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Abstract. Speech enhancement was not and should not be examined solely with
the tool of time-frequency analysis. Approaching this problem from different per-
spectives or incorporating other knowledges helps to expand the number of options
open to us when developing a speech enhancement system. Using multiple micro-
phones at different locations makes it possible to develop more sophisticated source
separation and dereverberation technologies for speech enhancement, which enable
man-made systems to extract a speech signal of interest in a noisy environment
with competing speech and/or noise sources. This phenomenon is referred to as
the cocktail party effect demonstrated by human beings and many other creatures
with few efforts. However, separating and dereverberating speech signals is a very
difficult problem in reverberant environments and the state-of-the-art algorithms
are still unsatisfactory. The challenge lies in the coexistence of spatial interference
from competing sources and temporal echoes due to room reverberation in the ob-
served microphone signals. Focusing only on optimizing the signal-to-interference
ratio is inadequate for most speech processing systems where source separation and
speech dereverberation are two fully-integrated problems. In this chapter, we study
these two problems in a unified framework. We deduce that spatial interference
and temporal reverberation can be separated and a SIMO system with the speech
signal of interest as input is extracted from the MIMO system. Furthermore, this
interference-free SIMO system is dereverberated using the MINT theorem. Such a
two-stage procedure leads to a novel sequential source separation and speech dere-
verberation algorithm based on blind multichannel identification. Simulations with
measurements obtained in the varechoic chamber at Bell Labs verified the proposed
algorithm.

12.1 Introduction

Speech enhancement is essential for tremendous applications of speech pro-
cessing and communications since we are living in a natural environment
where noise or disturbance is perpetual and ubiquitous. Speech signals can
seldom be recorded in pure form and in most cases they are immersed in
acoustic ambient noise or reverberation.
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In order to develop an effective approach to extracting a desired speech
signal from their corrupt observations, we need to understand how distortions
are introduced. From a statistical viewpoint, there are only two sources of dis-
tortion. One is uncorrelated or even independent noise or competing speech,
and the other is correlated reverberation or echo. While many single-channel
algorithms and techniques have had varying success in noise reduction as ex-
plained in previous chapters, speech enhancement in the sense of separation
and dereverberation would be very difficult if not impossible to accomplish
using only one microphone in distance. A listener has the ability of choosing
to focus on a specific speaker in a room where several people are talking con-
currently and where noise sources might meanwhile exist. This phenomenon
is referred to as the cocktail party effect or attentional selectivity [1]. This ef-
fect is mainly attributed to the fact that we have two ears and our perception
of speech is based on binaural hearing, which can be easily demonstrated by
observing the difference in understanding between using both ears and with
either ear covered when listening in a cocktail-party-like environment. This
suggests the use of two or more microphones, i.e., microphone arrays, in the
development of prospect speech separation and dereverberation algorithms
and systems.

As a part of our daily experience, we know that distinguishing and even
separating components of a mixture or collection depends on their distinc-
tions. In a multispeaker environment, sound sources are different in location
and statistics in addition to spectrum, which leads to two different categories
of speech separation method using multiple microphones: beamforming and
blind source separation (BSS).

Beamforming is a form of spatial filtering that enhances the signal from
“look direction” and attenuates signals that propagate from directions other
than the “look direction” [2]. Therefore a beamformer can not only separate
multiple sound sources but also suppress reverberation for the speech source
of interest. However, its performance is limited by a number of factors in prac-
tice. Beamforming relies on the knowledge of the speaker’s position, which is
seldom available. While the position of the speaker can be estimated by anal-
ysis of the microphone outputs, errors are inevitable particularly when the
room is considerably reverberant [3]. Furthermore, current microphone array
technologies including beamforming originated from array signal processing.
But compared to classical sensor array processing with antenna arrays [4],
the basic conditions are significantly different in acoustics: speech is a base-
band signal and the localization and recording take place in the nearfield
with respect to the microphone array.

Alternatively BSS methods tackle this problem by taking advantage of
the difference in statistics among multiple sound sources under investigation
[5]. BSS that is typically accomplished by independent component analysis
(ICA) algorithms [6] assumes mutually independent sound sources. The mix-
ing procedure is typically delineated with a multiple-input multiple-output
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(MIMO) mathematical model, which is either memoryless or with memory,
being referred to as instantaneous and convolutive mixtures, respectively.
An ICA processes microphone signals with a de-mixing system whose out-
puts are estimates of the separated source signals satisfying the independent
assumption. Existing ICA algorithms differ in the way the dependence of
the separated source signals is defined, i.e., the employed criteria for mini-
mization, which include second order statistics [7], higher (than two) order
statistics [8], and information-theory-based measures [9]. BSS methods allow
for near-field sources and reverberant acoustic environments. But in reverber-
ant environments, they are either very complex (for time-domain approaches
[10]) or have an inherent problem of so-called permutation inconsistency [11]
(for frequency-domain algorithms [12]). Moreover, it is not true nevertheless
that current BSS methods work for arbitrary source positions. When sources
are at the positions such that the mixing matrix is singular, the de-mixing
system (the inverse of the mixing matrix) does not exist and source sep-
aration cannot be attained. Finally, it should be noted that, in addition to
the above drawbacks, independent but distorted source signals are valid solu-
tions for BSS methods. Therefore deconvolution is usually needed to mitigate
convolutive distortion and reconstruct original speech signals.

Speech dereverberation remains a challenging problem even after three
decades of continuous research. While the number of employed microphone
signals is a common way to classify current speech dereverberation meth-
ods, another insightful approach is based on whether the channel impulse
responses need to be known or estimated. In the case of a single micro-
phone with the corresponding acoustic channel impulse response not being
able to access anyway, either cepstral-domain processing techniques were sug-
gested to separate speech from reverberation [13], [14] or characteristics of
speech (usually in statistical forms) could be exploited with the attempt to
recover the energy envelope of the original speech [15]. But they achieved
only moderate successes because of a very large variety of applications. If
the acoustic channel impulse responses are known, speech dereverberation
can be performed by inverting those impulse responses. It is well known that
the impulse response of a single acoustic channel needs to a minimum-phase
sequence for stable and causal ezact inversion [16]. Otherwise the inverting
filter would either be IIR (noncausal and with a long delay) for exact inver-
sion or just produce an LS (least-squares) solution. However, using multiple
microphones, we can carry out perfect speech dereverberation with causal
FIR filters even for non-minimum-phase channels. The principle is widely
known as the MINT (multichannel inverse) theorem [17].

In this chapter, we will investigate the problem of speech enhancement
by separating the speech of interest from concurrent interference (speech
and/or noise) sources and by mitigating distortion due to room reverber-
ation from a novel perspective within a unified framework using multiple
microphones. In a MIMO acoustic system, microphone outputs are convolu-
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tive mixtures containing both reverberant speech and competing interference.
We will show that the reverberant speech and interference can be completely
separated given the blindly estimated channel impulse responses from in-
terference sources. It is assumed that the number of microphones would be
greater than the number of speech and interference sources. Then by choos-
ing different combinations of microphone outputs, we obtain a number of
diversely distorted speech signals, which composes a single-input multiple-
output (SIMO) system. For such a system, we can again blindly identify its
channel impulse responses and then apply the MINT theorem to remove re-
verberation. Therefore, the speech enhancement algorithm that will be devel-
oped here is a two-step procedure dealing with interference and reverberation
sequentially. As a result, we are able to mimic the cocktail party effect with
man-made machines.

This chapter is organized as follows. Section 12.2 introduces the MIMO
signal model, formulates the problem of speech separation and dereverber-
ation, and explains all assumptions that will be made. In Section 12.3, we
brief the technique of blindly identifying a SIMO system. Section 12.4 ex-
plains how to separate reverberant speech and interference. A SIMO system
with the speech of interest as the input will be extracted from the MIMO
system. Since the SIMO is free of interference, we can again blindly identify
its impulse responses and perform exact dereverberation using the MINT
theorem, which will be illustrated in Section 12.5. Section 12.6 evaluates the
developed algorithm by simulations and Section 12.7 draws the conclusions.

12.2 Signal Model and Problem Formulation

We consider an acoustic environment where there are one speech source of
interest, M — 1 concurrent sound sources, and N microphones with M < N.
The speech source and M — 1 other sound sources are mutually independent.
Those competing sound sources can be speech or noise, and are regarded as
interference. Such a system is mathematically described by an M x N MIMO
FIR model as shown in Fig. 12.1. Without loss of generality, we label the
speech source of interest as the first. At the n-th microphone and at the k-th
sample time, we have:

z,(k) = i bl s (k, Ly) + b (k), (12.1)
7122211,2,-.- K, n=1,2,--- N,
where (-)7 denotes the transpose of a matrix or a vector,
T A P I
n=12,---,N, m=1,2,--- , M,

)
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Fig. 12.1. Illustration of a MIMO FIR acoustic system having M sound sources
and N microphones.

is the impulse response (of length Lj, Vm,n) between source m and micro-
phone n,

sm(k,Lp) = [ sm(k) sm(k—1) - sm(k‘—Lh—i—l)}T

is a vector containing the last L; samples of the m-th source signal s,,, and
by (k) is zero-mean additive white Gaussian noise (AWGN).

Using the z transform, the signal model of the MIMO system (12.1) is
expressed as

M
Xn(2) =Y Hum(2)Sm(2) + Ba(2), n=1,2,--,N, (12.2)
m=1
where
Lp—1
Hym(2) = > homaz " (12.3)
=0

In this system, we assume no a priori knowledge about the original speech
signal s1(k), the interference signals s,,(k) (m = 2,---,M), or the chan-
nel impulse responses hy,,,. All that we have are microphone outputs ., (k)
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(n=1,2,---,N). But the speech enhancement algorithm that will be devel-
oped needs to know the channel impulse responses from interference sources
to each microphone Ay, (m =2,---, M,Vn). Therefore we have to estimate
them blindly. While blind MIMO identification is practically appealing, it
still is a theoretically open problem and the current research in this area
remains at the stage of feasibility investigation. This problem is already very
difficult for communication systems with short channel impulse responses.
Then for an acoustic system where the filter length of a channel impulse re-
sponse in thousands of samples is not uncommon, blind MIMO identification
seems formidable. Therefore we propose to decompose the problem into sev-
eral subproblems in which SIMO systems are blindly identified. Presumably
interference sources are motionless or move very slowly. Consequently their
corresponding channel impulse responses change very slowly in time. It is
further assumed that from time to time each interference source occupies at
least one exclusive interval alone. Then during every single-talk interval, a
SIMO system is blindly identified and its channel impulse responses are saved
for later speech separation and dereverberation when all sources voice out
simultaneously. Although these assumptions make the developed algorithm
less flexible, they still are reasonable and stand in many practical scenarios.
Apparently a sound source detection algorithm that distinguishes single and
multiple talk is necessary and also interesting, but it is beyond the scope of
this study.

In this chapter, we suppose that noise comes from one single point source
or multiple point sources, and additive, dispersive noise is negligible, i.e.,
b, (k) = 0,¥n, k. Therefore, the blind SIMO identification system could yield
accurate estimates of channel impulse responses and we can assure satisfac-
tory performance for subsequent speech separation and dereverberation.

12.3 Blind Identification of a SIMO System

As assumed in the previous section, from time to time an interference source
Sm(k) (m=2,---, M) would alone occupy an exclusive interval, during which
the MIMO system becomes a SIMO system and the corresponding channel
impulse responses will be blindly estimated. In this section, we will briefly
review the technique of blind SIMO identification and its adaptive implemen-
tations. In order to have a concise presentation and to keep consistent with
the conventional notation used in the literature of blind SIMO identification,
we omit the subscript indicating the source index m in and also only in this
section, which we believe would cause no ambiguity if the reader could pay
slightly more attention.

For a SIMO system, we have the following expression for microphone
signals:

Tp(k) = hy x s(k) +by(k), n=1,2,---,N, (12.4)
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where the symbol * denotes the linear convolution operator and b, (k) can
be neglected by assumption as explained in the previous section. In a vec-
tor/matrix form, such a signal model (12.4) becomes:

x, (k) = H, -s(k), (12.5)
where

xu(k) = [@a(k) @alk—1) - @b~ L+ 1)]",

hno hna -+ hnr,—1 0 0
o — 0 h.n,O hn,ljh72 hn,.thl 0 ’
0 -+ 0  hnpo hni o hpr,—1

s(k) = [s(k) s(k—1) -+ s(k—Lyp+1) - s(k—2L,+2)]" .

In order to ensure that the SIMO system can be blindly identified, the
following two conditions (one on the channel diversity and the other on the
input source signal) need to be met and are normally assumed in earlier
studies as well as in this chapter [18]:

1. The polynomials formed from h, = [hno hnt - hopa1] , n =
1,2,--- N, are co-prime, i.e., the channel transfer functions H,(z) do
not share any common zeros;

2. The autocorrelation matrix R,s = E {s(k)s”(k)} of the source signal
is of full rank (such that the SIMO system can be fully excited from a
perspective of system identification), where F{-} denotes mathematical
expectation.

The idea of blind SIMO identification using only second order statistics
of the outputs was first proposed by Tong et al. [19] and now there are
many different ways to explain the principle. We present here the one that
we usually use in our research. It can be shown that the vector of channel
impulse responses lies in the null space of a cross-correlation like matrix [20]:

R,h =0, (12.6)
where
Yz Renzn  ~Raegar 0 —Roya
T
Ry Ruwy o SR,

Ra:ixj - l?{Xl(k')x,l—'(]{;)}7 ’L,j = 1,2). . 7N’

J

h=[hf b} --- wh]".
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If the SIMO system is blindly identifiable, Matrix R, is rank deficient by
1 (in the absence of noise) and channel impulse responses can be uniquely
determined from R, which contains only the second-order statistics of the
system outputs. When additive noise is present, h would be the eigenvector
of R, corresponding to its smallest eigenvalue.

To develop an adaptive implementation, a simple way is to take advantage
of the cross relations among the outputs [21]. By following the fact that

xixhj=sxhyxhj=wa;%h;, 1,j=1,2,--- N, i #j, (12.7)
we have, in the absence of noise, the following cross relation at time k:
x; (k)hy =xj (k)hi, @,j=1,2,--- N, i #j. (12.8)

When noise is present and/or the estimate of channel impulse responses is
deviated from the true value, an a priori error signal is produced:

eij(k+1) =x{ (k+ 1)h;(k) —x (k+ Dh;(k), i,j=1,2,---,N, (12.9)

where hl(k) is the model filter for the i-th channel at time k. In order to avoid
the trivial estimate of all zero elements, a unit-norm constraint is imposed
on
. . . . T
h(k) = [h{ (k) hi (k) --- hi (k)]
leading to the normalized error signal
eij(k+1) = ey (k + 1)/|[h(k)].

Accordingly, the cost function is formulated as:

Z Z (k+1), (12.10)

=1 j=i+1

and the update equation of the multichannel LMS (MCLMS) algorithm is
deduced as follows [21]:

h(k+1) = h(k) — pVJ(k+1), (12.11)

)

where p is a small positive step size,

oIh+1) 2 [RI(/« +1)h(k) — J(k + 1)1&(1@}

VJ(k+1) = & = - , (12.12)
Oh(k) (k)]
and
En#l_ Rznwn (k) _Rxgml (k) e _f}xMwl (k)
Rm(k) _ _RI1:I2 (k) Zn;ﬁQ I{ZTnfEn (k) : _RIJ\:ffm (k) ’
_RININ (k) _Rzng (k) e Zn;ﬁN f{IHzn (k)

Ry, (k) = Xi(k)X;(kj), i,j=1,2,---, N.
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The idea of adaptive blind SIMO identification could be implemented in
the frequency domain for computational efficiency and fast convergence [22].
The so-called unconstrained normalized multichannel frequency-domain LMS
(UNMCFLMS) algorithm was shown to perform well with an acoustic system
and will be employed in this chapter.

12.4 Separating Reverberant Speech and Concurrent
Interference

In this section, we will explain how to extract reverberant speech from concur-
rent interfering sound sources. It is supposed that channel impulse responses
corresponding to the interfering sound (speech or noise) sources have been
blindly identified using the method developed in the previous section. The
knowledge of these channel impulse responses is being used here to convert
the M x N MIMO system into a SIMO system with the speech signal of
interest as the sole input. The development begins with an example of the
simplest 2 x 3 MIMO system and then extends to a general M x N case with
M < N.

12.4.1 Example: Removing Interference Signals in a 2 X 3
MIMO Acoustic System

For a 2 x 3 MIMO acoustic system, interference signals can be cancelled
by using two microphone outputs at a time. For instance, we can cancel
the interference in X;(z) and X5(z) caused by S2(z) (note that Source 1 is
supposed to be the speech source of interest) as follows:

Xl(Z)HQQ(Z) — XQ(Z)H12(2> =
[H11(2)H22(2) — Ha1(2)Hi2(2)] S1(2) +
[HQQ(Z)Bl(Z) — ng(z)Bg(z)] 5 (1213)

where channel impulse responses Hya(z) and Haa(2) corresponding to Source
2 were blindly estimated ahead of time. Similarly, we can select different
pair of microphone signals and obtain distinctive interference-free though
distorted observations of s1 (k). This procedure is visualized in Fig. 12.2 and
will be described in a more systematic way in the following.

Let us consider the following equation:

Y}](z) = HS1,p1(Z)X1(Z) + H817p2(Z)X2(Z) + H81,p3(Z)X3(Z)

3
=Y Hepa(2)X4(2), p=1,2,3, (12.14)
g=1

where Hy, pp(2) = 0, Vp. This means that (12.14) considers only two micro-
phone signals for each p. The objective is to find the polynomials Hy, ,,(2),
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51&

Sg&

Fig. 12.2. [llustration of removing interference signals from a 2 x 3 MIMO acoustic
system. Source 1 is the speech source of interest and Source 2 is an interference
source as supposed.

p,q =1,2,3, p # q, in such a way that:
Y(2) = Fp(2)S1(2) + Wyl2), p=1,23, (12.15)

which represents a SIMO system where s; is the source signal, y,(k),p =
1,2,3, are the observed microphone signals, f, are the corresponding acoustic
channel impulse responses, and w,(k) is the noise at microphone p. If no
dispersive noise is assumed, i.e., b, (k) = 0,Vn, k, then the noise component
wy (k) is zero too.

Using (12.2) in (12.14), we deduce that:

Y1(2) = [Hs, 12(2)H21(2) + Hs, 13(2) Haa
(e, 12(2) H22(2) + Hyy 13(2) Ha2(2)] S2(2) +
H;, 12(2)Ba(z) + Hg, 13(2) , (12.16)
[Hs, 21(2)H11(2) + Hg, 23(2) H31(2)] S1(2) +
[Hs, 21(2) Hy (
Hy, 21(2)B1(z) + H51,23(
[H
[H

)Bs(2), (12.17)
s1,31(2)H11(2) + Hs, 32(2)H21(2)] S1(2) +
(2) (

Ya(z) =

Y3(2)

By
N
—
I8
~—
_"_
LF
— W
[V}
—
IS
N
&
Ny
R
—~
IS
~
_|_

s1,31 z 1
H, 31(2)B1(2) + Hs, 32(2) Ba(2). (12.18)
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As shown in Fig. 12.2, one possibility is to choose:

Hsl,12(2) = H32(Z)7 Hsl,13(Z) = —H22(Z),
Hy, 21(2) = H32(2), Hs,23(2) = —Hiz(2), (12.19)
Hg, 31(2) = Haa(z), Hs, 32(2) = —Hi2(2).

In this case, we find that:

F1(2) = H3z(2)H21(2) — Hao(2)Hz1(2),
Fy(2) = Haa(2)Hu1(2) — Hi2(2)Hai(2), (12.20)
Fg(Z) = HQQ(Z)H

H
=
=
N
o
|
=
[ V]
SN
N
N—
e
S
2
N
&

and

(
WQ(Z) == Hgg(z)Bl(Z) — H12(Z)Bg(z)7 (1221)
Bl(Z) — ng(z)Bg(Z)

Since deg[Hum(z)] = Ly — 1, where deg[] is the degree of a polynomial,
therefore deg [F,(z)] < 2Lj, — 2. We can see from (12.20) that polynomials
Fi(z), F»(z), and F3(z) share common zeros if Hia(z), Haa(z), and Hsa(z)
[or if Hy1(2), Ha21(z), and Hs1(z)] share common zeros.

Now suppose that C2(z) = ged [Hi2(2), Ha2(2), H32(2)], where ged[-] de-
notes the greatest common divisor of the polynomials involved. We have:

H,o(2) = Ca(2)H, 5(2), n=1,2,3. (12.22)

It is clear that the signal so in (12.14) can be cancelled by using the poly-
nomials H/,(z) [instead of Hpa(z) as given in (12.19)], so that the SIMO
system represented by (12.15) will change to:

Yi(2) = Fl()S1(2) + Wi(2), p=1,2,3, (12.23)
where

FJ(2)Ca(2) = Fy(z), W(2)Cal2) = Wy(2),
It should be pointed out that

deg [Fy(2)] < deg[Fy(2)]
and that polynomials Fy(z), F4(z), and F}(z) share common zeros if and only
if Hy1(z), H21(2), and H3q(2) share common zeros.
12.4.2 Generalization

The approach to extracting reverberant speech from interference signals ex-
plained in the previous subsection on a simple example will be generalized
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here to an (M, N) MIMO acoustic system with M < N. We begin with
writing (12.2) into a vector/matrix form

X(z) = H(2)S(2) + B(2), (12.24)
where
X(2) = [Xi(2) Xa(2) - Xn(2) ],
i) ) - o)
He) = | e
S(z) = [ S1(2) Sa(2) -+ Sm(2)]",
B(z) = [ Bi(z) Ba(2) -+ Bu(2)]"
I Cm(z) = cd[Hlm( ), Hom (2), -+ s Hym(2)] (m =1, 2, ---, M), then
Hym(2) = Cn(2)HY,,,(2) and the channel matrix H(z) can be rewritten as
H(z) = H'(2)C(z2), (12.25)

where H'(z) is an N x M matrix containing the elements H/  (z) and C(z)
is an M x M diagonal matrix with C,,(z) as its nonzero components.

Let us choose M from N microphone outputs and we have P = C% dif-
ferent ways of doing so. For the p-th (p = 1,2,--- , P) combination, we denote
the index of the M selected microphone signals as p,,, m =1,2,--- , M, and
get an M x M MIMO sub-system.

Consider the following equations:

Y,(2) =HY (9)X,(2), p=12-,P, (12.26)

sp(2) = [ Hoipn(2) Hoopale) o Hypu(2) ]
Xp(2) = [ Xp(2) Xpul2) -~ Xpu(2)]"

Let Hy(z) be the M x M matrix obtained from the system’s channel
matrix H( ) by keeping its rows corresponding to the M selected microphone
signals. Then similar to (12.24), we have

—

X, (2) = Hy(2)S(2) + B, (2), (12.27)
where
By(2) = [ Byu(2) Bpa(2) -+ Bpu(2)]
Substituting (12.27) into (12.26) yields

T

Y,(2) = HI, ,(2)H,()S(2) + H,

51,P 51,P

(2)B,(2). (12.28)
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In order to remove the interference from other competing speech or noise
sources, the objective here is to find the vector Hy, ,(2) whose components

are linear combinations of H.,(z) (m = 2,3,--- ,M, n = 1,2,--- N) such
that
A =
¢, (z) =H! (2)H,(2) = [ Fp(z) 0 -+~ 0]. (12.29)
Consequently, we have
Yp(2) = Fp(2)51(2) + Wp(2), (12.30)
where

W,y(z) = HT (2)B,(2).

If C,(z) [obtained from C(z) in a similar way as H,(z) is constructed]
is not equal to the identity matrix, then H,(2) = H} (2)C,(z), where H},(z)
has full column normal rank in acoustic environments as we assume in this
chapter! (i.e. nrank [H),(z)] = M, see [23] for a definition of normal rank),
and the interference-free observations of s; (k) are determined as follows
Yi(z) = H, 7 (2)H,(2)Cy(2)S(2) + H, T (2)B,(2). (12.31)

P s51,p
The filter vector ITI;hp(z) is chosen in a way such that
Y, (2) = F(2)S1(2) + W)(2). (12.32)

Obviously a good choice is to let the i-th element of HY ,(z) be the (i, 1)-th
cofactor? of Hy,(z). Consequently, the polynomial F}(z) would be the deter-
minant of Hj,(z). Note that the (i,1)-th cofactor of Hy,(z) is only a linear
combination of H,,(z) or H),  (z) (m=2,3,---,M,n=1,2,---N). There-
fore even though the channel impulse responses corresponding to the speech
signal of interest s1(k) are not known or at least have not yet been blindly
identified, we still are able to separate the reverberant speech from concurrent
interference.
Since

F)(2) = B, T (:)H 4 (2)
M
= ZH;hpq(z)Hp,ql(z)7 (1233)
g=1

! For a square matrix (M x M), the normal rank is full if and only if the determi-
nant, which is a polynomial in z, is not identically zero for all z. In this case, the
rank is less than M only at a finite number of points in the z plane.

2 The (i,4)-th cofactor ¢;; of a matrix A is a signed version of A’s minor d;:

A 47
cij = (=1)"dyy,

where the minor d;; is the determinant of a reduced matrix that is formed by
omitting the i-th row and j-th column of the matrix A.
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where ITIpwtl(z) is the first column vector of H,(z) and H. . (z) (¢ =

S$1,Pq
1,2,---, M) are co-prime. It is clear that the polynomials F(2) (p =
1,2,---,P) share common zeros if and only if the polynomials H,;(z)
(n =1,2,---,N) share common zeros. Therefore, if the channels with re-

spect to any one input are co-prime for the (M, N) MIMO acoustic system,
we can remove interference from the reverberant speech of interest and obtain
a SIMO system whose C4! channels are also co-prime.

Also, it can easily be check that deg [F},(z)] < M (Lp—1) (or deg [F}(2)] <
M(Lp —1)). As a result, the length of the FIR filter f, (or f;,) would be

Ly <M(Lp—1)+1. (12.34)

12.5 Speech Dereverberation

In the above, we showed that reverberant speech and competing interference
could be separated given that the channel impulse responses corresponding
to interference sources have been blindly identified. After this processing,
we obtained a SIMO system with the speech signal of interest as the in-
put. Although source separation has been achieved, the obtained multiple
interference-free speech signals would sound possibly more reverberant due
to the prolonged impulse response of the equivalent channels. In this section,
we will illustrate how to perfectly remove those annoying reverberation and
how to recover the original speech signal from the SIMO system. Here the as-
sumption that the channel impulse responses H,,,,(2), Ym (n =1,2,--- | N)
are co-prime (i.e., the MIMO system is irreducible) needs to be employed to
blindly identify the SIMO system first and then to perform speech derever-
beration by using the MINT theorem. Therefore, the outputs of the SIMO
system are given by (12.30).

12.5.1 Principle

For the SIMO system with respect to the source of interest s;, we intend to
apply the MINT theorem (also called the Bezout theorem in the mathematic
literature). Let’s consider the polynomials Gp(2) (p =1, 2, --- , P) and the
equation:

=1 R
S1(2) + > Gp(2)Wp(2). (12.35)

p=1

Si(z) = > Gp(2)Yp(z)

Y Fp(2)Gy(2)

p=1

The polynomials G,,(z) should be found in such a way that Sy (z) = S1(z) in
the absence of noise by using the Bezout theorem which is mathematically
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expressed as follows:

ged [Fi(z2), Fa(z), -+, Fp(2)] =1

P
< 3 G1(2),Gae(2), - ,Gp(z) : ZFp(z)Gp(z) =1. (12.36)
In other words, if the polynomials Fj,(2) (p = 1,2,--- , P) have no common

zeros (which is equivalent to saying that the MIMO system is irreducible),
it is possible to perfectly equalize (in the noiseless case) the SIMO system.
The MINT theorem relieves the constraint on a single-channel acoustic sys-
tem for perfect dereverberation that the channel impulse response must be a
minimum-phase polynomial.

To find the dereverberation filters G(z), we need to know the channel
impulse responses F),(z). Since the MIMO system’s channel impulse responses
Hym(z), Ym, (n = 1,2,--- | N) do not share common zeros as assumed in
this chapter, the channel impulse responses f,, are co-prime as well such that
they can be blindly identified again using the adaptive algorithms presented
in Section 12.3. Starting from this point, we suppose that f,’s are known and
we make no difference between f, and its estimate.

Let’s write the Bezout equation (12.36) in the time domain as follows:

P
F.g=)» Fe,g, =ei, (12.37)

p=1

where

c,1 Fc2 FC,P}7

[F
[l

T
T
[ng 9p,1 - Gp,Ly—1 ] ,
p= 1727 e ,P7
Ly, is the length of the FIR filter g,
[ foo 0 0 T
fp,l fp,O 0
Fc,p = fp,Lffl
0 JpLp—1
L0 0 fpr;—1 |
isan (Ly + Ly — 1) x Ly matrix, Ly is the length of the FIR filter f,, and
—[10--0]"
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isan (Ly + Ly —1) x 1 vector. In order to have a unique solution for (12.37),
L, must be chosen in such a way that F. is a square matrix. In this case, we
have:

Ly—1
L, = . 12.38
Using (12.34), the length of the dereverberation filter is bounded by
M(Ly —1)
L, < ———~. 12.39

12.5.2 The Least-Squares Implementation

It is now clear that by using the Bezout theorem the SIMO system with
respect to the speech source of interest can be perfected dereverberated as
long as their channel impulse responses share no common zeros. In addition,
we derived what is the minimum length L, of the dereverberation filters, as
given in (12.39). Although finding the shortest dereverberation filters involves
the lowest computational complexity and leads to the most cost effective im-
plementation, the performance may not be the best due to noise in practice
and error in the estimates of the channel impulse responses. Moreover, the
smallest L, may not be even possible since (12.38) does not guarantee an
integer solution. Therefore, we choose a larger L, than necessary in our im-
plementation and solve (12.37) for g in the least squares sense:

gLs = Fle, (12.40)
where
Fi = (F'F.)” ¥/

is the pseudo-inverse of the matrix F.. If a decision delay d is taken into
account, then the dereverberation filters turn out to be

gLs = Fleg, (12.41)
where
0--01 0---0 1%
€q = | Y——— ——
d Li+Lg—d—2

Performing speech dereverberation based on the MINT theorem is sensi-
tive to errors in the estimated channel impulse responses. In our research, we
found that the performance of speech dereverberation would vary with the
value of the decision delay d when a blind method has some difficulties to
accurately identify the channels. Since this still is an open research problem,
in our simulations, we either choose a fixed delay or search for the delay that
produces the best speech dereverberation performance in the neighborhood
of a pre-specified decision delay.
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12.6 Simulations

In this section, we will evaluate the performance of the proposed blind source
separation and speech dereverberation algorithm via simulations in realistic
acoustic environments.

12.6.1 Performance Measures

Similar to what was adopted in our earlier study [22], we will use the normal-
ized projection misalignment (NPM) to evaluate the performance of a BCI
algorithm [24]. The NPM is defined as:

NPM £ 201og;, [”%”} , (12.42)
where
T h ~
e=h-— Qh
h”h

is the projection misalignment vector. By projecting h onto h and defining a
projection error, we take into account only the intrinsic misalignment of the
channel estimate, disregarding an arbitrary gain factor.

To evaluate the performance of source separation and speech dereverber-
ation, two measures, namely signal-to-interference ratio (SIR) and speech
spectral distortion, are used in the simulations. For the SIR, we referred to
the notion given in [25] but defined the measure in a different manner since
their definition is applicable only for an M x M MIMO system. In this pa-
per, our interest is in the more general M x N MIMO systems with M < N.
Moreover, the M sources are equally important in [25] while here the first
source is the speech source of interest and is more important than others.

Since only the first speech source is what we are interested in extracting,
the SIR would be defined in a way where a component contributed by s1 (k)
is treated as the signal and the rest as the interference. We first define the
input SIR at microphone n as:

é E {[hnl * 51(k)]2}
SN B { [l + si(k)]2}

where *x denotes linear convolution. Then the overall average input SIR is
given by:

SIRI , (12.43)

N
in é i in
SIR™ 2 N;:lsmn. (12.44)

The output SIR is defined using the same principle but the expression
will be more complicated. For a concise presentation, we denote ¢, s, (p =
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1,2,---,P,i=1,2,---, M) as the impulse response of the equivalent channel
from the i-th source s;(k) to the output y, (k) for the p-th M x M separation
subsystem. From (12.28) and (12.29), we know that ¢, s, corresponds to the
i-th element of ¢,(z) and ¢, s, = f,. Then the average output SIR for the
p-th subsystem is:

E{[f, * s1(k)]2}
Sy B {[ép,s, * si(k)]2}

Finally, the overall average output SIR is found as:

ut &
SIRO™ = ., p=1,2-- P (12.45)

P
out & 1 out
SIR°" = FZSIRP . (12.46)

p=1

To assess the quality of dereverberated speech signals, we employed the
Itakura-Saito (IS) distortion measure [26], which is the ratio of the resid-
ual energies produced by the original speech when inverse filtered using the
LP coefficients derived from the original and processed speech. Let a; and
o be the LP coefficient vectors of an original speech signal frame s; and
the corresponding processed speech signal frame s; under examination, re-
spectively. Denote Ry as the Toeplitz autocorrelation matrix of the original
speech signal. Then the IS measure is given as:

T T
at Rttozt

— 1. 12.47
a?Rtta? ( )

dis,; =
Such a measure is calculated on a frame-by-frame basis. For the whole se-
quence of two speech signals, the mean IS measure is obtained by averaging
drg,¢ over all frames. According to [27], the IS measure exhibits a high cor-
relation (0.59) with subjective judgments, suggesting that the IS distance is
a good objective measure of speech quality. It was reported in [28] that the
difference in mean opinion score (MOS) between two processed speech signals
would be less than 1.6 if their IS measure is less than 0.5 for various speech
codecs. Many experiments in speech recognition show that if the IS measure
is less than about 0.1, the two spectra that we compare are perceptually
nearly identical.

In our simulations, IS measures are calculated at different points, after
source separation and after speech dereverberation. After source separation,
the IS measure is obtained by averaging the result with respect to each one
of the P SIMO outputs y,(k) and is denoted by dISSS After speech derever-
beration, the final IS measure is denoted by df.

12.6.2 Experimental Setup

The simulations were conducted with the impulse responses measured in the
varechoic chamber at Bell Labs [29]. A diagram of the floor plan layout is
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Fig. 12.3. Floor plan of the varechoic chamber at Bell Labs (coordinate values
measured in meters).

shown in Fig. 12.3. For convenience, positions in the floor plan are desig-
nated by (x,y) coordinates with reference to the southwest corner and cor-
responding to meters along the (South, West) walls. The chamber measures
x = 6.7m wide by y = 6.1m deep by z = 2.9m high. It is a rectangular room
with 368 electronically controlled panels that vary the acoustic absorption of
the walls, floor, and ceiling [30]. Each panel consists of two perforated sheets
whose holes, if aligned, expose sound absorbing material (fiberglass) behind,
but if shifted to misalign, form a highly reflective surface. The panels are in-
dividually controlled so that the holes on one particular panel are either fully
open (absorbing state) or fully closed (reflective state). Therefore, by varying
the binary state of each panel in any combination, 223 different room char-
acteristics can be simulated. In the database of channel impulse responses
from [29], there are four panel configurations with 89%, 75%, 30%, and 0% of
panels open, respectively corresponding to approximately 240, 310, 380, and
580 ms 60 dB reverberation time in the 20-4000 Hz band. All four configu-
rations were used in this paper for evaluating performance of the proposed
algorithm.

A linear microphone array which consists of 22 omni-directional micro-
phones was employed in the measurement and the spacing between adjacent
microphones is about 10 cm. The array was mounted 1.4 m above the floor
and parallel to the North wall at a distance of 50 cm. A loudspeaker was
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placed at 31 different pre-specified positions to measure the impulse response
to each microphone. In the simulations, four microphones and three speaker
positions, which form a 3 x 4 MIMO system, were chosen and their locations
are shown in Fig. 12.3. Signals were sampled at 8 kHz and the original im-
pulse response measurements have 4096 samples. In the cases of 89% and 75%
panels open, energy in reverberation decays quickly with arrival time and we
cut impulse responses at Ly = 256. When 30% or none of planes are open,
we set Lp = 512. Among the three sources, the first female speaker’s speech
is the target for extraction. The other two sources include one male speaker
and one noise source. The two speech sources are equally loud in volume
while the noise source is 5 dB weaker than the speech sources. For the noise
source, we tried two different kinds of noise. One is car noise and the other is
babbling noise recorded in the New York Stock Exchange (NYSE). The time
sequence and spectrogram (30 Hz bandwidth) of these source signals for the
first 1.5 seconds are shown in Fig. 12.4. From the spectrograms, we can tell
that car noise is a low-pass signal while the bandwidth of babbling noise is
much wider. From the perspective of system identification, babbling noise
is more favorable than car noise as an exciting source signal. Silent periods
were manually removed from the speech signals to make the BCI methods
converge faster due to the reduced nonstationarity in the inputs and to make
the average IS measures more meaningful with respect to speech only. This
implies that in practice a voice activity detector needs to be used. After hav-
ing source signals and channel impulse responses, we calculated microphone
outputs by convolution.

As we expected, the performance of the proposed source separation and
speech dereverberation algorithm would be greatly affected by the accuracy
of the blindly estimated channel impulse responses. In the simulations, both
adaptive (the UNMCFLMS algorithm) and batch (the SVD-based algorithm)
implementations were investigated [22]. For the batch method, the empirical
spatial covariance matrix was obtained over the first 1500 samples of the mi-
crophone captures. For source separation and speech dereverberation, speech
signals of duration 10 seconds were utilized to assess the performance. The
decision delay d in (12.41) was fixed as 3L, /2 — 1 in the cases of employing a
batch method for BCI while its best value was searched in the neighborhood
of 3Ly, /2 — 1 when an adaptive BCI algorithm was utilized.

12.6.3 Experimental Results

Table 12.1 summarizes the results of 16 experiments with different combina-
tion of room acoustics, BCI method, and type of noise. Figures 12.5 and 12.6
visualizes what was observed in the experiment with 89% of panels open,
the UNMCFLMS algorithm employed for BCI, and car noise used as the
third source. Figure 12.7 shows the results for the experiment with all panels
closed, the batch method employed for BCI, and babbling noise in the NYSE
used as the third source.
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Fig. 12.4. Time sequence and spectrogram (30 Hz bandwidth) of the two speech
source and two noise source signals used in the simulations for the first 1.5 seconds.
(a) s1(k) (female speaker), (b) s2(k) (male speaker), (c) car noise, and (d) babbling
noise recorded in the NYSE.

Let us first examine Table 12.1 and Fig. 12.5 for the accuracy of the chan-
nel impulse responses blindly estimated by the adaptive and batch BCI algo-
rithms. It is clear that, given the same amount of microphone observations,
the final projection misalignment error would be larger for the UNMCFLMS
to identify a more reverberant SIMO system. Relatively, the batch method is
more accurate and seems less dependent on Lj. After it collects microphone
outputs for only 1500 samples (equivalently 0.1875 second), the batch BCI
method can produce a reliable channel estimate with less than -60 dB NPM
for SIMO systems with long channels of length L;, = 512. However, perform-
ing SVD of a N-Lj x N-Lj;, matrix in these simulations is too computationally
intensive to be accomplished in real time by a commercial processor in the
foreseeable near future. The reason why we carried out experiments with the
batch BCI implementation and present here the results is to get an idea about
what is the best possible performance of the proposed blind source separation
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Fig. 12.5. Performance of the adaptive BCI (UNMCFLMS) algorithm with respect
to the second source s2(k) in the varechoic chamber with 89% of panels open. (a)
Running average (1000 samples) of the cost function and normalized projection
misalignment, and (b) comparison of impulse responses between the actual channels
and their estimates.

and speech dereverberation approach to speech enhancement with multiple
microphones.

Figures 12.6 and 12.7 illustrate how the speech signal of interest is sepa-
rated from other concurrent interference sources and how it is dereverberated.
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Fig. 12.6. Time sequence and spectrogram (30 Hz bandwidth) of (a) z1(k), (b)
y1(k), and (c) 81(k) for the experiment carried out in the varechoic chamber with
89% of panels open. In this experiment, s3(k) is car noise and the UNMCFLMS

algorithm is used for BCI.
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Examining these figures together with the data in Table 12.1, we see that the
output SIR’s are very high (at least 41 dB) after source separation. Lis-
tening tests showed that these separated signals were certainly recognizable
although they sounded more echoic as we expected. This can be justified by
the spectrogram plots of y1 (k) in Figs. 12.6(b) and 12.7(b). Apparently in
periods of voiced speech on these narrow-band spectrograms, harmonics are
vague, implying strong distortion which results in large IS measures (greater
than at least 4.0). After dereverberation, the speech signal is satisfactorily
recovered though delayed [clearly seen from time sequences of the recovered
signal §;(k) in these figures] with a relatively low IS measure. The accu-
racy of blindly identified channel impulse responses obviously has a great
impact on the performance of the developed speech enhancement algorithm.
But source separation and speech dereverberation are not equally affected
by errors in the estimated channel impulse responses and the latter is more
sensitive. When BCI is conducted with an adaptive algorithm, the NPM’s are
a lot lower than those obtained with a batch method. Although the final IS
measures after speech dereverberation are significantly different particularly
in more reverberant environments, their source separation performances in
terms of output SIR are quite similar. Therefore it is our belief that using
only SIR to evaluate a blind source separation (BSS) algorithm is inadequate
if not misleading.

As explained before, the perceptual quality of distorted speech whose IS
distance from its original signal is lower than 0.1 would not change with
respect to either humans or an speech recognition system. The proposed al-
gorithm incorporating the batch BCI method can surely deliver an enhanced
speech signal reaching this level of voice quality. But the implementation
based on an adaptive BCI algorithm can do so only when the room reverber-
ation is low with 89% panels open. In reverberant environments, the adaptive
BCI algorithm cannot produce highly accurate estimates of channel impulse
responses such that the IS measures are still more than (though slightly) 0.1.
As a matter of fact, it is imperative while challenging to develop accurate
adaptive BCI algorithms for acoustic applications in reverberant environ-
ments. It is appealing that the recovered speech signal can attain high per-
ceptual quality with an IS measure lower than 0.1. But in most applications
of speech processing, this is an excessive and unnecessary if not practical
requirement. What we observed in these simulations nevertheless show some
promise of successful use of the proposed algorithm in prospect speech pro-
cessing systems.
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Table 12.1 Performance of the source separation and speech dereverberation
algorithm based on the batch (SVD) and adaptive frequency-domain (AF)
BCI implementations in the varechoic chamber at Bell Labs with different
panel configurations.

NPM (dB) SIR™ STRC"
Noise BCI  SIMO,, SIMO,, SIMO,, (dB) (dB) dss dsP
89% panels open, Tso = 240 ms, L = 256
Car AF -18.6361 -16.8234 -18.8090 1.3668 46.6966 4.4508 0.0449
SVD  -84.6206 -110.3696 -152.6868 1.3668 47.6157 4.5653 0.0090
75% panels open, Tso = 310 ms, L;, = 256
AF -17.9231 -18.9300 -21.4186 2.3715 48.3984 5.3169 0.2389
SVD -109.6788 -100.6108 -187.8868 2.3715 48.8862 5.8647 0.0087
30% panels open, Tso = 380 ms, L; = 512
AF -12.1323 -13.0353 -11.9475 1.3344 41.8391 5.8099 0.2609
SVD  -67.0139 -106.2407 -167.2407 1.3344 43.5094 7.4319 0.0335
Panels all closed, Ts0 = 580 ms, Lj = 512
AF -12.5600 -13.5057 -14.3649 2.1065 44.1663 9.0386 0.2108
SVD  -83.2605 -103.3190 -160.8024 2.1065 43.6628 11.1346 0.0198
NYSE AF -18.6361 -16.8234 -20.7545 0.9445 44.7547  4.4056 0.0668
SVD  -84.6255 -110.3696 -176.5423 0.9445 45.2597 4.5653 0.0086
75% panels open, Tgo = 310 ms, L, = 256
AF -17.9231 -18.9300 -23.7211 1.8695 45.1628 5.4774 0.1920
SVD -100.3681 -114.6819 -184.1510 1.8694 44.9935 5.8647 0.0092
30% panels open, Tso = 380 ms, L = 512
AF -12.1323 -13.0353 -12.5460 0.8362 40.2743 5.6497 0.3215
SVD  -79.5856 -93.7725 -174.1163 0.8362 41.4932 7.4319 0.0395
Panels all closed, Tgo = 580 ms, Ly = 512
AF -12.5600 -13.5057 -16.8997 1.7245 42.2751 9.5378 0.1441
SVD  -72.9542 -107.9821 -127.0545 1.7245 41.8808 11.1346 0.0192

NOTES: SIMOs,, represents the SIMO system corresponding to source Spy,.
Tso denotes 60-dB reverberation time in the 20-4000 Hz band.

12.7 Conclusions

Capturing a speech signal of interest among a number of competing sound
sources in reverberant environments is difficult and a close-talking micro-
phone is a common engineering solution to this problem. But in many speech
communication systems, untethered voice access is demanded and speech en-
hancement in the sense of source separation and dereverberation must be
performed. Existing blind source separation methods maximize solely the
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signal-to-interference ratio and possibly cause high distortion in their sep-
arated signals, which is neither pleasing to a listener nor can be used in
following speech processing systems. We demonstrated in this chapter that
spatial interference from competing sources and temporal echoes due to room
reverberation can be perfectly separated and a SIMO system with the speech
signal of interest as input is extracted from the MIMO system. The chan-
nel matrices of the interference-free SIMO system is irreducible given that
the channels from the same source in the MIMO system share no common
zeros. For such a SIMO system, the speech is then restored by using the
MINT theorem. This derivation led to the proposal of a novel sequential
source separation and speech dereverberation algorithm. We conducted ex-
periments using real impulse responses measured in the varechoic chamber at
Bell Labs. The results demonstrated the promise of the proposed algorithm.
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