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Abstract. The convenience and the ease of use provided by hands-free operation of
speech communication devices mean that speech enhancement schemes are becom-
ing indispensable. In this chapter, two subband adaptive microphone array schemes
are presented, which aim to provide good speech enhancement capability in poor
signal to noise ratio situations. The basic commonality of the adaptive microphone
array schemes is that they approximate the Wiener solution in an adaptive manner
as new data comes in. Furthermore, both schemes include a quadratic constraint
to prevent the trivial zero solution of the weights and to avoid suppression of the
source of interest. The constraint is included to provide robustness against model
mismatch and good spatial capture of the target signal. Furthermore, by using a
subband structure the processing allows a time-frequency operation for each chan-
nel. As such, both schemes utilize the spatial, spectral, and temporal domains in
an efficient and concise manner allowing a computational effective processing while
maintaining high performance speech enhancement. Evaluations on the same data
set, gathered from a car, show that the proposed schemes achieve good noise sup-
pression up to 20 dB while experiencing very low levels of speech distortion.

10.1 Introduction

The comfort and flexibility provided by hands-free communication systems
have spurred the integration of hands-free voice interface into everyday es-
sentials such as personal digital assistants (PDAs), mobile phones, speech
recognition devices, etc. With such a great demand, speech enhancement
with regard to hands-free communications particularly in adverse environ-
ments has been an area of intensive research [1], [2], [3], [4], [5], [6]. Numer-
ous speech enhancement schemes have been presented over the years with
microphone array based techniques dominating the field. This is because mi-
crophone arrays offer the invaluable spatial diversity to spatially extract (or
form a beam towards) the source of interest (SOI) [7]. In particular, adap-
tive microphone arrays are reported to have good interference suppression
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capability [8], [9], [10]. However, adaptive microphone array such as the gen-
eralized sidelobe canceller (GSC) succumbs to target signal cancellation in
the presence of steering vector errors (e.g. microphone positions, reverber-
ation, etc) [11], [12]. One solution to overcome the problem is to employ a
voice activity detector (VAD) or an energy detector in which the GSC is only
adapted when there is no target signal (or the signal-to-interference ratio
(SIR) is low). Another more straightforward approach to address the prob-
lem is to calibrate the microphone array in the actual environment [13], [14].
By doing so, all the information on the array geometry and imperfections will
be reflected in the final solution. This approach seems efficient and robust
at first glance, but the need for calibration makes its use rather limited in
consumer applications. For instance, when the SOI spatially moves or the
environment changes, it requires a re-calibration. Such inflexibility may not
be practically viable.

In this chapter, we will present two subband based schemes, namely robust
soft constrained adaptive microphone array (RSCAMA) and noise statistics
updated adaptive microphone array (NSUAMA). Both schemes have their
roots in the calibrated microphone array [13], [14] but circumvent the calibra-
tion phase which makes them considerably more versatile. Instead, a source
model is carefully embedded in the solution whereas the noise statistics is
estimated on-line. To complement the source model, the SOI power spectral
density (PSD) is also estimated from the data to preserve the spectral shape
of the SOI. The real objective is to achieve a solution that is close to the
optimal Wiener solution [15], [16] whilst incorporating a tracking capability
to handle non-stationary noise. Both structures differ in the way the SOI
power spectral density and noise statistics are incorporated in the solution
but share the commonality of having a 2-D space constrained source model.
Unlike a point source model, the 2-D space model (the physical area of the
SOI e.g. a person’s mouth) effectively compensates for the large radial vector
errors in the source location caused by the presence of erroneous steering
vector in real life situations, making both proposed structures robust against
errors.

The RSCAMA scheme is constrained to extract the SOI in a pre-defined
area (as modelled by the 2-D space constraints). Basically, the idea is orig-
inally derived from [4] with the assumption that the power spectral density
(PSD) of the source is constant over time and frequency range. However,
speech signal is short-term stationary and this implies that the spectrum
varies over time. Therefore, to better utilize the time-frequency information
of the SOI, its PSD is recursively updated in the constraints using the most
current time-frequency content of the output signal from the beamformer.
The motivation behind the use of the output signal in the update comes
from the fact that the optimum beamformer output in each subband, is an
enhanced version of the spectral information of the SOI. In other words, the
feedback from the beamformer output continuously shapes the SOI spec-
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trum, thus providing a spectrally improved constraint at each time instant.
The noise statistics on the other hand, are estimated recursively from the re-
ceived data without the need of a VAD as the solution has been constrained
to preserve any signal from the desired region. Needless to say, the perfor-
mance will be very much improved if a VAD is used, however at the expense
of a higher computational complexity.

As the name suggests, the NSUAMA scheme includes a noise statistics
update to track variations in the background noise. Simply, the adaptive
microphone array estimates the covariance information and decides if the es-
timated information can be used to update the noise statistics in the solution
i.e. the noise covariance information. A modified VAD or a noise covariance
detector which includes spatial information is introduced to ensure that “only
noise covariance” information is used in the update. With the incorporation
of the criterion, the microphone array behaves like a “noise only” detector
which uses only the noise information to update its solution. This results in
an efficient and fast converging adaptive microphone array even in highly
non-stationary environment. Similar to RSCAMA, the source PSD is em-
bedded in the optimum Wiener solution in each subband to fully utilize the
time-frequency information of the target signal. However unlike RSCAMA,
the source PSD is updated using a least-squares criterion [17]. As such, it
tracks the variation in the spectral content of the target signal continuously,
yielding a statistically optimized constraint for each time instant.

Clearly, the major difference between the RSCAMA and NSUAMA
schemes is their computational complexities. The RSCAMA structure of-
fers simplicity and is straightforward to implement in real-time. Naturally,
the downside of it is less suppression capability when compared to the
NSUAMA scheme. Evaluations in a real car hands-free scenario reveal that
the NSUAMA scheme manages to achieve an impressive noise suppression
level of 20 dB whilst the simpler RSCAMA performs around 16-17 dB. Most
importantly, both schemes maintain negligible distortion on the target signal.

10.2 Signal Modelling and Problem Formulation

Consider a linear microphone array with I microphones. The target signal in
this case is a person speaking, which can be modelled as an infinite number of
point sources clustered closely in space. This space is modelled as a circular
area A with radius r and a distance h from the array, see Fig. 10.1. Alter-
natively, the source constrained region can be modelled as a pie sliced area
defined by radii [R,, Ry] and angles [0, 03] [8]. As mentioned previously, the
advantage of the source constrained region in Fig. 10.1 as opposed to a point
source is consistent with the fact that errors in the response vector cause
large radial errors in the corresponding source location [11]. These errors are
typically due to sensor misplacement and gain variations in the microphones.
With the inclusion of the constrained area, the structure is made more robust
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Fig. 10.1. Configuration of the linear microphone array with the inter-element
distance d and the source constrained area defined by radius r and distance h.
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Fig. 10.2. Structure of the RSCAMA subband beamformer.

and more closely related to a real situation. Throughout the chapter, the SOI
is assumed to be in the constrained region as shown in Fig. 10.1.

Figures 10.2 and 10.3 show the block diagrams of the proposed RSCAMA
and NSUAMA respectively. Irrespective of the different structures, both the
subband based RSCAMA and NSUAMA aim to extract the SOI in the con-
strained region. From the figures, the received signal is initially decomposed
into M subbands by using an analysis filterbank. After the relevant process-
ing independently (in each structure), the processed subband signals are then
reconstructed by the synthesis filterbank into fullband representation.

10.2.1 Analysis and Synthesis Filterbanks

The main consideration in the design is to minimize aliasing in the subband
signals as well as minimizing magnitude, phase and aliasing distortion in the
reconstructed output. Literature associated with filterbanks can be found
in the following references [18], [19]. In this work, an oversampled uniform
analysis DFT filterbank is employed to decompose each of the I microphone
input signals into M subbands with an oversampling decimation factor of
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Fig. 10.3. Structure of the NSUAMA subband beamformer. D; and Dy are the
different decimation factors with Dy > Ds.

Dy = M/2 unless otherwise stated. By oversampling, the inband aliasing
effects is greatly reduced. The analysis and synthesis prototype filters are
designed using a Hamming window with a cut off frequency 7/M. The Ham-
ming window has side-lobes that are 50 dB below its mainlobe and by using
a factor two over-sampling, the overall distortion and aliasing will be kept
small. Note that the noise covariance estimation in Fig. 10.3 has its own re-
quirement, as it is decimated at a lower rate of Do, where Dy > D5. This is to
ensure the sufficiency of data in estimating the noise covariance matrix (i.e.
to achieve low variance estimate for a better tracking in the noise statistics).

10.2.2 The Wiener Solution

In this section, the multichannel Wiener filter in each subband is formulated.

To begin, let W(Q)(k) be the optimum weight vector at time index k for each

opt
frequency 2 € [Qg,--- ,2p—1] as
Wit (k) = [wl® (k), w§® (), -+, wf® (k)] (10.1)

The optimal weight vector at time point k& above can be readily found from
the Wiener solution as follows,

wit) (k) = R (k) + R (k)" xlP (1), (10.2)

opt

where R{? (k) and r{? (k) are the covariance matrix and the cross-covariance
vector for the SOI for frequency band (2, respectively. The covariance matrix
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Rﬁ”) (k) can be resolved into a normalized spatial covariance matrix Rim (k)
and a non-negative spectral weighting as

R (k) = S ()R, (10.3)
Likewise, the cross-covariance vector r&”) can be decomposed as
v (k) = S (k)LD (10.4)

—(2) . . . . s
where T?) is the normalized spatial cross-covariance vector. Substituting

(10.3) and (10.4) into (10.2) yields,
w9 (k) = (S ()R + R (k)] 719D (k)ELD). (10.5)

opt

Equation (10.5) forms the basis for the development of both microphone
array schemes RSCAMA and NSUAMA. From (10.5), it is clear that there
are two varying parameters that need to be estimated continuously i.e. S (k)
and R%m(k). The former functions as the source spectral moulder (to reduce
spectral distortion) and the latter is to track the noise statistics for optimal

2)

noise suppression. The SOI spatial covariance matrix ]f_{i and the spatial

cross-covariance vector _( ) on the other hand, are determined by the spatial
location of the SOI. For many applications such as internet telephony, hands-
free mobile telephony, etc, the SOI is typically located more or less in a fixed
position (in front of the array). In keeping with this, the SOI is assumed to be
spatially stationary in a pre-defined region and a constraint called the space
constraint is used to model it. Both the RSCMA and NSUAMA schemes
employ the space constraint to model the SOI spatial information. In the
following section, the space constraint is explained.

10.2.3 The Space Constrained Source Covariance Information

Let us denote S(?) as the PSD of the source at frequency £2. Note that the
PSD will be time varying and can be thought of as short-term stationary.
However, for the following model it is kept constant. As mentioned previ-
ously, the source is assumed to be in the pre-defined area A afore-mentioned
(see Fig. 10.1). Thus, the spatio-temporal covariance matrix of source in the
spectral band [(2,, Qb] can be computed as

R, ///S(Q)d(m YA @)NHdadn, (10.6)

where @ is the point source localization vector and (-) denotes the Hermi-
tian transposition. The response vector d(?)(@) is defined as

d9(@) =

e IOM(A) _— —i0m(R) . —iRTi(R) 10.7
[Rle e e | (107
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where 7;(@), 1 < i < I is the time delay from a point source in the pre-
defined area to sensor i, R; is the distance between the source and sensor
i and []T denotes the transposition operator. The reference point for the
microphone array response is defined at the origin of the coordinates.
Therefore for a frequency {2, the spatial covariance matrix in (10.3) is,

R = SR, (10.8)

where the normalized spatial covariance matrix is defined from (10.6) as,

R = / / d?(@)d D (a)Hd7. (10.9)
A

The spatial cross covariance vector is given by
rgf?) - g(ﬁ)fgf?)7 (10.10)

where

£(?) = //d“”(?)d?. (10.11)
A

With the space constrained model readily available, the task at hand is
to efficiently estimate the varying parameters S (k) and R (k) in (10.5).
This is where the distinction between the RSCAMA and NSUAMA struc-
tures comes in. The simpler RSCAMA estimates the information directly
irrespective of whether the SOI is active or inactive whereas the NSUAMA
performs otherwise. Sections 10.3 and 10.4 explain both the RSCAMA and
NSUAMA structures in detail.

10.3 Robust Soft Constrained Adaptive Microphone
Array (RSCAMA)

10.3.1 Problem Formulation

Let w') be the optimum weight vector for frequency {2,

opt
2 2 2 2
wis) = Wi Wi, w7, (10.12)
(2

where w; ) is the optimum coefficient for the i*" sensor. The optimum weight
vector is then calculated as

opt —

-1
w? _ Rgnwmm} r(?), (10.13)
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where R,(,m is the noise covariance matrix. Suppose that we have knowledge
of the PSD of the SOI S¥) then (10.13) can be rewritten as

wipl = [R5+ R )] (47 /5(2)

_ 11 (10.14)
RO RE]

where Rim is the normalized spatial covariance matrix given in (10.9) and
t\? is the normalized spatial cross covariance vector as defined in (10.11).

The implication of (10.14) is that the SOI PSD S(2) is incorporated in the

solution and both I_{gm and iﬁ”) can be calculated for a given constraint

region without the knowledge of the PSD of the source, given that they are

spatially invariant.

The remaining issue is to recursively estimate the noise parameters R,(1 ).

Since data containing only the active noise is not available, the noise co-
variance matrix R;m is estimated by using K samples of the received data
x(?)(k), where K is a fixed positive number and the index & is the subband
time index. Moreover, the exact PSD of the source S?) (k) is not available,
particularly in a car environment where strong speech masking components of
noise exists. Thus, we propose to use the previous microphone array outputs
for the estimation of S(?) (k) as

x() (k)
Wi (ke = DHXD) (k — 1) 46

opt

Z(Q)(k) _ (10.15)

where |.| is the absolute value operator and ¢ is a positive number to avoid

zero division. At iteration k, I_{ilm(k) can be estimated based on z(?)(m)
where max(0,k — K) < m < k as follows,

o if £ < K then

k

RV () = 1 @ ()2 ()

R, (k) = z mz::lz (m)z“(m) (10.16)

o if k> K then
() 1 k H

R - () )

R, (k) = 4 > 2D m)z D (m) (10.17)
m=k—K+1

In the next section, a recursive algorithm is developed to efficiently up-
date the beamforming weights according to (10.16) and (10.17) based on the
received data.
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10.3.2 A Recursive Algorithm for the RSCAMA

The algorithm runs in parallel/sequentially for each subband with mid-
frequency 2 = 2xfom/M, 0 < m < M — 1, where f, is the sampling fre-
quency. Let

R =R + R () (10.18)
and
POk = RV (k). (10.19)

The optimal weight vector for the iteration k is then reduced to

w2 (k) = P (1)5(D. (10.20)

opt

It follows from (10.17) that for k > K, R(Q)(k) can be obtained from the
previous estimate as

R (0) = R (b= 1)+ 2 (2@ ()" = 22 (= K02 (1~ K)".
(10.21)

Thus, the inverse matrix P(?) (k) for k& > K can be updated efficiently by

using the matrix inversion lemma

P (k — 1)z (k)2 (k)TPD) (k — 1)
(K 428 (k)PP (k — 1)z (k)

D=P9(k-1)- (10.22)

and

Dz (k — K)z)) (k — K)"D

P =Dt e @ (= ) D@ (= K

(10.23)

where D in this case is an intermediate matrix of the same size as P(?) (k).
The recursive algorithm is now summarized in the following steps,

e Step 1: Choose a number of subbands M, a block size K and a weight

smoothing factor A'.
€p))

o Step 2: Initialize k = 1 and the weight vector w,;

vector.
o Step 3: Calculate the matriz I_{gm and the vector T4 according to (10.9)
and (10.11), respectively.

(0) as an I x 1 zero

! The factor A is employed because the target speech signal adds spatial coherent
power to the pre-calculated covariance matrix, and this in turn leads to small
weight power fluctuations.
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o Step 4: If k < K, the matriz P2 (k) is calculated according to (10.15),
(10.16) and (10.19) by using pseudo-inverse operation instead of the con-
ventional matriz inverse operation due to rank deficiency. Otherwise, the
matriz PY2) (k) is updated recursively by using (10.22) and (10.23). The
weight vector is then updated as

w D (k) = awl D (k — 1) + (1 = NP (k)FD,

opt opt

and the output is given by

. H
g (k) = wi! (k) <7 ().
o Step 5: Set k =k + 1 and return to Step 4 until the end of the data.

10.4 Noise Statistics Updated Adaptive Microphone
Array (NSUAMA)

10.4.1 Problem Formulation

In the formulation of the RSCAMA scheme, the update of the noise covari-

ance matrix estimate Rﬁ,@(k) is performed continuously sample by sample.
This means that the covariance information also contains the SOI. Naturally,
if the noise covariance estimation is free from the SOI, the advantages will
be twofold i.e. better noise suppression and consequently better source PSD
estimate. Here, the NSUAMA scheme employs a “noise covariance detector”
to avoid the inclusion of the SOI in the noise covariance matrix.

In order to explain this formulation, we consider the Wiener solution [eq.
(10.5)] again

w2 (k) =[SO BRI + RO (k)] 15 (k)5 (10.24)
As before, both the Rgm and 7. can be precalculated according to (10.9)
and (10.11) respectively as long as the SOI is spatially invariant. Similar to
the RSCAMA scheme, the objective is to calculate the Wiener solution above
by efficiently estimating the power spectrum of the SOI S¢2)(k) and the noise

covariance matrix R\ (k).

10.4.2 The Noise Covariance Detector

From the pre-defined source area model A, the matrix R in (10.9) for
frequency {2 has non-zero determinant and is therefore a full rank matrix?.
Thus, this matrix can be decomposed as follows,

Rgm _ V(Q)A(Q)V(Q)H7 (10.25)

2 Depending on how much of the space it spans, it will have a few dominating
eigenvalues.
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where

V) = [v{? ) (10.26)
is a matrix that contains the eigenvectors and

A = diag{A? ... Ay (10.27)

is a diagonal matrix that consists of the eigenvalues. Since the SOI and noise
are assumed to be uncorrelated and by using the proposed source covariance
model, the total covariance matrix can be written as

R2(k) = S2(k)RY + R2(k), (10.28)

where the total covariance matrix R (k) can be calculated from the received
signal x(2)(k) by K of its samples as follows

k
1
R (k) = 7 Z x() (m)x(?) (m)H. (10.29)
m=k—K+1
By multiplying the left and right side of (10.28) with the eigenvector vS,fi)m

) (@)

that corresponds to the largest eigenvalue of Rg maaz, we have the follow-

ing equation

Vi, RO (kv (), =

S (k) v TRy (@) | (@) TR (@) (10.30)
The right hand side of (10.30) can be simplified to

v RO (kv i, =

S (k) M2, + Vi R (kv (10:31)
The purpose of using v%?a)x is consistent with the fact that it represents the
strongest component in the target signal subspace. By denoting

FO(k) = v "R (k)v(2),, (10.32)
(10.31) can be rewritten as,

H
FEO(k) = SO ()AL, +viD "RED (k)vi2).. (10.33)
In the following, we will propose a criterion for the case when the noise is
assumed to be long-term stationary (such as in a car or helicopter environ-
ment) whereas the speech signal is short-term stationary. This means that
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the statistics of the noise remain unchanged for at least 1 second. Using this
assumption, there exists a number of sample points L >> K which corre-
sponds to 1 second in time, where the noise is stationary during the interval
[k — L,k]. As such, if the SOI is silent, then the number of K sample points
in (10.29) will be sufficient to capture the noise statistics for that particular
period.

It follows from (10.33) that when there is no SOI at sample instant k,

the first term S(Q)(k))\grﬁ)w will be approximately zero. The second term

o
vfﬁ}z R%Q)(k)vg,%)m will reduce to a minimum value for F(?)(k) during [k —

L, k] period due to the stationarity of the noise in that time frame. This term
essentially represents the lower bound for the function in (10.33). Naturally,
if speech (i.e SOI is active) is present, then the value in F?) (k) will be
higher than its lower bound. Strictly speaking, it is a function that contains
information on the periods of “speech-silence” in the constrained area. Having
said so, a criterion can be formulated as follows,

F (k) - [kmiLnk] F < A(0ev 2, (10.34)

where ming,_r, ) (F(2) denotes the minimum of F(?) over the period® [k —
L, k]. The parameter ¢ in this case is the threshold in the detector. If the
criterion in (10.34) is met for all frequency bands, then the covariance matrix

R (k) is used to update the estimated noise covariance matrix Rslm(k‘)7
through a first order smoothing function given by,

R (k) = (1 = MR (k —1) + AR (k). (10.35)

The constant A in this case is the smoothing factor. If the condition in (10.34)
is not met, then

R (k) =R (k—1). (10.36)

Since the speech signal has most of its energy in the frequency range 500 Hz
to 2000 Hz, the criterion in (10.34) can be performed only in the speech
dominant subbands. In other words, the detector can be implemented in the
frequency range where the speech energy mainly concentrates.

10.4.3 Estimation of Power Spectrum of SOI

The SOI PSD can be estimated by using the least-squares approach given as

, = ()
SOH) =arg  min | ROE) R () - SORS |5 (10.87)

3 This period is the interval in which the noise statistics remains unchanged. Since
the noise considered is long-term stationary, a suitable duration will be around
one second.
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where || - || 7 is the Frobenius norm operator. For ease of computation, (10.37)
can be efficiently solved by stacking the columns of each matrix to form a
I? long vector. This problem can then be reduced to a quadratic optimiza-
tion problem with I? variables. By setting the first derivative of (10.37) to
zero, the optimum S?) (k) can be obtained. This PSD is estimated at every
iteration of the received signal covariance matrix to provide a spectrally op-
timized constraint on the source. In simple terms, it attempts to preserve the
spectrum of the source like a spectrum moulder.

10.4.4 The NSUAMA Algorithm

For simplicity, the noise covariance matrix can be updated in the algorithm
only every one second due to the assumption on the long-term stationarity
for the noise (otherwise, the noise covariance matrix can be re-evaluated by
(10.35) in every iteration). Equations (10.24) and (10.37) can be reformulated
as follows

22 — () . B
win) (k) = [SO @R + REDLSD (k) (10.38)
and
SE(k) =
' (D (1) _ R _ c(DRD |2
are S(Q)Igl(%)>0 H R (k) R" S Rs H]—'a (1039)

where R&”) is the most current evaluated noise covariance matrix from the
noise detector during this time. The NSUAMA algorithm can be summarized
in the following steps.

e Step 1: Choose the number of subbands M, decimation factors Dy and Do
(in our algorithm Dy = M/2 and Dy = M/4), a block size K, a length
of noise evaluation period L and a weight smoothing factor \.

e Step 2: Initialize k = 1, the weight vector wgft)(()) as an I x 1 zero vector,
the noise covariance matrix R%Q) to an I x I identity matriz.

o Step 3: Calculate the matriz Rgm and the vector Fgm according to (10.9)

and (10.11), respectively and the eigenvector v&{f)z that corresponds to

the largest eigenvalue Aﬁ,{i)m of REQ).
e Step 4: Calculate x\?) (k) with Dy decimation factor and RU? (k) using
the samples with Dy decimation factor. The SOI PSD S (k) and the

weight vector ngt)(k) are calculated by using (10.38) and (10.39). The
output is given by

H
YD (k) =wiD (k) xD (k).

o Step 5: Update R;Q)(k) by checking the criterion (10.34) using (10.35)
or (10.36). If k is within L, set RY = Rg{o)(k).
e Step 6: Set k =k + 1 and return to Step 4 until the end of the data.
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10.5 Evaluations

10.5.1 The Simulation Scenario

The performance evaluation of the proposed microphone arrays was made
in a real car hands-free situation. A six-sensor array with an inter-element
distance of 5 cm was mounted on the visor at the passenger side in a Volvo
station wagon. Data were gathered on a multichannel DAT-recorder with a
sampling rate of 12 kHz and bandlimited to 300-3400 Hz. The car was moving
at the speed of 110 km/h on a paved road.

For all the evaluations, the length of the speech signal (female) was 4
seconds long and the matrix in (10.9) and the vector (10.11) were calculated
by using numerical integration according to the constrained region given in
Fig. 10.1. Here, the circular constrained area of the SOI was set to be 30 cm
from the center of the array with a radius of 10 cm. The only parameter
in the RSCAMA structure, the weight smoothing factor A was chosen to
be A = 0.99. As for the NSUAMA scheme, the detector threshold was set
to e = 0.01 and both the K and L number of samples were chosen to be
30 ms and 1 s long respectively. The decimation factor for D; was made over-
sampled and set to M /2 in order to reduce the aliasing effects between the
adjacent subbands. The decimation factor D5 for the covariance estimation
on the other hand, was chosen to be Dy = M /4 to ensure the sufficiency of
data.

10.5.2 Results for RSCAMA and NSUAMA Beamformers

Figure 10.4 shows the time-domain plots of the original speech, the noisy
speech at the 4" microphone and the microphone array outputs for RSCAMA
and NSUAMA beamformers respectively. The SNR is —7 dB and the noise
level of the signal at other microphones is approximately the same as the
4™ microphone. Clearly, Figs. 10.4(c) and 10.4(d) show that the background
noise is suppressed significantly by both beamformers respectively. The plots
also suggest good timbre of the output signal as the envelope of the SOI
follows that of the original SOI [Fig. 10.4(a)].

To quantify the performance of the beamformers, the following noise sup-
pression measure is defined as,

NS = 10logy, M — 101og;o(Cl), (10.40)
J7 Powtn(w)dw

where Pin,n (w) and I:’outm (w) are the spectral power estimates of the reference
sensor observation and the output respectively, when the noise is active alone.
The constant C; normalizes the performance measure such that if the SOI
is attenuated by the beamformer, the measure is reduced correspondingly
(i.e. normalizes the noise suppression to unity SOI gain). Table 10.1 presents
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(a) Original speech
1 T T T

-1 1 1 1
(b) Moisy signal

4 secs

(c) RSCAMA Beamnformer output 4 secs

1 T T T

1 I I L

(d) NSUAMA Beamformer output
1 T T T

4 secs

4 secs

Fig. 10.4. Plots of the RSCAMA and NSUAMA data (a) clean target signal, (b)
received signal, (¢) RSCAMA beamformer output, and (d) NSUAMA beamformer
output.

Table 10.1 Noise suppression (NS) for the RSCAMA and NSUAMA beam-
formers with different number of subbands.

Subbands M

NS for RSCAMA (dB)

NS for NSUAMA (dB)

16 12.8 15.7
32 14.1 18.3
64 15.2 20.1

the noise suppression levels with the number of subbands increases from 16
to 64 for both the RSCAMA and the NSUAMA schemes. The suppression
levels for both the beamformers improve as the number of subbands increases.
Evidently, the NSUAMA achieves 4 — 5 dB noise suppression improvement
over the RSCAMA structure irrespective of the number of subbands, yielding
an impressive noise suppression level of 20.1 dB for the case of M = 64
subbands.
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For completeness, Figs. 10.5(a) and 10.5(b) show the normalized out-
put power plots of both the source and noise before and after the pro-
cessing for both beamformers. From the power spectral plots, it is evident
that the signal integrity of the source is maintained whilst the noise is sup-
pressed uniformly across the frequency for both schemes. As mentioned pre-
viously, the NSUAMA algorithm achieves better noise suppression compared
to the RSCAMA algorithm. More significantly, Fig. 10.5(a) reveals that the
NSUAMA offers less spectral distortion to the SOI than the RSCAMA struc-
ture. This is attributed to the noise detector, which prevents the inclusion of
the SOI in the update of the noise information. Nevertheless, the RSCAMA
scheme has its merits as far as computational burden is concerned. For in-
stance, in the RSCAMA algorithm, the update routine uses the matrix in-
version lemma only twice (see Section 10.3.2). The NSUAMA algorithm on
the other hand, requires the use of matrix inversion lemma to update all
the eigenvectors of the SOI (see Section 10.4.4). However, depending on how
much the space the SOI spans, it will have a few dominating eigenvectors.
Therefore only half of the eigenvectors are updated in this evaluation and
thus the NSUAMA scheme requires more computational requirements than
the RSCAMA structure. Informal listening tests suggest good quality out-
puts from both the RSCAMA and the NSUAMA beamformers, with the
NSUAMA offering more superior sound quality.
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Fig. 10.5. Normalized output PSD plots for the RSCAMA and NSUAMA before
and after processing of (a) source and (b) noise.
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10.6 Conclusions

Two new space constrained adaptive microphone arrays with noise statistics
updates have been presented. The novelty of both the structures lies in their
space constraints, SOI spectral information and noise information updates.
The space constraints provide robustness against steering vector errors and
the update allows the noise statistics to be efficiently tracked in the Wiener
solution. Also, the inclusion of the SOI PSD update in the solution offers a
spectrally optimized constraint on the target signal integrity. The combina-
tion of both the PSD and space in the constraints makes full use of the avail-
able spatio-temporal domain. The major difference between the RSCAMA
and NSUAMA algorithms is the manner that the SOI PSD and noise infor-
mation updates are estimated. Whilst the RSCAMA is more computationally
straightforward compared to the NSUAMA scheme, the NSUAMA achieves
higher noise suppression capability. Results in a real hands-free car scenario
show that the RSCAMA manages to achieve a good noise suppression level
up to 15 dB and an impressive noise suppression of 20 dB for the NSUAMA.
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