problems there is a vast amount of literature,

see T’Kindt and Billaut (2002) and in Chapter 8 of Ehrgott and Gandibleux

(2002b).

290 10 Multiobjective Versions of Some NP-Hard Problems

Exercises

10.1. Let x1 and x2 be two optimal solutions of the weighted sum knapsack

problem

min λ

n∑
i=1

c1
i xi + (1 − λ)

n∑
i=1

c2
i xi

xi ∈ {0, 1}; i = 1, . . . , n

with 0 < λ < 1. Let xMT ∈ [0, 1]n be a vector which attains the Martello-

Toth bound (10.7) for this single objective knapsack problem. Show that

(
∑n

i=1 c1
i x

MT
i ,

∑
i = 1nc2

i x
MT
i) is an upper bound for all efficient solutions of

the bicriterion knapsack problem with
∑n

i=1 c1
i x

1
i ≤

∑
i=1 c1

i xi ≤
∑n

i=1 c1
i x

2
i

and
∑n

i=1 c2
i x

2
i ≤∑i=1 c2

i xi ≤
∑n

i=1 c2
i x

1
i .

10.2. Solve the following bicriterion knapsack problem using Algorithm 10.1.

max 10x1 + 3x2 + 6x3 + 8x4 + 2x5

max 12x1 + 9x2 + 11x3 + 5x4 + 6x5

subject to 4x1 + 5x2 + 2x3 + 5x4 + 6x5 ≤ 17

xj ∈ {0, 1}, j = 1, . . . , 5.

10.3. Compute the approximation ratio r2(n) of Algorithms 10.2 and 10.3

explicitly when the l1-norm or the l∞-norm is used. For the l1 norm you

should obtain a better result than that of Theorem 10.12.

10.4. To see that the Christofides’ heuristic (Algorithm 10.3) may yield much

better results than the tree algorithm in practice, despite their having the

same worst case approximation ratios, compute the actual deviations of all

possible heuristic TSP tours from the efficient TSP tours. See Figures 10.3

and 10.4. There are seven efficient solutions.

