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Abstract. In this chapter, we address subband-based blind source separation
(BSS) for convolutive mixtures of speech by reporting a large number of exper-
imental results. The subband-based BSS approach offers a compromise between
time-domain and frequency-domain techniques. The former is usually difficult and
slow with many separation filter coefficients to estimate. With the latter it is dif-
ficult to estimate statistics when the adaptation data length is insufficient. With
subband-based BSS, a sufficient number of samples for estimating statistics can be
held in each subband by using a moderate number of subbands. Moreover, by using
FIR filters in each subband, which are shorter than the filters used for time-domain
BSS, we can handle long reverberation. In addition, subband-based BSS allows us to
select the separation method suited to each subband. Using this advantage, we in-
troduce efficient separation procedures that take both the frequency characteristics
of the room reverberation and speech signals into consideration. In concrete terms,
longer separation filters and an overlap-blockshift in BSS’s batch adaptation in
low frequency bands improve the separation performance. Consequently, frequency-
dependent subband processing is successfully realized with subband-based BSS.

14.1 Introduction

Blind source separation (BSS) is an approach that estimates original source
signals s;(n) using only information on the mixed signals x;(n) observed in
each input channel. This technique can be applied for audio applications
such as noise robust speech recognition, high-quality hands-free telecommu-
nication, and hearing aid systems.

We consider the BSS of speech signals in a real environment, i.e., the BSS
of convolutive mixtures of speech. In a real environment, signals are filtered
by an acoustic room channel. To separate such complicated mixtures, we need
to estimate the separation filters of several thousand taps. Several methods
have been proposed for achieving the BSS of convolutive mixtures [1] and
most of these utilize independent component analysis (ICA) [2], [3]. To solve
the convolutive BSS problem, algorithms in the time and frequency domains
have been proposed [4-12].

In time-domain BSS, ICA is directly applied to convolutive mixtures and
separation FIR filters are directly estimated (e.g., [4-8]). Therefore, the in-
dependence of output signals can be evaluated directly. However, the conver-
gence of time-domain BSS algorithms is generally not good. This is because
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the adaptation of such a long separation filter is very complex and there
are many local minima [3]. The computational complexity is also a prob-
lem. Moreover, most time-domain BSS algorithms have another problem: the
whitening effect, which means the signal’s spectrum becomes flat. Because
most time-domain BSS algorithms were designed for i.i.d. signals, these algo-
rithms try to make output signals both spatially and temporally independent
[8]. When we apply such time-domain BSS algorithms to mixtures of speech
signals, the output speech signals are whitened and sound unnatural.

By contrast, in frequency-domain BSS, mixtures are converted into the
frequency domain and ICA is applied to instantaneous mixtures at each fre-
quency (e.g., [9-12]) as shown in the previous chapter. Although we can
greatly reduce the computational complexity by using frequency-domain BSS,
frequency-domain BSS algorithms have inherent issues. One is that the inde-
pendence is evaluated at each frequency. In a real environment, an impulse
response changes momentarily. Therefore it is preferable that we estimate
separation filters using adaptation data that are as short as possible, espe-
cially when we use a batch algorithm. However, when we apply a longer frame
that can cover realistic reverberation for speech mixtures of a few seconds,
the number of samples in each frequency bin becomes small, and therefore,
we cannot correctly estimate the statistics in each frequency bin [13]. This
means that, in such a case, the independence is not evaluated correctly. This
is our strongest reason for utilizing subband-domain BSS method. We also
face permutation and scaling problems, which result in the estimated source
signal being recovered with a different permutation and gain in different fre-
quency bins. Recently, some solutions have been provided for these problems
[12], [14-17] and some of these were introduced in the previous chapter.

Motivated by these facts, we introduce a BSS method that employs sub-
band processing [18], [19]. Hereafter, we call this method subband BSS. With
subband BSS, observed mixed signals are decomposed into the subband do-
main with a filterbank and then separated in each subband using a time-
domain BSS algorithm. Then separated signals in each subband are synthe-
sized to obtain fullband separated signals. With this method, we can choose a
moderate number of subbands, therefore, we can maintain a sufficient number
of samples in each subband. The subband system also allows us to estimate
FIR filters as separation filters in each subband. Moreover, as the separation
filter length in each subband is shorter than that for time-domain BSS, it is
easier to estimate separation filters than with time-domain BSS. Therefore,
we can obtain separation filters that are long enough to cover reverberation.
That is, the subband BSS approach copes with both the frequency-domain
approach’s difficulty in estimating statistics and the time-domain technique’s
difficulty in adapting many parameters.

In addition, subband BSS mitigates the permutation problem and whiten-
ing effect. Because the permutation problem does not occur within each sub-
band, there are few permutation problems in subband BSS. Moreover, be-
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cause the whitening effect can be limited in each subband, subband BSS can
mitigates the whitening effect. Of course, subband BSS reduces computa-
tional complexity [20], [21]. This is an additional merit of subband BSS.

Subband BSS offers another advantage in that it allows us to select the
separation method suited to each subband. By using this advantage, we can
employ an efficient separation procedure taking into consideration the fre-
quency characteristics of room reverberation and speech signals [22], [23].
Generally speaking, an impulse response is usually longer in low frequency
bands than in high frequency bands. This makes the separation in low fre-
quency bands difficult. Moreover, because speech signals have high power
in low frequency bands, the separation performance in low frequency bands
dominates the speech separation performance. Therefore, it is very impor-
tant to improve the separation performance in the low frequency bands for
speech separation. In this chapter, we utilize longer separation filters and the
overlap-blockshift technique in the low frequency bands.

The organization of this chapter is as follows. Section 14.2 describes the
framework for the BSS of convolutive mixtures of speech. In Section 14.3,
we explain the configuration of subband BSS and mention implementation
issues. We confirm the validity of subband BSS in Section 14.4 by describing
experiments undertaken with reverberant data. In Section 14.5, we show some
ways to improve the low frequency subband performance in which the SIR is
worse than at high frequencies. Here, we take into consideration the frequency
characteristics of room reverberation and speech signals. The final section
concludes this chapter.

14.2 BSS of Convolutive Mixtures

14.2.1 Model Description

In real environments, the observed microphone signals are affected by rever-
beration. Therefore, Ny signals recorded by N, microphones are modeled as
convolutive mixtures

N, P

i=1 =1

where s; is the source signal from a source 4, x; is the signal observed by
a microphone j, and hj; is the P-taps impulse response from source 4 to
microphone j.

In order to obtain separated signals, we estimate the separation filters
w;j(n) of Q-taps, and obtain the separated signals

N,

3
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Mixing system Unmixing system

Fig. 14.1. BSS system configuration (when Ny = N,,, = 2).

The separation filters are estimated so that the separated signals become
mutually independent.

The BSS block diagram is shown in Fig. 14.1 for Ny = N,,, = 2. In this
chapter, we consider the case of Ny = N,;, = Ngp,.

14.2.2 Frequency-Domain BSS and Related Issue

Frequency-domain BSS. The frequency-domain approach to convolutive
mixtures transforms the problem into an instantaneous BSS problem at each
frequency [9-12]. Using T-point short-time Fourier transformation for (14.1),
we obtain the approximate time-frequency representation of mixtures,

x(f,m) =H(f)s(f,m), m=0,--+,L, —1, (14.3)

where f denotes the frequency bin, m represents the time dependence of the
short-time Fourier transformation (STFT), Ly, is the number of data samples
in each frequency bin, s(f,m) = [s1(f,m),- -, sy.., (f,m)]T is the source sig-
nal vector, and x(f,m) = [z1(f,m), -,z (f,m)]T is the observed signal
vector. We assume that the (Ng,, X Ny, ) mixing matrix H(f) is invertible
and that its ji component hj;(f) # 0. The STFT is usually executed by
applying a window function of length 7'. In this chapter, we call this T" the
STFT frame size.

The separation process can be formulated in a frequency bin f:
y(fvm) :W(f)x(f,m), m:()v 7Lm_ 13 (144)

where y(f,m) = [y1(f,m), -+ ,yx.., (fym)]T is the separated signal vector,
and W (f) represents an (Ns,, X Ngp,) separation matrix at frequency f. In
this chapter, we assume that the STFT frame size T is equal to the separation
filter length @. The separation matrix W (f) is determined by ICA so that the
outputs y;(f, m) become mutually independent. This calculation is carried
out independently at each frequency.
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Dilemma of Frequency-Domain BSS. In order to handle long reverbera-
tion, we need to estimate long separation filters w;;(n) of Q-taps. If the filters
are relatively short, we cannot reduce the reverberant components of interfer-
ences that are longer than the filters and this has a detrimental effect on the
separation performance [24]. On the other hand, with a batch adaptation, it is
desirable that separation filters can be estimated using adaptation data that
are as short as possible. This is because an impulse response changes momen-
tarily in a real environment. We therefore have to estimate long separation
filters with short length of adaptation data.

However, we have reported in [13] that when we employ a long frame
T with a frame shift of T'/2 for several seconds of data in order to prepare
a separation filter long enough to cover reverberation (note that we are as-
suming T = @), the separation performance degrades. One reason for this
is that it becomes difficult to maintain a sufficient number of data samples
to estimate the statistics in each frequency. This makes the estimation of
statistics difficult. In particular, the independence assumption between the
source signals seems to collapse [13]. Therefore, we cannot obtain sufficient
separation performance with a long frame with frequency-domain BSS for
short adaptive data.

14.3 Subband Based BSS

Subband BSS discussed in this section provides a solution to the dilemma of
frequency-domain BSS described in the previous section. With this method,
we can choose a moderate number of subbands, and therefore maintain a
sufficient number of samples in each subband. Subband BSS also allows us
to estimate short FIR filters as separation filters in each subband, due to
the down-sampling procedure at the subband analysis stage. Therefore, we
should be able to obtain a separation filter long enough to cover reverberation.
Moreover, as the separation filter length in each subband is shorter than
that for time-domain BSS, it is easier to estimate separation filters than in
time-domain BSS. That is, the subband BSS approach offers a compromise
between a time-domain technique, which is usually difficult and slow with
many parameters to estimate, and a frequency domain technique, which has
difficulty estimating statistics.

14.3.1 Configuration of Subband BSS

Basic Configuration of Subband BSS. The subband BSS system is com-
posed of three parts: a subband analysis stage, a separation stage, and a
subband synthesis stage (Fig. 14.2) [18], [19].

First, in the subband analysis stage, input signals x;(n) are divided into
N subband signals z;(k,m), k = 0--- ,N — 1, where k is the subband in-
dex, m is the time index, and N is the number of subbands. A polyphase
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Fig. 14.2. Basic system configuration of subband BSS. TDBSS denotes time-
domain BSS. A 2 x 2 case is depicted.

filterbank [25], including a cosine modulated filterbank [20] and a discrete
Fourier transform (DFT) filterbank [21,26], is widely used as the subband
analysis/synthesis system, because of its low computational complexity. A
polyphase filterbank analyzer (synthesizer) basically consists of a modula-
tor (demodulator), a prototype filter with a low pass characteristic, and a
decimator (interpolator). The cosine modulated filterbank realizes a perfect
reconstruction filterbank with real valued coefficients. The DFT filterbank
can be effectively realized by using FFT, however, the subband analyzed
signals x;(k, m) become complex number sequences. Since the outputs of a
prototype filter are band-limited in each subband, we can employ decimation
at the down-sampling rate R. However, as it is impossible to make an ideal
low pass filter as a prototype filter, the adjacent bands overlap each other,
i.e., aliasing occurs. Therefore, we should use a down-sampling rate of R < N
in order to reduce the aliasing distortion [27], which degrades the separation
performance [20].

Then, time-domain BSS is executed on x;(k, m) and the separated signals
y;(k, m) are obtained in each subband in the separation stage. If we utilize
DFT filterbanks, we have to use a complex version of the time-domain BSS
algorithm [21]. In each subband, we estimate FIR filters as separation filters
S0 as to cover the reverberation. Since we employ down-sampling, short FIR



14 Subband Based Blind Source Separation 335

| Analysis stage | | Separation stage | | Synthesis stage |

% (0m)

B—eyi(n)

*(m—1

- [Tomssh”
Ty
'

*An)—

W™ : g R 555y
b X, i
e iR P Ra )

-ty M niNAY

W,

SN, S vl - I
.>~ (N-1,m) Ya 'lNl,mlé _,.{Nl,m‘ln A

[ PR s
W W

;v_l
analysis SSB modulation SSB demodulation synthesis

M: # of subband, R: down-sampling rate, W,-e jmm e, =N
fin): LPF for analysis, g(n): LPF for synthesis, Re]: real part

Fig. 14.3. Block diagram of subband BSS with an SSB filterbank. TDBSS denotes
time-domain BSS. LPF denotes low pass filter. A 2 x 2 case is depicted.

filters of length /R are sufficient to separate the subband signals in each
subband.

Finally, in the subband synthesis stage, separated signals y;(n) are ob-
tained by synthesizing each separated signal y;(k, m).

Subband BSS with SSB Filterbank. In this chapter, we utilize a
polyphase filterbank [25] with single sideband (SSB) modulation [28], which
is widely used in the echo canceller area [29,30]. A block diagram of subband
BSS with an SSB filterbank is shown in Fig. 14.3. Since this also has the form
of a generalized discrete Fourier transform (GDFT) filterbank [28], the filter-
bank can be realized effectively by FFT. Furthermore, in order to make the
analyzed signals real-valued, SSB modulation is adopted in the analysis stage
(Fig. 14.3). Moreover, to avoid the aliasing problem, the SSB-modulated sub-
band signals are not critically sampled, but oversampled, i.e., R < N. Here,
we employ two-times oversampling R = %. The low-pass filter used here in
the analysis filterbank as a prototype filter is f(n) = sinc(g7;) of length
6N. By using SSB modulation, we obtain SSB modulated real-valued signals

z$°"(k,m) in each subband.
Thanks to the SSB modulation, in the separation stage, we can apply
SSB

the time-domain BSS algorithm to z7 (k,m) without expanding it into a
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complex-valued version. A detailed explanation of the time-domain BSS al-
gorithm we employed is provided in the following subsection.

After obtaining the separated signals y;°® (k, m) in each subband, we ex-
ecute the SSB demodulation and synthesize them to obtain output signals
y;(n) in the time domain. The low-pass (prototype) filter used in the synthesis
filterbank is g(n) = sinc(g—;rz) of length 6R.

14.3.2 Time-Domain BSS Implementation for a Separation
Stage

Thanks to the SSB modulation, we can use any real-valued time-domain
BSS algorithm for subband BSS, including a higher order statistics based
algorithm [4,5] and a second order statistics based algorithm [6,31]. A generic
framework is discussed in [7]. Here, we describe the algorithm we used in the
experiments reported in this chapter. In addition, this section describes how
we can design the initial values of the separation filters for each subband.

Time-Domain BSS Algorithm. Here, we employ an algorithm based on
time-delayed decorrelation for non-stationary signals [31]. Relying on the non-
stationarity and non-whiteness of the source signals, this algorithm minimizes
the cross-correlation of output signals for some time lags for all analysis
blocks, simultaneously. It is verified that this algorithm works for convolutive
mixtures of speech signals [32].

We estimate FIR filters as the separation filters w;

ij
k. We write them in a matrix form W*(m) where its ij component is w¥; (m)

i
for convenience. The adaptation rule of the i-th iteration is

(m) in each subband

BS—-1
Wi (m) = Wi(m) + 22 Y {(diagR}(0)) ' (diagR},(m))
b=0

—(diagRZ(O))*lRZ(m)} * Wf(m), (14.5)

where RZ(T) represents the covariance matrix of outputs y(m) =
(5B (k,m), - ,y53® (k,m)]" in the b-th (b=0,--- , B—1) analysis block with
time delay 7, [i.e., R} (T) = %ZtL:l y(b% + )y (b% +t — 7)], o denotes a
step-size parameter, * denotes a convolution operator, L is the block length
and S is the blockshift rate. Note that the algorithm we used here is a batch
algorithm, i.e., the algorithm runs by using all the data on each iteration.

Initial Value Design of Separation Filters. A suitable initialization of
the separation filters helps the convergence of time-domain BSS and miti-
gates the permutation problem in subband BSS. We can use constraint null
beamformers, which makes spatial nulls towards given directions, as the ini-
tial value of the separation filters [32]. This is based on the fact that the
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time difference T;;

Fig. 14.4. Setup of null beamformer.

BSS solution behaves as adaptive beamformers, which form nulls in the jam-
mer directions [33]. Based on this fact, we design null beamformers towards
possible sound directions and utilize them as our initial values for the BSS
adaptation. Here, we give an example.

Here, we assume a linear microphone array with a known microphone
spacing. First, we assume that the mixing matrix H(f) represents only the
time difference of direct sound arrival 7;; with respect to the midpoint be-
tween the microphones (Fig. 14.4). This H(f) is written in the frequency
domain as follows:

exp (927 fri1) -+ exp (927 fTin,,,.)
H(f) = : : ; (14.6)
exp (227 fTn,1) - exP (927 f Ty wer )

where 7;; = % cosf;, d; is the position of the j-th microphone, 6¢; is the
direction of the i-th source as an initial value, and ¢ is the speed of sound.
Note that these d; values need not be precise because this H(f) is used only
for the initialization of BSS. It should be also noted that the precise directions
of sources, which are not given in a blind scenario, are not required for the
initialization. That is the ; values can be very rough approximations, e.g.,
+60° for the 2 x 2 case (i.e., left position or right position, for example).
Then we calculate the inverse of H(f) at each frequency, W(f) = H™1(f)
and convert the elements w;; (f) of this W(f) into the time domain, w;;(n) =
IFFT (w;;(f)). We can use this w;;(n) as the initial value for time-domain
BSS. Then, by applying subband analysis on these w;;(n), we obtain the
initial values of the separation filters in each subband W§(m) for (14.5).

14.3.3 Solving the Permutation and Scaling Problems

Scaling and permutation problems occur in subband BSS in a way similar
to that found with frequency-domain BSS, i.e., the estimated source signal
components are recovered with a different order and gain in the different
frequencies. Thanks to the initial value mentioned in the previous subsection,
we can mitigate the permutation problem, however, it sometimes still occurs.
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Fig. 14.5. Flows to solve the permutation and scaling problems (a) in the frequency
domain and (b) in the subband domain.

In order to solve the permutation problem, we can also employ an
adaptive-beamformer-like characteristic of the BSS solution [34]. We can solve
the problem by reordering the row of estimated separation filters W¥*(m) so
that the null of the directivity pattern obtained by W¥(m) is sorted and
forms a null toward almost the same direction in all subbands. This pro-
cedure is easily realized by looking at the directivity pattern of W(f) in
the frequency domain [Fig. 14.5 (a)] [34]. We can also solve the permutation
problem by sorting the row of the estimated separation filters W¥(m) so that
the cross-correlation of separated signals y$°®(k,m) in adjacent subbands is
maximized [12], [14]. With the correlation method, we can solve the problem
in the subband domain [Fig. 14.5 (b)].

For the scaling problem, we can also use the directivity pattern calculated
with the separation filters [35], that is, we normalize the row of the estimated
separation filters W¥(m) so that the gains and phases of the target direc-
tions become 0 dB and 0, respectively. It can be performed by transforming
WF(m) into the frequency domain [Fig. 14.5 (a)] [34]. The minimal distortion
principle [17] or the projection back method [10] can also be employed for
W (f) to solve the scaling problem [32], e.g., W(f) « diag]W=L(f)]W(f).
We can also solve the problem naively by normalizing the separation filters
W¥(m) so that each component wfj (m) has the same power as the corre-
sponding component of null beamformers W% __(m), which have nulls in the
jammer directions. This can be executed in the subband domain [Fig. 14.5
(b).

We can combine some solutions mentioned above. Here is one of the so-
lutions to the permutation and scaling problems which we employed:

i) Synthesize W¥(m) to obtain W(n) in the time-domain, then obtain
W (f) using a discrete Fourier transform (DFT).

ii) Estimate signal directions 6; (i = 1, -+, Ng,,,) from the directivity gain
pattern of W(f) [35]. When N, > 3, it is recommended that signal
directions be estimated analytically from W(f) [36].

iii) Solve the permutation problem by reordering the W(f) row so that the
0; values are sorted.
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Fig. 14.6. Layout of room used in experiments. T =300 ms.

iv) Make null beamformers by using (14.6) with the estimated 6; in step
ii), and by calculating W(f) = H~!(f). We call this null beamformer
Wesr(f) and use it to solve the scaling problem.

v) Calculate the inverse DFT of Wygr(f) and perform subband analysis to
obtain W __(m).

vi) Rescale W¥(m) so that sz (m)|| = HwNBF”( m)||, where ||z(m)|| means

Z% 2%(m) and Qy, is the separation filter length in the k-th subband.

14.4 Basic Experiments for Subband BSS

14.4.1 Experimental Setup

In order to confirm the performance of subband BSS, we undertook separation
experiments using speech data convolved with impulse responses measured
in a real environment for a 2 x 2 case. The impulse responses were measured
in the room shown in Fig. 14.6. The reverberation time Ty was 300 ms. Since
the sampling rate was 8 kHz, 300 ms corresponds to 2400 taps. As the original
speech, we used two sentences spoken by two male and two female speakers.
Investigations were carried out for six combinations of speakers. Each mixed
speech signal was about eight seconds long. We used the first three seconds of
the mixed data for learning, and we separated the entire eight second data.

To evaluate the performance, we used the signal-to-interference ratio
(SIR), defined as

SIR; = SIRo; — SIR;, (14.7)

>n Vi (n)
2o (i vis; (n))?
2on X, ()

2 n (2t Xhs

SIR,; = 10log

SIR;; = 10log

n))?’
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where y;s, is the output of the whole system at y; when only s; is active, and
Xps; = hp; *8; (* is a convolution operator, k = ¢ in our experiments). SIR is
the ratio of a target-originated signal to jammer-originated signals.

14.4.2 Subband System

For subband analysis and synthesis, we used a polyphase filterbank [25] with
single sideband (SSB) modulation/demodulation [28], which we mentioned
in Section 14.3.1. Here, the number of subbands N was 64 and the down-
sampling rate R was 16 (R = £). We decided this number of subbands
N so that the down-sampling rate of subband BSS corresponded to that of
conventional frequency-domain BSS (see Section 14.4.3) of frame size T' = 32
with the half frame-shift.

For the time-domain algorithm used in subband BSS, we estimated sep-
aration filters wfj (m) of 64 and 128-taps in each subband. The step-size for
adaptation a was 0.02 and the number of blocks B was fixed at 20 for three
seconds of speech. We adopted 6;==+60° as the initial values of the separation
filters (see Section 14.3.2).

14.4.3 Conventional Frequency-Domain BSS

The frequency-domain BSS iteration algorithm was a natural gradient based
algorithm

AW, (f) = n[diag ((2(y)y™)) —(@(y)y™)] Wi(f),

where y=y(f, m), superscript H denotes a conjugate transpose and (z(m))
denotes the time average with respect to time m: Tln an'; 61 x(m). Subscript
i is used to express the value of the i-th step in the iterations, n is a step-
size parameter, and @(-) is a nonlinear function. As the nonlinear function
&(-), we used $(y) = tanh(g - abs(y))e/28Y) [37], where g is a parameter to
control the nonlinearity and we utilized g = 100. As the initial value of the
separation matrix, we utilized W(f) = H™1(f) with 6;=+60° (see Section
14.3.2).

We fixed the frame shift at half the STFT frame size T', so that the number
of samples in the time-frequency domain were the same. To solve the scaling
and permutation problems, we also used the beamforming approach [34]:
first, from the directivity pattern obtained by W (f) we estimated the source
directions and reordered the row of W(f) so that the directivity pattern
formed a null toward the same direction in all frequencies, then we normalized
the row of W(f) so that the gains of the target directions became 0 dB.

It should be noted that we used the time-average of y(f,m) of three
seconds for adaptation, i.e., we used a batch algorithm. It should also be
noted that if we fix the data length and frame shift at half the frame size,
the number of samples L,, of sequences y(f,m) in each frequency depends
on the frame size T roughly speaking, L,, x (data length)/T.
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Here we utilized the frequency-domain algorithm based on higher order
statistics (HOS) despite the fact that we are using a time-domain algorithm
relied on second order statistics (SOS). The performance of time-domain BSS
based on SOS has already been compared with that based on HOS [38], and it
was shown that the performance is not significantly different when we use an
adaptive-beamformer-like initial value. It has also been shown [39] that the
decorrelation-based algorithm and the fourth order moment-based algorithm
perform identically for speech. Therefore, we consider that we will see the
same tendency as that shown by our results if we compare time- subband-
and frequency-domain BSS using HOS/SOS only.

14.4.4 Conventional Fullband Time-Domain BSS

We also examined fullband time-domain BSS. The algorithm was the same as
that used in subband BSS, i.e., (14.5). In this case, the output signal vector
y(n) consisted of the signals in the time domain [y;(n),--- ,yy.. (n)]*. We
used values of & = 0.002 and B = 20. To obtain the initial condition of
the separation filters, we also utilized W(f) = H~!(f) with §;=+60° and
converted it into the time domain (see Section 14.3.2).

In fullband time-domain BSS, the output speech signals are distorted and
whitened (see [40] and Section 14.4.6). We evaluated the SIR values after
compensating for this whitening effect [32].

14.4.5 Results

Subband System Evaluation. To evaluate the subband analysis-synthesis
system, we measured the signal-to-distortion ratio (SDR), which is defined
as

>’ b*(n - D)
> {b(n - D) —a(n)}?

where the system input b(n) = §(n — &), Ly is the length of the delta
function, D is the delay caused by low-pass filters (LPF) in the analysis and
synthesis stages, and a(n) is the output (impulse response) of the subband
analysis-synthesis system. The SDR was 59.2 dB. This distortion caused by
subband analysis and synthesis can be ignored because the separation perfor-

mance SIR is at most 15 dB (see Fig. 14.7), and thus masks this distortion.

SDR = 10log

[dB], (14.8)

Separation Performance of Subband BSS. In order to confirm the supe-
riority of subband BSS, we compared the separation performance of subband
BSS with that of frequency-domain BSS and time-domain BSS.

Figure 14.7 shows the separation result SIR and the value of the average
correlation coefficient between source signals CC(N) = + ZkN:1 |7 |, where
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Fig. 14.7. Separation performance of frequency-domain BSS (white bars), sub-
band BSS (black bars) and fullband time-domain BSS (gray bars). “CC”: average
correlation coefficient. Adaptation data length=3 s and separated data length=8 s.
Tr = 300 ms.

N is the number of subbands for subband BSS or number of frequencies for
frequency-domain BSS and 7 is the correlation coefficient between source
signals of a k-th frequency/subband.

For frequency-domain BSS, the parameter was the STFT frame size T'.
In Fig. 14.7, T is shown by the horizontal axis. For subband BSS, we used
separation filters wY (m) of 64 and 128-taps in each subband; this corre-
sponds to 1024 and 2048-taps in a fullband, respectively. In Fig. 14.7, they
are shown as “sub1024” and “sub2048”, respectively. Our N = 64 subbands
with decimation R = 16 corresponds to T" = 32 in frequency-domain BSS
with regard to down-sampling rate. The number of learning data samples in
the time-frequency domain was the same for subband and frequency-domain

BSS.

With frequency-domain BSS, although we should use long frame to handle
the reverberation, CC becomes large and the independent assumption seems
to collapse as frame size T' becomes large. This is because the number of sam-
ples in each frequency becomes small. Therefore, the performance degraded
when we used separation filters of 2048-taps (i.e., frame size T = 2048).
Please note that the adaptation data length was three seconds and the half
frame-shift was utilized.

With fullband time-domain BSS (“full1024” and “full2048” in Fig. 14.7),
on the other hand, the CC was very small and we obtained a good result
when the separation filter length was 1024. However, when we employed a
separation filter length of 2048, it became difficult to estimate the separation
filters and the performance degraded. The performance for various separation
filter lengths with fullband time-domain BSS can be seen in [32].
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By contrast, we achieved better separation performance with subband
BSS even when we estimated separation filters of 2048-taps. Moreover, with
subband BSS, we were able to confirm that the CC value was sufficiently
small. From the CC values, we can say that the independence assumption held
well in subband BSS. Another possible reason for the superior performance of
subband BSS is that the permutation problem does not arise in the subbands.
This point is discussed in the next subsection.

14.4.6 Discussion

Using subband BSS, we can maintain the number of samples in each subband
and obtain better separation performance. Using one second of speech as
adaptation data, we still obtained acceptable separation performance: SIR =
7.47 dB for Tr = 300 ms. If the adaptive data length is sufficiently long, the
same performance would be obtained by time-domain BSS, frequency-domain
BSS, and subband BSS. Our experimental results showed that subband BSS
works effectively when the adaptation data length is short.

Moreover, using subband BSS, we obtained separated signals with less
whitening effect than when using fullband time-domain BSS. When we use
the usual time-domain BSS algorithm, the output signal spectrum is flattened
[40]. This is because we remove the time dependence of the speech signals.
These whitened speech signals sound unnatural. In contrast, because this
whitening effect is limited in each subband, it can be diminished by subband
BSS. Figure 14.8 shows an example of separated speech obtained with time-
domain BSS and subband BSS. The separated signal is whitened using time-
domain BSS, while the shape of the spectrum holds well using subband BSS.

Furthermore, although we did not face the permutation problem due to
the initialization with null beamformers, this problem occurs in frequency-
domain BSS and subband BSS in general; the spectral components of sources
are recovered in a different order at different frequencies/subbands. This
makes the time domain reconstruction of separated signals difficult. How-
ever, this problem is less serious in subband BSS than in frequency-domain
BSS. This is because the permutation problem does not occur in each sub-
band as the separation procedure is executed in each subband. Therefore,
we face a smaller number of permutation problems than with frequency-
domain BSS. In particular, subband BSS encounters very few permutation
problems in low frequency bands, where it is difficult to solve the problems
with frequency-domain BSS [15]. Moreover, we can use a wider band signal
than frequency-domain BSS to solve the permutation problem in between
subbands. Therefore, we can use more information on separated signals and
separation filters, and can solve the problem more easily than in frequency-
domain BSS.

Finally, we discuss the computational cost. Because the calculation of
convolution and correlation in the time domain (14.5) is expensive, we calcu-
late them in the frequency domain. As discussed in [20], [21], we can reduce
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Fig. 14.8. Example spectra of a separated signal with (a) time-domain BSS and
(b) subband BSS (broken lines). The solid lines show the spectrum of the original
speech.

the computational cost by using subband processing. When we consider the
decimation R, the computational cost for N subbands per time is reduced
to about (N/2 4+ 1)/(R x R) times that of fullband time-domain BSS. As
R = N/4 in our case, we can reduce the computational cost by about 2/R.

14.5 Frequency-Appropriate Processing for Further
Improvement

Subband BSS allows us to use different separation methods to estimate the
separation filter for different subbands. By exploiting this advantage, in this
section, we concentrate on low frequency bands for speech separation.

With speech separation, the SIR is generally worse in low frequency bands
as shown in Fig. 14.9, which plots the SIR values of separated signals for each
subband. One reason for the poor performance at low frequencies is that the
impulse response is usually longer (see Fig. 14.10) and therefore it is harder
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Fig. 14.9. SIR of separated signals in each subband. We can see that the SIR is
poor in low frequency bands for every speaker combination.
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Fig. 14.10. Spectrogram example of a room acoustic impulse response. Black indi-

cates high power and white indicates low power. We can see that the reverberation
is longer at low frequencies than at high frequencies.

to separate signals in low frequency bands than in high frequency bands.
Moreover, since speech signals have high power in low frequency bands, the
performance in these bands dominates the overall speech signal separation
performance. Therefore, it is important for speech separation to improve
the separation performance in low frequency bands to obtain better overall
separation performance.

14.5.1 Longer Separation Filters in Low Frequency Bands

One possible way to improve the SIR in low frequency bands is to estimate
longer separation filters in these bands in order to cover the long reverber-
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Table 14.1 Separation performance of subband BSS. (A)-(F) the overlap-
blockshift was executed only for low frequency bands 0-5, and (G) and (H)
the overlap-blockshift was executed for all subbands. N = 64.

# of taps S IR [dB]

band 0-5 |band 6-32 || no-overlap || overlap (x2) | overlap (x4)
(A)| 32 32 6.0
(B) 64 32 9.9 9.8
(C)| 128 32 9.5 10.1 10.4
(D) 64 64 10.3 10.8 10.7
(E)| 128 64 10.5 11.4 122
(F)| 128 | 128 | 10.1 1.0 | 117 |
G)| 64 64 10.3 10.7 10.7
(H)| 128 128 10.1 11.2 12.2

ation. If the length of the separation filters is insufficient, we cannot reduce
reverberant components of interferences that are longer than the filters and
we obtain poor SIR [24].

We therefore employ longer separation filters for low frequency bands
(bands 0-5). Figure 14.10 shows that the reverberation is long below about
600 Hz. Therefore, we used long filters for these frequency bands. The column
labelled “no-overlap” in Table 14.1 shows the separation performance for each
separation filter length condition.

In Table 14.1 (A)-(C), we used a 32-tap separation filter for high frequency
bands, and we changed the filter length for low frequency bands (bands 0-5).
We can see that a 32-tap long separation filter cannot achieve good per-
formance [see Table 14.1 (A)]. This is conceivable that it cannot cover the
reverberation in low frequency bands. When we used long separation filters
only in low frequency bands [Table 14.1 (B)], the separation performance was
greatly improved. However, when we used 128-taps in low frequency bands,
the separation performance degraded [see Table 14.1 (C)]. Figure 14.11 shows
the SIR for cases (A) - (C). We can see that the performance of (C) is worse
than (B). This is attributed to the fact that the number of samples in each
subband is too small to allow us to estimate a 128-tap separation filter pre-
cisely. The proposal in the next section (Section 14.5.2) will overcome this
problem.

14.5.2 Overlap-Blockshift in Low Frequency Bands

Another possible way to improve the SIR in low frequency bands is to uti-
lize a fine overlap-blockshift in the time-domain BSS stage. Using the fine
overlap-blockshift, we can increase outwardly the number of samples in each



14 Subband Based Blind Source Separation 347

20 T T
TR=300ms, N=64
32taps @high bands , no overlap
15t
A F)
—10p A F
o Y
A/
| g
» 51 ;I
i
i
i
ok CASE (A) 32taps@low bands
——————— CASE (B) 64taps @low bands
e GASE (C) 128taps @low bands
0 5 10 15 20 25 30

Subband number

Fig. 14.11. Effect of filter length for low frequency bands.

subband, and can estimate the separation filters more precisely. Since our
time-domain BSS algorithm (14.5) divides signals into B blocks to utilize the
non-stationarity of signals, we can divide signals into blocks with an overlap,
as long as the non-stationarity is expressed among blocks. It should be noted
that this overlap-blockshift is executed in the separation stage, i.e., after the
decimation for subband analysis.

In Table 14.1 [(B)-(F)], the columns show the SIR obtained by the overlap-
blockshift only for low frequency bands (bands 0-5). “Overlap (x2)” and
“overlap (x4)” means that the blockshift rate S = 2 and 4 in (14.5), respec-
tively. Table 14.1 [(B)-(F)] show that when we used the overlap-blockshift
only for low frequency bands, we obtained better separation performance.
With a fourfold overlap-blockshift for (E), we were able to estimate the sep-
aration filters of 128-taps in low frequency bands, and we obtained the best
separation performance (underlined in Table 14.1). Figure 14.12 shows the
effect of the fine overlap-blockshift in low frequency bands.

14.5.3 Discussion

Even when we used 128-taps for all the frequency bands [(F) in Table 14.1],
the performance was no better than when we used 128-taps only for the
low frequency bands [(E) in Table 14.1]. Figure 14.13 shows the SIR in each
subband for (E) and (F). We can see that the use of the long separation
filters is not so effective in the high frequency bands. Sometimes, short filters
achieve better separation performance than long filters in the high frequency
bands. We can say that the employment of long separation filters only in low
frequency bands is enough for the separation.

Furthermore, when the overlap-blockshift was used in all subbands [see
(G) and (H) in Table 14.1], the increase in SIR was very small compared with
the SIR for (D) and (F) in Table 14.1. Figure 14.14 shows the improvement
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Fig. 14.13. Example of SIR in each subband when we use a long filter in all
frequency bands.

in separation performance provided by the overlap-blockshift. The overlap-
blockshift is also effective in high frequency bands. However, the contribution
of the improvement to SIR in the high frequency bands is not significant
for the whole performance [see (F) and (H) in Table 14.1]. This is because
the original power of the high frequency components of the speech signal
is smaller than that of the low frequency components. Therefore, we can
conclude that the use of a fine overlap-blockshift only in low frequencies is
sufficient to obtain improved performance.

By using long separation filters and the fine overlap-blockshift technique
only in low frequency bands, we can efficiently separate convolutive mix-
tures of speech. Such frequency-dependent processing is impossible with time-
domain BSS and intricate with frequency-domain BSS. Moreover, we can save
the computation cost without degrading the separation performance by lim-
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iting the use of long separation filters and the fine overlap-blockshift only to
low frequency bands.

There could be other ways to improve the separation performance. For
instance, we may be able to use different microphone pairs with appropriate
spacing for each subband. From a beamforming point of view, the resolution
of a spatial cancellation is related to the frequency. If the microphone spac-
ing is greater than half the wavelength, spatial aliasing occurs. This tends to
happen at high frequencies. On the other hand, if the spacing is too small,
the phase and amplitude difference between observations at low frequency
becomes too small and therefore, it becomes difficult to achieve good perfor-
mance. That is, the small phase difference between the observations at the
microphones is also a reason for the poor performance in low frequency bands.
A low frequency generally prefers a long spacing and a high frequency likes a
short spacing [41]. In this chapter, we considered the case of N,, microphones
whose number and spacing are fixed and ignored the multiple spacing micro-
phone case. However, if we could configure the microphone spacing according
to frequency, we would obtain better performance.

14.6 Conclusions

In this chapter, subband processing was applied to BSS for convolutive mix-
tures of speech. The subband-based BSS approach offers a compromise be-
tween the time-domain technique, which is usually difficult and slow with
many separation filter coefficients to estimate, and a frequency domain tech-
nique, which has difficulty estimating statistics when the adaptation data
length is insufficient. Our proposed subband BSS can maintain a sufficient
number of samples to estimate the statistics in each subband and estimate
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a separation filter long enough to cover the reverberation. We confirmed the
effectiveness of subband BSS experimentally.

Furthermore, making good use of subband processing, i.e., employing an
appropriate separation method for each frequency band, we showed that we
can improve the separation performance with long separation filters and the
overlap-blockshift technique only in low frequency bands. Subband BSS is a
powerful separation tool when the source signals s; or the impulse response
of the system hj; have different characteristics in different frequency bands.
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