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Abstract. Speech signals are frequently disturbed by statistically independent ad-
ditive noise signals. When the power fluctuation of the noise signal is significantly
slower than that of the speech signal, a single-microphone approach may be suc-
cessfully used to reduce the level of the disturbing noise. This chapter outlines
algorithms for noise reduction which are based on short term spectral representa-
tions of speech and on optimal estimation techniques. We present some of the more
prominent estimation methods for complex spectral coefficients, for the amplitude
and phase of spectral coefficients, and for related parameters such as the a priori
signal-to-noise ratio. We interpret these algorithms in terms of their input-output
characteristics. Some recent developments such as the use of super-Gaussian speech
models and the properties of the resulting estimators are highlighted. Furthermore,
we discuss the estimation of the background noise power and the application of
these techniques in conjunction with a low bit rate speech coder.

3.1 Introduction

Speech communication devices are often used in environments with high levels
of ambient noise such as cars and public places. The noise picked up by
the microphones of the device can significantly impair the quality of the
transmitted speech signal — especially when the speech source is far from
the microphones. When the intelligibility of the transmitted speech is also
impaired, the device cannot be used in the desired way. It is therefore sensible
to include a noise reduction processor in such devices.

Algorithms for noise reduction have been the subject of intensive research
over the last two decades [1-7]. The wide-spread use of mobile communica-
tion devices and the introduction of digital hearing aids have contributed to
the significant interest in this field. While early approaches focused only on
speech quality, it is now generally acknowledged that the perceived quality of
the residual noise is also of great importance, e.g., random narrowband fluc-
tuations in the processed noise, also known as musical tones, are not accepted
by the human listener.

Over the last two decades researchers have found ways to improve the
performance of noise reduction algorithms such that musical tones can be
avoided and the algorithms are more robust with respect to the great vari-
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ability of environmental conditions. In this context, statistical models and
methods play a prominent role [4,8].

In this chapter, we will outline some well known results as well as some
of the recent developments for single-microphone noise reduction algorithms.
We will focus on systems which use a short term spectral representation of the
speech and noise signals. The noisy signal may be analyzed, for example, by
means of a short time discrete Fourier transform (DFT). Most of the results,
however, also apply to other non-parametric spectral analysis methods such
as filterbanks, subspace algorithms, or wavelet transforms, see e.g., [9,10].

3.2 Spectral Analysis

The advantages of moving into the spectral domain are at least threefold. In
the spectral domain we achieve:

e a good separation of speech and noise — especially for voiced speech;
thus optimal and/or heuristic approaches can be easily implemented,

e a decorrelation of spectral components; thus frequency bins can be treated
independently to some extent and statistical models are simplified, and

e a possibility of integration of psychoacoustic models [11,12].

In most of the relevant applications the noise signal is additive and sta-
tistically independent from the source signal. In particular, the noisy speech
signal y(k) is generally modeled as the sum of an undisturbed speech signal
s(k) and a noise signal n(k). The task of noise reduction is then to recover
s(k) “in the best possible way” when only the noisy signal y(k) is given. The
estimate of the undisturbed speech signal is denoted by 5(k).

Figure 3.1 depicts a typical implementation of a single-channel noise re-
duction system where the noisy signal is processed in a succession of short
signal segments and the spectral coefficients are computed by means of a
DFT. The DFT of a segment of M samples of y(¢), { =k — M +1,...,k, is
denoted by

Y (k) = (Yo(k),..., Y, (k), ..., Yar—1 (k)T (3.1)
with

Yiu(k) = Ry (k) exp (j0,(k))
M-1
= w(l)y(k— M+ 14 £)exp (

=0

-2, (32)

M

where a tapered analysis window w(¢) of length M is applied to the time
domain segment before the DFT is computed. k denotes the time index at
which the segment of M signal samples is extracted. p =0,..., M — 1 is the
index of the DFT bin which is related to the normalized center frequency (2,
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Fig. 3.1. DFT based speech enhancement. k£ and p denote the time and the fre-
quency bin index, respectively.

of that bin by §2, = 2mu/M = 27 f,,/fs where f, and fs denote the absolute
center frequency and the sampling frequency, respectively. An enhanced DF'T
coefficient is denoted by S, (k). Vectors of the undisturbed speech signal and
the enhanced speech signal are defined in the same way. The enhanced signal
segments are computed by means of an inverse DF'T and a continuous signal
is produced by the overlap-add method. For the overlap-add operation the
use of a tapered synthesis window is generally beneficial [13,14].

After the short time spectral components are computed by means of a
DFT, there are two major tasks which must be addressed:

e estimation of the spectral components S, (k) of the undisturbed speech
signal given the noisy spectral components Y, (k),
e estimation of the noise power o2 = E {|N,(k)*} in each frequency bin

Lh.

Both of these tasks require the application of a priori knowledge and will
be discussed below.

3.3 The Wiener Filter and its Implementation

Numerous approaches are available for the estimation of the complex coef-
ficients S, (k) = A, (k) exp(a,(k)) of the undisturbed speech signal or func-
tions thereof. Among these are methods based on linear processing models
and minimum mean square error (MMSE) estimation such as the Wiener
filter. MMSE estimation is suitable for speech processing purposes as large
estimation errors are given more weight in the optimization than small es-
timation errors. The latter might be masked in the human auditory system
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and might therefore be inaudible. Under the assumption that all signals are
wide-sense stationary, the Wiener filter minimizes

E{6kh - sk)’}, (3.3)

where E {-} denotes the statistical expectation operator and

S(k) =Y h(O)y(k—0) (3.4)

f=—o00

is the convolution of an impulse response h(¢) with the noisy signal y(k). For
statistically independent and additive speech and noise signals, the frequency
response of the Wiener filter is given by

Py (92)
Pys(2) + Ppp(2)°

G(2) =DTFT{hr(()} = (3.5)
where P,,.(£2) denotes the power spectral density of the signal in the subscript
and DTFT {-} is the discrete time Fourier transform. Thus, in the case of

stationary signals, the spectrum of the enhanced output signal is computed
as

Pss(2)
Pys(2) + Ppn(2)

5(02) = Y(02)=GR)Y(2).  (3.6)

In this context, G(£2) is frequently called the spectral gain function. For the
Wiener filter this function depends on the noisy input y(k) or its Fourier
transform Y'({2) and on the undisturbed speech signal only via statistical
expectations. However, an exact numerical implementation of the Wiener
filter is not completely straightforward as this filter has an infinite impulse
response and a continuous frequency response.

For a numerical implementation in conjunction with the above spectral
analysis-synthesis system, the gain function is evaluated at the center fre-
quencies of the spectral bins. Furthermore, as speech and noise signals are
not stationary, short-term approximations to the power spectra must be used.
However, for the segment-by-segment processing approach outlined above, we
prefer an alternative derivation. In analogy to the Wiener filter in (3.6), the
output of the filter for the signal segment at time k, g(/ﬂ) = (§0(k),...,
:S’\#(k)7 - Sp—1 (k)T is computed by an elementwise multiplication

~

Sk)=Gk)®Y(k) (3.7)
of the DFT vector Y (k) and a gain vector

G(k) = (Go(k), G1(k), .., Grr—1 (k)" (3.8)
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For independent additive speech and noise signals the minimization of

. 2
E { (Su(k:) - Su(k)) } with respect to G, (k) leads to

B B {|5,(k)} )
Culh) = EUS, P + B (Nu R}~ 1 mph) (3.9)

where the right hand side of (3.9) makes use of the a priori SNR

E{[S.(k)*}
E{|N.(F)]P}
E{[S.(k)]*} = o2 ,(k) and E{|N,(k)]*} = o7 (k) are the power of the
undisturbed speech signal and the noise signal in frequency bin pu, respec-
tively.

In a linear systems framework, the multiplication of the two DFT vec-
tors and the subsequent inverse DFT of the result corresponds to a cyclic
convolution in the time domain. Therefore, to implement this Wiener-like
filter as a segmentwise linear system the signal and the gain vectors must be
zero-padded to the appropriate length.

It is, however, instructive to consider the above estimation task in the
framework of non-linear estimation, i.e., to derive the best estimator in the
MMSE sense for the short term spectral coeflicients of the undisturbed speech
signal given the short term coefficients of the noisy signal. Contrary to the
Wiener-like filter (3.9) which relies on second order statistics only, the non-
linear solution generally requires knowledge of the probability density func-
tions (pdf) of the speech and noise spectral coefficients. Under the assumption
that all frequency bins are mutually independent, the MMSE solution can be
stated as the conditional expectation

Su(K) = B{S,(k) | Y, (k)}
/ / B)psiy (S () | Yo ())dS,u (k) (3.11)

/ / S (K)py1s (Yo () | Sy (B))p(Su(k))dS, (k),

Nu(k) = (3.10)

where p5|y( ( ) | Y.(k)) is the pdf of an undisturbed speech coefficient
given the coeﬂiment of the noisy signal and p(S,(k)) is the density of the
undisturbed speech coefficients. Note that S, (k) is a complex quantity and
therefore a double integration over the real and imaginary parts or over the
magnitude and phase is required.

For additive noise which is statistically independent of the speech signal
we have py|g(Yu(k) | Su(k)) = pn(Yu(k) — S.(k)). Therefore, the applica-
tion of Bayes theorem in (3.11) leads to a nice decomposition of the density
ps|y (Su(k) | Yu(k)) in terms of the probability density functions of the noise
and the den51ty of the undisturbed speech spectral coefficients. To model
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the probability density function of the real and the imaginary part of these
coefficients, S§R> and S;I > respectively, the Gaussian density

1 (S<R>)2
R
p(SE7) = exp (“ gl B

N o2

p(Slfb) - exp (—@) , (3.12)

Vo o2

is frequently used. These probability densities depend on the speech power
02 which is, in general, time-variant. When the noise coefficients are also
Gaussian distributed it is straightforward to show that for statistically in-
dependent and additive speech and noise coefficients, (3.7) with (3.9) is the
solution to the estimation problem. For Gaussian signals the non-linear opti-
mal estimator yields a linear function of the observations. However, this does
not necessarily hold for practical implementations of these filters.

To illustrate the non-linearity of practical implementations we consider
the estimation of the a priori SNR 7, (k) which is required for the compu-
tation of the Wiener-like filter in (3.9). 7, (k) is frequently estimated using
the decision-directed approach [4]. This scheme assumes that an estimate
A\#(k — r) for the undisturbed speech amplitudes A,(k —r) = |S,(k — r)|
from a previous signal segment at time k —r is available and sufficiently close
to the undisturbed speech amplitudes of the current segment. The decision-
directed approach then feeds back the estimate of the previous segment and
combines it with an instantaneous estimate of the SNR,

2 R2(k
008 =1 = 8 Gy 1 o%:(uj) -t (319

such that the estimated SNR 7), (k) is obtained as

_ Sulk=r)?

Nu(k) = anW + (1 — ay)max (0,7, (k) — 1), (3.14)

where the latter contribution is forced to be non-negative and o, is a smooth-
ing parameter. The term

Vb R
Wk) = FNL WY~ 02,0 (3.15)

is the a posteriori SNR. For low SNR conditions, this estimator is clearly
biased. The bias can be reduced if the maximum operation is applied to the
sum of the two contributions:

o EACE
N (k) = max (O’%W + (1= ay)(yu(k) — 1)) : (3.16)
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Fig. 3.2. Estimator characteristics for the ideal Wiener-like filter (dashed), the
Wiener-like filter with a,, = 0.99 (dash-dotted) and with o, = 0.92 (solid) for three
different a priori SNR 77, (k — 7). The decision-directed SNR estimator (3.14) was
used and 05 =024 =2

Using (3.14) in (3.9) we find that the spectral components Y, (k) of the current

signal segment now have a direct influence on the gain function. Therefore,

the combination of the Wiener-like filter and the decision-directed SNR es-

timation leads to a non-linear system. This non-linear dependency on the

observation is clearly visible in Fig. 3.2 which plots the magnitude of the

estimated spectral coefficient as a function of the magnitude of the noisy
2

coefficient for o7 = 02 + 05 = 2. Three different values for the a priori

SNR 7, (k — 1) = ﬁi(k —7)/E{|N,(k)[*} related to the previous frame are
selected. Compared to the ideal Wiener-like filter which is also shown, the
non-linear behaviour is visible, especially for low a priori SNR conditions. For
comparison purposes, the same graphs are shown for the less biased a priori
SNR estimation (3.16) in Fig. 3.3. For low a priori SNR values and small in-
put coefficients, more attenuation is achieved than with the decision-directed
approach in (3.14).

For the ideal Wiener-like filter the slope of the filter characteristic does
not depend on the noisy input coefficient. On the other hand, the practical
implementation using the decision-directed approach provides a larger gain
than the Wiener filter when the observed coefficient is larger than its standard
deviation. In this case, it is likely that speech is contained in the current seg-
ment of the input signal and thus speech distortions are reduced. When the
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Fig. 3.3. Estimator characteristics for the ideal Wiener-like filter (dashed), the
Wiener-like filter with o, = 0.99 (dash-dotted) and with «, = 0.92 (solid) for three
different a priori SNR 1, (k — r). The decision-directed SNR estimator (3.16) was
used and 05 =c2+402=2.

noisy coefficient is relatively small the input coefficient contains mostly noise.
In this case it is important to avoid large fluctuations of the output coeffi-
cients as these translate into musical tones. With the noise reduction scheme
discussed here this can be achieved by choosing the smoothing parameter
oy, close to unity and thus smoothing the estimated a priori SNR. However,
a large amount of smoothing will reduce the non-linearity of the estimation
scheme for large amplitudes and thus lead to less transparent speech repro-
duction. The combination of the Wiener-like filter and the decision-directed
estimator therefore requires a balance between these conflicting objectives
[8,15]. Nevertheless, the decision-directed estimation procedure is advanta-
geously combined with many noise reduction algorithms where the a prior:
SNR plays a role [15]. Furthermore, there are other ways to exploit the idea
of recursive estimation, e.g., [16,17] which in general lead to less musical
noise than the standard methods. As an accurate a priori SNR estimate is
a key factor in the performance of these algorithms, improved a priori SNR
estimators have also been developed [18,19].

To conclude this discussion we note that noise reduction schemes are fre-
quently non-linear. In general, it is therefore not appropriate to cast spectral
estimation procedures into the form of a multiplication of the noisy spec-
tral coefficients with a spectral gain function as in (3.7). Moreover, there



3 Statistical Methods 51

are immediate consequences for the synthesis of the enhanced signal. In the
framework of non-linear estimation in the spectral domain we strive for the
optimal estimate of the spectral coefficients of a short signal segment. The en-
hanced segments will then be synthesized using an inverse spectral transform
and concatenated to produce a continuous signal. By virtue of this approach
zero-padding is not necessarily required. For example, the (non-realizable)
gain vector G, (k) = S, (k)/Y,(k) will result in a perfect reconstruction of
the spectral coefficients and hence of the undisturbed speech signal without
zero-padding and any cyclic effects. On the other hand, an MMSE-optimal
estimate in the spectral domain does not deliver MMSE-optimal time domain
segments. Also, simplifying assumptions such as the independence of adjacent
frequency bins lead to estimation errors. Thus, there are no strict guidelines
for the implementation of the spectral analysis-synthesis system. To suppress
estimation errors in the synthesized signal it is, however, advisable to use a
tapered analysis and a tapered synthesis window [14].

3.4 Estimation of Spectral Amplitudes

In the context of single-microphone speech enhancement, the short term spec-
tral amplitudes are much more important than the short term spectral phases
[20]. It is therefore sensible to estimate the spectral amplitudes A, (k) of the
undisturbed speech signal jointly with the phase «, (k) or directly by us-
ing the marginal distribution of the spectral amplitudes. We briefly present
minimum mean square error (MMSE) and mazimum a posteriori (MAP) so-
lutions to this problem. These estimators require explicit knowledge of the
probability density functions of the spectral coefficients of speech and noise.

3.4.1 MMSE Estimation

For Gaussian speech and noise coefficients the MMSE short term spectral
amplitude estimator (MMSE-STSA) was derived by Ephraim and Malah [4],

yUm

gSTSA,M = E{Au | Yu} =0n m
"

I'(1.5) Fi(-0.5;1,—-v,), (3.17)

where we have now dropped the time index k for improved readability.
Fi(+;-,-) is a confluent hypergeometric function [21] and v, is defined as

um
L= — . 3.18
v, 1+, Y ( )

The confluent hypergeometric function can be expanded in terms of Bessel
functions and may be tabulated for efficient numerical implementations. Be-
sides the MMSE-STSA estimator, the estimate of the logarithm of the spec-
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Fig. 3.4. Estimator characteristics for the Wiener filter (dashed), the MMSE-
STSA [25] (dash-dotted), the MMSE-LSA [25] (dotted), and the MAP estimator
[23] (solid) for three different a priori SNR values. op = 02 + 0 = 2.

tral amplitudes is also widely used. This MMSE log spectral amplitude esti-
mator (MMSE-LSA) may be written as

Avga = exp (B {log(A,) | V,}) (3.19)

, 1 [ exp{—t
S exp | = / expi=t} }dt R,.
1+mn, 2 /v, t

where R,, denotes the amplitude of the noisy spectral coefficients. For large
a posteriori SNR values both estimators approach the Wiener filter. For
small, noisy amplitudes the estimators deliver an almost constant output
value which depends to a greater extent on the a priori SNR than on the
instantaneous input amplitude. This behaviour contributes significantly to
the perceived quality of the residual noise since for small input values the
fluctuations of the noisy amplitudes result in much smaller fluctuations in
the enhanced output. For a single frequency bin and for o2 + 2 = 2 the
resulting input-output characteristics are shown in Fig. 3.4 for the a priori
SNR estimation (3.14) with «,, = 1 and in Fig. 3.5 for a;, = 0.92. To compute
the enhanced complex spectral coefficient, the estimated spectral amplitude
is combined with the short term phase of the noisy input. The observed phase
represents the optimal phase estimate in the MMSE sense [4].
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Fig. 3.5. Estimator characteristics for the Wiener filter (dashed), the MMSE-
STSA [25] (dash-dotted), the MMSE-LSA [25] (dotted), and the MAP estimator
[23] for three different a priori SNR and o = o2 + o, = 2. The decision-directed
SNR estimator (3.14) was used with o = 0.92.

3.4.2 Maximum Likelihood and MAP Estimation

The maximum likelihood (ML) and the maximum a posteriori (MAP) es-
timation techniques avoid hard-to-compute integrals and lead to relatively
simple solutions. In the case of complex Gaussian distributed spectral coef-
ficients, the ML and the MAP estimators yield the well known Wiener-like
solution. An ML estimate for deterministic spectral amplitudes in Gaussian
noise was derived in [22],

Anp, = (0.5RM +0.5,/R2 — a?W) . (3.20)

This estimator provides only a modest amount of noise reduction and is
therefore not often used. Joint MAP estimation of the spectral amplitude
and the spectral phase was proposed by Wolfe and Godsill [23]. Also in this
case, the optimal estimate of the phase of the undisturbed spectral coefficients
is the phase of the noisy input. The estimate of the amplitude is given by

1 77u+\/77;2t+2(1+77u)z_:R
e 21+ 1) "

Estimation of the spectral amplitude using the marginal density is also fea-
sible but for closed form analytic solutions approximations to the Rician

(3.21)
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density are required. Using such approximations, the MAP estimation of the
spectral amplitudes leads to a solution which, like (3.21), is close in perfor-
mance to the MMSE methods [23],

Nu + \/77;2L+(1+77u)z_z
R (3.22)

2(1 +mp) "

VYINIE

The attenuation characteristics of this latter estimator in conjunction with
(3.14) is shown in Fig. 3.4 for a = 1 and in Fig. 3.5 for a = 0.92. A MAP
amplitude estimator using super-Gaussian speech models is derived in [24]
and discussed in Chapter 4.

To conclude this section, we firstly note that all of these estimators and
the underlying statistical models, e.g., (3.12), are conditioned on the signal
power. The power of the undisturbed speech signal as well as of the noise sig-
nal are random processes by themselves and must be estimated, e.g., using
the decision-directed approach. Secondly, all of the above approaches assume
that speech is actually present in the frequency bin under consideration. This
is, of course, not always the case as there are speech pauses and possibly also
a concentration of speech power onto a few dozen harmonics during voiced
speech. Frequently, these estimators are used in conjunction with a statisti-
cal two-state speech presence/absence model which leads to a soft-decision
gain modification procedure. The resulting soft-decision gain functions are
dependent on the signal model and are discussed in detail in [22,4,18,30].

3.5 MMSE Estimation Using Super-Gaussian Speech
Models

In the time domain, the probability density function of speech samples may be
modelled by Laplacian (bilateral exponential) or Gamma, i.e. super-Gaussian,
densities rather than Gaussian densities [26, page 235]. It has been suggested
[27,28] that also in the short time Discrete Fourier domain (frame size <
100 ms), the Laplace and Gamma densities are much better models for the
probability density function of the real and imaginary parts of the speech
coefficients than the commonly used Gaussian density. In fact, the Gaus-
sian assumption is based on the central limit theorem [29]. However, when
the DFT length is shorter than the span of correlation of the signal, the
asymptotic arguments do not hold. While for many applications the spec-
tral coefficients of the noise can be modeled by a complex Gaussian random
variable, the span of correlation of voiced speech is certainly larger than the
typical segment size used in voice communications. Note again that all of
these probability functions are conditioned on the signal power which is, in
general, time-variant. Therefore, in an experimental verification of the density
model great care must be exercised to generate quasi-stationary conditions
[30].
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Only recently, analytic solutions to the estimation problem under super-
Gaussian model assumptions have been found [28,31,32,24]. In this section, we
will present an example based on a Laplacian speech pdf and a Gaussian noise
model [32]. Estimators for complex spectral coefficients based on Gamma
densities as well as soft-decision gain functions for various combinations of
speech and noise densities are discussed, e.g., in [30].

When the spectral coefficients of the speech and noise signals are mutually
independent with respect to frequency bins and time segments, the optimal
instantaneous estimate can be written as a conditional expectation

Su(k) = E{S,(k) | Ya(k)} = E{S | Y}. (3.23)

On the right hand side we now drop time and frequency bin indices to simplify
our notation. For statistically independent real and imaginary parts, we may
decompose the optimal estimate into an estimate of its real and its imaginary
part

E{S|Y}=E{S<" |Y<f>} 4 jE{Ss~/> |y~/*}, (3.24)

where <R> and <I> in the superscript indicate the real and the imaginary
parts, respectively. When <> denotes either the real or the imaginary part,
the MMSE estimate of one of these is given by

E{s<>|y<>}:/ SOp(SY | Y)as?. (3.25)
With Bayes theorem we obtain
1 o0

E{S®|Y?} = / SOp(Y ¥ | S¥)p(S©)dsS®. 3.26

(5917} = s |89y | S0m(s?) (3.26)

Good candidates for the pdf of the real and the imaginary parts of DFT
coefficients of speech signals are the Laplacian pdf,

p(SY) = L exp <—m) : (3.27)

Os Os

and the Gamma pdf,

oy V3 eomr [ V3BISY
p(S )_2\/71'—05\4/5|S |72 exp Voo ) (3.28)

These two densities are better models than the Gaussian pdf, not only for
small amplitudes, but also for large amplitudes where a heavy-tailed density
leads to a better fit for the observed data [30]. The complexity of the analytic
solutions depends upon the density models and the optimization criterion. A
relatively simple analytical MMSE solution is based on the Gaussian noise
and the Laplacian speech models.
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To facilitate the development we introduce the shorthand notations
LQ‘F:&_’_Y_O:L_’_Y_O’
Os  On N On
n Y° 1 Ye
Lo—:U___:___, (3.29)
Os On \/7_7 On
where n = 02 /02 denotes the a priori SNR as before.
For the Lapla(:lan speech pdf we obtain the optimal MMSE estimator of
either the real part or the imaginary part [21, Theorem 3.462,1] as:

E{S° | Y°} =
g | (e (2
- %(Y?{)%){ Lot exp (ZY—O) erfc(LoJr) (3.30)

Y(}
—L°" exp (—2—) erfc(LQ_)},
Os
with [21, Theorem 3.322,2]

p(Y) = (3.31)

ﬁ/::exp (_%) exp( |::>>d5<>
_exp(op/03) {exp (QY_Q) erfe(L) + exp <_2Y_O> erfc(LO—)} ,

20—8 S S

where erfc(z) denotes the complementary error function [21, Theorem 8.250].
The optimal estimator for the undisturbed complex speech coefficient is there-
fore given by E{S | Y} = E{S<I> | Y<E>} 4 jp{S<!> | Y <>} with

E{S°|Y°} (3.32)
_ On [LoF exp(2Y° /o )erfc(LoT) — L™ exp(—2Y° /o, )erfc(Lo7)]
exp(2Y°/os)erfc(LoT) + exp(—2Y ¢ /o )erfe(Le~) '

We note that both E {S<#> | Y<R>[} and E {S<!> | Y <!>} are odd sym-
metric functions of Y<F> and Y <!> respectively. Figure 3.6 plots the
input-output characteristics of this estimator and the Wiener-like filter for
0<Y® <5, 05 = 02+02 = 2, and three different a priori SNR values. Again,
the decision-directed SNR estimator is used with two different values of a,.
For high a priori SNR values the estimate is almost identical to the estimate
delivered by the Wiener filter. Clearly, for a fixed a priori SNR, the Wiener
filter is a linear estimator, characterized by its constant slope. The estimator
based on super-Gaussian densities leads to an increased attenuation of the
input when the instantaneous input value is smaller than its standard devi-
ation and a significantly larger output value when the input is larger than
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Fig. 3.6. Estimator characteristics E{S° | Y°} for the ideal Wiener filter (dashed)
and for the Laplacian speech pdf and the Gaussian noise pdf for o, = 1 (dash-
dotted) and for a;,, = 0.92 (solid) and for three a priori SNR values 77, = 15,0, —10
dB. The decision-directed SNR estimator (3.14) was used and 02 =o02+4+02=2.

the standard deviation. Due to the heavy-tailed speech density, it is highly
likely that speech is present in this latter case. Both of these characteristics
contribute to the improved SNR of the output coefficients with respect to the
linear estimator.

Figure 3.6 also plots the characteristics using the decision-directed SNR,
estimation technique (3.14) with o, = 0.92. The a priori SNR 7, (k—7) of the
preceding signal segment is fixed. The SNR estimate of the present segment
is then a function of the instantaneous, magnitude-squared input value which
leads to an additional non-linear effect. Compared to the estimators based
on Gaussian densities we find that in conjunction with the decision-directed
estimator more smoothing can be applied to the SNR estimate without sac-
rificing the transparency of the enhanced speech components. Furthermore,
we note that the proposed estimators may be applied to the magnitude of the
spectral coefficients as well if we assume a fixed (hypothetical) phase angle.
These procedures are outlined in [30].
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3.6 Background Noise Power Estimation

The second estimation task which arises in the processing model of Fig. 3.1
is the estimation of the background noise power in the spectral bins. Most of
the proposals in the literature are based on either

e voice activity detection and recursive averaging [22,33],

e soft-decision methods [34,35],

e bias compensated tracking of spectral minima (“minimum statistics”)
[36,37],

or a combination of these, as, e.g., developed by Cohen [38]. In general, these
methods rely on the assumptions that

e speech and noise are statistically independent,
e speech is not always present, and
e noise is more stationary than speech.

For single-microphone systems it is in general difficult to track non-stationary
noise mostly because a sudden increase in noise power in one or several fre-
quency bins cannot easily distinguished from a speech onset. Only after a
few hundred milliseconds can speech and noise components be reliably dis-
criminated. Therefore, it is difficult to identify and to suppress short noise
bursts or competing speakers. Current developments strive to improve the
performance of noise estimation under non-stationary conditions [37,38].

In what follows, we briefly outline the minimum statistics approach. The
power of this approach relies on the intrinsically non-linear minimum ex-
traction and the subsequent bias compensation. It has been shown that this
method can contribute significantly to the intelligibility and the listening ease
of the enhanced signal especially in conjunction with a low bit rate speech
coder.

3.6.1 Minimum Statistics Noise Power Estimation

Since speech and noise are additive and statistically independent we have
E{|Y,(k)P} = E{|Su(R?} +E{INL (R} (3.33)

Recursive smoothing of the magnitude-squared spectral coefficients leads to
Pyu(k) = Bu(k) Pu(k — 1)+ (1 = Bu(k)) [Yu(k), (3.34)

where 3, (k) is a time and frequency dependent smoothing parameter. We now
search for the minimum from D samples of the smoothed power P,(k — Ar),
A =0,1,...,D — 1. Then, we might use this minimum as a first coarse
estimate of the noise floor since

min (P, (k), ..., Py,(k— (D —1)r))
~ min (Py (k) ..., Py (k — (D —1)r)). (3.35)
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Fig. 3.7. Magnitude-squared DFT coefficient (dotted), smoothed power, and noise
floor for a noisy speech signal (6 dB SNR).

Pn (k) denotes a noise power estimate which is smoothed just like P, (k) in
(3.34).

An example is shown in Figure 3.7 for a single frequency bin. Obviously,
this estimate is biased towards lower values. However, the bias can be com-
puted and compensated. It turns out that the bias depends on the variance
of the smoothed power P, (k) which, in turn, is a function of the smoothing
parameter (3, (k) and of the variance of the signal under consideration. For
recursively smoothed power estimates and a unity noise power, Fig. 3.8 plots
the factor by which the minimum is smaller than the mean as a function of D
and Qeq = 2E{|N#(k)|2}2 Jvar{P,(k)}. Qeq is the inverse normalized vari-
ance of the smoothed power. When much smoothing is applied var{P,(k)} is
relatively small and therefore ()., is large. Then, the minimum of subsequent
values of P, (k) is close to the mean of these values. On the other hand, no
smoothing (Q., = 2) requires a large bias compensation.

While earlier versions of the Minimum Statistics algorithm used a fixed
smoothing parameter § and hence a fixed bias compensation we note that the
full potential is only developed when a time and frequency dependent smooth-
ing method is used. This in turn requires a time and frequency dependent
bias compensation [37]. The result when using the adaptive smoothing and
bias compensation is shown in Figure 3.9 for the same signal as in Figure 3.7.
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Fig. 3.8. Mean of the minimum of D correlated short term noise power estimates
for o2 = 1.

3.7 The MELPe Speech Coder

As an application of the above techniques, we consider a speech enhancement
algorithm which was developed for a low bit rate speech coder. Low bit rate
speech coders are especially susceptible to environmental noise as they use a
parametric model to code the input signal. One such example is the mized
excitation linear prediction (MELP) coder which operates at bit rates of 1.2
and 2.4 kbps [39]. It is used for secure governmental communications and is
expected to succeed the well-known FS 1015 (LPC-10e) and FS 1016 (CELP)
speech coding standards. This coder also includes an optional noise reduction
preprocessor. The combined system of the preprocessor and the MELP coder
is termed MELPe [39].
The noise reduction preprocessor [40] of the MELPe coder is based on

the MMSE log spectral amplitude estimator [25];
multiplicative soft-decision gain modification [35];
adaptive gain limiting [14];

estimation of the a priori SNR [35];

minimum statistics noise power estimation [37].

This noise reduction preprocessor turns out to be very robust in a variety
of noise environments and SNR conditions. Table 3.1 summarizes the results
of a diagnostic acceptability measure (DAM) test for undisturbed and noisy
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Fig. 3.9. Magnitude-squared DFT coefficient (dotted), smoothed power, and bias
corrected noise floor for the same noisy speech signal as in Figure 3.7.

Table 3.1 DAM scores and standard error without noise and with vehicular
noise (average SNR ~ 6 dB).

conditi0n| coder ‘DAM | standard error

no noise MELPe | 68.6 0.90
noisy unprocessed| 45.0 1.2
noisy MELP 38.9 1.1
noisy MELPe | 50.3 0.80

conditions. As stated before, the MELP coder is highly sensitive to environ-
mental noise. The noise reduction preprocessor helps to reduce these effects.
Table 3.2 shows results of a diagnostic rhyme test (DRT) intelligibility eval-
uation for the same conditions as in the DAM test. We note, that the noisy
but unprocessed signal has the highest intelligibility of the noisy conditions
in Table 3.2. In conjunction with the MELP coder, the enhancement pre-
processor leads to a significant improvement in terms of intelligibility. Thus,
for a low bit rate speech coder, single-channel noise reduction systems can
improve the quality as well as the intelligibility of the coded speech.
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Table 3.2 DRT scores and standard error without noise and with vehicular
noise (average SNR ~ 6 dB).

condition | coder [ DRT | standard error

no noise MELPe |93.9 0.53
noisy unprocessed | 91.1 0.37
noisy MELP 67.3 0.8
noisy MELPe |72.5 0.58

3.8 Conclusions

Noise reduction technology is still an area of active research. While in the
past decade most of these activities were triggered by new developments in
mobile communications we now find increasing interest in automatic speech
recognition and digital hearing aids applications.

Much of the research in this field is directed towards a better understand-
ing and a better exploitation of the statistical properties of speech signals.
As a result, several papers have been published which improve the estimation
of critical (yet unknown) quantities such as the a priori SNR or the back-
ground noise power. Other approaches use optimal time domain estimators
like Kalman filters which provide for an easy integration of autoregressive
models. The question, however, of how the parameters of such models can be
estimated in a robust fashion will require further research.

Further improvements are possible if we can employ more than one mi-
crophone and thus sample the sound field at more than one spatial location.
There are a number of different ways to exploit multiple microphone signals.
The most common are

e to use the spatial directivity of the microphone array [41,42],
e to adapt a single-channel post-filter based on the statistics of the micro-
phone signals [43-46],

and combinations thereof. Some of these approaches are discussed, e.g., in
[42]. Also, MAP and MMSE estimation of spectral amplitudes has been de-
veloped for the multi-microphone case, e.g., [47,48].

Despite these developments and many more which are not discussed here,
there are still open questions which need to be addressed in the future:

e What are meaningful optimization criteria for speech enhancement and
how can they be mathematically formulated?

e Which method of signal analysis is the most suitable?

e How can we improve the perceived quality of the enhanced signal without
compromising intelligibility and vice versa?

e How can we combine signal theoretic and perceptual approaches?
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e What kind of processing approach will be optimal for signals perceived by

normal or hearing impaired persons, or, for signals processed by speech
coders or speech recognition systems, and how are these approaches in-
terrelated?

e What processing takes place in the higher stages of the auditory system

and how can we model it?

Given all these questions it is clear that there will not be a single answer.
We must, however, pay more attention to how humans process auditory in-
formation.
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