e
. _J.Benesty
‘ “;’__’“ S. Makino
4__ J. Chen (Eds.)

3 o
-« Speech
Enhancement

@ Springer



Springer Series on
S1GNALS AND COMMUNICATION TECHNOLOGY




SiGNALS AND COMMUNICATION TECHNOLOGY

Electronic Noise and Interfering Signals
Principles and Applications

G. Vasilescu

ISBN 3-540-40741-3

DVB

The Family of International Standards
for Digital Video Broadcasting, 2nd ed.
U. Reimers

ISBN 3-540-43545-X

Digital Interactive TV and Metadata
Future Broadcast Multimedia

A. Lugmayr, S. Niiranen, and S. Kalli
ISBN 0-387-20843-7

Adaptive Antenna Arrays
Trends and Applications
S. Chandran (Ed.)

ISBN 3-540-20199-8

Digital Signal Processing

with Field Programmable Gate Arrays
U. Meyer-Baese

ISBN 3-540-21119-5

Neuro-Fuzzy and Fuzzy-Neural Applications
in Telecommunications

P. Stavroulakis (Ed.)

ISBN 3-540-40759-6

SDMA for Multipath Wireless Channels
Limiting Characteristics and Stochastic Models
I.P. Kovalyov

ISBN 3-540-40225-X

Digital Television

A Practical Guide for Engineers
W. Fischer

ISBN 3-540-01155-2

Multimedia Communication Technology
Representation, Transmission

and Identification of Multimedia Signals
J.R. Ohm

ISBN 3-540-01249-4

Information Measures

Information and its Description in Science
and Engineering

C. Arndt

ISBN 3-540-40855-X

Processing of SAR Data
Fundamentals, Signal Processing,
Interferometry

A. Hein

ISBN 3-540-05043-4

Chaos-Based Digital Communication Systems
Operating Principles, Analysis Methods,

and Performance Evaluation

EC.M. Lau and C.K. Tse

ISBN 3-540-00602-8

Adaptive Signal Processing
Applications to Real-World Problems
J. Benesty and Y. Huang (Eds.)

ISBN 3-540-00051-8

Multimedia Information Retrieval

and Management

Technological Fundamentals

and Applications

D. Feng, W.C. Siu, and H.J. Zhang (Eds.)
ISBN 3-540-00244-8

Structured Cable Systems
A.B. Semenov, S.K. Strizhakov,
and LR. Suncheley

ISBN 3-540-43000-8

UMTS

The Physical Layer of the Universal Mobile
Telecommunications System

A. Springer and R. Weigel

ISBN 3-540-42162-9

Advanced Theory of Signal Detection
Weak Signal Detection

in Generalized Observations

I. Song, J. Bae, and S.Y. Kim

ISBN 3-540-43064-4




J. Benesty - S. Makino - J. Chen

Speech Enhancement

With 136 Figures and 18 Tables

@ Springer



Prof. Dr. Jacob Benesty
Universite du Quebec
INRS-EMT

800 de la Gauchetiere Quest
H5A 1K6 Montreal, QC
Canada

Shoji Makino

Communication Science Laboratories, NTT
Hikaridai, Seika-cho 2-4

619-0237 Kyoto

Japan

Jingdong Chen

Bell Labs

Lucent Technologies
600 Mountain Ave.
07974 Murray Hill
USA

ISBN 3-540-24039-X Springer Berlin Heidelberg New York
Library of Congress Control Number: 2005921414

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilm or in other ways, and storage in data banks.
Duplication of this publication or parts thereof is permitted only under the provisions of the
German Copyright Law of September 9, 1965, in its current version, and permission for use
must always be obtained from Springer-Verlag. Violations are liable to prosecution under
German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in The Netherlands

The use of general descriptive names, registered names, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

Typesetting and final processing by PTP-Berlin Protago-TgX-Production GmbH, Germany
Cover-Design: design & production GmbH, Heidelberg
Printed on acid-free paper 62/3141/Yu-543210



Preface

We live in a noisy world! In all applications (telecommunications, hands-
free communications, recording, human-machine interfaces, etc) that require
at least one microphone, the signal of interest is usually contaminated by
background noise and reverberation. As a result, the microphone signal has
to be “cleaned” with digital signal processing tools before it is played out,
transmitted, or stored.

This book is about speech enhancement. Different well-known and state-
of-the-art methods for noise reduction, with one or multiple microphones,
are discussed. By speech enhancement, we mean not only noise reduction
but also dereverberation and separation of independent signals. These topics
are also covered in this book. However, the general emphasis is on noise
reduction because of the large number of applications that can benefit from
this technology.

The first book on this topic was published in 1983 with the title: Speech
Enhancement. The editor and publisher were respectively J. S. Lim and Pren-
tice Hall. That book was a collection of journal and conference papers on
noise reduction. Since then, we are not aware of any book on the same sub-
ject. Obviously, since 1983 research has progressed considerably. While the
first methods were all based on spectral subtraction with a single micro-
phone, recently many new concepts have been proposed with one or more
microphones. Furthermore, the topic is now much more broadened.

The idea of this edited book came after a short discussion among us that
time was quite ripe for such a project, since speech enhancement is not only
a fundamental field of research in the applications of digital signal processing
but is also of great interest to the industry which is always looking for new
solutions that are both effective and practical. It did not take us that much
time to decide and launch this project, since we were immediately convinced
that the publisher and the contributors would approve it right away. This
idea, to finally summarize mature and new concepts in a comprehensive way,
was very well received indeed. As a result, we were excited to cover this
topic the best way we could with recognized researchers who have made solid
contributions to the field of signal enhancement.

One of the main objectives of this book is to provide a strong reference
for engineers, researchers, and graduate students who are interested in the
problem of signal and speech enhancement. We hope that everyone will find
it useful. We think that engineers will find good ideas to implement for new
products, researchers will have in their hands a nice tool for further research,
and students will be inspired by the ideas presented here in order that one
day they will contribute too.



VI Preface

We deeply appreciate the efforts, interest, and enthusiasm of all the con-
tributing authors. Without them, this project would never have been possible.
We are very grateful to Dieter Merkle from Springer and his Engineering Ed-
itorial Assistant, Petra Jantzen. Working with them is always a pleasure and
a wonderful experience since, as usual, everything goes without a bump in
the road.

Jacob Benesty,
Shoji Makino,
Jingdong Chen
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1 Introduction

Jacob Benesty!, Shoji Makino?, and Jingdong Chen?

! Université du Québec, INRS-EMT
Montréal, QC H5A 1K6, Canada

E-mail: benesty@inrs-emt.uquebec.ca
NTT Communication Science Laboratories
Soraku-gun, Kyoto 619-0237, Japan
E-mail: maki@cslab.kecl.ntt.co.jp

Bell Laboratories, Lucent Technologies
Murray Hill, NJ 07974, USA

E-mail: jingdong@research.bell-labs.com

1.1  Speech Enhancement

What is speech enhancement? Enhancement means the improvement in the
value or quality of something. When applied to speech, this simply means
the improvement in intelligibility and/or quality of a degraded speech signal
by using signal processing tools.

Speech enhancement is a very difficult problem for two reasons. First,
the nature and characteristics of the noise signals can change dramatically
in time and application to application. It is therefore laborious to find versa-
tile algorithms that really work in different practical environments. Second,
the performance measure can also be defined differently for each application.
Two perceptual criteria are widely used to measure the performance: quality
and intelligibility. While the former is subjective (it reflects individual pref-
erences of listeners), the latter is objective (it gives the percentage of words
that could be correctly identified by listeners). It is very hard to satisfy both
at the same time. In fact, it can easily be shown that in the single-channel
(one microphone) case and when the degradation is due to the uncorrelated
additive noise, noise reduction (quality improvement) is possible at the ex-
pense of speech distortion (intelligibility reduction). However, we need to be
careful when we talk about intelligibility. Indeed, when the speech signal is
very noisy, listeners tend to concentrate less after a long period of time and,
as a result, there is a reduction in intelligibility. Hence, the intelligibility of
the enhanced signal may be perceived higher than that of the noisy signal
but only after a long period of listening time, depending on the listener con-
centration. This phenomenon is known as listener fatigue.

To our knowledge, research on noise reduction techniques started more
than 40 years ago at Bell Labs, with pioneering work by Schroeder. He
proposed an analog implementation of the spectral magnitude subtraction
method. This work is not very well known, probably because it was never
published in journals or conferences but only as patents [1], [2]. Boll [3],
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more than 15 years later, reinvented this method in the digital domain. Since
then, many improved and more sophisticated algorithms based on the same
approach have been proposed [4], [5], [6], [7]. The spectral subtraction method
is by far the most popular and most used in real-world applications. How-
ever, this approach introduces some artifacts referred to as musical noise, due
to spectral estimation problems. A nice literature review on this particular
subject can be found in [8].

Another important approach, based on a signal subspace decomposition,
was proposed by Ephraim and Van Trees in 1995 [9]. It consists of decompos-
ing the vector space of the noisy signal into two orthogonal subspaces: the
signal-plus-noise subspace and the noise subspace. This is possible because it
is well accepted that the clean speech can be modeled with a low-rank model.
It is then straightforward to estimate the clean signal. Other algorithms us-
ing the same approach were proposed by the same authors. They are based
on the observation that signal distortion and residual noise can not be mini-
mized simultaneously. However, we can control a trade-off between the two.
The resulting linear estimator is a general Wiener filter with adjustable noise
level. It seems that this contribution almost eliminates the musical noise.

The two previous techniques of spectral subtraction and signal subspace
are nonparametric. Other important algorithms for speech enhancement be-
long to the group of parametric methods where the speech signal is modeled
as an autoregressive (AR) process embedded in Gaussian noise. Speech en-
hancement algorithms belonging to this category consist of two steps:

e estimation of the AR coefficients and noise variances, and
e apply the Kalman filter using the estimated parameters to estimate the
clean speech.

This important work was started by Paliwal and Basu in 1987 [10].

Most of today’s techniques on noise reduction use a single microphone.
As we mentioned earlier, it is not possible, in general, to improve both qual-
ity and intelligibility at the same time. Usually, quality is improved at the
expense of sacrificing intelligibility. Methods using time/spectral information
only, have very likely limited performances even though they may give sat-
isfactory results in many applications. One natural way to overcome these
limitations or to add more degrees of freedom in searching for a solution is
to exploit spatial information by using multiple microphones. In this case,
it seems possible to obtain a good amount of noise reduction without dis-
torting the speech signal. Nowadays, researchers are investing efforts in this
direction.

Speech communication applications where a noise reduction algorithm is
required are numerous; here is a short list:

e hands-free communications,

e voice over IP (VoIP),

e hearing aids,

e local and long distance telecommunications,
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answering machines,

speech recognition,
teleconferencing systems,

car and mobile phones,

cockpits and noisy manufacturing,
multiparty conferencing.

To illustrate the importance of noise reduction, we now give the very good ex-
ample of multiparty conferencing explained by Diethorn in [8]. In multiparty
conferencing, the background noise picked up by the microphone of each point
of the conference combines additively at the network bridge with the noise
signals from all other points. The loudspeaker at each location of the confer-
ence therefore reproduces the combined sum of the noise processes from all
other locations. Consider a three-point conference in which the room noise at
all locations is stationary and independent with power P. Each loudspeaker
receives noise from the other two locations, resulting in a total received noise
power of 2P, or 3 dB greater than that of a two-point conference. With
N points, each side receives a total noise power that is 10log,o(/N — 1) dB
greater than P. For example, in a conference with 11 participating locations,
the received noise power at each point is about 10 dB greater than that of the
two-party case. Clearly, this problem is extremely serious when the number
of conferees is large, and without noise reduction, communication is almost
impossible in this context.

To summarize, any speech communication application (and there are
many) may require a technique to reduce the level of noise.

1.2 Challenges and Opportunities

In the previous section, we exclusively discussed the noise reduction problem,
where the focus is on eliminating or attenuating the additive background
noise. However, as the applications are broadened, the definition of speech
enhancement is now becoming more general. It should certainly include the
reinforcement of the signal from the corruption of competing speech, or even
from degradation of the filtered version of the same signal. These are well-
known as signal separation and dereverberation problems, which are much
more challenging than the classical noise reduction problem.

In a room and in a hands-free context, the signal that is picked up by
a microphone from a talker contains not only the direct-path signal, but
also attenuated and delayed replicas of the source signal due to reflections
from boundaries and objects in this room. This multipath propagation effect
introduces echoes and spectral distortions into the observation signal, termed
as reverberation, which severely deteriorates the source signal. Therefore,
dereverberation is required to improve the intelligibility of the speech signal.

Researchers in acoustics have been aware of the negative effect of rever-
beration in speech communications for more than four decades but, contrary
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to noise reduction, good and practical solutions are almost inexistent. Dere-
verberation is a very difficult problem, and we believe it will take a long time
before reliable solutions can be derived.

The ability of humans, with normal hearing, to focus on a single talker
among a cacophony of conversations and background noise, the so-called
cocktail party effect, is quite remarkable. One important reason for this abil-
ity is the fact that we have two ears. It is well-known that listening in this
scenario with only one ear is annoying and it becomes very difficult to con-
centrate on one particular signal when several of them come from all around
simultaneously but it can be done (albeit with much less ability).

In blind source separation with multiple microphones, we try to separate
different signals coming, at the same time, from different directions. In a
controlled situation, when the number of sources is known and reverberation
is not very high, important advances have been made. The cocktail party
effect is not solved though. It would be very interesting to be able to separate
the signal of interest from the rest, which is not exactly what blind source
separation algorithms do.

Many challenges remain in noise reduction as well. In the single-channel
case, can we do a better job than what we have now? In the multichannel
case, can we derive an optimal solution in the sense that the noise is removed
as much as we like without degrading the speech integrity or intelligibility?
In the general case, how should we deal with non-stationary noise signals and
different acoustic environments?

Needless to say, opportunities are tremendous if great progress is to be
in this important topic of research. Noise and reverberation are everywhere
around us and they are here to stay. We live in a very noisy world! From
hands-free communications to hearing-aids, millions of consumers will benefit
from new ideas that go into products. This is already true today. But with new
revolutions in ways we telecommunicate with each other and human-machine
interfaces, speech enhancement techniques will always be an important part
of the whole picture.

Since noise is one of the major problems in speech enhancement in general,
more chapters are dedicated to noise reduction than to dereverberation and
source separation. In this book, we invited well-known experts to contribute
chapters covering the state of the art in the research of this focused field.

1.3 Organization of the Book

This book contains 16 chapters (including this one). We tried to cover the
most important topics in the next 15 chapters. Nine chapters (2-10) are
dedicated to noise reduction. Dereverberation is covered by two chapters
(Chapters 11 and 12). The last four chapters (13-16) are on source separation.

Chapter 2, by Jacob Benesty et al., studies the quantitative performance
behavior of the Wiener filter in the context of noise reduction. By defining a
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speech-distortion index and a noise-reduction factor, it is shown in detail how
the Wiener filter achieves noise reduction with detriment to speech integrity.
By examining the speech-distortion index, several approaches are also sug-
gested that can better manage the compromise between noise reduction and
speech distortion.

Chapter 3, by Rainer Martin, discusses statistical methods for noise re-
duction in the spectral domain. While the focus is on spectral analysis by
means of the discrete Fourier transform, many of these approaches can be
also used in conjunction with other analysis techniques such as filterbanks.
The MMSE and MAP estimators for the complex spectral coefficients as well
as the amplitude of these coefficients are presented. These estimators are an-
alyzed in terms of their input-output characteristics. Emphasis is placed on
the use of super-Gaussian density models for the probability density of undis-
turbed speech coefficients. Furthermore, the estimation of the background
noise power is discussed.

In Chapter 4, Thomas Lotter presents maximum a posteriori (MAP) spec-
tral amplitude estimators for single- and multi-microphone DFT based speech
enhancement systems. The incorporation of a precise super-Gaussian statis-
tical model for the speech spectral amplitude and the generalization of the
estimation to multiple-input and output signals provide significant quality
improvements compared to common systems.

Chapter 5, by Israel Cohen, describes a new modeling approach for speech
signals in the short-time Fourier transform (STFT) domain. It suggests that
the expansion coefficients of speech signals have similar characteristics as
those of financial time-series, and therefore similar modeling techniques can
be exploited. The chapter further demonstrates the application of the new
method to speech enhancement, and its advantage compared to using the
decision-directed method.

Chapter 6, by Akihiko Sugiyama et al., presents a noise suppression al-
gorithm based on weighted noise estimation. This algorithm continuously
updates the estimated noise by weighted noisy speech in accordance with
an estimated SNR. Subjective evaluation results show that five-grade mean
opinion scores are improved by as much as 0.35, compared with either the
MMSE-STSA or the EVRC noise suppression algorithm.

The signal subspace approach (SSA) for speech enhancement is becoming
a serious competitor to its already widely used frequency-domain counter-
parts as it seems to offer a better compromise between signal distortion and
the level of the residual noise. Chapter 7, by Firas Jabloun et al., provides a
detailed description of the technique in terms of its underlying theory. Various
issues associated with the SSA such as the colored noise case and the compu-
tational load are addressed. Some of the latest extensions and developments
to the SSA are also presented.

In Chapter 8, by Sharon Gannot, the Kalman filter is applied, in the
estimate-maximize (EM) framework, to enhance the speech signal received
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by a single microphone and contaminated by an additive noise signal. The
solution iterates between estimating the spectral parameters of the speech
and noise signals (at the M-step), and employing the Kalman filter (at the
E-step). Generalization to the unscented Kalman filter is also discussed.

Chapter 9, by Simon Doclo et al., discusses a multi-microphone speech
enhancement technique that is based on speech distortion weighted multi-
channel Wiener filtering (SDW-MWTF). This speech enhancement technique
is more robust against signal model errors than standard adaptive beamform-
ing techniques, since it takes speech distortion due to signal model errors
explicitly into account in the design of the adaptive stage. A novel frequency-
domain criterion is presented, from which several adaptive frequency-domain
algorithms for the SDW-MWF can be derived. The performance of these al-
gorithms is investigated for a small-sized microphone array in a hearing aid
application.

Chapter 10, by Sven Nordholm et al., presents two algorithms (using mul-
tiple microphones) that show good potential to provide good speech enhance-
ment capability in poor signal-to-noise ratio (SNR) situations. The basic
commonality of the adaptive microphone array schemes is that they approx-
imate the Wiener solution according to an estimate using current available
data and avoid suppression of the source of interest by employing a quadratic
constraint.

Chapter 11, by Tomohiro Nakatani et al., describes a single-channel blind
dereverberation method based on the harmonicity of speech signals. A filter
that enhances the harmonicity of reverberant speech signals is shown to ap-
proximate the inverse filter of the room transfer function; as a result, high
quality dereverberation is achieved.

Chapter 12, by Yiteng (Arden) Huang et al., studies the problems of
source separation and speech dereverberation in a unified framework based
on blind multichannel identification. It is shown that spatial interference and
temporal reverberation can be separated and then the extracted interference-
free SIMO system is dereverberated using the MINT theorem, leading to the
proposal of a novel sequential algorithm. The performance of this algorithm
is explored by simulations and the results show some promise.

Chapter 13, by Hiroshi Sawada et al., presents a frequency-domain ap-
proach to blind source separation (BSS) of convolutively mixed acoustic sig-
nals, where independent component analysis (ICA) is employed in each fre-
quency bin to separate mixed signals. This approach provides good results
for separating many sources mixed in a real room environment.

In Chapter 14, Shoko Araki et al. show how to implement BSS in subband.
This approach copes with the difficulties of the frequency-domain approach
in estimating statistics and the time-domain technique in adapting many
parameters. Furthermore, by employing an appropriate separation method
for each subband, this method can improve the separation performance.
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In Chapter 15, Ryo Mukai et al. present a BSS method for moving sources.
Their two-step method employs frequency-domain ICA in the first stage and
non-stationary crosstalk cancellation in the second stage. Experimental re-
sults using speech signals recorded in a real room show that their method
realizes a robust low-delay real-time separation for moving sources.

In Chapter 16, Guy J. Brown et al. review recent developments in the
field of computational auditory scene analysis (CASA), which attempts to
develop sound separation systems that model human performance. They de-
scribe algorithms for the separation of single-channel and binaural acoustic
mixtures, and discuss ways of integrating CASA with automatic speech recog-
nition. They also comment on the differences between the CASA and ICA
approaches, and suggest ways in which the two might be combined.

1.4 Further Reading

Besides this book, the following is a non-exhaustive list of references for
further reading on the subject of speech enhancement in general.

1. H. Drucker, “Speech processing in a high ambient noise environment,”
IEEE Trans. Audio Electroacoust., vol. AU-16, pp. 165-168, June 1968.

2. M. M. Sondhi, C. E. Schmidt, and L. R. Rabiner, “Improving the quality

of a noisy speech signal,” Bell Syst. Tech. J., vol. 60, pp. 1847-1859, Oct.

1981.

J. S. Lim, ed., Speech Enhancement. Prentice-Hall, Inc, NJ, 1983.

4. M. Miyoshi and Y. Kaneda, “Inverse filtering of room acoustics,” IEEE
Trans. Acoust., Speech, Signal Processing, vol. 36, pp. 145-152, Feb. 1988.

5. J. D. Gibson, B. Koo, and S. D. Gray, “Filtering of colored noise for
speech enhancement and coding,” IEEE Trans. Signal Processing, vol.
39, pp. 1732-1742, Aug. 1991.

6. S. Furui and M. M. Sondhi, eds., Advances in Speech Signal Processing.
Marcel Dekker, NY, 1992.

7. Y. Ephraim, “Statistical model based speech enhancement systems,”
Proc. of the IEEE, vol. 80, pp. 1526-1555, Oct. 1992.

8. O. Cappé, “Elimination of the musical noise phenomenon with the
Ephraim and Malah noise suppressor,” IEEE Trans. Speech Audio Pro-
cessing, vol. 2, pp. 345-349, Apr. 1994.

9. S. Gannot, D. Burshtein, and E. Weinstein, “Iterative and sequen-
tial Kalman filter-based speech enhancement algorithms,” IEEE Trans.
Speech Audio Processing, vol. 6, pp. 373-385, July 1998.

10. S. Doclo and M. Moonen, “GSVD-based optimal filtering for single and
multimicrophone speech enhancement,” IEEE Trans. Signal Processing,
vol. 50, pp. 22302244, Sept. 2002.

11. A. Cichocki and S. Amari, Adaptive Blind Signal and Image Processing.
John Wiley & Sons, 2002.
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12. J. Chen, Y. Huang, and J. Benesty, “Filtering techniques for noise
reduction and speech enhancement,” in Adaptive Signal Processing—
Applications to Real-World Problems, J. Benesty and Y. Huang, eds.,
chapter 5, pp. 129-154, Springer-Verlag, Berlin, 2003.

13. R. Martin, “Statistical methods for the enhancement of noisy speech,” in
Proc. IWAENC, 2003, pp. 1-6.

14. Y. Huang and J. Benesty, eds., Audio Signal Processing for Next-
Generation Multimedia Communication Systems. Kluwer Academic Pub-
lishers, Boston, MA, 2004.

15. K. Hermus and P. Wambacq, “Assessment of signal subspace based
speech enhancement for noise robust speech recognition,” in Proc. IEEE
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Abstract. The problem of noise reduction has attracted a considerable amount of
research attention over the past several decades. Numerous techniques were devel-
oped, and among them is the optimal Wiener filter, which is the most fundamental
approach, and has been delineated in different forms and adopted in diversified
applications. It is not a secret that the Wiener filter achieves noise reduction with
some integrity loss of the speech signal. However, few efforts have been reported to
show the inherent relationship between noise reduction and speech distortion. By
defining a speech-distortion index and a noise-reduction factor, this chapter studies
the quantitative performance behavior of the Wiener filter in the context of noise
reduction. We show that for a single-channel Wiener filter, the amount of noise
attenuation is in general proportionate to the amount of speech degradation. In
other words, the more the noise is reduced, the more the speech is distorted. This
may seem discouraging as we always expect an algorithm to have maximal noise
attenuation without much speech distortion. Fortunately, we show that the speech
distortion can be better managed by properly manipulating the Wiener filter, or by
considering some knowledge of the speech signal. The former leads to a sub-optimal
Wiener filter where a parameter is introduced to control the tradeoff between speech
distortion and noise reduction, and the latter leads to the well-known parametric-
model-based noise reduction technique. We also show that speech distortion can
even be avoided if we have multiple realizations of the speech signal.

2.1 Introduction

The existence of noise is inevitable in real-world applications of speech pro-
cessing. In a voice communication system, for example, a desired speech
signal, when propagating through an acoustic channel and picked up by a
microphone sensor, is corrupted by unwanted noise, which may result in ap-
preciable or even significant degradation in the quality and intelligibility of
the recorded speech. Therefore, it is essential for such systems that we can
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have some effective noise reduction/speech enhancement techniques to ex-
tract the desired speech signal from its corrupted observations.

The noise reduction technique has a broad range of applications, from
hearing aids, cellular phones, voice-controlling systems, teleconferencing and
multiparty teleconferencing, to automatic speech recognition (ASR) systems.
The difference between two systems using and not using such techniques can
be significant; therefore, the choice can have a great impact on the functioning
of the system.

Research on noise reduction/speech enhancement can be traced back to
40 years ago with 2 patents by Schroeder [1], [2] where an analog implemen-
tation of the spectral magnitude subtraction method was described. Since
then, it has become an area of active research. Over the past several decades,
researchers and engineers have approached this challenging problem by ex-
ploiting different facets of the properties of the speech and noise signals [3],
[4], [5], [6], [7]. A variety of approaches have been developed, including Wiener
filter [8], [9], [10], [11], [12], [13], spectral restoration [3], [11], [14], [15], [16],
[17], [18], [19], signal subspace method [20], [21], [22], [23], [24], [25], [26],
parametric-model-based approach [27], [28], [29], [30], [31], statistical-model-
based method [5], [32], [33], [34], [35], [36], [37], and spatio-temporal filtering
[38], [39], [40], [41], [42].

Most of these algorithms were developed independently of each other and
their performance on noise reduction were evaluated mostly by assessing the
improvement of signal-to-noise ratio (SNR) or subjective speech quality when
the methods were formulated. It has been noticed that these algorithms,
almost with no exception, achieve noise reduction by some integrity loss of the
speech signal. Some algorithms are even formulated explicitly based on the
tradeoff between noise reduction and speech distortion, such as the subspace
method. However, so far, few efforts have been devoted to analyzing such a
tradeoff behavior even though it is a very important issue. In this chapter, we
attempt to provide an analysis about the compromise between noise reduction
and speech distortion. On the one hand, such a study may offer us some
insight into the range of the existing algorithms that can be employed in
practical noisy environments. On the other hand, a good understanding may
help us to find new algorithms that can work more effectively than the existing
ones.

Since there are so many algorithms in the literature, it is extremely diffi-
cult if not impossible to find a universal analytical tool that can be applied
to any algorithm. In this study, we choose the Wiener filter as the basis
since it is the most fundamental approach, and many algorithms are closely
connected to this technique. For example, the minimum-mean-square-error
(MMSE) estimator presented in [15], which belongs to the category of spec-
tral restoration, converges to the Wiener filter at a high SNR. Also it is widely
known that the Kalman filter is tightly related to the Wiener filter.
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Starting from the optimal Wiener filtering theory, we introduce two new
concepts: the speech-distortion index and the noise-reduction factor. We then
show that for a single-channel Wiener filter, the amount of noise attenuation
is in general proportionate to the amount of speech degradation. In other
words, the more the noise is attenuated, the more the speech is distorted. This
observation may seem quite discouraging as we always expect an algorithm to
have maximal noise attenuation without much speech distortion. Fortunately,
we show that the compromise between noise reduction and speech distortion
can be better managed by properly manipulating the Wiener filter, or by
considering some knowledge of the speech signal. The former leads to a sub-
optimal Wiener filter where, like in the spectral subtraction, a parameter
is introduced to control the tradeoff between speech distortion and noise
reduction, and the latter leads to the well-known parametric-model-based
noise-reduction technique. We also discuss the possibility to avoid speech
distortion by using an array of microphones.

2.2 Estimation of the Clean Speech Samples

We consider a zero-mean clean speech signal z:(n) contaminated by a zero-
mean noise process v(n) [white or colored but uncorrelated with z(n)], so
that the noisy speech signal, at the discrete time sample n, is,

y(n) = a(n) + v(n). (2.1)

Define the error signal between the clean speech sample at time n and its
estimate:

a(n) — &(n) = z(n) — h'y(n), (2.2)
where superscript T denotes transpose of a vector or a matrix,
T

h= [ ho hy -+ hp_ ]

is an FIR filter of length L, and
T

y(n)=[y(mn) yn-1) - yn—-L+1) ]

is a vector containing the L most recent samples of the observation signal

y(n).
We now can write the mean-square error (MSE) criterion:

Jo(h) £ B {e2(n)}, (23)

where E{-} denotes mathematical expectation. The optimal estimate &, (n) of
the clean speech sample x(n) tends to contain less noise than the observation
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sample y(n), and the optimal filter that forms &, (n) is the Wiener filter which
is obtained as follows,

h, = arg mhin Jz(h). (2.4)

Consider the particular filter,
w=[10--0]".

This means that the observed signal y(n) will pass this filter unaltered (no
noise reduction), thus the corresponding MSE is,

Jo(w) = E{ [z(n) — uly(m)]"} = E{lz(n) - y(n)] }
=E{v*(n)} =0l (2.5)
In principle, for the optimal filter h,,, we should have,
Jo(hy) < Jp(uy) = o2 (2.6)

In other words, the Wiener filter will be able to reduce the level of noise in
the noisy speech signal y(n).
From (2.4), we easily find the Wiener-Hopf equation:

R,h, = p, (2.7)
where
R, = E{y(n)y"(n)} (2.8)

is the correlation matrix of the observed signal y(n) and

p = E{y(n)z(n)} (2.9)

is the cross-correlation vector between the noisy and clean speech signals.
However, xz(n) is unobservable; as a result, an estimation of p may seem
difficult to obtain. But,

p = Ef{y(m)(n)} = E{y(n) [y(n) — v(n)]}

= E{y(n)y(n)} — E{[x(n) + v(n)|v(n)}

— E{y(n)y(n)} — E{v(n)o(n)}

=r, —r,. (2.10)
Now p depends on the correlation vectors r, and r,. The vector r, (which is
also the first column of R,) can be easily estimated during speech and noise

periods while r, can be estimated during noise-only intervals assuming that
the statistics of the noise do not change much with time.
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Using (2.10) and the fact that u; = R_lry, we obtain the optimal filter:

y
hy=u; —R,'r, = [I-R, 'R, w (2.11)
I S s 15
=|—+R, R.,| R, R.uy,
{SNR Ry } v Rt
where
A o2
SNR = 0—12] (2.12)
is the signal-to-noise ratio, I is the identity matrix, and
- AR,
Rx = U—%,
- AR,
R»U == 0_—12’
We have,
SNIFI{rEoo h, = uy, (2.13)
lim h, = 0. (2.14)
SNR-0
The minimum MSE (MMSE) is,
Jz(ho) = cri —p'h, = ag — rfR;lrU = rfho. (2.15)

We see clearly from the previous expression that J,(h,) < J;(u1); therefore,
noise reduction is possible.
The normalized MMSE is

Jultng) 2 00y — )

, (2.16)

and 0 < J,(h,) < 1.

2.3 Estimation of the Noise Samples

In this section, we will estimate the noise samples from the observations y(n).
Define the error signal between the noise sample at time n and its estimate:

eu(n) = v(n) — i(n) = o(n) — g7y(n), (2.17)
where
g=[gog - gr1]
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is an FIR filter of length L. The MSE criterion associated with (2.17) is,

Ju(8) = E{e2(n)}. (2.18)

The estimation of v(n) in the MSE sense will tend to attenuate the clean
speech.
The minimization of (2.18) leads to the Wiener-Hopf equation:

g, =R, 'r, =R, 'R,u;

- - 71—1 . ~
- [SNR~I+R;1RU R;'R,u;.
We have,
SNlllarEoo g, =0, (2.19)
Sl\lIIRHLOgO =u. (2.20)

The MSE for the particular filter u; (no clean speech reduction) is,

Jo(ur) = E{z*(n)} = o2. (2.21)
Therefore, the MMSE and the normalized MMSE are respectively,
‘]U(go) - 012) - I‘fR;lI'U = 0121 - rggm (222)
7 s Ju(8s) Jv(8o)
Ju = 2L = oL, 2.23
() = 0 = 2 (229

Since J,(g,) < Jy(u1), the Wiener filter will be able to reduce the level of
clean speech of the signal y(n). As a result, 0 < J,(g,) < 1.

In the next section, we will see that while the normalized MMSE, .J,, (hy),
of the clean speech estimation plays a key role in noise reduction, the nor-
malized MMSE, J,(g,), of the noise process estimation plays a key role in
speech distortion.

2.4 Important Relationships Between Noise Reduction
and Speech Distortion

Obviously, there are some important relationships between the estimation
of the clean speech and noise samples. We immediately see from (2.15) and
(2.22) that the two MMSEs are equal,

Jo(ho) = Ju(8,)- (2.24)

However, the normalized MMSEs are not, in general. Indeed, we have a re-
lation between the two:

Jo(g,) = (&) _ Ja(ho)

2 2
0% O

0'12; Jz(ho) jx(hO)
= U—% - = SNR - (2.25)
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So the only situation where the two normalized MMSEs are equal is when
the SNR is equal to 1. For SNR < 1, J,(h,) < Ju(g,) and for SNR > 1,
Ju(g,) < Jx(ho). Also, J,(h,) < SNR and J,(g,) < 1/SNR.

From (2.11) and (2.19), we get a relation between the two optimal filters:
h,=u; —g,. (2.26)

In fact, minimizing J,(h) or J,(u; —h) with respect to h is equivalent. In
the same manner, minimizing J,(g) or J,(u; — g) with respect to g is the
same thing. At the optimum, we have,

Ca0(n) = 2(n) —hgy(n) = x(n) — [w — g, [x(n) +v(n)]
= —v(n) +goy(n) = —eyo(n). (2.27)
We can easily verify the following:
Jv(hO) = Jx(go)
=0, — 3J,(h,), (2.28)

which implies that J,.(h,) < o7 /3. We already know that .J,(h,) < o7 and
Jo(hy) < o2

The optimal estimation of the clean speech, in the Wiener sense, is in fact
what we call noise reduction:

&o(n) = hgy(n), (2.29)
or equivalently, if the noise is estimated first:

io(n) = g y(n), (2.30)
we can use this estimate to reduce the noise from the observed signal:

Fo(n) = y(n) — 0 (n). (2.31)

The power of the estimated clean speech signal with the optimal Wiener filter
is,

E{#2(n)} = h R h, =02 — J,(h,)
= h!R,h, + h!R,h,, (2.32)

which is the sum of two terms. The first one is the power of the attenuated
clean speech and the second one is the power of the residual noise (always
greater than zero). While noise reduction is feasible with the Wiener filter,
expression (2.32) shows that the price to pay for this is also a reduction of
the clean speech [by a quantity equal to J,(h,) + thvh0 and this implies
distortion], since hZtho < o2. In other words, the power of the attenuated
clean speech signal is, obviously, always smaller than the power of the clean
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speech itself; this means that parts of the clean speech are attenuated in the
process and as a result, distortion is unavoidable with this approach.

We now define the speech-distortion index due to the optimal filtering
operation as,

E { [a(n) — B2 x(n)] 2}

A
via(8,) = - (2.33)
T
goRZgo 1 T T T
= 20720 — | J,(h,) — hIR,h,| < J,(g,)-
> = g |Je(he) — BERuh| < Ju(e)

Clearly, this index is always between 0 and 1 for the optimal filter. Also,

li =1 .34
oim vaa(go) = 1, (2.34)
SNllleroo vsd(g,) = 0. (2.35)

So when wvsq(g,) is close to 1, the speech signal is highly distorted and when

Usd(8,) is near 0, the speech signal is lowly distorted. We deduce that for low

SNRs, the Wiener filter can have a disastrous effect on the speech signal.
Similarly, we define the noise-reduction factor due to the Wiener filter as,

2
JAN Oy

far(ho) = ————~ (2.36)
o2 1 1

W Roh, j Rog,|  Je(ho)
oRBo  SNR[J,(g,) ~ gl Rog,|  Jo(bo)

and &, (hy) > 1. The greater is &, (h,), the more noise reduction we have.
Also,

Sl\llanio &nr(ho) = o0, (2.37)
SNIFI{IEOO Enr(hy) = 1. (2.38)

Using (2.33) and (2.36), we obtain important relations between the speech-
distortion index and the noise-reduction factor:

1 1

Usd(go) = ﬁ |:jz(ho) - m} 5 (239)
1

" SNR [Jv(go) - vsd(go)] .

&ur (ho) (2.40)

Therefore, for the optimum filter, when the SNR is very large, there is little
speech distortion and little noise reduction (which is not really needed in this
situation). On the other hand, when the SNR is very small, speech distortion
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is large as well as noise reduction. Using the fact that J,(h,) < o7 /3, we can
easily derive from (2.39) and (2.40) that,

Gur(ho) > g if SNR <1/2

ur(ho) > i if1/2<SNR <2, (2.41)
ar(hy) > 1 if SNR>2

and

vaalg,) < 1 if SNR<1/2
vsa(g,) < SBEL if 1/2 <SNR <2 . (2.42)
Vsd(8,) < ﬁ if  SNR>2

Equations (2.41) and (2.42) give the lower bound for the noise-reduction
factor and the upper bound for the speech-distortion index respectively. These
bounds can be further refined. But before going further, let us first analyze
the a posteriori SNR, which is defined, after noise reduction with the Wiener
filter, as,
h!R,h,
SNR, 2 2o o lo (2.43)
h, R,h,
h!R,h,
h!R,h,
1- jv (go)
JU (go) — Usd (go)

It can be easily verified that,

SNR, > SR o (2.44)

T o)

= SNR = —1+ SNR & (hy) [1 - Ju(go)]

We now give a proposition showing the relationship between the a prior:
SNR and the a posteriori SNR.

Proposition: With the Wiener filter, the a posteriori SNR and the a
priori SNR satisfy

h!R,h, SNR — u'R,u,

SNR, = —2—*° = .
" h'R,h, ~ u’R,u;

(2.45)

Proof. From their definitions, we know that all three matrices, R, R,, and
R, are symmetric, and positive semi-definite. We further assume that R, is
positive definite so its inverse exists. In addition, based on the independence
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assumption between the speech signal and noise, we have R, = R, + R,. In
case that both R, and R, are diagonal matrices, or R, is a scaled version of
R, (i.e., R, = SNR-R,), it can be easily seen that SNR, = SNR. Here, we
consider more complicated situations where at least one of the R, and R,
matrices is not diagonal. In this case, according to [45], there exists a linear
transform that can simultaneously diagonalize R,, R,, and R,, . The process
is done as follows.

R, = (BY)"'AB™,
R’u — (BT)le—l,

R, = (B") '+ AB™, (2.46)
where again I is the identity matrix,
A O - 0
0 Xg -+ 0
A= | . (2.47)
0 -0 Az

is the eigenvalue matrix of R;lRI7 with Ay > Ay > --- > A > 0, B is the
eigenvector matrix of R, 'R, and

R,'R,B = BA. (2.48)

Note that B is not necessarily orthogonal since R, 'R, is not necessarily
symmetric. Then from the definition of SNR and SNR,, we immediately
have

u{R,u; u’(BHTAB 'uy

SNR = =
ulR,u; u’(B HTB 'y

7 (2.49)

and

h’R,h, u]RIR,'R.R,;'R,u
b'R,h, uwR'R, R,R, R,u
!B HTAT+A) AT+ A)'AB 'y
/B HTAT+A) LI+ A)1AB 'y
_uIB YIS B 'y

S ufBHTEB

SNR, =

(2.50)

where
S 2 A0+ A) AT+ A)TIA

/\3
oz 0 0
0

A
0 G

AL
FESYE
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and
S, 2 A0+ A) I I A) A

/\2

(1+A11)2 02 O

A

0 e 0
: :
0 0 aR

are two diagonal matrices. If for the ease of expression we denote B~!
A =B = [a;], then both SNR and SNR,, can be rewritten as

SNR — 25:1 )‘ia’zzl

iL:I a3y 7
3
SL i
SNR, = Ll(l—t\)?w (2.51)

S
2
i=1 (T+r)2 %1

. L A3 2 L 2 2 L 2 L 9
Since 37;° 1 kg2 % 2oic1 TiAn? %its 2oiet Aitir, and 3750 afy all are non-
negative numbers, as long as we can show that the inequality

L )\3 L L
Z ma% Zafl > Z i+ )\ ah Z/\ az (2.52)
' i=1 i=1

holds, then SNR, > SNR. Now we prove this inequality by way of induction.

e Basic Step: If L = 2,

2
Z 1+)\ 2 ’lea'll

=1

LN N [N T
= (1+)\1)2 11 (1+)\2)2 21 (1+)\1)2 (1+)\2)2 11%21-

Since \; > 0, it is trivial to show that

A3 A3 A2\, AA2
+ ;
(IT4+X)2  (IT4X2)2 7~ (1+X)%2  (1+X)?

where “=” holds when A\; = \g. Therefore

2
Z 1+)\ 2 1lza‘z1

=1
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X;' 4 )\3 4 A%/\2 /\1/\5 a2 a?
(1_’_)\1)2 (1_’_)\2)2 11%21

so the property is true for L = 2, where “=" holds when any one of aq;
and a9 is equal to 0 (note that a1 and ag; cannot be zero at the same
time since A is invertible) or when A\; = Ao.

e Inductive Step: Assume that the property is true for L = n, i.e.,

n

)\2
Z 1+)\ 3 zlz%—Zm 11Z>\%

We must prove that it is also true for L = n + 1. As a matter of fact,

n+1 n+1

A3 A3
Z (1+ )\i)2a?1 " (1+ )L\: 2 ”+11] lZ iy + “n+11]

_ n+1 4
; (1 + )\ 2 Zl Za’zl 1 + )\ )2 Apy11
- AP A2
+ L+ ntl ] ata?, . 2.53
> [ e b @59
Using the induction hypothesis, and also the fact that
/\? XZ—H > A?)\nﬂ >‘i>‘%+1
(T+X)? (T4 An)? — (LX) (T4 Agyn)?’
hence
n+1 n+1
)\3
Z (1+ X\;)2 i1 Z i1
i=1
> i 1 Z)‘ ajy + )\nH a, 11
= L 1 + A 2 z 7 1 + )\ )2 n+
- A >\n+1 >‘i>‘71+1 :| 2 2
+ - Ll a?al
;{(1“) (L+Apr)?] M
n+1 n+1

=203 ,\ S —a? Z Aia?,, (2.54)
1

i=
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where “=” holds when all the \;’s corresponding to nonzero a;; are equal,
where i = 1,2,...,n+ 1. That completes the proof.

Even though it can improve the SNR, the Wiener filter does not maxi-
mize the a posteriori SNR. As a matter of fact, (2.43) is well known as the
generalized Rayleigh quotient. So the filter that really maximizes the a pos-
teriori SNR is the eigenvector corresponding to the maximum eigenvalue of
the matrix R, 'R,.

Knowing that SNR, > SNR, we can now refine the lower bound for
&nr(hy). As a matter of fact, it follows from (2.43) that

L
SNR. — —1 4 — Ju(8,)

> SNR.
Jv(go) - USd(go)

Since veq(g,) < Jo(g,), and 0 < vq(g,) < 1, it can be easily shown that

SNR + 2

gnr(ho) 2 W (255)

This lower bound for &, (h,) is tighter than the one given in (2.41). Similarly,
we can derive that

Vsd(8o) (2.56)

< ———.
~ 2SNR+1

It can be easily verified that this upper bound for vs4(g,) is tighter than the
one given in (2.42). Figure 2.1 illustrates expressions (2.55) and (2.56).
We now introduce another index for noise reduction:

Cnr(ho) é 1- jac(ho) <1 (2.57)

The closer is (yr(ho) to 1, the more noise reduction we get. This index will
be helpful to use in the following sections.

2.5 Particular Case: White Gaussian Noise

In this section, we assume that the additive noise is white, so that,
r, = olu;. (2.58)
From (2.16) and (2.23), we observe that the two normalized MMSEs are

jx(ho) = ho,Oa (259)

(g ) _ 1- g0,0 _ h0,0
viso SNR SNR'’

where hq o and g, o are the first components of vectors h, and g, respectively.

Clearly, 0 < hoo < 1 and 0 < g0 < 1. Hence, the normalized MMSE Ty (ho)
is completely governed by the first element of the Wiener filter h,,.

i

(2.60)
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5

Fig. 2.1. Illustration of the areas where &n:(ho) and vsa(g,) take their values as
functions of the SNR. &, (ho) can take any value above the solid line while vga(g,)
can take any value under the dotted line.

Now, the speech-distortion index and the noise-reduction factor for the
optimal filter can be simplified:

1
Vs (8,) = SNR [ho,O - hoTho} (2.61)
T
_gho 1 T
~ SNR ~ SNR 190 "800l
1
&ur(ho) = TR (2.62)

We also deduce from (2.61) that hoo > hoThO and go,0 > gggo.
We know from the linear prediction theory that [43],
1 E
R, - v, 2.63
! {—ay} [%—mj (269

where a, is the forward linear predictor and F) is the corresponding error
energy. Replacing the previous equation in (2.11), we obtain:

h
hy =u — iR, 'uy = l 20 ] 7 (2.64)
: =-a,
B, %Y
where
~ 0‘2
hoo = Jo(hy) =1 — =2, 2.
0 = Ja(ho) 5 (2.65)
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Equation (2.64) shows how the Wiener filter is related to the forward predic-
tor of the observed signal y(n). This expression also gives a hint on how to
choose the length of the optimal filter hy: it should be equal to the length
of the predictor a, required to have a good prediction of the observed signal
y(n). Equation (2.65) contains some very interesting information. Indeed, if
the clean speech signal is completely predictable, this means that £, ~ o2
and J,(h,) ~ 0. On the other hand, if x(n) is not predictable, we have
E, ~ o} and Jo(hy) ~ 1 — o2/or. This implies that the Wiener filter is
more efficient to reduce the level of noise for predictable signals than for
unpredictable ones.

2.6 Better Ways to Manage Noise Reduction and
Speech Distortion

For a noise-reduction/speech-enhancement system, we always expect that it
can achieve maximal noise reduction without much speech distortion. From
the previous section, however, we see that when noise reduction is maximized
with the optimal Wiener filter, speech distortion is also maximized. One may
ask a legitimate question: are there better ways to control the tradeoff be-
tween the conflicting requirements of noise reduction and speech distortion?
Examining (2.33), one can see that to control the speech distortion, we have

2
to minimize F { [m(n) - hOTx(n)} } This can be achieved by either manip-

ulating h, or exploiting a speech model.

2.6.1 A Suboptimal Filter

Consider the suboptimal filter:
hy =u; — g, =u; —ag,, (2.66)

where « is a real number. The MSE of the clean speech estimation corre-
sponding to hy is,

£ { o) - nIy(] '}
=02 — a2 - a)rfR;lrl,, (2.67)

v

Jz(hg)

and, obviously, J,(hy) > J,(h,), Va; we have equality for & = 1. In order to
have noise reduction, o must be chosen in such a way that J,(hs) < J(uy),
therefore,

0<a<?2. (2.68)
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We can check that,

Jo(g:) = E{[v(n) - agly(n)] "}
= J,(hy). (2.69)
Let
&5(n) =hy(n) (2.70)

denote the estimation of the clean speech at time n with respect to hg. The
power of Z4(n) is,

B {i%(n)} = bR, h,
= [u — 04R_1 ]T [ry — arv]
=02+ (1-2a)0% +« rTR
= h!R,h, + h R h,. (2.71)

The speech-distortion index corresponding to the filter hg is,

£ { o) - Ixn)] |

2
0%

Vs (&) = (2.72)

= a’glR.g, = a’vu(g,).

The previous expression shows that the ratio of the speech-distortion indices
corresponding to the two filters g, and g, depends on « only.

In order to have less distortion with the suboptimal filter hy than with
the Wiener filter h,, we must find « in such a way that,

Usd(8s) < Usa(8,), (2.73)

hence, the condition on « should be
-l<a<l. (2.74)

Finally, the suboptimal filter hy can reduce the level of noise of the observed
signal y(n) but with less distortion than the Wiener filter h, if « is taken
such as,

0<a<l (2.75)

For the extreme cases @« = 0 and o = 1 we obtain respectively hy = uy,
no noise reduction at all but no additional distortion added, and hg = h,,
maximum noise reduction with maximum speech distortion.
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Fig. 2.2. vsa(g,)/vsa(g,) (dashed line) and (nr(hs)/Car(ho) (solid line), both as a
function of a.

Since
_ T T

Jv(gs) - gs Ra:gs + hs ths (276)
= o78. Rog, + oh Ryhg
= Jm(hs)a

it follows immediately that the speech-distortion index and the noise-
reduction factor due to hg are,

vua(e) = g | 500~ s | (2.77)

ur(hy) = - : 279
SNR {Jv(gs) - Usd(gs):|

Unlike vsq(8g)/vsd(8,) which depends on « only, &, (hs)/énr(ho) does not.
However, using (2.67) and (2.15), we find that,

Gur (h5) _ 1= Jz(hy) =2 -«
Cnr(ho) B 1-— ja:(ho) o (2 ) (279)

Figure 2.2 plots vsq(8s)/vVsa(8,) and (ur(hs)/Cnr(ho) as functions of a. For
example, for o = 0.7, we see that the speech-distortion index with the sub-
optimal filter represents 49% of the speech-distortion index with the Wiener
filter while the noise-reduction index is 91%.



26 J. Benesty et al.

2.6.2 Noise Reduction Exploiting the Speech Model

Section 2.5 has shown that the Wiener filter is more efficient to attenuate
the level of noise for predictable signals than for unpredictable ones. In fact,
it is well known that speech can be represented by an autoregressive (AR)
process; thus, speech can be seen as the output of an all-pole linear system
where the input is a zero-mean white Gaussian process, w(n), with variance
o2. The clean speech signal is then given by,

L
xz(n) = Zam’lm(n —1)+wn)
=1

= alx(n —1) +w(n), (2.80)

where a,; are the parameters of the AR process. This model is very often
combined with the Kalman filter to enhance a noisy speech signal; see, for
example, [27], [28], and [29]. The main challenge in this approach is to get an
accurate estimate of the AR parameters from the observations.

We can use this model in the Wiener context with some advantages. For
that, in this section, we assume that the additive noise, v(n), of the observed
signal, y(n), is white. The cross-correlation vector, p, between the noisy and
clean speech signals that appears in the Wiener-Hopf equation is now:

p = E{y(n)e(n)} = E {y(n)x"(n — 1)} a, + o2y
=F {y(n) [y(n—1)—v(n— 1)}T} a, +oiu

= (Ry1 — Ryp)a, +ojun, (2.81)
where
A
Ry,1=E{y(n)y"(n—-1)},
and
R, 1 2F {v(n)v'(n-1)}
0 0 0 0 0
o2 0 0 - 0 0
10 o2 0 - 0 o0
0 0 0 - o2 0

We deduce the optimal filter:

h, =R, ' (R,1 — Ry1)a, + oo R, uy. (2.82)

Equation (2.82) shows the relationship between the Wiener filter and the AR
parameters of the clean speech signal. When v(n) is a white Gaussian noise
signal, (2.82) yields similar results as in (2.64).
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2.6.3 Noise Reduction with Multiple Microphones

In more and more applications, multiple microphone signals are available.
Therefore, it is interesting to investigate deeply the multichannel case. One
of the first papers to do so is a paper written by Doclo and Moonen [42],
where the optimal filter is derived as well as a general class of estimators.
The authors also show how the generalized singular value decomposition can
be used in this spatio-temporal technique. In this section, we take a slightly
different approach. We will see, in particular, that we can reduce the level
of noise without distorting the speech signal. This result was never observed
before.

We suppose that we have a linear array consisting of M microphones
whose outputs are denoted as y,,(n), m = 0,1,--- , M — 1. Without loss of
generality, we select microphone 0 as the reference point and to simplify the
analysis, we consider the following propagation model:

Ym(n) = Bms(n —t — 1) + o (n), m=0,1,--- , M —1, (2.83)

where 3, is the attenuation factor (with Gy = 1), ¢ is the propagation time
from the unknown speech source s(n) to microphone 0, v,,(n) is an additive
noise signal at the mth microphone, and 7, is the relative delay between
microphones 0 and m, with 7y = 0.

In the following, we assume that the relative delays 7,,,, m =1,--- , M —1,
are known or can easily be estimated. So our first step is the design of a simple
delay-and-sum beamformer, which spatially aligns the microphone signals to
the direction of the speech source. From now on, we will work on the aligned
signals:

Zm(n) = Ym(n + 7m) (2.84)
= Bms(n —t) +vp,(n+ 1),
=x,(n)+vnn+7y,), m=0,1,--- M—1.

A straightforward approach for noise reduction is to average the M signals
zZm(n),

M-—1 M—
Za(n) = % > zm(n) = %s(n —t) Z (n+ 7o), (2.85)
m=0 1=0

where 3, = Zﬁf;ol - 1f the noises are added incoherently, the output SNR
will, in principle, increase [44]. We can further reduce the noise by passing the
signal z,(n) through a Wiener filter as was shown in the previous sections.
This approach has, however, two drawbacks. The first one is that, since for
m # i, E{vp(n+ 7m)vi(n+7)} # 0 in general, the output SNR will not im-
prove that much; and the second one, as we know already, is speech distortion
that the optimal filter introduces.
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Let us now define the error signal, for the mth microphone, between the
clean speech sample z,,(n) and its estimate as,

1>

@ (n) —h,z(n) (2.86)

M-1
= 2m(n) = ) hi,zi(n),
i=0

€z, (1)

where h;.,,, are filters of length L and,

z(n) 2 [z{(n) 2] (n) - z%ﬂ/ffl(n)]T.

]T

Since z;(n) = B;s(n —t) + vi(n + 7;), (2.86) becomes:

€z, (n) = ST(n - t) /Bmul - Z /Bihi:m - Z VZT(n + Ti)hi:m
i=0 =0
=s"(n —t) [Buu; — Dhyy] — v7(n)hyy,

= es,m(n) — ey m(n), (2.87)

M—-1 ‘| M—-1

where

I1>

D =[Gl B1I--- Bu—11],

T
(vi(n+7) vi(n+71) - vi_1(n+7am-1)]

[1>

v(n)

Expression (2.87) is the difference between two error signals; e ., (n) repre-
sents signal distortion and e, ,,(n) represents the residual noise. The MSE
corresponding to the residual noise with the mth microphone as the reference
signal is,

Jv,m(h:m) =L {e?),m(n)}
— h?;nE {v(n)vT(n)} h.,,
= h! R,h.,. (2.88)

Usually, in the single-channel case, the minimization of the MSE correspond-
ing to the residual noise is done while keeping the signal distortion below a
threshold [20]. With no distortion, the optimal filter obtained from this opti-
mization is uy, hence there is not any noise reduction either. The advantage
of multiple microphones is that, actually, we can minimize J, ,,(h.,,) with
the constraint that $,,u; = Dh.,, (no speech distortion at all). Therefore,
our optimization problem is,

r}rllin Jo.m (D) subject to Gpu; = Dhy,. (2.89)

:m
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By using a Lagrange multiplier, we easily find the optimal solution:
-1
ho.m = BmR; DT [DR;lDT] u, (2.90)

where we assumed that the noise signals v;(n) are not perfectly coherent so
that R, is not singular.

The MMSE for the mth microphone is,
-1
Jv,m(ho,:m) = ﬁ?nll{ |:DR;1DT:| usp. (291)

Since we have M microphones, we have M MMSEs as well. The best MMSE
from a noise reduction point of view is the smallest one, which is, according
to (2.91), the microphone signal with the smallest attenuation factor.

The attenuation factors (3,, can be easily determined, if the power of the
noise signals are known, by using the formula:

g EGRM) - B2+ 7))
" T E(RW) - By

For the particular case where the noise is spatio-temporally white with
a power equal to o2, the MMSE and the normalized MMSE for the mth

v
microphone are respectively,

m=1,2-,M—1. (2.92)

62
Jv,m(ho,:m) = 03+’ (2.93)
ity B2
- 2
Jv,m(ho,:m) - W (294)
=0 [

We can see that when the number of microphones goes to infinity, the nor-
malized MMSE goes to zero, which means that the noise can be completely
removed with no signal distortion at all.

2.7 Simulation Experiments

By defining a noise-reduction factor to quantify the amount of noise being
attenuated and a speech-distortion index to valuate the degree to which the
speech signal is deformed, we have analytically examined the performance
behavior of the Wiener-filter-based noise reduction technique. It is shown
that the Wiener filter achieves noise reduction by distorting the speech sig-
nal. The more the noise is reduced, the more the speech is distorted. We also
proposed several approaches to better manage the tradeoff between noise re-
duction and speech distortion. To further verify the analysis, and to assess the
noise-reduction-and-speech-distortion management schemes, we implemented
a time-domain Wiener-filter system. The sampling rate is 8 kHz. The noise
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signal is estimated in the time-frequency domain using a sequential algorithm
presented in [6], [7]. Briefly, this algorithm obtains an estimate of noise using
the overlap-add technique on a frame-by-frame basis. The noisy speech signal
y(n) is segmented into frames with a frame width of 8 milliseconds and an
overlapping factor of 75%. Each frame is then transformed via a DFT into a
block of spectral samples. Successive blocks of spectral samples form a two-
dimensional time-frequency matrix denoted by Y;(jw), where subscript ¢ is
the frame index, denoting the time dimension, and w is the angular frequency.
Then an estimate of the magnitude of the noise spectrum is formulated as
Vi

() = {%Vt—ﬂw) + (1 - e G)l, i Gl > Vieaw) o o)

aaVi-1 (W) + (1 = aa) |V (jw)l, if [Yi(jw)| < Vier(w)

where a, and aq are the the “attack” and “decay” coefficients respectively.
Meanwhile, to reduce its temporal fluctuation, the magnitude of the noisy
speech spectrum is smoothed according to the following recursion:

BT + (= B, i Y ()] > Vi (@)
Yilw) = {5dn_1<w> + (1= B)Ya(jw)), if [Yi(jw)] < Vs () © (299)

where again [, is the “attack” coefficient and (4 the “decay” coefficient.
To further reduce the spectral fluctuation, both V;(w) and Y;(w) are av-
eraged across the neighboring frequency bins around w. Finally, an esti-
mate of the noise spectrum is obtained by multiplying V;(w)/Y;(w) with
Y:(jw), and the time-domain noise signal is obtained through IDFT and
the overlap-add technique. See [6], [7] for more detailed description of this
noise-estimation scheme. Figure 2.3 shows a speech signal corrupted by a car
noise (SNR = 10 dB), the waveform and the spectrogram of the car noise
that is added to the speech, and the waveform and spectrogram of the noise
estimate. It can be seen that during the absence of speech, the estimate is
a good approximation of the noise signal. It is also noticed from its spec-
trogram that the noise estimate consists of some minor speech components
during the presence of speech. Our listening test, however, shows that the
residual speech remained in the noise estimate is almost inaudible. An ap-
parent advantage of this noise-estimation technique is that it does not require
an explicit voice activity detector. In addition, our experimental investiga-
tion reveals that such a scheme is able to capture the noise characteristics
in both the presence and absence of speech, therefore it does not rely on the
assumption that the noise characteristics in the presence of speech stay the
same as in the absence of speech.

Based on the implemented system, we evaluate the Wiener filter for noise
reduction. The first experiment investigates the influence of the filter length
on the noise reduction performance. Instead of using the estimated noise, here
we assume that the noise signal is known a priori. Therefore this experiment
demonstrates the upper limit of the performance of the Wiener filter. We
consider two cases. In the first one, both the source signal and the background
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Fig. 2.3. Noise and its estimate. The first trace (from the top) shows the waveform
of a speech signal corrupted by a car noise where SNR = 10 dB. The second and
third traces plot the waveform and spectrogram of the noise signal. The fourth and
fifth traces display the waveform and spectrogram of the noise estimate.

noise are random processes in which the current value of the signal cannot be
predicted from its past samples. The source signal is a noise signal recorded
from a New York Stock Exchange (NYSE) room. This signal consists of
sound from various sources such as speakers, telephone rings, electric fans,
etc. The background noise is a computer-generated Gaussian random process.
The results for this case is graphically portrayed in Fig. 2.4. It can be seen
that both the noise-reduction factor and the speech-distortion index increase
linearly with the filter length. Therefore, a longer filter should be applied for
more noise reduction. However, the more the noise is attenuated, the more
the source signal is deformed, as shown in Fig. 2.4.

In the second case, we test the Wiener filter for noise reduction in the
context of speech signal. It is known that a speech signal can be modelled as
an AR process, where its current value can be predicted from its past sam-
ples. To simplify the situation for the ease of analysis, the source signal used
here is an /i:/ sound recorded from a female speaker. Same as in the previous
case, the background noise is a computer-generated white Gaussian random
process. The results are plotted in Fig. 2.5. Again, the noise-reduction factor,
which quantifies the amount of noise being attenuated, increases monoton-
ically with the filter length; but unlike the previous case, the relationship
between the noise reduction and the filter length is not linear. Instead, the
curve at first grows quickly as the filter length is increased up to 10, and then
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Fig. 2.4. Noise-reduction factor and signal-distortion index, both as a function of
the filter length: (a) noise reduction; (b) signal distortion. The source is a signal
recorded in a NYSE room; the background noise is a computer-generated white
Gaussian random process; and SNR = 10 dB.

continues to grow but with a slower rate. Unlike &, the speech-distortion
index, i.e., vgq, exhibits a non-monotonic relationship with the filter length. It
first decreases to its minimum, and then increases again as the filter length is
increased. The reason, as we have explained in Section 2.6.2, is that a speech
signal can be modelled as an AR process. Particular to this experiment, the
/i:/ sound used here can be well modelled with a 6! order LPC (linear pre-
diction coding) analysis. Therefore, when the filter length is increased to 6,
the numerator of (2.33) is minimized, as a result, the speech-distortion index
reaches its minimum. Continuing to increase the filter length leads to a higher
distortion due to more noise reduction. To further verify this observation, we
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Fig. 2.5. Noise-reduction factor and signal-distortion index, both as a function of
the filter length: (a) noise reduction; (b) speech distortion. The source signal is an

/i:/ sound from a female speaker; the background noise is a computer-generated
white Gaussian process; and SNR = 10 dB.

investigated several other vowels, and found that the curve of vgq vs. filter
length follows a similar shape, except that the minimum may appear in a
slightly different location. Taking into account the sounds other than vowels
in speech that may be less predicable, we find that good performance with
the Wiener filter (in terms of the compromise between noise reduction and
speech distortion) can be achieved when filter length L is chosen around 20.
Figure 2.6 plots the output of our Wiener filter system with L = 20, where

the speech signal is from a female speaker, the background noise is a car noise
signal, and SNR = 10 dB.
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Fig. 2.6. Noise reduction in a car noise condition where SNR = 10 dB: (a) clean
speech and its spectrogram; (b) noisy speech and its spectrogram; (c) noise reduced
speech and its spectrogram.

The second experiment tests the noise reduction performance in different
SNR conditions. Here the speech signal is recorded from a female speaker as
shown in Fig. 2.6. The computer-generated random Gaussian noise is added
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to the speech signal to control the SNR. The length of the Wiener filter is set
to L = 20. The results are presented in Fig.2.7, where besides &, and vsq, we
also plotted the Ttakura-Saito (IS) distance, a widely used objective quality
measure that performs a comparison of spectral envelopes (AR parameters)
between the clean and the processed speech [46]. Studies have shown that the
IS measure is highly correlated (0.59) with the subjective quality judgements
[47]. A recent report reveals that the difference in mean opinion score (MOS)
between two processed speech signals would be less than 1.6 if their IS mea-
sure is less than 0.5 for various codecs [48]. Many other reported experiments
confirmed that two spectra would be perceptually nearly identical if their IS
distance is less than 0.1. All these evidences indicates that the IS distance is
a reasonably good objective measure of speech quality.

As SNR decreases, the observation signal becomes more noisy. Therefore
the Wiener filter is expected to have more noise reduction for low SNRs.
This is verified by Fig. 2.7 (a), where significant noise reduction is obtained
for low SNR conditions. However, more noise reduction would correspond to
more speech distortion. This is confirmed by Fig. 2.7 (b) and (d) where both
the speech-distortion index and the IS distance increase as speech becomes
more noisy. Comparing the IS distance before [Fig. 2.7 (c)] and after [Fig. 2.7
(d)] noise reduction, one can see that significant gain in the IS distance has
been achieved, indicating that the Wiener filter is able to reduce noise and
improve speech quality (but not necessarily speech intelligibility).

The last experiment is to verify the performance behavior of the sub-
optimal filter derived in Section 2.6.1. The experimental conditions are the
same as outlined in the previous experiment. The results are presented in
Table 2.1, where for the purpose of comparison, besides the speech-distortion
index and the noise-reduction factor, we also show three IS distances (be-
tween the clean and filtered speeches denoted as ISD!, between the clean and
noise-reduced speeches marked as ISD?, and between the clean and noisy
speeches denoted as ISD?, respectively). From the results, one can make the
following observations:

e The IS distance between the clean and noisy speech signals increases as
SNR drops. The reason for this is apparent. When SNR decreases, the
speech signal becomes more noisy. As a result, the difference between the
spectral envelope (or AR parameters) of the clean speech and that (or
those) of the noisy speech tends to be more significant, which leads to a
higher IS distance.

e ISD? is much smaller than ISD®. This significant gain in IS distance
indicates that the use of noise reduction technique is able to mitigate
noise and improve speech quality.

e A better compromise between noise reduction and speech distortion is
accomplished by using the suboptimal filter. For example, when SNR =
20 dB, the speech-distortion index for the suboptimal filter with o = 0.7
is 0.0006, which is only 54% of that of the Wiener filter; the corresponding
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Fig. 2.7. Noise reduction performance as a function of SNR in white Gaussian
noise: (a) noise-reduction factor; (b) speech-distortion index; (c) Itakura-Saito dis-
tance between the clean and noisy speeches; (d) Itakura-Saito distance between the
clean and noise-reduced speeches.

IS distance between the clean and filtered speech is 0.0281, which is only
17% of that of the Wiener filter; but it has achieved a noise reduction of
2.0106, which is 82% of that with the Wiener filter.

Different from ISD', which decreases with «, ISD? increases when a
smaller « is selected. This is due to the fact that ISD? is affected by both
speech distortion and the residual noise remained in the noise-reduced
speech. As elaborated in Section 2.6.1, as long as « satisfies 0 < a < 1,
a smaller @ would lead to less speech distortion; but a smaller « also
means that more residual noise will remain in the noise-reduced speech.
While the former may reduce the IS distance, the latter will enlarge the

IS distance. As a result, ISD? increases when a smaller « is chosen.

From the analysis shown in Section 2.6.1, we see that both :s:#(gsg and
Cor(hs)
Car(ho)

results, we notice that the ratio between vsq(g,) and vsq(g,) does not

are independent of SNR but not % From the experimental
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Table 2.1 Noise reduction performance with the suboptimal filter, where
ISD! is the IS distance between the clean speech [i.e., #(n)] and the filtered
version of the clean speech [i.e., h”x(n)], which purely measures the speech
distortion due to the filtering effect; ISD? is the IS distance between the clean
and noise-reduced speeches; ISD? is the IS distance between the clean and
noisy speech signals.

SNR Usd Enr ISD! ISD? | 1SD?

Wiener filter 0.0011 | 2.4390 | 0.1691 | 0.1471 |0.6727

20dB [Suboptimal filter (o = 0.8)| 0.0007 | 2.1753 | 0.0423 | 0.2820 | 0.6727

Suboptimal filter (o« = 0.7)| 0.0006 | 2.0106 | 0.0281 | 0.3476 |0.6727

Wiener filter 0.0033 | 3.1977 | 0.2133 | 0.2032 | 1.0446

15dB [Suboptimal filter (aw = 0.8)| 0.0021 | 2.7379 | 0.0488 [0.5114 | 1.0446

Suboptimal filter (o = 0.7)] 0.0016 | 2.4544 | 0.0352 | 0.6034 | 1.0446

Wiener filter 0.0092 | 4.4565 | 0.2622 | 0.2652 | 1.5458

10dB [Suboptimal filter (oo = 0.8)| 0.0059 | 3.5896 | 0.0582 [0.7759 | 1.5458

Suboptimal filter (o« = 0.7)| 0.0045 | 3.0807 | 0.0441 | 0.8917 | 1.5458

vary much when SNR is changed; but % decreases with SNR. For
examples, when a = 0.7, the ratio calculated from experiment is 0.82
when SNR = 20 dB, and is 0.77 when SNR = 15 dB. From numerous
experiments, we noticed that the speech distortion and noise reduction
satisfy %(}gl; % if SNR > 5 dB, which indicates that the subop-
timal filter can be used to control the tradeoff between noise reduction
and speech distortion as long as SNR > 5 dB. The higher is the SNR,

the more effective will the suboptimal filter work.

2.8 Conclusions

The problem of speech enhancement has attracted a considerable amount of
research attention over the past several decades. Numerous techniques were
developed, among them is the optimal Wiener filter, which is the most fun-
damental approach. It is widely noticed that the Wiener filter achieves noise
reduction by deforming the speech signal. However, so far not much has
been said on how the Wiener filter really works. This chapter was devoted
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to analyzing the intrinsic relationship between noise reduction and speech
distortion with the Wiener filter. Starting from the speech and noise estima-
tion using the Wiener theory, we introduced a speech-distortion index and a
noise-reduction factor. We showed that for the single-channel Wiener filter,
the amount of noise attenuation is in general proportionate to the amount of
speech degradation, i.e., more noise reduction incurs more speech distortion.

Depending on the nature of the application, some practical noise-
reduction systems may require very high-quality speech, but can tolerate
a certain amount of noise. While others may want speech as clean as pos-
sible even with some degree of speech distortion. Therefore it is necessary
that we can have some management schemes to control the contradicting
requirements between noise reduction and speech distortion. To do so, we
have discussed three approaches. When there is no a priori knowledge or no
additional information available, a sub-optimal filter with one more free pa-
rameter can be used. By setting the free parameter to 0.7, we showed that
the sub-optimal filter can achieve 90% of the noise reduction that the Wiener
filter can have; but the resulting speech distortion is less than half of that of
the Wiener filter. Speech signal can be modeled as an autoregressive (AR)
process. If the AR coefficients can be estimated reliably, we showed that these
coeflicients can be used to construct the Wiener filter for less speech distor-
tion. In scenarios where we can have multiple noisy realizations of the speech
signal, then spatio-temporal filtering techniques can be exploited to obtain
noise reduction with less or even no speech distortion.
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Abstract. Speech signals are frequently disturbed by statistically independent ad-
ditive noise signals. When the power fluctuation of the noise signal is significantly
slower than that of the speech signal, a single-microphone approach may be suc-
cessfully used to reduce the level of the disturbing noise. This chapter outlines
algorithms for noise reduction which are based on short term spectral representa-
tions of speech and on optimal estimation techniques. We present some of the more
prominent estimation methods for complex spectral coefficients, for the amplitude
and phase of spectral coefficients, and for related parameters such as the a priori
signal-to-noise ratio. We interpret these algorithms in terms of their input-output
characteristics. Some recent developments such as the use of super-Gaussian speech
models and the properties of the resulting estimators are highlighted. Furthermore,
we discuss the estimation of the background noise power and the application of
these techniques in conjunction with a low bit rate speech coder.

3.1 Introduction

Speech communication devices are often used in environments with high levels
of ambient noise such as cars and public places. The noise picked up by
the microphones of the device can significantly impair the quality of the
transmitted speech signal — especially when the speech source is far from
the microphones. When the intelligibility of the transmitted speech is also
impaired, the device cannot be used in the desired way. It is therefore sensible
to include a noise reduction processor in such devices.

Algorithms for noise reduction have been the subject of intensive research
over the last two decades [1-7]. The wide-spread use of mobile communica-
tion devices and the introduction of digital hearing aids have contributed to
the significant interest in this field. While early approaches focused only on
speech quality, it is now generally acknowledged that the perceived quality of
the residual noise is also of great importance, e.g., random narrowband fluc-
tuations in the processed noise, also known as musical tones, are not accepted
by the human listener.

Over the last two decades researchers have found ways to improve the
performance of noise reduction algorithms such that musical tones can be
avoided and the algorithms are more robust with respect to the great vari-
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ability of environmental conditions. In this context, statistical models and
methods play a prominent role [4,8].

In this chapter, we will outline some well known results as well as some
of the recent developments for single-microphone noise reduction algorithms.
We will focus on systems which use a short term spectral representation of the
speech and noise signals. The noisy signal may be analyzed, for example, by
means of a short time discrete Fourier transform (DFT). Most of the results,
however, also apply to other non-parametric spectral analysis methods such
as filterbanks, subspace algorithms, or wavelet transforms, see e.g., [9,10].

3.2 Spectral Analysis

The advantages of moving into the spectral domain are at least threefold. In
the spectral domain we achieve:

e a good separation of speech and noise — especially for voiced speech;
thus optimal and/or heuristic approaches can be easily implemented,

e a decorrelation of spectral components; thus frequency bins can be treated
independently to some extent and statistical models are simplified, and

e a possibility of integration of psychoacoustic models [11,12].

In most of the relevant applications the noise signal is additive and sta-
tistically independent from the source signal. In particular, the noisy speech
signal y(k) is generally modeled as the sum of an undisturbed speech signal
s(k) and a noise signal n(k). The task of noise reduction is then to recover
s(k) “in the best possible way” when only the noisy signal y(k) is given. The
estimate of the undisturbed speech signal is denoted by 5(k).

Figure 3.1 depicts a typical implementation of a single-channel noise re-
duction system where the noisy signal is processed in a succession of short
signal segments and the spectral coefficients are computed by means of a
DFT. The DFT of a segment of M samples of y(¢), { =k — M +1,...,k, is
denoted by

Y (k) = (Yo(k),..., Y, (k), ..., Yar—1 (k)T (3.1)
with

Yiu(k) = Ry (k) exp (j0,(k))
M-1
= w(l)y(k— M+ 14 £)exp (

=0

-2, (32)

M

where a tapered analysis window w(¢) of length M is applied to the time
domain segment before the DFT is computed. k denotes the time index at
which the segment of M signal samples is extracted. p =0,..., M — 1 is the
index of the DFT bin which is related to the normalized center frequency (2,
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Fig. 3.1. DFT based speech enhancement. k£ and p denote the time and the fre-
quency bin index, respectively.

of that bin by §2, = 2mu/M = 27 f,,/fs where f, and fs denote the absolute
center frequency and the sampling frequency, respectively. An enhanced DF'T
coefficient is denoted by S, (k). Vectors of the undisturbed speech signal and
the enhanced speech signal are defined in the same way. The enhanced signal
segments are computed by means of an inverse DF'T and a continuous signal
is produced by the overlap-add method. For the overlap-add operation the
use of a tapered synthesis window is generally beneficial [13,14].

After the short time spectral components are computed by means of a
DFT, there are two major tasks which must be addressed:

e estimation of the spectral components S, (k) of the undisturbed speech
signal given the noisy spectral components Y, (k),
e estimation of the noise power o2 = E {|N,(k)*} in each frequency bin

Lh.

Both of these tasks require the application of a priori knowledge and will
be discussed below.

3.3 The Wiener Filter and its Implementation

Numerous approaches are available for the estimation of the complex coef-
ficients S, (k) = A, (k) exp(a,(k)) of the undisturbed speech signal or func-
tions thereof. Among these are methods based on linear processing models
and minimum mean square error (MMSE) estimation such as the Wiener
filter. MMSE estimation is suitable for speech processing purposes as large
estimation errors are given more weight in the optimization than small es-
timation errors. The latter might be masked in the human auditory system
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and might therefore be inaudible. Under the assumption that all signals are
wide-sense stationary, the Wiener filter minimizes

E{6kh - sk)’}, (3.3)

where E {-} denotes the statistical expectation operator and

S(k) =Y h(O)y(k—0) (3.4)

f=—o00

is the convolution of an impulse response h(¢) with the noisy signal y(k). For
statistically independent and additive speech and noise signals, the frequency
response of the Wiener filter is given by

Py (92)
Pys(2) + Ppp(2)°

G(2) =DTFT{hr(()} = (3.5)
where P,,.(£2) denotes the power spectral density of the signal in the subscript
and DTFT {-} is the discrete time Fourier transform. Thus, in the case of

stationary signals, the spectrum of the enhanced output signal is computed
as

Pss(2)
Pys(2) + Ppn(2)

5(02) = Y(02)=GR)Y(2).  (3.6)

In this context, G(£2) is frequently called the spectral gain function. For the
Wiener filter this function depends on the noisy input y(k) or its Fourier
transform Y'({2) and on the undisturbed speech signal only via statistical
expectations. However, an exact numerical implementation of the Wiener
filter is not completely straightforward as this filter has an infinite impulse
response and a continuous frequency response.

For a numerical implementation in conjunction with the above spectral
analysis-synthesis system, the gain function is evaluated at the center fre-
quencies of the spectral bins. Furthermore, as speech and noise signals are
not stationary, short-term approximations to the power spectra must be used.
However, for the segment-by-segment processing approach outlined above, we
prefer an alternative derivation. In analogy to the Wiener filter in (3.6), the
output of the filter for the signal segment at time k, g(/ﬂ) = (§0(k),...,
:S’\#(k)7 - Sp—1 (k)T is computed by an elementwise multiplication

~

Sk)=Gk)®Y(k) (3.7)
of the DFT vector Y (k) and a gain vector

G(k) = (Go(k), G1(k), .., Grr—1 (k)" (3.8)
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For independent additive speech and noise signals the minimization of

. 2
E { (Su(k:) - Su(k)) } with respect to G, (k) leads to

B B {|5,(k)} )
Culh) = EUS, P + B (Nu R}~ 1 mph) (3.9)

where the right hand side of (3.9) makes use of the a priori SNR

E{[S.(k)*}
E{|N.(F)]P}
E{[S.(k)]*} = o2 ,(k) and E{|N,(k)]*} = o7 (k) are the power of the
undisturbed speech signal and the noise signal in frequency bin pu, respec-
tively.

In a linear systems framework, the multiplication of the two DFT vec-
tors and the subsequent inverse DFT of the result corresponds to a cyclic
convolution in the time domain. Therefore, to implement this Wiener-like
filter as a segmentwise linear system the signal and the gain vectors must be
zero-padded to the appropriate length.

It is, however, instructive to consider the above estimation task in the
framework of non-linear estimation, i.e., to derive the best estimator in the
MMSE sense for the short term spectral coeflicients of the undisturbed speech
signal given the short term coefficients of the noisy signal. Contrary to the
Wiener-like filter (3.9) which relies on second order statistics only, the non-
linear solution generally requires knowledge of the probability density func-
tions (pdf) of the speech and noise spectral coefficients. Under the assumption
that all frequency bins are mutually independent, the MMSE solution can be
stated as the conditional expectation

Su(K) = B{S,(k) | Y, (k)}
/ / B)psiy (S () | Yo ())dS,u (k) (3.11)

/ / S (K)py1s (Yo () | Sy (B))p(Su(k))dS, (k),

Nu(k) = (3.10)

where p5|y( ( ) | Y.(k)) is the pdf of an undisturbed speech coefficient
given the coeﬂiment of the noisy signal and p(S,(k)) is the density of the
undisturbed speech coefficients. Note that S, (k) is a complex quantity and
therefore a double integration over the real and imaginary parts or over the
magnitude and phase is required.

For additive noise which is statistically independent of the speech signal
we have py|g(Yu(k) | Su(k)) = pn(Yu(k) — S.(k)). Therefore, the applica-
tion of Bayes theorem in (3.11) leads to a nice decomposition of the density
ps|y (Su(k) | Yu(k)) in terms of the probability density functions of the noise
and the den51ty of the undisturbed speech spectral coefficients. To model
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the probability density function of the real and the imaginary part of these
coefficients, S§R> and S;I > respectively, the Gaussian density

1 (S<R>)2
R
p(SE7) = exp (“ gl B

N o2

p(Slfb) - exp (—@) , (3.12)

Vo o2

is frequently used. These probability densities depend on the speech power
02 which is, in general, time-variant. When the noise coefficients are also
Gaussian distributed it is straightforward to show that for statistically in-
dependent and additive speech and noise coefficients, (3.7) with (3.9) is the
solution to the estimation problem. For Gaussian signals the non-linear opti-
mal estimator yields a linear function of the observations. However, this does
not necessarily hold for practical implementations of these filters.

To illustrate the non-linearity of practical implementations we consider
the estimation of the a priori SNR 7, (k) which is required for the compu-
tation of the Wiener-like filter in (3.9). 7, (k) is frequently estimated using
the decision-directed approach [4]. This scheme assumes that an estimate
A\#(k — r) for the undisturbed speech amplitudes A,(k —r) = |S,(k — r)|
from a previous signal segment at time k —r is available and sufficiently close
to the undisturbed speech amplitudes of the current segment. The decision-
directed approach then feeds back the estimate of the previous segment and
combines it with an instantaneous estimate of the SNR,

2 R2(k
008 =1 = 8 Gy 1 o%:(uj) -t (319

such that the estimated SNR 7), (k) is obtained as

_ Sulk=r)?

Nu(k) = anW + (1 — ay)max (0,7, (k) — 1), (3.14)

where the latter contribution is forced to be non-negative and o, is a smooth-
ing parameter. The term

Vb R
Wk) = FNL WY~ 02,0 (3.15)

is the a posteriori SNR. For low SNR conditions, this estimator is clearly
biased. The bias can be reduced if the maximum operation is applied to the
sum of the two contributions:

o EACE
N (k) = max (O’%W + (1= ay)(yu(k) — 1)) : (3.16)
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Fig. 3.2. Estimator characteristics for the ideal Wiener-like filter (dashed), the
Wiener-like filter with a,, = 0.99 (dash-dotted) and with o, = 0.92 (solid) for three
different a priori SNR 77, (k — 7). The decision-directed SNR estimator (3.14) was
used and 05 =024 =2

Using (3.14) in (3.9) we find that the spectral components Y, (k) of the current

signal segment now have a direct influence on the gain function. Therefore,

the combination of the Wiener-like filter and the decision-directed SNR es-

timation leads to a non-linear system. This non-linear dependency on the

observation is clearly visible in Fig. 3.2 which plots the magnitude of the

estimated spectral coefficient as a function of the magnitude of the noisy
2

coefficient for o7 = 02 + 05 = 2. Three different values for the a priori

SNR 7, (k — 1) = ﬁi(k —7)/E{|N,(k)[*} related to the previous frame are
selected. Compared to the ideal Wiener-like filter which is also shown, the
non-linear behaviour is visible, especially for low a priori SNR conditions. For
comparison purposes, the same graphs are shown for the less biased a priori
SNR estimation (3.16) in Fig. 3.3. For low a priori SNR values and small in-
put coefficients, more attenuation is achieved than with the decision-directed
approach in (3.14).

For the ideal Wiener-like filter the slope of the filter characteristic does
not depend on the noisy input coefficient. On the other hand, the practical
implementation using the decision-directed approach provides a larger gain
than the Wiener filter when the observed coefficient is larger than its standard
deviation. In this case, it is likely that speech is contained in the current seg-
ment of the input signal and thus speech distortions are reduced. When the
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Fig. 3.3. Estimator characteristics for the ideal Wiener-like filter (dashed), the
Wiener-like filter with o, = 0.99 (dash-dotted) and with «, = 0.92 (solid) for three
different a priori SNR 1, (k — r). The decision-directed SNR estimator (3.16) was
used and 05 =c2+402=2.

noisy coefficient is relatively small the input coefficient contains mostly noise.
In this case it is important to avoid large fluctuations of the output coeffi-
cients as these translate into musical tones. With the noise reduction scheme
discussed here this can be achieved by choosing the smoothing parameter
oy, close to unity and thus smoothing the estimated a priori SNR. However,
a large amount of smoothing will reduce the non-linearity of the estimation
scheme for large amplitudes and thus lead to less transparent speech repro-
duction. The combination of the Wiener-like filter and the decision-directed
estimator therefore requires a balance between these conflicting objectives
[8,15]. Nevertheless, the decision-directed estimation procedure is advanta-
geously combined with many noise reduction algorithms where the a prior:
SNR plays a role [15]. Furthermore, there are other ways to exploit the idea
of recursive estimation, e.g., [16,17] which in general lead to less musical
noise than the standard methods. As an accurate a priori SNR estimate is
a key factor in the performance of these algorithms, improved a priori SNR
estimators have also been developed [18,19].

To conclude this discussion we note that noise reduction schemes are fre-
quently non-linear. In general, it is therefore not appropriate to cast spectral
estimation procedures into the form of a multiplication of the noisy spec-
tral coefficients with a spectral gain function as in (3.7). Moreover, there
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are immediate consequences for the synthesis of the enhanced signal. In the
framework of non-linear estimation in the spectral domain we strive for the
optimal estimate of the spectral coefficients of a short signal segment. The en-
hanced segments will then be synthesized using an inverse spectral transform
and concatenated to produce a continuous signal. By virtue of this approach
zero-padding is not necessarily required. For example, the (non-realizable)
gain vector G, (k) = S, (k)/Y,(k) will result in a perfect reconstruction of
the spectral coefficients and hence of the undisturbed speech signal without
zero-padding and any cyclic effects. On the other hand, an MMSE-optimal
estimate in the spectral domain does not deliver MMSE-optimal time domain
segments. Also, simplifying assumptions such as the independence of adjacent
frequency bins lead to estimation errors. Thus, there are no strict guidelines
for the implementation of the spectral analysis-synthesis system. To suppress
estimation errors in the synthesized signal it is, however, advisable to use a
tapered analysis and a tapered synthesis window [14].

3.4 Estimation of Spectral Amplitudes

In the context of single-microphone speech enhancement, the short term spec-
tral amplitudes are much more important than the short term spectral phases
[20]. It is therefore sensible to estimate the spectral amplitudes A, (k) of the
undisturbed speech signal jointly with the phase «, (k) or directly by us-
ing the marginal distribution of the spectral amplitudes. We briefly present
minimum mean square error (MMSE) and mazimum a posteriori (MAP) so-
lutions to this problem. These estimators require explicit knowledge of the
probability density functions of the spectral coefficients of speech and noise.

3.4.1 MMSE Estimation

For Gaussian speech and noise coefficients the MMSE short term spectral
amplitude estimator (MMSE-STSA) was derived by Ephraim and Malah [4],

yUm

gSTSA,M = E{Au | Yu} =0n m
"

I'(1.5) Fi(-0.5;1,—-v,), (3.17)

where we have now dropped the time index k for improved readability.
Fi(+;-,-) is a confluent hypergeometric function [21] and v, is defined as

um
L= — . 3.18
v, 1+, Y ( )

The confluent hypergeometric function can be expanded in terms of Bessel
functions and may be tabulated for efficient numerical implementations. Be-
sides the MMSE-STSA estimator, the estimate of the logarithm of the spec-
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Fig. 3.4. Estimator characteristics for the Wiener filter (dashed), the MMSE-
STSA [25] (dash-dotted), the MMSE-LSA [25] (dotted), and the MAP estimator
[23] (solid) for three different a priori SNR values. op = 02 + 0 = 2.

tral amplitudes is also widely used. This MMSE log spectral amplitude esti-
mator (MMSE-LSA) may be written as

Avga = exp (B {log(A,) | V,}) (3.19)

, 1 [ exp{—t
S exp | = / expi=t} }dt R,.
1+mn, 2 /v, t

where R,, denotes the amplitude of the noisy spectral coefficients. For large
a posteriori SNR values both estimators approach the Wiener filter. For
small, noisy amplitudes the estimators deliver an almost constant output
value which depends to a greater extent on the a priori SNR than on the
instantaneous input amplitude. This behaviour contributes significantly to
the perceived quality of the residual noise since for small input values the
fluctuations of the noisy amplitudes result in much smaller fluctuations in
the enhanced output. For a single frequency bin and for o2 + 2 = 2 the
resulting input-output characteristics are shown in Fig. 3.4 for the a priori
SNR estimation (3.14) with «,, = 1 and in Fig. 3.5 for a;, = 0.92. To compute
the enhanced complex spectral coefficient, the estimated spectral amplitude
is combined with the short term phase of the noisy input. The observed phase
represents the optimal phase estimate in the MMSE sense [4].
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Fig. 3.5. Estimator characteristics for the Wiener filter (dashed), the MMSE-
STSA [25] (dash-dotted), the MMSE-LSA [25] (dotted), and the MAP estimator
[23] for three different a priori SNR and o = o2 + o, = 2. The decision-directed
SNR estimator (3.14) was used with o = 0.92.

3.4.2 Maximum Likelihood and MAP Estimation

The maximum likelihood (ML) and the maximum a posteriori (MAP) es-
timation techniques avoid hard-to-compute integrals and lead to relatively
simple solutions. In the case of complex Gaussian distributed spectral coef-
ficients, the ML and the MAP estimators yield the well known Wiener-like
solution. An ML estimate for deterministic spectral amplitudes in Gaussian
noise was derived in [22],

Anp, = (0.5RM +0.5,/R2 — a?W) . (3.20)

This estimator provides only a modest amount of noise reduction and is
therefore not often used. Joint MAP estimation of the spectral amplitude
and the spectral phase was proposed by Wolfe and Godsill [23]. Also in this
case, the optimal estimate of the phase of the undisturbed spectral coefficients
is the phase of the noisy input. The estimate of the amplitude is given by

1 77u+\/77;2t+2(1+77u)z_:R
e 21+ 1) "

Estimation of the spectral amplitude using the marginal density is also fea-
sible but for closed form analytic solutions approximations to the Rician

(3.21)
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density are required. Using such approximations, the MAP estimation of the
spectral amplitudes leads to a solution which, like (3.21), is close in perfor-
mance to the MMSE methods [23],

Nu + \/77;2L+(1+77u)z_z
R (3.22)

2(1 +mp) "

VYINIE

The attenuation characteristics of this latter estimator in conjunction with
(3.14) is shown in Fig. 3.4 for a = 1 and in Fig. 3.5 for a = 0.92. A MAP
amplitude estimator using super-Gaussian speech models is derived in [24]
and discussed in Chapter 4.

To conclude this section, we firstly note that all of these estimators and
the underlying statistical models, e.g., (3.12), are conditioned on the signal
power. The power of the undisturbed speech signal as well as of the noise sig-
nal are random processes by themselves and must be estimated, e.g., using
the decision-directed approach. Secondly, all of the above approaches assume
that speech is actually present in the frequency bin under consideration. This
is, of course, not always the case as there are speech pauses and possibly also
a concentration of speech power onto a few dozen harmonics during voiced
speech. Frequently, these estimators are used in conjunction with a statisti-
cal two-state speech presence/absence model which leads to a soft-decision
gain modification procedure. The resulting soft-decision gain functions are
dependent on the signal model and are discussed in detail in [22,4,18,30].

3.5 MMSE Estimation Using Super-Gaussian Speech
Models

In the time domain, the probability density function of speech samples may be
modelled by Laplacian (bilateral exponential) or Gamma, i.e. super-Gaussian,
densities rather than Gaussian densities [26, page 235]. It has been suggested
[27,28] that also in the short time Discrete Fourier domain (frame size <
100 ms), the Laplace and Gamma densities are much better models for the
probability density function of the real and imaginary parts of the speech
coefficients than the commonly used Gaussian density. In fact, the Gaus-
sian assumption is based on the central limit theorem [29]. However, when
the DFT length is shorter than the span of correlation of the signal, the
asymptotic arguments do not hold. While for many applications the spec-
tral coefficients of the noise can be modeled by a complex Gaussian random
variable, the span of correlation of voiced speech is certainly larger than the
typical segment size used in voice communications. Note again that all of
these probability functions are conditioned on the signal power which is, in
general, time-variant. Therefore, in an experimental verification of the density
model great care must be exercised to generate quasi-stationary conditions
[30].
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Only recently, analytic solutions to the estimation problem under super-
Gaussian model assumptions have been found [28,31,32,24]. In this section, we
will present an example based on a Laplacian speech pdf and a Gaussian noise
model [32]. Estimators for complex spectral coefficients based on Gamma
densities as well as soft-decision gain functions for various combinations of
speech and noise densities are discussed, e.g., in [30].

When the spectral coefficients of the speech and noise signals are mutually
independent with respect to frequency bins and time segments, the optimal
instantaneous estimate can be written as a conditional expectation

Su(k) = E{S,(k) | Ya(k)} = E{S | Y}. (3.23)

On the right hand side we now drop time and frequency bin indices to simplify
our notation. For statistically independent real and imaginary parts, we may
decompose the optimal estimate into an estimate of its real and its imaginary
part

E{S|Y}=E{S<" |Y<f>} 4 jE{Ss~/> |y~/*}, (3.24)

where <R> and <I> in the superscript indicate the real and the imaginary
parts, respectively. When <> denotes either the real or the imaginary part,
the MMSE estimate of one of these is given by

E{s<>|y<>}:/ SOp(SY | Y)as?. (3.25)
With Bayes theorem we obtain
1 o0

E{S®|Y?} = / SOp(Y ¥ | S¥)p(S©)dsS®. 3.26

(5917} = s |89y | S0m(s?) (3.26)

Good candidates for the pdf of the real and the imaginary parts of DFT
coefficients of speech signals are the Laplacian pdf,

p(SY) = L exp <—m) : (3.27)

Os Os

and the Gamma pdf,

oy V3 eomr [ V3BISY
p(S )_2\/71'—05\4/5|S |72 exp Voo ) (3.28)

These two densities are better models than the Gaussian pdf, not only for
small amplitudes, but also for large amplitudes where a heavy-tailed density
leads to a better fit for the observed data [30]. The complexity of the analytic
solutions depends upon the density models and the optimization criterion. A
relatively simple analytical MMSE solution is based on the Gaussian noise
and the Laplacian speech models.
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To facilitate the development we introduce the shorthand notations
LQ‘F:&_’_Y_O:L_’_Y_O’
Os  On N On
n Y° 1 Ye
Lo—:U___:___, (3.29)
Os On \/7_7 On
where n = 02 /02 denotes the a priori SNR as before.
For the Lapla(:lan speech pdf we obtain the optimal MMSE estimator of
either the real part or the imaginary part [21, Theorem 3.462,1] as:

E{S° | Y°} =
g | (e (2
- %(Y?{)%){ Lot exp (ZY—O) erfc(LoJr) (3.30)

Y(}
—L°" exp (—2—) erfc(LQ_)},
Os
with [21, Theorem 3.322,2]

p(Y) = (3.31)

ﬁ/::exp (_%) exp( |::>>d5<>
_exp(op/03) {exp (QY_Q) erfe(L) + exp <_2Y_O> erfc(LO—)} ,

20—8 S S

where erfc(z) denotes the complementary error function [21, Theorem 8.250].
The optimal estimator for the undisturbed complex speech coefficient is there-
fore given by E{S | Y} = E{S<I> | Y<E>} 4 jp{S<!> | Y <>} with

E{S°|Y°} (3.32)
_ On [LoF exp(2Y° /o )erfc(LoT) — L™ exp(—2Y° /o, )erfc(Lo7)]
exp(2Y°/os)erfc(LoT) + exp(—2Y ¢ /o )erfe(Le~) '

We note that both E {S<#> | Y<R>[} and E {S<!> | Y <!>} are odd sym-
metric functions of Y<F> and Y <!> respectively. Figure 3.6 plots the
input-output characteristics of this estimator and the Wiener-like filter for
0<Y® <5, 05 = 02+02 = 2, and three different a priori SNR values. Again,
the decision-directed SNR estimator is used with two different values of a,.
For high a priori SNR values the estimate is almost identical to the estimate
delivered by the Wiener filter. Clearly, for a fixed a priori SNR, the Wiener
filter is a linear estimator, characterized by its constant slope. The estimator
based on super-Gaussian densities leads to an increased attenuation of the
input when the instantaneous input value is smaller than its standard devi-
ation and a significantly larger output value when the input is larger than
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Fig. 3.6. Estimator characteristics E{S° | Y°} for the ideal Wiener filter (dashed)
and for the Laplacian speech pdf and the Gaussian noise pdf for o, = 1 (dash-
dotted) and for a;,, = 0.92 (solid) and for three a priori SNR values 77, = 15,0, —10
dB. The decision-directed SNR estimator (3.14) was used and 02 =o02+4+02=2.

the standard deviation. Due to the heavy-tailed speech density, it is highly
likely that speech is present in this latter case. Both of these characteristics
contribute to the improved SNR of the output coefficients with respect to the
linear estimator.

Figure 3.6 also plots the characteristics using the decision-directed SNR,
estimation technique (3.14) with o, = 0.92. The a priori SNR 7, (k—7) of the
preceding signal segment is fixed. The SNR estimate of the present segment
is then a function of the instantaneous, magnitude-squared input value which
leads to an additional non-linear effect. Compared to the estimators based
on Gaussian densities we find that in conjunction with the decision-directed
estimator more smoothing can be applied to the SNR estimate without sac-
rificing the transparency of the enhanced speech components. Furthermore,
we note that the proposed estimators may be applied to the magnitude of the
spectral coefficients as well if we assume a fixed (hypothetical) phase angle.
These procedures are outlined in [30].
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3.6 Background Noise Power Estimation

The second estimation task which arises in the processing model of Fig. 3.1
is the estimation of the background noise power in the spectral bins. Most of
the proposals in the literature are based on either

e voice activity detection and recursive averaging [22,33],

e soft-decision methods [34,35],

e bias compensated tracking of spectral minima (“minimum statistics”)
[36,37],

or a combination of these, as, e.g., developed by Cohen [38]. In general, these
methods rely on the assumptions that

e speech and noise are statistically independent,
e speech is not always present, and
e noise is more stationary than speech.

For single-microphone systems it is in general difficult to track non-stationary
noise mostly because a sudden increase in noise power in one or several fre-
quency bins cannot easily distinguished from a speech onset. Only after a
few hundred milliseconds can speech and noise components be reliably dis-
criminated. Therefore, it is difficult to identify and to suppress short noise
bursts or competing speakers. Current developments strive to improve the
performance of noise estimation under non-stationary conditions [37,38].

In what follows, we briefly outline the minimum statistics approach. The
power of this approach relies on the intrinsically non-linear minimum ex-
traction and the subsequent bias compensation. It has been shown that this
method can contribute significantly to the intelligibility and the listening ease
of the enhanced signal especially in conjunction with a low bit rate speech
coder.

3.6.1 Minimum Statistics Noise Power Estimation

Since speech and noise are additive and statistically independent we have
E{|Y,(k)P} = E{|Su(R?} +E{INL (R} (3.33)

Recursive smoothing of the magnitude-squared spectral coefficients leads to
Pyu(k) = Bu(k) Pu(k — 1)+ (1 = Bu(k)) [Yu(k), (3.34)

where 3, (k) is a time and frequency dependent smoothing parameter. We now
search for the minimum from D samples of the smoothed power P,(k — Ar),
A =0,1,...,D — 1. Then, we might use this minimum as a first coarse
estimate of the noise floor since

min (P, (k), ..., Py,(k— (D —1)r))
~ min (Py (k) ..., Py (k — (D —1)r)). (3.35)
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Fig. 3.7. Magnitude-squared DFT coefficient (dotted), smoothed power, and noise
floor for a noisy speech signal (6 dB SNR).

Pn (k) denotes a noise power estimate which is smoothed just like P, (k) in
(3.34).

An example is shown in Figure 3.7 for a single frequency bin. Obviously,
this estimate is biased towards lower values. However, the bias can be com-
puted and compensated. It turns out that the bias depends on the variance
of the smoothed power P, (k) which, in turn, is a function of the smoothing
parameter (3, (k) and of the variance of the signal under consideration. For
recursively smoothed power estimates and a unity noise power, Fig. 3.8 plots
the factor by which the minimum is smaller than the mean as a function of D
and Qeq = 2E{|N#(k)|2}2 Jvar{P,(k)}. Qeq is the inverse normalized vari-
ance of the smoothed power. When much smoothing is applied var{P,(k)} is
relatively small and therefore ()., is large. Then, the minimum of subsequent
values of P, (k) is close to the mean of these values. On the other hand, no
smoothing (Q., = 2) requires a large bias compensation.

While earlier versions of the Minimum Statistics algorithm used a fixed
smoothing parameter § and hence a fixed bias compensation we note that the
full potential is only developed when a time and frequency dependent smooth-
ing method is used. This in turn requires a time and frequency dependent
bias compensation [37]. The result when using the adaptive smoothing and
bias compensation is shown in Figure 3.9 for the same signal as in Figure 3.7.
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Fig. 3.8. Mean of the minimum of D correlated short term noise power estimates
for o2 = 1.

3.7 The MELPe Speech Coder

As an application of the above techniques, we consider a speech enhancement
algorithm which was developed for a low bit rate speech coder. Low bit rate
speech coders are especially susceptible to environmental noise as they use a
parametric model to code the input signal. One such example is the mized
excitation linear prediction (MELP) coder which operates at bit rates of 1.2
and 2.4 kbps [39]. It is used for secure governmental communications and is
expected to succeed the well-known FS 1015 (LPC-10e) and FS 1016 (CELP)
speech coding standards. This coder also includes an optional noise reduction
preprocessor. The combined system of the preprocessor and the MELP coder
is termed MELPe [39].
The noise reduction preprocessor [40] of the MELPe coder is based on

the MMSE log spectral amplitude estimator [25];
multiplicative soft-decision gain modification [35];
adaptive gain limiting [14];

estimation of the a priori SNR [35];

minimum statistics noise power estimation [37].

This noise reduction preprocessor turns out to be very robust in a variety
of noise environments and SNR conditions. Table 3.1 summarizes the results
of a diagnostic acceptability measure (DAM) test for undisturbed and noisy
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Fig. 3.9. Magnitude-squared DFT coefficient (dotted), smoothed power, and bias
corrected noise floor for the same noisy speech signal as in Figure 3.7.

Table 3.1 DAM scores and standard error without noise and with vehicular
noise (average SNR ~ 6 dB).

conditi0n| coder ‘DAM | standard error

no noise MELPe | 68.6 0.90
noisy unprocessed| 45.0 1.2
noisy MELP 38.9 1.1
noisy MELPe | 50.3 0.80

conditions. As stated before, the MELP coder is highly sensitive to environ-
mental noise. The noise reduction preprocessor helps to reduce these effects.
Table 3.2 shows results of a diagnostic rhyme test (DRT) intelligibility eval-
uation for the same conditions as in the DAM test. We note, that the noisy
but unprocessed signal has the highest intelligibility of the noisy conditions
in Table 3.2. In conjunction with the MELP coder, the enhancement pre-
processor leads to a significant improvement in terms of intelligibility. Thus,
for a low bit rate speech coder, single-channel noise reduction systems can
improve the quality as well as the intelligibility of the coded speech.
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Table 3.2 DRT scores and standard error without noise and with vehicular
noise (average SNR ~ 6 dB).

condition | coder [ DRT | standard error

no noise MELPe |93.9 0.53
noisy unprocessed | 91.1 0.37
noisy MELP 67.3 0.8
noisy MELPe |72.5 0.58

3.8 Conclusions

Noise reduction technology is still an area of active research. While in the
past decade most of these activities were triggered by new developments in
mobile communications we now find increasing interest in automatic speech
recognition and digital hearing aids applications.

Much of the research in this field is directed towards a better understand-
ing and a better exploitation of the statistical properties of speech signals.
As a result, several papers have been published which improve the estimation
of critical (yet unknown) quantities such as the a priori SNR or the back-
ground noise power. Other approaches use optimal time domain estimators
like Kalman filters which provide for an easy integration of autoregressive
models. The question, however, of how the parameters of such models can be
estimated in a robust fashion will require further research.

Further improvements are possible if we can employ more than one mi-
crophone and thus sample the sound field at more than one spatial location.
There are a number of different ways to exploit multiple microphone signals.
The most common are

e to use the spatial directivity of the microphone array [41,42],
e to adapt a single-channel post-filter based on the statistics of the micro-
phone signals [43-46],

and combinations thereof. Some of these approaches are discussed, e.g., in
[42]. Also, MAP and MMSE estimation of spectral amplitudes has been de-
veloped for the multi-microphone case, e.g., [47,48].

Despite these developments and many more which are not discussed here,
there are still open questions which need to be addressed in the future:

e What are meaningful optimization criteria for speech enhancement and
how can they be mathematically formulated?

e Which method of signal analysis is the most suitable?

e How can we improve the perceived quality of the enhanced signal without
compromising intelligibility and vice versa?

e How can we combine signal theoretic and perceptual approaches?
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e What kind of processing approach will be optimal for signals perceived by

normal or hearing impaired persons, or, for signals processed by speech
coders or speech recognition systems, and how are these approaches in-
terrelated?

e What processing takes place in the higher stages of the auditory system

and how can we model it?

Given all these questions it is clear that there will not be a single answer.
We must, however, pay more attention to how humans process auditory in-
formation.
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Abstract. In this contribution, MAP spectral amplitude estimators for speech
enhancement are presented. For single-microphone applications, efficient MAP es-
timators with a super-Gaussian speech model, that can be adapted with high ac-
curacy towards the real distribution in a given system, are introduced. For multi-
microphone applications, joint MAP estimators that also exploit spatial properties
of speech and noise are derived. Both the integration of the more accurate speech
model as well as the multi-microphone joint spectral amplitude estimation improve
the performance of a common DFT domain speech enhancement system.

4.1 Introduction

Many single-channel speech enhancement systems rely on frequency domain
weighting [1], commonly consisting of a noise power spectral density estimator
and a speech spectral or spectral amplitude estimator. The speech estima-
tor applies a statistical estimation rule based on a statistical model of the
discrete Fourier transform (DFT) coefficients. The well known Wiener filter
estimates the complex speech DFT coefficients with minimum mean square
error (MMSE), whereas the Ephraim-Malah algorithm [2] is an MMSE es-
timator for the speech DFT amplitude. The second estimator is considered
advantageous from a perceptual point of view, since the spectral phase is
rather unimportant to the listener. Both the Wiener and the Ephraim-Malah
estimators assume zero mean Gaussian distributions of real- and imaginary
parts for Fourier coefficients of speech and noise. Whereas the Gaussian model
is usually a good approximation for the noise DFT coefficients, the real- and
imaginary part of the speech coefficients are better modelled with super-
Gaussian densities [3]. More accurate statistical models can often not be in-
corporated into MMSE estimators due to resulting too complicated integrals
in the derivation process.

In this contribution, the probability density function of the speech spectral
amplitude is approximated by a function with two parameters. The parame-
ters of the underlying PDF can be fitted to the real distribution of the speech
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Fig. 4.1. Overview of the single-channel speech enhancement system (I: time
index, k: frequency index).

spectral amplitude for a given noise reduction system. Using this statistical
model, computationally efficient speech estimators can be found by applying
the maximum a posteriori (MAP) estimation rule. The resulting estimators,
which are super-Gaussian extensions of the MAP estimators derived by Wolfe
and Godsill [4], outperform the commonly applied Ephraim-Malah estimators
due to the more accurate statistical model.

To further improve the performance of the noise reduction system, espe-
cially in difficult speech-like noise environments, the statistical speech esti-
mation can be extended to multiple input-output signals. A joint statistical
model is applied to jointly estimate the speech spectral amplitudes based
on the joint observation of all noisy amplitudes. Both MAP estimators with
Gaussian and super-Gaussian models of speech can be derived.

The remainder of this Chapter is organized as follows. In Section 4.2
the single-microphone MAP spectral amplitude estimation based speech en-
hancement system is described. Section 4.3 contains the extension of the
MAP estimators for multimicrophone systems and in Section 4.4 experimen-
tal performance results are given.

4.2  Single-Channel Statistical Filter

Figure 4.1 shows an overview of the single-channel speech enhancement sys-
tem examined in this contribution. The noisy time signal y(I) sampled at
regular time intervals [T is composed of clean speech s(1) and additive noise

y(1) = s(l) + n(l). (4.1)
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After segmentation and windowing with a function h(l), e.g., Hann window,
the DFT coefficient of frame A\ and frequency bin k is calculated with:

L
YNk =Y y(AQ + Dh(l)e 32K/ L, (4.2)
l

|
-

Il
o

L denotes the DF'T frame size. For the noise reduction system applied in this
work, L = 256 is used at a sampling frequency of 20kHz. For the compu-
tation of the next DFT, the window is shifted by @ samples. To decrease
the disturbing effects of cyclic convolution, we apply half overlapping Hann
windows with 16 zeros at the beginning and end.

The noisy DFT coefficient Y consists of speech part S and noise N

Y (A k) = SO k) + N(A k), (4.3)

with S = Sge + jSim and N = Nge + jNuym, where Sg, = Re{S} and
Stm = Im{S}. In polar coordinates, the noisy DFT coefficient of amplitude
R and phase ¥ is written as

R\, k)l AR = A\ k)e? MR 4 B(X k) el PR, (4.4)

The speech DFT amplitude is termed as A, the noise DFT amplitude as B
and the respective phases as «, (.

The SNR estimation block calculates a priori SNR ¢ and a posteriori SNR,
v for each DFT bin k. The SNR calculation requires an estimate of the noise
power spectral density o3, (\, k). We apply minimum statistics, which tracks
minima of the smoothed periodogram over a time period that greatly exceeds
the speech short time stationarity [5].

Based on the noise estimates 6% and the observed Fourier amplitudes R,
the a priori and the posteriori SNRs are estimated by

2
k) = ZsAK) R*(\ k)

0 YN k) = % 4.5
AR = (45)
Here, 6% denotes the instantaneous power spectral density of the speech.
Whereas the a posteriori SNRs « can directly be computed, the a priori
SNRs ¢ have to be estimated. This is performed using a recursive approach
proposed by Ephraim and Malah [2]:

S RO -1k A
f()\, k) = QSMW + (]. — asnr)F['y()\, k) — 1], (46)
with Flz] = {g e eo

An extended version is presented in [6]. Since the a priori SNR has a high
impact on the amount of noise reduction, it is useful to lower limit the a
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priori SNR according to
é()\7 ]{) _ {E(Aa k)7 é(>\7 k) > Eihr ) (47)

&enrs else

The task of the speech estimation block is the calculation of spectral weights
G for the noisy spectral components Y, such that the estimated speech DE'T
coefficient S is calculated by

SN R) = GENF), 7N F)) - Y (A k). (4.8)

After IFFT and overlap-add, the enhanced time signal §(1) is obtained.

4.2.1 Statistical Model

We introduce the statistical model for the speech and noise spectral ampli-
tudes. For the sake of brevity, the frame index A\ and frequency index k are
omitted, however the following considerations hold independently for every
frequency bin k£ and frame A.

Motivated by the central limit theorem, real and imaginary part of both
speech and noise DFT coefficients are very often modelled as zero mean
independent Gaussian [2], [7] with equal variance. The central limit theorem
states, that the distribution of the DFT coeflicients will converge towards a
Gaussian PDF regardless of the PDF of the time samples y(1), if successive
samples are statistically independent. This also holds if the correlation in y(1)
is short compared to the analysis frame size [8].

For many relevant acoustic noises this assumptions holds. Moreover, mul-
tiple noise sources or reverberation often reduce the noise correlation in be-
tween the analysis frame size, so that the Gaussian assumption is fulfilled.
The variance of the noise DFT coefficient 0% is assumed to split equally into
real and imaginary part. Thus, the probability density function of real- and
imaginary part of noise Fourier coefficients can be modelled as:

p(Vne) = —=—exp {JZ ]2%} . (4.9)

Based on (4.9) and the assumption of statistically independent real and imag-
inary parts, the PDF of the noisy spectrum Y conditioned on the speech
amplitude A and phase « can be written as joint Gaussian:

1 Y — Ael®|?
YA = —_— . 4.1
Y1) = e (- (4.10)

A Rice PDF is obtained for the density of the noisy amplitude given the
speech amplitude A after polar integration of (4.10) [7]:

2R R? + A2 2AR
) = e {2 (257, (111)

N N ON
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where Iy denotes the modified Bessel function of the first kind and zeroth
order.

Considering speech, the span of correlation with typical frame sizes from
10ms to 30ms cannot be neglected. The smaller the frame size, the less Gaus-
sian will the distribution of the speech real- and imaginary part of the Fourier
coefficients be. It is well known, that the PDF's of speech samples in the time
domain is much better modelled by a Laplace or Gamma density [9]. In the
frequency domain, similar distributions can be observed. Martin [3], [10] has
abandoned the Gaussian speech model. Instead, the Laplace probability den-
sity function,

pSie) = - exp { - 200l |, (4.12)

gs gs

and Gamma PDFs for statistical independent real and imaginary parts have
been proposed,

\/_|SRe|__ exp _\/§|SRe|
2¥/2,/705 V2os |-

The same equations hold for the imaginary parts.

P(Sre) = (4.13)

Modelling the Spectral Amplitude of Speech. In the following, a sim-
ple statistical model for the speech spectral amplitude will be presented [11],
which is significantly closer to the real distribution than the commonly ap-
plied Gaussian model.

The spectral amplitudes are of special importance, because the phase of
the Fourier coefficients can be considered unimportant from a perceptual
point of view [12], [13]. Considering noise, the Gaussian assumptions holds
due to comparably low correlation in the analysis frame. Assuming statistical
independence of real and imaginary parts, the PDF of the noise amplitude
B can easily be found as Rayleigh distributed by polar integration,

B B?
N oN

For the calculation of an appropriate PDF for A, the Gauss, Laplace, and
Gamma PDFs for real and imaginary parts are taken into account. The real
and imaginary part of the Fourier coefficients can be considered statistically
independent with high accuracy. Then, p(A) can in general be calculated by

p(A) = /A -p(Acosa) - p(Asina)da, (4.15)
0



72 T. Lotter

0.005 2

0.025

) -2 -1 ) 1 2 3 -3 -2 -1 0 1 2 3

SRe SRe

Fig. 4.2. Contour lines of complex Gaussian model with independent cartesian
coordinates and of complex Laplace model with independent cartesian coordinates
(05 =1).

with Gaussian PDFs or PDFs according to (4.12) or (4.13) for p(Sge =
Acosa), p(Simm = Asina).

Figure 4.2 shows contour lines of a complex Gaussian or Laplace PDF
with independent cartesian components. Compared to the Gaussian PDF,
the Laplace PDF has a higher peak, a lower amplitude, and decreases slower
towards higher amplitudes visible by the greater distances of the contour lines
compared to the complex Gaussian PDF. While the complex Gaussian PDF
is rotational invariant, the Laplace amplitude depends on the phase.

Considering Gaussian components, the rotational invariance greatly fa-
cilitates the polar integration. Similar to (4.14) the amplitude is Rayleigh
distributed:

p(A) = 22 exp {Aj} . (4.16)

g

The PDF of the amplitude of a complex Laplace or Gamma random variable
with independent cartesian components varies with the angle o. This makes
an analytic calculation of the distribution A = /S%, + 5%, for (4.12) or
(4.13) difficult, if not impossible.

Instead of an analytic solution to (4.15), we are looking for a function that
approximates the real PDF of the spectral amplitudes with high accuracy
regardless of the underlying joint distribution of real and imaginary parts
of the Fourier coefficients. However, as indication about how the function
should look like, the amplitude of a complex Laplace or Gamma PDF with
independent components is taken into account.

Compared to the Rayleigh distributed amplitude of a complex Gaussian,
low values are more likely, but the PDF decreases more slowly towards high
values.
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The fast decay of the Rayleigh PDF results from the second order term of
A in the argument of the exponential function in (4.16) similar to the decay
of the Gauss function. Similarly, the measured PDFs of the complex Laplace
and Gamma amplitude can be assumed to decay like (4.12) and (4.13) with
a linear argument in the exponential function.

Apparently, the slope of the Gamma amplitude PDF differs from that
of the Laplace amplitude PDF. Hence, a parameter p is introduced, which
enables to approximate both. After normalizing A by the standard deviation
og, we thus assume

p(A) ~ exp {—ui} . (4.17)
gs

At low values of A, the PDF of the Laplace and Gamma amplitude is much
higher than the Rayleigh PDF. Considering the Rayleigh PDF according to
(4.16), the behaviour at low values is mainly due to the linear term of A,
whereas the exponential term plays a minor role at small values.

Both the PDF of the Laplace amplitude and the PDF of the Gamma
amplitude can be approximated by abandoning a linear term in A. Instead,
A is taken to the power of a parameter v after normalization to the standard

1%
deviation of speech, i.e., p(A) ~ ((;is) in order to be able to approximate a

large variety of PDFs. The smaller the parameter v, the larger the proposed
PDF at low values. The term hardly influences the behaviour of the function
at high value due to the dominance of the exponential decay

AY A
p(A) ~ g exp {—,ua} . (4.18)

After taking fooo p(A)dA =1 into account, the approximating function with
parameters v, u is finally obtained using ([14], eq. 3.381.4):

v+1 Au A
Y 2
p(A) = T+ 1) o7 exp{ uUS } . (4.19)

Here, I' denotes the Gamma function.

Figure 4.3 shows the approximation of measured histograms of the am-
plitude of 1.000.000 complex Laplace or Gamma random values with inde-
pendent cartesian components with O’% =1 by (4.19) using different sets of
parameters v, p. Apparently, (4.19) allows a very accurate approximation
for both Laplace and Gamma components. To approximate the Laplace am-
plitude, we applied the parameter set (v = 1, up = 2.5). To approximate
the Gamma amplitude we used (v = 0.01, g = 1.5). PDFs in between both
or closer to the Rayleigh PDF can be approximated with different sets of
parameters v, p.
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Fig. 4.3. Approximation of amplitudes of complex random values with Laplace
and Gamma components using (4.19). (upper plot) Laplace components: (v = 1,
u = 2.5). (lower plot) Gamma components: (v = 0.01, u = 1.5).

Matching with Experimental Data. The real PDF of the speech am-
plitude will not be exactly like the Laplace amplitude or Gamma amplitude
approximation but somewhere in between. Also, it will depend on parame-
ters of the noise reduction system such as the analysis frame size. At a larger
frame size, the correlation decreases relatively to the analysis frame size and
thus the distribution will be less super-Gaussian. The task is therefore to find
a set of parameters (v,u) which outperforms the above sets for Laplace or
Gamma amplitude approximation for a given system.

To measure the PDF of the speech complex DFT coefficients .S or speech
DFT amplitudes A, a histogram is built using 1 hour speech from different
speakers. Ideally, DFT bins, which solely contain speech of equal variance,
should be taken into account.

In practice, the speech variance in a frequency bin is strongly time-variant
and can only be estimated in a time frame and frequency bin with a certain
estimation error. Thus, we apply (4.6), which is commonly considered as the
best performing method to estimate the speech variance in form of the a
priori SNR. Hereby, the histogram measurement process also incorporates
the same method of estimating the time-varying speech variance as the noise
reduction system. Data is collected for the histogram at time instances, when
the frequency bin is dominated by speech. For that purpose, a high and
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Fig. 4.4. Contour lines of measured speech DFT speech coefficients.

narrow a priori SNR interval is predefined, e.g. 19-21dB. The width of the
interval is a tradeoff between the amount of data obtained and the demand
to pick samples of same variance.

The left part of Fig. 4.4 shows the contour lines of the measured speech
DFT coefficients after normalizing to cr?g = 1 and averaging over frequency
bins afterwards.

Compared to the Gaussian contour lines in Fig. 4.2, a slower decrease to-
wards high amplitudes and faster increase towards low amplitudes is visible.
Also, the observed data hardly shows any dependency on the phase like for the
Laplace contour lines in Fig. 4.2 like shown for the complex Laplace PDF in
the right part of Fig. 4.4. Figure 4.5 plots the histogram of the speech ampli-
tude, which is obtained by integration over the phase of the two-dimensional
histogram along with the analytic Rayleigh PDF and the approximation ac-
cording to (4.19) with the parameter set for Laplace and Gamma amplitude
approximation respectively. Apparently, (4.19) provides a much better fit for
the speech amplitude than the Rayleigh PDF for both Laplace and Gamma
amplitude approximation. For low arguments, the Rayleigh PDF rises too
slowly, while for large arguments, the density function decays too fast. The
real PDF of the speech amplitude lies between the Laplace and Gamma am-
plitude approximation.

To find a set (v, ), that approximates the real PDF best, a distance
measure between the analytic function and the histogram with N bins is nu-
merically minimized. The Kullback divergence [15] can be considered optimal
from an information theoretical point of view. Given two random variables
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Fig. 4.5. Histogram of speech DFT amplitudes A (0% = 1) fitted with Rayleigh
PDF and Laplace/Gamma amplitude approximation (4.19).

of probability density pi(z) and pso(x), then 1(2:1) describes the mean infor-
mation per observation of process 2 for discrimination in favor of process 2
and 1(1:2) for discrimination in favor of process 1:

pi(z) p2(x)
Il:2:/p1xlog dx;[2:1:/p2xlog dx. (4.20
(1:2) (z) o) (2:1) (z) (@) (4.20)
The sum J(1:2) = I(1:2)+1(2:1) is a measure of divergence between
the two processes. To differentiate between the analytical p4(n) and the his-
togram PDF pj(n) with N bins, the divergence can be calculated by

N
I = 3 () = pat)og (224 ). (121)

n=1 Pa (’I’L)

Figure 4.6 shows the best p(A) according to (4.19) determined by minimiz-
ing the Kullback divergence. The analytical PDF now fits even better to the
observed data than the Laplace of Gamma amplitude approximation. To il-
lustrate the improvement provided by the new model, Table 4.1 shows the
Kullback divergences between measured data and model functions. The diver-
gences have been normalized to that of the Rayleigh PDF, i.e., the Gaussian
model. When using the Laplace or Gamma amplitude approximation, the
Kullback divergence is significantly lower than for the Gaussian model. By
determining an optimal parameter set, the divergence further decreases.

Spectral Amplitude of Noise. Compared to speech, the span of noise
correlation in an analysis frame is much lower. Thus, the PDF of the real
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Fig. 4.6. Histogram of speech DFT amplitudes and fitted approximation by (4.19)
according to Kullback divergence (0% = 1).

Table 4.1 Normalized Kullback divergence between measured speech PDF
and different model function.

p(A) v, J(A : h)/J(A : h)Rayleigh
Rayleigh (4.16) - 1
Laplace Amplitude Approximation (4.19):| 1, 2.5 0.35
Gamma Amplitude Approximation (4.19):| 0.01, 1.5 0.05
Kullback Fit (4.19): 0.126, 1.74 0.045

and imaginary parts of the noise spectral coefficients will according to the
central limit theorem be closer to a Gaussian function. Martin [3], [10] has
proposed spectral estimators with Laplace or Gaussian noise model (and
Laplace and Gamma models for the speech coefficients). A Laplace model
for noise is motivated by the observation that environmental noises are also
super-Gaussian distributed to a certain degree. Figure 4.7 plots histograms
of DFT amplitudes measured for three different noise classes. For building of
the histograms, the frequency and time dependent noise variances o3 were
estimated using the same system as applied in the noise reduction algorithm,
i.e. minimum statistics [5]. Spectral amplitudes with corresponding estimated
noise variances inside a narrow predefined interval were then collected for
the histogram database. To plot the histogram together with the Rayleigh
function (4.16) and the super-Gaussian model function (4.19) in Fig. 4.7, the
collected database was normalized to o3 = 1.

Unsurprisingly, for the white noise, which was uniformly distributed in the
time domain, a Rayleigh function perfectly models the PDF of the noise spec-
tral amplitude. For fan noise, the PDF slightly changes towards the Laplace
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Fig. 4.7. Histogram of noise DFT amplitudes B for white noise, fan noise and
cafeteria noise (0% = 1) fitted with Rayleigh-PDF and Laplace amplitude approx-
imation.

amplitude approximation, while the effect is more visible for the cafeteria
noise, which contains speech components from many speakers. Due to the
low deviation from the Rayleigh PDF, the Gaussian assumption for the noise
will be assumed in the following.

4.2.2 Speech Estimators

The task of the speech estimator lies in calculating an estimate for the speech
spectral amplitude A=G R given the observed noisy coefficient Y or the
noisy amplitude R and the variances of speech o% and noise o3;. With proba-
bility one, the estimate will not be identical to the real value, therefore a cost
function C'(A, A) is introduced [16], which assigns a value to each combina-
tion of undisturbed and estimated speech spectral amplitude. The Bayesian
estimators aim at minimizing the expectation of the cost according to

E{C(A,A)} / /C p(A,Y)dAdY. (4.22)
—oo 0
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For C(A,A) = (A — A)?, the Ephraim-Malah or conditional expectation
estimator [2] is obtained:

Vv . 3
G = Y .r(15)F (=05, 1,—v), withv=~y—, 4.23
I (s) Fi( 0. with =9 (423)
where the confluent hypergeometric series F; can be calculated with
Fi(=05,1,—v) = e /2 [(1+v) Iy (g) Yol (g)} . (4.24)

Iy, I; denote the modified Bessel function of zero-th and first order.

The cost function C(A,A) = logA — log A leads to the logarithmic
Ephraim-Malah estimator [17]. By choosing a uniform cost function according
to

1; else

C:{O;|S—S|<e7 (4.25)

MAP estimators can be obtained, which are in general computationally more
efficient.

Wolfe and Godsill [4] introduced alternatives to the Ephraim-Malah spec-
tral amplitude estimator based on the maximum a posteriori estimation rule.
The spectral weights obtained by the MAP estimators are similar to those
of the Ephraim and Malah estimator, thus a quality improvement cannot
be expected. However, straightforward implementations without the use of
computational expensive Bessel or exponential function are possible.

In the following, we introduce two speech spectral amplitude estimators,
which keep the computational simplicity of the Wolfe and Godsill estimators
but also achieve a quality gain by applying the super-Gaussian speech model
according to (4.19) and a Gaussian model for noise.

First, a MAP estimator for the speech spectral amplitude is derived. Sec-
ondly, a joint MAP estimator for the amplitude and phase is introduced.
Both estimators are extensions of the MAP estimators proposed in [4].

MAP Spectral Amplitude Estimator. A computationally efficient MAP
solution following

. A)p(A
A= arg mgxp(A|R) = argmax ]%

similar to [4], where Gaussian distributed Sge, Stm are assumed, can be found.
Now, the super-Gaussian function (4.19) is used to model the PDF of the
speech spectral amplitude p(A). The Gaussian assumption of noise allows to
apply (4.11) for p(R|A). We need to maximize only p(R|A) - p(A), since p(R)
is independent of A. A closed form solution can be found if the modified
Bessel function I is considered asymptotically, with

1
Ip(z) ~ She e’. (4.27)

(4.26)

T
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Fig. 4.8. Modified Bessel function of zero-th order Iy and approximation (4.27).

Figure 4.8 shows that the approximation is reasonable for large arguments
and becomes erroneous for low arguments.
After insertion of (4.27) in (4.11), we get for p(R|A)p(A):

1 A2 1% 2R
p(R|A)p(A) ~ A”" 2 exp { oy A(US oy )} . (4.28)
Note, that the approximation of the Bessel function has introduced a negative
exponent for v > 0.5.
Instead of differentiating p(R|A)p(A), the maximization can be performed
better after applying the natural logarithm, because the product of the poly-
nomial and exponential converts into a sum:

dlog[p(R|A)p(A)] <V 1) 1 24 n 2R
ox

A 0% os

!
= =0. 4.29
74 (4.29)
After multiplication with A, one reasonable solution A = G R to the quadratic
equation is found, because the second solution delivers spectral amplitudes

A < 0 at least for v > 0.5. The second derivative at A is negative, thus a
local maximum is guaranteed:

1
/ ~1 1

Whereas the MAP spectral amplitude estimator is very useful for an esti-
mation with an underlying Laplace model of the DFT coeflicients, it cannot
be applied using a Gamma model or the optimal parameter set. This is due
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Fig. 4.9. Weights of the super-Gaussian MAP estimator with Laplace amplitude

approximation (v = 1,u = 2.5) compared to the Ephraim-Malah weighting rule
depending on the a posteriori SNR ~ for two a priori SNRs £ = —5dB and £ = 5dB.

to the inaccuracy introduced by the approximation of the Bessel function
(4.27). For v < 0.5, the approximated a posteriori density p(A|R) has a pole
at A = 0, which will misplace the maximum found by (4.30).

Figure 4.9 shows the dependency of the weights on the a posteriori SNR
~ for two a priori SNRs & for the parameter set (v, ), that approximates
the amplitude of a complex Laplace PDF. Most of the time, the weights of
the super-Gaussian estimator are smaller than those of the Ephraim-Malah
algorithm due to the larger value of p(A4) at low amplitudes compared to
the Rayleigh PDF. At high a posteriori SNRs, the Ephraim-Malah weights
converge towards the Wiener weights, i.e., £/(14&). The weights of the super-
Gaussian MAP estimator, however, increase due to the slower decay of the
model function towards larger values. Higher observed spectral amplitudes
R will result in a higher spectral output compared to the Wiener filter or
Ephraim-Malah estimator. This effect is due to the underlying more accurate
statistical model of the spectral amplitude of speech, in which high amplitudes
are considered more likely than in the Rayleigh model. Consequently, high
observed noisy amplitude will be judged to contain more speech components
by the super-Gaussian MAP estimator than by the Ephraim-Malah rule

Joint MAP Amplitude and Phase Estimator. To overcome the inability
of the proposed MAP estimator with approximation of the Bessel function
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to cope with an underlying Gamma model or the model that minimizes the
Kullback divergence towards the measured data, we introduce a joint MAP
estimator of the amplitude and phase. Instead of maximizing the a posteriori
probability p(A|R), we now jointly maximize the probability of amplitude
and phase conditioned on the observed complex coefficient, i.e., p(4, a|Y),

1 p(Y|A,a)p(A,O<)

A = arg mjop(A, alY) = arg max %) , (4.31)
and & = argmaxp(4, oY) = arg max p(Y]4, (O;)/};(A’a). (4.32)
[e3 [e3 p

If the problem is formulated this way, the Bessel function and its erroneous
approximation are avoided. p(Y]A, «) is given by (4.10) using the Gaussian
assumption of noise. Up to now we have only dealt with the probability of
the speech amplitude, i.e., p(A), while the joint PDF of the amplitude and
phase p(A, ) is now asked for. For a rotational invariant PDF it is obtained:

1

p(A,a) = %p(A). (4.33)

Equations (4.31) and (4.32) can be solved similar to the MAP estimator.
Again, the natural logarithm greatly facilitates the optimization process. The
partial derivatives of log(p(Y'|A, a)p(A4, «)) with respect to the phase a and
amplitude A need to be zero. Differentiating with respect to « yields

- Tog(p(¥]4,a)p(4, 0)) = (434

(V" = A=) (—j Aei®) 4 (¥ — Aci)(jAe=%)
_ . .
oN

Setting to zero and substituting Y = Rel? yields
a=1. (4.35)

The candidate for the joint MAP phase estimate is simply the noisy phase.
Differentiating w.r.t. the speech amplitude gives

0 Y* — Ae7 Il 4 (Y — Aed™)e 7™ 1
2 loa(p(Y]4, 0)p(A, a)) = | el + e v

§A 0% A os
Setting to zero and replacing a = 1 the following quadratic equation is
obtained:

2
O Vo o1
A2+ A(ZE -R) - 0% =0. 4.36
+ (2 . ) 5N (4.36)

Solving the equation leads to an estimation rule similar to that of the super-
Gaussian MAP estimator:

v 1 W
G=u+,|u?+ — with v= - ——=. 4.37
2y 2 4y ( )
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Fig. 4.10. Weights of the joint MAP estimator as a function of the a posteriori
SNR ~ with different parameter sets, i.e., Laplace and Gamma amplitude approxi-

mation as well as Kullback divergence matching, compared to the MAP estimator
with Laplace approximation model for £ = —5dB.

Again, checking the second derivatives guarantees, that the extremum found
by (4.37) is a local maximum.

Figure 4.10 plots the weights of the joint MAP estimator with optimal
parameters for the given speech enhancement system in dependence of the a
posteriori SNR for two different a priori SNRs. For comparison, the weights
of the MAP estimator with Laplace amplitude approximation are also plot-
ted. The joint MAP weighting rule with optimal parameters delivers lower
values at low observed SNRs, while rising faster towards higher a posteriori
SNRs compared to the MAP estimation with Laplace model. This behaviour
is directly due to the different underlying statistical models of the speech
amplitude by using different parameters (v, p) in (4.19). Low observed a
posteriori SNRs compared to the ratio of variances in form of the a priori
SNR will highlight the effect of the statistical model at low values of A, while
the behaviour at high a posteriori SNRs will be influenced by the values of
the PDF towards high speech spectral amplitudes.

4.3 Multichannel Statistical Filter

In this section, multi-microphone extensions for the MAP spectral amplitude
estimators are described [18].
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Fig. 4.11. Multichannel statistical filter.

Figure 4.11 depicts the extended noise reduction system. Now, M noisy
time signals y,,, microphone index m € {1... M}, are transformed into the
frequency domain using DFT. For the sake of brevity, the frequency index k
has been omitted. For each channel, the noise power spectral density and the
a priori SNR is separately estimated using minimum statistics. The speech
estimator however, now calculates real weights (,,, using all noisy DFT co-
efficients Y,, and all estimated a priori ém and a posteriori SNRs 4,,. M
enhanced signals are resynthesized using IDFTs and overlap add. By ap-
plying a beamformer, the outputs can be combined afterwards to M< M
signals.

The joint speech estimator can similarly to the single channel application
be based on the a posteriori PDF p(A|R). However, now the density for
each channel index m can be conditioned on the observation of all noisy
amplitudes, i.e. p(A,,|R; ... Ry). Using Bayes rule, the a posteriori PDF
can be expressed as

p(R1 e RM|Am)p(Am) _

Am|Ri ... Rar) =
P(Am| Ry - Bar) p(R1 ... Ry

(4.38)

Thus, a joint statistical estimator requires a model for the joint density
p(Ry...Ryr) and an a priori model for the speech amplitude p(A,,) simi-
lar to Section 4.2.

4.3.1 Joint Statistical Model

To find a simple statistical model for the joint transition density
p(Ry ... Ry|Ar), the typical noise reduction scenario of Fig. 4.12, e.g., in-
side a crowded cafeteria or restaurant or inside a car, is considered. A desired
signal s arrives at a microphone array from angle 6. Multiple noise sources
arrive from various angles. The noisy time signals y,, sampled at time index
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R

Fig. 4.12. Speech and noise arriving at microphone array.

[ can then be expressed by the convolution of the clean signal with a channel
dependent impulse response h,, plus channel dependent noise,

Ym (1) = B (1) % 5(1) 4 1 (1). (4.39)

In the frequency domain, the DFT coefficient Y,,, of microphone m consists
of speech and noise components

Y, = Rme’™ = ¢y Ae?™m 4+ N,,,. (4.40)

For the sake of brevity, the frequency index k is omitted here. Due to different
microphone amplifications or near field effects, the speech spectral amplitude
differs between the microphones by a factor ¢,,. Angles of arrival other than
fs = 0° cause phase differences in the speech coefficients, i.e., the angle «
depends on the channel m. The diffuse noise field in a scenario like depicted
in Fig. 4.12 can be characterized by its coherence function. The magnitude
squared coherence (MSC) between two omnidirectional microphones m and
n of a diffuse noise field is given by, e.g., [19]

MSCmn(f) - m = Sl (7> . (441)

Figure 4.13 plots the theoretical coherence of an ideal diffuse noise field and
the measured coherence of the noise field inside a crowded cafeteria with
a microphone distance of d,,,,, = 12cm. MSC,,,,(f) attains its first zero at
frequency fo = ¢/2dmn, above fy the MSC becomes very low and thus the
noise components of the noisy spectra can be considered uncorrelated with

2 . —
O'Nm ym=n

o (4.42)

E{N,,N:} = {
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Fig. 4.13. Theoretical MSC of a diffuse noise field and measured MSC inside a
crowded cafeteria (dmn» = 12cm).

Hence (4.11) can be extended to

M
1=1

for each m € {1...M}. The time delay of the speech signals between the
microphones is assumed to be small compared to the short time stationarity
of speech and thus the speech spectral amplitudes A,,, to be highly correlated.
However, due to effects mentioned above, the speech amplitudes are allowed
to deviate by a constant channel dependent factor ¢;, i.e., A; = ¢; - A and
0% = ¢;o%. Thus is can be written: p(R;|A; = - Apm) = p(Ri|Ap). Using the

Cm
Gaussian model for noise, the joint PDF of all noisy amplitudes R; given the

speech amplitude of channel m can then using (4.43) and (4.11) be written
as

p(Ri,..., Ry|Am) = (4.44)
M p2 ci \2 A2 M ci
expy — y ———— I — b Ip | Zem” )
{ ; UJQVi 7,1;[1 O-JQV'L U]QVi

where the ¢; are fixed parameters of the joint PDF.

4.3.2 Multichannel MAP Spectral Amplitude Estimation

First, a multichannel MAP estimator with Gaussian speech and noise model,
which extends the Wolfe-Godsill [4] estimator to multiple microphones is
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presented. Now, the speech spectral amplitude A,, is searched for, that max-
imizes the PDF of A,, conditioned on the joint observation of all Ry ... Ry,
i.e.

A, = argIﬁaxp(Am|R1, ..y Ryr)
_ arg max p(Rl7 e ,RM|Am)p(Am) .
Ay p(Rl,,RM)

Only C = p(Ry,....,Rm|Am) - p(A),) needs to be maximized, since
p(R1,..., Ryr) is independent of A,,. Using (4.43) and the Gaussian model
for speech, i.e. (4.19), it is obtained for C' = log C,

~ A A?
0210g< 2 )_2—n

(4.45)

7T0'Sn USm
M 2 Ci \2 A2 Ci
(B[ B (AR
i=1 N; N; N;

After approximating the Bessel function with (4.27), differentiation of log C
and multiplication with the amplitude A,, leads to

M c; \2 M ¢

1 () “R; 2—M

A2 [ ——— — Cm A, Cm =0. 4.47
m<02 ZUJQV>+ 2t (4.47)

i i

m i=1

The resulting weight factor for microphone m is then given as

%\/T M M 2 M
Gm = ———Re{ > /& + (Z \/%‘&) +(2-M)(1+) &)
1+ & i=1 i=1 i=1
i=1
(4.48)

If M =1, (4.48) simplifies to the single-channel MAP estimator with Gaus-
sian model as given in [4].

Super-Gaussian Speech Model. Similar to the single microphone MAP
estimator with super-Gaussian speech model as presented in Section 4.2, the
a priori model of p(A,,) for the multi-microphone speech amplitude estima-
tor can be improved by the use of the parametric super-Gaussian statistical
model. Now, the starting point is the joint MAP approach

P p(Ri,. .., Ryr|Am)p(Ar)

A,, = argmax , 4.49
s Am p(RlaaRM) ( )
with the model function
v+1 Al/ A
1% m m
A,)= ——-- 71 —pU— 7, 4.50
Pn) = gy e { e | (1.50)
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for the PDF of the speech spectral amplitude of microphone m.
Again, differentiation of C' = log(Ry, ..., Ry|Am) - p(A,,) with approxi-
mation of the the Bessel function gives a quadratic equation

=~ M ci \2 ci
dcC v L 2()Am SRRy 1
— _ _em 9 Lm 4.51
T2 ( o T , (451

dA,, E ' =0 oyN. 0']2\[1. - 24,

i

which leads to the weight rule of the multichannel MAP estimator with un-
derlying Gaussian model:

Em M u
o= L= S VE - b
23 & b=t
i=1

M 2 M
(Zm_g) rev-mYe|. @)
i=1 i=1

If M =1, (4.52) simplifies to the super-Gaussian spectral amplitude estima-
tor given by (4.30).

4.4 Experimental Results

In this section, the performance of the single and multi-microphone MAP es-
timators is instrumentally evaluated in comparison with the Ephraim-Malah
algorithm.

The noise reduction filter were applied speech with additive noise at dif-
ferent SNRs. To judge the performance of a noise reduction algorithm, the
system depicted in Fig. 4.14 was applied. The desired signal s and the inter-
fering undesired signal n are superposed with a given SNR. The noisy signal
y(1) is processed with the noise reduction algorithm. Afterwards, the desired
and the interfering signal are separately processed with the resulting filter
coefficients. Hence, the system enables separate tracking of speech quality
and noise reduction amount by comparing outputs to inputs of the fixed fil-
ters. Using the master-slave system depicted in Fig. 4.14, the speech quality
is tracked in the upper branch by the segmental signal to noise ratio, i.e.,

I
> s*(i+pl)
=1

P
1
seg. Speech-SNR/dB = B Z 10 -logyg | —
=1 > (s(i+pl) = 5(i+ pl))?

(4.53)
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Fig. 4.14. Instrumental performance evaluation of the noise reduction system.

where I denotes the length of the segment, e.g. the frame shift of the DFT
analysis window, and P the number of segments, such that P- I is the overall
length.

On the other hand, the noise reduction amount is measured in the lower
branch of Fig. 4.14 by the segmental noise power attenuation:

I

1 Z n2(i + pl)
seg. Noise Reduction/dB = i) Z 10 - logy 1?1— . (4.54)
p=t >_ (n?(i +pI)
i=1

To highlight the noise reduction during speech, we only take segments p with
global speech activity into account. The global activity is detected in advance
by applying a VAD on the clean speech signal.

Single-Microphone MAP Estimators. In the following, the perfor-
mance of the single microphone system according to Fig. 4.1 when using the
Ephraim-Malah estimator, the super-Gaussian MAP estimator with Laplace
amplitude approximation, and the super-Gaussian joint MAP estimator with
optimal parameters, is compared for speech with three different noises.

The parameters (v, u) determine the underlying statistical model of the
speech amplitude. For the super-Gaussian MAP estimator, we favor (v = 1,
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@ = 2.5), which approximate the amplitude of a complex RV with inde-
pendent Laplace components. If the parameters are adjusted for Gamma
distributed components or in order to minimize the Kullback divergence, the
enhanced signal is greatly disturbed. This is due to the approximation of
the Bessel function, which generates an uncompensated pole at A = 0 for
v < 0.5. In general, the proposed super-Gaussian MAP estimator cannot be
applied for v < 0.5.

The super-Gaussian joint MAP estimator, however, can be applied to
every reasonable set of parameters (v, p). Here, we favor the parameters,
that were determined by minimizing the Kullback divergence towards the
measured data, i.e., (v = 0.126, u = 1.74).

The amount of noise reduction using (4.30) with (v = 1, u = 2.5) or (4.37)
with (v = 0.126, u = 1.74) is significantly higher than for the Ephraim-Malah
algorithm. Consequently, a lower speech quality will be reached. Comparing
speech quality and noise reduction of the super-Gaussian estimators to the
Ephraim-Malah estimator would thus be of limited value. For comparability
the weights of the super-Gaussian estimators are scaled by a constant factor
greater than one so that approximately the same speech quality is reached for
all estimators according to (4.53). The amount of noise reduction achieved
then allows a comparison between the estimators. In all versions, we include
the soft weight given by Ephraim and Malah [2] with tracking of speech
absence probabilities [20].

The results for white noise and the three different estimators, i.e.,
Ephraim-Malah, MAP with (v = 1,4 = 2.5), and joint MAP with (v =
0.126, 4 = 1.74) are shown in Fig. 4.15. The super-Gaussian MAP estima-
tor achieves a significantly higher noise attenuation than the Ephraim-Malah
estimator. By applying the super-Gaussian joint MAP estimator with param-
eters optimally adjusted to the measured data, the noise reduction amount
can be increased further without decreasing the speech quality.

Figures 4.16 and 4.17 plot the performance of the estimators for speech
with fan noise and cafeteria noise respectively.

The noise reduction amount is lower than for white noise, because the
non-stationary cafeteria and fan noise are harder to track by the noise esti-
mation algorithm. The proposed super-Gaussian estimators still outperform
the Ephraim-Malah algorithm although the performance gain is lower than
for the white noise. Again, the joint MAP estimator with optimal parameters
performs best.

Multi-Microphone MAP Estimators. The performance of the multi-
microphone estimators is considered with focus to enhancement in a critical
cafeteria situation using a microphone array with few elements. The cafeteria
noise is generally difficult to suppress due to its instationarity and speech-
shaped spectrum.
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Fig. 4.15. Speech quality and noise reduction amount of statistical filter with
Ephraim-Malah estimator (solid) with super-Gaussian MAP estimator (dashed)
and super-Gaussian joint MAP estimator (dotted) for speech corrupted with white
noise.

The estimators were embedded in the DFT based noise reduction system
in Fig. 4.11 at a sampling frequency of f; = 20kHz using half overlapping
Hann windowed frames of size 512. Both noise power spectral density O'szi
and variance of speech agi were estimated separately for each channel. To
instrumentally evaluate the performance, (4.53) and (4.54) were averaged
over the microphones. Figure 4.18 plots speech quality and noise reduction
amount of the super-Gaussian M-dimensional MAP (Md-MAP) according to
(4.52) and the Md-MAP with Gaussian model according to (4.48) compared
to the Ephraim-Malah rule for speech mixed with cafeteria noise recorded
with a linear microphone array of M = 4 elements and an interelement
spacing of d = 12cm.

By applying the joint estimation over all microphones, the speech en-
hancement performance can significantly be increased in the difficult cafe-
teria. It is also important to note, that this performance gain is achieved
independently of the direction of arrival of the desired source relative to the
microphone array [18]. This is due to the conditioning on the noisy spectral
amplitudes in the a posteriori PDF p(A|R; ... Rpr). The DOA information
is mainly included in the spectral phases, not in the amplitudes.

Similar to the single-microphone speech enhancement system, including
the super-Gaussian model for the speech amplitude also improves the quality
of the multi-microphone system.
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Fig. 4.16. Speech quality and noise reduction amount of statistical filter with
Ephraim-Malah estimator (solid) with super-Gaussian MAP estimator (dashed)

and super-Gaussian joint MAP estimator (dotted) for speech corrupted with fan
noise.
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Fig. 4.17. Speech quality and noise reduction amount of statistical filter with
Ephraim-Malah estimator (solid) with super-Gaussian MAP estimator (dashed)

and super-Gaussian joint MAP estimator (dotted) for speech corrupted with cafe-
teria noise.
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4.5 Conclusions

We have presented MAP spectral amplitude estimators for single- and multi-
microphone speech enhancement applications.

For single-microphone noise reduction, efficient MAP estimators with a
super-Gaussian speech model have been introduced. The underlying speech
model can be tuned in advance to precisely match the distribution in a given
system. The application of the MAP estimators improves the quality of the
enhanced signal compared to the use of spectral amplitude estimators with
common Gaussian speech models while decreasing the computational load.

For noise reduction with multiple microphones, joint MAP spectral am-
plitude estimators with Gaussian or super-Gaussian speech model have been
derived. The joint estimation increases the quality of the enhanced signal in
difficult cafeteria situations without introducing a dependency on the position
of the desired source relative to the microphone.
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Abstract. Modeling speech signals in the short-time Fourier transform (STFT)
domain is a fundamental problem in designing speech enhancement systems. This
chapter introduces a novel modeling approach, which is based on generalized au-
toregressive conditional heteroscedasticity (GARCH). GARCH is widely-used for
volatility modeling of financial time-series such as exchange rates and stock returns.
GARCH models take into account the heavy tailed distribution and volatility clus-
tering characteristics of financial time-series. Spectral analysis shows that speech
signals in the STFT domain are also characterized by heavy tailed distributions
and volatility clustering. We demonstrate the application of GARCH modeling to
speech enhancement, and show its advantage compared to using the conventional
decision-directed method.

5.1 Introduction

Speech modeling in the short-time Fourier transform (STFT) domain un-
derlies the design of many speech enhancement systems [1]. Ephraim and
Malah [2] proposed to model the individual STFT expansion coefficients of
the speech signal as zero-mean statistically independent Gaussian random
variables. This model is motivated by the central limit theorem, as each ex-
pansion coefficient is a weighted sum of random variables resulting from the
random sequence of speech samples. It facilitates a mathematically tractable
design of useful speech enhancement algorithms in the STFT domain, e.g.
[2-8]. However, the Gaussian approximation can be very inaccurate in the
tail regions of the probability density function [9-12]. Therefore, Martin [10]
proposed to model the real and imaginary parts of the expansion coeflicients
as either Gamma or Laplacian random variables. He showed that a minimum
mean-squared error (MMSE) estimator under a Gamma model yields higher
improvement in the segmental signal-to-noise ratio (SNR) than an MMSE
estimator under a Gaussian model. Furthermore, MMSE estimators under
Laplacian speech modeling have similar properties to those estimators derived
under Gamma modeling, but are easier to compute and implement [13].
Lotter et al. [7] proposed a parametric probability density function (pdf)
for the magnitude of the expansion coeflicients, which approximates, with a
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proper choice of the parameters, the Gamma and Laplacian densities. They
derived a maximum a-posteriori (MAP) estimator for the speech spectral
amplitude, and showed that under Laplacian speech modeling the MAP esti-
mator demonstrates improved noise reduction compared with the short-term
spectral amplitude (STSA) estimator of Ephraim-Malah.

The variances of the speech spectral coefficients are generally referred to
as the model parameters, which have to be estimated from the noisy observed
signal. Ephraim and Malah [2], [14] proposed three different methods for the
variance estimation:

1. Maximum-likelihood estimation.
This method relies on the assumption that the variances are slowly time-
varying parameters. It results in musical residual noise, which is annoying
and disturbing to the perception of the enhanced signal.

2. Decision-directed estimation.
This method is particularly useful when combined with the MMSE spec-
tral, or log-spectral, magnitude estimators [2], [3], [15]. It results in per-
ceptually colorless residual noise, but is heuristically motivated and its
theoretical performance is unknown due to its highly nonlinear nature.

3. Maximum a-posteriori estimation.
This method relies on a first-order Markov model for generating a se-
quence of speech spectral variances. It involves a set of nonlinear equa-
tions, which are solved recursively by using the Viterbi algorithm. The
computational complexity of the MAP estimator is relatively high, while
it does not provide a significant improvement in the enhanced speech
quality over the decision-directed estimator [14].

Consequently, the decision-directed approach has become the most accept-
able estimation method for the variances of the speech spectral coefficients.
However, the parameters of the decision-directed estimator have to be de-
termined by simulations and subjective listening tests for each particular
setup of time-frequency transformation and speech enhancement algorithm.
Furthermore, since the decision-directed approach is not supported by a sta-
tistical model, the parameters are not adapted to the speech components,
but are set to specific values in advance. Ephraim and Malah recognized the
limits of their variance estimation methods, and concluded that better speech
enhancement performance may be obtained if the variance estimation could
be improved [2], [14].

Statistical models based on hidden Markov processes (HMPs) try to cir-
cumvent the assumption of specific distributions [16], [17]. The probability
distributions of the speech and noise processes are estimated from long train-
ing sequences of the speech and noise samples, and then used jointly with
a given fidelity criterion to derive an estimator for the speech signal. Unfor-
tunately, the HMP-based speech enhancement relies on the type of training
data [18]. It works best with the trained type of noise, but often worse with
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Table 5.1 Speech enhancement algorithms.

Algorithm Variance Fidelity
# Estimation Criterion
1 GARCH MMSE
2 Decision-Directed ~ MMSE
3 GARCH MMSE-LSA
4 Decision-Directed MMSE-LSA

other type of noise. Furthermore, improved performance generally entails
more complex models and higher computational requirements.

This chapter introduces a novel modeling approach for speech signals in
the STFT domain [19]. The approach is based on generalized autoregres-
sive conditional heteroscedasticity (GARCH) modeling, which is widely-used
for modeling the volatility of financial time-series such as exchange rates
and stock returns [20], [21]. We consider four different speech enhancement
algorithms, as summarized in Table 5.1. The spectral variance is estimated
based on either the proposed GARCH model or the decision-directed method
of Ephraim and Malah [2], while the fidelity criterion is either MMSE of
the STFT coefficients or MMSE of the log-spectral amplitude (LSA). We
show that estimating the variance by using the GARCH modeling method
yields lower log-spectral distortion (LSD) and higher perceptual evaluation
of speech quality (PESQ) scores (ITU-T P.862) than by using the decision-
directed method. Speech spectrograms and informal listening tests confirm
that the quality of the enhanced speech obtained by using the GARCH mod-
eling method is better than that obtainable by using the decision-directed
method.

The chapter is organized as follows. In Section 5.2, we formulate the prob-
lems and objectives. In Section 5.3, we investigate the time-frequency corre-
lation of spectral coefficients. In Section 5.4, we introduce the GARCH model
in the STFT domain. In Section 5.5, we address the model estimation prob-
lem. Finally, in Section 5.6, we evaluate the performances of MMSE spectral
and MMSE-LSA estimators and compare the GARCH modeling method to
the decision-directed method.

5.2 Problem Formulation

Let  and d denote speech and uncorrelated additive noise signals, and let
y = x + d represent the observed signal. Applying the STFT to the observed
signal, we have in the time-frequency domain

Yir = Xo + Dy, (5.1)

where ¢ is the time frame index (¢ = 0,1,...) and k is the frequency-bin
index (k =0,1,..., K —1). The spectral enhancement problem is generally
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formulated as deriving an estimator X, for the speech spectral coefficients,
such that the expected value of a certain distortion measure is minimized.

Let d (th, th) denote a distortion measure between Xy, and its estimate
th, and let 1); represents the information set that can be employed for the
estimation at frame ¢ (e.g., the noisy data observed through time ¢). Let H(’;k

and H?* denote, respectively, hypotheses of signal absence and presence in
the noisy spectral coefficient Yy, let py, = P (ka | wt) denote an estimate for

the signal presence probability, and let Ay, = E {|th|2 | Hk, z/;t} denote an
estimate for the variance of a speech spectral coefficient Xy, under Hi*. Then,
we consider an estimator for X;; which minimizes the expected distortion
given pe, 5% and the noisy spectral coefficient Yi:

I)I(lilE {d (th,th) ‘ﬁtk ik s Yir } . (5.2)

In particular, restricting ourselves to a squared error distortion measure of
the form

d (th,th) = lg(th) - Q(th)

where g(X) and §(X) are specific functions of X (e.g., X, | X, log|X], el4X),
the estimator Xy, is calculated from

Q(th) =FE {Q(th) ’ﬁtk Ak s Vi } (5.4)
— b B {G(X0r) | HI* ok, Yo b+ (1= o) B {5(Xar) | HE®, Yir )

The design of a particular estimator for X;; requires the following speci-
fications:

‘2 : (5.3)

e Functions ¢g(X) and g(X), which determine the fidelity criterion of the
estimator.

e A conditional pdf p ( Xy | Mk, Hi¥) for Xy, under H{* given its variance
Ak, Which determine§\the statistical model.

e Estimators Ay and Ufk for the speech and noise spectral variances, re-
spectively.

e An estimator gz = P (H{" |4}) for the a priori signal presence proba-
bility, where ] = 1); \ Yy represents the information set known prior to
having the measurement Y.

In this chapter, we consider MMSE-spectral and MMSE-LSA fidelity criteria
under a Gaussian model, while the speech spectral variance is estimated
based on either GARCH modeling or the decision-directed method. Given an
estimate gy for the a priori signal presence probability, the (a posteriori)
signal presence probability can be obtained from Bayes’ rule:

Gee P (Yu | HI®, 4))

— . 5.5
Gon P (Vo | H5, 00) + (1— ) P (Yo | HEF, 1) (5:5)

Dtk
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However, to simplify the comparisons between the speech enhancement al-
gorithms, we focus on implementations that assume speech presence (i.e.,
i = 1) whenever 20 logyo |X¢| > €, where e = max {20 log; | X+x|} — 50

confines the dynamic range of the log-spectrum to 50 dB. In the other time-
frequency bins, py is set to zero. Furthermore, we assume knowledge of the
noise variance o3, = E {|Dy|?}, which in practice can be estimated by using
the minima controlled recursive averaging approach [22]. Our objectives are
as follows:

e Analyze the time-frequency correlation of speech and noise signals in the
STFT domain.

e Formulate a statistical model for speech signals in the STFT domain,
which takes into consideration the time-frequency correlation and heavy-
tailed distribution of the expansion coefficients.

e Evaluate the performances of MMSE-spectral and MMSE-LSA estima-
tors under a Gaussian model, while estimating the speech spectral vari-
ance by using the proposed modeling or the decision-directed method.

5.3 Spectral Analysis

To see graphically the relation between successive spectral components of a
speech signal, in comparison with a noise signal, we have investigated the
sample autocorrelation coefficient sequences (ACSs) of the STFT coefficients
along time-trajectories (the frequency-bin index k is held fixed) [23]. We con-
sider a speech signal that is constructed from six different utterances without
intervening pauses, and present scatter plots for successive spectral magni-
tudes [23]. The utterances, half from male speakers and half from female
speakers, are taken from the TIMIT database [24]. The speech signal is sam-
pled at 16 kHz, and transformed into the STFT domain using Hamming
analysis windows of N = 512 samples (32 ms) length, and M = 256 samples
framing step (50% overlap between successive frames).

Figure 5.1 shows an example of scatter plots for successive spectral magni-
tudes of white Gaussian noise (WGN) and speech signals. It implies that 50%
overlap between successive frames does not yield a significant correlation be-
tween the spectral magnitudes of the WGN signal. However, successive spec-
tral magnitudes of the speech signal are highly correlated. Figure 5.2 shows
the ACSs of the speech spectral components along time-trajectories, for vari-
ous frequency-bins and framing steps. The 95 percent confidence limits (e.g.,
[25]) are depicted as horizontal dotted lines. In order to prevent an upward
bias of the autocovariance estimates due to irrelevant (non-speech) spectral
components, the ACSs are computed from spectral components whose mag-
nitudes are within 30 dB of the maximal magnitude. Specifically, the sample
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Fig. 5.1. Scatter plots for successive spectral magnitudes of (a) a white Gaussian
noise signal, and (b) a speech signal at center frequency 500 Hz (k = 17). The

overlap between successive frames is 50%.
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Fig. 5.2. Sample autocorrelation coefficient sequences (ACSs) of clean speech
STFT coefficients along time-trajectories, for various frequency-bins and framing
steps. The dotted lines represents 95 percent confidence limits. (a) ACS of the spec-
tral magnitude at frequency-bin k = 17 (center frequency 500 Hz), framing step
M = N/2 (50% overlap between frames). (b) ACS of the spectral phase, k = 17,
M = N/2. (c) ACS of the spectral magnitude, k = 65 (center frequency 2 kHz),
M = N/2. (d) ACS of the spectral magnitude, k = 17, M = N/4 (75% overlap
between frames).

autocorrelation coefficients of the spectral magnitudes are calculated by [23]

— ZteT [Atk - Ak] [Ater,k - /Ik]
Sier [ — A’

Pm R (5.6)
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Fig. 5.3. Variation of the correlation coefficient between successive spectral magni-
tudes. (a) Typical variation of p1 on frequency for a speech signal and 50% overlap
between frames. (b) Typical variation of p1 on overlap between frames for a speech
signal at center frequencies 1 kHz (solid line) and 2 kHz (dashed line), and for a
realization of white Gaussian noise (dotted line).

where A;, = | X;;| denotes the magnitude of Xy, m is the lag in frames, Ay
is the sample mean given by

_ 1
A = W;Atkv

and 7 represents the set of relevant spectral components
T = {t ‘ Ay > 10730/20 mtaX{Atk}} .

The corresponding sample autocorrelation coefficients of the spectral phases
are obtained by

. Zte'f Ptk Pt+m,k
= 2
dteT Pik

Om , (5.7)

where @y denotes the phase of X;. Figure 5.3 shows the variation of the cor-
relation between successive spectral magnitudes on frequency and on overlap
between successive frames. Figures 5.2 and 5.3 demonstrate that for speech
signals, successive spectral magnitudes are highly correlated, while the corre-
lation is generally larger at lower frequencies, and it increases as the overlap
between successive frames increases. As a comparison, the variation of p;
on the overlap between frames is shown also for a realization of WGN (see
Figure 5.3(b), dotted line). It implies that for a sufficiently large framing
step (M > N/2, i.e., overlap between frames < 50%), successive spectral
components of the noise signal can be assumed uncorrelated.

In view of the above discussion, we may conclude that speech signals in
the STFT domain are characterized by volatility clustering. When observing
a time series of successive expansion coefficients in a fixed frequency bin, suc-
cessive magnitudes of the expansion coefficients are highly correlated, whereas
successive phases are nearly uncorrelated. Hence, the expansion coeflicients
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are clustered in the sense that large magnitudes tend to follow large magni-
tudes and small magnitudes tend to follow small magnitudes, while the phase
is unpredictable. Therefore, modeling the time-trajectories of the expansion
coefficients as GARCH processes offers a reasonable model on which to base
the variance estimation, while taking into consideration the heavy-tailed dis-
tribution [19].

5.4  Statistical Model for Speech Signals

The variances of the speech coefficients are hidden from direct observation, in
the sense that even under perfect conditions of zero noise (Dy, = 0 for all tk),
the values of { Ay} are not directly observable. Therefore, our approach is to
assume that {A\;} themselves are random variables, and to introduce condi-
tional variances which are estimated from the available information (e.g., the
clean spectral coefficients through frame ¢ — 1, or the noisy spectral coeffi-
cients through frame t) [19]. Let X] = {Xy |t =0,...,7, k=0,..., K — 1}
represent the set of clean speech spectral coefficients up to frame 7, and let
Mkr = E{|Xuw|? | H*, X} denote the conditional variance of Xy, under
Htk given the clean spectral coefficients up to frame 7. Then, our statistical
model in the STFT domain relies on the following set of assumptions [19]:

1. Given {\} and the state of speech presence in each time-frequency bin
(Hik or HEF), the speech spectral coefficients { X1} are generated by

Xk = vV Ak Vi, (5.8)

where { Vi, | Hi"} are identically zero, and {Vj;, | H{*} are statistically in-
dependent complex random variables with zero mean, unit variance, and
independent and identically distributed (iid) real and imaginary parts:

) 0, (). "

HO : ‘/tk = 0

2. Let Vg = R{Vir} and Vi = S{Vir} denote, respectively, the real
and imaginary parts of Vi. Let p (Ve | HF) denote the pdf of Vi
(p € {R,I}) under H{*. Then,

1
p (Vo | H*) = = OXP (=Vo) - (5.10)

vz

3. The conditional variance Ay ;—1, referred to as the one-frame-ahead con-
ditional variance, is a random process which evolves as a GARCH(1,1)
process:

Aekft—1 = Amin + 1 X162+ 8 (N—15)t—2 — Amin) » (5.11)
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where
Amin >0, >0, 6>20, pu+d<l1, (5.12)

are the standard constraints imposed on the parameters of the GARCH
model [21]. The parameters p and ¢ are, respectively, the moving average
and autoregressive parameters of the GARCH(1,1) model, and A\, is a
lower bound on the variance of X;; under H{k .

4. The noise spectral coefficients { Dy} are zero-mean statistically indepen-
dent Gaussian random variables. The real and imaginary parts of Dy, are

2
iid random variables ~ A/ (O, %“)
The first assumption implies that the speech spectral coeflicients
{th |H{k} are conditionally zero-mean statistically independent random
variables given their variances {A\y}. The real and imaginary parts of X
under H! are conditionally iid random variables given A, satisfying

Xptk

1
Kotk | Mk, HIY) = —— (V
p( ptk}| tk 1 ) \/)\—tkp ptk \/m

H{’“) ., p€{R,I}. (5.13)

5.5 Model Estimation

The maximum-likelihood (ML) estimation approach is commonly used for es-
timating the parameters of a GARCH model [20]. In this section, we present
the ML function of the model parameters, by using the spectral coefficients
of the clean speech signal on some interval ¢ € [0, 7] [19]. For simplicity, we
assume that the parameters are constant during the above interval and are
independent of the frequency-bin index k. As noted in [19], the speech signal
can be divided in practice into short time segments and split in frequency
into narrow subbands, such that the parameters can be assumed to be con-
stant in each time-frequency region. Furthermore, we generally do not have
a direct access to the clean spectral coefficients. However, the expectation-
maximization (EM) algorithm [26], [27] can be utilized for solving this prob-
lem by iteratively estimating the clean spectral coefficients and the model
parameters from the noisy measurements.

Let X7 denote the set of clean speech spectral coefficients employed for
the model estimation, let H; denote the set of time-frequency bins where
the signal is present, and let ¢ = [,u § )\min] denote the vector of unknown
parameters. Then, the conditional variance Aj;—1 can recursively be calcu-
lated from past spectral coefficients X%~ by using (5.11) and the parameter
vector ¢. Hence, the logarithm of the conditional density of Xy given the
clean spectral coefficients up to frame ¢t — 1 can be expressed as [19]

| Xk |

log p (th lXé_l ;45) = _>\tk|t71

—log Agj¢—1 — log T, (5.14)
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where tk € H;. For sufficiently large sample size, the spectral coefficients of
the first frame make a negligible contribution to the total likelihood. There-
fore, the values of Ao p|—1 in the first frame can be initialized to their minimal
value Apin, and the log-likelihood can be maximized when conditioned on the
first frame. The log-likelihood conditional on the spectral coefficients of the
first frame is given by

Lp)= > logp(Xuy |H" X7 9) . (5.15)

tkeH, Nte[1,T]

Substituting (5.14) into (5.15) and imposing the constraints in (5.12) on
the estimated parameters, the maximum-likelihood estimates of the model
parameters can be obtained by solving the following constrained nonlinear
minimization problem [19]:

X 2
minimize 3 ["“' 108 e | (5.16)
Amin, 16041 cay e, BRI
subject to
Amin >0, 2>0,6>0, p+0<1. (5.17)

For given numerical values of the parameters, the sequences of conditional
variances {)\tk|t_1} can be calculated from (5.11) and used to evaluate the
series in (5.16). The result can then be minimized numerically by using the
Berndt, Hall, Hall, and Hausman [28] algorithm as in Bollerslev [29].

5.6 Experimental Results

In this section, we demonstrate the performances of MMSE spectral and LSA
estimators (see Appendices), while the speech variance is estimated by using
either the GARCH modeling or the decision-directed method. The evaluation
includes two objective quality measures, and informal listening tests. The first
quality measure is log-spectral distortion, in dB, which is defined by

1 N 22
— ¥ (20 log1o | Xen| — 20 logy, |th\) , (5.18)

LSD =
[H1] theH,

where H; = {tk |20 log,, | Xtx| > €} denotes the set of time-frequency bins
which contain the speech signal, |H;| denotes its cardinality, and ¢ =
max {20 log;, | Xtx|} — 50 confines the dynamic range of the log-spectrum

to 50 dB. The second quality measure is the PESQ score (ITU-T P.862).
The speech signals used in our evaluation are taken from the TIMIT

database [24]. They include 20 different utterances from 20 different speak-

ers, half male and half female. The speech signals are sampled at 16 kHz
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and degraded by white Gaussian noise with SNRs in the range [0,20] dB.
The noisy signals are transformed into the STFT domain using half over-
lapping Hamming analysis windows of 32 milliseconds length. The GARCH
model (i.e., the parameters p, ¢ and Ani,) is estimated independently for
each speaker from the clean signal of that speaker, as described in Section
5.5. The variance of an expansion coefficient is recursively estimated by iter-
ating propagation and update steps following the rational of Kalman filtering
as described in [30]. Four different speech enhancement algorithms are then
applied to each noisy speech signal, as summarized in Table 5.1. The speech
variance is estimated by using either the GARCH modeling method or the
decision-directed method, and the fidelity criterion is either MMSE of the
spectral coefficients or MMSE of the log-spectral amplitude. The decision-
directed estimate of the speech variance is given by [2], [15]

ARP = max {a [ K1 ul? + (1= 0) (Vik2 = 03)  Ganodi} . (5:19)

where o (0 < o < 1) is a weighting factor that controls the trade-off between
noise reduction and transient distortion introduced into the signal, and &y
is a lower bound on the a priori SNR. These parameters are set to the values
Emin = —15 dB and « = 0.98 as specified in [2], [3], [15]. The noise spectral
variance ofk is estimated by averaging over time the spectral power values of
the noise signal itself. Speech presence is determined (i.e., Py, = 1) whenever
20 log;o | Xtx| > €. The attenuation factor G, during speech absence is —20
dB.

Table 5.2 shows the results of the LSD obtained by using the different al-
gorithms for various SNR levels. The results of the PESQ scores are presented
in Table 5.3. The results show that the MMSE-LSA estimator yields lower
LSD and higher PESQ scores than the MMSE spectral estimator, whether the
variance is estimated by using the GARCH modeling method or the decision-
directed method. Furthermore, speech variance estimation based on GARCH
modeling yields lower LSD and higher PESQ scores than those obtained by
using the decision-directed method, whether the fidelity criterion is MMSE
of the spectral coefficients or MMSE-LSA.

A subjective study of speech spectrograms and informal listening tests
confirm that the quality of the enhanced speech obtained by using the
GARCH modeling method is significantly better than that obtainable by
using the decision-directed method. Figure 5.4 demonstrates the spectro-
grams and waveforms of a clean signal, noisy signal (SNR = 5 dB) and
enhanced speech signals obtained by using the GARCH modeling and the
decision-directed methods. It shows that weak speech components and un-
voiced sounds are significantly more emphasized in the signal enhanced by
using the GARCH modeling method than in the signal enhanced by using
the decision-directed method.



Table 5.2 Log-spectral distortion obtained by using different variance esti-
mation methods (GARCH modeling method vs. decision-directed method)
and fidelity criteria (MMSE vs. MMSE-LSA).

Input SNR|GARCH modeling method |Decision-Directed method
[dB] MMSE MMSE-LSA MMSE MMSE-LSA
0 7.7 4.85 18.89 11.35
5 5.78 4.04 17.29 11.03
10 4.14 3.27 13.87 9.13
15 2.50 2.25 9.19 6.05
20 1.30 1.28 4.88 3.13

Table 5.3 PESQ scores obtained by using different variance estimation meth-
ods (GARCH modeling method vs. decision-directed method) and fidelity
criteria (MMSE vs. MMSE-LSA).

Input SNR|GARCH modeling method|Decision-Directed method
[dB] |MMSE  MMSE-LSA |MMSE MMSE-LSA
0 2.52 2.55 1.91 2.21
5 2.97 2.98 2.30 2.61
10 3.37 3.38 2.70 2.99
15 3.67 3.69 3.09 3.31
20 3.88 3.89 3.53 3.64

5.7 Conclusions

In this chapter, we described a GARCH modeling approach for speech sig-
nals in the STFT domain. We assumed that the conditional variances of the
STFT expansion coefficients are random variables, and that the one-frame-
ahead conditional variance evolves as a GARCH(1, 1) process. We compared
the performances of MMSE spectral and MMSE-LSA estimators, while the
variance estimation is based on either the GARCH modeling approach or the
decision-directed method of Ephraim and Malah. We showed that the MMSE-
LSA estimator yields lower log-spectral distortion and higher PESQ scores
than the MMSE spectral estimator, whether the variance is estimated by
using the GARCH modeling method or the decision-directed method. How-
ever, speech variance estimation based on GARCH modeling yields lower LSD
and higher PESQ scores than those obtained by using the decision-directed
method, whether the fidelity criterion is MMSE of the spectral coefficients or
MMSE-LSA.

Appendix A: MMSE Spectral Estimation

An MMSE estimator for X;; is obtained by using the functions

N _ | X, under H¥
g(th) - tha g(th) - {Gmin Y;fka under Hék ’ (52())
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Fig. 5.4. Speech spectrograms and waveforms. (a) Original clean speech signal:
“Now forget all this other.” (b) Noisy signal (SNR = 5 dB, LSD = 13.75 dB,
PESQ= 1.76). (c) Speech reconstructed by using the decision-directed method and
MMSE-LSA estimator (LSD = 9.00 dB, PESQ = 2.57). (d) Speech reconstructed
by using the GARCH modeling method and MMSE-LSA estimator (LSD = 3.59
dB, PESQ = 2.88).

where Gin < 1 represents a constant attenuation factor. Substituting (5.20)
into (5.5), we have

Xo = Pe {GMSE (étk|t7 ’YRtk) Yrir + J Guse (étk\h 'Yltk) YItk]
+(1 _ﬁtk)Gmin 1/tk ’ (521)
where étk‘t = j\tk‘t/ofk is an estimate for the a priori SNR, and Gusg (€, v,)
(p € {R, I'}) represents the MMSE spectral gain function under H;. The spe-

cific expression for Gusg (€, ,) depends on the particular statistical model.
For a Gaussian model, the gain function is the Wiener filter given by [31]

Gusk (§) = 1i£ : (5.22)

When the signal is surely absent (i.e., when py, = 0), the resulting estimator
Xy reduces to a constant attenuation of Yy (i.e., Xt = Gmin Yi). This
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retains the noise naturalness, and is closely related to the “spectral floor”
proposed by Berouti et al. [32].

Appendix B: MMSE Log-Spectral Amplitude
Estimation

In speech enhancement applications, estimators which minimize the mean-
squared error of the log-spectral amplitude have been found advantageous to
MMSE spectral estimators [2], [3], [9]. An MMSE-LSA estimator is obtained
by substituting into (5.5) the functions

5 5 . log | X!, under H
9(Xur) = log | Xl , g(X““):{loéthkanlYm) underH%k' (5.23)

Combing the resulting amplitude estimate with the phase of the noisy spectral
coefficient Yy yields

N A Dtk .
X = [GLSA(ftk\t,%k)] Goil™ Yir, (5.24)

where Y = Yrir + Ytk denotes a posteriori SNR,

Gron (€ 7) 2 £ o (% /19 %dw) (5.25)

represents the LSA gain function under H}* which was derived by Ephraim
and Malah [3], and ¥ is defined by ¥ £ % Similar to the MMSE spectral
estimator, the MMSE-LSA estimator reduces to a constant attenuation of Yy,
when the signal is surely absent (i.e., pip = 0 implies Xt = Guin Yk ). How-
ever, for a fixed value of the a priori SNR, the LSA gain is a monotonically
decreasing function of . This behavior of G sa (&, 7v) is related to the useful
mechanism that counters the musical noise phenomenon [15]. Local bursts of
the a posteriori SNR, during noise-only frames, are “pulled down” to the av-
erage noise level, thus avoiding local buildup of noise whenever it exceeds its
average characteristics. As a result, the MMSE-LSA estimator generally pro-
duces lower levels of residual musical noise, when compared with the MMSE
spectral estimator.
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Acronyms
ACS autocorrelation coefficient sequence
EM expectation-maximization

GARCH generalized autoregressive conditional heteroscedasticity
HMP  hidden Markov process

iid

independent and identically distributed

LSA log-spectral amplitude

LSD log-spectral distortion

MAP  maximum a posteriori

ML maximum-likelihood

MMSE minimum mean-squared error

MSE mean-squared error

PESQ perceptual evaluation of speech quality

pdf

probability density function

SNR signal-to-noise ratio

STFT  short-time Fourier transform
STSA  short-term spectral amplitude
WGN  white Gaussian noise
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Abstract. A noise suppression algorithm with high speech quality based on
weighted noise estimation is presented. This algorithm continuously updates the
estimated noise by weighted noisy speech in accordance with an estimated SNR.
With a better noise estimate, a more correct SNR is obtained, resulting in the
enhanced speech with low distortion. Subjective evaluation results show that five-
grade mean opinion scores of this algorithm with a speech codec is improved by as
much as 0.35, compared with either the MMSE-STSA or the EVRC noise suppres-
sion algorithm. A noise suppressor based on a later version of this noise suppression
algorithm satisfies all the 3GPP minimum performance requirements. It is employed
in the world’s first 3G handset equipped with a 3GPP-endorsed noise suppressor.

6.1 Introduction

Applications of speech coding and speech recognition have been widespread-
ing these days. Among these are cellular phones and car navigation systems,
to name a few. One of the challenges in those applications is that they are
often used in noisy environment such as in a car, on a street, at a station, or
in an office. The quality of the speech conveyed to the other party or that of
the voice to be recognized is seriously degraded, resulting in uncomfortable
communication or a lower recognition rate. This is because speech coding and
speech recognition have assumed noise-free environment in their development.
A remedy for these problems is a noise canceler or a noise suppressor.

A wvariety of noise cancellation or noise suppression algorithms can
be found in the literature [1]-[15]. Noise suppressors or cancelers can be
categorized into two groups; single-microphone noise suppressors [1]-[7]
and multiple-microphone noise cancelers [8]-[15]. In relatively high SNR
(signal-to-noise ratio) environments, single-microphone solutions are com-
mon. Single-microphone noise suppression algorithms include those based on
STSA (short time spectral amplitude) analysis [1]-[6]. STSA based algorithms
extract the spectral amplitude of the clean speech from that of the noisy
speech, i.e. the desired speech contaminated by noise. The phase information
is kept unaltered.
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STSA is most widely used for its computational advantage. Most of the
noise suppression algorithms which have been evaluated in combination with
a codec (coder and decoder) through subjective assessments can be catego-
rized as an STSA [6,16-18]. Subjective assessment of the enhanced speech
quality is a must from a viewpoint of recent international standards. Actu-
ally, 3GPP (the third generation partnership project), which standardizes
the next generation cellular phone system, has determined the procedure for
subjective evaluation of a noise suppression system [20]. Therefore, STSA is
one of the most reliable noise suppression algorithms, which has shown its
superiority by subjective assessment. Among others, MMSE (minimum mean
square error)-STSA proposed by Ephraim and Malah [4] is a promising STSA
based algorithm. It minimizes the mean squared error of the estimated short
time spectral amplitude. It is reported that MMSE-STSA can provide good
noise suppression without unpleasant residual noise called “musical noise”
[21,22].

Studies of MMSE-STSA have been focused on the spectral gain, which de-
termines the degree of noise suppression. Though noise estimation is directly
related to the SNR used for spectral gain calculation, it has been almost un-
touched. Actually, the noise estimation in the original MMSE-STSA is carried
out during nonspeech periods. The estimated noise may be incorrect during
voiced periods, especially for nonstationary noise, leading to degraded speech
quality. Specifically, overestimation of the noise may lead to fatal distortion
in the enhanced speech. This is because overestimation of the noise is equiv-
alent to underestimation of the SNR, which causes oversuppression of the
noise.

Another STSA-based popular algorithm is the one employed for EVRC
(enhanced variable rate codec) [16] which is the North American CDMA dig-
ital cellular phone standard [23]. This is the most successful algorithm which
is commercially available. Its quality has been proven to be good through
commercial products. Nevertheless, the quality may not be sufficiently good
for a wide range of SNRs which were not given much attention to when it
was standardized.

This chapter presents a noise suppression algorithm with good speech
quality for a wide range of SNRs. This algorithm continuously estimates
the noise with a noisy speech weighted by an estimated SNR. This makes
more accurate SNR estimate available for gain calculation, resulting in good
speech quality and sufficient noise suppression simultaneously. The spectral
gain is modified so that the improved noise estimation can be utilized more
effectively. In the next section, the original MMSE-STSA is reviewed with its
drawback. Section 6.3 is devoted to a new algorithm based on the new noise
estimate and a modified spectral gain. Finally, in Section 6.4, listening test
results are presented and analyzed to show the superiority of the new noise
suppression algorithm.
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Fig. 6.1. Structure of the conventional noise suppression (MMSE-STSA).

6.2 Conventional Noise Suppression Algorithm

6.2.1 MMSE-STSA

Figure 6.1 shows the structure of the original MMSE-STSA [5]. It mainly
consists of six functions; short-time Fourier analysis, noise estimation, a pos-
teriori and a priori SNR estimation, spectral gain calculation and short-time
synthesis. Short-time Fourier analysis computes a discrete Fourier transform
of the noisy speech to obtain its spectral amplitude and phase. The amplitude
of the noisy speech is multiplied by a spectral gain to make the amplitude
of the enhanced speech. Short-time synthesis computes the inverse discrete
Fourier transform of the enhanced speech amplitude multiplied by the phase
of the noisy speech. After overlap-add processing of the inverse transform,
an enhanced speech is obtained in the time domain. The spectral gain is
calculated with an estimated a priori and a posteriori SNR. These SNR es-
timates are obtained based on the estimated noise power spectrum which is
calculated from the spectral amplitude of the noisy speech during nonspeech
periods.

Assuming that the clean speech s(t) is degraded by an additive noise d(t),
the noisy speech x(t) is given by

2(t) = s(t) + d(t), (6.1)

where ¢ is the time index. The noisy speech x(t) is segmented into frames of
M samples. An analysis window h(t) of a size 2M with a 50 % overlap is
applied to the segmented noisy speech () in frame n to obtain a windowed
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noisy speech Z,(t) with 2M samples as follows:

[ h)zaa(t), 1<t<M
Znt) = {h(t)mn(tl— M), M <t<2M " (6.2)

Let X,, (k) denote a discrete Fourier transform of Z,,(t), where n and k refer to
the analysis frame and the frequency bin index. Noise suppression is applied
only to the spectral amplitude | X, (k)| of the noisy speech in each frequency
bin. The phase ZX,, (k) of the noisy speech is kept unaltered to be used for
the enhanced speech since the phase is not important for speech intelligibility
and quality [2].

Based on | X,, (k)| and estimated noise power spectrum A, (k), the a priori
SNR &, (k) and the a posteriori SNR 7, (k) are calculated by

_ X k)
E{|S,(k)|?
ety = ELS08) 0

where S, (k) and D, (k) are the discrete Fourier transform of s(t) and d(¢),
respectively. E{-} stands for the expectation operator. Because E{|D,,(k)|*}
is not available, its estimate A, (k) is substituted to approximate =, (k) by
An (k) as

| X (k)2

An (k) = ) (6.5)

An(k) is obtained! by averaging the power spectrum of the noisy speech in the
first nonspeech section?. With this 4, (k) and 4,,_1 (k) in the previous frame,

the a priori SNR &, (k) is approximated by én(k:) calculated in a decision-
directed approach by

&n(k) = a1 (K)GR_1 (k) + (1 = ) P[a (k) — 1] (6:6)
PJz] is a rectifying function and « is a forgetting factor satisfying 0 < o < 1.

The spectral gain Gy, (k) is calculated with the estimated a priori and a
posteriori SNRs by

Go(k) = [(1 + v (k) o (%T(k)) +on(k)hy <vn7(k)>}

Ay (k) up (k) v (k)
T A (k) 29m(k) P <T> ’

(6.7)

! The exact noise estimation method is not disclosed in [4].
2 It is generally assumed that the beginning of the noisy speech contains no speech
components [33].
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where Iy(z) and I;(z) denote the modified Bessel functions of zero-th and
first order [24], respectively. v, (k) and A, (k) are defined by

k) = 30 ), (63
1 —q exp(va(k))
An(k) = PR A (6.9)
where
(k) = ﬁ"ﬁ? (6.10)

q is the probability of speech absence which is defined by the presence of
nonspeech components and insignificant speech in the noisy speech. It is of
interest to see that (6.7) is reduced to

_ Mu(k) (k)
S 14 Ap(k) L+ a(k)

G (k) (6.11)

for &,(k) > 1 [4].
The enhanced speech spectrum Y, (k) is constructed with ZX,, (k) and
Yo (k)| as

Yo (k) = |Ya(k)| - exp{j£Y,(k)}
= G ()| Xn (k)] - exp{jZXn(k)}, (6.12)

where j = /—1. After the inverse discrete Fourier transform of Y;,(k), which
is denoted by ¢, (t), is calculated, the enhanced speech y,,(t) is obtained by
performing the overlap-add processing as follows.

Yn(t) = Gno1(t+ M)+ gn(t), 1<t <M. (6.13)

6.2.2 Problem in Noise Estimation

The original MMSE-STSA estimates the noise power spectrum based on the
noisy speech only in the first nonspeech period where the pure noise is avail-
able. This means that, for a nonstationary noise, a change in noise charac-
teristics cannot be tracked and the enhanced speech quality becomes poor.

As a continuous noise estimation which has the tracking capability, a noise
estimation method based on minimum statistics [25]-[29] is widely used. This
is simple compared to [6] which requires VAD (voice activity detection). This
fact imposes additional constraints on computations, not to mention the tun-
ing difficulty of the VAD in low SNRs and computations for psychoacoustic
analysis [30] used in noise suppression of [6].
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The minimum statistics uses the minimum value of the smoothed noisy
speech power within a finite time-window length Lj;g as the estimated noise.
The estimated noise A, (k) in the n-th frame for k-th bin is obtained by

2

in ‘anl(k” ) (614)

)\n(k) = CMS : l:O}?..,IJMS

where min is a minimum-value operator. Cjss is a constant to compensate

for the bias of the minimum estimate. | X, (k)| denotes the smoothed noisy
speech power in the n-th frame given by

X (®)]” = B Xn 1 (k)] + (1= B)| Xn (k)% (6.15)

with a constant 5 (0 < 8 < 1).

Because of the statistical nature, a larger Lj;s provides more accurate
noise estimation for a stationary noise. However, the tracking capability for
a nonstationary noise is degraded. A short window, on the other hand, may
introduce overestimation® which results in poor speech quality for high SNRs,
although it achieves better tracking capability. As a result, there is a trade-
off in the selection of Lj;s. Therefore, it is not easy to select an appropriate
window length for good tracking capability without overestimation.

Overestimation may cause serious distortion in the enhanced speech. This
is because overestimation of the noise is equivalent to underestimation of the
a posteriori SNR based on the definition in (6.5). A low a posteriori SNR,
naturally leads to a small spectral gain as is seen from (6.5) through (6.10).
This fact agrees with a common intuition that a smaller spectral gain is
preferable for a lower SNR to achieve stronger suppression of the noise. It
should be noted that distortion by overestimation is more audible in speech
periods where the signal power should be larger and the SNR is generally high.
Equation (6.7) suggests this fact. A lower a posteriori SNR would result in a
lower a priori SNR, which leads to a smaller spectral gain than that for the
correct a posteriori SNR. Actually, from Fig. 4 of [4], it is seen that a 5 dB
overestimation in the instantaneous SNR, thus, the a posteriori SNR, at a 15
dB SNR would cause almost half as much the spectral gain calculated by (6.7)
as that obtained by correct estimation. It is straightforward to explain, for
a similar reason, that underestimation would cause insufficient suppression
of the noise, causing degraded quality of the enhanced speech. Correct noise
estimation is essential to good quality of the enhanced speech.

6.3 New Noise Suppression Algorithm

To achieve good tracking capability without overestimation for various non-
stationary noise sources, the new noise suppression algorithm employs a noise

3 A short window is defined by a small value of Lass and the probability that the
minimum value is encountered in the short window is naturally small.
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Fig. 6.2. Structure of the new noise suppression.

estimation with a weighting factor based on the estimated SNR. This esti-
mation is not based on a stochastic processing and thus, is free from an
appropriate choice of the window size. The weighting factor makes continu-
ous noise estimation possible without overestimation even in speech periods.
As a result, the weighted noise estimation tracks the change of the noise
characteristics in both speech and nonspeech periods. To obtain a suitable
spectral gain for the new noise estimation, the MMSE-STSA-original spectral
gain is modified in accordance with the SNR. Figure 6.2 shows the structure
of the new noise suppression.

6.3.1 Weighted Noise Estimation

The weighted noise estimation mainly consists of three steps; SNR estimation,
weighting factor calculation, and averaging. The noisy speech is weighted by
a weighting factor calculated based on the estimated SNR. The estimated
noise is obtained as an average of the weighted noisy speech.

In the first step, the estimated SNR 4, (k) is obtained from the power
spectrum |X,,(k)|? of the noisy speech in the n-th frame and the estimated
noise A,_1(k) in the previous frame as follows:

X

n (k) k)

(6.16)

In the second step, the weighting factor W,, (k) is calculated in accordance
with the estimated SNR 4, (k). A nonlinear function in Fig. 6.3 is used to
calculate W, (k), where 41,72, and 6 are constants. This nonlinear function
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Weighting
factor

0| & 5  SNR
Y1 0 Y2
Fig. 6.3. Nonlinear function for weighting factor.

is designed such that the weighting factor is almost inversely proportional to
the estimated SNR. Overestimation for high SNRs does not happen by ap-
propriately suppressing the contribution of the noisy speech to the estimate.

The weighted noisy speech z, (k) and its average A, (k), which is used as
the estimated noise, are given by

zn (k) = W (k)| X (F) %, (6.17)
An(k) = % (6.18)
where

[Z (k)a ?nfl(k)]a n S CTinit

Za(k) = { Lon(k), Zu 1 (F)], 30 (F) < 0 (6.19)
Z,—1(k), otherwise

Zo(k) = 01 (1, -1), (6.20)

Zn(k) =Z,(k) [I,-1 OfX(LZ_U}T- (6.21)

Equation (6.17) represents that the power spectrum of the noisy speech is
weighted by a factor W, (k) based on an estimated SNR as in Fig. 6.3.
U(Z,(k)) in (6.18) is the number of non-zero elements in Z,, (k) and trace{-}
is an operator to take the sum of its diagonal elements. Because Z (k) is a row
vector, trace{Z(k)} is simply a sum of its elements except zero-valued ones.
Therefore, (6.18) defines an averaging operation for non-zero values of z, (k).
Lz and I, ,_1 are the number of samples for the average and the identity ma-
trix of size Lz —1, respectively. Equation (6.19) means that Z,, (k) is updated
when the estimated SNR is lower than a threshold 0z, or the frame index
is smaller than or equal to Tj,;;- An inappropriate weighted noisy speech
sample by an unreliable SNR estimate is eliminated by 67 to obtain a better
value of A\, (k). Equations (6.20) and (6.21) are introduced to express the
initial status as it is clear by carefully following from (6.17) through (6.21).
Wy (k) =1 for 0 < n < Tjp; under the assumption that the speech does not
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start in the first Tj,;; frames. Noise estimation is performed independently
for each bin, enabling more precise results depending on the SNR at each
bin.

6.3.2 Spectral Gain Modification

The spectral gain is modified in two ways; conditional scaling and limitation.
Conditional scaling further suppresses the residual noise for high SNRs re-
sulting in clearer enhanced speech. The minimum value of the spectral gain
is limited with G fi00r so that excessive suppression, which causes speech dis-
tortion, can be avoided [19].

The original spectral gain G, (k) obtained by the MMSE-STSA is first
multiplied by a scaling factor G,,.q as follows:

_ { GmodGn(k), &n(k) <0
Cin (k) = {Gn(lj), otherwiseG ’ (6.22)

The scaling is performed only when the a priori SNR &, (k) is smaller than a
threshold 6. Gioq < 1 makes the value of G, (k) smaller to further suppress
the noise for low SNRs.

Following the limiting operation in (6.22), the spectral gain G,,(k) is mod-
ified so that its minimum value is larger than or equal to a flooring parameter
Gfloor as

Gn(k)a Gn(k) > Gfloor

G'floor, Otherwise (6.23)

Gt = {

Equation (6.23) helps eliminate undesirable oversuppression for a better qual-
ity of the enhanced speech.

6.3.3 Computational Requirements

The new noise suppression algorithm is computationally simple. Equation
(6.16) needs one division (DIV) since the power spectrum has been calcu-
lated already in another part. Equation (6.17) introduces one multiplication
(MPY) per bin. Expression (6.18) represents a moving average which can be
performed by two additions (ADD) per sample and a division. Expression
(6.19) consists of two comparisons (CMP) at the most followed by a pointer
modification and data storage (STR) in a memory. Storage of L, zeros, at the
most, is required by (6.21). For spectral gain modification, one comparison
and one multiplication in (6.22) and one comparison in (6.23) are needed. All
together, operations summarized in Table 6.1 are additionally required for
the new noise suppression compared to MMSE-STSA. Because these num-
bers are for a single bin, the total number should be obtained by multiplying
these numbers by M.
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Table 6.1 Additionally required computations per bin.
Operations MPY ADD DIV CMP STR

Noise Estimation 1 2 2 2 L.+1
Spectral Gain Modification| 1 0 0 2 0

6.4 Evaluation

The new noise suppression algorithm was compared with the conventional
noise suppression algorithms in terms of noise estimation accuracy and sub-
jective quality of the enhanced speech. Noise estimation accuracy shows the
pure contribution of the newly introduced weighted noise estimation. Subjec-
tive quality of the enhanced speech reflects the overall quality improvement as
a complete noise suppression system. Because a noise suppressor is often used
in combination with a codec, it is of great significance to show the combined
subjective quality. Following the global standard [20], the overall quality of
the noise suppressors were evaluated through subjective assessments?.

As one of the conventional noise suppression algorithms, MMSE-STSA
was evaluated to show the quality enhancement mainly by the new weighted
noise estimation. Instead of its original noise estimation, MMSE-STSA was
combined with the Minimum Statistics for fair comparison®.

As the other conventional algorithm, the most successful commercial al-
gorithm, namely, the noise suppression for EVRC (NS-EVRC)®, which is em-
ployed by cdmaOne [31], was used. Comparison with these algorithms helps
understand the position of the new noise suppressor in this chapter among
state-of-the-art algorithms.

Both speech and noise had been sampled at 8 kHz before they were dig-
itally mixed to generate the noisy speech. Four kinds of background noise
sources, namely, the babble, the street, the office, and the vehicle noise were
used. These noise sources cover all required kinds by 3GPP in the evaluation
of codecs and noise suppressors [20,33]. Hamming window was used as the
analysis window h(t). Other parameters are shown in Table 6.2.

4 This is a natural and realistic evaluation because nobody looks at the SNR when
the noise suppressor is in an actual use. The user cares for the subjective quality,
not the SNR.
The Minimum Statistics is employed in the algorithm proposed by Siemens, which
was tested in the 3GPP noise suppression evaluation [32]. This algorithm was
ranked close to the best in its ACR (absolute category rating) tests. Therefore,
MMSE-STSA combined with the minimum statistics is a good candidate for
comparison. None of the evaluated algorithms are disclosed in details, which
makes direct comparison impossible.
5 NS-EVRC is the basis for the algorithm proposed by Motorola, which was tested
in the 3GPP noise suppression evaluation [32]. This algorithm received the high-
est scores in its CCR (comparison category rating) tests.
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Table 6.2 Parameters for new noise suppression.

|Parameter| Value |

M 128
a 0.98
q 0.20
Lz 20
Y 0 dB
Y2 10 dB
0z 7 dB
Tinit 4 frames
O 10 dB
Gimod —1.0 dB
Grioor |—6.8dB

6.4.1 Objective Evaluation for Noise Estimation

Noise estimation accuracy was evaluated frame by frame based on the nor-
malized estimation error €, given by

Silo 1D (R - An<k>|> ,
il [ Dn (k)2

For the minimum statistics, Ly;s = 50 (i.e. 0.80 sec), 8 = 0.90 and Cyps =
1.5 were used as specified in [25]. The initial averaging method, which is
the original noise estimation used for the MMSE-STSA, estimates the noise

power spectrum in the initial 774 = 20 frames. This estimate A, (k) is defined
by

en = 10logy ( (6.24)

)‘n(k) =

{ | X (R, n<Trs (6.25)

ﬁ ZZI:A1 | X, (k)|?, otherwise -

Figures 6.5-6.8 show the normalized estimation error for the evaluated
noise estimation methods under a 5 dB SNR condition with the correspond-
ing clean speech in Fig. 6.4. The normalized estimation error of the initial
averaging method (Init. Ave.), the minimum statistics method (Min. Stat.),
and the new method (New) are shown by a dashed, a thin solid, and a thick
solid line, respectively.

In Figs. 6.5-6.8, the new noise estimation achieves the best accuracy
among the three. It is shown that the estimation error of the minimum statis-
tics generally becomes greater in the latter part of a speech period. This is
a consequence of a small value of Ly;g. In the latter part of a speech pe-
riod, overestimation occured for the reason described in Section 6.2.2. The
new noise estimation is clearly more accurate than the initial averaging in
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Fig. 6.9. Results of listening test without codec (babble and street Noise).

Fig. 6.5. while the overall difference is insignificant in Figs. 6.6—6.8. However,
instantaneous values still exhibit significant differences.

Although it was reported that the minimum statistics was superior to the
conventional methods [25], the results in this chapter are different. It is per-
haps caused by inappropriate parameter settings even though the employed
values were all from [25]. This may be considered as another proof for the
trade-off in the minimum statistics. Because its parameter optimization is
not in the scope of this chapter, further optimization is not provided.

6.4.2 Subjective Evaluation

Two listening tests with and without a speech codec were carried out by using
a five-grade mean opinion score (MOS) based on the absolute category rating
(ACR) [34]. Twelve listeners evaluated the enhanced speech obtained by noise
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suppressions under the test. Each listener scored between one and five, with
five being the best. In the test with a codec, the noise-suppressed speech was
encoded and decoded by the EVRC codec. Six clean speech signals by four
different speakers (2 males and 2 females) were used as the clean speech. A
noise was added to the clean speech with different SNRs (0, 5, 10 and 15 dB)
to produce noisy speech. Noisy speech degraded under 0, 6, 12, 18, 24 and
30 dB SNR conditions were also used as anchors.

Figures 6.9 and 6.10 show the listening test results without a speech codec
for babble, street, office, and vehicle noise. The corresponding results with a
speech codec are depicted in Figs. 6.11 and 6.12.

The scores of the anchors in both tests, which are not shown in Figs. 6.9
through 6.12, distributed in the range between 1.6 and 4.2 in proportion
to SNR. The mean values of the scores are represented with the height of
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Fig. 6.11. Result of listening test with codec (babble and street noise).

a vertical bar. The vertical line centered around a mean value is the 95%
confidence interval.

Scores of the new method are higher than those of the original MMSE-
STSA and the EVRC noise suppression in most conditions. Differences be-
tween the new algorithm and the other two are smaller with a codec than
without a codec. This is because speech distortion introduced by noise sup-
pression and residual noise are masked by the speech encoding/decoding pro-
cess. The differences between the scores of the new algorithm and those of
the original MMSE-STSA combined with the minimum statistics noise esti-
mation become larger for high SNR conditions such as 10 and 15 dB. Large
differences for high SNR conditions are mainly caused by overestimation of
the minimum statistics method. The differences are statistically significant
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Fig. 6.12. Result of listening test with codec (office and vehicle noise).

for SNRs above 10 dB and for 44 % of the SNRs below 5 dB. The maximum
difference is 0.93 and 0.90 with and without a codec, respectively.

When the new algorithm is compared to the EVRC noise suppression, the
difference becomes larger for low SNRs such as 0 and 5 dB. The differences
are statistically significant for 44 % of the low SNRs. The maximum differ-
ence is 0.35 and 0.40 with and without a codec, respectively. It is shown in
Figs. 6.11 and 6.12 that the new algorithm achieves better scores than the
EVRC noise suppression, even though the latter is optimized for the EVRC
codec. This fact is another evidence for the superiority of the new noise sup-
pression algorithm.

The noise suppression algorithm presented in this chapter was further
modified with pseudo noise injection and synthesis windowing for better
enhanced-speech quality [35]. The performance evaluation results [36] of this
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latest version, which shows that it satisfies all the 3GPP requirements spec-
ified in a standard [20], have officially been endorsed by 3GPP [37].

6.5 Conclusions

A noise suppression algorithm based on weighted noise estimation and
MMSE-STSA has been presented. The new algorithm continuously updates
the noise estimate by weighted noisy speech in accordance with an estimated
SNR. The spectral gain is modified with the SNR so that it better fits the
new noise estimate for higher speech quality. With the improved noise es-
timate, distortion in the enhanced speech is reduced due to a more correct
SNR, resulting in smaller oversuppression.

In the subjective evaluation with a five-grade mean opinion score (MOS),
the new noise suppression obtained better scores than the original MMSE-
STSA and the EVRC noise suppression for most conditions. The maximum
improvement in the score reached 0.35 and 0.40 with and without a speech
codec, respectively.

Under 80 % of all tested conditions, the new algorithm outperforms either
or both of the conventional algorithms with a statistically significant MOS
difference. A later version of this noise suppressor is equipped with in millions
of 3G handsets as the one and only commercially available 3GPP-endorsed
noise suppressor.
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Abstract. In this chapter, we present the signal subspace approach (SSA) for
speech enhancement. The SSA is becoming a serious competitor to its already
widely used frequency-domain counterparts since it seems to offer a better com-
promise between signal distortion and the level of the residual noise. We provide a
detailed description of the technique in terms of its underlying theory as well as the
implementation issues. We also discuss the methods, proposed in the literature, to
deal with the colored noise case and to cope with the complexity concerns usually
associated with the SSA. In addition to that, we provide a filterbank interpreta-
tion to the SSA which allows it to be viewed from a frequency-domain perspective
which is a more intuitive domain as far as speech signals are concerned. Finally,
we present some of the latest variations and extensions to the SSA found in the
literature which also serve as suggestions to further research in this area.

7.1 Introduction

In modern speech communication applications it is no longer assumed that
the developed systems operate in favorable environments. Indeed, the cur-
rently existing systems are constantly being used under very adverse con-
ditions where the users still expect to receive satisfactory services. For this
reason, speech enhancement research has intensified and innovative strategies
to face the new challenges are being sought.

Usually, frequency-domain techniques are the most preferred approaches
due to their relative simplicity and ease of implementation. Moreover, speech
is traditionally well analyzed and understood in the frequency domain which
makes processing in this domain more appealing and easier to design.
Nonetheless, these methods, namely spectral subtraction [2] and its variants,
are nowhere close to offering fully satisfactory solutions to their inherent
problems: the musical noise artifact and the inevitable trade-off between sig-
nal distortion and the level of the residual noise. Therefore, different research
horizons need to be investigated such as processing in a different transform
domain. One such potential domain is the eigendomain in which the signal
subspace approach operates.
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The signal subspace approach (SSA) has demonstrated itself as a power-
ful signal processing tool in various applications including array processing
via the popular MUSIC algorithm [32] and variations thereof [27]. In speech
enhancement, the SSA has been originally introduced by Dendrinos et al. [6]
who propose to use the singular value decomposition (SVD) of a data ma-
trix to remove the noise subspace and then reconstruct the desired speech
signal from the remaining signal subspace. This approach gained more pop-
ularity when Ephraim and Van Trees proposed a new technique based on
the eigenvalue decomposition (EVD) of the covariance matrix of the input
speech vector [8]. This method consists in estimating a transform, namely
the Karhunen-Loeve transform (KLT), which will project the input speech
vectors into a subspace called the signal subspace hence readily eliminating
the components in the orthogonal noise only subspace. The signal coefficients
in the signal subspace (or the eigendomain) have the property of being un-
correlated which allows to process them individually using a diagonal gain
matrix in order to suppress any remaining noise components. The entries
of this matrix are estimated according to a particular optimization criterion
leading to several alternatives for the gain function. Finally, the enhanced
signal is reconstructed in the time domain using an inverse KLT. The SSA
was found to outperform frequency-domain methods particularly by offering
a more satisfactory compromise between signal distortion and residual noise
level leading to a less annoying musical noise [8].

The SSA has not yet received as much attention as its frequency-domain
counterparts and its use in practice is still scarce. The reason for that remains
its relatively high computational load (due to the costly EVD step) and
because it operates in a less familiar domain for speech signals. Recently,
however, with the emergence of new SSA based techniques coupled with the
substantial developments in the available computational power, the SSA has
become a serious candidate to compete with the currently employed noise
reduction methods. Several new studies have recently been published where
the superiority of the SSA has been further confirmed and variations to the
original approach has been developed [21,26,31,29,15,24,38]. The SSA was
also tested in a speech recognition task and promising results have been
reported [16], [14].

In this chapter, we provide a thorough presentation of the SSA from an
EVD perspective, i.e. based on the Ephraim and Van Trees approach. In
Section 7.2, we introduce the technique by presenting the underlying signal
and noise models used. Then, in Section 7.3, we provide the different signal
estimators found in the literature. In Section 7.4, we review the techniques
developed to handle colored noise situations. Section 7.5 offers a different
insight into the SSA by analyzing it from a frequency-domain perspective.
Such interpretation can shed more light on the SSA thus potentially leading
to even further improvements. The computational cost issue is addressed in
Section 7.7 and state of the art techniques to deal with it are presented.
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Finally, variations to the signal subspace technique found in the literature
are reviewed in Section 7.8 and conclusions are given in Section 7.9.

7.2  Signal and Noise Models

In this section, we present the underlying theory of the SSA namely the signal
and noise models employed and their representation in terms of the EVD of
the speech covariance matrix.

Assume that the speech signal can be represented by a linear model of
the form

Q
s=Ac= Zaz-ch (7.1)
i=1

where s = [s1,...,sp|T is a sequence of random signal samples and ¢ =
[c1,...,co)T is, in general, a zero mean random coefficient vector. A € CcPxe@
is a model matrix with linearly independent columns, a;. Therefore rank(A) =
@ < P, in general. An example of such a model used with speech signals is
the damped complex sinusoid model whose basis vector is given by [3]

a; = [l,p%ejwil, . ,pf_lej““(Pfl)]T. (7.2)

In the SSA framework, the precise underlying model is not important.
What is important, however, is that Q < P which is a valid assumption for
speech signals [8]. Hence the columns of A do not span the entire Euclidean
space but rather a subspace referred to as the signal subspace. Here, the
column span of matrix A, also called its range, will be denoted by R{A}.

The covariance matrix of the vector s in (7.1) is given by?

R, = BE{ss’} = AR AT, (7.3)

where R. = E{cc’} is the covariance matrix of vector ¢, where we assume
that R. > 0. Accordingly, Ry is rank deficient with rank(R;) = Q < P and
hence it has P — @) zero eigenvalues.

Suppose now that we have available a P-dimensional noisy observation
vector x such that

X=Ss+W, (7.4)

where w is the noise vector. The noise is assumed to be zero mean and uncor-
related with the speech signal. The noise covariance matrix R, is assumed
to be known and is given by

R, = E{ww’} = 0’1, (7.5)

! Unless otherwise mentioned, all signals in this chapter are considered to be real
valued.
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meaning that the noise is white with variance o2. The whiteness assumption is
necessary for the time being in order to analyze the signal subspace method.
The more practical case of colored noise will need further processing and
will be addressed in Section 7.4. With these assumptions, the noisy signal
covariance matrix R, can be written as

R.=R,+R, =R, +7’L (7.6)

Now consider the eigenvalue decomposition (EVD) of R, defined as

R, =UA,UT, (7.7)
where the eigenvalue matrix is given by

Ay =diag(Ap1,. .., Az, p), (7.8)
and U = [uy, ..., up]| is the matrix of orthonormal eigenvectors (i.e. UTU =

I). Without loss of generality it is assumed throughout this chapter that
>\z,1 2 )\z,2 Z ce. Z )\m,P-

Since the noise is white, the eigenvectors u; are also the eigenvectors of
R, and the eigenvalues )\, ; are given by

[ Asitotfori=1,...,Q
)\x’i_{oz fori=Q+1,...,P"’ (7.9)
where Ag;, for ¢ = 1,...,Q, are the @ eigenvalues of R, which are strictly

greater than zero.
Accordingly, U can be partitioned as U = [U; Us] where U; =
[ug,...,ug] and Us = [ug41,...,up]. Since U is orthogonal, we have

U, U] +U, U] =1 (7.10)

Indeed, U;UT is the orthogonal projector onto the subspace spanned by the
columns of U; which is the same as R{A}. This subspace is called the signal
subspace. U U%' | on the other hand, is the orthogonal projector onto the
complementary orthogonal subspace called the noise subspace. It should be
noted, however, that the noise actually fills the entire space and is not just
confined to the noise subspace.

7.3 Linear Signal Estimation

With the signal and noise modeling assumptions described above, a linear
filter H can be designed to estimate the desired speech vector s from the
noisy observation x in (7.4). Let § denote the estimate of s at the filter
output,

§ = Hx = Hs + Hw. (7.11)

The linear estimator H can be calculated in different ways depending on the
optimization criteria employed. We next present some of the most popular
estimators proposed in the literature.
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7.3.1 Least-Squares Estimator

A straightforward and simple solution to the estimation problem is to use the
least-squares (LS) estimate. It is obtained by minimizing the squared fitting
error between the observation vector x and the linear low order speech model
of (7.1),

s = Acy, co = argmin ||x — Ac||?. (7.12)

Setting the gradient of the above cost function to zero, the LS solution is
obtained as

S=Hx= A(ATA)_lATx. (7.13)

It can be seen that § is the projection of the observation vector onto the
signal subspace spanned by the columns of A as discussed earlier. Hence H
can alternatively be written in terms of the eigenvalue decomposition of R
as follows

H=U,UT. (7.14)

This estimator does not result in any signal distortion (provided that the
subspace dimension @) was correctly estimated) but has the highest possible
residual noise since it allows the noise components in the signal subspace to
remain intact. The SNR gain obtained with this estimator is in the order of

P/Q [8].

Other LS estimators rely on approximating the speech model matrix A
(e.g. [22], [30]), which is usually a difficult problem. Unlike these methods,
(7.14) shows that such a model is not required and the desired signal can be
simply estimated using the eigenvalue decomposition of the noisy covariance
matrix.

7.3.2 The Linear Minimum Mean Squared Error Estimator

The linear minimum mean squared error (LMMSE) estimator is obtained by
minimizing the residual error energy as follows

m&n E{|r|*}, (7.15)
where the residual error signal is defined as

r=§—-s=Hx-s. (7.16)
The solution to this classical problem is given by the Wiener filtering matrix

H=R,(R, + 01" (7.17)
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Rewriting (7.17) in terms of the EVD of R, and recalling that A, ; = 0 for
1> Q, we get

H = UA (A, +¢%T)7'UT = U,GUT, (7.18)
where G is a @x(Q diagonal gain matrix with entries

/\s,i

S, g

9i

The matrix UT is in fact the Karhunen-Loeve transform? (KLT) and
its effect on the noisy signal vector x is to calculate the coefficients of its
projection onto the signal subspace. These coefficients have the property of
being uncorrelated so that they can be processed independently using a di-
agonal gain matrix according to (7.18). The enhanced signal vector is finally
reconstructed in the time domain using the matrix Uy, the inverse KLT.

The gain function in (7.19) is actually analogous to the frequency-domain
Wiener filter [5]. For this reason, this gain function will be referred to as the
Wiener gain function.

7.3.3 The Time-Domain Constrained Estimator

Instead of minimizing the total residual error energy, the time-domain con-
strained estimator (TDC), proposed in [8], is obtained by minimizing the
signal distortion subject to forcing the residual noise energy to be below
some predefined threshold. This constrained optimization approach aims to
offer control over the trade-off between signal distortion and residual noise
level. This can be achieved by decomposing the residual error signal as follows

r=§—s=(H-1I)s+ Hw. (7.20)
Accordingly, define the signal distortion as

r, = (H - I)s, (7.21)
and

r, = Hw (7.22)

as residual noise. The filter H is then obtained as the solution to the following
optimization problem

1
m}iIn E{||rs||*} subject to ﬁE{HerQ} < ao?, (7.23)

where 0 < o < 1.

2 To be precise, the KLT is the matrix U”. However since all eigenvectors in UZ
will have, according to (7.18), a weight of zero, UT can indeed be considered to
be the KLT.
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Using the Kuhn-Tucker necessary conditions for the above constrained
minimization problem [28], the optimum filter H is a feasible stationary point
if the gradient of the Lagrangian

L(H, 1) = E{lral} + n(E{leu2} — aPo?) (7.24)
is equal to zero and

w(E{||rwl|]*} — aPa®) =0 for u > 0. (7.25)
The solution is then given by [§]

H = Ry (R + po’I) ™1, (7.26)

where p is the Lagrange multiplier. The latter can be shown to satisfy the
following relationship with « [8]

1
a= Ftr{Ri(Rs + po®T) 72, (7.27)
In terms of the EVD of Ry, the filter H (7.26) can be written as
H=U,GUT, (7.28)

where G is a Q@ x(Q diagonal gain matrix with entries

)\s,i

——— for i=1
)\s,i + /~LU2

gi = Q. (7.29)

Note that (7.29) only differs from (7.19) by the Lagrange multiplier u, and
that both are indeed the same when u = 1. Equation (7.29) can then be
interpreted as a Wiener filter with a variable noise level (controlled by ).

Equation (7.27) can also be simplified and we can find that the Lagrange
multiplier satisfies

PZ</\“+W2>2' (7.30)

7.3.4 The Spectral-Domain Constrained Estimator

The second estimator proposed in [8], is the spectral domain constrained ap-
proach (SDC), where the enhancement filter H is the solution to the following
optimization problem:

E{|ulr,|*} <aqo?for1<i<Q

Efjlr,? =0 fo@<izp (T3

II%_iIIl E{||rs|[*} subject to {
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The goal here is to minimize the signal distortion subject to keeping every
spectral component of the residual noise, within the signal subspace, below
some predefined threshold. Those spectral components in the noise subspace,
on the other hand, are set to zero. Again, using the Kuhn-Tucker necessary
conditions, the solution to this problem is given by [8]

H=U,GU7, (7.32)
where the entries of the gain matrix G = diag{g1,...,9¢} are given by
gi=+a; for i=1,...,Q. (7.33)

In theory, the gain matrix entries in (7.33) can be independent of the
input data. However, exploiting information available from the signal and
noise statistics may lead to a better choice for the gain coefficients. To this
end, a commonly used quantity is the SNR on the i*" spectral component
defined as

Vi = sl 0" (7.34)

Ideally, one would like to turn off spectral components with very low SNR
and keep those components with very high SNR unchanged. This may be
achieved by letting g; = f(v;), where f(.) is an increasing function satisfying
f(07) — 0, and
f(+o00) — 1. (7.35)

A possible choice of f is

y
fo) ==, 7.36
=1 (7.36)
leading to the TDC solution given in (7.29) (the Wiener gain function with
variable noise level). A second choice is the exponential function

f() = exp(—v/7), (7.37)
which gives
gi = \/a_Z: e_V(TQ/)\SJa Z = 17"'7@' (738)

This gain function is found to have more noise suppression capabilities. Be-
sides, for v = 1, the first order Taylor development of g; ' [eq. (7.38)] with
respect to 02/),; is the inverse of the Wiener gain function in (7.29) with
1 =1, pointing to the equivalence of these approaches at high SNR.

Figure 7.1 shows a plot of these gain functions for comparison. Note that
the LS estimator discussed in Section 7.3.1 is also a special case of the SDC
with g; =1 for all = 1,...,Q. The gain functions associated with the four
different estimators presented in this section are summarized in Table 7.1.
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Gain function

-20 -10 0 10 20 30 40
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Fig. 7.1. The gain function f(7): exponential (7.37) with v = 1 (thick), Wiener
(7.36) with u =1 (dotted) and with pu = 2 (dashed).
Table 7.1 The gain functions corresponding to different linear signal esti-

mators.

Signal Estimator Gain Function g;

LS 1
As
LMMSE —
As;
TDC s
SDC Vai

7.4 Handling Colored Noise

One problem with the signal subspace approach is that it is based on the white
noise assumption. However, almost all common noise types encountered in
real life are colored. Therefore, extra techniques should be included with the
signal subspace method to handle the colored noise case for it to be useful
in practice. Fortunately, several such techniques have been proposed in the
literature with satisfying results.

7.4.1 Prewhitening

In [8], prewhitening is proposed as a remedy to the colored noise issue. It

_1
consists of multiplying the noisy input vector x by R, ?, the inverse of the
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square root of the colored noise covariance matrix R,, = E{ww?}. The
prewhitened signal is obtained as

*x=Ryx=Rys+Ryiw=5+W. (7.39)

It can be verified that E{ww7’} = I. Hence W, the prewhitened noise com-
ponent, is now white with variance equal to one.

The EVD obtained from the signal X can then be used instead of the EVD
obtained from x to calculate a filter H using any of the linear estimators
presented earlier. However, since the desired §peech signal is also affected,

the inverse of the prewhitening matrix, i.e. R2, is applied as a postfilter to
undo the effect of prewhitening. This is called dewhitening. Accordingly, the
overall effective enhancing filter becomes

H-R:ZHR,". (7.40)

The prewhitening and dewhitening matrices can be obtained using the
Cholesky decomposition of the noise covariance matrix or more safely (in
case the latter is not invertible or near singular) using its eigenvalue decom-
position. Consider the EVD R, = U, A, UL = Uw@Aw,lUfj’l, where Ay, 1
contains only non-zero eigenvalues and U, ; has the corresponding eigenvec-

tors as its columns, then?

RZ = U, A2, U7 (7.41)
Ry? = U, 14,207 . (7.42)

We shall refer to this method as the preWhitening based signal subspace
method (PWSS).

In [16], prewhitening is accomplished using a filter designed from the
coefficients of an autoregressive model of the noise.

7.4.2 The Generalized Eigenvalue Decomposition Method

Prewhitening can alternatively be realized as an integral part of the sub-
space decomposition using the generalized EVD [15] or the generalized SVD
[23]. The idea is to find a matrix that would diagonalize both Rs and R,,
simultaneously. Such a matrix would satisfy [15],
VTRSV — A, (743)
V'R,V =1, (7.44)
where V and A are the eigenvector matrix and the eigenvalue matrix of

R, 'R, respectively. Hence the optimal filter (7.32) can be modified as fol-
lows

H=VTgvT. (7.45)

1 1
3 Actually, R 2 is rather the pseudo-inverse of R2.
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It should be noted that V7 is no longer the KLT corresponding to R, and
that V is not orthogonal. The gain matrix G is chosen as discussed earlier
to satisfy the desired optimization criterion. The noise variance, however,
should now be set to one, that is o2 = 1.

7.4.3 The Rayleigh Quotient Method

As discussed earlier, the prewhitening technique consists of using x, in (7.39),
instead of x for the filter design. Therefore, the filter will shape the noise
spectrum according to the spectrum of 8, the modified speech vector, rather
than s. Hence the filter in equation (7.40) is not necessarily optimal in the
sense of its noise shaping capabilities [29].

Alternatively, another method to handle colored noise, consists of replac-
ing the constant noise variance in (7.34) by the noise energy in the direction
of the i*" eigenvector, given by

& =uf Ryu, (7.46)

which is the Rayleigh quotient associated with u; and R, for i = 1,...,Q.
Here u; is the ith eigenvector of the clean speech covariance matrix esti-

mate, R, with corresponding eigenvalue A ;. R is estimated from the noisy
covariance matrix as follows

R, =R, — R,. (7.47)
].f{s, so obtained, is no longer guaranteed to be positive definite and may have
negative eigenvalues. Hence, the rank () is chosen as the number of strictly
positive eigenvalues A ;.

The gain function is calculated, for example, using the exponential func-
tion (7.38), in the following way,

i = F(hei/&) = et fori=1,...,Q. (7.48)

RQSS was the basis for the methods described in [29] and [31]. In the
latter it was used in conjunction with a subspace tracking technique in or-
der to reduce the computational load. In [29], further processing is added to
RQSS by classifying the speech frames as speech dominated or noise dom-
inated. The procedure described above is applied during speech dominated
frames. During noise dominated frames on the other hand, the EVD of the
noise covariance matrix is used instead of that of the estimated clean speech
covariance matrix. In both works [31], [29], RQSS was reported to be supe-
rior to the prewhitening technique in the sense that better noise shaping?* is
achieved.

4 Noise shaping refers to giving the noise spectrum a shape which follows that of
the desired speech signal, hence masking it.
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7.5 A Filterbank Interpretation

By design, the SSA is always viewed and analyzed from a linear algebra per-
spective. However since our understanding of speech signals is best in terms
of its frequency spectrum, it seems beneficial if we can provide a frequency-
domain interpretation of the SSA in order to better understand its behaviour.
A filterbank interpretation has been given for example in [10] and [24] yielding
a modified SSA based method (with an SVD implementation).

In this section, we use a similar filterbank approach. To this end, we
first present a frequency to eigendomain transformation which facilitates the
filterbank interpretation.

7.5.1 The Frequency to Eigendomain Transformation

Consider a zero mean stationary signal x(n) with covariance matrix R, =
E{x,xL} where x,, = [#(n),...,z(n—P+1)]. Let \; be the i*" eigenvalue of
R, and u; = [u;(0),...,u;(P —1)]T its corresponding unit norm eigenvector.
It can be shown that \; can be written in terms of @¢(w), the power spectral
density (PSD) of z(n), in the following way [12]

1 T
i =5 D(W)|Vi(w)|?dw for i=1,...,Q, (7.49)
T J)_x
where
P—1 ‘
Vilw) = ) ui(p)e P (7.50)
p=0

is the discrete-time Fourier transform (DTFT) of the entries u;(p) of the
eigenvector u;. Equation (7.49) will be called the frequency to eigendomain
transformation (FET) [18], [21] and will serve as a bridge between the eigen-
domain and the more intuitive frequency domain.

This relationship was used in [18], [21] to incorporate the human hearing
properties in the SSA by allowing to map the masking threshold estimated
in the frequency domain to the eigendomain.

7.5.2 The Eigen Filterbank

Consider a filter bank with P analysis filters with frequency responses V;(w)
fori =1,..., P as shown in Fig. 7.2. That is, every filter has a finite impulse
response u;(p) for p =0,..., P—1. Now let 2(n), a random process with PSD
®(w), be the input to this filterbank. Thus, the PSD @;(w) of the output a;(n)
of the i'" filter is given by [13]

bi(w) = D(w)|Vi(w)|*. (7.51)
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— Vi(w) —> xm Lﬂ \zdw I

2z

xm) | E E
xp(n) Ap

> Vr(w) —>

— Lﬂ \zda) >
2z

Fig. 7.2. A block diagram of the signal subspace filterbank interpretation.

Hence, Using the FET (7.49), it can be seen that the total energy at the
output of the i*" filter is actually the it" eigenvalue \;,
L[ ®;(w)d 7
i = % . i(w) Ww. ( 52)

Therefore, the SSA actually consists of dividing the input signal into
several “subbands.” In every band, a gain function depending on the average
SNR in that particular band is applied and then the whole signal is re-
synthesized in the time domain.

This filterbank, however, is different from other common ones, such as
the DF'T filter banks, in that instead of having the passbands of the analysis
filters uniformly distributed over the frequency range of interest, the “eigen”
analysis filters are signal dependent. In Fig. 7.3, these filters are shown for
the case of a vowel (/a/). The figures show the PSD of the input signal (thick
line) together with the magnitude squared of the frequency response of the
P = 32 eigen analysis filters, |V;(w)|%.

It can be seen in Fig. 7.3 that the first four filters correspond to the first
formant whereas the next two filters correspond to the second formant. The
third formant (also important for intelligibility) can be found in the pass-
bands of the 12t 13t and 14*" filters.

It is widely known that the output of the single-channel frequency do-
main methods usually suffer from spectral peaks randomly distributed over
time and frequency. This processing artifact, commonly referred to as mu-
sical noise, mostly occurs due to poor estimation of the speech and noise
statistics resulting in “random” fluctuations in the suppression filters both
over time and frequency. Therefore, the proposed remedy to this problem
usually consists of trying to smooth the filter coefficients. In the SSA, and
using the filterbank interpretation, it can be readily noted that this approach
accomplishes such smoothing by obtaining the average SNR within every
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Fig. 7.3. The magnitude squared of the i*" eigenfilter V;(w) for the vowel /a/
in the word “cats,” for ¢ = 1,..., P. The thick line shows the PSD of the speech
signal.

passband of the eigen analysis filters. The reduction of the musical noise,
commonly reported for SSA based methods, may then be attributed to this
phenomenon.

In addition, and since the passbands of the analysis filters are usually
located around the speech formants, the residual noise spectrum will eventu-
ally be shaped according to the spectrum of the desired speech signal. This
shaping entails a masking effect which would further suppress the noise, from
a perceptual standpoint, with a relatively lower signal distortion.

This filterbank interpretation has been exploited in [18] to provide further
insight into some signal subspace results and observations reported in the
literature, particularly on the effect of noise.

7.6 Implementation Issues

In this section, we address the implementation issues of the SSA in more
details. We first present the original implementation scheme where the white



7 Signal Subspace Techniques for Speech Enhancement 149

noise assumption is retained®. After that, we discuss the effect of the different
involved parameters on the overall performance.

To implement the SSA, length- P speech vectors are input at a rate of P/2
samples. To preserve the whiteness of the noise, only a rectangular window
is used in the analysis phase. Each of these vectors, x,, = [z(n),...,z(n —
P +1)]7, is multiplied by an enhancing linear filter H.

Since the speech signal is not stationary over the whole utterance, the filter
H should be updated as a new vector comes in. This is done by estimating
the noisy speech covariance matrix R, and calculating its EVD. Using (7.9),
the eigenvalues of the clean covariance matrix are estimated as follows®

Asi = max{Ay; — 0”0}, (7.53)

where A, ; is the it" eigenvalue of R, and o2 is the noise variance estimated
during non-speech activity periods. The so obtained eigenvectors and eigen-
values are used with one of the signal estimators discussed in Section 7.3 to
compute the subspace filter.

Finally, to synthesize the signal, the 50% overlapping enhanced vectors
are Hanning windowed and combined using the overlap-add approach [5].

7.6.1 Estimating the Covariance Matrix

The linear signal estimators described in Section 7.3 assume exact knowledge
of the second order statistics of the noisy signal and noise processes. In prac-
tice however this information needs to be estimated from the available noisy
observation vectors, x,, = [z(n),...,z(n — P+ 1)]T.

An estimate R, ,, of the covariance matrix of x,, can be obtained from the
empirical covariance of 2N 4+ 1 non-overlapping noisy vectors in the neigh-
borhood of x,. To this end, we assume that conditions of stationarity and
ergodicity are satisfied for a data window of length (2N + 1)P. For speech,
these conditions are considered to be satisfied for a window which is around
30 msec long [5]. The estimate R, ,, can then be obtained as follows

i=NP

1
Ryn = 2PN Z Xn+in+i
i=—NP+1
=X, X7 (7.54)

where X,, is a P x 2PN data matrix given by
1

X, = m[xn,NpH, ey X1, X, X1y« -+ s Xnt NP (7.55)

5 Extension to the colored noise case using PWSS or RQSS can be approached in
a similar way.

5 For simplicity of notation, we avoid the use of a hat to denote estimated quanti-
ties. Such notation will only be used when it is necessary to avoid ambiguity.
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The signal subspace can now be calculated either by EVD of the covariance
estimate R, or via the SVD of the data matrix X,,. Since it does not
require the explicit computation of the covariance matrix, the SVD needs
less computations in addition to being more stable in the case of an ill-
conditioned data matrix [9]. However, the SVD does not allow the use of
more structured covariance matrices. Namely, it was observed that a Toeplitz
covariance matrix would better represent speech signals and would yield a
better noise reduction performance [8].

To derive such a Toeplitz covariance matrix, the biased autocorrelation
function estimator obtained from L = 2N P observation samples is calculated
as follows

NP—p
re(p) = — Z z(n+dz(n+i+p) for p=0,...,P—1. (7.56)
i=—NP+1

The Toeplitz covariance is then formed as follows

ro(p—1) ra(p—2) -+ 14(0)

The EVD of this matrix is calculated and is used to compute the signal
subspace filter as described earlier.

7.6.2 Parameter Analysis

The advantage of the SSA is that it can offer a better compromise between
signal distortion and the level of the residual noise. To achieve that, proper
tuning of the system parameters is required. We discuss, next, some of these
parameters in order to assist the reader in selecting the appropriate values.
The discussion provided will be based on the case of 8 KHz sampling fre-
quency. The conventional SSA approach of [8] has been used and the noisy
signal has been obtained by artificially adding a white noise signal to the
clean speech.

The Window Length L. The choice of the window length L = 2NP is a
crucial design decision. To obtain better covariance estimates, L should be as
long as possible. However, in the current application, we are limited by the
non-stationarity of the speech signal.

Simulation experiments show that for shorter windows (or frames), the
covariance estimates are not reliable resulting in a higher level of the musical
noise. Longer frames, on the other hand, considerably reduce the level of the
residual noise at the cost of more signal distortion (due to the violation of the
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Residual Error Energy (dB)
Residual Error Energy (dB)

Fig. 7.4. (a) The residual error signal and (b) the signal distortion energy (dashed)
and residual noise energy (continuous), as a function of the model order P.

stationarity assumption). Such distortion will be more evident at unvoiced
instances of speech because they are generally shorter in duration and weaker
in energy [18]. Satisfactory results can be obtained with a window of length
30-40 msec, i.e. at 8 KHz sampling rate, so we can choose L = 256.

The Model Order P. Another important parameter is the model order
P. Figure 7.4 (a) shows the effect of P on the total residual error energy
E{||r||*} while in Fig.7.4 (b) the residual noise energy E{||r,||?} and the
signal distortion energy E{|r,||?} are shown separately. At low values of P,
the SSA exhibits high signal distortion due to the fact that not enough cor-
relation coefficients are available to accurately estimate the signal subspace.
This results in the loss of signal components important for intelligibility. The
residual noise, however, is low because, for the same reason, many of its
components would have been forced to zero [18].

The figure also shows that the higher P is, the lower the residual error
energy. The latter converges to a minimum value for P > 30 suggesting
that no more gain in performance can be achieved by further increasing the
value of P. Moreover, higher values of P may even increase the residual error
signal energy [as can be seen in Fig. 7.4 (a)] because not enough samples
are available for estimating the autocorrelation function at high lags (these
results were obtained for a fixed window length L = 256).

Besides, increasing P would drastically increase the computational load.
This is because the SSA is based on the exact EVD of a P x P covariance
matrix which requires a complexity in O(P3).

Generally, P is chosen somewhere between 20 and 40.
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Fig. 7.5. The total residual error signal energy (thick), the signal distortion energy
(dotted), and the residual noise energy (dashed), as a function of v.

The Control Parameter v. In the exponential gain function, the param-
eter v serves as a free parameter that controls the trade off between the
residual noise level and the signal distortion, defined in (7.20). Figure 7.5
shows a plot of the signal distortion energy E{||rs||?}, the residual noise en-
ergy E{||rw||?}, and the total residual error energy E{||r||?} as a function of
the parameter v in the exponential gain function (7.38).

It can be seen that as v increases, the signal distortion increases and
the residual noise level decreases. Consequently, the minimum values for the
total residual error energy is obtained when v is around 1.5. Listening tests
however show that v = 2 is a better choice from a perceptual perspective.
This can be explained by the fact that humans prefer a lower noise level at
the expense of a slightly more signal distortion. Note that since the noise and
the speech signal are uncorrelated, E{||r||*} = E{||rs|*} + E{||rw|?*}

7.7 Fast Subspace Estimation Techniques

The disadvantage of the signal subspace approach is the relatively high com-
putational load mainly due to the expensive eigenvalue decomposition. This
drawback made the engineers and scientists working on speech enhancement
rather reluctant to use the SSA in practice. However, with the impressive
development in the DSP technology and the continuous increase in the avail-
able processing speed and computational power, it is believed that the SSA
can eventually compete with the widely used frequency-domain methods.
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The complexity issue has however been addressed in the literature and
several approaches have been proposed to tackle this problem. These tech-
niques include fast EVD and subspace tracking methods. Moreover, attempts
to approximate the KLT using the discrete-cosine transform (DCT) have also
been recently applied to speech enhancement [17,36].

7.7.1 Fast Eigenvalue Decomposition Methods

One solution to the complexity issue is to replace the exact EVD by alter-
native fast methods which are capable to reduce the complexity from O(P?)
to O(P?Q) operations per sample where @Q is the rank of the matrix. For
example in [39], the structure of the covariance matrix is exploited and the
so-called Lanczos algorithm [9] is used to reduce the required computations
by only calculating the @ principal eigenvectors (and their corresponding
eigenvalues) which span the signal subspace.

For instance, for a speech signal sampled at 8 KHz, the effective rank of
the covariance matrix of a voiced frame (which constitute the majority of a
speech sentence) would be around 10 to 15, for a P = 32 model. Therefore,
substantial computational savings could be achieved by approximating the
exact EVD using such fast methods.

7.7.2 Subspace Tracking Methods

Another possible approach is to make use of the so called EVD or sub-
space tracking algorithms to efficiently update the required EVD informa-
tion. Rather than trying to calculate the EVD from scratch, these algorithms
seek to recursively update an already existing EVD as more data becomes
available. In [31], a fast implementation of the SSA for speech enhance-
ment has been developed based on the projection approximation subspace
tracking (with deflation) method (PASTd) which reduces the complexity to
O(PQ) per sample using the recursive least-squares (RLS) algorithm [40].
The PASTd algorithm does not guarantee the orthogonality of the eigenvec-
tors, this is why it was reported in [24] that better results can be achieved
using the fast orthogonal iteration (FOI) based algorithm [34]. In [11], a rank-
revealing ULV decomposition [33] has been also used for speech enhancement.
Several other O(PQ) subspace tracking algorithms have been developed in
recent years which guarantee the orthogonality of the eigenvectors (see for
example [4] and references therein) but their applicability to the speech en-
hancement problem has yet to be tested.

Unfortunately, there seem to be some problems associated with applying
subspace trackers to speech enhancement. The reason is that these methods
are based on estimating the covariance matrix using a sliding exponential
window”. During our experiments however, we noticed that shifting the win-

" Note that a few subspace trackers based on sliding rectangular windows have
been proposed (e.g. [1]) but they usually require more computations .
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dow at a high rate added reverberation to the enhanced speech signal. This
result, which has also been confirmed in [24], suggests that a sliding expo-
nential window may be inadequate for speech enhancement applications.

Subspace trackers can then only be applied if the EVD update scheme is
carried out on a sample by sample basis®, which does not lead to the apparent
great computational savings. In fact, an exact EVD has a computational cost
of O(P?), but since it is only calculated every P/2 samples, this complexity
is reduced to O(P?) per sample”. A subspace tracker on the other hand can
at best achieve a O(PQ) per sample complexity.

7.7.3 The Frame Based EVD (FBEVD) Method

In [18], [21] a novel implementation scheme which helps to overcome the
computational issue of the SSA has been presented. The so called Frame
based EVD (FBEVD) method is a modification of the approach used in [8]
and described in Section 7.6. The idea is based on exploiting the stationarity
assumption of the speech signal. This assumption is already exploited in [8]
to calculate the covariance matrix required for the subspace filter design, but
it is applied here in a different manner.

Let the speech signal z(n) be divided into length L overlapping frames
x;(m) with a shift of D samples,

z;(m)=xz(iD+m), m=0,...,L—1. (7.58)

This frame is used to obtain the biased autocorrelation function estimate as
follows

z;(m)z;(m+p), p=0,...,P—1. (7.59)

These autocorrelation coefficients are used as described in Section 7.6 to
calculate the subspace filter H;. Note that this filter has now a subscript ¢
to emphasize the fact that it is computed based on the signal samples of the
ith frame.

Every frame is divided into smaller P-dimensional overlapping vectors
with a 50% overlap. The frame length L is chosen to be a multiple of P so that
there will be in total % — 1 vectors in one frame. Like all frequency-domain
methods, the speech signal within every frame is assumed to be stationary
so that these vectors would all have the same covariance matrix and hence
the same subspace filter H;. Therefore we have

2L
?7
8 As in the case of the method reported in [31].

9 Moreover, if a fast eigenvalue decomposition is used, for example [39], the com-
plexity would be O(PQ) per sample.

Sijp2e =Hixi(jP/2) forj=2,..., (7.60)
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where the input vector x;(m) = [x;(m),z;(m — 1),...,z;(m — P+ 1)]T and
the filter output §;,, is defined in a similar way. The output vectors are
then multiplied by a length-P Hanning window and synthesized using the
overlap-add method to obtain one enhanced frame §;(m) = §(iD+m). Finally
every frame is multiplied by a second length-L Hanning window and the total
enhanced speech signal is recovered using the overlap-add synthesis technique.
A 50% overlap is also applied to these larger analysis frames, that is D = L/2.
In this way, every input vector is enhanced using filters designed from two
different analysis frames which allows to compensate for any speech non-
stationarity. This is analogous to frequency domain methods where frame
overlap is applied, with every length-L frame of noisy speech being enhanced
using a unique filter.

In the original SSA implementation described earlier the EVD, with com-
plexity O(P?), is carried out every P/2 samples resulting in a total complex-
ity in the order of O(P?) per sample. In the new FBEVD scheme, the EVD
is only needed every frame at a rate of L/2 samples, where L is the frame
length. Thus, if L = kP then the computational cost of the EVD would re-
duce to O(P?/k). That is the computational savings will be proportional to
k=1L/P.

For example for L = 256 and P = 32, we have x = 8. This results in
reducing the cost of EVD calculation by a factor of 8. Knowing that the
largest computational burden of the SSA arises from the EVD, this factor
constitutes a significant saving at almost no performance degradation [18].
Coupling this method with one of the fast EVD techniques discussed earlier
would considerably reduce the overall computational load.

7.8 Some Recent Developments

Compared to its frequency-domain counterparts, the signal subspace ap-
proach for speech enhancement is relatively young. Research in this area
has been mainly focused on resolving the problem of colored noise and on re-
ducing the computation complexity. Recently, however, new interesting ideas
have emerged with regard to the application of the SSA method to the gen-
eral problem of speech enhancement. The increased interest in SSA has been
mainly stirred by the availability of more processing power at low cost hence
making the main handicap of the SSA, namely its computational complexity,
be no more a serious issue. In this section, we present recent developments
and extensions to the conventional SSA method which may guide the reader
towards more innovative ideas.

7.8.1 Auditory Masking

The masking properties of the human ear is a very interesting phenomenon
that has attracted the interest of speech enhancement specialists, who found
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that it may offer an adequate solution to the inevitable trade-off between sig-
nal distortion and residual noise level. Indeed the use of masking in frequency-
domain methods has resulted in improved performances with less annoying
musical noise [37], [35].

Until recently, however, the use of masking in conjunction with the SSA
had not been attempted; one apparent reason for this is that the human
perceptual properties are usually understood from a frequency-domain per-
spective. Consequently, all available masking models were developed in the
frequency domain and there was no clear way to represent these human hear-
ing properties in the eigendomain. Lately, a few solutions to this problem
started to emerge.

In [26], a perceptual post-filter is appended to the output of the signal
subspace filter to further suppress the remaining noise components without
distorting the desired speech signal from a perceptual stand-point. The post-
filter, however, is designed in the frequency domain.

In [20], [21], on the other hand, the masking properties were used to
actually adjust the gain function in the eigendomain by accounting for the
masking threshold. The latter is calculated in the frequency domain then
mapped to the eigendomain using (7.49).

A similar approach is adopted in [25] where a different gain function is
obtained by modifying the optimization criterion used.

7.8.2  Multi-Microphone Systems

Microphone array processors are known to offer an improved performance
over their single-channel counterparts by exploiting the added spatial infor-
mation. Few attempts have been made to generalize the SSA into a multi-
microphone design.

In [7], a multi-microphone beamformer was presented which used the SVD
of a composite data matrix to simultaneously compute the filter coefficients
for every channel. This method was found to yield improved results under
directional noise but the performance degraded under reverberant conditions
or as the number of noise sources increased.

In [19], [18], an eigendomain postfilter is designed which uses the EVD of
a composite covariance matrix coupled with averaging in the eigendomain to
calculate the filter coefficients. This method was found to be mainly useful
under diffuse noise fields, such as reverberant enclosures, and to be relatively
insensitive to the reverberation time.

7.8.3 Subband Processing

Recently in [38], the SSA has been used in a subband design. In this scheme,
the input noisy signal is split into subbands via a perceptual filterbank im-
plemented using a wavelet packet transform. Every subband signal is then
enhanced using a separate subspace filter. To reduce the computational load,
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subspace tracking similar to the one adopted in [31] has been used. The en-
hanced fullband signal is then recovered using a synthesis filterbank.

Applying the SSA in conjunction with a subband design can give extra
flexibility to the system by allowing for instance to select different parame-
ter values in every band depending on the noise characteristics. Less sever
suppression can be applied in higher bands where car noise for example is
known to be absent. In addition, the subband signals have a narrower band-
width which may allow to select a lower value for the model order P without
incurring significant signal distortion as would be the case with the fullband
signal. This would result in reducing the cost of the EVD and with a proper
design may lead to substantial overall computational savings.

Another advantage of the reduced bandwidth is that within every band
the noise can be more accurately assumed to be white. This may be an

alternative solution to the colored noise issue usually associated with the
SSA.

7.9 Conclusions

In this chapter, we discussed the signal subspace approach (SSA) for speech
enhancement. The SSA consists of transforming the input noisy speech into
the eigendomain which provides a transform domain different from the tradi-
tionally widely used frequency domain. Processing in the eigendomain readily
offers the possibility to eliminate the components residing in the noise sub-
space and to recover the desired speech from its orthogonal signal subspace.
To this end, different linear estimators are available in the literature. They
mainly vary according to the underlying optimization criterion adopted.

We have described the different techniques developed to deal with the
colored noise case and to cope with the complexity issue usually associated
with the SSA. We also provided a frequency-domain interpretation in which
the eigendomain linear estimators can be viewed as functions of the SNR in
the passbands of signal dependent analysis filters which track the formant
locations of the input speech. This interpretation can shed more light on the
SSA allowing the emergence of new ideas that tackle the problem from a
different perspective.

We finally made a review of some of the most promising and interesting
extensions and developments to the SSA, namely the use of masking, subband
processing, and multi-microphone implementations. These methods can stir
the readers motivation to pursue further research in this direction as it is
believed that the SSA is a powerful signal processing tool that has yet to be
fully exploited in the speech enhancement field.
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Abstract. The application of the Kalman filter to the single-microphone speech
enhancement task is presented in this chapter. Among numerous published algo-
rithms, an important sub-group employs the estimate—maximize (EM) procedure to
iteratively estimate the spectral parameters of the speech and noise signals. We elab-
orate on a specific member of this sub-group. In the E-step, the Kalman smoother
is applied and in the M-step, a non-standard Yule-Walker equation set is solved. An
approximated EM algorithm is derived by applying the gradient-descent method
to the likelihood function. We obtain a sequential, computationally efficient, algo-
rithm. It is then shown, that the sequential parameter estimation can be replaced
by a Kalman filter to obtain a dual speech and parameters Kalman filter. A natural
generalization to the dual scheme is an estimation scheme in which both speech and
parameters are jointly estimated by applying a nonlinear extension to the Kalman
filter, namely the unscented Kalman filter. Extensive experimental study, using real
speech and noise signals is provided to compare the proposed methods with alter-
native speech enhancement algorithms. Kalman filter based algorithms are shown
to maintain the natural speech quality. However, their noise reduction ability is
limited.

8.1 Introduction

Speech quality and intelligibility might significantly deteriorate in the pres-
ence of background noise, especially when the speech signal is subject to sub-
sequent processing. In particular, speech coders, and automatic speech recog-
nition (ASR) systems, that were designed or trained to act on clean speech
signals, might be rendered useless in the presence of background noise. Speech
enhancement algorithms have therefore attracted a great deal of interest in
the past three decades.

Among these speech enhancement algorithms there are numerous algo-
rithms based on Wiener [1] or Kalman filtering [2]. Employing both Wiener
and Kalman filters requires the knowledge of the parameters involved (e.g.
noise gains, linear predictive codes (LPC) coefficients). Since these param-
eters are usually unknown, the problem of joint estimation of signal and
parameters arises.
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Roughly, there are two families of algorithms applicable to the problem
at hand. The first involving an off-line training stage, where representative
parameters are extracted from the clean speech utterances and then used
in the enhancement stage. The second family, consists of online methods in
which the signal and the parameters are estimated jointly from the corrupted
signal. A typical procedure, applied to this type of problems, is the estimate-
mazimize (EM) algorithm [3]. In this work we will concentrate on the latter,
but for the completeness of the presentation we will briefly give a literature
survey of the former.

A pioneering speech enhancement work in the framework of the EM proce-
dure was presented by Lim and Oppenheim [4]. They used an auto-regressive
(AR) model for the speech signal and assumed that the speech is picked-up
by the microphone together with additive white Gaussian noise. The pro-
posed algorithm is iterative in nature. It consists of estimating the speech
AR parameters by solving the Yule-Walker equations, using the current esti-
mate of the speech signal, and then applying the (non-causal) Wiener filter
to the observed signal to obtain an (hopefully) improved estimate of the de-
sired speech signal. It can be shown that the version of the algorithm which
uses the covariance of the speech signal estimate, given at the output of the
Wiener filter, is in fact the estimate-maximize (EM) algorithm (up to a scale
factor) for the problem at hand. As such, it is guaranteed to converge to the
mazimum likelihood (ML) estimate of the AR parameters, or at least to a
local maximum of the likelihood function, and to yield the best linear filtered
estimate of the speech signal, computed at the ML parameter estimate.

Hansen and Clements [5], [6] proposed to incorporate auditory domain
constrains, in the line spectral pair (LSP) domain, for improving the conver-
gence behavior of the Lim and Oppenheim algorithm. They use smoothness
constraints, both across time and iterations, to produce a consistent stopping
criterion for the iterative procedure. Later, Pellom and Hansen [7] extended
this idea by incorporating the constraints according to the signal-to-noise
ratio (SNR) in various sub-bands. Masgrau et al. [8] proposed to incorpo-
rate third-order cumulants in the Yule-Walker equations for improving the
immunity of the AR parameters estimate to additive Gaussian noise.

Paliwal and Basu [9] were, perhaps, the first to use the Kalman filter in the
context of speech enhancement. Their experimental results reveal its distinct
advantage over the Wiener filter. However, the estimated speech parameters
are obtained from the clean speech signal and not from the corrupted sig-
nal. Gibson et al. [10], [11] proposed to extend the use of the Kalman filter
by incorporating a colored noise model for improving the enhancement per-
formance for certain class of noise sources. The proposed algorithm iterates
between Kalman filtering of the given corrupted speech measurements, and
estimation of the speech parameters given the enhanced speech waveform. As
the authors suggest using the regular Yule-Walker equations for estimating
the speech AR parameters, the resulting algorithm is only an approximated
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version of the EM algorithm. The estimated parameters prove to improve
speech coding systems that rely on AR modelling of the speech signal.

A comprehensive study of the use of the EM algorithm in diverse prob-
lems of joint estimation of signals and parameters is given in a series of
works by Weinstein et al.. In [12], the noise cancellation problem presented
by Widrow [13] is solved using the EM algorithm in the frequency domain.
The more general two-channel noise cancellation problem is addressed in [14].
Both are comprised of iterations between parameter estimation and Wiener
filtering. In [15], a time-domain formulation to the single-microphone speech
enhancement problem is presented. The approach consists of representing
the signal model using linear dynamic state equation, and applying the EM
method. The resulting algorithm is similar in structure to the Lim and Oppen-
heim [4] algorithm, only that the non-causal Wiener filter is replaced by the
Kalman smoothing equations. Sequential speech enhancement algorithms are
presented as well. These sequential algorithms are characterized by a forward
Kalman filter whose parameters are continuously updated by gradient-decent
search on the likelihood function. In [16], [17], sequential approximations to
the EM algorithm are elaborated on in the context of two-channels noise can-
cellation. The related problem of single-microphone active noise cancellation
(ANC) is presented in [18].

Lee et al. [19], [20] extend the sequential single-sensor algorithm of Wein-
stein et al. by replacing the white Gaussian excitation of the speech sig-
nal with a Gaussian-mixture term that may account for the presence of
an impulse train in the excitation sequence of voiced speech. A recursive
gradient-based approach is applied to the parameter estimation. Lee et al.
examined the SNR improvement of the algorithm when applied to synthetic
speech input. Goh et al. [21] propose replacing the speech innovation se-
quence. The proposed excitation sequence is comprised of both Gaussian
white noise (modelling the unvoiced part) and impulse train (presenting the
voiced part). The latter is modelled as a long-term AR process. The resulting
high-dimensional Kalman filter is implemented efficiently by exploiting the
sparsity of the involved matrices. The parameter estimation is conducted via
EM iterations. When the standard Kalman filter gain is recursively computed,
one needs to estimate the speech and noise gains. To avoid this estimation
stage, Gabrea et al. [22] propose checking the whiteness of the innovation se-
quence to test whether the asymptotically optimal solution has been reached.
Since the estimation of the AR parameters cannot be avoided, Gabrea et al.
propose to use the modified Yule-Walker procedure. Another extension to
Weinstein et al. works was proposed by Gannot et al. [23]. In this work both
iterative-batch and sequential versions of the EM algorithm are treated. The
E-step is implemented by applying the Kalman filter. Higher-order statis-
tics (HOS) is employed for obtaining a robust initialization to the parameter
estimation stage (M-step). Fujimoto and Ariki [24] use Kalman filtering in



164 S. Gannot

the frequency domain (without using the AR model). Initialization of their
algorithm is obtained by the classical spectral subtraction [25] algorithm.

Several nonlinear extensions to the standard Kalman filter exist. Lee et
al. [26] propose the application of a robust Kalman filter. Similar to other
contributions, iterations between signal enhancement and parameter estima-
tion are conducted. The novelty of this paper stems from the use of nonlinear
estimation procedures. Both parameters and signals are estimated in a robust
manner by introducing a saturation function into the cost function, rather
than using the standard squared cost function. Ma et al. [27] introduce the
application of a post-filter based on masking properties of the human au-
ditory system to further enhance the resulting speech signal. However, not
much attention is paid in this work to the AR parameter estimation task
itself.

Shen and Deng in [28] present a new and interesting approach to speech
enhancement based on H,, filtering. This approach differs from the tradi-
tional Kalman filtering approach in the definition of the error criterion for
the filter design. Rather than minimizing a squared error term, as in the
standard Kalman filter, their procedure consists of calculating a filter which
minimizes the worst possible amplification of the estimation error in terms of
the modelling errors and additive noises. The parameter estimation is con-
ducted in parallel using H., criterion as well. The authors claim that their
resulting minimaz estimation method is highly robust and more appropri-
ate in practical speech enhancement. It should be noted however, that the
implementation of the minimax criterion in the parameter estimation stage
of the algorithm, seems to be much more complicated than the conventional
estimation procedure.

Wan et al. [29] assume nonlinear model of the speech production, i.e. that
the speech utterance is the output of a neural network (NN) with unknown
parameters. Their algorithm is comprised of iterations between parameter
estimation and signal enhancement. The nonlinearity inherent to the NN is
negotiated by the application of the extended Kalman filter (EKF). The re-
cently proposed unscented transform (UT), suggested by Julier et al. [30], is
a novel method for calculating first- and second-order statistics of a random
variable undergoing a nonlinear transformation, that was used for construct-
ing a Kalman filter for the nonlinear case. The resulting filter, named the un-
scented Kalman filter (UKF) is shown to be superior to the well-established
EKF in many application of interest. Wan et al. [31] propose to replace the
EKF in [29] by the UKF, resulting in an improved performance. Gannot and
Moonen [32] use the UKF in the speech enhancement application (as well as
speech dereverberation), where the nonlinearity arises from the multiplica-
tion of the speech and the parameters. Their proposed method is only applied
to artificial AR process. Fong and Godsill [33] use the particle Kalman filter
for the speech enhancement task. The speech signal gain is given a random
walk model, while its partial correlation coefficients (PARCOR) are given a
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constrained random walk model (as their absolute value must be less than
1). Monte Carlo filtering is applied for estimating these parameters, whereas
linear Kalman filter is applied in parallel for enhancing the speech signal.

A distinct family of algorithms, using the Kalman filter as well, tackles the
parameter estimation task by conducting a training stage. In this approach,
a hidden Markov model (HMM) for the clean signals is estimated from the
training data, and the signal is estimated from the noisy signal by applying
Bayesian estimators. This method was first proposed by Ephraim et al. [34],
[35], where a bank of HMM state-related Wiener filters is used. The Wiener
filter is later replaced by the Kalman filter in [36], [37]. The problem of
unknown speech gain contours and noise parameters is alleviated by using
EM iterations. This method, proposed by Lee and Jung [38], use Kalman filter
in the E-step, based on the trained AR parameters and the estimated noise
parameters. In the M-step, the noise and gain parameters are recursively
estimated. An interacting multiple model (IMM) algorithm, in which the
Kalman filters in the different states interact with one another, is applied for
enhancing speech contaminated by additive white or colored noise by Kim et
al. [39]. Finally, a nonlinear extension of the HMM concept is proposed by
Lee et al. [40]. The speech is assumed to be an output of a neural network
with time-varying parameters controlled by a hidden Markov chain. Both the
training stage and the enhancement stage become nonlinear. The nonlinearity
is negotiated by the application of the EKF.

In this work, we are elaborating on a representative of the online methods
family. We derive the exact EM solution to the case where the speech sig-
nal is contaminated by colored noise. An iterative-batch solution is obtained
by dividing the noisy signal into short frames where the quasi-stationarity
assumption for the speech signal holds. In each frame, a predetermined num-
ber of iterations is conducted. In the E-step, the Kalman smoother is applied
and the speech signal estimate is obtained together with the respective covari-
ance matrix. In the M-step, non-standard Yule-Walker equations, comprised
of both the speech estimate and the covariance matrix, are solved. Special
attention is given to the initialization stage, in which HOS are used. We
proceed to sequential approximations of the EM method. The obtained algo-
rithm consists of a forward Kalman filter (or fixed-lag smoother), rather than
the Kalman smoother, and a gradient-based search of the likelihood function
for the optimal parameters. The latter is implemented as a sequential up-
date, where a new estimate is produced at each new sample. We then give
the parameters a dynamic and a stochastic model. Due to the multiplication
of the parameter vector and the speech state-vector, nonlinearity results in.
We tackle this problem by using the UKF. Two version of the solution are
proposed, namely a dual scheme, in which two Kalman filters are applied
in parallel, and a joint scheme, which consists of an application of a single
nonlinear UKF.
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Our discussion is supported by an extensive experimental study using
speech and noise signals taken from databases. The outcome consists of ob-
jective distortion measures (such as total output SNR, weighted segmental
SNR, log-spectral distance and ASR performance evaluation), as well as sub-
jective tests (i.e. assessment of sound spectrograms and informal listening
tests). We first show that the sequential algorithm is generally inferior to
the iterative-batch algorithm. However, at low SNR levels, the degradation
is usually insignificant. The iterative-batch algorithm is then compared to
various methods, including the log-spectral amplitude (LSA) estimator [41],
the HMM-based filtering algorithms [34], [35], the optimally-modified LSA
[42], the mixture-maximum algorithm [43], and the Wiener filter approach of
[4]. We end our study by applying the UKF version to a simple and artificial
problem, showing the potential of the method.

The organization of the chapter is as follows. In Sect. 8.2, we present
the signal model. In Sect. 8.3, we present the iterative-batch algorithm. In
Sect. 8.4, we show how higher-order statistics might be incorporated in order
to improve the performance of the iterative-batch algorithm. The sequential
algorithm is presented in Sect. 8.5. The all-Kalman algorithms are discussed
in Sect. 8.6. Experimental results are provided in Sect. 8.7. We draw some
conclusions and discuss further directions in Sect. 8.8.

8.2  Signal Model

Consider a speech signal received by a single microphone and contaminated
by a colored noise signal. Let the signal measured by the microphone be given
by:

2(t) = s(t) + v(t), (8.1)

where s(t) represents the sampled speech signal, and v(t) represents additive
background noise. We assume the standard LPC modelling for the speech
signal over an analysis frame, i.e. s(t) is modelled as a stochastic AR process:

s(t) = — Zaks(t — k) + gsus(t), (8.2)
k=1

where the excitation us(t) is a normalized (zero-mean unit variance) white
noise, gs represents the spectral level, and ay, ..., «, are the AR coefficients.
We may incorporate the more detailed voiced speech model suggested in [44]
in which the excitation process is composed of a weighted linear combination
of an impulse train and a white noise sequence to represent voiced and un-
voiced speech, respectively. However, in our experiments, this approach did
not yield any significant performance improvements over the standard LPC
modelling. Equation (8.2) can be reformulated in a state-space presentation.
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Define the state-vector
sZ(t) =[s(t—p+1)s(t—p+2)...s(t)],

the speech transition matrix

0 10 v e 0
és = ’
0 cer e 0 1
_—ap _ap—l PRI —a2 —0{1_

and the p-dimensional vectors g7 =[0...0gs] and hI = [0... 0 1]. Then
(8.2) can be rewritten as
$p(t) = Ps(t)sp(t — 1) + gs(t)us(t), (8.3)
2(t) = hls,(t) +v(t).
The additive noise v(t) is also assumed to be a realization from a zero-
mean, possibly non-white stochastic AR process:

q

v(t) = =D Bro(t — k) + goun (1), (8.4)
k=1

where 31, ..., 3, are the AR parameters of the noise process, and g, represents

its power level. Many of the actual noise sources may be closely approximated
as low-order, all-pole (AR) processes. In this case a significant improvement
may be achieved by incorporating the noise model into the estimation process
as indicated in [11], [23].

Equation (8.4) can be rewritten in a state-space formulation as well. De-
fine the state-vector vl (t) = [v(t—q+1) v(t —g+2) ... v(t)], the noise
transition matrix

0 1 0 v e 0
é'u: y
0 e e 0 1
|8y Byt - —Po B

and the g-dimensional vectors gZ' = [0...0 g,] and hI =[0... 0 1]. Then
(8.4) can be rewritten as
vg(t) = Py (t)vg(t — 1) + go(t)us(t), (8.5)
2(t) = s(t) + hlwv,(t).
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Equations (8.3) and (8.5) can be concatenated into a one, larger, state-
space equation:

xz(t) = Px(t — 1) + Gu(t), (8.6)
z(t) = hTx(t),

where the state-vector x(t) is defined by

al(t) = [sp_1(t = 1) s(t) v_, (¢t = 1) v(B)],

the state-transition matrix @ is given by

@, 0
=[50

the driving noise vector is

ul (1) = [us(t) uu(t)],

G is given by

_19s 0
G[Ogv}’

and the measurement vector is given by
T T pT
h' = [hs h, ] .

Assuming that all signal and noise parameters are known, which implies that
@, h and G are known, the optimal minimum mean square error (MMSE)
linear state estimate of «(t), which includes the desired speech signal s(t), is
obtained using the Kalman smoothing equations. However, since the signal
and noise parameters are not known a priori, they must be estimated within
the algorithm as well.

8.3 EM - Based Algorithm

Applying the EM method to the problem at hand, and following the con-
siderations in [45], [15] (see also [16] that considers the two channel case),
we obtain in Appendix A the following algorithm that iterates between state
and parameter estimation.

Let 6 be the vector of unknown parameters in the extended model,

0T = [aT gs BT gv] al = [ap ap_1 ...ozl] Bl = [ﬂq Byg—1 ﬁl]
(8.7)
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~(1
and let 0( ) be the estimate of @ after [ iterations of the algorithm. Finally,
let

2" =[2(0)2(1) ... 2(N = 1)] (8.8)

be the vector of observed data in the current analysis frame. We use the
notation

—

(- )= Eu{lz} (8.9)

for designating an estimate of the signal statistics based on the observation

. . ~(1 .41
vector z and using the current parameter estimate 6 ). To obtain 9( ) we

use the following two-stage iterative procedure.

8.3.1 State Estimation (E-Step)

Define:

p(t|N) = (t),
—_ — T

P(IN) = 2(t)2” (1) ~2()a (1) .

i.e., p(t|N) represents the current state estimate based on t =0,..., N — 1,
and P(t|N) represents the associated error covariance matrix. Then p(t|N)
and P(t|N) are computed using a forward, Kalman filtering recursion, fol-
lowed by a backward Kalman smoothing recursion, as follows:

Forward (filtering) recursion:

Fort=0,2,...,N —1:

Propagation Equations

p(tlt—1) = O p(t — 1|t — 1), (8.10)
T

P(tlt—1) = 6O Pt — 1t - )BT + GO (GV) (8.11)
Updating Equations

p(tlt) = p(tlt = 1) + k(t) [2(t) = KT p(tlt = 1)] (8.12)

P(t|t) = P(t|t — 1) — k(t)h" P(t|t — 1), (8.13)

where

_ P(t|t—1h
k(t) = hTP(t|t — 1)h"
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Backward (smoothing) recursion:

Fort=N-1,N—-2,...,0:

p(t—1IN) = (= 1= 1)+ 80— 1) (e = 1IN] = 3Opa(t — 1]t = 1)),
(8.14)

P(t—1|N) = P(t—1|t—1)=S(t—1) (P(t|N) — P(t|t — 1)) ST(t—l), (8.15)
where

saflyngf1ufn(@W)Tpﬂauf1y

&M and GO are the matrices @ and G respectively, at the current iteration
stage.

8.3.2 Parameter Estimation (M-Step)

Parameters are estimated by using equation sets similar to the standard Yule-
Walker (YW) solution for estimating the coefficients of an AR process, except
that the correlation values are replaced by their a posteriori value:

alth — _ sp(t—1)sT(t 1) sp(t — 1)s(t), (8.16)
t=0 t=0
1 N—-1 o T o ——
G = N lsz(t) + (a(l+1)) sp(t — 1)s(t)] , (8.17)
t=0
-1
~(+D) ~ . ot s~
. vg(t— Dol (t—1) vy (t — Dv(t), (8.18)
t=0 t=0
N-1 T
1 — ~(1 —
g;(l+1) _ v [Uz(t) + (ﬁ( +1)> ’Uq(t _ I)U(t)] . (8.19)
t=0

We note that s,(t—1)s](t—1) is the upper left p x p sub-matrix of

e — T~ —— — —

x(t)xT(t). sp(t —1)s(t), s2(t), ve(t — vl (t —1), ve(t —)v(t), and v3(t)
—_—

may similarly be extracted from z(t)z” (t).
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Fig. 8.1. Iterative-batch algorithm based on the EM procedure.

8.3.3 Reduced Complexity

In order to reduce the computations involved, we suggest to replace the full
smoothing operation with fixed-lag smoothing (delayed Kalman filter esti-
mate) [9] or even just by filtering. That is, instead of using §(¢|N), the p-
th entry of p(¢|N), as the enhanced signal estimate, it is proposed to use
5(t — p+ 1)t) (fixed lag smoothing) or §(t|t) (filtering), that are the first
and the p-th entries of p(t|t), respectively. Similar observations apply to the
enhanced noise estimate, used by the EM algorithm. With these modifica-
tions we do not need to apply the smoothing equations (8.14)—(8.15) that are
computationally expensive. As indicated in [23], the obtained algorithm still
maintains its nice monotonic convergence behavior.

8.3.4 Discussion

The iterative-batch algorithm is summarized in Fig. 8.1. Note, that two other
blocks are depicted in Fig. 8.1. The first is the initialization block, we will
elaborate on in Sect. 8.4. The second block is responsible to segmenting the
noisy speech signal.

Since the algorithm is based on the EM method, it is guaranteed to con-
verge monotonically to the ML estimate of all unknown parameters (under
Gaussian assumptions), or at least to a local maximum of the likelihood
function, where each iteration increases the likelihood of the estimate of the
parameters. As a byproduct, it yields the optimal linear state (signal) esti-
mate, computed using the estimated parameters.

Refer to the simplified EM algorithm, proposed by Koo et al. [10]. This
simplified EM algorithm is obtained by iteratively estimating the speech pa-
rameters using the enhanced speech signal (by employing the ordinary YW
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equation set), and then using these parameters to improve the estimate of the
enhanced signal (the noise parameters are estimated, using signal segments
at which voice activity is assumed not to be present). We found that unlike
the EM algorithm (even when using filtering or fixed-lag smoothing), which
is guaranteed to be stable and to monotonically increase the likelihood func-
tion, the simplified EM algorithm [10] does not possess such properties. The
simplified EM algorithm results in performance degradation, which is very
significant at the lower SNR range. Similar behavior was noticed by Lim and
Oppenheim [4] in the context of an iterative Wiener filter algorithm for the
enhancement of speech in the presence of white Gaussian noise.

The obtained algorithm is an extension of the algorithm presented in [15]
for the case in which the additive noise is modelled more generally as a colored
AR process. Since the signal and the noise parameter estimates are computed
separately within the algorithm, the increase in computational complexity is
quite moderate. However, the realizable improvement in the enhancement
performance may be quite significant, as indicated in [11], [23].

8.4 Parameter Estimation Using Higher-Order
Statistics

To obtain a reliable estimate of the speech signal, it is essential to have a pow-
erful initialization algorithm for the speech and noise parameters. Otherwise,
the estimation algorithm might converge to a local minimum of the likelihood
function. When the SNR is high, an initial estimate of the speech parameters
may be obtained using standard LPC processing, and an initial estimate of
the noise parameters may be obtained by employing a voice activity detector
(VAD), so that the noise statistics are accumulated during silence periods.

Unfortunately, this initialization procedure breaks down at low SNR con-
ditions, below 5 dB in our experiments. However, if the additive noise v(t)
is assumed to be Gaussian, then higher-order statistics (HOS) may be incor-
porated in order to improve the initial estimate of the speech parameters. In
that case, the quality of the enhanced speech signal is significantly improved
compared to the standard initialization method that was indicated above.

It can be shown [by invoking the basic cumulant properties in [46][Section
2.2.3] and recalling (8.2)] that

cum (s(t), s(t —11),s(t —la),...,s(t —lnr)) (8.20)

=— Zakcum(s(t —k),s(t—11),s(t —12),...,s(t —lnm)),
k=1

where cum(+, -, ...) denotes the joint cumulant of the bracketed variables and
M > 1. We note that

cum(z(t)) = E{z(t)},
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cumn(=(t), 2(t — 1)) = E{=(t)=(t — 1)},
cum(z(t), z(t — 1), 2(t — l2)) = E{z(t)z(t — l1)z(t — l2)},

cum(z(t), 2(t — hh), 2(t = lo), 2(t — I3))
= E{z(0)2(t = L)z(t = l)z(t = 13)}
—E{(z()z(t = 1)} - E{2(t — l2)2(t — 3)}
—E{(z(t)z(t — l2)} - E{2(t)2(t — I3)}
—E{(z(0)2(t = I5)} - E{z(t = h)2(t — l2)}-

A general formula for expressing cumulants in terms of moments can be found
in [46].

Now, under the assumption that v(¢) is Gaussian, it can be shown [by
invoking the same basic cumulant properties in [46] and recalling (8.1) and
the statistical independence of v(t) and s(t)] that

cum (z(t),z(t = ly), 2(t = l2), ..., z(t = lp))

=— Zakcum(z(t —k),z(t—11),z(t = l2),...,z(t = ln)),

whenever M > 2. For M = 1, we obtain the standard Yule-Walker equations
based on second-order statistics. However, in this case the equations do not
hold due to the contribution of the additive noise. This explains why the
parameter initialization breaks down at low SNR. For M > 2. we obtain
additional Yule-Walker type equations that are insensitive to the presence
of additive Gaussian noise. These equations appear to be very useful if the
additive noise is “more Gaussian” than the speech signal in the sense that its
higher-order cumulants are relatively small in magnitude (this assumption is
verified in Sect. 8.7).

In practice the cumulants are approximated by substituting the unavail-
able ensemble averages with sample averages, thus obtaining a set of linear
equations that may be used to compute the AR parameters aq,...,a, di-
rectly from the observed signal z(t). The spectral level g, of the excitation
signal may be computed by applying a whitening filter using the estimated
AR parameters.

Since the equations are satisfied for all M > 2 and any combinations of
lags l1,12,...,ln, we have an over-determined set of equations that may be
used to improve numerical and statistical stability of the resulting parameters
estimates.

Experimental results using actual speech signal in several typical noise en-
vironments indicated that at low SNR conditions, below 5 dB, using fourth-
order cumulants (M = 3) one typically obtains a better and more robust
initial estimate of the speech parameters as compared with the conventional
LPC approach based on second-order statistics. The use of third-order cu-
mulants (M = 2), as suggested in [47], was not that effective.
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We also tried to incorporate HOS into the iterative algorithm, and not
merely as an initialization tool. For that purpose consider (8.20) for M > 1.
By using the cumulants of the enhanced speech signal, §(t), in (8.20) we
obtain an iterative algorithm that employs HOS to iteratively estimate the
speech AR parameters. However, experiments showed that the resulting al-
gorithm produces low quality enhanced speech, with reduced bandwidth for-
mants. Similar observation was noted by Masgrau et al. [8], when incorpo-
rating third order statistics into the approximated EM, Wiener filter-based
algorithm of [4].

Note that the incorporation of HOS implies a nonlinear framework. This
issue is elaborated on in the context of the application of the UKF in Sect. 8.6.

8.5 Gradient-Based Sequential Algorithm

The iterative-batch EM algorithm requires the use of an analysis window over
which the signal and noise statistics are assumed to be stationary. To avoid
this assumption, we now suggest a sequential speech enhancement algorithm
which is no longer an EM algorithm. The resulting sequential algorithm is
computationally more efficient than the iterative-batch algorithm. Another
benefit of the sequential algorithm is that it is delay-less, unlike the iterative-
batch algorithm that has an inherent delay of one processing window frame.

Following the considerations in [15] (see also [16], that considers the two-
channel case) we obtain in Appendix B the following sequential speech en-
hancement algorithm. This algorithm consists of a forward Kalman filter,
given by (8.10)—(8.13), whose parameters are continuously updated accord-
ing to:

a(t+1) = &(t) — % [Q5(0) + QL (), (8.21)
du(t+1) = 157 0500+ 67 (0100 (322
Ble+1) = Ble) — £ [Q1a(0) + Q1 (DB (8.23)
(1) = 757 (@00 + AT (0Q5()]. (321)

where Q*(t), Q" (t) are defined by

o (@10 QL)
@) = [Q;m %(t)}
t — —

=D AT s (M8 (1)= AQ7(E = 1)+ 841 (D541 (D),
7=0
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v | QT1(t) Qa(1)
QI = [le(t) Qb J
/\ /\
= Z /\t Vo1 (T Z+1(T): A Q" (t — 1)+ ”q+1(t)v§+1(t) .

~

Qs (1) is a p x p matrix, Q5,(t) = (Q5,(t))" is a p x 1 vector, and Q3 (t) is a
scalar value. Similarly, QY. (£) is a ¢ x ¢ matrix, Q% (t) = (Q3,(t))" isa gx 1
vector, and Q% (t) is a scalar value. 0 < Ag, A, < 1 are exponential weighting
factors and ps, p, are the update step sizes.

An improvement in the convergence behavior of the algorithm is obtained
by normalizing the step sizes, i.e. using:

QlQ(t
psu@ (1

Q12(t) + Q14 (
HQ (t)+Q11(t

a(t+1) = a(t) —

Blt+1)=p(t) -

We can further simplify the algorithm by setting Ay = A, = 0, i.e. esti-
mating the respective correlation matrices, Q*(t) and Q"(t), using only the
current state-vectors. This simplification leads to a least-mean-square (LMS)
type algorithm.

8.6 All-Kalman Speech and Parameter Estimation

Until now, our discussion was limited to the non-Bayesian framework. The
parameters of the problem (i.e. a, 3, gs, g,) were assumed to be determinis-
tic (although time varying). For this reason, the mazimum likelihood solution
for the parameters could be obtained via the estimate-maximize algorithm
and a sequential variant thereof could be obtained. However, carefully look-
ing at the gradient-based sequential algorithm [depicted in (8.10)—(8.13) and
(8.21)—(8.24)] an interesting interpretation can be derived. Since both signals
and parameters are continuously updated, other parameter adaptation mech-
anisms could be applied, while maintaining the forward-recursive structure of
the algorithm. As the non-Bayesian framework was merely an instrument for
deriving the sequential algorithm, it is not obligatory for deriving a sequen-
tial variant. The Bayesian framework could be used instead. It is therefore
proposed to replace the gradient-based parameter search by a Kalman-based
adaptation. The obtained algorithm which apply the Kalman filter both to
the signal enhancement stage and the parameter estimation stage will be de-
noted all-Kalman recursion. Two variants of the all-Kalman based algorithm
are addressed, denoted dual scheme and joint scheme.
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Fig. 8.2. All-Kalman speech and parameter estimation. Dual estimation proce-
dure.

8.6.1 Dual Scheme

The first variant of the algorithm in the Bayesian framework follows. In this
algorithm, we maintain the structure of the gradient-based algorithm by just
replacing the parameter adaptation by a Kalman filter. The resulting method,
referred to by Wan et al. [31] as dual estimation method, is comprised of two
steps. In each time instant a speech Kalman filter step is applied based on
the current estimate of the parameters. In parallel a parameter Kalman-
based estimate step is applied based on the current signal-state estimate.
The concept is depicted in Fig. 8.2. At time instant ¢, §(¢|t) is calculated by
applying the speech Kalman filter to the previous speech estimate §(¢|t) using
the parameter set é(t — 1]t — 1). In parallel, another Kalman filter is applied
to obtain a new parameter estimate 9(t|t), based on the previous parameter
estimate (t — 1|t — 1) and the speech estimate §(t — 1|t — 1).

Signals Model. For the speech signal we assume that the state-space model
given in (8.6) holds. For brevity of the exposition we assume that the additive
noise is white, i.e. its AR order is set to ¢ = 0. Thus, the noise model is simply

’U(t) = Goly (t)

Parameter Model. In the Bayesian framework the parameters are given a
dynamic model. Since we do not have any a priori knowledge on this dynamics
we assume a very simple process, namely (almost) Brownian motion. Finding



8 EM Algorithm and Kalman Filter 177

a better model is still an open research issue. Define the parameter vector
ol (t) = [on(t) az(t) ... ap(t) ],

and the innovation vector
ul(t) = [Uay () Way(t) ... ua, (t) ],

with the respective covariance matrix
Qa(t) = E{ua(t)ug(t)}-

The parameter state-space equations are:

a(t) = Paa(t — 1) + ua(t), (8.25)
2(t) = hI(t)a(t) + gs(t)us(t) + v(t),

hL(t)=[s(t—1) s(t—2) ... s(t—p)]

is comprised of speech signal samples and @, = I, or very close to it.

Speech Kalman Filter. Using the speech state-model (8.3) and the current
estimate of the parameter set (obtained by the, running in parallel, parame-
ters Kalman filter) we obtain the following speech Kalman filter.

Propagation equations:

By(tlt —1) = By(t —1)8,(t — 1]t — 1), (8.26)
Pt —1) = d,(t — 1/t — )Pt — 1|t — 1)L (t — 1|t — 1) (8.27)
+gs(t = 1t = 1)gy (¢ — 1]t — 1).

Kalman gain:

B P(t|t — 1)h,
k(t) = RTP(t|t — Dhs + g2(t — 1t — 1) (8.28)
Update equations:
8,(tt) = 8,(t]t — 1) + k() [2(t) — hL 8, (¢t — 1)] (8.29)

P(t[t) = P(t[t— 1) — k(t) [Al P(t|t — 1)hy + g2 (t — 1|t — 1)] k7 (¢). (8.30)
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Parameters Kalman Filter. Using the parameters state-model (8.25) and
the current estimate of the speech signal (obtained by the, running in parallel,
speech Kalman filter) we obtain the following parameters Kalman filter.

Propagation equations:
atlt —1) = dqa(t — 1t — 1), (8.31)
Pa(t|t —1) = o Pu(t — 1|t — 1)L + Q. (8.32)

Kalman gain:

Pat]t — Dha(tlt)

ka(t) = = . (8.33)
hE(tt) Pa(tlt — Dha(t[t) +g2(t — 1t — 1) + g3 (¢t — 1|t — 1)
Update equations:
a(tlt) = a(tlt — 1) + ka(t) [z(t) — RI(t[t)a(t]t — 1)] , (8.34)
Pa(tlt) = Pa(tlt —1) — ka(t) {ﬁZ(tlt)Pa(tIt — Dhal(tft) (8.35)

+2(t =1t = 1) + go(t — 1t = 1)] kg (t).

G2(t|t) may be estimated similarly to é(t[t) by applying another Kalman
filter, or by recursively calculating the obtained innovation sequence gain.
G2(t|t) could be estimated by averaging over non-speech samples, using deci-
sions obtained by VAD.

8.6.2 Joint Scheme

Consider the speech and parameters state-space presentations given by (8.3)
and (8.25). In our Bayesian framework, both speech and parameters are as-
sumed to be stochastic processes. Note, that (8.3) involve a multiplication of
these processes. Define an augmented state-vector comprised of the speech
signal and the parameters n” () = [s] (t) @’ ()] and an augmented innova-
tion vector u” () = [gs(t)us(t) ua(t)]. The state-space equation becomes
nonlinear:

10 = [ g ] = a0, (8.36)

nonlinearity
2(t) = [100...0]n(t)+v(t).

Thus, in generalized notation, the nonlinear transition and measurement
equations are given by,

n(t) = @ (n(t—1),u(t)), (8.37)
z(t) = h(n(t—1),v(t)).
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Fig. 8.3. All-Kalman speech and parameter estimation. Joint estimation proce-
dure.

If we wish to apply the Kalman filter we will need a nonlinear modification
thereof. Following Wan et al. [31], we will define the joint scheme for both
speech and parameters estimation. The system is depicted in Fig. 8.3. The
two components of 7(t|t), namely §(¢|¢t) and 6(t|t), are jointly obtained by
applying an approximated Kalman filter. We will show in the sequel that
this filter should tackle with the inherent nonlinearity of the system. In the
past, the extended Kalman filter (EKF), based on the linearization of the
equations, was used. This method might be quite cumbersome, as it involves
the calculation of derivatives, but yet it is not accurate enough, as only first-
order approximation is applied.

The Unscented Kalman Filter. A better method for linearizing the non-
linear state equations was proposed by Julier and Uhlmann in [30]. This
extension to the Kalman filter is making use of the wunscented transform
summarized in Appendix C. Figure 8.4 summarizes the steps involved in un-
scented Kalman filter (UKF). The method consists of calculating the mean
and covariance of the augmented state-vector, given in (8.37), undergoing
a known nonlinear transform by using the unscented transform. Denote by
7(t — 1|t — 1) the current state-vector estimate and by Pp,(t — 1|t — 1) its
respective covariance. The method is comprised of four stages. In stage (a),
7t — 1|t — 1) is split into o-points = (¢ — 1]t — 1) approximating the prob-
ability density function of the vector. By using this method the mean and
covariance better propagate through the nonlinearities. However, it must be
stressed that no claims of optimality holds. Then, in stage (b), each of the
o-points is undergoing the known nonlinearity yielding the o-points of the
predicted state-vector, Z(t|t — 1). The o-points of the predicted noisy mea-
surement, Z(t|t — 1), are calculated as well. In step (c), the o-points are
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Fig. 8.4. Unscented Kalman filter: (a) Unscented transform. (b) Propagation equa-
tions. (c) Inverse unscented transform. (d) Update equations.

collected together yielding the predicted values 7(t|t — 1) and Z(¢|t — 1). This
concludes the propagation stage of the UKF. In step (d), similar to the con-
ventional filter, the Kalman gain is calculated by K (t) = P, (t)P_,}(t). Note,
that the covariance matrices estimates are obtained by the UT. Finally, the
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update stage is implemented by properly weighting the predicted values and
the current measurement yielding the new estimate 7)(¢[t).

The complexity of the suggested method is quite low. Suppose that the
dimension of f(t|t) is L. Then, only an increase of the computational load
by a factor of 2L + 1 compared with the standard Kalman filter is required.
The obtained UKF, although not optimal, is a better and more sophisticated
linearization of the nonlinear system.

8.7 Experimental Study

In this section, we provide a performance evaluation of the proposed iterative-
batch algorithm, denoted for brevity Kalman estimate-mazimize (KEM) and
its sequential version Kalman gradient descent (KGD) algorithm. Both objec-
tive and subjective tests are conducted. The performance of these algorithms
is compared with the following algorithms:

1. The log spectral amplitude (LSA) estimator, suggested by Ephraim and
Malah [41].

2. The optimally-modified LSA!, proposed by Cohen and Berdugo [42] and
denoted hereinafter OM-LSA.

3. The HMM-based speech enhancement algorithm suggested by Ephraim

et al. [34], [35].

The Wiener-EM algorithm of Lim and Oppenheim [4], denoted WEM.

5. The Mixture-Maximum algorithm proposed by Burshtein and Gannot
[43], denoted MixMax.

.

Comparison with other algorithms could be found in [23].

The organization of this section is as follows. We start by defining the
experiment setup. We proceed by assessing the Gaussian assumption for the
noise signal, assumption that forms the basis of the initialization procedure
of the KEM version. Some objective tests are then defined and presented,
namely the total SNR, the weighted segmental SNR, the noise reduction
level and the log spectral distance. The word recognition rate of an auto-
matic speech recognition (ASR) system is used as another figure-of-merit for
evaluating the enhancement algorithms. In speech processing field, the best
assessment is obtained by conducting subjective tests. For this purpose, we
provide speech spectrograms and describe informal listening tests. Finally,
a preliminary experimental study is conducted for the UKF, showing the
potential of the method.

8.7.1 Experimental Setup

In the following experiments, five iterations are required for the KEM algo-
rithm to converge. The AR order used to model the speech signal is p = 10.

! The author would like to thank Dr. I. Cohen of the Technion-IIT for providing
the OM-LSA code.
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The frame size is 16 mSec, although small changes in this value did not de-
grade the performance. The analysis frames are non-overlapping (overlapping
frames did not yield improved performance). In all experiments (unless oth-
erwise stated), we used the fixed-lag smoothing version. The HMM algorithm
was based on the minimum mean square error (MMSE) criterion, since it was
reported to be superior over the alternative maximum a-posteriori (MAP)
criterion [35]. The WEM algorithm was the RLMAP variant in [4], since it
yielded the best results. The OM-LSA gain floor and forgetting factor were
adjusted according to the desired output characteristics. In the MixMax algo-
rithm the post-processing level was set according to the amount of affordable
distortion. The speech signal was modelled by using 40 Gaussian mixtures.

We used speech signal drawn from TIMIT [48] or TIDIGITS [49], depend-
ing on the experiment conducted. All signals were down-sampled to 8 kHz.
The speech signal was degraded by additive noise at various SNR levels.
As for the noise sources, we used signals drawn from the NOISEX-92 [50]
database together with computer-fan noise signal, recorded in our lab, and
computer generated white Gaussian source. In the KEM algorithm, an AR
process of order ¢ = 4 was used for modelling the non-white noise signals.
For the white noise, we used ¢ = 1 to allow deviation from the exact model
due to short data-segments.

8.7.2  Verifying the Gaussian Assumption

We first want to assess the assumption that the noise signals are more Gaus-
sian than the speech signal. Recall, that this assumption led to the HOS-based
initialization method, used by the KEM method. In Fig. 8.5, we assess the
validity of the Gaussian approximation, by plotting the empirical cumulative
distribution function (CDF) of four signals, 125 mSec long each. The first
is a speech-like noise drawn from the NOISEX-92 database [50], the second
is a factory noise from the same database, and the others are voiced and
unvoiced segments of a speech signal drawn from TIMIT database [48]. The
vertical axis employs a nonlinear division of the interval [0, 1], such that the
vertical coordinate of a sample with CDF ¢, is y = ¥(c), where ¥ is the CDF
of a Gaussian random variable, whose mean and variance are the empirical
mean and variance of the given signal segment. Hence, a Gaussian random
variable corresponds to a straight line (presented by a dashed line in the fig-
ure). As depicted in Fig. 8.5, the noise segments are very close to an ideal
Gaussian curve. Unvoiced speech segments possess similar curves, although
not as close to Gaussian distribution as the noise signals. Opposed to that,
the voiced segment deviates significantly from the Gaussian curve. It should
be stressed, however, that the difference between the voiced speech signal and
the other waveforms is not as large when shorter segments are used. There-
fore, the benefit arising from using HOS-based initialization is expected to
be less significant.
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Fig. 8.5. Gaussian curves for speech-like noise (upper-left), factory noise (upper-
right), unvoiced speech segment (lower-left) and voiced speech segment (lower-
right).

8.7.3 Objective Evaluation

We used two types of objective tests. The first measure relates directly to the
waveform properties, while the other is an indirect measure of the enhance-
ment capabilities, namely the increase in detection rate of an ASR system.

Waveform Assessment. Define y(t) to be the signal to be assessed (noisy
signal or one of the algorithms’ output) and recall that s(¢) is the desired
speech signal. Four objective quality measures were used to assess the algo-
rithms’ performance.

The first is the total output SNR defined by

Do s*(t)
2
> (s(t) — (1))
where the time summations are over the entire duration of the signals. Al-

though this distortion measure is not very correlative with speech quality, it
is still informative.

SNR =

(8.38)
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The second objective quality measure is the noise level (NL) during non-
active speech periods, defined as,

NL = Median,, {10log;, (E(n)) n € Speech Nonactive}, (8.39)

where E(n) =Y . y*(7), and T}, are the time instances corresponding to
segment number n. Note that the lower the NL figures are, the better the
result obtained by the respective algorithm is.

The third figure-of-merit is the weighted segmental SNR (W-SNR). This
measure applies weights to the segmental SNR within frequency bands. The
frequency bands are spaced proportionally to the ear’s critical bands, and
the weights are constructed according to the perceptual quality of speech.
Define, S(t, Bx) and Y (¢, Bi) to be the clean speech signal and the signal to
be assessed at frequency band By, respectively. Now, define SNR(n, By) =

2
T Z(gf(TT 1;: )(I:‘;B(I;)Bk)ﬁ the SNR in segment number n and frequency band
TETH » »

Byj,. W-SNR is defined as,

W-SNR = (8.40)

Median,, {1010g10 (Z W (Bj)SNR(n, Bk)> n € Speech Active} .
k

The frequency bands By, and their corresponding importance weights W (By,)
are according to the ANSI standard [51]. Studies have shown that the W-
SNR measure is more closely related to a listener’s perceived notion of quality
than the classical SNR or segmental SNR [52].

The fourth objective speech quality measure, which is with better correla-
tion with the mean opinion score (MOS) than the other mentioned distortion
measures, is the log spectral distance (LSD) defined by,

LSD = Median,, Mean,, {[201log, |S(n,ei«)| — 201logq, |Y (n, e7¢)|]2},
10 10
n € Speech Active}. (8.41)

S(t,e?“) and Y (t,e’*) are the short-time Fourier transforms (STFT) of the
input and the assessed signals, respectively. Note, that a lower LSD level
corresponds to a better performance.

In the last three figures-of-merit, we used the median value of the individ-
ual frames readings. Median averaging eliminates outliers, and is therefore
superior to the common definition involving simple averaging.

For the evaluation depicted in Fig. 8.6, we used 50 sentences drawn from
TIMIT database (25 uttered by male speakers and 25 — by female speak-
ers) contaminated by speech-like noise drawn from NOISEX-92 database at
various SNR levels. The four figures-of-merit, (8.38)—(8.41) were calculated
separately for each sentence and averaged over all 50 sentences. It is clearly
shown that the best results were obtained by the OM-LSA algorithm in all
comparison parameters. It should be noted, however, that in this setup the
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Fig. 8.6. Figures-of-merit for 50 TIMIT sentences contaminated by speech-like
noise.

OM-LSA was tuned to a working point in which large noise reduction is
traded-off for increased speech distortion. The MixMax algorithm was tuned
to low distortion output. We will elaborate on the working point of the al-
gorithm in the subjective test section. The KEM algorithm was found to be
inferior to all other tested algorithms, although the difference in performance
was not so crucial. Similar trends were observed in factory noise signal (from

NOISEX-92) and the white Gaussian noise.

Automatic Speech Recognition Tests. ASR systems are very sensitive
to additive noise and speech distortion. Therefore, detection rate of such
systems can be used as another method for comparing the performance of
several enhancement algorithms.

We used an ASR system? using a continuous density HMM-based speech
recognition system. The acoustic front-end is comprised of 8 cepstral val-
ues and their time derivatives, computed by using standard LPC analysis.
The resulting 16-dimensional feature vector is modelled by a mixture of 3

2 The author would like to thank Dr. J. Goldberger of Bar-Ilan University for
providing the speech recognition software.
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Table 8.1 Single digits recognition rate.

SNR Noisy KEMI LSAE HMM

71.2 87.1 91.2 72.5
78.3 92.5 95.0 87.5
84.6 97.1 97.5 93.3
91.7  97.5 97.5 95.0
12 97.5 97.9 98.3 96.2
15 97.5 98.3 97.9 97.9

0
3
6
9

diagonal-covariance Gaussians. Each word in the vocabulary was modelled
by one, 5-state, left-to-right HMM. Training was performed using the Baum-
Welch algorithm. The decoder was a conventional Viterbi algorithm.

The speech database was the speaker independent, high quality connected
digits recorded at TT [49]. This database is divided into training and testing
digit strings uttered by 225 adult talkers. The single digits (word) recognition
rate of the system, when tested on the clean isolated digits sentences, was
99.1%. The noise signal for this experiment was computer-fan noise, recorded
at our lab. This noise is typical to office environments. The designated digits
were contaminated by the noise signal at various SNR levels. The SNR was
measured in the frequency region of interest, between 200 Hz and 3200 Hz.

The single digits recognition rate of the system when subject to speech
signals contaminated by the noise is summarized in Table 8.1. We also show
the corresponding recognition rate, when the noisy speech is pre-processed
by the KEM algorithm (fixed-lag smoothing version; the filtered version was
slightly inferior), by the LSA algorithm [41], and by the HMM-MMSE algo-
rithm [34]. As can be seen, the KEM algorithm improves the performance by
about 6dB (i.e., when speech enhancement is not employed, the SNR needs
to be increased by 6dB in order to obtain the same recognition rate). The
KEM algorithm shows superior performance compared to the HMM-MMSE
algorithm, and is comparable to the LSA at input SNR levels higher than
6dB. Below 6dB input SNR, the LSA is superior to the KEM algorithm.

8.7.4 Subjective Evaluation

A useful subjective quality measure is the assessment of speech spectrograms
(sonograms). Figure 8.7 shows the spectrograms of some clean speech seg-
ment, the corresponding noisy segment, and the outcome of several enhance-
ment algorithms, namely the HMM, MixMax, OM-LSA and KEM (fixed lag
smoothing version).

As can be seen, the OM-LSA, the KEM, and especially the MixMax al-
gorithms seem to preserve the speech detailed structure. However, the KEM
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Fig. 8.7. Sonograms of “jokes cartoons and cynics to the contrary mothers in law
make good friends” for (a) clean, (b) noisy, (¢) HMM, (d) MixMax, (¢) KEM, and
(f) OM-LSA algorithms. SNR 5dB speech-like noise.

algorithm is inferior to other algorithms in terms of noise reduction. As de-
picted in Fig. 8.7, the HMM algorithm output has distorted speech sono-
gram. The HMM algorithm is therefor inferior to other algorithms in respect
to speech quality. This observation was also noted in [35]. These results cor-
responds also to informal listening tests, conducted in our lab. The KEM
algorithm preserve the speech natural sound. However its noise reduction
is lower than that obtained by the MixMax algorithm and especially by the
OM-LSA algorithm. Some speech samples can be found in [53]. As mentioned
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before, we should emphasize that the noise reduction ability of both OM-LSA
and MixMax algorithms can be sacrificed for the sake of more natural speech
outcome. Overall, the state-of-the-art OM-LSA algorithm has the best noise
suppression ability while keeping the speech distortion level sufficiently low.
The MixMax algorithm outcome has the most natural sound characteristics.
The KEM performance has limited performance compared to these algo-
rithms but it is superior to the HMM-MMSE method. These phenomena are
demonstrated in [53] as well.

8.7.5 Comparison Between EM-Based Algorithms

We also test the variants of the EM-based algorithm, namely the Wiener
filter based WEM algorithm, the Kalman filter based KEM algorithm and
its sequential version, the KGD.

According to our informal listening rests, at SNR levels below 5dB the
speech quality of the KGD algorithm is only slightly inferior to that of the
KEM. Above 5dB the KGD algorithm tends to be unstable, with a time-
varying signal level. We attribute this phenomenon to the fact that at high
SNR levels the estimated noise model parameters might be very inaccurate
(since the noise is masked by the signal). A possible solution is to replace the
sequential update equation of the noise parameters by an estimator that,
based on a voice activity detector, considers only signal segments where
speech activity is not detected.

A comparison between the filtered output and the fixed-lag smoothed out-
put showed a slight advantage to the former. However, the fixed-lag smoothed
output was sometimes characterized as being slightly muffled.

For the computer generated white Gaussian noise we also tested the WEM
algorithm, that was designed under the assumption of white Gaussian noise.
Our listening tests indicate some advantage to the KEM algorithm over the
WEM algorithm.

8.7.6 Evaluation of the UKF

Due to convergence problems, the UKF algorithm is only capable at this stage
of working with artificial signals. The performance with real speech signals is
still to be determined. However, to demonstrate the potential of the method,
we still provide some results.

Time varying Gaussian AR process (4 coefficients) embedded in white
Gaussian noise with input SNR level of about 20dB is processed by the joint
Kalman scheme®. The noise level is estimated during non-signal portions
of the noisy signal. The tracking ability of the procedure is presented in
Fig. 8.8. Although the obtained results are limited to simple problems, they
demonstrate the potential of the method.

3 All Simulations concerning the UKF are implemented by modifying R. van der
Merwe et al. [54] code, written in Matlab® language.
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Fig. 8.8. UKF parameter tracking ability for an AR process embedded in white
noise.

8.8 Conclusions

A comprehensive survey of Kalman filter based algorithms was given. Two
applicable families of estimation algorithms were presented. The first involv-
ing an off-line training stage, where representative parameters (e.g. HMM)
are extracted from clean speech utterances and then used in the enhance-
ment stage. The second family, consists of online methods in which the signal
and the parameters are estimated jointly from the corrupted signal. Usually,
members of the second family employ the EM algorithm.

The main difference between the two approaches is that the HMM-based
methods constrain the estimated speech (and noise) parameters to some code-
book of possible spectra that is obtained from clean speech database. This
codebook is in fact a detailed model to the speech signal. The success of the
HMM-based methods depends on the accuracy of this model. A mismatch
between the database used to construct the speech codebook, and the actual
speech signal that needs to be enhanced, might deteriorate the quality of the
enhanced signal.

Our main concern in this chapter is the EM based online algorithm. We
presented iterative-batch and sequential speech enhancement algorithms, in
the presence of colored background noise, and compared the performance
of these algorithms with alternative speech enhancement algorithms. The
iterative-batch algorithm employs the EM method to estimate the spectral
parameters of the speech signal and noise process. Each iteration of the algo-
rithm is comprised of an estimation (E) step and a maximization (M) step.
The E-step is implemented by using the Kalman filtering equations. The M-
step is implemented by using a non-standard Yule-Walker equation set, in
which correlations are replaced by their a posteriori values, that are calcu-
lated using the Kalman filtering equations. The enhanced speech is obtained
as a byproduct of the E-step. Our development assumes a colored, rather
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than white, Gaussian noise model. The incremental computational price that
is paid for this extension is moderate. However, the realizable improvement
in the enhancement performance may be quite significant.

Forth-order cumulant based equations were shown to provide a reliable
initialization to the EM algorithm. Alternative initialization methods that
we tried, such as third order statistics based equations, were not as effective.

The performance of this algorithm was compared to that of several state-
of-the-art alternative speech enhancement algorithms in a series of evaluation
tests comprised of both objective (total and weighted segmental SNR, log
spectral distance, noise level, and ASR recognition rate) as well as subjective
(sonograms and informal listening test) assessment. A distinct advantage of
the proposed algorithm, compared to alternative algorithms is that it en-
hances the quality and SNR of the speech, while preserving its intelligibility
and natural sound. Although superior to the HMM based algorithm, the over-
all performance of the Kalman filter algorithm is inferior to the more modern,
MixMax and especially to the OM-LSA algorithms.

We also compared several variants of our method. Fixed-lag Kalman
smoothing was superior to Kalman filtering in terms of the objective distance
measures. However, our informal speech quality tests suggest the opposite
conclusion (i.e., that filtering is slightly superior to fixed-lag smoothing).

In order to reduce the computational load and to eliminate the delay of the
iterative-batch algorithm, the sequential algorithm may be used. Although in
general, the performance of the iterative-batch algorithm is superior, at low
SNR levels, the differences in performance are small.

In the Bayesian framework, the recently proposed UKF was applied to
the problem of single-microphone speech enhancement. Results for simple,
artificial signals, demonstrate the potential of the method. Nevertheless, for
a comprehensive test, it should be further applied to real speech signals em-
bedded in higher noise levels. Performance limitations and optimality issues
of the suggested method are still open issues.

Some final remarks to conclude our survey on the use of the Kalman filter
in single-microphone speech enhancement tasks.

In spite the fact that it has been used for almost two decades, there is
still much to do for improving the performance of Kalman filter based algo-
rithms. The main advantage of these algorithms stems from the fact that the
Kalman filter may be continuously updated. The obtained speech has a natu-
ral sound and the residual noise is clean from annoying artifacts. However, the
obtained noise suppression seems limited. This disadvantage, in our opinion,
stems from the linear processing regime in which the Kalman filter is applied
in (although some nonlinear extensions were mentioned). Incorporating the
nonlinearity, perhaps through the use of the UKF (in conjunction with the
HOS-based approach), might yield better noise reduction, while maintaining
the low distortion and keeping the computational load sufficiently low.
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Appendix A: Derivation of the EM Algorithm

We provide a derivation of the EM algorithm presented in Section 8.3.

Let z defined by (8.8) be the vector of corrupted speech samples (observed
data) possessing the probability distribution function (PDF) fz(z;8), where
6 is defined by (8.7).

The maximum likelihood (ML) estimate of 6 is given by

éML = argmgxlog fz(2;0). (8.42)

Our objective is to estimate the clean speech samples s(¢) from the observed
data z(t). Such an estimate will be obtained as a byproduct of the ML pa-
rameter estimation algorithm. The solution to (8.42) is obtained by using the
estimate-maximize (EM) algorithm, [3], which is a general iterative procedure
for obtaining the solution to the ML optimization problem. To apply the EM
algorithm we need to define a complete data vector y which is related to the
observed data vector (incomplete data) through a (generally non-invertible)
transformation, F(-), i.e.,

z = F(y). (8.43)

The general [-th iteration of the EM algorithm consists of the following esti-
mation (E) step and maximization (M) step,

E-step
()
Q6.6 ") = Eyu {log fy (y; 0)|z} . (8.44)
M-step
§(l+1) = arg max Q(B,a(l)).

~(l
0() is the estimate of @ after [ iterations of the algorithm. Intuitively, the

E-step yields an estimate of the a posteriori complete data statistics given
the incomplete data. The crucial point in any implementation of the EM
algorithm is how to define the complete data such that the implementation
of the maximization required by the M-step is simpler than the maximization
required by the original ML criterion, (8.42).

Now consider our noisy speech parameter estimation problem. The ob-
served data vector (incomplete data) in the current analysis frame is,

z=[2(0) 2(2) ... 2(N-1)]".

The corresponding vectors of speech and noise samples are,
s=[s(—p) s(—p+1) ... s(N — 1)]T,
v=[v(-q) v(—g+1) ... v(N — 1)]T.
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N is the frame length. p and ¢ are the speech and noise AR orders. The
complete data vector, y, is defined to be a concatenation of the clean speech
samples s, and the noise samples v, i.e.

T _ [ sT T] _

Yy v

Invoking Bayes’s rule,

log fy (y; 0) = log fs(s;0) + log fo,(v;0),

where 6 is the vector of unknown parameters defined in (8.7).

Under the assumption that both the speech innovation sequence, us(t),
and the noise innovation sequence, u,(t) are Gaussian (hence, s(t) and v(t)
are also assumed Gaussian), and recalling (8.2) and (8.4), one obtains,

N N
log fy (y;0) = C +log f(s,(—1)) + log f(vy(—1)) — 5 loggs — 5 log g
N—-1 N—-1

! Z )+ als,(t— 1) - Z [v(t) + B v, (t —1)]%, (8.45)

~ 2g, P 290 =

where C' is a constant, independent of the parameter vector 6. Under
the assumption that N >> p,q, the contributions of log f(s,(—1)) and
log f(vg(—1)) in (8.45) are negligible. Hence, taking the conditional expecta-

~(1
tion given the corrupted measurements z at 0( ) yields,

"0 N N
Q0,0 ) = Ego {log fy (y;0)[z} = C — - log gs — - log g,

1 N— — _——

/\
~3 s2(t) + 2a” s,(t — 1)s(t) +a’ s,(t — 1)8;(25 -1 a
9s

,_\

t=0

] Nl — —
V2(8) + 287 vg(t — Vo(t) +8T vy(t — 1wl (t - 1) B, (8.46)

where the notation (8.9) has been used.

Equation (8.46) implies that the maximization of Q(O,a(l)) with respect
to O (M-step) is completely decoupled to two separate optimization prob-
lems, one with respect to the speech parameters, and the other with respect
to the noise parameters. That is a very desirable property of the algorithm.
Equations (8.16)—(8.19) are obtained by straightforward differentiation of
(8.46).

Appendix B: Derivation of the Sequential
Approximation

We provide a derivation of the sequential algorithm presented in Section 8.3.
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The suggested recursive algorithm is based on the following gradient de-
scent algorithm for solving the ML optimization problem, (8.42),

p 0Olog fz(2;6)

é(lJrl)
N 00 lo=0"’

— " (8.47)

where é(l) is the estimate of 0 after [ iteration cycles. The constant p is the
update step sizes. For sufficiently small step sizes, this algorithm converges to
a local maxima of the likelihood function. To compute the partial derivatives
n (8.47), we suggest using Fisher’s identity [55]. Let the vector y (complete
data) be some vector, that is related to the measurements vector z by the
transformation (8.43). Then Fisher’s identity asserts the following:

(1)

0 0 0
59 108 f2(2:0) ,_go = 5o Egollog fy (y;0)|2} = 5,Q(0,6 ) ;_zo,

(8.48)
where we have used the definition (8.44). In order to make this identity useful,

~(1
y should be chosen such that the differentiation of Q(8, 0( )) is simpler to
implement than the direct differentiation of log fz(z;0).
Differentiating (8.45) with respect to v and invoking (8.47), (8.48) yields,

N1 —— o
&ttt = a0 - ]\[;—; Z sp(T—1)s) (T —1) &V s, (1 —1)s(7)
S =0

To obtain our sequential algorithm, the iteration index is replaced by the time
index. We also incorporate a forgetting factor for calculating the covariance
terms. For convenience we define,
Qs(t) é |:Qil(t) Qi2(t):|
@3, (t) Q3(t)
/\ /\

Z T 81 (T) sy (T)= AQ°(t — 1)+ spya(t)sy 1 (1) -

1>

Q3,(t) is a p x p matrix, Q3,(t) = (Q3,(t))" is a p x 1 matrix, and Q3 (t)
is a scalar value. Ay and )\, are forgetting factors for the speech and noise,
respectively that satisfy 0 < )\5,)\ < 1 and control the update rate. Then
our sequential update of &(t) (8.21)

alt+1) = pSZAtT (r—1)s 7—1) ()+m)

=a<t>—g—:[c2i2< + Q5 (1t

gs may be obtained similarly. Alternatively, we may use the sequential variant
of (8.17) (i.e. (8.22)). Similar update equations apply to the noise parameters
(8.23)—(8.24).
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Appendix C: The Unscented Transform (UT)

Let « be an L-dimensional random vector with mean & and covariance matrix
P,.. Let, y = f(x) be a nonlinear transformation from the random vector
x to another random vector y. The first- and second-order statistics of the
vector y should be calculated. We briefly summarize the method. The mean
and covariance of @ can be presented by the 2L + 1 o-points

X = =,

X=a+ (VILFNPL)  1=1.. L

Xiir :@—( (L+>\)Pm)l, I=1,...,L,

where ( (L+ )\)Pm)l is the I-th row or column of the corresponding matrix

square root, and A = a?(L + k) — L. a determines the spread of the sigma
points. a = 1 was used throughout our simulations . k is a secondary scaling
parameter. The choice kK = 3 — L maintains the kurtosis of a Gaussian vector.
Throughout our simulations x is set to 0. § is used to incorporate prior
knowledge of the distribution (8 = 2 for Gaussian distributions). A proper
choice of these parameters and its influence on the obtainable performance
is still an open topic.

Define the weights

W™ = M(L+)),
W = ML+ M) + (1 —a?+ ),
W™ = W =1/2(L+X), 1=1,2,...,2L.

Then the mean and covariance of the vector y can be calculated using the
following procedure,

/1. Construct  o-points: X}, [ =0,...,2L. \

2. Transform each point to the respective y o-points:
Vi=f(X),1=0,...,2L.

3. Use weighted averaging, y ~ ZIQZLO W}m)yl
to estimate y mean.

4. Use weighted outer product, P,, ~ IQZLO Wl(c) V-9 V-9

& to estimate y covariance. j

The benefits of using the UT are presented in [30], [31].
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Abstract. In many speech communication applications a microphone array is
available nowadays, such that multi-microphone speech enhancement techniques
can be used instead of single-microphone speech enhancement techniques. A well-
known multi-microphone speech enhancement technique is the generalized sidelobe
canceller (GSC), which is however quite sensitive to signal model errors, such as
microphone mismatch. This chapter discusses a more robust technique called the
spatially pre-processed speech distortion weighted multichannel Wiener filter (SP-
SDW-MWF), which takes speech distortion due to signal model errors explicitly
into account in its design criterion, and which encompasses the standard GSC as
a special case. In addition, a novel frequency-domain criterion for the SDW-MWF
is presented, from which several — existing and novel — adaptive frequency-domain
algorithms can be derived for implementing the SDW-MWF. The noise reduction
performance and the robustness of these adaptive algorithms is investigated for a
hearing aid application. Using experimental results with a small-sized microphone
array, it is shown that the SP-SDW-MWF is more robust against signal model
errors than the GSC, both in stationary and in changing noise scenarios.

9.1 Introduction

In many speech communication applications, such as hands-free mobile tele-
phony, hearing aids and voice-controlled systems, the recorded speech signals
are often corrupted by a considerable amount of acoustic background noise.
Generally speaking, background noise is broadband and non-stationary, and
the signal-to-noise ratio (SNR) of the microphone signals may be quite low.
Background noise causes a signal degradation that can lead to total unintelli-
gibility of the speech signal and that substantially decreases the performance
of speech coding and speech recognition systems. Therefore, efficient speech
enhancement techniques are required.

Since the desired speech signal and the undesired noise signal usu-
ally occupy overlapping frequency bands, single-microphone speech enhance-
ment techniques, such as spectral subtraction, Kalman filtering, and signal
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subspace-based techniques, may encounter problems to reduce the back-
ground noise without introducing noticeable artifacts (e.g. musical noise)
or speech distortion. When the speech and the noise sources are physically
located at different positions, it is possible to exploit this spatial diversity
by using a microphone array, such that both the spectral and the spatial
characteristics can be used in the speech enhancement algorithm.

Well-known multi-microphone speech enhancement techniques are fixed
and adaptive beamforming [1]. In a minimum variance distortionless response
(MVDR) beamformer [2], the energy of the output signal is minimized under
the constraint that signals arriving from the look direction, i.e. the direc-
tion of the speech source, are processed without distortion. A widely studied
adaptive implementation of this beamformer is the generalized sidelobe can-
celler (GSC) [3,4], which consists of a fixed spatial pre-processor, i.e. a fixed
beamformer, creating a so-called speech reference, and a blocking matrix, cre-
ating so-called noise references; and a multichannel adaptive noise canceller,
eliminating the noise components in the speech reference which are correlated
with the noise references. Multi-microphone noise reduction techniques based
on the GSC have already been successfully implemented for various speech
applications [5-10].

Due to room reverberation, microphone mismatch, look direction error
and spatially distributed sources, undesired speech components however leak
into the noise references of the standard GSC, giving rise to speech distortion
and cancellation. Several techniques have already been proposed for limiting
the speech distortion that results from this speech leakage, by

e reducing the speech leakage components in the noise references, e.g. by
using a robust fixed spatial filter designed blocking matrix [5,11-13], by
using an adaptive blocking matrix [14-17], or by constructing the block-
ing matrix based on estimating the acoustic transfer functions from the
speech source to the microphone array [18,19];

e limiting the distorting effect of the present speech leakage by

— updating the adaptive filter only during periods (and for frequencies)
where the noise component is dominant, i.e. low SNR [5-7,10,14—
17,20]; and

— constraining the update formula of the adaptive filter, e.g. by im-
posing a quadratic inequality constraint (QIC) [21-24], by using the
leaky least-mean-square (LMS) algorithm [11,12], by using coefficient
constraints [15], or by taking speech distortion due to speech leakage
directly into account using speech distortion weighted multichannel
Wiener filtering (SDW-MWF) [25-27].

In [25], a generalized noise reduction scheme, called the spatially pre-
processed speech distortion weighted multichannel Wiener filter (SP-SDW-
MWF), has been presented, which consists of a fixed spatial pre-processor
and an adaptive SDW-MWF stage. By taking speech distortion explicitly
into account in the design criterion of the adaptive stage, the SP-SDW-MWF
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adds robustness to the GSC. In [25], it has been shown that, compared to
the widely studied QIC-GSC, the SP-SDW-MWF achieves a better noise
reduction performance for a given maximum speech distortion level.

In [28-31], recursive matrix-based implementations for the SDW-MWF
have been proposed based on the generalized singular value decomposition
or the QR decomposition, which are computationally quite expensive. In
[26,32] cheaper (time-domain and frequency-domain) stochastic gradient al-
gorithms have been presented. These algorithms however require large cir-
cular data buffers, resulting in a large memory usage. In [27,33] adaptive
frequency-domain algorithms for the SDW-MWF have been presented using
(block-)diagonal correlation matrices, reducing the memory usage and the
computational complexity.

In this chapter, we present a novel frequency-domain criterion for
the SDW-MWF, trading off noise reduction and speech distortion. This
frequency-domain criterion for multichannel speech enhancement is in fact
an extension of the criterion used in [34-36] for multichannel acoustic echo
cancellation. Using the proposed criterion, several existing [27,33] and novel
adaptive frequency-domain algorithms for the SDW-MWF can be derived.
The main difference between these algorithms consists in the calculation of
the step size matrix in the update formula for the adaptive filter and in the
calculation of the regularization term (cf. Sects. 9.3 and 9.4).

The chapter is organized as follows. In Sect. 9.2, the GSC and the spa-
tially pre-processed SDW-MWF are briefly reviewed. In Sect. 9.3, the novel
frequency-domain criterion for the SDW-MWF is presented. An adaptive
algorithm is derived for optimizing this criterion and it is shown how this
adaptive algorithm can be implemented in practice. In Sect. 9.4, several ap-
proximations are proposed for reducing the computational complexity, where
some of these approximations lead to already existing frequency-domain al-
gorithms for the SDW-MWF [27,33]. In Sect. 9.5, the noise reduction per-
formance, the robustness against signal model errors, and the tracking be-
haviour of the proposed algorithms are illustrated using experimental results
for a small-sized microphone array in a hearing aid.

9.2 GSC and Spatially Pre-Processed SDW-MWF

9.2.1 Notation and General Structure

Consider a microphone array with M microphones, where each microphone
signal u;[k], ¢« = 1... M, at time k, consists of a filtered version of the clean
speech signal s[k] and additive noise, i.e.

wilk] = hilk] @ s[k] + wClk], i =1... M, (9.1)

with h;[k] the acoustic impulse response between the speech source and the
ith microphone and ® denoting convolution. The additive noise u?[k] can be
colored and is assumed to be uncorrelated with the clean speech signal.
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Fig. 9.1. Structure of the spatially pre-processed speech distortion weighted mul-
tichannel Wiener filter (SP-SDW-MWF).

The spatially pre-processed speech distortion weighted multichannel
Wiener Filter (SP-SDW-MWTF) [25] is depicted in Fig. 9.1. It consists of
a fixed spatial pre-processor, i.e. a fixed beamformer and a blocking ma-
trix, and an adaptive stage. Note that the structure of the SP-SDW-MWF
strongly resembles the standard GSC, where the difference lies in the fact
that an adaptive SDW-MWF is used in the adaptive stage and that it is
possible to include an extra filter wg on the speech reference.

The fized beamformer A(z) creates a so-called speech reference

Yo [k‘] = l‘o[k] + Uo[k‘], (92)

with zo[k] and vg[k] respectively the speech and the noise component of the
speech reference, by steering a beam towards the direction of the speaker. The
fixed beamformer should be designed such that the distortion of the speech
component xg[k], due to possible errors in the assumed signal model (e.g.
look direction error, microphone mismatch) is small. A delay-and-sum beam-
former, which time-aligns the microphone signals, offers sufficient robustness
against signal model errors since it minimizes the noise sensitivity. However,
in order to achieve a better spatial selectivity while preserving robustness,
the fixed beamformer can be optimized, e.g. using statistical knowledge about
the signal model errors that occur in practice [13].
The blocking matriz B(z) creates M — 1 so-called noise references

ynlk] = xnlk] +oplk], n=1...M — 1, (9.3)

by steering zeroes towards the direction of the speaker, such that it is antici-
pated that the noise components v, [k] are dominant compared to the speech
components x,[k]. A simple technique to create the noise references consists
of pair-wisely subtracting the time-aligned microphone signals. Under ideal
conditions (i.e. no reverberation, point speech source, no look direction error,
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no microphone mismatch), the noise references only contain noise compo-
nents v, [k]. Since these conditions are practically never fulfilled, undesired
speech components x., [k], i.e. so-called speech leakage, are present in the noise
references. Several techniques have already been proposed for reducing the
speech leakage components in the noise references [5,11-19].

During speech-periods the speech and the noise references consist of
speech+noise, i.e. y,lk] = x,[k] + v,[k], whereas during noise-only-periods
only the noise components v,[k| are observed. We assume that the (spa-
tial and/or temporal) second-order statistics of the noise are sufficiently sta-
tionary such that they can be estimated during noise-only-periods and used
during subsequent speech-periods. This requires the use of a voice activity
detection (VAD) mechanism [37-39] or an on-line procedure for estimating
the SNR. [40].

The goal of the adaptive stage is to make an estimate of the noise com-
ponent in the speech reference and to subtract this noise estimate from the
speech reference in order to obtain an enhanced output signal z[k]. Let N
be the number of input channels to the multichannel filter (N = M if the
filter wo on the speech reference is present, N = M — 1 otherwise). Let the
FIR filters w,[k], n = M — N ... M — 1, have length L, and consider the
L-dimensional data vectors y,[k], the N L-dimensional stacked data vector
y[k], and the N L-dimensional stacked filter w[k], defined as

Yolk] = [yalk] ynlk = 1] ..yl — L+1]]", (9.4)
n=M-—N.. .M-1,

ylk] = [YLfN[k] Y%FNHUC] yglfl[k]]T’ (9.5)

wik] = [wh_ w6 Wy [k owh k] (9.6)

with 7 denoting transpose of a vector or a matrix. The stacked data vector can
be decomposed into a speech and a noise component, i.e. y[k] = x[k] + v[k],
where x[k| and v[k] are defined similarly as in (9.5). The goal of the filter
w|k] is to make an estimate of the delayed noise component vy[k — A] in
the speech reference!. This noise estimate is then subtracted from the speech
reference in order to obtain the enhanced output signal z[k], i.e.

2[k] = yolk — A] — w" [K]yl[k] (9.7)
= zolk — Al + (volk — A] — wT [k]v[K]) — w [k]x[k] . (9-8)
e [K] ex[k]

Hence, the output signal z[k] consists of 3 terms: the delayed speech com-
ponent zo[k — A] in the speech reference, residual noise e,[k], and (linear)
speech distortion e;[k]. The goal of any speech enhancement algorithm is to

! The delay A is applied to the speech reference in order to allow for non-causal
filter taps. This delay is usually set equal to [L/2], where [z] denotes the smallest
integer larger than or equal to x.
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reduce the residual noise as much as possible, while simultaneously limiting
the speech distortion. The speech distortion can e.g. be limited by reduc-
ing the speech leakage components x[k] in the noise references and/or by
constraining the filter wi[k].

9.2.2 Generalized Sidelobe Canceller

The standard generalized sidelobe canceller (GSC) minimizes the residual
noise energy without taking into account speech distortion, i.e.

Jasc(wik]) = 2k = { |volk — A] - w [k}vIK]|"}, (9.9)

with £ denoting the expected value operator. The filter w[k] minimizing this
cost function is equal to

wlk] = E{vkIvT[K]} " E{v[k]vok — A]}, (9.10)

where the noise correlation matrix E{v[k]vT[k]} and the noise cross-
correlation vector E{v[k|vg[k — A]} are estimated during noise-only-periods.
Hence, in an adaptive implementation, the filter w[k| is also allowed to be
updated only during noise-only-periods [5-7,10,14-17,20], since adaptation
during speech-periods would lead to an incorrect solution and signal cancel-
lation. Note however that signal distortion due to speech leakage still occurs
even when the adaptive filter is updated only during noise-only-periods, since
the speech distortion term e, [k] is still present in the output signal z[k].

A commonly used approach to increase the robustness against signal
model errors is to apply a quadratic inequality constraint (QIC) [21-24], i.e.

wl [klwlk] < 5% (9.11)
The QIC avoids excessive growth of the filter coefficients w[k], and hence
limits speech distortion w’[k]x[k] due to speech leakage. The QIC can be
implemented using the scaled projection algorithm [22] or by using variable
loading [24]. Similar approaches for constraining the filter coefficients consist
in using the leaky LMS algorithm [11,12] or using coefficient constraints [15].

In the GSC the number of input channels to the adaptive filter is typically
equal to N = M — 1. It is not possible to include the filter wy on the speech
reference, since in this case the filter w(k| in (9.10) would be equal to

wolk] =uat1, wuplk]=0,n=1...M -1, (9.12)

with u; the [th canonical L-dimensional vector, whose [th element is equal to
1 and all other elements are equal to 0, such that the output signal z[k] = 0.
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9.2.3 Speech Distortion Weighted Multichannel Wiener Filter
The speech distortion weighted multichannel Wiener filter (SDW-MWTF)

takes speech distortion due to speech leakage explicitly into account in the
design criterion of the filter w[k] and minimizes the weighted sum of the
residual noise energy £2[k] and the speech distortion energy £2[k], i.e.

v

T(wlk]) = e2[k] + %53.[/4;] 9.13)
= &{Juolk — 2]~ w VK } + %S{|WT[k]x[k]|2}, (9.14)

where the parameter p € [0, 00] provides a trade-off between noise reduction
and speech distortion [25,29,41]. If 4 = 1, the minimum mean square error
(MMSE) criterion is obtained. If ;1 < 1, speech distortion is reduced at the
expense of increased residual noise energy. On the other hand, if p > 1,
residual noise is reduced at the expense of increased speech distortion.

The filter w[k] minimizing the cost function in (9.14) is equal to

-1

wlk] = |E{v[k]vI[k]} + ié’{x[k]xT[k}} E{v[kJvolk — A},  (9.15)

where, using the independence assumption between speech and noise, the
correlation matrix £{x[k]xT[k]} can be computed as

E{x[k]x"[k]} = E{ykly"[k]} — E{vIk]v[k]}. (9.16)

The speech correlation matrix E{y[k]y”[k]} is estimated during speech-
periods and the noise correlation matrix E{v[k]vT[k]} is estimated during
noise-only-periods. We assume that the second-order statistics of the noise
are sufficiently stationary such that they can be estimated during noise-only-
periods and used during subsequent speech-periods.

Since the SDW-MWF takes speech distortion explicitly into account in its
optimization criterion, it is possible to include the filter wqy on the speech ref-
erence. Depending on the setting of the parameter 1 and the presence/absence
of the filter wy, different algorithms are obtained:

e Without filter wog (N = M — 1), we obtain the speech distortion regu-
larized GSC (SDR-GSC), where the standard optimization criterion of
the GSC in (9.9) is supplemented with a regularization term 1/pe2. For
1 = o0, speech distortion is completely ignored, which corresponds to the
standard GSC. For p = 0, all emphasis is put on speech distortion, such
that w[k] = 0 and the output signal z[k] is equal to the delayed speech
reference yo[k— A]. Compared to the QIC-GSC, the SDR-GSC is less con-
servative, since the regularization term in the SDR-GSC is proportional
to the actual amount of speech leakage present in the noise references. On
the other hand, the constraint value 32 in the QIC-GSC, cf. (9.11), needs
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to be chosen based on the largest signal model errors that may occur,
such that the noise reduction performance is compromised even when no
or a small amount of speech leakage is present. In the absence of speech
leakage, the regularization term in the SDR-GSC equals 0, such that the
GSC solution is obtained and hence the noise reduction performance is
not compromised. In [25], it has been shown that in comparison with
the QIC-GSC, the SDR-GSC obtains a better noise reduction for small
model errors, while guaranteeing robustness against large model errors.
e With filter wy (N = M), we obtain the spatially pre-processed speech dis-
tortion weighted multichannel Wiener filter (SP-SDW-MWF). For p =1,
the output signal z[k] is the MMSE estimate of the delayed speech com-
ponent xg[k — A] in the speech reference. In [25], it has been shown that,
for infinite filter lengths, the performance of the SP-SDW-MWF is not
affected by microphone mismatch as long as the speech component in the
speech reference remains unaltered by the microphone mismatch. Hence,
the extra filter on the speech reference further improves the performance.

In [28-31], recursive matrix-based implementations for the SDW-MWF
have been proposed based on the generalized singular value decomposition or
the QR decomposition, which are computationally quite expensive. Starting
from the cost function in (9.14), a cheaper time-domain stochastic gradi-
ent algorithm has been derived in [26]2. In order to speed up convergence
and reduce the computational complexity, this algorithm has been imple-
mented in the frequency domain. It has been shown in [26] that for highly
non-stationary noise, this stochastic gradient algorithm suffers from a large
excess error, which can be reduced by low-pass filtering the regularization
term, i.e. the part of the gradient estimate that limits speech distortion. The
computation of this regularization term however requires the storage of cir-
cular data buffers for the speech-and-noise samples and for the noise-only
samples. Using these circular data buffers, the filter coefficients w[k] can be
updated both during speech-periods and during noise-only-periods, but the
storage of the data buffers unfortunately gives rise to a large memory us-
age. In [27], the regularization term has been approximated in the frequency
domain, using (diagonal) speech and noise correlation matrices in the fre-
quency domain. This approximation leads to a drastic decrease in memory
usage, while also further reducing the computational complexity but not com-
promising the noise reduction performance and the robustness against signal
model errors.

In the following section, a novel frequency-domain criterion for the SDW-
MWF is proposed, similar to the cost function in (9.14). This frequency-
domain criterion is an extension of the criterion used in [34-36] for multi-
channel echo cancellation to the problem of multichannel speech enhance-

% In [32] a similar time-domain stochastic gradient algorithm has been presented,
which however invokes some independence assumptions that result in a significant
performance degradation compared to the algorithm in [26].
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ment. Furthermore, it provides a way for linking existing adaptive frequency-
domain algorithms for the SDW-MWTF [27,33] and for deriving novel adaptive
algorithms, as will be shown in Sect. 9.4.

9.3 Frequency-Domain Criterion for SDW-MWF

9.3.1 Frequency-Domain Notation

We define the L-dimensional block signals e,[m] and e,[m] as
e,[m] = [e,[mL] ey,mL +1] ... ey[mL + L — 1HT, (9.17)
e,[m] = [ex[mL] ex[mL +1] ... ex[mL + L — 1]]T , (9.18)

with m the block time index. The block signal e, [m], representing the residual
noise, can be written as

e, [m] =d[m] — z_: VEim]w,, (9.19)

with the L-dimensional block signal d[m], and the L x L-dimensional Toeplitz
matrices V,[m],n =M — N...M — 1, equal to
d[m] = [vo[mL — A vo[mL — A+1] ... vo[mL — A+ L —1]]",(9.20)
Vau[m] = [va[mL] vi[mL+1] ... vp[mL+ L —1]] . (9.21)

It is well known that the filtering operation VI [m]w, can be calculated in
the frequency domain as [35,42]

- I
Vg[m] W, = [OL IL} F2L1 Dv,n[m] FQL |:Ol[1/:| Wnp, (922)

where 0, represents the L x L-dimensional zero matrix, I, represents the
L x L-dimensional unity matrix, Foy is the 2L x 2L-dimensional Fourier
matrix and D,, ,[m] is a 2L x 2L-dimensional diagonal matrix whose elements
are the discrete Fourier transform of the first column of

i.e. the 2L-dimensional vector
[vn[mL — L] ... va[mL — 1] vu[mL] ... vo[mL+ L — 1] ]T . (9.24)

Hence, combining (9.19) and (9.22), the block signal e,[m] can be written as

M—1

ey[m] =d[m] — [0, IL]Fy) Y Dynfm]Fa Bﬁ ]wn (9.25)
n=M-—-N

=d[m] - [0, I, | F;} U,[m]w, (9.26)
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with the 2L x N L-dimensional matrix U,[m] defined as

U,[m| = | Dy,m-n[m]Far {(I)ﬂ . Dy pm—1[m]Far, [ILH (9.27)

= D,[m] F%?VLXNL’ (9.28)

and the 2L x 2N L-dimensional matrix D, [m] and the 2N L x N L-dimensional
diagonal block-matrix F1%,; . v, equal to

Dv[m] = [D1,7M_N[m] e D,,7M_1[m]] y (929)

. I 1
FoNixnr = diag [FQL [Oi} .. Faor {Oi} } ~ (9.30)

Similarly, the block signal e, [m], representing the speech distortion, can be
written as

e;[m] = [0p I ] Fop Uylm]w = [01 11 | Fop Do[m] FaXy g W, (9.31)

with U, [m] and D,[m] defined similarly as U,[m] and D, [m] for the speech
component instead as for the noise component.

If we multiply the block signals in (9.26) and (9.31) with the L x L-
dimensional Fourier matrix F, we obtain the error signals in the frequency
domain (denoted by underbars), i.e.

e,lm] = Fpe,fm] = dim] — G5, U, [m] w, (0.32)
e lm] = Fpe,[m] = GPL ., Usfm] w, (0.33)

with d[m] = Fr d[m] and
GYyor =FL [0L I Fy) . (9.34)

We now define a frequency-domain criterion similar to (9.14), minimizing the
weighted sum of residual noise energy and speech distortion energy, as

Jelm] = (1 =) YNy ell i e, li] + %(1 =) D> A7 el [i] e, lil, (9.35)
i=0 i=0

where 7 denotes complex conjugate of a vector or a matrix, A, and \, are
exponential forgetting factors respectively for noise and speech (0 < A\, < 1,
0 <Xy <1),and 1/u is the trade-off parameter between noise reduction and
speech distortion.

9.3.2 Normal Equations

The cost function J¢[m] can be minimized by setting its derivative with
respect to the (time-domain) filter coefficients w[m] equal to zero. Using
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(9.32) and (9.33), the derivative is equal to

=0 =N SN (U1 G o Vsl — U s )
(1= X0 X U (] G U i, (9.36)
=0
with
dyylm] = (G )l = Fay | 37 | dl, (9.37)
G2L><2L - 2(G(L)1><2L)HG%1><2L7: Far [82 (I)j] FZ_L1 (9'38)

Hence, the normal equations can be written as
1
[Sv[m] + ;Sz[m]] w[m] = s[m], (9.39)

with the NL x N L-dimensional correlation matrices S,[m] and S, [m], and
the N L-dimensional cross-correlation vector s[m| defined as

S, ] = (1= M) 3 AP~ U] G0, U, (9.40)
:AUsv[mifM — ) UH (] G0, U [, (9.41)
Safm] = (1-A0) SN2 UH (]G o, U (9.42)
=Azsm[mifl+(1—Az)UH[ | G3Lx2r Uam], (9.43)
sl = (1— A0 Y- A7 Ui d (0.49
= Aos[m —11:]0+ (1= Ap) Ul [m] dyy [m]. (9.45)

The optimal Wiener filter is the solution of these normal equations.
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9.3.3 Adaptive Algorithm

An algorithm for adapting w[m| can be found by enforcing the normal equa-
tions (9.39) at block time m and m — 1, i.e.

o]+ 2.8, lol | win

=Xy [Sv[m -1+ %Sm[m - 1]] wim — 1]+ (1= X,) Ul [m] dy [m]

= [ (S0l = (1= 0) U2 ] G U ) + S, -
(1= ) U 0] G8} o Unlm] | wlm — 1] + (1= X,) Ul [m] dyy ],
such that the update formula for w[m] can be written as
e sulm] = Far | 9| ] = dyol] = G s Uil wim 11, (040
e sulm] = Far | 3 ealml = GHL. U b wlon — 1, (9.47)
wlm| = |:Sv[m] + ism{m]] _ { |:Sv[m] + %i—zsx[m]] wlm — 1] +
(1= AU e, ] = 5 351 = Ao U2 [m]gx,%[m}}. (9.48)

For convenience, we now define the 2N L x 2N L-dimensional correlation ma-
trices Q,[m] and Q,[m] as

Sy[m] = (F%(J)VLXNL)H Qu[m] F%?VLXNL? (9.49)

Sy[m] = (F%?VLXNL)H Q.[m] F%S)VLXNL’ (9.50)
such that

Qu[m] = A, Qu[m — 1] + (1 = A,) D [m] G} 5, Dy [, (9.51)

Q.[m] = A Qu[m — 1]+ (1-X\;) D [m] G2L><2L «[m]. (9.52)

In addition, we define the 2N L-dimensional frequency-domain filter w5 ; [m]
as

Wonz[m] = F%?VLXNLW[m] (9.53)
T

= [Wiy_nor[m] - Wiy m]] (9.54)

with

W, 01 [m] = Far, { (I,i } Wi, [m]. (9.55)
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By pre-multiplying both sides of (9.48) with F1%,  y, and by using (9.49)
and (9.50), we obtain

Qu,zL[m] =dyp[m] — G(Q)}»@LDv[m} Wonr[m —1], (9.56)

Ex,zL[m] G2L><2L 2[m] Wonp[m — 1], (9.57)

1 —1
Wonrlm] = FoXrune [Sv[m] + ;Sw[m]] (Fanwnn)™

{l:Qv [m]‘F%i_zQx[m]] Wonr[m— 1]+ (1 - /\v)Df[m}Qv,u[m]

1A, H
A=A DY ) gw,ﬂ[m]}. (9.58)

In [35], it has been shown that
FoNrwne Sy [m] (Faivpwne)” = Gavpxans Qo' ml, (9.59)

with the 2N L x 2N L-dimensional diagonal block-matrix Gi%; .,y defined
as

G2NL><2NL = diag [G2L><2L G%%xu] ) (9.60)
with
I, 0 _
G2L><2L For [Oi 02] F2L1’ (9-61)

such that (9.58) can be written as
1 —1
sl = Gl | QL] + Q]

{[Qv [m]‘*‘%;—zQw[m]] Wonr[m— 1]+ (1 - /\v)Df[m]Qv,zL[m]

1A, .
38 A D gz,n[m]}. (9.62)

In the following, we will assume that the exponential forgetting factors A, =
Ay = A, such that (9.62) reduces to

wans[m] = Wap[m — 1]+ (1 2) Gy ont [va n ;Qz[m@ -

{Dlmle, pulm] = DF il e, oy fm]}. (9.63)
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When the trade-off parameter 1/u = 0, this algorithm is equal to the multi-
channel frequency-domain adaptive filtering algorithm derived in [35], applied
to the GSC. For 1/1 > 0, the 2N L-dimensional additional regularization term

ronslm] = %Df:’ [m] € 52, [m] (9.64)
- %Df:’ (] G2} 5D 1] iy [ — 1), (9.65)

limits speech distortion due to speech leakage in the noise references.

9.3.4 Practical Implementation

Since the SP-SDW-MWF' takes speech leakage explicitly into account, it
should in principle be possible to adapt the filter w[m| both during speech-
periods and during noise-only-periods, unlike the standard GSC. This ap-
proach has been taken in [26], where a stochastic gradient based implemen-
tation of the SP-SDW-MWTF has been proposed using 2 circular data buffers,
i.e. a speech+noise buffer storing speech+noise vectors y[k| during speech-
periods, and a noise-only buffer storing noise-only vectors v[k| during noise-
only-periods. This implementation using circular data buffers however gives
rise to a large memory usage.

If we take a closer look at (9.63), we notice that D, [m] and e, ;,[m] can
only be computed during noise-only-periods, whereas D, [m] and e, 5, [m] can
only be computed during speech-periods. Hence, we will take a similar ap-
proach as in the standard GSC, i.e. updating the filter coefficients only during
noise-only-periods. Since during noise-only-periods the (instantaneous) cor-
relation matrix DX [m]GS} . ,; D.[m] of the clean speech signal, required in
the computation of the regularization term r,, [m], is not available, we will
approximate this term by the (average) correlation matrix Q,[m]?, such that
the regularization term can be computed as

ryy[m] = %Qw[m] Wong[m —1]. (9.66)

In fact, using the correlation matrix Q,[m] instead of DX [m]G9} .., D, [m]
is quite similar to the low-pass filtering of the time-domain regularization
term, which has been proposed in [26] to improve the performance in highly
non-stationary noise. In practice, using the assumption that speech and noise

are uncorrelated, the speech correlation matrix is approximated as

Qa[m] = Qy[m] — Qu[m], (9.67)

3 Note that a similar reasoning for computing the term DI [m] e, or[m] during
speech-periods is not possible, since

DvH[m} gv,2L[m] = DvH[m] dyy [m] — Df[m] GgiszDv[m} Wong[m —1]

cannot be easily approximated, because of the term DY [m]d,; [m].
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where Q,[m] is the 2N L x 2N L-dimensional correlation matrix updated dur-
ing speech-periods, i.e.

Qy[m] = AQy[m — 1] + (1 = \) D} [m] G5 o, D,y [m], (9.68)

with D, [m] defined similarly as D,[m]. For a speech source at a fixed position,
it may also be possible to determine Q. [m] using calibration signals [43,44] or
by additionally incorporating geometric constraints [45,46]. In conclusion, the
total frequency-domain adaptive algorithm for the SDW-MWF is summarized
in Algorithm 1.

9.4 Approximations for Reducing the Complexity

Algorithm 1 presents a general framework from which different adaptive algo-
rithms can be derived. Some of these algorithms have already been presented
in the literature [27,33], while other algorithms represent novel techniques
for implementing the speech distortion weighted multichannel Wiener filter
in the frequency domain.

9.4.1 Block-Diagonal Correlation Matrices

Since the correlation matrices Q,[m] and Q,[m] have no special structure,
the update of these correlation matrices according to (9.51) and (9.68), and
the matrix inverse required in (9.63) are computationally quite complex oper-
ations, such that in fact Algorithm 1 is not very useful in practice. However,
in [34-36] it has been shown that the matrix G9} ,,; may be well approxi-
mated by Iz /2, because — for large L — the off-diagonal elements of G},
are small compared to its diagonal elements.

When using this approximation, we obtain the following update formula
for the block-diagonal correlation matrices Q,[m] and Q,[m),

Qu[m] = AQ,[m] + (1 — A) Df [m] D, [m]/2, (9.69)
Qylm] = AQy[m] + (1 = X) Dy [m] Dy[m]/2, (9.70)
which consist of N? 2L x 2L-dimensional diagonal sub-matrices Q,, np[m] and

Qyupm,n=M—-N...M—1,p=M—N...M—1. In addition, we obtain
the following update formula for the filter coeflicients,

- 1 . -1
Wonz[m] = Wonp[m — 1]+ p(1 = A) G%?VLX2NL [Qv[m] + ;Qm [m]

{Dmle, orlm] ~ oy m]}, (9.71)

where the step size parameter p is assumed to be in the range 0 < p < 1. This
equation requires the computation of the inverse of the block-diagonal matrix
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Algorithm 1 Frequency-domain implementation of SDW-MWEF.
Matrix definitions:

For, = 2L x 2L-dimensional DFT matrix

0, = L x L-dimensional zero matrix, Iy = L X L-dimensional identity matrix

0. O _ I 0, _
Gg}‘sz =For |:0L IL:| F21}7 G%%sz =Far l:OL 0L:| 21}

G%(J)VLXQNL = diag [G%OszL Gé%xu]
For each new block of L samples:
d[m] = [yo[mL — A] yo[mL — A+1] ... yomL — A+ L —1]]"
Dy [m] = diag{FgL [ynlmL — L] ... yn[mL + L — IHT},
n=M-N...M-1
Dy[m] = [Dy,m-n~[m] ... Dynr-1[m]]

Output signal:

e[m] = d[m] — [OL IL} F;Ll Dy[m] WonL [m — 1]

If speech detected:
Qy[m] = AQy[m — 1] + (1 = A) Dy [m] G315 Dy [m]

If noise detected: Dy[m] = Dy[m]
Qu[m] = AQu[m — 1] + (1 = \) D/ [m] G312 Do[m]

Update formula (only during noise-only-periods):
s aulm] = Far | 77 | el

Qul] = Qufm] ~ Qulm]

s ] = EQulm] wa, fm — 1]

Wonp[m] = Wonp[m — 1]+ (1= A) Ga{Lxane [Qv[m] + in [m]} e

{Dlmle, 20m] — oy, m]

Q.[m] + 1/ Q,[m]. Tt is well known that the inverse of a block-diagonal
matrix Q, consisting of N2 2L x 2L-dimensional diagonal sub-matrices Q,,,
ie.

Qr-~NM-N - Qum-N,M-1
Q= : : , (9.72)

Qr—1,M-N -+ Qrr—1,m—1
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is also a block-diagonal matrix. Its computation corresponds to inverting 2L
N x N-dimensional matrices, which is attractive from a complexity point of
view. The block-diagonal matrix Q can be easily transformed to the diagonal
block-matrix Q,

Q =diag[Qo ... Qar1], (9.73)

consisting of 2L N x N-dimensional sub-matrices Q;, [l =0...2L — 1, on its
diagonal, by the transformation

Q=ATQA. (9.74)

The matrix A is a 2NL x 2N L-dimensional column permutation matrix
(and hence A7 is a row permutation matrix), consisting of 2NL 2L x N-
dimensional sub-matrices A,;,n =M —N...M —1,1=0...2L — 1, where
the (I,n)-th element of A, is equal to 1. It readily follows that

Q'=AQ A", (9.75)

where Q*_I can be easily computed by inverting the N x N-dimensional sub-
matrices Q; on its diagonal, i.e.

Q '=diag[Qy" ... Qo1 ]- (9.76)

In addition, one should take care that the matrix Q,[m]+1/u Q,[m] in (9.71)
is positive definite. When this matrix is not positive definite, this actually has
the same effect as a negative step size p, i.e. divergence of the filter coefficients.
The noise correlation matrix Qv [m] is always positive definite, but the speech
correlation matrix Qw[m] may not always be positive definite (especially for
non-stationary signals), since it is computed as Q,[m] = Q,[m] — Q,[m)],
where Q,[m] and Q,[m] are estimated during (different) speech-periods and
noise-only-periods. Checking the positive definiteness of a matrix comes down
to computing its eigenvalues.

It can be easily shown that the eigenvalues v of a block-diagonal matrix
Q are equal to the set of eigenvalues of its N x N-dimensional sub-matrices
Qi, 1 =0...2L — 1, since using (9.74) and the fact that ATA = I,y and
det(A) = +1, it follows that

det(Q — ’}/IQNL) = det (A(Q — ’)/IQNL)AT) = det(Q — ’}/IQNL) (977)
2L-1
= H det(Ql —’yIN). (978)

=0

Hence, before computing the inverse of the matrix Qq[m] +1/1Q,[m] in

(9.71), we first compute the eigenvalues of the matrix Q,[m]. We will then
use the inverse of the regularized matrix

Q. [m] + i [Qx[m] — min(Ymin, 0) Ionr | + 6 Ianr (9.79)
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n (9.71), with 7, the smallest eigenvalue of Q,[m] and & a small positive
regularization factor. Whereas in general computing the smallest eigenvalue
of an N x N-dimensional Hermitian matrix is computationally quite complex,
for N = 2 the smallest eigenvalue 7; i, of the sub-matrix

Q, = [QI*,H QZ,12:| ) (9.80)

q;,12 91,22

with ;11 and @ 22 real-valued, can be easily computed as

Gt + @22) — V(@11 — @ ,22) + 4|q1,12]?

9.4.2 Diagonal Correlation Matrices

In a further approximation, we can decouple the updates for the N filters
W, or[m] in (9.71) by neglecting the off-diagonal elements of the matrix
Q.[m] + 1/ Q. [m], which represent the inter-channel correlation. Hence,
the update formula for the filter coefficients w,, oy [m], n =M - N... M —1
becomes
1. ~1
0 li1] = 0l = 114 (1= 2 Gl [ Qo] + 1. Qe

{DE,mle, pilm] —z@m}} (9.82)

with Qvﬁm [m] and ann [m] the 2L x 2L-dimensional diagonal sub-matrices
on the diagonal of Q. [m] and Qx[m], and r,, 1[m] a 2L-dimensional sub-
vector of ryy; [m]*. Ensuring the positive definiteness of Q. [m] now is very
easy, since the eigenvalues of QTm, [m] are equal to the diagonal elements. We
expect that updating the filter coefficients using these diagonal correlation
matrices will be slower than using the block-diagonal correlation matrices,
since the inter-channel correlation is not taken into account any more.

Where in (9.82) a different step size matrix Qy np[m] + 1/uQu. nn[m] is
used for each channel n, it is also possible to use a common step size matrix
Qc, e.g. the sum or average over all channels, i.e.

W, or[m] =w, op[m— 1]+ p(1 - X) G300 Q. m] -
{Dﬁ{n [m] e, QL[mJ 1,00 [m) }, (9.83)
n=M-—N

4 Note that we still use the off-diagonal elements of Q,[m] for computing the
regularization term .,y [m].
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In fact, this algorithm is very similar to the algorithm already presented in
[27]. Note however that the algorithm in [27] has been derived as a frequency-
domain implementation of a time-domain stochastic gradient algorithm for
minimizing the (time-domain) cost function (9.14).

9.4.3 Unconstrained Algorithms

In Sect. 9.4.1, the term GY}.,; in the calculation of the correlation ma-
trices has been approximated by Iz, /2. It is also possible to use the same
approximation for the term G19.,; and hence approximate G1%; oy in
the update formula of the filter coefficients in (9.63) by

G%(J)VLXQNdeiag I:IQL/2...:[2L/2} :IQNL/Q, (985)

resulting in the following so-called unconstrained update formula,

_ S = Tquim 4 taum]
swoaln] = waslm — 14 S5 Q]+ Lyl

{Dlmle, o lm] ~ oy m]}. (9.86)

This update formula gives rise to a lower computational complexity, since it
requires 2N less FFT operations. However, using this update formula it can-
not be guaranteed that the second half of F;Llﬂn)%[m}, n=M-N...M-1,
is equal to zero, cf. (9.55).

In fact, this update formula can also be derived by setting the deriva-
tive of the cost function J¢[m] in (9.35) with respect to the (frequency-
domain) filter coefficients wyy; [m] equal to zero. Since from (9.32), (9.33),
(9.46) and (9.47), it readily follows that el [i]e, op[i]] = 2€[i]e,[i] and
el lile, opli] = 2ef'fi] e,[i], the cost function Jy[m] can be written as
) = S S et e, i+ S Y N2 el e s ]

=0 =0

Hence, using (9.56) and (9.57) and the fact that (G}, )7GS ,, =
G(ansz and (G} . 5;)Hdy . [i] = dy [i], the derivative of J¢[m] with respect
to Wy [m] is equal to

0J¢[m] . ‘ .
8W2]J;L[m (1=X ZA ( G(2)L><2LDU[ ) Wonz[m] — Df[Z]Q2L[Z])
J% ZAm D[] GoLxar Dalilwoy[m].  (9.87)

1=0

Setting the derivative equal to zero, one obtains the normal equations

Qulm] + %Qm[mJ] wowzlm] = alm] (0.88)
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Table 9.1 Step size matrix A[m] for different algorithms (C: constrained,
U: unconstrained, BD: block-diagonal, D1: diagonal - channel, D2: diagonal
- common).

Algorithm Step size matrix

Algo 1 (C-BD) Gl ot [Qulm] + 2 Qulm]]

Algo 2 (U-BD) §[@ulm] + 2Qulm]]

Algo 3 (C-D1) GI L con o] [Qunlm] + 2 Qunnlm]] )

Algo 4 (U-D1) L diag{ [Qv,nn[m] + ﬁQz,nn[m]] !

Algo 5 (C-D2)| Gipanding{ [(/N) S50y Quanlm] + 2 Quunnlm]] )
Algo 6 (UD2)|  Ldiag{ [(1/N) 200y Quanlm] + 2 Quonnlm]] )

with Q,[m] and Q,[m] defined in (9.51) and (9.52), and the 2N L-dimensional
vector g[m] equal to

alm] = Avalm — 1] + (1 = \,) D} [m] d, [m]. (9.89)

Hence, by enforcing the normal equations at block time m and m — 1 (and
assuming A\, = A, = \), we obtain the update formula (9.86). In addition,
for the unconstrained algorithms one can also approximate the correlation
matrices Q,[m] and Q,[m] by block-diagonal or diagonal matrices, cf. Sects.
9.4.1 and 9.4.2.

9.4.4 Summary

Summarizing all presented algorithms in Sect. 9.4, the update formula for
the filter coefficients wyy; [m] can be written as

Woy[m] = Woy [m=1]+p(1=2) A {DF [m] e, o1, [m] ~xon[m] }, (9.90)

where the 2NL x 2N L-dimensional step size matrix A[m] is summarized
in Table 9.1. For all algorithms, the matrix Q,[m] needs to be regularized
in order to ensure that it is positive definite. The algorithm presented in
[27] corresponds to Algo 5, while in [33] a multichannel frequency-domain
algorithm for speech enhancement has been presented that bears quite some
similarities to Algo 2. However, in [33] the speech component instead of
the noise component is estimated, and the parameter 1/ is only effectively
applied to the step size matrix (i.e. no regularization term r, 5 [m] is present),
such that the algorithm in [33] comes down to the MMSE estimation of the
speech component.
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9.5 Experimental Results

In this section experimental results are presented for a hearing aid appli-
cation. For small-sized microphone arrays as typically used in hearing aids,
robustness is very important, since small-sized microphone arrays exhibit a
large sensitivity to signal model errors [47]. Sect. 9.5.1 describes the setup
and defines the used performance measures. In Sect. 9.5.2 the performance
of the adaptive algorithms is analyzed, and the impact of different parameter
settings for the SP-SDW-MWF (i.e. filter wo and 1/u) on the performance
and the robustness against signal model errors is evaluated. In Sect. 9.5.3 the
tracking performance is investigated for a changing noise scenario.

9.5.1 Setup and Performance Measures

A behind-the-ear hearing aid with M = 3 omni-directional microphones
(Knowles FG-3452) in an end-fire configuration has been mounted on a
dummy head in an office room. The inter-spacing between the first and the
second microphone is about 1cm and the inter-spacing between the second
and the third microphone is about 1.5cm. The reverberation time Tgoqp of
the office room is about 700 ms. The speech source and the noise sources are
positioned at a distance of 1 m from the head: the speech source in front of
the head (0°), and the noise sources at an angle 6 with respect to the speech
source. Both the speech signal and the noise signal have a level of 70 dB at the
center of the head. For evaluation purposes, the speech and the noise signal
have been recorded separately. The sampling frequency is equal to 16 kHz.

The microphone signals are pre-whitened prior to processing in order
to improve the intelligibility, and the output signal z[k] is accordingly de-
whitened [48]. In the experiments, the microphones have been calibrated
using anechoic recordings of a speech-weighted noise signal at 0° with the
microphone array mounted on the head. A delay-and-sum beamformer is used
for the fixed beamformer A(z), since — in the case of small microphone inter-
spacing — this beamformer is quite robust to signal model errors. The blocking
matrix B(z) pair-wisely subtracts the time-aligned calibrated microphone
signals.

To assess the performance of the different algorithms, the broadband in-
telligibility weighted signal-to-noise ratio improvement ASNRjp¢eig is used,
which is defined as [49]

ASNRintellig = Z I; (SNR; out — SNR; in), (9.91)

where the band importance function I; expresses the importance of the ith
one-third octave band with center frequency f; for intelligibility, and where
SNR; out and SNR; i, are respectively the output SNR and the input SNR
(in dB) in this band. The center frequencies ff and the values I; are defined
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in [50]. The intelligibility weighted SNR improvement reflects how much the
speech intelligibility is improved by the noise reduction algorithms, but does
not take into account speech distortion.

In order to measure the amount of (linear) speech distortion, we similarly
define an intelligibility weighted spectral distortion measure SDintcliig,

SDintenis = Y _ Ii SD;;, (9.92)

with SD; the average spectral distortion (dB) in the ith one-third octave
band, calculated as

1 2V/0 57
SD; = (21/6 — 2—1/6) If /z—l/sf;' [101ogyo G ()| df, (9.93)

with G, (f) the power transfer function for the speech component from the
input to the output of the noise reduction algorithm.

All algorithms are evaluated for a filter length L = 32, and the input SNR
of the microphone signals is equal to 0 dB. The speech-periods and the noise-
only-periods, used for updating the correlation matrices Qy [m] and Q,[m]
and the adaptive filter, have been marked manually. In order to exclude the
effect of the spatial pre-processor, the performance measures (9.91) and (9.92)
are calculated with respect to the output of the fixed beamformer, i.e. the
speech reference yo[k]. In some experiments, a microphone gain mismatch
of 4dB is applied to the second microphone to illustrative the sensitivity
to signal model errors. Among the different possible signal model errors,
microphone mismatch has been found to be quite harmful to the performance
of the GSC in a hearing aid application [47]. In hearing aids, microphones are
rarely matched in gain and phase, with gain and phase differences between
microphone characteristics of up to 6 dB and 10° [51].

9.5.2 SNR Improvement and Robustness Against Microphone
Mismatch

For the experiments in this section, the desired speech source at 0° consists
of sentences from the HINT-database [52] spoken by a male speaker, and a
complex noise scenario consisting of 5 spectrally non-stationary multi-talker
babble noise sources at 75°, 120°, 180°, 240° and 285°, has been used.
Figure 9.2 depicts the convergence of the SNR improvement for differ-
ent adaptive algorithms (constrained vs. unconstrained, block-diagonal vs.
diagonal step size matrix) for different values of the the step size parameter
p and the exponential forgetting factor A\. The exponential forgetting fac-
tor A = 0.995 corresponds to an averaging of the correlation matrices over
approximately 1/(1 — \) = 200 blocks of L = 32 samples, i.e. 0.4 seconds,
whereas the factor A = 0.99875 corresponds to an averaging over 800 blocks,
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ASNR (dB), SDR-GSC (N=2), L = 32, 1/u = 0.5, no mismatch

p=0.50
o
o
> 4
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Fig. 9.2. Effect of the step size parameter p and the exponential forgetting factor
A on the convergence of the SNR improvement for different adaptive algorithms
(SDR-GSC, L = 32, 1/p = 0.5, no microphone mismatch).

i.e. 1.6 seconds. In this experiment, we have used the SDR-GSC (N = 2)
with trade-off parameter 1/ = 0.5 and no microphone mismatch present.
Of course, similar plots can be obtained for the SP-SDW-MWF (N = 3), for
different values of the trade-off parameter and when microphone mismatch is
present. From Fig. 9.2 it can be seen that using a block-diagonal step size ma-
trix gives rise to a faster convergence than using a diagonal step size matrix.
In addition, the larger the step size parameter p, the faster the convergence
(of course, taking p too large will give rise to divergence). From Fig. 9.2 it
can also be seen that the larger the exponential forgetting factor A, the slower
the convergence, but the larger the SNR improvement after convergence. This
can be explained by the fact that for spectrally and/or spatially stationary
sources a better estimate of the correlation matrices is obtained for larger A.

Figure 9.3 plots the SNR improvement and the speech distortion of the
SDR-GSC (N = 2), using the unconstrained update formula (with block-
diagonal and diagonal step size matrix), as a function of the trade-off param-
eter 1/u. This figure also depicts the effect of a gain mismatch of 4 dB at the
second microphone. In the absence of microphone mismatch, the amount of
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SDR-GSC (N=2), unconstrained update, p = 0.50, A = 0.9950
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Fig. 9.3. SNR improvement and speech distortion of SDR-GSC in function of
trade-off parameter 1/u, without and with gain mismatch (unconstrained update
formula, p = 0.5, A = 0.995).

speech leakage into the noise references is limited, such that the speech distor-
tion is small for all 1/u. However, since there is some speech leakage present
due to reverberation, the SNR improvement decreases for increasing 1/u. In
the presence of microphone mismatch, the amount of speech leakage into the
noise references grows. For the standard GSC, i.e. 1/ = 0, significant speech
distortion now occurs and the SNR improvement is seriously degraded. Set-
ting 1/ > 0 improves the performance of the GSC in the presence of signal
model errors, i.e. speech distortion decreases and the SNR degradation be-
comes smaller. For the given setup, a value 1/u = 0.5 seems appropriate for
guaranteeing good performance for a gain mismatch up to 4 dB.

For the same setup, Fig. 9.4 plots the SNR improvement and the speech
distortion of the SP-SDW-MWF (N = 3) as a function of 1/p. This fig-
ure shows that the speech distortion and the SNR improvement decreases
for increasing 1/u. This figure also shows that the speech distortion for the
SP-SDW-MWEF is larger than for the SDR-GSC®, but that both the SNR
improvement and the speech distortion are hardly affected by microphone
mismatch.

® In [25], it has been shown that the SP-SDW-MWF can be interpreted as an
SDR-GSC with a single-channel post-filter in the absence of speech leakage.
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SP-SDW-MWF (N=3), unconstrained update, p = 0.50, A = 0.99875
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Fig. 9.4. SNR improvement and speech distortion of SP-SDW-MWF in function
of trade-off parameter 1/u, without and with gain mismatch (unconstrained update
formula, p = 0.5, A = 0.99875).

9.5.3 Tracking Performance

In order to investigate the tracking performance, we have used a stationary
speech-weighted noise signal both for the desired speech source and for the
noise sources. We consider 2 noise scenarios: scenario 1 with five noise sources
at 75°, 120°, 180°, 240° and 285°, and scenario 2 with three noise sources
at 120°, 240° and 285°. The noise scenario suddenly changes from scenario
1 to scenario 2 after 45 seconds, and then changes back to scenario 1 after
90 seconds. The speech component consists of alternating segments of silence
and signal, each with a length of 1600 samples. For both noise scenarios, the
signals received at the microphones have been normalized, such that for both
scenarios the input SNR is equal to 0dB.

Figure 9.5 plots the SNR improvement, the speech distortion and the
residual noise energy 2 for the GSC (1/u = 0) and the SDR-GSC (1/p = 0.5)
using the unconstrained update formula with block-diagonal step size matrix
(Algo 2), in the case of a gain mismatch of 4 dB. These performance measures
have been calculated per segment of 3200 samples. Again, this figure shows
that the SDR-GSC is more robust to signal model errors than the GSC, since
the SDR-GSC gives rise to a larger SNR improvement and a smaller speech
distortion than the GSC, although the residual noise energy is larger (for
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SDR-GSC (N=2), Algo 2 (U-BD), mismatch, L = 32
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Fig. 9.5. Tracking performance of GSC and SDR-GSC for a changing noise sce-
nario.

both noise scenarios). This figure also shows that the performance of the
SDR-GSC for noise scenario 2 is better than for noise scenario 1, and that
the SDR-GSC is able to track sudden changes in noise scenarios.

9.6 Conclusions

In this chapter, we have discussed a robust multi-microphone speech en-
hancement technique, called the spatially pre-processed speech distortion
weighted multichannel Wiener filter (SP-SDW-MWF). The SP-SDW-MWF
takes speech distortion due to speech leakage explicitly into account in the
design criterion of the adaptive filter, and is hence more robust against signal
model errors than the standard GSC. Depending on its parameter setting,
the SP-SDW-MWF encompasses the standard GSC and the speech distortion
regularized GSC (SDR-GSC) as special cases. We have presented a frequency-
domain criterion for the SDW-MWF, which provides a way for linking ex-
isting adaptive frequency-domain algorithms and for deriving novel adaptive
algorithms for implementing the SDW-MWF. The main difference between
these adaptive algorithms consists in the calculation of the step size matrix
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(constrained vs. unconstrained, block-diagonal vs. diagonal) used in the up-
date formula for the adaptive filter. Experimental results using a small-sized
microphone array show that setting the trade-off parameter between noise
reduction and speech distortion larger than 0 in the SDR-GSC improves the
performance in the presence of signal model errors, i.e. the speech distortion
decreases and the SNR degradation due to the signal model errors becomes
smaller. Moreover, in the SP-SDW-MWF both the SNR improvement and
the speech distortion are hardly affected by signal model errors. Experimen-
tal results also show that using a block-diagonal step size matrix gives rise
to a faster convergence than using a diagonal step size matrix and that the
SP-SDW-MWEF is able to track changing noise scenarios.
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Abstract. The convenience and the ease of use provided by hands-free operation of
speech communication devices mean that speech enhancement schemes are becom-
ing indispensable. In this chapter, two subband adaptive microphone array schemes
are presented, which aim to provide good speech enhancement capability in poor
signal to noise ratio situations. The basic commonality of the adaptive microphone
array schemes is that they approximate the Wiener solution in an adaptive manner
as new data comes in. Furthermore, both schemes include a quadratic constraint
to prevent the trivial zero solution of the weights and to avoid suppression of the
source of interest. The constraint is included to provide robustness against model
mismatch and good spatial capture of the target signal. Furthermore, by using a
subband structure the processing allows a time-frequency operation for each chan-
nel. As such, both schemes utilize the spatial, spectral, and temporal domains in
an efficient and concise manner allowing a computational effective processing while
maintaining high performance speech enhancement. Evaluations on the same data
set, gathered from a car, show that the proposed schemes achieve good noise sup-
pression up to 20 dB while experiencing very low levels of speech distortion.

10.1 Introduction

The comfort and flexibility provided by hands-free communication systems
have spurred the integration of hands-free voice interface into everyday es-
sentials such as personal digital assistants (PDAs), mobile phones, speech
recognition devices, etc. With such a great demand, speech enhancement
with regard to hands-free communications particularly in adverse environ-
ments has been an area of intensive research [1], [2], [3], [4], [5], [6]. Numer-
ous speech enhancement schemes have been presented over the years with
microphone array based techniques dominating the field. This is because mi-
crophone arrays offer the invaluable spatial diversity to spatially extract (or
form a beam towards) the source of interest (SOI) [7]. In particular, adap-
tive microphone arrays are reported to have good interference suppression
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capability [8], [9], [10]. However, adaptive microphone array such as the gen-
eralized sidelobe canceller (GSC) succumbs to target signal cancellation in
the presence of steering vector errors (e.g. microphone positions, reverber-
ation, etc) [11], [12]. One solution to overcome the problem is to employ a
voice activity detector (VAD) or an energy detector in which the GSC is only
adapted when there is no target signal (or the signal-to-interference ratio
(SIR) is low). Another more straightforward approach to address the prob-
lem is to calibrate the microphone array in the actual environment [13], [14].
By doing so, all the information on the array geometry and imperfections will
be reflected in the final solution. This approach seems efficient and robust
at first glance, but the need for calibration makes its use rather limited in
consumer applications. For instance, when the SOI spatially moves or the
environment changes, it requires a re-calibration. Such inflexibility may not
be practically viable.

In this chapter, we will present two subband based schemes, namely robust
soft constrained adaptive microphone array (RSCAMA) and noise statistics
updated adaptive microphone array (NSUAMA). Both schemes have their
roots in the calibrated microphone array [13], [14] but circumvent the calibra-
tion phase which makes them considerably more versatile. Instead, a source
model is carefully embedded in the solution whereas the noise statistics is
estimated on-line. To complement the source model, the SOI power spectral
density (PSD) is also estimated from the data to preserve the spectral shape
of the SOI. The real objective is to achieve a solution that is close to the
optimal Wiener solution [15], [16] whilst incorporating a tracking capability
to handle non-stationary noise. Both structures differ in the way the SOI
power spectral density and noise statistics are incorporated in the solution
but share the commonality of having a 2-D space constrained source model.
Unlike a point source model, the 2-D space model (the physical area of the
SOI e.g. a person’s mouth) effectively compensates for the large radial vector
errors in the source location caused by the presence of erroneous steering
vector in real life situations, making both proposed structures robust against
errors.

The RSCAMA scheme is constrained to extract the SOI in a pre-defined
area (as modelled by the 2-D space constraints). Basically, the idea is orig-
inally derived from [4] with the assumption that the power spectral density
(PSD) of the source is constant over time and frequency range. However,
speech signal is short-term stationary and this implies that the spectrum
varies over time. Therefore, to better utilize the time-frequency information
of the SOI, its PSD is recursively updated in the constraints using the most
current time-frequency content of the output signal from the beamformer.
The motivation behind the use of the output signal in the update comes
from the fact that the optimum beamformer output in each subband, is an
enhanced version of the spectral information of the SOI. In other words, the
feedback from the beamformer output continuously shapes the SOI spec-
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trum, thus providing a spectrally improved constraint at each time instant.
The noise statistics on the other hand, are estimated recursively from the re-
ceived data without the need of a VAD as the solution has been constrained
to preserve any signal from the desired region. Needless to say, the perfor-
mance will be very much improved if a VAD is used, however at the expense
of a higher computational complexity.

As the name suggests, the NSUAMA scheme includes a noise statistics
update to track variations in the background noise. Simply, the adaptive
microphone array estimates the covariance information and decides if the es-
timated information can be used to update the noise statistics in the solution
i.e. the noise covariance information. A modified VAD or a noise covariance
detector which includes spatial information is introduced to ensure that “only
noise covariance” information is used in the update. With the incorporation
of the criterion, the microphone array behaves like a “noise only” detector
which uses only the noise information to update its solution. This results in
an efficient and fast converging adaptive microphone array even in highly
non-stationary environment. Similar to RSCAMA, the source PSD is em-
bedded in the optimum Wiener solution in each subband to fully utilize the
time-frequency information of the target signal. However unlike RSCAMA,
the source PSD is updated using a least-squares criterion [17]. As such, it
tracks the variation in the spectral content of the target signal continuously,
yielding a statistically optimized constraint for each time instant.

Clearly, the major difference between the RSCAMA and NSUAMA
schemes is their computational complexities. The RSCAMA structure of-
fers simplicity and is straightforward to implement in real-time. Naturally,
the downside of it is less suppression capability when compared to the
NSUAMA scheme. Evaluations in a real car hands-free scenario reveal that
the NSUAMA scheme manages to achieve an impressive noise suppression
level of 20 dB whilst the simpler RSCAMA performs around 16-17 dB. Most
importantly, both schemes maintain negligible distortion on the target signal.

10.2 Signal Modelling and Problem Formulation

Consider a linear microphone array with I microphones. The target signal in
this case is a person speaking, which can be modelled as an infinite number of
point sources clustered closely in space. This space is modelled as a circular
area A with radius r and a distance h from the array, see Fig. 10.1. Alter-
natively, the source constrained region can be modelled as a pie sliced area
defined by radii [R,, Ry] and angles [0, 03] [8]. As mentioned previously, the
advantage of the source constrained region in Fig. 10.1 as opposed to a point
source is consistent with the fact that errors in the response vector cause
large radial errors in the corresponding source location [11]. These errors are
typically due to sensor misplacement and gain variations in the microphones.
With the inclusion of the constrained area, the structure is made more robust
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Fig. 10.1. Configuration of the linear microphone array with the inter-element
distance d and the source constrained area defined by radius r and distance h.
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Fig. 10.2. Structure of the RSCAMA subband beamformer.

and more closely related to a real situation. Throughout the chapter, the SOI
is assumed to be in the constrained region as shown in Fig. 10.1.

Figures 10.2 and 10.3 show the block diagrams of the proposed RSCAMA
and NSUAMA respectively. Irrespective of the different structures, both the
subband based RSCAMA and NSUAMA aim to extract the SOI in the con-
strained region. From the figures, the received signal is initially decomposed
into M subbands by using an analysis filterbank. After the relevant process-
ing independently (in each structure), the processed subband signals are then
reconstructed by the synthesis filterbank into fullband representation.

10.2.1 Analysis and Synthesis Filterbanks

The main consideration in the design is to minimize aliasing in the subband
signals as well as minimizing magnitude, phase and aliasing distortion in the
reconstructed output. Literature associated with filterbanks can be found
in the following references [18], [19]. In this work, an oversampled uniform
analysis DFT filterbank is employed to decompose each of the I microphone
input signals into M subbands with an oversampling decimation factor of
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Fig. 10.3. Structure of the NSUAMA subband beamformer. D; and Dy are the
different decimation factors with Dy > Ds.

Dy = M/2 unless otherwise stated. By oversampling, the inband aliasing
effects is greatly reduced. The analysis and synthesis prototype filters are
designed using a Hamming window with a cut off frequency 7/M. The Ham-
ming window has side-lobes that are 50 dB below its mainlobe and by using
a factor two over-sampling, the overall distortion and aliasing will be kept
small. Note that the noise covariance estimation in Fig. 10.3 has its own re-
quirement, as it is decimated at a lower rate of Do, where Dy > D5. This is to
ensure the sufficiency of data in estimating the noise covariance matrix (i.e.
to achieve low variance estimate for a better tracking in the noise statistics).

10.2.2 The Wiener Solution

In this section, the multichannel Wiener filter in each subband is formulated.

To begin, let W(Q)(k) be the optimum weight vector at time index k for each

opt
frequency 2 € [Qg,--- ,2p—1] as
Wit (k) = [wl® (k), w§® (), -+, wf® (k)] (10.1)

The optimal weight vector at time point k& above can be readily found from
the Wiener solution as follows,

wit) (k) = R (k) + R (k)" xlP (1), (10.2)

opt

where R{? (k) and r{? (k) are the covariance matrix and the cross-covariance
vector for the SOI for frequency band (2, respectively. The covariance matrix
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Rﬁ”) (k) can be resolved into a normalized spatial covariance matrix Rim (k)
and a non-negative spectral weighting as

R (k) = S ()R, (10.3)
Likewise, the cross-covariance vector r&”) can be decomposed as
v (k) = S (k)LD (10.4)

—(2) . . . . s
where T?) is the normalized spatial cross-covariance vector. Substituting

(10.3) and (10.4) into (10.2) yields,
w9 (k) = (S ()R + R (k)] 719D (k)ELD). (10.5)

opt

Equation (10.5) forms the basis for the development of both microphone
array schemes RSCAMA and NSUAMA. From (10.5), it is clear that there
are two varying parameters that need to be estimated continuously i.e. S (k)
and R%m(k). The former functions as the source spectral moulder (to reduce
spectral distortion) and the latter is to track the noise statistics for optimal

2)

noise suppression. The SOI spatial covariance matrix ]f_{i and the spatial

cross-covariance vector _( ) on the other hand, are determined by the spatial
location of the SOI. For many applications such as internet telephony, hands-
free mobile telephony, etc, the SOI is typically located more or less in a fixed
position (in front of the array). In keeping with this, the SOI is assumed to be
spatially stationary in a pre-defined region and a constraint called the space
constraint is used to model it. Both the RSCMA and NSUAMA schemes
employ the space constraint to model the SOI spatial information. In the
following section, the space constraint is explained.

10.2.3 The Space Constrained Source Covariance Information

Let us denote S(?) as the PSD of the source at frequency £2. Note that the
PSD will be time varying and can be thought of as short-term stationary.
However, for the following model it is kept constant. As mentioned previ-
ously, the source is assumed to be in the pre-defined area A afore-mentioned
(see Fig. 10.1). Thus, the spatio-temporal covariance matrix of source in the
spectral band [(2,, Qb] can be computed as

R, ///S(Q)d(m YA @)NHdadn, (10.6)

where @ is the point source localization vector and (-) denotes the Hermi-
tian transposition. The response vector d(?)(@) is defined as

d9(@) =

e IOM(A) _— —i0m(R) . —iRTi(R) 10.7
[Rle e e | (107
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where 7;(@), 1 < i < I is the time delay from a point source in the pre-
defined area to sensor i, R; is the distance between the source and sensor
i and []T denotes the transposition operator. The reference point for the
microphone array response is defined at the origin of the coordinates.
Therefore for a frequency {2, the spatial covariance matrix in (10.3) is,

R = SR, (10.8)

where the normalized spatial covariance matrix is defined from (10.6) as,

R = / / d?(@)d D (a)Hd7. (10.9)
A

The spatial cross covariance vector is given by
rgf?) - g(ﬁ)fgf?)7 (10.10)

where

£(?) = //d“”(?)d?. (10.11)
A

With the space constrained model readily available, the task at hand is
to efficiently estimate the varying parameters S (k) and R (k) in (10.5).
This is where the distinction between the RSCAMA and NSUAMA struc-
tures comes in. The simpler RSCAMA estimates the information directly
irrespective of whether the SOI is active or inactive whereas the NSUAMA
performs otherwise. Sections 10.3 and 10.4 explain both the RSCAMA and
NSUAMA structures in detail.

10.3 Robust Soft Constrained Adaptive Microphone
Array (RSCAMA)

10.3.1 Problem Formulation

Let w') be the optimum weight vector for frequency {2,

opt
2 2 2 2
wis) = Wi Wi, w7, (10.12)
(2

where w; ) is the optimum coefficient for the i*" sensor. The optimum weight
vector is then calculated as

opt —

-1
w? _ Rgnwmm} r(?), (10.13)
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where R,(,m is the noise covariance matrix. Suppose that we have knowledge
of the PSD of the SOI S¥) then (10.13) can be rewritten as

wipl = [R5+ R )] (47 /5(2)

_ 11 (10.14)
RO RE]

where Rim is the normalized spatial covariance matrix given in (10.9) and
t\? is the normalized spatial cross covariance vector as defined in (10.11).

The implication of (10.14) is that the SOI PSD S(2) is incorporated in the

solution and both I_{gm and iﬁ”) can be calculated for a given constraint

region without the knowledge of the PSD of the source, given that they are

spatially invariant.

The remaining issue is to recursively estimate the noise parameters R,(1 ).

Since data containing only the active noise is not available, the noise co-
variance matrix R;m is estimated by using K samples of the received data
x(?)(k), where K is a fixed positive number and the index & is the subband
time index. Moreover, the exact PSD of the source S?) (k) is not available,
particularly in a car environment where strong speech masking components of
noise exists. Thus, we propose to use the previous microphone array outputs
for the estimation of S(?) (k) as

x() (k)
Wi (ke = DHXD) (k — 1) 46

opt

Z(Q)(k) _ (10.15)

where |.| is the absolute value operator and ¢ is a positive number to avoid

zero division. At iteration k, I_{ilm(k) can be estimated based on z(?)(m)
where max(0,k — K) < m < k as follows,

o if £ < K then

k

RV () = 1 @ ()2 ()

R, (k) = z mz::lz (m)z“(m) (10.16)

o if k> K then
() 1 k H

R - () )

R, (k) = 4 > 2D m)z D (m) (10.17)
m=k—K+1

In the next section, a recursive algorithm is developed to efficiently up-
date the beamforming weights according to (10.16) and (10.17) based on the
received data.
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10.3.2 A Recursive Algorithm for the RSCAMA

The algorithm runs in parallel/sequentially for each subband with mid-
frequency 2 = 2xfom/M, 0 < m < M — 1, where f, is the sampling fre-
quency. Let

R =R + R () (10.18)
and
POk = RV (k). (10.19)

The optimal weight vector for the iteration k is then reduced to

w2 (k) = P (1)5(D. (10.20)

opt

It follows from (10.17) that for k > K, R(Q)(k) can be obtained from the
previous estimate as

R (0) = R (b= 1)+ 2 (2@ ()" = 22 (= K02 (1~ K)".
(10.21)

Thus, the inverse matrix P(?) (k) for k& > K can be updated efficiently by

using the matrix inversion lemma

P (k — 1)z (k)2 (k)TPD) (k — 1)
(K 428 (k)PP (k — 1)z (k)

D=P9(k-1)- (10.22)

and

Dz (k — K)z)) (k — K)"D

P =Dt e @ (= ) D@ (= K

(10.23)

where D in this case is an intermediate matrix of the same size as P(?) (k).
The recursive algorithm is now summarized in the following steps,

e Step 1: Choose a number of subbands M, a block size K and a weight

smoothing factor A'.
€p))

o Step 2: Initialize k = 1 and the weight vector w,;

vector.
o Step 3: Calculate the matriz I_{gm and the vector T4 according to (10.9)
and (10.11), respectively.

(0) as an I x 1 zero

! The factor A is employed because the target speech signal adds spatial coherent
power to the pre-calculated covariance matrix, and this in turn leads to small
weight power fluctuations.
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o Step 4: If k < K, the matriz P2 (k) is calculated according to (10.15),
(10.16) and (10.19) by using pseudo-inverse operation instead of the con-
ventional matriz inverse operation due to rank deficiency. Otherwise, the
matriz PY2) (k) is updated recursively by using (10.22) and (10.23). The
weight vector is then updated as

w D (k) = awl D (k — 1) + (1 = NP (k)FD,

opt opt

and the output is given by

. H
g (k) = wi! (k) <7 ().
o Step 5: Set k =k + 1 and return to Step 4 until the end of the data.

10.4 Noise Statistics Updated Adaptive Microphone
Array (NSUAMA)

10.4.1 Problem Formulation

In the formulation of the RSCAMA scheme, the update of the noise covari-

ance matrix estimate Rﬁ,@(k) is performed continuously sample by sample.
This means that the covariance information also contains the SOI. Naturally,
if the noise covariance estimation is free from the SOI, the advantages will
be twofold i.e. better noise suppression and consequently better source PSD
estimate. Here, the NSUAMA scheme employs a “noise covariance detector”
to avoid the inclusion of the SOI in the noise covariance matrix.

In order to explain this formulation, we consider the Wiener solution [eq.
(10.5)] again

w2 (k) =[SO BRI + RO (k)] 15 (k)5 (10.24)
As before, both the Rgm and 7. can be precalculated according to (10.9)
and (10.11) respectively as long as the SOI is spatially invariant. Similar to
the RSCAMA scheme, the objective is to calculate the Wiener solution above
by efficiently estimating the power spectrum of the SOI S¢2)(k) and the noise

covariance matrix R\ (k).

10.4.2 The Noise Covariance Detector

From the pre-defined source area model A, the matrix R in (10.9) for
frequency {2 has non-zero determinant and is therefore a full rank matrix?.
Thus, this matrix can be decomposed as follows,

Rgm _ V(Q)A(Q)V(Q)H7 (10.25)

2 Depending on how much of the space it spans, it will have a few dominating
eigenvalues.
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where

V) = [v{? ) (10.26)
is a matrix that contains the eigenvectors and

A = diag{A? ... Ay (10.27)

is a diagonal matrix that consists of the eigenvalues. Since the SOI and noise
are assumed to be uncorrelated and by using the proposed source covariance
model, the total covariance matrix can be written as

R2(k) = S2(k)RY + R2(k), (10.28)

where the total covariance matrix R (k) can be calculated from the received
signal x(2)(k) by K of its samples as follows

k
1
R (k) = 7 Z x() (m)x(?) (m)H. (10.29)
m=k—K+1
By multiplying the left and right side of (10.28) with the eigenvector vS,fi)m

) (@)

that corresponds to the largest eigenvalue of Rg maaz, we have the follow-

ing equation

Vi, RO (kv (), =

S (k) v TRy (@) | (@) TR (@) (10.30)
The right hand side of (10.30) can be simplified to

v RO (kv i, =

S (k) M2, + Vi R (kv (10:31)
The purpose of using v%?a)x is consistent with the fact that it represents the
strongest component in the target signal subspace. By denoting

FO(k) = v "R (k)v(2),, (10.32)
(10.31) can be rewritten as,

H
FEO(k) = SO ()AL, +viD "RED (k)vi2).. (10.33)
In the following, we will propose a criterion for the case when the noise is
assumed to be long-term stationary (such as in a car or helicopter environ-
ment) whereas the speech signal is short-term stationary. This means that
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the statistics of the noise remain unchanged for at least 1 second. Using this
assumption, there exists a number of sample points L >> K which corre-
sponds to 1 second in time, where the noise is stationary during the interval
[k — L,k]. As such, if the SOI is silent, then the number of K sample points
in (10.29) will be sufficient to capture the noise statistics for that particular
period.

It follows from (10.33) that when there is no SOI at sample instant k,

the first term S(Q)(k))\grﬁ)w will be approximately zero. The second term

o
vfﬁ}z R%Q)(k)vg,%)m will reduce to a minimum value for F(?)(k) during [k —

L, k] period due to the stationarity of the noise in that time frame. This term
essentially represents the lower bound for the function in (10.33). Naturally,
if speech (i.e SOI is active) is present, then the value in F?) (k) will be
higher than its lower bound. Strictly speaking, it is a function that contains
information on the periods of “speech-silence” in the constrained area. Having
said so, a criterion can be formulated as follows,

F (k) - [kmiLnk] F < A(0ev 2, (10.34)

where ming,_r, ) (F(2) denotes the minimum of F(?) over the period® [k —
L, k]. The parameter ¢ in this case is the threshold in the detector. If the
criterion in (10.34) is met for all frequency bands, then the covariance matrix

R (k) is used to update the estimated noise covariance matrix Rslm(k‘)7
through a first order smoothing function given by,

R (k) = (1 = MR (k —1) + AR (k). (10.35)

The constant A in this case is the smoothing factor. If the condition in (10.34)
is not met, then

R (k) =R (k—1). (10.36)

Since the speech signal has most of its energy in the frequency range 500 Hz
to 2000 Hz, the criterion in (10.34) can be performed only in the speech
dominant subbands. In other words, the detector can be implemented in the
frequency range where the speech energy mainly concentrates.

10.4.3 Estimation of Power Spectrum of SOI

The SOI PSD can be estimated by using the least-squares approach given as

, = ()
SOH) =arg  min | ROE) R () - SORS |5 (10.87)

3 This period is the interval in which the noise statistics remains unchanged. Since
the noise considered is long-term stationary, a suitable duration will be around
one second.
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where || - || 7 is the Frobenius norm operator. For ease of computation, (10.37)
can be efficiently solved by stacking the columns of each matrix to form a
I? long vector. This problem can then be reduced to a quadratic optimiza-
tion problem with I? variables. By setting the first derivative of (10.37) to
zero, the optimum S?) (k) can be obtained. This PSD is estimated at every
iteration of the received signal covariance matrix to provide a spectrally op-
timized constraint on the source. In simple terms, it attempts to preserve the
spectrum of the source like a spectrum moulder.

10.4.4 The NSUAMA Algorithm

For simplicity, the noise covariance matrix can be updated in the algorithm
only every one second due to the assumption on the long-term stationarity
for the noise (otherwise, the noise covariance matrix can be re-evaluated by
(10.35) in every iteration). Equations (10.24) and (10.37) can be reformulated
as follows

22 — () . B
win) (k) = [SO @R + REDLSD (k) (10.38)
and
SE(k) =
' (D (1) _ R _ c(DRD |2
are S(Q)Igl(%)>0 H R (k) R" S Rs H]—'a (1039)

where R&”) is the most current evaluated noise covariance matrix from the
noise detector during this time. The NSUAMA algorithm can be summarized
in the following steps.

e Step 1: Choose the number of subbands M, decimation factors Dy and Do
(in our algorithm Dy = M/2 and Dy = M/4), a block size K, a length
of noise evaluation period L and a weight smoothing factor \.

e Step 2: Initialize k = 1, the weight vector wgft)(()) as an I x 1 zero vector,
the noise covariance matrix R%Q) to an I x I identity matriz.

o Step 3: Calculate the matriz Rgm and the vector Fgm according to (10.9)

and (10.11), respectively and the eigenvector v&{f)z that corresponds to

the largest eigenvalue Aﬁ,{i)m of REQ).
e Step 4: Calculate x\?) (k) with Dy decimation factor and RU? (k) using
the samples with Dy decimation factor. The SOI PSD S (k) and the

weight vector ngt)(k) are calculated by using (10.38) and (10.39). The
output is given by

H
YD (k) =wiD (k) xD (k).

o Step 5: Update R;Q)(k) by checking the criterion (10.34) using (10.35)
or (10.36). If k is within L, set RY = Rg{o)(k).
e Step 6: Set k =k + 1 and return to Step 4 until the end of the data.
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10.5 Evaluations

10.5.1 The Simulation Scenario

The performance evaluation of the proposed microphone arrays was made
in a real car hands-free situation. A six-sensor array with an inter-element
distance of 5 cm was mounted on the visor at the passenger side in a Volvo
station wagon. Data were gathered on a multichannel DAT-recorder with a
sampling rate of 12 kHz and bandlimited to 300-3400 Hz. The car was moving
at the speed of 110 km/h on a paved road.

For all the evaluations, the length of the speech signal (female) was 4
seconds long and the matrix in (10.9) and the vector (10.11) were calculated
by using numerical integration according to the constrained region given in
Fig. 10.1. Here, the circular constrained area of the SOI was set to be 30 cm
from the center of the array with a radius of 10 cm. The only parameter
in the RSCAMA structure, the weight smoothing factor A was chosen to
be A = 0.99. As for the NSUAMA scheme, the detector threshold was set
to e = 0.01 and both the K and L number of samples were chosen to be
30 ms and 1 s long respectively. The decimation factor for D; was made over-
sampled and set to M /2 in order to reduce the aliasing effects between the
adjacent subbands. The decimation factor D5 for the covariance estimation
on the other hand, was chosen to be Dy = M /4 to ensure the sufficiency of
data.

10.5.2 Results for RSCAMA and NSUAMA Beamformers

Figure 10.4 shows the time-domain plots of the original speech, the noisy
speech at the 4" microphone and the microphone array outputs for RSCAMA
and NSUAMA beamformers respectively. The SNR is —7 dB and the noise
level of the signal at other microphones is approximately the same as the
4™ microphone. Clearly, Figs. 10.4(c) and 10.4(d) show that the background
noise is suppressed significantly by both beamformers respectively. The plots
also suggest good timbre of the output signal as the envelope of the SOI
follows that of the original SOI [Fig. 10.4(a)].

To quantify the performance of the beamformers, the following noise sup-
pression measure is defined as,

NS = 10logy, M — 101og;o(Cl), (10.40)
J7 Powtn(w)dw

where Pin,n (w) and I:’outm (w) are the spectral power estimates of the reference
sensor observation and the output respectively, when the noise is active alone.
The constant C; normalizes the performance measure such that if the SOI
is attenuated by the beamformer, the measure is reduced correspondingly
(i.e. normalizes the noise suppression to unity SOI gain). Table 10.1 presents
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(a) Original speech
1 T T T

-1 1 1 1
(b) Moisy signal

4 secs

(c) RSCAMA Beamnformer output 4 secs

1 T T T

1 I I L

(d) NSUAMA Beamformer output
1 T T T

4 secs

4 secs

Fig. 10.4. Plots of the RSCAMA and NSUAMA data (a) clean target signal, (b)
received signal, (¢) RSCAMA beamformer output, and (d) NSUAMA beamformer
output.

Table 10.1 Noise suppression (NS) for the RSCAMA and NSUAMA beam-
formers with different number of subbands.

Subbands M

NS for RSCAMA (dB)

NS for NSUAMA (dB)

16 12.8 15.7
32 14.1 18.3
64 15.2 20.1

the noise suppression levels with the number of subbands increases from 16
to 64 for both the RSCAMA and the NSUAMA schemes. The suppression
levels for both the beamformers improve as the number of subbands increases.
Evidently, the NSUAMA achieves 4 — 5 dB noise suppression improvement
over the RSCAMA structure irrespective of the number of subbands, yielding
an impressive noise suppression level of 20.1 dB for the case of M = 64
subbands.
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For completeness, Figs. 10.5(a) and 10.5(b) show the normalized out-
put power plots of both the source and noise before and after the pro-
cessing for both beamformers. From the power spectral plots, it is evident
that the signal integrity of the source is maintained whilst the noise is sup-
pressed uniformly across the frequency for both schemes. As mentioned pre-
viously, the NSUAMA algorithm achieves better noise suppression compared
to the RSCAMA algorithm. More significantly, Fig. 10.5(a) reveals that the
NSUAMA offers less spectral distortion to the SOI than the RSCAMA struc-
ture. This is attributed to the noise detector, which prevents the inclusion of
the SOI in the update of the noise information. Nevertheless, the RSCAMA
scheme has its merits as far as computational burden is concerned. For in-
stance, in the RSCAMA algorithm, the update routine uses the matrix in-
version lemma only twice (see Section 10.3.2). The NSUAMA algorithm on
the other hand, requires the use of matrix inversion lemma to update all
the eigenvectors of the SOI (see Section 10.4.4). However, depending on how
much the space the SOI spans, it will have a few dominating eigenvectors.
Therefore only half of the eigenvectors are updated in this evaluation and
thus the NSUAMA scheme requires more computational requirements than
the RSCAMA structure. Informal listening tests suggest good quality out-
puts from both the RSCAMA and the NSUAMA beamformers, with the
NSUAMA offering more superior sound quality.
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Fig. 10.5. Normalized output PSD plots for the RSCAMA and NSUAMA before
and after processing of (a) source and (b) noise.
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10.6 Conclusions

Two new space constrained adaptive microphone arrays with noise statistics
updates have been presented. The novelty of both the structures lies in their
space constraints, SOI spectral information and noise information updates.
The space constraints provide robustness against steering vector errors and
the update allows the noise statistics to be efficiently tracked in the Wiener
solution. Also, the inclusion of the SOI PSD update in the solution offers a
spectrally optimized constraint on the target signal integrity. The combina-
tion of both the PSD and space in the constraints makes full use of the avail-
able spatio-temporal domain. The major difference between the RSCAMA
and NSUAMA algorithms is the manner that the SOI PSD and noise infor-
mation updates are estimated. Whilst the RSCAMA is more computationally
straightforward compared to the NSUAMA scheme, the NSUAMA achieves
higher noise suppression capability. Results in a real hands-free car scenario
show that the RSCAMA manages to achieve a good noise suppression level
up to 15 dB and an impressive noise suppression of 20 dB for the NSUAMA.
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Abstract. Although a number of dereverberation methods have been studied,
dereverberation is still a challenging problem especially when using a single mi-
crophone. An important aspect of single-channel speech enhancement is the char-
acteristic feature of speech signals that allows us to restore the quality of source
signals. In this chapter, we describe a single-channel speech dereverberation method
based on the harmonicity of speech signals. We show that a filter that enhances the
harmonic structure of reverberant speech signals approximates the inverse filter of
the reverberation process, thus enabling us to achieve high quality blind dereverber-
ation. The presented method is referred to as the harmonicity based dereverberation
method, HERB. Simulation experiments show that HERB can work effectively to
dereverberate speech signals in terms of energy decay curves of room impulse re-
sponses and automatic speech recognition performance even when the reverberation
time is as long as 1.0 sec provided a sufficiently large number of observed signals
are available. Further discussions on several future directions are also provided with
a view to extending HERB so that it can cope with more realistic situations.

11.1 Introduction

In the real world, reverberation is one of the primary factors that degrade the
quality of speech signals when captured by a distant microphone. It makes
sounds unintelligible, and prevents computers from adequately extracting
any speech features. This problem becomes more severe as the reverberation
time becomes longer. For example, when the reverberation time is longer than
0.5 sec, the performance of an automatic speech recognition system does not
improve sufficiently even when the recognizer is trained on reverberant signals
captured in the same environment [1].

We need to develop a way to restore the quality of speech signals from
the reverberant signals in order to overcome this problem. In particular, this
must be accomplished based solely on the observed signals when we have
no prior information about the room’s acoustic properties. This operation is
known as blind dereverberation.

In general, an observed reverberant signal, z(n), can be modeled as a
convolution of its source signal, s(n), and a room impulse response, h(n), as

z(n) =Y h(m)s(n —m), (11.1)

m=0
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Fig. 11.1. Example spectrograms of (a) a clean speech signal and (b) a reverberant
speech signal when the reverberation time is 1.0 sec.

where n and m are time indices of sampled signals. This equation means that
speech signals in different time regions are added up to the reverberation
with the weight of the room impulse response. Since features of a speech
signal change with time, different features are mixed in the reverberation,
which degrades the quality of the signals. Figure 11.1 shows an example of
spectrograms of clean and reverberant speech signals. As seen in the figure,
the time and spectral structures of the speech are unclear in the reverberant
signal.

Inverse filtering is a method that is frequently used to achieve speech
dereverberation [2]. With this approach, reverberant signals are dereverber-
ated by estimating the inverse filter, w(n), that cancels out the reverberation
effect by applying it to the signals as

o}

y(n) = Z w(m)xz(n —m). (11.2)

m=—0o0

Ideally, y(n) is identical to s(n) multiplied with a certain scalar constant c,
that is,

y(n) = cs(n). (11.3)
Then, w(n) should satisfy

w(n —m)h(m) = cop,o, (11.4)

m=0

where §; ; is the Kronecker delta function. Because neither s(n) nor h(n) are
known in the case of blind dereverberation, we have to estimate w(n) without
directly examining (11.3) or (11.4). Therefore, further assumptions regarding
h(n) or s(n) are indispensable to blind dereverberation.

In this chapter, we describe blind dereverberation technologies for single-
channel speech signals. We consider the investigation of this technology to be
very important for the following reasons:
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1. Single-channel processing requires only one microphone, so it is supposed
to be making it potentially useful for a variety of applications. Most
recently developed speech applications such as automatic speech recog-
nition (ASR) are based on single-channel processing.

2. It may provide a basic technology that can utilize the features of source
signals for dereverberation. This technology is not only indispensable to
single-channel signal processing but also very important for elaborating
multiple signal processing.

One of the most important issues in single-channel processing is the dere-
verberation principle that exploits the features of source signals. In Sect. 11.2,
we first provide an overview of such principles that have been proposed for
several existing technologies. Section 11.3 describes an important feature of
speech signals, namely harmonicity, together with robust signal processing
techniques with which to handle this feature. In Sect. 11.4, we provide a de-
tailed explanation of a dereverberation principle based on the harmonicity of
speech signals, and a dereverberation method based on this principle, which
we call Harmonicity based dEReverBeration, (HERB). HERB is a recently
proposed method, and is shown by simulation experiments to achieve high
quality speech dereverberation even under long reverberation time conditions
when a sufficiently large number of observed signals are available. The ex-
perimental simulation results are presented with HERB in Sect. 11.6. Several
future directions related to HERB are discussed in Sect. 11.7, including the
possibility of applying it to more realistic situations.

11.2 Overview of Existing Approaches

This section describes two different approaches that have been proposed for
single-channel speech dereverberation.

11.2.1 Blind Inverse Filtering

When we can assume that the source signal is an independent and identically
distributed (i.i.d.) sequence, the inverse filter, w(n), that satisfies (11.4) can
be obtained by estimating a filter that makes y(n) in (11.2) an i.i.d. sequence.
This principle often provides a basis for blind inverse filtering techniques.
With speech signals, however, this principle needs to be appropriately mod-
ified because speech signals are not i.i.d. They have inherent features such
as periodicity and a formant structure that makes a speech signal statisti-
cally dependent. Once y(n) is made i.i.d., these important features of speech
signals are excluded.

Several attempts have been made to compensate for this discrepancy. For
example, Douglas et al. proposed a method, in which the error of the linear
prediction (LP) is dealt with as signals that should be dereverberated [3],
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assuming the LP residue of a speech signal is an i.i.d. sequence. Further-
more, Gillespie et al. proposed another technique, referred to as correlation
shaping [4]. They assume that the LP residue of a source speech signal is
correlated only within a short time duration, and that the correlation be-
tween very different time indices is solely the result of the room impulse
response. Therefore, the latter correlation can be decorrelated without losing
any important features of the speech signals. They proposed a method for
estimating the inverse filter that decorrelates only the long term correlation
of the LP residue.

These methods were partially successful in dereverberating speech signals
with relatively little reverberation, but it is still difficult to cope with more
severe reverberation conditions where dereverberation is really required. We
consider these methods to be limited by the impreciseness of their assump-
tions. For example, the LP residue of a speech signal is still not an i.i.d.
sequence, and the LP coefficients, which mainly represent the formant struc-
ture of speech signals, are excluded from features that should be restored by
the dereverberation.

11.2.2 Dereverberation Based on Speech Signal Features

Some researchers have also proposed dereverberation methodologies that uti-
lize the properties of speech signals in a more direct manner [5], [6]. For ex-
ample, Yegnanarayana et al. proposed a method that attenuates the signal
peaks in the LP residue that are derived from the reverberation [5]. Their
method categorizes the peaks into speech events and reverberation, based on
their criterion referred to as signal-to-reverberation ratios. This method can
improve the intelligibility of speech signals to a certain extent, but some arti-
facts occur in the resultant signals. We consider this limitation to be caused
by the difficulty in strictly distinguishing the peaks derived from the signal
and reverberation.

Unoki et al. proposed a method for recovering the temporal envelope of
a signal from an observed reverberant signal by exploiting the characteris-
tics of the modulation transfer functions (MTFs) [7] of source signals and a
room impulse response [6]. They assumed that the temporal envelope of a
room impulse response decays exponentially with time and that the carrier
signals of the room impulse response and a speech signal can be modeled
as mutually independent white noise functions. Then, the temporal envelope
of the observed reverberant signal is equal to a convolution of those of the
room impulse response and the speech signal. They proposed a method for
estimating the reverberation time from the observed signal and decomposing
two envelopes from the observed envelope based on the estimated reverber-
ation time. However, there are still difficulties with their method and these
must be overcome before it can be applied to actual speech signals because
the method cannot recover carrier signals and they use assumptions that are
not always satisfied by the properties of speech signals and reverberation.
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11.3 Harmonicity of Speech Signals and Its Robust
Estimation

In this section, we describe a basic property of speech signals, namely har-
monicity and describe certain signal processing technologies for handling this
property in a noisy environment, before introducing this feature as the key
to speech dereverberation, in the next section.

Harmonicity has long been studied as a robust feature of speech signals
in the real world. It is cited as a major clue in relation to a person’s ability
to extract desired speech from other sounds [8]. Many speech enhancement
methods employ a harmonicity-based sound segregation scheme, and this has
improved the performance of automatic speech recognition (ASR) [9], [10].
However, these methods have not succeeded in extracting the precise har-
monic structure of speech signals in the presence of a long reverberation.
This is because different fundamental frequencies (Fp) in different time re-
gions are mixed into the reverberation, and thus the harmonic structure is
severely degraded. Therefore, harmonicity had not been taken into account
as a primary cue for enhancing or dereverberating reverberant speech signals
until the recent development of harmonicity based speech dereverberation.

11.3.1 Model of Speech Harmonicity

A speech signal, s(n), can be modeled by using the sum of a harmonic signal,
sp(n), derived from a glottal vibration, and a non-harmonic signal, s,(n),
such as fricatives and plosives as

s(n) = sp(n) + s, (n). (11.5)

The most important properties with which to model a harmonic signal are
voiced durations and their fundamental frequencies (Fps). A voiced duration
refers to the time during which a speaker’s vocal cords vibrate to generate a
harmonic signal, while fundamental frequency refers to the frequency of the
fundamental component of a harmonic signal. Each harmonic component has
a frequency that corresponds to F{y or its multiples. Therefore, the harmonic
signal, sp(n), within a time frame can be modeled by the sum of sinusoidal
components whose frequencies coincide with the fundamental frequency (Fp)
of the signal or its multiples.

Let [ and 6, respectively be the index of a time frame and the Fp of the
harmonic signal at the time frame, and let A ; and ¢y ; respectively be the
amplitude and phase of its k-th harmonic component, then the waveform of
sp(n) within the frame can be modeled as

N
sp(n) = ZAW coS (k‘@ln ; il + ¢>k7l> for |n—ny| <T/2, (11.6)
k=1 s
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where n; is the time index of a sampled signal centered in the time frame,
N is the number of harmonic components, 7" is the length of the time frame,
and fs is the sampling frequency of the signal.

Strictly speaking, there are certain errors in the above model since Fj
and amplitudes of a speech signal gradually change even within a time frame.
These cause certain modeling errors in a harmonic signal, however, they are
not very serious in many practical speech applications. In addition, we can
introduce techniques that moderate these errors if necessary. We describe
such techniques based on time warping analysis in Sect. 11.7.2.

11.3.2 Adaptive Harmonic Filtering

The harmonicity of speech signals plays an especially important role for
speech enhancement in the presence of background noise. This is because
we can extract a harmonic signal from other sounds by enhancing frequency
components whose frequencies correspond to the F{y of the signal or its multi-
ples. An operation that realizes this enhancement is called harmonic filtering.
Since the Fy of a speech signal changes with time, the properties of the filter
have to be adaptively modified frame by frame according to the Fy. Therefore,
a harmonic filter is implemented by means of a time-varying filter, and this
usually involves a procedure for detecting voiced durations and estimating
their Fys.

Various harmonic filters have been proposed for this purpose, for exam-
ple, a widely used filter, referred to as a comb filter, is defined as 1 + 2z~ 7
where 7 is the period of the signal to be enhanced [11]. In this section, we
describe a harmonic filter based on a sinusoidal synthesis framework, which
we use in the experiments described in Sect. 11.6. With this method, the Fj
of the signal is first estimated at each time frame, then the amplitudes and
phases of individual harmonic components are estimated from the signal, and
finally a harmonic sound is synthesized by adding sinusoids according to the
estimated amplitudes and phases of the harmonic components. One advan-
tageous feature of this filter is that it can precisely preserve the amplitude
and phase of each harmonic component included in an observed signal when
its frequency is estimated correctly.

The processing flow of this filter is summarized as follows:

1. Fy of the observed signal, x(n), is estimated at each time frame based on
such Fj estimation methods as those described in Sect. 11.3.3.

2. The amplitudes and phases of individual harmonic components are esti-
mated at the time frame as follows:

X(,m) = Zgl(n—m)x(n)exp (—j?ﬂﬁn_nl> , (11.7)

M
Ak,l = |X(lv [kel]”’ (11'8)
dry = £X (1, [k6)]), (11.9)
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where X (I,m) is a short time Fourier transform (STFT) of z(n) at a
time frame [, m is the index of a frequency bin, n; is a time index of
the sampled signal centered in the frame, M is the number of discrete
Fourier transformation (DFT) points, Akl and (bkl are respectively the
estimated amplitude and phase of the k-th harmonic component, 6, is
the Fy estimate at the frame, ¢;(n) is a window function, and [-] is an
operator that digitizes a continuous frequency into an index of the nearest
frequency bin.

3. The output of the filter, &(n), is synthesized by adding sinusoids as (11.10)
and by combining them over succeeding frames based on the overlap-add
synthesis as (11.11):

n) =y Apcos(kfi(n —m)/ fs + i), (11.10)
k
n) = ga(n — (m +mAT))drsm(n), (11.11)

where #;(n) is a synthesized harmonic sound corresponding to a time
frame [, AT is the frame shift in the samples and g(n) is a window
function.

11.3.3 Robust Fy Estimation and Voicing Detection

Robust and accurate Fy estimation and voicing detection are important for
harmonicity based speech enhancement because any errors in these values
cause a deterioration in the enhanced speech quality. A number of useful
estimation methods have already been reported for this purpose.

Here, we introduce a simple and effective Fj estimation method that we
used in our experiments in Sect. 11.6. This method is based on a modified
version of a linear power spectrum, and we call it the ripple enhanced power
spectrum (REPS) [13]. In a linear power spectrum, the dominant harmonic
components in a speech signal are usually represented as sharp peaks com-
pared with additive noise even when the signal-to-noise ratio (SNR) is as
low as 0 dB. Based on this property, we can organize a robust Fj estimation
method in the presence of additive background noise. We confirmed that a
better performance is generally obtained by modifying the linear power spec-
trum, X (I,m)?, so as to enhance the spectral ripple corresponding to the
glottal pulse in advance, than by directly using the spectrum.

The processing flow of the REPS based Fjy estimation is summarized as
follows:

1. A REPS, R(l, f), is obtained from a linear power spectrum | X (I, m)|? by
using a method similar to cepstral liftering in the power spectrum (rather
than in the log domain as with usual cepstral liftering), that is,

(a) applying an inverse discrete Fourier transformation (IDFT) to

(X (1,m)P?,
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(b) substituting zeros for the lower quefrency components, and
(c) applying DFT to the modified coefficients.

2. An Fj decision measure, H(l, f,,), referred to as harmonic dominance, is
calculated for each discretized Fyy candidate, f, (n =1,2,...), within an
Fy search range at each time frame [. This measure represents the power
of harmonic components for an assumed Fy. As the measure becomes
larger, it becomes more likely that the assumed Fy will be correct. The
measure is defined as follows:

[k fn]<Fmax

k=1

where Fipax is the maximum index of frequency bins that are taken into
account for Fy estimation. R(l) is a term unbiasing the REPS to reduce
double /half errors in Fy. It is defined by

_ 1 &
R(l) = & > R(l,m), (11.13)

Because H (I, f,,) is defined as the sum of REPS corresponding to f, and
its multiples, its value is expected to be maximum value when f, coin-
cides with Fy. Therefore, we can determine Fj as the f,, that maximizes
H(l7 fn)'

3. Dynamic programming (DP) is employed to improve the robustness of the
Fy estimation. DP is expected to reduce the discontinuous Fj transition
errors by taking the Fy transition cost into account. It tracks continuous
peaks in H(I, f,) over succeeding time frames while minimizing the total
Fy transition costs. The Fy candidates f,, on the track are determined as
the resulting Fp estimates.

It should be noted that the REPS based Fj estimation method originally had
a mechanism for further enhancing the precision of the F{, estimates based
on the instantaneous frequency [12], [13]. We skipped this procedure in our
experiments because this improvement is not necessarily very effective for
dereverberation.

Regarding voicing decision, we again introduce a method that uses har-
monic dominance, H (I, m). This method determines the voicing status based
on the magnitude of harmonic components relative to the other components.
Suppose the fundamental frequency, 6;, is estimated for each time frame by
assuming all the frames are voiced. Then, the relative magnitude of the har-
monic components, V (1), at a time frame [ is defined as

" {H(l,&;){ ;15,{]5)(? f)} } | (11.14)
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where E;{-} and o¢{-} are functions yielding the average and standard devi-
ation of H(I, f,,) over frequencies, respectively, and M,{-} is a function that
extracts a median value over p time frames. A frame is determined as voiced
if V(1) is larger than a fixed threshold value. Because V(1) is a value normal-
ized with the standard deviation, this threshold can be set independently of
the signal level.

11.4 Harmonicity Based Dereverberation — HERB

In this section, we discuss how speech harmonicity can be utilized for blind
speech dereverberation. We first describe the basic idea behind harmonicity
based dereverberation, HERB, and then show that the dereverberation filter
obtained by HERB is a good approximation of the inverse filter of a room

transfer function. We also describe the implementation of a prototype system
of HERB.

11.4.1 Basic Idea

Let X (I,m) be a short time Fourier transform of an observed reverberant
signal, z(n), obtained using a sufficiently long time frame. X (I,m) can be
represented as the product of the source signal, S(I,m), and the room transfer
function, H(m) as in (11.15). We assume the room transfer function, H(m),
is time invariant. This transfer function can be divided into two functions,
D(m) and R(m) as in (11.16). The former transforms S(I,m) to the direct
signal D(m)S(l,m) and the latter to the reverberation part R(m)S(l,m):

X(I,m)=H(m)S(l,m) (11.15)
= D(m)S(l,m) 4+ R(m)S(l,m). (11.16)

In HERB, the direct signal, X’(I,m) = D(m)S(l,m), is dealt with as the
desired signal that should be obtained as a result of the dereverberation.
X'(l,m) can be obtained by subtracting R(m)S(l,m) from (11.16), or by
estimating the inverse filter W (m) that satisfies (11.17) and multiplying it
with X (I, m) as in (11.18):

W (m) = D(m)/H(m), (11.17)
X'(1,m) = W(m)X(l,m). (11.18)

To solve this problem, HERB estimates the inverse filter W (m) principally
according the following procedure.

1. The initial estimate of the direct signal of a harmonic signal included in
X (I,m), referred to as X (I, m), is determined using an adaptive harmonic
filter.
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2. Assuming that X'(l,m) approximates the direct signal of S(I,m), the
initial estimate of the inverse filter Wy (I, m) is determined for each time
frame as Wo(l,m) = X (I,m)/X (I, m).

3. In order to exclude the approximation errors included in the initial inverse
filter estimate, Wy(l,m), the estimate of the inverse filter, referred to as
the dereverberation filter, is given by averaging the initial inverse filter
estimate over different time frames as W(m) = E,{Wy(l,m)}.

Let us consider a very simple case to explain the basic idea of the above
procedure. Suppose that a signal s(n) whose frequency sweeps from 100 to
7000 Hz occurs as a source signal, and is convolved with the room impulse
response of a reverberant room. Figure 11.2 shows spectrograms of this source
signal and its observed signal. In the spectrogram of the observed signal, the
energy of the direct signal is concentrated in the area in which the signal
first appears at each frequency. Therefore, we can approximately extract the
direct signal by extracting a frequency component in this area. This can be
done by tracking frequency (1) of a dominant sinusoidal component in the
reverberant signal at each short time frame, extracting its amplitude fl(l)
and phase ¢(1), and synthesizing it as

(n) =) g(n —m)A(l) cos(8(I)n/ fs + (1)), (11.19)
l

where ¢g(n) is a window function for overlap-add synthesis and n; is the
time index centered in a frame [. In this simple case, the accuracy of the
direct signal estimation is rather high because no other signal appears at
the same time as the direct signal, and thus the estimated inverse filter
Wo(m) = X(m)/X(m), where X(m) and X(m) are DFTs of whole sig-
nals of (n) and z(n), is expected to be very close to the desired inverse
filter. Figure 11.3 shows the reverberation curves [14] of the room impulse
response h(n) of a reverberant room and the impulse response dereverberated
by this simple method. This clearly demonstrates the effective reduction of
the reverberation.

11.4.2 Model of Reverberant Speech Signal

We extend the dereverberation method discussed in the previous section to
cope with speech signals. For this purpose, we first provide a further anal-
ysis of the source speech signal model. Equation (11.5) is rewritten with a
frequency domain representation as

S(l,m) = Sn(l,m) + Sn(l,m). (11.20)

The observed reverberant signal, X (I,m), is then obtained by multiplying a
room transfer function H(I,m) by S(I,m) as (11.21). This equation can be
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Fig. 11.2. Spectrograms of (a) a sweeping sinusoid and (b) its observed reverberant
signal.
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Fig. 11.3. Reverberation curves of original impulse response (thin line), and dere-
verberated impulse response (thick line).

again rewritten by dividing H(m) into the two functions D(m) and R(m) as
in (11.22),

X(I,m) = Hm)S(,m), (11.21)
X(I,m) = D(m)S(l,m) + R(m)S(l,m). (11.22)

The observed signal, X (I,m), is further rewritten as (11.23) using (11.20),
X(,m) = D(m)Sy(l,m) + (R(m)Sp(l,m) + H(m)S,(l,m)). (11.23)

The first term on the right side of (11.23), D(m)Sy(l,m), is the direct signal
of the harmonic signal, and is as highly periodic as the harmonic signal in
the source signal. By contrast, R(m)Sy(l, m) in the second term on the right
side is the reverberation part of the harmonic signal, and thus has degraded
harmonicity. H(m)S, (I, m) is not harmonic because S, is originally a non-
harmonic part. Therefore, the second term on the right side represents the
non-harmonic parts in the observed signal.

Of these components, D(m)S (I, m) can be approximately extracted from
X(I,m) with an adaptive harmonic filter. This approximated direct signal
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X(I,m) can be modeled as follows:
X(1,m) = D(m)SK(l,m) + (Rn(1,m) + H,(I,m)), (11.24)

where Rh(l, m) and ﬁn(l, m), respectively, are part of the reverberation of
Sk(l,m) and part of the direct signal and reverberation of S, (I, m), which
unexpectedly remain in X (I, m) after the harmonic filtering. Here, we assume
that all the estimation errors in X (I,m) are caused by Ry, (I, m) and H,(,m)

in (11.24). In general, it is difficult to estimate the Fy of a reverberant speech
signal precisely, therefore, X (I,m) also contains estimation errors caused by
the F estimation errors without any compensation. To reduce these kinds
of errors, HERB has a mechanism that excludes them effectively through its
dereverberation procedure. We describe this mechanism in detail in Sect. 11.5.

11.4.3 Dereverberation Filter

HERB estimates the inverse filter, hereafter called the dereverberation filter,
as the time average of a filter that transforms observed reverberant signals,
x(n), into the output of an adaptive harmonic filter, Z(n). Here, we assume
that &(n) roughly approximates the direct harmonic components in the ob-
served signals. The dereverberation filter, W (w), is calculated using X (I,m)
and X (I,m), or STFTs of z(n) and &(n), as

X(I,m)
X(l,m)’
W (m) = E {Wo(l,m)}, (11.26)

where F;{-} represents an average function that calculates the average value
of X(I,m)/X (I, m) over time frames. With speech signals, this filter can be
shown to provide a good approximation of the inverse filter of a room transfer
function for speech signals. Next, we briefly interpret the property of this
filter.

Wo(l,m) = (11.25)

11.4.4 Interpretation of the Dereverberation Filter
By substituting X (I, m) and X (I,m) in (11.25) with (11.21) and (11.24), the

following equation can be derived:

_ D(m) + R(m)

W(m) Hm) P{Sh(l,m)|[ > [Sn(l,m)l[}, (11.27)
where
~ Rh(l,m)
R(m) :Et{i} , (11.28)
Sn(l,m) |Sn (1,m)|>|Sn (1,m)|

where P{-} is a probability function, and E;{-} o represents an average func-
tion over time frames under a condition where A holds. Note that it is nec-
essary to use the following assumptions to derive (11.27).
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1. £8,(l,m) and a joint event composed of Sy, (I, m), Ry,(I,m), and |S,, (I, m)|
are statistically independent,

2. ZSp(I,m) and a joint event composed of |Sp(l,m)|, H,(I,m), and
Sn(l,m) are statistically independent,

3. ZSp(l,m) and £S5, (I, m) are uniformly distributed within [0, 27),
4 |Sn(l,m)| # [Sn(l,m)].

Here, we omit the detailed derivation of (11.27).

Equation (11.27) means that W(m) approximately coincides with the
product of (D(m)+ R(m))/H(m) and P{|Sy(l,m)| > |S,(l,m)|}. The for-
mer, (D(m) + R(m))/H(m), strictly equals the inverse filter, D(m)/H (m),
when an adaptive harmonic filter can completely reduce Ry, (I,mm) in (11.24)
without any errors. Although it is very difficult to reduce Rh(hm) com-
pletely, a major part of R(m)Sp(l,m) can be eliminated with an adaptive
harmonic filter. In addition, R(m) is defined as an average filter that trans-
forms Sy, (I, m) to Rh(l,m). Therefore, R(m) is expected to become a trans-
formation that produces reduced reverberation. As a consequence, the signal
obtained by multiplying the observed signal X (I,mm) by (D(m)+R(m))/H (m)
is expected to be the sum of the direct signal and the reduced reverberation,
that is, ((D(m) + R(m))/H(m))X(l,m) = D(m)S(l,m) + R(m)S(l,m). By
contrast, P{|Sp(l,m)| > |Sn(l,m)|} in (11.27) is the probability that the
harmonic signal has a larger energy than the non-harmonic signal, and has
a real value between 0.0 and 1.0. This term changes the gain of (11.26) but
does not affect its dereverberation function.

The above analysis reveals the following properties of the dereverberation
filter obtained by HERB.

e The dereverberation filter becomes an approximation of the inverse fil-
ter D(m)/H(m) except that part of the reverberation remains and its
gain changes. Therefore, this filter is expected to dereverberate both the
harmonic and non-harmonic signals of speech signals.

e However, the filter gain becomes zero in the frequency region where har-
monic components are not included in the training data used for estimat-
ing the dereverberation filter. This is because P{|Sy(l,m)| > |S,(l,m)|}
becomes zero in such regions. These regions include frequency regions
lower than the fundamental frequencies of speech signals or higher fre-
quency regions where the harmonic structure becomes unclear.

e In addition, even in frequency regions in which harmonic components are
included in the training data, the filter gain is assumed to decline as the
frequency increases. This is because, with speech signals, the magnitude
of the harmonic signal decreases relative to that of the non-harmonic
signal as the frequency increases.
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11.5 Implementation of a Prototype System

In this section, we describe a prototype system of HERB. We used it to
examine the dereverberation effects of this approach. The prototype system
consists mainly of the following subprocedures:

1. Fp estimation: voiced durations and their Fys are estimated from ob-
served reverberant signals, z(n).

2. Harmonic filtering: harmonic signals, #(n), included in z(n), are esti-
mated by means of waveforms based on adaptive harmonic filtering.

3. Dereverberation filter estimation: z(n) and #(n) are divided into
time frames and transformed into frequency-domain signals, as X (I, m)
and X (I,m), by short time discrete Fourier transformation. The dere-
verberation filter, W (m), is estimated as the average of X (I,m)/X (I, m)
over a number of time frames, and then transformed into a time domain
filter, w(n), by inverse discrete Fourier transformation.

4. Dereverberation: the dereverberated signals are obtained by convolv-
ing xz(n) with w(n).

Figure 11.4 shows the complete processing flow of the prototype system.
The dereverberation procedures are composed of three processing steps, with
the aim of gradually improving the dereverberation performance in each step.
All the subprocedures described above are employed in each step. They are
summarized as follows:

STEP 1: Fjs, voiced durations, and harmonic components are all estimated
directly from an observed reverberant signal, z(n), therefore, the esti-
mated values may contain many errors.

STEP 2: Fjs and voiced durations are estimated from signals dereverber-
ated by the previous step, and harmonic components are estimated
from observed reverberant signals, x(n). Because the estimated Fys and
voiced durations are expected to improve, harmonic components esti-
mated based on them are also expected to improve.

STEP 3: All the above values are estimated from signals dereverberated
by the previous step. Because reverberant components, Ry, inevitably
included in (11.24) can further be reduced, more effective dereverberation
is expected to be achieved.

In our preliminary experiments, the estimation of Fy and voiced durations
gradually improved when STEP 2 was repeated. By contrast, repeating
STEP 3 did not always improve the quality of dereverberated signals. This
is because estimation errors in the dereverberation filters accumulate in the
dereverberated signals when the signals are multiplied by more than one
dereverberation filter. In our experiments described in the next section, we
employed all these steps without repeating any of them.
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STEP 1:
x(n) x(n) x(n) wi(n)*x(n)
Input x(n) -1 ,FD . —> H.armon.ic —> Derevfeirlbteerration —> Dereverberation —
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—
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—> .FO ) Hlarmonlic —> Derevfeirlbteer:tlon — Dereverberation >
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Fig. 11.4. Processing flow of the dereverberation by the prototype system.

11.5.1 Dereverberation Filter Calculation

In order to estimate the dereverberation filter precisely, we calculate the aver-
age function, £;{-}, in (11.26) which is weighted by the amplitude spectrum
| X (1,m)] as

W (m) — 2 X (L m)|Woll, m) (11.29)

D [X(1,m)]

This is because we expect that values estimated at time frames that contain
stronger harmonic components will be less affected by non-harmonic compo-
nents, and thus more reliable.

Note that the estimated dereverberation filters result in delayed inverse
filters when using our prototype systems. This means that the prototype
system is applicable even to reverberant signals that include non-minimum
phases [15].

11.5.2 Heuristics Improving Accuracy of Fy Estimation and
Voicing Decisions with Reverberation

Accurate F|y estimation and voicing decisions are very important to achieve
effective dereverberation in HERB. However, this is a difficult task especially
for speech with long reverberation using some of the existing Fj estimators
[12], [13]. Although we employed a robust estimation method described in
Sect. 11.3, it is not sufficiently robust, especially for speech signals with long
reverberations. To cope with this problem, we introduced two types of pre-
processing to the estimation: one uses a simple filter that reduces sound that
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continues at the same frequency [16], and the other uses the dereverberation
filter itself. The effectiveness of these filters was confirmed in our preliminary
experiments. The dereverberation filter based method is the most effective
because the reverberation of the speech signals can be directly reduced by
the filter. This mechanism is included in steps 2 and 3 of the dereverbera-
tion procedure, so more accurate Fy estimation and voicing decisions can be
achieved in steps 2 and 3 than in step 1.

11.6 Simulation Experiments

We evaluated the performance of the HERB prototype system using the
dereverberation task described in Sect. 11.6.1 in terms of the energy decay
curves of the impulse responses and speaker dependent automatic speech
recognition (ASR).

11.6.1 Task: Dereverberation of Word Utterances

The task used in our experiments was the dereverberation of reverberant word
utterances. We used 5240 Japanese word utterances provided by a male and
a female speaker (MAU and FKM) included in the ATR database as source
signals, s(n). We used four impulse responses measured in a reverberant room
whose reverberation times were about 0.1, 0.2, 0.5, and 1.0 sec. Reverberant
signals, z(n), were obtained by convolving s(n) with the impulse responses.

To evaluate the fundamental performance of the prototype system, we
assumed that the dereverberation filter was estimated using all male or all
female word utterances. In addition, we assumed that each word utterance
with reverberation was recorded separately, and that there was no time-
overlap between utterances including their reverberation durations. When we
estimated the dereverberation filter using (11.25) and (11.26), we calculated
the STFT of z(t) and &(¢) with a time frame long enough to contain each
whole word utterance with zero padding. The length of the dereverberation
filter was 131,072 taps; that is, we used a 10.9 sec rectangular window for the
X and X calculations. By contrast, we used a much shorter time frame, that
is, a 42 msec Hanning window and a 1 msec window shift for the Fy estimation
and adaptive harmonic filtering in order to extract the time-varying features
of the harmonic components. We used signals sampled at 12 kHz.

11.6.2 Energy Decay Curves of Impulse Responses

Figure 11.5 shows energy decay curves of room impulse responses and dere-
verberated impulse responses obtained by HERB while controlling the re-
verberation time. Each dereverberated impulse response was obtained by
convolving a room impulse response with its dereverberation filter, and each
decay curve was calculated using Schroeder’s method [17].
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Fig. 11.5. Energy decay curves of the room impulse responses (thin solid line) and

the dereverberated impulse responses when using female speech signals (thick solid

line) and male speech signals (thick dashed line) as training data under different

reverberation time (rtime) conditions.

The figure shows that the proposed method could effectively reduce the
reverberation in the impulse responses for the female speaker when the re-
verberation time (rtime) was longer than 0.1 sec. For the male speaker, the
reverberation effect in the lower time region was also effectively reduced. This
means that strong reverberant components were reduced, and so the intelli-
gibility of the target speech could be expected to be improved [14]. Although
the reverberation effect in the higher time region for the male speaker was
increased when rtime was 0.1 or 0.2 sec, the sound quality as a whole is
expected to improve when rtime is 0.2 sec because the earlier reverberation
that was much stronger than the later one was effectively reduced. This can
be easily confirmed by listening to dereverberated signals, which are available
on our web page [18].

Figure 11.6 shows waveforms and spectrograms of a source signal, an
observed reverberant signal, and a signal dereverberated by the prototype
system. The source signal was a Japanese word “Ha-Chi-Ga-Tsu” uttered by
a female speaker. The reverberation time was 1.0 sec. It shows that HERB
could effectively restore the time and frequency structure of the source signal.

11.6.3 Speaker Dependent Word Recognition Rate

We evaluated the speaker dependent word recognition rate (WRR) of speech
signals dereverberated by the prototype system. For this purpose, we pre-
pared four types of acoustic monophone model. The first two are models of
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Fig. 11.6. Waveforms (left panels) and spectrograms (right panels) of (a) a source
signal, (b) an observed signal, and (c) a dereverberated signal, for the utterance
“Ha-Chi-Ga-Tsu.” (Reverberation time: 1.0 sec.)

clean speech signals. They are trained on the signals before and after be-
ing dereverberated by the prototype system, and are referred to as clean
models. The remaining two are models of reverberant signals with a 0.1 sec
reverberation time. Similarly, they are trained on the signals before and after
dereverberation, and are referred to as short reverberation models. Acoustic
models trained on the signals before and after dereverberation are used to
recognize reverberant signals and dereverberated signals, respectively. 4740
words randomly selected from 5240 words were used as training data, and
the remaining 500 words were used as testing data. The analysis conditions
we adopted consists of 12 order MFCCs, 12 order delta MFCCs, three state
HMMs, five mixture Gaussian distributions, 25 msec frame length, and 5 msec
frame shift.
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Fig. 11.7. Word recognition rates (WRRs) of reverberant and dereverberated
signals when using the clean speech model (left panel) and the short reverberation
model (right panel) under different reverberation time conditions.

The results are shown in Fig. 11.7. The left panel shows WRRs with the
clean speech model. The average WRRs for the dereverberated signals (thick
solid line) were much better than those for the reverberant signals (thick
dotted line), but the WRRs were at most 55 %. By contrast, the right panel
shows the WRRs with short reverberation models. The WRRs for derever-
berated signals remained above 90 % even when the reverberation time was
1.0 sec while those of the reverberant signals degraded as the reverberation
time exceeded 0.5 sec.

These results mean that speech signals dereverberated by HERB have sim-
ilar spectral shapes independent of the reverberation time. In other words,
HERB can successfully reduce the spectral variations in speech signals pro-
duced by reverberation without losing the speech features essential for ASR.

11.7 Future Directions

Although our simulation experiments showed the potential effectiveness of
HERB, the prototype is still an immature system that cannot be applied to
more realistic situations. For example,

e The prototype system requires a long observation time to achieve high
quality speech dereverberation. In our experiments, a signal observed
for more than one hour convolved with a constant impulse response is
required for estimating a precise dereverberation filter.

e The speech model used in HERB does not precisely represent whole prop-
erties of speech signals, which leads to a bottleneck in the dereverberation
performance. Non-harmonic components are disregarded simply as noise
when estimating the dereverberation filter, and the F, of speech is as-
sumed to be constant within a short time frame.

These problems have to be overcome if we are to apply HERB to a real
problem.
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In this section, we discuss extensions of HERB in order to consider its
future directions.

11.7.1 Theoretical Extension of HERB

As a generalization of HERB, a quasi-periodicity based dereverberation prin-
ciple has been proposed to provide a theoretical basis for discussing the limi-
tation and extendibility of HERB [19]. With this principle, a harmonic sound,
sp(n), in a speech signal is assumed to be a quasi-periodic signal that has
the following features:

1. In each local time region around ng (ng — & < n < ng + § for Yng), s(n)
is approximately a periodic signal whose period is T'(ng).

2. Outside the region (|n’ —ng| > d), s(n’) is also a periodic signal within its
neighboring time region, but it often has another period that is different
from T'(ng).

These features make the observed signal, x(n) in (11.1), a non-periodic signal
even within local time regions when the room impulse response, h(n), contains
non-zero values for |m| > ¢. This is because more than two periodic signals,
s(n) and s(n—m), that have different periods, are added to z(n) with weights
of h(0) and h(m). Conversely, the goal of quasi-periodicity based dereverber-
ation is to estimate w(n) that makes y(n) in (11.2) a periodic signal in each
local time region. Once such a filter is obtained, g(n) = Y .°_  w(n—m)h(m)
in (11.4) must have zero values for |n| > §, and thus, reverberant components
longer than ¢ are eliminated from y(n).

This principle suggested another dereverberation method based on a min-
imum mean squared error (MMSE) criterion [19]. This method, as described
in Sect. 11.7.2, is expected to enable us to achieve a better estimation of the
dereverberation filter with a small number of training data. This principle
also explains why a reverberation with a short reverberation time remains
after dereverberation by HERB. It suggests that a quasi-periodicity based
dereverberation method cannot reduce the dereverberated impulse response,
q(n), in the time region for |n| < §. The results of the simulation experiments
in Sect. 11.6 suggest that the ¢ value is about 0.1 sec.

11.7.2 Accuracy Improvement of Speech Model

The speech model presented in Sect. 11.3 contains two major problems as

1. It assumes the Fj of a speech signal is constant within a short time frame.
2. It disregards non-harmonic components as a dereverberation key.

These problems constitute a bottleneck in the dereverberation performance
of HERB, and so should be removed.
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In order to model a harmonic signal precisely even when its Fy changes
within a short time frame, an extension of HERB is proposed, in which time
warping analysis is incorporated into the adaptive harmonic filtering [20].
The time warping analysis expands and contracts the time axis of the sig-
nals to make their Fys approximately constant. Once the Fj of the signal
is made constant, we can easily extract the precise features of the harmonic
components based on harmonic filtering [21]. Simulation experiments showed
that this extension improves the performance of HERB, especially for male
speech signals. Consequently, it successfully reduced the energies of derever-
berated impulse responses compared with the room impulse responses in all
cases in almost all time regions for both genders. It was also shown that this
extension improved the speaker dependent ASR so that it could achieve more
than 90 % recognition rates using an acoustic model trained on clean speech
signals, that is, the clean model, even with a 1.0 sec reverberation time.

It is a challenging problem to develop a speech model that can deal with
non-harmonic components for dereverberation. We are investigating one ap-
proach to this problem, in which we assume that direct signals of harmonic
components, sp(n) and non-harmonic components s,(n) are uncorrelated.
This assumption can be formulated as

E{(D(m)Sp(l,m))(D(m)Sn(l,m))} =0, (11.30)

where E{-} is an expectation function over time frames. This can be rewrit-
ten using the desired dereverberation filter W (I, m) as

E{(D(m)Sy (1, m))(W(m)X (1,m) — D(m)Sy(l,m))} = 0. (11.31)

This implies that the solution to the above equation coincides with the filter
W {(m) that minimizes the following cost function.

C(W(m)) = E(W (m)X (1, m) — D(m)Sy(l,m))?}. (11.32)

In HERB, when the harmonic filter is applied to X (I, m), the output, X(l, m),
is assumed to become the initial approximation of the direct harmonic com-
ponents. With this approximation, the above cost function can be further
rewritten as

C(W(m)) = EL(W(m)X (I, m) — X (1,m))?}. (11.33)

This cost function is referred to as the minimum mean squared error (MMSE)
criterion. It is shown that dereverberation can be achieved by obtaining the
dereverberation filter, W(l,m), that minimizes the MMSE criterion [19]. In
addition, our preliminary experiments showed that this method could achieve
better dereverberation in terms of energy decay curves than the prototype
system described in this chapter when the observed signal was short.
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Fig. 11.8. (a) A waveform and (b) a spectrogram of a signal of the utterance “Ha-
Chi-Ga-Tsu” dereverberated using a dereverberation filter trained on 100 word
utterances. (Reverberation time: 1.0 sec.)

11.7.3 Reduction of Training Data Size

The reduction of the observed signal size required for achieving high quality
speech dereverberation with HERB is one of the most important problems
remaining to be solved. Figure 11.8 shows a waveform and a spectrogram of
a dereverberated speech signal when the dereverberation filter was estimated
using observed signals composed of 100 word utterances. It shows that the
time and frequency structure of the speech signal can be effectively restored
by the dereverberation. However, by looking into time and frequency regions
where the energy of the signal is small in comparison with Fig. 11.6, we can
confirm that stationary random noise remains after dereverberation. As the
size of the observation decreases, the noise HERB generates by its derever-
beration procedure becomes more intense. This problem must be overcome
if we are to apply HERB to more realistic situations.

We think that one promising way to overcome this problem is to introduce
a speech model that can deal with non-harmonic components as a key to
dereverberation. The MMSE criterion described in Sect. 11.7.2 is one such
model that may provide a better solution. Moreover certain noise reduction
technologies may provide another way that can be expected to work well for
improving the quality of dereverberation by reducing the random stationary
noise generated by HERB.

11.8 Conclusions

This chapter described methodologies for single channel blind speech dere-
verberation. An important point as regards blind dereverberation is finding
a way to exploit the features of source signals. We detailed a harmonicity
based dereverberation approach known as HERB as a promising methodol-
ogy. This approach estimates the inverse filter of a room impulse response by
calculating the time average of a filter that transforms reverberant observed
signals into their direct harmonic components, which are estimated using an
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adaptive harmonic filter. A prototype system of HERB was presented and
shown to work effectively to achieve high quality dereverberation, provided
a sufficient number of observed signals are available. The prototype system
clearly restored the time and frequency structures, and improved the speaker
dependent word recognition rates to more than 90 % even under a 1.0 sec
reverberation time condition. Several future directions related to HERB were
also presented with the aim of discussing how to extend it to cope with more
realistic situations.
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Abstract. Speech enhancement was not and should not be examined solely with
the tool of time-frequency analysis. Approaching this problem from different per-
spectives or incorporating other knowledges helps to expand the number of options
open to us when developing a speech enhancement system. Using multiple micro-
phones at different locations makes it possible to develop more sophisticated source
separation and dereverberation technologies for speech enhancement, which enable
man-made systems to extract a speech signal of interest in a noisy environment
with competing speech and/or noise sources. This phenomenon is referred to as
the cocktail party effect demonstrated by human beings and many other creatures
with few efforts. However, separating and dereverberating speech signals is a very
difficult problem in reverberant environments and the state-of-the-art algorithms
are still unsatisfactory. The challenge lies in the coexistence of spatial interference
from competing sources and temporal echoes due to room reverberation in the ob-
served microphone signals. Focusing only on optimizing the signal-to-interference
ratio is inadequate for most speech processing systems where source separation and
speech dereverberation are two fully-integrated problems. In this chapter, we study
these two problems in a unified framework. We deduce that spatial interference
and temporal reverberation can be separated and a SIMO system with the speech
signal of interest as input is extracted from the MIMO system. Furthermore, this
interference-free SIMO system is dereverberated using the MINT theorem. Such a
two-stage procedure leads to a novel sequential source separation and speech dere-
verberation algorithm based on blind multichannel identification. Simulations with
measurements obtained in the varechoic chamber at Bell Labs verified the proposed
algorithm.

12.1 Introduction

Speech enhancement is essential for tremendous applications of speech pro-
cessing and communications since we are living in a natural environment
where noise or disturbance is perpetual and ubiquitous. Speech signals can
seldom be recorded in pure form and in most cases they are immersed in
acoustic ambient noise or reverberation.
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In order to develop an effective approach to extracting a desired speech
signal from their corrupt observations, we need to understand how distortions
are introduced. From a statistical viewpoint, there are only two sources of dis-
tortion. One is uncorrelated or even independent noise or competing speech,
and the other is correlated reverberation or echo. While many single-channel
algorithms and techniques have had varying success in noise reduction as ex-
plained in previous chapters, speech enhancement in the sense of separation
and dereverberation would be very difficult if not impossible to accomplish
using only one microphone in distance. A listener has the ability of choosing
to focus on a specific speaker in a room where several people are talking con-
currently and where noise sources might meanwhile exist. This phenomenon
is referred to as the cocktail party effect or attentional selectivity [1]. This ef-
fect is mainly attributed to the fact that we have two ears and our perception
of speech is based on binaural hearing, which can be easily demonstrated by
observing the difference in understanding between using both ears and with
either ear covered when listening in a cocktail-party-like environment. This
suggests the use of two or more microphones, i.e., microphone arrays, in the
development of prospect speech separation and dereverberation algorithms
and systems.

As a part of our daily experience, we know that distinguishing and even
separating components of a mixture or collection depends on their distinc-
tions. In a multispeaker environment, sound sources are different in location
and statistics in addition to spectrum, which leads to two different categories
of speech separation method using multiple microphones: beamforming and
blind source separation (BSS).

Beamforming is a form of spatial filtering that enhances the signal from
“look direction” and attenuates signals that propagate from directions other
than the “look direction” [2]. Therefore a beamformer can not only separate
multiple sound sources but also suppress reverberation for the speech source
of interest. However, its performance is limited by a number of factors in prac-
tice. Beamforming relies on the knowledge of the speaker’s position, which is
seldom available. While the position of the speaker can be estimated by anal-
ysis of the microphone outputs, errors are inevitable particularly when the
room is considerably reverberant [3]. Furthermore, current microphone array
technologies including beamforming originated from array signal processing.
But compared to classical sensor array processing with antenna arrays [4],
the basic conditions are significantly different in acoustics: speech is a base-
band signal and the localization and recording take place in the nearfield
with respect to the microphone array.

Alternatively BSS methods tackle this problem by taking advantage of
the difference in statistics among multiple sound sources under investigation
[5]. BSS that is typically accomplished by independent component analysis
(ICA) algorithms [6] assumes mutually independent sound sources. The mix-
ing procedure is typically delineated with a multiple-input multiple-output
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(MIMO) mathematical model, which is either memoryless or with memory,
being referred to as instantaneous and convolutive mixtures, respectively.
An ICA processes microphone signals with a de-mixing system whose out-
puts are estimates of the separated source signals satisfying the independent
assumption. Existing ICA algorithms differ in the way the dependence of
the separated source signals is defined, i.e., the employed criteria for mini-
mization, which include second order statistics [7], higher (than two) order
statistics [8], and information-theory-based measures [9]. BSS methods allow
for near-field sources and reverberant acoustic environments. But in reverber-
ant environments, they are either very complex (for time-domain approaches
[10]) or have an inherent problem of so-called permutation inconsistency [11]
(for frequency-domain algorithms [12]). Moreover, it is not true nevertheless
that current BSS methods work for arbitrary source positions. When sources
are at the positions such that the mixing matrix is singular, the de-mixing
system (the inverse of the mixing matrix) does not exist and source sep-
aration cannot be attained. Finally, it should be noted that, in addition to
the above drawbacks, independent but distorted source signals are valid solu-
tions for BSS methods. Therefore deconvolution is usually needed to mitigate
convolutive distortion and reconstruct original speech signals.

Speech dereverberation remains a challenging problem even after three
decades of continuous research. While the number of employed microphone
signals is a common way to classify current speech dereverberation meth-
ods, another insightful approach is based on whether the channel impulse
responses need to be known or estimated. In the case of a single micro-
phone with the corresponding acoustic channel impulse response not being
able to access anyway, either cepstral-domain processing techniques were sug-
gested to separate speech from reverberation [13], [14] or characteristics of
speech (usually in statistical forms) could be exploited with the attempt to
recover the energy envelope of the original speech [15]. But they achieved
only moderate successes because of a very large variety of applications. If
the acoustic channel impulse responses are known, speech dereverberation
can be performed by inverting those impulse responses. It is well known that
the impulse response of a single acoustic channel needs to a minimum-phase
sequence for stable and causal ezact inversion [16]. Otherwise the inverting
filter would either be IIR (noncausal and with a long delay) for exact inver-
sion or just produce an LS (least-squares) solution. However, using multiple
microphones, we can carry out perfect speech dereverberation with causal
FIR filters even for non-minimum-phase channels. The principle is widely
known as the MINT (multichannel inverse) theorem [17].

In this chapter, we will investigate the problem of speech enhancement
by separating the speech of interest from concurrent interference (speech
and/or noise) sources and by mitigating distortion due to room reverber-
ation from a novel perspective within a unified framework using multiple
microphones. In a MIMO acoustic system, microphone outputs are convolu-
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tive mixtures containing both reverberant speech and competing interference.
We will show that the reverberant speech and interference can be completely
separated given the blindly estimated channel impulse responses from in-
terference sources. It is assumed that the number of microphones would be
greater than the number of speech and interference sources. Then by choos-
ing different combinations of microphone outputs, we obtain a number of
diversely distorted speech signals, which composes a single-input multiple-
output (SIMO) system. For such a system, we can again blindly identify its
channel impulse responses and then apply the MINT theorem to remove re-
verberation. Therefore, the speech enhancement algorithm that will be devel-
oped here is a two-step procedure dealing with interference and reverberation
sequentially. As a result, we are able to mimic the cocktail party effect with
man-made machines.

This chapter is organized as follows. Section 12.2 introduces the MIMO
signal model, formulates the problem of speech separation and dereverber-
ation, and explains all assumptions that will be made. In Section 12.3, we
brief the technique of blindly identifying a SIMO system. Section 12.4 ex-
plains how to separate reverberant speech and interference. A SIMO system
with the speech of interest as the input will be extracted from the MIMO
system. Since the SIMO is free of interference, we can again blindly identify
its impulse responses and perform exact dereverberation using the MINT
theorem, which will be illustrated in Section 12.5. Section 12.6 evaluates the
developed algorithm by simulations and Section 12.7 draws the conclusions.

12.2 Signal Model and Problem Formulation

We consider an acoustic environment where there are one speech source of
interest, M — 1 concurrent sound sources, and N microphones with M < N.
The speech source and M — 1 other sound sources are mutually independent.
Those competing sound sources can be speech or noise, and are regarded as
interference. Such a system is mathematically described by an M x N MIMO
FIR model as shown in Fig. 12.1. Without loss of generality, we label the
speech source of interest as the first. At the n-th microphone and at the k-th
sample time, we have:

z,(k) = i bl s (k, Ly) + b (k), (12.1)
7122211,2,-.- K, n=1,2,--- N,
where (-)7 denotes the transpose of a matrix or a vector,
T A P I
n=12,---,N, m=1,2,--- , M,

)
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Fig. 12.1. Illustration of a MIMO FIR acoustic system having M sound sources
and N microphones.

is the impulse response (of length Lj, Vm,n) between source m and micro-
phone n,

sm(k,Lp) = [ sm(k) sm(k—1) - sm(k‘—Lh—i—l)}T

is a vector containing the last L; samples of the m-th source signal s,,, and
by (k) is zero-mean additive white Gaussian noise (AWGN).

Using the z transform, the signal model of the MIMO system (12.1) is
expressed as

M
Xn(2) =Y Hum(2)Sm(2) + Ba(2), n=1,2,--,N, (12.2)
m=1
where
Lp—1
Hym(2) = > homaz " (12.3)
=0

In this system, we assume no a priori knowledge about the original speech
signal s1(k), the interference signals s,,(k) (m = 2,---,M), or the chan-
nel impulse responses hy,,,. All that we have are microphone outputs ., (k)
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(n=1,2,---,N). But the speech enhancement algorithm that will be devel-
oped needs to know the channel impulse responses from interference sources
to each microphone Ay, (m =2,---, M,Vn). Therefore we have to estimate
them blindly. While blind MIMO identification is practically appealing, it
still is a theoretically open problem and the current research in this area
remains at the stage of feasibility investigation. This problem is already very
difficult for communication systems with short channel impulse responses.
Then for an acoustic system where the filter length of a channel impulse re-
sponse in thousands of samples is not uncommon, blind MIMO identification
seems formidable. Therefore we propose to decompose the problem into sev-
eral subproblems in which SIMO systems are blindly identified. Presumably
interference sources are motionless or move very slowly. Consequently their
corresponding channel impulse responses change very slowly in time. It is
further assumed that from time to time each interference source occupies at
least one exclusive interval alone. Then during every single-talk interval, a
SIMO system is blindly identified and its channel impulse responses are saved
for later speech separation and dereverberation when all sources voice out
simultaneously. Although these assumptions make the developed algorithm
less flexible, they still are reasonable and stand in many practical scenarios.
Apparently a sound source detection algorithm that distinguishes single and
multiple talk is necessary and also interesting, but it is beyond the scope of
this study.

In this chapter, we suppose that noise comes from one single point source
or multiple point sources, and additive, dispersive noise is negligible, i.e.,
b, (k) = 0,¥n, k. Therefore, the blind SIMO identification system could yield
accurate estimates of channel impulse responses and we can assure satisfac-
tory performance for subsequent speech separation and dereverberation.

12.3 Blind Identification of a SIMO System

As assumed in the previous section, from time to time an interference source
Sm(k) (m=2,---, M) would alone occupy an exclusive interval, during which
the MIMO system becomes a SIMO system and the corresponding channel
impulse responses will be blindly estimated. In this section, we will briefly
review the technique of blind SIMO identification and its adaptive implemen-
tations. In order to have a concise presentation and to keep consistent with
the conventional notation used in the literature of blind SIMO identification,
we omit the subscript indicating the source index m in and also only in this
section, which we believe would cause no ambiguity if the reader could pay
slightly more attention.

For a SIMO system, we have the following expression for microphone
signals:

Tp(k) = hy x s(k) +by(k), n=1,2,---,N, (12.4)
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where the symbol * denotes the linear convolution operator and b, (k) can
be neglected by assumption as explained in the previous section. In a vec-
tor/matrix form, such a signal model (12.4) becomes:

x, (k) = H, -s(k), (12.5)
where

xu(k) = [@a(k) @alk—1) - @b~ L+ 1)]",

hno hna -+ hnr,—1 0 0
o — 0 h.n,O hn,ljh72 hn,.thl 0 ’
0 -+ 0  hnpo hni o hpr,—1

s(k) = [s(k) s(k—1) -+ s(k—Lyp+1) - s(k—2L,+2)]" .

In order to ensure that the SIMO system can be blindly identified, the
following two conditions (one on the channel diversity and the other on the
input source signal) need to be met and are normally assumed in earlier
studies as well as in this chapter [18]:

1. The polynomials formed from h, = [hno hnt - hopa1] , n =
1,2,--- N, are co-prime, i.e., the channel transfer functions H,(z) do
not share any common zeros;

2. The autocorrelation matrix R,s = E {s(k)s”(k)} of the source signal
is of full rank (such that the SIMO system can be fully excited from a
perspective of system identification), where F{-} denotes mathematical
expectation.

The idea of blind SIMO identification using only second order statistics
of the outputs was first proposed by Tong et al. [19] and now there are
many different ways to explain the principle. We present here the one that
we usually use in our research. It can be shown that the vector of channel
impulse responses lies in the null space of a cross-correlation like matrix [20]:

R,h =0, (12.6)
where
Yz Renzn  ~Raegar 0 —Roya
T
Ry Ruwy o SR,

Ra:ixj - l?{Xl(k')x,l—'(]{;)}7 ’L,j = 1,2). . 7N’

J

h=[hf b} --- wh]".
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If the SIMO system is blindly identifiable, Matrix R, is rank deficient by
1 (in the absence of noise) and channel impulse responses can be uniquely
determined from R, which contains only the second-order statistics of the
system outputs. When additive noise is present, h would be the eigenvector
of R, corresponding to its smallest eigenvalue.

To develop an adaptive implementation, a simple way is to take advantage
of the cross relations among the outputs [21]. By following the fact that

xixhj=sxhyxhj=wa;%h;, 1,j=1,2,--- N, i #j, (12.7)
we have, in the absence of noise, the following cross relation at time k:
x; (k)hy =xj (k)hi, @,j=1,2,--- N, i #j. (12.8)

When noise is present and/or the estimate of channel impulse responses is
deviated from the true value, an a priori error signal is produced:

eij(k+1) =x{ (k+ 1)h;(k) —x (k+ Dh;(k), i,j=1,2,---,N, (12.9)

where hl(k) is the model filter for the i-th channel at time k. In order to avoid
the trivial estimate of all zero elements, a unit-norm constraint is imposed
on
. . . . T
h(k) = [h{ (k) hi (k) --- hi (k)]
leading to the normalized error signal
eij(k+1) = ey (k + 1)/|[h(k)].

Accordingly, the cost function is formulated as:

Z Z (k+1), (12.10)

=1 j=i+1

and the update equation of the multichannel LMS (MCLMS) algorithm is
deduced as follows [21]:

h(k+1) = h(k) — pVJ(k+1), (12.11)

)

where p is a small positive step size,

oIh+1) 2 [RI(/« +1)h(k) — J(k + 1)1&(1@}

VJ(k+1) = & = - , (12.12)
Oh(k) (k)]
and
En#l_ Rznwn (k) _Rxgml (k) e _f}xMwl (k)
Rm(k) _ _RI1:I2 (k) Zn;ﬁQ I{ZTnfEn (k) : _RIJ\:ffm (k) ’
_RININ (k) _Rzng (k) e Zn;ﬁN f{IHzn (k)

Ry, (k) = Xi(k)X;(kj), i,j=1,2,---, N.
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The idea of adaptive blind SIMO identification could be implemented in
the frequency domain for computational efficiency and fast convergence [22].
The so-called unconstrained normalized multichannel frequency-domain LMS
(UNMCFLMS) algorithm was shown to perform well with an acoustic system
and will be employed in this chapter.

12.4 Separating Reverberant Speech and Concurrent
Interference

In this section, we will explain how to extract reverberant speech from concur-
rent interfering sound sources. It is supposed that channel impulse responses
corresponding to the interfering sound (speech or noise) sources have been
blindly identified using the method developed in the previous section. The
knowledge of these channel impulse responses is being used here to convert
the M x N MIMO system into a SIMO system with the speech signal of
interest as the sole input. The development begins with an example of the
simplest 2 x 3 MIMO system and then extends to a general M x N case with
M < N.

12.4.1 Example: Removing Interference Signals in a 2 X 3
MIMO Acoustic System

For a 2 x 3 MIMO acoustic system, interference signals can be cancelled
by using two microphone outputs at a time. For instance, we can cancel
the interference in X;(z) and X5(z) caused by S2(z) (note that Source 1 is
supposed to be the speech source of interest) as follows:

Xl(Z)HQQ(Z) — XQ(Z)H12(2> =
[H11(2)H22(2) — Ha1(2)Hi2(2)] S1(2) +
[HQQ(Z)Bl(Z) — ng(z)Bg(z)] 5 (1213)

where channel impulse responses Hya(z) and Haa(2) corresponding to Source
2 were blindly estimated ahead of time. Similarly, we can select different
pair of microphone signals and obtain distinctive interference-free though
distorted observations of s1 (k). This procedure is visualized in Fig. 12.2 and
will be described in a more systematic way in the following.

Let us consider the following equation:

Y}](z) = HS1,p1(Z)X1(Z) + H817p2(Z)X2(Z) + H81,p3(Z)X3(Z)

3
=Y Hepa(2)X4(2), p=1,2,3, (12.14)
g=1

where Hy, pp(2) = 0, Vp. This means that (12.14) considers only two micro-
phone signals for each p. The objective is to find the polynomials Hy, ,,(2),



280 Y. Huang, J. Benesty, and J. Chen

51&

Sg&

Fig. 12.2. [llustration of removing interference signals from a 2 x 3 MIMO acoustic
system. Source 1 is the speech source of interest and Source 2 is an interference
source as supposed.

p,q =1,2,3, p # q, in such a way that:
Y(2) = Fp(2)S1(2) + Wyl2), p=1,23, (12.15)

which represents a SIMO system where s; is the source signal, y,(k),p =
1,2,3, are the observed microphone signals, f, are the corresponding acoustic
channel impulse responses, and w,(k) is the noise at microphone p. If no
dispersive noise is assumed, i.e., b, (k) = 0,Vn, k, then the noise component
wy (k) is zero too.

Using (12.2) in (12.14), we deduce that:

Y1(2) = [Hs, 12(2)H21(2) + Hs, 13(2) Haa
(e, 12(2) H22(2) + Hyy 13(2) Ha2(2)] S2(2) +
H;, 12(2)Ba(z) + Hg, 13(2) , (12.16)
[Hs, 21(2)H11(2) + Hg, 23(2) H31(2)] S1(2) +
[Hs, 21(2) Hy (
Hy, 21(2)B1(z) + H51,23(
[H
[H

)Bs(2), (12.17)
s1,31(2)H11(2) + Hs, 32(2)H21(2)] S1(2) +
(2) (

Ya(z) =

Y3(2)

By
N
—
I8
~—
_"_
LF
— W
[V}
—
IS
N
&
Ny
R
—~
IS
~
_|_

s1,31 z 1
H, 31(2)B1(2) + Hs, 32(2) Ba(2). (12.18)
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As shown in Fig. 12.2, one possibility is to choose:

Hsl,12(2) = H32(Z)7 Hsl,13(Z) = —H22(Z),
Hy, 21(2) = H32(2), Hs,23(2) = —Hiz(2), (12.19)
Hg, 31(2) = Haa(z), Hs, 32(2) = —Hi2(2).

In this case, we find that:

F1(2) = H3z(2)H21(2) — Hao(2)Hz1(2),
Fy(2) = Haa(2)Hu1(2) — Hi2(2)Hai(2), (12.20)
Fg(Z) = HQQ(Z)H

H
=
=
N
o
|
=
[ V]
SN
N
N—
e
S
2
N
&

and

(
WQ(Z) == Hgg(z)Bl(Z) — H12(Z)Bg(z)7 (1221)
Bl(Z) — ng(z)Bg(Z)

Since deg[Hum(z)] = Ly — 1, where deg[] is the degree of a polynomial,
therefore deg [F,(z)] < 2Lj, — 2. We can see from (12.20) that polynomials
Fi(z), F»(z), and F3(z) share common zeros if Hia(z), Haa(z), and Hsa(z)
[or if Hy1(2), Ha21(z), and Hs1(z)] share common zeros.

Now suppose that C2(z) = ged [Hi2(2), Ha2(2), H32(2)], where ged[-] de-
notes the greatest common divisor of the polynomials involved. We have:

H,o(2) = Ca(2)H, 5(2), n=1,2,3. (12.22)

It is clear that the signal so in (12.14) can be cancelled by using the poly-
nomials H/,(z) [instead of Hpa(z) as given in (12.19)], so that the SIMO
system represented by (12.15) will change to:

Yi(2) = Fl()S1(2) + Wi(2), p=1,2,3, (12.23)
where

FJ(2)Ca(2) = Fy(z), W(2)Cal2) = Wy(2),
It should be pointed out that

deg [Fy(2)] < deg[Fy(2)]
and that polynomials Fy(z), F4(z), and F}(z) share common zeros if and only
if Hy1(z), H21(2), and H3q(2) share common zeros.
12.4.2 Generalization

The approach to extracting reverberant speech from interference signals ex-
plained in the previous subsection on a simple example will be generalized
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here to an (M, N) MIMO acoustic system with M < N. We begin with
writing (12.2) into a vector/matrix form

X(z) = H(2)S(2) + B(2), (12.24)
where
X(2) = [Xi(2) Xa(2) - Xn(2) ],
i) ) - o)
He) = | e
S(z) = [ S1(2) Sa(2) -+ Sm(2)]",
B(z) = [ Bi(z) Ba(2) -+ Bu(2)]"
I Cm(z) = cd[Hlm( ), Hom (2), -+ s Hym(2)] (m =1, 2, ---, M), then
Hym(2) = Cn(2)HY,,,(2) and the channel matrix H(z) can be rewritten as
H(z) = H'(2)C(z2), (12.25)

where H'(z) is an N x M matrix containing the elements H/  (z) and C(z)
is an M x M diagonal matrix with C,,(z) as its nonzero components.

Let us choose M from N microphone outputs and we have P = C% dif-
ferent ways of doing so. For the p-th (p = 1,2,--- , P) combination, we denote
the index of the M selected microphone signals as p,,, m =1,2,--- , M, and
get an M x M MIMO sub-system.

Consider the following equations:

Y,(2) =HY (9)X,(2), p=12-,P, (12.26)

sp(2) = [ Hoipn(2) Hoopale) o Hypu(2) ]
Xp(2) = [ Xp(2) Xpul2) -~ Xpu(2)]"

Let Hy(z) be the M x M matrix obtained from the system’s channel
matrix H( ) by keeping its rows corresponding to the M selected microphone
signals. Then similar to (12.24), we have

—

X, (2) = Hy(2)S(2) + B, (2), (12.27)
where
By(2) = [ Byu(2) Bpa(2) -+ Bpu(2)]
Substituting (12.27) into (12.26) yields

T

Y,(2) = HI, ,(2)H,()S(2) + H,

51,P 51,P

(2)B,(2). (12.28)
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In order to remove the interference from other competing speech or noise
sources, the objective here is to find the vector Hy, ,(2) whose components

are linear combinations of H.,(z) (m = 2,3,--- ,M, n = 1,2,--- N) such
that
A =
¢, (z) =H! (2)H,(2) = [ Fp(z) 0 -+~ 0]. (12.29)
Consequently, we have
Yp(2) = Fp(2)51(2) + Wp(2), (12.30)
where

W,y(z) = HT (2)B,(2).

If C,(z) [obtained from C(z) in a similar way as H,(z) is constructed]
is not equal to the identity matrix, then H,(2) = H} (2)C,(z), where H},(z)
has full column normal rank in acoustic environments as we assume in this
chapter! (i.e. nrank [H),(z)] = M, see [23] for a definition of normal rank),
and the interference-free observations of s; (k) are determined as follows
Yi(z) = H, 7 (2)H,(2)Cy(2)S(2) + H, T (2)B,(2). (12.31)

P s51,p
The filter vector ITI;hp(z) is chosen in a way such that
Y, (2) = F(2)S1(2) + W)(2). (12.32)

Obviously a good choice is to let the i-th element of HY ,(z) be the (i, 1)-th
cofactor? of Hy,(z). Consequently, the polynomial F}(z) would be the deter-
minant of Hj,(z). Note that the (i,1)-th cofactor of Hy,(z) is only a linear
combination of H,,(z) or H),  (z) (m=2,3,---,M,n=1,2,---N). There-
fore even though the channel impulse responses corresponding to the speech
signal of interest s1(k) are not known or at least have not yet been blindly
identified, we still are able to separate the reverberant speech from concurrent
interference.
Since

F)(2) = B, T (:)H 4 (2)
M
= ZH;hpq(z)Hp,ql(z)7 (1233)
g=1

! For a square matrix (M x M), the normal rank is full if and only if the determi-
nant, which is a polynomial in z, is not identically zero for all z. In this case, the
rank is less than M only at a finite number of points in the z plane.

2 The (i,4)-th cofactor ¢;; of a matrix A is a signed version of A’s minor d;:

A 47
cij = (=1)"dyy,

where the minor d;; is the determinant of a reduced matrix that is formed by
omitting the i-th row and j-th column of the matrix A.
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where ITIpwtl(z) is the first column vector of H,(z) and H. . (z) (¢ =

S$1,Pq
1,2,---, M) are co-prime. It is clear that the polynomials F(2) (p =
1,2,---,P) share common zeros if and only if the polynomials H,;(z)
(n =1,2,---,N) share common zeros. Therefore, if the channels with re-

spect to any one input are co-prime for the (M, N) MIMO acoustic system,
we can remove interference from the reverberant speech of interest and obtain
a SIMO system whose C4! channels are also co-prime.

Also, it can easily be check that deg [F},(z)] < M (Lp—1) (or deg [F}(2)] <
M(Lp —1)). As a result, the length of the FIR filter f, (or f;,) would be

Ly <M(Lp—1)+1. (12.34)

12.5 Speech Dereverberation

In the above, we showed that reverberant speech and competing interference
could be separated given that the channel impulse responses corresponding
to interference sources have been blindly identified. After this processing,
we obtained a SIMO system with the speech signal of interest as the in-
put. Although source separation has been achieved, the obtained multiple
interference-free speech signals would sound possibly more reverberant due
to the prolonged impulse response of the equivalent channels. In this section,
we will illustrate how to perfectly remove those annoying reverberation and
how to recover the original speech signal from the SIMO system. Here the as-
sumption that the channel impulse responses H,,,,(2), Ym (n =1,2,--- | N)
are co-prime (i.e., the MIMO system is irreducible) needs to be employed to
blindly identify the SIMO system first and then to perform speech derever-
beration by using the MINT theorem. Therefore, the outputs of the SIMO
system are given by (12.30).

12.5.1 Principle

For the SIMO system with respect to the source of interest s;, we intend to
apply the MINT theorem (also called the Bezout theorem in the mathematic
literature). Let’s consider the polynomials Gp(2) (p =1, 2, --- , P) and the
equation:

=1 R
S1(2) + > Gp(2)Wp(2). (12.35)

p=1

Si(z) = > Gp(2)Yp(z)

Y Fp(2)Gy(2)

p=1

The polynomials G,,(z) should be found in such a way that Sy (z) = S1(z) in
the absence of noise by using the Bezout theorem which is mathematically
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expressed as follows:

ged [Fi(z2), Fa(z), -+, Fp(2)] =1

P
< 3 G1(2),Gae(2), - ,Gp(z) : ZFp(z)Gp(z) =1. (12.36)
In other words, if the polynomials Fj,(2) (p = 1,2,--- , P) have no common

zeros (which is equivalent to saying that the MIMO system is irreducible),
it is possible to perfectly equalize (in the noiseless case) the SIMO system.
The MINT theorem relieves the constraint on a single-channel acoustic sys-
tem for perfect dereverberation that the channel impulse response must be a
minimum-phase polynomial.

To find the dereverberation filters G(z), we need to know the channel
impulse responses F),(z). Since the MIMO system’s channel impulse responses
Hym(z), Ym, (n = 1,2,--- | N) do not share common zeros as assumed in
this chapter, the channel impulse responses f,, are co-prime as well such that
they can be blindly identified again using the adaptive algorithms presented
in Section 12.3. Starting from this point, we suppose that f,’s are known and
we make no difference between f, and its estimate.

Let’s write the Bezout equation (12.36) in the time domain as follows:

P
F.g=)» Fe,g, =ei, (12.37)

p=1

where

c,1 Fc2 FC,P}7

[F
[l

T
T
[ng 9p,1 - Gp,Ly—1 ] ,
p= 1727 e ,P7
Ly, is the length of the FIR filter g,
[ foo 0 0 T
fp,l fp,O 0
Fc,p = fp,Lffl
0 JpLp—1
L0 0 fpr;—1 |
isan (Ly + Ly — 1) x Ly matrix, Ly is the length of the FIR filter f,, and
—[10--0]"
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isan (Ly + Ly —1) x 1 vector. In order to have a unique solution for (12.37),
L, must be chosen in such a way that F. is a square matrix. In this case, we
have:

Ly—1
L, = . 12.38
Using (12.34), the length of the dereverberation filter is bounded by
M(Ly —1)
L, < ———~. 12.39

12.5.2 The Least-Squares Implementation

It is now clear that by using the Bezout theorem the SIMO system with
respect to the speech source of interest can be perfected dereverberated as
long as their channel impulse responses share no common zeros. In addition,
we derived what is the minimum length L, of the dereverberation filters, as
given in (12.39). Although finding the shortest dereverberation filters involves
the lowest computational complexity and leads to the most cost effective im-
plementation, the performance may not be the best due to noise in practice
and error in the estimates of the channel impulse responses. Moreover, the
smallest L, may not be even possible since (12.38) does not guarantee an
integer solution. Therefore, we choose a larger L, than necessary in our im-
plementation and solve (12.37) for g in the least squares sense:

gLs = Fle, (12.40)
where
Fi = (F'F.)” ¥/

is the pseudo-inverse of the matrix F.. If a decision delay d is taken into
account, then the dereverberation filters turn out to be

gLs = Fleg, (12.41)
where
0--01 0---0 1%
€q = | Y——— ——
d Li+Lg—d—2

Performing speech dereverberation based on the MINT theorem is sensi-
tive to errors in the estimated channel impulse responses. In our research, we
found that the performance of speech dereverberation would vary with the
value of the decision delay d when a blind method has some difficulties to
accurately identify the channels. Since this still is an open research problem,
in our simulations, we either choose a fixed delay or search for the delay that
produces the best speech dereverberation performance in the neighborhood
of a pre-specified decision delay.
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12.6 Simulations

In this section, we will evaluate the performance of the proposed blind source
separation and speech dereverberation algorithm via simulations in realistic
acoustic environments.

12.6.1 Performance Measures

Similar to what was adopted in our earlier study [22], we will use the normal-
ized projection misalignment (NPM) to evaluate the performance of a BCI
algorithm [24]. The NPM is defined as:

NPM £ 201og;, [”%”} , (12.42)
where
T h ~
e=h-— Qh
h”h

is the projection misalignment vector. By projecting h onto h and defining a
projection error, we take into account only the intrinsic misalignment of the
channel estimate, disregarding an arbitrary gain factor.

To evaluate the performance of source separation and speech dereverber-
ation, two measures, namely signal-to-interference ratio (SIR) and speech
spectral distortion, are used in the simulations. For the SIR, we referred to
the notion given in [25] but defined the measure in a different manner since
their definition is applicable only for an M x M MIMO system. In this pa-
per, our interest is in the more general M x N MIMO systems with M < N.
Moreover, the M sources are equally important in [25] while here the first
source is the speech source of interest and is more important than others.

Since only the first speech source is what we are interested in extracting,
the SIR would be defined in a way where a component contributed by s1 (k)
is treated as the signal and the rest as the interference. We first define the
input SIR at microphone n as:

é E {[hnl * 51(k)]2}
SN B { [l + si(k)]2}

where *x denotes linear convolution. Then the overall average input SIR is
given by:

SIRI , (12.43)

N
in é i in
SIR™ 2 N;:lsmn. (12.44)

The output SIR is defined using the same principle but the expression
will be more complicated. For a concise presentation, we denote ¢, s, (p =
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1,2,---,P,i=1,2,---, M) as the impulse response of the equivalent channel
from the i-th source s;(k) to the output y, (k) for the p-th M x M separation
subsystem. From (12.28) and (12.29), we know that ¢, s, corresponds to the
i-th element of ¢,(z) and ¢, s, = f,. Then the average output SIR for the
p-th subsystem is:

E{[f, * s1(k)]2}
Sy B {[ép,s, * si(k)]2}

Finally, the overall average output SIR is found as:

ut &
SIRO™ = ., p=1,2-- P (12.45)

P
out & 1 out
SIR°" = FZSIRP . (12.46)

p=1

To assess the quality of dereverberated speech signals, we employed the
Itakura-Saito (IS) distortion measure [26], which is the ratio of the resid-
ual energies produced by the original speech when inverse filtered using the
LP coefficients derived from the original and processed speech. Let a; and
o be the LP coefficient vectors of an original speech signal frame s; and
the corresponding processed speech signal frame s; under examination, re-
spectively. Denote Ry as the Toeplitz autocorrelation matrix of the original
speech signal. Then the IS measure is given as:

T T
at Rttozt

— 1. 12.47
a?Rtta? ( )

dis,; =
Such a measure is calculated on a frame-by-frame basis. For the whole se-
quence of two speech signals, the mean IS measure is obtained by averaging
drg,¢ over all frames. According to [27], the IS measure exhibits a high cor-
relation (0.59) with subjective judgments, suggesting that the IS distance is
a good objective measure of speech quality. It was reported in [28] that the
difference in mean opinion score (MOS) between two processed speech signals
would be less than 1.6 if their IS measure is less than 0.5 for various speech
codecs. Many experiments in speech recognition show that if the IS measure
is less than about 0.1, the two spectra that we compare are perceptually
nearly identical.

In our simulations, IS measures are calculated at different points, after
source separation and after speech dereverberation. After source separation,
the IS measure is obtained by averaging the result with respect to each one
of the P SIMO outputs y,(k) and is denoted by dISSS After speech derever-
beration, the final IS measure is denoted by df.

12.6.2 Experimental Setup

The simulations were conducted with the impulse responses measured in the
varechoic chamber at Bell Labs [29]. A diagram of the floor plan layout is
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Fig. 12.3. Floor plan of the varechoic chamber at Bell Labs (coordinate values
measured in meters).

shown in Fig. 12.3. For convenience, positions in the floor plan are desig-
nated by (x,y) coordinates with reference to the southwest corner and cor-
responding to meters along the (South, West) walls. The chamber measures
x = 6.7m wide by y = 6.1m deep by z = 2.9m high. It is a rectangular room
with 368 electronically controlled panels that vary the acoustic absorption of
the walls, floor, and ceiling [30]. Each panel consists of two perforated sheets
whose holes, if aligned, expose sound absorbing material (fiberglass) behind,
but if shifted to misalign, form a highly reflective surface. The panels are in-
dividually controlled so that the holes on one particular panel are either fully
open (absorbing state) or fully closed (reflective state). Therefore, by varying
the binary state of each panel in any combination, 223 different room char-
acteristics can be simulated. In the database of channel impulse responses
from [29], there are four panel configurations with 89%, 75%, 30%, and 0% of
panels open, respectively corresponding to approximately 240, 310, 380, and
580 ms 60 dB reverberation time in the 20-4000 Hz band. All four configu-
rations were used in this paper for evaluating performance of the proposed
algorithm.

A linear microphone array which consists of 22 omni-directional micro-
phones was employed in the measurement and the spacing between adjacent
microphones is about 10 cm. The array was mounted 1.4 m above the floor
and parallel to the North wall at a distance of 50 cm. A loudspeaker was
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placed at 31 different pre-specified positions to measure the impulse response
to each microphone. In the simulations, four microphones and three speaker
positions, which form a 3 x 4 MIMO system, were chosen and their locations
are shown in Fig. 12.3. Signals were sampled at 8 kHz and the original im-
pulse response measurements have 4096 samples. In the cases of 89% and 75%
panels open, energy in reverberation decays quickly with arrival time and we
cut impulse responses at Ly = 256. When 30% or none of planes are open,
we set Lp = 512. Among the three sources, the first female speaker’s speech
is the target for extraction. The other two sources include one male speaker
and one noise source. The two speech sources are equally loud in volume
while the noise source is 5 dB weaker than the speech sources. For the noise
source, we tried two different kinds of noise. One is car noise and the other is
babbling noise recorded in the New York Stock Exchange (NYSE). The time
sequence and spectrogram (30 Hz bandwidth) of these source signals for the
first 1.5 seconds are shown in Fig. 12.4. From the spectrograms, we can tell
that car noise is a low-pass signal while the bandwidth of babbling noise is
much wider. From the perspective of system identification, babbling noise
is more favorable than car noise as an exciting source signal. Silent periods
were manually removed from the speech signals to make the BCI methods
converge faster due to the reduced nonstationarity in the inputs and to make
the average IS measures more meaningful with respect to speech only. This
implies that in practice a voice activity detector needs to be used. After hav-
ing source signals and channel impulse responses, we calculated microphone
outputs by convolution.

As we expected, the performance of the proposed source separation and
speech dereverberation algorithm would be greatly affected by the accuracy
of the blindly estimated channel impulse responses. In the simulations, both
adaptive (the UNMCFLMS algorithm) and batch (the SVD-based algorithm)
implementations were investigated [22]. For the batch method, the empirical
spatial covariance matrix was obtained over the first 1500 samples of the mi-
crophone captures. For source separation and speech dereverberation, speech
signals of duration 10 seconds were utilized to assess the performance. The
decision delay d in (12.41) was fixed as 3L, /2 — 1 in the cases of employing a
batch method for BCI while its best value was searched in the neighborhood
of 3Ly, /2 — 1 when an adaptive BCI algorithm was utilized.

12.6.3 Experimental Results

Table 12.1 summarizes the results of 16 experiments with different combina-
tion of room acoustics, BCI method, and type of noise. Figures 12.5 and 12.6
visualizes what was observed in the experiment with 89% of panels open,
the UNMCFLMS algorithm employed for BCI, and car noise used as the
third source. Figure 12.7 shows the results for the experiment with all panels
closed, the batch method employed for BCI, and babbling noise in the NYSE
used as the third source.
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Fig. 12.4. Time sequence and spectrogram (30 Hz bandwidth) of the two speech
source and two noise source signals used in the simulations for the first 1.5 seconds.
(a) s1(k) (female speaker), (b) s2(k) (male speaker), (c) car noise, and (d) babbling
noise recorded in the NYSE.

Let us first examine Table 12.1 and Fig. 12.5 for the accuracy of the chan-
nel impulse responses blindly estimated by the adaptive and batch BCI algo-
rithms. It is clear that, given the same amount of microphone observations,
the final projection misalignment error would be larger for the UNMCFLMS
to identify a more reverberant SIMO system. Relatively, the batch method is
more accurate and seems less dependent on Lj. After it collects microphone
outputs for only 1500 samples (equivalently 0.1875 second), the batch BCI
method can produce a reliable channel estimate with less than -60 dB NPM
for SIMO systems with long channels of length L;, = 512. However, perform-
ing SVD of a N-Lj x N-Lj;, matrix in these simulations is too computationally
intensive to be accomplished in real time by a commercial processor in the
foreseeable near future. The reason why we carried out experiments with the
batch BCI implementation and present here the results is to get an idea about
what is the best possible performance of the proposed blind source separation
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Fig. 12.5. Performance of the adaptive BCI (UNMCFLMS) algorithm with respect
to the second source s2(k) in the varechoic chamber with 89% of panels open. (a)
Running average (1000 samples) of the cost function and normalized projection
misalignment, and (b) comparison of impulse responses between the actual channels
and their estimates.

and speech dereverberation approach to speech enhancement with multiple
microphones.

Figures 12.6 and 12.7 illustrate how the speech signal of interest is sepa-
rated from other concurrent interference sources and how it is dereverberated.
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Fig. 12.6. Time sequence and spectrogram (30 Hz bandwidth) of (a) z1(k), (b)
y1(k), and (c) 81(k) for the experiment carried out in the varechoic chamber with
89% of panels open. In this experiment, s3(k) is car noise and the UNMCFLMS

algorithm is used for BCI.
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Examining these figures together with the data in Table 12.1, we see that the
output SIR’s are very high (at least 41 dB) after source separation. Lis-
tening tests showed that these separated signals were certainly recognizable
although they sounded more echoic as we expected. This can be justified by
the spectrogram plots of y1 (k) in Figs. 12.6(b) and 12.7(b). Apparently in
periods of voiced speech on these narrow-band spectrograms, harmonics are
vague, implying strong distortion which results in large IS measures (greater
than at least 4.0). After dereverberation, the speech signal is satisfactorily
recovered though delayed [clearly seen from time sequences of the recovered
signal §;(k) in these figures] with a relatively low IS measure. The accu-
racy of blindly identified channel impulse responses obviously has a great
impact on the performance of the developed speech enhancement algorithm.
But source separation and speech dereverberation are not equally affected
by errors in the estimated channel impulse responses and the latter is more
sensitive. When BCI is conducted with an adaptive algorithm, the NPM’s are
a lot lower than those obtained with a batch method. Although the final IS
measures after speech dereverberation are significantly different particularly
in more reverberant environments, their source separation performances in
terms of output SIR are quite similar. Therefore it is our belief that using
only SIR to evaluate a blind source separation (BSS) algorithm is inadequate
if not misleading.

As explained before, the perceptual quality of distorted speech whose IS
distance from its original signal is lower than 0.1 would not change with
respect to either humans or an speech recognition system. The proposed al-
gorithm incorporating the batch BCI method can surely deliver an enhanced
speech signal reaching this level of voice quality. But the implementation
based on an adaptive BCI algorithm can do so only when the room reverber-
ation is low with 89% panels open. In reverberant environments, the adaptive
BCI algorithm cannot produce highly accurate estimates of channel impulse
responses such that the IS measures are still more than (though slightly) 0.1.
As a matter of fact, it is imperative while challenging to develop accurate
adaptive BCI algorithms for acoustic applications in reverberant environ-
ments. It is appealing that the recovered speech signal can attain high per-
ceptual quality with an IS measure lower than 0.1. But in most applications
of speech processing, this is an excessive and unnecessary if not practical
requirement. What we observed in these simulations nevertheless show some
promise of successful use of the proposed algorithm in prospect speech pro-
cessing systems.
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Table 12.1 Performance of the source separation and speech dereverberation
algorithm based on the batch (SVD) and adaptive frequency-domain (AF)
BCI implementations in the varechoic chamber at Bell Labs with different
panel configurations.

NPM (dB) SIR™ STRC"
Noise BCI  SIMO,, SIMO,, SIMO,, (dB) (dB) dss dsP
89% panels open, Tso = 240 ms, L = 256
Car AF -18.6361 -16.8234 -18.8090 1.3668 46.6966 4.4508 0.0449
SVD  -84.6206 -110.3696 -152.6868 1.3668 47.6157 4.5653 0.0090
75% panels open, Tso = 310 ms, L;, = 256
AF -17.9231 -18.9300 -21.4186 2.3715 48.3984 5.3169 0.2389
SVD -109.6788 -100.6108 -187.8868 2.3715 48.8862 5.8647 0.0087
30% panels open, Tso = 380 ms, L; = 512
AF -12.1323 -13.0353 -11.9475 1.3344 41.8391 5.8099 0.2609
SVD  -67.0139 -106.2407 -167.2407 1.3344 43.5094 7.4319 0.0335
Panels all closed, Ts0 = 580 ms, Lj = 512
AF -12.5600 -13.5057 -14.3649 2.1065 44.1663 9.0386 0.2108
SVD  -83.2605 -103.3190 -160.8024 2.1065 43.6628 11.1346 0.0198
NYSE AF -18.6361 -16.8234 -20.7545 0.9445 44.7547  4.4056 0.0668
SVD  -84.6255 -110.3696 -176.5423 0.9445 45.2597 4.5653 0.0086
75% panels open, Tgo = 310 ms, L, = 256
AF -17.9231 -18.9300 -23.7211 1.8695 45.1628 5.4774 0.1920
SVD -100.3681 -114.6819 -184.1510 1.8694 44.9935 5.8647 0.0092
30% panels open, Tso = 380 ms, L = 512
AF -12.1323 -13.0353 -12.5460 0.8362 40.2743 5.6497 0.3215
SVD  -79.5856 -93.7725 -174.1163 0.8362 41.4932 7.4319 0.0395
Panels all closed, Tgo = 580 ms, Ly = 512
AF -12.5600 -13.5057 -16.8997 1.7245 42.2751 9.5378 0.1441
SVD  -72.9542 -107.9821 -127.0545 1.7245 41.8808 11.1346 0.0192

NOTES: SIMOs,, represents the SIMO system corresponding to source Spy,.
Tso denotes 60-dB reverberation time in the 20-4000 Hz band.

12.7 Conclusions

Capturing a speech signal of interest among a number of competing sound
sources in reverberant environments is difficult and a close-talking micro-
phone is a common engineering solution to this problem. But in many speech
communication systems, untethered voice access is demanded and speech en-
hancement in the sense of source separation and dereverberation must be
performed. Existing blind source separation methods maximize solely the
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signal-to-interference ratio and possibly cause high distortion in their sep-
arated signals, which is neither pleasing to a listener nor can be used in
following speech processing systems. We demonstrated in this chapter that
spatial interference from competing sources and temporal echoes due to room
reverberation can be perfectly separated and a SIMO system with the speech
signal of interest as input is extracted from the MIMO system. The chan-
nel matrices of the interference-free SIMO system is irreducible given that
the channels from the same source in the MIMO system share no common
zeros. For such a SIMO system, the speech is then restored by using the
MINT theorem. This derivation led to the proposal of a novel sequential
source separation and speech dereverberation algorithm. We conducted ex-
periments using real impulse responses measured in the varechoic chamber at
Bell Labs. The results demonstrated the promise of the proposed algorithm.
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Abstract. This chapter discusses the frequency-domain approach to the blind
source separation (BSS) of convolutively mixed acoustic signals. In this approach,
independent component analysis (ICA) is employed in each frequency bin to cal-
culate the frequency responses of separation filters. Since convolutive mixtures in
the time domain can be approximated as multiple instantaneous mixtures in the
frequency domain, the advantage of this approach is that ICA is applied just for
instantaneous mixtures, which is very simple. However, the permutation ambiguity
of ICA solutions then becomes a problem. This chapter mainly deals with a method
for solving the permutation problem. The method utilizes the source location in-
formation that can be estimated from the ICA solutions. We also discuss other
important topics for frequency-domain BSS, such as complex-valued ICA, scaling
alignment and spectral smoothing. To show the effectiveness of this frequency-
domain approach, we report experimental results for separating up to four sources
with a 4-element linear array, and also six sources with an 8-element planar array.

13.1 Introduction

Blind source separation (BSS) [1], [2] is a technique for estimating individual
source components from their mixtures at sensors. The estimation is per-
formed blindly, i.e. without possessing information about each source, such
as its location and active time. Its potential audio signal applications include
speech enhancement for speech recognition, teleconferences, and hearing aids.
In such applications, signals are mixed in a convolutive manner with rever-
berations. This makes the BSS problem difficult. We need very long finite
impulse response (FIR) filters (e.g. around a thousand taps for 8 kHz sam-
pling) to separate acoustic signals mixed in such situations.

Independent component analysis (ICA) [3,4] is a major statistical tool for
dealing with the BSS problem. If signals are mixed instantaneously, we can
directly employ an instantaneous ICA algorithm to separate them. However,
signals are mixed in a convolutive manner in the aforementioned applications.
Therefore, we need to extend the ICA /BSS technique so that it is applicable
to convolutive mixtures.

The first approach is time-domain BSS, where ICA is directly extended
to the convolutive mixture model [5], [6], [7], [8], [9], [10]. It is theoretically
sound and achieves good separation once an algorithm converges, since the
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algorithm correctly evaluates the independence of separated signals. How-
ever, an ICA algorithm for convolutive mixtures is not as simple as an ICA
algorithm for instantaneous mixtures, and is computationally expensive for
long FIR filters because it includes convolution operations.

The second approach is frequency-domain BSS, where complex-valued
ICA for instantaneous mixtures is employed in each frequency bin [11-26].
The merit of this approach is that the ICA algorithm remains simple and
can be performed separately at each frequency. Also, any complex-valued
instantaneous ICA algorithm can be employed with this approach. The com-
putational time for BSS can be reduced by employing a fast algorithm such
as FastICA [27], [28], and/or by performing parallel computation for multiple
frequency bins. However, the permutation ambiguity of the ICA solution be-
comes a serious problem. We need to align the permutation in each frequency
bin so that a separated signal in the time domain contains frequency compo-
nents from the same source. This problem is well known as the permutation
problem of frequency-domain BSS [11-19,22-24], which is the main focus of
this chapter.

Another problem relates to the circularity effect of discrete frequency rep-
resentation. Frequency responses calculated in the frequency domain assume
a periodic time-domain filter for their implementation. However, such a peri-
odic filter is unrealistic, and we usually use its one-period realization for the
separation filter. Therefore, the frequency responses should be smoothed so
that the one-period realization does not rely on the circularity effect [16,26].
This chapter also discusses this problem.

The third approach uses both the time- and frequency-domains. In some
time-domain BSS methods, convolutions in the time domain are speeded
up by the overlap-save method in the frequency domain [9], [29]. There are
also some methods [30], [31], [32] where filter coeflicients are updated in the
frequency domain but nonlinear functions for evaluating independence are
applied in the time domain. The permutation problem does not occur in
either case since the independence of separated signals is evaluated in the
time domain. The circularity problem does not occur either with an appro-
priate constraint for filter coefficients [33] by such as rectangular windowing.
However, the algorithm moves back and forth between the two domains at
every iteration, spending non-negligible time on discrete Fourier transforms
(DFTs) and inverse DFTs. Therefore, we consider that the permutation and
circularity problems are inevitable if we hope to benefit from the merit of
frequency-domain BSS mentioned above.

This chapter deals with the second approach, i.e. frequency-domain BSS.
We begin by formulating the BSS problem for convolutive mixtures in
Sect. 13.2. Section 13.3 provides an overview of frequency-domain BSS.
We then present several important techniques that enable this approach to
achieve the effective separation of many sources mixed in a reverberant envi-
ronment. Section 13.4 discusses complex-valued ICA for instantaneous mix-
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Fig. 13.1. BSS for convolutive mixtures.

tures. Section 13.6 presents a method for solving the permutation problem,
which is the most important technique for frequency-domain BSS. To solve
the permutation problem, information on source location is very useful. This
can be estimated from ICA solutions as shown in Sect. 13.5. The key point
with respect to source localization is that the estimation of the mixing system
is easily obtained. This is because the ICA algorithm is just for instantaneous
mixtures and therefore it is straightforward to calculate the (pseudo)-inverse
of a separation matrix, which corresponds to the mixing system. This fact also
makes it easy to solve the scaling ambiguity as shown in Sect. 13.7. Section
13.8 discusses a spectral smoothing technique designed to solve the circular-
ity problem. Experimental results shown in Sect. 13.9 are very promising.
Section 13.10 concludes this chapter.

13.2 BSS for Convolutive Mixtures

Figure 13.1 shows a block diagram of BSS. Suppose that N source signals
s;(t) are mixed and observed at M sensors

N
H=> > hul)si(t—1), j=1,...,M, (13.1)
=1 1

where hj;(l) represents the impulse response from source i to sensor j. We
assume that the number of sources N is known or can be estimated in some
way (e.g. by [34]), and the number of sensors M is more than or equal to
N (N < M). The separation system typically consists of a set of FIR filters
w;;(1) of length L to produce N separated signals

L—1

M
ZZ ()xj(t—=1), i=1,...,N, (13.2)

=0

at the outputs. The separation filters w;;(l) should be obtained blindly, i.e.
without knowing s;(¢) or hj;(1).

The ideal goal of BSS is to separate and deconvolve the mixtures x;(t),
and to have a delayed version of source s;(t) at each output i. However, this
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is very difficult if s;(¢) is a colored signal, which is the case when separating
natural sounds such as speech [8]. A practical alternative goal [7], [10] is to
obtain the convolved version of a source s;(t) measured at a sensor .J;

yi(t) = hy(l)si(t - g —1), (13.3)
l

where the sensor index J; can be selected according to each output ¢. The
way to attain this goal will be discussed in Sect. 13.7.

The performance of BSS is evaluated by a signal-to-interference ratio
(SIR), which is the power ratio between the target component and the inter-
ference components. Let u;x (1) be the impulse responses from source s (t) to
separated signal y;(t):

M L-1
wr(l) =YY wij(r)hye(l = 7). (13.4)
j=171=0

Then, the SIR of output 7 is calculated as

(I wi(Dsi(t = D)y
( Ek# Yo ik (Dse(t —1)?). (dB),

where (-); denotes the averaging operator over time ¢.

SIR; = 10log, (13.5)

13.3 Overview of Frequency-Domain Approach

Figure 13.2 shows the flow of frequency-domain BSS. Time-domain signals
x,(t) sampled at frequency f;s are converted into frequency-domain time-series
signals z;(f, 7) with an L-point short-time Fourier transform (STFT):

L1
2
zi(fim) = Y x(r+r)win(r)e 2T, (13.6)
r=—%
where f € {0, %fs, cee %fs} is a frequency, win(r) is a window that tapers

smoothly to zero at each end, such as a Hanning window, %(1 + cos Q%T), and
T is a new index representing time.

The remaining operations are performed in the frequency domain. The
advantage is that the convolutive mixtures in (13.1) can be approximated as
instantaneous mixtures in each frequency bin:

N

xj(fv 7—) = Zhji(f)si(f’T)a (137)

i=1
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Fig. 13.2. Flow of frequency-domain BSS.

where h;;(f) is the frequency response from source i to sensor j, and s;(f, 7) is
a frequency-domain time-series signal of s;(t) obtained by the same operation
as (13.6). The vector notation of the mixing model (13.7) is

N
x(f,7) =Y _hi(f)si(f.7), (13.8)
=1

where x = [x1,..., 2] is a sensor sample vector and h; = [hys, ..., hasT
is the vector of the frequency responses from source s; to all M sensors.

To obtain the frequency responses w;;(f) of separation filters w;;(l) in
(13.2), complex-valued ICA

y(fit) = W(f)x(f,1) (13.9)
is solved, where y = [y1,...,yn]? is a vector of separated signals and W =
[wy,... ,WN]H is an N x M separation matrix whose elements are w;; =

[W];;. The details of ICA algorithm will be discussed in Sect. 13.4.
Calculating the Moore-Penrose pseudoinverse W+ (which is reduced to
the inverse W1 if N = M) of W

[a1,~- ,aN] :WJr, a; = [au,...,a]wi}T7 (1310)

is very useful for source localization and scaling alignment as will be shown in
Sects. 13.5 and 13.7, respectively. It should be noted that it is not difficult to
make W invertible by using an appropriate ICA procedure (for an example
see Sect. 13.4). By multiplying both sides of (13.9) by W™, the sensor sample

vector x(7) is represented by a linear combination of basis vectors ay, ..., ay:
N

x(f,7) =Y ai(Hui(f,7). (13.11)
i=1

It is well-known that an ICA solution (13.9) has permutation and scaling
ambiguities: even if we permute the rows of W(f) or multiply a row by a
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constant, it is still an ICA solution. In matrix notation,

W(f) = AHPHW() (13.12)

is also an ICA solution for any permutation P(f) and diagonal A(f) matrix.
Permutation alignment is to determine P(f) so that a time-domain separated
signal contains frequency components from the same source. Section 13.6
presents a method for solving this problem. Scaling alignment is to determine
A(f) so that a time-domain separated signal satisfies the goal (13.3), as will
be discussed in Sect. 13.7.

Then, we perform spectral smoothing so that a time-domain separation
filter tapers smoothly to zero at each end. This is typically achieved by mul-
tiplying the time-domain filter by a Hanning window, which is equivalent to
smoothing the frequency-domain separation matrices as follows

W) 3 [W(— A7) +2W () + W(F+AD)],

where Af = ff is the difference from the adjacent frequency. However, this
smoothing changes the ICA solution and causes an error. Section 13.8 dis-
cusses the error and how to minimize it.

Finally, separation filters w;; () are obtained by applying inverse DFT to

wi; (f) = [W(f)is:

_L
wij (1) = Z wz‘j(f)eﬂﬂf(l 2,
FE{0, £ far s B F6)

where | = 0,...,L — 1. The reason for using e27f(1=%) instead of 27/ is
to make the separation filter w;;(l) causal. Then, the separated signals y;(t)
are produced by (13.2).

13.4 Complex-Valued ICA

This section discusses how to solve the ICA equation (13.9). One of the ad-
vantages of frequency-domain BSS is that we can employ any ICA algorithm
for instantaneous mixtures, such as the information maximization approach
(InfoMax) [35] combined with the natural gradient [36], FastICA [27], JADE
[37], or an algorithm based on the non-stationarity of signals [38]. Here, we
explain a procedure that has been shown to be efficient by the experiments
described in Sect. 13.9. The procedure consists of the following three steps:

1. Dimension reduction and whitening by eigenvalue decomposition.
2. ICA by a unitary matrix (FastICA).
3. ICA by InfoMax combined with the natural gradient.
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The first step performs a linear transformation
z(7) = Vx(1)

for M-dimensional sensor observations x(7) such that the dimension of z(7)
is reduced (if necessary) to the number of sources N and z(7) is spatially
whitened (sphered), i.e. (z(7)z(7)), = I, where I is the N x N identity
matrix. The linear transformation V is typically obtained by eigenvalue de-
composition. Let A\ > --- > Ap; be sorted eigenvalues of the spatial cor-
relation matrix R = (x(7)x(7)),, and ey,...,ey be their corresponding
eigenvectors. Then, the linear transformation is

V =D"'/?EX,

where D = diag(\q, ..., Ay) is the diagonal matrix of the N largest eigenval-
ues, and E = [ey, ..., ey] is the matrix of their corresponding eigenvectors.

This step is practically important for the following two reasons. First, the
outputs y(7) of ICA (13.9) adhere to the signal subspace that is identified
by the N eigenvectors ey, ...,ey. This means that the following ICA algo-
rithm does not pursue its solution in the noise subspace, which consequently
stabilizes the algorithm and also has a noise/reverberation reduction effect
[16]. A geometrical interpretation of the dimension reduction is given in [25].
Secondly, the whitening (zz'?), = I is necessary for FastICA, and also gives
an efficient convergence for InfoMax even if the step size is constant over all
frequency bins.

The second step performs ICA in a constrained form:

y(7) = Bz(7),

where B is an N x N unitary matrix: BB = I. This is performed by a
complex-valued version of FastICA [27], [28]. It is very efficient as a fairly good
solution can be obtained with only several iterations. The efficiency comes
from the fact that z is whitened and B is unitary. However, there remains
room for improving the solution by using another ICA algorithm. One of the
reasons is that the output y of FastICA is whitened (y(f,7)y(f, 7)), =1
and therefore uncorrelated, whereas original sources s1(f, 7),...,sn(f,7) are
not always completely uncorrelated with a limited number of samples.
The third step improves the ICA solution obtained so far

y(1) = Wx(r) = BVx(7),

by employing another ICA algorithm that does not have the unitary con-
straint. Based on the use of InfoMax combined with the natural gradient, a
separation matrix W is gradually improved by the learning rule:

W Wt u[I—(@(y(7))y(1)")-] W, (13.13)
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where 1 is a step-size parameter. ®(y) = [®(y1),..., ®(yn)]T is an element-
wise nonlinear function defined by

0
P(y:) m log p(y:), (13.14)
where p(y;) is the probability density function (pdf) of a complex-valued
signal y; = |y;| €28 Since y; is a frequency-domain signal whose phase
can be shifted arbitrarily by shifting the STFT window position (13.6), a
feasible assumption is that the pdf is independent of the phase p(y;) = « -
p(|yi]), where a is a constant. This assumption reduces (13.14) to

el )
D(y;) = (|y]) er e, </D(Iyil):*Mlogp(lyil)- (13.15)

If we assume the Laplacian distribution p(|y;|) = %e"y”, which is typical
for speech modeling, we have ¢(|y;|) = 1 and therefore a simple nonlinear
function:

B(y;) = e 8,

A nonlinear function of the form (13.15) has a better convergence property
[20] than one where the nonlinearity is applied separately to the real and
imaginary parts of a complex-valued signal y;.

13.5 Source Localization

This section presents a source localization method by analyzing the ICA so-
lution (13.9) or equivalently (13.11). The information about source locations
can be used to solve the permutation problem, as described in the next sec-
tion. Many source localization methods have been proposed. A widely used
method is MUSIC (MUltiple SIgnal Classification) [39], which employs sub-
space analysis with second order statistics. The ICA-based method, on the
other hand, employs higher order statistics (or multiple second order statistics
based on non-stationarity). In this sense, the ICA-based method has certain
advantages over the subspace based method [40].

The source localization technique that employs ICA is a by-product of
research on frequency-domain BSS. Direction of arrival (DOA) estimation
methods [17], [18], [19] have been proposed that are based on beamforming
theory [41]. They calculate directivity patterns from the separation matrix
‘W, and then search the null directions, which correspond to the directions of
sources [21]. However, it is simpler and more effective to estimate the direc-
tions directly from the basis vectors a;, which are given by the pseudoinverse
of W. The source localization method [22], [23], [24], [40] presented in this
section is based on this idea. Such an idea was taken for granted in research on
blind identification [42], [43], where the mixing system is estimated directly.
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Fig. 13.3. Nearfield (direct-path) model.

13.5.1 Basic Theory for Nearfield Model

Let us assume a mixing model that is suitable for source localization. Al-
though the mixing model (13.1) in the time domain is a multi-path mix-
ing model, we approximate the frequency response hj;(f) in (13.7) with a
nearfield (direct-path) model (Fig. 13.3):

N 1
llai — pyl

where p; and q; are 3-dimensional vectors representing the locations of sensor
j and source i, respectively, and c¢ is the propagation velocity of the signals.
We assume that the amplitude is attenuated based on the distance ||q; —
p;||. We also assume that the phase depends on the difference between the
distances ||q; —p;||—||a;|| from the source to the sensor and to the origin o =
[0,0,0]7. This makes the phase zero at the origin. If the phase 2w fc ™' (||q; —
p;|| — [lasl]) is outside the range (—m, ), this model suffers from spatial
aliasing. Therefore, this model is feasible as long as the condition

hyi(f) eﬂﬂfc*l(\\Olri—ij—llcuH)7 (13.16)

&
llai = pll = [laill)

f< 31

is satisfied.

The ICA-based source localization discussed in this section estimates the
location q; of source ¢ from information about sensor locations p; and the
separation matrix W (f) obtained by ICA (13.9). Let us assume here that the
decomposition (13.11) of observations x(f, ) has been obtained in each fre-
quency bin by the pseudoinverse of W(f). By comparing (13.8) and (13.11),
we observe the following fact. If the ICA algorithm works well and the out-
puts y1,...,yn are the estimation of the sources sy, ..., sy, then the basis
vectors aj,...,ay are also estimations of the mixing vectors hy,...,hy up
to the permutation and scaling ambiguity.

Following the model (13.16), the ratio between two elements aj;,a;/; of
the same basis vector a; provides the key equation for source localization:
aji _ aihyi _ |lai — pyl| et (lai=ps || ~llai—py 1) (13.17)

aji oy |l — pyl]
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Fig. 13.4. Source localization by the intersection of two hyperboloids and a sphere.

where the scaling ambiguity «; is canceled out by calculating the ratio. The
permutation ambiguity still remains. However, if we estimate the location q;
foralli=1,..., N, the set of all estimated locations does not depend on the
permutation.

The set of vectors q; in the argument of (13.17)

arg(agi/a;i)

drfet (13.18)

llai — p;ll = lla: — py[| =

defines a surface where the difference between the distances from p; and p; is
constant. The surface is one sheet of a two-sheeted hyperboloid. Alternatively,
the set of vectors q; in the modulus of (13.17)

la: —pyll _
lai — b,

aji

(13.19)

Qg

defines a sphere where the ratio of the distances from p; and p; is constant.
Therefore, with these two equations (13.18) and (13.19), we can estimate the
possible location q; of source s;. Such hyperboloid and sphere are defined
by a pair of sensors j and j’. If we select another pair of sensors, a different
hyperboloid and sphere are obtained. In this way, the location q; is estimated
as the intersection of several hyperboloids and spheres. An example is shown
in Fig. 13.4.

13.5.2 DOA Estimation with Farfield Model

Although it is useful to estimate a 3-dimensional location, calculating the in-
tersections of hyperboloids and spheres is computationally demanding. There
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Fig. 13.5. Farfield model.
are many cases where it is sufficient to estimate just the direction of arrival
(DOA) of source s;. If we assume the source location q; is far from sensors

p; and p;/, (13.18) can be approximated as farfield model (Fig. 13.5)

T Qi _ arg(aji/ayi)
[l 2 fel

(p; — Py’ (13.20)

and the cosine of the angle ij " between two vectors q; and p; — p;/ can be
calculated as

)T

oS 953" _ (Pj — DPj)" di arg(aji/aj’i)

- — > . (13.21)
Ilpj —pill - llaill 27 fet|Ip; — pyll

The set of vectors q; that satisfy (13.20) represents a cone [23], which is
the asymptotic surface of the corresponding hyperboloid (13.18). To estimate
the DOA of a source, the intersections of several cones should be obtained.
Let us assume that we select u cones whose corresponding sensor pairs are
(J1,91)s - - -+ (Ju, Ji,)- The set of equations (13.20) for u sensor pairs is repre-
sented as

q; r;

B 13.22
lail| 27 fe’ 522
where
D = [p;,—pj;, ---» Pj,—Pj T,
r, = [al"g(ajli/aj;i)» ) afg(ajui/aj;,i)}T

In practical situations, there is no exact solution for (13.22) because the u
conditions do not coincide exactly. Therefore, we typically solve it in the
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Fig. 13.6. 3-dimensional arrangement of eight microphones and three loudspeakers
(left) and DOA estimation results for this case (right).

least-square sense by using the Moore-Penrose pseudoinverse [24]:
@ _ D'r
lail| 27 fe

If rank(D) > 3, the set of vectors q; that satisfy (13.23) represents a line in
3-dimensional space, which represents the DOA of a source 1.

The left photo in Fig. 13.6 shows a case where eight microphones and
three loudspeakers are arranged 3-dimensionally, and the right plot shows
the DOA estimation results for this case. Each point shows a location vector
q;(f) that is normalized to unit norm q,(f) «— IIEiEgH' The estimations are
obtained for all frequencies f and all output indexes 7. As shown in the plot,
they form clusters, each of which corresponds to the location of each source.

If the sensor and source locations are limited to a 2-dimensional plane, the
dimensionality of location vectors, such as p; and q;, can be reduced to two.
In this case, rank(D) > 2 is sufficient to have a solution in (13.23). Moreover,
the DOA of source i can be represented simply by the angle 6; that satisfies

(13.23)

q; = [cos(6;),sin(0;)]", —180° < 6; < 180°. (13.24)

Figure 13.14 shows a case where the sensor and source locations are limited
to 2-dimensions. The DOA estimations in this case are shown in Figs. 13.15
and 13.16.

If the sensors are arranged linearly and the potential source location is in
a 2-dimensional half-plane, which is one side of the sensor arrangement line,
the angle Hfj/ (0° < ng/ < 180°) by (13.21) provides sufficient information on
the source location. For example, Fig. 13.12 shows DOA estimation results
for such a case whose condition is shown in Fig. 13.11.
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13.6 Permutation Alignment

This section discusses how to solve the permutation problem. Various meth-
ods have already been proposed. With reference to the ICA equation (13.9)
and also the decomposition (13.11) of observations x(f, ), we classify these
methods into four categories based on the following strategies:

1. Applying an operation to the separation matrix W(f),

2. Utilizing the information on the separation matrix W (f) itself,

3. Utilizing the information on the basis vectors a; (f),...,an(f),

4. Utilizing the information on the separated signals y1(f,7),...,yn(f, 7).

The operation of the first strategy basically involves making the sepa-
ration matrices smooth in the frequency domain. This has been realized by
reducing the filter length by rectangular windowing in the time domain [11],
[12], [13], [9], or averaging the separation matrices with adjacent frequencies
[11]. However, this operation makes the separation matrix W(f) different
from the ICA solution (13.9), and this may have a detrimental effect on the
separation performance. A possible way to solve this problem is to interleave
the ICA update, e.g. (13.13), and this operation until convergence. In this
sense, this strategy is related to the third approach for BSS discussed in the
Introduction.

The second category includes the beamforming approach [17], [18], [19],
where the directivity patterns formed by the separation matrix are analyzed
to identify the DOA of each source. The third category includes an approach
that utilizes the results of source localization with the basis vectors [22], [23],
[24], [43]. The theory and operation for source localization were discussed in
Sect. 13.5. These two approaches of the second and the third categories utilize
basically the same information because the separation matrix W (f) and the
basis vectors aj(f),...,an(f) are directly connected by the pseudoinverse
operation (13.10). However, the information used in the third category is
easier to handle since it directly represents the mixing system (13.8). The last
category contains an approach that employs the inter-frequency correlations
of output signal envelopes [15], [14]. This is particularly effective for a non-
stationary signal such as speech.

In the next two subsections, we explain the approaches of the third and
the fourth categories, respectively. Since these two approaches have different
complementary characteristics, integrating them is a good way to pursue a
better solution to the permutation problem [22]. Subsection 13.6.3 presents
a method that effectively integrates the two approaches to solve the permu-
tation problem in a better way. In the following subsections, let II; be a
permutation corresponding to the inverse P~1(f) of the permutation matrix
of (13.12). The permutation problem can be formulated to obtain IIy for
every frequency f, which is a mapping from source index k to output index i:

i =TI, (k).
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13.6.1 Localization Approach

The basic idea of this approach is to estimate the locations of sources
and cluster them to decide the permutation. ICA-based source localization
(Sect. 13.5) estimates the location q;(f) of a source that corresponds to the
i-th basis vector a;(f) for each frequency f. Let the following function localize
estimate the location in this way:

q;(f) = localize(f,a;(f)).

If just the DOA estimation is adequate, the location vector q;(f) should be

normalized to the unit norm q;(f) « %. If the locations of sensors

and sources are limited to a 2-dimensional plane, we might obtain 6;(f) that
satisfies (13.24) as a DOA estimation.

Then, we employ a clustering algorithm to find N clusters C1,...,Cxn
formed by estimated locations q;(f) or 6;(f). Each C} corresponds to the
location of source k. Let the following function clustering perform clustering
for all the estimated locations q;(f) and return the centroid c; and the
variance o3 of each cluster Cj:

[clvo—lv"'7cN70-N] = CZU’Stering(va ql(f)7qu(f))7

Cp = Z Z ||Cls—01||2

qeCy qeCly,

where |Cy| is the number of vectors in the cluster. The optimization criterion
for clustering is to minimize the total sum Zszl 0% of the variances. The
optimization is efficiently performed with the k-means clustering algorithm

[44]. Once we have N clusters, permutations for all frequencies f can be
decided by

N

I = argming Y [lex — aqn (f)|[*- (13.25)
k=1

The advantage of this source localization approach is that it is very sim-
ple to decide the permutation II; for each frequency once the centroids of N
clusters are obtained. However, the downside of this approach is that esti-
mated locations or DOAs are not accurate for some frequencies and therefore
neither are the permutations IIy. Such situations typically happen at low
frequencies, where the phase difference caused by the sensor spacing is very
small, as shown in Fig. 13.12.

13.6.2 Correlation Approach

This subsection presents an approach to permutation alignment based on
the inter-frequency correlation of separated signals. The correlation should be
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Fig. 13.7. Envelopes of two output signals at different frequencies.

calculated for the amplitude |y;(f,7)| or (log-scaled) power |y;(f,7)|? of sepa-
rated signals. The correlation of raw complex-valued signals y;(f, 7) would be
very low because of the STFT property. Here, we use the amplitude (so-called

envelope),

ol (1) = lyi(f, 7)),

of a separated signal y;(f,t). The correlation of two sequences z(7) and y(7)
is usually calculated by the correlation coefficient

cor(z,y) = (fay — o - ty)/(0z - Ty),

where p, is the mean and o, is the standard deviation of x. Based on this
definition, cor(x,z) =1, and cor(z,y) = 0 if z and y are uncorrelated.
Envelopes have high correlations at neighboring frequencies if separated
signals correspond to the same source signal. Figure 13.7 shows an example.
Two envelopes v°%? and v{°%¢) as well as v3°%? and 03566 are highly corre-
lated. Thus, calculating such correlations helps us to align permutations.
A simple criterion for deciding II; is to maximize the sum of the correla-

tions between neighboring frequencies within distance ¢:

II; = argmaxy Z Zcor(v{l(i),vf_{g(i)), (13.26)
lg—fl<o =1

where 11, is the permutation at frequency g. This criterion is based on local
information and has a drawback in that mistakes in a narrow range of fre-
quencies may lead to the complete misalignment of the frequencies beyond
the range.
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To avoid this problem, the method in [15] does not limit the frequency
range in which correlations are calculated. It decides permutations one by
one based on the criterion:

N
II; = argmaxy Z cor( vljf[(i), Z v%g(i) )
=1 geF

where F is a set of frequencies in which the permutation is decided. This
method assumes high correlations of envelopes even between frequencies that
are not close neighbors. This assumption is not satisfied for all pairs of fre-
quencies, as v}%%¢ and v$%16 in Fig. 13.7 do not have a high correlation.
Therefore, this method still has a drawback in that permutations may be
misaligned at many frequencies.

If a source signal has a harmonic structure, as in the case of speech, there
are strong correlations between the envelopes of a fundamental frequency f
and its harmonics 2f, 3f, .... Therefore, maximizing the correlation among

harmonics is another idea for permutation alignment [22]:

N
II; = argmaxy; Z Zcor(v{l(i),v%g(i)), (13.27)
geH(f) i=1

where H(f) provides a set of harmonic frequencies of f. The permutation
accuracy improves if we take the signal’s harmonic structure into consider-
ation. However, maximizing (13.26) and (13.27) simultaneously is not very
straightforward and is computationally expensive.

13.6.3 Integrated Method

This subsection presents a method that integrates the two approaches dis-
cussed in the last two subsections. The intention behind this integration is
to solve the permutation problem robustly and precisely. Let us review the
characteristics of the two approaches.

e Robustness: The localization approach is robust since a misalignment at
one frequency does not affect other frequencies. The correlation approach
is not robust since a misalignment at one frequency affects the results of
other frequencies, and may cause consecutive misalignments.

e Preciseness: The localization approach is not precise since the evalu-
ation is based on an approximation (13.16) of the mixing system. The
correlation approach is precise as long as signals are well separated by
ICA since the measurement is based on the separated signals themselves.

To benefit from both advantages, namely the robustness of the localization
approach and the preciseness of the correlation approach, the integrated
method first decides permutations with the localization approach and then
refines the solution with the correlation approach. An implementation of the
integrated method consists of the following four steps [22]:
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1. Decide the permutations by the localization approach (13.25) at certain
frequencies where the confidence of source localization is sufficiently high,

2. Decide the permutations based on neighboring correlations (13.26) as
long as the criterion gives a clear-cut decision,

3. Decide the permutations at certain frequencies where the correlation
among harmonics (13.27) is sufficiently high,

4. Decide the permutations for the remaining frequencies based on neigh-
boring correlations (13.26).

Figure 13.8 shows the pseudo-code. A set F contains frequencies where the
permutation has been decided. The key to the first step is that we fix a
permutation only if the confidence of source localization is sufficiently high.
We assume that the confidence is high if the squared distance between an
estimated location and its corresponding centroid is smaller than the variance,
ie. [|lex —an (f)||* < of. In the second step, permutations are decided one
by one for the frequency f where the sum of the correlations with fixed
frequencies g € F within distance |g — f| < ¢ is the maximum. This is
repeated until the maximum correlation sum is larger than a threshold th.q,.
In the third step, the permutations are decided for frequencies f where the
sum of the correlations among harmonics is larger than a threshold thp,.
The last step decides the permutations for the remaining frequencies with
the same criterion as the second step.

Let us discuss the advantages of the integrated method. The main advan-
tage is that it does not cause a large misalignment as long as the permutations
fixed by the localization approach are correct. Moreover, the correlation part
(steps 2, 3 and 4) compensates for the lack of preciseness of the localization
approach. The correlation part consists of three steps for two reasons. First,
the harmonics part (step 3) works well if most of the other permutations are
fixed. Secondly, the method becomes more robust by quitting the step 2 if
there is no clear-cut decision. With this structure, we can avoid fixing the
permutations for consecutive frequencies without high confidence. As shown
in the experimental results (Sect. 13.9), this integrated method is effective at
separating many sources.

13.7 Scaling Alignment

The scaling ambiguity A(f) in (13.12) is easily solved by calculating the
(pseudo)-inverse of a separation matrix W(f) [15,7]. The frequency-domain
counterpart of the BSS goal (13.3) is

yi(f,7) = hyi(f)si(f,7), (13.28)

where J; can be selected according to each output ¢ but should be the same for
all frequencies f. Let us assume that the ICA and the permutation problem
have been solved. Then the a; term in (13.11) is close to the h; term in (13.8):

h;(f)si(f, 1) = ai(fyi(f, 7). (13.29)
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F =10 /* the set of fixed frequencies */
/* 1. Fix permutations by the localization approach */
for (Yf and Vi) {
qi(f) = localize(f,a;(f)) /* source localization */
}
[c1,01,...,¢cn,0on] = clustering(" f, qi(f),...,an(f))
for ("f) {
Iy = argming E;jjﬂ llexk — CIH(k)(f)H2
it ("k, Jlex — anw (NI < at) {
F=FU{f}
}
}
/* 2. Fix permutations by neighboring correlations */
while Cf ¢ F) {
for ("f ¢ F) {
Ry=maxn] ,_ri<s g2 i1 O (V) U, (1)
Iy :argmaxnz‘gff‘géygej__Zf:lcor(vé(i),v%g(i))
}
if (maxyRy > theor) {
Y = argmax; Ry
F=FuU{y}
} else {
break
}
}
/* 3. Fix permutations by harmonic structure */
for ("f ¢ F) {
Ry =maxn )y pynr Zivzl co1r(v£(i)7 vl‘ilg(i))
if (Rf > thha) {
Iy = argmaxy deﬁ(fmf Zf\;l cor(ful’f[(i), v%g(i))
F=FU{f}
}
}
/* 4. Fix permutations again by neighboring correlations */
while Cf ¢ F) {
for ("f & F) {
Ry :maXHZ|g—f\§6,g€}'Zz]'v=1C0r(v1[[(i)’ ”%g@))
Iy :argmaxnz‘gff‘gé’gefoilcor(vlfl(i),vf]g(i))
}
Y = argmax; Ry
F=FuU{y}

Fig. 13.8. Pseudo-code for an implementation of the integrated method.
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Fig. 13.9. Periodic time-domain filter represented by frequency responses sampled
at L = 2048 points (above) and its one-period realization (below).

By substituting (13.28) into (13.29), we have a condition for scaling alignment
hi(f) = ai(f)hsi(f) < asi(f) = 1.

This condition, i.e. ay,;

(f
W(f) = ANHW(), Af) = diaglas(f), .-, ann(f)),
]

where a;;(f) = [WT(f)];; is an element of the pseudoinverse of W (f).

) = 1, is attained by

13.8 Spectral Smoothing

The frequency-domain BSS described in this chapter is influenced by the
circularity of discrete frequency representation. The circularity refers to the
fact that frequency responses sampled at L points with an interval fi/L (fs:
sampling frequency) represent a periodic time-domain signal whose period is
L/fs. Figure 13.9 shows two time-domain filters. The upper part of the fig-
ure shows a periodic infinite-length filter represented by frequency responses
wii (f) = [W(f)]i; calculated by ICA at L points. Since this filter is unreal-
istic, we usually use its one-period realization shown in the lower part.

However, such one-period filters may cause a problem. Figure 13.10 shows
impulse responses from a source si(t) to an output y;(¢) defined by (13.4).
Those on the left uy1(l) correspond to the extraction of a target signal, and
those on the right uy4(l) correspond to the suppression of an interference
signal. The upper responses are obtained with infinite-length filters, and the
lower ones with one-period filters. We see that the one-period filters create
spikes, which distort the target signal and degrade the separation perfor-
mance.
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Fig. 13.10. Impulse responses u;;(l) obtained with periodic filters (above) and
with their one-period realization (below).

13.8.1 Windowing

To solve this problem, we need to control the frequency responses w;;(f) so
that the corresponding time-domain filter w;;(l) does not rely on the circular-
ity effect whereby adjacent periods work together to perform some filtering.
The most widely used approach is spectral smoothing, which is realized by
multiplying a window g(!) that tapers smoothly to zero at each end, such as a
Hanning window g(I) = £ (1+cos 22). This makes the resulting time-domain
filter w;;(1) - g(1) fit length L and have small amplitude around the ends [16].
As a result, the frequency responses w;;(f) are smoothed as

fszf
Wi (f) = > g@)wi(f —¢),
=0
where g(f) is the frequency response of g(l) and Af = ff If a Hanning
window is used, the frequency responses are smoothed as

. 1
wij (f) = 7 [wis(f = Af) + 2wi; (f) +wi; (f+Af) ], (13.30)
since the frequency responses g(f) of the Hanning window are g(0) = 3,

g(Af) = g(fs—Af) = 1, and zero for the other frequency bins.

The windowing successfully eliminates the spikes. However, it changes
the frequency response from w;;(f) to w;;(f) and causes an error. Let us
evaluate the error for each row w;(f) = [w;1(f),...,winr(f)]T of the ICA
solution W(f). The error is

o (Y H
ei(f) = min[w;(f) — ayw;(f)] = Wi(f) — ()7 wilf)

a Wwi(f)7 (13.31)
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where W, (f) = [0i1(f), ..., Win(f)]T and a; is a complex-valued scalar rep-
resenting the scaling ambiguity of the ICA solution. The minimization min,,
is based on least-squares, and can be represented by the projection of w; to
w;. We can evaluate the error for the Hanning window case by substituting
(13.30) for w of (13.31):

1

ei(f) = 7 ler (N +e (1), (13.32)

wi(f—AN"wi(f)

e; (f) =wi(f-Af) - T (IE wi(f), (13.33)
el (f) = wilf+Af) - Wi(frwf{};;v"(f) wi(f). (13.34)

This e; (or e;) represents the difference between two vectors w;(f) and
w;(f—Af) (or w;(f+Af)). Since these differences are usually not very large,
the error e; does not seriously affect the separation if we use a Hanning
window for spectral smoothing.

13.8.2 Minimizing Error by Adjusting Scaling Ambiguity

Even if the error caused by the windowing is not very large, the separation
performance is improved by minimizing the error [26]. The minimization is
performed by adjusting the scaling ambiguity of the ICA solution before the
windowing. Let d;(f) be a complex-valued scalar for the scaling adjustment:

wi(f) — di(f)wilf). (13.35)

We want to find d;(f) such that the error (13.31) is minimized. The scalar
d;(f) should be close to 1 to avoid any great change in the predetermined
scaling. Thus, an appropriate total cost to be minimized is

_ leHIP

T pIE A — 15,

T =>_Jif), Tilf)
f

and ( is a parameter indicating the importance of maintaining the predeter-
mined scaling. With the Hanning window, the error after the scaling adjust-
ment is easily calculated by substituting (13.35) for (13.32)

eilf) = Ldi(f = Af)er (F) + dulf +ADNe (£)] (13.36)

where e; and e; are defined in (13.33) and (13.34), respectively.
The minimization of the total cost can be performed iteratively by

(13.37)
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Fig. 13.11. Experimental conditions with linear array.

Table 13.1 Separation performance with linear array.

#sources / position 2/ac 3/abd |4/abcd
Spectral smoothing no yes [ mo yes | no yes
Average SIR at microphones (dB) 0.1 -2.9 -4.6
Average SIR (dB) 20.1 223|147 17.0| 9.3 11.5
Execution time (s) 52 52| 80 81123 124

with a small step-size p. With the Hanning window, the gradient is

0F  _9Ji{f=Af)  0L(J+A[) | 0Ji(f)

odi(f) — 0di(f) adi(f) " adi(f) (13.38)
eil(f-Af)Hel(f- e; Heg—
_ei(f-Af)Tef (f 8A.f|)wt(f)(|f2+Af) CUtAf) | D) 1)

With equations from (13.36) to (13.38), we can optimize the scalar d;(f) for
the scaling adjustment, and minimize the error caused by spectral smoothing
(13.30) with the Hanning window.

13.9 Experimental Results

13.9.1 Linear Array

We performed experiments to separate speech signals in an environment
whose conditions are summarized in Fig. 13.11. Our experiments involved
two, three and four sources whose locations are indicated in Table 13.1. The
sensors were arranged linearly, and the number of sensors used was the same
as the number of sources. We used filters of length L = 2048 because this
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Fig. 13.12. DOA estimations by (13.21) with four sources.
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Fig. 13.13. Comparison of different methods for solving the permutation problem.

length provided the best performance under the conditions. The BSS program
was coded in Matlab and run on Athlon XP 3200+.

The results shown in Table 13.1 are the average SIRs of eight combina-
tions of 7-second speeches. We see that the spectral smoothing discussed in
Sect. 13.8 improves the average SIR with every setup. The short execution
time, as shown in Table 13.1, enables the BSS system to perform in real-time
if the number of source signals is not very large.

Figure 13.13 shows SIRs for three and four sources with the different
methods for solving the permutation problem discussed in Sect. 13.6: “Lo-
calization” is the localization approach alone, “Correlation” is the correlation
approach (13.26) alone, “Integrated” is the integrated method, and “Optimal”
is the optimal solution obtained by utilizing the s;(t) and h;;(l) information.
The performance of “Localization” was stable but insufficient. The perfor-
mance of “Correlation” was unstable and very poor in the four-source cases.
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Fig. 13.14. Experimental conditions for planar array case.

The integrated method “Integrated” performed very well and was close to
“Optimal.”

13.9.2 Planar Array

Then, we carried out experiments on separating six sources with a planar
array of eight microphones. The room layout and other experimental condi-
tions are shown in Fig. 13.14. All six sources were 6-second speech signals,
and two came from the same direction. The filter length was again L = 2048
for an 8 kHz sampling rate.

Let us explain the method for solving the permutation problem in this sit-
uation. First, the source directions were estimated with small spacing micro-
phone pairs (1-3, 2-4, 1-2 and 2-3 shown in the right-top corner of Fig. 13.14).
This was performed based on (13.20), (13.22) and (13.23). Figure 13.15 shows
a histogram of the estimated DOAs. There are five clusters in this histogram,
and one cluster is twice the size of the others. This implies that two sources
came from the same direction (about 150°). We solved the permutation prob-
lem for the other four sources by using this DOA information as shown on
the left hand side of Fig. 13.16.

Then, to distinguish between the two sources that came from the same
direction, the spheres of these sources were estimated with large spacing mi-
crophone pairs (7-5, 7-8, 6-5 and 6-8 shown in the center of Fig. 13.14). This
was performed based on (13.19). The right hand side of Fig. 13.16 shows the
radiuses of the spheres estimated with microphone pair 7-5. Although the
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Fig. 13.16. Permutation solved by using estimated DOAs (left) and spheres
(right).

radius estimations had large variances, it provided sufficient information to
distinguish between the two sources. Consequently, the signal components of
all frequencies were classified into six clusters. We determined the permuta-
tion only for frequency bins where the classification was reliable as discussed
in Sect. 13.6.3.

To show the effectiveness of this method, we compared SIRs by three dif-
ferent methods for the permutation problem. Table 13.2 shows the result. The
last row "DOA + Sphere + Correlation” shows the results obtained with this
method. The two methods for comparison were “Correlation” where only the
correlations (13.26) were maximized, and “DOA + Correlation” where only the
DOA information was used for the source localization step in the integrated
method (Fig. 13.8). To see how the SIRs were improved, we also measured
the SIR of the mixture observed at microphone 1 (“SIR at microphone 17).
The effectiveness of the two integrated methods can again be recognized. If
we compare the results of “DOA + Correlation” and “DOA + Sphere + Cor-
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Table 13.2 Separation performance with planar array measured by SIR (dB).

SIR1 SIRQ SIR3 SIR4 SIR5 SIRG average
SIR at microphone 1 83| -6.8| -7.8| -7.7| -6.7| -52 -7.1
Correlation 4.4 2.6 4.0 9.2 3.6 -2.0 3.7
DOA + Correlation 9.6 9.3 | 14.7 2.7 6.5 | 14.0 9.4
DOA + Sphere + Correlation || 10.8 | 10.4 | 14.5 7.0 11.0| 12.2 11.0

relation,” the improvement is apparent for sources 4 and 5, which came from
the same direction. This means that the sphere information was important
in terms of distinguishing between sources coming from the same direction.
The BSS program was again coded in Matlab and run on Athlon XP 3200+.
The computational time for separating six speeches of 6 seconds was around
one minute.

13.10 Conclusions

This chapter presented a comprehensive description of frequency-domain
BSS, and also various techniques that enable frequency-domain BSS to be
used for separating many speeches mixed in a real room environment. The
permutation problem has been a major concern with the frequency-domain
approach. However, with the methods described in Sect. 13.6, this problem
can be solved even in a practical situation. Moreover, the locations of sources
can be estimated by the method described in Sect. 13.5. This fact is unique
to the frequency-domain approach, and cannot be seen in time-domain BSS.
We have shown experimental results where the separation performance was
fairly good and the computational cost was practical. These results show the
effectiveness of the proposed frequency-domain BSS.
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Abstract. In this chapter, we address subband-based blind source separation
(BSS) for convolutive mixtures of speech by reporting a large number of exper-
imental results. The subband-based BSS approach offers a compromise between
time-domain and frequency-domain techniques. The former is usually difficult and
slow with many separation filter coefficients to estimate. With the latter it is dif-
ficult to estimate statistics when the adaptation data length is insufficient. With
subband-based BSS, a sufficient number of samples for estimating statistics can be
held in each subband by using a moderate number of subbands. Moreover, by using
FIR filters in each subband, which are shorter than the filters used for time-domain
BSS, we can handle long reverberation. In addition, subband-based BSS allows us to
select the separation method suited to each subband. Using this advantage, we in-
troduce efficient separation procedures that take both the frequency characteristics
of the room reverberation and speech signals into consideration. In concrete terms,
longer separation filters and an overlap-blockshift in BSS’s batch adaptation in
low frequency bands improve the separation performance. Consequently, frequency-
dependent subband processing is successfully realized with subband-based BSS.

14.1 Introduction

Blind source separation (BSS) is an approach that estimates original source
signals s;(n) using only information on the mixed signals x;(n) observed in
each input channel. This technique can be applied for audio applications
such as noise robust speech recognition, high-quality hands-free telecommu-
nication, and hearing aid systems.

We consider the BSS of speech signals in a real environment, i.e., the BSS
of convolutive mixtures of speech. In a real environment, signals are filtered
by an acoustic room channel. To separate such complicated mixtures, we need
to estimate the separation filters of several thousand taps. Several methods
have been proposed for achieving the BSS of convolutive mixtures [1] and
most of these utilize independent component analysis (ICA) [2], [3]. To solve
the convolutive BSS problem, algorithms in the time and frequency domains
have been proposed [4-12].

In time-domain BSS, ICA is directly applied to convolutive mixtures and
separation FIR filters are directly estimated (e.g., [4-8]). Therefore, the in-
dependence of output signals can be evaluated directly. However, the conver-
gence of time-domain BSS algorithms is generally not good. This is because



330 S. Araki and S. Makino

the adaptation of such a long separation filter is very complex and there
are many local minima [3]. The computational complexity is also a prob-
lem. Moreover, most time-domain BSS algorithms have another problem: the
whitening effect, which means the signal’s spectrum becomes flat. Because
most time-domain BSS algorithms were designed for i.i.d. signals, these algo-
rithms try to make output signals both spatially and temporally independent
[8]. When we apply such time-domain BSS algorithms to mixtures of speech
signals, the output speech signals are whitened and sound unnatural.

By contrast, in frequency-domain BSS, mixtures are converted into the
frequency domain and ICA is applied to instantaneous mixtures at each fre-
quency (e.g., [9-12]) as shown in the previous chapter. Although we can
greatly reduce the computational complexity by using frequency-domain BSS,
frequency-domain BSS algorithms have inherent issues. One is that the inde-
pendence is evaluated at each frequency. In a real environment, an impulse
response changes momentarily. Therefore it is preferable that we estimate
separation filters using adaptation data that are as short as possible, espe-
cially when we use a batch algorithm. However, when we apply a longer frame
that can cover realistic reverberation for speech mixtures of a few seconds,
the number of samples in each frequency bin becomes small, and therefore,
we cannot correctly estimate the statistics in each frequency bin [13]. This
means that, in such a case, the independence is not evaluated correctly. This
is our strongest reason for utilizing subband-domain BSS method. We also
face permutation and scaling problems, which result in the estimated source
signal being recovered with a different permutation and gain in different fre-
quency bins. Recently, some solutions have been provided for these problems
[12], [14-17] and some of these were introduced in the previous chapter.

Motivated by these facts, we introduce a BSS method that employs sub-
band processing [18], [19]. Hereafter, we call this method subband BSS. With
subband BSS, observed mixed signals are decomposed into the subband do-
main with a filterbank and then separated in each subband using a time-
domain BSS algorithm. Then separated signals in each subband are synthe-
sized to obtain fullband separated signals. With this method, we can choose a
moderate number of subbands, therefore, we can maintain a sufficient number
of samples in each subband. The subband system also allows us to estimate
FIR filters as separation filters in each subband. Moreover, as the separation
filter length in each subband is shorter than that for time-domain BSS, it is
easier to estimate separation filters than with time-domain BSS. Therefore,
we can obtain separation filters that are long enough to cover reverberation.
That is, the subband BSS approach copes with both the frequency-domain
approach’s difficulty in estimating statistics and the time-domain technique’s
difficulty in adapting many parameters.

In addition, subband BSS mitigates the permutation problem and whiten-
ing effect. Because the permutation problem does not occur within each sub-
band, there are few permutation problems in subband BSS. Moreover, be-
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cause the whitening effect can be limited in each subband, subband BSS can
mitigates the whitening effect. Of course, subband BSS reduces computa-
tional complexity [20], [21]. This is an additional merit of subband BSS.

Subband BSS offers another advantage in that it allows us to select the
separation method suited to each subband. By using this advantage, we can
employ an efficient separation procedure taking into consideration the fre-
quency characteristics of room reverberation and speech signals [22], [23].
Generally speaking, an impulse response is usually longer in low frequency
bands than in high frequency bands. This makes the separation in low fre-
quency bands difficult. Moreover, because speech signals have high power
in low frequency bands, the separation performance in low frequency bands
dominates the speech separation performance. Therefore, it is very impor-
tant to improve the separation performance in the low frequency bands for
speech separation. In this chapter, we utilize longer separation filters and the
overlap-blockshift technique in the low frequency bands.

The organization of this chapter is as follows. Section 14.2 describes the
framework for the BSS of convolutive mixtures of speech. In Section 14.3,
we explain the configuration of subband BSS and mention implementation
issues. We confirm the validity of subband BSS in Section 14.4 by describing
experiments undertaken with reverberant data. In Section 14.5, we show some
ways to improve the low frequency subband performance in which the SIR is
worse than at high frequencies. Here, we take into consideration the frequency
characteristics of room reverberation and speech signals. The final section
concludes this chapter.

14.2 BSS of Convolutive Mixtures

14.2.1 Model Description

In real environments, the observed microphone signals are affected by rever-
beration. Therefore, Ny signals recorded by N, microphones are modeled as
convolutive mixtures

N, P

i=1 =1

where s; is the source signal from a source 4, x; is the signal observed by
a microphone j, and hj; is the P-taps impulse response from source 4 to
microphone j.

In order to obtain separated signals, we estimate the separation filters
w;j(n) of Q-taps, and obtain the separated signals

N,

3

WU Dxj(n—1+1), i¢=1,---,N,. (14.2)
=1

.
Il
i
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Mixing system Unmixing system

Fig. 14.1. BSS system configuration (when Ny = N,,, = 2).

The separation filters are estimated so that the separated signals become
mutually independent.

The BSS block diagram is shown in Fig. 14.1 for Ny = N,,, = 2. In this
chapter, we consider the case of Ny = N,;, = Ngp,.

14.2.2 Frequency-Domain BSS and Related Issue

Frequency-domain BSS. The frequency-domain approach to convolutive
mixtures transforms the problem into an instantaneous BSS problem at each
frequency [9-12]. Using T-point short-time Fourier transformation for (14.1),
we obtain the approximate time-frequency representation of mixtures,

x(f,m) =H(f)s(f,m), m=0,--+,L, —1, (14.3)

where f denotes the frequency bin, m represents the time dependence of the
short-time Fourier transformation (STFT), Ly, is the number of data samples
in each frequency bin, s(f,m) = [s1(f,m),- -, sy.., (f,m)]T is the source sig-
nal vector, and x(f,m) = [z1(f,m), -,z (f,m)]T is the observed signal
vector. We assume that the (Ng,, X Ny, ) mixing matrix H(f) is invertible
and that its ji component hj;(f) # 0. The STFT is usually executed by
applying a window function of length 7'. In this chapter, we call this T" the
STFT frame size.

The separation process can be formulated in a frequency bin f:
y(fvm) :W(f)x(f,m), m:()v 7Lm_ 13 (144)

where y(f,m) = [y1(f,m), -+ ,yx.., (fym)]T is the separated signal vector,
and W (f) represents an (Ns,, X Ngp,) separation matrix at frequency f. In
this chapter, we assume that the STFT frame size T is equal to the separation
filter length @. The separation matrix W (f) is determined by ICA so that the
outputs y;(f, m) become mutually independent. This calculation is carried
out independently at each frequency.
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Dilemma of Frequency-Domain BSS. In order to handle long reverbera-
tion, we need to estimate long separation filters w;;(n) of Q-taps. If the filters
are relatively short, we cannot reduce the reverberant components of interfer-
ences that are longer than the filters and this has a detrimental effect on the
separation performance [24]. On the other hand, with a batch adaptation, it is
desirable that separation filters can be estimated using adaptation data that
are as short as possible. This is because an impulse response changes momen-
tarily in a real environment. We therefore have to estimate long separation
filters with short length of adaptation data.

However, we have reported in [13] that when we employ a long frame
T with a frame shift of T'/2 for several seconds of data in order to prepare
a separation filter long enough to cover reverberation (note that we are as-
suming T = @), the separation performance degrades. One reason for this
is that it becomes difficult to maintain a sufficient number of data samples
to estimate the statistics in each frequency. This makes the estimation of
statistics difficult. In particular, the independence assumption between the
source signals seems to collapse [13]. Therefore, we cannot obtain sufficient
separation performance with a long frame with frequency-domain BSS for
short adaptive data.

14.3 Subband Based BSS

Subband BSS discussed in this section provides a solution to the dilemma of
frequency-domain BSS described in the previous section. With this method,
we can choose a moderate number of subbands, and therefore maintain a
sufficient number of samples in each subband. Subband BSS also allows us
to estimate short FIR filters as separation filters in each subband, due to
the down-sampling procedure at the subband analysis stage. Therefore, we
should be able to obtain a separation filter long enough to cover reverberation.
Moreover, as the separation filter length in each subband is shorter than
that for time-domain BSS, it is easier to estimate separation filters than in
time-domain BSS. That is, the subband BSS approach offers a compromise
between a time-domain technique, which is usually difficult and slow with
many parameters to estimate, and a frequency domain technique, which has
difficulty estimating statistics.

14.3.1 Configuration of Subband BSS

Basic Configuration of Subband BSS. The subband BSS system is com-
posed of three parts: a subband analysis stage, a separation stage, and a
subband synthesis stage (Fig. 14.2) [18], [19].

First, in the subband analysis stage, input signals x;(n) are divided into
N subband signals z;(k,m), k = 0--- ,N — 1, where k is the subband in-
dex, m is the time index, and N is the number of subbands. A polyphase
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Fig. 14.2. Basic system configuration of subband BSS. TDBSS denotes time-
domain BSS. A 2 x 2 case is depicted.

filterbank [25], including a cosine modulated filterbank [20] and a discrete
Fourier transform (DFT) filterbank [21,26], is widely used as the subband
analysis/synthesis system, because of its low computational complexity. A
polyphase filterbank analyzer (synthesizer) basically consists of a modula-
tor (demodulator), a prototype filter with a low pass characteristic, and a
decimator (interpolator). The cosine modulated filterbank realizes a perfect
reconstruction filterbank with real valued coefficients. The DFT filterbank
can be effectively realized by using FFT, however, the subband analyzed
signals x;(k, m) become complex number sequences. Since the outputs of a
prototype filter are band-limited in each subband, we can employ decimation
at the down-sampling rate R. However, as it is impossible to make an ideal
low pass filter as a prototype filter, the adjacent bands overlap each other,
i.e., aliasing occurs. Therefore, we should use a down-sampling rate of R < N
in order to reduce the aliasing distortion [27], which degrades the separation
performance [20].

Then, time-domain BSS is executed on x;(k, m) and the separated signals
y;(k, m) are obtained in each subband in the separation stage. If we utilize
DFT filterbanks, we have to use a complex version of the time-domain BSS
algorithm [21]. In each subband, we estimate FIR filters as separation filters
S0 as to cover the reverberation. Since we employ down-sampling, short FIR
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Fig. 14.3. Block diagram of subband BSS with an SSB filterbank. TDBSS denotes
time-domain BSS. LPF denotes low pass filter. A 2 x 2 case is depicted.

filters of length /R are sufficient to separate the subband signals in each
subband.

Finally, in the subband synthesis stage, separated signals y;(n) are ob-
tained by synthesizing each separated signal y;(k, m).

Subband BSS with SSB Filterbank. In this chapter, we utilize a
polyphase filterbank [25] with single sideband (SSB) modulation [28], which
is widely used in the echo canceller area [29,30]. A block diagram of subband
BSS with an SSB filterbank is shown in Fig. 14.3. Since this also has the form
of a generalized discrete Fourier transform (GDFT) filterbank [28], the filter-
bank can be realized effectively by FFT. Furthermore, in order to make the
analyzed signals real-valued, SSB modulation is adopted in the analysis stage
(Fig. 14.3). Moreover, to avoid the aliasing problem, the SSB-modulated sub-
band signals are not critically sampled, but oversampled, i.e., R < N. Here,
we employ two-times oversampling R = %. The low-pass filter used here in
the analysis filterbank as a prototype filter is f(n) = sinc(g7;) of length
6N. By using SSB modulation, we obtain SSB modulated real-valued signals

z$°"(k,m) in each subband.
Thanks to the SSB modulation, in the separation stage, we can apply
SSB

the time-domain BSS algorithm to z7 (k,m) without expanding it into a
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complex-valued version. A detailed explanation of the time-domain BSS al-
gorithm we employed is provided in the following subsection.

After obtaining the separated signals y;°® (k, m) in each subband, we ex-
ecute the SSB demodulation and synthesize them to obtain output signals
y;(n) in the time domain. The low-pass (prototype) filter used in the synthesis
filterbank is g(n) = sinc(g—;rz) of length 6R.

14.3.2 Time-Domain BSS Implementation for a Separation
Stage

Thanks to the SSB modulation, we can use any real-valued time-domain
BSS algorithm for subband BSS, including a higher order statistics based
algorithm [4,5] and a second order statistics based algorithm [6,31]. A generic
framework is discussed in [7]. Here, we describe the algorithm we used in the
experiments reported in this chapter. In addition, this section describes how
we can design the initial values of the separation filters for each subband.

Time-Domain BSS Algorithm. Here, we employ an algorithm based on
time-delayed decorrelation for non-stationary signals [31]. Relying on the non-
stationarity and non-whiteness of the source signals, this algorithm minimizes
the cross-correlation of output signals for some time lags for all analysis
blocks, simultaneously. It is verified that this algorithm works for convolutive
mixtures of speech signals [32].

We estimate FIR filters as the separation filters w;

ij
k. We write them in a matrix form W*(m) where its ij component is w¥; (m)

i
for convenience. The adaptation rule of the i-th iteration is

(m) in each subband

BS—-1
Wi (m) = Wi(m) + 22 Y {(diagR}(0)) ' (diagR},(m))
b=0

—(diagRZ(O))*lRZ(m)} * Wf(m), (14.5)

where RZ(T) represents the covariance matrix of outputs y(m) =
(5B (k,m), - ,y53® (k,m)]" in the b-th (b=0,--- , B—1) analysis block with
time delay 7, [i.e., R} (T) = %ZtL:l y(b% + )y (b% +t — 7)], o denotes a
step-size parameter, * denotes a convolution operator, L is the block length
and S is the blockshift rate. Note that the algorithm we used here is a batch
algorithm, i.e., the algorithm runs by using all the data on each iteration.

Initial Value Design of Separation Filters. A suitable initialization of
the separation filters helps the convergence of time-domain BSS and miti-
gates the permutation problem in subband BSS. We can use constraint null
beamformers, which makes spatial nulls towards given directions, as the ini-
tial value of the separation filters [32]. This is based on the fact that the
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time difference T;;

Fig. 14.4. Setup of null beamformer.

BSS solution behaves as adaptive beamformers, which form nulls in the jam-
mer directions [33]. Based on this fact, we design null beamformers towards
possible sound directions and utilize them as our initial values for the BSS
adaptation. Here, we give an example.

Here, we assume a linear microphone array with a known microphone
spacing. First, we assume that the mixing matrix H(f) represents only the
time difference of direct sound arrival 7;; with respect to the midpoint be-
tween the microphones (Fig. 14.4). This H(f) is written in the frequency
domain as follows:

exp (927 fri1) -+ exp (927 fTin,,,.)
H(f) = : : ; (14.6)
exp (227 fTn,1) - exP (927 f Ty wer )

where 7;; = % cosf;, d; is the position of the j-th microphone, 6¢; is the
direction of the i-th source as an initial value, and ¢ is the speed of sound.
Note that these d; values need not be precise because this H(f) is used only
for the initialization of BSS. It should be also noted that the precise directions
of sources, which are not given in a blind scenario, are not required for the
initialization. That is the ; values can be very rough approximations, e.g.,
+60° for the 2 x 2 case (i.e., left position or right position, for example).
Then we calculate the inverse of H(f) at each frequency, W(f) = H™1(f)
and convert the elements w;; (f) of this W(f) into the time domain, w;;(n) =
IFFT (w;;(f)). We can use this w;;(n) as the initial value for time-domain
BSS. Then, by applying subband analysis on these w;;(n), we obtain the
initial values of the separation filters in each subband W§(m) for (14.5).

14.3.3 Solving the Permutation and Scaling Problems

Scaling and permutation problems occur in subband BSS in a way similar
to that found with frequency-domain BSS, i.e., the estimated source signal
components are recovered with a different order and gain in the different
frequencies. Thanks to the initial value mentioned in the previous subsection,
we can mitigate the permutation problem, however, it sometimes still occurs.
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Fig. 14.5. Flows to solve the permutation and scaling problems (a) in the frequency
domain and (b) in the subband domain.

In order to solve the permutation problem, we can also employ an
adaptive-beamformer-like characteristic of the BSS solution [34]. We can solve
the problem by reordering the row of estimated separation filters W¥*(m) so
that the null of the directivity pattern obtained by W¥(m) is sorted and
forms a null toward almost the same direction in all subbands. This pro-
cedure is easily realized by looking at the directivity pattern of W(f) in
the frequency domain [Fig. 14.5 (a)] [34]. We can also solve the permutation
problem by sorting the row of the estimated separation filters W¥(m) so that
the cross-correlation of separated signals y$°®(k,m) in adjacent subbands is
maximized [12], [14]. With the correlation method, we can solve the problem
in the subband domain [Fig. 14.5 (b)].

For the scaling problem, we can also use the directivity pattern calculated
with the separation filters [35], that is, we normalize the row of the estimated
separation filters W¥(m) so that the gains and phases of the target direc-
tions become 0 dB and 0, respectively. It can be performed by transforming
WF(m) into the frequency domain [Fig. 14.5 (a)] [34]. The minimal distortion
principle [17] or the projection back method [10] can also be employed for
W (f) to solve the scaling problem [32], e.g., W(f) « diag]W=L(f)]W(f).
We can also solve the problem naively by normalizing the separation filters
W¥(m) so that each component wfj (m) has the same power as the corre-
sponding component of null beamformers W% __(m), which have nulls in the
jammer directions. This can be executed in the subband domain [Fig. 14.5
(b).

We can combine some solutions mentioned above. Here is one of the so-
lutions to the permutation and scaling problems which we employed:

i) Synthesize W¥(m) to obtain W(n) in the time-domain, then obtain
W (f) using a discrete Fourier transform (DFT).

ii) Estimate signal directions 6; (i = 1, -+, Ng,,,) from the directivity gain
pattern of W(f) [35]. When N, > 3, it is recommended that signal
directions be estimated analytically from W(f) [36].

iii) Solve the permutation problem by reordering the W(f) row so that the
0; values are sorted.
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Fig. 14.6. Layout of room used in experiments. T =300 ms.

iv) Make null beamformers by using (14.6) with the estimated 6; in step
ii), and by calculating W(f) = H~!(f). We call this null beamformer
Wesr(f) and use it to solve the scaling problem.

v) Calculate the inverse DFT of Wygr(f) and perform subband analysis to
obtain W __(m).

vi) Rescale W¥(m) so that sz (m)|| = HwNBF”( m)||, where ||z(m)|| means

Z% 2%(m) and Qy, is the separation filter length in the k-th subband.

14.4 Basic Experiments for Subband BSS

14.4.1 Experimental Setup

In order to confirm the performance of subband BSS, we undertook separation
experiments using speech data convolved with impulse responses measured
in a real environment for a 2 x 2 case. The impulse responses were measured
in the room shown in Fig. 14.6. The reverberation time Ty was 300 ms. Since
the sampling rate was 8 kHz, 300 ms corresponds to 2400 taps. As the original
speech, we used two sentences spoken by two male and two female speakers.
Investigations were carried out for six combinations of speakers. Each mixed
speech signal was about eight seconds long. We used the first three seconds of
the mixed data for learning, and we separated the entire eight second data.

To evaluate the performance, we used the signal-to-interference ratio
(SIR), defined as

SIR; = SIRo; — SIR;, (14.7)

>n Vi (n)
2o (i vis; (n))?
2on X, ()

2 n (2t Xhs

SIR,; = 10log

SIR;; = 10log

n))?’



340 S. Araki and S. Makino

where y;s, is the output of the whole system at y; when only s; is active, and
Xps; = hp; *8; (* is a convolution operator, k = ¢ in our experiments). SIR is
the ratio of a target-originated signal to jammer-originated signals.

14.4.2 Subband System

For subband analysis and synthesis, we used a polyphase filterbank [25] with
single sideband (SSB) modulation/demodulation [28], which we mentioned
in Section 14.3.1. Here, the number of subbands N was 64 and the down-
sampling rate R was 16 (R = £). We decided this number of subbands
N so that the down-sampling rate of subband BSS corresponded to that of
conventional frequency-domain BSS (see Section 14.4.3) of frame size T' = 32
with the half frame-shift.

For the time-domain algorithm used in subband BSS, we estimated sep-
aration filters wfj (m) of 64 and 128-taps in each subband. The step-size for
adaptation a was 0.02 and the number of blocks B was fixed at 20 for three
seconds of speech. We adopted 6;==+60° as the initial values of the separation
filters (see Section 14.3.2).

14.4.3 Conventional Frequency-Domain BSS

The frequency-domain BSS iteration algorithm was a natural gradient based
algorithm

AW, (f) = n[diag ((2(y)y™)) —(@(y)y™)] Wi(f),

where y=y(f, m), superscript H denotes a conjugate transpose and (z(m))
denotes the time average with respect to time m: Tln an'; 61 x(m). Subscript
i is used to express the value of the i-th step in the iterations, n is a step-
size parameter, and @(-) is a nonlinear function. As the nonlinear function
&(-), we used $(y) = tanh(g - abs(y))e/28Y) [37], where g is a parameter to
control the nonlinearity and we utilized g = 100. As the initial value of the
separation matrix, we utilized W(f) = H™1(f) with 6;=+60° (see Section
14.3.2).

We fixed the frame shift at half the STFT frame size T', so that the number
of samples in the time-frequency domain were the same. To solve the scaling
and permutation problems, we also used the beamforming approach [34]:
first, from the directivity pattern obtained by W (f) we estimated the source
directions and reordered the row of W(f) so that the directivity pattern
formed a null toward the same direction in all frequencies, then we normalized
the row of W(f) so that the gains of the target directions became 0 dB.

It should be noted that we used the time-average of y(f,m) of three
seconds for adaptation, i.e., we used a batch algorithm. It should also be
noted that if we fix the data length and frame shift at half the frame size,
the number of samples L,, of sequences y(f,m) in each frequency depends
on the frame size T roughly speaking, L,, x (data length)/T.
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Here we utilized the frequency-domain algorithm based on higher order
statistics (HOS) despite the fact that we are using a time-domain algorithm
relied on second order statistics (SOS). The performance of time-domain BSS
based on SOS has already been compared with that based on HOS [38], and it
was shown that the performance is not significantly different when we use an
adaptive-beamformer-like initial value. It has also been shown [39] that the
decorrelation-based algorithm and the fourth order moment-based algorithm
perform identically for speech. Therefore, we consider that we will see the
same tendency as that shown by our results if we compare time- subband-
and frequency-domain BSS using HOS/SOS only.

14.4.4 Conventional Fullband Time-Domain BSS

We also examined fullband time-domain BSS. The algorithm was the same as
that used in subband BSS, i.e., (14.5). In this case, the output signal vector
y(n) consisted of the signals in the time domain [y;(n),--- ,yy.. (n)]*. We
used values of & = 0.002 and B = 20. To obtain the initial condition of
the separation filters, we also utilized W(f) = H~!(f) with §;=+60° and
converted it into the time domain (see Section 14.3.2).

In fullband time-domain BSS, the output speech signals are distorted and
whitened (see [40] and Section 14.4.6). We evaluated the SIR values after
compensating for this whitening effect [32].

14.4.5 Results

Subband System Evaluation. To evaluate the subband analysis-synthesis
system, we measured the signal-to-distortion ratio (SDR), which is defined
as

>’ b*(n - D)
> {b(n - D) —a(n)}?

where the system input b(n) = §(n — &), Ly is the length of the delta
function, D is the delay caused by low-pass filters (LPF) in the analysis and
synthesis stages, and a(n) is the output (impulse response) of the subband
analysis-synthesis system. The SDR was 59.2 dB. This distortion caused by
subband analysis and synthesis can be ignored because the separation perfor-

mance SIR is at most 15 dB (see Fig. 14.7), and thus masks this distortion.

SDR = 10log

[dB], (14.8)

Separation Performance of Subband BSS. In order to confirm the supe-
riority of subband BSS, we compared the separation performance of subband
BSS with that of frequency-domain BSS and time-domain BSS.

Figure 14.7 shows the separation result SIR and the value of the average
correlation coefficient between source signals CC(N) = + ZkN:1 |7 |, where



342 S. Araki and S. Makino

12 : 0.20
[1:SR
1ol | o :cc 2
F Q
0.159
! mEn H
. o
J— A «Q
@ g o
= & ]
c 6 i 041o§
17} g o
S
4 kel 2
- o
- 8
o 04053:
2t of 3
o7 =
of
® © d 8 b ° S

3 g 3 2
s < S =)
= « = «
] ks = =
) @ 2 2

STFT frame size T for frequecy domain BSS

Fig. 14.7. Separation performance of frequency-domain BSS (white bars), sub-
band BSS (black bars) and fullband time-domain BSS (gray bars). “CC”: average
correlation coefficient. Adaptation data length=3 s and separated data length=8 s.
Tr = 300 ms.

N is the number of subbands for subband BSS or number of frequencies for
frequency-domain BSS and 7 is the correlation coefficient between source
signals of a k-th frequency/subband.

For frequency-domain BSS, the parameter was the STFT frame size T'.
In Fig. 14.7, T is shown by the horizontal axis. For subband BSS, we used
separation filters wY (m) of 64 and 128-taps in each subband; this corre-
sponds to 1024 and 2048-taps in a fullband, respectively. In Fig. 14.7, they
are shown as “sub1024” and “sub2048”, respectively. Our N = 64 subbands
with decimation R = 16 corresponds to T" = 32 in frequency-domain BSS
with regard to down-sampling rate. The number of learning data samples in
the time-frequency domain was the same for subband and frequency-domain

BSS.

With frequency-domain BSS, although we should use long frame to handle
the reverberation, CC becomes large and the independent assumption seems
to collapse as frame size T' becomes large. This is because the number of sam-
ples in each frequency becomes small. Therefore, the performance degraded
when we used separation filters of 2048-taps (i.e., frame size T = 2048).
Please note that the adaptation data length was three seconds and the half
frame-shift was utilized.

With fullband time-domain BSS (“full1024” and “full2048” in Fig. 14.7),
on the other hand, the CC was very small and we obtained a good result
when the separation filter length was 1024. However, when we employed a
separation filter length of 2048, it became difficult to estimate the separation
filters and the performance degraded. The performance for various separation
filter lengths with fullband time-domain BSS can be seen in [32].



14 Subband Based Blind Source Separation 343

By contrast, we achieved better separation performance with subband
BSS even when we estimated separation filters of 2048-taps. Moreover, with
subband BSS, we were able to confirm that the CC value was sufficiently
small. From the CC values, we can say that the independence assumption held
well in subband BSS. Another possible reason for the superior performance of
subband BSS is that the permutation problem does not arise in the subbands.
This point is discussed in the next subsection.

14.4.6 Discussion

Using subband BSS, we can maintain the number of samples in each subband
and obtain better separation performance. Using one second of speech as
adaptation data, we still obtained acceptable separation performance: SIR =
7.47 dB for Tr = 300 ms. If the adaptive data length is sufficiently long, the
same performance would be obtained by time-domain BSS, frequency-domain
BSS, and subband BSS. Our experimental results showed that subband BSS
works effectively when the adaptation data length is short.

Moreover, using subband BSS, we obtained separated signals with less
whitening effect than when using fullband time-domain BSS. When we use
the usual time-domain BSS algorithm, the output signal spectrum is flattened
[40]. This is because we remove the time dependence of the speech signals.
These whitened speech signals sound unnatural. In contrast, because this
whitening effect is limited in each subband, it can be diminished by subband
BSS. Figure 14.8 shows an example of separated speech obtained with time-
domain BSS and subband BSS. The separated signal is whitened using time-
domain BSS, while the shape of the spectrum holds well using subband BSS.

Furthermore, although we did not face the permutation problem due to
the initialization with null beamformers, this problem occurs in frequency-
domain BSS and subband BSS in general; the spectral components of sources
are recovered in a different order at different frequencies/subbands. This
makes the time domain reconstruction of separated signals difficult. How-
ever, this problem is less serious in subband BSS than in frequency-domain
BSS. This is because the permutation problem does not occur in each sub-
band as the separation procedure is executed in each subband. Therefore,
we face a smaller number of permutation problems than with frequency-
domain BSS. In particular, subband BSS encounters very few permutation
problems in low frequency bands, where it is difficult to solve the problems
with frequency-domain BSS [15]. Moreover, we can use a wider band signal
than frequency-domain BSS to solve the permutation problem in between
subbands. Therefore, we can use more information on separated signals and
separation filters, and can solve the problem more easily than in frequency-
domain BSS.

Finally, we discuss the computational cost. Because the calculation of
convolution and correlation in the time domain (14.5) is expensive, we calcu-
late them in the frequency domain. As discussed in [20], [21], we can reduce



344 S. Araki and S. Makino

-10 T T T
, (a) time-domain BSS
15+
20
i L (I
25+ ik 1
— k1
o a0l M
=700 1
- i
as|
2 I
3 ‘
Q 40F |
45t ;
-50
55 . . . . . . .
0 500 1000 1500 2000 2500 3000 3500 4000

frequency [Hz]

(b) subband BSS

power [dB]

s 0 500 1000 1500 2000 2500 3000 3500 4000

frequency [Hz]

Fig. 14.8. Example spectra of a separated signal with (a) time-domain BSS and
(b) subband BSS (broken lines). The solid lines show the spectrum of the original
speech.

the computational cost by using subband processing. When we consider the
decimation R, the computational cost for N subbands per time is reduced
to about (N/2 4+ 1)/(R x R) times that of fullband time-domain BSS. As
R = N/4 in our case, we can reduce the computational cost by about 2/R.

14.5 Frequency-Appropriate Processing for Further
Improvement

Subband BSS allows us to use different separation methods to estimate the
separation filter for different subbands. By exploiting this advantage, in this
section, we concentrate on low frequency bands for speech separation.

With speech separation, the SIR is generally worse in low frequency bands
as shown in Fig. 14.9, which plots the SIR values of separated signals for each
subband. One reason for the poor performance at low frequencies is that the
impulse response is usually longer (see Fig. 14.10) and therefore it is harder
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Fig. 14.9. SIR of separated signals in each subband. We can see that the SIR is
poor in low frequency bands for every speaker combination.
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Fig. 14.10. Spectrogram example of a room acoustic impulse response. Black indi-

cates high power and white indicates low power. We can see that the reverberation
is longer at low frequencies than at high frequencies.

to separate signals in low frequency bands than in high frequency bands.
Moreover, since speech signals have high power in low frequency bands, the
performance in these bands dominates the overall speech signal separation
performance. Therefore, it is important for speech separation to improve
the separation performance in low frequency bands to obtain better overall
separation performance.

14.5.1 Longer Separation Filters in Low Frequency Bands

One possible way to improve the SIR in low frequency bands is to estimate
longer separation filters in these bands in order to cover the long reverber-
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Table 14.1 Separation performance of subband BSS. (A)-(F) the overlap-
blockshift was executed only for low frequency bands 0-5, and (G) and (H)
the overlap-blockshift was executed for all subbands. N = 64.

# of taps S IR [dB]

band 0-5 |band 6-32 || no-overlap || overlap (x2) | overlap (x4)
(A)| 32 32 6.0
(B) 64 32 9.9 9.8
(C)| 128 32 9.5 10.1 10.4
(D) 64 64 10.3 10.8 10.7
(E)| 128 64 10.5 11.4 122
(F)| 128 | 128 | 10.1 1.0 | 117 |
G)| 64 64 10.3 10.7 10.7
(H)| 128 128 10.1 11.2 12.2

ation. If the length of the separation filters is insufficient, we cannot reduce
reverberant components of interferences that are longer than the filters and
we obtain poor SIR [24].

We therefore employ longer separation filters for low frequency bands
(bands 0-5). Figure 14.10 shows that the reverberation is long below about
600 Hz. Therefore, we used long filters for these frequency bands. The column
labelled “no-overlap” in Table 14.1 shows the separation performance for each
separation filter length condition.

In Table 14.1 (A)-(C), we used a 32-tap separation filter for high frequency
bands, and we changed the filter length for low frequency bands (bands 0-5).
We can see that a 32-tap long separation filter cannot achieve good per-
formance [see Table 14.1 (A)]. This is conceivable that it cannot cover the
reverberation in low frequency bands. When we used long separation filters
only in low frequency bands [Table 14.1 (B)], the separation performance was
greatly improved. However, when we used 128-taps in low frequency bands,
the separation performance degraded [see Table 14.1 (C)]. Figure 14.11 shows
the SIR for cases (A) - (C). We can see that the performance of (C) is worse
than (B). This is attributed to the fact that the number of samples in each
subband is too small to allow us to estimate a 128-tap separation filter pre-
cisely. The proposal in the next section (Section 14.5.2) will overcome this
problem.

14.5.2 Overlap-Blockshift in Low Frequency Bands

Another possible way to improve the SIR in low frequency bands is to uti-
lize a fine overlap-blockshift in the time-domain BSS stage. Using the fine
overlap-blockshift, we can increase outwardly the number of samples in each
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Fig. 14.11. Effect of filter length for low frequency bands.

subband, and can estimate the separation filters more precisely. Since our
time-domain BSS algorithm (14.5) divides signals into B blocks to utilize the
non-stationarity of signals, we can divide signals into blocks with an overlap,
as long as the non-stationarity is expressed among blocks. It should be noted
that this overlap-blockshift is executed in the separation stage, i.e., after the
decimation for subband analysis.

In Table 14.1 [(B)-(F)], the columns show the SIR obtained by the overlap-
blockshift only for low frequency bands (bands 0-5). “Overlap (x2)” and
“overlap (x4)” means that the blockshift rate S = 2 and 4 in (14.5), respec-
tively. Table 14.1 [(B)-(F)] show that when we used the overlap-blockshift
only for low frequency bands, we obtained better separation performance.
With a fourfold overlap-blockshift for (E), we were able to estimate the sep-
aration filters of 128-taps in low frequency bands, and we obtained the best
separation performance (underlined in Table 14.1). Figure 14.12 shows the
effect of the fine overlap-blockshift in low frequency bands.

14.5.3 Discussion

Even when we used 128-taps for all the frequency bands [(F) in Table 14.1],
the performance was no better than when we used 128-taps only for the
low frequency bands [(E) in Table 14.1]. Figure 14.13 shows the SIR in each
subband for (E) and (F). We can see that the use of the long separation
filters is not so effective in the high frequency bands. Sometimes, short filters
achieve better separation performance than long filters in the high frequency
bands. We can say that the employment of long separation filters only in low
frequency bands is enough for the separation.

Furthermore, when the overlap-blockshift was used in all subbands [see
(G) and (H) in Table 14.1], the increase in SIR was very small compared with
the SIR for (D) and (F) in Table 14.1. Figure 14.14 shows the improvement
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Fig. 14.13. Example of SIR in each subband when we use a long filter in all
frequency bands.

in separation performance provided by the overlap-blockshift. The overlap-
blockshift is also effective in high frequency bands. However, the contribution
of the improvement to SIR in the high frequency bands is not significant
for the whole performance [see (F) and (H) in Table 14.1]. This is because
the original power of the high frequency components of the speech signal
is smaller than that of the low frequency components. Therefore, we can
conclude that the use of a fine overlap-blockshift only in low frequencies is
sufficient to obtain improved performance.

By using long separation filters and the fine overlap-blockshift technique
only in low frequency bands, we can efficiently separate convolutive mix-
tures of speech. Such frequency-dependent processing is impossible with time-
domain BSS and intricate with frequency-domain BSS. Moreover, we can save
the computation cost without degrading the separation performance by lim-
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iting the use of long separation filters and the fine overlap-blockshift only to
low frequency bands.

There could be other ways to improve the separation performance. For
instance, we may be able to use different microphone pairs with appropriate
spacing for each subband. From a beamforming point of view, the resolution
of a spatial cancellation is related to the frequency. If the microphone spac-
ing is greater than half the wavelength, spatial aliasing occurs. This tends to
happen at high frequencies. On the other hand, if the spacing is too small,
the phase and amplitude difference between observations at low frequency
becomes too small and therefore, it becomes difficult to achieve good perfor-
mance. That is, the small phase difference between the observations at the
microphones is also a reason for the poor performance in low frequency bands.
A low frequency generally prefers a long spacing and a high frequency likes a
short spacing [41]. In this chapter, we considered the case of N,, microphones
whose number and spacing are fixed and ignored the multiple spacing micro-
phone case. However, if we could configure the microphone spacing according
to frequency, we would obtain better performance.

14.6 Conclusions

In this chapter, subband processing was applied to BSS for convolutive mix-
tures of speech. The subband-based BSS approach offers a compromise be-
tween the time-domain technique, which is usually difficult and slow with
many separation filter coefficients to estimate, and a frequency domain tech-
nique, which has difficulty estimating statistics when the adaptation data
length is insufficient. Our proposed subband BSS can maintain a sufficient
number of samples to estimate the statistics in each subband and estimate
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a separation filter long enough to cover the reverberation. We confirmed the
effectiveness of subband BSS experimentally.

Furthermore, making good use of subband processing, i.e., employing an
appropriate separation method for each frequency band, we showed that we
can improve the separation performance with long separation filters and the
overlap-blockshift technique only in low frequency bands. Subband BSS is a
powerful separation tool when the source signals s; or the impulse response
of the system hj; have different characteristics in different frequency bands.
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Abstract. In this chapter, we present a method for the real-time blind source sep-
aration (BSS) of moving speech signals in a room. The method employs frequency-
domain independent component analysis (ICA) using a blockwise batch algorithm
in the first stage, and the separated signals are refined by postprocessing using
crosstalk component estimation and non-stationary crosstalk cancellation in the
second stage. The blockwise batch algorithm achieves better performance than an
online algorithm when sources are stationary, and the postprocessing compensates
for performance degradation caused by source movement. Experimental results us-
ing speech signals recorded in a real room show that our method realizes robust
real-time separation for moving sources.

15.1 Introduction

Blind source separation (BSS) is a technique for estimating original source
signals using only observed mixtures. Independent component analysis (ICA)
[1-5] is one of the main statistical methods used for BSS. The BSS of audio
signals has a wide range of applications including noise robust speech recog-
nition, hands-free telecommunication systems and high-quality hearing aids.
In most realistic applications, the source location may change. Accordingly
a large amount of research has been undertaken on BSS for moving source
signals [6-12].

A mixing system is time-varying when source signals move. A naive ap-
proach for tracking a time-varying system is an online algorithm that up-
dates the separation system sample by sample. Indeed the online algorithm
can track a time-varying system, however, its performance is generally worse
than a batch algorithm, which can employ a number of samples, when the
system is stationary. Although we are dealing with moving sources, we do
not want to degrade the performance for fixed sources.

In this chapter, we describe a robust real-time BSS method [6] that em-
ploys frequency-domain ICA with a blockwise batch algorithm in the first
stage, and the postprocessing of crosstalk component estimation and non-
stationary crosstalk cancellation in the second stage. When we adopt block-
wise frequency-domain ICA, we need to solve a permutation problem for
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Fig. 15.1. Block diagram of our system for one output channel in one frequency
bin. The separation system using ICA is described in Sect. 15.2, and the residual
crosstalk estimator is described in Sect. 15.3.

every block, and this is a time-consuming process especially when the block
length is short. We use an algorithm based on an analytical calculation of
the source directions to solve the permutation problem quickly [13]. Another
problem inherent to batch algorithms is an input-output delay. To reduce this
delay, we use a technique for computing the output signal without waiting for
the calculation of the separation system to be completed. These techniques
are useful for realizing low-delay real-time BSS.

The blockwise batch algorithm achieves better separation performance
than an online algorithm for fixed source signals, but the performance deteri-
orates for moving sources. As we pointed out in [14], the ICA solution works
like an adaptive beamformer, which forms a spatial null towards an interfer-
ence signal. This characteristic means that BSS using ICA is fragile as regards
a moving interference signal but robust with respect to a moving target sig-
nal. Utilizing this nature, we can estimate residual crosstalk components even
when the interference signal moves. To compensate for the degradation that
occurs when the interference signal moves, we employ postprocessing in the
second stage.

Figure 15.1 shows a block diagram of our method for one output channel in
one frequency bin. In contrast to the original spectral subtraction [15], which
assumes stationary noise and periods with no target signal when estimating
the noise spectrum, our method requires neither assumption because we use
BSS in the first stage.

Our postprocessing method is also effective when source signals do not
move, and it can improve the separation performance for fixed sources [16,17].
Generally, the performance of BSS using only ICA is insufficient for most ap-
plications in a real-world environment. Accordingly, BSS with postprocessing
has been attracting the interest of many researchers, and various methods
have recently been proposed [16-20].

This chapter is organized as follows. In the next section, we summarize the
algorithm of frequency-domain BSS for convolutive mixtures and formulate
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a blockwise batch algorithm. In Sect. 15.3, we describe an algorithm to esti-
mate and subtract residual crosstalk components from the separated signals.
Section 15.4 presents experimental results using speech signals recorded in a
room and shows the effectiveness of the method in realizing robust real-time
separation. Section 15.5 sums up this chapter.

15.2 ICA Based BSS of Convolutive Mixtures

In this section, we briefly review the BSS algorithm that uses frequency-
domain ICA and formulate a blockwise batch algorithm including an online
algorithm as a special case. We also describe a fast algorithm for solving
permutation problems, which is necessary for real-time processing.

15.2.1 Frequency-Domain ICA

When N source signals are sy (%), ..., sn (), the signals observed by M micro-
phones are x1(t), ...,z (1), and the separated signals are y; (t), ..., yn (t), the
BSS model can be described by the following equations:

N

2i(t) = 3 (hye* s0)(2), (15.1)

k=1
Z (wij * ;) ( (15.2)

where hjj, are the impulse response from source ¢ to microphone j, w;; are
the separation filters, and * denotes the convolution operator.

Using a short-time Fourier transform (STFT) for (15.1), the model is
approximated as:

x(f,n) =H(f)s(f,n), (15.3)

where f is the frequency and n represents the frame index. The separation
process can be formulated in each frequency bin as:

y(f;n) = W(f)x(f,n), (15.4)

where s(f,n) = [s1(f,n), ..., s5(f,n)]T is the source signal in frequency bin
I, x(f,n) = [21(f,n), ..., zar(f,n)]T denotes the observed signals, y(f,n) =
[y1(f,n),...,yn(f,n)]T is the estimated source signal, and W (f) represents
the separation matrix.

A convolutive mixture in the time domain can be approximated as multi-
ple instantaneous mixtures in the frequency domain. Therefore, we can apply
an ordinary (instantaneous) ICA algorithm in the frequency domain to solve
a BSS problem. W(f) is determined so that the elements of y(f,n) become
mutually independent for each f.
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To calculate the separation matrix W, we use an optimization algorithm
based on the minimization of the mutual information of y. The optimal W
is obtained by the following iterative equation using the natural gradient
approach [21]:

WD = WO 4 ul — (@(y)y "W, (15.5)

where [ is an index for the iteration, I is the identity matrix, u is a step size pa-
rameter, (-) denotes the averaging operator, and ®(y) = [®(y1), ..., P(yn)]T is
an elementwise nonlinear function. Because the signals have complex values
in the frequency domain, we use a polar coordinate based nonlinear func-
tion, which is effective for fast convergence, especially when the number of
input data samples is small [22]. We adopted the following function for the
experiments in Sect. 15.4:

B(y;) = tanh(g - [y;])e? W, (15.6)

where ¢ is a gain parameter that controls the nonlinearity. The complex-
valued ICA is discussed in detail in Chapter 13.

15.2.2 Permutation and Scaling Problems

Once we have completed the ICA for all frequencies, we need to solve the per-
mutation and scaling problems. Since we are handling signals with complex
values, the scaling factors are also complex values.

We use a direction of arrival (DOA) based method to solve the permuta-
tion problem. The permutation problem is solved so that the DOAs of the
separated signals are aligned. The DOA of the i-th separated signal ;(f) can
be calculated analytically as:

arg((W(f)~"i/ W () ")
27ch_1|dj — djl| ’

0;(f) = arccos (15.7)
where [-];; denotes ji-th element of the matrix, ¢ is the speed of sound, and
d; represents a location of microphone j. This method does not require the
directivity pattern to be scanned, thus we can solve the permutation problem
quickly. The derivation of (15.7) is described in [13], and the more general
case is discussed in Chapter 13.

With regard to the scaling problem there is a simple and reasonable
method called minimal distortion principle (MDP) proposed by Matsuoka
[23]. The scaling alignment according to the MDP in the frequency domain
is given by the following operation:

W(f) « diag[W ()" TW(f). (15.8)

By using this solution, the output signal y;(¢) becomes an estimation of the
convolved version of source s;(f) measured at microphone i. See Chapter 13
for more detail on the permutation and scaling problems.
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Fig. 15.2. Input-output delay of (a) BSS using ordinary blockwise batch algorithm,
and (b) BSS without waiting for calculation of W,.

15.2.3 Low Delay Blockwise Batch Algorithm

In order to track the time-varying mixing system, we update the separation
matrix for each time block By, = {t: (m — 1)T}, <t < mT},}, where Ty, is the
block size, and m represents the block index (m > 1).

Koutras et al. have proposed a similar method in the time domain [8].
When T} equals the STFT frame length, this procedure can be considered an
online algorithm in the frequency domain.

We use the separation matrix of the previous block as the initial iteration
value for a new block, i.e. Wg,?l_l(f) = E,JLVI)(f), where Ny is the number
of iterations for (15.5).

The batch algorithm has an inherent delay, because the calculation of W
needs to wait for the arrival of a data block. Moreover, the calculation itself
also takes time [Fig. 15.2(a)]. However, when the calculation is completed
within 7} and we use W, _5 for separation of the signals in B,,, we can avoid
the delay for waiting and calculation [Fig. 15.2(b)]. This technique can reduce
the input-output delay and is suitable for low-delay real-time applications.
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It seems that this method fails when a source signal moves, but it is ac-
tually robust for the moving target signal, which is shown in Sect. 15.4.3.
Unfortunately, this method suffer performance deterioration when an inter-
ference signal moves. To cope with this problem, we employ a postprocessing
method using crosstalk component estimation and non-stationary crosstalk
cancellation which reduces the performance deterioration.

15.3 Residual Crosstalk Cancellation

In this section, we mention the postprocessing method which improves the
separation performance of BSS. First, we examine the nature of separated sig-
nals obtained by the frequency-domain ICA described in the previous section.
We then describe an algorithm to estimate and subtract residual crosstalk
components in these signals.

15.3.1 Straight and Crosstalk Components of BSS

When we concatenate the mixing system (15.1) and the separation system
(15.2), we have

M

~

N
Z wgj * hjg * sg)(t). (15.9)

j=1k=1

We define the concatenation of the paths from source k to output i as:

M
gin(t) =Y _(wij = hj)(t (15.10)

j=1

then each of the separated signals y;(t) can be described as follows:

N
= (gir = sx)( (15.11)
k=1

In the same way as (15.3) and (15.4), this can be approximated in the
frequency domain:

G(f) = W(/)H([), (15.12)

and separated signals y; can be described as follows:

ZGm )k (f,m). (15.13)
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We decompose y; into the sum of straight component y(s) derived from

target signal s; and crosstalk component y; (©) derived from interference signals
sk(k # ). Then, we have

vi(f,n >—yz J(fon) + 57 (f,m), (15.14)

y (f.n) = Gu(f)si(fon), (15.15)

Nfon) =Y Gulf)sulf.n). (15.16)
ki

(s)

We denote estimation of y;’ 5

Ags , respectively. Our

~(s)

and y,gc) and ¢,

goal is to estimate the spectrum of ygc) using only ¥, ..., yn~ and obtain ¢,

by subtracting @, ©) from Ui

In our previous research [24], we measured the impulse responses of the
straight and cross paths of a BSS system. As a result, we found that the direct
sound of an interference can be almost completely removed by BSS, and also
that residual crosstalk components are derived from the reverberation. (See

y§ ) and y( 9 in Fig. 15.3.) We utilize these characteristics of separated signals
to estimate the crosstalk components.

15.3.2 Model of Residual Crosstalk Component Estimation

Figure 15.4 shows an example of a narrow band power spectrum of straight

and crosstalk components in separated signals obtained by a two-input two-
output BSS system. The crosstalk component ygc) is in y; and the straight

component yés) is in yo. Both components are derived from source signal ss;

ygc) is derived from the reverberation of sy and yés) is mainly derived from the

direct sound of s5. Accordingly, for the narrow band signal in each frequency

bin, the crosstalk component y( ) can be approximated by the filtered version

of yés).
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Fig. 15.4. Example of narrow band power spectrum of straight and crosstalk
components (f = 320 Hz).

We extend this approximation to multiple signals by introducing filters
a;;(f,n) = [aijo(f,n), ..., aijr—1(f,n)]" for each frequency bin f and combi-
nation of channels ¢ and j (i # j), where L is the length of filters.

Furthermore, we use y; as an approximation of y§s), because yﬁs) is actu-
ally unknown. Therefore, the model for estimating residual crosstalk compo-

nents is formulated as follows:

L—1
w7 = 30 il (fn =P (15.17)
j#i 1=0
' L—1
~ Zzaiﬂ(f,n)lyj(f,nfl)lﬁ, (15.18)
i 1=0

where the exponent = 1 for the magnitude spectrum and 3 = 2 for the
power spectrum.

15.3.3 Adaptive Algorithm and Spectrum Estimation

Figure 15.5 shows a block diagram of our method for one output channel.
We estimate filters a;; described in the previous section by using an adaptive
algorithm based on the normalized LMS (NLMS) algorithm [25].

For each ¢, the filters &4;;(f,n) are adapted so that the sum of the output

signals becomes |y§c)(f, n)|? for input signals |yj(.s)(f, n)|? (1<j<N,j#i).
If |y§0)(f, n)| and |y§s)(f, n)| are available, the update equation according to
the NLMS algorithm is described as follows:

éij(fan'i'l) = éz](f’n) + L quj(.fan)eij(f’ n), (15'19)

9 +[lu;(f,n)

where

w;(f,n) =[98 (£ 2, [y (fon =117, S (fon— L+ 1))P)T (15.20)
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is an input vector and

eij<f7 ) |le) fa Zam f, u] f7 ) (15'21)
J#i

is an estimation error. Here, 7 is a step size parameter and § is a positive
constant to avoid numerical unstability when ||u;|| is very small.

Unfortunately, |y§c)(f, n)| and |yjs)(f, n)| are unknown, so they are sub-
stituted by |y;(f,n)| and |y, (f, n)|, respectively. We assume that \yis)(f, n)|

can be approximated by |y;(f,n)| when |y;(f,n)| is large and \ygc)(f, n)| can
be approximated by |y;(f,n)| when |y;(f,n)| is small. This assumption is
based on the sparse characteristics of narrow band signals, i.e. ygs) and yj(-s)
seldom have large power simultaneously, especially when the source signals
are speech signals. A detailed analysis of overlapping frequency components
of speech signals can be found in [26] and [27].

Since not all |y(c)( n)| and |y ( n)| can be approximated by |y;(f,n)|,
only a subset of the ﬁlters is updated at each iteration. To formulate a selec-

tive update algorithm, we introduce sets of channel index numbers,

Ts(fin) = {i: | yalf,n)] — i (fn)] | < e},
To(fon) = (i | lyi(fn)| — [y (fon)] | < e},

where ¢, and ¢, are small parameters that determine tolerance. This means
that \yis)(f,n)| can be approximated by |y;(f,n)| for i € Zg(f,n) and

|y§c)(f7 n)| can be approximated by |y;(f,n)| for i € Za(f,n).
One example implementation for determining Zs(f,n) Zc(f,n) is

Is(fin) = {i+ i = argmax|y;(f,n)]},

IC’(f>n) :Is<f>n)'
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Another example is

Zs(f,n) = {i:|yi(f,n)| > threshold},
IC(fan) :IS(fzn)

We substitute y](fq) in (15.20) with y; for j € Zg(f,n), and yl(c) in (15.21)
with y; for i € Zo(f,n). The filters &;; are updated for i € Z¢(f,n) and
Jj € Zs(f,n) by using (15.19). Therefore, the update procedure is given by

A n
a;;(f,n) + Wug‘(ﬁ n)ei;(f,n)

(ifi € Ze(fon), and j € Zs(f,n)) °
a;;(f,n) (otherwise)

where

w;(f,n) = [ly; (F)l% Jys (fon = DI, sy (fin = L+ DT (15.23)

is an input vector and

eij(f? ) |y1 fv Zaz] f7 uj fv ) (1524)
J#i

is an estimation error.
We apply the estimated filters to the model (15.18), and obtain an esti-
mation of the power of residual crosstalk components:

97 (Fn)? =S Al (fn)uy (). (15.25)
J#i

Finally, we obtain an estimation of the straight component as QZ(S) by the
following spectral subtraction procedure:

(g (f.n)]? — [3(7, n>|ﬁ>”ﬁm
|yz(fa n)| ) (15.26)
(f [y: (f.n)] > 9.7 (f,n)])
0 (otherwise)

9 (f,n) =

15.4 Experiments and Discussions

15.4.1 Experimental Conditions

To examine the effectiveness of our method, we carried out experiments using
speech signals recorded in a room. The reverberation time of the room was
130 ms. We used two omni-directional microphones with an inter-element
spacing of 4 cm. The layout of the room is shown in Fig 15.6. The target
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Fig. 15.6. Layout of room used in experiments. Tr = 130 ms.

source signal was first located at A, and then moved to B at a speed of 30
deg/s. The interference signal was located at C and moved to D at a speed
of 40 deg/s.

The step size parameter p in (15.5) affects the separation performance of
BSS when the block size changes. We carried out preliminary experiments
and chose p to optimize the performance for each block size. Other condi-
tions are summarized in Table 15.1. The frame shift and the filter length
L in the postprocessing part were decided so that the filter could cover the
reverberation.

To update filters &;;(f,n), we used the following simple selective update
policy:

if [y1(f,n)] > |y2(f, n)|
then Zs(f,n) = {1}, Zc(f,n) = {2}
else Zg(f,n) =12}, Zc(f,n) = {1} .

We assumed the straight component ygs) as a signal, and the difference
between the output signal and the straight component as interference. We
defined the output signal-to-interference ratio (SIRp) in the time domain as
follows:

>, 7 ()2
SIRp = 101lo dB). 15.27
¢ S () — e )P ) 1521

Similarly, the input SIR (SIR;) is defined as,

_ S 02 (ha * s1)()]?
SIR; = 101o dB). 15.28
! S TSR (15:25)
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Table 15.1 Experimental conditions.

Common Sampling rate = 8 kHz
Window = hanning
Reverberation time Tr=130 ms

ICA part Frame length Trca = 1024 point (128 ms)
Frame shift = 256 point (32ms)
g = 100.0

= optimized for block size Ty

Number of iterations N; = 100

Post processing part|Frame length T'ss = 1024 point (128 ms)
Frame shift = 64 point (8 ms)

Filter length L = 16

B =2
6 =0.01
n=20.1
17
16}
15}
8 14}
o
o 13+
Blockwise batch
12}
11}
Online
10L—— : : :
0.1280.2 0.5 1 2

Block size 7} (S)

Fig. 15.7. Average and standard deviation of SIR for fixed sources.

We use SIR = SIRp — SIR; as a performance measure. This measurement
is consistent with the performance evaluation of BSS in which the crosstalk
component is assumed as interference. We measured SIRs with 30 combi-
nations of source signals using three male and three female speakers, and
averaged them.

15.4.2 Performance for Fixed Sources

Although we are dealing with moving sources, we do not want the perfor-
mance for fixed sources to deteriorate. First, we measured the BSS perfor-
mance using ICA without postprocessing. Figure 15.7 shows the average and
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Fig. 15.8. SIR of blockwise batch algorithm without postprocessing. Target and

interference signals moved at 10 s (7, = 1.0 s).

standard deviation of SIR for fixed sources (the target is at A and the inter-
ference at C in Fig. 15.6). This indicates that the blockwise batch algorithm
outperforms the online algorithm (in which p is tuned to optimize the perfor-
mance), when we use the update equation (15.5). In addition, the deviation
of the batch algorithm is smaller than that of the online algorithm. This is
why we adopt the blockwise batch algorithm in the first stage. We used Ty
= 1.0 s in the following experiments.

15.4.3 Moving Target and Moving Interference

Before considering the result obtained with the postprocessing method, we
investigate the BSS performance for moving sources using the blockwise batch
algorithm. Figure 15.8 shows the SIR for a moving target (solid line) and for
a moving interference (dotted line). We can see that the SIR is not degraded
even when the target moves. By contrast, interference movement causes a
decline in the SIR.

This can be explained by the directivity pattern of the separation system
obtained by ICA. The solution of frequency domain BSS works in the same
way as an adaptive beamformer, which forms a spatial null towards an in-
terference signal (Fig. 15.9). Because of this characteristic, BSS using ICA is
robust as regards a moving target signal but fragile with respect to a moving
interference signal. The relationship between the separation filter obtained
ICA and the adaptive beamformer is detailed in [14].
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Fig. 15.9. Directivity pattern of separation system obtained by frequency-domain
ICA.
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Fig. 15.10. Effect of postprocessing. Interference signal moved from C to D at
10s (T, = 1.0 s).

15.4.4 Performance of Blockwise Batch Algorithm with
Postprocessing
The most important factor when estimating the crosstalk component yic)
using (15.22) and (15.25) is the separated signal y,. We can estimate ys
robustly even when s, moves, because ss is a target signal for ys. Therefore,
postprocessing works robustly even when the interference signal so moves.
Figure 15.10 shows the SIR of blockwise batch algorithm with postpro-
cessing when the interference signal moves (solid line). We can see that the
SIR is improved by the postprocessing, and the drop of the SIR when the
interference moves is reduced. This result shows that our postprocessing
method can compensate the fragility of the blockwise batch algorithm when
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Fig. 15.11. Performance of online algorithm with and without postprocessing.
Interference signal moved from C to D at 10 s (T = 1.0 s).

an interference signal moves. Although crosstalk components still remaining
in the postprocessed output signal sometimes make a musical noise, the power
is much smaller than ordinary spectral subtraction.

15.4.5 Performance of Online Algorithm

Figure 15.11 shows the SIR of online algorithm with and without postprocess-
ing. The online algorithm is more stable than blockwise algorithm, however
the performance is worse when the sources are stationary, as we described
in Sect. 15.4.2. The postprocessing is also effective for this case, thus we
may choose the algorithm in the first stage according to requirements of the
application.

15.5 Conclusions

We presented a robust real-time BSS method for moving source signals. The
combination of the blockwise batch and the postprocessing realizes a robust
low-delay real-time BSS. We can solve a permutation problem quickly by us-
ing analytical calculation of source directions, and this technique is useful for
solving convolutive BSS problems in realtime. Postprocessing using crosstalk
component estimation and non-stationary crosstalk cancellation improves the
separation performance and reduces the performance deterioration when an
interference signal moves. Experimental results using speech signals recorded
in a room showed the effectiveness of our method. Some sound examples can
be found on our web site [28].
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Abstract. The term auditory scene analysis (ASA) refers to the ability of human
listeners to form perceptual representations of the constituent sources in an acoustic
mixture, as in the well-known ‘cocktail party’ effect. Accordingly, computational
auditory scene analysis (CASA) is the field of study which attempts to replicate
ASA in machines. Some CASA systems are closely modelled on the known stages
of auditory processing, whereas others adopt a more functional approach. However,
all are broadly based on the principles underlying the perception and organization
of sound by human listeners, and in this respect they differ from ICA and other
approaches to sound separation. In this chapter, we review the principles underlying
ASA and show how they can be implemented in CASA systems. We also consider
the link between CASA and automatic speech recognition, and draw distinctions
between the CASA and ICA approaches.

16.1 Introduction

Imagine a recording of a busy party, in which you can hear voices, music and
other environmental sounds. How might a computational system process this
recording in order to segregate the voice of a particular speaker from the other
sources? Independent component analysis (ICA) offers one solution to this
problem. However, it is not a solution that has much in common with that
adopted by the best-performing sound separation system that we know of —
the human auditory system. Perhaps the key to building a sound separator
that rivals human performance is to model human perceptual processing?
This argument provides the motivation for the field of computational au-
ditory scene analysis (CASA), which aims to build sound separation systems
that adhere to the known principles of human hearing. In this chapter, we
review the state-of-the-art in CASA, and consider its similarities and dif-
ferences with the ICA approach. We also consider the relationship between
CASA and techniques for robust automatic speech recognition in noisy envi-
ronments, and comment on the challenges facing this growing field of study.
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Fig. 16.1. (A) Auditory spectrogram for the utterance “don’t ask me to carry an
oily rag” spoken by a female. (B) Auditory spectrogram for the utterance “seven
three nine five one” spoken by a male. (C) Auditory spectrogram for a mixture of
the male and female utterances. Light pixels correspond to regions of high energy,
and dark pixels correspond to regions of low energy. (D) Ideal binary mask for
the male utterance, obtained by using the criterion given in (16.1). White pixels
indicate reliable regions, and black pixels indicate unreliable regions.

16.2 Auditory Scene Analysis

In naturalistic listening situations, several sound sources are usually active at
the same time, and the pressure variations in air that they generate combine
to form a mixture at the ears of the listener. A common example of this
is the situation in which the voices of two talkers overlap, as illustrated in
Figure 16.1C. The figure shows the simulated auditory nerve response to a
mixture of a male and female voice, obtained from a computational model
of auditory processing. How can this complex acoustic mixture be parsed in
order to retrieve a description of one (or both) of the constituent sources?
Bregman [5] was the first to present a coherent answer to this question
(see also [17] for a more recent review). He contends that listeners perform an
auditory scene analysis (ASA), which can be conceptualized as a two-stage
process. In the first stage, the acoustic mixture is decomposed into elements.
An element may be regarded as an atomic part of the auditory scene, which
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describes a significant acoustic event. Subsequently, a grouping process com-
bines elements that are likely to have arisen from the same acoustic source,
forming a perceptual structure called a stream. For example, consider the
voice of a speaker; in Bregman’s terms, the vocal tract of the speaker is the
acoustic source, whereas the mental representation of the speaker’s voice is
the corresponding stream.

Grouping processes may be data-driven (primitive), or schema-driven
(knowledge-based). In the former case, it is thought that listeners exploit
heuristics similar to those proposed by the Gestalt psychologists for describ-
ing the ways in which elements of an image combine to form a coherent ob-
ject. In schema-driven grouping, listeners apply learned knowledge of sound
sources (such as speech and music) in a top-down manner. Examples of
speech-related schemas include prosodic, semantic and pragmatic knowledge.

Consideration of Fig. 16.1C suggests that a number of primitive grouping
cues could be applied to segregate the mixture. First, consider cues which
might act upon acoustic components that overlap in time (so-called simul-
taneous organization). At about 0.5 sec., the male speech begins and this
gives rise to an abrupt onset in acoustic energy across all frequency channels.
Hence, a principle of ‘common onset’ might allow the voices of the two speak-
ers to be segregated in this region — frequency regions that exhibit an abrupt
increase in energy at the same time are probably dominated by the same
acoustic source. Similarly, a principle of ‘common offset’ could be applied to
segregate the two speakers in the region close to 2 sec., when the male speech
ceases. Another powerful grouping cue is harmonicity. In the figure, horizon-
tal bands of energy are visible which correspond to harmonics of the same
fundamental frequency (FO0). In principle, these harmonics can be sorted into
two sets, such that those related to the same FO are grouped together.

Secondly, consider grouping cues which could act upon nonoverlapping
acoustic components (so-called sequential organization). In Fig. 16.1C, the
male and female speakers occupy different average pitch ranges; hence the
continuity of their FOs might be exploited in order to group successive ut-
terances from the same speaker. Similarly, concentrations of energy in the
time-frequency plane tend to change smoothly, such as those due to formant
transitions. Again, such continuity can be exploited in order to separate one
voice from the other. Some cues to sequential organization are not illustrated
by the figure. For example, listeners tend to group sounds that have a similar
timbre, and which originate from the same location in space.

16.3 Computational Auditory Scene Analysis

The structure of a typical data-driven CASA system is closely related to
Bregman’s conceptual model, as shown in Fig. 16.2. In the first stage, the
input mixture is processed in order to derive acoustic features. Subsequent
grouping processes may operate directly on these features, or more usually
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Fig. 16.2. Flow of processing in a typical data-driven CASA system, such as that
of Brown and Cooke [7].

they will be used to derive an intermediate representation prior to grouping.
In many systems, significant components in the time-frequency plane are
encoded as discrete symbols. Grouping rules are then applied, in order to
identify components that are likely to have arisen from the same source. The
grouping heuristics may be encoded explicitly in a rule-based system, or may
be implicitly encoded in a signal processing algorithm or neural network.

Once representations of individual sources are obtained, the auditory rep-
resentation can usually be inverted in order to recover a time-domain wave-
form for the segregated source. This allows the separated signal to be evalu-
ated using listening tests, or by performance metrics that involve a compar-
ison between the original and reconstructed signals. Alternatively, an evalu-
ation may be performed on the auditory representation directly.

An important notion in many CASA systems is the time-frequency mask.
Given a description of the acoustic input in the time-frequency plane, a spe-
cific source may be recovered by applying a weighting to each time-frequency
bin, such that regions dominated by the desired source receive a high weight
and those dominated by other sources receive a low weight. The mask val-
ues may be binary or real-valued. Weintraub [67] was the first to use this
approach in a CASA system, and it has since been adopted by several other
workers [6], [7], [66], [54], [13]. The use of binary masks is motivated by the
phenomenon of masking in human hearing, in which a weaker signal is masked
by a stronger one within the same critical band (see Moore [41] for a review).
It has also been noted that the reconstruction of a masked signal may be
interpreted as a highly nonstationary Wiener filter [54].

What is the upper limit on the performance of a system that uses binary
masks? Cooke et al. [13] have adapted a conventional speech recognizer so
that reliable and unreliable (or missing) acoustic features are treated differ-
ently during decoding, and report excellent recognition performance using
so-called a priori masks. Assuming that the clean speech and noise signals
are available prior to mixing, the a priori mask is formed by selecting time-
frequency regions in which the mixture energy lies within 3 dB of the energy
in the clean speech. From the perspective of speech separation, Wang and
colleagues [27,52,29] have subsequently proposed the ideal binary mask as a
computational goal of CASA. Considering the auditory representation of a
speech signal s(t, f) and noise signal n(¢, f), where t and f index time and
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frequency respectively, the ideal binary mask m(t, f) is given by

m(t, f) = { 1if s(t, f) > n(t, f) ' (16.1)

0 otherwise

A similar approach has been advocated by Jourjine et al. [31], who note that
different speech utterances tend to be orthogonal in a high-resolution time-
frequency representation, and can therefore be separated by binary masking.
A number of workers have demonstrated that speech reconstructed from ideal
binary masks is highly intelligible, even when extracted from a mixture of two
or three concurrent speakers [54], [52]. Speech intelligibility tests using both
speech and babble noise interference also show that ideal binary masking can
lead to substantial intelligibility improvements for human listeners [52]. An
extensive discussion on ideal binary masks can be found in [65].

In the following sections, we first review the feature extraction stage of
CASA, and then focus on monaural (one-microphone) and binaural (two-
microphone) approaches. We also consider the issue of cue integration, and
review a number of different computational frameworks that allow multiple
grouping cues to be brought to bear on an acoustic signal.

16.3.1 Peripheral Auditory Processing and Feature Extraction

The first stage of a CASA system is usually a time-frequency analysis that
mimics the frequency selectivity of the human ear. Typically, the input sig-
nal is passed through a bank of bandpass filters, each of which simulates the
frequency response associated with a particular position on the basilar mem-
brane. The ‘gammatone’ filter is often used, which is an approximation to the
physiologically-recorded impulse responses of auditory nerve fibres [50], [11].
The parameters of the gammatone filterbank (i.e., the filter order, bandwidth
and frequency spacing) are usually chosen to provide a match to psychophys-
ical data. Neuromechanical transduction in the cochlea may be approximated
by half-wave rectifying and compressing the output of each filter; alternatively
a detailed simulation of inner hair cell function can be employed [26]. We
note, however, that not all CASA systems use an auditory-motivated time-
frequency analysis. The short-term Fourier transform and discrete wavelet
transform are also sometimes employed [42], [56], [38], [43].

Examples of auditory spectrograms generated using a gammatone filter-
bank are shown in Fig. 16.1. Note that a nonlinear frequency scale is used,
and that the bandwidth of each filter varies proportionately to its center
frequency. In low frequency regions, filter bandwidths are narrow and hence
individual harmonics of a complex sound (such as speech) are resolved. In
high-frequency regions, the bandwidths are broader and several components
interact within the same filter.

Most CASA systems further process the peripheral time-frequency rep-
resentation in order to extract features that are useful for grouping. The
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motivation here is to explicitly encode properties which are implicit in the
acoustic signal. Typical is the ‘synchrony strand’ representation of Cooke
[11], which is a symbolic encoding of significant features in the time-frequency
plane. Cooke demonstrates that the grouping stage of CASA (e.g., identifying
harmonically related components) is facilitated by using a representation in
which continuity in time-frequency is made explicit. A further example is the
system of Brown [7], which forms representations of onset and offset events,
periodicity and frequency transitions. Similar rich ‘mid level” representations
of the acoustic signal have been proposed by other workers [21], [66].

16.3.2 Monaural Approaches

Although binaural cues contribute substantially to ASA, human listeners are
able to segregate sounds when listening with a single ear, or when listening
diotically to a single-channel recording. Perceptually, one of the most potent
cues for monaural sound segregation is fundamental frequency (FO0); specifi-
cally, listeners are able to exploit a difference in FO in order to segregate the
harmonics of one sound from those of interfering sounds. Accordingly, much
of the work on monaural CASA has focussed on the problem of identifying
the multiple FOs present in an acoustic mixture (so-called ‘multipitch analy-
sis’), and using them to separate the constituent sounds. Perhaps the earliest
example is the system for separating two concurrent speakers described by
Parsons [49]. In his approach, the harmonics of a target voice are selected by
peak picking in the spectral domain, and the voice of each speaker is tracked
using pitch continuity.

An important class of algorithms for FO estimation is based on a temporal
model of pitch perception proposed by Licklider [36]. The first computational
implementation of Licklider’s theory was described by Weintraub [67], who
referred to it as an ‘auto-coincidence’ representation; subsequently, Slaney
and Lyon [57] introduced the term correlogram. The correlogram is computed
in the time domain by performing an autocorrelation at the output of each
channel of a cochlear filter analysis,

N-1

At f,7) =Y h(t —n, f)h(t —n — 7, flw(n). (16.2)

n=0

Here, h(t, f) represents the cochlear filter response for channel f at time
frame t, 7 is the autocorrelation delay (lag), and w is a window function of
length N samples (typically a Hanning, exponential, or rectangular window is
used). Alternatively, the autocorrelation may be performed in the frequency
domain by means of the discrete Fourier transform (DFT) and its inverse
transform (IDFT), i.e.

IDFT(|DFT(h)|*), (16.3)
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Fig. 16.3. A. Correlogram for time frame 100 of the mixture of two speakers shown
in Fig. 16.1. B. Summary autocorrelation function (SACF). The pitch periods of
the two speakers are marked with arrows. The male voice has a period of 8.1 ms
(corresponding to a FO of 123 Hz) and the female voice has a period of 3.8 ms
(corresponding to a FO of 263 Hz). C. Enhanced SACF, in which one iteration of
processing has been used to remove sub-octave multiples of the significant peaks.

where h is a windowed section of the cochlear filter response. The intro-
duction of a parameter k allows for a ‘generalised autocorrelation’ [62]. For
conventional autocorrelation k = 2, but smaller values of k are advantageous
because this leads to sharper peaks in the resulting function ([62] suggest a
value of k = 0.67).

The correlogram is an effective means for FO estimation because it detects
the periodicities present in the output of the cochlear filterbank. For example,
consider a voice with a FO of 125 Hz. A channel responding to the fundamental
component of the voice has a period of 8 ms, and hence a peak occurs in the
corresponding autocorrelation function at a lag of 8 ms. Similarly, a channel
responding to the second harmonic (250 Hz) has an autocorrelation peak at 4
ms, but because of the periodic nature of the autocorrelation function, peaks
also occur at 8 ms, 12 ms, 16 ms and so on. In high-frequency regions, cochlear
filters are wider and a number of harmonics interact within the same filter,
causing amplitude modulation (AM). These interacting components ‘beat’
at a rate corresponding to the fundamental period, and also cause a peak in
the autocorrelation function at the corresponding lag. Hence, for a periodic
sound a ‘spine’ occurs in the correlogram which is centered at the fundamental
period (8 ms in our example); for an example, see Fig. 16.3A. A convenient
means of emphasizing this FO-related structure is to sum the channels of the
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correlogram over frequency,
M
S(t,m) =Y Alt, f,7). (16.4)
f=1

The resulting summary autocorrelation function (SACF) S(t,T) exhibits a
peak at the period of each FO, and can be used as the basis for multipitch
analysis (Fig. 16.3B). For example, Tolonen and Karjalainen [62] describe a
computationally efficient multipitch model based on the SACF. Computa-
tional savings are made by splitting the input signal into two bands (below
and above 1 kHz) rather than performing a multi-band frequency analysis.
A generalized autocorrelation is then computed for the low-frequency band
and for the envelope of the high frequency band, and added to give an SACF.
Further processing is then performed to enhance the representation of differ-
ent FOs. Specifically, the SACF is half-wave rectified and then expanded in
time by a factor of two, subtracted from the original SACF and half-wave
rectified again. This removes peaks that occur at sub-octave multiples, and
also removes the high-amplitude portion of the SACF close to zero delay
(Fig. 16.3C). The operation may be repeated for time expansions of a factor
of 3, 4, 5 and so on, in order to remove higher-order multiples of significant
pitch peaks. In [32], the authors show how pitch tracks from this system
can be used to separate harmonic sounds (two vowels) by applying a comb-
notch filter, which removes the harmonics of the pitch track to which it is
tuned. Ottaviani and Rocchesso [46] also describe a speech separation sys-
tem based on FO tracking using the enhanced SACF. They resynthesize a
separated speech signal from a highly zero-padded Fourier spectrum, which
is selectively weighted to emphasize harmonics of the detected pitch.

One of the more sophisticated algorithms for tracking the pitch of mul-
tiple speakers is reported by Wu et al. [69]. Their approach consists of four
stages, shown schematically in Fig. 16.4. In the first stage, the digitized in-
put signal is filtered by a bank of gammatone filters, in order to simulate
cochlear filtering. Further stages of processing treat low-frequency channels
(which have a center frequency below 800 Hz) and high-frequency channels
differently. In low-frequency channels the correlogram is computed directly
from the filter outputs, whereas in high-frequency channels the envelope in
each channel is autocorrelated.

In the second stage of the system, ‘clean’ correlogram channels (i.e., those
that are likely to contain reliable information about the periodicity of a sin-
gle sound source, and are relatively uncorrupted by noise) are identified. The
third stage of the system estimates the pitch periods present in each indi-
vidual time frame using a statistical approach. Specifically, the difference
between the true pitch period and the time lag of the closest correlogram
peaks in each channel is employed as a means of quantifying the support for
a particular pitch period hypothesis.
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Fig. 16.4. Schematic diagram of the Wu, Wang, and Brown [69] system for tracking
multiple fundamental frequencies in an acoustic mixture.

Periodicity information is then integrated across channels in order to de-
rive the conditional probability of observing a set of pitch peaks P(P|x)
given a pitch state x. Since zero, one or two pitches may be present, the
pitch state is regarded as a pair z = (y,Y) where y € RY is the pitch pe-
riod and Y € {0,1,2} is the space index. Channel conditional probabilities
are combined into frame conditional probabilities by assuming the mutual
independence of the responses in all channels.

In the final stage of Wu et al.’s system, pitch periods are tracked across
time using a hidden Markov model (HMM). Hidden nodes in the HMM rep-
resent the possible pitch states in each time frame, and observation nodes
represent the set of selected peaks in each time frame. Transition probabili-
ties between time frames are estimated from a small corpus of speech signals.
Transition probabilities between state spaces of zero, one and two pitches
are also estimated from the same corpus of speech signals, with the assump-
tion that a single speaker is present for half of the time and two speakers
are present for the remaining time. The optimal state sequence is found by
the Viterbi algorithm, and may consist of zero, one or two pitch states. Fig-
ure 16.5 shows an example of the FO tracks derived by Wu et al.’s system for
a mixture of two speakers.

Wu et al.’s system suffers from a number of limitations. In principle, the
algorithm could be modified to track more than two simultaneous speakers by
considering more than three pitch spaces, but it remains to be seen how well
such an approach would work in practice. Although it is robust to the presence
of an interfering speaker (and can track its F0), Khurshid and Denham [35]
find that Wu et al.’s system is less robust in the presence of background noise.
They also find that although Wu’s algorithm tracks the FO of the dominant
speaker in a mixture very accurately, its estimate of the nondominant FO can
be poor.

Khurshid and Denham suggest an alternative approach that rectifies some
of these problems, which is a based on the analysis of the output of a bank of
damped harmonic oscillators, which model the frequency analysis performed
by the cochlea. Analysis of the fine time structure (consecutive zero cross-
ings and amplitude peaks) of each oscillator output is performed in order to
determine the driving frequency. An algorithm is then used to hypothesize
the FO (or multiple FOs) that are present in order to explain the observed
frequency components. This is achieved by identifying salient spectral peaks
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Fig. 16.5. Pitch tracks for the mixture of two speech signals shown in Fig. 16.1,
obtained using the algorithm of Wu, Wang, and Brown [69]. Solid lines show the
ground-truth pitch tracks for each speaker, open circles show the estimated pitch
periods at each time frame.

(similar to the place groups described by Cooke [13]) and then assessing the
support for every subharmonic of the peak that falls within the normal range
of voice pitch. Such a frequency ‘remapping’ leads to noise robustness, and
may be regarded as a simple model of simultaneous masking in the auditory
nerve. Simple continuity constraints are used to track two FOs over time.
Khurshid and Denham performed a comparison and reported that, although
Wu et al.’s system is able to more accurately track the dominant pitch, their
own system tracks the nondominant FO more reliably and is also more robust
to noise.

The correlogram, as described in (16.2), is based on an autocorrelation
operation such that a large response occurs at the period of a FO. An alter-
native approach, advocated by de Cheveigné [15], is to perform cancellation
rather than autocorrelation. In his approach, a time-domain comb filter of
the form

q(t) =4d(t) —o6(t —71) (16.5)

is applied to the acoustic signal (or to the output from each channel of a
cochlear filter bank), where §(¢) is the delta function, ¢ is time and 7 is the
lag parameter. The filter has zeros at frequencies f = 1/7 and all its multi-
ples, and hence its response to a signal with a period of 7 is zero. FO analysis
is therefore performed by applying the filter for different values of 7 and
searching for the minimum response. de Cheveigné and Kawahara [16] fur-
ther suggest that this approach can be extended to the problem of multipitch
estimation by cascading N filters, each of which is tuned to cancel a partic-
ular period. Hence, to perform multipitch estimation it is simply necessary
to search the N-dimensional space of lag parameters until the minimum is
found. The authors evaluated their algorithm on a corpus consisting of mix-
tures of two or three harmonic complexes, with impressive results. However,
their joint cancellation technique has certain limitations. It is computation-
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ally expensive (although amenable to parallelism), and cancellation of one
source may partially cancel another source if their periods are related by an
integer multiple.

As noted previously, the correlogram deals with two cues to the FO of a
sound in a unified way; resolved harmonics in low-frequency regions and AM
(‘beating’) in high-frequency regions. However, this unified treatment leads
to poor segregation in the high-frequency range because AM alters autocor-
relation structure and makes it difficult to group high-frequency components
[29]. Some CASA systems process resolved and unresolved harmonic regions
using different mechanisms (e.g., [11]). Hu and Wang [29] describe a recent
system in which AM is extracted in high frequency regions and used to seg-
regate unresolved harmonics, whereas conventional techniques are used to
segregate resolved harmonics. AM detection is based on an ‘envelope correlo-
gram’, which is of the form given in (16.2) except that the autocorrelation is
performed on the envelope of each filter response rather than the fine struc-
ture. Correlations between adjacent channels are then computed in order to
identify significant acoustic components. An initial segmentation based on F0
is then performed, which is similar to that described by [66]. Further process-
ing is used to refine the F0 track for the dominant source, based on temporal
smoothness and a periodicity constraint. Time-frequency units are then la-
belled according to whether they are dominated by the target speech signal or
not, using heuristics that are based on the conventional correlogram in low-
frequency regions and the envelope correlogram in high frequency regions.
Finally, segments are generated based on cross-channel envelope correlation
and temporal continuity, and these are grouped with low-frequency segments
that share a common F0. The authors show that their system performs con-
sistently better than that of Wang and Brown [66] across 10 noise conditions.
In all but one noise condition it also outperforms a conventional spectral
subtraction scheme for speech enhancement.

Explicit representations of AM have been proposed as an alternative to
the correlogram. For instance, Berthommier and Meyer [2] describe a system
for separating sounds on the basis of their FOs using the modulation spectrum
(see also [34]). Each channel of a gammatone filterbank is half-wave rectified
and bandpass filtered to remove the DC component and frequencies above
the pitch range. The magnitude of a DFT is then computed to give a two-
dimensional representation of tonotopic frequency against AM frequency. A
harmonic sieve is then applied to perform F0 analysis and grouping according
to common F0. In a subsequent paper [3], the authors extend their system
by introducing two further stages of processing. The first of these addresses
a problem caused by the distributive nature of the DFT, namely that evi-
dence for a particular FO is distributed across various harmonic frequencies
along the modulation frequency axis of the map. The author’s solution is
to compute a pooled map, in which evidence for each F0 is integrated. The
resulting representation is better suited to grouping and pitch analysis, since
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a single peak occurs in the pooled map for each period source. The second
stage of processing is an identification map, which estimates the correlation
between stored spectral prototypes and each spectral slice along the modu-
lation frequency axis. This allows classification of vowel spectra without the
need for an explicit FO detection stage. It is an open question whether a
similar mechanism could be used to segregate continuous speech, rather than
isolated vowels; the computational cost may be prohibitive.

Other principles of auditory organization, such as spectral smoothness,
may also be used to improve FO detection and tracking. Klapuri [33] describes
a multipitch estimation technique which exploits a spectral smoothness prin-
ciple. His system uses an iterative approach to multipitch estimation, in which
a predominant F0 is found, and then the corresponding harmonic spectrum
is estimated and linearly subtracted from the mixture. This process is then
repeated for the residual. However, this approach has a tendency to make
errors when constituent FOs in the mixture are harmonically related, because
cancellation of one FO may inadvertently remove a frequency component that
is shared by another source. The solution proposed in [33] is to smooth the
spectrum before subtraction; partials containing energy from more than one
source extend above the smoothed envelope, so that they are preserved in
the residual when the smoothed envelope is subtracted from the mixture.
Klapuri shows that application of the spectral smoothness constraint reduces
the error rate for pitch analysis of four-pitch mixtures by about half.

Finally, although most monaural CASA systems have used F0-based cues,
there have been some attempts to exploit other cues such as frequency mod-
ulation [40] and common onset [18], [6], [7], [28]. For example, Denbigh and
Zhao [18] describe a system which selects the harmonics for a target voice in
a manner that is similar to the approach described by Parsons [49]. Addition-
ally, their system compares adjacent spectra in order to determine whether
the onset of a new voice has occurred. This allows their pitch tracking al-
gorithm to extract weak voiced sounds, and increases the accuracy of pitch
tracking when two voices are active. Common onset is currently a somewhat
under-utilized cue in CASA systems, although a recent study has been de-
scribed in which it is employed to segregate stop consonants [28].

16.3.3 Binaural Approaches

The principal cues that human listeners use to determine the location of a
sound source are those that involve a comparison between the two ears. A
sound source located to one side of the head generates sound pressure waves
that arrive at the nearer ear slightly before the farther ear; hence there is
an interaural time difference (ITD) which provides a cue to source location.
Similarly, the sound intensity will be greater in the nearer ear, causing an
interaural intensity difference (IID). The IID is usually expressed in decibels,
in which case it is termed the interaural level difference (ILD). The rela-
tive efficacy of I'TD and ILD cues depends on frequency. At low frequencies,
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sounds diffract around the head and hence there is no appreciable ILD below
about 500 Hz. At high frequencies, ITD does not provide a reliable cue for
the location of tonal sounds because of phase ambiguities. However, the en-
velope of complex sounds can be compared at the two ears in high frequency
regions; this cue is referred to as the interaural envelope difference (IED).

In addition to binaural comparisons, direction-dependent filtering by the
head, torso and pinnae provide cues to source location. These provide some
ability to localize sounds monaurally, and are particularly important for dis-
crimination of elevation and for resolving front-back confusions. Such cues
are seldom used explicitly by CASA systems and are not considered here;
however, their use in CASA systems remains an interesting area for future
research. Preliminary work on a sound localization system that exploits pinna
cues is reported in [25].

Computational systems for binaural signal separation have been strongly
influenced by two key ideas in the psychophysical literature. The first is
Durlach’s [20] equalization-cancellation (EC) model of binaural noise suppres-
sion, which is a two-stage scheme. In the first stage, equalization is applied to
make the noise components identical in each of two binaural channels. This
is followed by a cancellation stage, in which the noise is removed by subtract-
ing one channel from the other. Many two-microphone approaches to noise
cancellation may be regarded as variants of the EC scheme (e.g., [61], [38],
[56)).

The second key idea motivating binaural signal separation systems is the
cross-correlation model of ITD processing proposed by Jeffress [30]. In this
scheme, neural firing patterns arising from the same critical band of each ear
travel along a dual delay-line system, and coincide at a delay corresponding
to the ITD. Computationally, the Jeffress model may be expressed as a cross-
correlation of the form

N—-1

c(t, f,7)= Z hp(t —n, f)hr(t —n—7, flw(n), (16.6)
n=0

where hp (¢, f) and hr(t, f) represent the simulated auditory nerve response
in the left and right ears respectively for time frame ¢ and frequency channel
f, and w(n) is a window of size N samples. The resulting cross-correlogram
C(t, f,7) is closely related to the correlogram given in (16.2); both are three-
dimensional representations in which frequency, time and lag are represented
on orthogonal axes. Figure 16.6A shows a cross-correlogram for a mixture
of a male and female speaker, originating from azimuths of —15 degrees and
+10 degrees respectively. As with the correlogram, it is convenient to sum
the cross-correlation functions in each frequency band to give a summary
cross-correlation function (SCCF), in which large peaks occur at the ITD
of each source (Fig. 16.6B). The figure also shows the ILD for this mixture,
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Fig. 16.6. A. Cross-correlogram for time frame 100 of the mixture of speakers
shown in Fig. 16.1, for which the male speaker has been spatialised at an azimuth
of -15 degrees and the female speaker at an azimuth of +10 degrees. B. Summary
cross-correlogram. C. Interaural level difference (ILD) in each frequency channel.

computed using

Shso ho(t+n, f)? 1D

Note that, as expected, the ILD is negligible in low frequency channels. How-
ever, in the mid-frequency region channels tend to be dominated by the female
speaker and exhibit a large positive ILD. Above 2.5 kHz, the male speaker is
dominant and a substantial negative ILD is observed.

Early attempts to exploit spatial cues in a system for speech segregation
include the work of Lyon [39] and the binaural ‘cocktail party processor’
described by Bodden [4]. Bodden’s system is based on a cross-correlation
mechanism for localizing the target and interfering sources, and uses a time-
variant Wiener filter to enhance the target source. Effectively this filter ap-
plies a window function to the azimuth axis of the cross-correlogram, such
that energy from a speaker at a target azimuth is retained, and the remainder
is cancelled. Bodden reports good performance for mixtures of two or three
speakers in anechoic conditions.

Bodden’s system uses a modification of the Jeffress scheme in which con-
tralateral inhibition is employed to sharpen the cross-correlogation pattern.
Numerous other approaches have been described for improving the accuracy
of location estimates from cross-correlation processing, such as the ‘stencil’
filter proposed by Liu et al. [37]. The SCCF shown in Fig. 16.6B is a direct
way of estimating the ITD of a sound source from the cross-correlogram, but
it assumes that the ITD is independent of frequency. This assumption does

N—-1 2
ILD(t, f) = 10log,, (Z"—O ha(t+n, /) ) .
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not hold if the binaural recordings are obtained from a dummy head, because
diffraction around the head introduces a weak frequency dependence to the
ITD. The ‘stencil” approach described by Liu et al. is a more sophisticated
way of determining source location, which is based on pattern-matching the
peaks in the cross-correlogram. At the I'TD of a sound source, the pattern of
peaks in the cross-correlogram exhibits a structure in which curved traces fan
out from a central vertical line (two such structures are visible in Fig. 16.6A,
which is a cross-correlogram for a two-source mixture). Accordingly, Liu et
al. derive a SCCF by integrating activity in the cross-correlogram over a
template (‘stencil’) for each location, which matches the expected pattern of
peaks. They report enhanced localization of sources in the azimuthal plane
using this method.

A related approach is described by Paloméki et al. [47], who form a ‘skele-
ton’ cross-correlogram by identifying local peaks and replacing each with a
narrower Gaussian. This avoids the problem of very wide peaks, which oc-
cur in low-frequency channels and bias the location estimates in the SCCF
(see Fig. 16.6A). Furthermore, in the process of forming the skeleton cross-
correlogram, peak positions are mapped from ITD to an azimuth axis using
frequency-dependent look-up tables. Again, this overcomes the problems as-
sociated with the frequency dependence of ITD. Paloméki et al.’s system
also includes a mechanism for reducing the effect of echoes on localization
estimates. This consists of a delayed inhibition circuit, which ensures that
location cues at the onset of a sound source have more weight that those
that arrive later. In this respect, it may be regarded as a simple model of
the precedence effect (for a review, see [41]). The authors report that use of
the inhibition mechanism improves the robustness of source localization in
mildly reverberant environments.

Roman et al. [52] describe a binaural speech separation algorithm which is
based on location estimates from skeleton cross-correlograms. They observe
that, within a narrow frequency band, modifying the relative strength of a
target and interfering source leads to systematic changes in the observed I'TD
and ILD. For a given location, the deviation of the observed ITD and ILD
from ideal values can therefore be used to determine the relative strength of
the target and interferer, and in turn this can be used to estimate the ideal
binary mask [see eq. (16.1)]. Specifically, a supervised learning method is used
for different spatial configurations and frequency bands based on an ITD-ILD
feature space. Given an observation z in the ITD-ILD feature space, two hy-
potheses are tested for each channel; whether the target is dominant (H;) and
whether the interferer is dominant (Hs). Based on estimates of the bivariate
densities p(z|Hy) and p(xz|Hs), classification is performed using a maximum
a posteriori (MAP) decision rule, i.e. p(Hy)p(x|H1) > p(Hz2)p(xz|Hz). Roman
et al.’s system includes a resynthesis pathway, in which the target speech
signal is reconstructed only from those time-frequency regions selected in the
binary mask. They report a performance in anechoic environments which is
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very close to that obtained using the ideal binary mask, as determined us-
ing three different evaluation criteria (signal-to-noise ratio (SNR), automatic
speech recognition accuracy and listening tests).

A limitation of binaural systems is that they generally perform well when
two sources are present, but their performance degrades in the presence of
multiple interferers. Liu et al. [38] describe a multi-band mechanism which
allows this limitation to be overcome to some extent. Their binaural cancel-
lation scheme is based on a subtraction of the two input signals. Essentially,
their system generates a nulling pattern for each point on the lag-axis of
the cross-correlogram, such that the null occurs at the direction of the noise
source and unity gain is maintained in the direction of the target sound.
An innovative aspect of their approach is that the null in each frequency
band can be steered independently, so that at each time instant it cancels
the noise source that emits the most energy in that band. This allows their
system to cancel multiple noise sources, provided that their locations are
known; this information is provided by the author’s system for sound local-
ization, discussed above. Liu et al. show that when four talkers are present
in an anechoic environment, their system is able to cancel each of the three
interfering speakers by 3-11 dB whilst causing little degradation to the target
speaker. Similar results were obtained for a six-talker scenario. However, in a
moderately reverberant room the total noise cancellation fell by about 2 dB;
this raises doubts as to whether the system is sufficiently robust for use in
real-world acoustic environments.

A number of workers have developed systems that combine binaural pro-
cessing with other grouping cues (usually those related to periodicity). An
early example is the system proposed by Kollmeier and Koch [34]. They de-
scribe a speech enhancement algorithm which works in the domain of the
modulation spectrum, i.e. a two-dimensional representation of AM frequency
vs. center frequency. Energy from each sound source tends to form a clus-
ter in the modulation spectrum, allowing sources with different modulation
characteristics to be separated from one another. Binaural information (ITD
and ILD cues) is used to suppress clusters that do not arise from a desired
spatial location.

Related speech separation systems which use FO and binaural cues are
described by Denbigh and colleagues [18], [56]. In the latter approach, the
cross-correlation between two microphones is continuously monitored in or-
der to determine the azimuth of the most intense sound in each time frame.
If the most intense sound lies close to the median plane, it is assumed to be
speech and an initial estimate is made of the speech spectrum. An estimate of
the total interference (noise and reverberation) is also obtained by cancelling
the dominant target signal. Subsequent processing stages refine the estimate
of the speech spectrum, by subtracting energy from it that is likely to be
contributed by the interference. Finally, FO analysis is performed on the ex-
tracted target signal, and cross-referenced against FO tracks from the left and
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right microphones. A continuity constraint is then applied to ensure that the
FO of the estimated target speech varies smoothly. The target speech signal
is reconstructed using the overlap-add technique and passed to an automatic
speech recogniser. The authors report a large gain in ASR accuracy for an
isolated word recognition task in the presence of a speech masker and mild
reverberation; accuracy increased from 30% to 95% after processing by the
system, for a SNR of 12 dB.

Okuno et al. [45] also describe a system which combines binaural and
FO cues, and they assess its ability to segregate mixtures of two spatially
separated speakers. Harmonic fragments are found in each of the left and right
input channels, and then a direction is computed for pairs of fragments using
ITD and ILD cues. The authors evaluate their system on a speech recognition
task, but focus on the ability of the system to recognize both utterances
rather than a single target utterance. They find that ASR error rates are
substantially reduced by using their system, compared to performance on
the unprocessed speech mixtures. They also report that binaural cues play
an important role in this result; the ASR accuracy of a system which only
used harmonic fragments was about half that of a system which used both
harmonic and binaural cues.

16.3.4 Frameworks for Cue Integration

So far, we have focused on the cues that are pertinent to CASA, but a key
issue remains — how can cues be combined in order to find organization within
an acoustic signal, and hence retrieve a description of a target sound source
from a mixture?

The earliest approaches to CASA were motivated by classical artificial
intelligence techniques, in that they emphasized representation and search.
For example, Cooke’s system [11] employs a synchrony strand representa-
tion, in which the acoustic scene is encoded as a collection of symbols that
extend through time and frequency. A search algorithm is employed to iden-
tify groups of strands that are likely to have arisen from the same source. This
is mainly achieved on the basis of harmonicity; search proceeds from a ‘seed’
strand, and other strands that are harmonically related to the seed strand are
added to its group. In a second grouping stage a pitch contour is derived for
each group, using the frequency of resolved harmonics in low-frequency re-
gions, and using AM frequency in high-frequency regions. Groups that share
a common pitch contour are then combined. In addition, a subsumption stage
removes groups whose strands are contained in a larger grouping. Brown [6],
[7] describes a similar approach, but substantially expands the palette of
acoustic representations by including time-frequency ‘maps’ of onset activity,
offset activity, frequency transition and periodicity. These are combined to
form a symbolic representation of the acoustic scene, which is searched in a
similar manner to Cooke’s.
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Fig. 16.7. Flow of processing in the prediction-driven architecture of Ellis [21].
Redrawn from [23].

Neither of the systems described above constitute a generic architecture
for cue integration. Rather, Cooke’s system combines groups of strands using
a single derived property (pitch contour) and Brown’s system performs cue
integration during the formation of time-frequency objects. Hence, it is not
clear how other cues (such as those relating to spatial location) could be in-
cluded in these systems. Also, both are essentially data-driven architectures,
as shown in Fig. 16.2. In general, solution of the CASA problem requires
the application of top-down knowledge as well as bottom-up processing. Fi-
nally, both systems run in ‘batch’ mode; they process the acoustic signal in
its entirety in order to derive an intermediate representation, which is then
searched. Clearly, an architecture that allows real-time processing is neces-
sary for most applications (such as hearing prostheses and automatic speech
recognition).

A more generic architecture for cue integration is the blackboard, as ad-
vocated by Cooke et al. [12] and Godsmark and Brown [24]. In this scheme,
grouping principles such as harmonicity are cast as knowledge sources (‘ex-
perts’) that communicate through a globally accessible data structure (the
blackboard). Experts indicate when they are able to perform an action, and
place their results back on the blackboard. For example, a harmonicity expert
might be initiated because harmonically related partials are available on the
blackboard, and would compute a pitch contour from them. In turn, another
expert might combine groups that have the same pitch contour. Centralized
control is provided by a scheduler, which determines the order in which ex-
perts perform their actions. Blackboard architectures are well suited to CASA
because they were developed to deal with problems that have a large solution
space, involve noisy and unreliable data, and require many semi-independent
sources of knowledge to form a solution.

Godsmark and Brown’s system [24] is specialized for musical signals,
rather than speech, but is interesting because it suggests a mechanism for
resolving competition between grouping principles. Such competition might
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arise if, for example, two acoustic components were sufficiently distant in
frequency to be regarded as separate, but sufficiently close in time to be re-
garded as grouped. They adopt a ‘wait and see’ approach to this problem,;
many possible organizations are maintained within a sliding time window.
Within the sliding window, alternate organizations of synchrony strands are
scored by grouping experts. An organization is only imposed on a section of
the acoustic signal after the window has passed over it, thus allowing con-
textual information to influence the organization of strands into groups. The
authors also show how top-down and bottom-up processing can be combined
in a multi-layered blackboard architecture. For example, predictions about
anticipated events, based on a previously observed temporal pattern, can be
used to influence the formation and grouping of synchrony strands.

A similar emphasis on the role of top-down processing is found in the
study by Ellis [21], who describes a prediction-driven architecture for CASA.
By way of contrast with the Cooke and Brown systems, in which the flow
of information is linear and data-driven, Ellis’s approach involves a feed-
back loop so that predictions derived from a ‘world model’ can be compared
against the input (see Fig. 16.7). The front-end processing of Ellis’ system
forms two representations, a time-frequency energy envelope and correlogram.
These representations are reconciled with predictions based on world-model
hypotheses by a comparison block. The world model itself consists of a hi-
erarchy of increasingly specific sound source descriptions, the lowest level of
which is couched in terms of three sound elements; wefts (which represent
pitched sounds), noise clouds and transient clicks. A reconciliation engine,
which is based on a blackboard system, updates the world model according
to differences detected between the observed and predicted signals.

Okuno et al. [44] describe a residue-driven architecture for CASA which
is closely related to Ellis’ approach, in that it compares the acoustic input
against predictions from a world model. However, Ellis’ system makes this
comparison at the level of intermediate acoustic representations (such as the
smoothed spectral envelope). In contrast, the residue-driven architecture re-
constructs a time-domain waveform for the modelled signal components, and
subtracts this from the acoustic input to leave a residue which is then fur-
ther analyzed. Okuno et al. implement the residue-driven approach within
a multi-agent system, in which three kinds of agent (event-detectors, tracer-
generators and tracers) initiate and track harmonic fragments. The multi-
agent framework is similar in concept to the blackboard — ‘experts’ and
‘agents’ are roughly equivalent — except that agents communicate directly
rather than through a global data structure.

Some recent approaches to cue integration in CASA have been motivated
by the development of powerful algorithms in the machine learning commu-
nity, rather than classical artificial intelligence techniques. For example, Nix
et al. [43] describe a statistical approach to CASA which is based on a state-
space approach. Specifically, they consider the problem of separating three
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speakers using two microphones. The problem is formulated as a Markov
state-space of the form

xp = £ (Xp—1, VE-1), (16.8)
Zp = gk(xk; Ilk). (169)

Here, xj. represents the azimuth, elevation and short-time magnitude spec-
trum of each speaker at time k (which are unknown), and zy, is the power spec-
tral density observed at the two microphones. The function fj(x_1,Vi_1)
corresponds to the probability density function p(xj|xx—1), i.e. the proba-
bility that one pair of directions and magnitude spectra at time k succeed
another pair of directions and magnitude spectra at time k — 1. The function
gr(xk, ng) corresponds to p(zy|xy), which is the probability that an obser-
vation zj is made when the state of the system is x;. The random variables
vj, and ny are termed the ‘process noise’ and ‘observation noise’ respectively,
and have known statistics. The task is to estimate xj from the values of
z;, 1 < ¢ < k, in an optimal manner. This estimation task is performed
by a sequential Monte Carlo method (also known as the ‘particle filter’ or
‘condensation’ algorithm).

The performance of the system reported in [43] is somewhat disappointing;
although the system reliably tracks the direction and short-time magnitude
spectrum of a single source, it is unable to estimate the spectra of two concur-
rent voices with any accuracy. Additionally, the computational requirement
of the algorithm is high and training is time consuming; the authors report
that it took several weeks to estimate p(xy|xi—_1) from a large database of
recorded speech.

Finally, we note that the problem of cue integration in CASA is closely
related to the binding problem. This term refers to the fact that information
about a single sensory event is distributed across many areas of the brain
— how is this information bound together to form a coherent whole? One
possibility is that the grouping of neural responses is performed by oscilla-
tory correlation. In this scheme, neurons that represent features of the same
sensory event have synchronized responses, and are desynchronized from neu-
rons that represent different events. Wang and colleagues [64], [66] have used
the principle of oscillatory correlation to build a neurobiologically-motivated
architecture for CASA. In the first stage of their scheme, the correlogram is
employed to detect the periodicities present in local time-frequency regions.
Subsequently, processing is performed by a two-layer oscillator network which
mirrors the two conceptual stages of ASA. In the first (segmentation) layer,
periodicity information is used to derive segments, each of which encodes a
significant feature in the time-frequency plane. Oscillators belonging to the
same segment are synchronized by local connections. In the second (group-
ing) layer, links are formed between segments that have compatible period-
icity information along their length (i.e., those that are likely to belong to
the same F0). As a result, groups of segments form in the second layer which
correspond to sources that have been separated by their FO.
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Frameworks for CASA based on neural oscillators have two attractive fea-
tures. Firstly, they are based on a parallel and distributed architecture which
is suitable for implementation in hardware. Secondly, because the oscillator in
each time-frequency region may be regarded as ‘on’ or ‘off” at any particular
time instant, the output of an oscillator array may be interpreted as a binary
time-frequency mask. This makes them eminently suitable as a front-end to
ASR systems that employ missing feature techniques (see below).

16.4 Integrating CASA with Speech Recognition

Conventional ASR systems are constructed on the assumption that the input
to them will be speech. In practice this is usually not the case, because
speech is uttered in acoustic environments in which other sound sources may
be present. As a result, the performance of conventional ASR system declines
sharply in the presence of noise.

ASR is a pattern recognition problem in which observed acoustic fea-
tures X must be assigned to some class of speech sound. This is achieved
by selecting the word sequence W which maximizes the posterior probability
P(W|X), which can be expressed using Bayes theorem as

W = argmax POXIW)P(V). 610
w P(X)

where P(W) is the language model and the likelihood P(X|WW) is the acoustic
model. One approach to improving the noise-robustness of ASR is to enhance
the speech in the acoustic mixture, so that the observed features resemble the
acoustic model as closely as possible. This provides the most straightforward
approach to integrating CASA and ASR; the CASA system segregates the
speech from the acoustic mixture, and then a ‘clean’ signal is resynthesized
and passed to the recognizer. A number of CASA systems have included such
a resynthesis pathway by inverting a time-frequency representation (e.g., see
[67], [11], [6]). Other representations can also be inverted. For example, Slaney
et al. [58] describe an approach for inverting the correlogram, which allows
sounds to be segregated according to their FOs and then reconstructed.

An advantage of the resynthesis approach is that it allows the use of un-
modified ASR systems; this is preferable, because the front-end processing
used by CASA systems does not usually provide acoustic features that are
suitable for training a conventional ASR system. However, the approach has
met with limited success. For example, the system described by Weintraub
paired CASA with a speaker-independent continuous-digit-recognition sys-
tem, and attempted to recognize utterances simultaneously spoken by a male
and female speaker. A modest improvement in recognition accuracy was ob-
tained for the (dominant) male voice, but performance for the female speaker
actually fell as a result of CASA processing.
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A further criticism of the resynthesis approach is that it embodies a very
weak link between the CASA and ASR systems; given the important role of
schema-driven grouping, one would expect that a tighter integration of CASA
and speech models would be beneficial. Ellis [23] has addressed this issue by
integrating a speech recognizer into his prediction-driven CASA architecture.
When presented with an acoustic mixture, his system attempts to interpret it
as speech. Following decoding by the ASR system, an estimate of the speech
component of the mixture is used to determine the characteristics of the re-
maining (nonspeech) signal features. In turn, the estimate of the nonspeech
components can be used to re-estimate the speech. Hence, an iterative cy-
cle of estimation and re-estimation develops, which finally converges on an
explanation of the acoustic mixture in terms of the speech and nonspeech
components present.

Techniques such as correlogram inversion [58] attempt to reconstruct ar-
eas of the speech spectrum that have been obliterated by an interfering noise.
An alternative approach is to identify those time-frequency regions that are
missing or considered unreliable, and treat them differently during the de-
coding stage of ASR. Specifically, Cooke et al. [13] have proposed a missing
feature approach to ASR which links closely with CASA. In their approach,
the observed acoustic features X are partitioned into two sets, X, and X,
which correspond to reliable and unreliable features respectively. Using a
modified continuous-density HMM (CDHMM), the authors show that it is
possible to impute the values of the missing features X,. Alternatively, the
maximum a posteriori estimate of the speech class can be found as given in
(16.10), by replacing the likelihood P(X|W) with the marginal distribution
P(X,|W). Furthermore, a ‘bounded marginalization’ approach may be used
in which the values of the missing features are constrained to lie within a
certain range. For example, the value of a spectral feature must lie between
zero and the observed spectral energy.

In practice, a missing feature recognizer is provided with a set of acoustic
features and a time-frequency mask, which is typically obtained from a CASA
system. The mask may be binary (in which case each time-frequency region
is regarded as either reliable or unreliable) or real-valued. In the latter case,
each mask value may be interpreted as the probability that the corresponding
time-frequency region is reliable.

A number of workers have described ASR systems that combine a missing
feature speech recognizer with CASA-based mask estimation. For example,
Roman et al. [52] employ binaural cues to estimate the ideal binary mask
for a target speaker which is spatially separated from an interfering sound
source. A large improvement in recognition accuracy was obtained compared
to a conventional ASR system, for a connected digit recognition task. Similar
results were obtained by Paloméki et al. [47], also using a binaural model and
missing feature ASR system. Their system computes a binary mask by ex-
amining the cross-correlation functions in each time-frequency region. Their
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system has been evaluated in the presence of moderate reverberation and
obtains substantial ASR improvements.

Neural oscillator frameworks for CASA represent an ideal front-end for
missing feature ASR systems, because the activity of oscillators arranged in
a time-frequency grid can be directly interpreted as a mask. Brown et al. [8]
describe an oscillator-based CASA system which segregates speech from inter-
fering noise using FO information (derived from a correlogram). Additionally,
unpitched interference is removed by noise estimation and cancellation; os-
cillators are deactivated (and hence give rise to a mask value of zero) if they
correspond to acoustic components that lie below the noise floor. The authors
report good performance on a digit recognition task at low SNRs, but note
that unvoiced regions of speech are not represented in the oscillator array; as
a result, the performance of their system falls below that of a conventional
ASR system at high SNRs.

We also note that mask estimation can be achieved in a purely top-down
manner. Roweis [54] describes a technique for estimating binary masks using
an unsupervised learning method. Specifically, speaker-dependent HMMs are
trained on the speech of isolated talkers, and then combined into a factorial
HMM (FHMM). The latter consists of two Markov chains which evolve inde-
pendently. Given an mixture of two utterances, the underlying state sequence
in the FHMM is inferred and the output predictions for each Markov chain
are computed. A binary mask is then determined by comparing the relative
values of these output predictions.

The missing feature approach achieves a tighter integration between
CASA and ASR, but still embodies a unidirectional flow of information from
the front-end to the recognizer. However, Barker et al. [1] report a further de-
velopment of the missing feature technique which accommodates data-driven
and schema-driven processing within a common framework; the so-called mul-
tisource decoder. In this approach, it is assumed that the observed features
Y represent a mixture of speech and interfering sound sources. The goal is
therefore to find the word sequence W and segregation mask S which jointly
maximize the posterior probability,

W, S = argmax P(W, S|Y).

s (16.11)

Barker et al. show that P(W,S|Y) can be written in terms of the speech
features X (which are now considered to be unobserved) by integrating over
their possible values, giving

P(X]5,Y)

pav.siy) = pov) ([ peim) 25

dX) P(S|Y). (16.12)
As before, P(W) and P(X|W) in (16.12) represent the language model and
acoustic model respectively. However, two new terms are introduced. P(S|Y)
is a segregation model, which describes the probability of a particular mask
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S given the observed features Y, but independent of the word hypothesis
W. Such information can be obtained from a data-driven CASA system. The
remaining term P(X|S,Y)/P(X) is a likelihood weighting factor. Most im-
portantly, the maximization in (16.11) occurs over both W and S so that both
schema-driven and data-driven information are incorporated in the search.

Barker et al. derive an efficient search technique for evaluating (16.12)
within a CDHMM system, and test the decoder on a noise-corrupted con-
nected digit task. Segregation masks were obtained using a simple spectral
subtraction approach. A reduction in word error rate of about 25% was ob-
tained, relative to a conventional ASR system. The authors predict that fur-
ther performance gains can be achieved by using CASA processing to estimate
the masks.

Yet another way of integrating CASA and speech recognition is to use
speech schemas triggered by recognition to restore speech which has been
masked by noise. Specifically, Srinivasan and Wang propose a schema-based
model for phonemic restoration [60]. Their model estimates reliable time-
frequency regions and feeds them to a missing feature recognizer. Successful
recognition activates a word template, which is then dynamically time warped
to the noisy word so as to restore the speech frames corresponding to the noisy
portion of the word. Unlike earlier data-driven efforts, their model can restore
both voiced and unvoiced phonemes with a high degree of naturalness.

16.5 CASA Compared to ICA

CASA and ICA differ somewhat in their approaches to speech separation;
here, we consider some of the differences and also comment on the possibility
of harmonizing the two approaches.

Broadly, CASA and ICA differ in a number of respects. For example,
CASA emphasizes the role of intermediate signal representations such as the
correlogram, whereas ICA usually operates directly on the sampled acoustic
signal. Likewise, CASA algorithms exploit continuity in time and frequency,
whereas ICA does not. The performance profile of ICA also differs substan-
tially from that of human listeners. For instance, ICA typically aims to seg-
regate every source signal from a mixture, whereas human listeners perform
figure/ground segregation. Similarly, CASA systems — which are motivated
by human performance — often aim to separate a target speaker from the
acoustic background rather than completely demix the input (e.g., [66], [40],
8]).

A direct comparison of CASA and ICA was reported by van der Kouwe
et al. [63]. They compared the performance of Wang and Brown’s CASA
system [66] with two schemes for ICA, one of which was the fourth-order
JADE method [9]. The algorithms were evaluated on Cooke’s [11] corpus of
speech and noise mixtures, and performance was expressed in terms of the
gain in SNR obtained. It was found that the CASA and ICA algorithms
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performed well under very different conditions. In general, CASA techniques
require that the acoustic mixture exhibits well-defined regions in the time-
frequency plane which correspond to one or more sound sources. Hence, the
performance of the CASA system was best in conditions in which the inter-
ferer was tonal or locally narrowband. The JADE algorithm did not perform
as well in these conditions, presumably because the narrowband interferers
yielded poor higher-order statistics. On the other hand, the CASA system
performed poorly in conditions where there was substantial spectral overlap
between the speech and interferer. Again the situation for JADE was the
opposite; it performed particularly well with broadband interferers (such as
speech and random noise), which contain rich higher order joint statistics.

It should be noted that comparison of CASA and ICA is frustrated by
the lack of a suitable corpus. The speech and noise mixtures employed by van
der Kouwe et al. were not ideal, because the mixing process was constant
and linear, the mixing matrix was far from singular, there were two mix-
tures and two sources, and source signals were perfectly temporally aligned
in both mixtures. Such conditions meet all of the requirements for ICA (ex-
cept for statistical independence of the sources), but are not representative
of mixtures recorded in real acoustic environments. On the other hand, the
corpus was designed to present a challenging test for CASA systems [11],
which do not have such requirements. Clearly, further comparison of CASA
and ICA techniques would be facilitated by the availability of a corpus that
was designed for evaluating both approaches.

Although CASA and ICA differ in their approaches, there are some sim-
ilarities between them. For example, de Cheveigné [14] notes the similarity
between frequency-domain ICA and equalization-cancellation models of bin-
aural signal detection. Also, there are possibilities for combining the two
approaches [59]. Yilmaz and Rickard [71] describe an approach for separat-
ing speech mixtures via the blind estimation of time-frequency masks, which
is closely related to the system of Roman et al. [52]. Such an approach could
be integrated with CASA systems that use a similar time-frequency repre-
sentation (e.g., [7], [66], [29]). Another example of the combination of ICA
and CASA technique is provided by Rutkowski et al. [55], who describe a sys-
tem in which ICA is applied to each frequency channel of a correlogram. The
extracted signals in each channel that have a periodic structure are used to re-
construct a time-domain waveform using correlogram inversion [58], whereas
the remaining noisy signals are discarded. The authors report good perfor-
mance for the separation of two sources recorded in a reverberant room, which
exceeds the performance expected using CASA or ICA alone.

16.6 Challenges for CASA

In this penultimate section, we briefly review some of the challenges that
remain for CASA, and make suggestions for further work.
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Evaluation is an important issue for CASA that requires further thought.
Research in ASR has undoubtedly benefitted from the adoption of standard
metrics and evaluation tasks for comparing performance, such as those in-
troduced by the US National Institute of Standards and Technology (NIST).
The situation in CASA is very different; workers rarely compare their work
on the same corpus and use a variety of performance metrics. The latter
include comparisons of intermediate auditory representations [11], various
metrics related to SNR [7], [66] and ASR performance using conventional or
‘missing feature’ speech recognizers [67], [52], [47]. Ellis [22] argues that the
CASA research community should standardize on an evaluation domain that
is relevant to a real-world problem (such as acoustic analysis of multi-party
meetings), and that the performance of CASA systems should be judged
against human performance on the same task.

On a related point, CASA is informed and motivated by the psychophys-
ical literature on ASA (and to a lesser extent, the physiological literature).
However, if CASA systems are ‘models’ of human function in a true sense,
then they should be able to generate hypotheses that can be tested by further
psychophysical experimentation. In fact, there is currently little evidence of
such synergy occurring. A notable exception is the work of Cooke [10], who
has proposed a ‘glimpsing’ model of human speech perception based on in-
sights gained from his missing feature approach to ASR.

Most work in CASA assumes that sound sources remain in fixed positions
for the duration of an input signal. This is not representative of real-world
environments, and dealing with moving sound sources remains a challenging
research issue. Early work on this problem is reported by Roman and Wang
[61], who describe a binaural model based on the same principles as the
multi-pitch tracking algorithm of Wu et al. [69]. Following auditory filtering
and cross-correlation, an HMM is used to form continuous location tracks
and estimate the number of sound sources present. Their approach performs
well; for example, it is able to simultaneously track two sound sources whose
trajectories cross in space.

Another interesting area for further study is the combination of CASA
algorithms with established signal processing techniques. For example, Drake
et al. [19] describes a two-stage algorithm for CASA-enhanced beamforming
(CASA-EB). In the first stage of her system, the output from each channel
of an auditory model is processed by a beamformer and mapped to a three
dimensional space with dimensions of frequency, time and arrival angle. In the
second stage, acoustic components are grouped according to FO and estimated
location. Drake et al. demonstrate that in most conditions, the performance
of CASA-EB is superior to that of monaural CASA or beamforming alone.

The role of attention in CASA has largely been overlooked in computa-
tional studies, and merits further work. A model of auditory attention might
allow a single source to be tracked in a changing acoustic environment, or
allow the most salient source to be extracted from a mixture. Preliminary
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work in this regard has been reported by Wrigley and Brown [70]. In their
model, a network of neural oscillators performs stream segregation using a
principle of oscillatory correlation. A weighting is given to specific frequency
regions using a Gaussian-shaped function, which determines the connection
weights between oscillators and an attentional unit. When the activity of the
attentional unit is synchronized with a group of oscillators, the corresponding
acoustic features are held to be in the attentional foreground. The authors
have demonstrated the ability of their model to explain psychophysical find-
ings related to the perception of tonal stimuli, but the model remains to be
tested with complex stimuli such as speech.

Another challenge for CASA is the monaural separation of unvoiced
speech; this issue has received much less attention than the problem of seg-
regating voiced speech using pitch cues. Recently, Hu and Wang [28] have
described a system for separating stop consonants from background interfer-
ence. Stops generally consist of a weak closure and a subsequent burst, which
is usually unvoiced and cannot therefore be separated from interference on
the basis of pitch. Instead, Hu and Wang’s system identifies stops by detect-
ing onsets in the average rate response at the output of each channel of an
auditory filterbank. If a significant onset has occurred, it is classified by a
Bayesian decision rule on the basis of its spectral shape, intensity and decay
time in order to determine whether it corresponds to a stop consonant (as
opposed to another impulsive non-speech sound). The authors evaluate their
algorithm on a task involving the detection of stop consonants mixed with
several types of environmental noise. The system performs respectably when
the SNR is high (20 dB or above) but detection performance falls rapidly at
lower SNRs. However, the number of confusions (interfering signals which are
erroneously identified as stops) remains relatively low, even at 0 dB SNR.

Finally, relatively few workers have evaluated their CASA systems in re-
verberant conditions, and still fewer have included mechanisms that deal
specifically with reverberated input. Exceptions include the binaural model
of Palomaéki et al. [47], which employs a simple model of the ‘precedence effect’
to remove echoes due to room reverberation. Evaluation of sound separation
systems in reverberant conditions has also been undertaken by Kollmeier
and Koch [34], Shamsoddini and Denbigh [56] and Roman and Wang [53].
Dealing with reverberation in single-microphone recordings is a particularly
challenging issue. Recently, Wu and Wang [68] have proposed an approach
to this problem which is based on a two-stage algorithm. In the first stage, a
pitch-based metric is used to estimate the reverberation time; this is based on
the author’s previous multipitch tracking algorithm [69]. In the second stage,
an enhancement method estimates and subtracts the acoustic energy due to
echoes. An novel approach to the problem is also proposed by Palomaki et
al. [48]. They describe a system for recognition of reverberated speech in
which a time-frequency ‘reverberation mask’ is estimated for use with a miss-
ing feature ASR system. Elements that are selected in the mask correspond
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to time-frequency regions that are relatively uncontaminated by reverbera-
tion. Because their system is based on a mask representation, it would be
relatively straightforward to combine it with other CASA algorithms.

16.7 Conclusions

In summary, CASA aims to replicate the perceptual processes by which hu-
man listeners segregate simultaneous sounds. It is a growing research area,
which is attracting the interest of workers in the machine learning community
as well as those in the signal processing and computational modelling com-
munities. Much progress has been made in CASA-based speech separation in
the last few years.

Given the topic of this volume, we conclude with some further comments
on the differences between CASA and ICA. Firstly, we note that speech
segregation need not require the resynthesis of a high-quality speech signal,
as is assumed in most ICA studies. If the goal is robust ASR, then only a time-
frequency mask and its corresponding acoustic features are needed. Secondly,
we have indicated that there are some prospects for marrying the CASA
and ICA approaches. For example, ICA can be used to find the independent
components in each channel of an auditory filterbank, or in mid-level auditory
representations such as the correlogram.

CASA is motivated by an account of auditory perception; indeed, the
term ‘model’ is frequently used to describe CASA systems. We believe that
adherence to the general principles of auditory processing is likely to give rise
to CASA systems that make fewer assumptions than those based on ICA, and
we are hopeful that this will translate into superior performance in real-world
acoustic environments.

Acknowledgments

GJB was supported by EPSRC grant GR/R47400/01. DLW was supported
in part by grants from the AFOSR, AFRL/IF and NSF.

References

1. J. P. Barker, M. P. Cooke, and D. P. W. Ellis, “Decoding speech in the presence
of other sources,” Speech Communication, 2004, in press.

2. F. Berthommier and G. F. Meyer, “Source separation by a functional model of
amplitude demodulation,” in Proc. EUROSPEECH, 1995, vol. 4, pp. 135-138.

3. F. Berthommier and G. F. Meyer, “Improving amplitude modulation maps for
F0-dependent segregation of harmonic sounds,” in Proc. EUROSPEECH, 1997,
vol. 5, pp. 2483-2486.

4. M. Bodden, “Modelling human sound-source localization and the cocktail party
effect,” Acta Acustica, vol. 1, pp. 43-55, 1993.



S Ot

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

16 Computational Auditory Scene Analysis 399

A. S. Bregman, Auditory Scene Analysis. MIT Press, Cambridge MA, 1990.
G. J. Brown, Computational Auditory Scene Analysis: A Representational Ap-
proach. Ph.D. Thesis, University of Sheffield, 1992.

G. J. Brown and M. P. Cooke, “Computational auditory scene analysis,” Com-
puter Speech and Language, vol. 8, pp. 297-336, 1994.

. G. J. Brown, D. L. Wang, and J. Barker, “A neural oscillator sound separator

for missing data speech recognition,” in Proc. IJCNN, 2001, vol. 4, pp. 2907—
2912.

J. F. Cardoso, “High-order contrasts for independent component analysis,”
Neural Computation, vol. 11, pp. 157-192, 1999.

M. P. Cooke, “Making sense of everyday speech: a glimpsing account,” in Speech
Separation by Humans and Machines, edited by P. Divenyi, Springer, New York,
2004.

M. P. Cooke, Modelling Auditory Processing and Organization. Cambridge Uni-
versity Press, Cambridge, UK, 1993.

M. P. Cooke, G. J. Brown, M. D. Crawford, and P. Green, “Computational
auditory scene analysis: listening to several things at once,” Endeavour, vol.
17, no. 4, pp. 186-190, 1993.

M. P. Cooke, P. Green, L. Josifovski, and A. Vizinho, “Robust automatic speech
recognition with missing and unreliable acoustic data,” Speech Communication,
vol. 34, pp. 267-285, 2001.

A. de Cheveigné, “The cancellation principle in acoustic scene analysis,” in
Speech Separation by Humans and Machines, edited by P. Divenyi, Springer,
New York, 2004.

A. de Cheveigné, “Cancellation model of pitch perception,” J. Acoust. Soc.
Am., vol. 103, pp. 1261-1271, 1998.

A. de Cheveigné and H. Kawahara, “Multiple period estimation and pitch per-
ception model,” Speech Communication, vol. 27, pp. 175-185, 1999.

C. J. Darwin and R. P. Carlyon, “Auditory grouping,” in Hearing, edited by
B. C. J. Moore, Academic Press, 1995.

P. N. Denbigh and J. Zhao, “Pitch extraction and separation of overlapping
speech,” Speech Communication, vol. 11, pp. 119-125, 1992.

L. A. Drake, A. Katsaggelos, J. C. Rutledge, and J. Zhang, “Sound source sep-
aration via computational auditory scene analysis-enhanced beamforming,” in
Proc. of the IEEE Sensor Array and Multichannel Signal Processing Workshop,
2002.

N. I. Durlach, “Note on the equalization and cancellation theory of binaural
masking level differences,” J. Acoust. Soc. Am., vol. 32, no. 8, pp. 1075-1076,
1960.

D. P. W. Ellis, Prediction-Driven Computational Auditory Scene Analysis.
Ph.D. Thesis, Department of Electrical Engineering and Computer Science,
M.L.T, 1996.

D. P. W. Ellis, “Evaluating speech separation systems”, in Speech Separation
by Humans and Machines, edited by P. Divenyi, Springer, New York, 2004.
D. P. W. Ellis, “Using knowledge to organize sound: the prediction-driven
approach to computational auditory scene analysis, and its application to
speech/nonspeech mixtures,” Speech Communication, vol. 27, pp. 281-298,
1998.

D. J. Godsmark and G. J. Brown, “A blackboard architecture for computational
auditory scene analysis,” Speech Communication, vol. 27, pp. 351-366, 1999.



400

253.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

G.J. Brown and D. Wang

J. G. Harris, C. J. Pu, and J. C. Principe, “A monaural cue sound localizer,”
Analog Integrated Circuits and Signal Processing, vol. 23, pp. 163172, 2000.
M. J. Hewitt and R. Meddis, “An evaluation of eight computer models of
mammalian inner hair-cell function,” J. Acoust. Soc. Am., vol. 90, no. 2, pp.
904-917, 1991.

G. Hu and D. L. Wang, “Speech segregation based on pitch tracking and am-
plitude modulation,” in Proc. IEEE Workshop on Applications of Signal Pro-
cessing to Audio and Acoustics, 1991, pp. 79-82.

G. Hu and D. L. Wang, “Separation of stop consonants,” in Proc. IEEE
ICASSP, 2003, vol. 2, pp. 749-752.

G. Hu and D. L. Wang, “Monaural speech segregation based on pitch tracking
and amplitude modulation,” IEEE Trans. Neural Networks, vol. 15, no. 5, pp.
1135-1150, 2004.

L. A. Jeffress, “A place theory of sound localization,” Journal of Comparative
and Physiological Psychology, vol. 41, pp. 35-39, 1948.

A. Jourjine, S. Rickard, and O. Yilmaz, “Blind separation of disjoint orthogonal
signals: demixing N sources from 2 mixtures,” in Proc. IEEE ICASSP, 2000,
pp. 2985-2988.

M. Karjalainen and T. Tolonen, “Multi-pitch and periodicity analysis model for
sound separation and auditory scene analysis,” in Proc. IEEE ICASSP, 1999,
vol. 2, pp. 929-932.

A. P. Klapuri, “Multiple fundamental frequency estimation based on harmonic-
ity and spectral smoothness,” IEEE Trans. Speech Audio Processing, vol. 11,
no. 6, pp. 804-816, 2003.

B. Kollmeier and R. Koch, “Speech enhancement based on physiological and
psychoacoustical models of modulation perception and binaural interaction,”
J. Acoust. Soc. Am., vol. 95, pp. 1593-1602, 1994.

A. Khurshid and S. L. Denham, “A temporal analysis based pitch estimation
system for noisy speech with a comparative study of performance of recent
systems,” IEEFE Trans. Neural Networks, vol. 15, no. 5, pp. 1112-1124, 2004.
J. C. R. Licklider, “A duplex theory of pitch perception,” Ezxperimentia, vol. 7,
pp- 128-133, 1951.

C. Liu, B. C. Wheeler, W. D. O’Brien, R. C. Bilger, C. R. Lansing, and A.
S. Feng, “Localization of multiple sound sources with two microphones,” J.
Acoust. Soc. Am., vol. 108 (4), pp. 1888-1905, 2000.

C. Liu, B. C. Wheeler, W. D. O’Brien, C. R. Lansing, R. C. Bilger, D. L. Jones,
and A. S. Feng, “A two-microphone dual delay-line approach for extraction of
a speech sound in the presence of multiple interferers,” J. Acoust. Soc. Am.,
vol. 110, no. 6, pp. 3218-3231, 2001.

R. F. Lyon, “A computational model of binaural localization and separation,”
in Proc. IEEE ICASSP, 1983, pp. 1148-1151.

D. Mellinger, Event Formation and Separation in Musical Sound. Ph.D. Thesis,
Stanford University, 1991.

B. C. J. Moore, An Introduction to the Psychology of Hearing (5th edition).
Academic Press, 2003.

T. Nakatani and H. G. Okuno, “Harmonic sound stream segregation using
localisation and its application to speech stream segregation,” Speech Commu-
nication, vol. 27, pp. 209-222, 1999.



43

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

16 Computational Auditory Scene Analysis 401

J. Nix, M. Kleinschmidt, and V. Hohmann, “Computational auditory scene
analysis by using statistics of high-dimensional speech dynamics and sound
source direction,” in Proc. EUROSPEECH, 2003, pp. 1441-1444.

H. G. Okuno, T. Nakatani, and T. Kawabata, “A new speech enhancement:
speech stream segregation,” in International Conference on Spoken Language
Processing, 1996, vol. 4, pp. 2356-2359.

H. G. Okuno, T. Nakatani, and T. Kawabata, “Listening to two simultaneous
speeches,” Speech Communication, vol. 27, pp. 299-310, 1999.

L. Ottaviani and D. Rocchesso, “Separation of speech signal from complex
auditory scenes,” in Proc. of the Conference on Digital Audio Effects, 2001.
K. J. Paloméki, G. J. Brown, and D. L. Wang, “A binaural processor for missing
data speech recognition in the presence of noise and small-room reverberation,”
Speech Communication, vol. 43, no. 4, pp. 273-398, 2004.

K. J. Paloméki, G. J. Brown, and J. P. Barker, “Techniques for handling con-
volutional distortion with ‘missing data’ automatic speech recognition,” Speech
Communication, vol. 43, pp. 123142, 2004.

T. W. Parsons, “Separation of speech from interfering speech by means of
harmonic selection,” J. Acoust. Soc. Am., vol. 60, no. 4, pp. 911-918, 1976.
R. D. Patterson, K. Robinson, J. Holdsworth, D. McKeown, C. Zhang, and
M. Allerhand, “Complex sounds and auditory images,” in Auditory Physiology
and Perception, edited by Y. Cazals, L. Demany, and K. Horner, Pergamon,
Oxford, 1992.

N. Roman and D. L. Wang, “Binaural tracking of multiple moving sources,” in
Proc. IEEE ICASSP, 2003, vol. 5, pp. 149-152.

N. Roman, D. .. Wang, and G. J. Brown, “Speech segregation based on sound
localization,” J. Acoust. Soc. Am., vol. 114, no. 4, pp. 22362252, 2003.

N. Roman and D. L. Wang, “Binaural sound segregation for multisource rever-
berant environments,” in Proc. IEEE ICASSP, 2004, vol. 2, pp. 373-376.

S. T. Roweis, “One microphone source separation,” Neural Information Pro-
cessing Systems, vol. 13, pp. 793-799, 2000.

T. Rutkowski, A. Cichocki, and A. K. Barros, “Speech enhancement from in-
terfering sounds using CASA techniques and blind source separation,” in 3rd
International Conference on Independent Component Analysis and Blind Signal
Separation, 2001, San Diego, California, pp. 728-733.

A. Shamsoddini and P. N. Denbigh, “A sound segregation algorithm for rever-
berant conditions,” Speech Communication, vol. 33, pp. 179-196, 2001.

M. Slaney and R. F. Lyon, “A perceptual pitch detector,” in Proc. IEEE
ICASSP, 1990, vol. 1, pp. 357-360.

M. Slaney, D. Naar, and R. F. Lyon, “Auditory model inversion for sound
separation,” in Proc. IEEE ICASSP, 1994, pp. 77-80.

P. Smaragdis, Redundancy Reduction for Computational Audition: A Unifying
Approach. Ph.D. Thesis, Program in Media Arts and Sciences, M.I.T., 1994.
S. Srinivasan and D. L. Wang, “A schema-based model for phonemic restora-
tion,” Speech Communication, 2004, in press.

H. W. Strube, “Separation of several speakers recorded by two microphones
(cocktail-party processing),” Signal Processing, vol. 3, no. 4, pp. 355-364, 1981.
T. Tolonen and M. Karjalainen, “A computationally efficient multi-pitch anal-
ysis model,” IEEE Trans. Speech Audio Processing, vol. 8, no. 6, pp. 708-716,
2000.



402

63.

64.

65.

66.

67.

68.

69.

70.

71.

G.J. Brown and D. Wang

A. J. W. van der Kouwe, D. L. Wang, and G. J. Brown, “A comparison of
auditory and blind separation techniques for speech segregation,” IEEE Trans.
Speech Audio Proc., vol. 9, no. 3, pp. 189-195, 2001.

D. L. Wang, “Primitive auditory segregation based on oscillatory correlation,”
Cognitive Science, vol. 20, pp. 409-456, 1996.

D. L. Wang, “On ideal binary mask as the computational goal of auditory scene
analysis,” in Speech Separation by Humans and Machines, edited by P. Divenyi,
Springer, New York, 2004.

D. L. Wang and G. J. Brown, “Separation of speech from interfering sounds
based on oscillatory correlation,” IEEE Trans. Neural Networks, vol. 10, no. 3,
pp- 684-697, 1999.

M. Weintraub, A Theory and Computational Model of Monaural Auditory
Sound Separation. Ph.D. Thesis, Standford University, 1985.

M. Wu and D. L. Wang, “A one-microphone algorithm for reverberant speech
enhancement,” in Proc. IEEE ICASSP, 2003, vol. 1, pp. 844-847.

M. Wu, D. L. Wang, and G. J. Brown, “A multipitch tracking algorithm for
noisy speech,” IEEE Trans. Speech Audio Proc., vol. 11, no. 3, pp. 229-241,
2003.

S. N. Wrigley and G. J. Brown, “A computational model of auditory selective
attention,” IEEE Trans. Neural Networks, vol. 15, no. 5, pp. 1151-1163, 2004.
O. Yilmaz and S. Rickard, “Blind separation of speech mixtures via time-
frequency masking,” IEEE Trans. Signal Processing, vol. 52, no. 7, pp. 1830—
1847, 2004.



Index

3GPP, 116

a posteriori SNR, 17, 48, 69, 118

a priori SNR, 17, 48, 69, 118

acoustic event, 373

active noise cancellation, 163

adaptive beamformer, 354

adaptive harmonic filter, 252

aliasing, 334

amplitude estimation, 51

analysis window, 44

attentional selectivity, 272

auditory masking, 155

auditory scene analysis (ASA), 371, 372

autocorrelation coefficient sequence,
101

babbling noise, 290

batch, 336

Bayes’ rule, 100

Bayesian estimator, 78

beamformer, 272

beamforming, 272

Bezout theorem, 284

bias compensation, 59

binary mask, 374

binaural CASA, 382

blind dereverberation, 247

blind inverse filtering, 249

blind SIMO identification, 276

blind source separation (BSS), 272,
299, 301, 329, 353

blocking matrix, 202

car noise, 290

central limit theorem, 70

channel diversity, 277

co-prime channel impulse responses,
277

cochlear filter analysis, 376

cocktail party effect, 4, 272

cocktail party processor, 384

coherence, 85

common offset, 373

common onset, 373

computational auditory scene analysis
(CASA), 371, 373

conditional expectation estimator, 79

conditional variance, 104

constrained optimization, 106

convolutive mixture, 273, 301, 331, 355

correlation shaping, 250

correlogram, 376

crosstalk component, 358

cumulants, 172

DAM, 60

data-driven CASA, 373

decision-directed, 98, 107

decision-directed SNR estimation, 48

deconvolution, 301

delay, 357

delay-and-sum beamformer, 27, 202

dereverberation, 3, 247, 249, 272

dereverberation filter, 258

dewhitening, 144

direction of arrival (DOA), 306, 309,
356

discrete Fourier transform (DFT), 44

dispersive noise, 276

DRT, 61

eigen filterbank, 146

eigenvalue decomposition (EVD), 136,
138, 305

EM, 161, 168

energy decay curves of impulse
responses, 262

equalization-cancellation model, 383

estimate-maximize, 161

expectation-maximization, 105

extended Kalman filter (EKF), 164

farfield model, 309

fast EVD, 153

FastICA, 305

filterbank, 146, 232

fixed beamformer, 200, 202
frame size, 332
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frequency-domain adaptive algorithm,
210

frequency-domain BSS, 300, 302, 332,
355

frequency-domain criterion, 207

frequency-domain ICA, 353, 355

fundamental frequency, 251

fundamental frequency estimation, 253

Gamma pdf, 55, 71

gammatone filter, 375

gammatone filterbank, 375

GARCH, 99, 104, 105

Gaussian model, 104

generalized EVD, 144

generalized Rayleigh quotient, 21

generalized sidelobe canceller (GSC),
200, 204

hands-free, 229

Hanning window, 302

harmonicity of speech signals, 247, 251
hearing aid, 43, 219

heavy-tailed distribution, 55

HERB, 255

hidden Markov process, 98

HOS, 172, 273

i.id., 249

independent component analysis (ICA),
272, 299, 304, 329, 353, 355

InfoMax, 305

instantaneous mixture, 273

interaural envelope difference (IED),
383

interaural intensity difference (IID),
382

interaural level difference (ILD), 382

interaural time difference (ITD), 382

inverse filtering, 248

irreducible MIMO system, 284

Itakura-Saito measure, 35, 288

joint MAP amplitude and phase
estimator, 53, 81
joint speech estimator, 84

Kalman filter, 10, 26, 161
Kalman smoother, 161

Karhunen-Loeve transform (KLT), 136
Kuhn-Tucker necessary conditions, 141
Kullback divergence, 75

Laplace pdf, 55, 71, 306

least-squares estimator, 139, 286
linear predictor, 22

listener fatigue, 1

LMMSE estimator, 139

log-spectral amplitude estimation, 110
log-spectral distortion, 106

MAP estimator, 53, 68

MAP spectral amplitude estimator, 79

maximum-likelihood, 53, 106, 162

mean opinion score (MOS), 35, 127,
288

MELP coding, 60

microphone array, 27, 200, 229, 272

MIMO, 273, 274

minimal distortion principle (MDP),
356

minimum phase, 273

minimum statistics, 58, 69, 120

MINT theorem, 273, 284

ML, 53, 162

MMSE, 13, 14, 45, 205

MMSE criterion for speech dereverber-
ation, 267

MMSE estimation, 56

MMSE spectral estimation, 108

MMSE-LSA, 52

MMSE-STSA, 51, 117

model estimation, 105

monaural CASA, 376

Moore-Penrose pseudoinverse, 303

MSE, 12, 14

MTF, 250

multichannel MAP spectral amplitude
estimation, 86

multichannel speech enhancement, 201

multichannel statistical filter, 83

multichannel Wiener filter, 209, 233

MUSIC, 306

musical noise, 2

musical tones, 43

MVDR beamformer, 200

natural gradient, 305
nearfield (direct-path) model, 307



NLMS algorithm, 360

noise covariance detector, 238

noise covariance matrix, 236

noise estimation, 119

noise reduction, 1, 10, 15, 204

noise shaping, 145

noise subspace, 138

noise suppression, 117, 120

noise-reduction factor, 11, 16

nonlinear optimization, 106

nonparametric method, 2

nonstationary noise, 119

normal equations, 208

normalized MMSE, 13, 14

normalized projection misalignment,
287

objective evaluation, 125

one-frame-ahead conditional variance,
104

overlap-add, 45

parametric method, 2

parametric model, 10

PARCOR, 164

permutation ambiguity, 300

permutation problem, 337, 356

permutation problem of frequency-
domain BSS, 311

PESQ, 99, 107

polyphase filterbank, 334

prewhitening, 143

prototype filter, 334

quality of speech signals, 247
quasi-periodicity of speech signals, 266

Rayleigh quotient, 145

real-time processing, 353

regularization, 205

residual crosstalk cancellation, 358

reverberant speech signal, 248

reverberation, 3

reverberation time, 247, 263

Rice pdf, 70

ripple enhanced power spectrum
(REPS), 253

room impulse response, 247

sample autocorrelation coefficient, 102

Index 405

scaling ambiguity, 315

scaling problem, 337, 356

separation filter, 301, 331, 345

short-time Fourier transform, 99, 302,
355

signal presence probability, 100

signal subspace, 2, 10, 136, 138

signal subspace approach (SSA), 135

signal-to-distortion ratio (SDR), 341

signal-to-interference ratio (SIR), 287,
302, 339, 363

SIMO, 274, 280

single sideband modulation, 335

single-channel speech enhancement
system, 67

single-channel statistical filter, 68

singular value decomposition (SVD),
136

sinusoidal synthesis, 252

skeleton cross-correlogram, 385

SOS, 273

source localization, 306

spatial aliasing, 307

spatial filtering, 272

spatially whitened (sphered), 305

spatio-temporal covariance matrix, 234

spectral amplitude of noise, 76

spectral amplitude of speech, 71

spectral analysis, 44, 101

spectral enhancement, 99

spectral floor, 110

spectral gain, 46

spectral gain modification, 123

spectral restoration, 10

spectral smoothing, 318

spectral subtraction, 1, 11

spectral-domain constrained estimator,
141

speech dereverberation, 273, 284

speech distortion, 204

speech distortion weighted multichannel
Wiener filter, 205

speech enhancement, 1, 10, 135

speech estimator, 78

speech intelligibility, 1

speech quality, 1

speech-distortion index, 11, 16

SSB, 335
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SSB filterbank, 335

statistical model, 10

statistical speech model, 104

stencil filter, 384

stochastic AR process, 166

straight component, 358

subband, 329

subband analysis, 333

subband BSS, 330, 333

subband synthesis, 335

subjective evaluation, 116, 127, 186
super-Gaussian speech model, 67, 87
synchrony strand representation, 376
synthesis window, 45

target signal, 231
time warping analysis, 267
time-domain BSS, 336

time-domain constrained estimator, 140
time-frequency mask, 374

unscented Kalman filter (UKF), 161,
164, 179

varechoic chamber, 288
voice activity detector, 172, 203, 230
volatility clustering, 103

weighted noise estimation, 121
whitening effect, 330

Wiener filter, 10, 12, 14, 45, 109, 161
Wiener filtering matrix, 139

Wiener gain function, 140
Wiener-Hopf equation, 12, 14, 26

Yule-Walker, 161
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