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Abstract. The problem of noise reduction has attracted a considerable amount of
research attention over the past several decades. Numerous techniques were devel-
oped, and among them is the optimal Wiener filter, which is the most fundamental
approach, and has been delineated in different forms and adopted in diversified
applications. It is not a secret that the Wiener filter achieves noise reduction with
some integrity loss of the speech signal. However, few efforts have been reported to
show the inherent relationship between noise reduction and speech distortion. By
defining a speech-distortion index and a noise-reduction factor, this chapter studies
the quantitative performance behavior of the Wiener filter in the context of noise
reduction. We show that for a single-channel Wiener filter, the amount of noise
attenuation is in general proportionate to the amount of speech degradation. In
other words, the more the noise is reduced, the more the speech is distorted. This
may seem discouraging as we always expect an algorithm to have maximal noise
attenuation without much speech distortion. Fortunately, we show that the speech
distortion can be better managed by properly manipulating the Wiener filter, or by
considering some knowledge of the speech signal. The former leads to a sub-optimal
Wiener filter where a parameter is introduced to control the tradeoff between speech
distortion and noise reduction, and the latter leads to the well-known parametric-
model-based noise reduction technique. We also show that speech distortion can
even be avoided if we have multiple realizations of the speech signal.

2.1 Introduction

The existence of noise is inevitable in real-world applications of speech pro-
cessing. In a voice communication system, for example, a desired speech
signal, when propagating through an acoustic channel and picked up by a
microphone sensor, is corrupted by unwanted noise, which may result in ap-
preciable or even significant degradation in the quality and intelligibility of
the recorded speech. Therefore, it is essential for such systems that we can
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have some effective noise reduction/speech enhancement techniques to ex-
tract the desired speech signal from its corrupted observations.

The noise reduction technique has a broad range of applications, from
hearing aids, cellular phones, voice-controlling systems, teleconferencing and
multiparty teleconferencing, to automatic speech recognition (ASR) systems.
The difference between two systems using and not using such techniques can
be significant; therefore, the choice can have a great impact on the functioning
of the system.

Research on noise reduction/speech enhancement can be traced back to
40 years ago with 2 patents by Schroeder [1], [2] where an analog implemen-
tation of the spectral magnitude subtraction method was described. Since
then, it has become an area of active research. Over the past several decades,
researchers and engineers have approached this challenging problem by ex-
ploiting different facets of the properties of the speech and noise signals [3],
[4], [5], [6], [7]. A variety of approaches have been developed, including Wiener
filter [8], [9], [10], [11], [12], [13], spectral restoration [3], [11], [14], [15], [16],
[17], [18], [19], signal subspace method [20], [21], [22], [23], [24], [25], [26],
parametric-model-based approach [27], [28], [29], [30], [31], statistical-model-
based method [5], [32], [33], [34], [35], [36], [37], and spatio-temporal filtering
[38], [39], [40], [41], [42].

Most of these algorithms were developed independently of each other and
their performance on noise reduction were evaluated mostly by assessing the
improvement of signal-to-noise ratio (SNR) or subjective speech quality when
the methods were formulated. It has been noticed that these algorithms,
almost with no exception, achieve noise reduction by some integrity loss of the
speech signal. Some algorithms are even formulated explicitly based on the
tradeoff between noise reduction and speech distortion, such as the subspace
method. However, so far, few efforts have been devoted to analyzing such a
tradeoff behavior even though it is a very important issue. In this chapter, we
attempt to provide an analysis about the compromise between noise reduction
and speech distortion. On the one hand, such a study may offer us some
insight into the range of the existing algorithms that can be employed in
practical noisy environments. On the other hand, a good understanding may
help us to find new algorithms that can work more effectively than the existing
ones.

Since there are so many algorithms in the literature, it is extremely diffi-
cult if not impossible to find a universal analytical tool that can be applied
to any algorithm. In this study, we choose the Wiener filter as the basis
since it is the most fundamental approach, and many algorithms are closely
connected to this technique. For example, the minimum-mean-square-error
(MMSE) estimator presented in [15], which belongs to the category of spec-
tral restoration, converges to the Wiener filter at a high SNR. Also it is widely
known that the Kalman filter is tightly related to the Wiener filter.
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Starting from the optimal Wiener filtering theory, we introduce two new
concepts: the speech-distortion index and the noise-reduction factor. We then
show that for a single-channel Wiener filter, the amount of noise attenuation
is in general proportionate to the amount of speech degradation. In other
words, the more the noise is attenuated, the more the speech is distorted. This
observation may seem quite discouraging as we always expect an algorithm to
have maximal noise attenuation without much speech distortion. Fortunately,
we show that the compromise between noise reduction and speech distortion
can be better managed by properly manipulating the Wiener filter, or by
considering some knowledge of the speech signal. The former leads to a sub-
optimal Wiener filter where, like in the spectral subtraction, a parameter
is introduced to control the tradeoff between speech distortion and noise
reduction, and the latter leads to the well-known parametric-model-based
noise-reduction technique. We also discuss the possibility to avoid speech
distortion by using an array of microphones.

2.2 Estimation of the Clean Speech Samples

We consider a zero-mean clean speech signal z:(n) contaminated by a zero-
mean noise process v(n) [white or colored but uncorrelated with z(n)], so
that the noisy speech signal, at the discrete time sample n, is,

y(n) = a(n) + v(n). (2.1)

Define the error signal between the clean speech sample at time n and its
estimate:

a(n) — &(n) = z(n) — h'y(n), (2.2)
where superscript T denotes transpose of a vector or a matrix,
T

h= [ ho hy -+ hp_ ]

is an FIR filter of length L, and
T

y(n)=[y(mn) yn-1) - yn—-L+1) ]

is a vector containing the L most recent samples of the observation signal

y(n).
We now can write the mean-square error (MSE) criterion:

Jo(h) £ B {e2(n)}, (23)

where E{-} denotes mathematical expectation. The optimal estimate &, (n) of
the clean speech sample x(n) tends to contain less noise than the observation



12 J. Benesty et al.

sample y(n), and the optimal filter that forms &, (n) is the Wiener filter which
is obtained as follows,

h, = arg mhin Jz(h). (2.4)

Consider the particular filter,
w=[10--0]".

This means that the observed signal y(n) will pass this filter unaltered (no
noise reduction), thus the corresponding MSE is,

Jo(w) = E{ [z(n) — uly(m)]"} = E{lz(n) - y(n)] }
=E{v*(n)} =0l (2.5)
In principle, for the optimal filter h,,, we should have,
Jo(hy) < Jp(uy) = o2 (2.6)

In other words, the Wiener filter will be able to reduce the level of noise in
the noisy speech signal y(n).
From (2.4), we easily find the Wiener-Hopf equation:

R,h, = p, (2.7)
where
R, = E{y(n)y"(n)} (2.8)

is the correlation matrix of the observed signal y(n) and

p = E{y(n)z(n)} (2.9)

is the cross-correlation vector between the noisy and clean speech signals.
However, xz(n) is unobservable; as a result, an estimation of p may seem
difficult to obtain. But,

p = Ef{y(m)(n)} = E{y(n) [y(n) — v(n)]}

= E{y(n)y(n)} — E{[x(n) + v(n)|v(n)}

— E{y(n)y(n)} — E{v(n)o(n)}

=r, —r,. (2.10)
Now p depends on the correlation vectors r, and r,. The vector r, (which is
also the first column of R,) can be easily estimated during speech and noise

periods while r, can be estimated during noise-only intervals assuming that
the statistics of the noise do not change much with time.
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Using (2.10) and the fact that u; = R_lry, we obtain the optimal filter:

y
hy=u; —R,'r, = [I-R, 'R, w (2.11)
I S s 15
=|—+R, R.,| R, R.uy,
{SNR Ry } v Rt
where
A o2
SNR = 0—12] (2.12)
is the signal-to-noise ratio, I is the identity matrix, and
- AR,
Rx = U—%,
- AR,
R»U == 0_—12’
We have,
SNIFI{rEoo h, = uy, (2.13)
lim h, = 0. (2.14)
SNR-0
The minimum MSE (MMSE) is,
Jz(ho) = cri —p'h, = ag — rfR;lrU = rfho. (2.15)

We see clearly from the previous expression that J,(h,) < J;(u1); therefore,
noise reduction is possible.
The normalized MMSE is

Jultng) 2 00y — )

, (2.16)

and 0 < J,(h,) < 1.

2.3 Estimation of the Noise Samples

In this section, we will estimate the noise samples from the observations y(n).
Define the error signal between the noise sample at time n and its estimate:

eu(n) = v(n) — i(n) = o(n) — g7y(n), (2.17)
where
g=[gog - gr1]
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is an FIR filter of length L. The MSE criterion associated with (2.17) is,

Ju(8) = E{e2(n)}. (2.18)

The estimation of v(n) in the MSE sense will tend to attenuate the clean
speech.
The minimization of (2.18) leads to the Wiener-Hopf equation:

g, =R, 'r, =R, 'R,u;

- - 71—1 . ~
- [SNR~I+R;1RU R;'R,u;.
We have,
SNlllarEoo g, =0, (2.19)
Sl\lIIRHLOgO =u. (2.20)

The MSE for the particular filter u; (no clean speech reduction) is,

Jo(ur) = E{z*(n)} = o2. (2.21)
Therefore, the MMSE and the normalized MMSE are respectively,
‘]U(go) - 012) - I‘fR;lI'U = 0121 - rggm (222)
7 s Ju(8s) Jv(8o)
Ju = 2L = oL, 2.23
() = 0 = 2 (229

Since J,(g,) < Jy(u1), the Wiener filter will be able to reduce the level of
clean speech of the signal y(n). As a result, 0 < J,(g,) < 1.

In the next section, we will see that while the normalized MMSE, .J,, (hy),
of the clean speech estimation plays a key role in noise reduction, the nor-
malized MMSE, J,(g,), of the noise process estimation plays a key role in
speech distortion.

2.4 Important Relationships Between Noise Reduction
and Speech Distortion

Obviously, there are some important relationships between the estimation
of the clean speech and noise samples. We immediately see from (2.15) and
(2.22) that the two MMSEs are equal,

Jo(ho) = Ju(8,)- (2.24)

However, the normalized MMSEs are not, in general. Indeed, we have a re-
lation between the two:

Jo(g,) = (&) _ Ja(ho)

2 2
0% O

0'12; Jz(ho) jx(hO)
= U—% - = SNR - (2.25)
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So the only situation where the two normalized MMSEs are equal is when
the SNR is equal to 1. For SNR < 1, J,(h,) < Ju(g,) and for SNR > 1,
Ju(g,) < Jx(ho). Also, J,(h,) < SNR and J,(g,) < 1/SNR.

From (2.11) and (2.19), we get a relation between the two optimal filters:
h,=u; —g,. (2.26)

In fact, minimizing J,(h) or J,(u; —h) with respect to h is equivalent. In
the same manner, minimizing J,(g) or J,(u; — g) with respect to g is the
same thing. At the optimum, we have,

Ca0(n) = 2(n) —hgy(n) = x(n) — [w — g, [x(n) +v(n)]
= —v(n) +goy(n) = —eyo(n). (2.27)
We can easily verify the following:
Jv(hO) = Jx(go)
=0, — 3J,(h,), (2.28)

which implies that J,.(h,) < o7 /3. We already know that .J,(h,) < o7 and
Jo(hy) < o2

The optimal estimation of the clean speech, in the Wiener sense, is in fact
what we call noise reduction:

&o(n) = hgy(n), (2.29)
or equivalently, if the noise is estimated first:

io(n) = g y(n), (2.30)
we can use this estimate to reduce the noise from the observed signal:

Fo(n) = y(n) — 0 (n). (2.31)

The power of the estimated clean speech signal with the optimal Wiener filter
is,

E{#2(n)} = h R h, =02 — J,(h,)
= h!R,h, + h!R,h,, (2.32)

which is the sum of two terms. The first one is the power of the attenuated
clean speech and the second one is the power of the residual noise (always
greater than zero). While noise reduction is feasible with the Wiener filter,
expression (2.32) shows that the price to pay for this is also a reduction of
the clean speech [by a quantity equal to J,(h,) + thvh0 and this implies
distortion], since hZtho < o2. In other words, the power of the attenuated
clean speech signal is, obviously, always smaller than the power of the clean
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speech itself; this means that parts of the clean speech are attenuated in the
process and as a result, distortion is unavoidable with this approach.

We now define the speech-distortion index due to the optimal filtering
operation as,

E { [a(n) — B2 x(n)] 2}

A
via(8,) = - (2.33)
T
goRZgo 1 T T T
= 20720 — | J,(h,) — hIR,h,| < J,(g,)-
> = g |Je(he) — BERuh| < Ju(e)

Clearly, this index is always between 0 and 1 for the optimal filter. Also,

li =1 .34
oim vaa(go) = 1, (2.34)
SNllleroo vsd(g,) = 0. (2.35)

So when wvsq(g,) is close to 1, the speech signal is highly distorted and when

Usd(8,) is near 0, the speech signal is lowly distorted. We deduce that for low

SNRs, the Wiener filter can have a disastrous effect on the speech signal.
Similarly, we define the noise-reduction factor due to the Wiener filter as,

2
JAN Oy

far(ho) = ————~ (2.36)
o2 1 1

W Roh, j Rog,|  Je(ho)
oRBo  SNR[J,(g,) ~ gl Rog,|  Jo(bo)

and &, (hy) > 1. The greater is &, (h,), the more noise reduction we have.
Also,

Sl\llanio &nr(ho) = o0, (2.37)
SNIFI{IEOO Enr(hy) = 1. (2.38)

Using (2.33) and (2.36), we obtain important relations between the speech-
distortion index and the noise-reduction factor:

1 1

Usd(go) = ﬁ |:jz(ho) - m} 5 (239)
1

" SNR [Jv(go) - vsd(go)] .

&ur (ho) (2.40)

Therefore, for the optimum filter, when the SNR is very large, there is little
speech distortion and little noise reduction (which is not really needed in this
situation). On the other hand, when the SNR is very small, speech distortion
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is large as well as noise reduction. Using the fact that J,(h,) < o7 /3, we can
easily derive from (2.39) and (2.40) that,

Gur(ho) > g if SNR <1/2

ur(ho) > i if1/2<SNR <2, (2.41)
ar(hy) > 1 if SNR>2

and

vaalg,) < 1 if SNR<1/2
vsa(g,) < SBEL if 1/2 <SNR <2 . (2.42)
Vsd(8,) < ﬁ if  SNR>2

Equations (2.41) and (2.42) give the lower bound for the noise-reduction
factor and the upper bound for the speech-distortion index respectively. These
bounds can be further refined. But before going further, let us first analyze
the a posteriori SNR, which is defined, after noise reduction with the Wiener
filter, as,
h!R,h,
SNR, 2 2o o lo (2.43)
h, R,h,
h!R,h,
h!R,h,
1- jv (go)
JU (go) — Usd (go)

It can be easily verified that,

SNR, > SR o (2.44)

T o)

= SNR = —1+ SNR & (hy) [1 - Ju(go)]

We now give a proposition showing the relationship between the a prior:
SNR and the a posteriori SNR.

Proposition: With the Wiener filter, the a posteriori SNR and the a
priori SNR satisfy

h!R,h, SNR — u'R,u,

SNR, = —2—*° = .
" h'R,h, ~ u’R,u;

(2.45)

Proof. From their definitions, we know that all three matrices, R, R,, and
R, are symmetric, and positive semi-definite. We further assume that R, is
positive definite so its inverse exists. In addition, based on the independence
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assumption between the speech signal and noise, we have R, = R, + R,. In
case that both R, and R, are diagonal matrices, or R, is a scaled version of
R, (i.e., R, = SNR-R,), it can be easily seen that SNR, = SNR. Here, we
consider more complicated situations where at least one of the R, and R,
matrices is not diagonal. In this case, according to [45], there exists a linear
transform that can simultaneously diagonalize R,, R,, and R,, . The process
is done as follows.

R, = (BY)"'AB™,
R’u — (BT)le—l,

R, = (B") '+ AB™, (2.46)
where again I is the identity matrix,
A O - 0
0 Xg -+ 0
A= | . (2.47)
0 -0 Az

is the eigenvalue matrix of R;lRI7 with Ay > Ay > --- > A > 0, B is the
eigenvector matrix of R, 'R, and

R,'R,B = BA. (2.48)

Note that B is not necessarily orthogonal since R, 'R, is not necessarily
symmetric. Then from the definition of SNR and SNR,, we immediately
have

u{R,u; u’(BHTAB 'uy

SNR = =
ulR,u; u’(B HTB 'y

7 (2.49)

and

h’R,h, u]RIR,'R.R,;'R,u
b'R,h, uwR'R, R,R, R,u
!B HTAT+A) AT+ A)'AB 'y
/B HTAT+A) LI+ A)1AB 'y
_uIB YIS B 'y

S ufBHTEB

SNR, =

(2.50)

where
S 2 A0+ A) AT+ A)TIA

/\3
oz 0 0
0

A
0 G

AL
FESYE



2 Wiener Filter for Noise Reduction 19

and
S, 2 A0+ A) I I A) A

/\2

(1+A11)2 02 O

A

0 e 0
: :
0 0 aR

are two diagonal matrices. If for the ease of expression we denote B~!
A =B = [a;], then both SNR and SNR,, can be rewritten as

SNR — 25:1 )‘ia’zzl

iL:I a3y 7
3
SL i
SNR, = Ll(l—t\)?w (2.51)

S
2
i=1 (T+r)2 %1

. L A3 2 L 2 2 L 2 L 9
Since 37;° 1 kg2 % 2oic1 TiAn? %its 2oiet Aitir, and 3750 afy all are non-
negative numbers, as long as we can show that the inequality

L )\3 L L
Z ma% Zafl > Z i+ )\ ah Z/\ az (2.52)
' i=1 i=1

holds, then SNR, > SNR. Now we prove this inequality by way of induction.

e Basic Step: If L = 2,

2
Z 1+)\ 2 ’lea'll

=1

LN N [N T
= (1+)\1)2 11 (1+)\2)2 21 (1+)\1)2 (1+)\2)2 11%21-

Since \; > 0, it is trivial to show that

A3 A3 A2\, AA2
+ ;
(IT4+X)2  (IT4X2)2 7~ (1+X)%2  (1+X)?

where “=” holds when A\; = \g. Therefore

2
Z 1+)\ 2 1lza‘z1

=1
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X;' 4 )\3 4 A%/\2 /\1/\5 a2 a?
(1_’_)\1)2 (1_’_)\2)2 11%21

so the property is true for L = 2, where “=" holds when any one of aq;
and a9 is equal to 0 (note that a1 and ag; cannot be zero at the same
time since A is invertible) or when A\; = Ao.

e Inductive Step: Assume that the property is true for L = n, i.e.,

n

)\2
Z 1+)\ 3 zlz%—Zm 11Z>\%

We must prove that it is also true for L = n + 1. As a matter of fact,

n+1 n+1

A3 A3
Z (1+ )\i)2a?1 " (1+ )L\: 2 ”+11] lZ iy + “n+11]

_ n+1 4
; (1 + )\ 2 Zl Za’zl 1 + )\ )2 Apy11
- AP A2
+ L+ ntl ] ata?, . 2.53
> [ e b @59
Using the induction hypothesis, and also the fact that
/\? XZ—H > A?)\nﬂ >‘i>‘%+1
(T+X)? (T4 An)? — (LX) (T4 Agyn)?’
hence
n+1 n+1
)\3
Z (1+ X\;)2 i1 Z i1
i=1
> i 1 Z)‘ ajy + )\nH a, 11
= L 1 + A 2 z 7 1 + )\ )2 n+
- A >\n+1 >‘i>‘71+1 :| 2 2
+ - Ll a?al
;{(1“) (L+Apr)?] M
n+1 n+1

=203 ,\ S —a? Z Aia?,, (2.54)
1

i=
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where “=” holds when all the \;’s corresponding to nonzero a;; are equal,
where i = 1,2,...,n+ 1. That completes the proof.

Even though it can improve the SNR, the Wiener filter does not maxi-
mize the a posteriori SNR. As a matter of fact, (2.43) is well known as the
generalized Rayleigh quotient. So the filter that really maximizes the a pos-
teriori SNR is the eigenvector corresponding to the maximum eigenvalue of
the matrix R, 'R,.

Knowing that SNR, > SNR, we can now refine the lower bound for
&nr(hy). As a matter of fact, it follows from (2.43) that

L
SNR. — —1 4 — Ju(8,)

> SNR.
Jv(go) - USd(go)

Since veq(g,) < Jo(g,), and 0 < vq(g,) < 1, it can be easily shown that

SNR + 2

gnr(ho) 2 W (255)

This lower bound for &, (h,) is tighter than the one given in (2.41). Similarly,
we can derive that

Vsd(8o) (2.56)

< ———.
~ 2SNR+1

It can be easily verified that this upper bound for vs4(g,) is tighter than the
one given in (2.42). Figure 2.1 illustrates expressions (2.55) and (2.56).
We now introduce another index for noise reduction:

Cnr(ho) é 1- jac(ho) <1 (2.57)

The closer is (yr(ho) to 1, the more noise reduction we get. This index will
be helpful to use in the following sections.

2.5 Particular Case: White Gaussian Noise

In this section, we assume that the additive noise is white, so that,
r, = olu;. (2.58)
From (2.16) and (2.23), we observe that the two normalized MMSEs are

jx(ho) = ho,Oa (259)

(g ) _ 1- g0,0 _ h0,0
viso SNR SNR'’

where hq o and g, o are the first components of vectors h, and g, respectively.

Clearly, 0 < hoo < 1 and 0 < g0 < 1. Hence, the normalized MMSE Ty (ho)
is completely governed by the first element of the Wiener filter h,,.

i

(2.60)
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5

Fig. 2.1. Illustration of the areas where &n:(ho) and vsa(g,) take their values as
functions of the SNR. &, (ho) can take any value above the solid line while vga(g,)
can take any value under the dotted line.

Now, the speech-distortion index and the noise-reduction factor for the
optimal filter can be simplified:

1
Vs (8,) = SNR [ho,O - hoTho} (2.61)
T
_gho 1 T
~ SNR ~ SNR 190 "800l
1
&ur(ho) = TR (2.62)

We also deduce from (2.61) that hoo > hoThO and go,0 > gggo.
We know from the linear prediction theory that [43],
1 E
R, - v, 2.63
! {—ay} [%—mj (269

where a, is the forward linear predictor and F) is the corresponding error
energy. Replacing the previous equation in (2.11), we obtain:

h
hy =u — iR, 'uy = l 20 ] 7 (2.64)
: =-a,
B, %Y
where
~ 0‘2
hoo = Jo(hy) =1 — =2, 2.
0 = Ja(ho) 5 (2.65)
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Equation (2.64) shows how the Wiener filter is related to the forward predic-
tor of the observed signal y(n). This expression also gives a hint on how to
choose the length of the optimal filter hy: it should be equal to the length
of the predictor a, required to have a good prediction of the observed signal
y(n). Equation (2.65) contains some very interesting information. Indeed, if
the clean speech signal is completely predictable, this means that £, ~ o2
and J,(h,) ~ 0. On the other hand, if x(n) is not predictable, we have
E, ~ o} and Jo(hy) ~ 1 — o2/or. This implies that the Wiener filter is
more efficient to reduce the level of noise for predictable signals than for
unpredictable ones.

2.6 Better Ways to Manage Noise Reduction and
Speech Distortion

For a noise-reduction/speech-enhancement system, we always expect that it
can achieve maximal noise reduction without much speech distortion. From
the previous section, however, we see that when noise reduction is maximized
with the optimal Wiener filter, speech distortion is also maximized. One may
ask a legitimate question: are there better ways to control the tradeoff be-
tween the conflicting requirements of noise reduction and speech distortion?
Examining (2.33), one can see that to control the speech distortion, we have

2
to minimize F { [m(n) - hOTx(n)} } This can be achieved by either manip-

ulating h, or exploiting a speech model.

2.6.1 A Suboptimal Filter

Consider the suboptimal filter:
hy =u; — g, =u; —ag,, (2.66)

where « is a real number. The MSE of the clean speech estimation corre-
sponding to hy is,

£ { o) - nIy(] '}
=02 — a2 - a)rfR;lrl,, (2.67)

v

Jz(hg)

and, obviously, J,(hy) > J,(h,), Va; we have equality for & = 1. In order to
have noise reduction, o must be chosen in such a way that J,(hs) < J(uy),
therefore,

0<a<?2. (2.68)
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We can check that,

Jo(g:) = E{[v(n) - agly(n)] "}
= J,(hy). (2.69)
Let
&5(n) =hy(n) (2.70)

denote the estimation of the clean speech at time n with respect to hg. The
power of Z4(n) is,

B {i%(n)} = bR, h,
= [u — 04R_1 ]T [ry — arv]
=02+ (1-2a)0% +« rTR
= h!R,h, + h R h,. (2.71)

The speech-distortion index corresponding to the filter hg is,

£ { o) - Ixn)] |

2
0%

Vs (&) = (2.72)

= a’glR.g, = a’vu(g,).

The previous expression shows that the ratio of the speech-distortion indices
corresponding to the two filters g, and g, depends on « only.

In order to have less distortion with the suboptimal filter hy than with
the Wiener filter h,, we must find « in such a way that,

Usd(8s) < Usa(8,), (2.73)

hence, the condition on « should be
-l<a<l. (2.74)

Finally, the suboptimal filter hy can reduce the level of noise of the observed
signal y(n) but with less distortion than the Wiener filter h, if « is taken
such as,

0<a<l (2.75)

For the extreme cases @« = 0 and o = 1 we obtain respectively hy = uy,
no noise reduction at all but no additional distortion added, and hg = h,,
maximum noise reduction with maximum speech distortion.
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Since
_ T T

Jv(gs) - gs Ra:gs + hs ths (276)
= o78. Rog, + oh Ryhg
= Jm(hs)a

it follows immediately that the speech-distortion index and the noise-
reduction factor due to hg are,

vua(e) = g | 500~ s | (2.77)

ur(hy) = - : 279
SNR {Jv(gs) - Usd(gs):|

Unlike vsq(8g)/vsd(8,) which depends on « only, &, (hs)/énr(ho) does not.
However, using (2.67) and (2.15), we find that,

Gur (h5) _ 1= Jz(hy) =2 -«
Cnr(ho) B 1-— ja:(ho) o (2 ) (279)

Figure 2.2 plots vsq(8s)/vVsa(8,) and (ur(hs)/Cnr(ho) as functions of a. For
example, for o = 0.7, we see that the speech-distortion index with the sub-
optimal filter represents 49% of the speech-distortion index with the Wiener
filter while the noise-reduction index is 91%.
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2.6.2 Noise Reduction Exploiting the Speech Model

Section 2.5 has shown that the Wiener filter is more efficient to attenuate
the level of noise for predictable signals than for unpredictable ones. In fact,
it is well known that speech can be represented by an autoregressive (AR)
process; thus, speech can be seen as the output of an all-pole linear system
where the input is a zero-mean white Gaussian process, w(n), with variance
o2. The clean speech signal is then given by,

L
xz(n) = Zam’lm(n —1)+wn)
=1

= alx(n —1) +w(n), (2.80)

where a,; are the parameters of the AR process. This model is very often
combined with the Kalman filter to enhance a noisy speech signal; see, for
example, [27], [28], and [29]. The main challenge in this approach is to get an
accurate estimate of the AR parameters from the observations.

We can use this model in the Wiener context with some advantages. For
that, in this section, we assume that the additive noise, v(n), of the observed
signal, y(n), is white. The cross-correlation vector, p, between the noisy and
clean speech signals that appears in the Wiener-Hopf equation is now:

p = E{y(n)e(n)} = E {y(n)x"(n — 1)} a, + o2y
=F {y(n) [y(n—1)—v(n— 1)}T} a, +oiu

= (Ry1 — Ryp)a, +ojun, (2.81)
where
A
Ry,1=E{y(n)y"(n—-1)},
and
R, 1 2F {v(n)v'(n-1)}
0 0 0 0 0
o2 0 0 - 0 0
10 o2 0 - 0 o0
0 0 0 - o2 0

We deduce the optimal filter:

h, =R, ' (R,1 — Ry1)a, + oo R, uy. (2.82)

Equation (2.82) shows the relationship between the Wiener filter and the AR
parameters of the clean speech signal. When v(n) is a white Gaussian noise
signal, (2.82) yields similar results as in (2.64).
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2.6.3 Noise Reduction with Multiple Microphones

In more and more applications, multiple microphone signals are available.
Therefore, it is interesting to investigate deeply the multichannel case. One
of the first papers to do so is a paper written by Doclo and Moonen [42],
where the optimal filter is derived as well as a general class of estimators.
The authors also show how the generalized singular value decomposition can
be used in this spatio-temporal technique. In this section, we take a slightly
different approach. We will see, in particular, that we can reduce the level
of noise without distorting the speech signal. This result was never observed
before.

We suppose that we have a linear array consisting of M microphones
whose outputs are denoted as y,,(n), m = 0,1,--- , M — 1. Without loss of
generality, we select microphone 0 as the reference point and to simplify the
analysis, we consider the following propagation model:

Ym(n) = Bms(n —t — 1) + o (n), m=0,1,--- , M —1, (2.83)

where 3, is the attenuation factor (with Gy = 1), ¢ is the propagation time
from the unknown speech source s(n) to microphone 0, v,,(n) is an additive
noise signal at the mth microphone, and 7, is the relative delay between
microphones 0 and m, with 7y = 0.

In the following, we assume that the relative delays 7,,,, m =1,--- , M —1,
are known or can easily be estimated. So our first step is the design of a simple
delay-and-sum beamformer, which spatially aligns the microphone signals to
the direction of the speech source. From now on, we will work on the aligned
signals:

Zm(n) = Ym(n + 7m) (2.84)
= Bms(n —t) +vp,(n+ 1),
=x,(n)+vnn+7y,), m=0,1,--- M—1.

A straightforward approach for noise reduction is to average the M signals
zZm(n),

M-—1 M—
Za(n) = % > zm(n) = %s(n —t) Z (n+ 7o), (2.85)
m=0 1=0

where 3, = Zﬁf;ol - 1f the noises are added incoherently, the output SNR
will, in principle, increase [44]. We can further reduce the noise by passing the
signal z,(n) through a Wiener filter as was shown in the previous sections.
This approach has, however, two drawbacks. The first one is that, since for
m # i, E{vp(n+ 7m)vi(n+7)} # 0 in general, the output SNR will not im-
prove that much; and the second one, as we know already, is speech distortion
that the optimal filter introduces.
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Let us now define the error signal, for the mth microphone, between the
clean speech sample z,,(n) and its estimate as,

1>

@ (n) —h,z(n) (2.86)

M-1
= 2m(n) = ) hi,zi(n),
i=0

€z, (1)

where h;.,,, are filters of length L and,

z(n) 2 [z{(n) 2] (n) - z%ﬂ/ffl(n)]T.

]T

Since z;(n) = B;s(n —t) + vi(n + 7;), (2.86) becomes:

€z, (n) = ST(n - t) /Bmul - Z /Bihi:m - Z VZT(n + Ti)hi:m
i=0 =0
=s"(n —t) [Buu; — Dhyy] — v7(n)hyy,

= es,m(n) — ey m(n), (2.87)

M—-1 ‘| M—-1

where

I1>

D =[Gl B1I--- Bu—11],

T
(vi(n+7) vi(n+71) - vi_1(n+7am-1)]

[1>

v(n)

Expression (2.87) is the difference between two error signals; e ., (n) repre-
sents signal distortion and e, ,,(n) represents the residual noise. The MSE
corresponding to the residual noise with the mth microphone as the reference
signal is,

Jv,m(h:m) =L {e?),m(n)}
— h?;nE {v(n)vT(n)} h.,,
= h! R,h.,. (2.88)

Usually, in the single-channel case, the minimization of the MSE correspond-
ing to the residual noise is done while keeping the signal distortion below a
threshold [20]. With no distortion, the optimal filter obtained from this opti-
mization is uy, hence there is not any noise reduction either. The advantage
of multiple microphones is that, actually, we can minimize J, ,,(h.,,) with
the constraint that $,,u; = Dh.,, (no speech distortion at all). Therefore,
our optimization problem is,

r}rllin Jo.m (D) subject to Gpu; = Dhy,. (2.89)

:m
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By using a Lagrange multiplier, we easily find the optimal solution:
-1
ho.m = BmR; DT [DR;lDT] u, (2.90)

where we assumed that the noise signals v;(n) are not perfectly coherent so
that R, is not singular.

The MMSE for the mth microphone is,
-1
Jv,m(ho,:m) = ﬁ?nll{ |:DR;1DT:| usp. (291)

Since we have M microphones, we have M MMSEs as well. The best MMSE
from a noise reduction point of view is the smallest one, which is, according
to (2.91), the microphone signal with the smallest attenuation factor.

The attenuation factors (3,, can be easily determined, if the power of the
noise signals are known, by using the formula:

g EGRM) - B2+ 7))
" T E(RW) - By

For the particular case where the noise is spatio-temporally white with
a power equal to o2, the MMSE and the normalized MMSE for the mth

v
microphone are respectively,

m=1,2-,M—1. (2.92)

62
Jv,m(ho,:m) = 03+’ (2.93)
ity B2
- 2
Jv,m(ho,:m) - W (294)
=0 [

We can see that when the number of microphones goes to infinity, the nor-
malized MMSE goes to zero, which means that the noise can be completely
removed with no signal distortion at all.

2.7 Simulation Experiments

By defining a noise-reduction factor to quantify the amount of noise being
attenuated and a speech-distortion index to valuate the degree to which the
speech signal is deformed, we have analytically examined the performance
behavior of the Wiener-filter-based noise reduction technique. It is shown
that the Wiener filter achieves noise reduction by distorting the speech sig-
nal. The more the noise is reduced, the more the speech is distorted. We also
proposed several approaches to better manage the tradeoff between noise re-
duction and speech distortion. To further verify the analysis, and to assess the
noise-reduction-and-speech-distortion management schemes, we implemented
a time-domain Wiener-filter system. The sampling rate is 8 kHz. The noise
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signal is estimated in the time-frequency domain using a sequential algorithm
presented in [6], [7]. Briefly, this algorithm obtains an estimate of noise using
the overlap-add technique on a frame-by-frame basis. The noisy speech signal
y(n) is segmented into frames with a frame width of 8 milliseconds and an
overlapping factor of 75%. Each frame is then transformed via a DFT into a
block of spectral samples. Successive blocks of spectral samples form a two-
dimensional time-frequency matrix denoted by Y;(jw), where subscript ¢ is
the frame index, denoting the time dimension, and w is the angular frequency.
Then an estimate of the magnitude of the noise spectrum is formulated as
Vi

() = {%Vt—ﬂw) + (1 - e G)l, i Gl > Vieaw) o o)

aaVi-1 (W) + (1 = aa) |V (jw)l, if [Yi(jw)| < Vier(w)

where a, and aq are the the “attack” and “decay” coefficients respectively.
Meanwhile, to reduce its temporal fluctuation, the magnitude of the noisy
speech spectrum is smoothed according to the following recursion:

BT + (= B, i Y ()] > Vi (@)
Yilw) = {5dn_1<w> + (1= B)Ya(jw)), if [Yi(jw)] < Vs () © (299)

where again [, is the “attack” coefficient and (4 the “decay” coefficient.
To further reduce the spectral fluctuation, both V;(w) and Y;(w) are av-
eraged across the neighboring frequency bins around w. Finally, an esti-
mate of the noise spectrum is obtained by multiplying V;(w)/Y;(w) with
Y:(jw), and the time-domain noise signal is obtained through IDFT and
the overlap-add technique. See [6], [7] for more detailed description of this
noise-estimation scheme. Figure 2.3 shows a speech signal corrupted by a car
noise (SNR = 10 dB), the waveform and the spectrogram of the car noise
that is added to the speech, and the waveform and spectrogram of the noise
estimate. It can be seen that during the absence of speech, the estimate is
a good approximation of the noise signal. It is also noticed from its spec-
trogram that the noise estimate consists of some minor speech components
during the presence of speech. Our listening test, however, shows that the
residual speech remained in the noise estimate is almost inaudible. An ap-
parent advantage of this noise-estimation technique is that it does not require
an explicit voice activity detector. In addition, our experimental investiga-
tion reveals that such a scheme is able to capture the noise characteristics
in both the presence and absence of speech, therefore it does not rely on the
assumption that the noise characteristics in the presence of speech stay the
same as in the absence of speech.

Based on the implemented system, we evaluate the Wiener filter for noise
reduction. The first experiment investigates the influence of the filter length
on the noise reduction performance. Instead of using the estimated noise, here
we assume that the noise signal is known a priori. Therefore this experiment
demonstrates the upper limit of the performance of the Wiener filter. We
consider two cases. In the first one, both the source signal and the background
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Fig. 2.3. Noise and its estimate. The first trace (from the top) shows the waveform
of a speech signal corrupted by a car noise where SNR = 10 dB. The second and
third traces plot the waveform and spectrogram of the noise signal. The fourth and
fifth traces display the waveform and spectrogram of the noise estimate.

noise are random processes in which the current value of the signal cannot be
predicted from its past samples. The source signal is a noise signal recorded
from a New York Stock Exchange (NYSE) room. This signal consists of
sound from various sources such as speakers, telephone rings, electric fans,
etc. The background noise is a computer-generated Gaussian random process.
The results for this case is graphically portrayed in Fig. 2.4. It can be seen
that both the noise-reduction factor and the speech-distortion index increase
linearly with the filter length. Therefore, a longer filter should be applied for
more noise reduction. However, the more the noise is attenuated, the more
the source signal is deformed, as shown in Fig. 2.4.

In the second case, we test the Wiener filter for noise reduction in the
context of speech signal. It is known that a speech signal can be modelled as
an AR process, where its current value can be predicted from its past sam-
ples. To simplify the situation for the ease of analysis, the source signal used
here is an /i:/ sound recorded from a female speaker. Same as in the previous
case, the background noise is a computer-generated white Gaussian random
process. The results are plotted in Fig. 2.5. Again, the noise-reduction factor,
which quantifies the amount of noise being attenuated, increases monoton-
ically with the filter length; but unlike the previous case, the relationship
between the noise reduction and the filter length is not linear. Instead, the
curve at first grows quickly as the filter length is increased up to 10, and then
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Fig. 2.4. Noise-reduction factor and signal-distortion index, both as a function of
the filter length: (a) noise reduction; (b) signal distortion. The source is a signal
recorded in a NYSE room; the background noise is a computer-generated white
Gaussian random process; and SNR = 10 dB.

continues to grow but with a slower rate. Unlike &, the speech-distortion
index, i.e., vgq, exhibits a non-monotonic relationship with the filter length. It
first decreases to its minimum, and then increases again as the filter length is
increased. The reason, as we have explained in Section 2.6.2, is that a speech
signal can be modelled as an AR process. Particular to this experiment, the
/i:/ sound used here can be well modelled with a 6! order LPC (linear pre-
diction coding) analysis. Therefore, when the filter length is increased to 6,
the numerator of (2.33) is minimized, as a result, the speech-distortion index
reaches its minimum. Continuing to increase the filter length leads to a higher
distortion due to more noise reduction. To further verify this observation, we



2 Wiener Filter for Noise Reduction 33
3.8 ' |
36

3.2

&nrlho)

26
24 4

i) SRR ..__,:"'I'

0 5 10 15 20 25 30
Length of the filter h,

(a)

0 5 1I0 1I5 20 2I5 30
Length of the filter h,,

(b)

Fig. 2.5. Noise-reduction factor and signal-distortion index, both as a function of
the filter length: (a) noise reduction; (b) speech distortion. The source signal is an

/i:/ sound from a female speaker; the background noise is a computer-generated
white Gaussian process; and SNR = 10 dB.

investigated several other vowels, and found that the curve of vgq vs. filter
length follows a similar shape, except that the minimum may appear in a
slightly different location. Taking into account the sounds other than vowels
in speech that may be less predicable, we find that good performance with
the Wiener filter (in terms of the compromise between noise reduction and
speech distortion) can be achieved when filter length L is chosen around 20.
Figure 2.6 plots the output of our Wiener filter system with L = 20, where

the speech signal is from a female speaker, the background noise is a car noise
signal, and SNR = 10 dB.
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Fig. 2.6. Noise reduction in a car noise condition where SNR = 10 dB: (a) clean
speech and its spectrogram; (b) noisy speech and its spectrogram; (c) noise reduced
speech and its spectrogram.

The second experiment tests the noise reduction performance in different
SNR conditions. Here the speech signal is recorded from a female speaker as
shown in Fig. 2.6. The computer-generated random Gaussian noise is added
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to the speech signal to control the SNR. The length of the Wiener filter is set
to L = 20. The results are presented in Fig.2.7, where besides &, and vsq, we
also plotted the Ttakura-Saito (IS) distance, a widely used objective quality
measure that performs a comparison of spectral envelopes (AR parameters)
between the clean and the processed speech [46]. Studies have shown that the
IS measure is highly correlated (0.59) with the subjective quality judgements
[47]. A recent report reveals that the difference in mean opinion score (MOS)
between two processed speech signals would be less than 1.6 if their IS mea-
sure is less than 0.5 for various codecs [48]. Many other reported experiments
confirmed that two spectra would be perceptually nearly identical if their IS
distance is less than 0.1. All these evidences indicates that the IS distance is
a reasonably good objective measure of speech quality.

As SNR decreases, the observation signal becomes more noisy. Therefore
the Wiener filter is expected to have more noise reduction for low SNRs.
This is verified by Fig. 2.7 (a), where significant noise reduction is obtained
for low SNR conditions. However, more noise reduction would correspond to
more speech distortion. This is confirmed by Fig. 2.7 (b) and (d) where both
the speech-distortion index and the IS distance increase as speech becomes
more noisy. Comparing the IS distance before [Fig. 2.7 (c)] and after [Fig. 2.7
(d)] noise reduction, one can see that significant gain in the IS distance has
been achieved, indicating that the Wiener filter is able to reduce noise and
improve speech quality (but not necessarily speech intelligibility).

The last experiment is to verify the performance behavior of the sub-
optimal filter derived in Section 2.6.1. The experimental conditions are the
same as outlined in the previous experiment. The results are presented in
Table 2.1, where for the purpose of comparison, besides the speech-distortion
index and the noise-reduction factor, we also show three IS distances (be-
tween the clean and filtered speeches denoted as ISD!, between the clean and
noise-reduced speeches marked as ISD?, and between the clean and noisy
speeches denoted as ISD?, respectively). From the results, one can make the
following observations:

e The IS distance between the clean and noisy speech signals increases as
SNR drops. The reason for this is apparent. When SNR decreases, the
speech signal becomes more noisy. As a result, the difference between the
spectral envelope (or AR parameters) of the clean speech and that (or
those) of the noisy speech tends to be more significant, which leads to a
higher IS distance.

e ISD? is much smaller than ISD®. This significant gain in IS distance
indicates that the use of noise reduction technique is able to mitigate
noise and improve speech quality.

e A better compromise between noise reduction and speech distortion is
accomplished by using the suboptimal filter. For example, when SNR =
20 dB, the speech-distortion index for the suboptimal filter with o = 0.7
is 0.0006, which is only 54% of that of the Wiener filter; the corresponding
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Fig. 2.7. Noise reduction performance as a function of SNR in white Gaussian
noise: (a) noise-reduction factor; (b) speech-distortion index; (c) Itakura-Saito dis-
tance between the clean and noisy speeches; (d) Itakura-Saito distance between the
clean and noise-reduced speeches.

IS distance between the clean and filtered speech is 0.0281, which is only
17% of that of the Wiener filter; but it has achieved a noise reduction of
2.0106, which is 82% of that with the Wiener filter.

Different from ISD', which decreases with «, ISD? increases when a
smaller « is selected. This is due to the fact that ISD? is affected by both
speech distortion and the residual noise remained in the noise-reduced
speech. As elaborated in Section 2.6.1, as long as « satisfies 0 < a < 1,
a smaller @ would lead to less speech distortion; but a smaller « also
means that more residual noise will remain in the noise-reduced speech.
While the former may reduce the IS distance, the latter will enlarge the

IS distance. As a result, ISD? increases when a smaller « is chosen.

From the analysis shown in Section 2.6.1, we see that both :s:#(gsg and
Cor(hs)
Car(ho)

results, we notice that the ratio between vsq(g,) and vsq(g,) does not

are independent of SNR but not % From the experimental
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Table 2.1 Noise reduction performance with the suboptimal filter, where
ISD! is the IS distance between the clean speech [i.e., #(n)] and the filtered
version of the clean speech [i.e., h”x(n)], which purely measures the speech
distortion due to the filtering effect; ISD? is the IS distance between the clean
and noise-reduced speeches; ISD? is the IS distance between the clean and
noisy speech signals.

SNR Usd Enr ISD! ISD? | 1SD?

Wiener filter 0.0011 | 2.4390 | 0.1691 | 0.1471 |0.6727

20dB [Suboptimal filter (o = 0.8)| 0.0007 | 2.1753 | 0.0423 | 0.2820 | 0.6727

Suboptimal filter (o« = 0.7)| 0.0006 | 2.0106 | 0.0281 | 0.3476 |0.6727

Wiener filter 0.0033 | 3.1977 | 0.2133 | 0.2032 | 1.0446

15dB [Suboptimal filter (aw = 0.8)| 0.0021 | 2.7379 | 0.0488 [0.5114 | 1.0446

Suboptimal filter (o = 0.7)] 0.0016 | 2.4544 | 0.0352 | 0.6034 | 1.0446

Wiener filter 0.0092 | 4.4565 | 0.2622 | 0.2652 | 1.5458

10dB [Suboptimal filter (oo = 0.8)| 0.0059 | 3.5896 | 0.0582 [0.7759 | 1.5458

Suboptimal filter (o« = 0.7)| 0.0045 | 3.0807 | 0.0441 | 0.8917 | 1.5458

vary much when SNR is changed; but % decreases with SNR. For
examples, when a = 0.7, the ratio calculated from experiment is 0.82
when SNR = 20 dB, and is 0.77 when SNR = 15 dB. From numerous
experiments, we noticed that the speech distortion and noise reduction
satisfy %(}gl; % if SNR > 5 dB, which indicates that the subop-
timal filter can be used to control the tradeoff between noise reduction
and speech distortion as long as SNR > 5 dB. The higher is the SNR,

the more effective will the suboptimal filter work.

2.8 Conclusions

The problem of speech enhancement has attracted a considerable amount of
research attention over the past several decades. Numerous techniques were
developed, among them is the optimal Wiener filter, which is the most fun-
damental approach. It is widely noticed that the Wiener filter achieves noise
reduction by deforming the speech signal. However, so far not much has
been said on how the Wiener filter really works. This chapter was devoted
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to analyzing the intrinsic relationship between noise reduction and speech
distortion with the Wiener filter. Starting from the speech and noise estima-
tion using the Wiener theory, we introduced a speech-distortion index and a
noise-reduction factor. We showed that for the single-channel Wiener filter,
the amount of noise attenuation is in general proportionate to the amount of
speech degradation, i.e., more noise reduction incurs more speech distortion.

Depending on the nature of the application, some practical noise-
reduction systems may require very high-quality speech, but can tolerate
a certain amount of noise. While others may want speech as clean as pos-
sible even with some degree of speech distortion. Therefore it is necessary
that we can have some management schemes to control the contradicting
requirements between noise reduction and speech distortion. To do so, we
have discussed three approaches. When there is no a priori knowledge or no
additional information available, a sub-optimal filter with one more free pa-
rameter can be used. By setting the free parameter to 0.7, we showed that
the sub-optimal filter can achieve 90% of the noise reduction that the Wiener
filter can have; but the resulting speech distortion is less than half of that of
the Wiener filter. Speech signal can be modeled as an autoregressive (AR)
process. If the AR coefficients can be estimated reliably, we showed that these
coeflicients can be used to construct the Wiener filter for less speech distor-
tion. In scenarios where we can have multiple noisy realizations of the speech
signal, then spatio-temporal filtering techniques can be exploited to obtain
noise reduction with less or even no speech distortion.
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